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Abstract The understanding of reasons leading to nonuniqueness of soil erosion susceptibility is still
inadequate, yet indispensable for establishing general relations between runoff volume and sediment yield.
To obtain relevant insights, we performed a series of numerical simulations with a detailed hydrodynamic
model using synthetic storms of varying intensity, duration, and lag time between events as
representations of different hydrologic response conditions in a zero-order catchment. The design targeted
to generate surface flow and ‘‘perturb’’ soil substrate by a first rainfall event, creating a set of initial
conditions in terms of flow and deposited sediment prior to the onset of a subsequent rainfall event. Due to
the differential effect of (re)detachment and (re)entrainment processes on soil particles of varying sizes, the
deposited sediment mass formed shielding layer. One of the essential results is that unless the initial
condition of flow and sediment is identical, the same volume of runoff can generate different total
sediment yields and their variation can reach up to �200%. The effect is attributed to two major conflicting
effects exerted by the deposited ‘‘initialization’’ (soil antecedent condition) sediment mass: erosion
enhancement, because of supply of highly erodible sediment, and erosion impediment, because of
constrain on the availability of lighter particles by heavier sediment. Consistently with this inference, long-
term simulations with continuous rainfall show that a peculiar feature of sediment yield series is the
existence of maximum before the steady state is reached. The two characteristic time scales, the time to
peak and the time to steady state, separate three characteristic periods that correspond to flow-limited,
source-limited, and steady-state regimes. These time scales are log linearly and negatively related to the
spatially averaged Shields parameter: the smaller the rainfall input and the heavier a given particle is, the
larger the two scales are. The results provide insights on how the existence of shield operates on erosion
processes, possibly implying that accurate short-term predictions of geomorphic events from headwater
areas may never become a tractable problem: the latter would require a detailed spatial characterization of
particle size distribution prior to precipitation events.

1. Introduction

Estimation of sediment yield (SY) at the catchment scale plays a significant role for optimal design of
hydraulic structures, such as bridges, culverts, reservoirs, canals, harbors, and detention basins, as well as
making informed decisions in environmental and ecological management. The SY is defined here as the
total sediment mass discharged by a basin at an outlet section over a duration of a hydrologic event. Prior
experimental studies focused on obtaining flow and sediment data in a search of unique relationships
between runoff (specifically, volume and peak) and characteristics of basin sediment yield [Pierson et al.,
2001; Harmel et al., 2006; Nearing et al., 2007]. These relationships have been used to predict sediment yield
from flow information due to the relatively high difficulties in measuring sediment. Generally, sediment
yield is assumed to increase with flow volume (FV) for a given basin area [Nearing et al., 2007; Pierson et al.,
2001]. Yet there are substantial nonlinearities in the basin response that can trigger remarkable variations in
any derived unique SY-FV relationship, thus making the estimation of SY very uncertain. Indeed, the actual
event-scale sediment yield produced by a river basin can vary significantly for the same metric of hydrologic
response (see e.g., Nearing et al. [2007, Figure 2] reporting data from watersheds in the U.S. Southwest).

Such nonuniqueness of sediment yield is common for many locations around the world and can be attrib-
uted to nonlinearities associated with several possible contributing factors. (1) Given the same rainfall,
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sediment output at a basin outlet is nonlinear with respect to the size of a watershed. Drainage basins of
higher orders have lower delivery ratios (defined as the ratio between SY and the total eroded material), as
compared to smaller watersheds, due to larger watershed storage capacity in the floodplain [Lane et al.,
1997; Phillips, 2003]. (2) Sediment dynamics strongly depend on land use, land cover, and conservation
management practices [Harmel et al., 2007; Ward et al., 2009; Notebaerta et al., 2011; Defersha and Melesse,
2012]. As an example, for two major cropping systems in Texas Blackland Prairies, annual soil loss in regions
producing small grain (wheat or oat) is significantly lower than that of areas with row crop production (corn
or sorghum) [Harmel et al., 2006]. In watersheds with either shrub or grass vegetative cover in southeastern
Arizona, the mean soil loss in shrubby areas is higher than that in grassy sites [Nearing et al., 2005]. (3) Ero-
sion is higher at sites with steeper and longer slopes [Defersha et al., 2011]. This effect is particularly pro-
nounced in regions where gravity plays a significant role in sediment release and movement. However, the
relationship between site slope and sediment yield is subject to substantial variations in areas of mild
topography, where the processes related to flow characteristics (e.g., the development of narrower and
faster flow threads) and flow patterns (e.g., connectivity between patches of wider or narrower flows) are
predominant over the gravity-controlled processes [Armstrong et al., 2011]. (4) Precipitation characteristics
(intensity, frequency, duration, and volume) substantially affect the variability of sediment yield. Only sev-
eral extreme storms can be responsible for most of the total erosion loss over a long period [Edwards and
Owens, 1991; Nearing et al., 2007]. The sequence of rainfall events may also impact the amount of the total
erosion [Romkens et al., 2001]. (5) Surface conditions such as soil moisture content, crust formation, sealing,
slaking, and organic matter contents can appreciably influence runoff and erosion generating processes [Le
Bissonnais et al., 1995; Mamedov et al., 2006; Wuddivira et al., 2009].

In addition to these aforementioned reasons, the type of soil and its particle-size distribution (PSD) may
result in selective erosion and transport of sediment that depend on a grain size and the corresponding set-
tling velocity [Rose et al., 1983b, 1983a; Hairsine and Rose, 1991; Hairsine et al., 1999]. Specifically, smaller
particles have low settling velocities and are prone to move far from their original position of detachment.
Conversely, larger particles can settle quickly near their source locations because of their heavier immersed
weight [Sander et al., 1996]. Larger particles can also form a shield on soil bed and protect underlying mate-
rial from rainfall detachment and runoff entrainment [Kinnell, 1993; Hairsine et al., 1999]. Experimental
research on the formation and temporal development of a shielding layer has demonstrated a range of rele-
vant phenomena [Heilig et al., 2001; Walker et al., 2007; Armstrong et al., 2012]. Specifically, Heilig et al.
[2001] first confirmed the existence of a shielding layer through a simple experimental design under
rainfall-induced erosion. Walker et al. [2007] examined the role of infiltration on soil erosion, and argued
that increased infiltration makes the formation of a shielding layer more rapid by increasing the vertical
deposition rate. Armstrong et al. [2012] further investigated the effects of slope, ponding depth, and infiltra-
tion. The first two variables were found to be significant factors controlling shield development, while the
effects of infiltration were minor. All of these experimental studies corroborated the formation of a shielding
layer through photographs, video image processing, or statistical analyses and presented the implications
of several parameters on the process. The studies primarily focused on relatively simple, small-scale experi-
ments over a short term (hourly time scales) by using plot-scale domains: a small horizontal soil surface (7
3 7 3 7 cm3) [Heilig et al., 2001], a soil chamber with a diameter of 7.5 cm [Walker et al., 2007], and Perspex
soil boxes (25 3 25 3 15 cm3) [Armstrong et al., 2012].

At a laboratory scale of an experimental study, the development of a shielding layer was investigated with
respect to the boundary effects of flume lateral width [Jomaa et al., 2010] and protection by large-scale ele-
ments within a channel [Jomaa et al., 2012; Kim et al., 2012a; Jomaa et al., 2013]. Further, the impacts of
antecedent and initial soil conditions on variability of SY were described through an experiment in which
several successive rainfall events were considered for a small-scale (1 m 3 6 m) flume [Jomaa et al., 2013].
Since technical challenges prevented direct, continuous monitoring of flow/sediment variables at flume
internal points, the observations were presented mainly at the outlet. An explicit observation of the evolu-
tion of spatially and temporally varying shielding layer was not reported.

