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ABSTRACT

Optimization Algorithms for Power Grid Planning and Operational Problems

by

Kathryn Schumacher

Chair: Amy Cohn

The modern electrical grid is an engineering marvel. The power grid is an incredi-

bly complex system that largely functions very reliably. However, aging infrastructure

and changing power consumption and generation trends will necessitate that new in-

vestments be made and new operational regimes be explored to maintain this level

of reliability. One of the primary difficulties in power grid planning is the presence

of uncertainty. In this thesis, we address short-term (i.e., day-ahead) and long-term

power system planning problems where there is uncertainty in the forecasted demand

for power, future renewable generation levels, and/or possible component failures. We

initially consider a network capacity design problem where there is uncertainty in the

nodal supplies and demands. This robust single-commodity network design problem

underlies several applications including power transmission networks. Minimum cost

capacity expansion decisions are made to ensure that there exists a feasible network

flow solution for α% of the demand scenarios in the given set, where α is a parameter

specified by the user. We next consider a day-ahead planning problem that is specif-

ically applicable to the power grid. We present an extension of the traditional unit
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commitment problem where we additionally consider (1) a more stringent security

requirement and (2) a more flexible set of recovery actions. We require that feasible

operation is possible for any simultaneous failure of k generators and/or transmission

lines (i.e., N−k security), and transmission switching may be used to recover from a

failure event. Finally, we consider a transmission expansion planning problem where

there is uncertainty in future loads, renewal generation outputs and line failures, and

transmission switching is also allowed as a recovery action. We propose a robust

optimization model where feasible operation is required for all loads and renewable

generation levels within given ranges, and for all single transmission line failures. For

all three of these problems, novel algorithms are presented that enable these problems

to be solved even when straight-forward formulations are too large to be tractable.

Computational results are presented for each algorithm to provide insight into the

advantages and limitations of these algorithms in practice
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CHAPTER I

Introduction

The modern electrical grid is an engineering marvel. Electrification was selected

as the greatest engineering achievement of the 20th century by the National Academy

of Engineering (Constable and Somerville (2003)). The power grid is an incredibly

complex system that largely functions very reliably. However, aging infrastructure,

a growing population, the possibility of a terrorist attack on the grid, increased re-

newable penetration, and tightening budgets may threaten the level of reliability that

most of us have come to expect. From an operations research perspective, these

challenges present many interesting and important optimization problems. Opera-

tions research techniques can be used to identify ways to intelligently invest in new

infrastructure, operate the grid efficiently, and balance the tradeoff between risk and

cost.

One of the primary difficulties in planning for the power grid is the presence of

uncertainty in problem parameters. In particular, there is often uncertainty associ-

ated with the forecasted demand for power, renewable generation levels, and possible

component failures. Blackouts are extremely disruptive, and so power system oper-

ators are highly motivated to ensure that sufficient excess capacity is available such

that the demand for power can be met even when unexpected events occur. However,

operators face a competing pressure to deliver power to consumers at low cost.

1



In this thesis, we address short-term (i.e., day-ahead) and long-term power sys-

tem planning problems. We present methods to solve these problems that deal with

parameter uncertainty. From a mathematical standpoint, one difficulty in develop-

ing solution approaches is the two-stage nature of these planning problems. Some

decisions are made up front, before any uncertainty is realized, while other decisions

are made in response to a particular realization of the uncertain parameters. In each

of these problems, the set of all scenarios or all possible events is assumed to be

very large. Decomposition procedures are presented that enable these problems to be

solved even when straight-forward formulations are too large to be tractable. These

algorithms are intended to be tools which may help planners evaluate the cost of

ensuring different levels of reliability.

In Chapter II, we initially consider a network capacity design problem where there

is uncertainty in the nodal supplies and demands. This robust single-commodity

network design problem underlies several applications, including telecommunications

and gas pipeline networks, as well as power transmission networks. We first consider

the problem of assigning arc capacities such that installation costs are minimized and

a feasible network flow solution is guaranteed to exist for all demand scenarios in the

given set. We review a constraint generation algorithm to solve this problem and

empirically demonstrate the scalability of this algorithm when the set of scenarios is

large. This work lays the foundation for later chapters in which similar decomposition

methodologies are employed to deal with uncertainty sets that contain a large number

of elements. We next consider a chance-constrained problem in which minimum cost

capacity expansion decisions are made to ensure feasibility for α% of the scenarios

in the given set, where α is a parameter specified by the user. We present a novel

approach for solving this problem which embeds the previously presented constraint

generation algorithm into a tree-based, parallelizable framework. Additionally, we

explore a greedy extension of this algorithm that solves for a heuristic solution. We

2



present theoretical and computational analysis to evaluate the performance of the

proposed optimal and heuristic algorithms for the chance-constrained problem.

In Chapter III, we consider a day-ahead planning problem that is specifically ap-

plicable to the operation of the power grid. We present a unit commitment problem

where the generator schedule must be robust to the failure of any k generators and/or

transmission lines, and transmission switching is allowed as a recovery action. Tra-

ditionally, power systems are operated to be N-1 secure, meaning that if any one

component fails, the system can be operated normally. Protecting against k failures,

i.e., N-k secure, where k > 1, is a more stringent security standard under consideration

in light of extreme weather events and the possibility of a terrorist attack. However,

the combinatorial explosion in the number of failure events, i.e. contingencies, when

k > 1 results in an explicit formulation of the unit commitment problem which is

too large to be solved directly. Additionally, we allow operators to use transmission

switching to recover from a contingency. Transmission switching is the practice of

temporarily removing transmission lines as a way to increase flexibility and ensure

feasibility at lower cost.

The existence of binary second stage switching variables means that traditional

decomposition procedures cannot be naively applied. To deal with the large number of

contingencies, we propose a Contingency Oracle to identify unsurvivable contingencies

for a given unit commitment solution. Furthermore, to address the challenge posed

by the existence of switching variables, we present a reformulation in which switching

decisions are treated as first stage variables. We propose a constraint generation

algorithm to solve this problem where the Contingency Oracle is used to identify

violated constraints, and where switching variables are dynamically generated for

the master problem. We present computational results and analyze the algorithmic

performance.

In Chapter IV, we address a long-term planning problem that is similar in struc-
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ture to the unit commitment problem presented in Chapter III. We consider a trans-

mission expansion planning problem where there is uncertainty, not only in possible

equipment failures, but also in future loads and renewal generation outputs. Further-

more, as in Chapter III, transmission switching is considered as an allowable recovery

action in response to a particular realization of the demand and a given line failure.

We propose a robust optimization model where feasible operation is required for all

loads and renewable generation levels within given ranges, and for all single trans-

mission line failures. To deal with the more complex uncertainty set, we develop an

oracle which can identify an unsurvivable contingency-demand pair for a given in-

vestment solution. We propose a novel constraint generation algorithm to solve this

long-term planning problem which is procedurally similar to the algorithm presented

in Chapter III. Computational results are presented that demonstrate tractability

even when the uncertainty set contains a very large number of possible contingency

and demand realizations.

This thesis concludes with Chapter V, in which Chapters II, III, and IV are

summarized, and future work is discussed.
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CHAPTER II

Chance-Constrained Network Capacity Design

with Stochastic Demands with Finite Support

2.1 Introduction

In many real-world contexts, such as transportation systems, the power grid,

telecommunications networks, and gas pipeline networks, planners need to determine

the amount of capacity to build on the arcs in a network. Such decisions must often

be made before nodal supplies and demands are known. Furthermore, these supplies

and demands may not be static but rather vary over time while the network has to

remain fixed. We consider the problem of determining the minimum-cost set of arc

capacities to install in a single-commodity network when there is uncertainty in the

nodal supplies and demands.

We represent uncertainty as a finite set of possible scenarios, where each scenario

is a set of nodal supplies and demands. The set of scenarios could exactly repre-

sent a probability distribution with finite support. Alternatively, the scenarios could

represent an approximation of a general probability distribution, where scenarios are

generated by Monte Carlo sampling techniques. Using techniques such as Sample Av-

erage Approximation, it has been demonstrated that a finite set of scenarios can be

used to find good solutions for the original distribution (Luedtke and Ahmed (2008)).
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As is common in sampling based approaches for generating scenarios, we assume that

all scenarios have equal probabilities of realization. If the set of scenarios represents a

discrete probability distribution where the scenarios have different rational probabil-

ities, the set of scenarios can be transformed into a set where all scenarios have equal

probabilities by making copies of the scenarios in proportion to the probabilities of

realization. It is assumed here that these scenarios have been given as an input.

In long term planning, it is common to require feasible operating conditions almost

all the time, because requiring feasible conditions under absolutely all future scenarios

is typically prohibitively expensive. Our goal is to find a minimum-cost set of arc

capacities such that there exists a feasible set of flows for α% of all scenarios. In

practice α might be chosen to be a value like 99.5%.

We consider only the costs of installing capacity on arcs, as investment costs

tend to be the dominant costs. Additionally, we assume the total cost is a linear

function of the capacity installed. This cost structure might arise if the network user

must lease arc capacities from the owner of a pre-existing network. Alternatively, this

problem might arise when determining how to upgrade the arc capacities in an existing

network. For the sake of exposition, we assume that there is no existing capacity on

any arc, but the approach presented here can easily be modified to incorporate existing

arc capacities.

The rest of this Chapter is structured as follows. In Section 2.2, we review the

relevant literature on network design problems and approaches for dealing with pa-

rameter uncertainty. In Section 2.3, we describe the Robust Capacity Design problem

(RCD), in which a set of feasible flows is required to exist for every scenario in the

known set. We review the solution approach for solving RCD first presented in Go-

mory and Hu (1962), and empirically demonstrate that a decomposition procedure

can be used to solve this problem quickly, even when the number of scenarios is large.

In Section 2.4, we consider a chance-constrained problem variant in which only some

6



fraction, α% (typically close to but less than 100%), of the scenarios are required

to have a set of feasible flows; this is called the α-Satisfied Capacity Design problem

(αSCD). We propose an algorithm for solving this αSCD problem which embeds the

constraint generation algorithm presented for the RCD problem into a tree-based

framework, and we argue that a parallelized implementation can provide significant

benefit. Furthermore, we present a greedy algorithm that can quickly solve for a

good heuristic solution under certain conditions. In our computational experiments,

the heuristic solution is within at most 0.3% of the optimal solution. Finally, in

Section 2.5 we conclude with a summary and suggestions for future research.

2.2 Literature Review and Contributions

Gomory and Hu (1962) consider the problem of identifying the minimum cost

set of arc capacities such that feasible flows are ensured for a set of different single-

commodity demand requirements, each defined by a pair of origin-destination nodes

and a demand amount. The authors present a constraint generation algorithm to

solve this problem based on network cut-sets. An algorithm for solving the variant

of this problem in which capacities are integer-valued is provided in Sridhar and

Chandrasekaran (1992).

While the network design formulations presented in Gomory and Hu (1962) and

Sridhar and Chandrasekaran (1992) were originally formulated to represent deter-

ministic demand requirements in different time periods, the formulations are nearly

identical to the RCD problem defined in Section 2.3.2, where the set of scenarios rep-

resent uncertainty in the future supplies and demands. The only difference is that we

allow any number of nodes to act as sources or sinks in each scenario, as opposed to a

single origin-destination pair for each scenario. The constraint generation algorithm

presented in Gomory and Hu (1962) is reviewed in Section 2.3.3.

Many authors have considered variants of this RCD problem. Minoux (1981) ex-
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tends the algorithm presented in Gomory and Hu (1962) to solve a multi-commodity

variant of the same problem, called a non-simultanous flows multi-commodity net-

work design problem. A review of other related work is provided in Minoux (1989).

More recently, Ouorou (2006) addresses the same muli-commodity design problem as

Minoux (1981), and empirically compared the performance of two different types of

cutting planes within a constraint generation algorithm.

A variety of other robust network design problems have been addressed in the

literature. Dahl and Stoer (1998) present a cutting plane algorithm to solve a capac-

ity design problem for a multicommodity network where demands are deterministic,

investment costs are minimized, and feasibility is required in the event of any single

arc or node failure. Petrou et al. (2007) consider a robust multi-commodity capacity

design problem where the worst case value of a function which penalizes unsatisfied

demand is minimized over the set of demand scenarios. A cutting plane solution ap-

proach is proposed. Ouorou (2012) consider a similar problem as Petrou et al. (2007)

but instead use an Affinely Adjustable Robust Counterpart to compute tighter bounds.

Minoux (2010) proves that the robust multi-commodity capacity design problem with

a polyhedral uncertainty set for the demand is NP-hard.

Pesenti et al. (2004) consider the capacity design problem in which demands are

expressed in terms of bilateral contracts, i.e., agreements between node pairs in which

a supplier agrees to meet a customer’s demand for any amount within a fixed range;

to solve this problem the authors use a cutting plane algorithm. Atamtürk and Zhang

(2007) consider the robust capacity design problem where demand is assumed to

belong to a budget uncertainty set, and the goal is to minimize the worst case to-

tal of investment and routing costs. The authors present a procedure for obtaining

bounds, and computational results for several special problem instances. Mudchana-

tongsuk et al. (2008) address a similar problem where routing costs are additionally

assumed to be uncertain. The authors explore polyhedral and ellipsoidal uncertainty

8



sets, and present a column generation procedure to solve a path constrained prob-

lem variant. Ordóñez and Zhao (2007) present a tractable conic LP formulation of a

robust capacity design problem in which demands and travel times belong to polyhe-

dral uncertainty sets, worst case travel time is minimized, and investment costs are

constrained to be less than a specified budget.

A challenge with robust network design problems in general is that it is difficult to

define an uncertainty set that appropriately controls the conservatism of the optimal

solution. The focus of this Chapter is the chance-constrained αSCD problem, where

a small subset of the scenarios are allowed to be infeasible. An advantage of this

formulation is that it allows the conservatism of the optimal solution to be controlled

with a single parameter α.

There are many different approaches in the literature for solving chance-constrained

problems. Several authors including Ahmed and Shapiro (2008), Küçükyavuz (2009)

and Luedtke et al. (2010) present mixed-integer formulations of chance-constrained

problems and describe several types of valid inequalities that can be added to strengthen

these formulations. Luedtke (2013) present a branch-and-cut decomposition algorithm

for solving the mixed-integer formulation of the chance-constrained problem.

Other authors such as Beraldi and Ruszczyński (2002), Dentcheva et al. (2000),

Prékopa (1990) and Ruszczyński (2002) suggest methods that utilize p-level efficient

points of discrete distributions to develop equivalent formulations of probabilistic

constraints. Alternatively, Watson et al. (2010) propose an algorithm based on pro-

gressive hedging which can solve for a heuristic solution quickly, relative to other

methods, even for large problems. These published methods have each been devel-

oped to solve a fairly general class of chance-constrained problems. We propose a

method for solving a very particular chance-constrained problem and we are able to

exploit the problem structure to our advantage.
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2.3 Robust Capacity Design Problem

In this section we review the problem of determining the minimum-cost set of arc

capacities to install in a given network such that there exists feasible flows for all sce-

narios in the given set. We first present a traditional network-flow based formulation,

and then we review the constraint generation approach proposed by Gomory and Hu

(1962). We discuss implementation details to augment the theoretical discussions in

Gomory and Hu (1962) and other works.

We assume that in each scenario the total supply equals the total demand. Flows

are defined to be feasible for a particular network if they satisfy flow balance con-

straints and arc capacity constraints.

2.3.1 Notation

The following notation will be used in the model formulations in this Chapter.

Sets

N set of all nodes in the network

A set of all arcs in the network. For each element (i, j) ∈ A, i, j ∈ N, i 6= j

Ω set of all scenarios, where each scenario is a set of supplies/demands for all nodes.

Parameters

cij cost of installing a unit of capacity on arc (i, j), for all (i, j) ∈ A.

bωi supply at node i in scenario ω, for all i ∈ N, ω ∈ Ω.

Demand is represented as negative supply.
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Variables

fωij flow on arc (i, j) in scenario ω, for all (i, j) ∈ A, ω ∈ Ω.

uij capacity to be installed on arc (i, j), for all (i, j) ∈ A.

We present here formulations for a directed network, but these formulations could

easily be modified to model an undirected network.

2.3.2 Network Flow Formulation

RCD can be modeled with a traditional network-flow formulation as follows:

min
∑

(i,j)∈A

cijuij (2.1a)

s.t.
∑

j:(i,j)∈A

fωij −
∑

j:(j,i)∈A

fωji = bωi ∀i ∈ N, ω ∈ Ω (2.1b)

fωij − uij ≤ 0 ∀(i, j) ∈ A, ω ∈ Ω (2.1c)

fωij ≥ 0 ∀(i, j) ∈ A, ω ∈ Ω (2.1d)

uij ≥ 0 ∀(i, j) ∈ A (2.1e)

Objective (2.1a) states that the total cost of installing capacity is to be minimized.

For each scenario ω ∈ Ω, constraint (2.1b) enforces that flow is conserved at each

node and constraint (2.1c) enforces that arc flow cannot exceed capacity. Because

the number of flow variables f and the number of constraints depend on the number

of scenarios, this LP may be intractable if the number of scenarios |Ω| is large. In

our computational results, (2.1) is intractable for numbers of scenarios of 5, 000 and

above.

2.3.3 Cut-set Solution Approach

In the network design problem addressed here, we only consider the cost of invest-

ing in new capacity. This suggests the potential value of a formulation that depends
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only on the arc capacity variables u, as these variables do not depend on the number

of scenarios and are the only variables in the objective function.

Let Θ be the set of all nonempty proper subsets of nodes in N , i.e., Θ = {θ ⊂

N : θ 6= ∅}. |Θ| = 2|N | − 2. The following LP can also be used to solve for the

minimum-cost arc capacity assignment such that a set of feasible flows exists for all

scenarios.

min
∑

(i,j)∈A

cijuij (2.2a)

s.t.
∑

i∈θ,j 6∈θ

uij ≥
∑
i∈θ

bωi ∀θ ∈ Θ, ω ∈ Ω (2.2b)

uij ≥ 0 ∀(i, j) ∈ A (2.2c)

Constraint set (2.2b) states that for any network cut-set defined by the partition of

nodes θ and N\θ, the total capacity of the arcs contained in the cut-set is at least

equal to the total net supply for the nodes in θ, for each scenario. These cut-set

constraints (2.2b) are both a necessary and a sufficient condition for the existence of

a feasible flow for every scenario (Theorem 6.12, pp. 196, Ahuja et al. (1993)).

The number of constraints in (2.2b) can be reduced to exactly one constraint

per node subset by recognizing that for all |Ω| cut-set constraints for a given θ, one

constraint dominates all other constraints. For a given θ, if the constraint with the

greatest right hand side is satisfied, all other constraints will immediately be satisfied.

Let M(θ) ≡ maxω∈Ω{
∑

i∈θ b
ω
i }. Constraint set (2.2b) can be replaced by the following

constraint set:

∑
i∈θ,j 6∈θ

uij ≥M(θ) ∀θ ∈ Θ. (2.3)

The number of constraints in (2.3) is determined entirely by the number of node
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subsets |Θ|, which is a function only of the number of nodes |N |. Thus, the size of this

linear program is completely independent of the number of scenarios |Ω|. However,

there are an exponential number of constraints in the set (2.3).

As proposed in Gomory and Hu (1962), we suggest that the cut-set LP (2.2) with

constraint set (2.3) be solved via a constraint generation procedure which will here

be referred to as the Cut-set Constraint Generation (CSCG) algorithm.

Let the Master Problem (MP) be a relaxation of the cut-set LP. In each iteration,

MP is solved, and for each scenario in the set Ω, a subproblem is solved to identify

constraints from the set (2.3) that are violated for the current MP solution. The

subproblem identifies a minimum cut-set for the current capacity assignment and

the given scenario. There exist several methods for formulating and solving the min

cut-max flow problem, and any one of these methods may be used to identify the

minimum cut-set. The node subset θ corresponding to this minimum cut-set is used

to identify a constraint from the set (2.3) that is not satisfied, and this constraint

is then added to the MP. Note that while a particular scenario ω is used to identify

the minimum cut-set, the corresponding constraint added to the MP is valid for all

scenarios. The right hand side of the cut-set constraint is M(θ), which ensures that

sufficient capacity is installed on this cut-set for all scenarios.

The procedure of iteratively solving the MP and adding violated constraints is

repeated until, for all scenarios, the subproblem identifies that all constraints in the

set (2.3) are satisfied. When this occurs, the algorithm exits with the optimal capacity

assignment that is feasible for all scenarios.

2.3.4 Implementation Details

To provide a practical assessment of the theoretical concepts provided by earlier

authors, we present here an analysis of the algorithm’s performance in implementa-

tion. In this section we discuss the implementation details which have a significant
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impact on the algorithm’s rate of convergence. We found that the three most im-

portant issues are (i) the choice of initial MP constraints, (ii) the rules for selecting

a scenario from the list Ω to define the subproblem, and (iii) how many identified

violated constraints are added to the MP per iteration.

On the first issue, we experienced our best run times when we initialized the MP

with one constraint per node requiring that the total capacity on the arcs directed

out of a node be at least the maximum supply at the node across all scenarios (if

a supply node) or that the total capacity on the arcs directed into a node must be

at least the maximum demand at the node (if a demand node). We assume that

each node acts only as a supply node or as a demand node in all scenarios, but these

initializing constraints could also be used if a single node acts both as a demand node

and as a supply node in different scenarios.

On the second issue, we found that the best policy was to maintain two mutually

exclusive and collectively exhaustive lists of scenarios: the current list and the set-

aside list. The current list is a list of scenarios that is currently being screened.

When a scenario is identified to be feasible for the current set of arc capacities, it is

moved from the current list to the set-aside list. The current list is then shorter the

next time it is looped through, and generally contains the more “difficult” scenarios,

while “easy” scenarios get moved to the set-aside list. In order to guarantee that

the algorithm exits with an optimal solution, when the current list becomes empty it

is necessary to loop through the entire list of set-aside scenarios to confirm that all

scenarios are feasible. If any scenarios are not feasible, the process is repeated. The

idea is that this policy avoids needlessly and repeatedly checking “easy” scenarios that

have been found to be feasible in an early iteration and are likely to remain feasible

in later iterations. Instead, the algorithm can focus on the “difficult” scenarios. Our

computational results indicate that this policy results in the fewest total subproblems

solved on average, which results in the fastest run time.
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Finally, on the third issue, we recommend that scenario subproblems from the

current list are solved only until a cut-set with insufficient capacity is identified. At

this time one violated constraint is added to the MP and the MP is solved again.

