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ABSTRACT 

 
The spectrum of congenital eye malformations including microphthalmia (small 

eyes), anophthalmia (absent eyes) and coloboma (ventral eye defects), or MAC, 

causes blindness in approximately 1 in 10,000 children. We have discovered 

novel RBP4 coding and SOX3 regulatory mutations in patients with MAC 

disease. RBP4 encodes plasma retinol binding protein, a lipocalin that transports 

vitamin A, an essential nutrient for eye development, in the bloodstream. We 

show RBP4 missense mutations p.A73T and p.A75T alter the ligand-binding 

pocket, causing autosomal dominant MAC with reduced penetrance and a 

maternal parent-of-origin effect. Both mutant alleles encode dominant-negative 

RBPs that bind poorly to vitamin A but strongly to the STRA6 receptor on 

recipient cell membranes. Consequently, a vitamin A “bottleneck” is created at 

the maternal-fetal interface, which is likely to reduce vitamin A delivery to the 

fetus, particularly when the mutation is inherited from the mother. This is the first 

report of such a defective interfering allele for a blood cargo protein in human 

disease. In a separate case, we describe a novel SOX3 regulatory mutation in a 

46,XX child with bilateral anophthalmia and SRY-negative female-to-male sex 

reversal. In this patient, a paternal de novo 9q21� Xq27 insertional translocation 



xviii 

 

has juxtaposed TRPM3 exons 1 and 2 downstream from SOX3, at the midpoint 

of a 180-bp pallindrome. This implicates a dominant, gain-of-function mechanism 

whereby ectopic SOX3 transcription disrupts early eye and gonadal 

development. Transgenic mouse models test this hypothesis and reveal 

sensitivity of the developing eye to alterations in SoxB1 (Sox2) spatiotemporal 

activity. This thesis highlights genetic and environmental factors that influence 

eye development, and it has broad implications for other congenital disorders. 
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CHAPTER I 

INTRODUCTION 

 

Early patterning of the vertebrate eye 

The eye is an exquisitely complex tissue that allows an organism to perceive its 

environment through vision. Vision, or light perception, requires the coordinated activity 

of multiple structures such as the cornea, lens and retina to convert light into an 

electrical stimulus that is interpretable by the central nervous system (CNS). Formation 

of these mature sub-specialized tissues depends on a highly organized process 

involving cells derived from three major sources: surface ectoderm, neuroepithelium 

and periocular mesenchyme (POM). These tissue interactions set the foundation for 

proper growth and maturation of tissues during later stages of eye development. 

 The vertebrate eye begins as part of a single eye field in the anterior neural plate 

comprised of multipotent retinal precursors during late gastrulation (Figure 1.1A) (Graw, 

2003; Inoue et al., 2000). At approximately the third week of pregnancy in humans 

(embryonic day E8.5 in mice), the eye field splits into two halves giving rise to bilateral 

optic pits. Originally described by Spemann (Spemann, 1924), this structure represents 

the first morphologic event in eye development. Shortly thereafter in the placode stage, 

they enlarge to form optic vesicles that originate from ventral forebrain neuroepithelium 

(prosencephalon) and expand laterally through mesenchyme until the dorsal portion 

makes contact with the overlying surface pre-placodal ectoderm. This contact induces 

the lens placode which appears as a thickening at the point of contact with the optic 

vesicle. At E10, through vital tissue-tissue interactions with ectoderm (Hyer et al., 2003), 
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both the the optic vesicle and lens placode invaginate, forming a bilayered optic cup and 

lens vesicle, respectively. The optic cup inner layer develops into the presumptive 

neuroretina (NR) that produces cells for light sensation and innervation of the CNS. The 

outer layer becomes the future retinal pigment epithelium (RPE) that nourishes the 

retina and supports light-sensing photoreceptor cell development (Strauss, 2005). The 

margin between the two layers develops into the iris and ciliary bodies. The mature iris 

modulates retinal illumination through its control over the pupil and the ciliary body 

secretes aqueous humor and controls lens accommodation. Narrowing at the proximal 

end of the optic cup forms the optic stalk, which will later contribute to the optic nerve. 

Meanwhile, the lens vesicle separates and detaches completely from the ectoderm and 

positions itself within the optic cup to form the future lens. Along its entire inferior 

aspect, the optic cup is incomplete at the so-called choroid (optic) fissure. This open 

cleft contains the hyaloid artery and vein, which forms the hyaloid vasculature and 

supplies the embryonic eye with blood. As development proceeds, the patent choroid 

fissure fuses beginning at its base at the forebrain wall and concluding at the ventral 

aspect of the pupil. Eventually the fetal eye vasculature regresses, giving way to the 

ophthalmic artery and vein that serve as the primary blood source through the choroid 

vasculature. Once each major compartment is established, the histogenic phase begins 

where cells undergo the process of terminal differentiation until the mature eye is 

formed (Figure 1.1B). 

The periocular mesenchyme (POM) is a loose collection of cells that contribute 

greatly to early eye morphogenesis through signaling pathways targeted to the optic cup 

and the anterior and auxiliary eye structures. Historically, the POM was thought to 
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derive strictly from paraxial head mesoderm, however fate mapping studies in birds 

using chick-quail chimeras, vital dye labeling and neural crest-specific antibodies, 

showed contributions from both neural crest and mesoderm (Johnston et al., 1979; Le 

Lievre and Le Douarin, 1975). This property extends to mammalian eye development as 

seen with both neural-crest specific (Wnt1-Cre) or mesoderm-specific (αGSU-Cre) 

lineage trace systems that show the presence of both cell types within the anterior 

structures of the eye (Gage et al., 2005). Classic tissue explant experiments 

demonstrate the POM is necessary for growth of the eye beyond the optic vesicle stage 

(Holtfreter, 1939). During the optic cup stage, POM plays an essential role in RPE fate 

specification (Fuhrmann et al., 2000) and downstream maintenance (Evans and Gage, 

2005). Elsewhere, when the lens vesicle separates from the surface ectoderm, 

surrounding mesenchymal cells migrate into the space between the detached 

structures. There they form distinct layers and with additional mesenchymal infiltration 

eventually condense into the corneal endothelium (Haustein, 1983). The anterior 

surface ectoderm becomes the corneal epithelium. Corneal endothelium differentiation 

allows for separation of the cornea and lens (Kidson et al., 1999; Reneker et al., 2000) 

permitting the optic cup margins to elongate between the 15th and 20th week of 

gestation (E17 – E19 in mice). Additional mesenchymal cells migrate in and establish 

the iris and ciliary body stroma. Within the iridocorneal angle formed between the iris 

and cornea, an accumulation of mesenchymal cells condense and flatten to form the 

trabecular meshwork surrounding the future Canal of Schlemm, the aqueous humor 

outlet tract. Auxiliary structures such as extraocular muscles arise from mesenchymal 

condensations. They represent a mix of mesoderm-derived myofibers and neural-crest 
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derived connective tissue and fascia. Additionally, the fetal hyaloid vasculature consists 

of mesodermal endothelial cells and neural crest smooth muscle cells (Gage et al., 

2005). 

 

Molecular pathways governing early eye development 

 In the vertebrate anterior neural plate eye-field, a host of transcription factors 

(EFTFs) including Lhx2, Rx, Pax6, Six3 and Six6 prime the initiation of eye 

development (Zuber et al 2003). Many share common ancestry to orthologous genes in 

Drosophila melanogaster where they also function in oculogenesis. Pax6 is the homolog 

of Drosophila eyeless and twin of eyeless (Quiring et al 1994) and Six3 and Six6 are 

homologs of Drosophila sine oculis (Oliver et al 1995). Loss of EFTFs, through targeted 

or spontaneous mutations in mice, leads to abnormal or no eyes (Hill et al., 1991; 

Lagutin et al., 2003; Li et al., 2002; Mathers et al., 1997; Porter et al., 1997). 

Conversely, mis-expression of Rx, Pax6, Six3 or Six6 can induce ectopic eye tissues 

(Andreazzoli et al., 1999; Bernier et al., 2000; Chow et al., 1999; Chuang and Raymond, 

2001; Halder et al., 1995; Loosli et al., 1999; Oliver et al., 1996). The potent actions of 

EFTFs, combined with their loss-of-function eye phenotypes, unequivocally show eye 

development is highly conserved at the molecular level.  

Formation and expansion of the optic vesicle from the forebrain requires dramatic 

shifts in cellular morphology and movement (Svoboda et al 1987). During neurulation, 

pre-specified retinal progenitor cells (RPC) within the eye field move toward the dorsal 

midline as the neural tube closes before turning around into the evaginating optic 

vesicle (Martinez-Morales et al., 2004). The retinal homeodomain transcription factor 
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Rx/RAX is a major gene involved in this process. First expressed prior to optic vesicle 

formation (Furukawa et al., 1997), null or hypomorphic alleles are associated with 

anophthalmia in multiple vertebrate species including mouse (Rx), frog (Rx1), zebrafish 

(Rx3/chokh) and medaka (eyeless) (Andreazzoli et al., 1999; Furukawa et al., 1997; 

Kennedy et al., 2004; Loosli et al., 2003; Mathers et al., 1997; Tucker et al., 2001; 

Winkler et al., 2000). In the absence of Rx, optic vesicle evagination completely fails. 

Mouse chimera experiments involving wild-type and mutant Rx cells show mutant cells 

are excluded from the evaginating optic vesicle (Medina-Martinez et al., 2009). Thus, 

Rx/RAX acts in a cell autonomous manner to specify retinal progenitor cells that will 

participate in the lateral expansion phase. Rx3, the medaka RAX homolog, also 

segregates bipotential precursors of the anterior forebrain and promotes a retinal 

progenitor fate over a posterior telencephalic fate (Stigloher et al., 2006). Furthermore, 

Rx down-regulates genes that promote midline convergence such as Nlcam (Brown et 

al., 2010), an adhesion molecule that governs cell migratory properties. While the role of 

Rx/RAX in retinal precursor specification and migration is well-established, many 

questions remain about its exact molecular function in relation to other EFTFs. 

 The presumptive NR and RPE are specified in the optic vesicle stage well before 

they become morphologically distinct. The dorsal region is fated to become the RPE 

and the distal/ventral portion the NR. Initial studies showed each layer has competency 

to differentiate into either NR or RPE (Araki and Okada, 1977; Coulombre and 

Coulombre, 1965; Opas et al., 2001; Reh and Pittack, 1995), but only recently have the 

molecular mechanisms begun to surface. Initial specification of NR is largely mediated 

by fibroblast growth factor (FGF) signaling from the surface ectoderm (Guillemot and 
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Cepko, 1992; Horsford et al., 2005; Hyer et al., 1998; Nguyen and Arnheiter, 2000). 

Establishment of the unique identity of both NR and RPE arises in large part from two 

transcription factors, Chx10 (Vsx2) and Mitf (Horsford et al., 2005), respectively. Each 

possesses antagonistic effects upon the other. Within the E10 optic cup, the developing 

NR must generate millions of cells in preparation for the histogenic phase. Proliferation 

in the retina is governed by a series of extrinsic and intrinsic factors. Chief among the 

latter is Chx10, a homeobox transcription factor that is the first known NR-specific 

expressed gene (Liu et al., 1994). Chx10 acts primarily as a transcriptional repressor 

(Clark et al., 2008; Dorval et al., 2005) and controls RPC proliferation by preventing 

accumulation of p27Kip1, a cyclin-dependent kinase inhibitor that promotes cell cycle exit 

(Green et al., 2003). Homozygous Chx10-/- null mice (ocular retardation, orJ/orJ) develop 

microphthalmia with thin retinas and no optic nerves due to insufficient RPC proliferation 

(Burmeister et al., 1996). Knockdown of chx10 in zebrafish yields a similar phenotype 

(Barabino et al., 1997). Consequently, a diminished RPC pool weakens positive 

feedback loops that help to maintain its proliferative capacity. For example, absence of 

the first-born cells that form the optic nerve (i.e. retinal ganglion cells) leads to a drastic 

reduction in Sonic hedgehog (Shh) signaling and RPC proliferation (Sigulinsky et al., 

2008). In parallel to RPC and NR identity maintenance, Chx10 acts as a regional 

repressor of the RPE specification factor Mitf (Horsford et al., 2005). 

The Mitf gene encodes a basic helix-loop-helix transcription factor necessary for 

establishing RPE cell identity and is expressed throughout the neuroectoderm of the 

mouse optic vesicle beginning at E9.0, but is specifically downregulated in the NR by 

Chx10 (Hughes et al., 1993; Nguyen and Arnheiter, 2000). Mitf -/- mutant mice (mi/mi) 
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show failure of RPE differentiation and microphthalmia with an RPE-to-NR fate switch in 

the dorsal region of the eye (Bumsted and Barnstable, 2000; Hodgkinson et al., 1993). 

The position of Mitf at the top of the RPE genetic hierarchy has generated interest in its 

upstream and downstream regulatory determinants. Pax2 and Pax6 are already present 

in the presumptive mouse RPE and directly activate Mitf expression with overlapping 

functionality (Baumer et al., 2003). Dorsal periocular mesenchyme signaling is also 

critical for Mitf activation possibly through a TGFβ-mediated pathway, but the exact 

nature of the molecular signal remains unclear (Fuhrmann et al., 2000; Kagiyama et al., 

2005). Furthermore, species-differences in mouse versus chick Mitf expression relative 

to the amount of contacting RPE-POM surface area further obscures the inductive 

relationship between RPE and POM (Mochii et al., 1998; Muller et al., 2007; Nguyen 

and Arnheiter, 2000). Other studies have implicated bone morphogenetic protein (BMP), 

a TGFβ superfamily member, as a potent inducer of Mitf in chick; however, this does not 

extend to mammals (Hyer et al., 2003; Muller et al., 2007). Once expressed, Mitf 

regulates key downstream genes involved in terminal pigment differentiation (e.g. Dct, 

Tyrp1 and tyrosinase) (Bentley et al., 1994; Jiao et al., 2004; Yasumoto et al., 1994; 

Yavuzer et al., 1995). Over 40 Mitf target genes have been discovered to-date (Cheli et 

al., 2010); however, the function of each target within the greater RPE transcriptional 

hierarchy remains largely unknown. 

Extrinsic pathways also play a vital role in normal eye development and 

disruptions in these pathways can result in blindness. Wnt signaling is a type of 

signaling pathway and exists in two major forms, canonical versus non-canonical 

pathways that differ in specific activators. Wnt proteins act at multiple levels in non-
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mammalian eye development and exhibits significant interspecies differences 

(Fuhrmann, 2008). All vertebrates suppress canonical Wnt signaling in the rostral CNS 

early in eye development to promote anterior neural ectoderm specification (Nordstrom 

et al., 2002; Satoh et al., 2004), mediated in part by Six3 (Lagutin et al., 2003; Liu et al., 

2010). Subsequently in non-mammalian species, non-canonical Wnt signaling is 

activated for retinal progenitor activation of Rx and Pax6 (Maurus et al., 2005), cell 

migration during optic vesicle evagination (Cavodeassi et al., 2005; Lee et al., 2006), 

and suppression of canonical Wnt mechanisms (Westfall et al., 2003). However, the 

opposite is true in mouse, given the loss of analogous non-canonical Wnt ligands, Wnt4 

or Wnt11, and transmembrane receptor Fzd3 mutants have no reported eye defects 

(Majumdar et al., 2003; Stark et al., 1994; Wang et al., 2002). In contrast, forced Wnt 

expression in chick retina is sufficient to promote iris and ciliary body formation, and 

Wnt signaling inhibition using a dominant-negative Lef-1 (a Wnt effector protein) results 

in iris hypoplasia (Cho and Cepko, 2006). Activation of Wnt signaling in mouse retinal 

explants as well as Cre-mediated in vivo stabilization of β-catenin in mouse retina leads 

to upregulation of ciliary margin markers at the expense of neuroretinal ones (Liu et al., 

2007). Consistent with the previously mentioned studies, endogenous Wnt activity is 

detected in the optic cup ciliary margin across multiple vertebrates (Liu et al., 2003; Liu 

et al., 2006; Van Raay et al., 2005). In summary, Wnt signaling is important for 

vertebrate eye development but is used differently amongst various species. In 

particular mammals largely repress Wnt signaling during early eye patterning only to 

activate it during later stages of terminal cell differentiation. 
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FGF signaling emanates from the lens placode to help specify the neuroretina 

and initiate optic cup morphogenesis, but also functions in lens development. All four 

FGF receptor genes (Fgfr1-4) are activated in the mid-to-late embryonic lens (de Iongh 

et al., 1997; de Iongh et al., 1996; Kurose et al., 2005). Subsequent knock-out studies 

show FGF signaling is indispensable for proper lens development and fiber cell 

differentiation (Zhao et al., 2008). However, due to the heterogeneous expression of 

FGF proteins secreted in the surface ectoderm, no single essential ligand has been 

identified (Smith et al., 2010).  

 

Retinoids in early eye development 

 Vitamin A is an essential nutrient that must be ingested through diet mainly as 

α/β-carotenoids or retinyl esters (e.g. retinyl palmitate). Though its existence was 

implied in ancient Egyptian scrolls dating back 3,500 years (Wolf, 1996), only in the 

early 20th century did pioneering nutritional studies by Elmer McCollum, Frederick 

Hopkins, and Lafayette Mendel finally lead to the discovery of “fat-soluble factor A” 

(Hopkins, 1912; McCollum, 1913, 1915; Osborne, 1914a, b). Vitamin A, as it was later 

termed, has a characteristic β-ionone ring and isoprene tail chemical structure that 

serves as the base form for a class of molecules known as retinoids. Collectively, 

retinoids have been linked to major human diseases such as cancer, type 2 diabetes 

and third-world childhood blindness (Mamede et al., 2011; Sommer, 2008; Yang et al., 

2005). Retinoids are also indispensible for normal vision, epithelial, immune and 

reproductive health as well as embryonic development (Theodosiou et al., 2010). Early 

nutritional studies in pigs and rats showed that depriving pregnant mothers of vitamin A 
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consistently produced offspring with microphthalmia or anophthalmia (Hale, 1932; 

Warkany and Schraffenberger, 1946). Soon thereafter, Vitamin A deficiency (VAD) 

syndrome was defined in rats most frequently by eye defects followed by urogenital, 

diaphragmatic and cardiovascular malformations (Wilson et al., 1953). These studies 

illustrate the sensitivity of the developing eye to gestational VAD, thus establishing its 

imperative role in oculogenesis. 

 Retinoic acid (RA) signaling is a major pathway utilized throughout 

embryogenesis (Figure 1.2). Synthesis of RA requires vitamin A (retinol) from the diet 

that is solubilized and transported through the blood by retinol binding protein (RBP) 

(Kanai et al., 1968). At the target cell, retinol-bound RBP (RBP-ROH) interacts with the 

cell surface receptor STRA6 to deliver vitamin A into the cell (Kawaguchi et al., 2007). 

Once inside, retinol undergoes a series of oxidation reactions to form retinaldehyde and 

retinoic acid. To regulate local RA levels, a series of cytochrome P450 enzymes 

metabolize RA into water-soluble oxidized derivatives that are freely eliminated. Once 

generated, RA acts in a paracrine fashion, freely diffusing across cell membranes either 

for signaling or degradation.  In the body, all-trans-RA (atRA) is the most abundant 

form; however, pharmacological induction of the 9-cis-RA isomer has been observed. 

Both RA isomers serve as ligands for a series of nuclear receptors that regulate gene 

transcription (Duester, 2000). Upon binding atRA, the retinoic acid receptors (RARα, β 

and γ) and retinoid X receptors (RXRα, β and γ) form RAR/RXR heterodimers and 

activate target gene expression through DNA retinoic acid response elements, or 

RAREs (Duester, 2009). In turn, RAR/RXR dimers can interact with a number of 

transcriptional co-repressor or co-activator complexes to further regulate gene 
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expression levels (Niederreither and Dolle, 2008). RA signaling is thought to act 

predominantly through the RAR moiety since RXRs can only bind 9-cis-RA (Allenby et 

al., 1993; Heyman et al., 1992; Levin et al., 1992). The latter form is undetectable under 

normal physiologic conditions, and is unable to rescue RA deficiency phenotypes when 

administered exogenously (Mic et al., 2003). 

Mammals are equipped with three RAR receptors (α, β and γ) and three RXR 

receptors (α, β and γ). Each of the six subtypes is expressed as two N-terminal isoform 

variants (Mollard et al., 2000) that are expressed in highly overlapping tissue patterns. 

In the early optic cup stage (E10.5), Rarα, Rarβ and Rarγ are all expressed in periocular 

mesenchyme. Rarα and Rxrα are uniformly distributed in the embryonic retina and Rxrγ 

is exclusive to the RPE (Mori et al., 2001). RAR and RXR receptors show significant 

functional overlap as evidenced by relatively mild ocular phenotypes seen in a subset of 

single retinoid receptor mutants: persistent retrolenticular membrane (Rarb, Rxra), 

absent Harderian glands (Rarg), and truncated ventral retina with a thickened cornea 

(Rxra) (Ghyselinck et al., 1997; Kastner et al., 1994; Lohnes et al., 1993; Lufkin et al., 

1993; Sucov et al., 1994). However, ocular and extraocular phenotypes are dramatically 

increased in compound null mutants of two receptors. For example, E18.5 Rara;Rarg 

double mutants display microphthalmia and coloboma with truncation of the ventral 

retina, fusion of the cornea and iris, and conjunctival defects (Lohnes et al., 1994). 

Anterior segment defects are also observed in Rxra;Rarb compound mutants, 

suggesting a cooperative effect between Rxrα and Rarβ/γ receptors in this region of the 

eye (Kastner et al., 1997). Rarb;Rarg neonates show a malformed ventral retina due to 

coloboma, mesenchymal infiltrates in the optic nerve, and persistent retrolentricular 
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membrane (Lohnes et al., 1994). It is worth noting that many extraocular phenotypes 

such as congenital heart and brain malformations, axial skeletal defects, and testicular 

abnormalities are also observed in both single and double RAR receptor mutants 

(Niederreither and Dolle, 2008). Thus, studies from mutant retinoid receptor models 

confirm many phenotypes seen in VAD syndrome; however, their overlapping domains 

and functions have made it difficult to pinpoint individual receptor contributions. 

 Cytosolic alcohol dehydrogenases (ADHs) and microsomal retinol 

dehydrogenases (RDHs) catalyze a reversible first step in RA synthesis, namely, retinol 

conversion to retinaldehyde (Figure 1.2). ADHs include Adh1, Adh7 (formerly Adh3), 

Adh4 and RDHs include Rdh1 and Rdh10. There is minimal tissue restriction of 

ADH/RDH activity since Adh3 and Rdh1 are ubiquitously expressed (Molotkov et al., 

2002; Zhang et al., 2007). The ubiquitous expression of Adh3 and Rdh1 protects 

against loss of any single alcohol dehydrogenase gene. For example, loss of Rdh1 has 

no impact on embryonic development (Zhang et al., 2007), strongly supporting 

enzymatic compensation by other ADH or RDH members. In contrast, Rdh10 is 

expressed in the presumptive RPE of the E10.5 optic cup and is the first of any ADH or 

RDH discovered to show an embryonic eye phenotype, albeit mild, consisting of cornea 

and ventral retina agenesis and a hypoplastic lens (Sandell et al., 2007). It has since 

been demonstrated that Rdh10 is the primary enzyme for embryonic RA synthesis in 

vivo (Farjo et al., 2011). 

 Retinaldehyde dehydrogenases Raldh1, Raldh2 and Raldh3 (Aldh1a1-3) 

catalyze the oxidation of retinaldehyde to retinoic acid, the second irreversible step in 

RA synthesis (Figure 1.2). The Aldh1a gene subfamily exhibits highly dynamic and 
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compartmentalized expression patterns. Much of our knowledge of RA signaling derives 

from comparisons of Raldh expression (where RA is synthesized) in conjunction with 

RARE-LacZ reporter transgenes on knockout backgrounds (where RA signaling occurs) 

(Mendelsohn et al., 1991; Rossant et al., 1991). Of the three Raldh genes, Raldh2 is the 

primary eye field initiator and is later found in the surface ectoderm, optic vesicles, and 

transiently in the POM from E8.0 – E10.0 (Mic et al., 2002; Niederreither et al., 1999). 

Raldh3 is first detected in surface ectoderm shortly after and independently of Raldh2, 

and by E9 expands significantly throughout the surface ectoderm to cover eye regions 

bilaterally (Li et al., 2000). Later in development at E11, Raldh3 is detected throughout 

the dorsal RPE and expanding ventral retina. At E11, Raldh1 is also activated in the 

dorsal retina. The same Raldh1 and Raldh3 pattern is found in chick (Grun et al., 2000).  

As with RAR/RXR knockout studies, functional compensation leads to relatively 

mild ocular phenotypes for Raldh2-/- and Raldh3-/- single knockout mice, but no 

phenotype for Raldh1-/- mice (Dupe et al., 2003; Fan et al., 2003; Mic et al., 2002; 

Niederreither et al., 1999). The eye phenotype of Raldh2-/- containing a RARE-LacZ 

reporter transgene shows absent RA synthesis in the E8 optic vesicle where in wild-type 

embryos, abundant levels of RA are produced (Mic et al., 2002). It should be noted that 

Raldh2-/- embryos die at E10.5 from gross cardiac, axial and neural malformations, thus 

prohibiting ocular analysis at later timepoints without dietary RA intervention. Raldh3-/- 

embryos are lethal after birth and exhibit shortening of the ventral retina, lens rotation 

and persistence of the primary vitreous body (PHPV) (Dupe et al., 2003). To better 

characterize individual and overall contributions of Raldh1-3 activity in the eye, double 

and triple mutant knockouts were examined (Molotkov et al., 2006). This study revealed 
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several previously unappreciated key facts. Contrary to previous thought, RA signaling 

is not necessary for dorsoventral patterning of the retina; however, it is required for 

invagination of the ventral optic cup. Raldh2 and Raldh3 generate adequate RA to 

initiate optic cup formation, and continued Raldh3 expression completes it. Raldh3 is 

also necessary for choroid fissure closure at E13.5. In the absence of all other 

retinaldehyde dehydrogenases, Raldh1 by itself is unable to initiate ventral optic cup 

morphogenesis which may be explained by its 10-fold lower enzymatic activity for RA 

synthesis than Raldh2 or Raldh3 (Grun et al., 2000). Second, RA from Raldh1 and 

Raldh3 activity in the retina acts upon POM in a paracrine fashion to stimulate apoptosis 

and control mesenchymal cell numbers (Molotkov et al., 2006). This prevents excessive 

infiltration of surrounding mesenchymal cells into the optic cup. During embryonic 

development of Raldh2-/- and Raldh3-/- embryos, maternal RA supplementation is able to 

rescue the phenotype demonstrating an important gene-environment interaction. 

Retinoic acid gradients exist in many developing tissues such as the CNS. These 

gradients are important for correct anterior-posterior patterning and epithelial-to-

mesenchymal transition of cranial neural crest cells (Sakai et al., 2001; Uehara et al., 

2007). These gradients arise from opposing actions of Raldh and CYP26 cytochrome 

P450 enzymes (Cyp26a1, Cyp26b1 and Cyp26c1). The latter group of enzymes 

metabolizes and reduces overall RA levels (Abu-Abed et al., 2001; Uehara et al., 2007; 

Yashiro et al., 2004). Cyp26a1 and Cyp26c1, but not Cyp26b1, are expressed in the 

embryonic retina in an equatorial stripe at the Raldh1 and Raldh3 boundary, thus 

defining three RA-concentration zones (Li et al., 2000; Sakai et al., 2004; Wagner et al., 

2000). Despite prominent expression of Cyp26a1 and Cyp26c1 in the retina, no ocular 
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phenotypes have been reported in any of the three single knockout models. Cyp26a1-/-

;Cyp26c1-/- double knockouts have reduced eye size at E9.5, but this is secondary to 

gross CNS malformations (Uehara et al., 2007). These abnormalities are similar to, but 

more severe than, the effects seen in Cyp26a1-/- single knockout embryos (Sakai et al., 

2001) suggesting cooperativity in CNS patterning. It is unknown whether Cyp26 

enzymatic cooperativity occurs in the embryonic retina, because no detailed analysis of 

the eye was reported (Sakai et al., 2004). Thus, it remains unclear if total loss of RA 

catabolism in the retina has any bearing on eye development. It is worth noting that 

excessive retinoid intake during human pregnancy is teratogenic and causes cranial 

neural crest defects such as cleft lip and craniosynostosis, and cardiovascular, thymic 

and CNS malformations (Lammer et al., 1985; Rothman et al., 1995). Microphthalmia 

has been noted in several animal models of gestational retinoic acid toxicity; however, 

this was infrequent and accompanied by severe CNS abnormalities (micro- or 

exencephaly) suggesting a potential bystander effect (Shenefelt, 1972).  

 

Genetics of congenital eye malformations 

Disruption or failure of initial eye patterning steps can lead to significant structural 

defects. Clinical microphthalmia, anophthalmia and coloboma (MAC) is a spectrum of 

eye diseases that result in varying degrees of ocular malformations in one or both eyes 

(Figure 1.3). Anophthalmia is the most severe and refers to the absence of eye globes 

resulting in total blindness. Children born with microphthalmia have very small eyes (< 2 

standard deviations below mean axial length). The mildest form is coloboma, which 

appears as a notch in the inferior aspect of the iris consistent with a patent choroid 
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fissure. In microphthalmia or coloboma, vision may be spared or significantly impacted, 

depending on the structural defect. The incidence of MAC is approximately 1 in 10,000 

live births (Morrison et al., 2002). MAC may appear as an isolated clinical finding or as 

part of a syndrome such as CHARGE syndrome (OMIM 214800), Lenz microphthalmia 

syndrome (OMIM 309800), Branchio-oculo-facial syndrome (OMIM 113620) and Goltz 

syndrome (OMIM 305600). These all have characteristic features that guide appropriate 

medical management and genetic testing. 

For this thesis, the term “mendelian” is defined as a mutant trait with 100% 

penetrance and a 1:1 segregation ratio. Non-mendelian traits deviate from these criteria 

and various diseases with non-Mendelian inheritance patterns and associated 

mechanisms are reviewed elsewhere (Van Heyningen and Yeyati, 2004). Mendelian 

forms of congenital eye disease based on single gene mutations provide enormous 

insight into normal human eye development.  The vast majority encode transcription 

factors that serve critical roles in cell proliferation, specification or differentiation. Many 

homeodomain transcription factor genes are associated with human eye malformations 

and reproduce similar phenotypes in animal models such as in autosomal recessive 

forms of MAC involving RAX (OMIM 601881) and CHX10 (OMIM 251600). As 

discussed above, both are critical factors in retinal progenitor cell maintenance. Two 

affected individuals with RAX compound heterozygous mutations with unilateral 

anophthalmia and contralateral sclerocornea were separately reported (Lequeux et al., 

2008; Voronina et al., 2004). RAX mutations affecting the DNA binding domain are the 

most severe and have been verified as null alleles (Voronina et al., 2004). Other novel 

RAX variants in regions apart from the DNA binding domain are associated with the 



17 
 

MAC spectrum (Gonzalez-Rodriguez et al., 2010); however, their functional effects not 

yet been examined. Several of these alleles are also associated with midline CNS 

defects and hydrocephaly, which possibly expands the RAX human mutation phenotype 

beyond the eye. Humans with homozygous CHX10-/- null mutations present with non-

syndromic microphthalmia, iris coloboma, cataracts and a thickened sclera (Ferda 

Percin et al., 2000). Unlike mice, CHX10-/- humans develop intact optic nerves. 

OTX2 is another homeodomain transcription factor of the bicoid class associated 

with human eye disease. It is located at human chromosome 14q22 and is related to the 

Drosophila gene orthodenticle (Simeone et al., 1993). The OTX2 gene product functions 

in regional specification of RPE, anterior neuroectoderm and the pituitary gland 

(Martinez-Morales et al., 2003; Martinez-Morales et al., 2001; Simeone et al., 1993). 

Inactivating mutations, insertions, intragenic and whole-gene deletions in OTX2 are 

associated with autosomal dominant microphthalmia and anophthalmia with pituitary 

defects (Ashkenazi-Hoffnung et al., 2010; Ragge et al., 2005a; Schilter et al., 2011; 

Tajima et al., 2009; Wyatt et al., 2008). Dominant-negative forms of OTX2 also cause 

disease (Diaczok et al., 2008). Additional OTX2 loss-of-function features include 

anterior segment defects and hypoplasia/aplasia of the optic nerve and chiasm. In mice, 

Otx2+/- mice have phenotypes that vary between microphthalmia/anophthalmia with 

agnathia to normal. Full Otx2 knockouts are embryonic lethal by E9.5 with missing optic 

vesicles (Acampora et al., 1995; Matsuo et al., 1995). Thus, Otx2/OTX2 mutations in 

mice and humans produce highly variable phenotypes but consistently show eye 

abnormalities. 
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Apart from homeodomain transcription factor genes, loss-of-function mutations in 

the SOX (SRY-related high-mobility group, or HMG, box) family member SOX2 cause 

MAC (Fantes et al., 2003). Patients with SOX2 haploinsufficiency most often suffer from 

bilateral anophthalmia, though less severe ocular phenotypes have been reported such 

as anterior segment dysgenesis, retinal dystrophy, coloboma, optic nerve hypo- or 

aplasia (OMIM 184429) (Schneider et al., 2009). Patients with inactivating SOX2 

mutations oftentimes show additional features including epilepsy, endocrine 

abnormalities from pituitary hypoplasia, sensorineural hearing loss and craniofacial 

abnormalities (Bardakjian and Schneider, 2011). Anophthalmia-Esophageal-Genital 

syndrome refers to the co-presence of anophthalmia, tracheo-esophageal fistula or 

esophageal atresia, and genitourinary tract findings. SOX2 mutations are estimated to 

cause approximately 10% of all anophthalmia cases (Fantes et al., 2003), making them 

the most common known cause of MAC. 

SOX2 is a single exon gene located on human chromosome 3q26. It encodes a 

317-amino acid protein with an N-terminal domain of unknown function, a high-mobility 

group (HMG) DNA binding domain and C-terminal transcriptional activation domain 

(Stevanovic et al., 1994). Sox2 functions in development of the central nervous system 

and its derivative structures such as the eye, ear and hypothalamic-pituitary axis 

(Kelberman et al., 2006; Kiernan et al., 2005; Taranova et al., 2006). During 

embryogenesis Sox2 is most prominently expressed in the CNS along with Sox1 and 

Sox3, two other SoxB1 members (Collignon et al., 1996; Pevny et al., 1998; Rex et al., 

1997; Uwanogho et al., 1995; Wood and Episkopou, 1999). Sox2 expression persists in 

the outbudding optic vesicles and in the optic cup neuroretina. In RPCs, Sox2 functions 
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to maintain progenitor characteristics and is down-regulated only upon neuronal 

differentiation. Significant loss of Sox2 activity (> 70%) leads to RPC proliferation 

defects and ocular growth retardation (Taranova et al., 2006).  

While mutations in transcription factor genes account for the majority of MAC-

causing single gene disorders, other classes of genes have been identified as well. 

