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Abstract 

Histotripsy is a noninvasive, cavitation-based ultrasound therapy that can create 

mechanical tissue ablation through dense energetic clouds of microbubbles generated by high-

pressure and short ultrasound pulses. These microbubbles in the clouds act as “micro-scalpels” 

and mechanically fractionate tissue into a liquid homogenate with a well-demarcated boundary. 

Histotripsy therapy has been shown capable of 1) creating intracardiac flow channels for 

congenital heart disease treatment, 2) fractionating blood clots for treating deep vein thrombosis, 

3) fractionating prostatic tissue for benign prostatic hyperplasia (BPH) treatments, and 4) 

fragmenting model renal calculi for treating kidney stone. Many other applications are being 

studied. 

The overall objective of this dissertation is to develop ultrasound pulsing techniques that 

can lead to more precise and controlled bubble cloud generation in histotripsy therapy. Three 

strategic pulsing methods have been developed and characterized in this dissertation. 

1) Bubble cloud formation using the intrinsic threshold mechanism: when ultrasound 

pulses shorter than 3 cycles are applied, the generation of bubble clouds only depends on one or 

two negative half cycles exceeding an intrinsic threshold of the medium. This intrinsic threshold 

is highly repeatable and has a very sharp transition zone. At negative pressure amplitudes not 

significantly greater than this, a dense energetic lesion-forming bubble cloud is generated 

consistently with a spatial pattern similar to the part of the negative half cycles(s) exceeding the 

intrinsic threshold. 
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2) Dual-beam histotripsy: a low-frequency pump pulse is applied to enable a high-

frequency probe pulse to exceed the intrinsic threshold. The high-frequency probe pulse provides 

precision in lesion formation, while the low-frequency pump pulse, which is more resistant to 

attenuation and aberration, raises the pressure level of the targeted treatment region. 

3) Frequency compounding: a near half-cycle (monopolar) pulse is synthesized using an 

array transducer composed of elements with various resonant frequencies. Histotripsy using a 

negative-polarity half-cycle pulse can limit the influence of positive phases on bubble cloud 

generation, leading to a more precise and controlled lesion formation. 

These three techniques were realized using custom design ultrasound array transducers 

and examined in red-blood-cell tissue-mimicking phantoms, and the first two techniques were 

further validated in ex vivo tissues. Additionally, an application in metastatic lymph node 

ablation is studied in vivo using supra-intrinsic-threshold pulses. 

In conclusion, this dissertation demonstrates three strategic ultrasound pulsing methods 

that can lead to precise lesion formation in histotripsy therapy. Future work involves examining 

the applicability of these pulsing methods in in vivo experiments and studying potential 

applications for monopolar pulses in ultrasound diagnostic imaging.
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Chapter 1 

Introduction 

The main objective of this dissertation is to investigate approaches for precise lesion 

formation using a pulsed cavitational ultrasound therapy, or histotripsy. More specifically, this 

work explores strategic histotripsy pulsing sequences for precise lesion formation, including 1) 

supra-intrinsic-threshold short (< 1.5 cycles) acoustic pulses, 2) dual-frequency acoustic pulses 

wherein a high-frequency probe pulse is enabled by a low-frequency probe pulse to exceed the 

intrinsic threshold, and 3) near half-cycle (monopolar) acoustic pulses generated by a multiple-

frequency transducer (frequency compounding). The treatment effect of these pulsing sequences 

is evaluated using red-blood-cell tissue mimicking phantoms and validated in excised tissues. 

Lastly, a potential application in metastatic lymph node ablation using this precise lesion 

formation is discussed and studied with an in vivo acute porcine model, in addition to ex vivo 

excised porcine lymph node treatments. 

This chapter will give a brief introduction to histotripsy therapy, followed by an overview 

of two bubble cloud formation mechanisms (shockwave backscattering and intrinsic threshold) 

used in histotripsy therapy. The bubble cloud formation mechanism is introduced since the 

concept of the intrinsic threshold mechanism is an essential component of this work, and it will 

be constantly used and referred to throughout this dissertation. This chapter will then be 

concluded with an outline of the dissertation, which provides an overview of each chapter. 
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1.1 Histotripsy Therapy 

Histotripsy is a noninvasive, cavitation-based, ultrasound therapy that uses very short (< 

20 cycles), high-pressure (peak negative pressure [P–] > 10 MPa), and low duty-cycle (<1%) 

ultrasound pulses to generate a dense, energetic, lesion-producing bubble cloud. These micron-

sized bubbles in the cloud act as “micro-scalpels,” which can fractionate soft tissues into sub-

cellular debris with a very sharp boundary. This histotripsy therapy can create controlled tissue 

erosion when it is targeted at a fluid-tissue interface, e.g. removing cardiac tissue and creating 

intracardiac flow channels for congenital heart disease [1-3]. Histotripsy can also generate 

localized well-demarcated tissue fractionation when it is targeted within bulk tissue, e.g. 

prostatic tissue ablation for treating benign prostatic hyperplasia (BPH) [4-8] and hepatic tissue 

ablation for liver tumor treatment [9]. Additionally, histotripsy has been shown capable of 

fragmenting model kidney stones using surface erosion that is mechanistically distinct from 

conventional shockwave lithotripsy (SWL) [10, 11].  

Histotripsy therapy can be guided and monitored using ultrasound B-mode imaging in 

real-time, since 1) the cavitating bubble cloud appears as a temporally changing hyperechoic 

region in B-mode imaging, allowing the treatment to be precisely targeted, and 2) the 

echogenicity of the targeted region decreases as the degree of tissue fractionation increases, 

which can be used as a way of monitoring lesion production (image feedback) in real-time [12-

14]. Moreover, recent studies showed that histotripsy therapy could also be monitored by 

elasticity-based image feedback: 1)Wang et al. used shear wave elastography to monitor the 

elasticity change in tissue and found out this elasticity-based metric is more sensitive in detecting 

histotripsy-induced lesions in early stages, compared to B-mode imaging [15], and 2) Miller et al. 



 

3 

 

used color Doppler to detect histotripsy bubble cloud induced motion in the increasingly softer 

tissue resulting from histotripsy fractionation [16]. 

 Histotripsy therapy, which mechanically ablates soft tissue through acoustic cavitation, is 

mechanistically different from high intensity focused ultrasound (HIFU) therapy [17, 18]. In 

HIFU, the energy of propagated ultrasound beams is deposited into tissue as heat, which rapidly 

raises its local temperature above a certain threshold (    C for 1 second), thus resulting in 

irreversible cell death through coagulative necrosis [17, 18]. This HIFU therapy operates at a 

lower pressure level with a much higher duty cycle than histotripsy wherein the treatment effect 

heavily relies on the thermal dose that it imposes on the tissue. Additionally, HIFU therapy often 

requires other imaging modalities for treatment monitoring since conventional b-mode 

ultrasound imaging cannot provide sufficient image contrast between coagulated and unaffected 

tissue. Magnetic resonance (MR) imaging has the advantage of better image quality and the 

ability to monitor temperature (treatment targeting) and it has been used widely in HIFU 

treatment monitoring [19-22]. However, MR imaging is expensive, often slow and more 

complex than ultrasound imaging. Some recent studies also investigated the potential of using 

ultrasound elastography to monitor HIFU treatment [23, 24]. 

 Additionally, histotripsy is mechanistically different from another ultrasound therapy that 

uses rapid boiling as a mechanism to create bubbles for emulsification [25-27]. In this therapy, 

millisecond-duration, shocked, focused ultrasound pulses are applied to induce rapid heating and 

boiling of the medium, thus producing the large bubbles used in its mechanical action. 
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1.2 Shock Scattering Mechanism for Bubble Cloud Formation  

In conventional histotripsy treatments, ultrasound pulses with ≥ 3 acoustic cycles are 

applied, and the bubble cloud formation relies on the pressure release scattering of the positive 

shock fronts (sometimes exceeding 100 MPa, P+) from initially generated, sparsely distributed 

bubbles (or a single bubble). This has been called the “shock scattering mechanism” [28]. This 

mechanism depends on one (or a few sparsely distributed) bubble(s) initiated with the primary 

negative half cycle(s) of the pulse at the focus of the transducer. A cloud of microbubbles then 

forms due to the pressure release backscattering of the high peak positive shock fronts from these 

sparsely initiated bubbles. These back-scattered high-amplitude rarefactional waves exceed the 

intrinsic threshold, thus producing a localized dense bubble cloud. Each of the following acoustic 

cycles then induces further cavitation by the backscattering from the bubble cloud surface, which 

grows towards the transducer. As a result, an elongated dense bubble cloud growing along the 

acoustic axis opposite the ultrasound propagation direction is observed with the shock scattering 

mechanism. This shock scattering process makes the bubble cloud generation not only dependent 

on the peak negative pressure, but also on the number of acoustic cycles and the amplitudes of 

the positive shocks. Without these intense shock fronts developed by nonlinear propagation, no 

dense bubble clouds are generated when the peak negative half-cycles are below the intrinsic 

threshold. 

Therefore, the cavitation threshold for the shock scattering mechanism varies with the 

applied exposure conditions, and the reported thresholds (P–) range from 6 to 15 MPa [29, 30] 

for degassed water and 13.5 to 21 MPa in tissue and tissue phantoms [28, 31]. The spatial extent 

of the bubble cloud is not well-defined, and it changes with the variation in shock scattering 

process created by different exposure conditions. Moreover, for pulses longer than about 8–10 
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cycles, the elongating bubble cloud moves out of the focal zone. Thus, longer pulses do not 

necessarily enhance lesion formation [32]. 

A more recent study by Maxwell et al [33] using numerical modeling and simulation 

shows that the P– of the backscattered shockwave increases with the size of the pre-existing 

bubble that provides the pressure-release scattering surface. Additionally, if the pre-existing 

bubble is hemispherical, which provides a flattened scattering surface, it can result in higher P– 

for the backscattered shockwave, compared to that backscattered from a convex scattering 

surface provided by a spherical bubble. 

 

1.3  Intrinsic Threshold Mechanism for Bubble Cloud Formation 

In another work by Maxwell et al [34], a second mechanism for bubble cloud formation 

was proposed and investigated. This occurs when one or more negative half cycle(s) of the 

applied ultrasound pulses exceed(s) an “intrinsic threshold” of the medium, thus directly forming 

a dense bubble cloud without shock scattering. This intrinsic threshold is defined by a very sharp 

transition zone and is relatively insensitive to the inhomogeneities in soft tissue or the lack of 

dissolved gases. Moreover, this intrinsic threshold is independent on the applied positive 

pressure, since the influence of shock scattering is minimized when applying pulses fewer than 2 

cycles. The reported threshold (P–), where the probability of cavitation (formation of a dense 

bubble cloud) for one single pulse is 0.5, is between 26.4 – 30.0 MPa in samples with high water 

content, including water, hydrogel, and soft tissue.  

Because of the sharp, highly repeatable threshold, at negative pressure amplitudes not 

significantly greater than this, a dense energetic lesion-forming cloud of microbubbles is 

generated consistently with a spatial pattern similar to the part of the negative half cycles(s) 
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exceeding the intrinsic threshold. That part of the therapy pulse exceeding intrinsic threshold, 

and the resulting spatial extent of the lesion forming bubble cloud, are independent of positive 

shocks and the somewhat chaotic shock scattering phenomenon. Therefore, the spatial extent of 

the lesion generated using this mechanism is expected to be well-defined and more predictable. 

The lesion size can be easily controlled, even for small lesions, simply by a precise adjustment of 

the therapy pulse amplitude.  

 

1.4  Outline of this dissertation 

This dissertation is organized in seven chapters to present techniques for precise lesion 

formation and potential applications that requires precise lesion formation.  

Chapter 1 describes the objective of this dissertation and introduces histotripsy therapy 

and the two bubble cloud formation mechanisms for histotripsy. Additionally, it gives an 

overview of the topics discussed in this dissertation. 

Chapter 2 investigates lesion formation using the intrinsic threshold mechanism. It 

examines the characteristics of the lesions generated with supra-intrinsic-threshold 1.5-cycle 

pulses at various pressure levels, and the correspondence between the size of the lesions and the 

size of the focal region exceeding the intrinsic threshold.    

Chapter 3 proposes a dual-frequency excitation method for precise lesion formation, 

called “dual-beam histotripsy,” wherein a low-frequency pump pulse is applied to enable a high-

frequency probe pulse to exceed the intrinsic threshold. The low-frequency pump pulses, which 

is more resistant to acoustic attenuation and aberration, can raise the P– level for a region of 

interest (ROI); while the high-frequency probe pulses, which provides more precision, can pin-

point a targeted location within the ROI and raise its P– above the intrinsic threshold. 
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Chapter 4 utilizes the dual-beam histotripsy technique and studies the lesion formation 

using an ultrasound imaging transducer enabled by a low-frequency pump transducer. One 

advantage of using an imaging transducer is that it provides the steering capability for lesion 

formation when it is driven by a programmable ultrasound system.      

Chapter 5 proposes a novel “frequency compounding” approach to synthesize a near 

monopolar (half-cycle) pulse using an array transducer composed of elements with various 

resonant frequencies. The time delays of individual frequency components are varied to allow 

them to constructively interfere at the focus. These monopolar pulses can further limit shock 

scattering during histotripsy treatment, making the lesion formation more predictable and 

controllable. They also have many interesting applications in ultrasound imaging. 

Chapter 6 explores an application in metastatic lymph node ablation using histotripsy 

therapy. In this application, precise lesion formation is required at a superficial target since 

lymph nodes are generally small (5 – 40 mm) and shallow (5 – 50 mm). In this chapter, 

histotripsy therapy is performed in porcine lymph nodes, using both shock scattering and 

intrinsic threshold mechanisms.  

Chapter 7 summarizes the findings and contributions of this dissertation, and discusses 

future work and potential applications for these precise lesion formation techniques.  

 

1.5 References 

[1] Z. Xu, A. Ludomirsky, L. Y. Eun, T. L. Hall, B. C. Tran, J. B. Fowlkes, and C. A. Cain, 

"Controlled ultrasound tissue erosion," IEEE Trans Ultrason Ferroelectr Freq Control, 

vol. 51, pp. 726-36, Jun 2004. 

[2] Z. Xu, G. Owens, D. Gordon, C. Cain, and A. Ludomirsky, "Noninvasive creation of an 

atrial septal defect by histotripsy in a canine model," Circulation, vol. 121, pp. 742-9, 

Feb 16 2010. 



 

8 

 

[3] G. E. Owens, R. M. Miller, G. Ensing, K. Ives, D. Gordon, A. Ludomirsky, and Z. Xu, 

"Therapeutic ultrasound to noninvasively create intracardiac communications in an intact 

animal model," Catheterization and Cardiovascular Interventions, vol. 77, pp. 580-588, 

2011. 

[4] J. E. Parsons, C. A. Cain, G. D. Abrams, and J. B. Fowlkes, "Pulsed cavitational 

ultrasound therapy for controlled tissue homogenization," Ultrasound Med Biol, vol. 32, 

pp. 115-29, Jan 2006. 

[5] W. W. Roberts, "Focused ultrasound ablation of renal and prostate cancer: current 

technology and future directions," Urol Oncol, vol. 23, pp. 367-71, Sep-Oct 2005. 

[6] A. M. Lake, T. L. Hall, K. Kieran, J. B. Fowlkes, C. A. Cain, and W. W. Roberts, 

"Histotripsy: Minimally Invasive Technology for Prostatic Tissue Ablation in an In Vivo 

Canine Model," Urology, vol. 72, pp. 682-686, 2008. 

[7] C. R. Hempel, T. L. Hall, C. A. Cain, J. B. Fowlkes, Z. Xu, and W. W. Roberts, 

"Histotripsy Fractionation of Prostate Tissue: Local Effects and Systemic Response in a 

Canine Model," The Journal of Urology, vol. 185, pp. 1484-1489, 2011. 

[8] G. R. Schade, T. L. Hall, and W. W. Roberts, "Urethral-sparing Histotripsy of the 

Prostate in a Canine Model," Urology, vol. 80, pp. 730-735, 2012. 

[9] E. Vlaisavljevich, Y. Kim, S. Allen, G. Owens, S. Pelletier, C. Cain, K. Ives, and Z. Xu, 

"Image-Guided Non-Invasive Ultrasound Liver Ablation Using Histotripsy: Feasibility 

Study in an In Vivo Porcine Model," Ultrasound in medicine & biology, vol. 39, pp. 

1398-1409, 2013. 

[10] A. P. Duryea, T. L. Hall, A. D. Maxwell, Z. Xu, C. A. Cain, and W. W. Roberts, 

"Histotripsy erosion of model urinary calculi," J Endourol, vol. 25, pp. 341-4, Feb 2011. 

[11] A. P. Duryea, A. D. Maxwell, W. W. Roberts, Z. Xu, T. L. Hall, and C. A. Cain, "In vitro 

comminution of model renal calculi using histotripsy," IEEE Trans Ultrason Ferroelectr 

Freq Control, vol. 58, pp. 971-80, May 2011. 

[12] B. A. Rabkin, V. Zderic, and S. Vaezy, "Hyperecho in ultrasound images of HIFU 

therapy: involvement of cavitation," Ultrasound Med Biol, vol. 31, pp. 947-56, Jul 2005. 

[13] T. L. Hall, J. B. Fowlkes, and C. A. Cain, "A real-time measure of cavitation induced 

tissue disruption by ultrasound imaging backscatter reduction," IEEE Trans Ultrason 

Ferroelectr Freq Control, vol. 54, pp. 569-75, Mar 2007. 

[14] T. Y. Wang, Z. Xu, F. Winterroth, T. L. Hall, J. B. Fowlkes, E. D. Rothman, W. W. 

Roberts, and C. A. Cain, "Quantitative ultrasound backscatter for pulsed cavitational 

ultrasound therapy- histotripsy," IEEE Trans Ultrason Ferroelectr Freq Control, vol. 56, 

pp. 995-1005, May 2009. 



 

9 

 

[15] T. Y. Wang, T. L. Hall, Z. Xu, J. B. Fowlkes, and C. A. Cain, "Imaging feedback of 

histotripsy treatments using ultrasound shear wave elastography," Ultrasonics, 

Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 59, pp. 1167-1181, 

2012. 

[16] R. M. Miller, A. D. Maxwell, T.-Y. Wang, J. B. Fowlkes, C. A. Cain, and X. Zhen, 

"Real-time elastography-based monitoring of histotripsy tissue fractionation using color 

Doppler," in Ultrasonics Symposium (IUS), 2012 IEEE International, 2012, pp. 196-199. 

[17] J. E. Kennedy, G. R. ter Haar, and D. Cranston, "High intensity focused ultrasound: 

surgery of the future?," The British Journal of Radiology, vol. 76, pp. 590-599, 2003. 

[18] J. E. Kennedy, "High-intensity focused ultrasound in the treatment of solid tumours," Nat 

Rev Cancer, vol. 5, pp. 321-7, Apr 2005. 

[19] K. Hynynen, O. Pomeroy, D. N. Smith, P. E. Huber, N. J. McDannold, J. Kettenbach, J. 

Baum, S. Singer, and F. A. Jolesz, "MR Imaging-guided Focused Ultrasound Surgery of 

Fibroadenomas in the Breast: A Feasibility Study," Radiology, vol. 219, pp. 176-185, 

2001. 

[20] Z. Ram, Z. R. Cohen, S. Harnof, S. Tal, M. Faibel, D. Nass, S. E. Maier, M. Hadani, and 

Y. Mardor, "Magnetic Resonance Imaging‐Guided, High‐Intensity Focused Ultrasound 

for Brain Tumor Therapy," Neurosurgery, vol. 59, pp. 949-956 

10.1227/01.NEU.0000254439.02736.D8, 2006. 

[21] F. A. Taran, C. M. C. Tempany, L. Regan, Y. Inbar, A. Revel, and E. A. Stewart, 

"Magnetic resonance-guided focused ultrasound (MRgFUS) compared with abdominal 

hysterectomy for treatment of uterine leiomyomas," Ultrasound in Obstetrics and 

Gynecology, vol. 34, pp. 572-578, 2009. 

[22] R. Catane, A. Beck, Y. Inbar, T. Rabin, N. Shabshin, S. Hengst, R. Pfeffer, A. Hanannel, 

O. Dogadkin, B. Liberman, and D. Kopelman, "MR-guided focused ultrasound surgery 

(MRgFUS) for the palliation of pain in patients with bone metastases—preliminary 

clinical experience," Annals of Oncology, vol. 18, pp. 163-167, January 1, 2007 2007. 

[23] R. Righetti, F. Kallel, R. J. Stafford, R. E. Price, T. A. Krouskop, J. D. Hazle, and J. 

Ophir, "Elastographic characterization of HIFU-induced lesions in canine livers," 

Ultrasound in medicine & biology, vol. 25, pp. 1099-1113, 1999. 

[24] L. Curiel, R. Souchon, O. Rouvière, A. Gelet, and J. Y. Chapelon, "Elastography for the 

follow-up of high-intensity focused ultrasound prostate cancer treatment: Initial 

comparison with MRI," Ultrasound in medicine & biology, vol. 31, pp. 1461-1468, 2005. 

[25] M. S. Canney, V. A. Khokhlova, O. V. Bessonova, M. R. Bailey, and L. A. Crum, 

"Shock-Induced Heating and Millisecond Boiling in Gels and Tissue Due to High 

Intensity Focused Ultrasound," Ultrasound in medicine & biology, vol. 36, pp. 250-267, 

2010. 



 

10 

 

[26] V. A. Khokhlova, M. R. Bailey, J. A. Reed, B. W. Cunitz, P. J. Kaczkowski, and L. A. 

Crum, "Effects of nonlinear propagation, cavitation, and boiling in lesion formation by 

high intensity focused ultrasound in a gel phantom," The Journal of the Acoustical 

Society of America, vol. 119, pp. 1834-1848, 2006. 

[27] B. A. Rabkin, V. Zderic, L. A. Crum, and S. Vaezy, "Biological and physical 

mechanisms of HIFU-induced hyperecho in ultrasound images," Ultrasound in medicine 

& biology, vol. 32, pp. 1721-1729, 2006. 

[28] A. D. Maxwell, T. Y. Wang, C. A. Cain, J. B. Fowlkes, O. A. Sapozhnikov, M. R. Bailey, 

and Z. Xu, "Cavitation clouds created by shock scattering from bubbles during 

histotripsy," J Acoust Soc Am, vol. 130, pp. 1888-98, Oct 2011. 

[29] Z. Xu, J. B. Fowlkes, A. Ludomirsky, and C. A. Cain, "Investigation of intensity 

thresholds for ultrasound tissue erosion," Ultrasound in Medicine &amp; Biology, vol. 31, 

pp. 1673-1682, 2005. 

[30] A. D. Maxwell, C. A. Cain, A. P. Duryea, L. Yuan, H. S. Gurm, and Z. Xu, "Noninvasive 

Thrombolysis Using Pulsed Ultrasound Cavitation Therapy ??Histotripsy," Ultrasound in 

medicine & biology, vol. 35, pp. 1982-1994, 2009. 

[31] Z. Xu, T. L. Hall, J. B. Fowlkes, and C. A. Cain, "Effects of acoustic parameters on 

bubble cloud dynamics in ultrasound tissue erosion (histotripsy)," The Journal of the 

Acoustical Society of America, vol. 122, pp. 229-236, 2007. 

[32] T.-Y. Wang, A. D. Maxwell, S. Park, Z. Xu, J. B. Fowlkes, and C. A. Cain, "Why Are 

Short Pulses More Efficient in Tissue Erosion Using Pulsed Cavitational Ultrasound 

Therapy (Histotripsy)?,"  vol. 1215, H. Kullervo and S. Jacques, Eds., ed: AIP, 2009, pp. 

40-43. 

[33] A. D. Maxwell, E. Johnson, J. B. Fowlkes, C. A. Cain, and Z. Xu, "Numerical modeling 

and simulation of focused shocks scattering from bubbles during histotripsy " Journal of 

Acoustic Society of America, submitted Dec. 2013 (In Review). 

[34] A. D. Maxwell, C. A. Cain, T. L. Hall, J. B. Fowlkes, and Z. Xu, "Probability of 

Cavitation for Single Ultrasound Pulses Applied to Tissues and Tissue-Mimicking 

Materials," Ultrasound Med Biol, vol. 39, pp. 449-465, 2013. 