We have found that this approach of adding one constraint to the MP per iteration

causes the algorithm to solve faster than when multiple constraints are added to the

MP during each iteration.

2.3.5 Run Time Results

Using the implementation options described in Section 2.3.4, we present computa-

tional experiments that indicate how the performance of the CSCG algorithm scales

with the number of scenarios.

Our first test network is an IEEE 118 node test system (Christie (1993)), which

is representative of a portion of the U.S. power grid. Supply/demand scenarios were

generated by perturbing and scaling the nominal power generation and consumption

levels provided for each of these nodes in the IEEE test system. The perturbation

was done by adding a normally distributed random variable to the nominal sup-

ply/demand at each node, where the normal distribution has mean of 0 and standard

deviation set so as to make the coefficient of variation (COV) equal to 0.25, if the

nominal supply is positive, or equal to 0.75 if the nominal supply is negative. These

COV values were chosen because, in a conventional power grid, the demand for power

is typically more variable than the generation of power. Scaling was done by multiply-

ing the perturbed supplies/demands by a random value, which is drawn from uniform

distribution with minimum 0.1 and maximum 2.0. An additional dummy node was

added to make the total supply equal the total demand in each scenario by supplying

or demanding whatever is excess (i.e., bω119 = −
∑118

i=1 b
ω
i ∀ω ∈ Ω). An arc was added

to and from each of the 118 nodes to this dummy node to ensure feasibility, changing

the number of arcs from 358 to 594.
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While the IEEE118 test network is a useful example of a real world network, it

is a fairly sparse network. To test the performance of the CSCG algorithm on a

dense network, for our second test instance we constructed a network with 30 nodes

that is exhaustively dense, i.e., there exists an arc between every node pair. Let the

test instance be called exh30. Supplies in each scenario were randomly generated

from a continuous uniform distribution [−10, 10]. A dummy node was added and

its supply/demand was set in each scenario to make the total supply equal the total

demand.

For all test instances presented in this Chapter, the arc costs cij were randomly

generated from a discrete uniform distribution [1, . . . , 50]. Algorithms were imple-

mented in C++ which called CPLEX v12.4 to solve all linear programs, on a com-

puter with a 2.3 GHz processor and 4G RAM. In Figure 2.1, the run time results

shown are averaged over 5 trials and the error bars indicate one standard deviation

in these run times.

Figure 2.1 shows the average run time of the CSCG algorithm over a range of

different numbers of scenarios up to 40,000 for both the IEEE118 and the exh30 test

systems. For both of these networks, the run time increases approximately linearly as

the number of scenarios increases. The coefficient of determination (R2) of the linear

regression is 0.99 for both test systems.

IEEE118 has more nodes than exh30, and so the number of cut-set constraints in

constraint set (2.3) is larger. The number of cut-sets for a 118 node network is on

the order of 1035, compared to 109 for a 30 node network. However, it seems that

the dominant factor in determining the runtime is not the number of total cut-sets

but the number of arcs. The denser exh30 has 870 arcs, compared to 594 arcs for the

IEEE118. The number of variables in the master problem is equal to the number of

arcs. This difference appears to drive the difference in runtimes shown in Figure 2.1.

The CSCG algorithm solves IEEE118 with 40,000 scenarios in less than 4 min, and
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Figure 2.1: CSCG Algorithm Run Time for IEEE118 and exh30 test systems

exh30 with 40,000 scenarios in about 8 and a half minutes.

2.4 α-Satisfied Capacity Design Problem

Having reviewed a successful approach for solving the RCD problem, we now

explore the more challenging chance-constrained problem where some percentage α

(typically close to but less than 100%) of all the scenarios in the set Ω are required

to have feasible flows.

We first consider a Mixed Integer Program (MIP) formulation of the αSCD prob-

lem, and then discuss the difficulties of solving this formulation directly. The differ-

ence between the αSCD problem and the RCD problem is that the set of scenarios for

which feasibility is required is a decision for αSCD, whereas it is given for RCD. The

RCD problem is relatively easy to solve, so we propose an approach to solve αSCD

that employs a combinatorial tree-based framework for exploring subsets of scenarios

for which feasibility could be required. We present an algorithm which embeds the

CSCG algorithm within this tree to find the optimal solution. Finally, we present a

greedy variation of this approach that can be used to solve for a heuristic solution,

and we analyze the solution quality.
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2.4.1 MIP Formulation

We introduce a set of binary indicator variables Iω for all ω ∈ Ω which enable us

to determine which scenarios have feasible network flow solutions. Let Iω equal 1 if

there exists a set of feasible flows for scenario ω, and equal 0 otherwise. The MIP

formulation of the αSCD problem is as follows.

min
∑

(i,j)∈A

cijuij (2.4a)

∑
i∈θ,j 6∈θ

uij −

(∑
i∈θ

bωi

)
Iω ≥ 0 ∀θ ∈ Θ, ω ∈ Ω (2.4b)

∑
ω∈Ω

Iω ≥
( α

100

)
|Ω| (2.4c)

uij ≥ 0 ∀(i, j) ∈ A (2.4d)

Iω ∈ {0, 1} ∀ω ∈ Ω (2.4e)

In this formulation, constraint set (2.4b) is analogous to the cut-set constraint set

(2.2b); if Iω = 1, the constraints require that demand must be fully satisfied in

scenario ω, or if Iω = 0, the constraint is not restrictive. Constraint (2.4c) states that

at least
(
α

100

)
|Ω| binary variables must be equal to 1, indicating that at least α% of

all scenarios in Ω must be feasible.

Due to the binary variables, formulation (2.4) is difficult to solve. If the set of

scenarios Ω is large, (2.4) contains a large number of binary variables which have

significant incentive to be fractional. For example, it is typically much cheaper to

install half as much capacity as is needed on each cut-set for two different scenarios

than to fully satisfy all cut-set constraints for one scenario. Thus, at the optimal

solution of the LP relaxation of (2.4), the Iω variables will have fractional values and

a branch-and-bound algorithm would require a lot of branching to fix the indicator

variables to integer values.
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Additionally, because the left hand side of each constraint in the set (2.4b) contains

the scenario-specific variable Iω, the number of constraints cannot be reduce to 1

constraint per node subset θ as was done in the formulation of the RCD problem.

Every cut-set constraint is scenario-specific. Essentially, the Benders’ feasibility cuts

in the set (2.4b) are much weaker than the feasibility cuts for the RCD problem (2.3).

A decomposition procedure for solving (2.4) is not promising due to the combination

of weak Benders’ cuts and a master problem which is difficult to solve.

There are several other approaches for solving mixed integer formulations of gen-

eral chance-constrained programs, including enumerating p-efficient points as in Be-

raldi and Ruszczyński (2002), generating valid inequalities as in Song and Luedtke

(2013), or the branch-and-cut algorithm described in Luedtke (2013). In this Chap-

ter, we offer an alternative approach that leverages the specific structure of αSCD,

taking advantage of the fact that l, the number of scenarios allowed to be infeasible,

is typically very small, and the fact that if the set of scenarios allowed to be infeasi-

ble were known, the resulting RCD problem could be solved quickly with the CSCG

algorithm.

2.4.2 Combinatorial Tree Algorithm

There are a finite number of distinct subsets of Ω of cardinality d
(
α

100

)
|Ω|e, so one

approach to solve this problem is to enumerate all such subsets and apply the CSCG

algorithm for each subset. One way of organizing all such subsets is to use a tree. At

the root node, the set of scenarios required to be feasible is equal to the complete set

Ω. At depth d in the tree there are
(

Ω
d

)
nodes, where at each node the set of scenarios

required to be feasible is the complete set Ω minus a unique set of d scenarios. At

the bottom level at depth l = b
(
1− α

100

)
|Ω|c there is a node for every distinct set of

scenarios of cardinality d
(
α

100

)
|Ω|e. The optimal solution could be found by applying

the CSCG algorithm to each of the nodes in the bottom level and identifying the
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node with the overall minimum cost. A tree constructed as described is illustrated in

Figure 2.2, where each tree node is labeled with the set of scenarios that are allowed

to be infeasible.

.""""."""".""""."
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.""".""".""

.""""."""".""""

.""""."""".""""

.""".""".""(ω2,ω3) 
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(ω|Ω|-1,ω|Ω|) 

Figure 2.2: Combinatorial Tree

With the described tree, the number of nodes at bottom level
(

Ω
l

)
could be very

large even if l is relatively small. However, as we build the tree, we can identify some

branches that will contain only suboptimal solutions and therefore we can prune these

branches.

First we introduce useful terms and notation.

• When the CSCG algorithm terminates for a single RCD problem, the final MP

includes a set of constraints that have been generated over the course of the

algorithm which we will call explicit constraints.

• A subset of the explicit constraints will be tight at the optimal solution to a

final MP; we call these active explicit constraints.
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• For any cut-set constraint with corresponding node subset θ, there are one or

more scenarios that define the right hand side by having the greatest net supply

over θ. Let any scenario such that ω̄ = arg maxω∈Ω{
∑

i∈θ b
ω
i } be the dominant

scenario for the given constraint.

• A binding scenario is a scenario that is dominant for at least one active explicit

constraint.

• Each node in the combinatorial tree is a RCD problem where the set of scenarios

required to be feasible is (Ω\E), where E is the exclusion set.

• The set of binding scenarios for a node with exclusion set E is denoted B(E)

and the optimal objective value for that node is V (E).

• The goal of αSCD is to both find an optimal set of arc capacities u and corre-

sponding exclusion set E with cardinality l = b
(
1− α

100

)
|Ω|c. Let this optimal

set of excluded scenarios be denoted E∗l .

We propose a branching rule that is based on the idea that, given a current node

in the tree with exclusion set E, we can identify some branches that will contain only

suboptimal solutions based on what scenarios are not in the set B(E). In particu-

lar, a scenario that is not dominant for any active explicit constraints is implicitly

dominated by one or more other scenarios that are contained in the set B(E). Thus

branching only on scenarios contained in the set B(E) is sufficient. Formal theorems

and proofs will now be stated, and then the branching rule will be presented in more

precise terms.

2.4.2.1 Reduced Combinatorial Tree Theorems

Lemma II.1. For any scenario ω̂ ∈ Ω\B(E), V (E ∪ ω̂) = V (E).
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In other words, if a scenario is not binding, then excluding that scenario will not

have any effect on the feasible region, and thus the optimal objective value will not

change. The formal proof for this lemma is as follows.

Proof. The cut-set LP for RCD with exclusion set E could be appropriately modified

to solve RCD with exclusion set (E ∪ ω̂) by relaxing every constraint in the set (2.3)

whose dominant scenario is ω̂. The CSCG algorithm for solving RCD with exclusion

set E exits when the MP contains a set of explicit constraints such that any solution

u satisfying these constraints will also satisfy all cut-set constraints that were not

explicitly added to MP. Relaxing any of these implicitly satisfied constraints has no

effect on the optimal solution. Relaxing any explicit constraint in the final MP that is

not tight at the optimal solution will not change the optimal solution. By the choice

of ω̂ 6∈ B(E), there does not exist an active explicit constraint for which scenario ω̂

is dominant. Thus V (E) = V (E ∪ ω̂).

Lemma II.2. There exists an optimal exclusion set for αSCD, E∗l , that takes the

form {ω1, ω2, . . . , ωl} where ω1 ∈ B(∅) and ωi ∈ B({ω1, . . . , ωi−1}) for all i = 2, . . . , l.

In other words, the optimal exclusion set can be ordered such that each scenario

is binding for the exclusion set equal to all lower ordered scenarios. Binding scenarios

are the only scenarios whose exclusion has the potential to improve the objective

value. So when growing the optimal exclusion set from the empty set, only binding

scenarios should be candidates for the next scenario to exclude. The formal proof for

this lemma is as follows.

Proof. Suppose, in contradiction, that all optimal exclusion set(s) take the form El =

{ω̂1, . . . , ω̂l} where scenarios ω̂1, . . . , ω̂l ∈ Ω\B(∅). If RCD is solved for exclusion set

∅, and then, one by one, each scenario in the set El is added to the exclusion set, by

Lemma II.1, the optimal objective value will not change, i.e., V (∅) = V (El). RCD

with an exclusion set of cardinality l which includes a scenario ωi ∈ B(∅) will have
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an objective value less than or equal to the objective value of V (El), thus it is not

possible that all exclusion sets have the supposed form. There is a contradiction.

Suppose, for some 2 ≤ k ≤ (l− 1), that all optimal exclusion set(s) take the form

El = {ω̂1, . . . , ω̂l} where ω̂1 ∈ B(∅) and for all i = 2, . . . , k, ωi ∈ B({ω̂1, . . . , ω̂i−1}),

but all scenarios ω̂k+1, . . . , ω̂l ∈ Ω\B({ω̂1, . . . , ω̂k}). If RCD is solved for E =

{ω̂1, . . . , ω̂k}, and then, one by one, all other scenarios in the set El are also excluded,

by Lemma II.1, the optimal objective value will not change, i.e., V ({ω̂1, . . . , ω̂k}) =

V (El). RCD with an exclusion set of cardinality l which includes scenario ω̂1, . . . , ω̂k

and includes a scenario ωi ∈ B({ω̂1, . . . , ω̂k}) will have an objective value less than

or equal to the objective value of V (El), thus it is not possible that all exclusion sets

have the supposed form. There is a contradiction.

Given the stated lemmas, we present the following algorithm which constructs a

tree of RCD problems and finds the optimal set of arc capacities u for optimal ex-

clusion set E∗l . The tree nodes referred to in this algorithm each represent an RCD

problems with different exclusion sets, as illustrated in Figure 2.2.

Reduced Combinatorial Tree Algorithm:

1. Initialize the Last In First Out (LIFO) queue of tree nodes to contain only the

root node, which is an RCD problem with exclusion set E = ∅. Initialize the

current best objective value v =∞ and the current best arc capacities u = 0.

2. Pop off a tree node from the LIFO queue with exclusion set E. Solve this RCD

problem. If |E| = l and V (E) < v, update v = V (E) and let u be the optimal

solution to this RCD problem. Otherwise, if |E| < l, find the set of binding

scenarios B(E). For each scenario ω ∈ B(E), add a tree node to the LIFO

queue which has exclusion set {E ∪ ω} if a tree node with this exclusion set

does not already exist in the LIFO queue.
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3. If the LIFO queue is not empty, go to step 2. Otherwise, exit with the optimal

set of arc capacities u.

Theorem II.3. The Reduced Combinatorial Tree Algorithm will exit with the optimal

set of arc capacities u for optimal exclusion set E∗l .

Proof. The Reduced Combinatorial Tree Algorithm constructs a tree node for ev-

ery exclusion set E of size l with form {ω1, ω2, . . . , ωl} where ω1 ∈ B(∅) and ωi ∈

B({ω1, . . . , ωi−1}) for all i = 2, . . . , l. By Lemma II.2, the tree contains a node for

every exclusion set that satisfies the necessary condition to be the optimal exclusion

set, and thus includes the optimal exclusion set E∗l . The algorithm finds the set of

arc capacities that has the lowest cost for the RCD problem among these tree nodes

with exclusion set of size l, which is the optimal set of arc capacities.

2.4.2.2 Reduced Combinatorial Tree Size

In our computational experiments with the Reduced Combinatorial Tree (RCT),

we observe that the total number of tree nodes in each level to be significantly reduced

from the number of tree nodes in the complete combinatorial tree. Instead of
(|Ω|
k

)
tree nodes in the kth level of the tree, the number of tree nodes in each level is a

function of the number of binding scenarios in the tree nodes one level above. The set

of binding scenarios B(E) for a tree node with exclusion set E is the set of dominant

scenarios for the active explicit constraint. The size of this set |B(E)| depends on

the number of active explicit constraints in MP, which depends on the number of

variables, |A|, and on how close to pareto dominant the set of scenarios Ω is. For

example, if all the scenarios were scalar multiples of a base scenario, then the scenario

with the largest scalar multiplier would be pareto dominant over all other scenarios,

and would define the right hand side for every possible cut-set constraint. Then,

regardless of how many active explicit constraints there were in the MP, there would

be exactly one binding scenario, and exactly one tree node in each level. For any
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other type of scenario set, the number of binding scenarios will likely be low if a few

scenarios are dominant over all other scenarios, or will likely be higher if each cut-set

has a different defining scenario.

To analyze the number of tree nodes required to be solved in the RCT for dif-

ferent problem instances, we performed computational experiments with an IEEE30

node test system (Christie (1993)). We generated scenarios using two different meth-

ods. One scenario generation method, labeled as “Scaled & Perturbed Supplies” in

Table 2.1, is the same as was described in Section 2.3.5 for IEEE118. The other

method, labeled as “Uniform Supplies” in Table 2.1, is the same as was described in

Section 2.3.5 for exh30. For both ways of generating the scenarios, a dummy network

node was used to make the supplies and demands net to 0 in each scenario, as was

also described in Section 2.3.5.

The numbers of tree nodes created at each level of the RCT are presented in

Table 2.1. From Table 2.1, it is evident that the scenario distribution has a significant

impact on how many nodes must be generated in the tree. The number of tree nodes

is significantly greater when the scenarios are drawn from a uniform distribution

than when generated by scaling and perturbing a base scenario. When the scenarios

are generated from a uniform distribution, the scenarios are very different from each

other, and thus the active explicit cut-set constraints are likely to have different

dominant scenarios, and the set of binding scenarios is larger. When the scenarios

are generated by perturbing and scaling a base scenario, the scenarios are more similar

to each other, and the active explicit cut-set constraints are more likely to be have

common dominant scenarios, and the set of binding scenarios is smaller.

We note that while the number of tree nodes in each level increases exponentially,

all tree nodes in a particular level are independent of each other and could be solved

in parallel. If all tree nodes per level were to be parallelized, the time to solve the

reduced tree and find the optimal solution is equal to the time to run the CSCG
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algorithm l times. Given a fixed number of processors p, the time required to solve

the tree could be approximated by taking the maximum node solve time for each

level, and multiplying this by the number of nodes in that level of the tree divided

by p.

2.4.3 Greedy Algorithm

While utilizing parallelization may allow the RCT to be solved relatively quickly

to find the optimal solution for certain problem instances, a greedy algorithm can

alternatively be used to generate a heuristic solution more quickly without the need

for a parallel implementation. The basic idea behind the algorithm is that scenarios

are added one by one to the set of excluded scenarios, greedily choosing the scenario

whose exclusion most improves the cost. A similar algorithm, which gradually ex-

cludes constraints to solve a chance-constrained problem, is presented in Pagnoncelli

et al. (2012). We demonstrate that the heuristic is close to optimal for the problem

instances we tested.

The greedy algorithm is as follows:

1. Solve the RCD problem with the exclusion set E = ∅. Initialize iteration d = 0.

Let B(∅) be the current set of binding scenarios.

2. Increase d by 1. If d < l, for each scenario ω in the current set of binding

scenarios B(E), solve a RCD problem with exclusion set {E ∪ ω}.

3. Among these RCD problems, find the exclusion set E whose optimal objective

value V (E) is smallest. Set the current set of binding scenarios equal to B(E).

Go to step 2.

The final solution u that this algorithm exits with is a feasible solution, but it is

not guaranteed to be an optimal solution. However, computational results indicate

that for certain types of problems the solution u is often optimal or close to optimal.
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2.4.4 Heuristic Computational Results

We tested the greedy algorithm on the IEEE30 test system and on an exhaus-

tively dense 20 node test network, constructed in the same way as exh30 described

in Section 2.3.5.

In Table 2.2 the column “Heuristic Obj. Value” is the heuristic objective value

returned by the greedy algorithm, and these values are shown next to the optimal

objective value. Note that “S&P” refers to the ”Scaled&Perturbed” method of gen-

erating supply scenarios, as previously described in this section. For almost all of the

computational experiments presented in Table 2.2 the greedy algorithm returns an

optimal objective value. The only exception was for IEEE30 Uniform with α = 97%.

As discussed in section 2.4.2.2, if the set of scenarios was pareto dominant, meaning

that all scenarios were a scalar multiple of a base scenario, the greedy algorithm will

exactly return the optimal solution. Performance should be close to optimal if the

distribution of the scenarios is close to pareto dominant, and further from optimal if

the scenarios are very different from each other.

In many real world systems, such as the power grid, supplies and demands among

the nodes often have similar relationships across different scenarios, e.g. a larger

generator will always have greater output than a smaller generator, though their

absolute outputs may vary. With this type of scenario distribution, the heuristic

should be close to optimal. Interestingly, in our computational experiments in which

scenarios were generated from a uniform distribution where scenarios are different

from each other and not at all close to pareto dominance, when we expect the heuristic

to perform poorly, and the heuristic still returns the optimal objective in most cases.

The run times for the greedy algorithm and the RCT algorithm for this set of

computational experiments are listed in Table 2.3. For all computational experiments,

the greedy algorithm run time is dramatically faster than the RCT algorithm run

time. The RCT run times presented here are for a serial implementation of the
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algorithm. As discussed in Section 2.4.2.2, the RCT algorithm lends itself well to a

parallel implementation, as the tree nodes at each level could be solved in parallel.

The serial RCT algorithm run times are an upper bound on the run times of a parallel

implementation, and the greedy algorithm run times are a lower bound.

The greedy algorithm has relatively short run times with a simple serial implemen-

tation. Given how close to optimality the heuristic solution is for these computational

experiments (within 0.3%, as shown in Table 2.2), the greedy algorithm is an attrac-

tive option for solving the αSCD problem.