Given the established link between vitamin A and oculogenesis, it was hypothesized 

that mutations in retinoid pathway genes account for a subset of unexplained congenital 

eye malformations (Hornby et al., 2003). Only recently, the first human genetic link 

between retinoid metabolism and MAC was discovered in patients with homozygous 

null STRA6 mutations (Golzio et al., 2007; Pasutto et al., 2007). Complete loss of 

STRA6 causes Matthew-Wood Syndrome (MWS, OMIM 610745), an autosomal 

recessive disease characterized by anophthalmia, congenital heart defects, lung 

hypoplasia, diaphragmatic hernia and mental retardation (Seller et al., 1996). STRA6 

mutations are also found in patients with isolated MAC (Casey et al., 2011). Attempts to 

establish a genotype-phenotype correlation between different mutations affecting 

various STRA6 protein domains and their associated human phenotypes have so far 

come up empty (Chassaing et al., 2009).  

STRA6 is a 20-exon gene located on human chromosome 15q24 and encodes a 

novel 670-amino acid receptor with nine predicted transmembrane domains (Kawaguchi 

et al., 2008b). Originally discovered as a retinoic acid-responsive gene in a cancer cell 

line (Chazaud et al., 1996), STRA6 defines a new family of receptors and mediates 

cellular vitamin A uptake through its ligand RBP (Kawaguchi et al., 2007). Biochemical 

studies demonstrate STRA6 is not simply a passive agent, but is a “sensor” that 
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mediates retinol uptake based on intracellular storage levels (Kawaguchi et al., 2011). 

Under certain disease states, STRA6 can also act as a cytokine receptor that utilizes 

the JAK/STAT signaling cascade (Berry et al., 2011). Consistent with STRA6 mutation-

associated human eye malformations, STRA6 RNA localizes to embryonic eye 

specifically in POM and presumptive RPE (Bouillet et al., 1997). However, Stra6-/- mice 

display only very mild retinal phenotypes (Ruiz et al., 2012). Interspecies differences in 

loss-of-function phenotypes are not uncommon; however, the absence of a Stra6-null 

developmental eye phenotype does raise questions about other related family members 

that may compensate for loss of Stra6, as well as alternative retinoid delivery pathways. 

While the nutritional requirement of vitamin A in eye development remains constant 

across all vertebrates, the genetics of vitamin A metabolism and potential loss-of-

function congenital eye defects in homologous genes may vary across species. 

 Anterior segment dysgenesis (ASD) involves failure of the lens, iris, ciliary body, 

or cornea. PAX6 is located on human chromosome 11p13 and was the first ASD gene 

discovered. Heterozygous PAX6 mutations cause aniridia (OMIM 106200) with 

associated brain anomalies (Abouzeid et al., 2009; Jordan et al., 1992; Mitchell et al., 

2003; Sisodiya et al., 2001). Complete loss of PAX6 leads to anophthalmia with major 

CNS malformations (Glaser et al., 1994). In mouse, Small-eye (Sey) phenotype arises 

from inactivating Pax6 mutations (Hill et al., 1991). Sey/+ mice exhibit microphthalmia 

with corneal defects and Sey/Sey mice display anophthalmia and perish at birth due to 

respiratory distress. Developmentally, Pax6 is critical for iris specification, optic cup 

morphogenesis and lens formation (Baumer et al., 2002; Davis-Silberman et al., 2005; 

Grindley et al., 1997; Marquardt et al., 2001; Matsushima et al., 2011; Smith et al., 
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2009). Its contribution to all three structures stems from two distinct regions of Pax6 

activity. In the surface ectoderm, Pax6 partners with Sox2 to activate transcription for 

lens formation (Kamachi et al., 2001). Selective removal of ectodermal Pax6 results in 

failed lens induction consistent with Small eye features (Davis-Silberman et al., 2005). 

In the distal optic cup margins, Pax6 is critical to maintaining retinal progenitor pools for 

iris and ciliary body formation, and its loss leads to iris hypoplasia (Davis-Silberman et 

al., 2005).  Since the initial discovery of PAX6 in human aniridia, additional gene 

mutations in PITX2, PITX3, MAF and FOXC1 have been identified in human patients 

with ASD (Jamieson et al., 2002; Mears et al., 1998; Semina et al., 1998; Semina et al., 

1996). 

 

 

Regulatory mutations in eye diseases: an emerging class 

Regulatory disruptions alter spatiotemporal and quantitative levels of gene 

expression without affecting the actual transcription units. Originally, cytogenetic 

analysis was the only available tool for investigating diseases at a genome-wide level, 

and even so with only moderate resolution. Major advances since then have uncovered 

multiple examples of regulatory mutations and their mechanisms in a variety of human 

diseases.  Collectively, these are known as “cis-ruptions” (Kleinjan and Coutinho, 2009). 

The most common form is chromosomal translocation that transfers control elements 

from one genomic position to another. PAX6 cytogenetic rearrangements affecting 

critical 3’ regulatory sequences cause aniridia (Fantes et al., 1995; Kleinjan et al., 

2001). Translocations proximal to PITX2 (4q26) lead to Rieger syndrome (OMIM 
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180500), a disease characterized by anterior segment dysgenesis of the eye, dental 

and craniofacial abnormalities (Trembath et al., 2004). Chromosomal translocations 

involving FOXC1 and TGFβ2 have also been described in patients with autosomal 

dominant iridogoniodysgenesis and glaucoma and Peter’s anomaly, respectively (David 

et al., 2003; Davies et al., 1999). 

Many other types of regulatory mutations are associated with congenital eye 

diseases. For example, interstitial deletions can eliminate important regulatory 

elements, as seen with 3’ deletions in PAX6-mediated aniridia (Lauderdale et al., 2000). 

Other disruptive mechanisms include single nucleotide changes that alter transcription 

factor binding motifs (De Gobbi et al., 2006; Jeong et al., 2008), promoter 

downregulation via read-through transcription (Ligtenberg et al., 2009; Tufarelli et al., 

2003), epigenetic alteration (Ottaviani et al., 2009), regulatory duplications (Dathe et al., 

2009; Kurth et al., 2009), or capture by a foreign promoter or enhancer (Demura et al., 

2007). The final mechanism is illustrated by the Odsex mouse where disruption of 

regulatory sequences 1 Mb upstream of Sox9 causes autosomal dominant 

microphthalmia and XX sex reversal (Bishop et al., 2000). Under normal conditions, 

Sox9 is transiently expressed in the RPE; however, this regulatory mutation causes 

persistent RPE expression that coincides with the onset of microphthalmia (Qin et al., 

2004). 

In general, members of the SOX gene family are targets for regulatory mutations 

due to vast expanses of regulatory sequences surrounding the SOX gene transcription 

units. Regulatory SOX mutations are associated with female-to-male sex-reversal, 

congenital deafness and cleft palate (Benko et al., 2009; Bishop et al., 2000; Kiernan et 
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al., 2005). Phylogenetically, SOX genes are divided into ten evolutionarily conserved 

classes of potent transcriptional regulators essential for sex determination, CNS and 

sensory organ formation, neural crest maturation, germ cell maintenance, and 

chondrocyte and immune systems development (Figure 1.4A) (Bowles et al., 2000; 

Epstein et al., 2008). The founding SOX member is a Y-linked male sex-determining 

gene SRY (Gubbay et al., 1990). SRY expression initiates in the XY bipotential gonad 

and with SF1, activates SOX9 and drives male sex determination (Figure 1.4B) (Sekido 

and Lovell-Badge, 2008). In keeping with the pivotal role of SRY in sex determination, 

SOX genes tend to control genetic hierarchies in a multitude of systems. Loss-of-

function SOX gene mutations lead to a wide range of human developmental diseases. 

Thus, it is not surprising that gain-of-function regulatory mutations have similar 

consequences, especially in forming eye tissue that is highly responsive to SOX-

mediated regulation. As our comprehension of the gene regulatory code improves, 

additional regulatory mechanisms and new disease loci will undoubtedly be discovered. 

 

Novel mechanistic insights into congenital eye malformations 

Retinoids and SOX genes are absolutely essential for normal embryogenesis. 

Thus, the mechanisms by which they function remain an important area of research, not 

only for development, but also for possible disease pathogenesis. In this dissertation, I 

have focused my analysis on two genes implicated in different forms of congenital eye 

malformations, RBP4 and SOX3. 

In Chapter II, I describe two novel RBP4 missense mutations (p.A73T and 

p.A75T) in three independent families with autosomal dominant non-syndromic MAC. 
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This disease trait shows incomplete penetrance and a significant maternal parent-of-

origin effect in all three families. RBP4 encodes plasma retinol binding protein and is the 

major source of retinoids for vitamin A dependent tissues. Using a variety of functional 

assays, I describe how both mutations negatively impact vitamin A (retinol) binding, but 

in all other regards, functionally mimic the wild-type protein. Consequently, the two 

mutant RBP forms create a molecular “bottleneck” at the STRA6 receptor thus depleting 

vitamin A delivery into cells. Furthermore, this “bottleneck” phenomenon explains the 

maternal-origin effect of MAC in all three families, because the maternal-fetal interface 

(visceral yolk sac and placenta) is a major target site of vitamin A delivery during 

pregnancy. This work uncovers a novel dominant-negative disease mechanism 

involving a blood cargo protein and establishes RBP4 as the second retinoid pathway 

gene mutated in MAC. 

In Chapter III, I explore a novel regulatory mutation involving SOX3 in a child with 

bilateral clinical anophthalmia and XX sex-reversal. A large 640 kb autosomal insertion 

translocation involving 9q21 sequences was found inserted into Xq27 in a 180 bp 

palindrome previously associated with another X-linked dominant disease (Zhu et al., 

2011). The insertion occurred approximately 83 kb downstream of SOX3, a gene with 

no appreciable role in eye development. I find this translocation does not disrupt normal 

X-chromosome inactivation. I test the hypothesis that ectopic SOX3 activity in the early 

eye can lead to severe malformations. Based on in vitro functional assays, I find SOX3 

and SOX2 have similar overlapping transcriptional activation properties. By targeting 

Sox2 or Sox3 overexpression to the developing neuroretina using a Chx10 bacterial 

artificial transgene, I find Sox overexpression can result in microphthalmia with profound 
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defects in retinal lamination and retinal ganglion cell differentiation. This study identifies 

a human-specific X-linked palindrome that is prone to disease-causing rearrangements 

and also implicates SOX3 gain-of-function regulatory mutations in bilateral 

anophthalmia, XX sex-reversal and potentially a wider host of human diseases. 
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Figure 1.1. Development and maturation of the vertebrate eye. (A) 
Schematic of early eye patterning beginning in late gastrulation through the optic 
cup stage. The single eye field splits into two lateral optic vesicles that expand to 
contact the lens placode (cross-section view). At the lens pit stage, invagination 
of optic vesicle causes the lens placode to form the lens pit. In the optic cup, the 
inner and outer layers represent the future NR and RPE, respectively. The 
margins develop into the iris and ciliary body. The proximal portion of the optic 
cup narrows to form the optic stalk. Surface ectoderm forms the cornea with 
POM contributions. (B) Structure of the mature human eye. Anterior and 
posterior segments are divided by the vertical line. Light enters through the 
cornea and is focused by the lens through the vitreous humor onto the retina 
(inset). Within the retina, light passes through all layers down to the rod and cone 
photoreceptors. These cells convert light into an electrical stimulus that traverses 
back through the retina to the retinal ganglion cells whose axons relay visual 
information to the brain via the optic nerve. The retinal pigment epithelium sits 
adjacent to the retina and provides nutrients and support. Note, the optical axis 
(dotted line) does not coincide with the optic nerve or the fovea which is the area 
of highest resolution in the retina. Both images adapted from (Graw, 2003). 
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Figure 1.2. Retinoic acid signaling. Cells generate retinoic acid by first taking 
up vitamin A (retinol) from circulating retinol binding protein (RBP) using the 
STRA6 transmembrane receptor. Internalized retinol associates with cellular 
retinol binding proteins (CRBP) and is immediately shuttled to alcohol 
dehydrogenases (ADH or RDH) for conversion to retinaldehyde. Next, 
retinaldehyde dehydrogenases (RALDH1-3) oxidize retinaldehyde to retinoic acid 
(RA). This is secreted and acts in paracrine fashion on target tissues. RA freely 
diffuses across membranes, associates with intracellular retinoic acid binding 
proteins (CRABP) and is shuttled to nuclear receptors RAR and RXR. Upon RA 
ligand docking with RAR, RAR-RXR heterodimers bind DNA retinoic acid 
response elements (RARE) and modulate target gene expression. Nearby cells 
fine tune overall retinoic acid levels through CYP26A1,B1 or C1-mediated RA 
metabolism. These enzymes convert RA into polar metabolites that are readily 
eliminated from the body. Image adapted from (Duester, 2008). 
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Figure 1.3. Clinical presentation of microphthalmia, anophthalmia and 
coloboma (MAC). (A) Female child with severe left microphthalmia and normal 
right eye. (B) A male child with left microphthalmia. (C) Newborn with bilateral 
clinical anophthalmia. (D) Anterior eye photograph shows a nasoinferior pupillary 
notch, or iris coloboma (arrowhead). (E) Fundus photography of individual 
presenting with iris coloboma reveals coloboma (col) extension into the retina 
and optic nerve head (onh) consistent with a patent choroid fissure. Scleral tissue 
becomes visible due to missing ventral retina. Eye fundus image of an unaffected 
eye (F). Patient images A – C adapted from (Bakrania et al., 2007; Prasad et al., 
2009; Ragge et al., 2007). Panel D adapted from 
http://www.nei.nih.gov/eyeonnei/insight/archive/0110.asp. Panels E - F adapted 
from http://webeye.ophth.uiowa.edu/eyeforum/cases/53-retina-choroidal-
coloboma-visual-field.htm. 
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Figure 1.4. SOX phylogeny and SRY male sex determination. (A) Unrooted 
phylogenetic tree for all vertebrate and invertebrate (underlined) SOX HMG DNA 
binding domain protein sequences.  Branch lengths denote extent of divergence. 
Ten classes of SOX genes are denoted by color and representative member is 
shown for orthologous mammalian groups. Inset, enlarged group B1 and B2 SOX 
members. dr, Drosophila melanogaster (fruit fly); ce, Caenorhabditis elegans 
(worm); se, Strongylocentrotus purpuratus (sea urchin); zf, Danio rerio 
(zebrafish); tr, Oncorhynchus mykiss (rainbow trout), xe, Xenopus laevis (frog); 
ch, Gallus gallus (chicken); pi, Sus scrofa (pig); mo, Mus musculus (mouse); tw, 
Macropus eugenii (tamar wallaby); or, Pongo pygmaeus (orangutan); hu, Homo 
sapiens (human). Image adadpted from (Bowles et al., 2000). (B) Male sex 
determination by Sry in the XY gonad. Sf1 binds to sites (green) in TES (testis 
specific enhancer of Sox9) through its zinc-finger binding domain and sensitizes 
Sox9 transcription in the genital ridge. Sry is transiently expressed and binds to 
HMG binding motifs (yellow). Synergistic action between Sry and Sf1 significantly 
upregulates Sox9 expression (orange). Sox9 maintains its own expression 
independent of Sry and drives testis differentiation. Image adapted and modified 
from (Sekido and Lovell-Badge, 2009).  
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CHAPTER II 
 

DOMINANT-NEGATIVE RBP4 MUTATIONS CAUSE CONGENITAL EYE 
MALFORMATIONS THROUGH A MATERNAL-FETAL NUTRITIONAL INTERACTION 
 
 

Vitamin A (retinol) is an essential nutrient important for early eye morphogenesis. 

Gestational vitamin A deficiency poses a serious risk factor for ocular malformations 

and congenital blindness. Through genetic mapping, we have identified two novel 

missense mutations in RBP4 (p.A73T and p.A75T) in three unrelated families showing 

autosomal dominant transmission of microphthalmia, anophthalmia and coloboma 

(MAC). MAC in these families exhibits low penetrance and a significant maternal parent-

of-origin effect. In one of the three families, two blind males also present with severe 

neurological deficits (epilepsy, motor retardation and autistic features). RBP4 encodes 

plasma retinol binding protein, a circulating cargo protein responsible for mobilization of 

liver vitamin A stores and overall retinoid homeostasis. Our study demonstrates both 

RBP4 mutant alleles encode dominant-negative forms that structurally and functionally 

resemble wild-type protein except they bind retinol poorly. Despite this, both mutant 

forms retain high-affinity STRA6 receptor binding. This mimicry effect generates 

sequential vitamin A “bottlenecks” at sites of STRA6 expression occurring first at the 

maternal-fetal interface and then again in the fetal eye. Consequently, vitamin A delivery 

to the fetal eye through the RBP system may be compromised leading to structural eye 

defects. Thus, we define a novel disease mechanism involving a plasma cargo protein 

and discuss the potential impact of dietary vitamin A on disease penetrance and the 

maternal origin effect. This study provides novel insights into congenital diseases 

governed by maternal-fetal and gene-environment interactions. 
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The clinical studies in this chapter were performed by Christine Nelson, MD and 

Jonathan Pribila, MD (Family 1). Clinical data from Families 2 and 3 were collected by 

Adele Schneider, MD and Tanya Bardakjian MS GC. Processing of DNA samples 
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peripheral blood lymphocytes and a subset of SSLP genotyping and analysis were 

performed by Sue Tarle. Mass spectrometry (RBP trypsinization and MALDI-TOF) was 

performed by Dr. Phil Gafken, PhD and Lisa Jones. RBP molecular modeling was done 

by Dr. Paul Kirchhoff, PhD. All clinical diagnostic tests, except plasma RBP, were 

performed by University of Michigan Hospitals (Ann Arbor, MI). Retinol binding protein 

tests were performed by Quest Laboratories (San Juan Capistrano, CA). 



36 
 

INTRODUCTION 
 

Human eye development initiates between the 3rd and 6th week of gestation. 

Originally described by Spemann (Spemann, 1924), this begins with a single eye field in 

the anterior neural plate during late gastrulation. From this, the optic vesicles expand 

outward to make contact with the overlying surface ectoderm. Through a series of 

reciprocal inductions, the optic vesicles invaginate to form two bilayered optic cups 

(Graw, 2010). The inner and outer layers represent the future retina and retinal pigment 

epithelium, respectively. The iris and ciliary bodies develop from the optic cup margins 

and the lens from the surface ectoderm. As a whole, the optic cup is incomplete along 

its entire inferior aspect at the so-called optic (choroid) fissure. This embryonic structure 

fuses beginning from its base at the forebrain wall and terminates at the iris. Finally, the 

surrounding periocular mesenchyme, a mix of mesoderm and neural crest cells, helps 

to pattern the eye and contributes to formation of anterior and auxiliary structures 

including the cornea, iris and extraocular muscles (Davis-Silberman and Ashery-Padan, 

2008; Gage et al., 2005). Disruption of early eye patterning leads to structural defects of 

the globe. 

Congenital microphthalmia, anophthalmia and coloboma (MAC) is a spectrum of 

eye diseases that affects 1 in 10,000 live births (Morrison et al., 2002). Anophthalmia is 

defined as the absence of the eye globes. Microphthalmia is a milder form of MAC 

characterized by small eyes. Coloboma is a ventral pupillary defect caused by 

incomplete fusion of the choroid fissure, possibly affecting the retina and optic nerve. 

Disease severity is a reflection of timing with earlier disruptions producing more severe 

phenotypes. One or both eyes may be involved and vision loss is total in anophthalmia 
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but may be spared in milder forms. Most cases occur in isolation but approximately one-

third manifest as a component of a syndrome (Morrison et al., 2002). A number of 

genetic causes of MAC have been identified such as loss-of-function SOX2 mutations 

that account for approximately 10% of all known MAC cases (Fantes et al., 2003). Other 

monogenic forms exist due to inactivating mutations in RX and CHX10 (Ferda Percin et 

al., 2000; Voronina et al., 2004), BCOR in Oculofaciocardiodental syndrome and Lenz 

microphthalmia (Ng et al., 2004), HCCS in Microphthalmia with Linear Skin defects 

syndrome (Prakash et al., 2002), and in rare cases PAX6 (Glaser et al., 1994). Several 

signaling pathways in the developing eye may also be disrupted such as TGFβ 

signaling factors BMP4 and GDF6 and Sonic hedgehog SHH (Asai-Coakwell et al., 

2007; Reis et al., 2011). Environmental factors such as infectious diseases and toxin 

exposure have been investigated as well. In particular, poor maternal nutrition has been 

implicated as a major risk factor for congenital eye abnormalities (Hornby et al., 2000). 

 Vitamin A is an essential nutrient that is indispensible for survival and must be 

consumed through diet. Its most widely recognized function is maintenance of the visual 

cycle by use of 11-cis-retinal (vitamin A aldehyde form) to generate rhodopsin, a light 

sensitive visual pigment (Wald, 1968). Consequently, vitamin A deficiency (VAD) first 

manifests as night blindness, a reversible disease of visual adaptation to dark 

environments (Dowling and Wald, 1958). Apart from vision, vitamin A is also essential 

for epithelial, reproductive and immune health (Sporn et al., 1994). Nutritional studies 

have implicated maternal vitamin A deficiency in the generation of newborn eye 

malformations along with urogenital, diaphragmatic, cardiovascular and pulmonary 

defects, or so-called VAD syndrome (Hale, 1935; Wilson et al., 1953). More recently, 
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the molecular role of vitamin A in retinoic acid signaling has been well characterized. 

Vitamin A is mobilized from the liver but because of its lipophilic nature it must be 

transported in blood by retinol binding protein (RBP) (Kanai et al., 1968). At the target 

cell, RBP binds the transmembrane receptor STRA6 and delivers retinol into the cell 

(Kawaguchi et al., 2007). Within the cytoplasm, retinol undergoes two oxidation 

reactions catalyzed first by retinol dehydrogenase to form retinal, then by retinal 

dehydrogenase to synthesize retinoic acid. This potent signaling molecule is active 

throughout embryogenesis and is required for normal development. Recently, the first 

genetic links between human retinoid metabolism and MAC were established. Loss-of-

function mutations in STRA6 lead to autosomal recessive non-syndromic MAC or 

Matthew-Wood syndrome (OMIM 601186) characterized by structural eye defects, 

diaphragmatic hernia, cardiac malformations, and pulmonary hypoplasia/aplasia (Golzio 

et al., 2007; Pasutto et al., 2007). In comparison, inactivating mutations in RBP4, which 

encodes RBP, lead to a much milder phenotype in autosomal recessive night blindness 

with coloboma (Biesalski et al., 1999). 

 Here we identify a set of hereditary defects in RBP4 which disrupt vitamin A 

transport and lead to severe structural eye defects. These mutations are dominant with 

a maternal parent-of-origin effect, but are weakly penetrant. We present evidence that 

the encoded gene products structurally and functionally mimic wild-type RBP, but fail to 

bind vitamin A. Furthermore, we show these defective proteins retain high affinity 

binding for the STRA6 receptor, which out-compete wild-type RBP, and potentially 

reduces vitamin A delivery across tissues. This molecular mechanism exposes a 

maternal-fetal nutritional interaction with increased vulnerability to vitamin A deficiency 
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and consequently newborn eye malformations. Previous biochemical and nutritional 

studies indicate penetrance of structural eye defects can vary depending on the amount 

and type of maternal vitamin A consumption. Our findings have broad implications in the 

etiology of other congenital diseases experienced through gene-environment 

interactions. 

 

RESULTS 

Autosomal dominant MAC with reduced penetrance and maternal-origin-effect 

A large seven-generation pedigree (Family 1), was identified through second cousin 

probands with anophthalmia (Figure 2.1A).  Extensive genealogical records document a 

family history of congenital eye disease dating back to the early 19th century, with an 

autosomal dominant inheritance pattern. The overall penetrance of the disease trait is 

relatively low (P = 0.4), based on 54 informative meioses (Figure 2.S1). The phenotypes 

of mutation carriers range from normal (VI-3, VI-7) to uni- or bilateral microphthalmia 

(small eyes) to complete absence of both eye globes (Figure 2.1B and Table 2.1).  In 

addition, several individuals have ventronasal colobomas, notch-like defects of the iris 

and/or retina, arising from incomplete closure of the embryonic choroid fissure 

(Onwochei et al., 2000).  There is a marked skewing in the Mendelian transmission 

pattern, suggesting a parent-of-origin effect.  Nearly all affected individuals (10 of 11) 

inherited the trait from their mothers, such that maternal penetrance is seven-fold 

greater than paternal penetrance (Pmat = 0.7, Ppat = 0.1) (Figure 2.S1B). There is a 

single instance of paternal disease transmission, in a monozygous twin pregnancy 
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where only one twin (VI-2) was affected.  The discordant twins highlight the contribution 

of genetic and non-genetic factors in this disease. 

 

A new autosomal dominant MAC locus on chromosome 10q23 

As a first step to map the disease mutation, we excluded 30 gene loci previously 

associated with MAC in humans or animal models (Table 2.3) by comparing haplotypes 

of the two probands.  We then examined and collected DNA samples from all available 

family members, and performed genome-wide multipoint linkage analysis (Figure 

2.S1C,D). We initially applied a simple autosomal dominant (AD) model, scoring only 

affecteds and obligate carriers.  This analysis suggested three candidate regions 1q41, 

10q23 and 19p13, with peak LOD scores >2 (Figure 2.1C).  To distinguish between 

regions, we included unaffected, at-risk family members and applied AD models with 

uniform (Pglobal = 0.4) or sex-specific (Pmat = 0.7, Ppat = 0.1) reduced penetrance.  This 

analysis indicated a chromosome 10q23 localization with a peak LOD score of 3.01 

(Figure 2.1C).  The 10q23 nonrecombinant interval spans 8.2 Mb and contains 81 

genes (Figure 2.S2).  Given the general importance of vitamin A in vertebrate eye 

development (Warkany and Schraffenberger, 1946), we tested three genes in the 10q23 

interval: RBP4, CYP26A1 and CYP26C1 all of which have roles in vitamin A transport 

and retinoic acid metabolism. 

 

Dominant RBP4 mutations found in three independent MAC families 

RBP4, or retinol binding protein 4, is a six-exon gene spanning 9.4 kb of genomic DNA 

(Figure 2.2A). We screened proband DNA exon-by-exon and discovered a novel 
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missense mutation (c.223G>A, p.A75T) that co-segregates with disease (Figure 2.2B, 

left panel). This mutation is not found in over 5,358 normal controls distributed among 

various public databases (dbSNP135, 1000 Genomes, HapMap, Exome Variant Server) 

nor in 307 neurologically normal controls we screened by PCR (data not shown). In 

total, 11,330 control chromosomes were examined. 

 We sought to verify if mutations in RBP4 are overrepresented in the MAC 

population. Therefore we investigated a cohort of 75 additional unrelated MAC trios. We 

identified two additional probands, one male with bilateral anophthalmia (Family 2) and 

one female with left microphthalmia and coloboma (Family 2.2). Both affecteds share a 

novel identical missense mutation (c.217G>A, p.A73T), but haplotype analysis revealed 

two distinct haplotypes indicating a recurrent mutation (Figure 2.S3). Much like in Family 

1, both p.A73T probands inherited the mutation from their mothers (Figure 2.2B, center 

and right panels). The Family 2 proband has a second nephew (IV-1) on the maternal 

side with severe microphthalmia who in turn has an obligate carrier mother (III-7). As in 

Family 1, the obligate carrier male II-3 in Family 2 did not have any affected children. In 

Family 3, the mother (II-2) has a unilateral optic disc pit. These observations extend 

what is seen in Family 1 and bring the total maternal disease transmission count to 13 

versus only one inherited paternally. 

 

RBP4 p.A73T and p.A75T alter amino acid residues critical for retinol binding 

RBP4 encodes plasma retinol binding protein (RBP), a lipocalin superfamily shuttle 

protein for mobilizing the all-trans-retinol (ROH) from the liver to target tissues such as 

the eye, skin and placenta (D'Ambrosio et al., 2011). The domains and crystal structure 
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of this protein are known (Figure 2.2D and 2.S4) (Cowan et al., 1993; Zanotti et al., 

1993). Both missense mutations involve alanine-to-threonine substitutions at codons 55 

(A55T) or 57 (A57T) in β-strand C of the mature RBP polypeptide (codons 73 and 75 in 

the primary translation product prior to signal sequence cleavage; Figure 2.2C) 

(Soprano et al., 1981). Phylogenetic comparison of RBP across vertebrates shows 

complete conservation suggesting a critical role for these two residues (Figure 2.2E). X-

ray crystallographic studies demonstrate that wild-type A55 and A57 form stabilizing 

hydrophobic interactions with C4 and C3 of the retinol β-ionone ring, respectively 

(Figure 2.S4) (Cowan et al., 1990). There also exists two previously reported RBP4 

mutations p.G93D and p.I59N (G75D and I41N in the mature sequence) in two 

compound heterozygous sisters with autosomal recessive night blindness (Biesalski et 

al., 1999). I41 and G75  are located in β-strands B and D, respectively (Figure 2.2D), 

and both interact with β-ionone ring side groups (Cowan et al., 1990). Biochemical 

studies show RBP G75D and I41N bind retinol poorly (Folli et al., 2005). Based on 

molecular modeling, A55T and A57T are both able to accommodate retinol; however, 

there is increased strain due to steric and hydrophilic effects introduced by the threonine 

side chain (Figure 2.S4B).  

 

RBP A55T and A57T are secreted as stable 21 kD monomers 

If A55T and A57T are pathogenic, we sought to understand how they differed from both 

recessive forms. To further investigate, we compared molecular properties of wild-type 

and all dominant and recessive mutants at multiple points along the RBP lifecycle. RBP 

is constitutively expressed in liver cells, binds retinol and is secreted as holo-RBP (Muto 
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et al., 1972; Peterson et al., 1973; Soprano et al., 1982; Soprano et al., 1986b). To test 

the secretion properties of wild-type, A55T, A57T, G75D and I41N RBP mutant proteins, 

we employed an in vivo cell-culture system based on a previous study (Melhus et al., 

1992) (Figure 2.3A). An N-terminus hemagglutin epitope tag (RBPHA) was added to 

each form for tracking purposes. As a retention control, we used wild-type with KDEL 

appended to the C-terminus (Munro and Pelham, 1987). Looking at 48 hr conditioned 

media (CM), we found both threonine forms were present at equal steady-state levels 

compared to wild-type and migrated at the expected size of 21 kD (Figure 2.3B). This 

agrees with a timecourse study of 35S metabolically-labeled RBP in CM from 0 – 18 hr 

post-transfection showing equivalent accumulation levels of wild-type RBP as well as 

A55T and A57T mutant forms (data not shown). However, we noticed RBP G75D and 

I41N consistently appeared less abundant than wild-type protein. To probe further, we 

ran samples under non-denaturing conditions and discovered G75D and I41N forms are 

secreted primarily as 42 kD homodimers linked by inter-molecular disulfide bonds 

(Figure 2.3B and Figure 2.S5). We confirmed this finding by cross-linking CM prior to 

denaturing electrophoresis (Figure 2.3B). This result suggests that RBP G75D and I41N 

are highly unstable in the monomeric form. Next, we examined intracellular RBP levels 

and found equivalent protein amounts for wild-type, A55T and A57T as expected 

(Figure 2.3C). On the other hand, we typically observed slightly elevated levels for 

G75D and even higher retention for I41N indicating a possible secretion defect. This is 

consistent with non-immunodetectable plasma RBP in both p.G93D;p.I59N compound 

heterozygous sisters (Biesalski et al., 1999). In all cases, we do not detect the unfolded 

protein response (UPR) that would indicate ER stress (Figure 2.S4B), nor is there 
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evidence of cellular localization defects (data not shown). Altogether, our results show 

RBP A55T and A57T are secreted as stable 21 kD monomers whereas G75D and I41N 

show aberrant homodimerization associated with increased cellular retention. 

Our studies predict that p.A73T/+ and p.A75T/+ heterozygous individuals should 

exhibit normal circulating RBP levels. We tested this prediction in three p.A75T/+ 

obligate carriers (Family 1: VI-2, VI-3 and VI-7) and found all to be within normal limits 

(Table 2.2). Thus, it appears that neither threonine substitution leads to significant 

reductions in circulating plasma RBP which is consistent with the secretion data. In 

sharp contrast, RBP G75D or I41N are undetectable in circulation, possibly due to 

increased cellular retention and atypical homodimerization. 

 

RBP A55T and A57T complex normally with transthyretin 

Transthyretin (TTR) is a 55 kD homotetrameric liver-secreted protein that directly 

interacts with holo-RBP in a 1-to-1 molar ratio (Heller and Horwitz, 1974), thus creating 

a circulating 76 kD macromolecular complex (Kanai et al., 1968). This complex prevents 

RBP from undergoing kidney filtration, allowing it to remain in circulation for vitamin A 

delivery to target tissues (Soprano, 1994). To examine whether RBP A55T, A57T, 

G75D and I41N can partner with TTR, we used a co-immunoprecipitation assay 

combining RBPHA and wild-type human transthyretin (Figure 2.3D) (Melhus et al., 1991). 

Our results show that after HA normalization, TTR interacts equally well with RBP wild-

type, A55T and A57T but not G75D or I41N (Figure 2.3E). This holds true even after 

adjusting for amount of TTR bound per mole of RBP (i.e. to fairly compare monomeric 

versus homodimeric forms). We also observe human wild-type RBP and bovine TTR 
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interaction (Figure 2.3E). This is expected given that both evolutionary conserved 

proteins show cross-species interchangeability with one another (Berni et al., 1992; 

Kopelman et al., 1976). Our results indicate that RBP A55T and A57T mutants can form 

TTR-RBP complexes, but G75D and I41N cannot. Despite this partnership, TTR 

secretion does not depend on vitamin A status (Navab et al., 1977) nor does RBP 

secretion depend on TTR (van Bennekum et al., 2001), therefore both are subject to 

independent regulatory mechanisms. In agreement with this, we observe no TTR 

deficiency in the serum of three p.A75T/+ obligate carrier females (Table 2.2). Normal 

circulating TTR levels are also observed for p.I59N and p.I59N/p.G93D heterozygous 

individuals (Biesalski et al., 1999). 

 

Mass spectrometry of p.A75T/+ carrier serum identifies wild-type and A57T forms  

Thus far, our experimental data suggests RBP A55T and A57T should be present in the 

circulation at an equal fraction to wild-type. To test this, we purified RBP A57T from 

serum of an obligate carrier (VI-2, Figure 2.S6) and performed mass spectrometry to 

measure relative quantities of RBP wild-type versus A57T. We included purified HA-

recombinant RBP wild-type, A57T and 1:1 pre-mixed controls. The predicted size 

difference between tryptic peptides encompassing amino acid position 57 is 30 Da (m/z 

= 3,170 for A57T and 3,140 for wild-type; Figure 2.4A). Of the resulting MALDI-TOF 

mass spectrum (Figure 2.4B), we identified m/z peaks in the 3,100 to 3,220 range 

corresponding to both wild-type and A57T in a 2-to-1 ratio, respectively (Figure 2.4C). 