Several modeling studies [Kinnell, 2006, 2009, 2012] have illustrated the development of surface shield
based on results of a numerical model applied to a planar domain. They emphasized that the rate at which
particles move across the surface and the distance over which the movement takes place are the key factors
in forming a surface shield. The parameterization used in these studies had a mechanistic basis, given
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undeveloped, shallow flow conditions. The studies of Kinnel [Kinnell, 2005, 2006, 2009, 2012] followed a
‘‘Lagrangian’’ approach: given a size distribution, the sediment discharge was determined by tracking the
pathline of each particle and investigating the distance and travel time of the motion. While this manner of
representing the dynamics offers certain flexibility in terms of understanding the details of fluid and sedi-
ment behaviors, it also includes a number of parameterization challenges that are difficult to overcome
using data obtained with well-established methodologies.

Several additional numerical studies further demonstrated variability in soil erosion as a result of process
interactions during armoring sand weathering [Sharmeen and Willgoose, 2006; Willgoose and Sharmeen,
2006; Cohen et al., 2009, 2010, 2013]. They were carried out through a representation of two conflicting
effects on soil erosion: erosion growth (mostly) or decrease due to weathering interactions (in some cases)
and armoring effects of coarser materials [Sharmeen and Willgoose, 2006]. Due to the high fraction of rock
fragments, significant armoring effects were demonstrated for a noncohesive sandy gravel soil [Sharmeen
and Willgoose, 2007]. Although these studies could capture the phenomena associated with coarsening of
surface materials and weathering effects, these numerical experiments focused on simulations over the
long term, usually more than 100 years [Sharmeen and Willgoose, 2006, 2007; Cohen et al., 2009, 2010, 2013].
Such time scales required additional simplifications such as parameterizations of flow complexity (depth
and velocities) to be explained by the Manning equation, and sediment fluxes considered through a simple
empirical equation.

At larger spatial scales, e.g., watershed with complex topography, and over the long term, none of the afore-
mentioned studies addressed the effects of relevant variables on the formation and decay of a shielding
layer and its impact on the erosion process and basin sediment loss. The primary goal of this study is to
obtain mechanistic insights on why size-selective erosion processes can result in nonunique sediment yield
for the same runoff volume by exploring internal dynamics of a watershed system. The specific objectives
are (1) to investigate the effects of rainfall patterns on sediment yield, (2) to elucidate the occurrence of
unsteady phenomena in the process of erosion, given a steady-state hydraulic flow condition, and (3) to
describe unsteady patterns and attribute them to critical time scales in the dynamics of morphologic varia-
bles. The study is based on a numerical investigation of sediment yield response from a zero-order water-
shed (the total area is 14 3 28 m2) forced by a set of synthetic rainfall events. The modeling scenarios are
constructed such that perturbations caused by prior rainfall impacts the initial condition for a succeeding
storm event in terms of either (i) flow (smaller/larger depth) or soil bed (intact/loose). The various initial con-
ditions lead to the nonuniqueness of basin sediment yield with respect to the same runoff. The numerical
model used in this study is the two-dimensional Hairsine-Rose erosion/sediment transport model coupled
to a fully distributed hydrology and hydrodynamic model.

2. Model Description and Simulation Design

2.1. Numerical Model: tRIBS-FEaST
The basic premise of this study is that soil bed with multiple particle sizes can form a shield by relatively
larger particles, which can lead to a nonunique sediment response with respect to the same forcing. The
appropriate formulation of erosion and sediment transport model capable of incorporating features
required for a numerical exploration of the above assertion is the Hairsine-Rose (H-R) model [Hairsine and
Rose, 1991, 1992; Sander et al., 2007a]. It represents a mechanistic erosion and sediment transport model
that can describe the formation and development of surface shield. Since the original research in 1990s, a
significant amount of research on the Hairsine-Rose formulation has confirmed its appropriateness; it has
been addressed analytically [Sander et al., 1996; Hairsine et al., 1999; Hairsine et al., 2002; Sander et al., 2002;
Hogarth et al., 2004b], numerically [Hogarth et al., 2004a; Heng et al., 2009; Kim et al., 2013], and experimen-
tally [Proffitt et al., 1991; Heilig et al., 2001; Rose et al., 2007; Walker et al., 2007; Armstrong et al., 2011; Heng
et al., 2011; Armstrong et al., 2012]. Further, these unsteady, two-dimensional, advection-dominated sedi-
ment transport equations have been successfully combined with flow mass and momentum equations,
such as the Saint-Venant equations [Leendertse, 1967; Liggett, 1968; Abbott, 1974] using the Finite Volume
framework [Heng et al., 2009; Papanicolaou et al., 2010; Kim et al., 2013]. In a latest effort, a quasi three-
dimensional watershed scale hydrology model that addresses the problem of partitioning of water and
energy budgets has been coupled to the system of flow and sediment equations on an unstructured
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triangular grid [Kim et al., 2012b, 2013]; it is called the tRIBS-FEaST: TIN (Triangulated Irregular Network)-
Based Real Time Integrated Basin Simulator (tRIBS) [Ivanov et al., 2004] and Flow, Erosion and Sediment
Transport (FEaST). The formulation adopts the ‘‘Eulerian’’ approach: at a given point in space and time, the
H-R formulation considers uplift and fall of each particle size and computes its concentration and deposition
after the volume of water containing the sediment moves downstream at the advection flow velocity. The
two-dimensional description of flow motions caused by variations in topography and meteorological forc-
ing, as well as hydrologic partition related to vegetation cover, landuse, and subsurface processes are
explicitly captured. For a more detailed description, the reader is referred to Kim et al. [2012b] and Kim et al.
[2013].

2.2. Modeling Erosion Processes in a Zero-Order Catchment
A zero-order basin that exhibits both hillslope and flow convergent areas is selected for a numerical analysis
in this study because it includes more complex, ‘‘realistic’’ topography, as compared to planar domains used
in most experimental studies. The basin dynamics can include the processes of both rainfall-induced
detachment and runoff-driven entrainment. The former type of erosion process is generally predominant in
headwater areas of the basin, while the latter in the flow convergent, channel areas. These dynamics are
therefore representative of mechanisms operating in real catchments exhibiting a range of slopes. The rela-
tively small size of the basin permits computational feasibility. Another reason for the choice of the study
domain is the necessity to exclude the effects of fluvial processes occurring in perennial channels of higher-
order catchments, where substantial flow depths influence the process of rainfall (re)detachment [Laws and
Parsons, 1943; Mutchler and McGregor, 1983; Proffitt et al., 1991], or the effects of other mechanisms such as
turbulent characteristics of flow, the diffusion process of sediment motion, and vertical variations of the
water flow velocity may become dominant.

Soil erosion and sediment transport are very complex phenomena and all relevant processes are extremely
difficult to describe at a high detail in a numerical model. Before the numerical results of simulations are
presented, one needs to address strengths and weaknesses of the employed modeling approach. The
advantages of the employed model are as follows. First, the two-dimensional flow motions caused by topo-
graphic variations in the zero-order catchment or obstacles can be well computed in a spatiotemporally
manner [Kim et al., 2012a]. The model can calculate all primary variables such as flow depths, velocities, con-
centrations, deposited masses, and elevation changes in a dynamic or nonsteady fashion. One of the deriva-
tive variables, the shielding factor H is also computed and updated each time step. In contrast to previous
modeling studies, no assumptions are needed to represent the dynamic evolution of the deposited layer:
the factor H is dynamically computed and updated each time step of the hydrodynamic model as a result
of the local balance of processes of redetachment, reentrainment, and deposition, also implicitly affected
by the processes of detachment and entrainment in advection-dominated sediment transport [see Kim
et al., 2013 for details]. Next, the Hairsine-Rose formulation can render the phenomena of detachment, dep-
osition, and sediment transport in a more physically consistent fashion [Sander et al., 2007b], as compared
to numerical models using the transport capacity concept, such as KINEROS [Woolhiser et al., 1990], WEPP
[Nearing et al., 1989], and tRIBS-Erosion [Francipane et al., 2012]. The latter models employ two different ero-
sion source equations depending on whether the flow conditions are under net eroding or net depositional
regimes and therefore, under a given flow condition, only a single erosional regime can occur. However,
empirical evidence on detachment and deposition processes testifies that each process occurs simultane-
ously and continuously. Polyakov and Nearing [2003] pointed out that models based on a single, prescribed
transport capacity fail to simulate soil conditions with multiple particle sizes and evolving composition of
the bed, because the transport capacity is not unique during simulations in such conditions [Polyakov and
Nearing, 2003; Sander et al., 2007b]. The coupled model adopting the Hairsine-Rose formulation can satisfac-
torily resolve such challenging effects caused by both preferential deposition in a water column and a phys-
ical protection by the deposited layer.