IEEE30 Uniform IEEE30 S&P exh20 Uniform
# Scenarios α l RCT Greedy RCT Greedy RCT Greedy

67 97% 2 73 8 18 2 90 11
100 97% 3 1817 16 255 6 1333 21
300 99 % 3 8808 46 1166 14 3303 45
600 99.5 % 3 20050 72 2558 28 14672 110

Table 2.3: Greedy and RCT Algorithm Run Times (sec)

2.5 Conclusion

We have considered a robust network capacity design problem where there is

uncertainty in the supplies and demands which is represented with a set of discrete

scenarios. We review a constraint generation algorithm for this problem when all

scenarios are required to have a feasible flow and present practical implementation

details that empirically lead to improved algorithmic performance. We develop a

novel algorithm to solve the chance-constrained problem when α% of all scenarios

are required to be feasible. This tree-based combinatorial algorithm embeds the

previously described constraint generation algorithm to find the optimal arc capacity

assignment. Additionally, a greedy algorithm is presented that can often be used to

solve for a high quality heuristic solution to this chance-constrained problem.
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CHAPTER III

N-k Secure Unit Commitment with Transmission

Switching

3.1 Introduction

Recent blackout events have highlighted the need to have a power grid that is

robust and reliable (Liscouski and Elliot (2004), Srivastava et al. (2012)). Currently,

the North American Electricity Reliability Corporation (NERC) requires that the

power grid be N-1 secure, meaning that load must be fully met in the event that

any single component fails (NERC (2011)). The rationale for this policy is that

the failure of a single component is considered to be a much more likely event than

the near simultaneous failure of multiple components, and thus only single failures

are considered when making operational planning decisions. However, given that

component failures are not independent events, the probability of near-simultaneous

failures may be higher than is currently estimated. The possibility of multiple failures

is worth considering when making planning decisions.

Federal directives (PPD-21 (2013)) emphasize the importance of the security of

the power grid as a critical infrastructure, and highlight the need to protect against

major disruptions. Consequently there has been significant interest in considering

reliability standards that are more stringent than N-1, such as N-2 or N-3, or more
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generally, N−k, where the grid must be able to survive any simultaneous failure of k

or fewer components. A failure event of one or more components is commonly called a

contingency. The set of all contingencies under consideration greatly increases when

multiple failures are included, and thus the task of making planning and operational

decisions becomes much more challenging.

The unit commitment problem (UC) is the day-ahead planning problem in which

generators are scheduled to be off or on for each hour in the coming day. The genera-

tors in the power grid have operational limits including constraints on their minimum

up and down times and ramp rate limits. To meet the forecasted demand for a region,

the on and off statuses of the generators must be planned ahead.

One way of including security requirements in the unit commitment problem is

by specifying operating reserve (Read (2010)) which requires, for example, that the

excess capacity of the committed generators be at least as much as the capacity of

the largest generator. However, a requirement of this type does not take into account

transmission constraints. Excess generating capacity in the event of a failure is useless

if the transmission constraints do not allow power to be transported to where it is

needed. An N−k secure generator schedule specifically considers how the transmission

network constraints impact the available recourse actions in the event of a failure.

As is common in most optimization literature on grid planning, the power flow

model in this Chapter is based on steady state analysis. To model the steady-state

transmission network constraints in a power system, the Alternating Current Opti-

mal Power Flow (ACOPF) equations are the ideal way to represent the physical laws.

When several assumptions are made regarding stable operation, the ACOPF equa-

tions reduce to the linear DC power flow (DCPF) equations. The ACOPF equations

are highly nonlinear, and thus optimization models typically use the DCPF equations

as a linear approximation of the ACOPF equations. The DCPF equations are com-

monly used both in the academic literature and in industry (Hedman et al. (2011))
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and are used in our model.

Researchers have been exploring new “smart grid” technologies that improve the

flexibility and efficiency of the operation of the power grid. In addressing grid con-

gestion, there is a paradox associated with the existence of transmission capacity.

On one hand, an arc in the network, i.e., a transmission line, allows power to be

transmitted from one node to another, and thus can be useful in transmitting power

from the generators to the consumers. On the other hand, given the laws of physics

that govern how power flows throughout the network (i.e., Kirchhoff’s circuit laws),

the existence of an arc imposes a constraint on the system. In certain situations,

removing a line can be advantageous in redirecting the flows in the network.

In a transmission model which uses DCPF constraints, removing a transmission

line corresponds to removing the DCPF constraint for that line. Specifically, these

situations arise in networks where there are cycles. Physical laws require that, when

multiple paths exist between nodes, power must flow along all available paths. One

path may be a bottleneck which constrains the flow on other paths, thus removing

a transmission line may increase throughput. Cycles are often purposely designed

into the power network to ensure redundancy, so there are often situations in which

temporarily removing a line would be useful. An example of this phenomenon is

presented in Hedman et al. (2011).

Transmission switching is a practice where operators may open circuit breakers to

switch transmission lines out of service to redirect the flow of power. This additional

degree of control over the network topology has the potential to reduce the costs of

dispatching generators and improve survivability of a contingency event. However,

this additional set of switching decisions also introduces algorithmic challenges by

dramatically increasing the dimension of the problem.

In this Chapter, we consider a unit commitment problem where N−k security is

required, and transmission switching is allowed. A problem with this structure could
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naturally be decomposed into a two-stage program with mixed binary variables in

both stages. However, such a formulation cannot be solved by traditional methods,

due to the existence of integer variables in the second stage and the very large number

of scenarios. We present novel models and methods to address these challenges.

The outline of this Chapter is as follows. We first review the literature on solv-

ing power system operational problems with N−k security and on using transmission

switching to control the power flows in a network in Section 3.2. We then formally

define the N−k unit commitment problem with transmission switching in Section 3.3.

In Section 3.4, the natural two-stage decomposition and then an alternative decom-

position are presented. In Section 3.5, the Contingency Oracle is derived, which is

used to identify unsurvivable contingencies. In Section 3.6, the complete algorithm

is defined, and implementation details are described which improve run time. Com-

putational experiments are presented in Section 3.7 for the IEEE24 and RTS-96 test

systems which demonstrate the value of switching, and the cost tradeoff of increasing

reliability. Finally, we present conclusions and ideas for future work in Section 3.8.

3.2 Literature Review

There has been significant work on network interdiction problems, and on various

other ways of analyzing vulnerabilities in the power grid. Shen et al. (2012) explore

three different interdiction models in which nodes are deleted to maximize discon-

nectivity. Bienstock and Verma (2010), Salmeron et al. (2004) and Salmeron et al.

(2009) present theoretical and computational results on solving the worst-case power

system interdiction bilevel program. Pinar et al. (2010) propose that the worst-case

power grid interdiction problem can be accurately approximated as a network inhi-

bition problem, whose mixed-integer formulation can be solved for realistically-sized

networks. Fan et al. (2011) present a critical node detection method for solving the

power grid interdiction problem, and an economic basis for evaluating the damage
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caused by contingency events.

Several papers solve planning or operational problems with the N−k security

standard. Street et al. (2011) present a robust optimization framework for solving

the single bus unit commitment problem (i.e., where transmission constraints do not

exist) when survivablility is required for any simultaneous failure of up to k generators.

Wang et al. (2012) formulate the N−k unit commitment problem, where generators

or transmission lines may fail, as a two-stage program and propose a cutting plane

algorithm that solves for an exact solution.

The potential of transmission switching to significantly reduce the cost of dis-

patching generators is explored in Fisher et al. (2008). Following this work, Hedman

et al. (2008) address the drawbacks and explore further the benefits of transmission

switching as a corrective mechanism. Hedman et al. (2009) consider how transmission

switching affects the costs of dispatching generators N-1 securely, and find that not

only would it be possible for N-1 security to be maintained when transmission switch-

ing is used, but that the economic dispatch cost savings due to transmission switching

are sometimes greater with N-1 security requirements than without. Li et al. (2012)

use a constraint programming approach to solve for switching actions that enable the

power system to recover from a contingency event without redistributing generators.

Analysis of how the worst-case power system interdiction models could be ex-

tended to include transmission switching is presented in Delgadillo et al. (2010) and

in Zhao and Zeng (2011). Delgadillo et al. (2010) present a method for solving the

worst-case electric grid interdiction bilevel program with transmission switching al-

lowed in the lower level problem by using Benders’ decomposition within a restart

framework. Zhao and Zeng (2011) present a tri-level reformulation of the bilevel

interdiction problem with transmission switching in the lower level, which has an

equivalent single level form that can be solved with a cutting plane algorithm.

Modifications of the unit commitment problem to incorporate transmission switch-
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ing are presented in Hedman et al. (2010) and Khodaei and Shahidehpour (2010).

Khodaei and Shahidehpour (2010) present a solution methodology that iterates be-

tween finding the best unit commitment decision and best transmission switching

decisions, and apply this method for a handful of specific contingency events. Hed-

man et al. (2010) present a model for the N-1 secure unit commitment problem, where

switching decisions are made for each time period, but the switching decisions are not

changed in response to a contingency event. The authors present a heuristic method

of solving this problem, which shows a cost savings of 3.7% in the unit commitment

solution when transmission switching is employed, compared to when transmission

switching is not used, for the RTS-96 test system. An economic analysis of the im-

pact of transmission switching on the N-1 unit commitment problem is presented in

O’Neill et al. (2010). All of these papers on transmission switching and the unit

commitment problem also use the DCPF equations to model power flows.

The N−k secure unit commitment problem considered here could be classified as

an adaptive robust problem (Ben-Tal et al. (2004)) with an uncertainty set defined

as the set of all contingencies of size k or smaller. Herein we propose a formulation

for the robust unit commitment problem which is similar in structure to a stochastic

unit commitment problem with a finite number of contingency scenarios. However,

our proposed algorithm does not require that all scenarios be explicitly enumerated,

unlike other methods for solving two stage stochastic programs such as progressive

hedging (Watson and Woodruff (2011)). When considering contingencies of size

greater than 1, the number of contingencies is likely to be extremely large due to

the combinatorial explosion, and thus it is necessary to develop a method which does

not explicitly consider all scenarios. Our algorithm takes advantage of the specific

structure of the problem and provides a tractable way of solving a problem that

would otherwise be too large to solve with traditional methods. We also present

several important implementation details which significantly impact the runtime of
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the overall algorithm, as demonstrated by our computational results.

3.3 Problem Definition

Our ultimate goal is to solve for a set of unit commitment decisions and generator

dispatch decisions for normal operating conditions. These decisions should minimize

the total cost of normal operation but must also be able to survive any contingency

of size k or smaller, where a contingency is defined as the simultaneous failure of

one or more components. In response to a contingency event, operators have the

opportunity to redispatch generators which are already committed, and to switch

transmission lines out as needed.

3.3.1 Assumptions

The following assumptions are made in order to construct a model that is realistic

but also solvable.

• Components fail completely or not at all.

Partial failures are not considered.

• Only transmission lines and/or generators may fail.

We model only generators, transmission lines (i.e. arcs), and buses (i.e. nodes)

in our representation of the power grid. An illustration of the IEEE14 test

system is provided in Figure 3.1. One or more generators may be on a single

bus. During a contingency event, it is assumed that only transmission lines

and/or generators may fail. The failed elements that define a contingency event

are said to be contained within the contingency.

• For a contingency of size l, we define survival as meeting at least

(1− εl) fraction of the total demand.

37



1	
   2	
  

5	
  

6	
  
11	
  

12	
  

13	
  

3	
  

10	
  
9	
  

14	
  

8	
  7	
  4	
  

Figure 3.1: Illustration of IEEE14 test system. Bold lines are buses, regular lines are
transmission lines, and circles with “G” inside are generators.

The parameter εl is defined for l = 0, . . . , k such that 0 ≤ ε0 ≤ ε1 ≤ · · · ≤ εk ≤ 1.

It is common to set ε0 = 0 and ε1 = 0.

• Time is discretized at one hour intervals.

Multiple failures within the interval are considered simultaneous.

• A contingency event is assumed to occur when the system is other-

wise operating normally.

Contingency events in sequential time periods, or cascading failures are not

considered. When a contingency occurs in a particular time period, the genera-

tors that were already committed in that time period can be redispatched, but

generators that were not committed cannot be turned on.

• To respond to a contingency in a given time period, the generator’s

output cannot be increased or decreased from the nominal output in

that same time period by more than the ramp rate.
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• For a single contingency, the post-contingency generator outputs are

not linked across time periods.

When a contingency occurs, the primary concern is immediately finding a fea-

sible power flow solution so that a blackout event will not occur. Realistically,

in subsequent time periods, the operator may take other actions to enable re-

covery including repairing broken components, bringing online generators that

were previously uncommitted, etc. But for the purposes of the problem con-

sidered here, the only requirement is that a feasible power flow solution exists

immediately following a contingency event. Subsequent time periods are not

modeled, as it is assumed that once a stable solution has been found, the oper-

ator is able to recover using actions beyond just redispatching generators and

switching transmission lines.

• Transmission switching may be used in response to a contingency

event but not during normal operation.

Previous studies (Fisher et al. (2008), Hedman et al. (2010)) have shown that

transmission switching can be employed during normal operation to reduce the

cost of dispatching generators by optimizing the network topology to allow the

most efficient generators to meet demand. Other studies (Hedman et al. (2011),

Li et al. (2012)) have indicated that switching might also be used as recourse

action, to help redirect flows in response to a contingency event to satisfy as

much demand as possible. We focus here on the effect of transmission switching

on system reliability, and thus we consider only the latter use case, in which

transmission switching is used in response to a contingency event to improve the

network’s ability to survive the contingency. It is trivial to extend our model

to allow switching during normal operation.
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• No cost is assigned to post-contingency response decisions.

When a contingency occurs, the primary goal is to ensure feasibility, not to

minimize the cost of operation. Thus, generator dispatch decisions under nor-

mal operation appear in the objective function, but post-contingency dispatch

decisions do not. The decision to switch a line in or out of service is also not

assigned any cost.

3.3.2 Explicit Formulation

Here we present the explicit formulation of the N−k unit commitment problem

with transmission switching. For notational conciseness and clarity we present the

explicit formulation of the problem using matrix notation. The full, detailed formu-

lation is presented in Appendix A.

Let C be the set of all contingencies of size k or smaller. Each contingency c ∈ C

is a binary vector of length equal to the number of generators and transmission lines,

where ce = 1 indicates that element e has failed. More formally, let E represent

the set of transmission lines, and G represent the set of generators. The set of all

contingencies C =
{
c ∈ {0, 1}|E|+|G| : eT c ≤ k

}
where e is an appropriately sized unit

vector.

Let i(c) be a function that maps the contingency c to its corresponding index in

the set C. i(c) ∈ {0, 1, . . . , |C|−1} for any c ∈ C. The set C contains the 0-contingency,

c = 0, is where no components have failed, i.e. normal operation. Let i(0) = 0. T is

the set of 24 1-hr time periods, and bt is the total load in time period t.

The vectors of variables used in this problem are:
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xt vector of binary unit commitment decisions including on/off and start-

up/shut-down statuses of each generator in time period t

pt,i(c) vector of generator dispatch (i.e., output) decisions in time period t during

contingency c

f t,i(c) vector of operational decisions in time period t during contingency c includ-

ing line flows, node phase angles, and load shedding at each node

wt,i(c) vector of binary transmission switching variables in time period t during

contingency c

Let p0 be a concatenation of pt,0 for all t ∈ T , and x be a concatenation of xt decisions

for all t ∈ T . The complete formulation is as follows:

min
x,p,f,w

dTxx+ dTp p
0 (3.1a)

s.t. Ux+Qp0 ≤ q (3.1b)

Af t,0 +Gpt,0 ≤ rt ∀t ∈ T (3.1c)

Af t,i(c) + (e− c)TBwt,i(c) +Gpt,i(c) ≤ Hc+ rt ∀c ∈ C \ {0}, t ∈ T (3.1d)

Y pt,i(c) − (e− c)TDxt ≤ 0 ∀c ∈ C, t ∈ T (3.1e)

hTf t,i(c) ≤ btεeT c ∀c ∈ C, t ∈ T (3.1f)

W (pt,i(c) − pt,0) ≤ V c+ s ∀c ∈ C \ {0}, t ∈ T (3.1g)

p ≥ 0 (3.1h)

x binary (3.1i)

wt,i(c) binary ∀c ∈ C \ {0}, t ∈ T (3.1j)

The objective function (3.1a) minimizes the total cost of operating the genera-

tors including start-up and shut-down costs and fuel costs under normal operating
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conditions (i.e., the 0-contingency). We assume a linear fuel cost function, but a

piecewise linear approximation of a quadratic cost curve could also be used, as is

common with generator fuel costs (Zhu (2009)). Constraint set (3.1b) defines the

requirements for the unit commitment variables including start-up, shut-down, and

minimum up and down time, as well as the ramping constraints on the power dispatch

variables under normal operation, which restrict the increase or decrease in the power

output in consecutive time periods to obey limitations imposed by the equipment.

Constraints (3.1c) and (3.1e) define the operational constraints in the 0-contingency,

and constraints (3.1d) and (3.1e) define the operational constraints in contingency

c. Constraint set (3.1d) includes power flow balance, DCPF constraints on available

transmission lines, capacities on line flows, and bounds on node phase angles. When

a line is contained in a contingency, the power flow on that line is forced to be 0, and

the DCPF constraints for that line are not enforced. If a line is not contained in a

contingency, but it is switched out, the power flow is similarly set to 0 and the DCPF

constraints relaxed. Note that some constraints in this set depend on the particular

time period (e.g., flow balance depends on time-dependent forecasted loads) and some

constraints depend on the contingency (e.g., line capacities depend on whether the

line is contained in a contingency). Constraint set (3.1c) contains the same opera-

tional constraints as in (3.1d) except that in the 0-contingency, all generators and

transmission lines are available, and the switching variables are not included, because

in this model switching is not allowed during normal operation. If switching were to

be allowed during normal operation, this constraint set would be appropriately modi-

fied, and the same solution approach would be valid. Constraint set (3.1e) defines the

bounds on the power output at each generator. The power output at a generator is

restricted to be 0 if either the generator is not committed, or if the generator has failed

in a particular contingency. Otherwise, the power output at a committed generator

must be within the upper and lower output bounds. Constraint set (3.1f) requires
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that the total loss-of-load be less than a specified threshold, where the threshold is

a function of the size of the contingency. Constraint (3.1g) specifies that the redis-

patched power outputs must obey ramping limits relative to the 0-contingency power

dispatch decisions prior to the contingency event, where the vector s contains the

ramping limits, and the term V c relaxes the limit on the post-contingency dispatch

for a generator that is contained in a contingency.

3.4 Problem Decomposition

The full mixed-integer formulation (3.1) is typically very challenging to solve be-

cause the set of all contingencies C is very large even for moderately sized networks

if k > 1. The total number of contingencies is
∑k

l=1

(|E|+|G|
l

)
, which is on the order of

(|E|+ |G|)k, assuming (|E|+ |G|)� k. For example, for the RTS-96 test system used

in our computational results, the number of transmission lines is 117 and the number

of generators is 96. The number of contingencies of size 1 is 213, while the number

of contingencies of size 2 is 22,578. Thus, we explore decomposition procedures that

allow us to solve this MIP.

3.4.1 Natural Two-Stage Decomposition

The natural decomposition of this problem follows from defining the set of sce-

narios to be all contingency-time period pairs, the first stage variables to be x, p0,

and f 0, and the second stage variables to be pt,i(c), f t,i(c) and wt,i(c). The first stage
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problem is then:

min
x,p0,f0

dTxx+ dTp p
0

s.t. (3.1b)-(3.1c)

Y pt,0 − eTDxt ≤ 0 ∀t ∈ T

hTf t,0 ≤ 0 ∀t ∈ T

p0 ≥ 0, x binary

F t,i(c)(x, p0) nonempty ∀t ∈ T , c ∈ C \ {0}

(3.2)

The second stage feasibility problem for a particular contingency-time period pair

is defined by the polyhedron F t,i(c)(x, p0). If this polyhedron is nonempty for a first

stage solution (x, p0), for all contingencies and time periods, then all contingencies are

survivable. This polyhedron will be referred to as the Unsurvivability Authenticator

(UA).

(UA) F t,i(c)(x, p0) =



Af t,i(c) + (e− c)TBwt,i(c) +Gpt,i(c) ≤ Hc+ rt

Y pt,i(c) ≤ (e− c)TDxt

hTf t,i(c) ≤ btεeT c

Wpt,i(c) ≤ V c+ s+Wpt,0

pt,i(c) ≥ 0

wt,i(c) binary

(3.3)

In this two-stage formulation, there exist binary variables wt,i(c) in the second stage

problem (3.3). Standard methods for solving stochastic programs cannot be used

when there are integer variables in the second stage. There exist several methods

for solving problems with second stage integer variables using disjunctive cuts or

Fenchel cuts (Ntaimo (2013), Sen and Sherali (2006), Sherali and Fraticelli (2002)).
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These approaches involve generating cutting planes for the second stage to define

the convex hull, and thus tend to be computationally intensive and not scalable.

Alternatively, other authors such as Shen and Smith (2013) have been successful

in developing problem-specific decomposition approaches that use specific problem

structure to develop valid procedures for solving problems with second stage integer

variables. Shen and Smith (2013) propose a decomposition procedure to solve a

broadcast domination network design problem, where the second stage broadcast

domination decisions are required to be integer-valued.

We propose an approach in which we take advantage of the specific structure of our

problem, and suggest a novel reformulation in which the binary switching variables

wt,i(c) are moved into the first stage. Khodaei et al. (2010) employ a similar technique

in their model of a transmission expansion planning problem where transmission

switching is used to reduce generator dispatch costs.

Once the switching variables have been moved into the first stage, the reformu-

lated problem has a linear second stage problem, and thus a Benders’ decomposition

could be applied. However, this reformulation would result in a very large number of

variables in the first stage problem (one switching variable for each transmission line

for each contingency for each time period). We propose a procedure for solving this

reformulation in which the switching variables are dynamically generated for the first

stage problem on an as-needed basis. With this approach, the number of switching

variables contained in the first stage problem is initially zero and grows slowly as

cutting planes are added.