 

 

 

 

  



 

11 

 

Chapter 2 

Microtripsy: Precise Lesion Formation using the Intrinsic Threshold 

Mechanism 

A majority component of this chapter has been published in IEEE Transactions on Ultrasonics, 

Ferroelectric, and Frequency Control ©  2014 IEEE. Reprinted, with permission, from [1]. 

 

2.1 Introduction 

Conventional histotripsy treatments use ultrasound pulses with ≥ 3 acoustic cycles and 

the bubble cloud formation relies on the pressure release scattering of the positive shock fronts 

from initially generated, sparsely distributed bubbles, which is called the “shock scattering 

mechanism” [2]. This shock scattering process makes the bubble cloud generation not only 

dependent on the peak negative pressure, but also on the number of acoustic cycles and the 

amplitudes of the positive shocks. Without these intense shock fronts developed by nonlinear 

propagation, no dense bubble clouds are generated when the peak negative half-cycles are below 

the intrinsic threshold. 

In a recent work [3], a second mechanism for bubble cloud formation was proposed and 

investigated. This occurs when one or more negative half cycle(s) of the applied ultrasound 

pulses exceed(s) an “intrinsic threshold” of the medium, thus directly forming a dense bubble 

cloud without shock scattering. This intrinsic threshold is defined by a very sharp transition zone 

and is relatively insensitive to the inhomogeneities in soft tissue or the lack of dissolved gases. 
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The reported threshold (P–), where the probability of dense bubble cloud formation for one 

single pulse is 0.5, is between 26.4 – 30.0 MPa in samples with high water content, including 

water, hydrogel, and soft tissue. Because of the sharp, highly repeatable threshold, at negative 

pressure amplitudes not significantly greater than this, a dense energetic lesion-forming cloud of 

microbubbles is generated consistently with a spatial pattern similar to the part of the negative 

half cycles(s) exceeding the intrinsic threshold.  

In this chapter, the characteristics of the lesions generated by the intrinsic threshold 

mechanism were investigated using red-blood-cell (RBC) tissue-mimicking phantoms and ex 

vivo canine tissues. More specifically, a 500 kHz therapy transducer, which generated histotripsy 

pulses of less than 2 cycles, was used, and various sizes of lesions in RBC phantoms and canine 

tissues were generated using various acoustic pressure levels. The smallest possible lesion that 

could be generated consistently with this transducer was tested by lowering the applied acoustic 

pressure to a level that was just above the intrinsic cavitation threshold. The lesion sizes in RBC 

phantoms were quantified based on the optical images taken by a high speed camera, and the 

lesion sizes in ex vivo tissue were quantified based on ultrasound B-mode images and 

histological sections. Estimates for the sizes of the lesions based on how large the focal regions 

were above the cavitation thresholds were also computed and compared to the sizes of the 

lesions generated experimentally. 
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2.2 Methods 

2.2.1 Sample preparation 

Experiments were performed on red-blood-cell (RBC) tissue-mimicking phantoms and ex 

vivo canine kidneys and livers. The procedures described in this study were approved by the 

University of Michigan’s Committee on Use and Care of Animals.  

The RBC tissue-mimicking phantom can be used for the visualization and quantification 

for cavitation-induced damage [4]. In this study, fresh canine blood was obtained from adult 

research canine subjects in an unrelated study. An anticoagulant solution of citrate-phosphate-

dextrose (CPD) (C7165, Sigma-Aldrich, St. Loius, MO, USA) was added to the blood with a 

CPD-to-blood ratio of 1:9 (v:v), and kept at 4°C before usage. The blood stored under these 

conditions could last for approximately one month, and, in this study, it was used within three 

weeks after blood collection. The RBC phantoms were prepared from an agarose-saline mixture 

and RBCs, following the protocols described in a previous paper [4]. The agarose-saline mixture 

consists of low-melting-point agarose powder (AG-SP, LabScientific, Livingston, NJ, USA) and 

0.9% saline at an agarose-to-saline ratio of 1:100 (w:v). This RBC tissue-mimicking phantom 

has a three-layer structure with a very thin (~500 µm) RBC-agarose-saline hydrogel layer in the 

center, and a transparent agarose-saline hydrogel layer (~2 cm thick) on the top and at the bottom. 

The central RBC-agarose layer serves as a real-time indicator for cavitational damage, since, at 

the place where cavitational damage is induced, the RBC-agarose mixture will change from 

translucent and red to transparent and colorless within one second due to RBC lysis [4].  

Experiments were also performed in ex vivo canine kidneys and livers to validate the 

results observed in the RBC phantoms. The excised canine kidneys and livers were collected 

from adult canine subjects from an unrelated study, kept in 0.9% saline at 4°C, and used within 
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36 hours. Before the experiments, the kidneys and livers were submerged in degassed 0.9% 

saline and placed in a chamber under partial vacuum (~33 kPa absolute) at room temperature for 

1–2 hours. The tissues were then sectioned into small specimens (~3×3×3 cm) and embedded in 

a 1% agarose hydrogel that consisted of low-melting-point agarose and 0.9% saline. 

 

2.2.2 Transducer Calibration 

Histotripsy pulses were generated by a 32-element, 500 kHz therapy transducer that was 

directly mounted on one side of a water tank filled with degassed water at room temperature 

(40% of normal saturation determined by pO2). The gas saturation was measured by a 

commercial dissolved oxygen meter (YSI5000, YSI Inc., Yellow Springs, OH, USA). The active 

elements in the transducer consisted of 50.8 mm diameter PZT-8 discs, each individually 

mounted to an acoustic lens with a geometric focus of 150 mm. The elements were arranged in a 

large hemispherical configuration with an f-number of approximately 0.5. To generate short 

therapy pulses, a custom high voltage pulser developed in-house was used to drive the transducer 

elements. The pulser was connected to a field-programmable gated array (FPGA) development 

board (Altera DE1, Terasic Technology, Dover, DE, USA) specifically programmed for 

histotripsy therapy pulsing. This setup allowed the transducer to output short pulses consisting of 

less than two cycles.  

A fiber-optic probe hydrophone (FOPH) adapted from a previously published design [5] 

was used to measure the acoustic output pressure of the therapy transducer. Figure 2.1(a) shows 

the directly measured, free-field acoustic waveform of a typical histotripsy pulse generated by 

the 32-element, 500 kHz therapy transducer prior to inducing cavitation on the tip of FOPH. The 

peak negative pressures beyond the cavitation threshold were estimated by the summation of the 
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output focal P– from individual elements. Above the cavitation threshold, the glass fiber sensor 

was consistently shattered. In the previous study [3], this estimate had a good agreement with the 

P– measured directly in a higher cavitation threshold medium, 1,3 butanediol. Furthermore, for 

the therapy transducer used in this study, each element was self-focused, and their acoustic 

waves did not overlap significantly until they reached the focus.  

Figure 2.1(b) plots the focal acoustic pressure as a function of the peak-to-peak electrical 

driving voltage (to one representative element in the therapy transducer), with both axes in 

logarithmic scales. The actual P– values prior to reaching cavitation threshold were measured 

directly by driving all the elements at the same time, and plotted as solid circles (●). The 

estimated P– values from the summation of individual elements are plotted as squares (□). The 

P– estimates from the summation showed a similar trend as the ones from the direct 

measurement, and they had a good agreement at the driving voltage of 492 Volts where P– = 

20.9 MPa via direct measurement and P– = 21.0 MPa via the estimate from summation. The -

6dB beamwidths (calculated based on P–) at the output pressure level of P– = 8.5 MPa were 

measured to be 1.80 and 4.04 mm in the lateral and axial directions, respectively.   

Rectangular, custom-made, plastic gel holders (4×4×8 cm) with acoustically transparent 

membranes (50µm thick clear DuraLar polyester films, McMaster-Carr, Aurora, OH) glued on 

their sides, as shown in Figure 2.1(c), were used to hold the RBC phantoms and agarose-

hydrogel-embedded tissue specimens. The influence of the plastic gel holders on focal P– and 

one-directional (1D) beam profiles was also investigated. Based on the acoustic pressure 

measurement with the plastic gel holder in place, the P– was attenuated by 12% (1.1 dB), and 

this attenuation could be attributed to both the reflection due to impedance mismatch and 

absorption in the plastic material. However, the 1D beam profiles in lateral and axial directions 
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did not change significantly, as shown in Figures 2.1(d) and 2.1(e). The applied P– was then 

corrected by the attenuation contributed by the plastic gel holder. Additionally, the applied P– 

was further linearly corrected for the attenuation contributed by agarose hydrogel and canine 

specimens with previously reported attenuation coefficients [3, 4, 6]. Tables 2.1 and 2.2 list the 

estimated P– used in the RBC Phantom experiments and ex vivo canine tissue experiments, 

respectively.  

 
Figure 2.1 Histotripsy pulse calibration (a) A representative free-field 1.5-cycle acoustic 

waveform for the 500 kHz therapy transducer. (b) A plot of the measured focal P– versus the 

peak-to-peak electrical driving voltage (c) A photograph of the gel holder. (d) Normalized lateral 

beam profile. (e) Normalized axial beam profile. 

2.2.3 Treatment in red-blood-cell phantoms and lesion analysis 

The experiment setup in the RBC phantom experiment is illustrated in Figure 2.2. 

Besides the histotripsy pulse generation described in the previous section, a digital, CMOS, high-

speed camera (Phantom V210, Vision Research, Wayne, NJ, USA) was positioned 
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perpendicularly to the water tank in an orientation that allowed for the visualization of the axial-

lateral plane of the therapy transducer. The camera received trigger signals from the FPGA board, 

which maintained the synchronization of image capturing and the delivery of histotripsy pulses. 

The RBC phantoms were mounted on a 3-axis motorized positioner (Parker, Cleveland, OH, 

USA), submerged in the water tank with the corresponding orientation for the visualization of 

axial-lateral-plane lesions, and illuminated by a continuous wave (CW) white light source for 

high speed photography. The RBC phantom, therapy transducer, and camera were aligned by 

visually adjusting the sharpness of the RBC layer and the cavitation bubble as they appeared in 

the high speed images. 

Each intended treatment region in the RBC phantoms was exposed to 500 histotripsy 

pulses at a PRF of 1 Hz. Single-focal-point exposures were performed in each case. A PRF of 1 

Hz was chosen to exclude the contribution of the cavitation memory effect described in a 

previous paper [7]. Pressure levels listed in column 4 of Table 2.1 were used in these RBC 

phantom experiments.  

Table 2.1 Pressure levels used in the RBC phantom experiments of 

the microtripsy study 

Peak-to-Peak 

Electrical Driving 

Voltage* (Volts) 

Estimated Focal P– from 

Summation of Individual 

Elements (MPa) 

Focal P– with Attenuation 

Correction (MPa) 

Gel Holder 
Agarose 

Hydrogel 

685 28.3 25.0 24.5 

757 30.3 26.7 26.2 

801 31.6 27.8 27.3 

831 32.2 28.4 27.9 

995 36.9 32.6 32.0 

1165 43.7 38.5 37.8 

1474 49.9 44.0 43.2 

1764 56.0 49.4 48.5 

2547 93.2 82.2 80.7 

* The peak-to-peak electrical driving voltage is the representative driving voltage 

from one of the elements in the therapy transducer. 
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During histotripsy treatment, the cavitational bubble clouds and their resulting damage in 

RBC phantoms were evaluated by optical images captured by the Phantom V210 high-speed 

camera. With an additional magnifying lens (Tominon, 1:4.5, f = 135 mm) used along with the 

camera, the resolution of these captured images was approximately 14–15 µm per pixel. The 

RBC phantoms were back lit with CW white light, thus the captured optical images would 

appear as “shadow graphs” in which the cavitational bubble clouds appeared dark black, the 

RBCs appeared gray, and the histotripsy-induced lesions appeared white. For every delivered 

histotripsy pulse, two images were acquired, one (bubble cloud image) at 10 µs after the arrival 

of the pulse, where the maximal spatial extent of the bubble cloud was observed, and the other 

(lesion image) at 500 ms after the arrival of the pulse, where only histotripsy-induced damage in 

the RBC phantom was observed. 

 

Figure 2.2 A schematic illustration of the experimental setup for RBC phantom experiments.  
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These optical images were then post-processed with MATLAB (R2011a, MathWorks, 

Natick, MA, USA) using a method similar to those described in previous papers [4, 7]. The 

lesion image was firstly converted to gray-scale, and then converted to a binary image using the 

threshold determined by the built-in function, graythresh, in MATLAB. The regions with 

brightness that were higher than the threshold would become “1 (white)” in the binary image and 

would be considered “damaged.”  In contrast, the regions with brightness less than the threshold 

would become “0 (black)” and be considered “intact.” The white regions that were smaller than 4 

pixels (correspond to regions less than 8 µm in radius) were considered to be noise and excluded 

from the damage zone. By counting the number of the white pixels in the binary image and 

converting it to actual size with the help of a pre-captured scale image, the area, length, and 

width of the lesion were determined. The bubble cloud images were quantified in a similar way, 

except the thresholds for binary image conversion were calculated based on the mean and 

standard deviation of the intensity of the bubble cloud, and the bubble cloud would be identified 

as “0 (black).” Then, the regions occupied by bubble clouds were overlaid after  00 applied 

histotripsy pulses, and the sizes in the lateral and axial dimensions of the overlaid bubble cloud 

occupied regions were further quantified. 

For each lesion, the lesion development process was studied by investigating the 

relationship between the quantified lesion area and the number of the histotripsy pulses that had 

been applied. In order to compare this lesion development process for different pressure levels, 

the lesion sizes were further normalized to their maximal extents, which occurred after the 

application of 500 histotripsy pulses.  
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2.2.4 Treatment in ex vivo tissue 

In order to validate the results in RBC phantoms, experiments were also performed in ex 

vivo canine renal and hepatic specimens as mentioned earlier. Canine renal and hepatic 

specimens that were embedded in agarose hydrogels were mounted on the 3-axis motorized 

positioner, and ultrasound B-mode imaging, instead of high speed photography, was used to 

monitor the histotripsy treatment. The ultrasound B-mode imaging was performed using a 

commercial ATL L12-5 linear ultrasound probe (Advanced Technology Laboratories, Inc., 

Bothell, WA, USA), along with a commercial ATL HDI 5000 ultrasound scanner.  

Each intended treatment region was exposed to 500 histotripsy pulses at a PRF of 1 Hz, 

and a single-focal-point exposure was performed. Various pressure levels, listed in column 4 and 

5 of Table 2.2, were applied to various regions of the specimens. In order to better identify the 

smaller lesions after treatment, two surface markers (10 mm separation) with higher pressure 

levels were generated on the surface of canine tissue specimen, along with two large lesions 

generated 6 mm right beneath the two surface markers. The small lesion was then generated in 

between these two large lesions and approximately 6 mm beneath the surface of the tissue 

specimen. 

Table 2.2 Pressure levels used in the ex vivo canine tissue experiments of 

the microtripsy study 

Peak-to-Peak 

Electrical Driving 

Voltage* (Volts) 

Estimated Focal P– from 

Summation of Individual 

Elements (MPa) 

Focal P– with Attenuation 

Correction (MPa) 

Gel Holder Kidney Liver 

894 34.8 30.7 28.5 29.3 

995 36.9 32.6 30.2 31.0 

1764 56.0 49.4 45.8 47.1 

* The peak-to-peak electrical driving voltage is the representative driving voltage 

from one of the elements in the therapy transducer. 

 

The lesions were then evaluated with both histological sections and ultrasound B-mode 

imaging. For histological section preparation, the treated canine specimens were fixed with 10% 
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phosphate buffered formalin (Fisher Scientific, Fair Lawn, NJ, USA) and sectioned into 

approximate 3mm-thick slices along the lateral-axial planes of the lesions using a regular kitchen 

knife and surgical scalpels. These slices were then further processed into 4µm-thick histological 

sections with 100 µm sectioning step size using a microtome and stained with hematoxylin and 

eosin (H&E). Visual inspection using bright field microscopy was performed to identify the 

section with maximal spatial extent of the damage among all sections for each sample. The 

maximal extents of the lesions in the lateral and axial directions were quantified based on the 

bright field microscopic images with the help of a pre-calibrated scale. 

Ultrasound B-mode imaging allows us to evaluate the tissue treatment outcome in real-

time, since the echogenicity in B-mode imaging of a treated region decreases as the degree of 

tissue fractionation increases [8, 9]. In this study, in order to resolve the lesions generated in the 

tissue specimens, especially the smaller ones generated with lower pressure level, a high-

frequency ultrasound probe, RMV 707B (15-45 MHz, VisualSonics, Toronto, ON, Canada), 

along with a high-frequency ultrasound scanner, Vevo 770 (VisualSonics), was used to evaluate 

the lesion after treatment. Due to the short working distance of the ultrasound probe (focal length 

= 12.7mm), tissue specimens were taken out of the gel holder and agarose hydrogel was removed 

during the ultrasound evaluation process. The axial and lateral dimensions of the lesions were 

then measured based on the hypoechoic regions that appeared in the recorded B-mode images. 

 

2.2.5 Lesion size estimation 

The probability for the generation of a dense bubble cloud using a single, short pulse (≤ 2 

cycles) is a function of the applied P–. This cavitation probability curve follows a sigmoid 

function [3], given by 
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where erf is the error function, pt is the pressure that gives a cavitation probability (Pcav) of 0.5, 

and σ is a variable that relates to the transition width in the cavitation probability curve, with ± σ 

giving the difference in pressure for cavitation probability from 0.15 to 0.85. The pt’s and σ’s in 

water, gelatin gel, and high water content soft tissue were found to be within the range of 26 – 30 

MPa (pt ) and 0.8 – 1.4 MPa (σ) [3].  

 
Figure 2.3 The probability for the generation of a dense bubble cloud using a single, short (≤ 2 

cycles) pulse.   

Figure 2.3 shows representative cavitation probability curves for producing dense bubble 

clouds in water plotted using the empirical values of pt and σ determined in the previous study. 

Since the histotripsy pulses used in this study (500 kHz center frequency at PRF = 1 Hz) were 

different from those used in the previous study [3] (1 MHz center frquency at PRF = 0.33 Hz), 

the cavitation probabilities for the 500 kHz histotripsy pulses were also experimentally 

investigated and plotted in Figure 2.3. This investigation was performed using a passive 

cavitation detection (PCD) approach similar to the one described in [3]. A needle hydrohpone 
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(HNR-0500, ONDA Corp., Sunnyvale, CA, USA) was mounted orthogonal to the acoustic 

propagation path, and pointing to the focus of the transducer. For the signal analysis, the spectral 

energies within 600kHz–900kHz (1.5f) of the received scattered signals were firstly integrated 

(integrated power spectrum , SPCD). For each applied pressure, the “expected” value for SPCD 

without caivatiaon was then determined  by extrapolating the SPCD from really low pressures (1–

5MPa) based on their focal intensities obtained from calibration measurements. If the measured 

SPCD is greater than the expected value by five standard deviations, a dense bubble cloud is 

considered to have occurred during the pulse.  

From this measurement and the results showing in Figure 2.3, it’s reasonable to assume 

the cavitation thresholds are insensitive to both the center frequency of the transducer (at least 

between  00 kHz and 1 MHz) and the pulse repetition frequency (when PRF ≤ 1 Hz, with 

minimal cavitation memory effect [7] involved).  The empirical values of pt  and σ listed in [3] 

for gel phantom and renal tissue were then used in the size estimation for the lesions generated in 

this study.  

As illustrated in Figure 2.4, the expected lesion sizes in the lateral and axial dimensions 

were estimated by linearly scaling 1D beam profiles to the applied P–, then evaluating the 

regions on the scaled profiles where the P– valeus exceed a pressure threshold. This pressure 

threshold for lesion size estimation (PLSE) was defined as the P– that gives a 50% probability of 

observing at least one dense bubble cloud generation event over the course of 500 delivered 

pulses. 
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Figure 2.4. Illustration for the lesion size estimation using the lateral direction as an example. (a) 

A normalized lateral beam profile for P–. (b) The estimated lateral beam profile was obtained by 

multiplying the normalized beam lateral proflie with the estimated focal P–. (c) A threshold 

based on the cavitation probability curve was applied, and then the region above the threshold 

would be determined as damage zone. 

Since Equation 2.1 only showed the cavitation probability curve for one “single” pulse 

(Pcav), we first used the binomial theorem to calculate the Pcav that would give a 50% probability 

of observing at least one dense bubble cloud generation per 500 pulses. This Pcav was calculated 

to be 0.0014. In 5% gelatin hydrogel, the P– that resulted in Pcav = 0.0014 was caluclated to be 

23.4 MPa (PLSE) using the empirical values of of pt and σ listed in [3]. This PLSE was used to 

estimate the size of the lesions that would be produced in RBC phantoms, since the acoustic 

properties of 1.5% agarose hydrogel are similar to those of 5% gelatin hydrogel. In renal tissue, 

the PLSE was calculated to be 26.1 MPa, which was then used to estimate the size of the lesion 

that would be produced in the ex vivo canine kidney experiments. 

 

2.3 Results 

2.3.1 Experiments on RBC Phantoms 

A total of 74 lesions were generated in RBC phantoms with nine pressure levels (listed in 

column 4 of Table 2.1), and each pressure level contained a total of nine lesions, with the 
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exception of two lesions for P– = 24.5 MPa. In the case of P– = 24.5 MPa, cavitational bubbles 

were not generated in response to every applied histotripsy pulse, and the shapes of the lesions 

were not well-confined and they varied between samples. Therefore, for P– = 24.5 MPa, only the 

lesion and bubble cloud images are shown in Figures 2.5 – 2.6, and no further quantitative 

analysis was performed. In the pressure levels from P– = 26.2 MPa to P– = 80.7 MPa, bubble 

clouds were consistently generated in every applied histotripsy pulse.  

Figure 2.5 shows representative lesion and bubble clouds images at the 500
th

 pulse, 

whereas Figure 2.6 demonstrates the lesion development process and shows representative lesion 

images for pulses 1, 10, 20, 50, 100, and 500. The images for P– = 27.3 MPa and 27.9 MPa did 

not vary significantly from the images for P– = 26.2 MPa, so they are not included. The pressure 

level of P– = 80.7 MPa resulted in an extreme outcome, and its result is shown separately in 

Figure 2.7. As can be seen in the Figure 2.5, the spatial extent of both the lesion and the bubble 

clouds increased as the applied pressure level increased. As shown in Figure 2.6, the lesion 

development process started from the center with minimal damage at the periphery. Then, the 

lesion gradually grew outwards as the number of applied pulses increased.  

 

Figure 2.5 Representative lesion [(a)-(f)] and bubble cloud [(g)-(l)] images in RBC phantoms 

after 500 histotripsy pulses had being applied. These images were taken in the axial-lateral plane 

of the therapy transducer, and the histotripsy pulses propagated from the left to the right of the 

field.  
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Figure 2.6 Representative lesion images in RBC phantoms demonstrating the lesion development 

processes. These images were taken in the axial-lateral plane of the therapy transducer, and the 

histotripsy pulses propagated from the left to the right of the field. The images for P– = 27.3 and 

27.9 MPa are not included in this figure.  

The extreme case came when the applied P– was increased to 80.7 MPa, where collateral 

damage along the axial direction was observed [Figure 2.7(a)]. Based on the 1D extrapolated 

beam profiles along axial [Figure 2.7(b)] and lateral [Figure 2.7(c)] directions at this pressure 

level, the applied pressure at the post-focal grating lobe in the axial direction was close to the 

threshold for lesion size estimation, PLSE. This corresponded well with the finding in Figure 

2.7(a), demonstrating that collateral damage occurred at the location where the grating lobe was 

close to that threshold.   
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The quantified sizes of the lesions and the overlaid bubble cloud occupied regions are 

plotted in Figures 2.8(a) and (b), along with their estimates based on the focal profile regions 

above the PLSE threshold. As shown in the figure, the quantified sizes for both the lesions and 

overlaid bubble cloud occupied regions increased linearly with the applied P–. The sizes for 

lesions were slightly smaller than those for the overlaid bubble cloud occupied regions, and the 

differences between them were in the range of 0.5–1 mm. The average lesion widths ranged from 

0.90 mm (P– = 26.2 MPa) to 3.91 mm (P– = 80.7 MPa), while the average lesion lengths ranged 

from 1.86 mm (P– = 26.2 MPa) to 7.57 mm (P– = 80.7 MPa). The estimates derived using PLSE = 

23.4 MPa corresponded well to the quantified lesion sizes in lower pressure levels. However, as 

the pressure level increased, higher discrepancy between the quantified lesion sizes and the 

estimates was observed in both lateral and axial directions. Note that there was a discontinuity in 

the estimated lesion size in axial direction around P– = 70 MPa. This was due to an inflection in 

the 1D axial beam profile at the bottom of the main lobe, as shown in Figure 2.7(b) (around –3 

mm).  