In contrast, there is a set of processes that are not or cannot be fully addressed by the formulation used in
this study. (1) The erosion phenomena related to subsurface water content and the effect of negative or
positive soil matric pore pressures are not considered [Simon and Collison, 2001]. For instance, as soil
becomes saturated, erosion can increase due to the growth of pore water pressure that reduces soil cohe-
sive strength [Simon and Collison, 2001]. (2) Erosion enhancement due to increasing aggregate breakdown
and slaking, which is attributed to air burst within pores of aggregates during rapid wetting [Le Bissonnais

Water Resources Research 10.1002/2013WR014580

KIM AND IVANOV VC 2014. American Geophysical Union. All Rights Reserved. 1028



et al., 1989; Rudolph et al., 1997]. The process of slaking is more pronounced in soils where organic matter
contributing to binding forces among mineral particles is low. (3) Repelling of soil particles in condition of
wet soil. This process is due to an interaction between a layer of positive charges composed of chemical cat-
ions (e.g., sodium, calcium, and magnesium) surrounding clayey soil particles that carry negative electrical
charge. (4) Drying of slaked clayey soil that leads to crusting and sealing and may result in a reduction of
infiltration and growth of runoff and erosion [Le Bissonnais et al., 1989]. (5) The employed model cannot rep-
resent ‘‘subgrid’’ processes, such as a flow motion occurring in narrower, faster flow threads of the assumed
planar surface of a computational cell (i.e., a triangle). Specifically, the numerical model does not require a
‘‘rill’’ or a ‘‘stream parameterization,’’ provided the resolution of computational cells is small enough to cap-
ture the scale and the actual representation of a rill or a stream. If the resolution is coarser, however, the
model formulation assumes sheet flow within a cell. In summary, all of the above processes related to a
degree of soil saturation, slaking by trapped air, repelling between chemical cations (dispersion), crusting,
and rill formation are excluded in this study. The significance of this assumption is difficult to assess as bet-
ter parameterizations or exact mathematical theories associated with these processes are needed for a
more complete numerical treatment of the erosion process. However, given that the skill of the Hairsine-
Rose formulation with conventionally defined sink and source terms has been confirmed in earlier studies
using similar space-time scales, the appropriateness of Hairsine-Rose approach for this study appears to be
fully justified [Heng et al., 2011].

2.3. Simulation Setup
2.3.1. Domain and Modeling Configuration
Sediment yield at an outlet of a zero-order catchment [Ivanov et al., 2010] is simulated for different
precipitation patterns. The domain is 14 m wide and 28 m long and is resolved with a triangular
mesh of about 1 m spacing. Local slopes range from 7.3 to 32.8% (see Figure 1). Such a relatively
small catchment, as compared to most instrumented, real-world watersheds, is nonetheless significantly
larger than domains used in experimental studies exploring size-selective erosion processes. The num-
ber of mesh nodes and triangular cells are 435 and 812 (Figure 1). The time step used for runoff gen-
eration routine is 7.5 min. The time step used for the simulation of flow hydrodynamics and erosion-
transport modeling components is 0.2 s. For the entire range of simulation scenarios, the initial condi-
tions for flow and soil bed state are specified as intact and dry bed conditions, i.e., no flow and no
loose, detached materials. The specified boundary conditions are a solid slip wall condition for all
boundaries except for outlets, and the free outflow boundary condition for outlet cells. Kim et al.
[2013] provides all relevant details.

Figure 1. Illustrations of (a) elevation and (b) slope fields of the simulation domain.
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2.3.2. Rainfall Forcing
Five synthetic simulation cases with different rainfall patterns are designed (see Table 1 and Figure 2). The
generated rainfall forcing for the domain is spatially uniform, while temporally variable and defined by the
rainfall intensity (RI), duration (Tr), and lag time between events (Tb). The first case of forcing (Case 1) repre-
sents a composition of two rectangular ‘‘pulses’’ of rainfall (E1 and E2), both of which have the same intensity
and duration of 1 h (RI1 5 RI2, Tr,1 5 Tr,2 51). Variables that are varied in Case 1 are the magnitude of rainfall
intensity (RI) and the lag time between the two events (Tb). As a result of permutation of five rainfall inten-
sities (RI1 5 RI2 5 10, 30, 50, 70, and 90 mm/h) and seven lag times (Tb 5 0, 2, 4, 6, 8, 10, and 12 h), Case 1
includes 35 subcases. The varying lag times between the two rainfall pulses imply different initial states of
overland flow within the domain for the second rainfall event.

In the second and third rainfall forcing cases (Cases 2 and 3), two rainfall pulses are also used. They have
the same duration of 1 h but may have different rainfall intensities (RI1 6¼ RI2, Tr,1 5 Tr,2 51). Both cases con-
sist of 25 subcases that correspond to permutations of five rainfall intensities for the first event (RI1 5 10, 30,
50, 70, and 90 mm/h) and for the second event (RI2 5 10, 30, 50, 70, and 90 mm/h). The only difference
between Cases 2 and 3 is the time lag between the two pulses: Tb 5 12 h for Case 2 and Tb 5 0 for Case 3.
The reason for the chosen Tb set to 12 h (Case 2) is because this time period was determined to be suffi-
ciently long to exclude the effects of overland flow initialization for the second event; different rainfall
intensities during the first rainfall pulse target the generation of different initial conditions of soil bed for
the subsequent event. In contrast, Case 3 uses Tb 5 0, which generates different initial conditions in terms
of both flow and sediment for the second simulation event.

The Case 4 corresponds to five different scenarios with a single rainfall event such that the total precipita-
tion depth of 300 mm is imposed. The rainfall intensities, RI1 5 20, 40, 60, 80, and 100 mm/h, therefore
define the rainfall duration (Tr,1): 15.0, 7.5, 5.0, 3.75, and 3.0 h, respectively. The Case 4 is useful for identify-
ing how rainfall events of the same volume but different intensities affect sediment erosion.

The last set of rainfall forcing scenarios (Case 5) is designed to have a single rainfall event that has a dura-
tion of 60 days. Five rainfall intensities are used: RI1 5 10, 30, 50, 70, and 90 mm/h. Such a long event dura-
tion is of course entirely hypothetical but this long-term simulation can be helpful in identifying how
unsteady sediment dynamics occur and temporally transform, even though flow motion exhibits steady
state throughout most of the simulation period.

2.3.3. Soil Characterization
In this study, silty sand soil that has four different particle types, each contributing an equal fraction of
25%, is considered as an initial bed condition for all simulation cases (i.e., at time equal to zero). The
sediment sizes of considered soil particle types are assumed to be 0.02, 0.05, 0.1, and 0.5 mm,

respectively. The smallest
particle type is called S1, the sec-
ond smallest and progressively
larger particle types are, respec-
tively, denoted as S2, S3, and S4.
Their corresponding settling
velocities, m1,. . .,4, are 0.000276,
0.0017, 0.0062, and 0.0619 m/s.
They are calculated using a for-
mula of Cheng [1997].

Table 1. A Summary of Five Principal Simulation Casesa

Name
Number of

Events
Number of
Subcases Duration, Tr (h) Intensity RI (mm/h) Lag Time Tb (h)

Case 1 2 35 Tr,1 5 Tr,2 51 RI1 5 RI2 5 10, 30, 50, 70, 90 0, 2, 4, 6, 8, 10, 12
Case 2 2 25 Tr,1 5 Tr,2 51 RI1 6¼ RI2 5 10, 30, 50, 70, 90 12
Case 3 2 25 Tr,1 5 Tr,2 51 RI1 6¼ RI2 5 10, 30, 50, 70, 90 0
Case 4 1 5 Tr,1 5 15, 7.5, 5, 3.75, 3 RI1 5 20, 40, 60, 80, 100
Case 5 1 5 Tr,1 5 1440 RI1 5 10, 30, 50, 70, 90

aThe total number of simulations is 95.