3.4.2 Reformulation and Cutting Plane Algorithm

In our reformulation, the master problem remains almost the same as (3.2) except

that there exists a set of binary vectors of variables wt,i(c) for all t ∈ T and c ∈ C,
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and second stage feasibility is enforced instead with:

F t,i(c)(x, p0, wt,i(c)) nonempty ∀t ∈ T , c ∈ C \ {0} (3.4)

where

F t,i(c)(x, p0, wt,i(c)) =



Af t,i(c) +Gpt,i(c) ≤ Hc+ rt − (e− c)TBwt,i(c) (π)

Y pt,i(c) ≤ (e− c)TDxt (β)

hTf t,i(c) ≤ btεeT c (γ)

Wpt,i(c) ≤ V c+ s+Wpt,0 (ρ)

pt,i(c) ≥ 0

(3.5)

We employ a Benders based approach where this second stage feasibility require-

ment (3.4) is initially relaxed, and then gradually enforced by adding Benders’ feasi-

bility cuts to the master problem.

In traditional Benders’ decomposition, cutting planes would be generated for the

master problem by solving a subproblem for each time period, for each contingency,

in each iteration. Due to the large size of the set of contingencies when k > 1, this

procedure is not viable because it would take an impractically long time to solve so

many subproblems in each iteration. For example, for the RTS-96 test system used

in the computational results, the number of contingencies considered when k = 2 is

22,791. A subproblem would be solved for each contingency and each time period, so

546,984 subproblems would be solved in each iteration. If each subproblem took 0.1

seconds to solve, then it would take over 15 hours just to solve all of the subproblems

for a single iteration.

To address this issue, we propose that a Contingency Oracle be used which iden-

tifies an unsurvivable contingency for the current unit commitment solution for a

particular time period. The development of this oracle will be further explained in

46



the next section 3.5, but let us for now assume that such an oracle exists. The Con-

tingency Oracle provides a means for identifying violated constraints for the master

problem even when there is a very large number of contingencies.

The overall algorithm which incorporates the Contingency Oracle is illustrated

in Figure 3.2. For every time period t, the unit commitment decisions xt and 0-

contingency economic dispatch decisions pt,0 are passed to the Contingency Oracle.

If, in all time periods, the Contingency Oracle identifies that all contingencies are

survivable, the overall algorithm exits with the optimal set of unit commitment de-

cisions x and 0-contingency economic dispatch decisions p0. If, for at least one time

period, the Contingency Oracle identifies an unsurvivable contingency, this unsurviv-

able contingency is passed to a subproblem, along with the current master problem

solution. The subproblem solution is then used to generate a feasibility cut to the

master problem, and the procedure repeats.

Add constraint (& wt,i(c)) Master 
Problem 

Subproblem 
(xt,wt,i(c),pt,0) 

Contingency 
Oracle 

Unsurvivable 
contingency 

All contingencies 
survivable 

Master Problem 
solution 

Figure 3.2: Algorithm Overview for N−k UC with Transmission Switching

Once an unsurvivable contingency has been identified for a particular time period,

a feasibility cut is generated for the master problem by solving the dual of (3.5). The

corresponding dual variables are denoted next to each constraint in (3.5).

For the unsurvivable contingency c in time period t, the feasibility cut takes the
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following form, where (π̄, β̄, γ̄, ρ̄) is the optimal dual subproblem solution.

π̄T (Hc+ rt − (e− c)TBwt,i(c)) + β̄T
(
(e− c)TDxt

)
+btεeT cγ̄ + ρ̄T (V c+ s+Wpt,0) ≤ 0

(3.6)

We recognize that initially, no feasibility cuts of the form (3.6) exist in the master

problem, and all switching variables are unconstrained. Any first stage variables that

are not contained in any constraints can effectively be ignored. As feasibility cuts

of the form (3.6) are generated for the master problem, each of which contains a set

of switching variables wt,i(c), we suggest that the relevant vector of variables wt,i(c)

be added to the formulation. Thus, the number of switching variables effectively in

the master problem grows gradually as cutting planes are generated for the master

problem.

Using this procedure of dynamically generating switching variables for the master

problem, we note that there is a choice to make when passing the master problem

solution to the subproblem. Once an unsurvivable contingency c has been identified

for time period t, two cases are possible:

1. At least one feasibility cut (3.6) for the given time period t and contingency c

has already been added to the master problem. Thus, the vector of variables

wt,i(c) is contained in at least one constraint in the current master problem

and therefore has been assigned a value in the solution to the master problem.

The master problem solution (xt,pt,0,wt,i(c)) should be passed to the subproblem

(3.5).

2. No constraints from the set (3.6) for the given time period t and contingency

c have yet been added to the master problem. The vector of variables wt,i(c)

is not yet contained in any master problem constraints, and thus any binary

vector is a feasible solution for wt,i(c). The master problem solution (xt,pt,0) is
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passed to the subproblem (3.5), and any arbitrary binary vector can be set for

wt,i(c).

3.5 Contingency Oracle

The purpose of the Contingency Oracle is to identify, for a particular time period t

with unit commitment decisions xt and 0-contingency economic dispatch decisions pt,0,

a contingency for which the minimum loss-of-load exceeds the allowable threshold,

even when the network operator has the opportunity to redispatch generators and

switch lines out of service in response to the contingency. If such a contingency does

not exist, the oracle provides a certificate that all contingencies of size k or smaller

are survivable.

We note that it is significant that the switching decisions determined in the master

problem are not passed to the oracle. The overall goal is to determine unit commit-

ment and 0-contingency dispatch decisions such that there is guaranteed to exist a

feasible operating solution in the event of any contingency of size k or smaller. It is

not necessary to know what the recovery solution is for every contingency, it is suffi-

cient to just know that one exists. The oracle seeks a contingency that is unsurvivable

even with the best switching configuration, not just with the switching configurations

that are in the current master problem solution. This distinction means that the

oracle will identify fewer unsurvivable contingencies than would be identified in a

traditional Benders’ approach. Fewer unsurvivable contingencies identified results in

fewer feasibility cuts and fewer switching variables added to the master problem.

In this section, we first formulate a bilevel program that identifies the contingency

that causes the maximum loss-of-load, even after the operator makes the optimal

recovery decisions. We recognize that this bilevel program with mixed binary lower

level decisions is difficult to solve (DeNegre and Ralphs (2009), Scaparra and Church

(2008)). But if transmission switching is ignored, the lower level problem becomes an
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LP and the bilevel program can be reformulated as a relatively small single MIP.

We next present an iterative constraint generation algorithm that uses this ob-

servation to our advantage. Specifically, we observe that if a contingency can be

survived without switching then clearly it can also be survived when switching is al-

lowed. Thus, we use the no-switching bilevel program formulated as a single MIP to

initially identify candidate unsurvivable contingencies; this MIP is referred to as the

Candidate Contingency Identified (CCI). Once such a candidate has been identified

we then verify whether the contingency is unsurvivable when switching is allowed.

If the candidate unsurvivable contingency is survivable when switching is allowed, a

constraint is generated for CCI. The constraint generation procedure continues until

either an unsurvivable contingency is identified, or CCI certifies that no unsurvivable

contingencies exist for the given (xt, pt,0). The unsurvivable contingency that is iden-

tified with this routine, if one exists, is used to generate a valid feasibility cut for the

master problem.

3.5.1 Bilevel Program

For each time period t, we could pose a bilevel program in order to identify a

maximally damaging contingency given the current first stage decisions x and p0. This

bilevel program could be thought of as an adversary’s problem, where the adversary

seeks to maximize the minimum loss-of-load. The adversary would decide which

elements of the system to destroy, knowing that the system operator would have the

opportunity to respond to the adversary’s decision and would seek to minimize the

loss-of-load.

Specifically, the upper level problem (i.e., the adversary) would determine which

generators and/or transmission lines to destroy for a given time period. The lower

level problem (i.e., the system operator) would determine how best to dispatch power

and switch lines in response to this contingency event so as to minimize loss-of-load.
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The optimal solution to the bilevel program would be a contingency which maximizes

the minimum loss-of-load for the given time period.

We could attempt to solve the described bilevel program. However, the existence of

binary switching variables in the lower level problem would mean the bilevel program

has mixed-integer variables in both the upper and lower levels, which is known to be

a very difficult class of problem (DeNegre and Ralphs (2009), Scaparra and Church

(2008)). Furthermore, we would need to solve this difficult problem in each master

problem iteration, for each time period. On the other hand, if transmission switching

were not allowed in the lower level problem, the lower level problem would become an

LP, and the bilevel program could be reformulated as a single, relatively small MIP,

the CCI.

3.5.2 Bilevel Program Without Lower Level Switching Decisions

The bilevel program for identifying contingencies that maximize the minimum loss-

of-load above the allowable threshold when switching is not permitted is formulated

as follows.

max
c

L(xt, pt,0, c) (3.7a)

s.t. eT c ≤ k (3.7b)

L(xt, pt,0, c) is the optimal objective value of the no-switching lower level prob-

lem, which minimizes the loss-of-load above the allowable threshold, given the inputs

xt, pt,0, c. In this no-switching lower level problem, the operator has the option of

redispatching generators in response to the contingency event c, but does not have

the option of switching transmission lines out of service.

This no-switching lower level problem is as follows. Note that the indices for

contingency and time period have been omitted from the variables f and p for the
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sake of simplicity, but it should be understood that the lower level problem (3.8)

is specific to a particular contingency-time period pair. The Contingency Oracle is

called for a particular time period, and in that time period the upper level passes a

contingency to the lower level problem.

L(xt, pt,0, c) = min
f,p

hTf − btεeT c (3.8a)

s.t. Af +Gp ≤ Hc+ rt (π) (3.8b)

Y p ≤ (e− c)TDxt (β) (3.8c)

Wp ≤ V c+ s+Wpt,0 (ρ) (3.8d)

p ≥ 0 (3.8e)

Here we assume that the problem (3.8) has at least one feasible solution for any

(xt, pt,0, c). This assumption holds, for example, if the lower bound on committed

generator output is equal to 0 for all generators because shedding all load is always

a feasible solution (associated with setting all generation and power flows to zero).

If there does not exist a feasible solution for any (xt, pt,0, c), the formulation can be

modified to ensure feasibility by defining slack variables for loss-of-load and excess

generation, and appropriately modifying the objective such that the non-negative

slack variables are minimized. It is assumed here that these slack variables are not

needed to ensure feasibility.

A bilevel program with a linear lower level problem is traditionally solved by in-

corporating the upper level variables and constraints into the dual of the lower level

problem. The upper level problem and the dual of the lower level problem have

aligned objectives, and thus the bilevel program can be solved as a single optimiza-

tion problem. The single optimization problem for solving the no-switching bilevel

program is as follows, where the binary contingency variable vector c is added to the
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dual of the no-switching lower level problem.

max
c,π,β,ρ

(Hc+ rt)Tπ +
(
(e− c)TDxt

)T
β + (V c+ s+Wpt,0)Tρ− btεl (3.9a)

s.t. πTA = hT (f) (3.9b)

πTG+ βTY + ρTW ≤ 0T (p) (3.9c)

π, β, ρ ≤ 0, c binary (3.9d)

eT c = l (3.9e)

Note that in constraint (3.9e), the size of the contingency is fixed to be of size l.

If the size of the contingency were not fixed, and constraint (3.9e) were replaced with

the requirement that the contingency be of size less than or equal to k (eT c ≤ k), the

size of the contingency would not be known a priori, and it would be unclear what

value ε should be used in the objective (3.9a). However, because k is typically a small

value, such as 1, 2 or 3, we can use a procedure of fixing the size of the contingency

l to progressively larger values, up to the value k. For example, we first restrict the

size of contingency to be 1, and if no unsurvivable contingency of size 1 is found,

then we change this constraint to consider contingencies of size 2, and so on, until an

unsurvivable contingency is found, or it has been verified that there do not exist any

contingencies of size k or smaller that are unsurvivable.

In its current form the objective (3.9a) contains bilinear terms, as the binary

variables in c are multiplied by the dual variables π, β, and ρ. However, the objective

can be linearized by standard methods, which involve replacing these bilinear terms

with auxiliary variables and adding appropriate constraints to enforce a relationship

that the auxiliary variables take on the same value as the original bilinear terms. The

formulation (3.9) in its linearized form will be referred to as the CCI.
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3.5.3 Contingency Oracle Solution Routine

To identify a contingency that is unsurvivable given the unit commitment deci-

sions xt and 0-contingency economic dispatch decisions pt,0, we propose an iterative

constraint generation algorithm. This basic algorithm is illustrated in Figure 3.3.

For a particular contingency size l, CCI is first solved to identify an initial un-

survivable contingency candidate for the current unit commitment decisions xt and

0-contingency economic dispatch decisions pt,0. The unsurvivability of this contin-

gency is checked by solving the Unsurvivability Authenticator (UA), the feasibility

problem defined in (3.3). If UA is feasible, a constraint is added to CCI to make

the current contingency solution infeasible. The procedure repeats until a contin-

gency is identified that is unsurvivable, even for the optimal switching configuration,

or a certification that no unsurvivable contingency of size l exists is returned. This

certification is obtained if the optimal objective value of CCI is greater than 0. If

this certification is returned for all l = 1, . . . , k, all contingencies of size k or smaller

are survivable for the current first stage solution for the given time period. If, for

all time periods, the Contingency Oracle verifies that no unsurvivable contingencies

exist, the overall algorithm terminates with the optimal set of unit commitment and

0-contingency economic dispatch decisions.

When UA verifies that a particular contingency c is survivable, one valid inequality

that could be added to CCI to make the current contingency solution c infeasible is

to require that at least one element that is not included in the contingency c must

be destructed. However, a tighter constraint is one that utilizes information about

which elements were used in the feasible UA solution. Consider that for a survivable

contingency c for time period t, the UA solution indicates a feasible set of edge flows

and generator outputs. Let the vector of binary parameters u indicate which lines

have nonzero flows and which generators have nonzero power outputs in the feasible

solution to UA. In the next iteration, if none of the lines that had nonzero flows
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Figure 3.3: Contingency Oracle Solution Routine

and none of the generators that had nonzero power outputs are destructed, then the

same solution to UA will be feasible. Thus, in order to identify an unsurvivable

contingency, at least one line with nonzero flow or one generator with nonzero output

must be destroyed, which is expressed in the following constraint:

uT c ≥ 1 (3.10)

Thus we add constraint (3.10) to CCI based on the solution of UA to rule out

survivable contingencies.

The Contingency Oracle takes in the unit commitment and 0-contingency dispatch

decisions from the master problem (x, p0) and returns an unsurvivable contingency c.

The algorithm for solving the Contingency Oracle for a particular time period t, as

illustrated in Figure 3.3, is summarized here.

1. Set l = 1.

2. Solve CCI with contingency size l to find solution c.

3. If the optimal objective value of CCI is greater than 0, increase l = l+1. If l > k,

exit the Contingency Oracle for this time period t because all contingencies are
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survivable for the current xt and pt,0. Otherwise, if l ≤ k, go to step 2.

4. Otherwise, pass the current first stage solution (xt, pt,0) and current contingency

c to UA (3.3), and solve for a feasible solution, if one exists.

5. If a feasible solution for UA exists, compute the set of edges and generators used

in the feasible solution and construct the indicator vector u. Add the following

constraint to CCI: uT c ≥ 1. Go to step 2.

6. If UA is infeasible, exit the Contingency Oracle with the unsurvivable contin-

gency c.

3.6 Implementation Details

As described in section 3.4.2, the overall algorithm proceeds by iteratively solving

the master problem, identifying unsurvivable contingencies, and solving the subprob-

lem to generate feasibility cuts for the master problem. In this section, we discuss

two algorithmic design decisions that have a significant impact on runtime, and we

describe the implementation that we have empirically found to work well.

3.6.1 Identifying Unsurvivable Contingencies

Given the current master problem solution, the Contingency Oracle can identify

an unsurvivable contingency for a particular time period, if one exists. However,

the Contingency Oracle routine described in section 3.5.3 is an iterative procedure

that involves generating constraints for CCI. The constraints generated for CCI are

relatively weak, and so it is not uncommon for the routine to require many itera-

tions, especially towards the end of the algorithm, when there do not exist many

unsurvivable contingencies.

Rather than immediately calling the Contingency Oracle to identify an unsur-

vivable contingency, we suggest that a list of contingencies previously identified as
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unsurvivable first be checked. For many contingencies, multiple feasibility cuts must

be added to the master problem before survivability is achieved. Contingencies that

have been previously been identified as unsurvivable are thus good candidates for

unsurvivability in future iterations. For a given master problem solution, we sug-

gest checking all time periods. For each time period, we first check whether any

contingencies in the list are unsurvivable. The Contingency Oracle is only called if

all contingencies in the list are survivable for the time period and an unsurvivable

contingency has not yet been identified for the current master problem solution. This

routine reduces the frequency with which the Contingency Oracle is called while still

ensuring that feasibility cuts are generated for the master problem in every iteration.

3.6.2 Ordered Time Periods

We also suggest that the time periods be ordered by decreasing total load. The

time periods are checked in their ranked order. It is more likely that an unsurvivable

contingency will exist for peak load time periods, so by checking these time periods

early in the iteration, unsurvivable contingencies are identified sooner. A new un-

survivable contingency is immediately added to the list of contingencies. When the

longer list of contingencies is checked for subsequent time periods, there is greater

likelihood of generating a feasibility cut.

3.7 Computational Results

Our computational results were performed on a computer with 4GB RAM and

a 2.3 GHz processor, using CPLEX v12.4. Computational tests were done with the

IEEE24 and RTS-96 test systems, which are available online (Grigg et al. (1999)). In

our test instances we modified the original network in the same way as described in

Hedman et al. (2010), with the intent of slightly increasing congestion. See Hedman

et al. (2010) for details.
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The characteristics of these networks are summarized in Table 3.1. Note that “#

Conting. k = 1” is the number of contingencies of size 1, which is the total number of

transmission lines (i.e., arcs) and generators. Additionally, “# Conting. k = 2”, is the

number of contingencies of size 2 (total number of transmission lines and generators

choose 2) plus the number of contingencies of size 1, because setting k = 2 means

protecting all contingencies of size 2 or smaller.

# Conting. # Conting.
System # Nodes # Arcs # Generators # Loads k = 1 k = 2
IEEE24 24 37 32 17 69 2,415
RTS-96 73 117 96 51 213 22,791

Table 3.1: IEEE24 and RTS-96 System Characteristics

3.7.1 Run Times

To perform our computational experiments, we needed to pick a value for εk,

the fraction of the allowable loss-of-load for contingencies of size k. In practice,

ε0 = ε1 = 0, but there is not an established value for εk for k > 1. To obtain the most

meaningful results, we sought the tightest values of εk, where the system is operating

the closest to its limits. We refer to the smallest εk value that yields a feasible N−k

unit commitment solution as the critical εk. For k = 1 for the IEEE24 and RTS-96

systems, we initially set ε1 = 0 and run our algorithm. If the N−k unit commitment

problem was infeasible, we increased εk by increments of 0.01 until a feasible N−k

secure unit commitment solution was obtained. For k = 2, we held ε1 at its critical

value, and followed the same procedure to identify the critical ε2. The critical εk

values are for IEEE24 and RTS-96 for k = 1 and k = 2 are shown in Table 3.2.

We tried computing the critical εk for k = 3 for IEEE24, but no feasible N−k

secure unit commitment solution could be obtained for any value of ε3 < 0.5. It is

unrealistic to consider a 50% loss-of-load a feasible recovery solution, and so we did

not perform computational experiments with k = 3 for these test instances. N−3
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System Critical ε1 Critical ε2
IEEE24, w/ switching 0 0.09
IEEE24, w/o switching 0.01 0.1
RTS-96, w/ switching 0 0.04
RTS-96, w/o switching 0 0.04

Table 3.2: IEEE24 and RTS-96 Critical εk Values

security may make sense for larger systems where 3 components is a small fraction of

the total number of components, but it does not make sense for these test instances.

Using these critical εk values, we obtained the run time results for IEEE24 and

RTS-96 test systems for k = 1 and k = 2 shown in Table 3.3.

% Run Time Spent
Test Case # Iterations Run Time in Last Iteration
IEEE24, k = 1, ε1 = 0 60 4 min 10%
IEEE24, k = 2, ε1 = 0, ε2 = 0.09 99 18 min 7%
RTS-96, k = 1, ε1 = 0 41 52 min 12%
RTS-96, k = 2, ε1 = 0, ε2 = 0.04 92 8.5 hrs 23%

Table 3.3: N−k UC Constraint Generation Algorithm Run Times

We implemented the algorithm serially. However, one of the advantages of the

proposed algorithm is that it could be easily parallelized. We will discuss the run-

times of our serial implementation, and project how a parallel implementation could

performed.

For the the IEEE24 network with k = 1, the algorithm converged in 60 iterations,

and the run time was a little under 4 minutes, of which about 10% of that time was

spent solving the last iteration, taking about 23 seconds. The last iteration is the

slowest because the Contingency Oracle must be called serially for each time period,

to verify that no unsurvivable contingencies exist. The earlier 59 iterations average

about 3 seconds each. In a parallelized implementation, if there were 24 processors,

each of the 24 Contingency Oracle instances in the last iteration could be solved

simultaneously, such that solving the Contingency Oracles in the last iteration would

take about 1.5 seconds instead of 23 seconds. Additionally, the algorithm would not
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require 60 iterations to converge. In the current implementation, the Contingency

Oracle is only called if an unsurvivable contingency cannot be identified with the

contingency list, and once an unsurvivable contingency is identified for this iteration,

the Contingency Oracle is not called again. Thus, only a few constraints are added

to the master problem in each iteration. However, in a parallelized implementation,

the Contingency Oracle could be solved for multiple time periods in parallel in each

iteration, potentially generating many more constraints for the master problem per

iteration, and reducing the number of iterations necessary for convergence.

It is interesting to note that as k increased or as the network size increased,

the number of iterations required did not dramatically increase. The main effect of

increasing k and the network size is that the Contingency Oracle takes longer to solve.

For example, the longest Contingency Oracle run time for RTS-96 with k = 1 is 35

seconds. The longest Contingency Oracle run time for RTS-96 with k = 2 is almost

10 minutes. The individual Contingency Oracle run times would not be reduced in a

parallel implementation, but given that the bottleneck, the Contingency Oracle, could

be parallelized, we would expect a substantial improvement in the overall runtime.

3.7.2 Critical ε Analysis

As previously mentioned, the minimum values of εk for which there exists a feasible

N−k secure unit commitment solution for IEEE24 and RTS-96 for k = 1 and k = 2

are shown in Table 3.2. These critical εk values are a measure of how reliable the

given power system is, and so it is interesting to analyze these εk values.