Figures 2.8(c) and 2.8(d) plot the quantitative results of the lesion development processes 

for various pressure levels. For clarity, the results from P– = 27.3, 27.9, and 43.2 MPa are not 

displayed (the results for P– = 27.3 and 27.9 MPa lie between P– = 26.2 and 32.0 MPa, and the 

result for 43.2 MPa lies between P– = 37.8 and 48.5 MPa). Figure 2.8(c) shows the quantified 

area of the lesion as a function of the number of applied histotripsy pulses. The normalized 

lesion area is shown in Figures 2.8(d), and as can be seen, the lesions that were created with 

lower pressure levels developed more slowly.  The average numbers of histotripsy pulses 

required to reach 80% lesion development were 200 (P– = 26.2 MPa), 181 (P– = 27.3 MPa), 170 

(P– = 27.9 MPa), 121 (P– = 32.0 MPa), 86 (P– = 37.8 MPa), 92 (P– = 43.2 MPa), 87 (P– = 48.5 
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MPa), and 115 (P– = 80.7 MPa). An exception occurred at P– = 80.7 MPa, where the lesion 

developed more slowly than P– = 48.5 MPa. This could be attributed to the sparsely distributed 

single bubbles generated in the prefocal grating lobe since the applied pressure there approached 

the PLSE threshold. 

  

Figure 2.7 The extreme case where P– = 80.7 MPa was applied and one of the grating lobes 

(post-focal) in the axial direction was close to the threshold for lesion size estimation, PLSE. (a) 

The representative lesion images in RBC phantom. These images were taken in the axial-lateral 

plane of the therapy transducer, and the histotripsy pulses propagated from the left to the right of 

the image. Collateral damage along axial direction was observed. (b) and (c) 1D estimated axial 

and lateral beam profiles are plotted as solid lines (–), whereas the dotted lines (…) represents 

the thresholds at PLSE = 23.4 MPa  
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Figure 2.8 The quantified lesion sizes [(a) and (b)] and the lesion development processes [(c) and 

(d)] as a function of the applied P– in RBC phantom experiments. The sample sizes are nine (N = 

9) for each pressure level, and the vertical error bars represent ± one standard deviation. 

2.3.2 Ex Vivo Canine Kidney Experiments 

The results for the experiments performed on the canine renal specimens are summarized 

as follows and shown in Figures 2.9 – 2.10. The sample sizes for the pressure levels of P– = 28.5, 

30.2, and 45.8 MPa are 5, 5, and 7, respectively. Figure 2.9 shows representative B-mode images 

of the canine renal specimens after the application of 500 histotripsy pulses with these three 

pressure levels. As can be seen, the backscatter intensity of the tissue specimen decreased after 

treatment, resulting in hypoechoic regions on B-mode imaging. Moreover, these hypoechoic 

regions were larger when histotripsy at a higher pressure level was applied.  
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The representative histological sections are displayed in Figures 2.10 (a) – (c). As shown 

in the histological sections, the intended treatment regions had lost their normal architecture and 

contained only acellular granular debris, and a larger spatial extent of the lesion occurred when a 

higher pressure level was applied. The lesion sizes quantified from histological sections and B-

mode images are shown in Figures 2.10(d) and (e), along with the estimates for the lesion sizes 

based on the regions that are above the PLSE threshold. As can be seen from the figure, the lesion 

sizes quantified by the histological sections were similar as those quantified by B-mode images, 

with statistically significant difference occurring only at the applied pressure level of P– =30.2 

MPa (p-values = 0.002 and 0.02 in the lateral and axial directions, respectively). In the lateral 

dimension of the lesion [Figure 2.10(d)], the quantified lesion widths lay close to the estimates,  

where the quantified lesion widths in histological sections were 0.22 (P– = 28.5 MPa), 0.31 (P– 

= 30.2 MPa), and 0.73 mm (P– = 45.8 MPa) larger than the estimates. In the axial dimension of 

the lesion [Figure 2.10(e)], the quantified lesion lengths lay close to the estimates, where the 

quantified lesion lengths in histological sections were 0.31 (P– = 28.5 MPa), 0.62 (P– = 30.2 

MPa), and 0.65 mm (P– = 45.8 MPa) larger than the estimates. 

 

Figure 2.9 Representative B-mode images of canine renal specimens after the application of 500 

histotripsy pulses.  The histotripsy pulses propagated from the top to the bottom in the images.  
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Figure 2.10 Representative histological sections in the canine renal tissue treatment, with the 

applied P– of 45.8 MPa (a), 30.2 MPa (b), and 28.5 MPa (c). The histological sections represent 

the axial-lateral planes of the lesions and the histotripsy pulses propagate from left to the right in 

the image. (d) and (e) plot the quantified lateral and axial dimensions of the lesions and their 

estimates based on the regions above the threshold.  

2.3.3 Ex Vivo Canine Liver Experiments  

The results for the experiments performed on the canine hepatic specimens are 

summarized as follows and shown in Figure 2.11 – 2.12, and the sample sizes for the pressure 

levels of P– = 29.3, 31.0, and 47.1 MPa are 5, 5, and 8, respectively. Figure 2.11 shows 

representative B-mode images of the hepatic specimens after the application of 500 histotripsy 

pulses. Similar as the result in Figure 2.9, hypoechoic regions occurred on B-mode images after 

histotripsy treatment, and these regions were larger when histotripsy at a higher pressure level 

was applied. 
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The representative histological sections are displayed in Figures 2.12(a) – (c). Similar to 

the case in renal specimens, the intended treatment regions had lost their normal architecture and 

contained only acellular granular debris, and a larger spatial extent of the lesion occurred when a 

higher pressure level was applied. The lesion sizes quantified from histological sections are 

shown in Figures 2.12(d) and (e), along with the lesions sizes of canine kidney for comparison. 

As can be seen, lesion sizes in both lateral and axial directions increased as the applied P– 

increased. Since the empirical values of pt and σ for liver were not determined [3], no estimates 

were calculated in this case.  

 

Figure 2.11 Representative B-mode images of canine hepatic specimens after the application of 

500 histotripsy pulses.  The histotripsy pulses propagated from the top to the bottom in the 

images.  
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Figure 2.12 Representative histological sections in the canine hepatic tissue treatment, with the 

applied P– of 47.1 MPa (a), 31.0 MPa (b), and 29.3 MPa (c). The histological sections represent 

the axial-lateral planes of the lesions and the histotripsy pulses propagate from the left to the 

right in the images. The quantified lateral and axial dimensions of the lesions based on 

histological sections in hepatic tissue are plotted in (d) and (e), along with the lesion sizes in 

renal tissue. 

2.4 Discussion 

In this paper, precise and controlled lesions were generated by the intrinsic threshold 

mechanism in both RBC phantoms and ex vivo canine specimens. In comparison to the bubble 

clouds and lesions generated by the shock scattering mechanism shown in our previous studies [2, 

4, 7, 10], those generated by the intrinsic threshold mechanism have two advantageous 

characteristics. First, the shape of the bubble cloud generated by the intrinsic threshold 

mechanism is well-confined and corresponds well to the shape of the transducer focal zone, 

whereas the shape of the bubble cloud generated by the shock scattering mechanism is variable 

and somewhat unpredictable. Because tissue fractionation is directly correlated to the activity of 
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the cavitational bubble cloud, the shape of the lesions produced by the intrinsic threshold 

mechanism is more predictable and has a better agreement to the shape of the transducer focal 

zone. Second, the bubble clouds generated by the intrinsic threshold mechanism are more 

uniform and consistent within the region exceeding the intrinsic threshold, whereas the bubble 

clouds generated by the shock scattering mechanism can be isolated to subvolumes of the focus 

due to complex scattering behavior. Therefore, the intrinsic threshold mechanism can potentially 

lead to more efficient and complete lesion development. 

Moreover, using this intrinsic threshold mechanism, very small and controlled lesions can 

be generated by allowing only a small fraction of the focal region to exceed the cavitation 

threshold. In this paper, the smallest reproducible lesions generated in RBC phantoms, canine 

renal specimens, and canine hepatic specimens averaged 0.90 × 1.86 mm (lateral × axial), 0.89 × 

1.61 mm, and 0.91 × 1.73 mm, respectively. These values were much smaller than the 

wavelength of the transducer (λ = ~3 mm for  00 kHz in agarose hydrogel, kidney, and liver). In 

the lateral direction, the lesion widths were even smaller than the diffraction limited –6dB focal 

pressure, λ/2. These results demonstrate that microscopic and precise lesions can be achieved 

using the intrinsic threshold mechanism, hence we call it “microtripsy.”  

The sizes of the lesions generated in this study corresponded well with the estimates 

based on how large the regions were above the PLSE threshold. However, a discrepancy was 

observed at higher pressure level, as can be seen in Figures 2.8 and 2.10. In order to address this 

discrepancy, we studied whether the focal size of the transducer remained the same at higher 

pressure levels. A University of Washington (UW) study [11] has investigated the dependency of 

focal size on the applied pressure level in high intensity focused ultrasound (HIFU). Both their 

simulated and experimental results suggested that, when the applied acoustic pressure increased 
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to a certain level,  the –6dB beamwidths based on P– increased while the beamwidths based on 

P+ decreased, due to nonlinear acoustic propagation. Hence, we investigated whether the focal 

size, for the therapy transducer used in this study, changed with the applied pressure level. Using 

the fiber optic probe hydrophone (FOPH), 1D beam profile scans along the lateral and axial 

directions were performed with 100µm step size, and the corresponding –6dB beamwidths based 

on P+ and P– are plotted in Figure 2.13. The –6dB beamwidths based on P– increased from 1.80 

× 4.04 mm (lateral × axial) at P– = 8.7 MPa to 1.94 × 4.26 mm at P– = 18.4 MPa. The –6dB 

beamwidths based on P+ decreased from1.72 × 3.77 mm at P– = 8.7 MPa to 1.58 × 3.43 mm at 

P– = 18.4 MPa. These results follow a similar trend described in the study from UW [11], and is 

the likely explanation for the discrepancy between experimental lesion sizes and their estimates 

at higher pressure levels. Though we couldn’t get a direct measurement of the beamwidths at the 

pressure levels used in this study (due to the unavoidable cavitation on the fiber tip in FOPH), 

this effect can be potentially modeled using a proper nonlinear simulation that we may 

investigate in the future. Other potential explanations for the discrepancy between actual lesion 

sizes and the estimates include 1) the maximal bubble expansion is dependent on the applied 

peak negative pressure, and the higher the applied P–, the larger the expansion, 2) the estimates 

of the lesion size were based on a simplified model rather than a sophisticated Monte-Carlo 

simulation demonstrated in [3]. 
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Figure 2.13 The calibrated –6dB beamwidths in lateral (a) and axial (b) directions for the 500 

kHz therapy transducer as a function of the applied P–. The sample sizes for each point in (a) are 

three, and the samples sizes for each point in (b) are four. 

The ellipsoidal-shape of the lesions generated at lower pressure levels correspond well 

with the shape of the focal regions above the PLSE threshold.  However, anomalous “tear-drop-

shaped” lesions were observed at higher pressure levels and became pronounced at P– of 80.7 

MPa, as shown in Figures 2.6 and 2.7(a). This “self-quenching” phenomenon may be due to a 

reduction in pulse intensity as it propagates through the significantly larger lesion resulting in a 

progressive reduction in the spatial extent of the supra-PLSE zone and the size of the bubble cloud. 

The reduction in intensity could result from work done in generating the bubble cloud in the 

proximal zone of the lesion and some self-shadowing resulting from the rapidly expanding 

bubbles. Small residual bubbles from previous pulses would have a similar shadowing effect on 

subsequent pulses, particularly for larger lesions. 

In the ex vivo canine tissue experiments, the lesions generated in hepatic tissue are 

slightly larger than the ones generated in renal tissue, at the same applied pressure levels (before 

attenuation correction). A majority of this difference can be attributed to the difference in 
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attenuation, since, as shown in Figures 2.12(d) and (e), the results from two different tissues are 

actually closer to each other and follow a similar trend after attenuation correction. Another 

potential explanation is that hepatic tissue has lower Young’s modulus (YM) than renal tissue, 

since a previous study [12] shows that the tissue erosion process is faster in softer tissue (i.e. 

lower YM). Additionally, as shown in [3], the expansion of the bubble is larger in softer tissue, 

thus could potentially resulting in larger produced lesions.  

Besides the lesions generated using the 500 kHz transducer in this study, an experiment 

was performed in a RBC phantom using a 3 MHz 7-element transducer to demonstrate the lesion 

production of the intrinsic threshold mechanism using a transducer of considerably higher 

frequency (3 MHz). The active elements in the transducer consisted of 20 mm diameter PZT-4 

discs, each individually mounted to an acoustic lens with a geometric focus of 40 mm. The 

lateral and axial -6dB beamwidths of the 7-element transducer were measured to be 0.31 and 

1.42 mm, respectively. The elements were driven by a high voltage pulser that gave an acoustic 

output of less than 2 cycles. Histotripsy pulses (100 pulses in total) were delivered at a PRF of 1 

Hz for each intended treatment location. The smallest reproducible lesion for a single-focal-spot 

exposure has an average size of 0.16 × 0.27 mm (axial × lateral). Though this 3 MHz transducer 

did not share the same design as the 500 kHz transducer, the size of the smallest reproducible 

lesion was approximately 1/6 of that generated with the 500 kHz transducer. Figure 2.14 shows a 

lesion generated in a RBC phantom using this 3 MHz transducer, and this phantom was moved 

mechanically with a motorized positioning system during the treatment, creating an “M” 

character followed by a vertical “scale bar” and a string of characters showing “1 mm.” This 

figure demonstrates the precision that can be achieved with “microtripsy” using a 3 MHz 

transducer. 
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This “microtripsy” technique  based on the bubble clouds generated by the intrinsic 

threshold mechanism can be quite beneficial in the case where microscopic and well-defined 

tissue ablation is required. Especially, as shown in the study, very precise lesions could still be 

achieved using a low frequency transducer as long as we carefully allow only a small fraction of 

the focal zone to exceed the intrinsic threshold. Low frequency transducers would be favorable 

in applications that require long ultrasound penetration depth or where the intended targets have 

very attenuative overlying tissues, such as in transcranial brain therapy. Moreover, low-

frequency single cycle (or close) pulses minimize phase aberration.  In the future, we plan to 

apply supra-intrinsic threshold histotripsy (“microtripsy”) to very specific applications including 

transcranial and ophthalmologic procedures. We also plan to investigate different strategies on 

how to more precisely control the small fraction of the focal volume that exceeds the intrinsic 

threshold.  
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Figure 2.14 A representative lesion in RBC phantom generated by a 3 MHz transducer. (a) An 

overlook of the lesion along with a US dime coin and a ruler with millimeter tick marks. (b) A 

magnified view of the lesion (c) A high speed image showing the bubble cloud generated during 

treatment (d) An ultrasound B-mode image of the lesion after treatment. 

2.5 Conclusion 

In this chapter, the capability of histotripsy to generate precise, sub-wavelength lesions is 

demonstrated both in RBC phantoms and ex vivo canine tissues. This microtripsy procedure uses 

the highly repeatable and very sharp transition zone in cavitation probability inherent to bubble 
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cloud generation above the intrinsic threshold. Lesion sizes in both axial and lateral directions 

can be increased by increasing the applied peak negative pressure. These lesion sizes 

corresponded well to the dimensions of the focal beam profile estimated to be beyond the 

intrinsic cavitation threshold, although there was a discrepancy at higher applied pressure levels 

(P− > 3  MPa), most likely accounted for by an increase in the size of the peak negative pressure 

focal zone as a result of nonlinear propagation processes. This microtripsy technique can be 

significantly useful in the clinical applications where precise, microscopic tissue ablation is 

required, particularly where low frequencies are indicated, while still maintaining small precise 

sub-wavelength lesions.  
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Chapter 3 

Dual-Beam Histotripsy: A Low-Frequency Pump Enabling a High-Frequency 

Probe for Precise Lesion Formation 

A majority component of this chapter has been published in IEEE Transactions on Ultrasonics, 

Ferroelectric, and Frequency Control ©  2014 IEEE. Reprinted, with permission, from [1]. 

 

3.1 Introduction 

 As shown in the previous chapter, using the intrinsic threshold mechanism, the size of the 

smallest reproducible lesion becomes smaller with higher frequency histotripsy pulses, which is 

beneficial in applications that require precise lesion generation. However, higher frequency 

pulses are more susceptible to attenuation and aberration, rendering problematical treatments at a 

longer penetration depth or through a highly aberrative medium, e.g., transcranial procedures. In 

this chapter, we propose and study a strategic application of histotripsy pulses to address this 

issue: a low-frequency pump pulse (< 2 cycles) is applied together with a high-frequency probe 

pulse (< 2 cycles) wherein their peak negative pressures constructively interfere to exceed the 

intrinsic threshold. The low-frequency pump, which is more resistant to attenuation and 

aberration, can raise the P– level for a region of interest (ROI); while the high-frequency probe 

(perhaps an imaging transducer), which provides more precision, can pin-point a targeted 

location within the ROI and raise the P– above the intrinsic threshold. We call this approach 

“dual-beam histotripsy.” 
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 Previous studies from Umemura et al [2, 3] showed that the superimposition of the 2
nd

-

harmonic onto the fundamental frequency can enhance cavitation activity. More specifically, 

Umemura et al [2] demonstrated that the superimposition of the 2
nd

-harmonic onto the 

fundamental frequency with two confocal transducers can enhance sonodynamic therapy wherein 

cavitation enhances the therapeutic effect of certain agents administered prior to treatment. 

Yoshizawa et al [3] studied the bubble cloud generation near a rigid wall by 2
nd

-harmonic 

superimposed ultrasound, and their results showed that the negative pressure emphasized wave 

had an advantage in cavitation inception over the positive pressure emphasized wave. 

Several other studies have also investigated waveform manipulation methods to either 

enhance or reduce cavitation activity. The study conducted by Chapelon et al [4] showed that the 

sonoluminescence activity (using luminol as a cavitation detector) generated with pseudorandom 

phase-modulated signals was significantly lower than that generated with continuous-wave (CW), 

single-frequency ultrasound. Sokka et al [5] investigated the effect of dual-frequency driving 

waveforms on injected microbubbles both theoretically and experimentally, and the results 

showed that their developed dual-frequency methods could preferentially lower the cavitation 

threshold at the focus relative to the rest of the field. Matsumoto et al [6] and Ikeda et al [7, 8] 

utilized dual frequency excitation for cloud cavitation control in renal stone comminution, 

wherein the bubble cloud was firstly created by a high-frequency pulse and then forced into a 

violent collapse with a succeeding low-frequency pulse for fragmentation of kidney stones.  Liu 

and Hsieh [9] generated dual-frequency ultrasound waves using a single-element transducer and 

demonstrated its capability in enhancing acoustic cavitation. Hasanzadeh et al [10] investigated 

the enhancement of acoustic cavitation generated on aluminum foil using dual-frequency 

sonication with transducers of several different frequencies.  
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 The dual-beam histotripsy approach proposed in this paper is mechanistically different 

from the previous studies [2-10]. In the previous studies, longer pulses ( >50 µs in [6-8], 125µs 

in [3], and CW for the rest) were used and the enhancement (or suppression) of acoustic 

cavitation was accomplished by pseudo-random phase-modulation, harmonic superimposition, 

and high frequency pulse followed by low frequency pulse, not necessarily increasing the applied 

pressure level using the 2
nd

 frequency component. In contrast, dual-beam histotripsy uses pulses 

less than two cycles, and the arrival times of the pump and probe were adjusted to enhance P– 

constructive interference. Additionally, the cavitation probability was enhanced in the previous 

studies by microbubble seeding or reflection from a rigid interface (except for [4]), whereas 

dual-beam histotripsy generates a dense bubble cloud without any pre-existing microbubbles or 

special interfaces.   

 In this chapter, the feasibility of dual-beam histotripsy was investigated using red-blood-

cell (RBC) tissue-mimicking phantoms and ex vivo porcine livers. More specifically, a 20-

element dual-frequency array transducer, in which 500-kHz (pump) and 3-MHz (probe) elements 

were confocally aligned, was used to generate dual-beam histotripsy pulses at a pulse repetition 

frequency (PRF) of 1 Hz. Three experimental sets were performed in RBC phantoms wherein: 1) 

the arrival times of 500-kHz and 3-MHz pulses (both below the intrinsic threshold) were varied 

to investigate whether lesions could only be generated when combined P− values exceeded the 

intrinsic threshold, 2) the relative amplitude of 500-kHz and 3-MHz pulses was varied to study 

the size of the smallest reproducible lesion with different proportions of pump and probe, and 3) 

the relative propagation direction between 500-kHz and 3-MHz pulses was varied to determine 

the effect on the shape and size of the produced lesions. Finally, selected dual-beam histotripsy 

pulses were tested in ex vivo porcine hepatic specimens to validate the results in real tissue. 
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3.2 Methods 

3.2.1 Sample Preparation 

Experiments were performed on red-blood-cell (RBC) tissue-mimicking phantoms and ex 

vivo porcine livers to investigate the treatment effect for the dual-beam histotripsy pulses. The 

procedures described in this study were approved by the University of Michigan’s Committee on 

Use and Care of Animals.  

The RBC tissue-mimicking phantoms can be used for the visualization and quantification 

of cavitation-induced damage [11]. In this study, fresh canine blood was obtained from adult 

research canine subjects in an unrelated study. An anticoagulant solution of citrate-phosphate-

dextrose (CPD) (C7165, Sigma-Aldrich, St. Louis, MO, USA) was added to the blood with a 

CPD-to-blood ratio of 1:9 (v:v), and the blood was kept at 4°C and used within 3 weeks. A low-

melting-point agarose powder (AG-SP, LabScientific, Livingston, NJ, USA) was used along 

with the canine blood to prepare RBC phantoms following the protocol described in [11]. In this 

study, since the expected lesions are very small (in the range of 200 - 500 µm), the central layer 

preparation differed slightly from the protocol. Instead of lying flat when the central layer was 

solidifying, the gel holder was mounted vertically such that the agarose-saline-RBC mixture 

trickled down the previous agarose-only casting while solidifying into a very thin central layer (~ 

60 – 100 µm) [Figure 3.1(a)]. Additionally, in order to provide sufficient image contrast between 

treated and untreated regions, the ratio of RBCs to agarose-saline mixture was increased from 

5:95 to 33:67 (v:v). The gel holder for RBC phantoms is shown in Figure 3.1(b). 

Experiments were also performed in ex vivo porcine livers to validate the results observed 

in the RBC phantoms. The excised porcine livers were collected from a local abattoir, kept in 

0.9% saline at 4°C, and used within 36 hours. Before the experiments, the livers were sectioned 
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into small specimens (~2 × 2 × 2 cm), submerged in degassed 0.9% saline and placed in a 

chamber under partial vacuum (~33 kPa, absolute) at room temperature for 1 – 2 hours. The 

specimens were then embedded in a 1% agarose hydrogel that consisted of low-melting-point 

agarose and 0.9% saline. The gel holder for liver experiments is shown in Figure 3.1(c). 

 

Figure 3.1 (a) A bright field microscope image with a 10× objective showing the cross-section of 

a representative RBC phantom. (b) A picture of a representative gel holder for RBC phantoms. (c) 

A picture of a representative holder for agarose-embedded porcine hepatic specimens. 

3.2.2 Histotripsy Pulse Generation and Calibration 

Histotripsy pulses were generated by a custom, 20-element, dual-frequency array 

transducer (Figure 3.2) that consisted of twelve 500 kHz elements and eight 3 MHz elements. 

Each 500 kHz element consisted of two 1 MHz, 20-mm-diameter piezoceramic discs (PZ36, 

Ferroperm, Kvistgaard, Denmark) stacked together with epoxy, while each 3 MHz element 

consisted of a single 3 MHz, 20-mm-diameter piezoceramic disc (SM111, Steiner and Martins, 

Miami, FL, USA). Both 500 kHz and 3 MHz elements were individually mounted to acoustic 

lenses with a geometric focus of 40 mm. The elements were confocally aligned and arranged in 

the following order: 1) the very bottom of the array transducer – one 3 MHz element, 2) 1
st
 ring 

from the bottom – six 500 kHz elements with a 37-degree tilt angle, 3) 2
nd

 ring from the bottom – 

six 500 kHz elements with a 64-degree tilt angle, 4)  3
rd

 ring from the bottom – six 3 MHz 

elements with a 85-degree tilt angle, and 5) on top of the array transducer – one 3MHz element 
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that was attached to a supporting frame and had an opposite propagation direction, which was 

from top to bottom. This top element was used only during the study that investigated the effect 

of different propagation directions of the 3 MHz element relative to the 500 kHz component. 