Figure 2. A schematic diagram of characteristic variables describing precipitation pat-
terns used as forcing in this study: E denotes an event, i.e., a rectangular ‘‘pulse’’ of rainfall;
RI is the corresponding rainfall intensity; Tr is the event duration; and Tb is the time lag
between two events. The subscripts ‘‘1’’ and ‘‘2’’ refer the first and second rainfall events,
respectively.
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Note that when fine-sized dry clayey soil is subjected to wetting, aggregate slaking and breakdown will
occur; conversely, crust on soil is formed when slaked soil dries. Additionally, clay particles containing chem-
ical elements (sodium, in particular) are prone to separate themselves from soil aggregates in wet condi-
tions. Since these structural (slaking) and chemical (dispersion) mechanisms can only be implicitly
incorporated in the parameters related to erodibility, fine-sized particles are excluded from the presented
numerical analysis.

An impervious soil surface condition is assumed for all simulation scenarios to exclude the processes of
infiltration and subsurface flow. While the latter certainly affects surface runoff generation, the aim of the
study is to investigate the effects of the dynamic evolution of a shielding layer on the erosion and
sediment processes in conditions of clearly identifiable precipitation patterns. The impact of runoff-
generating processes is however indirectly accounted for through the imposed magnitudes of rainfall
intensity.

2.3.4. Model Parameterization
Every model that involves a description of physical phenomena faces a challenge of parameter identifica-
tion. Choosing proper values for these parameters is a necessary step before exploratory simulations. The
parameters are usually determined either by referring to previous research described in literature or
through a process of manual/automated calibration. In this synthetic study, the parameters summarized in
Table 2 refer to previous research [Heng et al., 2011; Francipane et al., 2012; Kim et al., 2013]. The effort of cal-
ibrating the parameters of critical stream power (Xcr) is reduced through the relationship suggested by
Heng et al. [2011] [see Kim et al. [2013, equation (30)]. This relationship results in the spatially varying range
of 0.0695–0.169 W/m2 for Xcr, depending on the local domain slope, when the critical Shields parameter for
incipient motion is equal to 0.045.

The values of parameters J and F used in this study are different from those reported in earlier research (see
a summary of parameter values in Table S1 of the supporting information). Specifically, the value of J is
much higher, while that of F is smaller than what was obtained in a few physically based studies that com-
bined flume experimentation and analytical derivations [Proffitt et al., 1993; Misra and Rose, 1995; Rose et al.,
2007]. Using the reported range of parameter values (i.e., J 5 1.89 m2/s2 and F 5 0.1), we attempted to cali-
brate the tRIBS-FEaST model for 10 erosion events in the Lucky Hills watershed [Kim et al., 2013], as the
basin has been extensively monitored in terms of runoff and sediment yield, representing one of few real-
world domains with a large set of concurrent meteorology-hydrology-sediment data. However, a satisfac-
tory model performance in terms of sediment yield could not be obtained, despite many combinations of
the parameters J and F with the other erosion parameters. This difficulty appears to be related to the issue
of parameter ‘‘scale.’’ The reported ranges of parameters J and F are certainly acceptable for controlled labo-
ratory experimental conditions at small scale, such as those in studies of Proffitt et al. [1993], Misra and Rose
[1995], and Rose et al. [2007]. They are however not necessarily universal and applicable to conditions of a
larger watershed scale, where complex topography, unsubmerged vegetation, and rock/debris fragments
modify small-scale flow conditions, leading to a nontrivial ‘‘upscaling’’ impact on the parameter values.
Observations in this larger-scale watershed that exhibits 2-D variations of surface/flow/erosion/transport
conditions indicate that a different range of upscaled parameter values is more appropriate. The specific

Table 2. The Model Parameters Used to Represent Hydrologic, Hydraulic, and Sediment Erosion-Transport Dynamicsa

Parameter Description Value Unit Usage

n Manning coefficient 0.03 s/m1/3 Flow
a0 Detachability of original soil 20.0 kg/m3 Erosion
ad Detachability of deposited soil 2000 kg/m3 Erosion
F Effective fraction of excess stream power 0.01 Erosion
Xcr Critical stream power 0.0695–0.169 W/m2 Erosion
J Specific energy of entrainment 750 m2/s2 Erosion
M�t Deposited mass needed to sheild original soil 2.7 kg/m2 Erosion
Dr Mean raindrop size 2.0 mm Erosion
b An exponent in power law by Proffitt et al. [1991] 1.0 Erosion
Ks Saturated hydraulic conductivity 0.0 mm/h Soil

aAll parameter values are time invariant.
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values chosen for this study are taken from Kim et al. [2013] and further research on appropriate scaling
relationships for erosion parameters is warranted.

For calibrating the deposited mass needed to shield original soil completely, we employ a single value
although this represents an assumption since the value can be spatially temporally dependent on the size
and velocity of raindrops and flow depth. In the calculation of the shield effect factor by water flow [see Kim
et al. [2013, equation (9)], the mean raindrop size is assumed to be 2 mm and the exponent is assumed to
be 1.0 [Heng et al., 2011]. Since the study essentially focuses on the movement of flow and sediment, the
values of landuse and soil parameters are based from previous studies applied for the Lucky Hills watershed
in southeastern Arizona, U.S.A. [Fatichi et al., 2012; Francipane et al., 2012; Kim et al., 2013]. The densities of
sediment (qs) and water (qw) are 2700 and 1000 kg/m3, respectively, and the porosity of the bed is 0.46. The
Manning coefficient equal to 0.03 is chosen to represent bed roughness.

3. Simulation Results and Discussion

Simulation cases addressed in this study are designed (section 2.3.2), so that several rainfall characteristics
are varied: rainfall intensity (RI), duration (Tr), and lag time between events (Tb). Different precipitation pat-
terns are employed to investigate the effects of the frequency of rainfall events (Case 1), the arrangement
and sequence of events (Cases 2 and 3), and the long-term duration of rainfall (Cases 4 and 5) on the non-
uniqueness of basin sediment yield.

3.1. Temporal Characteristics of Flow and Sediment: Hydrograph and Sedigraph
While Case 1 is designed to permit different initial conditions in terms of flow depth distribution, the gener-
ated runoff flows out of the domain rapidly and the hydraulic effects of the first rainfall event on the second
one are very limited. Simulated sedigraphs for the rainfall intensity of 50 mm/h are shown in Figure 3a for
different values of Tb. As seen, while the sedigraphs for the first and second events are always different, the
time series of sediment yield for the second event are nearly indistinguishable with respect to variations in
Tb. Even for a very small lag between the two events (�15 min), the sediment rates do not change consider-
ably (not shown). This result implies that while the initial conditions of overland flow within the domain
might somewhat differ in the considered cases, they do not significantly influence the amount of sediment
yield for the second rainfall event.

Figure 3b illustrates sedigraphs for the five subcases of Case 2 (among the total of 25). Specifically, five rain-
fall events of different magnitudes are followed by a rainfall event that has an intensity of 50 mm/h. In con-
trast to the previous results, the varying rainfall intensities of the first event generate different conditions of

Figure 3. The simulated sedigraphs: (a) for the rainfall intensities RI1 5 RI2 5 50 mm/h (Case 1; note that sedigraph corresponding to the
first event is denoted with the gray line, hour 1–2); (b) for different rainfall intensities during the first rainfall event RI1 510, 30, 50, 70, 90
and the second rainfall event with an intensity of RI2 5 50 mm/h (Case 2).
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the deposited sediment layer that serves as initialization for the second event. This results in nonunique
sedigraph series for the second event, in spite of the same rainfall input of 50 mm at the same intensity.
The occurrence of early peak and the following convergence of sedigraphs shown in the second rainfall
event were also observed in a flume study (see ‘‘E1’’ and ‘‘E2’’ in Jomaa et al. [2013, Figure 1]).