Peptide sequencing confirms analysis of the correct targets (data not shown). Based on 

controls, the observed m/z peaks are specific to RBP and the different relative 
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intensities are not due to differences in ionization potentials (Figure 2.4C). This result 

demonstrates A57T constitutes approximately one-third of all circulating RBP in 

p.A75T/+ carriers. 

To determine the underlying reason(s) for the asymmetric ratio of A57T-to-WT 

RBP we first tested for imprinting at the Rbp4 locus. We performed RNA analysis in a 

F1 cross of two divergent inbred mouse strains (DBA/2J x C57BL/6) with several 

expressed single nucleotide polymorphisms within the 3’ UTR of the Rbp4 mRNA 

transcript. We examined F1 adult liver and E14.5 embryonic liver, placenta and whole 

embryo (minus liver) and found bi-allelic expression in all tissues (Figure 2.S5). Ruling 

out imprinting, we next hypothesized possible unequal rates of kidney filtration 

secondary to an as-yet unknown cause. In such a case, we would expect to see an 

inverted urine ratio (i.e. 1-to-2 WT-to-mutant). Thus, we quantified relative levels of 

purified urine RBP using the same mass spectrometry protocol (Figure 2.S7A-C). 

However, we again found the ratio to be at least 2-to-1 WT-to-mutant, mirroring the 

serum RBP ratio (Figure 2.S7D). This result indicates no difference in glomerular 

filtration rate and urine output of wild-type and A57T mutant RBP. 

 

RBP A55T and A57T bind retinol poorly 

Given the strong link between vitamin A deficiency and congenital eye defects, it is 

essential to establish whether the two threonine-substituted RBP forms are capable of 

binding retinol. To this end, we developed two independent vitamin A binding assays. 

First, we metabolically labeled HeLa cells expressing wild-type or mutant RBP with 35S 

methionine and cysteine (Figure 2.5A). RBP G75D and I41N were included as negative 
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controls (Folli et al., 2005). We then exposed cells to 3H all-trans-retinol and allowed 

binding to occur for 1.5 hr. After 35S-RBPHA HA immunopurification, we compared 3H/35S 

normalized ratios. Our results show that RBP A55T had negligible retinol binding 

whereas A57T retained roughly 16% of wild-type levels (Figure 2.5B). Our result 

indicates position 57 can better tolerate structural and chemical modifications than 

position 55. This is consistent with X-ray crystallographic data that places the A57 single 

methyl R-group at a distance of 4Å from C3 of retinol (Cowan et al., 1990). The A55 R-

group resides only 3.7Å and 3.6Å from C3 and C4, respectively. As a second 

independent measure of vitamin A binding, we chose to exploit the up to 15-fold 

increase in fluorescence intensity exhibited by retinol when bound as holo-RBP versus 

alone in solution (Goodman and Leslie, 1972). Using purified recombinant RBPHA, we 

measured fluorescence emission intensity (excitation 330 nm, emission 460 nm) using 

various retinol concentrations from 1 – 5,000 nM in PBS alone (Figure 2.5C). We also 

included blanking controls containing no RBP and no retinol. Our results led to two 

critical observations. First, both RBP A55T and A57T accommodate retinol well under 

ideal (saline only) conditions as predicted by our molecular modeling study. 

Furthermore, relative fluorescence intensities of both forms are consistent with the 

metabolic double-labeling experiment. Second, RBP A57T and wild-type binding curves 

are essentially identical. Faced with this discrepancy, we recalled previous studies 

demonstrating the holo-WT complex exhibits remarkable stability in the face of 

environmental stressors including extreme non-physiologic temperatures, pH conditions 

and apolar solutions (Cogan et al., 1976; Raz et al., 1970). Hypothesizing that both 

threonine substitutions may weaken overall retinol binding, we subjected RBP-ROH 
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complexes to increasingly apolar or amphipathic environments using ethanol and Triton 

X-100, respectively (Figure 2.5D and E). Indeed, both treatments unmasked inherent 

binding deficiencies in RBP A55T and A57T as measured by relative fluorescence. 

These data indicate exposure to hydrophobic agents exploits inherent weaknesses in 

retinol binding due to the threonine substitution. 

Our retinol binding data combined with the presence of RBP A57T in serum 

together predict that p.A73T/+ and p.A75T/+ heterozygous carriers should exhibit 

reduced circulating retinol levels. We tested total fasting serum retinol levels in the 

same three p.A75T/+ carriers as before (p.A73T/+ carriers were unavailable for testing), 

and found all three to have fasting levels below the lower normal limit (Table 2.2). 

Individuals VI-2 and VI-3 each had roughly 50% average levels, which is in general 

agreement with the fraction of mutant RBP in p.A75T/+ carrier serum. On the other 

hand, VI-7 was just below normal, which is likely attributable to her daily vitamin A 

supplementation at the time of testing. As a second independent measure, when we 

purified serum RBP from individual VI-2, we noticed approximately 50% fluorescence 

intensity decrease compared to control after total protein normalization. Altogether, our 

study highlights RBP4 p.A73T and p.A75T as an allelic series, each with significantly 

reduced retinol binding capacity with the former being most severe. The overall 

reduction in retinol binding in our experiments correlates with lowered in vivo circulating 

retinol levels in p.A75T/+ carriers. 

 

RBP A55T and A57T bind STRA6 at higher steady-state levels than wild-type 
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STRA6, or stimulated by retinoic acid 6 (Bouillet et al., 1997), is the first-identified RBP 

receptor that mediates cellular uptake of vitamin A (Kawaguchi et al., 2007). Its 

importance in cellular retinoid processing is illustrated by patients with homozygous 

inactivating STRA6 mutations born with microphthalmia or anophthalmia (Casey et al., 

2011; Chassaing et al., 2009; Golzio et al., 2007; Pasutto et al., 2007). In addition, 

affected individuals may also have congenital heart defects, diaphragmatic hernia and 

pulmonary hypoplasia/aplasia, features consistent with VAD syndrome. At target tissue 

membranes, STRA6 binds holo-RBP with high affinity (Kawaguchi et al., 2007). Upon 

translocation of vitamin A into the cell, apo-RBP dissociates allowing the next holo-RBP 

molecule to bind the unoccupied receptor. To examine RBP A55T and A57T binding 

strength, we employed a modified cell-culture system based on a previously described 

protocol (Kawaguchi and Sun, 2010). We generated 35S-labeled apo-WT, holo-WT, 

A55T and A57T RBP and applied equivalent amounts to HEK293T cells expressing 

STRA6myc or control (Figure 2.6A). We confirmed expression and cell surface 

localization of STRA6myc by anti-Stra6 Western blot and myc immunocytofluorescence 

(Figure 2.6B). After one hour, we measured steady-state binding by radioactive counts. 

After correcting for background, we discovered RBP A57T and A55T bound with 4- and 

7-fold higher levels than holo-WT, respectively (Figure 2.6C). Consistent with its 

diminished role upon vitamin A delivery, apo-WT showed lowered steady-state binding 

levels compared to holo-WT. Given the heterozygous state of affected individuals in all 

three families, we investigated the effects of adding “cold” unlabeled holo-WT 

competitor with each 35S RBPHA form. By adding increasing molar amounts of 

competitor (5X and 150X molar ratio), we observed a similar displacement for RBP 
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A57T and holo-WT (Figure 2.6C). Conversely, twice as much relative A55T remained 

bound at this intermediate level of competitor. As expected, at higher molar amounts of 

cold RBP, we observe near complete dissociation of all 35S-labeled forms. Our results 

reveal that both RBP A57T and A55T have strong STRA6 receptor affinity despite poor 

ligand binding.  

 

DISCUSSION 

In this study, we identify two hereditary defects in human RBP4 that cause autosomal 

dominant MAC with low penetrance and a maternal parent-of-origin effect. At the 

molecular level, this disease arises from dominant-negative forms of RBP that 

structurally and functionally mimic holo-WT RBP, except for a paradoxical combination 

of poor retinol binding and higher apparent STRA6 receptor affinity. To our knowledge, 

this is the first example of a blood cargo protein with this unique property that underlies 

a human disease. Our overall conclusion is supported by multiple independent 

observations: 1) it is the most parsimonious interpretation of our in vivo functional 

results, mass spectrometry and clinical diagnostic testing in conjunction with previously 

known data, 2) linkage mapping in a large family favors 10q23 by at least 11-times more 

than other candidate regions, 3) RBP4 mutations are overrepresented in the MAC 

population and are absent in controls, 4) RBP is involved in vitamin A transport and 

specific ablation of the RBP pathway predisposes to structural eye defects (Quadro et 

al., 2005), further reinforcing the link between VAD and congenital eye malformations, 

and 5) the parent-of-origin effect is explained by deficient maternal-fetal exchange of 
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vitamin A at the visceral yolk sac and placenta, two sites of STRA6 and RBP expression 

(Johansson et al., 1999; Sapin et al., 1997; Soprano et al., 1986a) . 

 

A unified molecular and physiologic disease model 

Based on the unique molecular properties of RBP A55T and A57T, we hypothesize a 

novel dominant-negative disease mechanism (Figure. 2.7A). In heterozygous carriers, 

both RBP4 alleles are expressed in the liver and co-localize to the endoplasmic 

reticulum (Rask et al., 1983; Smith et al., 1998). There they co-exist as apo-WT and a 

structural mimic of holo-WT (i.e. mutant). Only apo-WT is able to bind vitamin A. 

Regardless, both forms partner with TTR and are secreted into circulation as stable 

pentameric complexes. At target cell membranes, both RBP mutants bind STRA6. Holo-

WT rapidly delivers vitamin A and promptly dissociates. However, mutant RBP binding 

persists because of altered RBP-STRA6 structural properties. At steady-state levels, 

more STRA6 receptors are occupied by mutant RBP than are available for holo-WT. 

This phenomenon results in a molecular “bottleneck” that prevents normal delivery of 

vitamin A.  

At a physiologic level, the maternal parent-of-origin effect is a reflection of two 

sequential vitamin A “bottlenecks” at the maternal-fetal interface (i.e. yolk sac and 

mature placenta) and then at cells of the developing fetal eye (Figure 2.7B). In 

mammals, the yolk sac performs the earliest placental functions (when eye 

development begins) while the chorio-allantoic placenta develops. If a pregnant mother 

is a p.A73T/+ or p.A75T/+ carrier, she will co-express and secrete wild-type and mutant 

RBP from her liver. If she transmits the mutant RBP4 allele to her fetus, a series of 
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potential vitamin A “bottlenecks” arise. The first occurs at the fetal-derived placental 

syncytiotrophoblast layer where maternal RBP first interacts with fetal STRA6 

(Johansson et al., 1999). Maternal RBP does not cross into fetal circulation (Quadro et 

al., 2004b), indicating that retinol transfer from maternal to fetal RBP must occur. This 

most likely happens at the visceral endoderm of the yolk sac, a tissue known to 

synthesize RBP de novo in human, sheep, rat and mouse (Harney et al., 1994; 

Johansson et al., 1999; Liu et al., 1991; Sapin et al., 1997; Soprano et al., 1986a), and 

accumulate retinoids throughout rodent gestation (Johansson et al., 1997). Expression 

of components necessary for retinol uptake and RBP loading (STRA6, TTR and cellular 

retinol binding proteins CRBP-I or CRBP-II) have yet to be confirmed in first trimester 

human yolk sac tissue. Their presence is likely given many studies in non-human 

mammals demonstrate, in addition to RBP, yolk sac visceral endoderm also expresses 

STRA6, TTR, and cellular retinol binding proteins CRBP-I and CRBP-II (Bouillet et al., 

1997; Johansson et al., 1997; Sapin et al., 2000a). In mouse, complete loss of CRBP-II, 

coupled with maternal vitamin A deficiency, leads to features consistent with VAD 

syndrome including eye defects (Xueping et al., 2002). Since the human yolk sac 

disappears one-third the way through pregnancy (unlike in rodents), its relative 

contribution to retinoid delivery over time may decline as the chorio-allantoic placenta 

matures by the second trimester. The final “bottleneck” occurs at fetal eye tissues where 

STRA6 is expressed (Bouillet et al., 1997) where fetal RBP interacts with fetal STRA6. 

Given that all potential “bottleneck” sites are fetal-derived tissues may explain 

why disease risk is highest when both mother and fetus are carriers, as seen in all three 

families in Chapter II (13 of 14 cases). Notably, an individual from a twin-pregnancy 
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developed unilateral iris and chorioretinal coloboma (IV-2, Figure 2.1B) despite having a 

genotypically normal mother. This is likely explained by the presence of a twin which 

created a nutritional competition and global physiologic vitamin A deficiency in utero, 

producing a threshold effect in one twin but not the other. Twin pregnancies are 

considered high risk in part due to potential uneven nutrient distribution (e.g. twin-twin 

transfusion syndrome) (Lopriore et al., 2011). Indeed, the affected twin weighed less at 

birth than her unaffected sister (IV-3) (Table 2.S1). We predict that any entity capable of 

altering maternal retinoid levels in a carrier whose vitamin A status is already tenuous 

could amplify risk of eye abnormalities in offspring relative to non-carriers. Among all the 

potential genetic or environmental factors, dietary vitamin A status is paramount (Figure 

2.7B), and adequate consumption is likely the major reason for low penetrance. 

Additional environmental factors may include infectious diseases and toxin exposure 

(Hornby et al., 2000) or liver disease (Smith and Goodman, 1971). This form of MAC 

highlights a gene-environment interaction centered on maternal and fetal RBP4 

genotypes and maternal vitamin A status during the first two months of pregnancy. 

 

Structural basis for RBP molecular mimicry 

RBP is the prototypical member of the ancient lipocalin protein family, which is part of 

the calycin superfamily. Lipocalins have been described in all branches of life including 

mammals, crustaceans, insects and bacteria (Flower, 1996). These small globular 

proteins function in transport of principally small hydrophobic molecules in processes 

such as nutrient transport, coloration, olfaction, pheromone transport, immune function 

and cell homeostasis (Grzyb et al., 2006). Lipocalins are subgrouped into kernel or 
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outlier classes by tertiary structure and the presence of one to three short conservative 

regions (SCRs) (Flower et al., 1993). The ligand binding portion, or calyx, is formed by a 

folded β-sheet comprised of six to eight antiparallel strands (A-H) with an open and 

closed end. At the open end is a loop scaffold that seals and protects the ligand, most 

notably the A-B loop. A C-terminal α-helix exists as well. Ligand selectivity is conferred 

by amino acid residues lining the binding pocket. 

The paradoxical abolishment of RBP ligand binding with high affinity receptor 

binding argues strongly for a structural mimicry effect. Based on known crystal 

structures of human holo- and apo-WT RBP, the major structural difference is observed 

in the A-B loop defined by amino acids 34 through 37 (Cowan et al., 1990; Newcomer et 

al., 1984; Zanotti et al., 1993). In the holo form, F36 points toward the interior of the 

cavity but in the apo form, it folds out and is positioned in space previously occupied by 

the retinol hydroxyl group (Zanotti et al., 1993). Given the size and position deep within 

the cavity, it is unlikely the threonine side chain mimics retinol itself. Instead, the 

substitution likely produces an allosteric effect that stabilizes the critical A-B loop in the 

holo position. Molecular modeling suggests a network of hydrogen bonds anchored by 

the threonine hydroxyl group may mediate this stabilization (Figure 2.S4D). Moreover, 

this thermodynamically favorable state confers a more static nature to the altered 

protein reflected in all tested properties. 

Under vitamin A sufficient conditions, ingested retinoids are taken up by 

hepatocytes and either stored as retinyl esters in hepatic stellate (Ito) cells (Blomhoff et 

al., 1982; Yamada et al., 1987) or re-directed to the hepatocyte ER for holo-RBP 

secretion (Muto et al., 1972; Sporn et al., 1994). Within individuals, RBP concentration 
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is highly regulated and remains constant except in certain disease states (Soprano, 

1994). In chronic vitamin A deficiency, increased hepatic RBP accumulation leads to a 

decline in serum RBP (Muto et al., 1972), because RBP secretion depends on retinol 

binding (Marinari et al., 1987; Melhus et al., 1992; Muto et al., 1972; Smith et al., 1978). 

Therefore, the presence of RBP A57T at a significant fraction in carrier serum was quite 

surprising given poor ligand binding. We first considered the possibility of extrahepatic 

sources of RBP. Quantitative RNA studies of de novo extrahepatic synthesis estimate 

10-20% contribution to overall circulating RBP-ROH (Soprano et al., 1986b). If true in 

humans, each RBP4 allele expressed in non-liver tissues accounts for at most 10% of 

total serum RBP, far less than our measurement of ~33% (Figure 2.4). This rules out 

extrahepatic tissues as the primary source of circulating mutant RBP in p.A75T/+ 

carriers. How then does mutant RBP secrete from the liver despite impaired retinol 

binding? The simplest explanation is an allosteric effect that allows mutant RBP to 

bypass the vitamin A requirement by appearing as “holo-WT” on its external surface. 

This is bolstered by our data indicating no significant differences in gene transcription 

levels, secretion rates or gross tertiary structure alterations between mutant and wild-

type forms. Thus, we favor a bypass model, and relative reduction of mutant RBP in 

circulation most likely stems from a post-secretion phenomenon.  

It is known that holo-RBP exhibits approximately 5-fold greater TTR affinity than 

apo-RBP (Fex et al., 1979; Smith and Goodman, 1971). Furthermore, the A-B loop is a 

critical participant in the TTR-RBP docking interface, specifically L35 on holo-RBP 

(Monaco et al., 1995; Naylor and Newcomer, 1999; Sivaprasadarao and Findlay, 1994). 

In contrast, the position of the A-B loop in apo-RBP is not favorable for TTR-RBP 
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interaction (Heller and Horwitz, 1973). The equal steady-state levels of macromolecular 

complex suggest TTR is largely oblivious to the threonine substitutions deep inside the 

retinol binding pocket. The absence of overt mutant RBP urinary excretion further 

supports this notion. Preservation of the TTR-RBP docking interface requires proper 

holo configuration of multiple external loops (including A-B) but no direct involvement of 

binding pocket residues (Naylor and Newcomer, 1999). For this reason, we believe the 

nature of the TTR interaction is largely unaltered for both A55T and A57T forms. 

 Our data and previous studies indicate holo-RBP binds STRA6 with greater 

affinity than apo-RBP (Redondo et al., 2008). Upon release of retinol into the cell, it is 

unclear what additional molecular modifications on RBP, if any, drive its dissociation 

from STRA6. In other words, what accounts for increased A55T and A57T receptor 

binding? One possibility is that under normal circumstances, the A-B loop simply folds 

back into the apo position, signaling to the receptor that retinol has been unloaded. 

STRA6 would then confirm delivery based on feedback from cellular retinol binding 

protein (CRBP) and lecithin-retinol acyltransferase (LRAT) (Amengual et al., 2012; 

Kawaguchi et al., 2011) and undergo a final conformational shift that releases apo-RBP. 

However, if the A-B loop is fixed in the holo position, STRA6 may continuously attempt 

to “unlock” the RBP molecule without success, thus prolonging the interaction. A second 

possibility is that RBP docking allows the A-B loop to swing open and prime STRA6 for 

delivery. However, without vitamin A exchange, the receptor awaits but never receives 

necessary feedback signals from CRBP and LRAT to promote apo-RBP dissociation. 

Regardless of the true dissociation mechanism, our experimental observation may 

explain the asymmetric distribution of RBP forms in carrier blood. In the adult, STRA6 is 
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broadly expressed in multiple tissues including RPE, choroid plexus, brain meninges 

and capillaries, kidney, spleen, bronchus, testis and female genital tracts (Bouillet et al., 

1997) providing ample target membranes for mutant RBP attachment. 

At this time, we cannot rule out other major allosteric changes or altered ligand 

specificities for RBP A55T or A57T. Both changes are unlikely given all reported RBP4 

mutations to-date yield forms that accommodate retinol under ideal conditions 

suggesting relatively intact tertiary structures (our study and (Folli et al., 2005)). Also, 

changes in retinoid specificity are predicted to abolish TTR binding and promote 

glomerular filtration (Horwitz and Heller, 1973) thus arguing against a dominant 

phenotype. Nevertheless, X-ray crystallographic studies would prove highly insightful 

into the structural basis for mimicry. Both RBP A55T and A57T may represent novel 

separation-of-function mutants that uncouple vitamin A binding with secretion, TTR and 

STRA6 binding. In general, the mimicry effect parallels viral defective interfering 

particles that inhibit the replication of non-defective viruses in the same cell (Huang and 

Baltimore, 1970). Less strictly, this is similar to dominant mutations of cellular receptor 

proteins that encode constitutively active forms independent of ligand binding such as 

FGFR3 mutations in achondroplasia (Webster and Donoghue, 1996).  

 

RBP4 mutations at the threshold of VAD syndrome  

Empirically, the eye is most frequently affected in VAD syndrome (Hale, 1935; Warkany 

and Schraffenberger, 1946; Wilson et al., 1953). In Family 1 (p.A75T/+), the disease 

appears to be restricted to the developing eye, suggesting vitamin A level drops below a 

critical threshold to produce ocular defects. The more severe p.A73T allele correlates 
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slightly with worsened eye and neurological phenotypes (Family 2). However, an 

affected child with the same genotype has only unilateral microphthalmia with no other 

findings (Family 3). This may reflect additional unknown genetic modifiers and/or 

variations in maternal vitamin A status during the respective pregnancies. Indeed, 

Rbp4-null mouse pups born from Rbp4-null dams are normal under vitamin A sufficient 

conditions (Quadro et al., 1999), but develop VAD syndrome features with insufficient 

maternal dietary retinoids (Quadro et al., 2005). Variations in maternal vitamin A status 

would predict graded developmental phenotypes and low penetrance as seen in this 

study. While this may lead to misdiagnosis of “sporadic” cases, affected individuals and 

carriers can be potentially easily screened for potential RBP4 mutations through fasting 

retinol blood tests. 

As with fetal development, VAD in adults first manifests in the eye beginning with 

night blindness and progresses to dry eye (xerophthalmia) with conjunctival Bitot’s spots 

(deposits of bacterial overgrowth and dead epithelial cells) (Sommer, 2008). If 

untreated, this can lead to corneal ulcerations, keratomalacia, permanent blindness and 

death from immune failure. The absence of any such signs among all known carriers in 

our study may at first seem paradoxical. However, this can be explained by two 

reasons: 1) the dominant-negative mechanism does not necessitate total vitamin A loss 

through the RBP pathway, and 2) all three families experience normal Western diets 

abundant in retinol, retinyl esters, and α/β-carotenoids. Intestinal enterocytes convert all 

forms into retinyl esters and package them into chylomicrons (Agadir et al., 1999; 

Huang and Goodman, 1965). A significant fraction of post-prandial chylomicron 

retinoids (25%) are directly taken up by extrahepatic tissues without RBP involvement 
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(Goodman et al., 1965). This allows Rbp4-/- mice maintained on vitamin A sufficient 

diets to develop normally and remain healthy and viable (Quadro et al., 1999). 

Furthermore, there may be additional retinoid stores (e.g. lung) that are activated via 

alternative pathways in the absence of circulating RBP-ROH (Quadro et al., 2004a). In 

humans, complete loss of RBP4 in two compound heterozygous sisters on a normal 

eastern European diet suffer from mild night blindness with dermatologic issues, but no 

life-threatening complications (Biesalski et al., 1999). Their carrier mother shows 50% 

normal circulating RBP and retinol levels but is clinically normal. From these nutritional 

studies, it is clear the demand for vitamin A in embryonic and adult eye is highest, but 

under normal circumstances, supply far exceeds demand. Despite the fact that RBP-

ROH accounts for 95-99% of total circulating retinoid in the fasting state (Soprano, 

1994), these studies demonstrate the presence of alternative retinoid pathways that can 

significantly compensate for an impaired RBP delivery system. In this regard, retinyl 

ester supplementation may prove an effective prophylactic measure for female RBP4 

mutation carriers of child-bearing age. 

 

Gene-environment interactions in maternal parent-of-origin diseases 

The existence of hereditary defects in maternal vitamin A metabolism with 

predisposition to structural eye defects has been hypothesized (Hornby et al., 2003) but 

never verified. Based on our observations, dominant RBP4 mutations may represent the 

missing link. This mechanism is distinct from other known maternal-specific 

developmental pathways including mitochondrial or ooplasmic RNA inheritance and 

imprinting. The maternal effect has been described classically in patients with 
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congenital heart disease (Burn et al., 1998; Connolly and Warnes, 1994; Nora and 

Nora, 1987) and pyloric stenosis (Dodge, 1970; Kidd and Spence, 1976; Krogh et al., 

2010). However, due to the complexity of gene-environment interactions, no convincing 

disease mechanism has been put forth. One exception is a recent study on congenital 

scoliosis that identified transient gestational hypoxia as an environmental component 

leading to altered FGF signaling and disrupted somitogenesis (Sparrow et al., 2012). 

Likewise, our study adds a new dimension in the form of molecular mimicry that 

interferes with maternal-fetal nutrient transport, causing vitamin A deficiency at the 

cellular level and structural eye malformations. This gene-environment interaction 

mirrors mutations in MTHFR, folic acid deficiency and spina bifida (Rozen, 1996). 

 

EXPERIMENTAL PROCEDURES 

Clinical data 

All human studies were approved by the University of Michigan (UM) and Albert 

Einstein Medical Center (AEMC) Institutional Review Boards, and informed consent was 

obtained from all subjects.  Families were ascertained through the UM oculoplastic 

service or AEMC anophthalmia registry. Eye exams, fundus photography and magnetic 

resonance imaging (MRI) studies were performed at UM Kellogg Eye Center (Table 

2.1). Routine blood tests for retinol, RBP and transthyretin (prealbumin) were performed 

on obligate carrier samples collected after a 12 hr fast (Table 2.2). See Extended 

Clinical Description for details. 

 

Genetic Analysis 
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In index Family 1, genotypes were determined for 51 simple sequence length 

polymorphism (SSLP, Table 2.3) and 6070 single nucleotide polymorphism (SNP) loci 

using blood, saliva or buccal DNA. Biallelic SNPs were assessed using the HL12 

BeadChip platform and Beadstudio software (Illumina, San Diego, CA). Genetic 

analysis was performed in three steps. Exclusion tests were performed by comparing 

the two probands using SSLP markers flanking 30 genes previously associated with 

MAC phenotypes (Table S2). MERLIN v1.1.2 (Abecasis et al., 2002) multipoint linkage 

analysis was performed on a core pedigree consisting of all living affected individuals, 

obligate carriers and their spouses (n = 20). The linkage analysis was then extended to 

include all collected (n = 33, Figure 2.S1C and D) and nodal family members. Linkage 

scores were calculated by summing LOD values from two subpedigrees (Figure 2.S1D), 

discarding duplicate phenotypic information (Bellenguez et al., 2009) and applying an 

autosomal dominant inheritance model with uniform or sex-specific reduced penetrance 

estimated from the pedigree. 

We screened 75 unrelated MAC probands and 307 neurologically normal control 

samples for variants in RBP4 exons by Sanger sequencing PCR products (Table 2.4). 

As a further control, we queried the exome variant server (EVS) database of 5,358 

normal individuals for variations in RBP4 exon 3 at the pertinent genomic positions.  

Chromosome 10q haplotypes of Families 2 and 3 were compared using the Human 

Omni1-Quad SNP platform (Illumina). All genomic analysis was performed in the 

University of Michigan DNA core. 

 

Molecular protein modeling 
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Minimization of Energy software (MOE, (Chemical Computing Group, 2012)) was used 

to calculate surface plots and hydrogen bond networks based on the trigonal X-ray 

crystal structure of human holo RBP (protein data bank structure 1BRP for holo-RBP 

and 1BRQ for apo-RBP, (Zanotti et al., 1993)).  The MMFF94x parameters were used 

for all energy minimizations. In the case of the holo structure, bond orders for the retinol 

were corrected. Hydrogen atoms were added and relaxed with energy minimization. To 

generate the mutants, alanine was mutated to threonine. The side chain of threonine 

was then relaxed with energy minimization along with further refinement of the hydrogen 

atom positions. In the case of the holo structure, retinol and sides chains of any residue 

with one or more atoms within 4.5 A of retinol were then relaxed with energy 

minimization along with further refinement of the hydrogen atom positions. In the case 

of the apo structure for the A57T mutant the positions of the binding site water 

molecules were relaxed with energy minimization but not in the wild-type or A55T 

mutant. Displayed surfaces represent the molecular surface between retinol and 

residues 55-57 (and F36) of the protein. Hydrophilic regions of the surfaces are shown 

in purple, hydrophobic regions in green, and neutral in white. All images were generated 

using PyMol version 1.5.0 (Schrodinger, LLC, Portland, OR). 

 

RBP secretion and TTR coimmunoprecipitation assays  

HeLa cell cultures were transfected in parallel with pUS2-RBPHA plasmid vectors 

expressing wild-type (WT), mutant (A55T, A57T, G73D, I41N) or ER retention (WTKDEL) 

human RBP proteins with an N-terminal hemagglutinin (HA) epitope, or empty vector 

control (for cloning primers see Table 2.5). After 48 hrs, conditioned media (CM) and 
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RIPA cell lysates were electrophoresed through native or denaturing polyacrylamide 

gels and compared by HA Western blot analysis.  To evaluate RBP multimerization, CM 

was crosslinked in 0.5% glutaraldehyde for 30 min prior to denaturing electrophoresis, 

with or without 2 mM βME (2-mercaptoethanol).  To assess TTR binding, HeLa cells 

were cotransfected with pUS2-TTRmyc  and wild-type or mutant pUS2-RBPHA plasmids.  

Secreted RBPHA complexes were immunopurified from CM with anti-HA agarose beads 

(Sigma, St Louis, MO), washed in PBS, and tested for TTR content by Western blot 

analysis.  See Extended Experimental Procedures for molecular cloning, cell culture, 

immunostaining, protein electrophoresis and Western blot details. 

 

Retinol binding assays 

To assess retinol ligand binding to RBP in vivo, HeLa cells were transfected with WT or 

mutant pUS2-RBPHA plasmids in delipidated media, metabolically labeled with 35S-

methionine and -cysteine in serum-free media for 1.5 hrs, and exposed to 3H-retinol 

(Perkin Elmer, Waltham, MA) for an additional 1.5 hrs.  RBP was HA-immunopurified 

from CM after 48 hrs, washed three times in PBS containing 1% Triton X-100, 0.5% Na 

deoxycholate (DOC), and eluted in 2% SDS.  The 3H/35S ratio was measured by liquid 

scintillation counting and normalized to WT.  

For in vitro assays, native recombinant apo RBPHA was immunopurified from 

transfected HeLa CM, eluted from anti-HA agarose beads using HA peptide (Anaspec, 

Fremont, CA), and dialyzed into PBS.  Homogeneity was verified by syproruby PAGE 

analysis. Equal amounts of WT, A55T or A57T rRBPHA protein were loaded with 0 to 10 

μM fresh all-trans retinol for 1 hr in PBS.  Binding was quantified by retinol fluorescence 
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(330 nm excitation, 460 nm emission) (Cogan et al., 1976) using a Flexstation-3 

microplate reader (Molecular Devices, Sunnyvale, CA).  To assess binding in nonpolar 

or amphipathic conditions, parallel assays were performed in the presence of 0 to 50% 

ethanol or in 1% Triton X-100, 0.5% DOC for 0 to 75 min, respectively. 

 

RBP purification from clinical samples and mass spectrometry 

We enriched RBP from 20 ml human plasma by differential ammonium sulfate 

precipitation and Sephadex G-100 gel exclusion chromatography in PBS ± 6 M Urea as 

described (Raghu et al., 2003) (Figure 2.S6).  Pooled fractions were dialyzed into 50 

mM ammonium bicarbonate and electrophoresed through polyacrylamide gels. In 

parallel, we purified HA-recombinant RBP (WT, A55T and A57T) from cell conditioned 

media (HA-IP Kit, Sigma). Samples were subjected to PAGE under denaturing 

conditions and Coomassie stained (GelCode Blue, Thermo) and gel-excised for mass 

spectrometry. All mass spectrometry was run at the Fred Hutchinson Cancer Research 

Center Proteomics Facility. Clinical samples and HA-purified recombinant RBPHA 

controls were proteolytically digested in-gel as described (Shevchenko et al., 1996). 

Extracted peptides were taken to dryness via vacuum centrifugation and then desalted 

using Zip-Tips (Millipore, Billerica, MA) per the manufacturer’s instructions. One-tenth of 

the desalted material (1 uL in 50% acetonitrile and 0.1% trifluoroacetic acid) was mixed 

with 2 uL of 5 mg/mL α-cyano-4-hydroxycinammic acid (suspended in 50% acetonitrile 

and 0.1% trifluoroacetic acid) and spotted on a stainless steel MALDI target. MALDI 

TOF/TOF was performed with a 4800 MALDI TOF-TOF mass spectrometer (AB Sciex, 

Foster City, CA). Both MS and MS/MS data were analyzed through the instrument’s 
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Data Explorer software and with the assistance of GPMAW software v. 9.1 (Lighthouse 

Data, Denmark). For urine RBP mass spectroscopic analysis, we purified RBP from first 

morning urine (8 ml) by overnight dialysis versus PBS and immunoprecipitation with 

anti-RBP4 antibody (DAKO, Carpinteria, CA).  Following elution in 2% SDS, RBP was 

isolated on a denaturing gel without βME and submitted for mass spectrometry as 

described above.  

 

RBP binding to STRA6 membrane receptor  

Equal amounts of immunopurified 35S-labeled apo WT, holo WT, A55T and A57T 

recombinant RBPHA (6 x 108 cpm/μg specific activity) ± excess unlabeled holo WT 

competitor were added to paired sets of HEK293T cells transfected with pUS2-

STRA6myc or vector control.  After 1 hr incubation at 37oC, the cells were gently washed 

with prewarmed PBS (Kawaguchi and Sun, 2010) and bound 35S was counted by liquid 

scintillation.  For each mutant, receptor-specific binding was calculated by subtracting 

the corresponding vector control.  STRA6myc expression was verified by myc 

immunofluorescence and STRA6 Western analysis.  
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EXTENDED EXPERIMENTAL PROCEDURES 
 
 
Genomic and DNA analysis 

Targeted sequence capture was done on a pooled sample of eight affecteds and 

obligate carriers in family 1 to enrich for the desired chromosome 1 haplotype. We used 

a dual custom oligonucleotide capture array (Nimblegen) specific to human 

chromosome 1q32-41 (hg18, chr1:208,589,440-219,941,307). We converted the 

captured DNA into an Illumina paired-end genomic library using a Paired End Library Kit 

(Illumina, San Diego, CA). Reads were sequenced on a Illumina GenomeAnalyzer 

sequencer at the University of Michigan DNA Sequencing Core. Validated read data 

was viewed and analyzed using GenomeStudio software. We achieved an average 

coverage of 18X across the 11.4 Mb interval. Heterozygous variants were filtered for 

presence in known databases (dbSNP 131, 1000 genomes, HapMap) with priority given 

to coding or UTR variants. Novel intronic variants were screened using Spliceport 

(Dogan et al., 2007) and intergenic variants were screened using JASPAR (Bryne et al., 

2008). In parallel, we screened 34 positional candidate genes by PCR across all three 

candidate regions defined by linkage. To do so, we used custom designed 

oligonucleotide primers on proband lymphoblastoid cell line DNA to look for inherited 

heterozygous changes within exons or splice donor or acceptor sites. PCR products 

were agarose gel purified (Wizard SV gel system, Promega) and both strands were 

Sanger sequenced at the University of Michigan DNA core. For a comprehensive RBP4 

primer list see Supplemental Table 3.  For control genotypes, 307 individuals were 
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genotyped by hand and approximately 5,358 controls were screened in silico using the 

NHLBI Exome Variant Server v.0.0.13. 