Note that the 20-element dual frequency transducer actually had four additional elements above 

its third ring with 103-degree tilt angle [can be seen in Figures 3.2(a) and (b)], but they were 

never used in this study. In drawings of the cross-sections [Figures 3.2(c) and 2(d)], and 

following figures and calibration measurements, these four elements were excluded.  

 

Figure 3.2 20-element dual-frequency array transducer (a) A top-down view of the transducer 

without the top element and adapting frame. (b) An angled view of the transducer with the top 

element and adapting frame. (c) A cross-sectional drawing of the transducer in the axial-

elevational plane with the top element and adapting frame. (d) A cross-sectional drawing of the 

transducer in the axial-lateral plane with the top element and adapting frame.  
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Additionally, this dual-frequency array transducer also had two diametrically opposed 

optical windows, approximately at the same height as the 3rd ring and facing each other, for the 

visualization of the cavitating bubble clouds and lesions generated in RBC phantoms. To 

generate short therapy pulses, a custom high voltage pulser developed in-house was used to drive 

the transducer. The pulser was connected to a field-programmable gated array (FPGA) 

development board (Altera DE1, Terasic Technology, Dover, DE, USA) specifically 

programmed for histotripsy therapy pulsing. This setup allowed the transducer to output short 

pulses consisting of less than two cycles. The transducer was filled with degassed water (~50% 

of normal PO2) during experiments, and the gas saturation was measured by a commercial 

dissolved oxygen meter (YSI5000, YSI Inc., Yellow Springs, OH, USA).  

A fiber-optic probe hydrophone (FOPH) [12] was used to measure the acoustic output 

pressure of the dual-frequency transducer. Figure 3.3 shows the calibration results of the 500 

kHz component (a total of 12 elements) in the free-field, including a representative focal 

pressure waveform before inducing cavitation on the FOPH [Figure 3.3(a)], total focal P– as a 

function of peak-to-peak driving voltage [Figure 3.3(b)], and one-dimensional (1D) beam 

profiles in the axial [Figure 3.3(c)], lateral [Figure 3.3(d)], and elevational [Figure 3.3(e)] 

directions. Phase correction was performed to compensate for any misalignment of the 500 kHz 

elements. Pressure levels after inducing cavitation on the FOPH were estimated by the 

summation of the output focal P– values from individual elements. In a previous study [13], this 

estimate had a good agreement with the P– measured directly in a higher cavitation threshold 

medium, 1,3 butanediol. The 6 dB beam-widths (calculated based on P–) were measured to be 

4.89 (axial), 1.74 (lateral) and 1.77 mm (elevational).   
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Figure 3.3 Calibration results of the 500 kHz component (a total of 12 elements) in the dual-

frequency array transducer. (a) A representative acoustic waveform at the focus in the free-field. 

(b) Peak negative pressure as a function of peak-to-peak driving voltage. 1D beam profiles in the 

axial (c), lateral (d), and elevational (e) direction.  

Figure 3.4 shows the calibration results of the 3 MHz component (a total of 7 elements 

without the top element) in the free-field, including a representative focal pressure waveform 

before inducing cavitation on the FOPH [Figure 3.4(a)], total focal P– as a function of DC supply 

voltage to the high-voltage pulser [Figure 3.4(b)], and one-dimensional (1D) beam profiles in the 

axial [Figure 3.4(c)], lateral [Figure 3.4(d)], and elevational [Figure 3.4(e)] directions. Phase 

correction was performed to compensate for any misalignment of the 3 MHz elements. The 6 dB 

beam-widths (calculated based on P–) were measured to be 1.42 (axial), 0.31 (lateral) and 0.31 

(elevational) mm. Figure 3.4(f) shows a representative focal pressure waveform from the bottom 

element at the pressure level used in the 3
rd

 experimental set that varied the relative propagation 
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directions between 500 kHz and 3 MHz components. Note that the waveforms in Figures 3.3(a) 

and 3.4(a) were not as nonlinear as the ones shown in our previous works [14-20], this was likely 

due to 1) this array transducer having a lower f-number (approximately 0.56 for 500 kHz 

components and 0.50 for 3MHz components), and 2) each element having an individual focusing 

lens such that acoustic beams from adjacent elements did not overlap significantly until they 

reached the common geometric focus. 

 

Figure 3.4 Calibration results of the 3MHz component. (a) A representative free-field focal 

acoustic waveform. (b) Peak negative pressure as a function of the DC supply voltage to the high 

voltage pulser. 1D beam profiles (with all 7 elements firing) in the axial (c), lateral (d), and 

elevational (e) directions. (f) A representative free-field focal acoustic waveform of an individual 

element (the bottom element) at the pressure level used in the 3
rd

 experimental set.  

Cylindrical, custom-made, plastic gel holders (4 cm in diameter and 8 cm in height) with 

thin polycarbonate membranes (254 µm thick) glued on their sides, as shown in Figure 3.1(b), 

were used to hold the RBC phantoms. Based on the calibration with a representative plastic gel 



 

51 

 

holder in place, the P– values were attenuated by 8.2% (500 kHz) and 9.1% (3 MHz); however, 

the 1D beam profiles did not change significantly, as shown in Figures 3.3 (c) – (e) and 3.4(c) – 

(e). Note that the attenuations for 500 kHz and 3 MHz did not scale with the frequency, and this 

was likely due to the difference in their incidental angles on the gel holder (3MHz elements had 

almost normal incidence while 500 kHz elements had oblique incidence). In the ex vivo porcine 

liver experiment, another type of cylindrical gel holder [Figure 3.1(c), 3cm in diameter and 6 cm 

in height] with thinner polycarbonate membranes (127 µm thick) was used to hold agarose-

embedded hepatic specimens. Based on the calibration with this type of gel holder in place, the 

P– values were attenuated by 1.0% (500 kHz) and 6.8% (3 MHz). The attenuation for 500 kHz in 

this type of gel holder was significantly less than the former gel holders since this type of holder 

had an opening at the bottom, which was in the propagation paths of some 500 kHz elements.  

The applied pressure levels used in the experiments are listed in Tables 3.1 and 3.2. The 

applied P– was corrected by the attenuation contributed by the plastic gel holder using the 

hydrophone measurement discussed above. Additionally, the applied P– was further corrected 

for the attenuation contributed by agarose hydrogel and porcine hepatic specimen, using reported 

values [11, 13, 21] and assuming linear propagation. 

 

3.2.3 Experiments in RBC Phantoms and Lesion Analysis 

Three different experimental sets were performed in RBC phantoms to investigate lesion 

production using dual-beam histotripsy. The applied P– values are listed in Table 3.1. Each 

intended treatment region was exposed with 100 pulses at a PRF of 1 Hz, and a single-focal-

point exposure was performed.  
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Table 3.1 Peak negative pressures and time delays for capturing bubble cloud images used in the 

RBC phantom experiments of the dual-beam histotripsy study 

Experimental 

Set 
Case 

500 kHZ  3MHz 
Time Delay 

For Capturing 

Bubble Cloud 

Images (µs) 

Focal P– 

in Free- 

Field 

(MPa)* 

Focal P– with 

Attenuation 

Correction 

(MPa) 

Proportion 

(%) 
 

Focal P– 

in Free- 

Field 

(MPa)* 

Focal P– with 

Attenuation 

Correction 

(MPa) 

Proportion 

(%) 

1 
every 

case 
11.7 10.6 38  20.3 17.1 62 9 

2 

1 0.0 0.0 0  33.0 27.8 100 5 

2 11.0 9.9 35  21.7 18.2 65 8 

3 15.8 14.3 51  16.1 13.6 49 9 

4 20.8 18.9 68  10.8 9.1 32 13 

5 29.4 26.6 100  0.0 0.0 0 17 

3 
every 

case 
22.3 20.2 80  6.0 5.1 20 15 

* The P– values in Experimental Set 1, 2 (Case 2-4), and 3 were linearly interpolated using the directly measured P– 

values for various driving voltages. The P– values of Case 1 and 5 in Experimental Set 2 were linearly interpolated 

using the linear summed P– values for various driving voltages. 

 

 

(1) The arrival times of the 500 kHz and 3 MHz pulses were varied from no overlap to 

maximal P– overlap at the focus of the array transducer. More specifically, the time delay for 3 

MHz relative to 500 kHz varied from –1.55 to 1.45 µs, where 0 µs is defined as the time point 

when the two pulses had maximal overlap in P–, and a negative time delay indicates the P– of 

the 3 MHz pulse arriving earlier than the P– of the 500 kHz pulse and vice versa. The applied 

pressures were chosen such that each individual frequency component did not reach the intrinsic 

threshold; rather, it could be exceeded only by the combination of the two.  

(2) The relative amplitudes of the 500 kHz and 3 MHz pulses were varied to study the 

smallest reproducible lesions for each combination. The arrival times of the 500 kHz and 3 MHz 

in this experimental set were chosen to be the time delay when the two produced the maximal P– 

values of the composite waveforms. 

(3) The propagation direction of the 3 MHz relative to the 500 kHz was varied from co-

propagation, orthogonal-propagation, to counter-propagation to investigate effects in lesion 
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production.  In this experimental set, all 500 kHz elements were firing together with one selected 

3 MHz element to implement different propagation directions. The bottom 3MHz element was 

chosen for the co-propagation case, one selected 3 MHz element within the 3
rd

 ring of the array 

transducer was chosen for the orthogonal-propagation (85 degrees), and the 3 MHz element 

attached to top frame was chosen for the counter-propagation case. The arrival times of the 500 

kHz and 3 MHz in this experimental set were chosen to be the time delay when the two had 

maximal P– overlap. 

The experimental setup for the treatment in RBC Phantoms is illustrated in Figure 3.5. 

For the visualization of the cavitational bubble clouds and their resulting damages in RBC 

phantoms, a digital, 1.3-megapixel, CMOS, mono-color camera (PN: FL3-U3-13Y3M-C, Flea
®
 

3, PointGrey, Richmond, BC, Canada) was positioned perpendicularly to the dual-frequency 

array transducer facing one of its optical windows. A Nikon 4X objective was attached to the 

camera with extension tubes to magnify the image plane, giving the captured images a resolution 

of approximately 3.5 µm per pixel. A pulsed white-light LED was placed on the diametrically-

opposed optical window of the dual-frequency array transducer, which provided back-lit 

illumination. This arrangement allowed for the visualization of the axial-lateral plane of the dual-

frequency array transducer. The camera and the LED light source received trigger signals from 

the FPGA board, which maintained the synchronization of image capturing and the delivery of 

histotripsy pulses. For every delivered histotripsy pulse, two images were acquired, one (bubble 

cloud image) at the time when the maximal spatial extent of the bubble cloud was observed (see 

Table 3.1 for exact timing), and the other (lesion image) at 500 ms after the arrival of the pulse, 

where only histotripsy-induced damage in the RBC phantom was observed. The exposure time 

was 2 µs for every captured image. The RBC phantoms were mounted on a 3-axis motorized 
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positioner (Griffin Motion, Holly Springs, NC, USA) and submerged in the dual-frequency array 

transducer with an orientation for the visualization of axial-lateral-plane lesions. 

  

Figure 3.5 An illustration of the overall experimental setup in RBC phantom experiments.  

These optical images were then post-processed with MATLAB (R2011a, MathWorks, 

Natick, MA, USA) using a method similar to those described in previous papers [11, 22, 23]. 

The lesion images were converted to binary images using the threshold calculated based on the 

mean intensity of the lesion. In order to exclude noise in the camera sensor and pre-existing 

isolated small white regions due to RBC layers being not 100% uniform, lesions smaller than 
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237 pixels (corresponding to regions less than 30 µm in radius) were excluded from the damage 

zone. By counting the number of pixels identified as damage zone and converting it to actual size 

with the help of a pre-captured scale image, the area, length, and width of the lesion were 

determined. During this analysis, the lesion was divided into two groups: 1) “main lesion,” the 

center portion of the lesion which was induced by consistent bubble cloud presence, and 2) 

“peripheral damage,” the damage zone outside of main lesion which was induced by incidental 

bubble presence. The bubble cloud images were quantified in a similar way, except the 

thresholds for binary image conversion were calculated based on the mean intensity of the 

bubble cloud. For experimental set 1, where the arrival times for 500 kHz and 3 MHz pulses 

were varied, a cavitation probability was further calculated based on the number of pulses with 

bubble cloud presence within the total delivered 100 pulses. The cavitation probabilities for 

bubble clouds generated in the main lesion and incidental bubbles generated in peripheral region 

were quantified separately.  

 

3.2.4 Linear Transient Simulation with Fast Object-Oriented C++ Ultrasound Simulator 

(FOCUS) and Lesion Size Estimation 

A linear transient simulation was performed using an ultrasound simulation tool, Fast 

Object-Oriented C++ Ultrasound Simulator (FOCUS, Version 437 for MATLAB 2010a and 

Windows 64-bit operating system, developed by Dr. Robert J. McGough et al from Michigan 

State University, MI, USA [24-26]). FOCUS is a cross-platform (for Windows, Linux, and 

MacOS) “free-ware” and it is written in object-oriented C++ with MATLAB user interface. In 

the simulation, “spherical shells” with a diameter of 20 mm and a focal length of 40 mm were 

selected to represent the elements within the dual-frequency array transducer. In order to 
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resemble the actual acoustic waveform better, the excitation pulse was chosen to be two-cycle, 

“Hanning-weighted tone-burst” pulse with the desired frequency, amplitude, and time delay. The 

elements were arranged in three-dimensional (3D) space according to the design of the 

transducer, and 3D pressure field calculation was performed for selected two-dimensional (2D) 

axial-lateral planes. The function “fnm_tsd” (called “transient_pressure” in the newer version) 

was used to calculate the transient pressure field using fast near-field methods and time-space 

decomposition. The sampling frequencies in time and space domain were chosen to be 40 MHz 

(4 × 10
7
 samples / second) and 5 × 10

4
 samples / meter.  

For experimental set #2, where the relative amplitude proportion between the 500 kHz 

and 3 MHz pulses was varied, lesion size estimation was performed. 2D pressure fields in the 

axial-lateral plane were simulated using FOCUS and extrapolated to the applied pressure level. A 

pressure threshold was obtained using the same method described in [23], and then applied to the 

extrapolated 2D pressure field to estimate lesion sizes.  

 

3.2.5 Experiments in Ex Vivo Porcine Hepatic Specimens and Histological Evaluation 

Agarose-embedded porcine hepatic specimens were mounted on the Griffin 3-axis 

motorized positioner, and ultrasound B-mode imaging, instead of high speed photography, was 

used to monitor the histotripsy treatment. The ultrasound B-mode imaging was performed using 

a commercial ATL HDI 5000 ultrasound scanner (Advanced Technology Laboratories, Inc., 

Bothell, WA, USA) with ATL L12-5 linear probe. Each intended treatment region was exposed 

with 500 pulses at a PRF of 1 Hz, and a single-focal-point exposure was performed. Various 

pressure combinations, listed in Table 3.2, were applied to various regions of the specimens. In 

order to better identify smaller lesions after treatment, two large lesions (5 mm in separation) 



 

57 

 

using only the 500 kHz component were generated on the surface of the specimens, along with 

two large lesions, also using only the 500 kHz component, generated 3 mm right beneath the two 

surface lesions. These four lesions were used as landmarks, and a small lesion was then 

generated in between these two large lesions and 3 mm beneath the surface of the tissue 

specimen. 

Table 3.2 Peak negative pressures used in the ex vivo porcine liver experiments 

of the dual-beam histotripsy study 

Case 

500 kHZ  3MHz 

Focal P– 

in Free- 

Field 

(MPa)* 

Focal P– with 

Attenuation 

Correction 

(MPa) 

Proportion 

(%) 
 

Focal P– 

in Free- 

Field 

(MPa)* 

Focal P– with 

Attenuation 

Correction 

(MPa) 

Proportion 

(%) 

1 17.6 17.0 53  19.5 15.3 47 

2 25.5 24.5 72  12.4 10.7 28 

3 32.0 30.8 100  0.0 0.0 0 

* The P– values in Case 1 (both frequencies) and 2 (only 3MHz component) were linearly 

interpolated using the directly measured P– values for various driving voltages. The P– values in 

Case 2 (only 500 kHz component) and 3 (only 500 kHz component) were linearly interpolated 

using the linear summed P– values for various driving voltages. 

 

The lesions were evaluated with both ultrasound B-mode imaging and histological 

sections after treatment. A high-frequency ultrasound probe, RMV 707B (15 – 45 MHz, 

VisualSonics, Toronto, ON, Canada), along with a high-frequency ultrasound scanner, Vevo 770 

(VisualSonics), was used to image the lesions after treatment. The axial and lateral dimensions of 

the lesions were then measured based on the hypoechoic regions that appeared in the recorded B-

mode images. For histological evaluation, the treated porcine specimens were fixed with 10% 

phosphate buffered formalin (Fisher Scientific, Fair Lawn, NJ, USA) and sectioned into 

approximate 3-mm-thick slices along the axial-lateral planes of the lesions using a regular 

kitchen knife and surgical scalpels. These slices were then further processed into 4-µm-thick 

histological sections with 100 µm sectioning step size using a microtome and stained with 

hematoxylin and eosin (H&E). Visual inspection using bright field microscopy was performed to 
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identify the section with maximal spatial extent of the damage among all sections for each 

sample. The maximal extents of the lesions in the lateral and axial directions were quantified 

based on the bright field microscopic images with the help of a pre-calibrated scale.  

 

3.3 Results 

3.3.1 Experiments in RBC Phantoms 

1) Varying Time Delays between 500 kHz and 3 MHz Pulses: A total of 13 time delays 

were investigated, including –1.55, –0.65, –0.35, –0.25, –0.15, –0.05, 0.00, 0.05, 0.15, 0.25, 0.35, 

0.65, 1.45 µs. The sample size for each case was nine, leading to a total of 117 lesions generated 

in RBC phantoms. Figures 3.6 and 3.7 summarize the result for this experimental set. 

Figure 3.6 shows directly measured acoustic waveforms (at a pressure level [combined 

P– = ~14 MPa] lower than that used in the RBC experiments) and representative lesion and 

bubble cloud images for various time delays. In order to increase readability, only 7 time delays 

(every other case) are shown. As can be seen from the figure, cavitational bubbles and lesions 

only occurred when the negative pressure peaks of the 500 kHz and 3 MHz pulses overlapped 

and added constructively. Neither lesions nor cavitational bubbles occurred where the negative 

pressure peaks of the 500 kHz and 3 MHz pulses did not overlap.  

Figure 3.7 shows the quantitative result after lesion analysis, including width [Figure 

3.7(a)], length [Figure 3.7(b)], and area [Figure 3.7(c)] of the main lesion, area of the peripheral 

damage [Figure 3.7(d)], and cavitation probabilities in main lesion [Figure 3.7(e)] and periphery 

[Figure 3.7(f)]. As can be seen, the width, length, area, and cavitation probability of the main 

lesion reached their maxima at 0 µs time delay, i.e., 500 kHz and 3 MHz pulses had maximal P– 

overlap. No significant changes were observed when the time delay changed to –0.05 or 0.05 µs. 
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When the time delay changed to even more negative or positive, the lesion size and cavitation 

probability in the main lesion decreased due to a reduction of combined P–. When the time delay 

was earlier than –0.50 µs or later than 0.20 µs, the cavitation probability in the main lesion 

decreased to less than 10%, and almost no lesions were observed. The lesion area and cavitation 

probability for the periphery showed a similar trend. Although their maxima both appeared at –

0.25 µs time delay, they did not differ significantly from those at 0 µs. 

 

Figure 3.6 Results for experimental set #1. Due to limitation in hydrophone calibration, these 

waveforms (a1 – a7) were measured by the FOPH at a lower pressure level (~ ½  of the pressure 

used in the RBC experiments). All the bubble cloud and lesion images were taken in the axial-

lateral plane of the transducer and the histotripsy pulses propagated from bottom to the top. 
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Figure 3.7 Quantitative results for experimental set #1. (a) Width of the main lesion, (b) length  

of the main lesion, (c) area of the main lesion, (d) area of the peripheral damage, (e) cavitation 

probability in the main lesion, and (f) cavitation probability in the periphery as a function of the 

time delay.  

2) Varying Relative Amplitudes between 500 kHz and 3 MHz Pulses: A total of 5 

different combinations, as listed in Table 3.1, were investigated, and each case had a sample size 

of six. Figure 3.8 shows representative lesion and bubble cloud images for each case. Figure 3.9 

summarizes the quantitative results for the width [Figure 3.9(a)], length [Figure 3.9(b)] and area 

[Figure 3.9(c)] of the main lesion and the area of the peripheral damage [Figure 3.9(d)]. As can 

be seen, the sizes of the lesions and bubble clouds increased as the relative proportion of the 500 

kHz pulse amplitude increased. Size estimations for main lesions using FOCUS simulation tool 

are also plotted in Figures 3.9(a) – (c), and the estimations have a general agreement with 

phantom experiment results.  
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Figure 3.8 Results for experimental set #2. Figures in the first row (a1 - a5) show representative 

lesion images after 100 delivered histotripsy pulses in RBC phantoms. Figures in the second row 

(b1 - b5) show representative bubble cloud images in RBC phantoms. All the bubble cloud and 

lesion images were taken in the axial-lateral plane of the transducer and the histotripsy pulses 

propagated from bottom to the top. 
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Figure 3.9 Quantitative results, along with estimations using FOCUS simulation, for 

experimental set #2. (a) Width of the main lesion, (b) length of the main lesion, (c) area of the 

main lesion, and (d) area of the peripheral damage as a function of the amplitude proportion of 

the applied 500 kHz pulse. 

Figure 3.10 shows the number of incidental bubbles generated at the periphery, which are 

responsible for peripheral damage, as a function of the number of applied histotripsy pulses. As 

can be seen, the number of these bubbles started from its maximal value and rapidly decreased to 

almost no bubble presence after the 10
th

 pulse. Additionally, when the 500 kHz pulse amplitude 

fraction was higher, the number of incidental bubbles at the periphery increased and these 

bubbles disappeared more slowly.  
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Figure 3.10 Number of incidental bubbles generated in the periphery of the focus during 

experimental set #2. Results after 20 pulses are not plotted since they are similar as the result of 

the 20
th

 pulse.  

3) Varying Propagation Direction of the 3 MHz Pulse Relative to the 500 kHz Pulse: 

The propagation direction was varied from co-propagation, then counter-propagation, and to 

orthogonal-propagation, and each had a sample size of eight. Figure 3.11 shows the 

corresponding transducer firing arrangements [Figures 3.11(a1), 3.11(b1), and 3.11(c1)], 2D 

pressure fields using FOCUS simulations [Figures 3.11(a2), 3.11(b2), and 3.11(c2)], bubble 

cloud images [Figures 3.11(a3), 3.11(b3), and 3.11(c3)], and lesion images [Figures 3.11(a4), 

3.11(b4), and 3.11(c4)] for different propagation directions. As can be seen, the lesion length in 

the axial direction for the counter-propagation case was significantly smaller than that for co-

propagation case. Also, the lesion shape seemed tilted in the orthogonal-propagation case in 
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comparison to that in the co-propagation case. These results correspond well to the simulated 2D 

pressure (P–) fields.  