For IEEE24, when k = 1 and switching is used, it is possible to not shed any

load for all contingencies, i.e., the critical ε1 = 0 when switching is employed. When

switching is not used in response to a contingency, it is necessary to shed 1% of

the total load in the worst-case contingency in order for a feasible unit commitment

solution to exist. The minimum loss-of-load that must be allowed for contingencies
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of size 2 in order for there to exist a feasible unit commitment solution is 9%, when

switching is allowed, but increases to 10% if switching is not employed.

For the RTS-96 network, the critical εk values are the same with and without

switching: for k = 1, the critical ε1 = 0, and for k = 2, the critical ε2 = 0.04. We

believe the fact that switching reduces the critical εk values in the IEEE24 system

and not in the RTS-96 system demonstrates that switching is most valuable in dense

systems. The RTS-96 system is constructed of three zones, where there is significant

interconnection among the buses within a zone, but only minimal connection between

different zones, whereas the IEEE24 system is equivalent to one of the zones in the

RTS-96 system. The RTS-96 system is illustrated in Figure 3.4. The IEEE24 network

is more dense overall and thus is more constrained, and switching is more likely to

increase survivability in the worst-case contingency.

3.7.3 Scaled-Load Analysis

We analyzed how the value of switching changed as the system load levels varied.

We defined the load levels used in Section 3.7.1 as the 100% baseline, and then scaled

the load at each node and time period for the IEEE24 system from 85% to 102%. We

observed that as the load increased, the difference between the cost of the optimal

solution when transmission switching is allowed, and the cost of the optimal solution

when transmission switching is not allowed increases. Essentially, in a more congested

system, switching is more valuable. We observed this effect in the IEEE24 system

both when k = 1, shown in Figure 3.5, and when k = 2, shown in Figure 3.6.

In these computational experiments, the εk values were set equal to the critical εk

values with switching. Both when k = 1 and when k = 2, the maximum load scaling

at which there exists a feasible unit commitment solution without switching is 98%.

For k = 1, there exists a feasible unit commitment solution with switching up to

102% scaled load, and for k = 2 there exists a feasible unit commitment solution with
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narioswereconsidered:thebasecaseandthebasecasewith
missingtie-linesbetweenareas1–2,1–3,and2–3,respectively.
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B.Nine-AreaTestSystem[4],[5]
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sixorninebusesreplicatedanumberoftimeswithdifferent
dynamicdataandinterconnectionusingtie-linesofdifferent
powertransfercapability.Theoverallnetworkhas67busses,
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Fig.2.Topologyofthe3-areasystem.

electricallycoherentareas.Fig.3illustratesthetopologyofthis
networkandthedetailsonvariousdataareavailablein[4].

Figure 3.4: RTS-96 test system, from Kamwa et al. (2007)
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switching up to 100% scaled load. At 98% scaled load, when there exists a feasible unit

commitment solution both with and without switching, the optimal objective value

of the unit commitment solution and 0-contingency dispatch is about 18% cheaper

when switching is used, for k = 1, and about 13% cheaper with switching for k = 2.
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Figure 3.5: IEEE24, k=1, Optimal UC Cost at Different Load Levels
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Figure 3.6: IEEE24, k=2, Optimal UC Cost at Different Load Levels

In Figure 3.7, the cost curves for IEEE24 from Figures 3.5 and 3.6 are overlaid

on each other. In this plot, it can be seen that the cost curves for k = 1 without
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switching and k = 2 with switching intersect at the scaled load level of 94%. This

indicates that for demand levels above 94%, the decision to use transmission switching

can allow the operator to achieve a higher level of reliability (N-2 security instead of

N-1 security) at a lower cost. More generally a plot of this nature may help operators

evaluate the cost of different levels of reliability, and determine the value of switching

in their system.
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Figure 3.7: IEEE24, k=1 & k=2, Optimal UC Cost at Different Load Levels

We note that with switching, the optimal cost of the unit commitment and 0-

contingency dispatch for IEEE24 with 100% scaled load, where k = 1 and ε1 = 0,

is $1.25 million. When k is increased to 2, with ε1 = 0 and ε2 = 0.09, the optimal

cost increases to $1.53 million, an increase of 22.7%. For the RTS-96 network, the

optimal cost of the unit commitment and 0-contingency dispatch when k = 1 with

100% scaled load and ε1 = 0 is $2.98 million. When k is increased to 2, with ε1 = 0

and ε2 = 0.09, the optimal cost increases to $3.05 million, an increase of 2.5%.

The difference between the optimal cost at k = 1 and k = 2 obviously is heavily

dependent on the particular system costs. However, how much cost will increase

when k is increased is difficult to predict without the use of tools like the algorithm

presented here. The generators costs and characteristics used for the IEEE24 and
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RTS-96 networks were quite similar, and yet the cost increase seen when increasing k

from 1 to 2 was quite different. This result indicates the difficulty of estimating the

cost of providing different reliability levels based on system characteristics alone, and

highlights the need for tools such as the algorithm presented here.

3.7.4 Line Removal Analysis

Another interesting observation concerns which lines are frequently switched out

in the optimal switching solution for various contingencies. Given the optimal unit

commitment solution returned by the cutting plane algorithm, the optimal switching

problem was solved for each contingency-time period pair, determining the generator

dispatch and switching decisions that minimize the total loss-of-load given the avail-

able components. There appear to be multiple optimal switching configurations for

many of the contingency-time period pairs. However, among these different optimal

solutions, there is a pattern; a small subset of lines are switched out in the optimal

solution a significant percentage of the time while most other lines are hardly ever

switched out. Most optimal switching solutions for the IEEE24 network with k = 1

have 1-3 lines switched out in the optimal solution, and these lines generally belong

to this subset of candidate switchable lines.

One might conclude that a line that is frequently switched out in the optimal

solution should be permanently switched out. We tested this hypothesis by individu-

ally removing the six most frequently switched out lines, and computing the optimal

unit commitment solution for each. In most cases, the objective value was nearly the

same, within 1%. However, for two instances, the optimal unit commitment cost was

15% and 20% worse. In these cases, there was a line that was important for dispatch-

ing generators efficiently under normal operating conditions, but under contingency

conditions it is useful to remove this line to minimize the loss-of-load. This result

highlights the value of switching dynamically; the presence of a line can be valuable
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under one set of conditions, while the absence of that same line is valuable under a

different set of conditions.

3.8 Conclusion

We have presented models and algorithms for solving the N−k secure unit com-

mitment problem when switching is allowed as a recovery action. We first presented a

natural two-stage decomposition of the problem with mixed-integer variables in both

stages. We then offered a novel reformulation where the second stage integer switch-

ing decisions are moved to the first stage. The resulting two-stage formulation has

a linear second stage and, using a procedure for dynamically generating first stage

switching variables, can be solved via a cutting plane algorithm inspired by Benders’

decomposition.

We formulate a Contingency Oracle, an optimization problem which identifies an

unsurvivable contingency for the current unit commitment and 0-contingency dispatch

decisions. In each iteration of the overall algorithm, all contingencies do not have to be

explicitly considered because the Contingency Oracle is used to identify unsurvivable

contingencies, for which feasibility cuts can be generated for the first stage. We

demonstrate that the effective number of variables in the first stage is modest, as the

switching decisions are added to the first stage only when a feasibility cut is added

for the corresponding contingency-time period pair. Thus, this approach may be used

when the number of contingencies is extremely large.

We have also presented several implementation details which have a significant

impact on the total runtime. In particular, maintaining a list of contingencies that

have been unsurvivable in any previous iteration can be used to quickly identify

unsurvivable contingencies in the current iteration.

We have shown computational results for the IEEE24 and RTS-96 systems, when

k = 1 and k = 2. Our results indicate that transmission switching is significantly
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valuable in reducing the cost of an N−k unit commitment solution. Additionally,

our results indicate that the ability to dynamically switch lines in and out as needed

has significant value, as opposed to statically removing a line. Further, these results

suggest that this algorithmic framework could be implemented in parallel, and used

to solve problems of larger size, and larger values of k.
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CHAPTER IV

Transmission Expansion with Smart Switching

Under Demand Uncertainty and Line Failures

4.1 Introduction

Environmental concerns have motivated many governments to require that an

increased amount of power be supplied by renewable sources. In the United States,

most states have enacted renewable portfolio standards legislation which mandate the

fraction of energy generation which must come from renewable sources (Center for

the New Energy Economy (2013)). Renewable generation has many environmental

benefits, but these non-dispatchable sources of power pose a challenge for planners

due to the uncertainty in their power output. Additionally, new trends in the areas

of demand response, plug-in hybrid electric vehicles and distributed generation are

changing the profile of electricity demand. There is uncertainty in the future demand

levels, especially when planning over a long-time horizon. Methods for dealing with

this uncertainty must be used when planning where to build new transmission lines.

Furthermore, as a society that is increasingly reliant on digital technologies, an

uninterrupted power supply is as important as ever. Designing a system that is

resilient to failures is critical. However, building new transmission lines to provide

redundancy is very expensive. It is important that transmission expansion decisions
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be made intelligently so as to minimize the total investment costs while also ensuring

that the system is robust to failure events. In response to a failure event, i.e., a

contingency, it is important that a set of feasible actions be available to the operator

that allow demand to be met, to prevent a blackout event.

Traditionally, the recovery actions available to the operator include the ability

to change generator dispatch levels and influence transmission line power flows. To

realize the goal of operating a system that is both reliable and efficient, as described

in Chapter III, transmission switching has been proposed as a an additional recovery

action. Especially when considering where to build additional transmission lines, it is

important to consider the paradox associated with the existence of any transmission

line, that it can provide capacity or impose a bottleneck. Allowing transmission

switching as a recovery action may have a significant impact on the optimal investment

solution.

As some critics of transmission switching have noted, existing circuit breakers are

intended to be used rarely, primarily to de-energize a line that must be repaired. The

practice of using circuit breakers as a controllable element may require additional

investment in equipment that is designed to be used repeatedly and is remotely con-

trollable. The problem we consider here is how to make decisions about where to

build new transmission lines and where to build new transmission switching equip-

ment. We seek to solve a robust version of the problem where the total investment

cost is minimized, and feasible operation is guaranteed for all contingencies and de-

mands within the defined uncertainty set, given that transmission switching may be

used as a recovery action.

The structure of this Chapter is as follows. In Section 4.2 we review the relevant

literature. In Section 4.3 we formally define the deterministic transmission expansion

problem (TEP) and develop the robust counterpart. We describe how a cutting plane

algorithm could be used to solve the robust formulation in Section 4.4. In Section 4.5,
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the development of an oracle is described which returns an unsurvivable contingency-

demand pair given an investment solution. This oracle is utilized in the cutting

plane algorithm described in Section 4.6 to solve the robust transmission expansion

problem. Computational results are presented in Section 4.7. Finally, Section 4.8

contains concluding remarks.

4.2 Literature Review

Transmission expansion planning has been a rich area of research for several

decades. In most early works, only dispatchable conventional generation is considered

(i.e., uncertain renewable energy is not included) and demand forecasts are assumed

to be accurate. Latorre et al. (2003) and Romero et al. (2002) review several types of

deterministic models for the transmission expansion planning problem. More recently,

there has been interest in incorporating uncertainty into the transmission expansion

optimization models. A review of the transmission expansion area in general, in-

cluding a presentation of a few models which incorporate uncertainty, is provided in

Sorokin et al. (2012).

Several studies have used stochastic methods to deal with uncertainty in renew-

able generation and/or the demand for power. Hemmati et al. (2014) and Yu et al.

(2009) consider a transmission expansion planning problem where there is uncer-

tainty in both the demand and the power generated at wind farms. In both works,

the authors assume that demand is normally distributed and that wind speeds are dis-

tributed according to a Weibull distribution, and they use a Monte Carlo simulation

to approximate the probability distribution for the power output at the wind turbine

generators. Yu et al. (2009) present a chance constrained formulation in which the

model seeks a minimum cost expansion plan where the probability of meeting demand

is at least equal to a specified threshold. They suggest a genetic algorithm which can

return a heuristic solution to the chance constrained formulation. Hemmati et al.
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(2014) propose a multi-objective model to solve for a transmission expansion solution

that simultaneously minimizes investment cost, maximizes social welfare, and min-

imizes loss-of-load. They suggest a particle swarm algorithm to solve the proposed

model. One downside of the approaches proposed in Hemmati et al. (2014) and Yu

et al. (2009) are that the Monte Carlo simulations required to generate the wind

power probability distribution are computationally intensive.

López et al. (2007) present a model that solves for both transmission and gener-

ation expansion decisions when there is uncertainty in demand. This model seeks to

minimize the expected cost of both investment costs and operational costs. A set of

possible demand scenarios and their probabilities are assumed to be given.

In contrast to stochastic optimization methods that require knowledge of proba-

bility distributions, which are generally difficult to ascertain, robust optimization has

been used to solve for transmission expansion solutions that are feasible for a variety

of demand and/or renewable generation conditions.

Wu et al. (2008) propose a robust model of transmission expansion where only

uncertainty in demand is considered. The authors use a box uncertainty set for the

demand (i.e., an ‘interval model’). They propose a branch-and-bound procedure to

solve for the worst case demand for a given expansion plan, and use this routine

within a Greedy Randomized Adaptive Search Procedure (GRASP) to solve for a

heuristic transmission expansion solution.

Yu et al. (2011) apply the Taguchi’s Orthogonal Array Testing (TOAT) method

to the transmission expansion planning problem where there is uncertainty in both

renewable energy output and demand. The authors use a box uncertainty set for both

demand and renewable generation. TOAT is used to identify a subset of scenarios

which are representative of the set of all possible scenarios, as defined by the extreme

points of the box uncertainty set. The authors demonstrate that by using only these

representative scenarios within a genetic algorithm, they can identify a expansion
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solution that is robust for most values. However, the transmission expansion solution

obtained is not guaranteed to be feasible for all demand and renewable generation in

the uncertainty set.

Jabr (2013) proposes a traditional robust model for transmission expansion where

there in uncertainty in both renewable generation and loads using two different types

of uncertainty sets: a box uncertainty set and a budget uncertainty set. The au-

thor proposes a Benders’ decomposition procedure which is similar in spirit to what

we propose here, although we additionally include uncertainty in line failures and

transmission switching as a recovery action.

Outside of traditional stochastic programming or robust optimization frameworks,

Silva et al. (2006) capture the tradeoff between cost and reliability in a transmission

expansion model with demand uncertainty by setting objective coefficients that weight

these opposing goals. The authors propose a genetic algorithm solution to find the

optimal expansion plan with respect to these weights. Similar to these other robust

optimization papers, the authors allow demand to vary within a range defined by

upper and lower bounds. A limitation with the approach proposed in Silva et al.

(2006) is that it may be difficult in practice to assign appropriate weighting coefficients

that allow cost and reliability to be compared in the same units.

An alternative source of uncertainty that has been considered in the transmission

expansion literature is the possibility of component failures. Alguacil et al. (2010) pro-

pose a model for the transmission expansion problem which is robust to intentional

line failures. Romero et al. (2012) propose a tabu search algorithm to determine

where to add line capacities, as well as generation capacities and spare transformers,

to ensure that feasible operation is possible in response to a terrorist attack. Choi

et al. (2005) employ network cut-set constraints to relate probability distributions on

the availability of individual components to measures of system-wide reliability. The

authors use this relationship to formulate constraints in a model which seeks a min-
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imum cost transmission expansion which satisfies reliability criteria. In these works,

demand and renewable generation are assumed to be deterministic, and transmission

switching is not allowed. In a more general setting, Shen (2013) present two network

design models which seek to minimize investment costs and expected recovery costs

given a set of scenarios representing stochastic arc disruptions.

As discussed in Chapter III, the value of transmission switching has been demon-

strated in several papers. Fisher et al. (2008), Hedman et al. (2010), Hedman et al.

(2009), Khanabadi et al. (2013) and Khodaei and Shahidehpour (2010) show how

transmission switching might be used to reduce the cost of committing or dispatch-

ing generators. Shirokikh et al. (2013) present a method of choosing transmission

switching actions that minimize generator dispatch costs while ensuring that con-

ditional value at risk constraints are met which would limit the losses in response

to contingency event. The authors assume that switching decisions are made prior

to the realization of a contingency event and cannot be changed in response to a

contingency.

In other works, transmission switching has been shown to be valuable as a cor-

rective action to improve response to a contingency event. In addition to discussing

the market implications of transmission switching, Hedman et al. (2011) explore how

transmission switching might be used to improve reliability. Li et al. (2012) propose a

method for determining the optimal switching actions for the sole purpose of ensuring

reliable operation in response to a contingency event.

Several authors have investigated how the transmission expansion problem might

be modified to incorporate transmission switching. Khodaei et al. (2010) present an

algorithm for solving for the minimum cost transmission and generator expansion

decisions where transmission switching is employed to reduce dispatch costs. The

authors require that the investment solution be feasible for a small set of contin-

gencies, where switching decisions cannot be changed in response to a contingency.
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The authors use a Benders’ decomposition procedure where transmission switching

decisions are in the master problem, which is similar to the approach we propose.

However, we employ a procedure for dynamically generating switching variables for

the master problem on an as-needed basis which allows us to consider a larger set of

contingencies, and to additionally consider uncertainty in demand.

Villumsen and Philpott (2012) propose a column generation approach to solving

the transmission expansion and switching equipment investment problem when trans-

mission switching is allowed and demands, generator capacities and generator costs

are stochastic. The authors in Villumsen et al. (2013) propose a model of the trans-

mission expansion problem when transmission switching is used in response to high

wind penetration scenarios.

A problem related to the robust transmission expansion planning problem is that

of identifying a worst case event from within the defined uncertainty set for a given

expansion solution. This problem is especially interesting when it is assumed that

the operator has the ability to react optimally to the event once it has occurred.

Neglecting the demand uncertainty and considering only uncertainty in possible line

failures, this type of optimization problem is an interdiction problem. Arroyo and

Fernández (2009), Delgadillo et al. (2010) and Zhao and Zeng (2011) propose meth-

ods for solving this power grid interdiction problem where transmission switching is

used as a recovery action. Our proposed approach for solving the oracle described in

Section 4.5 extends these previously published methods by identifying a worst-case

combination of contingency and demand events for a given investment solution. Ad-

ditionally, the network expansion problem adds a level of complexity to the already

hard power grid interdiction problem since interdiction analysis is a prerequisite to

the network optimization problem.

In summary, other authors have considered the transmission expansion planning

problem with transmission switching, or with uncertainty due to contingency events,
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or uncertainty in demand or renewable generation, but our contribution is to explore

novel solution methodologies when all of these complicating factors are considered

simultaneously.

4.3 Problem Definition

We seek an optimal investment solution which determines where new transmission

lines should be built and on which lines transmission switching equipment should

be installed. The objective is to minimize the total investment cost while ensuring

that it is possible to recover from any single transmission line failure and any set of

instantaneous demands and renewable generation levels in the defined box uncertainty

set.

In this section we formally define the robust transmission expansion and switching

equipment investment problem. In Section 4.3.1 we first explain the assumptions

that we make in constructing our model. In Section 4.3.2 we define the deterministic

problem, where the transmission line failures (i.e., contingency) and demand vector

are fixed to a nominal value. In Section 4.3.3 we present the robust counterpart of

the deterministic problem, where the contingency and demands/renewable generation

vectors may take on any value within their respective uncertainty sets. We also derive

the formulation of the robust counterpart as a linear mixed-integer program (MIP)

with an exponential number of constraints. In the next section, we describe how this

MIP formulation can be decomposed and solved via a constraint generation procedure.

4.3.1 Assumptions

To manage the tradeoff between accuracy and solvability, we make the following

assumptions when formulating our model.
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• A set of candidate transmission lines is given.

Our investment decisions are binary; for each line in the set of candidate trans-

mission lines, we decide whether or not that line should be built.

• Transmission switching equipment may be installed on any line.

We assume there is a binary decision of whether or not transmission switching

equipment should be installed for each transmission line, including both existing

and candidate lines. We assume that switching equipment is not currently

installed on any line, but this assumption could easily be modified by fixing the

values of certain binary variables.

• Transmission lines are the only components which may fail.

Given the critical nature of transmission lines and the exposure of these lines

to weather events, fallen trees, etc., we only consider transmission line failures

in contingency events. However, the model presented here may be generalized

to include failures of generators as well. Failures in both existing and new

transmission lines are considered.

• Renewable generation is treated as negative demand.

Renewable generation is non-dispatchable, meaning that the generation output

cannot be fully controlled by the operator, as availability depends on weather

conditions. Typically the only control that the operator has over the renewable

generation sources is that excess generation can be curtailed. In our model we

assume that renewable generation is always used and never curtailed, but this

assumption could easily be relaxed by adding a curtailment decision variable for

each renewable generator in the operator’s response to a contingency-demand

event. The changes to the model necessary to include curtailment is described

in detail in Appendix B.3. The methods presented here are still valid if curtail-

ment is modeled. From the point of view of the operator, renewable generation
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behaves the same way as the demand, in the sense that the operator must find

a way to deal with whatever renewable output level is realized. Thus, in our

model renewable generation is treated the same as negative demand. In the re-

mainder of this Chapter, the term demand is used to refer to both true demand

and renewable generation.

• Demand values belong to a box uncertainty set.

This uncertainty set on the demand parameters is defined by a lower bound and

an upper bound for each node. Our goal is to ensure feasible operation in the

event that any demand value within this range is realized.

• We use the direct current power flow (DCPF) approximation.

As in Chapter III, we employ steady-state operational assumptions. We use a

linear approximation of the power flow equations which govern how power flows

through the transmission network.

• We seek to minimize investment cost, and neglect operational costs.

Our goal is primarily to understand where new transmission lines and transmis-

sion switching equipment should be installed to ensure that feasible operation is

possible under all events in our defined uncertainty set. Therefore, in our objec-

tive function we include the investment costs of building new transmission lines

or switching equipment, but neglect the operational costs. Investment costs

tend to be large relative to operational costs, so it is common in the transmis-

sion expansion planning literature to neglect operational costs (Da Silva et al.