 

Rbp4 RNA analysis 

To test bi-allelic expression of mouse Rbp4, we performed a test cross between 

C57BL/6 and DBA/2J (Jackson Laboratory, Bar Harbor, ME), two inbred strains with 

different alleles at the expressed SNP (eSNP) locus rs30796132. Multiple crosses 

produced F1 adults and E14.5 embryos (Figure 2.S5). We dissected adult liver and 

embryonic placentae and whole embryo tissue and additionally removed the embryonic 

liver. Multiple littermates were tested for each tissue. Tissues were homogenized into 

Trizol (Invitrogen, Carslbad, CA) and RNA was extracted according to manufacturer’s 

protocol. First-strand cDNA synthesis (Transcriptor, Roche, Indianapolis, IN) was 

performed and subsequent PCR reactions (25 μl) were performed using primers 

mRbp4_F (5’-GCA GAC AGC TAC TCC TTT GTG TT) and Rbp4_R (5’-AGG AAG ATG 

GTG ACT ATA TGT TTA AT). PCR products were agarose gel purified (Wizard SV gel 

system, Promega) and sequenced. Animals were housed in accordance with UCUCA 

guidelines. 

 

RBP4, TTR and STRA6 expression vectors 

We generated three cDNA expression vectors encoding human RBP4, TTR and 

STRA6. Full length WT cDNA clones were ordered (OpenBiosystems, Lafayette, CO) 

and PCR amplified then subcloned into pUS2 (generous gift of D. Turner) using EcoRI 

and XhoI restriction sites. For RBP4, we generated native and mature N-terminal 
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hemagglutinin (HA) epitope tagged versions. For TTR and STRA6, we engineered 

native and C-terminal myc epitope tagged versions. Mutant RBP4 expression plasmids 

were created using site directed mutagenesis, or SDM (Liu and Naismith, 2008) with 

mismatch oligonucleotides specific to each mutant (see Table 2.5 for a comprehensive 

list of cloning and SDM oligonucleotides). Vectors were raised in DH5α bacteria grown 

in ampicillin (100 μg/ml) liquid cultures and harvested for maxi prep DNA (Qiagen, 

Valencia, CA) for transfection. 

 

Tissue culture and cell transfection 

HeLa and HEK-293T cells (ATCC, Manassas, VA) were grown in Dulbecco’s Modified 

Eagle Medium supplemented with 10% heat-inactivated fetal bovine serum, L-glutamine 

(2 mM), penicillin (50 U/ml)  and streptomycin (50 μg/ml) hereafter referred to as “rich 

media”. Cells were incubated in 37oC humidified tissue culture incubators with 5% CO2. 

Typically, cells were plated at 1 x 106 per 60 mm dish and grown until cells reached a 

confluency of approximately 50%. Transfection (FuGene6, Promega) was carried out 

using a 3:1 F6:DNA ratio for HeLa cells and 4:1 ratio for HEK-293T cells per the 

manufacturer’s protocol. In most cases, at 24 hours post-transfection, fresh culture 

media (± serum) was given depending on the experiment. 

 

Immunostaining 

Cells plated on glass chamber slides (LabTek-II, Nunc, Rochester, NY) were fixed at 

room temperature for 5 minutes in 4% paraformaldehyde. Cells were blocked and 

permeabilized in 5% NDS, PBST for 1 hour at room temperature. HeLa cells were 



69 
 

stained with rat-anti-HA 1:500 (Roche 3F10) primary antibody overnight and donkey-

anti-rat DyLite 488 1:1000 (Molecular Probes) for 2 hours. Cells were then washed and 

nuclear counterstained with 4’,6’-diamidino-2-phenylindole (DAPI) for 5 minutes. Slides 

were mounted with Fluorsave reagent (Millipore) and visualized on an Olympus BX51 

fluorescence microscope. HEK-293T cells were similarly processed except with rabbit-

anti-c-myc 1:100 (Santa Cruz Biotechnology) primary antibody and donkey-anti-rabbit 

DyLite 488 1:1000 (Jackson Laboratory, Bar Harbor, ME). 

 

PAGE and Western blot 

Denaturing PAGE was initiated by mixing samples with equal volume 2X Laemmli buffer 

(125 mM Tris, 4% SDS, 10% β-mercaptoethanol) at 100oC for 5 minutes. Loaded 

samples were run on 4-12% Bis-Tris polyacrylamide mini gels (Invitrogen, Carlsbad, 

CA) at 200V for 40 minutes in 1X MES-SDS running buffer (Invitrogen). For native 

PAGE, protein samples were mixed with equal volume 2X Tris-glycine running buffer 

(Invitrogen) without SDS and βME and immediately run on 4-20% Tris-Glycine mini gels 

(Invitrogen) at 125V for 6 hours at 4oC. All PAGE was done using an XCell SureLockTM 

Mini-Cell Electrophoresis system (Invitrogen). 

 For Syproruby staining, PAGE gels were pre-fixed in 50% methanol, 10% glacial 

acetic acid for 30 minutes at room temperature then incubated overnight protected from 

light with 1X Syproruby solution (Biorad, Hercules, CA). Gels were washed with fix 

solution for 30 minutes, rinsed with Milli-Q water and imaged using a Typhoon 

Phosphorimager (GE Healthcare) with Excitation/Emission at 280 nm and 610 nm, 

respectively. 
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For western blots, transfer proceeded at 200 mA, 120V for two hours at 4oC 

using 1X MES transfer buffer, 5% βME onto Hybond ECL nitrocellulose membranes 

(GE Healthcare). For Tris-Glycine gels a pre-soak step in 1X MES-SDS running buffer 

twice for 30 minutes was done prior to transfer for denaturing proteins in situ.  

Membranes were washed with TBS and blocked for 1 hour at room temperature in TBS 

5% BSA, 1% milk and incubated with primary antibody from 2 hours to overnight. 

Primary antibodies for western blots consist of rat-anti-HA 1:5,000 cell lysates and 

1:50,000 for conditioned media (High Affinity 3F10, Roche), rabbit-anti-RBP4 1:5,000 

(DAKO), rabbit-anti-TTR 1:5,000 (DAKO), mouse anti-BiP 1:1,000 (BD Transduction 

Labs, Franklin Lakes, NJ), mouse-anti-αTubulin 1:100 (Abcam) and mouse-anti-STRA6 

1:1,000 (B01P, Abnova). Next, membranes were washed with TBST three times for 5 

minutes and incubated for 1 hour with a horseradish peroxidase (HRP) conjugated 

secondary antibody. Membranes were washed with TBS then bathed in 

chemiluminescent detection solution (ECL Plus, Amersham), exposed to film for 1 to 60 

minutes (Biomax MS, Kodak) and developed on a Kodak A2000 developer. 

 

RBP biochemical analysis 

Mature RBPHA (WT and mutants) was harvested from HeLa cells 48 hours post-

transfection from conditioned media. Briefly, CM was HA immunoprecipitated using a 

mouse anti-HA monoclonal antibody covalently linked to agarose beads (HA IP Kit, 

Sigma Aldrich). In some cases, RBPHA was eluted under denaturing conditions 

according to the manufacturer’s protocol using 1X Laemmli buffer (Sigma, St. Louis, 

MO). In other instances, RBPHA was eluted under non-denaturing conditions using HA 
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peptide in 100 μg/ml PBS (Anaspec, Fremont, CA) three times for 15 minutes rotating at 

room temperature. To remove HA peptide, eluates were pooled, spin concentrated in 

3,000 MWCO columns (EMD Millipore, Bilerica, MA), dialyzed against PBS pH 7.4 

overnight at 4oC then once again for 3 hours at room temperature. Protein concentration 

was assessed by absorbance at 280 nm (A280) on a Flexstation3 microplate reader 

(Molecular Devices, Sunnyvale, CA), Syproruby-staining solution on gels containing 

protein standards or RBP4 WB with standard. 

 

Crosslinking 

Conditioned media was treated with 0.5% glutaraldehyde vol/vol (Fisher Scientific) for 

30 minutes at room temperature. Reactions were quenched in 250 mM Tris. 
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Figure 2.1. Family 1 with anophthalmia, microphthalmia and coloboma 
(MAC) disease. (A) Seven-generation pedigree segregating the disease trait in 
an autosomal dominant pattern with reduced penetrance. Eleven family members 
have uni- or bilateral microphthalmia or coloboma (gray symbols), or clinical 
anophthalmia (black symbols). The probands are indicated in generation VII 
(arrows). Nine obligate carriers (dotted symbols) transmitted the disease 
mutation but are clinically normal. A global penetrance of 0.4 was estimated from 
54 informative meioses (11 cases vs. 27 expected). The penetrance values for 
maternal (0.7 from 29 meioses) and paternal (0.1 from 17 meioses) transmission 
are significantly different (P = 0.036, Fisher’s exact test), suggesting a parent-of-
origin effect (Figure 2.S1B). (B) Anterior eye and fundus montage photographs of 
affected family members demonstrate a wide range of phenotypes, including iris 
and chorioretinal colobomas (ventronasal wedge-like defects in VI-2, VII-2 and 
VII-3), microphthalmia (III-12 and VII-2), and bilateral clinical anophthalmia (VII-
5). VII-5, T2-weighted coronal image with extraocular muscles (red arrows) but 
absence of eye globes. VII-5 axial T2 image with fat-suppression shows 
hyperintense orbital cysts, bilaterally (yellow arrows). The left orbit contains two 
cysts measuring 1 cm x 4 mm and 4 x 6 mm. The right orbit contains a 1.4 x 1 
cm cyst. Proband VII-2 has contralateral anophthalmia. The coloboma in VI-2 
involves the entire uveal and neuroretinal axis of the left eye, from the pupillary 
margin to the optic nerve head (onh), and corresponds anatomically to a patent 
choroid fissure. Bright scleral connective tissue is visible through the ventral 
chorioretinal defect. crc, chorioretinal coloboma. (C) Genetic mapping of MAC 
disease locus to chromosome 10q23. Multipoint LOD score plot of autosomes, 
derived by MERLIN linkage analysis of Family 1, using only affected individuals 
and obligate carriers. Among four positive regions, three have LOD scores >2, 
suggestive of linkage (1q41, 10q23 and 19p13). To refine the map position, an 
expanded linkage analysis was performed using all available family members, 
and autosomal dominant (AD) models with uniformly reduced or sex-specific 
penetrance values. The results favor chromosome 10 localization with an odds 
ratio >11 and a genome-wide LOD score >3.



73 
 



74 
 

Figure 2.2. RBP4 mutations in three independent families with congenital 
eye malformations. (A) The RBP4 gene has six exons and spans 9.4 kb. The 
map shows UTRs (white), coding DNA for the signal sequence (gray) and mature 
protein (black), and position of the mutations in exon 3 (red box). (B). Sequence 
chromatograms from probands and parents show novel heterozygous missense 
mutations in index Family 1 (c.223G>A, p.A75T) and unrelated Families 2 and 3 
(c.217G>A, p.A73T). In each pedigree, the disease trait and mutation are 
maternally transmitted. The mother in Family 2 (II-1) is an obligate carrier with a 
family history of anophthalmia. The mother in Family 3 (II-2) has a unilateral optic 
pit. The p.A73T mutations in Families 2 and 3 occur on different chr 10q 
haplotypes (Figure 2.S3). (C) Primary structure of translated RBP showing the 
two alanine-to-threonine substitutions (red) in β-strand C in the mature 
polypeptide (yellow bar). Two previously reported RBP alleles associated with 
autosomal recessive nyctalopia (night blindness), I41N and G75D (gray), are 
located in β-strands B and D, respectively.  Note that A73T and A75T in the 
primary translation product correspond to A55T and A57T in mature RBP, 
following cleavage of the 18-amino acid N-terminal signal sequence (SS).  
Symbols: gray bar, endoplasmic reticulum SS peptide; cyan coils, α-helical 
regions; blue arrows A-H, eight β-strands comprising the β-barrel fold. (D) Ribbon 
diagrams showing the three-dimensional X-ray crystal structure of RBP and 
positions of dominant A55T and A57T (red) and recessive I41N and G75D (gray) 
substitutions.  In the wild-type structure (1BRP), these four amino acids are 
oriented with side chains facing the hydrophobic retinol-binding pocket. The RBP 
lipocalin has a β-barrel structure, with eight anti-parallel strands (dark blue) 
forming the ligand pocket, and a C-terminal α-helix (cyan).  Three loops (green) 
surrounding the calyx opening interface with transthyretin (TTR) homotetramer.  
The N-terminus, where an HA epitope tag was introduced, is relatively 
unconstrained. (E) Local amino acid alignment showing complete evolutionary 
conservation of alanines 55 and 57 among vertebrates. 
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Figure 2.3. A55T and A57T proteins are secreted as stable RBP monomers 
and interact with transthyretin in vivo. (A) Experimental design. Conditioned 
media (CM) and lysates of transfected HeLa cells were compared to assess the 
production, secretion and structural integrity of RBPHA proteins. (B) HA 
(hemagglutinin) Western blot analysis of CM electrophoresed under native or 
denaturing conditions. WT, A55T and A57T proteins are abundantly secreted as 
21 kD monomers (top). In contrast, I41N and G75D proteins appear to aggregate 
intracellularly, as 42 kD homodimers covalently linked by disulfide bonds (Figure. 
2.S5A). This observation was confirmed by crosslinking in 0.5% glutaraldehyde 
prior to electrophoresis (bottom). In standard denaturing gels loaded with 
equivalent volumes of CM (middle), the abundance of G75D and I41N mutant 
proteins is slightly decreased compared to WT, A55T and A57T. (C) Western 
analysis of corresponding cell lysates shows increased cellular retention of I41N 
compared to other forms (top) and the α-tubulin loading control (bottom). 
However, I41N is secreted more efficiently than WTKDEL, which has an 
endoplasmic reticulum (ER) retention signal at the C-terminus. (D) Experimental 
design for TTR binding. HeLa cells were cotransfected with RBPHA and TTRmyc 
cDNA expression plasmids, and the resulting RBPHA was purified from 
conditioned media with anti-HA agarose beads. TTR binding was evaluated by 
Western blot (WB) analysis of the immunoprecipitate (IP). Under normal 
conditions, TTR monomers form stable homotetramers (four brown circles), 
which bind single RBP protein molecules (black bar) prior to secretion. (E) 
Western blots showing A55T and A57T proteins complex stably with TTR, similar 
to wild-type RBP, but G75D and I41N interact poorly with TTR.  The same 
membrane was sequentially probed with antibodies to TTR (top) and HA 
(bottom).  Equivalent amounts of RBP were loaded in each lane.  Human WT 
RBP can partner with fetal bovine TTR (13.5 kD) in the culture media, as well as 
human TTRmyc (15.1 kD).  
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Figure 2.4.  Mass spectrometric analysis of RBP proteotypes in p.A75T/+ 
carrier plasma. (A) Primary sequence and sizes of informative tryptic peptides 
encompassing RBP residue 57. The WT (3,140 Da) and A57T mutant (3,170 Da) 
forms differ by 30 mass units. In addition to these species, modified peptides are 
expected for each allele, due to iodoacetamide alkylation of methionine 53 (♦) 
during sample preparation, including sulfoxide (+16 Da, single asterisk) and 
alkylation-decomposition (-48 Da, double asterisk) derivatives. (B) MALDI-TOF 
spectrum of RBP purified from control human plasma (800 to 4,000 m/z). The 
critical region (red box) is indicated. Y-axis represents relative intensity (C) 
Expanded view of control (top) and carrier subject (bottom) spectra from 3,100 to 
3,250 m/z.  In the control sample, two single-ionization peaks corresponding to 
WT RBP (red lines) are detected in this range. In the carrier subject, both WT 
peaks are detected, along with peaks corresponding to the A57T mutant protein 
(green lines). The identity of peptide ions was verified by tandem MS/MS 
analysis. Judging from peak signal intensities, the ratio of WT to A57T proteins in 
the subject plasma is approximately 2 to 1. (D) Comparable MALDI-TOF spectra 
for recombinant RBPHA proteins, purified from HeLa-conditioned media. The 
50:50 mix spectrum demonstrates equivalent ionization efficiency for WT and 
A57T tryptic peptides. The invariant 3,223.3 m/z peak represents human keratin 
(a common contaminant) and serves as an internal standard. 
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Figure 2.5. A55T and A57T proteins bind retinol poorly. (A) in vivo 3H-retinol-
binding assay.  RBPHA proteins, synthesized by transfected HeLa cells, were 
metabolically labeled with 35S-methionine and -cysteine, and loaded with 3H-
retinol. Following HA immunopurification from conditioned media, and washing in 
PBS with 1% Triton X-100 and 0.5% deoxycholate (DOC), the 3H/35S ratio of 
RBPHA was determined by liquid scintillation counting (LSC). (B) Histogram 
showing 3H-retinol binding data normalized to WT (left). Error bars give the SEM 
for three parallel assays. The A55T and A57T proteins retain significantly less 3H-
retinol than wild-type, with A55T being most severely affected. The misfolded 
G75D and I41N proteins also bind retinol poorly, as expected. Autoradiogram of 
denaturing polyacrylamide gel showing equivalent levels of 35S-RBPHA in whole 
conditioned media (right). RBP is the major secreted protein. (C) in vitro retinol 
binding profiles for pure recombinant WT and mutant RBPHA, measured by retinol 
fluorescence in PBS, with 1 μM protein (left). The A55T mutant exhibits 
significantly less retinol binding, whereas A57T and WT profiles are similar in this 
highly polar solvent. The homogeneity and concentration of rRBPs was assessed 
by A280 and syproruby gels (right). (D) Normalized retinol binding curves in PBS 
with 0 to 50% ethanol. As the polarity of the environment decreases, the affnity of 
mutant rRBPs is differentially reduced compared to WT. Binding was assessed 
by 460 nm fluorescence after 1 hr in 10 μM retinol. (E) Sensitivity of mutant RBPs 
in an amphipathic environment. Retinol fluorescence of purified rRBPs was 
measured after exposure to weak nonionic detergents (1% Triton X-100 and 
0.5% deoxycholate in PBS) for 0 to 75 min. In each assay, A55T is more 
severely affected than the A57T allele. 
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Figure 2.6. A55T and A57T proteins bind the STRA6 membrane receptor 
more strongly than WT. (A) Binding assay. HEK293T cells were transfected 
with pUS2-STRA6myc expression plasmid DNA and exposed to 60,000 cpm WT 
or mutant 35S-RBPHA ± unlabeled holo WT RBP competitor. After 1 hr, bound 
cellular radioactivity was measured by LSC. (B) STRA6myc expression in 
HEK293T cultures. left, Fluorescence micrographs of transfected cells 
immunostained with anti-myc antibody (green) and counterstained with DAPI 
(blue). The STRA6 receptor is localized to cell membranes. right, Western blot 
simultaneously probed with antibodies to human STRA6 (72 kD) and α-tubulin 
(50 kD). The human embryonic kidney (HEK) cell line contains little or no 
endogenous STRA6 antigen. (C) Histogram showing equilibrium binding of 35S-
labeled WT, A55T and A57T proteins in the absence (black bars) or presence 
(gray bars) of unlabeled (cold) holo WT competitor. Error bars give the SEM for 
three parallel assays. In this assay, wild-type holo RBP binds STRA6 with 3X 
higher affinity than the apo form. A57T and A55T mutants bind with 
approximately 4X and 8X higher affinity than holo WT, respectively. These 
effects may arise from thermodynamic or kinetic differences in RBP docking 
and/or dissociation. Scale bars in B, 40 μm. 
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Figure 2.7. Model for disease pathogenesis, dominant inheritance and 
maternal effects. (A) RBP life cycle in wild-type individuals (top) and 
heterozygotes (bottom). In mutation carriers, A55T or A57T proteins are co-
expressed with WT proteins in hepatocytes and maternal fetal barrier (placenta 
or visceral yolk sac). Upon secretion, the A55T and A57T mutant proteins 
circulate in the maternal or fetal bloodstream bound to TTR, as stable entities 
with little to no retinol. The mutant RBPs dissociate from TTR at target tissues 
and bind STRA6 with higher affinity than WT proteins. At the molecular level, the 
mutant RBPs thus act as defective interfering particles. This molecular mimicry 
blocks holo WT binding, disrupts cellular retinol delivery, and provides a 
mechanism for the dominant inheritance pattern. (B) At the physiological level, 
phenotypic expression of the anophthalmia trait depends jointly on the maternal 
and fetal genotypes (left columns), which control retinol transport to the maternal-
fetal barrier and developing fetal eyes, respectively. Dominant-negative RBP4 
alleles may impair vitamin A delivery at both steps during pregnancy, creating 
two sequential “bottlenecks” (vertical gray lines) – but only when the mutation is 
maternally transmitted. This unique maternal-fetal interaction thus provides a 
novel nutritional mechanism for the skewed inheritance pattern. The developing 
eye is highly sensitive to retinoid levels, and has a relatively low phenotypic 
threshold. The RBP4 mutations are susceptibility alleles for vitamin A deficiency 
(VAD). As such, the penetrance and expressivity depend on dietary vitamin A 
levels (colored lines), suggesting a simple approach for prenatal therapeutic 
intervention. NOTE: vitamin A reduction amounts depicted across the placenta 
and fetal eye tissues are for illustrative purposes only. The exact relative 
reductions across both tissues is unknown.  
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Figure 2.S1. Detailed segregation and linkage analysis of Family 1. (A) 
Pedigree diagram showing the at-risk sibships used to estimate penetrance in 
black. Penetrance values were calculated from segregation data, either including 
(P = 0.41) or excluding (P = 0.36) two probands (arrows) to correct for 
ascertainment bias. Noncontributing individuals are shown in light gray. (B) 
Pedigree diagram highlighting the parent transmitting the causative mutation to 
affected individuals and obligate carriers. Among 11 family members with eye 
malformations, 10 inherited the disease trait from their mother (dark red), and 
only one (VI-2) inherited it from her father (dark blue). This individual is notable 
as a discordant monozygous twin with unilateral coloboma, who was clinically 
underweight at birth. Normal obligate carriers are similarly marked to indicate 
maternal (pink) or paternal (light blue) transmission. The sex-specific penetrance 
values differ significantly, suggesting a parent-of-origin effect. (C) Collection of 
genotype and phenotype data. Pedigree diagram showing individuals who 
provided DNA samples (red) and/or were evaluated clinically. Phenotypes were 
assessed by ophthalmic exams at UM Kellogg Eye Center (asterisks) or were 
documented by report and family photographs (double dagger). (D) Pedigree 
splitting strategy for MERLIN linkage analysis. Multipoint calculations were 
performed separately on subpedigrees 1 (red) and 2 (green), and the LOD 
scores were summed. Two nodal individuals (yellow) were included in both 
subpedigrees, but their phenotypic data (carrier status) were only used once. 
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Figure 2.S2. Genetic mapping of MAC disease locus to chromosome 10q23. 
(A) Expanded view of chromosome 10 linkage data showing a single LOD peak 
at 10q23-24 for all three models: AD with complete penetrance, calculated using 
only affecteds and obligate carriers (red), and AD with uniformly reduced (blue, 
Pglobal = 0.4) or sex-specific (green, Pmat = 0.7 and Ppat = 0.1) penetrance, 
calculated using all family members. The inset shows the 10 cM interval with 
LOD >0 delimited by markers rs2039305 (centromeric) and rs713251 (telomeric).  
(B) Gene view of the 8.2 Mb critical region on chromosome 10 with 81 candidate 
genes (GRCh37/hg19, Feb 2009 assembly). RBP4 (serum retinol binding 
protein, red) is encoded on the (–) strand. 
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Figure 2.S3. Maternal transmission of autosomal dominant MAC disease in 
Families 2 and 3. (A) Five-generation pedigree with anophthalmia and 
developmental delay in the proband (III-3, arrow) and a maternal cousin (IV-1).  
Both affected males inherited the disease trait from an unaffected female (II-2 
and III-7). (B) Three-generation pedigree with unilateral microphthalmia in the 
proband (III-2, arrow) and a unilateral optic pit in her mother (II-2). No further 
history of congenital eye disease is available. Clinical details are provided in 
Extended Clinical Description and Table 2.1. Black or gray symbols, affected; 
dotted symbol, obligate carrier. (C) RBP4 p.A73T mutations in Families 2 and 3 
occur on independent chromosome 10q haplotypes. Trios were genotyped for 
1.2 x 106 biallelic SNP markers using the Illumina Human Omni1-quad platform.  
Haplotype analysis was performed for chromosome 10q23 markers located in a 
30 kb interval encompassing RBP4 exon 3. Map positions relative to A73 were 
determined using hg18 coordinates (NCBI36, Mar 2006 assembly).  Phase was 
assigned using parental genotypes.  Major (A) and minor (B) alleles and disease 
haplotypes (red box) are indicated. Among 18 SNP markers examined, nine were 
informative in the families (red hashes), including three within the RBP4 
transcription unit (red arrow).
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Figure 2.S4. A55T and A57T detailed structural characterization. (A) Three-
dimensional view of the ligand-binding surface in wild-type holo RBP. The retinol 
pocket is predominantly hydrophobic (Hφ, green), including the Ala55 and Ala57 
side chains, which contact the retinol β-ionone ring.  The paucity of hydrophilic 
surfaces (Hψ, magenta) is consistent with the lipophilic nature of retinol. (B) 
Molecular models comparing holo wild-type (WT) and mutant (A55T and A57T) 
proteins, generated by energy minimization (MOE) and visualized by PyMOL.  
The mutant RBPs are predicted to accommodate retinol within the binding 
pocket, despite steric effects of the larger threonine side chain. However, the 
increased hydrophilicity of the local environment (magenta surface) and 
additional protein-solvent hydrogen bonding within the lumen are unfavorable for 
retinol binding. (C) Stick diagram of wild-type (WT) holo RBP showing retinol 
(green) and Ala55 and Ala57. Water molecules are displaced from the ligand 
pocket upon retinol binding. (D) Molecular models suggest potential structural 
mimicry. left. In apo RBP, water molecules filling the lipocalin cavity form a 
network of hydrogen bonds, which are linked to F36 but do not involve A55 or 
A57. middle. In A57T mutant RBP, the chain of hydrogen bonds connects F36 to 
the hydroxyl group of T57. right. In the A55T mutant protein, a similar chain of 
hydrogen bonds links F36 and T55. These additional bonds may stabilize the apo 
form and have allosteric effects. In wild-type RBP, the F36 residue undergoes a 
discrete conformational shift upon retinol binding (Zanotti et al., 1993). In 
principle, the A57T and A55T substitutions may partially displace F36 in the 
absence of ligand, such that the mutant proteins resemble holo RBP in their 
interactions with STRA6. The models were derived from the trigonal structure of 
human holo RBP (1BRP) by energy minimzation (MOE), allowing T55 and T57 
side chains to move freely while fixing the positions of other heavy atoms.  
Carbon (gray), hydrogen (white), oxygen (red) and nitrogen (blue) atoms, and 
hydrogen bonds (dotted lines) are indicated.



93 
 



94 
 

Figure 2.S5. Further characterization of RBPHA expression in transfected 
HeLa cells and Rbp4 in mouse tissues. (A) HA Western blot of conditioned 
media.  Samples were boiled in 2% SDS prior to electrophoresis, with or without 
5% β-mercaptoethanol (βME). The G75D and I41N mutant proteins exist 
predominantly as homodimers, which are linked by disulfide bonds. In addition, 
the I41N protein forms large aggregates, which migrate as tetramers or higher-
order species. These aberrant multimers are completely reduced by βME (right 
lanes). Similar results were obtained using cell lysates (not shown), suggesting 
the abnormal intermolecular S-S bonds form prior to secretion, and result from 
misfolding of nascent G75D and I41N polypeptides in the endoplasmic reticulum 
(ER) during synthesis. In contrast, WT, A55T and A57T RBP proteins exist 
primarily as monomers. (B) Western blot of cell lysates probed with anti-BiP 
(GPR78) shows no evidence that transient expression of RBPHA mutants causes 
ER stress or induces an unfolded protein response. (C) Biallelic expression of 
mouse Rbp4 in fetal tissues and adult liver. RT-PCR analysis of F1 RNA samples 
± reverse transcriptase (RT). The 415 bp Rbp4 amplicon spans an informative 
single nucelotide variant (eSNP rs30796132) in the 3’ UTR (asterisk). Sequence 
chromatograms of PCR products show equivalent expression of maternal and 
paternal alleles (yellow) in all four tissues. 
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Figure 2.S6. Isolation of RBP from human plasma. (A) Purification protocol 
based on Raghu et al, 2003.  RBP was isolated from fresh blood plasma by 
differential precipitation in 30-60% (v/v) saturated ammonium sulfate (SAS), G-
100 size exclusion chromatography in PBS (column 1) and 6M Urea PBS 
(column 2), and polyacrylamide gel electrophoresis (PAGE). The interaction 
between RBP and TTR4 is disrupted in 6M Urea, but retinol remains bound. (B) 
Column 1 fractions (0.25 ml) from control (top) and p.A75T/+ subject (middle) 
plasma were monitored for protein (A280) and retinol (A330) absorbance, and 
retinol fluorescence (E460). Fractions were pooled using E460 measurements (red 
shading). Note that the subject has approximately 50% retinol fluorescence 
compared to control, in relation to bulk plasma proteins (A280). (C) Control column 
2 fractions showing separation of RBP monomers and residual TTR4-RBP 
complexes. (D) Denaturing polyacrylamide gel of column 2 pools showing 
marked enrichment of RBP. The 21 kD proteins (arrowheads) were excised for 
mass spectrometry. Conditioned media from HeLa cells co-transfected with RBP 
and TTR vectors was included as a positive control. 
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Figure 2.S7. MALDI-TOF spectroscopic analysis of urine RBP. (A) Schema 
for uRBP immunoprecipitation. (B) Western blot (WB) of whole urine from control 
and p.A75T/+ subject demonstrating specificity of the primary RBP antibody used 
for immunoprecipitation. The uRBP concentration is approximately 1% of plasma 
RBP. (C) Native coomassie gel of immunoprecipitates showing the 21 kD 
proteins excised for mass spectroscopy and control HeLa-conditioned media 
(CM). (D) MALDI-TOF spectra (3,100 – 3,250 m/z) of urine RBP tryptic peptides 
from the control and p.A75T/+ subject. The identity of peaks was verified by 
tandem MS/MS analysis. Wild-type RBP peptides corresponding to amino acids 
29-58 were observed in both samples (3,140 and 3,156 m/z), but no A57T 
peptides were detected in the subject. The ratio of WT to A57T urine proteins is 
thus >2. 
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Table 2.1. Summary of clinical phenotypes 
 

Individual Ocular findings Other significant findings 

 
Family 1 
 
III-2 microphthalmia  
III-11 bilateral microphthalmia and 

coloboma 
 

III-12 microphthalmia and microcoria  
III-13 microphthalmia and coloboma  
III-14 microphthalmia and coloboma  
III-15 coloboma  
IV-16 bilateral anophthalmia  
VI-2 iris and chorioretinal coloboma Birthweight = 4 lbs, 3 oz. Unaffected 

twin sister birthweight = 5 lbs, 1 oz. 
VII-2 anophthalmia with contralateral 

microphthalmia and coloboma 
ventricular septal defect (VSD) 

VII-3 iris and retinal coloboma atrial septal defect (ASD) 

VII-5 bilateral anophthalmia underdeveloped extraocular muscles 
cystic rudimentary eye removed at 
birth. 

Family 2   
III-3 bilateral anophthalmia mild developmental delay (motor, 

speech, communication) 
epilepsy (generalized seizures of the 
temporal lobe) 

IV-1 bilateral microphthalmia  

Family 3   

II-2 optic pit  
III-2 microphthalmia and coloboma  
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Table 2.2. Diagnostic clinical testing of p.A75T obligate carriers 
 
 VI-2 VI-3 VI-7 Reference 
Retinol 
Retinol Binding Protein 
Transthyretin 

23.1 
2.2 

20.8 

22.9 
1.9 

22.8 

32.1* 
2.8 

30.8 

32.5 - 78.0 mcg/dL 
1.5 - 6.7 mg/dL 

17.0 - 42.0 mg/dL 
 
 
All tests were performed on 12-hour fasting blood samples. 
 
* VI-7 was taking a steady daily course of vitamin A supplementation or retinyl palmitate, 5000 IU) plus 
One-A-Day prenatal vitamin (4000 IU). 
 
All other tests were within normal limits. They include: 
1. Hemoglobin A1c and fasting glucose 
2. Renal panel: EGFR, sodium, potassium, chloride, CO2, urea nitrogen, creatinine, calcium, 

phosphorus and albumin 
3. Liver panel: protein, albumin, AST, ALT, alkaline phosphatase, bilirubin (total + direct) 
4. Lipid panel: cholesterol, triglycerides, HDL, LDL 
5. CBCP: WBC count, RBC count, HGB, HCT, PLT, MCV, MCH, MCHC, RDW, MPV, differential and 

absolute counts of neutrophils, lymphocytes, 
6. TPE: albumin, alpha-1, alpha-2 and beta-globulin, gamma-globulin, albumin/globulin ratio and protein 

electrophoresis interpretation 
7. Total Vitamin D (25-Hydroxyvitamin D) 
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Table 2.3. Family 1 probands linkage exclusion test SSLP list 
 
Gene Chr SSLP markers 
VAX2 2 D2S2368, D2S286 
SIX3 2 D2S391 
TCF7L1 2 D2S2333, D2S388 
SOX2 3 D3S1565, D3S1262 
HESX1 3 D3S1289, D3S1300 
FRAS1 4 D4S392, D4S2964 
MSX2 5 D5S400, D5S408 
SHH 7 D7S798, D7S2465 
GDF6 8 D8S270, D8S1784 
CHD7 8 D8S285, D8S260 
VAX1 10 D10S597, D10S1693 
DKK1 10 D10S196, DS101652 
PAX2 10 D10S192 
PAX6 11 D11S914, D11S935 
FRS2 12 D12S83, D12S351 
FREM2 13 D13S218, D13S263 
BMP4 14 D14S276 
OTX2 14 see above and below 
SIX6 14 D14S63 
CHX10 14 D14S258, D14S74 
MCOPCB2 15 D15S1002, D15S1040 
STRA6 15 D15S131, D15S205 
RX/RAX 18 D18S1127, D18S64 
BMP7 20 D20S100, D20S171 
 
 
 
Other genotyped SSLP markers based on Family 1 MERLIN linkage analysis: D1S425, 
D1S227, D1S213, D10S1686, D10S1765, D10S185, D10S1709, D19S209, D19S894 
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TABLE 2.4. PCR PRIMERS FOR RBP4 MUTATION SCREENING 
 
SDM Size [bp] forward primer [5’-] Reverse primer [5’-] MA 

5’flank      801 ACTTCATCTTGCCCAGGAATC CGCTTTTAAAGATGTTGAAACTAAA 3X 
Exons 1-3* 758 GTGCTCCCTTCCCTTCACAAT CTCCCCTTCGGTCTTTCAC 3X 
Exon 4 266 GAGAAGAAACCCAGCGATTTG TTGTGAAGGGAAGGGAGCAC 1X 
Exon 5 757 CCCCTTAGTCCAAACCCACT CGTGAGTTTCTCCGACATCTG 1X 
Exon 6 600 CTCTTTTGGCACCAGTGCTT GCATTTGAATGAAGCCAGCTC 1X 

 
 
PCRs were performed using either Platinum Taq (Invitrogen) or EXPAND 
High Fidelity PCR [Roche] (asterisk) with 100 nM each primer, 1.5mM 
MgCl2 and 200 µM dNTPs. MA, Masteramp concentration [Epicentre]. 
 