The quantitative analysis of these lesions is summarized in Figure 3.12. The lesion size in 

the axial direction changed significantly from 1.21 mm for the co-propagation case to 0.52 mm 

for the counter-propagation case, while the lesion size in the lateral direction remained in similar 

level (0.70 mm for the co-propagation case and 0.63 mm for the counter-propagation case).  The 

tilt angle changed from 1.0 degree for the co-propagation case to 26.8 degrees for the 

orthogonal-propagation case. This tilt angle was quantified by manually selecting the top and 

bottom points of the lesion, forming a central axis of the lesion, and then calculating the angle 

between this central axis and the axial propagation direction of the 500 kHz pulse component. 
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Figure 3.11 Results for the experimental set #3. Figures in the 1
st
 column (a1, b1, and c1) 

illustrate the corresponding transducer firing arrangements. Figures in the 2
nd

 column (a2, b2, 

and c2) show 2D pressure fields using linear transient simulation with FOCUS. Figures in the 3
rd

 

column and 4
th

 column show representative bubble cloud and lesion images in RBC phantoms, 

respectively. All the bubble cloud and lesion images were taken in the axial-lateral plane of the 

transducer and the 500 kHz pulses propagated from the bottom to the top. 
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Figure 3.12 Quantitative results for the experimental set #3. (a) A comparison between co-

propagation and counter-propagation for the width of the main lesion. (b) A comparison between 

co-propagation and counter-propagation for the length of the main lesion. (c) A comparison 

between co-propagation and orthogonal propagation for the tilt angle of the main lesion. 

3.3.2 Experiments in Ex Vivo Porcine Hepatic Specimens 

A total of 3 different pressure combinations, as listed in Table 3.2, were used to generate 

lesions in ex vivo porcine hepatic specimens, and each case had a sample size of two (N = 2). 

The representative histological sections are displayed in Figures 3.13(a) and (b). The intended 

treatment regions had lost their normal architecture and contained only acellular granular debris, 

and a larger spatial extent of the lesion occurred when a higher proportion of the 500 kHz pulse 

was applied. Figures 3.13(c) and (d) show representative B-mode images of the hepatic 

specimens after the application of 500 histotripsy pulses. Note that the B-mode ultrasound 

images were rotated 90 degrees from their original orientations in order to match the orientations 

of the histological sections. Hypoechoic regions occurred on B-mode images after histotripsy 

treatment, and these regions were larger when a higher proportion of 500 kHz pulse was applied. 

The histological sections and B-mode images for the case with 100% proportion of 500 kHz 

pulse are not displayed in Figure 3.13 since this paper focuses on using both pump (500 kHz) 

and probe (3MHz) pulses. The quantified lesion sizes in the lateral and axial directions are 
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shown in Figures 3.13(e) and (f), respectively. As can be seen, the quantified lesion sizes 

increased as the proportion of the 500 kHz pulse increased and the results quantified from 

histological sections and B-mode images were close to each other.  

 

Figure 3.13 The results for excised porcine hepatic tissue treatment. The representative 

histological section and B-mode image for 500 kHz : 3 MHz = 72:28 are shown in (a) and (c), 

respectively. The representative histological section and B-mode image for 500 kHz : 3 MHz = 

53:47 are shown in (b) and (d), respectively. The dotted lines circle the lesions being generated 

in (a) – (d). The quantified lesion sizes in the lateral and axial directions are shown in (e) and (f), 

respectively.  
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3.4 Discussion 

In this paper, precise lesions were generated by “dual-beam histotripsy” pulses using the 

intrinsic threshold mechanism in both RBC phantoms and ex vivo porcine specimens. The dual-

beam histotripsy pulse is comprised of a low-frequency pump pulse and a high-frequency probe 

pulse wherein a proper time delay between the two is chosen to allow their P– values to add 

constructively at the focus so as to exceed the intrinsic cavitation threshold. As can be seen in 

Figures 3.6 and 3.7, when the pump and probe pulses had maximal P– overlap (i.e. 0 µs time 

delay), consistent bubble clouds were generated with a cavitation probability of 100% and the 

size of the main lesion reached its maximum. No significant changes in the cavitation probability 

and lesion size were observed when the probe pulse (3 MHz) arrived 0.05 µs earlier or later than 

the pump pulse (500 kHz). When the time delay between the negative pressure peaks of the 

pump and probe pulses increased to 0.15 µs or more, the diminution of the combined P– led to 

decreases in the cavitation probability and lesion size (with higher variability), and both the 

cavitation probability and lesion size approached 0 when the negative phases of the pump and 

probe pulses did not have any overlap. Furthermore, these decreases were not symmetric around 

0 µs time delay, which was likely due to the negative pressure phase for the 500 kHz pulse (in 

time domain) not being symmetric, as can be seen in Figure 3.3(a). This asymmetry in the 500 

kHz waveform was probably not a result of nonlinear propagation since it also occurred at really 

low applied pressure level. Misalignment of individual elements was probably not the cause 

since phase corrections in free field for individual elements were performed during the 

calibration process for the phantom and tissue experiments. Imperfection in the stacking process 

during element assembly is a potential explanation since it only occurred in the epoxy-stacked 

500 kHz elements. 
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Additionally, the size of the smallest reproducible lesions decreased when a higher 

proportion of the probe pulse (3 MHz) was applied, as indicated in Figures 3.8 and 3.9. With 

only 32% of the probe pulse, the lesion size decreased significantly from where pulses with 

100% 500 kHz were applied. The lesion width decreased from 0.93 to 0.46 mm, the lesion length 

decreased from 2.09 to 0.66 mm, and the lesion area decreased from 1.16 to 0.17 mm
2
. This 

demonstrates that, with the addition of a minor portion of the probe pulse, significantly smaller 

lesions can be achieved, in comparison to 100% pump pulse. This has a general agreement with a 

linear simulation using FOCUS as seen in Figure 3.9. 

Moreover, the size and shape of the produced lesions can be further manipulated using 

various propagation directions between pump and probe pulses. (1) The axial dimension of the 

lesion can be further reduced when a probe pulse counter-propagates with a pump pulse, as 

shown in Figures 3.11 and 3.12. This “foreshortening” of the lesion results from the very short 

interaction time window when two short acoustic pulses (only one large negative pressure phase 

in the 2-cycle pulses) counter-propagate with each other (note that CW waves would not produce 

the same effect). (2) When a probe pulse orthogonally-propagates with a pump pulse, the lesion 

can be “tilted” from the propagation axis of the pump pulse. As shown in Figures 3.11 (c1) – (c4), 

when the pump pulse propagates from the bottom to the top and the probe pulse propagates from 

the right to the left, they firstly interact in the lower right corner of the focus. As they propagate 

through the focus, the two pulses produce a supra-threshold region moving from the lower right 

to the upper left, making the lesion appear tilted from the propagation axis of the pump pulse. 

Though using propagation directions other than co-propagation might not work in many 

applications due to the lack of accessible acoustic windows, it might still be applicable in some 

situations. For example, a transrectal probe pulse counter-propagating with transabdominal pump 
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pulse could be used in prostatic tissue ablation. Counter- or orthogonal-propagation of catheter-

based probe pulses with transcostal/transabdominal pump pulses might also have potential in 

cardiac or hepatic tissue treatment allowing pulses from small-aperture high-frequency 

transducers to reach threshold levels not possible when used alone. 

Peripheral damage induced by the incidental bubbles generated at the periphery of the 

focus was observed in both single-frequency histotripsy and dual-beam histotripsy (pump + 

probe). These incidental bubbles almost disappeared by the time the 20
th

 pulse was applied. A 

higher proportion of the pump pulse led to a larger area of peripheral damage, a larger number of 

incidental bubbles, and a slower rate in the decrease of the number of incidental bubbles. These 

incidental bubbles were likely seeded from the pre-existing dissolved sub-micron gas bubbles 

(samples could not be 100% degassed) or weak pockets. The application of histotripsy pulses 

firstly excited these weak nuclei at the periphery (where P– was below the intrinsic threshold) 

and then subsequently destabilized them, causing the incidental bubbles to disappear quickly. 

After that, the bubble clouds were preferentially generated at the location where the main lesion 

was forming. This “self-quenching” phenomenon limits the damage in the periphery, containing 

the lesion primarily to the volume where P– exceeds the intrinsic threshold.  

Thus, “dual-beam histotripsy” can be quite beneficial in situations where precise 

treatment is required through a highly aberrative and attenuative medium. In the situation 

covered in this paper, the pump pulse is highly focused and can only cover a small region (–6dB 

beamwidths: 4.9 × 1.7 × 1.8 mm) or “target” for the probe pulse. In practice, it would be more 

ideal if the pump pulse could cover a larger ROI and the P– level could be raised uniformly 

across the volume. Therefore, we plan to investigate a lower-frequency pump with higher f-

number (less focused) in the future. We also plan to study the feasibility of using commercial 
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imaging transducers for probe pulse generation. This could provide not only the steering 

capability for the probe pulse during treatment, but also the image guidance and feedback if it is 

used in conjunction with an imaging system. An imaging probe dual-beam histotripsy system 

could use available small windows, e.g., the transcostal region between ribs, to generate precise 

high frequency steerable pulses “enabled” by a much larger low-frequency pump transducer 

(e.g. , covering much of the rib cage). The use of a high frequency imaging transducer to 

generate precise lesions has many other interesting applications.  

 

3.5 Conclusion 

In this chapter, the capability of dual-beam histotripsy pulses for precise lesion formation 

is demonstrated both in RBC phantoms and ex vivo porcine tissues. Dual-beam histotripsy is 

accomplished by the application of a low frequency pump pulse that enables a high-frequency 

probe pulse to exceed the intrinsic cavitation threshold. With an adjustment in arrival times that 

allows constructive P− addition at the focus, sub-intrinsic-threshold pump and probe pulses can 

induce dense bubble cloud generation when P− summation exceeds the intrinsic cavitation 

threshold. The size of the smallest reproducible lesions decreases when the proportion of the 

high frequency probe pulse increases. Counter-propagation of the pump and probe pulse could 

foreshorten the lesion size in the axial direction. Dual-beam histotripsy can be useful in clinical 

applications in which precise tissue ablation is required with a longer propagation depth or 

through a highly attenuative or aberrative medium, such as transcranial therapy. This is 

particularly true if a small low-attenuation acoustic window is available for high frequency probe 

pulses. 
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Chapter 4 

Dual-Beam Histotripsy Using an Imaging Transducer 

A majority component of this chapter is excerpted from a manuscript that has been submitted to 

IEEE Transactions on Ultrasonics, Ferroelectric, and Frequency Control. [1] 

 

4.1 Introduction 

 The study in the previous chapter shows that a sub-threshold high-frequency probe pulse 

(< 2 cycles) can be enabled by a sub-threshold low-frequency pump pulse (< 2 cycles) to exceed 

the intrinsic threshold.  This pump-probe method of controlling a supra-threshold volume is 

called “dual-beam histotripsy.” In this chapter, we investigated the feasibility of using a 

diagnostic imaging transducer to provide the high-frequency probe pulse for dual-beam 

histotripsy. Using a diagnostic imaging transducer could provide not only the steering ability of 

the high-frequency pulse, thus making the resulting bubble clouds and lesions steerable, but also 

the image guidance and feedback during treatment if it is used in conjunction with an imaging 

system.   

 This dual-beam histotripsy using a diagnostic imaging transducer can have a number of 

applications. For example, a transcostal application (through ribs) of a low-frequency pump 

pulse can enable an imaging transducer pulse, which is applied between ribs, to perform 

noninvasive transcostal tissue ablation. A transperineal application of a low-frequency pump 

pulse can enable a transrectal imaging transducer pulse to perform prostatic tissue ablation. This 
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approach can also be useful in transcranial therapies wherein a low-frequency pump pulse is 

applied transcranially in conjunction with an imaging transducer pulse that is applied through a 

small surgically-removed skull opening.   

 Conventionally, the transmission pulse of a diagnostic ultrasound transducer is kept a 

significant low-intensity/low-pressure level to avoid inducing any bioeffects. Thermal index (TI) 

and mechanical index (MI) are the two primary metrics that the Food and Drug Administration 

(FDA) uses to regulate the acoustic output of a diagnostic ultrasound system. However, for 

therapeutic ultrasound system, these restrictions no longer apply, and some studies have 

investigated using diagnostic ultrasound transducer to perform therapy procedures. Specifically, 

Bailey et al utilized acoustic radiation forces generated by a diagnostic transducer and a 

Verasonics system to displace kidney stones in order to expel small stones or relocate an 

obstructing stone to a nonobstructing location [2-4].  

 In this chapter, a 20-element 345 kHz array transducer was used to provide the low-

frequency pump pulses, while an ATL L7-4 imaging transducer (ATL/Philips Healthcare, 

Andover, MA, USA) pulsed by a Verasonics ultrasound system was used to generate the high-

frequency probe pulses. The 345 kHz array transducer was driven by a custom high voltage 

pulser, controlled by a field-programmable gate array (FPGA) development board which 

maintained the synchronization of the delivery between pump and probe pulses. The feasibility 

of generating bubble clouds and lesions using this dual-beam histotripsy pulse approach with an 

imaging transducer was tested using red-blood-cell (RBC) tissue mimicking phantoms. The 

capability of steering bubble clouds and lesions by steering the imaging transducer was also 

investigated. Optical images were acquired by a high speed camera to visualize the bubble 
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clouds and lesions generated in RBC phantoms, and the acquired optical images were post-

processed using MATLAB (MathWorks, Natick, MA, USA) for lesion analysis. 

  

4.2 Methods 

4.2.1 Sample Preparation 

Experiments were performed on red-blood-cell (RBC) tissue-mimicking phantoms to 

investigate the treatment effect of the dual-beam histotripsy using imaging transducer. The 

procedures described in this study were approved by the University of Michigan’s Committee on 

Use and Care of Animals.  

The RBC tissue-mimicking phantoms can be used for the visualization and quantification 

of cavitation-induced damage [5]. In this study, fresh canine blood was obtained from adult 

research canine subjects in an unrelated study. An anticoagulant solution of citrate-phosphate-

dextrose (CPD) (C7165, Sigma-Aldrich, St. Louis, MO, USA) was added to the blood with a 

CPD-to-blood ratio of 1:9 (v:v), and the blood was kept at 4°C and used within 3 weeks. A low-

melting-point agarose powder (AG-SP, LabScientific, Livingston, NJ, USA) was used along 

with the canine blood to prepare RBC phantoms following the protocol described in [5].  

 

4.2.2 Histotripsy Pulse Generation and Calibration 

Low-frequency pump pulses were generated by a custom, 20-element 345 kHz array 

transducer [Fig. 4.1(a)]. Each element consisted of two 690 kHz, 50-mm-diameter piezoceramic 

discs (SM111, Steiner and Martins, Miami, FL, USA) stacked together with epoxy, and 

individually mounted to a stereo-lithography-printed acoustic lens with a geometric focus of 150 

mm (material: Accura®  60, 3D Systems, Rock Hill, SC, USA). The elements were confocally 
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aligned and arranged into two rings: 1) 1
st
 ring – eight elements with a 38-degree tilt angle, and 2) 

2
nd

 ring – twelve elements with a 62-degree tilt angle. The corresponding f-number of the 345 

kHz array transducer was 0.55. To generate short therapy pulses, a custom high voltage pulser 

developed in-house was used to drive the transducer. The pulser was connected to a field-

programmable gated array (FPGA) development board (Altera DE1, Terasic Technology, Dover, 

DE, USA) specifically programmed for dual-beam histotripsy therapy pulsing.  

A fiber-optic probe hydrophone (FOPH) [6] was used to measure the acoustic output 

pressure of the 345 kHz array transducer. The array transducer was positioned in a glass water 

tank filled with degassed water. Figures 4.1(b) – (f) shows the calibration results of the 345 kHz 

array transducer, including a representative focal pressure waveform at P– = 20MPa [Figure 

4.1(b)], total focal P– as a function of peak-to-peak driving voltage [Figure 4.1(c)], and one-

dimensional (1D) beam profiles in the lateral [Figure 4.1(d)], elevational [Figure 4.1(e)], and 

axial [Figure 4.1(f)] directions. The -6dB-beamwidths (calculated based on P–) were measured to 

be 2.9 (lateral), 3.1 (elevational) and 10.0 mm (axial). Pressure levels after inducing cavitation 

on the FOPH (P– > 20 MPa) were estimated by the summation of the output focal P– values 

from individual elements. In a previous study [7], this estimate had a good agreement with the P– 

measured directly in a higher cavitation threshold medium, 1,3 butanediol.  
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Figure 4.1 The 20-element 345 kHz array transducer and its calibration results. (a) A picture of 

the 345 kHz array transducer with the ATL L7-4 imaging transducer inserted into its center hole. 

(b) A representative focal acoustic waveform in the free-field. (c) Peak negative pressure as a 

function of peak-to-peak driving voltage. 1D beam profiles in the lateral (c), elevational (d), and 

axial (e) directions.   

High-frequency probe pulses were generated by a commercial linear imaging transducer, 

ATL L7-4 (Advanced Technology Laboratories, Inc., Bothell, WA, USA, acquired by Philips 

Healthcare, Andover, MA, USA in 1998). This ATL L7-4 imaging transducer has 128 elements, 

a nominal bandwidth of 4.0 – 7.0 MHz, and a field of view of 38mm. The imaging transducer 

was mounted in the center hole of the 345 kHz array transducer with a custom stereo-

lithography-printed acrylonitrile-butadiene-styrene (ABS) plastic adapter wherein the surface of 

the imaging transducer was 31 mm away from the focus of the 345 kHz array transducer. A 

Verasonics V-1 Data Acquisition System (Versonics, Redmond, WA, USA) was used to pulse 

the imaging transducer at 5 MHz and the imaging transducer was set to focus at a depth of 31 
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mm using conventional B-mode beamforming with all 128 elements transmitting (effective f-

number in lateral direction = 0.82). Figure 4.2 shows the FOPH calibration results of the L7-4 

imaging transducer, including a representative focal pressure waveform [Figure 4.2(a)], focal P– 

as a function of driving voltage setup on Verasonics [Figure 4.2(b)], and 1D beam profiles in the 

lateral [Figure 4.2(c)], elevational [Figure 4.2(d)], and axial [Figure 4.2(e)] directions. These 

beam profiles [Figures 4.2(c) – (e)] were measured at the highest driving voltage of Verasonics 

(50 V), and the measured –6dB-beamwidths were 0.4 (lateral), 2.2 (elevational), and 3.5 mm 

(axial). Figure 4.2(f) shows the FOPH-measured P– values at the steered locations when the 

imaging transducer was steered laterally (from -1.2 mm to 1.2 mm at 31 mm depth) and it 

demonstrates that there isn’t significant decrease in P– in this steering range. 

 

Figure 4.2 Calibration results of the ATL L7-4 imaging transducer pulsed by the Verasonics 

system. (a) A representative acoustic waveform in the free-field when the imaging transducer is 

focused at a depth of 31 mm and driven at 50 V by the Verasonics system. (b) Peak negative 

pressure as a function of the driving voltage in Verasonics system. 1D beam profiles in the 

lateral (c), elevational (d), and axial (e) directions. (f) Peak negative pressure at the steered 

location when the imaging transducer is steered laterally (N=2). 
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The Verasonics system received trigger signals from the FPGA board to maintain 

synchronization of low-frequency pump and high-frequency probe pulses. Figure 4.3 shows a 

representative waveform of the low-frequency pump pulse [Figure 4.3(a)], the high-frequency 

probe pulse [Figure 4.3(b)], and the combined pulse when both pulses fired concurrently [Figure 

4.3(c)]. The pressure level in Figure 4.3 is lower than the pressure level applied in RBC phantom 

experiments, since the waveform at that pressure level couldn’t be directly measured with the 

FOPH (inducing cavitation on the fiber tip). 

 

Figure 4.3 Representative FOPH-measured acoustic waveforms of (a) a 345 kHz pump pulse, (b) 

a 5 MHz probe pulse, and (c) a combined pulse when both the 345 kHz pump pulse and the 5 

MHz probe pulse are firing (a direct measurement when both are transmitting).  

 

Figure 4.4 Pictures of a representative RBC phantom in a gel holder. (a) An angled view of the 

phantom. (b) A top-down view from the side facing the imaging transducer during experiments. 
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The RBC phantoms were prepared in custom rectangular gel holders (40 × 105 × 62.5 

mm, shown in Figure 4.4) consisting of an acrylonitrile butadiene styrene (ABS) plastic 

supporting frame and thin polycarbonate membranes (254 µm thick) glued on four sides. A 3M 

Scotch®  tape was attached to another side for holding liquid agarose gel during RBC phantom 

preparation process, and the tape was later removed for experiments. Based on the calibration 

with a representative gel holder in place, the P– for the 345 kHz array transducer was attenuated 

by 8.8%; however, the 1D beam profiles did not change significantly, as shown in Figures 4.1(d) 

– (f). The transmitted acoustic waves of the imaging transducer were not expected to be 

attenuated by the gel holders since 1) the side of the gel holders facing the imaging transducer 

had an ABS plastic frame much wider than the imaging transducer, and 2) the 3M Scotch®  tape 

that attached to that side was removed before experiments. 

 

4.2.3 Experiments in RBC Phantoms and Lesion Analysis 

The experimental setup for the treatment in RBC phantoms is illustrated in Figure 4.5. 

The 345 kHz array transducer was submerged in a glass tank filled with degassed water, while 

the ATL L7-4 imaging transducer was inserted into its center hole. The RBC phantoms were 

mounted on a 3-axis motorized positioner (Velmex, Bloomfield, NY, USA) and submerged in 

the water tank with an orientation for the visualization of axial-lateral-plane lesions.  
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Figure 4.5 An illustration of the overall experimental setup in RBC phantom experiments.  

Each intended treatment region in the RBC phantoms was exposed to 200 histotripsy 

pulses at a pulse repetition frequency of 1 Hz. Single-focal-point exposures were performed in 

each case and the applied pressure level is listed in Table 4.1. Two experimental sets were 

performed in this study to achieve the following two goals.  

1) To investigate the feasibility of this dual-beam histotripsy using imaging transducer 

by comparing the lesions generated using three types of pulses: i) a sub-threshold low-frequency 

pump pulse, ii) a sub-threshold pump pulse enabling a sub-threshold imaging transducer pulse to 

exceed the intrinsic threshold, and iii) a supra-threshold low-frequency pump pulse. 

2) To study lesion steering by laterally steering the pump-pulse-enabled imaging pulse 

using the Verasonics System. 
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A digital, 1-megapixel, CMOS, mono-color camera (Phantom V210, Vision Research, 

Inc., Wayne, NJ, USA) was used to visualize the cavitational bubble clouds and their resulting 

damages in RBC phantoms. With an additional magnifying lens (Tominon, 1:4.5, f = 135 mm) 

and optical bellow, the resolution of these captured images was approximately 13 µm per pixel. 

A continuous wave (CW) white light source was used to provide back-lit illumination for high 

speed photography. The camera received trigger signals from the FPGA board, which maintained 

the synchronization of image capturing and the delivery of histotripsy pulses. For every delivered 

histotripsy pulse, two images were acquired, one (bubble cloud image) at the 40 µs when the 

maximal spatial extent of the bubble cloud was observed, and the other (lesion image) at 500 ms 

after the arrival of the pulse, where only histotripsy-induced damage in the RBC phantom was 

observed. The exposure time was 2 µs for every captured image.  

These optical images were then post-processed with MATLAB (R2011a, MathWorks, 

Natick, MA, USA) using a method similar to those described in previous papers [5, 8-10]. The 

bubble cloud and lesion images were separately converted to binary images using the threshold 

calculated based on the mean intensity of the bubble cloud and lesion, respectively. By counting 

the number of the pixels in the binary image and converting it to actual size with the help of a 

pre-captured scale image, the area, length, and width of the lesion were determined.  In order to 

exclude noise in the camera sensor and pre-existing isolated small regions due to RBC layers 

being not 100% uniform, regions less than 30 µm in radius were excluded. During this analysis, 

the lesion was divided into two groups: 1) “main lesion,” the center portion of the lesion which 

was induced by consistent bubble cloud presence, and 2) “peripheral damage,” the damage zone 

outside of main lesion which was induced by incidental bubble presence. For experimental set 2, 

wherein the imaging probe was steered laterally, a cavitation probability was further calculated 
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based on the number of pulses with bubble cloud presence within the total delivered 200 pulses. 

The cavitation probabilities for bubble clouds generated in the main lesion and incidental 

bubbles generated in the peripheral region were quantified separately.  

Table 4.1 Peak negative pressures used in the RBC phantom experiments of the dual-beam 

histotripsy study using an imaging transducer 

Experimental 

Set 
Case 

345 kHZ  5MHz 

Focal P– 

in Free- 

Field 

(MPa)* 

Focal P– with 

Attenuation 

Correction 

(MPa)** 

Proportion 

(%) 
 

Focal P– 

in Free- 

Field 

(MPa) 

Focal P– with 

Attenuation 

Correction 

(MPa)*** 

Proportion 

(%) 

1 

1 24.7 22.3 100  0 0 0 

2 24.7 22.3 76  8.0 7.0 24 

3 30.4 27.5 100  0 0 0 

2 
Every 

case 
24.7 22.3 76  8.0 7.0 24 

* The P– values were linearly interpolated using the linear summed P– values shown in Figure 4.1(c). 