All simulated hydrographs and sedigraphs for the Case 3 are displayed in Figure 4. As seen, the hydrographs
peak very rapidly, near the beginning of all rainfall events, implying that the times of concentration are very
small. The flow remains at steady state, unless rainfall input changes. In this small impermeable domain, the
flow response to a given rainfall is linear: the relationship between the rainfall input and the flow is always
identical regardless of the configurations of rainfall events. However, the response of sediment to the rain-
fall forcing is apparently nonlinear: a notable feature is that sedigraphs may not peak within the duration of
a rainfall event and may not approach the steady state. Depending on the magnitude of the first rainfall
event, the second rainfall event can be highly affected. For example, for varying magnitudes of the first
event and a fixed subsequent rainfall, there are considerable changes in the sediment rate series corre-
sponding to the second event. Note that there is no change in the flow series (see any set of five column-
wise subplots in Figure 4).

The simulated sedigraphs for Case 4 is shown in Figure 5a and for Case 5 in Figure 5c. The obtained sedi-
graphs for these fairly long-term simulations emphasize the unsteady dynamics of erosion processes. For a
given rainfall intensity and duration, sediment rate quickly increases and peaks early; after that, the series
exhibit a gradual decrease and an asymptotic approach to the steady state. For higher rainfall intensities,
the peak of sediment rate as well as the steady state is achieved relatively faster (the associated time scales
will be addressed in section 3.5).

3.2. Spatial Characterization of Flow and Sediment Dynamics
Selected spatial distributions of hydraulic variables (depth, velocity, and stream power) and morphologic
variables (total concentration, total sediment yield, and elevation changes) for RI1 5 50 mm/h of Case 5 are
presented in Figure 6. Figures 6a–6c correspond to the time at flow steady state. In the spatial distribution
of all of these flow variables, a similar pattern i.e., higher magnitudes in the channel network and lower
values in the headwater areas, is observed from the time of concentration until the rainfall cessation. More
specifically, in most regions of the domain, except for the flow convergence trough, the stream power
barely exceeds a predefined threshold value needed to trigger overland flow-induced erosion. Thus, the

Figure 4. The simulated hydrographs and sedigraphs for Case 3. The left axis in all subplots corresponds to sedigraph series (solid line),
while the right axis corresponds to hydrograph series (dashed line).
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predominant controller in such upland areas is raindrop impact and this phenomenon becomes more sig-
nificant for cases with the smaller rainfall magnitudes.

Conversely to the temporal invariance of the flow state, the spatial patterns of morphologic variables con-
tinuously change until the steady state is reached. Initially, the rainfall-induced (re)detachment rates are
spatially uniform but as flow depth becomes spatially variable, relatively higher detachment rates occur in
the upland areas (not shown). The deposited mass increases with time and plays a role of shield in these
upland areas, resulting in less erosion. To demonstrate the temporal transitions of morphologic variables,
the simulated values are compared for two time instants: Figures 6d–6f correspond to the peak of sediment
yield and Figures 6g–6i correspond to its steady state (these two critical times will be further compared in
section 3.5). As seen from these two sets of subplots, sediment concentrations decrease from the peak yield
time to the steady state, and they are particularly high in the area of flow convergence. In contrast, the
deposited mass temporally increases and is higher in the headwater areas and hillslope midline regions
due to their low stream power. Sediment shield in the channel areas, where flow driven entrainment domi-
nates among sediment source procesess, is not as protective as in upland areas where raindrop-induced
detachment dominates. Last, the elevation changes are computed to investigate regions where the domain
eroded (negative magnitudes) or sediment deposition took place (positive magnitudes). Overall, large areas
have eroded in the domain, with particularly high erosion rates in steeper regions. The amount of erosion
has consistently increased with the rainfall duration (Figure 6f versus Figure 6i). The relative contribution of

Figure 5. The simulated sedigraphs for (a) Case 4 and (c) Case 5. (b) The partition of sediment yield into absolute fractions corresponding
to the four particle sizes (S1–S4) for Case 4. (d) The ratio of sediment yields corresponding to the four particle sizes (S1–S4) for the total
sediment yield for Case 5.
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the both types of erosion processes to total soil erosion is further shown in Figure S1 of the supporting
information.

3.3. Variations of Sediment Yield for the Same Flow Volume
Several of the presented simulation results vividly demonstrate that there can be a considerable variation in
sediment yield despite the same rainfall/runoff volume. One example of the variation is illustrated in Figures
5b and 5d with the partition of sediment yield into absolute (Figure 5b) or relative (Figure 5d) fractions cor-
responding to the four particle sizes (S1 through S4). An important feature of Case 4 is that despite the
same runoff volume, the total sediment yield for RI1 5 100 mm/h is almost three times higher than that for
RI1 5 20 mm/h (specifically, 431.7 versus 1146.2 kg). Such a large difference is mainly attributable to the
high erosion loss of large-sized particles, which can be flushed from the deposited area when flow energy
increases and thus transport mode changes from raindrop-induced saltation to flow driven saltation [Kinnell,
2009]. Similarly, the results in Figure 5d show that higher rainfall intensities result in progressively larger

Figure 6. Spatial distributions of depth, velocity, stream power, total concentration, total sediment yield, and elevation changes for
RI1 5 50 mm/h of Case 5. (a–c) Correspond to the time at flow steady state; (d–f) correspond to the time at sediment yield peak (hour 4);
and (g–i) correspond to time at sediment yield steady state (hour 163). In Figure 6i, positive values denote deposition and negative values
imply erosion. Ct is the total sediment concentration and Mt is the total deposited mass.
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flow rates sufficient to entrain and move larger particles, giving rise to high nonlinearities of the total (and
relative, partitioned) sediment yields.

While the dependence on rainfall rate has been long discussed in literature [Edwards and Owens, 1991;
Romkens et al., 2001; Abu Hammad et al., 2006; Ahmadi et al., 2010; Svoray and Ben-Said, 2010], the results of
this study address the importance of additional mechanisms that can cause similar conditions of non-
uniqueness. Figure 7 summarizes the addressed variability by displaying event runoff volume versus the
corresponding sediment yield for all of the considered simulation Cases. The initial condition of soil bed at
the simulation start is ‘‘intact,’’ i.e., soil that has not yet been disturbed. This corresponds to fairly low
erodibility of the soil bed, leading to relatively low erosion. This is opposite to the effect of a ‘‘loose’’ soil
condition that had been perturbed by a preceding rainfall event prior to the onset of a subsequent event
(Cases 1–3, 5). Thus, the sediment yields for two events can be different, while corresponding to the same
flow volume (e.g., Figures 7a–7c).

As a follow up conclusion based on the above inference, the eroded material generated during the first
hour should be progressively smaller than sediment flux leaving the basin during later hours. Consistently
with the logic, this is shown in Figures 7a–7c. However, an additional notable result in Figure 7f is that SY

Figure 7. Flow volume (FV) plotted against sediment yield (SY) for all simulation cases. FV and SY are computed by integrating the flow
and sediment rates of the corresponding hydrographs and sedigraphs. The red squares correspond to the first rainfall event (1 h duration,
Cases 1, 2, and 3) or the first simulation hour (Case 5), for which the initial condition of soil bed was not ‘‘disturbed’’ (i.e., intact soil bed con-
dition). Black stars correspond to either the second event ((a–c) Cases 1, 2, and 3), the entire single event ((d and e) Cases 3 and 4), or
hourly volumes ((f) Case 5). Specifically, Figures 7d and 7e illustrate FVt and SYt that were computed for the entire simulation period of
Cases 3 and 4 to ensure the same runoff volume. Figure 7f illustrates a regression between hourly sediment yield (SYhr) and flow (FVhr) of
Case 5.