(2001), Binato et al. (2001), Romero et al. (1996)).

• Transmission is the dominant limitation, not generator commitments.

In our robust formulation, we are primarily interested in making transmission

investments so as to ensure feasible operation for any realization of demand and

contingency within the uncertainty set. We assume that during these extreme
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events, generators are committed appropriately, and lower bounds on generator

outputs are not constraining. This assumption is commonly made in long-

term transmission expansion problems (Romero et al. (2002)). Transmission is

assumed to be the dominant limitation, and so ramping, startup/shutdown, and

other constraints on generator operation described in Section 3.3.2 are relaxed.

4.3.2 Deterministic Problem

We first formulate the deterministic problem in which there is no uncertainty in

the parameter values; the failure state of all transmission lines is known and the

set of nodal demands is known. In this formulation, the binary vector c̄ indicates

which transmission lines are contained in the given contingency. c̄e = 1 indicates

that transmission line e has failed and is not available, and c̄e = 0 indicates that the

transmission line is available.

Additionally, the vector d̄ indicates the known demands. Demand d̄i at node i

could either be positive, indicating true demand, or negative, indicating the level of

renewable generation at the node. These vectors c̄ and d̄ will later be allowed to vary

within a defined uncertainty set, but for now we assume that these vectors are known.

We note that realistically, the investment decisions must be made before the un-

certain contingency and demands are known, and the operating decisions (which

we represent by variables y and w) are made in response to the realization of the

contingency-demand event. However, in this initial deterministic model where the

contingency and demands are known, this distinction of decisions made before and

after the realized uncertainty is irrelevant.

The full explicit formulation of (4.1) is defined in Appendix B. The compact for-

mulation is defined here using the following vector variable definitions:
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x vector of binary transmission expansion and switching equipment decisions.

Transmission expansion decisions are made for each line in a set of candi-

date transmission lines, and transmission switching equipment investment

decisions are made for all transmission lines, both existing and candidate.

y vector of operating decisions including generator outputs, line flows, nodal

phase angles, and net power injection at each node.

w vector of binary transmission switching decisions.

The compact deterministic problem is as follows:

min
x,y,w

bTx (4.1a)

s.t. Fx ≤ f (4.1b)

Ay +Bw + Cx ≤ h+Hc̄ (4.1c)

Ry = Ed̄ (4.1d)

x,w binary (4.1e)

The objective (4.1a) minimizes the total investment cost of both building new trans-

mission lines and installing new transmission switching equipment. Constraint set

(4.1b) represents constraints on only the investment decisions. These constraints

might include a limit on the number of transmission lines that can be built in total or

on any particular right-of-way. Constraint set (4.1c) represents the operational con-

straints including limits on generator outputs and line capacities, DCPF equations,

and power flow conservation. Constraint set (4.1d) requires that the net power flow

out of any particular node is equal to the demand at that node.

Note that in our model we consider only transmission line failure as indicated

by the vector c̄. To extend this model to additionally consider generator failure, the

dimension of c̄ could be adjusted to include binary indicator parameters for generators
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as well, and constraint (4.1c) could be modified to account for the fact that destroyed

generators cannot be dispatched.

4.3.3 Robust Counterpart

The robust counterpart of the proposed deterministic problem (4.1) treats the

contingency vector c and the demand vector d as uncertain parameters. The vectors

c and d are known to belong to uncertainty sets C and D, respectively. The goal is

to solve for a transmission investment solution x such that there exists a nonempty

set of feasible recovery actions for any c ∈ C and d ∈ D.

We assume that the uncertainty set of contingencies C contains all contingencies

of size 1 or 0. That is, C = {c ∈ {0, 1}|E| : eT c ≤ 1}, where E represents all existing

and candidate transmission lines and e is an appropriately sized unit vector.

For the demand uncertainty set D, we use a box uncertainty set. That is, the

demand (and/or renewable generation) at each node is allowed to vary within pre-

defined upper and lower bounds. Let N be the set of all nodes, and Li and Ui

be the lower and upper bounds on the demand for node i, respectively. Thus,

D =
{
d ∈ R|N | : Li ≤ di ≤ Ui ∀i ∈ N

}
.

We show that the robust counterpart of (4.1) can be formulated as a single-level

MIP with an exponential number of variables and constraints.

Given a particular investment solution x, contingency c and demand vector d, the

operator may choose a set of operational decisions y and a switching configuration w

to best respond to the particular contingency-demand event. However, the existence

of binary switching variables w makes the robust formulation much more complex,

so for the moment let us assume that the switching configuration w is fixed a priori.

The operator then must choose a set of operational decisions y that are feasible for
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the following fixed-switching recovery problem:

SP (x,w, c, d) = min
y

0 (4.2a)

s.t. Ay ≤ h+Hc−Bw − Cx (φ) (4.2b)

Ry = Ed (η) (4.2c)

Alternatively, the fixed-switching recovery problem could be formulated using a set

of slack variables, and feasibility could be enforced by minimizing the sum of the slack

variables in the objective function. This formulation was used in our implementation,

but for the sake of clarity, we present the derivation here in terms of the feasibility

problem (4.2) without slack variables.

The dual of (4.2) is as follows:

SD(x,w, c, d) = max
φ,η

φT (h+Hc−Bw − Cx) + ηTEd (4.3a)

s.t. ATφ+RTη = 0 (y) (4.3b)

φ ≤ 0 (4.3c)

The solution φ = 0, η = 0 is feasible for (4.3) for any A and R, thus (4.3) is feasible

for any inputs x,w, c and d.

By strong duality, if (4.3) has an optimal objective value equal to 0, then a fea-

sible solution exists for the fixed-switching recovery problem (4.2). Otherwise, if the

optimal objective value of (4.3) is unbounded, (4.2) does not have a feasible solution.

For a given investment solution x and switching configuration w, formulation (4.3)

can be modified to find contingency and demand vectors that make the fixed-switching

recovery problem infeasible by letting c and d become variables which may take any

value within their respective uncertainty sets. If the optimal objective value If c and
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d become variables, (4.3) becomes the following optimization problem.

R(x,w) = max
d,c,φ,η

φT (h+Hc−Bw − Cx) + ηTEd (4.4a)

s.t. ATφ+RTη = 0 (4.4b)

φ ≤ 0 (4.4c)

c ∈ C (4.4d)

d ∈ D (4.4e)

If the optimal objective value R(x,w) is unbounded, then a contingency-demand pair

has been identified which causes (4.2) to be infeasible.

Since the uncertainty set D can be expressed with a linear system of constraints

which are disjoint with the other constraints (4.4b)-(4.4d), the optimal solution for d

for (4.4) will be an extreme point of the polyhedron D (Jabr (2013)). Furthermore,

the optimal solution for (φ, η) for (4.4) must be an extreme point or extreme ray of

the feasible region defined by constraints (4.4b)-(4.4c), for the same reason.

Let ext(D) represent the set of extreme points of the polyhedron D. Additionally,

let V represent the set of extreme rays of the feasible region of (4.3), and let X

represent the set of extreme points of the feasible region of (4.3). Given that the

constraints (4.4b)-(4.4c), (4.4d) and (4.4e) are disjoint from each other in the sense

that they do not contain any common variables, and that the sets X , V , ext(D) and

C all contain a finite number of elements, (4.4) can be rewritten as the following

combinatorial optimization problem:

R(x,w) = max
(φ,η)∈X∪V, d∈ext(D), c∈C

{φT (h+Hc−Bw − Cx) + ηTEd} (4.5)

If the optimal objective value R(x,w) = 0, then there exists a feasible solution to the

fixed-switching recovery problem (4.2) for all d ∈ ext(D) and c ∈ C for the particular
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investment decisions x and switching recovery decisions w.

However, what we are really interested in is whether, for all d ∈ ext(D) and c ∈ C,

there exists a feasible solution to the recovery problem where switching is not fixed

but allowed to be chosen in response to a particular (c, d) pair. Or, put another way,

whether there exists at least one switching configuration for each contingency-demand

pair for which there exists a feasible solution to the fixed-switching recovery problem.

Let i(c) be a function that maps the contingency c to its corresponding index

in the set C. That is, for any c ∈ C, i(c) ∈ {1, 2, . . . , |C|}. Similarly, let j(d) be a

function that maps a demand vector d which is an extreme point of the set D to its

corresponding index in ext(D). That is, for any d ∈ ext(D), j(d) ∈ {1, 2, . . . , |ext(D)|}

For a given x, the requirement that there there must exist a switching configuration

wi(c),j(d) for all d ∈ ext(D) and c ∈ C such that there exists a feasible solution to the

fixed-switching recovery problem can be expressed as follows:

∃wi(c),j(d)∀c ∈ C, d ∈ ext(D) : R(x,wi(c),j(d)) = 0

Thus, the formulation of the robust counterpart of the nominal transmission ex-

pansion problem (4.1) is as follows:

min
x,w

bTx (4.6a)

s.t. Fx ≤ f (4.6b)

φT (h+Hc−Bwi(c),j(d) − Cx) + ηTEd ≤ 0 (4.6c)

∀(φ, η) ∈ X ∪ V , d ∈ ext(D), c ∈ C

x binary (4.6d)

wi(c),j(d) binary ∀d ∈ ext(D), c ∈ C (4.6e)

Constraint (4.6c) enforces that for any feasible investment solution x, there must
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exist a switching configuration wi(c),j(d) such that the optimal objective function of the

combinatorial optimization program (4.5) is less than or equal to 0. This requirement

ensures the existence of a feasible recovery solution in response to every event in the

uncertainty set C × ext(D).

4.4 Decomposition

Formulation (4.6) is a linear MIP which can be used to find an investment solution

x that minimizes investment cost and ensures that feasible operation is possible in

response to any event in the defined uncertainty set. However, (4.6) contains an

exponential number of constraints and variables, as the sets X ∪ V and ext(D) both

contains an exponential number of elements. Thus, to solve this MIP in practice,

we employ a decomposition procedure. The basic idea is to relax (4.6c), and then

generate violated constraints from the set (4.6c) iteratively, as needed, until a feasible

investment solution x is identified.

4.4.1 Switching Variable Generation

Formulation (4.6) has the form of a master problem in a two-stage stochastic

program in which the first stage variables are x and w, and the second stage problem

is (4.2) with second stage variables y. The set of scenarios is the set of all contingency-

demand pairs in the set C×ext(D). Constraint set (4.6c) represents the set of Benders’

feasibility cuts corresponding to all extreme points and extreme rays of the feasible

region of the dual of the second stage problem for all scenarios.

We note that the switching variables are naturally second stage variables, because

in practice the switching decisions can be chosen in response to particular contingency-

demand event. However, we have effectively moved the switching variables into the

first stage to alleviate the difficulty of solving a problem with second stage integer

variables.
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This reformulation is similar to the reformulation presented in Section 3.4.2 for

the unit commitment problem. The x variables here represent transmission invest-

ment decisions rather than unit commitment decisions, but the second stage recovery

decisions y and switching decisions w are very similar. The main difference is that in

Chapter III, the operational decisions were made in response to contingency of size

k or smaller in a particular time period, and in this Chapter, the operator responds

to a particular demand realization and a single line failure. The different uncertainty

sets defined in these two Chapters results in different scenario and subproblem defini-

tions. In both Chapters we have made the reformulation decision to effectively treat

the switching decisions w as first stage variables.

One challenge with first stage switching decisions in this formulation is that it

results in a very large number of binary variables in the master problem. There exists

a switching vector wi(c),j(d) in the master problem for every contingency-demand pair

(c, d). As discussed, the set C × ext(D) contains an exponential number of elements,

and thus there will exist a very large number of switching variables in the master

problem even for relatively small systems.

Similar to what was proposed in Chapter III, to address this challenge we propose

that switching variables be generated iteratively as needed as (4.6) is solved via a con-

straint generation procedure. The feasibility cuts in the set (4.6c) are initially relaxed

and are then incrementally added as violations are identified. Any first stage variables

that are not contained in any constraints can effectively be ignored. Switching vari-

ables are only contained in the constraints (4.6c), so initially all switching variables

can be ignored. As violated constraints from (4.6c) are identified iteratively, each of

which corresponds to a particular contingency-demand pair (c, d), we generate the

corresponding switching variables wi(c),j(d). Thus, the number of switching variables

effectively in the master problem grows gradually as cutting planes are generated for

the master problem.
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In practice, we have found that switching variables are generated for only a small

subset of all contingency-demand pairs. This observation will be further discussed in

Section 4.7.

4.4.2 Oracle Motivation

A problem with the structure of (4.6) would traditionally be solved with Benders’

decomposition in which feasibility cuts in the set (4.6c) are generated by solving

subproblems (4.2) for every contingency-demand pair in each iteration. Given that the

set of all demand extreme points ext(D) contains an exponential number of elements,

it would take an impractically long time to solve a subproblem for every (c, d) ∈

C × ext(D) in each iteration.

To address this challenge, we employ a similar approach to what was presented in

Chapter III; we develop an oracle. The goal of the oracle is to identify a contingency-

demand pair that does not have a feasible recovery solution for the current investment

solution x, even with the best possible switching configuration. The development of

the oracle will be explained further in Section 4.5, but for now let us assume that such

an oracle exists. This oracle eliminates the need to explicitly screen all contingencies

and demand pairs in the uncertainty set to identify an unsurvivable contingency-

demand pair.

4.4.3 Cutting Plane Algorithm

Assuming that there exists an oracle for identifying unsurvivable contingency-

demand pairs, the proposed algorithm for finding the minimum cost robust investment

solution proceeds as follows. An illustration of the algorithm is presented is Figure 4.1.

We note the similarity of the algorithm outlined in Figure 4.1, and that outlined

in Figure 3.2 to solve the unit commitment problem. The details of the two problems
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Figure 4.1: Algorithm Overview for Transmission Expansion with Switching

are different, but the overall algorithmic structure is similar.

In each iteration, the master problem is solved. Initially, the master problem is

(4.6) where all constraints in set (4.6c) are relaxed, and all switching variables w are

ignored. The oracle is called to identify an unsurvivable contingency-demand pair

(c̄, d̄). A subproblem for this (c̄, d̄) pair is solved, and the dual subproblem solution

(φ̄, η̄) is used to generate a feasibility cut for the master problem. The form of the

feasibility cut is as follows:

φ̄T (h+Hc̄−Bwi(c),j(d) − Cx) + η̄TEd̄ ≤ 0

As feasibility cuts in the set (4.6c) are generated for the master problem, corre-

sponding sets of switching variables are added as well. The procedure of generating

feasibility cuts repeats until the oracle identifies that all contingencies and demands

in the uncertainty set are survivable for the current investment solution x.

4.5 Oracle Development

The role of the oracle is to identify a contingency-demand pair for which feasible

operation is not possible given the current investment solution x, even when transmis-
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sion switching is available as a recovery action. If no such unsurvivable contingency-

demand pair exists, the oracle should return a certification to indicate that the current

investment decision x is optimal. This type of problem can be thought of from the

perspective of a fictional adversary who seeks to identify a transmission line to disrupt

and a particular demand scenario whose combination would maximize damage.

The optimal solution to (4.4) identifies a contingency-demand pair that would

be unsurvivable for a given set of investment decisions x if the recovery switching

configuration were fixed. If (c, d) is unsurvivable with this particular fixed switching

configuration, this is not a certification that (c, d) would also be unsurvivable under

a different, better switching configuration. However, the optimal solution (c, d) to

(4.4) is a good candidate for unsurvivability. We use this optimization problem (4.4)

within an iterative constraint generation routine which alternately identifies (c, d)

pairs which are candidates for unsurvivability, and verifies whether a given (c, d) pair

is actually unsurvivable when any switching configuration is allowed as a recovery

action.

Before this constraint generation routine is presented, we first present a reformu-

lation of (4.4) which eliminates bilinear terms in the objective and is a linear MIP.

4.5.1 Bilinear reformulation

To transform formulation (4.4) into a linear MIP, the two bilinear terms in the

objective function, φTHc and ηTEd, must be linearized.

The linearization of the first term is fairly simple because the contingency variables

are binary, and so the bilinear term is a product of a binary variable and a continuous

variable. There exist standard methods for linearizing this type of bilinear term. The

same type of linearization procedure was mentioned and used in Section 3.5.2. Here

we explicitly explain the linearization.

A new set of auxiliary variables can be defined, γe, to represents the bilinear quan-
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tity (φTH)e ce. In the objective, the bilinear term φTHc is replaced with the linear

term eTγ, where e is an appropriately sized unit vector. To enforce the relationship

between γe and the original bilinear terms, the following set of constraints is added

for each transmission line e ∈ E .

γe ≤Mce (4.7a)

γe ≥ −Mce (4.7b)

γe ≤ (φTH)e +M(1− ce) (4.7c)

γe ≥ (φTH)e −M(1− ce) (4.7d)

Let M be a parameter defined such that M ≥ max(φ,η)∈X∪V,e∈E{−(φTH)e, (φ
TH)e}.

Constraints (4.7a)-(4.7b) enforce that γe = 0 when ce = 0, and constraints (4.7c)-

(4.7d) enforce that γe = (φTH)e when ce = 1. The set of equations (4.7a)-(4.7d)

effectively enforce the original bilinear relationship that γe = (φTH)e ce for each

e ∈ E . In compact form, let the constraints (4.7a)-(4.7d) for all e ∈ E be represented

by the constraint Gγ ≤ g + Jc+Qφ.

The linearization of the second term ηTEd is more complex, as the demand di is

a continuous variable which may take on any value within the specified upper and

lower bounds. We propose an alternative representation of the demand di in terms

of binary variables.

As discussed in Section 4.3.3, D =
{
d ∈ R|N | : Li ≤ di ≤ Ui ∀i ∈ N

}
, and the

optimal solution for d to the optimization problem (4.4) will always be one of the

extreme points of the polyhedral uncertainty set D. Given the definition of the box

uncertainty set, at an extreme point of D, the demand di is either equal to its upper

bound Ui or equal to its lower bound Li. Thus, at any extreme point, the demand

di can be represented in terms of a binary variable zi. Let zi equal 1 if di = Ui, or

equal 0 if di = Li. Thus, the demand di at an extreme point of D can be expressed
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as follows:

di = Li + (Ui − Li)zi

z binary

In the objective of the bilevel program, the demand variable di is multiplied by

(ETη)i. For each element i, the term in the objective is rewritten as:

(ETη)i di = (ETη)i Li + (ETη)i (Ui − Li)zi

Note that this expression contains bilinear terms, as (ETη)i is a continuous vari-

able and zi is a binary variable. However, as this bilinear term is the product of

a binary variable and a continuous variable, it can be linearized in the same way

as was (φTH)e ce. Let λi be the auxiliary variable which represents the bilinear

term (ETη)izi. Let constraints analogous to (4.7a)-(4.7d) enforce the relationship

that λi = (ETη)izi, and let the compact representation of these constraints be

Sλ ≤ s+ Tz + V η.

Let the term ηTEd in the objective (4.4a) be replaced by ηTEL + (U − L)Tλ,

which represents the linearized expression.

Thus, the nonlinear optimization problem (4.4) can be reformulated as a linear MIP
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as follows:

R(x,w) = max
φ,η,c,γ,z,λ

φTh+ eTγ + φT (−Bw) + φT (−Cx) + ηTEL+ (U − L)Tλ

(4.8a)

s.t. HTφ+RTη = 0T (4.8b)

Gγ ≤ g + Jc+ φ (4.8c)

Sλ ≤ s+ Tz + V η (4.8d)

φ ≤ 0 (4.8e)

eT c ≤ 1 (4.8f)

c, z binary (4.8g)

This linearized program (4.8) can be solved directly to identify a contingency-

demand pair for which feasible recourse is not possible for the given investment x and

a fixed switching configuration w.

There exist several other special types of uncertainty sets for which the extreme

points can be expressed in terms of binary variables. Other authors have used this

type of uncertainty set representation in robust power system optimization problems

for a polyhedral uncertainty set (Jiang et al. (2010)), a budget uncertainty set (Jabr

(2013)) and multiple budget uncertainty sets (Zhao and Zeng (2012)). For these types

of uncertainty sets, the basic procedure presented in this section for developing the

oracle is applicable.

4.5.2 Iterative Oracle Routine

The reformulated program (4.8) can identify a contingency-demand pair which is

unsurvivable for a given investment decision x when recovery switching actions are

fixed to a given w. However, what we are more interested in is a contingency-demand

pair which is unsurvivable when the set of switching actions w is not fixed a priori,
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but is allowed to be chosen in response to particular (c, d) event. An iterative routine

is proposed to identify a contingency-demand pair that unsurvivable even with the

best case switching configuration.

The routine for solving the oracle is similar in structure to that presented for

solving the Contingency Oracle in Section 3.5.3. The upper level problem identifies a

contingency-demand pair (c, d) which is unsurvivable for the current investment solu-

tion for a given fixed switching configuration. That (c, d) pair is passed to the lower

level to definitively determine whether a particular (c, d) pair is unsurvivable when

any switching configuration may be chosen in response to that event. The routine

for solving the oracle is illustrated in Figure 4.2.

Oracle 

Upper Level 

Lower Level 

  (c,d) 
“guess” 

Survivable:  
Generate constraint 

Unsurvivable:  
pass (c,d) to 
Subproblem 

Investment 
Decisions, x All 

contingencies 
& demands 
survivable 

Figure 4.2: Oracle Routine

More specifically, the routine for solving the oracle proceeds as follows. Let x̄ be

the current investment solution.

First, the initial upper level problem (4.8) is formulated where the switching vector

is fixed to w = 0 (i.e., no switching). If the optimal objective value of the upper level

problem is unbounded, a contingency-demand pair (c̄, d̄) has been identified which is

unsurvivable when switching is fixed to w = 0. This (c̄, d̄) pair is passed to the lower
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level problem to check whether there exists a different switching configuration that

would enable survivability.

The lower level problem is formulated as follows.