** The P– values for 345 kHz pulses were linearly corrected by the attenuation contributed by the plastic gel holder 

(using FOPH measurement) and agarose hydrogel (using previously reported attenuation coefficients [5, 7]). 

*** The P– values for 5 MHz pulses were linearly corrected by the attenuation contributed by agarose hydrogel 

(using previously reported attenuation coefficients [5, 7]). 

 

4.3 Results 

4.3.1 Feasibility of Dual-Beam Histotripsy using An Imaging Transducer 

A total of 21 lesions were generated in RBC phantoms with three types of histotripsy 

pulses listed in Experimental Set 1 of Table 4.1 (seven lesions for each case). These three types 

included 1) a sub-threshold 345 kHz pump pulse, 2) a sub-threshold 5 MHz probe pulse enabled 

by a sub-threshold 345 kHz pump pulse to exceed the intrinsic threshold, and 3) a supra-

threshold 345 kHz pump pulse. 

Figure 4.6 shows representative bubble cloud images at various stages (pulse # = 1, 31, 

100, and 200) of the treatment, while Figure 4.7 shows representative lesion images at these 

stages of the treatment. As seen in the figures, all three cases had sparsely-distributed single 

cavitational bubbles generated at the first pulse (we called these “incidental bubbles” in the 
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previous paper [10]). After the 30
th

 pulse, Case 1 pulses no longer produced incidental bubbles 

(see discussion in [10]), while Cases 2 and 3 pulses produced consistent dense bubble clouds. 

Moreover, the sizes of the bubble clouds in Case 2 were significantly smaller than those in Case 

3, and the locations where the bubble clouds generated were more confined in Case 2. At the end 

of the treatment, Cases 2 and 3 had a confined central lesion (main lesion) induced by consistent 

bubble cloud generation along with some scattered peripheral damage induced by incidental 

bubbles generated at the beginning of the treatment. Case 1 only had scattered damage from 

incidental bubbles without a confined central lesion. 

 

Figure 4.6 Representative bubble cloud images in the first set of the RBC phantom experiments. 

Dual-beam histotripsy pulses propagated from the left to the right of these images. 
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Figure 4.7 Representative lesion images in the first set of the RBC phantom experiments. Dual-

beam histotripsy pulses propagated from the left to the right of these images. 

Figure 4.8 summarizes the quantitative results from lesion analysis. As can be seen, when 

an imaging transducer pulse was applied together with a low-frequency pump pulse (Case 2), the 

size of the main lesion was significantly smaller than that for low-frequency pump pulse alone 

(Case 3). The size of the main lesion in Case 1 was almost 0. The areas of the peripheral damage 

for all three cases were in similar level, with Case 2 having the lowest average value. 
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.

 

Figure 4.8 Quantitative results for the first set of the RBC phantom experiments. (a) Lesion 

width of the main lesion, (b) lesion length of the main lesion, (c) area of the main lesion, and (d) 

area of the peripheral damage. 

4.3.2 Lesion Steering using Imaging Transducer 

A total of 54 lesions were generated in RBC phantoms at nine imaging transducer 

steering distances (-1.2, -0.9, -0.6, -0.3, 0.0, 0.3, 0.6, 0.9, and 1.2 mm, six lesions for each case). 

Table 4.1 (Experimental Set 2) lists the applied pressures (P–) for the 345 kHz pump pulse and 5 

MHz probe pulse. The applied focal P– (at 0.0 mm) of the 345 kHz pump pulse was kept the 

same for all cases and no steering was applied to the pump pulse. The driving voltage to the 
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imaging transducer was also kept the same and the measurement in Fig. 4.2(f) showed that there 

wasn’t significant change in P– when the imaging transducer was steered from -1.2 to 1.2 mm. 

Figure 4.9 shows representative bubble cloud and lesion images for these nine steering 

distances (to increase readability, only every other case is shown). As can be seen in the figure, 

when the imaging transducer was steered laterally, bubble clouds and lesions were also steered 

correspondingly. However, when the imaging transducer was steered farther than 0.6 mm, 

bubble clouds and lesions were no longer consistently generated, which could be an indication 

that the combined P– had decreased to below the intrinsic threshold. Since the P– for the imaging 

transducer remained at a similar level across different steering distances [shown in Fig. 4.2(f)], 

this decrease in combined P– was likely due to the P– for the 345 kHz pump pulse being lower at 

those locations (compared to 0.0 mm). 

The quantitative results after lesion analysis (Figure 4.10) show that the size of the main 

lesion is at its maximum without any steering. It gradually decreases when the imaging 

transducer is steered laterally, and it approaches 0 when the imaging transducer is steered to ±1.2 

mm. On the other hand, the area of the peripheral damage stays at a similar level across all 

steering distances, with 0 mm having the lowest average value. 
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Figure 4.9 Representative bubble cloud (upper row) and lesion (lower row) images in the second 

set of the RBC phantom experiments wherein the imaging transducer was steered laterally. Only 

every other case (-1.2, -0.6, 0, +0.6, and +1.2 mm) is shown in order to increase readability. 

Dual-beam histotripsy pulses propagated from the left to the right of these images. 

 

Figure 4.10 Quantitative results for the second set of the RBC phantom experiments wherein the 

imaging transducer was steered laterally. (a) Lesion width of the main lesion, (b) lesion length of 

the main lesion, (c) area of the main lesion, and (d) area of the peripheral damage.  
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Figure 4.11 shows the cavitation probability in the main lesion and periphery, quantified 

based on the number of pulses with bubble presence over the course of 200 applied pulses. As 

shown, the cavitation probability in the main lesion starts at almost 100% without any steering, it 

gradually decreases when the imaging transducer is steered laterally, and it finally approaches 

0% when the imaging transducer is steered to ±1.2 mm. The cavitation probability in the 

periphery stays at a similar level across all steering distances. 

 

Figure 4.11 Cavitation probability in the (a) main lesion and (b) periphery as a function of the 

lateral steering distance of the imaging transducer.  

4.4 Discussion 

This chapter demonstrates that a sub-threshold high-frequency probe pulse provided by 

an imaging transducer can create lesion-producing bubble clouds when this probe pulse is 

“enabled” by a sub-threshold low-frequency pump pulse to exceed the intrinsic threshold (dual-

beam histotripsy using an “imaging transducer”). The smallest reproducible lesion in this study 

(~ 0.7 × 1.7 mm) is somewhat larger than the smallest ones shown in our previous dual-beam 

histotripsy study [10] (~ 0.2 × 0.4 mm) where the probe pulse was 3 MHz. In the previous study, 

the probe pulse contributed ~ 60% of the combined P– whereas in this study the probe pulse only 
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contributes about 25 % of the combined P–. Thus, a higher proportion of the high-frequency 

probe pulse could lead to smaller lesions, which was also demonstrated in [10]. Additionally, the 

focal sizes of the pump and probe transducers in this study are much wider than the ones in [10], 

which could also increase the size of the smallest reproducible lesions. The –6 dB beamwidths of 

the transducers used in this study are 2.9 × 3.1 × 10.0 mm (345 kHz pump transducer) and 0.4 × 

2.2 × 3.5 mm (5 MHz imaging transducer), while those in the previous study are 1.7 × 1.8 × 4.9 

mm (500 kHz pump transducer) and 0.3 × 0.3 × 1.4 mm (3 MHz probe transducer).  

Therefore, the current setup can be optimized in two ways in order to create a smaller and 

more precise lesion: 1) increase the contribution of high-frequency probe pulse and 2) use 

another high-frequency probe pulse with a narrower beamwidth. More specifically, using an 

imaging system with a higher power drive option can increase driving voltage to the imaging 

transducer, thus raising its focal pressure output. To provide a probe pulse with narrower 

beamwidth, we could select an imaging transducer with either higher frequency or larger profile 

(leading to a lower f-number). However, some trade-offs need to be considered since choosing a 

higher frequency imaging transducer would limit the penetration depth. 

The results of the beam steering experiments showed that the bubble clouds and produced 

lesions could be steered by only steering the imaging transducer as long as the combined P– 

reached the intrinsic threshold (±0.6 mm steering capability in this current design). Since there 

were no significant changes in the output pressure of the imaging transducer when it was steered 

±1.2 mm laterally [shown in Fig. 4.2(f)], the limitation in this steering range was solely 

contributed by the limited lateral beamwidth of the low-frequency pump transducer (i.e., its P– 

dropped considerably at 1.2 mm away from the focus). This limitation can be improved by 

employing a pump transducer with a larger focal zone, which could be accomplished by a higher 
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f-number design with lower frequency elements. On the other hand, if the pump transducer has 

sufficient steering capability, we can also steer the low-frequency pump pulse along with the 

imaging transducer probe pulse. 

As mentioned in the introduction, this dual-beam histotripsy using an imaging transducer 

can be useful in several situations, such as a transcostal application of pump pulses together with 

an intercostal application of imaging transducer pulses for transcostal tissue ablation, a 

transperineal application of pump pulses together with a transrectal application of imaging 

transducer pulses for prostatic tissue ablation, and a transcranial application of pump pulses 

together with an application of imaging transducer pulses through a small surgical opening for 

transcranial tissue ablation. However, when applying this technique to in vivo situations, two 

issues have to be considered: 1) a long propagation depth would still cause significant 

attenuation for the imaging transducer pulse even though it travels through a relatively low 

attenuation acoustic window and 2) the spatial and temporal alignment between the pump and 

probe pulses would need to be performed.  

The attenuation probably would not significantly affect the transrectal application of the 

imaging transducer pulses since the anatomical distance between prostate and a transrectal 

imaging transducer in humans can be minimal. On the other hand, the propagation depths in 

transcranial and transcostal applications can be substantial enough to cause significant 

attenuation. For example, in transcostal liver ablation, the propagation depth averaged 4-6 cm for 

porcine subjects in one of our previous studies [11], and this could lead to an attenuation of about 

76% for a 5MHz imaging transducer pulse (assuming linear attenuation using –0.5 dB/cm/MHz 

attenuation coefficient). The attenuation could be compensated by increasing the pressure output 

of the imaging transducer pulses by using an imaging system with a higher power drive option as 
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mentioned earlier in the discussion. Additionally, we can exchange precision in lesion formation 

for less attenuation by using a slightly lower-frequency imaging transducer. Another possible 

approach would be to use an endoscopic imaging probe for minimally invasive procedures. 

For the alignment between pump and probe pulses, we can firstly perform the alignment 

in the free-field (water), and then apply corrections for in vivo situations. Using a large-focal-

zone pump transducer would provide a larger target for imaging transducer alignment. Temporal 

corrections could be performed by surveying the thickness of the intervening tissue for the pump 

and imaging transducers separately and then compute the proper time delay between them. 

Additionally, the results in this study and the previous dual-beam histotripsy study [10] suggest 

that unpredictable focal damage due to temporal or spatial misalignment between pump and 

probe pules would be minimal since the intrinsic threshold would be obtained only through 

alignment. 

 

4.5 Conclusion 

An imaging transducer can create dense, lesion-producing bubble clouds when it is 

enhanced by a sub-threshold low-frequency pump pulse to exceed the intrinsic threshold (dual-

beam histotripsy using an “imaging transducer”). Moreover, these lesion-producing bubble 

clouds could be steered by only steering the imaging transducer pulse, which could be realized 

using the beamformer of the ultrasound imaging system used to guide the therapy. This approach 

can be very useful in clinical applications where precise lesion formation is required through a 

highly attenuative and aberrative medium, especially when a small low-attenuation acoustic 

window is available for the imaging transducer. 
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Chapter 5 

 Frequency Compounding: Synthesis of Monopolar Pulses  

A majority component of this chapter is excerpted from a manuscript that has been accepted by 

IEEE Transactions on Ultrasonics, Ferroelectric, and Frequency Control. [1] 

 

5.1 Introduction 

 In diagnostic ultrasound, broadband transducers capable of short acoustic pulse emission 

and reception are favorable since they can improve the axial resolution of the image and provide 

sufficient bandwidth for harmonic imaging and multi-frequency excitation [2]. The introduction 

of broadband transducers was made possible by engineering advances in ultrasound technology, 

including new piezoelectric materials with lower acoustic impedances and greater 

electromechanical coupling coefficients, as well as the construction of absorbing backing layers 

and optimized impedance matching layers [2, 3].  

 Short acoustic pulses have also demonstrated their advantages in histotripsy, a 

noninvasive, cavitation-based therapy which uses very short, high-pressure ultrasound pulses to 

generate a dense, energetic, lesion-producing bubble cloud [4-7]. Maxwell et al [8] showed that, 

when ultrasound pulses less than 2 cycles in length were applied, wherein shock scattering [9] 

was minimized, the generation of a dense bubble cloud only depended on some part of the 

negative pressure phase of the applied ultrasound pulses exceeding an “intrinsic threshold” of the 

medium (~26 – 30 MPa in most soft tissues). In chapter 3, we show that, using this intrinsic 
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threshold mechanism, the spatial extent of the produced lesions is well-defined and more 

predictable, and sub-wavelength reproducible lesions as small as half of the –6 dB beamwidth of 

the transducer could be generated (“microtripsy”). 

 In this chapter, we propose a novel technique to synthesize extremely short, nearly 

“monopolar” (half-cycle) pulses using a transducer made from an array of broadband elements 

each operating at a distinct resonant frequency. The resultant acoustic pulse is synthesized by 

“frequency compounding,” which combines the outputs of all the elements constructively in the 

target volume. In this transducer, each individual element is capable of generating short acoustic 

pulses (~1.5 cycles), at its own frequency, using a custom high voltage pulser. By adjusting time 

delays of individual frequency components to allow their principal peak negative pressures (P–) 

to align temporally, high peak negative pulses are generated by constructive addition, or 

compounding. Destructive interference occurs outside the peak-negative-overlapped temporal 

window, resulting in a good approximation of a monopolar (half-cycle) pulse with a “sharp” 

high-amplitude negative phase and low-amplitude “smeared out” positive phases preceding and 

following the negative phase (a “negative-polarity” pulse). A similar monopolar pulse with a 

sharp dominant positive phase (a “positive-polarity” pulse) can be generated in a similar way by 

constructive compounding of all principal peak positive pressures (P+) from all the elements. 

 The term, “frequency compounding,” has been used for a technique in diagnostic 

ultrasound wherein speckle noise is reduced by averaging multiple images created from signals 

filtered at different center frequencies and bandwidths [10-15].  Acoustical speckle, which 

appears as a random mottled granular pattern, arises from the coherent interference of multiple 

echoes from small scatterers within a resolution volume of the imaging system [16, 17]. This 

speckle noise reduces the perceived resolution and degrades minimum detectable contrast level 
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[12]; moreover, it is time-independent so that the speckle noise cannot be reduced by temporal 

averaging [16]. Two major approaches, spatial compounding and frequency compounding, have 

been investigated to “smear out” the speckle effect, allowing the speckle noise to be averaged 

and minimized. Spatial compounding translates an imaging transducer and creates images from 

several angular views [18, 19], while frequency compounding uses images created at different 

center frequencies and bandwidths as discussed earlier. Although the frequency compounding 

technique proposed in this chapter shares the same name as the one for speckle noise reduction, 

their implementations are fundamentally different. Instead of averaging images created at various 

frequency bands, this proposed technique is implemented at the level of pulse generation wherein 

short acoustic pulses with various frequencies are concurrently launched and temporally aligned 

to approximate monopolar pulses.  

 Additionally, this proposed frequency compounding technique is different from some 

previous studies [20, 21] wherein ultrasound waves with 2
nd

- harmonic superimposition onto the 

fundamental frequency is applied to enhance cavitation effects. The ultrasound waves used in 

these previous studies were either continuous waves or long pulses, and only two frequencies 

were used in the compounding process. In contrast, the technique proposed in this paper utilizes 

short acoustic pulses with a wide variety of frequencies to approximate extremely short 

monopolar pulses. 

These monopolar pulses can be applicable in both therapeutic and diagnostic ultrasound. 

For histotripsy therapy, using monopolar pulses with a dominant negative phase can eliminate 

the shock-scattering effect because no high peak positive shock fronts develop. As a result, the 

generation of a dense bubble cloud will solely depend on the applied negative half cycle 



 

100 

 

exceeding the intrinsic threshold, making produced lesions even more controllable, predictable, 

and small by using the microtripsy approach [22].  

In diagnostic ultrasound, using these monopolar waveforms as the transmit pulses could 

enhance axial resolution of the imaging due to the reduced pulse length (approximately half 

cycle). These monopolar pulses would also decrease and minimize speckle noise since these 

pulses have minimal oscillatory components, leading to less coherent constructive/destructive 

interference patterns in the image. These monopolar pulses will also be useful in pulse inversion 

contrast imaging. In pulse inversion imaging [23, 24], a sequence of two ultrasound pulses is 

transmitted with a proper time delay between the two, and the second pulse is an inverted copy 

of the first one. For a linear medium, the response to the second pulse will be an inverted copy of 

the response to the first one, and the summation of the two responses will become zero. For a 

nonlinear target, the response to the second pulse will not be the exact opposite of the response to 

the first pulse, leading to a non-zero summation. The produced pulse inversion image will then 

be a map of the nonlinearity of the imaged medium. The proposed monopolar pulses should 

amplify the difference between object responses when it is exposed to a negative-polarity pulse 

(mostly rarefactional) and a positive-polarity pulse (mostly compressional), thus increasing the 

sensitivity of the pulse inversion imaging. 

In this chapter, a transducer consisting of 23 piezoceramic elements with various resonant 

frequencies (0.5, 1, 1.5, 2, and 3 MHz) was designed and assembled to investigate this frequency 

compounding technique for monopolar pulse generation. A fiber-optic probe hydrophone (FOPH) 

was used to measure the generated frequency-compounded pulses, and the ratios of P– to P+ for 

these pulses were then computed. A linear transient simulation using the Fast Object-Oriented 

C++ Ultrasound Simulator (FOCUS, developed by McGough et al. [25-29]) was also performed 
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to compare the FOPH-measured results with the simulation. The feasibility of applying these 

monopolar pulses in histotripsy was studied using red-blood-cell (RBC) tissue-mimicking 

phantoms. In this set of experiments, RBC phantoms were exposed to negative-polarity and 

positive-polarity pulses separately at various pressure levels. A total of 200 pulses were applied 

to each intended treatment location at a pulse repetition frequency (PRF) of 1 Hz.   

 

5.2 Methods 

5.2.1 Frequency-Compounding Transducer and Monopolar Pulse Generation 

The frequency-compounding transducer (Figure 5.1) is composed of 23 elements with 

various resonant frequencies, 500 kHz (five elements), 1 MHz (four elements), 1.5 MHz (four 

elements), 2 MHz (three elements), and 3 MHz (seven elements). Each 500 kHz element consists 

of two 1 MHz, 20-mm-diameter, piezoceramic discs (PZ36, Ferroperm, Kvistgaard, Denmark) 

stacked together with epoxy. Each 1 MHz element consists of a single 1 MHz, 20-mm-diameter, 

piezoceramic disc (PZ36, Ferroperm). Each 1.5 MHz element consists of a single 1.5 MHz, 14 × 

14 mm, rectangular piezoceramic plate (SM111, equivalent to modified PZT-4, Steiner and 

Martins, Miami, FL, USA). Each 2 MHz element consists of a single 2 MHz, 19-mm-diameter, 

piezoceramic disc (SM112, Steiner and Martins). Each 3 MHz element consists of a single 

3MHz, 20-mm-diameter, piezoceramic disc (SM111, Steiner and Martins). The selection of these 

transducer elements was based on the availability of commercial piezoceramic elements, and 

during the selection process, the availability of particular frequencies had a higher priority than 

the shapes and sizes of the elements. Therefore, there is considerable room for optimization of 

any design for particular applications. 
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Figure 5.1 Illustrations of the frequency-compounding transducer. (a) and (b) are the drawings of 

the fully populated frequency-compounding transducer with elements color-coded for different 

frequencies. Besides color codes, individual elements are also labelled with the number showing 

its center frequency. (c) is a picture of the fully populated frequency-compounding transducer.  

Each element was assembled in a plastic housing with a stereo-lithography-printed 

acoustic focusing lens of a geometric focal length of 40 mm (material: Accura®  60, 3D Systems, 

Rock Hill, SC, USA) and backed with slow-curing marine epoxy (A-side Resin 314 + B-side 

Slow Hardener 143, TAP Plastics, Inc., San Leandro, CA, USA). Elements across different 

frequencies had the same acoustic focusing lens and backing material, while their matching 

layers varied and are listed in the following: 1) 500 kHz and 1 MHz elements: no matching layer 

(PZ36 elements have a relatively low acoustic impedance) and 2) 1.5, 2, and 3 MHz elements: a 

mixture of Hysol®  epoxy (1C-LV, Loctite® , Westlake, OH, USA) and copper wire cloth (80 × 

80 mesh size for 1.5 MHz, 100 × 100 mesh size for 2 MHz, 200 × 200 mesh size for 3 MHz, 

McMaster-Carr, Aurora, OH, USA).  These elements were then confocally aligned and had a 

common geometric focus at 40 mm. The scaffold had 23 threaded receptacles and they were 

arranged as follows: 1) one bottom receptacle with 0 degrees tilt angle, 2) one (the first) ring of 6 
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receptacles with 37 degrees tilt angle, 3) another (the second) ring of 6 receptacles with 64 

degrees tilt angle, 4) another (the third) ring of 6 receptacle with 85 degrees tilt angle, and 5) 

another (the fourth) ring of 4 receptacle with 103 degrees tilt angle. A specific order for 

populating these elements was adopted to ensure that adjacent elements did not have the same 

frequency. This was done to reduce nonlinear propagation effects that occur when acoustic 

waves of the same frequency propagate closely in space and interfere constructively. 

Additionally, the frequency-compounding transducer has two diametrically opposed optical 

windows located at a similar height of the third ring to allow for optical imaging at the geometric 

focus.  The overall frequency-compounding transducer is approximately hemispherical (the 

fourth ring had 103 degrees tilt angle), and it has an aperture size (diameter) of 65 mm, a focal 

length of 40 mm, and an approximate packing density of 54%.    

A custom high voltage pulser with 23 parallel channels was used to drive the frequency-

compounding transducer. The pulser was connected to a field-programmable gated array (FPGA) 

development board (Altera DE1, Terasic Technology, Dover, DE, USA) specifically 

programmed for frequency compounding pulse generation. This setup allowed each element to 

individually output short pulses (1.5 cycles, with only one large negative phase) with desired 

amplitudes and time delays. A fiber-optic probe hydrophone (FOPH) [30] was used to calibrate 

and measure acoustic output of the frequency-compounding transducer. 

The generation of monopolar pulses with a dominant negative phase (negative-polarity 

pulses) was achieved by adjusting the arrival times of individual frequency components to allow 

their principal negative phase peaks to arrive at the focus of the transducer concurrently. In this 

situation, destructive interference occurs elsewhere in space and time, leading to a diminution of 

the peak positive pressure of the combined ultrasound pulse. For the generation of monopolar 
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pulses with a dominant positive phase (positive-polarity pulses), driver pulses for the individual 

elements were inverted, resulting in ultrasound pulses with a single principal positive phase from 

each element. The arrival times of individual frequency components were then adjusted to allow 

their principal positive phase peaks to arrive at the focus concurrently. 

 

5.2.2 Linear Transient Simulation with the Fast Object-Oriented C++ Ultrasound 

Simulator (FOCUS) 

A linear transient simulation for the temporal acoustic waveform and the two-

dimensional (2D) spatial pressure fields of this frequency-compounding transducer was 

performed using the Fast Object-Oriented C++ Ultrasound Simulator (FOCUS, developed by 

McGough et al [25-29]). FOCUS is a cross-platform (Windows, Linux, and Mac OS X) “free-

ware” and consists of MATLAB (MathWorks, Natick, MA, USA) user interface and object-

oriented C++ computation core. The simulation in this paper was performed with Version 0.760 

of FOCUS on version R2011a of MATLAB. In the simulation, “spherical shells” with a diameter 

of 20 mm and a focal length of 40 mm were selected to represent all of elements in the 

frequency-compounding transducer. In order to emulate actual temporal focal waveforms better, 

two-cycle, “Hanning-weighted tone-burst pulses” were chosen as the excitation pulses, together 

with desired frequencies and amplitudes. Specific time delays were selected to allow the peaks of 

their negative phases to arrive at the focus concurrently. The sampling frequencies in time and 

space domain were chosen to be 4 × 10
7
 samples / second (40 MHz) and 5 × 10

4
 samples / meter, 

respectively. The FOCUS function “transient_pressure” was used to calculate the transient 

pressure field using the fast near-field method and time-space decomposition [25-29]. The 

returned result was a four-dimensional (4D) matrix with three dimensions in space and one 
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dimension in time. With proper indexing of the returned 4D matrix, temporal waveforms at the 

focus and 2D peak negative and positive pressure fields were readily obtained. 