Water Resources Research 10.1002/2013WR014580

KIM AND IVANOV VC 2014. American Geophysical Union. All Rights Reserved. 1036



corresponding to later hours can be smaller than that for the first simulation hour. This result is of interest
because in conditions of a relatively loose, deposited soil bed material, the erosion loss becomes smaller
than that for soil in intact condition that exhibits low detachability. Such an outcome indicates that there
exists a mechanism that hampers progressively higher erosion after soil particles have been moved from
their original locations and some of the sediment mass has been deposited at downstream locations. This
study argues that the mechanism is mainly attributed to the development of a surface shielding layer that
protects underlying soil, thereby counteracting the effect of an increasing amount of loose material.

For all of the simulated Cases, a statistical metric is introduced to illustrate how a given precipitation sce-
nario affects the variation of eroded sediment mass. Given the same rainfall volume, the variation of sedi-
ment yield mass VSY (in percent) is defined as

VSY 5
SYmax 2 SYmin

SYmin
3100 ; (1)

where the subscripts ‘‘max’’ and ‘‘min’’ refer to maximum and minimum values, respectively, among sedi-
ment yields (depicted as black stars in Figure 7, i.e., excluding the red squares) for the same flow volume.
Table 3 shows the computed values of VSY for all Cases shown in Figure 7. According to these estimates, the
range of nonuniqueness caused by the effects of the time lag between two successive events of the same
magnitude is extremely small (less than 3%, Case 1). Conversely, preevent sediment dynamics, as affected
by magnitude of a previous rainfall event, can result in SY variations ranging from 7.9 to 26.6 % (Cases 2
and 3). Even larger variations in the total or hourly SY can occur in Cases 4 and 5, implying that longer inter-
vals of coupled flow-sediment dynamics are likely to exhibit a more pronounced nonunique behavior in
response to the same input.

The last two columns of Table 3 illustrate the erosion response based on estimates in Figure 7d, which
show the total sediment yields associated with 2 h rainfall periods; SY variations were subsequently com-
puted for the same rainfall volume (Case 3). Additionally, if one separately examines sequences of either
increasing or decreasing rainfall magnitude in Case 3, the total SY corresponding to the sequence with an
increasing trend is always greater than that for a sequence of events with decreasing magnitude. The corre-
sponding variability of the total yield for the same rainfall volume was computed by comparing 10 subcase
sets with both increasing and decreasing trends (e.g., one of the sets consists of two subcases, i.e., RI1 5 10,
RI2 5 30, and RI1 5 30, RI2 5 10 mm/h, etc.), which resulted in the range from 1.0 to 36% (not shown). This
variability indicates that depending on whether a storm interval with a higher erosive power occurs at the
beginning or the end and depending on how significantly soil bed is perturbed during or prior to that, the
prediction of the total sediment loss is strongly affected. In the context of the considered scenario of a con-
tinuous 2 h storm (Case 3), a higher rainfall during the second hour (applied in conditions of soil that was
perturbed by the rainfall of the first hour) implies a larger erosion capacity. A similar conclusion was
obtained experimentally by Romkens et al. [2001] for the case of 2% slope. However, an opposite result was
obtained for the other two slopes used by the same authors: a decreasing precipitation rate yielded a larger
sediment loss. This was primarily attributed to surface rilling, which was more severe for a decreasing storm
rate, and to surface sealing, which is unlikely to occur for an initial rainfall of a higher intensity. Although
the numerical model used here does not consider the processes of sealing or rill formation, another

Table 3. Variations of Sediment Yield VSY (%) for All Cases Shown in Figure 7 With Respect to the Same Volume of Rainfall Correspond-
ing to Either the Second Event (Cases 1, 2, and 3 in Figures 7a–7c), the Entire Single Event (Cases 3 and 4 in Figures 7d and 7e), or Hourly
Volumes (Case 5 in Figure 7f)a

Rain Volume (mm) Case 1 Case 2 Case 3 Case 4 Case 5 Rain Volume (mm) Case 3

10 0.36 26.64 21.20 – 214.23 40 35.97
30 0.15 21.59 21.41 – 140.88 60 34.32
50 0.44 15.50 15.24 – 68.74 80 42.62
70 1.15 13.79 14.52 – 29.34 100 69.21
90 3.05 18.98 7.88 30.55 120 47.79
300 – – – 165.53 – 140 24.02

160 0.97

aThe last two columns represent variations illustrated in Figure 7d.
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considerable issue associated with this disparity is in the fact that the study of Romkens et al. [2001] did not
use particles of larger sizes, being only constrained to 98% of clay and silt. Due to the imposed short time
scale of the experiment (�6 h) and the used particle sizes, the development of a shielding layer was unlikely
to occur.

3.4. Initialization Effects on the Nonuniqueness of Sediment Yield
The presented results suggest that the initial states of the domain in terms of distributions of flow charac-
teristics and deposited mass can contribute to explaining the processes of sediment dynamics and the
inferred nonuniqueness of SY. Specifically, Cases 1, 2, and 3 were designed so that first rainfall event gener-
ates varying initializations of hydraulic and morphologic variables for the second event. For Case 1, these
were flow depth, velocity, and stream power; for Case 2, different distributions of deposited mass were gen-
erated; and for Case 3, different flow characteristics as well as sediment concentration and deposited mass
were targeted. Basin geomorphic response only to the second event will be emphasized in the analysis.

In Case 1, the total sediment yields generated by the second event (SYt,2) for the same rainfall magnitude of
the first event (i.e., individual values on the x axis in Figure 7a) are almost unique (less than 3% variations).
The sediment partition into the fractions corresponding to the four particle sizes for the second event (SYi,2)
also does not vary significantly, despite the wide range of initial states of flow depth or velocity (not shown).
Specifically, the initial flow depth averaged over the domain before the commencement of the second
event ranges between 1023 m, for smaller Tb magnitudes (less than 15 min), and 1026 m, for larger Tb. The
general agreement of rainfall or overland flow-driven erosion processes is that the flow depth plays two
conflicting roles: it positively impacts fluvial erosion through enhanced stream power; however, by forming
a water shield, deeper flow hampers erosion by rainfall detachment [Laws and Parsons, 1943; Mutchler and
McGregor, 1983; Proffitt et al., 1991; Gabet and Dunne, 2003; Gao et al., 2003]. The obtained outcome of Case
1 is because the effects of water depth are very minor: the domain is of zero order and therefore there is no
sufficient flow accumulation. While the domain conditions represent an idealized simulation case, the same
phenomenon can be expected in headwater areas of complex topography exhibiting a small fraction of sur-
face runoff detention.

In Cases 2 and 3, different spatial compositions of bed in terms of original, ‘‘intact’’ soil and nonlocal sediment
material transported and deposited locally prior to the second event were obtained. In order to capture the
differences between the corresponding composition states, particle-size distributions of the deposited mass
prior to the second event ðMini

i;2Þ are averaged spatially and presented in Figure 8 (for RI2 5 50 mm/h only).
Higher magnitudes of Mini

i;2 represent a larger mass of deposited loose material. Depending on preceding rain-
fall (i.e., the magnitude of RI1), the local surface condition of soil can be partially altered; 5 (smallest rainfall
rate) to 20% (highest rainfall rate) of initially intact soil are changed to the deposited soil condition. The depos-
ited sediment also exhibits spatially varying PSDs, which can be very different from the uniform distribution of
sizes in the original, intact soil. As seen in Figures 8b and 8d, a smaller rainfall intensity of the first event leads
to a PSD similar to that of the original soil. Conversely, larger magnitudes of the first event transform the com-
position of the surface soil dramatically, which can become composed of predominantly coarser particles (see
Figures 8b and 8d). It can be also inferred that as Mini

i;2 increases, sediment yield (SYi,2) also grows initially
because the deposited soil material has a higher erodibility, as compared to the original soil. However, SYi,2

exhibits a maximum at lower magnitudes of the deposited soil material and shows a decay for larger Mini
i;2 (for

both Cases 2 and 3, Figures 8a and 8c). A similar pattern of dependence is obtained for other magnitudes of
RI2 (not shown). Such a peculiar behavior is explained by the growing fraction of coarser particles that have
high settling velocities: through their deposition, a surface shield is created. Since large particles (which are
otherwise ‘‘loose’’) cannot be easily entrained, the formation of such a shielding layer protects the underlying
intact soil and impedes the process of erosion.