Cycling conditions were 95°C x 2 min, followed by 40 cycles of [95°C x 
30sec denaturation, 55°C x 60 sec annealing, 68°C x 60 sec extension], 
followed by 68°C x 7 min. 
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TABLE 2.5. RBP4, TTR AND STRA6 CLONING AND SITE-DIRECTED-MUTAGENESIS 
PRIMERS  
 
cDNA PCR Size 

[bp] 
F/R Primers [5’-] MA 

RBP4 WT 
(native)      

624 F GAATTCATGAAGTGGGTGTGGGCGCT 3X 

  R GATCATCTCGAGCTACAAAAGGTTTCTTTCTGATCTGCCATC  

RBP4 WT 
(HA)          

651 F GAATTCATGAAGTGGGTGTGGGCGCTCTTGCTGTTGGCGGCGCTGGGCA
GCGGCCGC 
GCGTACCCATACGATGTTCCAGATTACGCCGAGCGCGACTGCC 

3X 

  R GATCATCTCGAGCTACAAAAGGTTTCTTTCTGATCTGCCATC  

RBP4 WT 
(HA-
KDEL) 

663 F GAATTCATGAAGTGGGTGTGGGCGCTCTTGCTGTTGGCGGCGCTGGGCA
GCGGCCGC                                                                                                    
GCGTACCCATACGATGTTCCAGATTACGCCGAGCGCGACTGCC 

3X 

  R GATCATCTCGAGCTAGAGCTCGTCCTTCAAAAGGTTTCTTTCTGATC  

TTR WT 
(myc) 

495 F GAATTCATGGCTTCTCATCGTCTGCTCCT  1X 

  R GATCATCTCGAGTCAATTCAGATCCTCTTCTGAGATGAGTTTTTGTTCT
TCCTTGGG ATTGGTGACGA 

 

STRA6 WT 
(myc) 

2,05
5 

F GATCATGGATCCATGTCGTCCCAGCCAGCAGG 3X 

  R GATCATCTCGAGTCAATTCAGATCCTCTTCTGAGATGAGTTTTTGTTCG
GGCTGGGC ACCATTGGCA 

 

 
sequencing primer Primer [5’-] 

STRA6_seq1 CTGGCCACACAGCTGCAC 

STRA6_seq2 GCTACATCTCAGCCTTGGTCTT 

STRA6_seq3 TACACGTACCGAAACTTCTTGA 
 
 
For RBP and TTR cDNA amplification, PCRs were performed using EXPAND 
High Fidelity PCR [Roche] with 100 nM each primer, 1.5mM MgCl2 and 
200 µM dNTPs. Cycling conditions were 95°C x 2 min, followed by 30 
cycles of [95°C x 30sec denaturation, 55°C x 30 sec annealing, 72°C x 60 
sec extension], followed by 72°C x 7min. 
 
For STRA6, Pfu Ultra Taq and 1X Pfu Ultra PCR Buffer was used 
[Agilent]. Cycling conditions were 95°C x 5 min, followed by 30 cycles 
of [95°C x 30sec denaturation, 55°C x 30 sec annealing, 72°C x 120 sec 
extension], followed by 72°C x 7 min. 
 
STRA6 sequencing primers were used to verify internal coding sequence 
post-amplification. 
 
MA, Masteramp concentration [Epicentre]. Blue, restriction sites. Red, 
HA tag. Orange, myc tag. 
 
 
 
SDM Size 

[bp] 
F/R Primers [5’-] MA 

RBP4 A73T      4973 F ACCGGCCAGATGAGCACCACAGCCAAGGGCCGAGTC 3X 
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  R GGCCCTTGGCTGTGGTGCTCATCTGGCCGGTCTCGT  

RBP4 A75T          4973 F AGATGAGCGCCACAACCAAGGGCCGAGTCCGTCTTT 3X 
  R GACTCGGCCCTTGGTTGTGGCGCTCATCTGGCCGGT  

RBP4 G93D 4973 F GCGCAGACATGGTGGACACCTTCACAGACACCGAGGA 3X 
  R GTGTCTGTGAAGGTGTCCACCATGTCTGCGCACACGT  

RBP4 I59N 4973 F TTCTGCAGGACAACAACGTCGCGGAGTTCTCCGTGGA 3X 
  R GAGAACTCCGCGACGTTGTTGTCCTGCAGAACCTCT  

STRA6 WT* 12,178 F CTCCTACCTGCTGGCCGGCTTTGGAATCGTGCTCTCC 3X 
  R CACGATTCCAAAGCCGGCCAGCAGGTAGGAGACATCC  

 
 
*pOTB7-STRA6 cDNA vector sold by OpenBiosystems (Cat#: MHS1011-
7509230) represents STRA6 G339S. Preparation of pUS2-STRA6 WT 
proceeded in three steps: 1) G339S cDNA PCR amplification, 2) cloning 
into pUS2 and 3) site-directed mutagenesis (SDM) on pUS2-STRA6 G339S 
to generate the wild-type version. 
 
All SDM reactions were performed using Pfu Ultra Taq and 1X PCR Buffer 
[Agilent]. Cycling conditions were 95°C x 5 min, followed by 20 cycles 
of [95°C x 60sec denaturation, 57°C x 60 sec annealing, 68°C x 360 sec 
extension], followed by 68°C x 1 0 min.
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EXTENDED CLINICAL DESCRIPTION 
 
Family 1. Proband VII-5 is a 6-year old female with bilateral clinical anophthalmia. Poor 

eye development had been suggested by prenatal ultrasound exams. She was born 

prematurely at 34 weeks gestation. The eyelids, palpebral conjunctivae and external 

ocular structures were normal, and no other birth defects were noted. Moderate 

hyperbilirubinemia at birth resolved with phototherapy. Magnetic resonance imaging 

(MRI) at 1 day revealed bilateral absence of the eye globes. The orbits contained small, 

cystic remnants (Right = 1.4 x 1 cm, Left = 1 cm x 4 mm and 4 x 6 mm) with thin optic 

nerves and a small chiasm. Extraocular muscles (EOM) were identified in coronal 

views, with a grossly distorted configuration on the right. No brain abnormalities were 

seen. At eight months, the right orbital cyst was surgically removed. Pathology showed 

rudimentary eye structures with calcified lentoid elements, retinal rosettes, and 

pigmented cells. EOM were identified histologically but were not attached to the cyst. 

The pregnancy was otherwise normal with no known intrauterine exposures or 

infections. The mother was well nourished and consumed a normal diet with standard 

prenatal vitamins and folate supplementation. She had a history of four miscarriages 

and Graves hyperthyroidism. Proband VII-5 is totally blind, but otherwise healthy. 

 Proband VII-2 is a 7-year old male with left anophthalmia and right 

microphthalmia with a ventronasal iris and chorioretinal coloboma. He was born full term 

by Caesarian section. Prenatal ultrasound and newborn physical exams showed no 

additional findings. The pregnancy was complicated by persistent nausea from weeks 5 

to 14 of gestation, but there were no intrauterine exposures or infections. Brain MRI and 
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echocardiographic exams at age seven were normal. He has good functional vision in 

the right eye. 

Affected male VII-3 is a 12-year old boy with a left iris and chorioretinal coloboma 

He also had a cardiac atrial septal defect (ASD) that was surgically repaired. 

Affected female VI-2, age 42 years, is the mother of proband VII-2 and a 

monozygous twin. She has an inferior iris and chorioretinal coloboma in the left eye, but 

otherwise has good vision. Her health is otherwise excellent, with no signs of 

dermatological, reproductive, cardiopulmonary or immune dysfunction. Her identical 

twin sister (VI-3) has normal eyes. Their birth weights were 2.1 and 2.3 kgs, respectively 

(5th percentile for twin births).  

Affected male V-16 is a 60-year old man with bilateral clinical anophthalmia, who 

is otherwise healthy. Six individuals in generation III, born between 1896 and 1906, 

were classified as affected based on family records and photographs. Their phenotypes 

include unilateral anophthalmia (III-2) and severe unilateral (III-12, III-14, III-15) or 

bilateral (III-11, III-13) microphthalmia with coloboma, variously described as ‘oblong 

pupils’, ‘heavy lids’, or ‘pupils at the bottom of the irises’. 

Clinical laboratory data were collected from three female carriers with affected 

children: VI-2 (unilateral coloboma), VI-3 (normal) and VI-7 (normal). None has clinical 

evidence of night blindness or dry eye syndrome. Schirmer tests showed normal or 

mildly reduced (9-14 mm) tear production in each eye. In addition to fasting vitamin A 

(retinol), RBP and transthyretin (prealbumin) levels, we tested serum vitamin D, HbA1c 

and fasting glucose levels; renal (Na, K, Cl, HCO3, Ca, PO4, urea, creatinine), lipid 

(cholesterol, triglycerides, HDL, LDL), liver (protein, albumin, AST, ALT, ALK, total and 
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direct bilirubin) panels; and complete blood hematology. Apart from reduced vitamin A, 

the results were within normal limits.  

   

Family 2. The proband (III-3) is a 41-year old man with bilateral clinical anophthalmia.  

He was born full term following an uncomplicated pregnancy, and his birth weight was 

normal (3.5 kg). An exam under anesthesia during infancy revealed small remnant 

eyes, and a right orbital encephalocele, which was surgically removed. The pathology 

specimen showed a cyst with loose fibrocollagenous walls, and well developed cerebral 

tissue interspersed with smooth and striated muscle cells. No other birth defects were 

noted. As a child, he exhibited mild motor developmental delay and mental retardation, 

characterized by delayed walking, tremors, echolalia until age seven, learning 

disabilities, and poor eating and sleep behavior. He also suffered from epilepsy (grand 

mal type), confirmed by electroencephalography, with spontaneous resolution at age 

20. An MRI exam revealed no brain abnormalities. 

Affected male IV-1(maternal cousin of the proband) is a 21-year old man with 

severe bilateral microphthalmia. In addition to congenital blindness, he experienced 

developmental delay similar to the proband, involving motor, learning and language 

impairments. Obligate carriers in the pedigree (II-2, II-3 and III-7) have normal eyes and 

good vision. 

 

Family 3. Proband III-2 is a 12-year old female with left microphthalmia and a 

ventronasal iris coloboma. She also had capillary hemangiomas above each eyelid and 

on the left portion of her chest and back, consistent with cutis marmorata telangiectasia 
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congenita (CMTC). She was born full term following an uncomplicated pregnancy, and 

her birth weight was normal (4.2 kg). The mother was well nourished and consumed a 

normal diet with standard prenatal vitamins. The proband developed normally and has 

good functional vision. She is otherwise healthy. The mother reports having a unilateral 

optic pit. 
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CHAPTER III 
 

A NOVEL INSERTIONAL TRANSLOCATION DYSREGULATING SOX3 IN HUMAN 
BILATERAL ANOPHTHALMIA AND XX SEX-REVERSAL  

 
 
 
The SOX gene family plays critical and diverse roles during vertebrate embryogenesis 

including CNS, skeletal, eye and sexual development. In humans, there exists a precise 

spatiotemporal requirement for SOX genes that often initiate vast networks of 

transcription factors. In this study, we present a 46,XX anatomically male child with 

bilateral clinical anophthalmia and female-to-male sex-reversal. Genetic analysis 

uncovered a 640 kb de novo autosomal insertion translocation of chromosome 9q21 

into a genomic region proximal to SOX3 at Xq27. The autosomal insertion contains 

portions of the TRPM3 gene. The insertion site is a human-specific X-linked palindrome 

previously implicated in a separate congenital disorder. Our analysis shows that this 

insertion does not disrupt normal X chromosome silencing. In agreement with previous 

studies, we show that SOX3 and SOX2 have significant overlapping function in certain 

contexts. Furthermore, we demonstrate that elevated or ectopic SoxB1 expression in 

the developing eye leads to microphthalmia, poor retinal lamination and optic nerve 

hypoplasia/aplasia. This work is the first to test forced SoxB1 overexpression in the 

developing mammalian eye, and adds to the overall emerging field of regulatory 

mutations in complex human congenital disorders. 
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INTRODUCTION 
 
Human congenital microphthalmia (small eyes), anophthalmia (absent eye globes) and 

coloboma (failure of choroid fissure closure) is a spectrum of eye diseases collectively 

known as MAC. In milder forms, visual impairment ranges from none to moderate, but in 

anophthalmia vision loss is total. The incidence of MAC is approximately 1 in 10,000 live 

births (Morrison et al., 2002).  The phenotype can involve one or both eyes, and one-

third of all cases present as part of a well-defined syndrome (Verma and Fitzpatrick, 

2007). Examples include Matthew-Wood syndrome (OMIM 610745), CHARGE 

syndrome (OMIM 214800), Lenz microphthalmia syndrome (OMIM 309800), Branchio-

oculo-facial syndrome (OMIM 113620) and Goltz syndrome (OMIM 305600). 

 The vertebrate eye is derived from neuroectoderm, surface ectoderm and 

periocular mesenchyme, and begins development around 3-6 weeks gestation in 

humans or embryonic day E8.5 in mice (Fuhrmann, 2010; Graw, 2003). Two optic 

vesicles extend bilaterally from the ventral forebrain and contact the overlying surface 

ectoderm. This initiates lens placode formation and subsequent optic vesicle 

invagination to form a bilayered optic cup. The outer layer consists of the nascent retinal 

pigmented epithelium (RPE) and an inner presumptive neuroretina (NR) layer. After 

early patterning is complete, cells in all eye compartments (lens, NR, RPE, iris, ciliary 

body, cornea) undergo terminal differentiation until the mature eye is formed. This entire 

process involves a complex interplay of cell autonomous factors and extracellular 

signaling pathways. FGF, BMP, Wnt and retinoic acid (RA) all play essential roles 

during early eye morphogenesis (Fuhrmann, 2010). Likewise, many cell intrinsic factors, 
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some of which are mutated in human MAC syndromes, act at the DNA level by 

modulating target gene expression and cell fate specification. 

 Advances in genetic screening techniques have revealed chromosomal disorders 

in an estimated 25-30% of MAC patients (Slavotinek, 2011), most often involving 

transcription factor or signaling pathway genes. For example, BMP4 chromosomal 

interstitial deletions involving bone morphogenetic protein 4 (BMP4) on human 

chromosome 14, del(14)(q22-q23), are associated with microphthalmia and pituitary 

defects (Bennett et al., 1991; Elliott et al., 1993; Lemyre et al., 1998). SOX2 is a 

member of the group B1 SOX (SRY-related HMG box) family that functions in CNS 

neural progenitor maintenance, inner ear, and eye development (Fantes et al., 2003; 

Graham et al., 2003; Kiernan et al., 2005). A patient with bilateral anophthalmia had a 

de novo translocation t(3;11)(q26.3;p11.2) and concomitant 740 kb deletion 

encompassing the entire SOX2 gene (Fantes et al., 2003). Subsequent analysis of the 

coding region in other patients identified SOX2 haploinsufficiency in approximately 10% 

of all MAC cases (Fantes et al., 2003; Ragge et al., 2005b). Heterozygous loss of SOX2 

is the most common cause of MAC. Mutations in single genes have also been identified 

by candidate screening in MAC patients, and include OTX2 (Ragge et al., 2005a), 

BCOR (Ng et al., 2004), GDF6 (Asai-Coakwell et al., 2007; Asai-Coakwell et al., 2009; 

Gonzalez-Rodriguez et al., 2010), SHH (Schimmenti et al., 2003), PAX6 (Glaser et al., 

1994), RAX (Voronina et al., 2004), CHX10 (VSX2) (Ferda Percin et al., 2000), SMOC1 

(Abouzeid et al., 2011; Okada et al., 2011; Rainger et al., 2011), STRA6 (Golzio et al., 

2007; Pasutto et al., 2007) and HCCS (Wimplinger et al., 2007). 
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 Mammalian male sex determination is governed by the Y-linked gene SRY (sex-

determining region Y), also known as the founding member of the SOX gene family 

(Koopman et al., 1991; Sekido and Lovell-Badge, 2009). In coelomic epithelial cells of 

the XY bipotential gonad, SRY is transiently expressed, and in conjunction with 

steroidogenic factor 1 (SF1), activates SOX9, initiating a cascade of events that specify 

Sertoli cell differentiation and testis formation (Sekido and Lovell-Badge, 2008). 

Absence of SRY in females allows for Wnt signaling to specify the female sex. Contrary 

to the notion that female is the “default” sex, recent evidence suggests female 

differentiation is an active process requiring factors like FOXL2 to inhibit the testicular 

pathway (i.e. SOX9) after birth (Uhlenhaut et al., 2009). Female-to-male XX sex-

reversal is very rare, estimated to be less than 0.02% of live births (Sax, 2002). 

Approximately 90% of such cases are due to SRY translocations (Keagle, 2005). 

Studies indicate SOX3, SOX9 or SOX10 activation in the XX bipotential gonad (Foster 

et al., 1994; Polanco et al., 2010; Sutton et al., 2011) as well as homozygous loss of R-

spondin 1, or RSPO1 (Parma et al., 2006), all lead to female-to-male sex reversal in 

humans or mice. 

In this report, we describe for the first time a de novo autosomal insertion 

translocation near SOX3 in a child with bilateral anophthalmia and XX sex-reversal 

(BASR). Chromosome 9q21 genomic material, including a fraction of the TRPM3 gene, 

is inserted into an Xq27 palindrome that appears to frequently mediate X-autosomal 

translocation events. This study not only identifies a recombination-prone disease 

“hotspot”, but implicates SOX3 gain-of-function regulatory mutations in bilateral 

anophthalmia, XX sex-reversal. 
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RESULTS 

Bilateral anophthalmia and XX sex-reversal 

The proband was born with sporadic bilateral clinical anophthalmia and a large left 

protruding cystic mass diagnosed as an orbital teratoma (Figure 3.1A). There was also 

unilateral right cryptorchidism. Radiological studies confirmed the left orbital tumor but 

also revealed a right retro-orbital mass coursing along the optic nerve canal up to the 

optic chiasm (Figure 3.1B). Extraocular muscles were present. Additional findings 

included agenesis of the posterior corpus callosum, inferior cerebellar vermis with 

prominent cistern magna and non-enchancing nodules along the ependymal border in 

the peritrigonal regions consistent with focal gray matter (Figure 3.1C). Clinical genetic 

studies displayed a 46,XX karyotype, thus defining a case of female-to-male XX sex-

reversal. We confirmed the absence of SRY sequences by PCR (data not shown). 

There is no family history of any of the above findings.  

 

Characterization of the left orbital tumor 

The left cystic mass was surgically removed at 6 months of age and pathologically 

contained a rudimentary eye with ciliary body, retinal pigmented epithelium and retinal 

rosettes surrounded by gray matter, or neuropil (Figure 3.2A). Interspersed 

cartilagenous deposits and connective tissue is also observed (Figure 3.2B). The tumor 

as a whole is encapsulated by a thick scleral layer. We stained for axonal projections 

using TuJ1 and neurofilament-160 and found abundant projections throughout the 

tumor (Figure 3.2C). SOX9-positive glial cells appear in pockets throughout the tumor 
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(Figure 3.2C) but expression of other neural markers such as SOX2 or SOX3 is not 

detected (Figure 3.2C and 3.S1A, B). GFAP-positive glial cells are noted within the 

primitive eye and surrounding tumor (Figure 3.SC). 

 

Identification of a de novo 9q21 duplication 

We initially screened this child for the presence of SRY by PCR but the gene was not 

detected. We also looked for mutations in two other genes known to cause female-to-

male sex reversal: RSPO1 (Parma et al., 2006) and SOX9 (Foster et al., 1994) but 

found no variants (data not shown). We broadened our search for de novo copy number 

variants (CNV) using genome-wide high-density SNP genotyping and discovered a 640 

kb duplication of chromosome 9q21 (Figure 3,3A). The tri-allelic genotypes and signal 

intensities of all single nucleotide polymorphisms (SNP) in this interval were consistent 

with a single copy gain, or three 9q21 haplotypes. The rearrangement originated in the 

paternal germline based on informative genotypes (Figure 3.3B). The duplication 

encompasses the 5’ portion of TRPM3, a calcium ion channel gene involved in heat 

nociception (Vriens et al., 2011) (Figure 3.3C) and was deleted from the paternally-

inherited chromosome in a patient with autism (Pagnamenta et al., 2011). Its 

developmental role has not been well characterized; therefore, we screened for mouse 

Trpm3 expression in embryonic eye and found transcripts at E10.5, E12.5, E14.5, 

E16.5, E18.6 and P1.5 (Figure 3.S3).  

 

Breakpoint localization reveals an autosomal insertion translocation at Xq27 



117 
 

To further refine the breakpoints we focused on the 1.86 kb breakpoint region defined 

by SNPs rs1891295 and rs2309968. We designed 32P-radiolabeled DNA probes 

targeted to single copy sequence within (probe 1) and immediately external (probe 2) to 

the predicted duplication breakpoint (Figure 3.3D). Based on the relative BamHI 

hybridization intensities of probe 2 in both blots, we narrowed our search to sequence 

overlying that probe. We designed inverse PCR primers on HindIII-digested genomic 

DNA to clone the 3.9 kb novel fragment. Inverse PCR sequencing data revealed the 

9q21 duplication is an autosomal insertion translocation at Xq27 approximately 83 kb 

from the 3’ end of the single SOX3 exon (Figure 3.4A). The next nearest gene, CXorf66, 

is 450 kb away. We confirmed the breakpoints with forward junctional PCRs (Figure 

3.4B). The insertion site is an 180 bp Xq27 palindrome (Figure 3.4B and C) previously 

associated with X-linked congenital hypertrichosis (Zhu et al., 2011) (Figure 3.4D). 

Compared to the reference genome, there is an inversion of a central 4 bp spacer 

sequence (TATC  GATA). Immediately telomeric is a concomitant 4 bp del(TAGC) 

deletion at the edge of one palindrome arm. The exact breakpoints are ambiguous due 

to identical overlapping sequences at each end (Figure 3.4C). No other large deletions 

in the SOX3 intervening sequence or at 9q21 are detected by CNV analysis (data not 

shown). The proximity to SOX3 raises its status as a top candidate gene for the 

pleiotropic effects seen in the proband. We hypothesized the translocation imposed a 

gain-of-function SOX3 effect, causing ectopic expression in both the early developing 

eye and bipotential gonad. Elevated levels of ectopic SOX3 plus endogenous SOX2 

protein in the embryonic eye may be detrimental to eye formation. Indeed, a gain-of-

function model is strongly supported by the facts that Sox3-/- mice and humans with 
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SOX3 deletions have normal eyes (Rizzoti et al., 2004; Stevanovic et al., 1993). In 

addition, structural homology of SOX3 and SRY and their evolutionary relationship as X 

Y gametologs (Foster and Graves, 1994; Stevanovic et al., 1993) their shared ability to 

cause XX sex-reversal in mice when overexpressed (Koopman et al., 1991; Sutton et 

al., 2011) further supports a gain-of-function hypothesis. 

 Given the X-linked nature of the translocation, we wondered if the autosomal 

segment and surrounding regions on der(X) were subject to normal silencing by X 

chromosome inactivation (XCI). Previous studies have shown X-autosomal 

translocations are variable in their degree of autosomal inactivation (Popova et al., 

2006; Sharp et al., 2002; White et al., 1998b). To our knowledge, no study has 

investigated XCI in the context of an autosomal insert with chromosome X sequences 

flanking both sides. We measured CpG island methylation status centromeric, within, 

and telomeric to the autosomal segment using bisulfite PCR and sequencing on 

peripheral blood lymphocyte DNA. We hypothesized there might be extensive 

hypomethylation in CpG islands within and distal to the insertion (i.e. at SOX3-

associated CpG islands) that would permit aberrant biallelic expression and elevated 

SOX3 protein synthesis within individual cells. Seven Xq27 CpG islands flanking the 

insertion site, a single 9q21 element within the duplicated segment, and one distal Xq28 

site were chosen for analysis (Figure 3.S2). Across all nine loci, we found no evidence 

of skewed methylation. Therefore we conclude X-chromosome inactivation proceeds 

normally through the autosomal segment. Standard human androgen receptor 

(HUMAR) assays also showed no evidence of skewed inactivation (data not shown). 
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Human SOX3 and SOX2 exhibit functional redundancy 

SOX gene products often form heterodimeric complexes with other proteins to regulate 

target genes (Kondoh and Kamachi, 2010). In the lens, SOX2 is co-expressed with 

PAX6, and together they form a complex at the chick DC5 delta-crystallin enhancer 

(Kamachi et al., 2001). Both are also co-expressed in the NR as well. SOX2 and SOX3 

are very closely related paralogs, sharing 92% amino acid identity (98% similarity) in the 

high mobility group (HMG) DNA binding domain. However, this similarity drops in the C-

terminal protein interaction domain (44% identity, 60% similarity). Given the high degree 

of structural homology between SOX2 and SOX3, we tested SOX3-PAX6 partnering 

and transcriptional activation relative to SOX2-PAX6, employing a previously described 

DC5 luciferase assay (Figure 3.5A) (Kamachi et al., 2001). When equal amounts of 

SOX2- and SOX3-encoding plasmid are introduced into cells, we observe 

transcriptional activation levels consistent with an additive effect of both SOX proteins in 

their interactions with PAX6. This suggests a cooperative, and not an antagonistic effect 

between SOX2 and SOX3. We estimate SOX3 has approximately 50% partially 

overlapping cooperative transcriptional activation function with SOX2 (Figure 3.5B). 

 

Alteration of spatiotemporal SoxB1 activity leads to structural eye defects 

Given the structural and functional similarities between SOX2 and SOX3, we next 

tested if SoxB1 overexpression in the early mouse eye can lead to ocular 

malformations. Previous studies indicate overexpression of sox3 in developing zebrafish 

or medaka can lead to small or absent eyes (Dee et al., 2008; Koster et al., 2000). 

Therefore, we specifically targeted the developing neuroretina based on SOX3 CNS 
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function and multiple neurologic phenotypes in the proband (brain anomalies and orbital 

cyst with abundant neural tissues). We modified a Chx10 (Vsx2) BAC by inserting 

Sox2HA-ires-Cre-pA or Sox3HA-ires-Cre-pA cassettes into Chx10 exon 1 (Figure 3.6A). 

One Chx10>Sox3 line (868) and two Chx10>Sox2 lines (217 and 317) genetically 

transmitted and expressed the transgene (Figure 3.6B) as confirmed by anti-HA 

western blot (Figure 3.6D) and GFP lineage trace (by crossing to R26floxGFP reporter 

strains). These three lines were chosen for further analysis. We mated Chx10>Sox2 

founders with R26floxGFP homozygous mice and observed fully penetrant 

microphthalmia with varying severity in F1 transgenic offspring of both lines 217 and 

317 (Figure 3.6C). On tissue section, we observed Sox2HA and Sox3HA expression 

throughout the embryonic retina of both Sox2 lines 217 and 317 as well as Sox3 line 

868 (Figure 3.7A). In the adult stage for all three lines, this expression became 

restricted to adult bipolar cells of the inner nuclear layer (Figure 3.7D). This 

demonstrates apparent faithful recapitulation of the endogenous Chx10 expression 

pattern. Notably, the single Sox3 transgenic line (868) appeared to have completely 

normal eye development at all analyzed timepoints when compared to non-transgenic 

littermates (data not shown). We compared average eye sizes, retinal morphology and 

presence of cell types by immunofluorescence staining but found no significant 

differences between wild-type and Sox3 line 868. In contrast, lines 217 and 317 

frequently had an anomalous cluster of TuJ1-positive cells posterior to the central retina 

at E14.5 (Figure 3.7B). This cellular aggregate also weakly expressed Brn3a, a retinal 

ganglion cell marker (data not shown). Another common embryonic finding was an 

abnormally thickened retina (Figure 3.7C). Adult retinal morphology was severely 



121 
 

disrupted showing poor lamination and thinning (Figure 3.7D). The ganglion cell layer 

was almost completely absent (Figure 3.7D, DAPI panels) explaining why the optic 

nerves were often missing upon enucleation.  On immunofluorescence, we detected 

very few Brn3a-positive cells in the ganglion cell layer suggesting retinal ganglion cells 

were eliminated (data not shown). We tested for apoptosis during gestation using 

cleaved caspase-3 as a marker, but found no significantly elevated activity (data not 

shown).  

 
 
DISCUSSION 
 
In this report, we describe for the first time a paternally-derived de novo autosomal 

insertion translocation proximal to the X-linked gene SOX3 (Xq27) in a 46,XX male 

patient with sporadic bilateral clinical anophthalmia with an orbital teratoma and XX sex-

reversal (BASR). The X-linked dominance and constellation of phenotypes described 

herein is unlike any other known X-linked syndrome with microphthalmia or 

anophthalmia as a cardinal feature. Lenz microphthalmia syndrome (OMIM 309800) is 

an X-linked recessive trait characterized by eye, neurologic, skeletal, urogenital, dental, 

and cardiac malformations. Three families with Lenz-like features including 

anophthalmia show linkage to Xq27-28 (ANOP1 locus); however, no individuals with 

female-to-male sex reversal have been reported (Forrester et al., 2001; Graham et al., 

1991; Slavotinek et al., 2005). Due to its unique clinical profile, BASR likely represents a 

novel syndrome. The BASR translocation involves 640 kb of 9q21 autosomal 

sequences including portions of TRPM3, a gene that functions in heat nociception 

(Vriens et al., 2011) with no obvious role in structural development of the eye or sex 
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determination. We show the insertion occurred in a 180 bp near-perfect Xq27 human-

specific palindrome. Collectively, the location of the 9q21 autosomal insertion, in vitro 

functional assays and transgenic mouse model analysis all suggest the developing eye 

may be sensitive to altered spatiotemporal activity and elevated levels of SOX 

transcription factor proteins. In humans, SOX3 regulatory activating mutations may lead 

to a new syndrome defined by congenital eye disease and female-to-male sex reversal. 

 

A 180-bp SOX3 palindrome undergoes recurrent autosomal rearrangements 

Inverted repeats are a class of human genomic duplications that consist of two arms of 

near identical DNA sequence but are inverted and complementary to one another. 

Analysis of chromosomal sequences shows inverted repeats are disproportionately 

enriched on the X chromosome relative to autosomes (Warburton et al., 2004). 

Palindromes are a special type of inverted repeat that form DNA secondary structures 

involving one (hairpin) or both (cruciform) strands. These represent weak points in the 

genome that often mediate sporadic translocations (Gotter et al., 2004; Kurahashi and 

Emanuel, 2001) and frequently cause rearrangements in cancer (Tanaka et al., 2005). 

The 180-bp SOX3 palindrome contains 88 bp identical arms with a 4 bp central spacer 

sequence containing one mismatch. This configuration is human-specific. Chimpanzees 

also share both arms but are orientated in the same direction and separated by 0.6 kb 

of genomic sequence. Non-human primates only possess a single arm. Recently it was 

shown this palindrome was a target of distinct autosomal insertion translocations in X-

linked congenital hypertrichosis (CGH) (Zhu et al., 2011). Here, two unrelated families 

with excessive hair growth over the entire body each have unique autosomal insertions 
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of significant size from two different chromosomes (4q31 and 5q35). There is no report 

of structural eye malformations or XX sex-reversal in any of the affected individuals. 

Thus, the phenotypic outcome in CGH and BASR is likely dictated almost exclusively by 

the nature of the autosomal sequences. This strongly argues against the existence of 

putative gonadal and eye repressors that theoretically may have been uncoupled from 

the SOX3 transcription unit by the respective insertions. From these case studies, it is 

clear this 180 bp palindrome represents a rearrangement “hotspot” associated with 

multiple congenital disorders. Our genotype data demonstrate the BASR rearrangement 

originated in the paternal germline, consistent with an unpaired chromosome Xq during 

male meiosis that can serve as a substrate for aberrant recombination. This is 

exemplified by frequent inversions within the Factor VIII (F8) gene that cause 

Hemophilia A (Lakich et al., 1993). 

 

SoxB1 knockout and overexpression in developing vertebrate tissues 

The SoxB1 gene sub-family consists of Sox1, Sox2 and Sox3 and is found in many 

vertebrate species including humans, mice, birds and frogs (Bowles et al., 2000; 

Uwanogho et al., 1995; Wegner and Stolt, 2005). Based on experiments involving 

SoxB1 knockout and overexpression animal models along with gene profiling studies, 

SoxB1 factors play critical overlapping roles in central nervous system development 

(Bylund et al., 2003; Graham et al., 2003; Pevny et al., 1998; Wood and Episkopou, 

1999; Zhao et al., 2004). SOX3 specifically functions in CNS neural progenitor 

maintenance, hypothalamo-pituitary (HP) axis development and gametogenesis (Bylund 

et al., 2003; Laronda and Jameson, 2011; Rizzoti et al., 2004; Weiss et al., 2003). 
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Knockout studies and human gene deletions (Stevanovic et al., 1993) show no impact 

of loss of Sox3/SOX3 on eye structure and function; thus, SOX3 is considered to have a 

very minimal role in eye development. Instead, loss of transcriptional activity or genomic 

duplications encompassing SOX3 in humans causes profound growth hormone 

deficiency and other endocrine issues due to pituitary defects (Burkitt Wright et al., 

2009; Hol et al., 2000; Lagerstrom-Fermer et al., 1997; Laumonnier et al., 2002; Woods 

et al., 2005). Our proband was examined for pituitary defects but no abnormalities were 

found. In some instances, SOX3 mutations are also associated with mental retardation 

(Hamel et al., 1996). Sox3-/- mice show severe HP axis defects consistent with human 

findings (Rizzoti et al., 2004), craniofacial abnormalities (Rizzoti and Lovell-Badge, 

2007) and reduced fertility (Raverot et al., 2005; Weiss et al., 2003) but no ocular 

phenotype. Conversely, forced overexpression of sox3 in medaka and zebrafish 

embryos leads to small or absent eyes with additional sensory placode defects and 

structural CNS duplications (Dee et al., 2008; Koster et al., 2000). This finding may 

grossly reflect the ocular disease process in our proband. Also, the orbital cyst removed 

from our proband may have originated from an analogous dominant SOX3 regulatory 

mechanism. This is suggested by histological evidence showing the vast majority of cyst 

tissue is neural in origin. We found no evidence of SOX3 expression in the cyst at birth, 

but this does not rule out developmental expression. 