 

5.2.3 Experiments in red-blood-cell (RBC) Phantoms and Lesion Analysis 

Experiments were performed on RBC tissue-mimicking phantoms to investigate the 

feasibility of these frequency-compounded monopolar pulses in histotripsy therapy. Two 

experimental configurations were evaluated, where one demonstrated an exposure to negative-

polarity pulses and the other showed an exposure to positive-polarity pulses. Each intended 

treatment region was exposed with 200 pulses at a PRF of 1 Hz, and a single-focal-point 

exposure was performed. Applied pressure levels are listed in Table 5.1. The procedures 

described in this study were approved by the University of Michigan’s Committee on Use and 

Care of Animals. 

Table 5.1 Peak negative pressures and time delays for capturing bubble cloud images in the RBC 

phantom experiments of the frequency compounding study 

Experimental 

Set 
Case 

Individual Focal P– with Attenuation Correction* (MPa) 
Focal P– of Linearly 

Summed Signal with 

Attenuation 

Correction** (MPa) 

Time Delay For 

Capturing 

Bubble Cloud 

Images (µs) 
500 kHz 1 MHz 1.5 MHz 2 MHz 3 MHz 

1 

1 7.4 5.4 4.9 3.8 8.8 27.6 4 

2 8.9 6.7 6.1 4.6 10.4 33.2 6 

3 10.2 8.0 7.2 5.2 11.9 39.0 9 

4 12.0 9.4 8.2 5.8 13.4 44.3 12 

5 13.7 10.5 9.1 6.2 14.7 48.9 17 

Experimental 

Set 
Case 

Individual Focal P+ with Attenuation Correction* 

(MPa) 

Focal P+ of Linearly 

Summed Signal with 

Attenuation 

Correction** (MPa) 

Time Delay For 

Capturing 

Bubble Cloud 

Images (µs) 
500 kHz 1 MHz 1.5 MHz 2 MHz 3 MHz 

2 

1 7.5 5.2 5.9 5.5 11.9 30.4 4 

2 9.9 7.1 8.4 7.1 15.0 36.8 6 

3 11.8 9.1 11.3 8.4 17.5 42.3 9 

4 14.0 11.5 14.0 9.8 21.2 48.0 12 

 

* The pressure levels were corrected by the attenuation contributed by the plastic gel holders and agarose hydrogels. 

The attenuation contributed by the plastic gel holders was measured using the FOPH. The attenuation contributed by 

agarose hydrogels was calculated using a reported attenuation coefficient [31] and assuming linear propagation. 

** The P– here was not directly measured, and it was the P– of the linearly summed signal. The attenuation 

correction here was the same as the ones in *. 
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The RBC tissue-mimicking phantom can be used for the visualization and quantification 

of cavitation-induced damage [31]. In this study, fresh canine blood was obtained from adult 

research canine subjects in an unrelated study. An anticoagulant solution of citrate-phosphate-

dextrose (CPD) (C7165, Sigma-Aldrich, St. Louis, MO, USA) was added to the blood with a 

CPD-to-blood ratio of 1:9 (v:v), and the blood was kept at 4°C and used within 3 weeks. The 

agarose-saline mixture consists of low-melting-point agarose powder (AG-SP, LabScientific, 

Livingston, NJ, USA) and 0.9% saline at an agarose-to-saline ratio of 1:100 (w:v). In this study, 

in order to make phantoms with a thinner central RBC layer, the preparation for this layer 

differed slightly from the protocol described in a previous paper [31]. During the solidification 

process of the central layer, the gel holder was mounted vertically such that the agarose-saline-

RBC mixture trickled down the previous agarose-saline-only casting while solidifying into a 

very thin central layer (~ 60 – 100 µm). Additionally, the ratio of RBCs to agarose-saline 

mixture was increased to 33:67 from 5:95 (v:v) in order to provide sufficient image contrast 

between treated and untreated regions. 

The experimental setup for RBC experiments is illustrated in Figure 5.2. The frequency-

compounding transducer was placed in a glass tank (40.6 × 20.3 ×25.4 cm) filled with degassed 

water. For the visualization of the generated bubble clouds and their resulting damages in RBC 

phantoms, a digital, 1.3-megapixel, CMOS, mono-color camera (PN: FL3-U3-13Y3M-C, Flea
®
 

3, PointGrey, Richmond, BC, Canada) was positioned perpendicularly to the frequency-

compounding transducer facing one of its optical windows. A Nikon 4X microscope objective 

with extension tubes was attached to the camera to provide additional image magnification, 

giving the captured images a resolution of approximately 4.1 µm per pixel. For back-lit 
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illumination, a pulsed white-light LED was placed on the opposing optical window of the 

transducer. In order to maintain the synchronization of image capturing and the delivery of the 

frequency-compounded pulses, the camera and the LED light source received trigger signals 

from the FPGA board. Two images were acquired for every delivered frequency-compounded 

pulse, one (bubble cloud image) at the time when the maximal spatial extent of the bubble cloud 

was observed (see Table 5.1 for exact timing), and the other (lesion image) at 500 ms after the 

arrival of the pulse, where only cavitation-induced damage in the RBC phantom was observed. 

The exposure time was set at 2 µs for every captured image. The RBC phantoms were mounted 

on a 3-axis motorized positioner (Griffin Motion, Holly Springs, NC, USA) and submerged in 

the frequency-compounding transducer with an orientation for axial-lateral-plane treatments.  

The captured optical images were post-processed with MATLAB using a method similar 

to those described in previous papers [31, 32]. The lesion image was firstly converted to a gray-

scale image, and then converted to a binary image using a threshold calculated based on the 

mean intensity of the lesion. The regions with brightness exceeded the threshold would become 

“1 (white)” in the binary image and be considered “damaged;” whereas, the regions with 

brightness below the threshold would become “0 (black)” and be considered “intact.” In order to 

exclude noise in the camera sensor and pre-existing isolated small white regions due to RBC 

layers being not 100% uniform, white regions that were smaller than 120 pixels (corresponding 

to regions less than 25 µm in radius) were excluded from the damage zone. By counting the 

number of the white pixels in the binary image and converting it to actual size with the help of a 

pre-captured scale image, lesion sizes in the axial (lesion length) and lateral (lesion width) 

directions were determined. 
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Figure 5.2 An illustration of the overall experimental setup in RBC phantom experiments.  

5.3 Results 

5.3.1 The Generation of “Negative-Polarity” Pulses 

Representative measured and simulated temporal focal waveforms in the free-field for 

each frequency component are plotted in Figure 5.3 (the results from the FOPH measurement 

and the FOCUS simulation are both plotted). As can be seen from the FOPH-measured 

waveforms [Figure 5.3(a1) – (a5)], the FPGA-controlled high voltage pulser enabled individual 

frequency components to output short acoustic pulses with only one principal negative phase. 

Note that the actual waveforms were slightly longer than the simulated waveforms. 
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Figure 5.3 Representative temporal focal waveforms for individual frequency components of the 

frequency-compounding transducer. (a1) – (a5) are waveforms measured directly with the FOPH 

in the free-field. (b1) – (b5) are simulated waveforms using the FOCUS simulation tool. In the 

simulation, the amplitudes of the source excitation pulses were adjusted to approximately match 

the focal pressures of the FOPH-measured waveforms.  

The generation of negative-polarity pulses was investigated by adjusting the arrival times 

of individual frequency components to allow their peaks of principal negative phases to arrive at 

the focus concurrently. Figure 5.4 plots representative free-filed waveforms of a negative-

polarity pulse, including a waveform directly measured using the FOPH with all frequency 

components firing simultaneously [Figure 5.4(a)], a frequency spectrum of the directly-measured 

waveform [Figure 5.4(b)], a linearly summed waveform using FOPH-measured waveforms of 

individual frequency components [Figure 5. 4(c)], and a simulated waveform using the FOCUS 

simulation tool [Figure 5. 4(d)]. These pulses were generated using the same amplitudes for 

individual frequency components as those in Figure 5.3. As can be seen in Figure 5.4, an 

approximately monopolar pulse with a dominant negative phase was generated, and the ratio of 

P– to P+ was 4.68 for the directly measured waveform (3.52 for the linearly summed waveform 

and 9.16 for the simulated waveform). The temporal full-width-half-maximum (FWHM) of the 
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negative phase of the directly measured waveform was 0.17 µs, which was in between FWHMs 

of the principal negative phases of the 2MHz (0.19 µs) and 3MHz (0.11 µs) components.  

 

Figure 5.4 Representative waveforms of a frequency-compounded pulse with a dominant 

negative phase (a “negative-polarity” pulse). (a) The temporal focal waveform in the free-field 

that was directly measured using the FOPH. (b) The frequency spectrum of the directly measured 

waveform. (c) The temporal focal waveform in the free-field that was linearly summed using 

individual FOPH-measured waveforms of different frequency components [the same as the ones 

in Figures 5.3(a1) – (a5)]. (d) A temporal focal waveform that was obtained from linear 

simulation using the FOCUS with the same excitation amplitudes as those in Figures 5.3(b1) – 

3(b5).  

Figure 5.5 shows representative 2D spatial pressure fields for a negative-polarity pulse, 

including pressure fields directly measured using the FOPH with all frequency components firing 

simultaneously [Figures 5.5(a1) – (a4)] and pressure fields simulated using the FOCUS 
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simulation tool [Figures 5.5(b1) – (b4)]. In this 2D pressure field measurement, the negative-

polarity pulse had a P– of 18.1 MPa at the focus, and the 2D pressure fields for P– and P+ were 

both normalized to the absolute value of the P– at the focus. The relative amplitudes of 

individual frequency components were the same as the ones used in Figures 5.3 and 5.4. As can 

be seen in Figure 5.5, the FOPH-measured 2D P– pressure fields show a good agreement with 

the FOCUS-simulated 2D P– pressure fields, in both the axial-lateral and transverse planes. The 

2D P+ pressure fields had a slight variation between FOPH-measured ones and FOCUS-

simulated ones, possibly due to the limitation in sensitivity of the FOPH (predominantly noise 

signal at low pressure level) or the actual pulses not being ideally short as the pulses used in the 

simulation (as seen in Figure 5.3). 

 

Figure 5.5 Representative 2D spatial pressure fields for a negative-polarity pulse. (a1) – (a4) are 

directly measured 2D pressure fields using the FOPH. (b1) – (b4) are simulated 2D pressure 

fields using the FOCUS. The sub-figures in the 1
st
 and 2

nd
 columns plot 2D pressure fields of P+ 

and P– in the axial-lateral plane, respectively. The sub-figures in the 3
rd

 and 4
th

 columns plot 2D 

pressure fields of P+ and P– in the transverse plane, respectively. All of the sub-figures were 

normalized to the spatially-maximal P–, and displayed in dB scale. 
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5.3.2 The Generation of “Positive-Polarity” Pulses 

In this section, all driving signals were inverted, resulting in an inversion of the output 

focal waveforms. Figure 5.6 plots representative FOPH-measured and simulated temporal focal 

waveforms for individual frequency components. Here, inverting the output of the FPGA-

controlled high voltage pulser enabled each frequency component to output short acoustic pulses 

with only one principal positive phase. The arrival times of each frequency component were than 

adjusted to allow their positive phase peaks to arrive at the focus simultaneously. This resulted in 

a nearly monopolar pulse with a dominant positive phase (a positive-polarity pulse), shown in 

Figure 5.7, and the ratio of P+ to P– was 4.74 for the directly measured waveform. 

 

Figure 5.6 Representative temporal focal waveforms for individual frequency components when 

driving signals are inverted. (a1) – (a5) are waveforms measured directly with the FOPH in the 

free-field. (b1) – (b5) are simulated waveforms using the FOCUS simulation tool. In the 

simulation, the amplitudes of the source excitation pulses were adjusted to approximately match 

the focal pressures of the FOPH-measured waveforms. 
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Figure 5.7 Representative waveforms of a frequency-compounded pulse with a dominant 

positive phase (a “positive-polarity” pulse). (a) The temporal focal waveform in the free-field 

that was directly measured using the FOPH. (b) The frequency spectrum of the directly measured 

waveform. (c) The temporal focal waveform in the free-field that was linearly summed using 

individual FOPH-measured waveforms of different frequency components [the same as the ones 

in Figures 5.6(a1) – (a5)]. (d) A temporal focal waveform that was obtained from linear 

simulation using the FOCUS with the same excitation amplitudes as those in Figures 5.6(b1) – 

(b5).  

5.3.3 Negative-Polarity and Positive-Polarity Pulses at Various Pressure Levels 

Figures 5.8(a) and (b) plot the ratio of P– to P+ as a function of applied pressure level (P–) 

for negative-polarity pulses and a representative temporal focal waveform at P– = 20 MPa, 

respectively. Figures 5.8(c) and (d) plot the ratio of P+ to P– as a function of applied pressure 

level (P+) for positive-polarity pulses and a representative temporal focal waveform at P+ = 23 
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MPa, respectively. As can be seen in Figures 5.8(a) and (c), when the pressure levels increased, 

the ratio of P– to P+ for the negative-polarity pulses decreased slightly, while the ratio of P+ to 

P– for the positive-polarity pulses increased slightly. This was possibility due to an increase in 

nonlinear propagation effects at higher pressure levels. In Figures 5.8(b) and (d), the directly 

measured waveforms had a good agreement with the linearly summed waveforms at a higher 

pressure level for both negative-polarity and positive-polarity pulse cases, and the shapes of 

these directly measured waveforms did not significantly deviate from the ones measured at a 

lower pressure level [Figures 5.4(a) and 5.7(a)]. Figures 5.9 shows the individual temporal focal 

waveforms for each frequency component at the pressure level used in Figures 5.8(b) and (d). 

Their shapes were similar to those at a lower pressure level shown in Figures 5.3(a1) – (a5) and 

Figures 5.6(a1) – (a5). 
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Figure 5.8 (a) The ratio of P– to P+ as a function P– in the negative-polarity pulse case. (b) 

Representative temporal waveforms for the negative-polarity pulse at P– = 20 MPa, measured by 

the FOPH in the free-field. (c) The ratio of P+ to P– as a function P+ in the positive-polarity 

pulse case. (d) Representative temporal waveforms for the positive-polarity pulse at P+ = 23 

MPa, measured by the FOPH in the free-field.   
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Figure 5.9 Representative temporal focal waveforms (directly measured by FOPH) for individual 

frequency components at the highest pressure used in Figure 5.8 (b) and (d). (a1) – (a5) are the 

individual waveforms used for the synthesis of the negative-polarity pulse in Figure 5.8(b). (b1) 

– (b5) are the individual waveforms used for the synthesis of the positive-polarity pulse in Figure 

5.8(d). 

5.3.4 RBC Phantom Experiments 

A total of 30 lesions in RBC phantoms were generated using negative-polarity pulses (six 

for each pressure level listed in Table 5.1), and their representative lesion and bubble cloud 

images are shown in Figure 5.10. Their quantified lesion sizes in the lateral and axial directions 

are plotted in Figures 5.11(a) and (b), respectively. As can be seen from Figures 5.10 and 5.11, 

cavitation-induced lesions were observed in RBC phantoms using negative-polarity pulses with 

P– exceeding the intrinsic threshold, and the sizes of the generated lesions and the bubble clouds 

increased as the applied P– increased.  
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Figure 5.10 Representative lesion [(a1) – (a5)] and bubble cloud [(b1) – (b5)] images in the RBC 

phantom experiments that used negative-polarity pulses. All the images were taken in the axial-

lateral plane of the transducer and the pulses propagated from left to the right.  

A total of 20 locations in RBC phantoms were exposed to positive-polarity pulses (five 

for each pressure level listed in Table 5.1), and their representative lesion and bubble cloud 

images are shown in Figure 5.12. As can be seen, neither lesions nor bubble clouds were 

generated using positive-polarity pulses with P+ ranging from 30 to 50 MPa. No further 

quantitative lesion analysis was performed for the positive-polarity pulse case.  

 

Figure 5.11 Quantitative results for the RBC phantom experiments that used negative-polarity 

pulses. (a) Quantified lesion size in the lateral direction (b) Quantified lesion size in the axial 

direction. 
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Figure 5.12 Representative lesion [(a1) – (a4)] and bubble cloud [(b1) – (b4)] images in the RBC 

phantom experiments that used positive-polarity pulses. No bubble clouds were observed and no 

lesions were formed for the positive-polarity pulse configuration. All of the images were taken in 

the axial-lateral plane of the transducer and the pulses propagated from left to the right.  

5.4 Discussion 

In this paper, the synthesis of approximately “monopolar” pulses was demonstrated using 

a frequency-compounding transducer consisting of elements with five different resonant 

frequencies, 0.5, 1, 1.5, 2, and 3 MHz. By properly adjusting time delays for individual 

frequency components, monopolar pulses could be generated. The temporal FWHM of the 

generated negative-polarity pulse was between the temporal FWHMs of the negative phases of 

the 2MHz and 3MHz components. This shows that the frequency of the combined monopolar 

pulses lies within the frequency span of the individual frequency components. The frequency 

components (500 kHz to 3 MHz) in this particular frequency-compounding transducer were 

selected since these frequency components are the ones commonly used in histotripsy therapy, 

although this selection could be optimized for different applications. For example, for imaging or 

therapy at deeper targets with highly attenuative and aberrative intervening tissue, lower 
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frequency components could be chosen to generate lower-frequency monopolar pulses. On the 

other hand, for superficial and microscopic targets, higher frequency components could be 

applied to generate higher-frequency monopolar pluses.  

 Moreover, the generation of monopolar pulses was limited to the focus of the frequency-

compounding transducer, which was less than 1 × 1 × 2 mm (lateral × elevational × axial) in the 

present design. The design of this highly focused transducer (with an f-number of close to 0.5, 

hemispherical) was chosen to allow the transducer to provide sufficient output pressure for 

histotripsy therapy (this current transducer is capable of generating a combined P– of 100 MPa, 

estimated by linear summation). In diagnostic ultrasound, this level of output pressure would be 

prohibited due to safety concerns; therefore, a different approach could be adopted when 

designing a frequency-compounding transducer for imaging purposes. This new design will 

favor a higher f-number configuration in order to cover an imaging plane more uniformly. For 

some applications, an ideal array transducer would emit an approximate plane wave consisting of 

a frequency-compounded monopolar pulse. This could be a linear array with subsets of modules 

wherein each module alone can generate monopolar pulses with a desired frequency. Some 

recent advances in transducer array manufacturing [33-35] involving microfabrication of 

piezoceramic components using microstereolithography could benefit the development of 

frequency-compounding transducers consisting of microelements with various resonant 

frequencies. 

Figures 5.4 and 5.7 show that the ratio of P– and P+ varied among directly measured, 

linearly summed, and FOCUS simulated pulses (FOCUS simulated >> directly measured > 

linearly summed). The variation between simulation and the actual pulses measured by the 

FOPH is likely because the pulses used in the simulation (2-cycle hanning-weighted tone bursts) 
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do not exactly match the actual output pulses of the transducer elements. However, the waveform 

shapes and 2D field patterns from simulation were in general agreement with the FOPH 

measurements. Therefore, simulations provide useful information for future transducer design, 

e.g. choosing optimal transducer geometry and element frequencies.   

As shown in Figure 5.8, when the combined pressure level increased from ~8 MPa to ~23 

MPa, the ratio of P– to P+ for negative-polarity pulses slightly decreased and the ratio of P+ to 

P– for positive-polarity pulses slightly increased. This slight change in P– and P+ ratios is likely 

due to nonlinear propagation. However, this nonlinear effect was minimal at the highest pressure 

level shown in Figure 5.8, since the changes in the ratios of P– and P+ values were minimal and 

the shapes of the focal pressure waveforms did not deviate significantly from those at the lower 

pressure level shown in Figures 5.4(a) and 5.7(a). By comparing individual waveforms at this 

higher pressure level (Figure 5.9) to those at the lower pressure level [Figures 5.3(a1) – (a5) and 

5.6(a1) – (a5)], we could also infer that nonlinear effects were minimal at the combined pressure 

level of ~23 MPa. Separating elements with the same resonant frequency in the current 

transducer arrangement likely contributes to this minimal development of nonlinearity. 

Some high f-number transducers are limited in peak amplitude by “nonlinear saturation” 

wherein higher order harmonics are attenuated rapidly as driving signals increase. Frequency-

compounding arrays result in minimal constructive interference outside the focal zone, thus 

reducing nonlinear saturation effects. This could be very important in some therapy systems 

where anatomy limits aperture size. 

 In this study, the time delays and excitation amplitudes for each element were specifically 

selected to generate monopolar pulses; however, a different set of time delays and excitation 

amplitudes could be chosen to synthesize different types of waveforms. Figure 5.13 demonstrates 
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some example waveforms that can be generated by the current 23-element frequency-

compounding transducer. Figure 5.13(a) shows an FOPH-measured bi-phasic pulse with a 

negative-polarity pulse followed by a positive-polarity pulse (an “NP” pulse), and Figure 5.13(b) 

shows an FOPH-measured bi-phasic pulse with a positive-polarity pulse followed by a negative-

polarity pulse (a “PN” pulse). Figure 5.13(c) shows an FOPH-measured “square” pulse, and 

Figure 5.13(d) is a simulation for Figure 5.13(c) using the FOCUS simulation tool. Although this 

“square” pulse generated by the current transducer does not resemble an ideal square pulse, the 

shape would improve considerably with a transducer using a large number of elements consisting 

of a much wider variety of frequencies. 

As demonstrated in Figure 5.13, this frequency compounding technique for monopolar 

pulse generation can be generalized to a broader concept, namely, “waveform synthesis” using 

frequency compounding. We hypothesize that, with a sufficient number of elements and a wide 

variety of frequencies, a frequency-compounding transducer can potentially become an arbitrary 

waveform synthesizer by appropriately adjusting time delays and excitation amplitudes to 

individual elements. Moreover, optimization algorithms would allow more precise choice of time 

delays, frequencies, and array geometries for synthesis of waveforms needed for unique 

applications. We plan to conduct further studies, simulations, and analytical approaches to test 

this hypothesis.  
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Figure 5.13 Example waveforms that can be synthesized by the current frequency-compounding 

transducer. (a) A bi-phasic pulse which has a negative-polarity pulse followed by a positive-

polarity pulse (an “NP pulse”). (b) A bi-phasic pulse which has a positive-polarity pulse 

followed by a negative-polarity pulse (a “PN pulse”). (c) A “square” pulse which temporally 

stacks three negative-polarity pulses together with 180 ns delay in between. (d) A FOCUS-

simulated pulse for the case of (c).  

5.5 Conclusion 

This chapter demonstrated the feasibility of generating (nearly) monopolar pulses using a 

frequency-compounding transducer. By adjusting time delays for individual frequency 

components and allowing their principal peak negatives to arrive at the focus of the transducer 
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concurrently, monopolar pulses with a dominant negative phase (negative-polarity pulses) can be 

generated. By inverting the excitation pulses to individual elements, monopolar pulses with a 

dominant positive phase (positive-polarity pulses) can also be generated. Negative-polarity 

pulses with combined P– higher than the intrinsic threshold were capable of creating cavitational 

lesion-producing bubble clouds, and the size of corresponding lesions in RBC phantoms 

increased with increased combined P–. Neither cavitational bubble clouds nor lesions were 

generated in RBC phantoms using positive-polarity pulses with combined P+ similar to the level 

of the combined P– used in the RBC phantom experiments with negative-polarity pulses. 

Therefore, Frequency Compounding allows the generation of highly functional histotripsy pulses 

with no extraneous complicating features. 