3.5. Patterns of Evolution of Sediment Yield and Critical Time Scales
Morphologic variables characterizing sediment content in a water column and deposited area are key indi-
cators for inspecting the variation of sediment yield. The long-term simulation of Case 5 is used to detect
phases of nonuniqueness of erosion and deposition processes, relate them to morphologic variables, and
find the time scales describing characteristic transitions of sediment generation within a watershed.

The nonunique property of erosion and sediment transport of this particular simulation case has already
been illustrated by the sedigraph in Figure 5c. During the continuous rainfall, water flow early achieves
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steady state (�4 to 7 min after the start) and maintains it over an entire simulation period, as seen in Figure
9a. Initially, the eroded materials yielded by the catchment are represented by smaller, silt-size sediments
that lead to a peak in sediment yield rate at an early stage, which is however significantly delayed as com-
pared to flow peak (� 4 h after the start). After the peak, the sediment rate decreases and asymptotically
approaches the steady state. This dynamic, unsteady evolution is illustrated in Figure 9b for RI1 5 50 mm/h.
As seen, both SYt,hr and Cini

t;hr follow the described increasing-decreasing-steady state trend, while Mini
t;hr

exhibits an increasing-steady state trend. The transitions to the steady state for these three metrics are in
general accordance and the determination of the transient time scales thus should play a crucial role in
understanding the nonunique property of the erosional response.

It has been practically infeasible for experimental studies to observe such a pattern of dynamics over the
long term. However, previous research based on results of a mechanistic numerical model applied in a lim-
ited range of topographic and flow conditions (i.e., one-dimensional domains and fixed advection flow
depths and velocities) also showed the existence of peak and steady state in the composition of sediment
discharged by rain-impacted flow [Kinnell, 2006; Sharmeen and Willgoose, 2006; Willgoose and Sharmeen,
2006; Kinnell, 2009, 2012]. Similarly to the present study, the phenomenon was attributed to the develop-
ment of an ‘‘impediment’’ effect to the sediment discharge, controlled by slowest moving particles. More
specifically, the effect was achieved by considering the amount of coarser material mass lifted into flow and
travel distance of the coarser particle by tracking its pathline, which thus excluded an explicit representa-
tion of interactions among particles of different sizes. Conversely, the H-R formulation dynamically com-
putes the advection flow velocity and the magnitude of source terms for all particles at a given location in
space and time, thereby relating the representation of local interactions to the integrated response. This
offers a different physical interpretation of the peak and steady-state phenomenon, explicitly attributing it
to the effect of shielding. The property of nonuniqueness is also shown to operate at the scales of a natural
headwater catchment.

Figure 8. The partition of sediment yield (SYi,2) generated by the second event into relative fractions corresponding to the four particle
sizes (S1–S4) for (a) Case 2 and (c) Case 3; and the partition of spatially averaged deposited mass immediately prior to the second event ð
Mini

i;2Þ for (b) Case 2 and (d) Case 3. All subplots correspond to the results of RI2 5 50 mm/h.
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Two critical characteristic periods, the time to peak (t1) and the time to steady state (t2) are defined here by
using the simulated sediment yield series. The interval t1 is defined as the period to a maximum value of
SYhr and t2 is defined as the largest time that satisfies the following two criteria:

dSYhr t2ð Þ
dt

< � and SYhr t2ð Þ > 1:01SYhr tendð Þ ; (2)

where t is time; SYhr(t) is the hourly sediment yield at time t; tend is the time at the end of simulation (60 d)
at which steady state is achieved for most simulations (except for the case with RI1 5 10 mm/h in which a
much longer rainfall is needed); and � is a tolerance value assumed to be 1024 in this study. The above crite-
ria are chosen so as to avoid numerically unrealistic large values in t2 estimation.

Based on these criteria, both the time to peak (t1) and the time to steady state (t2) are computed and
illustrated in Figure 9 as well as Figure S2 in the supporting information. The two time scale values are
qualitatively related to a given precipitation input and sediment size: the smaller the rainfall rate and the
heavier a given particle is, the longer it takes to reach t1 and t2. One of this findings, i.e., t2 dependency
on particle sizes, was also observed in a flume study [Jomaa et al., 2013]. This observation can be
explained by introducing the dimensionless Shields parameter (s*). The Shields parameter, defined as
the ratio of the drag force to the submerged weight of a particle, describes the extent of forcing to
resistance for sediments:

s�5
s

qs2qwð ÞgD
; (3)

where s is the shear stress; g is the acceleration constant due to gravity; and D is the diameter of a particle.
The time t1 and t2 time scales are log linearly and negatively related to the spatially averaged Shields param-
eters for both S1–S4 (Figure 10). The obtained relationships confirm that a higher magnitude of rainfall forc-
ing perturbs soil bed more rapidly, achieving earlier peak time and steady state. The supporting
information provides further analysis of the two time scales with respect to the rainfall intensities and parti-
cle sizes (see section S2 of the supporting information).

A physical interpretation of the two time scales leads to identification of three characteristic regimes of geo-
morphic response: flow-limited, source-limited, and steady-state regimes.

Figure 9. An illustration of the dynamic, unsteady evolution of erosion and sediment transport response to a continuous rainfall of RI1 5 50
mm/h simulated in Case 5. The temporal evolution of (a) the hourly flow volume (FVhr) and (b) the hourly instantaneous, the spatially aver-
aged total concentrations ðCini

t;hrÞ and the total deposited mass ðMini
t;hrÞ as well as the total sediment yield (SYt,hr). The left axis is used for

Mini
t;hr and Cini

t;hr , while the right axis is used for SYt,hr. The two time scales, t1 and t2, are identified with the two vertical dashed lines; the three
corresponding phases (I, II, and III) are also illustrated. The results obtained for the other rainfall intensities and also specific for each parti-
cle size are provided in the supporting information (section S.1).
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1. The flow-limited regime, time-
� t1. During an early stage of
rainfall, there is an increase of
loose sediments that are likely to
be eroded and transported by
the flow. If it rains continuously,
the sediment contained in the
deposited layer and water col-
umn also grows, resulting in
larger local erosion and yield at
the basin outlet. In this regime,
the sediment source is always
sufficient and does not limit
entrainment into the water col-
umn. Larger runoff or flow would
cause higher erosion and the
basin yield.

2. The source-limited regime,
t1< time� t2. Continuing rain

keeps driving the processes of detachment, entrainment, and deposition, but the geomorphic response
changes. Even though the total deposited mass is continuously increasing, the basin sediment yield no lon-
ger grows after t1. This is because of the dynamic evolution of a shielding layer formed by larger, heavier
particles. The yield of smaller-sized particles that can be easily eroded and transported is becoming con-
strained by their availability across the domain, as these particles had been mostly flushed out of the basin
prior to the occurrence of t1. The yield therefore would not respond positively to an increase in runoff/flow
depth.

3. The steady-state regime, time> t2. The ratio between sediment originating from the initially ‘‘intact’’ soil
and deposited mass as well as the partition of each particle size within the deposited soil become time
invariant, reflecting ‘‘stabilization’’ of the soil bed. For any subsequent hours of the same rainfall forcing, the
unit response will be identical. An increase in the rainfall forcing will however drive an unsteady regime
that will cause the occurrence of all three regimes of sediment dynamics, albeit with different characteristic
time scales.