S(x, c, d) = min
y,w

0 (4.9a)

s.t. Ay +Bw ≤ h+Hc− Cx (4.9b)

Ry = Ed (4.9c)

w binary (4.9d)

If the lower level problem is infeasible, then there does not exist any switching con-

figuration that would allow there to exist a feasible recovery solution for this (c̄, d̄),

meaning that (c̄, d̄) is unsurvivable. The oracle routine can be exited, and this (c̄, d̄)

pair can then be passed to the subproblem (4.2). Otherwise, the lower level problem

is feasible, indicating that there exists a switching configuration that enables surviv-

ability. A constraint is generated for the upper level problem to make the current

contingency-demand solution infeasible.

While the overall routine for this oracle, illustrated in Figure 4.2, is similar to the

routine for solving the Contingency oracle in Chapter III, illustrated in Figure 3.3, the

primary difference between the two procedures is the form of the constraint generated

for the upper level problem (analogously, CCI for the unit commitment problem). In

Chapter III, the constraint added to CCI specifies what elements may be disrupted

in the contingency specified by the next CCI solution. However, here the constraint

generated for the upper level problem must be in terms of both the contingency

variables c, as well as the demand variables d.

Let the optimal switching configuration in the feasible lower level solution be ŵ.

The constraint added to the upper level problem requires that the dual objective value

SD(x̄, ŵ, c̄, d̄) be greater than 0. A dual objective that is greater than 0 indicates that
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the fixed-switching recovery problem is infeasible. An unsurvivable (c, d) pair must

be unsurvivable for all possible switching configurations, so requiring that the dual

objective is greater than 0 for any particular switching configuration is valid.

Let ε be a very small value which is the threshold at which a value is considered

to be “greater than 0”. The constraint generated for the upper level problem is as

follows:

φTh+ eTγ + φT (−Bŵ) + φT (Cx) + ηTEL+ (U − L)Tλ ≥ ε

The upper level problem is solved again, and in the next iteration a new contingency-

demand pair will be identified. The procedure repeats until the lower level becomes

infeasible, indicating that an unsurvivable (c, d) pair has been found, or the upper

level becomes infeasible or has an optimal objective value equal to 0, indicating that

there does not exist an unsurvivable (c, d) pair in the uncertainty set.

4.6 Implementation

4.6.1 Implementation Details

Here we will discuss two details of the implementation of cutting plane algorithm

described in Section 4.4.3 which ensure convergence and improve performance.

The first issue deals with the inputs to the subproblem (4.2), which are x,w, c, d.

The contingency c and demand d are set according to the unsurvivable contingency-

demand pair identified by the oracle. The investment x is set according to the master

problem solution, and the switching vector w may or may not be set according to

the master problem solution, depending upon whether the switching vector wi(c),j(d)

exists in the master problem. If wi(c),j(d) exists in the master problem, then to guar-

antee convergence, w must be set equal to the master problem solution for wi(c),j(d).

However, if wi(c),j(d) has not been added to the master problem, then any arbitrary

binary vector may be set which is feasible for the current investment solution x. That

94



is, the switching configuration chosen may only switch lines out which have switching

equipment installed on them according to the investment solution x. For simplicity,

we choose to set w = 0.

The second issue concerns the manner in which unsurvivable contingency-demand

pairs are identified. Drawing on the success of an implementation detail that was used

in Chapter III, as described in Section 3.6.1, the following procedure is recommended.

To ensure feasibility of a given (c, d) pair, multiple feasibility cuts are often necessary.

Thus, rather than calling the oracle to identify an unsurvivable (c, d) pair in every

iteration, we suggest that a Critical (c, d) List instead be checked for unsurvivable

(c, d) pairs. This critical list is a list of all (c, d) pairs that have previously been

identified as unsurvivable by the oracle, which are good candidates for unsurvivability.

The procedure for identifying unsurvivable contingency-demand pairs from the

critical list is as follows. Given the current investment solution x, for each contingency-

demand pair in the list, the with-switching recovery problem (4.9) is solved. If (4.9)

is infeasible for any (c, d) pair, then an unsurvivable (c, d) pair has been identified.

If (4.9) is feasible for all contingency-demand pairs in the critical list, the oracle is

called to identify an unsurvivable contingency-demand pair, if one exists.

In our computational tests, we have found that there tends to exist a small set of

“dominant” contingency-demand pairs, in the sense that once sufficient investments

are made to ensure the survivability of these pairs, all other pairs are also survivable.

Thus, checking this Critical List seems to be an efficient way to identify unsurvivable

contingency-demand pairs.

4.6.2 Complete Algorithm

Using these implementation details, the complete cutting plane algorithm is pre-

sented here.

1. Solve the initial master problem, which is (4.6) where all constraints in the set
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(4.6c) are relaxed, and there are no switching variables w. Get the optimal

solution x̂.

2. Oracle Routine

(a) Set w = 0 and solve the initial upper level problem (4.8) for the opti-

mal solution (φ̂, η̂, ĉ, γ̂, ẑ, λ̂). If R(x, 0) ≤ 0, then exit with the optimal

investment solution x, which is robust to all contingency-demand pairs in

the uncertainty set. Otherwise, use the optimal solution to generate the

candidate contingency-demand pair (ĉ, d̂), where d̂ = L+ (U − L)T ẑ.

(b) Pass (x̂, ĉ, d̂) to the lower level problem (4.9) and solve. If (4.9) is feasible,

then (ĉ, d̂) is survivable. Let the optimal switching configuration be ŵ.

Otherwise, go to step 3.

(c) Add the following constraint to the upper level problem.

φTh+ eTγ + φT (−Bŵ) + φT (Cx̂) + ηTEL+ (U − L)Tλ ≥ ε

(d) Solve the upper level problem. If the upper level problem is infeasible or

if the optimal objective value is 0, then exit with the optimal investment

solution x̂, which is robust to all contingency-demand pairs in the uncer-

tainty set. Otherwise, use the optimal solution (φ̂, η̂, ĉ, γ̂, ẑ, λ̂) to generate

the candidate (ĉ, d̂) pair. Continue to step 2b.

3. Add (ĉ, d̂) to the critical list if it does not already exist.

4. If the switching vector wi(ĉ),j(d̂) exists in the master problem, pass (x̂, ŵi(ĉ),j(d̂), ĉ, d̂)

to the fixed-switching recovery dual subproblem (4.3) and solve for the optimal

solution (φ̃, η̃).
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5. Otherwise, if the switching vector wi(ĉ),j(d̂) does not yet exist in the master

problem, pass (x, 0, ĉ, d̂) to the fixed-switching recovery dual subproblem (4.3)

and solve for the optimal solution (φ̃, η̃).

6. Generate the following feasibility cut for the master problem:

φ̃T (h+Hĉ−Bwi(ĉ),j(d̂) − Cx) + η̃TEd̂ ≤ 0

If wi(ĉ),j(d̂) did not previously exist in the master problem, it is now added to

the master problem.

7. Solve the master problem for the optimal solution (x̂, ŵ).

8. For each (c, d) pair in the critical list, solve the with-switching recovery prob-

lem (4.9). If (4.9) is infeasible for any (ĉ, d̂), stop looping through the critical

list. Pass (x̂, ŵi(ĉ),j(d̂), ĉ, d̂) to the dual subproblem (4.3). Let the optimal dual

solution be (φ̃, η̃). Go to step 6.

Otherwise, if (4.9) is feasible for all (c, d) pairs in the critical list, go to step 2.

4.7 Computational Results

The proposed algorithm was implemented in C++ using CPLEX v12.4 Concert

Technology. Our computational results were performed on a computer with 4GB

RAM and a 2.3 GHz processor.

Results for three different test cases are presented here. The original sources for

these test cases (Freris and Sasson (1968), Garver (1970), Grigg et al. (1999)) include

descriptions of the topology and system characteristics, but do not however include

sets of candidate lines. We use sets of candidate lines from relevant transmission

expansion literature. For the IEEE24 test system and Garver test system, candidate

lines from Alguacil et al. (2010) are used. The set of candidate lines and the capacities
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for the existing lines for the IEEE14 test case are from Xu et al. (2006). Costs

of installing transmission switching equipment was not available in the references,

so we chose switching costs to approximately match the relative cost of switching

equipment and new transmission lines defined in Villumsen et al. (2013). The essential

characteristics of the test cases are summarized in Table 4.1

# Existing # Candidate
Test Case # Nodes # Loads # Generators Lines Lines
Garver6 6 5 3 6 39
IEEE14 14 11 5 20 10
IEEE24 24 17 32 35 10

Table 4.1: Garver6, IEEE14 and IEEE24 System Characteristics

The runtime ranges for each of the test cases are shown in Table 4.2 for a vari-

ety of different demand uncertainty sets, as defined later in this section. Addition-

ally, the column titled “#(c,d) pairs considered” in Table 4.2 refers to the number

of contingency-demand pairs explicitly considered when solving the algorithm over

the same range of demand uncertainty sets. This refers to the number of unique

contingency-demand pairs identified by the oracle while solving the algorithm, whose

corresponding switching variables are effectively added to the master problem. The

column “Total # of (c,d) pairs” indicates the number of elements in the set C×ext(D),

which is determined by the number of existing and candidate transmission lines and

the number of demand nodes. Our intention is to demonstrate the order of magni-

tude of the number of contingency-demand pairs that are explicitly considered while

solving the algorithm relative to the total number in the uncertainty set. As shown

in Table 4.2, for these test cases only a handful of contingency-demand pairs were

explicitly considered, despite the thousands or millions of contingency-demand pairs

in the uncertainty set.

We note that for these three test instance, the larger networks do not necessarily

have longer run times. The number of candidate lines, and the total number of new
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Test Case Run Time # (c,d) pairs considered Total # (c,d) pairs
Garver6 17-94 sec. 7-11 1.4E3
IEEE14 1-9 sec. 1-2 6.1E4
IEEE24 13-99 sec. 2-5 5.9E6

Table 4.2: TEP Algorithm Run Times and Performance Metrics

investments that must be made to ensure reliability, seem to be a more important

indicator for how long the algorithm will take to converge. If more investments

are needed, the algorithm will require more iterations. More conservative demand

uncertainty sets require more investments, so longer run times are correlated with

wider demand uncertainty sets. For these test instances, the algorithm’s run time

was dominated by the time required to solve the master problem.

For test instances larger than these, we found that the upper level problem became

the bottleneck. The upper level problem has binary variables for every demand node

and for every transmission line, and the LP relaxation of the upper level problem

is not particularly tight, so a lot of branching was necessary to identify the optimal

MIP solution. For future work, we suggest utilizing inequalities that tighten the

LP relaxation of the upper level problem. For our purposes, we focus on solving

these three test instances to develop intuition as to how switching can improve the

investment cost, and how the optimal investment cost varies with the choice of demand

uncertainty set.

For the Garver 6 bus test instance, we first explore how the use of transmission

switching as a recovery action changes the investment solution. Figure 4.3 represents

the optimal investment solution when transmission switching is not an allowable re-

covery action, and Figure 4.4 represents the optimal investment solution when trans-

mission switching is allowed. The dashed lines represent new transmission lines. In

Figure 4.4, the circuit breaker image on the transmission line between nodes 2 and 3

represents new switching equipment. The solutions illustrated in Figures 4.3 and 4.4

share many of the same investments. However, the optimal cost with switching is
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$184 compared to $200, when transmission switching is not allowed. This is due to

the fact that when transmission switching is allowed, 1 fewer transmission lines are

built, and transmission switching equipment is built on one line. The transmission

switching equipment is much cheaper than building a new transmission line.

Note that by switching line (2-3) out, the cycle between nodes 1, 2, 3 and 5 is

broken. Transmission switching is most likely to be useful in transmission networks

which contain cycles. In a network which more resembles a tree or a line, there is a

lot of flexibility to find phase angle values that would support whatever power flow

patterns are desired. However, in a dense network with cycles, the DCPF constraints

are likely to be limiting, as phase angle values are more constrained. Thus, these are

the systems where transmission switching is most likely to be useful.

Original Transmission Line 
New Transmission Line 

Figure 4.3: Optimal Investment Solution for Garver6 without Switching.

In an effort to explore how the conservatism of the defined demand uncertainty set

impacts the optimal cost, for the IEEE14 and IEEE24 bus test cases, we have fixed

the lower bound on the demand uncertainty set and scaled the upper bound. The

lower bound is set equal to 70% of the nominal demand. The upper bound is set equal

to the nominal demand times a scaling factor. High scaling levels for the demand
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Original Transmission Line 
New Transmission Line 
New Transmission Switching 
Equipment 

Figure 4.4: Optimal Investment Solution for Garver6 with Switching.

upper bound represent an increased level of conservatism in the defined uncertainty

set. Figure 4.5 represents the optimal investment cost for different scaling factors for

the demand upper bound for the IEEE24 test case. Similarly, Figure 4.5 represents

the same quantities for the IEEE14 test case.

We note that for both of these test cases, the cost of the optimal investment solu-

tion is lower when switching is allowed as a recovery action than when transmission

switching is not employed as a recovery action. Essentially, the flexibility introduced

by transmission switching allows the same level of reliability to be achieved by in-

stalling new switching equipment rather than new transmission lines, as the cost of

the switching equipment is small relative to the cost of new transmission lines. In

Figure 4.6, when the demand upper bound is fixed to 100%, the optimal cost with

transmission switching is shown, but without transmission switching, a feasible so-

lution is not possible. Thus, it some instances allowing transmission switching may

allow a level of reliability to be attained that would not be possible under any invest-

ment solution when transmission switching is not employed.

We note that another way to visualize optimal cost as a function of relative conges-
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Figure 4.5: Optimal Investment Cost for IEEE24 with Scaled Demand
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Figure 4.6: Optimal Investment Cost for IEEE14 with Scaled Demand
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tion is to vary the transmission line capacities. In the IEEE24 test case, the existing

transmission lines are divided among “low” and “high” capacity lines. We fixed the

capacity on the low capacity lines, and scaled the capacity on the high capacity lines

relative to their nominal capacity. The optimal cost as a function of the scaled line

capacity is shown in Figure 4.7.
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Figure 4.7: Optimal Investment Cost for IEEE24 with Scaled Line Capacities

It is interesting how similar the shape of the curves in the plot in Figure 4.7 are

to the curves in the plot in Figure 4.5. Essentially, scaling the upper bound on the

demand and scaling the transmission capacities are two different ways of controlling

the congestion level in the network. Similar levels of congestion require similar levels

of investment, regardless of the source of the congestion.

4.8 Conclusion

A robust model for the transmission expansion problem has been presented in

which there is uncertainty in both possible line failures and nodal demands, and

transmission switching is used as a recovery action. The box uncertainty set that

we have chosen to model demand uncertainty can represent uncertainty in loads and

uncertainty in renewable generation. This robust uncertainty model is appropriate
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in the transmission expansion setting, as probabilities about possible failures or de-

mand scenarios is typically not available, and avoiding blackout events is a critical

priority. Within this conservative planning framework, it is shrewd to consider recov-

ery actions such as transmission switching that would introduce flexibility, allowing

the operator to achieve maintain reliable operation for a lower investment cost. The

algorithm presented here could be used as a tool to evaluate the potential cost sav-

ings of allowing transmission switching as a recovery action for various ranges on the

demand/renewable generation.

We have presented an algorithm that is based on the Benders’ decomposition

framework, but utilizes a novel oracle for identifying unsurvivable contingency-demand

events. The development of the oracle allows enables the Benders’ routine to be used

when the number of all contingency-demand pairs is too large to practically use a

naive Benders’ decomposition.
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CHAPTER V

Conclusion

This dissertation considers three problems related to the design or operation of

the power grid under uncertainty. The unifying theme among these problems is that

the goal is to identify a minimum cost solution that ensures feasible operation over a

range of possible situations. We develop novel algorithms to solve each of the long or

short term planning problems. Computational results are presented to provide proof

of concept for each of the proposed solution approaches, and to provide insight into

the advantages and limitations of the algorithms in practice.

In Chapter II, a network capacity design problem is presented where there is un-

certainty in the nodal supplies and demands. This robust general network design

problem lays the foundation for the later chapters which are specifically applicable

to the power system domain. We first consider a minimum cost capacity assignment

problem where feasible network flows are required for all demand scenarios in the

given set. We review a constraint generation algorithm to solve this problem and

present implementation details that empirically improve run time. This general de-

composition methodology is also used in later chapters to deal with large uncertainty

sets. We next present a minimum cost capacity assignment problem where α% of

the demand scenarios in the given set are required to have feasible network flow solu-

tions. We develop a combinatorial solution approach to solve this chance-constrained
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problem in which the previously presented constraint generation algorithm is embed-

ded into a tree-based framework. Based on this optimal algorithm, we develop a

greedy algorithm and demonstrate that it identifies near-optimal heuristic solutions

for several test cases.

In Chapter III, a short-term operational problem is addressed in which a day-

ahead generator schedule is constructed. The traditional unit commitment problem

identifies a generator schedule that can meet forecasted demand in the event of any

single failure (i.e. N-1 security). We extend this traditional problem to additionally

consider (1) a more stringent security requirement where feasible operation is required

for any simultaneous failure of k generators and/or transmission lines (i.e. N-k secu-

rity), and (2) the addition of transmission switching as an action that operators can

use to recover from a contingency.

The N-k security standard significantly increases the difficulty of the problem

because there is a combinatorial explosion in the number of contingencies that must be

considered when k > 1. Furthermore, allowing switching as a recovery action greatly

increases complexity because traditional decomposition approaches are not applicable

when there are binary second stage switching variables. We present a novel algorithm

for solving the unit commitment problem that simultaneously addresses both the

challenges of the N-k security requirement and the use of transmission switching.

This algorithm utilizes a formulation of the problem in which switching decisions

are treated as first stage variables, which makes it possible to apply a Benders’-like

decomposition. Furthermore, the algorithm employs a Contingency Oracle that can

identify an unsurvivable contingency for a given unit commitment solution, and thus

eliminates the need to explicitly consider all contingencies of size k or smaller. As the

algorithm proceeds, constraints and switching variables are dynamically generated for

the master problem. We present computational results, and provide some analysis on

the tradeoff between cost and reliability in the N-k unit commitment problem.
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Chapter II is inspired by a transmission expansion problem where there is un-

certainty in the demand and renewable generation, and Chapter III considers a unit

commitment problem where there is uncertainty in component failures. Chapter IV

ties together these two projects and considers a transmission expansion problem where

there is uncertainty in demand, renewable generation and component failures. Fur-

thermore, as in Chapter III, transmission switching is allowed as a recovery action.

The algorithm proposed to solve this transmission expansion problem is similar in

structure to that proposed in Chapter III, but is significantly adapted to solve a long-

term planning problem and to address an additional dimension of uncertainty. In the

proposed constraint generation algorithm, an Oracle is utilized which can identify a

combination of a line failure and a realization of demand that would be unsurviv-

able for the current investment solution. Computational results are presented that

demonstrate that this algorithm can be used to solve for optimal robust transmis-

sion expansion solutions even when the set of all contingency-demand pairs in the

uncertainty set is very large.

Future efforts to extend the work in this thesis may focus on exploring differ-

ent types of uncertainty sets. The uncertainty sets for contingencies in Chapters III

and IV are defined by contingency cardinality, and a box uncertainty set is used for

demand in Chapter IV. The methods proposed here for solving the unit commitment

and transmission expansion problems can be easily extended for any uncertainty set

where the extreme points can be expressed in terms of binary variables. Other types

of uncertainty sets, such as polyhedral or budget uncertainty sets, may satisfy this

property and thus may be used within this algorithmic framework. Additionally, be-

yond component failures and demands, other uncertain parameters may be considered

including costs, capacities, etc.

Efforts to improve the run time or scalability of the proposed algorithms may

involve moving to a parallel implementation. Each of the decomposition procedures

107



presented in this thesis utilizes independent oracles and/or subproblems. Distributing

these oracles and/or subproblems across multiple processors could result a reduced

number of iterations necessary for convergence.

Additionally, more research is needed to fully understand how solutions obtained

using DCPF approximations apply to AC systems. Authors including Coffrin et al.

(2012) have explored ways of better approximating the ACOPF within a linear set

of constraints. Lipka et al. (2013) explore an alternative linearization of the ACOPF

constraints to identify optimal transmission switching decisions. Improved approx-

imations of the power flow equations may be used to extend the models proposed

here.

The power grid faces many challenges in the coming years. The congested grid

is already being operated close to its limits, and aging infrastructure, and increasing

demands for power and levels of renewable generation will necessitate that new invest-

ments be made and new operational regimes be explored. As power system operators

balance the demand for cheap power and the desire for a reliable system, they will

need tools to assist them in evaluating costs. The methods presented in this thesis

for solving transmission expansion and unit commitment problems are intended to

help operators decide how to plan and operate the grid under uncertainty.
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APPENDIX A

Explicit Formulation of N−k Unit Commitment

Model with Transmission Switching

The explicit formulation of the N-k secure unit commitment problem with trans-

mission switching (3.1) is as follows. The only difference is that in (3.1), feasibility is

strictly enforced with the constraints, and in this formulation, there exist slack vari-

ables, and feasibility is enforced by strongly penalizing slack variables in the objective

function. Both formulations are valid, but this formulation with the slack variables

was more convenient to implement.

A.1 Notation

Sets and indices

N set of buses, i.e. nodes in the network.

G set of all generating units. Each generator g ∈ G is located at exactly one

bus n ∈ N .

Gn set of generating units at bus n ∈ N .

110



E set of all transmission elements, i.e. arcs in the network. Power may flow in

either direction on an arc, but an arbitrary direction is chosen for each arc

for convenience of notation.

Eout
n set of transmission lines directed out of bus n ∈ N .

E in
n set of transmission lines directed into bus n ∈ N .

h(e) bus that transmission element e is directed into, i.e. the head of e.

t(e) bus that transmission element e is directed out of, i.e. the tail of e.

C set of all contingencies of size k or fewer, where a contingency is the simul-

taneous failure of generators and/or transmission lines. Each element c ∈ C

corresponds to a set of indicator parameters ce ∀e ∈ E and cg ∀g ∈ G which

equal 1 if the respective element e or g is in the contingency, or 0 if it is not.

Let i(c) be a function which maps contingency c to its index in the set C Let

c = 0 ∈ C indicate the no contingency state (i.e. no elements fail), and let

i(0) = 0.

Parameters

k contingency budget (i.e. at most k power system elements can fail).

T number of time periods in the planning horizon (e.g. 24 hrs). Time periods

t indexed from 1, . . . , T.