 

SoxB1 functional redundancy in development 

Previous studies of SoxB1 factors indicate overlapping pro-neural functions (Archer et 

al., 2011; Collignon et al., 1996; Wegner and Stolt, 2005). Overexpression of any SoxB1 
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factor in chick spinal cord NPCs maintains the neural progenitor state and prohibits 

terminal differentiation (Bylund et al., 2003; Graham et al., 2003). Likewise, loss of one 

SoxB1 factor is compensated by the other two, leading to little if any phenotypic 

consequence later in development. In chick lens induction, Sox1, 2 and 3 have been 

shown to have overlapping structural and functional activities (Kamachi et al., 1998). 

For example, Sox2 synergizes with Pax6 in the surface ectoderm to initiate δ-crystallin 

lens placode formation (Kamachi et al., 2001), and this holds true for Sox1 and 

moderately so for Sox3. To exert their effects, SoxB1 factors form protein-protein 

interactions by means of their C-terminal transactivation domains (Kamachi et al., 

2000). We tested the ability of human SOX3 to synergistically interact with PAX6, and 

found significant transactivation redundancy with SOX2 (Figure 3.5). Given the near 

perfect conservation of SoxB1 HMG DNA binding domains, sub-specialization of each 

factor arises from structural differences in the C-terminal domains, but also possibly 

from simple expression of one factor and inactivation of the other two (i.e. unique 

spatiotemporal expression patterns). 

Sox2 is the only member expressed in mouse surface ectoderm for lens 

induction (Kamachi et al., 1998) and is the primary Sox factor in the optic cup for retinal 

progenitor cell (RPC) maintenance (Taranova et al., 2006). We observed extremely low 

levels of Sox3 neuroretinal co-localization with Sox2, but based on knockout mouse 

models, Sox3 contribution to retinal development is negligible. Therefore, we targeted 

overexpression of Sox3 or Sox2 to the early neuroretina to determine if both were 

capable of producing structural eye defects. Of the lines we tested, a single Sox3 line 

(868) revealed no ocular malformations whereas the analogous Sox2 lines showed fully 
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penetrant microphthalmia with abnormal retinal morphology in two of three independent 

lines (217 and 317). This raised the question as to whether the absence of a Sox3 

overexpression phenotype is due to an inherent difference between the two paralogs or 

a technical limitation of the Sox3 BAC transgene. This is further complicated by the fact 

that only one Sox3 line (versus three Sox2 lines) passed quality control regarding 

genetic transmission and expression profile. While Sox2 and Sox3 exhibit high amino 

acid conservation within the DNA binding domain (95% identity), the C-terminal 

domains have significantly diverged due to the presence of Sox3 polyalanine tracts 

(Collignon et al., 1996). For this reason, we cannot completely rule out an inherent 

difference between Sox2 and Sox3 protein structure as the major cause of phenotypic 

discrepancy. However, the above SoxB1 studies during tissue induction all support a 

model of functional redundancy. Therefore, we believe the Sox2 lines (217 and 317) 

reflect the true phenotype of SoxB1 overexpression in the developing neuroretina. 

Additional Sox3 transgenic lines will need to be generated and analyzed to confirm our 

hypothesis. 

 

SoxB1 downregulation in RPE is necessary for proper eye formation 

Our finding necessitates the identification of ocular subcompartment(s) that are 

sensitive to increased SoxB1 activity; therefore, possibly leading to structural eye 

defects. A recent study showed that persistent expression of Sox1, 2 or 3 in the early 

chick RPE causes an epithelial-to-neuroretinal fate switch that severely compromises 

eye morphology and development (Ishii et al., 2009). Also, RPE genetic ablation using a 

melanocyte-specific diphtheria toxin-A “suicide” cassette leads to severe eye defects, 
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ranging from anophthalmia to microphthalmia with poor retinal lamination and growth 

(Raymond and Jackson, 1995). Loss of essential RPE signaling factors like β-catenin or 

its downstream targets Mitf and Otx2 also produce colobomatous microphthalmia in 

mice (Beby et al., 2010; Hodgkinson et al., 1993; Westenskow et al., 2009). OTX2 

mutations are also associated with human congenital microphthalmia and anophthalmia 

(OMIM 610125) (Ragge et al., 2005a; Wyatt et al., 2008). Our findings strongly mirror 

those discovered in RPE genetic ablation studies, implicating the RPE as a potential 

target for eye malformations. It is clear that normal eye growth and morphology 

depends on intact RPE; therefore, studies are underway to look for potential leaky 

transgene expression in the early RPE of both Sox2 lines 217 and 317. The location of 

the anomalous cellular aggregation posterior to the central retina at E14.5 may be a 

clue as to RPE involvement (Figure 3.7B). These may represent retinal ganglion cell 

axons that failed to exit the eye due to RPE epithelial-to-neuroretinal transdifferentiation 

mediated by leaky Sox2 expression.  

Further suggestion of RPE involvement in the pathology of our proband comes 

from sequences contained within the 9q21 translocation, which includes the 5’ portions 

of TRPM3, specifically exons 1 and 2 and 60 kb of upstream regulatory genomic 

sequence.  TRPM3 is a member of the human transient receptor melastatin family that 

functions as a selective divalent cation (Ca2+ and Mg2+) channel (Grimm et al., 2003; 

Oberwinkler et al., 2005). TRPM3 is highly expressed in the kidney proximal convoluted 

tubule and is important for calcium homeostasis (Lee et al., 2003). Eye expression 

profiling shows TRPM3 and its embedded micro-RNA, miR-204, are co-expressed in 

fetal and adult NR and RPE (Deo et al., 2006; Karali et al., 2007). It is conceivable that 
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a cryptic TRPM3 enhancer causes SOX3 dysregulation in the RPE. The ensuing 

epithelial-to-neural transdifferentiation was not total, given normal XX mosaicism and 

presence of RPE in the rudimentary eye. However, the remaining RPE tissue was 

unable to support the growing neuroretina as a result of a grossly disturbed macro-

environment. Likewise, the choroid plexus also expresses TRPM3 (Deo et al., 2006) 

which may pinpoint the sub-ependymal gray matter nodules as additional ectopic SOX3 

sites of epithelial-to-neural fate switching (Figure 3.1C). Consistent with brain 

malformations observed on radiological imaging (e.g. agenesis of the posterior corpus 

callosum, cerebellar vermis hypoplasia and enlarged 3rd and 4th ventricles), Sox3 

overexpression in mouse fetal brain can produce anatomical defects leading to 

congenital hydrocephalus (Lee et al., 2012). 

 

Ectopic SOX3 expression in the bipotential gonad causes XX sex-reversal 

The male sex determination gene SRY is normally expressed in the XY bipotential 

gonad, binds and activates SOX9 and initiates testis development. Of all SOX family 

members, SOX3 shows the highest degree of amino acid conservation with SRY in the 

high-mobility group (HMG) DNA binding domain (Bergstrom et al., 2000; Collignon et 

al., 1996). Structural similarities between SOX3 and SRY forms the basis for an original 

proposal of SOX3 as a candidate XX sex-reversal gene (Graves, 1998). Transgenic 

studies have since shown Sox3 to cause female-to-male sex reversal when activated in 

the XX embryonic gonad (Sutton et al., 2011). In fact, the Sox3 HMG DNA binding 

domain is sufficient for testis initiation (Bergstrom et al., 2000). This is consistent with 

poor conservation of mammalian Sry orthologs outside of the DNA binding domain 
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(Bowles et al., 2000). SOX3 is also able to bind steroidogenic factor 1 and activate 

SOX9 enhancer sequences in a fashion similar to SRY (Sekido and Lovell-Badge, 

2008; Sutton et al., 2011). Consistent with these observations, rearrangements 

involving SOX3 regulatory regions have also been reported in humans with SRY-

negative female-to-male sex reversal (Sutton et al., 2011). In contrast, humans and 

mice with loss-of-function SOX3 mutations do not exhibit XX sex reversal. An increasing 

body of evidence continues to implicate other SOX genes in disorders of sexual 

development including SRY, SOX3, SOX9 and SOX10 (Bishop et al., 2000; Foster et 

al., 1994; Polanco et al., 2010; Sutton et al., 2011). Among them, the Odsex mouse is 

born with cataractous microphthalmia and female-to-male sex reversal, paralleling the 

features seen in this study. Both phenotypes are due to a long-range cis-acting 

melanocyte-specific transgene promoter inserted 1 Mb upstream of Sox9 (Bishop et al., 

2000; Qin et al., 2004). Given the strong evidence linking SOX genes to XX sex 

reversal, most likely SOX3 overexpression in the XX bipotential gonad of this child is the 

cause for this phenotype. This phenomenon only needs to occur in a small fraction of 

cells to trigger male sex differentiation based on XX <> XY chimera studies (Burgoyne 

et al., 1988). It is unknown if TRPM3 or miR-204 are expressed in the XX bipotential 

gonad. 

 

SOX genes are prone to regulatory mutations 

Members of the SOX gene family encode a potent class of transcription factors that are 

well known for evolutionarily conserved regulatory arrays capable of acting over long 

distances. For example, human and mouse SOX2 are surrounded by 1.7 Mb of 
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genomic sequence with multiple well-characterized enhancers conserved from chicken 

(N1 – N4 and others) (Inoue et al., 2007; Miyagi et al., 2006; Miyagi et al., 2004; Saigou 

et al., 2010; Uchikawa et al., 2003). Consequently, these large regulatory regions serve 

as sizeable targets for rearrangements that cause disease in mice and humans. In two 

mouse models of deafness, light coat and circling (Lcc) and yellow submarine (Ysb), 

chromosomal rearrangements disrupt Sox2 regulatory elements leading to inner ear 

malformations (Kiernan et al., 2005). SOX9 illustrates the complexity underlying 

regulatory mutations and the disease heterogeneity that different changes at one locus 

can produce. In humans, mutation or deletion of SOX9 enhancers approximately 1-2 Mb 

upstream cause Pierre Robin sequence (PRS, OMIM 261800), a condition defined by 

an underdeveloped jaw, retropositioned tongue, and cleft palate malformations (Benko 

et al., 2009). On the other hand, duplications within the same PRS critical region leads 

to a form of Cooks Syndrome (OMIM 106995) characterized by shortened digits and the 

absence of nails (Kurth et al., 2009). SOX3 has been implicated in X-linked 

hypoparathyroidism stemming from an interstitial deletion-insertion involving 2p25 

sequences near SOX3 (Bowl et al., 2005). Within the approximate 0.8 Mb gene desert 

surrounding SOX3, there are eight highly conserved non-coding elements (HCNE) 

shared amongst humans to zebrafish (Navratilova et al., 2009). Five of these HCNEs 

are further separated in distance from the SOX3 transcription unit by the 9q21 

autosomal insertion in our proband. In isolation, many of the eight HCNEs recapitulate 

endogenous Sox3 CNS expression to varying degrees (Brunelli et al., 2003; Navratilova 

et al., 2009; Visel et al., 2007). One ultra-conserved element (uc482) with moderate 

forebrain activity was deleted from the mouse genome but showed no phenotype 
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suggesting redundancy in the SOX3 regulatory code (Ahituv et al., 2007). Given what 

has been described before and our study, regulatory SOX mutations may account for 

more congenital disorders than previously anticipated. 

Transcriptional dysregulation by capture of a foreign promoter or enhancer is a 

familiar concept in human genetics and is one type of “cis-ruption” event (Kleinjan and 

Coutinho, 2009). Inversions, interstitial deletions and insertional mutagenesis, or 

complex combinations thereof, produce diseases that fall under this category. 

Aromatase excess syndrome (ARES) is characterized by high circulating estrogen 

levels, short stature and pre-pubertal gynecomastia (Demura et al., 2007). Aromatase is 

encoded by the CYP19 gene and catalyzes a critical step in estrogen synthesis, but 

ARES arises when deletions or inversions juxtapose 5’ regulatory enhancers next to 

ubiquitously expressed genes. Likewise, a de novo 7q inversion places Sonic hedgehog 

(SHH) under the control of an HCNE associated with another gene (EMID2) leading to 

holoprosencephaly spectrum (HPES) disorder with digital and limb anomalies (Lettice et 

al., 2011). Insertional translocations (IT) are a rare class due to the minimum 

requirement of three double-stranded DNA breaks. ITs have been described in patients 

with mental retardation, microcephaly, motor developmental delay and cardiac defects 

(Van Hemel and Eussen, 2000). Approximately 2.1% of all de novo cases are due to 

inheritance of an unbalanced rearranged chromosome from a carrier parent 

(Nowakowska et al., 2012); however, this is likely an underestimate when considering 

germline rearrangements. In BASR, a balanced rearrangement occurred in the paternal 

germline between chromosomes 9 and X, and of the resulting derivatives, only der(X) 

was transmitted to the proband. Thus, BASR and CGH are two distinct examples of 
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insertional translocations of autosomal sequences into a specific palindrome on Xq27 

that activate a highly potent SOX3 gene. It is evident that rearrangements mediated by 

this palindrome can cause a wide range of phenotypes that until now were considered 

etiologically distinct. Therefore, this palindrome warrants investigation for any X-linked 

congenital disorder with no known genetic cause. We propose the term “SOXopathy” to 

describe this phenomenon for all SOX family genes and associated diseases.  

 

EXPERIMENTAL PROCEDURES 

Clinical details 

The proband presents as anatomically male with bilateral clinical anophthalmia. Upon 

further evaluation, he has a karyotype of 46,XX consistent with complete XX-sex 

(female-to-male) sex reversal. At birth, the left orbit contained a cystic mass that was 

surgically removed. Axial, coronal and sagittal orbital and brain magnetic resonance 

imaging confirmed the diagnosis of anophthalmos. A heterogeneously enchancing mass 

was seen in the left orbit consistent with the orbital teratoma. Additionally, an abnormal 

enhancing mass was found along the right optic nerve leading up to the chiasm. No 

calcifications were observed. On pathology, the left orbital cyst contained a rudimentary 

malformed eye with dysplastic rosettes, nervous tissue including ganglion type cells and 

cartilagenous deposits most prominent along the scleral wall. A diagnosis of orbital 

teratoma was made based on the presence of tissue derived from >2 cell lineages. The 

brain showed partial dysgenesis of the posterior body and splenium of the corpus 

callosum and inferior cerebellar vermis with a prominent cistern magna. Possible 

supependymal heterotopic gray matter was non-enchancing and noted bilaterally along 
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the peritrigonal locations. Potential septal dysplasia was noted due to an abnormally 

thickened anterior septum pellucidum and non-visualized posterior portion. The male 

genitalia were noted to have unilateral chryptorchidism. Both biological parents are 

normal, healthy individuals with no family history for any of these clinical findings. 

 

Clinical studies 

The proband was obtained through the University of Michigan (UM) Kellogg Eye Center 

Oculoplastics service. Axial, sagittal and coronal T1- and T2-weighted orbital and brain 

magnetic resonance imaging (echo time = 1 sec, TR = 4.7 sec, TE = 1.2 sec) was 

performed with gadolinium contrast or the PROPELLER technique, respectively (Forbes 

et al., 2001). Radiographs were interpreted by Sparrow Hospital Department of 

Radiology (East Lansing, MI) and UM Department of Neuro-Ophthalmology. All 

pathological specimens were interpreted by the UM Department of Pathology. For DNA, 

blood was drawn from the proband and both parents. Lymphocytes were also used to 

generate Epstein-Barr virus transformed lymphoblastoid cell lines. Approval was 

obtained from the University of Michigan institutional review board in accordance with 

accepted guidelines. 

 

Orbital teratoma immunohistochemistry 

We employed diaminobenzidine (DAB) staining on paraffin-embedded specimens to 

assess the presence of various markers associated with different cell types. Briefly, we 

deparaffinized tissues using Histoclear (National Diagnostics, Atlanta, GA) with brief 

washes in ethanol and Milli-Q water. For antigen unmasking, we boiled for 3-7 minutes 
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in TBS pH 9.5, allowed samples to cool for 1 hour at room temperature then blocked for 

4 hours in 10% normal donkey serum (NDS) and 1% bovine serum albumin (BSA). We 

applied the primary antibody overnight at 4oC, washed briefly then added biotin-

conjugated secondary antibody for 2 hours at room temperature. For chromogenic 

detection, we used the avidin-biotin complex method (Vector, Burlingame, CA) with 

HRP (horseradish peroxidase)-conjugated streptavidin and DAB. Images were captured 

on an Olympus BX-51 light microscope (Olympus, Center Valley, PA). All hematoxylin 

and eosin (H&E) and Masson’s trichrome stains were performed by the UM Department 

of Pathology. 

 Primary antibodies were rabbit-anti-Sox3 (polyclonal, 1:1000, gift from Dr. 

Michael Klymkowsky), rabbit-anti-Tuj1 (MRB-435P, 1:500, Covance, Princeton, NJ), 

rabbit-anti-Sox9 (polyclonal, 1:500, Millipore, Billerica, MA), mouse-anti-neurofilament 

160 (monoclonal NN18, 1:500, Sigma Aldrich) rabbit-anti-Sox2 (polyclonal, 1:500, 

Abcam – discontinued), mouse-anti-GFAP (monoclonal clone G-A-5, 1:250, Sigma 

Aldrich). 

 

Genetic and genomic analysis 

Blood lymphocyte DNA was screened by PCR and Sanger sequencing for coding and 

HCNE variants. For copy number variants (CNV) analysis, we subjected whole blood 

genomic DNA to two microarray platforms: 1) Agilent CGH 244K and 2) Illumina 1M-

Duo Beadchip arrays. Bioinformatic analysis was performed at the UM Center for 

Genetics and Health and Medicine (CGHM) and UM DNA sequencing core, 

respectively. For CNV breakpoint identification, we used inverse PCR on genomic DNA 
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digested with BamHI, EcoRI or HindIII (New England Biolabs, Ipswich, MA) and re-

ligated overnight. We confirmed all breakpoint junctions with forward PCRs (Table S1). 

All reference human genome coordinates and sequences are based on the 

GRCh36/hg18 (March 2006) release. 

 

Southern blot analysis 

Local structural rearrangements were interrogated by Southern analysis using PCR 

amplicons (exons or CNEs) as substrate for probes. Briefly, genomic DNA was digested 

overnight using BamHI, EcoRI or HindIII, and run out 14 hrs on a 1% LE-agarose gel at 

60V. Gels were denatured in 0.5 M NaOH, 1.5 M NaCl then neutralized in 8X SSC 

before undergoing capillary transfer overnight. Membranes were UV crosslinked and 

prehybridized in 50% formamide. For probe synthesis, PCR products were agarose gel-

excised and 32P-labeled using a random primed labeling method (Roche, Indianapolis, 

IN). Isotope incorporation was confirmed using a Tricarb 2000 liquid scintillation counter 

(Packard). Approximately 1 x 107 counts were added per membrane at 42oC overnight. 

The next day, membranes were washed in 2X SSC at 55oC to minimize non-specific 

hybridization and exposed to film at -80oC from 3 – 24 hrs and developed on a Kodak 

A2000 developer (Kodak, Rochester, NY). 

 

RNA analysis 

Eye tissue from E10.5 and E12.5 (whole eye), E14.5, E16.5, E18.5 and P1.5 (retina) 

were dissected from CD-1 embryos and pups. RNA was isolated using the phenol-

chloroform-isoamyl extraction method (Trizol, Invitrogen, Carlsbad, CA). Total RNA was 
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DNase-treated and RT-PCR was performed (SuperScript II, Invitrogen). First-strand 

cDNA was used for PCR using Trpm3 forward (5’- ATC CTG GAT TGA AAG AGC ATT 

TTA T) and reverse (5’- ATA GGA TTG GAC ATG GTC TGG TAT) primers specific to 

exons 4 and 8, respectively. Reactions (50 μl) were performed using Platinum Taq 

(Invitrogen) with 100 nM each primer, 1.5 mM MgCl2 200 µM dNTPs and 1X Masteramp 

concentration (Epicentre, Madison, WI). PCR products were verified by Sanger 

sequencing. 

 

Bisulfite treatment and analysis 

Peripheral blood lymphocyte genomic DNA was treated with sodium bisulfite (Epitect 

Bisulfite Kit, Qiagen). MethPrimer (Li and Dahiya, 2002; Warnecke et al., 2002) was 

used to design bisulfite-specific primers. Bisulfite PCRs (25 μl) used JumpStart Taq 

polymerase (Sigma-Adrich, St. Louis, MO) with 100 nM each primer, 1.5 mM MgCl2 

200 µM dNTPs and 1X Masteramp concentration (Epicentre). For primers see Table S1. 

PCR products were gel-excised and TA-cloned into pCR4 (Invitrogen) and grown in 

chemically-competent DH5α bacterial cells (Invitrogen). At least 20 clones from each 

PCR were recovered, sequenced and analyzed using BiQ analyzer (Bock et al., 2005). 

We achieved 95% or greater conversion in all instances. 

 For every PCR, we created an m x n matrix where m = number of CpG sites and 

n = clones. To assess whether a given clone derived from X active (Xa) or inactive (Xi) 

we counted total number of methylated sites per clone in the mother (46, XX) and 

assigned the top 50th percentile as Xi-derived. The lowest number of methylated sites 

was used as the cutoff to designate Xi if it exceeded the maximum number seen in any 
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clone from the father (46, XY). If not, the next lowest value in the group was chosen 

until this requirement was met. For the single 9q21 CpG island analyzed, the cutoff was 

modified to x + 1 where x = the maximum number of methylated sites in any clone from 

mother and father. Using these cutoffs, we counted the number of Xi- and Xa-derived 

clones in the child (46, XX) and assessed statistically significant deviation from the 

theoretical ratio using Fisher’s exact test. 

 

Expression vector cloning 

We cloned the human SOX2 and SOX3 with C-terminal hemagglutin (HA) epitope tags 

into pUS2 (gift from D. Turner). For SOX2 and SOX3, we PCR amplified both single 

exon genes from control genomic DNA (Table S1) and inserted them into pUS2 EcoRI 

and XhoI restriction sites. pCMV-PAX6 is described previously (Epstein et al., 1994). 

pδ51-LucII was a generous gift from Dr. Yusuke Kamachi and Dr. Hisato Kondoh 

(Kamachi et al., 2001). pDM-pol2-Renilla was used as a transfection control. 

 

Tissue culture 

HeLa S3 cells (ATCC, Manassas, VA) were grown in 60 mm plastic tissue culture 

dishes (Corning, Corning, NY) in Dulbecco’s Modified Eagle Medium (DMEM) 

supplemented with 10% fetal bovine serum, L-glutamine (2 mM), penicillin (50 U/ml) 

and streptomycin (50 μg/ml). All cells were incubated at 37oC, 5% CO2 in water-

jacketed tissue culture incubators. 

 

Luciferase assay 
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Cells were plated at 1 x 106 per dish and grown until cells reached a confluency of 50%. 

We co-transfected cells with FuGene6 (Promega, Madison, WI) per the manufacturer 

protocol using a 3:1 F6:DNA ratio. Cultures grew for 48 h and harvested using the Dual 

Luciferase Kit (Promega) according to manufacturer instructions. Cell lysates were 

counted for luminescence derived from luciferase, quenched then renilla in a VICTOR3 

1420 Multilabel Counter (Perkin Elmer, Waltham, MA). Luciferase-to-renilla ratios were 

calculated. All datapoints were collected in triplicate. 

 

PAGE and Western blot 

Both eyes from P1 pups were pooled and solubilized in RIPA buffer. Samples were run 

on a 4-12% bis-tris precast minigel (Invitrogen) at 200 V, 40 minutes in 2% SDS, 5% 

βME boiled for 5 min. Gels were transferred overnight at 30 V then blocked in 5% 

bovine serum albumin, 1% non-fat milk for one hour. Primary rat-anti-HA antibody 

(3F10, 1:5,000, Roche) was applied for 3 hours at room temperature. Membranes were 

washed, incubated with horseradish peroxidase (HRP)-conjugated secondary antibody. 

Chemiluminescent detection was performed (ECL, GE Healthcare) and membranes 

exposed to film. 

 

Transgenic mice 

To faithfully express Sox2 or Sox3 in the Chx10 pattern, we generated bacterial artificial 

chromosome (BAC) transgenes by λRED recombineering (Lee et al., 2001). The 

targeting constructs were assembled with short 5’ (A, 514 bp) and 3’ (B, 380 bp) 

homology arms flanking 3.5 kb SoxHA-nlsCre-FRT-amp-FRT cassette (Gene Bridges, 
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Heidelberg). The 5’ homology arm extends from upstream genomic sequence to the 

exon 1 initiation codon (ATG). We also included 10 bp of endogenous Sox2 or Sox3 5’ 

UTR sequence immediately upstream of their respective initiation (ATG) codons to 

promote faithful translation. The 3’ homology arm is contained within intron 1. Sox2 and 

Sox3 solitary exons were engineered with a C-terminus HA epitope tag (Table S1).  

Linearized targeting plasmids were used in parallel to target mouse BAC clone 

RP23-127O21 by λRED-mediated homologous recombination in strain SW105 

(Warming et al., 2005) after heat induction. This 223 kb BAC contains 123 kb 5’ and 110 

kb 3’ DNA flanking the Chx10 gene. Targeted BAC clones were selected on ampicillin 

and chloramphenicol plates at 30oC, and verified by junctional PCR and DNA 

sequencing. The amp selection cassette was then deleted by arabinose induction of 

Flpe recombinase, leaving a solitary FRT site (Andrews et al., 1985). Homogeneity and 

integrity of recovered Chx10>Sox2-Cre and Chx10>Sox3-Cre clones was verified by 

ampicillin sensitivity, junctional PCRs, restriction mapping, and pulse field gel 

electrophoresis. 

 Purified BAC transgene circular DNA was injected into fertilized (C57BL/6J x 

SJL/2) F2 oocytes by the UM Transgenic Animal Core. Founders were identified by 

transgene-specific PCR genotyping (Table S1) and lines were maintained by crossing to 

C57BL/6 or R26floxGFP reporter strains. We identified 11 founders for each transgene. 

We chose to analyze and maintain lines based on transmission and expression profile. 

The most extensively characterized transgenes in this report were Chx10>Sox2-Cre Tg 

217 and 317 and Chx10>Sox3-Cre Tg 868. 
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Histology 

Embryonic and adult eyes were fixed overnight in 4% paraformaldehyde (PFA) at 4oC, 

cryoprotected in phosphate-buffered saline (PBS) with 10 to 30% sucrose, frozen in 

OCT compound (Tissue-Tek, Torrance, CA) and cryosectioned at 10 μm. For 

immunodetection, cryosections were blocked for 4 h at room temperature in PBTx (0.1 

M NaPO4 pH 7.3 0.5% Triton X-100) with 10% NDS and 1% BSA. Sections were 

incubated overnight with primary antibody at 4oC. For fluorescence detection, sections 

were incubated at 2 h room temperature with appropriate secondary antibody. Nuclei 

were identified using 100 ng/ml 4’,6-diamidino-2-phenylindole (DAPI). 

 Primary antibodies were rat-anti-HA (monoclonal 3F10, 1:500, Roche, 

Indianapolis, IN), chicken-anti-GFP (1:2000, Abcam), mouse-anti-Brn3a (monoclonal 

14A6, 1:50, Santa Cruz Biotechnology), rabbit-anti-Sox2 (1:200, Abcam), rabbit-anti-

Tuj1 (1:200, Covance), sheep-anti-Chx10 (1:500, Exalpha), rabbit-anti-Sox3 (polyclonal, 

1:500, gift from Dr. Michael Klymkowsky) and rabbit-anti-cleaved-caspase 3 (1:100, Cell 

Signaling Technology). 
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Figure 3.1. Anterior and radiological images of a proband with bilateral 
anophthalmia, XX sex reversal and brain abnormalities. (A) Anterior 
photography of the proband at birth without eye globes (left) and a left orbital 
cystic mass (center) that was surgically removed. Pedigree illustrates a sporadic 
case of bilateral anophthalmia with female-to-male sex reversal (right). (B) 
Magnetic resonance imaging (MRI) performed at 1 day confirms diagnosis of 
bilateral anophthalmia. T1-weighted axial image reveals a heterogeneously-
enhancing cystic mass (green arrow) within the left orbit. A similar appearing 
mass also appears along the course of the right optic tracts up to the optic 
chiasm (yellow arrow). T1-coronal view (center) shows both left and right orbital 
masses (green and yellow arrows, respectively) and the presence of extraocular 
muscles bilaterally (arrowheads). T1-sagittal image (right) shows agenesis of the 
posterior corpus callosum at birth (asterisk). (C) Post-surgical removal of the left 
orbital cyst T1- and T2-weighted MR studies performed at 1.5 years (top row) 
and 2.5 years (bottom row). T1-weighted axial image (top left) shows prosthetic 
ocular implant in both orbits (Pr). The right soft tissue lesion (arrow) remains 
unchanged. Coronal T2-weighted image (top center) demonstrates peritrigonal 
sup-ependymal nodules isotopic to gray matter (arrowheads). T1-weighted 
sagittal section (top right) shows no changes with the corpus callosum (asterisk). 
Axial T1-weighted image at 2.5 years (bottom left) reveals little change with right 
orbital mass (arrow), but absence of a prosthetic globe in the left orbit replaced 
by significantly irregular tissue consistent with previous surgical scar tissue. Axial 
T2-weighted PROPELLER image (bottom center) shows gray matter foci along 
the lateral ventricles (arrowheads). Sagittal T1-FLAIR image again shows 
truncation of the posterior corpus callosum with minimal change on brain 
morphology. Myelination pattern is normal for this child. R, right; L, left; A, 
anterior; P, posterior. 
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Figure 3.2. The left orbital cyst is predominantly neural and contains a 
rudimentary eye. (A) Hemotoxylin and eosin staining shows presence of a 
rudimentary eye containing retinal rosettes (rr) and possible ciliary body and 
retinal pigmented epithelium. Inset (red box) shows high magnification retinal 
rosette and presence of all retinal layers. A, anterior; P, posterior; Scale bar, 1 
mm. (B) Masson’s trichrome stain reveals pockets of cartilaginous tissue (c) and 
connective tissue (ct) throughout the primitive eye (left). Histology in a 
representative section elsewhere in the orbital mass (right) shows mostly 
neuropil tissue (n). (C) Diaminobenzidine (DAB) stain using anti-TuJ1primary 
antibody reveals tracts of axonal projections (a) amidst neuropil (n). Anti-
Neurofilament 160 staining confirms the presence of neural axons (top right). 
Anti-Sox9 stain demonstrates pockets of Sox9 expressing cells, possibly glial or 
chondrocytic in origin (bottom left). Anti-Sox2 stain reveals extremely sparse and 
weak expression throughout the mass (bottom right). Insets show higher 
magnification. Scale bar, 1 mm. 
 