3.6. Patterns of Temporal Evolution Specific to Particle Sizes
Figure 11 is intended to facilitate the understanding of temporal evolution of the spatially averaged concen-
tration of individual particle size Cini

i;hr and deposited mass Mini
i;hr (the subscript ‘‘i’’ denoting the four particle

sizes, S1–S4). The occurrence of the three characteristic regimes for these variables is also illustrated. The
cumulative SYhr are shown with respect to Cini

i;hr and deposited mass Mini
i;hr . Overall, the evolution patterns of

Cini
i;hr and Mini

i;hr are contrasting: as the particle size increases, smaller concentrations and higher deposited
masses are simulated; a wide range of concentrations occurs during an early simulation period and a nearly
uniform magnitude is reached at steady state. An opposite evolution pattern takes place for the deposited
mass. The particle-size specific characteristics of the three regimes can be described as follows. (1) Over the
period near the simulation start, Mini

i;hr corresponds to the particle-size distribution of the original soil. Such a
period is longer for smaller RI (see Figure S3 in the supporting information) because the limited erosion
capacities resulting from smaller rainfall/runoff rates lead to a delayed initiation of selective erosion proc-
esses. Over the same period, a similar mass of each particle size on the bed becomes entrained but heavier
materials are deposited at a larger rate, resulting in higher concentrations of smaller particles. In contrast,
the sediment sources for all particle types in the bottom and the water column are increasing until the tim-
ing of sediment yield peak. (2) After the peak time, lighter particles are still preferably eroded and trans-
ported within the domain without a significant deposition. Heavier particles start covering the underlying
original (‘‘intact’’) soil and thus, the availability of lighter sediment becomes restricted by the deposition of
heavier sediment material. This phenomenon is graphically represented as the abrupt decrease of availabil-
ity of lightest particles (Cini

i;hr and Mini
i;hr ), while a gradual increase of the heaviest type (Figure 11). At this

period, most of particles that are available for erosion are the largest particle type, which results in the

Figure 10. The Shields parameter related to the two time scales, the time to peak (t1)
and the time to steady state (t2): the green dashed lines correspond to t1, while the red
dashed lines correspond to t2. For S4 (‘‘1’’ symbol), t1 and t2 are overlapped and for
RI1 5 10 mm/h, the steady state is not reached.
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retardation of all relevant erosion processes. The temporal variation of Cini
i;hr and Mini

i;hr is more significant for
smaller RI (Figure S3 in the supporting information). (3) During the steady-state regime, the variations of
morphologic variables stabilize: a nearly uniform concentration for all particle sizes in the flow water col-
umn is attained; the fractions in the deposited mass however vary by several orders of magnitude (Figure
11). These stable morphologic conditions define the continuing steady-state response of the basin. The sup-
porting information provides an additional analysis of the effects of rainfall intensity on the particle-size
specific dynamics (section S3 of the supporting information).

4. Summary and Conclusions

Nonuniqueness of sediment yield for a given runoff volume has been empirically observed and obtained in
numerical modeling studies, being generally attributed to nonlinearities of watershed process interactions.
The objective of this study is to offer a mechanistic explanation of the nonuniqueness occurring for a partic-
ular set of conditions related to size-selective erosion processes. In order to facilitate the analysis and
explore internal dynamics, a series of modeling scenarios for a zero-order watershed is developed to gener-
ate an ensemble of runoff and sediment responses simulated in a controlled fashion, i.e., without explicit
representation of the processes of infiltration and subsurface moisture dynamics. The series of simulation
cases are designed so that rainfall intensity, duration, and lag time between successive events are varied.
The anticipated outcome of such a design is that a preceding rainfall event creates a ‘‘perturbation’’ of soil
substrate and flow regime prior to the onset of a subsequent rainfall event. Specifically, the first rainfall
event generates varying initializations of hydraulic and morphologic variables (Cases 1, 2, and 3). These are
flow depth, velocity, and stream power (Case 1); different distributions of deposited mass are generated
(Case 2); and different flow characteristics as well as sediment concentration and deposited mass are pro-
duced (Case 3). Simulations of response to long-term precipitation are represented to resolve continuously
varying morphologic bed conditions for a steady-state hydraulic flow regime (Cases 4 and 5).

The generated different initial conditions change the particle-size distribution of the soil substrate, which
may form a shielding layer composed of larger particles. One of the outcomes is that unless the initial con-
ditions of flow and sediment are identical, the same volume of runoff (produced at the same rate) can gen-
erate different total sediment yields. For example, the variation of sediment yield for the case where time
lag between two events was varied (Case 1) is nearly zero (less than 3%), because of the limited change in
the initial condition. However, variations exhibited by the remaining simulation cases reach up to �200%.
In the case when two rainfall pulses with different rainfall intensities are used (Case 3), the sediment yield is

Figure 11. An illustration of dynamic, unsteady evolution of erosion and sediment transport response to a continuous rainfall of RI1 5 50
mm/h simulated in Case 5. The cumulative total sediment yield resolved at the hourly scale SY cum

t;hr plotted against the spatially averaged,
type-specific (for the four particle sizes, S1–S4) (c) concentration Cini

i;hr and (d) deposited mass Mini
i;hr . The two time scales, t1 and t2, are identi-

fied with the two horizontal dashed lines; the three corresponding phases (I, II, and III) are also illustrated. The results obtained for the
other rainfall intensities and also specific for each particle size are provided in the supporting information (section S.2).
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greater for a sequence of rainfall events with increasing magnitudes, as compared to decreasing
magnitudes.

The shield formation by relatively larger particles can be one of the significant controllers of erosion and
net sediment transport at the event scale; the cycle of shield formation and destruction is likely to be a
strong contributor to the nonuniqueness of erosion dependence on runoff. The temporal development of
the shielding layer determines the amount of sediments in the flow water column and areas of deposition,
resulting in the dynamic, unsteady variation of sediment yield. For a long-term simulation with continuous
rainfall, the peculiar feature of sediment yield is the existence of maximum, before a steady state is reached.
The two identified time scales, i.e., the time to peak (t1) and the time to steady state (t2) distinguish the cor-
responding transitions that help addressing the nonuniqueness property of sediment yield from a physical
standpoint. Specifically, the time scales imply the existence of three characteristic periods that correspond
to the flow-limited, source-limited, and steady-state regimes. The flow-limited regime occurs during early
stages of rainfall. Continuous forcing leads to an increase of watershed areas where sediment is detached
from the soil surface by rainfall or entrained by the flow, resulting in a net increase of erosion. In this regime,
the sediment source is sufficient and thus a larger forcing would lead to higher erosion. The source-limited
regime corresponds to the time period between t1 and t2. During this time, the total deposited mass that
has higher erodibility than the original ‘‘intact’’ soil is continuously increasing but the domain sediment yield
diminishes after t1. This occurs because of the dynamic evolution of a shielding layer formed by larger par-
ticles—they cover the underlying intact soil thereby causing a concurrent reduction of availability of lighter
sediment. During the steady state after t2, the soil bed condition, i.e., the ratio of the amount of intact and
loose materials, and the component substrates inside the deposited area become stabilized and time invari-
ant. The stabilized soil condition always provides an identical response to the same forcing. Therefore, a
unique relationship between rainfall forcing and generated sediment yield is attained at this phase.

Soil erosion and sediment transport are complex phenomena and it has been practically impossible to fully
incorporate all relevant details in numerical models. This study addressed only those erosion processes that
are perceived to be essential in a zero-order catchment: rainfall-induced detachment and overland flow-
induced entrainment of soil particles, their deposition due to gravity, and shield effects by both larger par-
ticles and flow depth. These processes are simultaneously computed responding to a detailed representa-
tion of flow motion. Other related processes depending on a degree of soil saturation, slaking, dispersion,
crusting, and rill formation are not taken into account because of the intricacies of relevant theories and
existing parameterizations. Despite the simplified nature of the erosion processes and the implications of
underlying assumptions, the obtained results simulated for a zero-order catchment that represent head-
water areas of natural watersheds are considered to be physically sound. Two major conflicting effects of
the shielding layer impacting nonuniqueness of sediment yield have been captured: a positive contribution
to erosion, because of supply of highly erodible sediment, and erosion impediment, because of constrain
on availability of lighter particles. One of the practical implications of this study is that except for cases
when original soil layer is entirely covered by loose materials (e.g., headwater alluvial gullies), accurate,
deterministic short-term predictions of geomorphic events from headwater areas may never become a trac-
table problem. The latter would require an unrealistically detailed spatial characterization of particle-size
distribution prior to precipitation events.
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