Be electrical susceptance on line e ∈ E.

Pmax
g upper bound on the power output at generator g ∈ G.

Pmin
g lower bound on the power output at generator g ∈ G when g is committed.

btn load (i.e. power demand) at bus i in time t. btn ≥ 0 ∀n ∈ N, t ∈ {1, . . . , T}.

εl maximum acceptable fraction of total demand in any time t that is unsat-

isfied in a contingency c ∈ (C\0) where the contingency is of size l. Note

that for the 0-contingency all load must be satisfied, i.e. ε0 = 0.
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θmax upper bound on phase angle values.

θmin lower bound on phase angle values.

CP
g marginal cost of producing power at generator g ∈ G.

CU
g fixed cost incurred whenever generator g ∈ G is started up, i.e. switched to

on from off.

CD
g fixed cost incurred whenever generator g ∈ G is shut down, i.e. switched to

off from on.

Fe power flow capacity of transmission line e ∈ E .

Ug minimum number of time periods for which the generator must remain on

when generator g ∈ G turned on from off. Ug ≥ 1 and T − Ug ≥ 1 ∀g ∈ G.

Dg minimum number of time periods for which generator must remain off when

generator g ∈ G turned off from on. Dg ≥ 1 and T −Dg ≥ 1 ∀g ∈ G

RU
g ramp-up limit: maximum amount that generator g can increase output

from time t to t+1, given that g ∈ G is committed in both time t and t+1.

RU
g ≤ Pmax

g .

RD
g ramp-down limit: maximum amount that generator g can decrease output

from time t to t+1, given that g ∈ G is committed in both time t and t+1.

RD
g ≤ Pmax

g .

SUg start-up limit: maximum amount that generator g can increase output from

time t to t+ 1, given that g ∈ G is not committed in t and is committed in

t+ 1. Pmin
g ≤ SUg < RU

g .

SDg shut-down limit: maximum amount that generator g can decrease output

from time t to t+1, given that g ∈ G is committed in t and is not committed

in t+ 1. Pmin
g ≤ SDg < RD

g .
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Variables

xtg binary commitment variable, equals 1 if generator g is committed at time

t.

yUtg binary variable, equals 1 if generator g is switched to on at time t from

being off at time (t− 1), and is 0 otherwise

yDtg binary variable, equals 1 if generator g is switched to off at time t from

being on at time (t− 1), and is 0 otherwise

p
t,i(c)
g power output at generator g in time t in contingency c.

f
t,i(c)
e power flow on transmission element e in time t in contingency c.

θ
t,i(c)
n phase angle of bus n in time t in contingency c.

w
t,i(c)
e binary switching variable, equals 1 if transmission line e is switched out of

service (i.e. if line e is effectively removed), in time t in the contingency

c ∈ C.

q
t,i(c)
n unsatisfied demand at bus n in time t in contingency c.

s
t,i(c)
n undelivered supply at bus n in time t in contingency c.

q̂t,i(c) amount by which the total unsatisfied demand exceeds the allowed amount

of unsatisfied demand in time period t in contingency c (i.e.
∑

i∈N q
t,i(c)
n −

εl
∑

n∈N b
t
n)

The vector xt in section 3.3 includes the variables xtg, y
Ut
g and yDtg for all g ∈ G.

Similarly, the vector f t,i(c) includes the variables f
t,i(c)
e for all e ∈ E , θ

t,i(c)
n , q

t,i(c)
n , s

t,i(c)
n

for all n ∈ N , and q̂t,i(c). The vector wt,i(c) includes w
t,i(c)
e for all e ∈ E , and the vector

pt,i(c) includes p
t,i(c)
g for all g ∈ G.

In the matrix notation formulation (3.1), the constraint block (3.1b) represents

constraints (A.2)-(A.11). Constraint block (3.1g) represents constraints (A.12)-(A.13).

The constraint blocks (3.1c) and (3.1d) represent constraints (A.14)-(A.23). Con-

straint block (3.1e) represents constraints (A.24). Constraint (3.1f) represents con-

straint (A.25).
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A.2 Explicit MIP Formulation

min
T∑
t=2

∑
g∈G

(
CU
g y

Ut
g + CD

g y
Dt
g

)
+

T∑
t=1

∑
g∈G

CP
g p

t,0
g +M

∑
c∈C

T∑
t=1

(
q̂t,i(c) +

∑
n∈N

st,i(c)n

)

(A.1)

yUtg ≥ xtg − xt−1
g ∀g ∈ G, t = 2, . . . , T (A.2)

yDtg ≥ xt−1
g − xtg ∀g ∈ G, t = 2, . . . , T (A.3)

t+Ug−1∑
t′=t

xt
′

g ≥ Ug(x
t
g − xt−1

g ) ∀g ∈ G, t = 2, . . . , (T − Ug + 1) (A.4)

t+Dg−1∑
t′=t

(1− xt′g ) ≥ Dg(x
t−1
g − xtg) ∀g ∈ G, t = 2, . . . , (T −Dg + 1) (A.5)

yUtg ≤ 1− xt−1
g ∀g ∈ G, t = 2, . . . , T (A.6)

yUtg ≤ xtg ∀g ∈ G, t = 2, . . . , T (A.7)

yDtg ≤ 1− xtg ∀g ∈ G, t = 2, . . . , T (A.8)

yDtg ≤ xt−1
g ∀g ∈ G, t = 2, . . . , T (A.9)

pt,0g − pt−1,0
g ≤ RU

g x
t−1
g + SUg (xtg − xt−1

g ) ∀g ∈ G, t = 2, . . . , T (A.10)

pt−1,0
g − pt,0g ≤ RD

g x
t
g + SDg (xt−1

g − xtg) ∀g ∈ G, t = 2, . . . , T (A.11)

pt,i(c)g − pt,0g ≤ RU
g ∀g ∈ G, t = 1, . . . , T, c ∈ C (A.12)

pt,0g − pt,i(c)g ≤ RD
g + Pmaxcg ∀g ∈ G, t = 1, . . . , T, c ∈ C (A.13)∑

g∈Gn

pt,i(c)g +
∑
e∈Ein

n

f t,i(c)e −
∑
e∈Eout

n

f t,i(c)e + qt,i(c)n − st,i(c)n = btn ∀n ∈ N, t = 1, . . . , T, c ∈ C

(A.14)

Be

(
θ
t,i(c)
t(e) − θ

t,i(c)
h(e)

)
− f t,i(c)e +M(1− ce)wt,i(c)e ≥ −Mce ∀e ∈ E, t = 1, . . . , T, c ∈ C

(A.15)

Be

(
θ
t,i(c)
t(e) − θ

t,i(c)
h(e)

)
− f t,i(c)e −M(1− ce)wt,i(c)e ≤Mce ∀e ∈ E, t = 1, . . . , T, c ∈ C

(A.16)
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f t,i(c)e − Fe(1− ce)wt,i(c)e ≥ −Fe(1− ce) ∀e ∈ E , t = 1, . . . , T, c ∈ C (A.17)

f t,i(c)e + Fe(1− ce)wt,i(c)e ≤ Fe(1− ce) ∀e ∈ E , t = 1, . . . , T, c ∈ C (A.18)

θmin ≤ θt,i(c)n ≤ θmax ∀n ∈ N, t = 1, . . . , T, c ∈ C (A.19)

0 ≤ qt,i(c)n ≤ bti ∀n ∈ N, t = 1, . . . , T, c ∈ C (A.20)

st,i(c)n −
∑
g∈Gn

pt,i(c)g ≤ 0 ∀n ∈ N, t = 1, . . . , T, c ∈ C (A.21)

q̂t,i(c) ≥ 0 ∀t = 1, . . . , T, c ∈ C (A.22)

st,i(c)n ≥ 0 ∀n ∈ N, t = 1, . . . , T, c ∈ C (A.23)

Pmin
g (1− cg)xtg ≤ pt,i(c)g ≤ Pmax

g (1− cg)xtg ∀g ∈ G, t = 1, . . . , T, c ∈ C (A.24)

−

(
q̂t,i(c) −

∑
n∈N

qt,i(c)n

)
≤ εl

∑
n∈N

btn ∀t = 1, . . . , T, c ∈ C (A.25)

xtg ∈ {0, 1} ∀g ∈ G, t = 1, . . . , T (A.26)

yUtg , y
Dt
g ∈ {0, 1} ∀g ∈ G, t = 2, . . . , T (A.27)

wt,i(c)e ∈ {0, 1} ∀e ∈ E, t = 1, . . . , T, c ∈ C (A.28)

Constraint set (A.2) forces the variable yUtg to take value 1 if the generator is

turned on at time t, which occurs when xtg = 1 and xt−1
g = 0. Otherwise, this con-

straint allows yUtg = 0. Constraint set (A.3) forces the variable yDtg to take value 1

if the generator is turned off at time t, which occurs when xtg = 0 and xt−1
g = 1.

Otherwise, this constraint allows yDtg = 0.

Constraint set (A.4) defines the minimum up time constraints: if the generator is

turned on at time t, i.e. if (xtg − xt−1
g ) = 1, then the generator must remain on for

Ug time periods, enforced by requiring that
∑t+Ug−1

t′=t xt
′
g ≥ Ug. For any other con-

figuration at time t, the constraint is not restrictive. Constraint set (A.5) defines
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the minimum down time constraints: if the generator is turned off at time t, i.e. if

(xt−1
g − xtg) = 1, then the generator must remain off for Dg time periods, enforced

by requiring that
∑t+Dg−1

t′=t (1− xt′g ) ≥ Dg. For any other configuration at time t, the

constraint is not restrictive.

Constraints (A.6)-(A.9) aim to improve the LP relaxation by restricting the instances

in which yU or yD may be nonzero.

Constraint set (A.10) defines the ramp-up and start-up limits in the no-contingency

state. If the generator g is turned on at time t, i.e. if xt−1
g = 0 and xtg = 1, then

the constraint becomes ptg − pt−1
g ≤ SUg , and because pt−1

g = 0, then this constraint

enforces that ptg ≤ SUg . If the generator is on in both times t−1 and t, i.e. if xt−1
g = 1

and xtg = 1, then the constraint becomes ptg−pt−1
g ≤ RU

g , indicating that the generator

output cannot increase by more RU
g . For any other situation, this constraint is not

restrictive. If xt−1
g = 0 and xtg = 0, the left hand side will be 0, and is bounded from

above by 0. If xt−1
g = 1 and xtg = 0, the generator output will decrease and the left

hand side ptg − pt−1
g < 0, and is bounded above by RU

g − SUg > 0.

Constraint set (A.11) defines the ramp-down and shut-down limits in the no-contingency

state. If the generator g is turned off at time t, i.e. if xt−1
g = 1 and xtg = 0, then

the constraint becomes pt−1
g − ptg ≤ SDg , and because ptg = 0, this constraint enforces

pt−1
g ≤ SDg . If the generator g is on at both times t − 1 and t, i.e. if xt−1

g = 1 and

xtg = 1, then the constraint becomes pt−1
g − ptg ≤ RD

g , indicating that the generator

output cannot decrease by more than RD
g . For any other situation, this constraint is

not restrictive. If xt−1
g = 0 and xtg = 0, the left hand side will be 0, and is bounded

from above by 0. If xt−1
g = 0 and xtg = 1, the generator output will increase and the

left hand side pt−1
g − ptg < 0, and is bounded above by RD

g − SDg > 0.
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Constraints (A.12) restricts the increase in power output at generator g in contin-

gency c in time t relative to output of the generator in the 0-contingency not to exceed

the ramp-up limit. Similarly, constraints (A.13) restricts the decrease in power out-

put at generator g in contingency c in time t relative to output of the generator

in the 0-contingency not to exceed the ramp-down limit. However, the contingency

ramp-down constraint has an additional term Pmaxcg which effectively removes the

constraint if generator g is contained in the contingency, wherein the generator output

will be 0, and is not bound by ramp-down limitations.

Constraints (A.14) are flow balance constraints. Constraints (A.15)-(A.16) enforce

that the DC power flow constraints are enforced only on available transmission lines,

which is any line e where both ce = 0 and w
t,i(c)
e = 0. If either ce = 1 or w

t,i(c)
e = 1,

then these constraints reduce to −M ≤ Be

(
θtt(e) − θth(e)

)
− f te ≤M , which when M is

sufficiently large, effectively means that these constraints impose no restriction.

Constraints (A.17)-(A.18) enforce the flow bounds. When line e is available, meaning

that both ce = 0 and w
t,i(c)
e = 0, then the flow is bounded by −Fe and Fe. When

line e is not available because either ce = 1 or w
t,i(c)
e = 1, then these constraints force

the flow on line e to be 0. Constraints (A.19) restrict the phase angles to be within

specified upper and lower bounds.

Constraint (A.20) enforces that the loss-of-load at a given node cannot exceed the

total load at that node, and constraint (A.21) enforces that the undelivered supply

at a given node cannot exceed the total power generated at that node.

Constraints (A.24) states that if generator g is committed in time t (xtg = 1), its
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power output is bounded from above by the upper operating limit Pmax
g and from

below by the lower operating limit Pmin
g , and otherwise (xtg = 0), the generator must

have an output of 0. Constraint (A.25) defines the variable q̂t,i(c) to be lower bounded

by the difference between the total loss-of-load in the current time period and the

allowable loss-of-load. Because q̂t,i(c) is being minimized in the objective function,

it will be forced to equal the difference, measuring the amount by which the total

loss-of-load exceeds the allowable loss-of-load.
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APPENDIX B

Explicit Formulation of Deterministic Transmission

Expansion Model with Transmission Switching

The explicit formulation of the deterministic transmission expansion problem with

transmission switching (4.1) is defined as follows. In this deterministic formulation,

the uncertain parameters for the contingency c̄ and the demand vector d̄ are assumed

to be known.

B.1 Notation

Sets and indices

N set of buses, i.e. nodes in the network.

G set of all generating units. Each generator g ∈ G is located at exactly one

bus i ∈ N .

Gi set of generating units at bus i ∈ N .

i(g) the bus i such that g ∈ Gi.

Ecand set of all candidate transmission elements
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E set of all existing and candidate transmission elements. Power may flow in

either direction on an arc, but an arbitrary direction is chosen for each arc

for convenience of notation.

Eout
i set of existing and candidate transmission lines directed out of bus i ∈ N .

E in
i set of existing and candidate transmission lines directed into bus i ∈ N .

h(e) bus that transmission element e is directed into, i.e. the head of e.

t(e) bus that transmission element e is directed out of, i.e. the tail of e.

Parameters

Be electrical susceptance on line e ∈ E .

c̄e binary parameter indicating the availability of transmission line e in the

given contingency. c̄e = 1 indicates that the transmission line e is contained

in the contingency and is not available.

Pmax
g upper bound on the power output at generator g ∈ G.

d̄i load or renewable generation at bus i. d̄i > 0 represents true demand, and

d̄i < 0 represents renewable generation.

θmin, θmax lower and upper bounds, respectively, on phase angle values.

bline
e investment cost of building transmission line e ∈ Ecand.

bswitch
e investment cost of building transmission switching equipment on line e ∈ E .

Fe capacity on power flow on transmission line e ∈ E .
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Variables

xline
e binary transmission expansion variable, equals 1 if transmission line e is

built, for all e ∈ Ecand.

xswitch
e binary switching equipment investment variable, equals 1 if transmission

switching equipment is built on line e, for all e ∈ E

pg power output at generator g, for all g ∈ G.

fe power flow on transmission element e, for all e ∈ E .

θi phase angle of bus i, for all i ∈ N .

ri net power injection at node i, for all i ∈ N .

we binary transmission switching variable, equals 1 if transmission line is

switched out (i.e. effectively removed), for all e ∈ E .
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B.2 Explicit MIP Formulation

The explicit deterministic transmission expansion problem is as follows:

min
∑

e∈Ecand
bline
e xline

e +
∑
e∈E

bswitch
e xswitch

e (B.1)

∑
g∈Gi

pg +
∑
e∈E ini

fe −
∑
e∈Eouti

fe − ri = 0 ∀i ∈ N (B.2)

θmin ≤ θi ≤ θmax ∀i ∈ N (B.3)

− Fe(1− c̄e − we) ≤ fe ≤ Fe(1− c̄e − we) ∀e ∈ E (B.4)

we ≤ 1− c̄e ∀e ∈ E (B.5)

we ≤ xswitch
e ∀e ∈ E (B.6)

0 ≤ pg ≤ Pmax
g ∀g ∈ G (B.7)

Be

(
θt(e) − θh(e)

)
− fe ≤M(c̄e + we) ∀e ∈ E\Ecand (B.8)

Be

(
θt(e) − θh(e)

)
− fe ≥ −M(c̄e + we) ∀e ∈ E\Ecand (B.9)

Be

(
θt(e) − θh(e)

)
− fe −M(1− xline

e + c̄e + we) ≤ 0 ∀e ∈ Ecand (B.10)

Be

(
θt(e) − θh(e)

)
− fe +M(1− xline

e + c̄e + we) ≥ 0 ∀e ∈ Ecand (B.11)

− Fexline
e ≤ fe ≤ Fex

line
e ∀e ∈ Ecand (B.12)

ri = d̄i ∀i ∈ N (B.13)

xline
e ∈ {0, 1} ∀e ∈ Ecand (B.14)

xswitch
e ∈ {0, 1} ∀e ∈ E (B.15)

we ∈ {0, 1} ∀e ∈ E (B.16)

The objective (B.1) minimizes the total investment cost of building new transmission

lines and transmission switching equipment.

Constraint (B.2) requires that power flow balance must be met at each node. Con-
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straint (B.3) requires that the node phase angles are within the upper and lower

bounds. Constraint (B.4) requires that the line flows be within upper and lower

bounds if the line is available. The power flow is forced to 0 if the power line is

disrupted in the contingency, or if the transmission line is switched out. Constraint

(B.5) requires that a line can only be switched out if that line is not disrupted in the

contingency. Constraint set (B.6) requires that a line cannot be switched out unless

transmission switching equipment has been installed on that line. Constraint (B.7)

specifies that the power output at a generator must be less than its upper bound. The

lower bound on the generator dispatch is set equal to 0 because it is assumed that

the generator is allowed to be operated in regimes that are inefficient but allowable

for short periods when the system is stressed. Constraints (B.8)-(B.9) specify that,

for all existing transmission lines, the DC power flow constraints must be enforced if

the transmission line is not contained in the contingency and is not switched out.

Constraints (B.10)-(B.11) specify that, for all candidate transmission lines, if the

line is built, the DC power flow constraints must be enforced if the transmission

line is not contained in the contingency and is not switched out. Constraint (B.12)

specifies that, for all candidate transmission lines, the power flow must be 0 for all

transmission lines that are not built. Constraint (B.13) specifies that net power flow

injection at each node must be equal to the power demand or renewable generation

at that node.

B.3 Allowing Curtailment

In the model (B.1)-(B.16), it is assumed that all renewable generation must be

used, i.e., curtailment is not allowed. To extend this model to allow curtailment, the

following changes should be made.

A curtailment variable is defined: let si be the amount of renewable power that

is curtailed at node i, defined for all i ∈ N . This variable is defined to be non-
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negative. It must be equal to 0 if there is no renewable generation at node i. If there

is renewable generation at node i, si can be at most equal to |d̄i|.

Additionally, let the binary indicator parameter ūi be defined, which indicates

whether there is renewable generation at node i (i.e., d̄i < 0). ūi is explicitly deter-

mined by the demand d̄i.

The only constraint in the original model which is modified is constraint (B.13),

which is changed to the following:

ri − si = d̄i ∀i ∈ N (B.17)

Previously, this constraint said that the net injection of power into node i must

exactly equal the demand or renewable generation at node i. Constraint (B.17) now

says that net injection into node i must equal the demand or renewable generation

plus the curtailment. We will force si to be 0 if there is no renewable generation

at node i, in which case this constraint will be the same as the original. If there is

renewable generation at node i, this constraint says that si units of the renewable

generation will not leave node i. For example, suppose d̄i = −10, and 2 units of that

renewable generation will be curtailed, si = 2. Then ri = −10 + 2 = −8, meaning

that 8 units of renewable generation originate at node i.

To enforce the requirement that si = 0 if there is no renewable generation at node

i, the following constraint is added:

0 ≤ si ≤Mūi ∀i ∈ N (B.18)

If ūi = 1, this constraint non-restrictive. Otherwise if ūi = 0, meaning that there is

no renewable generation, then this constraint requires that si = 0.

To enforce the requirement that, when there is renewable generation at node i, si
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cannot exceed |d̄i|, the following constraint is added:

si ≤ −d̄i +M(1− ūi) ∀i ∈ N (B.19)

If ūi = 0, this constraint is non-restrictive. Otherwise if ūi = 1, this constraint

requires that si ≤ −d̄i = |d̄i|, because if ūi = 1 then d̄i < 0.

With these described changes, the nominal model (B.1)-(B.16) can be extended to

allow the decision to curtail renewable generation. In the compact matrix formulation

of the deterministic model (4.1), si decisions are included in the vector y, and the ūi

parameters are included in the vector d̄. The constraint (4.1d) would be updated to

include a constant vector on the right hand side in order to include constraint (B.19).

With these changes, the formulation of the robust counterpart and decomposition can

proceed in the same way.
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Prékopa, A. (1990), Dual method for the solution of a one-stage stochastic pro-
gramming problem with random RHS obeying a discrete probability distribution,
Zeitschrift für Operations Research, 34 (6), 441–461.

Read, E. G. (2010), Co-optimization of energy and ancillary service markets, in Hand-
book of Power Systems I, pp. 307–327, Springer.

Romero, N., N. Xu, L. K. Nozick, I. Dobson, and D. Jones (2012), Investment planning
for electric power systems under terrorist threat, IEEE Transactions on Power
Systems, 27 (1), 108–116.

Romero, R., R. Gallego, and A. Monticelli (1996), Transmission system expansion
planning by simulated annealing, IEEE Transactions on Power Systems, 11 (1),
364–369.

Romero, R., A. Monticelli, A. Garcia, and S. Haffner (2002), Test systems and math-
ematical models for transmission network expansion planning, IEE Proceedings-
Generation, Transmission and Distribution, 149 (1), 27–36.

131
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