144 
 



145 
 

Figure 3.3. Copy number variation analysis reveals a de novo 9q21 
duplication. (A) High-density SNP genotyping in the proband and both parents 
reveals a de novo 9q21 duplication approximately 640 kb in size (yellow box). B-
allele frequency (BAF) plot shows genotypes consistent with three alleles at each 
SNP locus (left panels). SNPs rs1891295 and rs2309968 were used for 
breakpoint analysis (red circles). Log R ratio (LRR) plots show increased signal 
intensity within this interval for only the child. Red line, moving average plot 
(window = 50 SNPs). BAF and LRR values are consistent with a single copy 
gain. (B) Genotypic analysis at multiple informative SNPs reveals three 
haplotypes consistent with a paternal origin (red). (C) Physical map of 9q21 
showing the duplication contains the 5’ portion of TRPM3, a calcium ion channel 
gene, and is delimited by rs3812530 and rs1891295. The true telomeric 
breakpoint lies in a 1.8 kb stretch between rs1891295 and rs2309968 and was 
chosen for further analysis. (D) Southern analysis at the 9q21 telomeric end 
using internal and flanking probes (1 and 2, respectively) relative to the predicted 
duplication (yellow bar) reveals novel fragments (arrowheads). Comparing novel 
fragment sizes to the expected size and relative signal intensities of the BamHI 
fragments for both probes, probe 2 was predicted to overlie the true breakpoint. 
To clone the 3.9 kb HindIII fragment (red arrowhead) we designed inverse PCR 
primers (red arrows). Restriction map is included (E, EcoRI; H, HindIII; B, 
BamHI). 
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Figure 3.4. Inverse PCR reveals a 9q21 autosomal insertion translocation at 
Xq27 near SOX3. (A) Inverse PCR sequence data shows the 640 kb duplicated 
segment (green) inserted into Xq27 downstream of SOX3. Neighboring genes 
are shown. On der(X), the orientation of the two alternate TRPM3 promoters is 
opposite to that of SOX3. (B) Local view of the Xq27 insertion site located 83 kb 
on the 3’ end of SOX3. A human-specific 190 bp near-perfect palindrome with 
two identical 88 bp arms (blue) and a 4 bp TATC central spacer sequence is 
flanked by repeat elements (gray bars). The 9q21 autosomal segment (green) is 
inserted at the palindrome center coinciding with a 4 bp del(TAGC) of the 
telomeric arm. Forward X centromeric and telomeric junction PCRs show this is 
unique to the proband. Junction chromatograms are shown. (C) Expanded 
sequence view comparing both centromeric (Xq-9q) and telomeric (9q-Xq) 
junctions. Chromosome 9 (red) and X (black) sequences reveal a central 
inversion (marked by ‘X’) and an adjacent 4 bp deletion. The telomeric breakpoint 
is ambiguous (green) due to a TTA trinucleotide match. Blue lines, identical 
palindrome arms. (D) Comparison of possible BASR breakpoints relative to two 
previously described insertions in familial X-linked congenital hypertrichosis in 
Chinese (CGHcn) and Mexican (CGHmx) families (Zhu et al., 2011).
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Figure 3.5. Human SOX3 and SOX2 have overlapping functions. (A) 
Schematic of the SOX luciferase assay with a DC5-Luciferase reporter and all 
possible combinations of SOX2, SOX3 or PAX6 cDNA expression plasmids. (B) 
Normalized luminescence values show SOX3, in addition to SOX2, can interact 
with PAX6 at a known SOX2 enhancer and activate gene transcription, 
demonstrating functional overlap (red bar). Error bars denote standard deviation. 
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Figure 3.6. SoxB1 transgenic mouse models exhibit ocular malformations. 
(A) λRED recombineering strategy utilizing a Chx10 (Vsx2) bacterial artificial 
chromosome (BAC). A Sox2HA or Sox3HA (red bars) ires-Cre cassette (yellow and 
green bars, respectively) was engineered to replace Chx10 exon 1 using flanking 
homology arms (grey and light blue bars). Positive insertion was selected by 
ampicillin resistance conferred by frt-AMP-frt (purple), and was subsequently 
removed by FLP recombination leaving a single frt site. Final BAC transgenes 
are shown (bottom). (B) Table enumerating number of founders, successful 
offspring transmission, neonatal expression pattern, and ocular phenotype (if 
any). Neonatal expression was determined by crossing founders to R26floxGFP 
homozygotes and analyzing F1 GFP expression at birth. Both Chx10>Sox2 lines 
with small eyes (217 and 317) exhibited full expression. A single full expressing 
Chx10>Sox3 line (868) showed no phenotype. (C) Gross eye photographs in 
adults and embryonic day E14.5 embryos for lines 217 and 317 demonstrate 
microphthalmia. In some cases severities differed even among littermates (left 
panel).  (D) Confirmation of post-natal day 1 transgene expression in lines 217, 
317 and 868 by anti-hemagglutin (HA) western blot shows a major form at 45 kD 
corresponding to the expected sizes of Sox2HA and Sox3HA. A slightly larger form 
at 47-48 kD is observed but does not correspond to any known post-translational 
modification. Anti-Sox2 or anti-Sox3 primary antibodies detect endogenous 
protein but do not detect the HA-tagged species based on band intensities. This 
most likely stems from C-terminus epitope sites that are modified beyond 
recognition by the HA-tag. Cre genotyping PCRs confirm transgene specificity. 
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Figure 3.7. Sox2 overexpression causes small eyes with poor retinal 
lamination and cellular aggregates. (A) E14.5 embryonic eye tissue section 
immunostaining shows faithful and robust transgene expression in the retinoblast 
layer of the retina (left panels). Line 317 is representative for both Sox2 lines. 
Lineage tracing reveals GFP expression throughout the retina (center panels). 
Merge (right panels). All patterns are consistent with Chx10 endogenous 
expression beginning at E10 in the optic cup inner retinal layer. (B) Abnormal 
cellular aggregates posterior to the central E14.5 retina are positive for neural 
marker TuJ1 and GFP (top row). A non-penetrant transgenic littermate is shown 
for comparison at lower magnification (bottom row). (C) In other cases, the E14.5 
retina appears thickened and dysmorphic (top row versus bottom row). This often 
accompanies the cellular aggregates seen in (B). A non-penetrant littermate is 
provided for comparison at lower magnification (bottom row). (D) Confocal 
microscopy shows adult retinal morphology is compromised in both Sox2 lines 
317 and 217 (latter not shown; see third column). Sox2HA is limited to the bipolar 
cells of the inner nuclear layer (INL) and all mature cells of the retina express 
GFP as predicted (first and second columns). Merged images (fourth column). 
ONL, outer nuclear layer; INL, inner nuclear layer, GCL, ganglion cell layer. 
Scale bar, 200 μm. 
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Figure 3.S1. Additional left orbital tumor characterization. (A) The cystic 
mass is completely SOX3 negative. Shown are three representative slides 
sampling different regions of the tumor, none of which have appreciable SOX3 
detection. (B) Anti-SOX2 immunostain reveals sparse and weakly expressing 
pockets of cells in the aborted eye tissue (left) specifcally within retinal rosettes 
(center). Collections of SOX2-positive cells are found in the surrounding neuropil 
(right). (C) Abundant deposits of GFAP-expressing glial cells can be found within 
the remnant eye (left). Inset shows magnified image (center). Elsewhere in the 
tumor, morphologically-appearing glial cells are observed expressing GFAP (right 
panel). Scale bar, 250 μm. 
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Figure 3.S2. X-chromosome inactivation is not disrupted in the proband. (A) 
Physical map of der(X) shows all nine CpG islands tested for methylation status 
(green boxes; see UCSC genome browser hg18). These are positioned within 
and flanking both sides of the 9q21 insertion translocation at Xq27. One Xq28 
CpG island was chosen to assay for X-chromosome inactivation (XCI) at further 
distances beyond Xq27. Relative positions of known genes are shown. (B) An 
example of CpG methylation analysis for CpG 65, the sole island within the 
autosomal insertion. Assuming normal XCI, the expected fraction of clones 
derived from Xinactive is one-sixth. Of 29 random clones, six are designated as Xi 
(see Methods) in the proband consistent with normal XCI. Open circle, 
unmethylated, filled circle, methylated. Statistical significance is measured using 
Fisher’s Exact Test. Numbers denote CpG islands relative to the transcriptional 
start site (defined as +1). 
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Figure 3.S3. Trpm3 is expressed in the embryonic eye throughout 
gestation. (A) Physical map showing all mouse Trpm3 isoforms (mouse genome 
build mm9, July 2007). We designed RT-PCR primers spanning exons 4 through 
8 that are contained in nearly all isoforms. (B) PCR gel showing Trpm3 
transcripts detected in embryonic eye tissues at all gestational timepoints (E10.5, 
E12.5, E14.5, E16.5, E18.5 and P1; top panel). β-actin control (bottom panel). 
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TABLE 3.1. PCR, CLONING AND SOUTHERN PROBE PRIMERS 
 
 
9q21 SOUTHERN BLOT PROBES 
 
Region Size 

[bp] 
forward primer [5’-] Reverse primer [5’-] MA 

Probe 1     1005 ATGTCCTAGACAAAAGCTAA
AGCAA 

CTTCATTACACTCTGTTGCTTC
GTA 

1X 

Probe 2 700 AAATAGCAGTAGCACATGTG
AATGA 

TTAAAGATGACTAATGGGTTTT
GCT 

1X 

     
 
Both PCRs were performed using Platinum Taq (Invitrogen) with 
100 nM each primer, 1.5mM MgCl2 and 200 µM dNTPs. MA, Masteramp 
concentration [Epicentre]. Cycling conditions were 95°C x 5 min, 
followed by 40 cycles of [95°C x 30sec denaturation, 55°C x 30 sec 
annealing, 72°C x 60 sec extension], followed by 72°C x 7 min. 
 
 
Xq27-9q21 BREAKPOINT IDENTIFICATION AND CONFIRMATION 
 
Region Size 

[bp] 
forward primer 
[5’-] 

Reverse primer [5’-] MA 

inverse 
PCR* 
(telomeric 
junction) 
      

3,917 CTGGTCTTTCGTATACCT
TGTCTCA 

GATGATTCAGGACAACAACA
AAAAT 

1X 

telomeric 
junction 

244 CTAAGCCCCTAACATGTT
TGTTCTA 

TTTTTCTCTTGTTTAGGTTG
TGCTT 
 

1X 

     

centromeric 
junction 
 

319 CAGGGACCAAAATATTCT
ACTGAAA 

GTTTATTTCTGGTGACTTCA
GTGCT 
 

1X 

 
 
*PCRs were performed using EXPAND Long Template PCR [Roche] with 
100 nM each primer, 1.5mM MgCl2 and 200 µM dNTPs. MA, Masteramp 
concentration [Epicentre]. DNA template = HindIII-digested and 
blood genomic DNA religated overnight. Cycling conditions were 
95°C x 4 min, followed by 40 cycles of [95°C x 30sec denaturation, 
48°C x 30 sec annealing, 68°C x 480 sec extension], followed by 
68°C x 7 min. 
 
All other forward PCRs were performed using Platinum Taq 
(Invitrogen) with 100 nM each primer, 1.5mM MgCl2 and 200 µM dNTPs. 
MA, Masteramp concentration [Epicentre]. Cycling conditions were 
95°C x 5 min, followed by 40 cycles of [95°C x 30sec denaturation, 
55°C x 30 sec annealing, 72°C x 60 sec extension], followed by 72°C 
x 7 min. 
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LUCIFERASE ASSAY CLONING PCR PRIMERS 
 
Region Size 

[bp] 
forward primer 
[5’-] 

Reverse primer [5’-] MA 

huSOX2-HA     1005 GATCATGAATTCATGTAC
AACATGATGGAGACGGAG
CTGAAG 

GATCATGTCGACTCAGGCGTAA
TCTGGAACATCGTATGGGTACA
TGTGTGAGAGGGGCAGTGTGCC
GTTAAT 

3X 

huSOX3-HA 1392 GATCATGAATTCATGCGA
CCTGTTCGAGAGAACTCA
TCAGGT 

GATCATGTCGACTCAGGCGTAA
TCTGGAACATCGTATGGGTAGA
TGTGGGTCAGCGGCACCGTTCC
GTTGACT 

3X 

     
 
Both PCRs were performed using EXPAND High Fidelity Taq (Roche) 
with 100 nM each primer, 1.5mM MgCl2 and 200 µM dNTPs. MA, 
Masteramp concentration [Epicentre]. Cycling conditions were 95°C 
x 5 min, followed by 40 cycles of [95°C x 60sec denaturation, 63°C 
x 30 sec annealing, 72°C x 180 sec extension], followed by 72°C x 
7 min. 
 
 
 
BAC TARGETING VECTOR CLONING PCR PRIMERS 
 
Region Size 

[bp] 
forward primer [5’-] Reverse primer [5’-] MA 

Sox2-HA*     1024 GATCATGTCGACCAGCGCCC
GCATGTATAACATGATGGAG
ACG 

GATCATGTCGACTCAGGCGTA
ATCTGGAACATCGTATGGGTA
CATGTGCGACAGGGGCAGTGT
GCCGTTA 

3X 

Sox3-HA* 1375 GATCATGTCGACCAAGCTGC
GAATGCGACCAGCTCGAGAG
AACGCATCAGGAGAGAGAA 
 

GATCATGTCGACTCAGGCGTA
ATCTGGAACATCGTATGGGTA
GATGTGGGTCAGCGGCACCGT
T 

3X 

Chx10 
homology 
arm (A) 

532 GATCATGTCGACAGATCTGTCT
GAGTCTATTTGAGGCTGCTT 
 

GATCATCTCGAGCTCCCGGTTCT
TTGGAGGGGCTGA 
 
 

1X 

Chx10 
homology 
arm (B) 

409 GATCATCTCGAGCTACACTGCT
TGGGAAAGTCACA 
 

GATCATCTCGAGAGATCTGACAC
AGGGACAAGTAGGAACAG 
 

1X 

 
*Both Sox2 and Sox3 PCRs were performed using EXPAND High 
Fidelity Taq (Roche) with 100 nM each primer, 1.5mM MgCl2 and 
200 µM dNTPs. MA, Masteramp concentration [Epicentre]. Cycling 
conditions were 95°C x 5 min, followed by 40 cycles of [95°C x 
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60sec denaturation, 63°C x 30 sec annealing, 72°C x 180 sec 
extension], followed by 72°C x 7 min. 
 
All PCRs were performed using Platinum Taq (Invitrogen) with 
100 nM each primer, 1.5mM MgCl2 and 200 µM dNTPs. MA, Masteramp 
concentration [Epicentre]. Cycling conditions were 95°C x 5 min, 
followed by 40 cycles of [95°C x 30sec denaturation, 55°C x 30 sec 
annealing, 72°C x 60 sec extension], followed by 72°C x 7 min. Red 
= initiator methionine, Orange = HA tag, Green = restriction 
site, Underline = endogenous Sox2 or Sox3 5’ UTR. 
 
 
BISULFITE SEQUENCING PCR PRIMERS 
 
CpG 
Island 

Size 
[bp] 

forward primer [5’-] Reverse primer [5’-] MA 

CpG 65     
65_1 242 ATGGAGGTATATTGTTTGTTGTT

T 
CTAACTTCATTTTTATTCCCTTT
TAC 

1X 

65_5     140 TTTAGTATTATGGAAAGGGTTTA
AGT 

AATTAAATTCCAAACAAAAATCC
AC 

1X 

65_6 152 AAAATTAAATTCCAAACAAAAAT
CC 

GGGAGGTAAGTTTAGTATTATGG
AAAG 

1X 

65_7 100 GAAAAGAAAGTAAAGATTGGGGT
TT 

See 65_5 reverse primer 1X 

65_8 120 ATTGGTTTAATTGTGGGTTGG TAAACCCTACACTCTCCAAAAAA
AA 

1X 

65_9 118 GATTGGTTTAATTGTGGGTTG ACCCTACACTCTCCAAAAAAAAC 1X 
65_10 352 GGATTTTTGTTTGGAATTTAATT

TTT 
CCAACCCACAATTAAACCAAT 1X 

     
CpG 38     
38_12 340 GGTTATTTAAAATATAAAGGTAA

GG 
ATACTTTATTTAACAAACACAAA
AC 

1X 

     
CpG 216     
216_0 192 TTTGTTTGTTGGGTTATTTGTTA

AAG 
AAACACCTTATTTTAATTTCTAC
CAAATCT 

1X 

216_1     258 GGAGTTTTTTAGAGTGAAAGAAA
AGTTT 

TAACCCAACAAACAAATAAATAT
CC 

1X 

216_2 226 GTATGGGAGATAGGTTTTAGGAT
TG 

TAACCACAAAACAAAAACAAAAA
AA 

1X 

216_3 177 AATTTTGTAATTTTGTTAAGGTA
GAT 

ACCAAAAACACTTCCAATAAACC
TA 

1X 

216_4 156 GGGATTTTAGGTTTATTGGAAGT
GT 

ATCCTAAAACCTATCTCCCATAC
C 

1X 

216_5 164 GTTTATTTAGAGGTTATTAATTA
GGGTTTT 

TCTACCTTAACAAAATTACAAAA
TTATTTT 

1X 

216_6 276 TAGTTGGGTTTTTTATATATTTG
TT 

AACTTTTTAAAACCCTAATTAAT
AACCTCT 

1X 

216_7 280 TTAGTTTTTAGAAGGTTGTATAT
TGT 

AAAAACCCAACTAAAACCCAAAC 1X 

216_8 273 GTGTATTTTGGGGTTTTTTAGGG ACAATATACAACCTTCTAAAAAC
TAAACTC 

1X 

216_9 197 AGGGAGTATTTATTTTTTTTGAG
TAG 

AAAAACCCCAAAATACACAATTC
TA 

1X 

216_10 285 GGTATTATTGGGTTGTATTGTAG
GT 

AAAAAATAAATACTCCCTACCCA
AC 

1X 

216_11 101 TGGTAGGTATATGTTGATTATGT TAATAAAATCTAAACCCAACTC 1X 
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CpG 41     
41_16 177 TTAGTTTTGGGGTTTTTAGAATT

TAG 
TAAAAATAAACATCACATCTACT
CC 

1X 

     
CpG 54     
54_17 297 GTAATATTTTGGATAAGGATTTG

G 
TAAACATCCTCCATACCTAACAA
AC 

1X 

     
CpG 25     
25_1 294 TTTTTTTTAGGGAGTGGGGTAAG CCAAAAAAACAAACTTAATTAAA

AC 
1X 

     
CpG 139     
139_1 277 GATTAATTGGTAAATTGAGGGGT

TT 
AATCCCTCACAACAATTTTCTAA
AA 

1X 

139_2 312 GGGTTAGGGAGTTTGGGTATAGT
TA 

TTTACAACCTCAAAAAAAATAAA
AATAAAA 

1X 

139_3 220 GGTAGTTTGGGAGTTGTAGTTTA
AT 

ACTTTACCTAATTTAACCTTCTC
ACATATC 

1X 

     
CpG 38 
(Xq28) 

    

38_1_Xq
28 

258 ATTTTTTTAGGATATGGTTTAGG
TT 

GGTGGGTATTTATAGTTGTTTTT
GG 

1X 

     
 
All PCRs were performed using JumpStart Taq (Sigma) with 100 nM 
each primer, 1.5 mM MgCl2 and 200 µM dNTPs. MA, Masteramp 
concentration [Epicentre]. Cycling conditions were 94°C x 2min, 
followed by 40 cycles of [94°C x 30sec denaturation, 55°C x 30 sec 
annealing, 72°C x 30 sec extension], followed by 72°C x 7 min. 
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CHAPTER IV 
 

DISCUSSION AND FUTURE DIRECTIONS 
 
 

The results in this thesis provide insights into novel disease mechanisms 

involving RBP4 and SOX3 in human congenital eye malformations. This work opens 

new avenues for exploration in retinoid and SOX gene biology. Chapter II describes a 

novel genetic form of vitamin A deficiency with two dominant-negative RBP4 missense 

mutations. This is an example of a non-Mendelian disease trait with incomplete 

penetrance and a maternal parent-of-origin effect that is likely attributable to a gene-

environment interaction. Chapter III discusses a new SOX3 regulatory mutation 

involving a rearrangement-prone X-linked human-specific palindrome. The growing field 

of regulatory diseases is a challenging but exciting new realm in human genetics. My 

work has provided two new candidate genes to the list of genetic loci associated with 

microphthalmia, anophthalmia and coloboma (MAC). As with all new discoveries, there 

are many future directions that can strengthen and build upon the conclusions 

presented in this thesis. 
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Structural properties of RBP A55T and A57T 

In Chapter II, we systematically examined the molecular properties of both RBP 

A55T and A57T mutants. Apart from the reduced ability to bind and retain retinol, both 

mutants function similarly to wild-type in secretion stability, TTR complex formation, yet 

both appear to have greater STRA6 binding affinity than wild-type. These results were 

unexpected given previous studies showing apo-RBP has 5-fold lower affinity for TTR 

than holo-WT (Fex et al., 1979). Furthermore, transfer of vitamin A into the cell from 

holo-RBP must allow for apo-RBP dissociation to enable binding of the next RBP 

(Kawaguchi et al., 2011) . The functional similarities observed between A55T, A57T and 

holo-WT implies structural mimicry through an allosteric effect mediated by the 

threonine substitution. Human apo- and holo-WT crystal structures are known, with the 

only significant difference occurring in an extracellular loop at the cavity entrance 

(amino acids 34 – 36) (Cowan et al., 1990; Zanotti et al., 1993). Molecular modeling 

suggests stabilization of this loop in the holo position may be mediated by an altered 

network of hydrogen bonds directly linking F36 to either T55 or T57 in the mutants. 

Therefore, obtaining the crystal structures of both forms is the most direct way to test 

the mimicry hypothesis. Performing a three-dimensional overlay of mutant, apo- and 

holo-WT would provide enormous structural insight at atomic resolution. One could also 

use this data to explore the structural interaction between RBP and STRA6. A large-

scale STRA6 mutagenesis study by Kawaguchi and colleagues has defined its points of 

contact with RBP (Kawaguchi et al., 2008a). However, dynamic structural changes that 

may occur during binding and/or dissociation with STRA6 are completely unknown. My 

work provides a new tool that uncouples vitamin A loading from high affinity receptor 
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binding. Armed with the crystal structures, these two mutants may help to reveal a 

molecular “switch” on RBP that normally allows it to remain receptor-bound until retinol 

delivery is complete.  

 To evaluate the detrimental effects that steric hinderance and hydrophilicity of the 

threonine side chain has on vitamin A binding, I propose an expanded retinol binding 

experiment with more RBP mutants. First, one could substitute a serine at positions 55 

or 57 (A55S and A57S) to reduce the size of the side chain while preserving overall 

hydrophilicity. Second, placement of valines at both positions (A55V and A57V) could 

eliminate hydrophilicity without significantly altering side chain size. Comparison of RBP 

A55T and A57T to both holo-WT would allow examination of each component 

individually in terms of overall negative impact on retinol binding. 

 

Dominant-negative RBP in developmental eye disease 

 The data presented in Chapter II strongly supports a dominant-negative disease 

mechanism for RBP A55T and A57T. Although circumstantial, our findings are wholly 

consistent with an in vivo dominant disease model based on multiple independent 

observations: 1) the mutant RBP (A57T) is present at a significant fraction in blood of 

known carriers, 2) both mutants are significantly impaired in binding vitamin A, thus 

reducing circulating retinol, 3) both mutant proteins bind STRA6 at higher steady-state 

levels compared to holo-WT, 4) the placenta expresses both STRA6 and fetal RBP 

(Johansson et al., 1999; Sapin et al., 2000a), thus providing a straightforward, logical 

hypothesis for the maternal parent-of-origin effect of MAC, and 5) common alternative 

forms of vitamin A can bypass and compensate for a deficient RBP system (Quadro et 
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al., 2005) providing a potential explanation for incomplete penetrance. Altogether, these 

findings reinforce the link between vitamin A deficiency and eye malformations. To 

demonstrate this in vivo, I propose an extensive follow-up study involving delivery of 

purified recombinant RBP A55T, A57T, apo-WT, holo-WT or vehicle into pregnant wild-

type mice on graded vitamin A diets. This would require injection of variable RBP doses 

immediately prior to conception with additional scheduled administrations through E10.5 

(optic cup stage), when retinoic acid signaling is known to be active in the eye. The 

endpoint of this experiment is the presence or absence of eye malformations in 

newborn pups (P0). Measurements include eye globe axial length and gross as well as 

histological morphology. If a developmental eye phenotype is present, an embryonic 

timecourse will follow using the highest non-lethal dose to establish when eye 

abnormalities begin to manifest using morphology and immunohistochemistry studies 

on embryonic eye tissues. Alternatively, the RBP injection experiment can be performed 

on a Rbp4-/- background (Quadro et al., 1999) to eliminate endogenous RBP thus 

ensuring a pre-determined WT-to-mutant ratio upon injection. 

 One potential shortcoming of the transient RBP injection model is that it does not 

reproduce the double heterozygous carrier status of both mother and fetus. The 

proposed experimental protocol only alters vitamin A delivery in the maternal 

compartment. Given that 14 of 15 affected children across all three families in Chapter II 

were born from a carrier mother, this suggests both child and mother may need to carry 

the mutation for disease manifestation. As a follow-up, I propose to create a Rbp4A73T 

knock-in mouse model (p.A73T chosen for its degree of severity). Crossing Rbp4A73T/+ 

carrier females with wild-type males would produce 50% heterozygous and 50% wild-



169 
 

type embryos. Pregnancies could occur, on average, under different maternal dietary 

vitamin A conditions beginning prior to conception and ranging from sufficient to none. If 

my hypothesis that RBP4 p.A73T causes MAC is true, we expect a level of vitamin A 

deficiency that consistently produces congenital eye malformations in heterozygous but 

not wild-type embryos. This mating set-up also allows for complementary 3H-retinol 

tracer experiments to quantify the cumulative depletion across both RBP “bottlenecks” 

(i.e. placenta and fetal eye membranes). Here, a bolus injection of 3H-retinol into 

maternal circulation would be administered at E11.5 (the earliest timepoint at which a 

fetal eye can be dissected). After several hours, all embryonic eyes could be dissected 

and pooled (based on genotypes) then counted for 3H radioactivity. Replicate 

experiments are performed and average percentage of input is calculated for each 

embryonic genotype (+/+ versus +/-). The final values represent total depletion across 

placenta and fetal eye, whereas the difference is depletion experienced specifically at 

the fetal eye. 

 Returning to the transient RBP injection experimental system, one additional 

benefit is it also allows us to investigate compartment localization of mutant RBP. Our 

mass spectrometry results indicate a 2-to-1 WT-to-mutant ratio in carrier blood and a 

similar or greater ratio in urine. This relative reduction of the mutant form in vivo might 

be attributed to several non-mutually exclusive reasons: 1) differential secretion by the 

liver, 2) different binding affinities for transthyretin, 3) decreased half-life in circulation or 

4) mutant RBP trapping in tissue interstitium due to increased STRA6 steady state 

binding. Our in vitro data supports high STRA6 receptor binding as a major contributor. 

This could be tested in vivo through injections of equal amounts of purified mutant or 



170 
 

holo-WT 35S-RBP prepared as transthyretin-associated pentamers. After various 

amounts of elapsed time post-injection, tissues known to express Stra6 (e.g. eye, testis, 

bone marrow) can be harvested and assayed for overall 35S radioactivity as a 

percentage of input. We can also collect blood and urine samples during this time 

period to determine half-life in blood and rate of renal elimination. 

 Qualitatively, mutant and wild-type RBP show similar steady state binding with 

TTR (Chapter II). However, the resolution of our method may not capture moderate 

differences in binding affinities. To test the relative affinities in vivo, one could perform a 

TTR immunoprecipitation (IP) on carrier serum, isolate RBP via electrophoresis which is 

known to dissociate the pentameric complex (Kanai et al., 1968), and perform MALDI-

TOF mass spectrometry to gauge relative levels of mutant and wild-type RBP. 

Unfortunately, this may be complicated by the molar excess of serum TTR to RBP, 

estimated at 2.5 to 1 (Peterson, 1971; Smith and Goodman, 1971). Therefore, this 

approach may require scaling up or utilization of other in vitro techniques such as two-

phase partitioning (Fex et al., 1979). To best assess secretion rates of both forms in 

vivo ideally requires access to primary hepatic tissues from heterozygous carriers (e.g. 

liver biopsy) for primary cultures and subsequent hepatoma transformation in vitro 

(Borek, 1972). Our transfection-based system does not replicate endogenous 

hepatocyte RBP4 expression levels or vitamin A-dependent RBP secretion. 

Unfortunately, current access to human liver tissue is not feasible; therefore, a more 

practical source is hepatocytes derived from a mouse knock-in line of the p.A73T allele 

(as discussed above). Cultured rat and human hepatoma cell lines as well as mouse 

primary hepatocytes routinely preserve expression of RBP and vitamin A-dependent 



171 
 

secretion (Bellovino et al., 1999; Borek et al., 1980; Marinari et al., 1987; Smith et al., 

1978; Tosetti et al., 1992). Under serum-free vitamin A-rich conditions, a timecourse 

accumulation study could be used to examine secretion rates. After several hours of 

exposure to vitamin A, we could purify RBP from conditioned media as we did from 

human serum in Chapter II (Figure 2.S6) and analyze relative abundance by mass 

spectrometry. This method eliminates the potential confounding effect of glomerular 

filtration, and therefore does not rely on TTR binding for accurate measurement in CM. 

Furthermore, there is no evidence that RBP is internalized by liver cells from circulation; 

thus, CM should reflect total secretion output. Relative intracellular RBP levels should 

inversely correlate with the secreted ratio. We could purify RBP via immunoprecipitation 

of microsomal fractions and analyze purified protein using the same approach as above. 

Altogether, the above in vivo studies can further solidify the work presented in Chapter II 

and enhance our overall understanding of the dominant-negative disease mechanism. 

 

Maternal-fetal transfer of retinol during pregnancy 

Placental transfer of retinoids is a highly regulated process that limits the amount 

of teratogenic vitamin A that can reach the fetus (Bates, 1983; Moore, 1971). Vitamin A 

delivery across the placenta has been demonstrated in various mammalian species 

(Collins et al., 1994; Creech Kraft et al., 1989; Kochhar et al., 1988; Lorente and Miller, 

1977; Ross and Gardner, 1994; Satre et al., 1992). Retinol transfer is mediated by two 

major pathways: 1) RBP (Takahashi et al., 1977) and its receptor (Sivaprasadarao et 

al., 1994), and 2) lipoprotein-associated (chylomicron) retinyl esters that are taken up by 

placental cells (Quadro et al., 2004b). In humans, placental villous mesenchymal cells 
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are also capable of retinyl ester synthesis and storage (Sapin et al., 2000b). A number 

of other species can contribute to placental retinoid transfer (e.g. retinoic acid bound to 

albumin, carotenoids, and water-soluble glucoronides), but these are minor in 

comparison to the two major forms (Spiegler et al., 2012). Despite the universal 

requirement for vitamin A during embryogenesis, maternal-fetal retinoid transport differs 

across mammals at both anatomical and molecular levels. 

In mouse, the E8 – E10 yolk sac visceral endoderm, a fetal-derived primitive 

“liver”, expresses STRA6 receptor (Bouillet et al., 1997; Johansson et al., 1997; Sapin 

et al., 2000a), cellular retinol binding protein 1 (CRBPI), and fetal RBP (Johansson et 

al., 1997). Furthermore, inhibition of fetal RBP translation in cultured mouse yolk sacs 

produces a phenotype consistent with VAD syndrome (including eye defects), indicating 

the importance of yolk sac retinoids in early organogenesis (Bavik et al., 1996). By mid-

gestation, the mature fetal-derived chorio-allantoic placenta develops into a major 

maternal-fetal interface. Starting at E8.5, STRA6 transcripts are abundant in the 

placental labyrinth zone and yolk sac; however, by mid-gestation (~E12.5) only 

placental expression persists (Bouillet et al., 1997). In mid-late gestation (~E17), 

immunoreactive STRA6 and RBP are absent in the labyrinth zone of the chorio-allantoic 

placenta, but now present abundantly in the visceral endoderm of the yolk sac 

(Johansson et al., 1997). Northern blot analysis confirms the absence of RBP mRNA 

transcripts in E17 chorio-allantoic placenta; however, Rbp4 transcripts are detected in 

the yolk sac at the same age (Johansson et al., 1997; Soprano et al., 1986a). 

Transthyretin (TTR) is also expressed in the mouse yolk sac during late gestation and 

secreted with RBP (Soprano et al., 1986a). In rat, RBP and TTR mRNA and protein co-
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localize in mid-late gestational (day 14-22) yolk sac, whereby TTR protein levels initially 

exceeding that in fetal rat liver (Sklan and Ross, 1987; Thomas et al., 1990). The 

absence of STRA6 mRNA transcripts, but presence of protein in late gestation (~E17) 

mouse yolk sac raises a number of potential scenarios for RBP-retinol uptake: 1) 

STRA6 receptor perdurance, 2) a switch to another as-yet uncharacterized Stra 

receptor (Sapin et al., 2000a), or 3) STRA6 transcription below the threshold of RNA 

detection. In contrast, abundant CRBPI is found in both placental trophectoderm lining 

the fetal vasculature and visceral endoderm of the yolk sac at E18 (Johansson et al., 

1997), indicating two locations of CRBPI retinol processing. The co-localization of 

STRA6, RBP, TTR and CRBPI in late-gestation mouse yolk sac strongly suggests the 

primary CRBPI function is to shuttle retinol to RBP for secretion into fetal circulation. 

Meanwhile, CRBPI co-localization with likely maternal RBP in placental trophoblasts 

implies an RBP-independent function of CRBPI in the placenta. Despite the abundant 

expression data, the relative contributions and exact molecular function(s) of 

trophoblast- and yolk sac-derived CRBPI and CRBPII in fetal retinoid transport remain 

poorly defined. 

Together, the cumulative expression data suggests maternal RBP-retinol may 

cross into trophotblastic blood sinuses obtaining direct access to the yolk sac visceral 

endoderm where fetal STRA6 is expressed. A recent study shows maternal RBP does 

not cross the mouse maternal-fetal interface (Quadro et al., 2004b), most likely blocked 

at the yolk sac. Once inside the cell, retinol can bind fetal RBP for secretion into the 

vitelline circulation destined for the embryo proper. Furthermore, de novo RBP 

synthesis and secretion in the yolk sac behaves similarly to adult liver under conditions 
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of vitamin A deficiency (Soprano et al., 1988). Therefore, persistent yolk sac expression 

of RBP, TTR, CRBPI, CRBPII and STRA6 as well as this the resemblance to adult liver 

regarding RBP secretion, all suggest the yolk sac, and not chorio-allantoic placenta, 

acts as the primary mediator of maternal-fetal retinol transfer throughout rodent 

gestation. 

In contrast to rodents, human placentation exhibits a different gene expression 

profile and relative functions of the placenta and yolk sac. In fact, the human yolk sac 

degenerates by week 12 of gestation, but during its existence, evidence indicates it 

functions as a critical site of placental exchange (Freyer and Renfree, 2009). For 

example, folic acid delivery to the early human conceptus depends on uterine vessels 

and the yolk sac (Jauniaux et al., 2007). This overall early function is especially 

important since blood flow through the placental intervillous space is only fully 

established at week 12 (Burton et al., 2002). During the first trimester, much 

organogenesis (including the eye) occurs, reflected by abundant de novo synthesis of 

fetal RBP protein in the yolk sac (Johansson et al., 1999). RBP is also expressed in 

early sheep and pig yolk sac tissues (Harney et al., 1994; Liu et al., 1991). No study has 

examined STRA6, TTR, CRBP-I or CRBP-II expression in the human yolk sac. 

During the first trimester, human placental syncytiotrophoblasts express STRA6 

receptor and contain vesicles of immunoreactive RBP. RBP is also seen in the lumen of 

villous vessels of the placenta (fetal) vasculature. This immunoreactive RBP is likely 

maternal in origin deduced by the observation that no RBP mRNA is detected in 

placental villi at any point during human gestation (Johansson et al., 1999). It remains 

unclear what molecular role STRA6 receptor plays, if any, in RBP internalization apart 
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from its known role in retinol uptake (Kawaguchi et al., 2007). Nevertheless, 125I-

radiolabeled RBP transfer studies in pregnant rhesus monkey show circulating fetal 

RBP is a mix of maternal and fetal-derived RBP (Vahlquist and Nilsson, 1984). These 

findings demonstrate maternal RBP crosses the syncytiotrophoblast layer, and a 

fraction may enter the general fetal circulation. This observation does not exclude the 

blockage of the majority of maternal RBP by the yolk sac in favor of fetal-derived RBP. 

Analysis of 6-13 week human fetuses show high all-trans-retinol tissue levels indicating 

successful fetal retinoid transfer (Kraft et al., 1993). Also, the majority of circulating 

human fetal RBP-retinol delivered through the umbilical vein is complexed to TTR 

(Sklan et al., 1985), indicating either re-formation of the TTR-RBP-retinol complex for 

fetal circulation or intact transfer across the placenta. Therefore, in first trimester 

pregnant human females with RBP4 mutations, eye development may be compromised 

by two fetal sites of vitamin A “bottlenecks”:  the placental syncytiotrophoblast layer and 

yolk sac visceral endoderm. Much insight can be gained into human RBP placental 

crossing from term pregnancies of known RBP4 p.A73T/+ or p.A75T/+ carrier mothers 

with genotypically normal babies. The opposite genotypic situation would also be 

informative regarding fetal-to-maternal transfer of RBP. 

At term, immunoreactive RBP is no longer present in the villous stroma or 

syncytium, though RBP is still detected in the lumen of villous vessels (Johansson et al., 

1999). This implies an interruption of transplacental movement of maternal RBP (but not 

retinol), despite evidence for RBP-retinol absorption of cultured human term 

syncytiotrophoblasts (Torma and Vahlquist, 1986). This discrepancy may be explained 

by a study of perfused term human placentae that showed uptake of maternal RBP-
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retinol and subsequent degradation of the protein component (Dancis et al., 1992). The 

RBP fragments were secreted into fetal circulation. Retinol crossed into fetal circulation 

intact, though it was no longer bound to RBP upon exiting the placenta. This suggests 

the route between the placenta and fetal liver consists of retinol bound transiently to an 

as-yet unidentified carrier. Upon reaching fetal liver, retinol is then quickly transferred to 

fetal RBP. Indeed, greater than 90% of human newborn circulating retinol is associated 

with RBP (Ismadi and Olson, 1975). The phenomenon of RBP degradation and 

secretion into fetal circulation in first trimester placenta requires further exploration.  

The decidua basalis (DB) is a maternal-derived placental structure that lines the 

uterine wall and participates in nutrient exchange with the fetus. Early in mouse 

gestation (E8 – E10), DB accumulates retinoids and expresses CRBPI, STRA6 but not 

RBP (Johansson et al., 1997; Sapin et al., 2000a; Sapin et al., 1997). At mid-gestation 

E13.5, Rbp4 transcription initiates in the DB which coincides with a major shift in 

retinoid accumulation to the visceral endoderm of the yolk sac and fetal liver by E18.5 

(Johansson et al., 1997; Sapin et al., 1997). Therefore, DB may represent an additional 

maternal site of retinol processing or storage could compromise vitamin A mobilization 

in RBP4 p.A73T/+ and p.A75T/+ human carriers depending on the exact function of DB 

early in human development. Consistent with this hypothesis, we observe biallelic 

expression of Rbp4 in mouse whole placental tissue at term (Figure 2.S5). However, 

based on the timing of Rbp4 transcriptional initiation at ~E13.5, loss of retinol in the DB 

at this stage would have little consequence on eye initiation which begins at E8.5. This 

does not exclude the possibility of negative effects later in eye development such as 

fusion of the choroid fissure, which is a vitamin A-dependent mid-gestational event. 
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More work involving retinoid pathway gene expression in first trimester human DB must 

be completed to address many unanswered questions. 

 

Retinoid transport and metabolism genes in congenital eye disease 

 RBP4 is only one of many genes directly or indirectly involved in retinoid 

transport or metabolism. Based on seminal work by Wilson and colleagues (Wilson et 

al., 1953) and two genes implicated in retinol delivery (RBP4 and STRA6), it is clear the 

route vitamin A takes from its arrival in the intestinal lumen to the point of cellular uptake 

is critical in ensuring vitamin A homeostasis in pregnant mothers. Genetic deficiencies 

in these pathways could increase risk of maternal vitamin A deficiency during pregnancy 

with MAC inheritance patterns similar to the three families in Chapter II.  For this 

reason, I hypothesize additional MAC mutations exist in genes involved directly or 

indirectly with retinoid metabolism, storage or transport both up- and downstream of 

RBP. To test this, I propose a comprehensive screen of genes that fit this criteria using 

exon PCR and sequencing to identify pathogenic variants. 

 Retinoid metabolism starts in the intestinal lumen where it arrives mostly as 

preformed retinoids (retinol or retinyl ester) or as proretinoid α/β carotenoids. Intestinal 

enzymes perform the bulk of proretinoid-to-retinoid conversion to facilitate absorption. 

One important lumenal enzyme and its essential co-factor are pancreatic triglyceride 

lipase (PNLIP, 10q25) and co-lipase (CLPS, 6p21), respectively. This complex is the 

major lumenal triglyceride lipase and retinyl ester hydrolase in rodents and exhibits 

similar enzymatic activity in humans (van Bennekum et al., 2000). Beta-carotene 

monooxygenase 1 (BCMO1, 16q23) is another lumenal enzyme for cleavage of β-
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carotene into two retinaldehyde molecules. Several BCMO1 polymorphisms and one 

severe hypomorphic allele lead to variable levels of hypercarotenemia and poor retinoid 

conversion (Leung et al., 2009; Lietz et al., 2012; Lindqvist et al., 2007) which 

contributes to variability in retinoid metabolism. Uptake of procarotenoids into the 

enterocyte relies heavily on scavenger receptor class B, type 1 (SCARB1, 12q24) 

(During and Harrison, 2007; Lobo et al., 2010; van Bennekum et al., 2005). Intestine-

specific homeobox (ISX, 2q12) is a retinoic acid-sensitive repressor of BCMO1 and 

SCARB1 (Lobo et al., 2010; Seino et al., 2008). Constitutively active dominant 

mutations could simultaneously impact two vitamin A-metabolism genes. 

 Within the enterocyte, most retinol and carotenoids are converted into retinyl 

esters and packaged into chylomicrons for release into general circulation via the 

lymphatic system (i.e. no first-pass metabolism). Within the enterocyte, preformed 

retinol is transferred to CRBPII (RBP2, 3q23) and channeled to lecithin:retinol 

acyltransferase (LRAT, 4q32) and diacylglycerol acyltransferase 1 (DGAT1, 8q24) for 

esterification into retinyl esters (O'Byrne et al., 2005; Wongsiriroj et al., 2008). Once 

chylomicron remnants are taken up by the hepatocyte, retinyl esters are converted to 

retinol which is transferred to CRBPI (RBP1, 3q23) and conveyed to hepatic stellate 

(Ito) cells for LRAT esterification and storage (Blomhoff et al., 1982; Ghyselinck et al., 

1999; Ross, 1982). There is an ongoing debate as to the exact mechanism by which 

retinyl esters are transferred from hepatocytes to stellate cells. 

 Once RBP delivers all-trans-retinol to target cells via STRA6, the chromophore is 

transferred to cellular retinol binding protein 1, or CRBP1 (RBP1, 3q23), and is oxidized 

by RDH10 (RDH10, 8q21) to form all-trans-retinaldehyde (Sandell et al., 2012). This is 



179 
 

further oxidized by RALDH1, 2, and 3 (ALDH1A1-3, 9q21,15q21, 15q26, respectively) to 

form all-trans-retinoic acid. In fact, an ongoing study in our lab has identified 

homozygous loss of ALDH1A3 in non-syndromic anophthalmia (see Addendum Part I). 

This binds to cellular retinoic acid binding proteins 1 and 2 (CRABP1, 15q25 and 

CRABP2, 1q23) for transfer to various retinoic acid receptors encoded by three genes: 

RARA, RARB and RARG (17q21, 3p24 and 12q13). Upon binding retinoic acid, RARs 

heterodimerize with other nuclear receptors, retinoid X receptors (RXRs), encoded by 

genes RXRA, RXRB and RXRG (9q34, 6p21, 1q23). 

 The discovery of RBP4 mutations in MAC patients suggests there may be other 

mutations in genes that specifically encode retinoid binding proteins. Therefore, special 

attention may be given to these genes for screening purposes. Similar to plasma RBP, 

shuttling retinoids between different cellular compartments also requires retinoid binding 

proteins that can solubilize the highly lipophilic/hydrophobic retinoid molecule in 

aqueous environments. As of the writing of this thesis, there are seven known 

mammalian retinoid binding proteins according to Mouse Genome Informatics (MGI): 

Rbp1, Rbp2, Rbp3, Rbp4, Rlbp1, Crabp1 and Crabp2 (see Table 4.1). 

Rbp1 and Rbp2 genes encode cellular retinol binding proteins (CRBPs) 1 and 2, 

respectively, that show 91-96% protein sequence identity among human, rat, mouse, 

pig and chick (Demmer et al., 1987; Li and Norris, 1996; Rocchi et al., 1989). CRBPI 

and CRBPII bind retinol upon entry into the cell and retinaldehyde after ADH/RDH-

catalyzed oxidation. Biochemical studies show that CRBPI exhibits 100-fold greater 

binding affinity for all-trans-retinol than does CRBPII (MacDonald and Ong, 1987). 

Although both CRBPs have similar functions in retinoid processing, they show very 
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different expression profiles in vivo. CRBP1 is highly expressed in liver stellate (Ito) 

cells, kidney, RPE, and gonads (De Leeuw et al., 1990; Eriksson et al., 1984; Kato et 

al., 1984; Wardlaw et al., 1997; Zetterstrom et al., 1994). Within hepatic stellate cells, 

CRBPI is important for build-up of long-term retinyl ester storage and maintenance of 

overall vitamin A homeostasis (Ghyselinck et al., 1999). This CRBP1 storage function is 

tightly coupled to STRA6 receptor –mediated vitamin A uptake and LRAT-catalyzed 

retinyl esterification (Jiang and Napoli, 2012; Kawaguchi et al., 2011). Developmental 

expression of rbp1 in zebrafish shows widespread presence of mRNA transcripts in the 

CNS, liver, gonads and small intestines (Liu et al., 2004). Crbp1-null mouse fetuses 

develop normally under vitamin A sufficient dietary conditions; however, fetal stores of 

retinyl ester, circulating retinol and steady-state RA levels are all decreased during 

gestation (Matt et al., 2005). Rbp2 encodes CRBPII and is exclusively expressed in 

mature rat, human, chick and zebrafish intestinal enterocytes from the proximal 

duodenum to the ileum, except in zebrafish which show high adult liver expression 

(Cameron et al., 2002; Crow and Ong, 1985; Ong and Page, 1987). High levels of 

CRBPII in adult small intestines, with little to no expression elsewhere, suggest this 

protein functions primarily in retinoid intestinal absorption. CRBPII binds all-trans-retinol 

converted from dietary pro-carotenoids and retinyl esters (MacDonald and Ong, 1987), 

and exhibits largely identical apo- and holo-CRBPII tertiary structures (Winter et al., 

1993) similar to plasma RBP. CRBPII-retinol undergoes acyl-CoA-independent 

esterification (Ong et al., 1987) through LRAT and to a lesser extent DGAT1 

(MacDonald and Ong, 1988; Wongsiriroj et al., 2008) for chylomicron packaging. This 

enzymatic reaction produces predominantly retinyl palmitate and retinyl stearate in a 2:1 
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ratio, independent of lipid composition in the diet (Huang and Goodman, 1965). 

Developmental expression in zebrafish is restricted to the intestines, gall bladder and 

liver (Liu et al., 2004; Liu et al., 2005), suggesting a developmental role in 

gastrointestinal (GI) retinoid metabolism. Crbp2 knockout mice have reduced (40%) 

hepatic retinyl ester stores compared to wild-type mice but grow normally and are viable 

(Xueping et al., 2002). However, when maternal dietary retinoid levels are reduced 

there is 100% mortality in Rbp2-/- pups 24 hours after birth. Furthermore, there is 

increased mortality among Rbp2+/- offspring if carried by Rbp2-/- dams versus wild-type 

dams (79% versus 30%, respectively). This may be explained by the presence of 

CRBPII at the maternal fetal barrier. At E18, CRBPII is detected in mouse yolk sac (fetal 

origin) and deciduas basalis and endometrium (maternal origin). 

The Rbp3 gene encodes interphotoreceptor retinol binding protein (IRBP), a 

~140 kDa glycoprotein that transfers retinol from the RPE to retinal photoreceptors and 

vice versa for maintenance of the visual cycle (Danciger et al., 1990), though the exact 

molecular mechanism of transfer between RPE and retina remains unclear. IRBP is 

expressed in photoreceptors and is secreted into the space between the RPE and the 

retina. Rbp3 knockout mice display loss of photoreceptors and abnormal retinal 

morphology as early as postnatal day 11 (Liou et al., 1998; Ripps et al., 2000). 

Electroretinographic (ERG) studies of Rbp3-/- mice show reduced response amplitude 

for rods and cones by postnatal day 30. However, Rbp3 knockout retinas can restore 

the ability to perceive light indicating IRBP is not required for re-isomerization of the 

bleached visual chromophore. Further developmental studies indicate an approximate 

20% increase in eye size and weight in Rbp3-/- eyes with reduced outer nuclear layer 
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thickness compared to wild-type eyes (Wisard et al., 2011). Despite the presence of 

retinal and visual phenotypes, no developmental defects consistent with VAD syndrome 

are observed in Rbp3-/- mice. 

Rlbp1 is a gene that encodes cellular retinaldehyde binding protein, or CRALBP 

(Saari et al., 1982). CRALBP is abundant in RPE cells and functions in binding 11-cis-

retinol for conversion to 11-cis-retinaldehyde and transfer to IRBP for eventual 

photoreceptor uptake (Noy, 2000). A mutation in the human RLBP1 gene that disrupts 

CRALBP ligand binding is associated with autosomal recessive non-syndromic retinitis 

pigmentosa (arRP) (Maw et al., 1997). Rlbp1 mouse knockout studies show normal 

photosensitivity; however, rhodopsin regeneration, 11-cis-retinaldehyde isomerization 

and dark adaptation are all severely impaired (Saari et al., 2001). Unlike in humans with 

loss-of-function RLBP1 mutations and Rbp3-null mice, Rlbp1 knockout mice do not 

show evidence of retinal degeneration even up to one year after birth. 

CRABP1 and CRABP2 encode human gene products with 74% amino acid 

identity (Giguere et al., 1990; Nilsson et al., 1988). Both CRABPI and CRABPII have 

high binding affinity for all-trans-retinoic acid (Dong et al., 1999), and are considered the 

primary avenues through which RA is transferred from the cytosol to the nucleus (Gaub 

et al., 1998; Takase et al., 1986). In the adult stage, CRABPI is ubiquitously expressed 

(Ong, 1994) whereas CRABPII is restricted to the skin, uterus, ovary and choroid plexus 

(Wardlaw et al., 1997; Yamamoto et al., 1998; Zheng and Ong, 1998). During gestation, 

both CRABPI and CRABPII are widely expressed throughout the embryo, but usually 

without co-localization with one another (Maden, 1994). Both Crabp1 and Crabp2 

single- and double-knockout mice are essentially normal except for a mild limb defect in 



183 
 

Crabp2-/- mice (Fawcett et al., 1995; Gorry et al., 1994; Lampron et al., 1995). The lack 

of any phenotype consistent with VAD syndrome indicates that CRABPs are 

dispensable during development, which raises the possibility of alternative pathways for 

retinoic acid nuclear translocation to RARs for target gene transcriptional regulation.  

  Our work has begun examining several of these candidate genes (see 

Addendum Part II) but thus far has revealed no variants other than in ALDH1A3. 

Nevertheless, it is clear that vitamin A exists in many forms and all are processed by 

enterocytes, funneled through the chylomicron system and stored in the liver. Many 

genes contribute to this process, and maternal loss-of-function or dominant mutations 

may account for a fraction of children born with vitamin A deficiency syndrome. 

 

 

Consequences of ectopic SOX3 activity in the developing eye 

 In Chapter III, we investigated the effects of over-expressing two SoxB1 factors 

(Sox2 and Sox3) in the developing mouse neuroretina using a Chx10 bacterial artificial 

chromosome (BAC) transgenic system. Sox2 overexpression produced microphthalmia 

with retinal lamination defects and variably penetrant optic nerve hypoplasia/aplasia in 

two out of four total lines. The absence of a phenotype in one Chx10>Sox3 line is 

difficult to interpret. We cannot exclude the possibility that the developing neuroretina is 

sensitive to Sox2 but not Sox3. Furthermore, it remains to be determined whether 

ectopic SoxB1 expression in other compartments (e.g. surface ectoderm, RPE, POM) 

can disrupt eye development as well. 
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Over the last several decades, a large body of evidence has amassed arguing in 

favor of all three SoxB1 factors (Sox1, Sox2 and Sox3) sharing significant functional 

overlap in the CNS (Bylund et al., 2003; Graham et al., 2003). This is supported by our 

own in vitro data. Furthermore, eye size is dependent on proper neuroretinal growth 

which in turn depends on proper RPE development. RPE development requires 

repression of SoxB1 genes or else a RPE-to-retina fate switch occurs (Ishii et al., 2009). 

Based on this requirement, our revised hypothesis states that persistent SOX3 

expression in the proband retinal pigment epithelium disrupts its formation, leading to 

retinal insufficiency and anophthalmia. Therefore, I propose several new experiments 

that target SoxB1 expression to the developing RPE using a melanocyte-specific driver 

such as Tyr, Dct or Tyrp1 (Mori et al., 2002) BACs or transgenes. Also, because the 

autosomal translocation in our proband implies a TRPM3 enhancer adoption 

mechanism, I also propose to generate Trpm3>Sox2/3-ires-Cre-pA BAC transgenes. If 

correct, we expect to recapitulate small or absent eyes and possibly a sex reversal 

phenotype since expression would no longer be limited to the eye.  

 

SOX3 and congenital human diseases 

 This thesis strengthens the link between SOX3 regulatory mutations and an ever-

expanding list of X-linked congenital diseases that includes XX sex reversal (Sutton et 

al., 2011), congenital hypertrichosis (Zhu et al., 2011), hypoparathyroidism (Bowl et al., 

2005), brachymesomelic dysplasia with Peters anomaly (Bleyl et al., 2007), and 

hypopituitarism with short stature and mental retardation (Woods et al., 2005). Certainly, 

the structure of the insertion translocation described in this proband (Chapter III) 
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suggests that transcriptional dysregulation of SOX3 may disrupt mammalian eye and 

testis development. To our knowledge, bilateral clinical anophthalmia with XX sex-

reversal represents a new syndrome, as there are no reported human cases that share 

both hallmark features. The lone mammalian precedent is the Odsex mouse that 

exhibits microphthalmia and XX sex-reversal due to a long-range, cis-acting Sox9 

regulatory insertion (Bishop et al., 2000). The Odsex mouse phenotype is not surprising, 

given the importance of SOX genes in development of both organs. Finally, the 180 bp 

X-linked SOX3 palindrome now warrants investigation in any as-yet unexplained X-

linked genetic disorder. This is especially so now that it is associated with three disease 

traits that, prior to this study, were considered etiologically distinct.  
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Concluding remarks 

 In summary, I have presented seminal findings regarding two new genes in 

congenital eye disease. My work explores a novel SOX3 regulatory mutation and its 

association with a complex human syndrome, and provides further evidence of a 

genomic “hot spot” that may cause other developmental disorders. My dissertation also 

presents a completely new dominant-negative disease mechanism for vitamin A 

deficiency involving plasma retinol binding protein (RBP4). Perhaps most important of 

all, this thesis provides a novel framework for complex non-Mendelian traits from a 

maternal-fetal perspective where both major genetic and environmental components are 

strongly implicated by the mutated gene (RBP4). The interplay between genes and 

environment is beautiful but at the same time sobering, because too often this 

interaction results in human disease. Altogether, this thesis expands our knowledge 

about human disease mechanisms. 
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Table 4.1. Embryonic phenotypes of retinoid binding protein knockout mice 

Gene knockout Embryonic phenotype Reference 
Rbp1 Clinically normal but with reduced retinyl 

ester liver stores, circulating retinol and 
steady-state RA levels 

(Matt et al., 2005) 

Rbp2 Clinically normal, but with reduced retinyl 
ester liver stores.  
 
100% neonatal mortality when born from 
Rbp2-/- dams on vitamin A deficient diets. 

(Xueping et al., 2002) 

Rbp3 No embryonic phenotype.  
 
Post-natal phenotype: retinal and visual 
phenotype: loss of photoreceptors and 
thinning of outer nuclear layer. Impaired 
isomerization to form 11-cis-retinal and 
issues with dark adaptation.  

(Liou et al., 1998) 
(Ripps et al., 2000) 

Rbp4 No embryonic phenotype under normal 
maternal dietary vitamin A conditions. 
 
Phenotype consistent with VAD syndrome 
arises under maternal dietary vitamin A 
deficiency (anophthalmia, cerebral edema, 
pulmonary agenesis, urogenital and 
cardiovascular defects). 

(Quadro et al., 1999) 
(Quadro et al., 2005) 

Rlbp1 No embryonic phenotype. 
 
Post-natal retinal phenotype: impaired 
rhodopsin regeneration, 11-cis-
retinaldehyde isomerization and dark 
adaptation. 

(Saari et al., 2001) 

Crabp1 No embryonic phenotype (Gorry et al., 1994) 
Crabp2 Mild limb malformation (extradigital 

outgrowth). 
(Lampron et al., 1995) 

Crabp1;Crabp2 Mild limb malformation (extradigital 
outgrowth). 
 
Mild post-natal mortality (9%) prior to 6 
weeks of age compared to 2% for wild-type 
offspring. 

(Lampron et al., 1995) 
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ADDENDUM PART I – Characterization of ALDH1A3 mutations in autosomal 
recessive, non-syndromic MAC 

 
 

Characterization of novel RALDH3 variants in autosomal recessive MAC 
 

We obtained a large, in-bred Iranian pedigree showing autosomal recessive non-

syndromic MAC. Affected individuals suffer from severe or total blindness with no light 

perception. All other surrounding ocular structures are intact (e.g. bony orbit, eyelids, 

adnexa). Given the inheritance pattern, we performed autozygosity mapping on eight 

affected individuals. This revealed a shared 0.8 Mb region of homozygosity on 15q26. 

Close examination reveals 5 candidate genes, one of which is RALDH3 (also known as 

ALDH1A3 or ALDH6), a known retinoid metabolism gene. Subsequent exon-by-exon 

screening uncovered a novel missense mutation in RALDH3 exon 4 (G123W) that co-

segregates with disease. Subsequent screening of a cohort of 75 unrelated MAC patient 

DNA samples revealed three additional RALDH3 variants: G354R, D70N and M386V. 

One individual was found to possess both G354R and D70N alleles. Subsequent 

screening of both parents revealed this individual as a compound heterozygote. All 

variants except M386V affect highly conserved amino acid residues. None are found in 

any public single nucleotide polymorphism (SNP) databases. 

 RALDH3 encodes a 512-amino acid peptide (55 kDa subunit) that forms a homo-

tetramer (Hsu et al., 1994). RALDH3 catalyzes the irreversible step of retinaldehyde 

oxidation to retinoic acid (RA), a potent signaling molecule. RA signaling is a critical 

extrinsic pathway involved throughout early eye development (Molotkov et al., 2006). 

Based on molecular modeling, all mutations affect residues within the catalytic but not 

the oligomerization domain (unpublished data, Lev Prasov). I performed two 
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experiments to functionally test these alleles. The first is a co-transfection luciferase 

experiment of plasmids encoding RALDH3 wild-type or mutant and a RARE-luciferase 

reporter in P19 mouse embryonal carcinoma cells (Figure A1-A). After 8 hours exposure 

to retinoid, I measured renilla-normalized luciferase values as an indirect read-out of 

retinoic acid synthesis. The results demonstrate RALDH3 G123W and D70N are likely 

null alleles never exceeded background levels. Subsequent cycloheximide protein 

stability experiments showed G123W to be a highly unstable protein with a half-life t1/2 = 

40 min in contrast to wild-type which showed negligible decline over the course of the 

study (unpublished data, Lev Prasov). RALDH M386V is a non-pathogenic variant, 

consistently exhibiting equal activity compared to wild-type. RALDH3 G354R appears to 

be a hypomorphic allele, exhibiting reduced activity compared to wild-type. To better 

characterize the true severity of the arginine 354 substitution, we repeated the 

luciferase assay except with a graded level of transfected plasmid (Figure A1-B). Over 

this range, RALDH3 G354R exhibited 20 – 70% activity which directly correlated to 

transfection input whereas wild-type levels remained nearly constant at all transfected 

amounts. Together, these results suggest RALDH3 G354R is capable of forming 

functional tetramers but with reduced activity, therefore the mutant allele is indeed a 

hypomorph.  

 Based on the homo-tetrameric nature of RALDH3, I next tested the ability of 

RALDH3 G354R to interact in a co-immunoprecipitation assay using the same cell 

system (Figure A1-C). I co-transfected plasmids encoding myc-tagged WT plus HA-

tagged WT in parallel with myc-tagged WT plus HA-tagged G354R. After 8 hr, I 

immunoprecipitated (IP) with either anti-HA or anti-myc antibodies and performed 
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parallel HA and myc Western blots for each IP reaction. The results indicate that G354R 

can form heterotetramers with wild-type, albeit to a lesser extent than pure wild-type 

homotetramers (Figure A2). Cycloheximide studies indicate the G354R protein is 

equally stable compared to wild-type; therefore, reduced RARE-luciferase activity most 

likely stems, in part, from compromised tetramer formation. Enzymatic kinetic studies 

are necessary to address potential deficiencies in RA synthesis. 

 

My contributions: 

1. Aided in RALDH3 exon PCR screening of MAC patient cohort. 

2. Developed, optimized and performed the RARE-luciferase assay. 

3. Developed, optimized and performed the co-immunoprecipitation assay. 
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Addendum I: Methods 
 

Luciferase assay 

P19 embryonal carcinoma cells (ATCC, Manassas, VA) were grown to 30% confluency 

in αMEM supplemented with 7.5% calf serum and 2.5% fetal bovine serum, L-glutamine 

and pencillin/streptomycin antibiotics. Cells were co-transfected using Fugene 6 

(Promega, Madison, WI) in a 3:1 F6:DNA ratio (DNA = 4 μg RALDH3 plasmid, 0.7 μg 

RARE-Luciferase, 0.3 μg Renilla) with plasmids encoding human wild-type or mutant 

RALDH3 (pUS2), pGL3-RARE-Luciferase reporter plasmid (Addgene, Cambridge, MA), 

and a Renilla transfection control plasmid. After 48 hours, cells were switched to 

retinoid-free media DMEM supplemented with 1% (v/v) insulin-transferrin-selenium 

liquid solution (ITS; Gibco, Carlsbad, CA), 500 μg/ml AlbuMAX (Gibco), and 100 nM all-

trans-retinaldehyde for 8 hr. Afterwards, cells were washed twice with 1X PBS and 

harvested using a dual-luciferase reporter kit (Promega) per the manufacturer protocol 

and counted on a VICTOR3 1420 Multilabel counter (Perkin Elmer). All datapoints were 

collected in triplicate. 

 

RALDH3 co-immunoprecipitation assay 

P19 cells were grown and transfected as described above except with 2 μg total 

plasmid DNA. Cells were treated identically post-transfection. At 56 hr post-transfection, 

cells were washed twice with 1X PBS and harvested with ice-cold 1X PBS, 1% Triton X-

100, 0.1% NP-40 non-denaturing lysate solution (300 μl per 60 mm dish). Cell lysates 

were briefly sonicated on a Branson 250 sonicator (Branson Ultrasonics, Danbury, CT), 

and spun to remove the insoluble fraction. One-third of the cell lysate was subjected to 
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anti-HA IP and an additional third to anti-myc IP (Sigma-Aldrich, St. Louis, MO) 

overnight at 4oC per the manufacturer’s protocol.  

 

Western blot 

Eluates were run on denaturing polyacrylamide gel electrophoresis (200V, 40 min) in 1X 

MES/SDS running buffer (Invitrogen, Carlsbad, CA) and transferred for 2 hours at 

120V/200mA at 4oC onto a HyBond ECL nitrocellulose membrane (GE Healthcare). 

Primary antibodies rat-anti-HA (1:5000, Roche 3F10) or mouse-anti-myc (1:5000, 

Roche 9E10) were applied overnight at 4oC. Next day, membranes were washed in 

TBST and exposed to secondary antibodies goat-anti-rat IgG HRP (1:5,000, 

Amersham) or sheep-anti-mouse (1:5,000, Amersham) for 1 hour at room temperature. 

Membranes were washed with 1X TBS and applied with chemiluminescent detection 

substrate (ECL, Amersham) for 5 minutes at room temperature. Membranes were 

exposed to Biomax MS film (Kodak, Rochester, NY) for 2 to 15 minutes and developed 

on a Kodak A2000 developer. 
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Figure A.1. Characterization of novel RALDH3 (ALDH1A3) mutations. (A) 
RALDH3 luciferase assay shows relative activity of each construct in the 
presence of 100 nM all-trans-retinaldehyde substrate (ATRAL). RA, 100 nM all-
trans-retinoic acid control. Error bars denote standard deviation. (B) RALDH3 
luciferase titration assay with reduced input relative to (A) shows increasingly 
reduced relative activity of G354R compared to wild-type. (C) RALDH3 co-
immunoprecipitation assay of for oligomerization. Transfected constructs are 
denoted at bottom. Cells underwent anti-myc immunoprecipitation for WTmyc and 
subsequently probed for HA (tetramerization) and myc (loading control). G354R 
shows reduced oligomerization with wild-type (red box). G123WHA, negative 
control. 
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ADDENDUM PART II – Novel retinoid pathway gene variants in MAC patients 
 

Retinoid acid pathway gene screen in MAC 

In the pursuit of additional pathogenic mutations in retinoid metabolism genes, I have 

screened a number of genes in a cohort of 75 unrelated anophthalmia patient samples: 

RDH10, RBP1, RBP2, TTR, CYP26A1, CYP26C1 and LRAT. This uncovered several 

novel variants that warrant further investigation. 

 

CYP26C1 (p.Q284fsX128) 

I discovered a novel 7 bp microduplication frameshift mutation (p.Q284fsX128) in 

CYP26C1 exon 4 in a child with bilateral anophthalmia, trachea-esophageal fistula, 

esophageal atresia, hydrocephalus and hypospadias (Figure A2-A, B). This allele was 

paternally-transmitted with no evidence of mutation on the maternal allele. The father is 

clinically normal. This child does not have a SOX2 coding mutation. 

CYP26C1 is a 522-amino acid monomeric enzyme involved in retinoic acid 

degradation (Tahayato et al., 2003; Taimi et al., 2004). This frameshift eliminates the 

important catalytic domains encoded by exons 5 and 6 (Taimi et al., 2004). The DNA 

surrounding the frameshift site shows 64% GC-content (50 bp window). This allele is 

not found in any public variant databases. Moreover, the new protein sequence (a.a. 

284-411) shares no homology to any known protein (Figure A2-C).  

The mouse Cyp26c1-/- knockout shows no eye phenotype (Uehara et al., 2007) 

despite expression of Cyp26c1 in the embryonic eye contained within a wider Cyp26a1 

expression domain (Sakai et al., 2004). This is explained by abundant evidence 

suggesting significant functional overlap of all three CYP26 members CYP26A1, 
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CYP26B1 and CYP26C1 (Hernandez et al., 2007; Kinkel et al., 2009; Sakai et al., 2004; 

Uehara et al., 2007). CYP26A1 and CYP26C1 are chromosomally linked in mouse and 

man. Recently, a familial form of autosomal dominant optic nerve hypoplasia/aplasia 

was reported to be associated with a 363 kb interstitial deletion encompassing 

CYP26A1, CYP26C1 and EXOC6 (Meire et al., 2011). Disease pathogenesis has yet to 

be established. The reported frameshift mutation here is the first known case of a 

CYP26C1-specific mutation associated with human disease. I propose first to screen a 

large control population to ensure this is not a rare polymorphism. Assuming this allele 

is restricted to the MAC population, a follow-up experiment would be to perform copy 

number variation analysis on this index family to look for duplications or deletions that 

may be present on the maternal allele. In parallel, one could perform cell-based RARE-

luciferase assays (see Addendum Part I) as a measure of RA degradation with this 

frameshift allele, wild-type CYP26C1, wild-type CYP26A1, and corresponding 1:1 mixes 

(mutant-to-WT) to investigate possible dominant-negative mechanisms. Although no 

evidence exists to indicate oligomerization, a single constitutively active or stable 

protein with increased half-life could lead to a localized RA deficiency at the cellular 

level, depriving neighboring cells of RA needed for signaling. 

 

CYP26A1 (c.141G>A, p.V33M) 

I discovered a novel CYP26A1 variant (c.141G>A, p.V33M) in a child with bilateral 

clinical anophthalmia and a congenital heart malformation (VSD). Subsequent parental 

screening revealed this allele was maternally inherited; however, the mother does not 
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show any signs of congenital eye defects. The father is clinically normal as well and 

PCR exon screening revealed no variants on the paternal allele. 

 The missense mutation affects the N-terminus prior to the first alpha helix (A) in 

the predicted CYP26A1 497-amino acid structure (Gomaa et al., 2006). Comparative 

analysis shows this valine is not highly conserved amongst vertebrate species though 

generally non-polar amino acids (Val, Leu, Ile, Ala) do occupy this position (UCSC 

genome browser). The valine-to-methionine substitution maintains non-polarity. 

 CYP26A1 is located on human chromosome 10q23 (White et al., 1998a) and 

involved in retinoic acid degradation. Based on Cyp26a1-/- mouse knockout studies, this 

gene is important for establishing anterior-posterior retinoic acid gradients in CNS and 

axial skeletal development (Abu-Abed et al., 2001; Sakai et al., 2001). Cyp26a1-/- mice 

die in utero exhibiting major urogenital and kidney defects, spina bifida, hindbrain 

abnormalities, caudal truncation, and heart abnormalities. In mouse, Cyp26b1 and 

Cyp26c1 activities cannot compensate for loss of Cyp26a1, demonstrating the majority 

of embryonic retinoic acid metabolism depends on the a1 homolog. However, in two 

independent knock out mouse models, there was no reported eye phenotype, despite 

its expression in the early embryonic retina (Sakai et al., 2004). Biochemical studies 

have identified additional human CYP26A1 missense variants in healthy subjects that 

show impaired ability to metabolize retinoic acid (Lee et al., 2007).  

 The methionine substitution may produce a novel translation initiation site that 

truncates the first 32 amino acids. Upon analysis, though, the newly introduced initiator 

methionine has a less ideal Kozak sequence compared to the primary translation start 

site. Nevertheless, cytochrome P450 enzymes, including CYP26 members, are 
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anchored by the hydrophobic N-terminal signal anchor sequence within the 

endoplasmic reticulum (ER) membrane to ensure appropriate configuration and 

enzymatic activity (Ahn et al., 1993; Bar-Nun et al., 1980; Ross and Zolfaghari, 2011; 

Williams et al., 2000). Elimination of the hydrophobic N-terminal 32 amino acids by 

translation initiation at M33 may prevent its localization to the ER membrane. While this 

is predicted to lead to loss-of-function and retinoic acid toxicity, studies in other 

cytochrome P450 species (e.g. CYP2C5) show that loss of the N-terminus still allows 

for membrane association, albeit more weakly, due in part to other hydrophobic regions 

(Johnson et al., 2005; Williams et al., 2000). Should CYP26A1 V33M reach the ER 

appropriately, it may not establish normal protein-protein interactions with other 

membrane-associated cofactors, resulting in increased activity and RA deficiency. 

Indeed, a recent study has shown the hydrophobic N-terminal protein-protein 

interactions between CYP3A4 and CYP2C9 lead to enzymatic inhibition of CYP2C9 

(Subramanian et al., 2010). If this occurs with CYP26A1 and other as-yet unidentified 

cofactors, the altered N-terminus may allow for increased RA metabolism and a 

localized cellular RA deficiency, consistent with a vitamin A deficiency model. More 

work is needed to define the function of the CYP26A1 N-terminus, its requirement for 

transmembrane anchoring, and in regulation of its overall enzymatic activity. My 

proposed experimental follow-up to this variant is identical to the CYP26C1 frameshift 

variant described above, but with emphasis on cellular organelle localization. 

 The two CYP26 gene variants described here may represent retinoic acid toxicity 

susceptibility alleles or rare, clinically insignificant polymorphisms in the population. The 

animal model studies certainly argue for their importance during embryonic 
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development, especially Cyp26a1; however, the lack of an overt knockout eye 

phenotype makes this difficult to reconcile with our human cases. The discrepancy may 

be due to interspecies differences. Additional genetic follow-up experiments and in vitro 

assays can help elucidate the true nature of these two unique variants. 
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Figure A.2. Novel CYP26C1 (p.Q284fsX128) frameshift allele. (A) Pedigree 
showing child with bilateral anophthalmia, trachea-esophageal fistula, 
esophageal atresia and hypospadius with clinically normal carrier father. (B) DNA 
chromatogram of a 7 bp frameshift microduplication at the 3’ end of CYP26C1 
exon 4 (red box). Gene exon-intron overlay shown (green bar, exon; green line, 
exon-intron boundary). This affects the protein sequence starting at amino acid 
284. Resulting genomic DNA sequence is shown (top, reference; bottom, 
frameshift). Forward (5’ – TGAGAAGGTTTTCTGGGTAAGTG) and reverse (5’ – 
ATTGGTGTAGGGACCTGCTG) primers amplify a 300 bp product. For 
thermocycler conditions see Table 2.4. (C) Sequence of the 411-amino acid 
mutant protein encoded by this frameshift allele. Novel amino acids are 
annotated in red. 
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