These frequency-compounded monopolar pulses can have many applications in both 

ultrasonic imaging and therapy. Non-coherent excitation pulses, for example, would minimize 

speckle in ultrasound images. Moreover, a frequency-compounding transducer can potentially 

become an arbitrary waveform synthesizer given that the transducer has a sufficient number of 

elements with a wide range of resonant frequencies. 
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Chapter 6 

Applications in Metastatic Lymph Node Ablation 

6.1 Introduction 

This chapter studies the application of precise lesion formation in metastatic lymph node 

ablation. Lymph nodes are small oval-shaped organs that serve as filters or traps for foreign 

particles within the lymphatic system. They are tightly packed by lymphocytes and macrophages 

with a supporting meshwork that consists of several types of fibrous tissue. When a local 

malignant tumor starts metastasizing, the lymphatic system is believed to be the most common 

route. If a patient has a tumor that is diagnosed to be possibly metastatic, a surgical removal of 

the regional nodal system will be performed followed by a pathological examination for cancer 

staging [1-4]. For example, axillary lymph node dissection (ALND) was once considered to be a 

standard procedure for invasive breast cancer [1, 5]. However, this lymph node removal 

procedure is often accompanied by substantial side effects, such as lymphedema (lymph fluid 

build-up) [6] and an increased risk of infection and inflammation.  

Among the various regional nodal systems, sentinel lymph nodes (SLNs) are the 

hypothetical lymph nodes or groups of lymph nodes that first receive the drainage from the 

primary metastatic tumors. During the last two decades, sentinel lymph node biopsy (SLNB), in 

which only the sentinel lymph nodes are removed and examined for cancer staging, has been 

studied and demonstrated to achieve the same therapeutic outcome as conventional lymph node 

dissection while decreasing its side effects for early stage breast cancer patients [7-10]. In a five 
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year study with 936 female breast cancer patients [9, 10], the prevalence of lymphedema was 

reported as 5% (objective measurement) or 3% (patient perception) for patients who had SLNB 

alone versus 16% (objective measurement) or 27% (patient perception) of patients who had both 

SLNB and ALND. In order to successfully conduct SLNB, several techniques have been used 

and developed for the detection of SLNs: 1) the injection of vital blue dyes that provide visual 

identification of draining lymphatic channels as well as SLNs during surgery, 2) 

lymphoscintigraphy, the injection of radioactive particles that can be detected either prior to 

surgery by a gamma camera or intraoperatively with gamma sensor probes [11-14], and 3) 

lymphosonography, the injection of ultrasound contrast agents that can be detected by contrast-

enhanced ultrasound imaging [15, 16]. 

In this chapter, we extend the less-invasive nature of the SLNB and propose histotripsy 

tissue fractionation as a noninvasive approach for metastatic SLN ablation, which could 

potentially lead to decreased number of lymphedemas and fewer other complications. Since 

lymph nodes are small (size: 5 – 40 mm, average 11 mm in porcine models) and very shallow 

(depth: 5 – 40 mm in porcine models), the precise lesion formation techniques developed in this 

dissertation can benefit treatment precision and efficiency in lymph node tissue ablation. In 

particular, the microtripsy approach using the intrinsic threshold mechanism could limit shock 

scattering process and restrict lesions in the supra-intrinsic-threshold regions (smaller than the 

diffraction limit), thus limiting prefocal cavitation that often occurs with conventional histotripsy 

using shock scattering. Additionally, the dual-beam histotripsy approach can further decrease the 

size of the supra-intrinsic-threshold regions and the frequency compounding approach can 

further minimize positive pressures and the corresponding shock scattering, both leading to more 

precise and controlled lesion formation.  
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In the following, we investigated the capability of lymph node ablation (both in vivo and 

ex vivo) using histotripsy generated by the 1) shock scattering mechanism and the 2) intrinsic 

threshold mechanism (microtripsy approach). 

 

6.2 Methods 

6.2.1 Animal/Tissue Preparation 

 All procedures associated with this animal study have been approved by the University 

Committee on Use and Care of Animals (UCUCA) of the University of Michigan. The in vivo 

experiments were performed on six mixed-breed pigs, four females and two males, ranging from 

31 to 50 kg in weight and 11 to15 weeks old in age. Prior to treatment, porcine subjects were 

anesthetized with an intramuscular (IM) injection of Telazol (6 mg/kg) combined with Xylazine 

(2.2 mg/kg). An intravenous catheter was placed in the auricular vein of each porcine subject. 

Each porcine subject underwent endotracheal intubation and was maintained on isoflurane gas 

(1-3.5%) throughout the surgical procedure. The heart rate, oxygen saturation, body temperature, 

and respiration rate were continuously monitored.  

For the ex vivo experiments, seven lymph nodes were collected from three porcine 

subjects from an unrelated study, kept in 0.9% saline at 4°C, and used within 36 hours. Before 

the experiments, the lymph nodes and surrounding tissues were submerged in degassed 0.9% 

saline and placed in a chamber under partial vacuum (~33 kPa, absolute) at room temperature for 

1 – 2 hours. The tissues were then embedded in a 1% agarose hydrogel that consisted of agarose 

and 0.9% saline. In two selected lymph nodes, methylene blue dye was administered through an 

injection using a 25-gauge needle. In another two selected lymph nodes, methylene blue dye and 

ultrasound contrast agents were administered through an injection using a 25-gauge needle. 
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6.2.2 Experimental Setup and Histotripsy Therapy Apparatus 

 Figure 6.1 illustrates the experimental setup for the in vivo and ex vivo experiments. For 

the in vivo experiments, the porcine subjects were placed on an operational table in supine 

position after anesthesia. To ensure ultrasonic propagation to the targeted lymph node, a heated 

degassed water bolus was placed on the skin immediately above the intended target, with a thin 

plastic membrane and ultrasound gel coupled to the skin. The histotripsy treatment was applied 

to the targeted lymph node using a 1 MHz, 10-element therapeutic ultrasound transducer that 

was submerged in the water bolus. The therapeutic ultrasound transducer was attached to a 

computer-controlled 3-axis motorized positioning system (Parker Hannafin, Rohnert Park, CA, 

USA). The treatment was guided by ultrasound B-mode imaging using a clinical ultrasound 

imaging probe, ATL CL15-7 (Advanced Technology Laboratories, Inc., Bothell, WA, USA), in 

combination with a commercial ultrasound system, ATL HDI 5000. In one selected porcine 

subjects, a 1.5 MHz, 6-element therapeutic ultrasound transducer was used for lymph node 

treatment, and the treatment was guided by an ATL L12-5 imaging probe in combination with 

the ATL HDI 5000 ultrasound system. 

 For the ex vivo experiments, dissected lymph nodes were embedded in agarose hydrogel, 

attached to a 3-axis motorized positioning system, submerged in a degassed water tank, and 

sonicated by the 1.5 MHz, 6-element ultrasound transducer. The treatment is guided by the ATL 

L12-5 imaging probe along with the ATL HDI 5000 ultrasound system. 
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Figure 6.1 Experimental setup for the in vivo (a) and ex vivo (b) experiments. 

 

 The 10-element, 1 MHz therapeutic transducer was made from ten piezoceramic 20-mm-

diameter disks (SM111, Steiner & Martins, Inc., Miami, FL, USA) and had a custom center hole 

to accommodate the imaging probe, ATL CL 15-7, as shown in Figure 6.2(a). This transducer 

has effective f-numbers of 0.8 in the elevational direction and 0.6 in the lateral direction and a 

focal length of 52 mm. This transducer was driven by custom class-D power amplifiers that were 

connected to a field-programmable gate array (FPGA) development board (Altera DE1, Terasic 

Technology, Dover, Delaware, USA) in order to control ultrasound pulsing sequences. The 6-

element, 1.5 MHz therapeutic transducer consisted of six piezoceramic, square, 22.5 × 22.5 mm 

plates (SM111, Steiner and Martins) and has a custom center hole to accommodate the imaging 

probe, ATL L12-5, as shown in Figure 6.2(c). This transducer has effective f-numbers of 0.7 in 

the elevational direction and 0.8 in the lateral direction and a focal length of 55 mm. This 

transducer was driven by a custom high voltage pulser that allowed the transducer to generate 
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1.5-cycle pulses. The pulser was connected to another FPGA development board (Altera DE1, 

Terasic Technology) for ultrasound pulsing sequence control. 

 A fiber-optic probe hydrophone (FOPH) built in-house [17] was used to measure acoustic 

output pressures of these two therapeutic transducers. Figure 6.2(b) shows the free-field acoustic 

waveform of a typical 5-cycle pulse generated by the 10-element, 1 MHz therapeutic transducer 

(driving center frequency = 1.22 MHz), which has measured peak compressional and 

rarefactional pressures (P+ and P-) of 66 MPa and 23 MPa, respectively. Figure 6.2(d) shows the 

free-field acoustic waveform of a typical 1.5-cycle pulse generated by the 6-element, 1.5 MHz 

transducer, which has a measured P+ of 50 MPa and a measured P– of 22 MPa. The actual 

acoustic pressures used in the experiments for these transducers were higher than the prior 

measurements, but they were not able to be measured due to instantaneous cavitation on the fiber 

tip. The 6-dB beam-widths (calculated based on P–) of the 10-element, 1MHz transducer, driven 

at 1.22 MHz and 5 cycles, were measured to be 0.6 (lateral), 0.7 (elevational), and 4.0 mm 

(axial). The 6-dB beam-widths (based on P–) for the 6-element, 1.5 MHz transducer were 

measured to be 1.5 (lateral), 1.9 (elevational), and 4.2 (axial) mm.  
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Figure 6.2 (a) 10-element 1 MHz therapeutic transducer with the ATL CL15-7 imaging probe 

inserted into its center hole. (b) A representative free-field 5-cycle acoustic waveform for the 10-

element 1 MHz therapeutic transducer at a lower pressure level than that used in actual 

treatments. (c) 6-element 1.5 MHz therapeutic transducer. (d) A representative free-field 1.5-

cycle acoustic waveform for the 6-element 1.5 MHz therapeutic transducer at a lower pressure 

level than that used in actual treatments. 

6.2.3 Treatment Procedures 

 For the in vivo experiments, prior to treatment, superficial inguinal lymph nodes 

(mammary for female and scrotal for male) near the lower abdominal area were surveyed using 

ultrasound imaging, in which lymph nodes appear hypoechoic [Figure 6.3(a)]. Afterwards, the 

focal point of the therapeutic transducer was identified by firing the transducer above cavitation 

threshold in degassed water and using ultrasound imaging to track its focal point. The targeted 
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superficial inguinal lymph nodes were then treated by the 10-element, 1MHz therapeutic 

transducer with the guidance of ultrasound B-mode imaging, as shown in Figure 6.3(b). The 

parameters for histotripsy treatment used in this study were a driving center frequency of 1.22 

MHz, a pulse repetition frequency (PRF) of 50Hz, a pulse duration of 5 cycles, a P+ of above 

66MPa, and a P– of above 23 MPa, and a total of 20000 – 40000 pulses at each treatment 

location. In one selected case, the lymph node was treated by 6-element, 1.5 MHz transducer 

with a PRF of 50 Hz, a  pulse duration of 1.5 cycles, a P+ of above 61 MPa, a P– of above 26 

MPa, and a total of 2000 pulses at each treatment location. 

 For the ex vivo experiments, a similar approach was used, including surveying lymph 

nodes with ultrasound B-mode imaging, identifying transducer focus by generating bubble cloud 

in degassed water, and then applying histotripsy treatment at the targeted locations within lymph 

nodes. In these ex vivo experiments, all the lymph nodes were treated by the 6-element, 1.5 MHz 

transducer with a PRF of 50 – 200 Hz, a pulse duration of 1.5 cycles, a P+ of above 61 MPa, a 

P– of above 26 MPa, and a total of 2000 – 4000 pulses at each treatment location. 

 

6.2.4 Post Treatment Process and Histological Evaluation 

 After histotripsy treatment, the porcine subjects in the in vivo experiments were 

euthanized with an intravenous (IV) injection of sodium pentobarbital (140-160 mg/kg). The 

treated lymph nodes and surrounding tissue were dissected out, and the treated samples were 

fixed with 10% phosphate buffered formalin (Fisher Scientific, Fair Lawn, NJ) and further 

processed into histological sections with hematoxylin and eosin (H&E) staining to determine the 

treatment effect. Lymph nodes in the ex vivo experiments were directly removed from agarose 
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hydrogel, fixed with 10% phosphate buffered formalin, and further processed into histological 

sections with H&E staining. 

 

6.3 Results 

6.3.1 Cases with 5-cycle Pulses (Histotripsy using the Shock-Scattering Mechanism) 

A total of seven lymph nodes from five porcine subjects were sonicated in vivo by 5-

cycles pulses generated by the 10-element 1 MHz transducer. No significant vital sign change 

occurred during the treatments, and the porcine subjects remained stable from the beginning of 

anesthesia through euthanasia. The depths from the skin surface to the top of the lymph node 

(calculated based on ultrasound B-mode images) averaged 3.7 mm, ranging from 2.5 to 6 mm. 

Histotripsy-generated cavitational bubble clouds were visualized and monitored using B-mode 

ultrasound imaging, as shown in Figure 6.3. Among all subjects in this case, consistent 

cavitational bubble clouds were generated in five lymph nodes from four porcine subjects, 

whereas only intermittent cavitational bubble clouds were generated in two lymph nodes from 

one porcine subject, possibly due to the preferential surface cavitation on the plastic membrane 

coupled with skin.  
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Figure 6.3 Representative ultrasound B-mode images for the lymph nodes treated with 

histotripsy using shock-scattering mechanism (5-cycle pulses). (a) A B-mode image before 

treatment. The red ellipse indicates the targeted lymph node, which appears hypoechoic. (b)  A 

B-mode image during treatment. The hyperechoic region indicated by the red arrow is the 

generated cavitational bubble cloud. 

Treatment outcome was evaluated by the gross appearance of the dissected, fixed lymph 

nodes and their histological sections. Figure 6.4 shows representative results of one lymph node 

wherein consistent cavitational bubble clouds were generated. Three treatment locations with 1 

mm lateral separation were performed within the lymph node and each location was treated for ~ 

20,000 pulses at a PRF of 50 Hz. As seen in Figure 6.4(a), after formalin fixation, the treated 

regions appear dark brown instead of the light yellow that appears in the surrounding untreated 

region. The histological results [Figures 6.4(b), (c), and (d)] show that only the targeted lymph 

node is affected by histotripsy treatment and this lymph node has a well-demarcated focus of 

necrosis (cell death) with minimal damage to the adjacent tissue. In the affected area, the cortical 

and medullary architectures are disrupted by eosinophilic granular-to-fibrillar cellular debris. In 

contrast, the adjacent tissue within the targeted lymph node has normal architecture, and adjacent 

lymph nodes are unaffected.  
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Figure 6.4 Representative lymph node treatment outcome wherein consistent bubble clouds were 

generated. (a) The treated lymph node after dissection and formalin fixation (b) The histological 

section of the lymph node and its surrounding tissue. (c) A magnified (400X) image of the 

affected region within the treated lymph node. (d) A magnified (400X) image of the unaffected 

region within the treated lymph node. 

Additionally, in Figure 6.4, there are varying degrees of hemorrhage and inflammatory 

response – particularly by eosinophils. Although these are present at the periphery of the lesion 

in each lymph node, there are also numerous degenerate eosinophils present within the lesion 

itself. The predominance of eosinophils over neutrophils in this acute inflammatory response is 

likely a species-specific characteristic since pigs normally have relatively numerous tissue 
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eosinophils in many peripheral organs (including lymph node) and these are frequently part of 

the acute inflammatory response in this species. [18].  

Figure 6.5 shows the histological result of the lymph node treatment wherein only 

intermittent cavitational bubble clouds were generated during treatment. The treatment location 

was manually moved within the lymph node and the total number of treatment pulses was ~ 

24,000, pulsing at a PRF of 50 Hz. As can be seen, in the treated regions, the cortical and 

medullary architectures are partially disrupted, and the regions appear as mixtures of complete 

obliteration, incomplete obliteration, and hemorrhaging zones. The adjacent tissue within the 

targeted lymph nodes has normal architecture, and no apparent damage is observed. 

 

Figure 6.5 Representative lymph node treatment wherein only intermittent cavitational bubble 

clouds were generated. (a) The histological section of the affected lymph nodes, LN#1 and LN#2. 

(b) A magnified (100X) image of the affected region in LN#1, in which a mixture of complete 

obliteration, incomplete obliteration and hemorrhaging regions can be observed. (c) A magnified 

(100X) image of the affected region in LN#2, in which a qualitatively similar focus of necrosis 

can be observed. 
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6.3.2 Case with 1.5-cycle Pulses (Histotripsy using the Intrinsic Threshold Mechanism) 

For the cases sonicated with 1.5-cycle pulses generated by 6-element 1.5 MHz transducer, 

a total of one lymph node from one porcine subject was treated in vivo and a total of seven 

lymph nodes from three porcine subjects were treated ex vivo. For the in vivo treatment, no 

significant vital sign change occurred during the treatments, the porcine subjects remained stable 

from the beginning of anesthesia through euthanasia, and the depth from the skin surface to the 

top of the lymph node was approximately 3 mm. Among all lymph nodes, consistent bubble 

clouds were generated, and no significant prefocal cavitation was observed. Figure 6.6 shows the 

representative B-mode images during (a) and after (b) the histotripsy treatment for the in vivo 

experiment (treatment parameters: a PRF of 50 Hz, a total of 2000 pulses at each treatment 

location, and a total of 35 treatment locations which covered 4 × 6 mm treatment region). Its 

corresponding histology section is shown in Figure 6.7. As can be seen in the histology, the 

lymph node has a well-demarcated focus of necrosis (cell death) with minimal damage to the 

adjacent tissue.  

 

Figure 6.6 Representative ultrasound B-mode imaging for the in vivo lymph nodes treatment 

using 1.5-cycle histotripsy pulses (intrinsic threshold mechanism). (a) A B-mode image during 

treatment. The red ellipse indicates the targeted lymph node, which appears hypoechoic, and the 

red arrow indicates the generated bubble cloud, which appears hyperechoic. (b) A B-mode image 

after treatment. The hypoechoic region indicated by the red arrow is the treated region.  



 

140 

 

 

Figure 6.7 Histological sections of the lymph node treated in vivo using 1.5-cycle histotripsy 

pulses (intrinsic threshold mechanism). (a) An overall view of the lymph node. (b) A magnified 

view at the boundary between the affected and unaffected regions. 

Representative results for the ex vivo experiments without contrast agents are shown in 

Figure 6.8. (Treatment parameters: a PRF of 200 Hz, a total of 4000 pulses at each treatment 

location, and a total of 65 treatment locations which covered 4 × 6 mm treatment region) As can 

be seen in Figures 6.8(a) and (b), the backscatter intensity of the treated region decreased slightly, 

and the histology sections in Figures 6.8 (c) – (e) shows that the treated lymph nodes had well-

demarcated foci of necrosis with minimal damage to adjacent tissue. For the lymph nodes with 

microbubble injection, the histological sections appeared similar to the ones without contrast 

agents. No microbubbles were observed in the histology section, in which micorbubbles were 

possibly disrupted by either the histotripsy treatment or the histology preparation process (e.g. 

formalin fixation). 
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Figure 6.8 Representative results for ex vivo experiments using 1.5-cycle histotripsy pulses 

(intrinsic threshold mechanism). (a) A B-mode image for the first treatment location (T1) (b) A 

B-mode image for the second treatment location (T2) (c) The overall histological section which 

includes both T1 and T2 treatments. (d) A magnified view of the histological section of the T2 

treatment (e) A magnified view of the histological section of the T1 treatment. 

6.4 Discussion 

This chapter demonstrates the capability of histotripsy to noninvasively generate well-

demarcated tissue fractionation within the targeted superficial lymph nodes. This noninvasive 

lymph node ablation could potentially reduce the side effects, such as lymphedema, that are 

associated with conventional lymph node dissection [9]. 

When lymph nodes were exposed to 5-cycle histotripsy pulses, most of the cases had 

consistent cavitational bubble clouds generated, though, in a small number of cases, only 

intermittent bubble clouds generated. This is possibly due to the shielding effect generated by the 

preferential surface cavitation on the skin surface, and this often happens when the lymph node is 
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too superficial and histotripsy with pulses longer than 3 cycles are applied. The previous paper 

[19] showed that, when histotripsy pulses longer than 3 cycles were applied, the latter acoustic 

shockwave cycles would be backscattered by pre-existing bubbles that were initiated from initial 

cycles, thus leading to the growth of bubble clouds along the acoustic axis, opposite the direction 

of the ultrasound propagation (shock-scattering).  

On the other hand, when lymph nodes were exposed to supra-intrinsic-threshold 1.5-

cycle histotripsy pulses, consistent cavitational bubble clouds were generated in all cases. 

Though only one porcine subject was treated in vivo, the results from both in vivo and ex vivo 

experiments showed that histotripsy using the intrinsic threshold mechanism could potentially 

lower the probability of prefocal cavitation, thus increasing the consistency of bubble cloud 

generation at the focus and the treatment efficiency.  

In the experiment that combined histotripsy with microbubbles, the result showed that the 

injection of the microbubbles did not impede the formation of cavitational bubble clouds, and a 

well-demarcated tissue fractionation region was observed after histotripsy treatment. In fact, 

several other studies [20-22] have shown that stabilized microbubbles can serve as nuclei for 

cavitation, thus leading to the reduction of the cavitation threshold and the enhancement of the 

cavitation therapy. Therefore, introducing contrast-specific ultrasound imaging for SLN 

detection (lymphosonography) should not decrease the efficiency of the histotripsy treatment.  

 In some applications, histotripsy-treated regions have decreased backscatter intensity 

under B-mode imaging [23, 24], which can be used as a real-time image feedback and guidance 

for the treatment. In this lymph node ablation application, though we observed backscatter 

intensity reduction in the cases with a larger treated volume, this backscattered intensity 

reduction was not as pronounced as the other tissue types studied in [23, 24], possibly due to the 
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low echogenicity nature of lymph nodes. A possible alternative for providing real-time image 

feedback for histotripsy lymph node ablation is ultrasound elasticity imaging. This imaging 

modality has demonstrated its capability of differentiating benign and malignant masses in 

lymph nodes [25, 26]. Additionally, it has been shown (in [27, 28]) that it can provide image 

feedback for histotripsy, wherein tissue elasticity decreases due to the fractionation process 

generated by histotripsy. 

 

6.5 Conclusion 

A noninvasive lymph node ablation approach that uses histotripsy tissue fractionation 

was proposed and investigated in this study. With the application of histotripsy pulses, 

cavitational bubble clouds were successfully generated within the targeted lymph nodes, 

especially with the supra-intrinsic-threshold 1.5-cycle pulses. Porcine subjects did not experience 

any significant vital sign change during and after histotripsy treatment. Histological results 

showed that the targeted regions within the targeted lymph nodes had well-demarcated foci of 

necrosis with minimal damage to the adjacent tissue. Furthermore, the intervening skin and fat 

tissue and the non-targeted lymph nodes remained unaffected after the treatment. These results 

demonstrate the feasibility of histotripsy tissue fractionation in noninvasive lymph node ablation. 
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Chapter 7 

Summary and Future Work 

7.1 Summary 

This dissertation demonstrates that histotripsy, a noninvasive, cavitation-based ultrasound 

therapy, can create highly precise lesions using strategic pulsing methods proposed herein. More 

specifically, three approaches for precise lesion formation are developed and investigated in this 

dissertation including microtripsy using intrinsic threshold mechanism, dual-beam histotripsy, 

and near monopolar pulse generation using frequency compounding. 

1) Microtripsy using intrinsic threshold mechanism: With ultrasound pulses shorter than 

3 cycles, the generation of a dense bubble cloud only depends on one or two negative 

half cycles exceeding an intrinsic threshold of the medium. In fact, a single almost 

monopolar negative pulse can generate lesion-forming bubble cloud [1]. This intrinsic 

threshold is highly repeatable and has a very sharp transition zone. With a P– not 

significantly higher than the threshold, precise and sub-wavelength lesions can be 

produced; hence we called it “microtripsy”.  The sizes of the smallest reproducible 

lesions in the lateral direction were even smaller than the diffraction limited –6dB 

focal pressure, λ/2. Additionally, the sizes of the lesions corresponded well to the 

dimensions of the focal beam profile estimated to be beyond the intrinsic threshold, 

although there was a discrepancy at higher applied pressure levels (P− > 3  MPa). 
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This is most likely accounted for by an increase in the size of the P– focal zone as a 

result of nonlinear propagation processes [2]. 

2) Dual-beam histotripsy: A low-frequency pump pulse is applied to enable a high-

frequency probe pulse for precise lesion formation. This lesion formation only 

occurred when the pump and probe pulses constructively interfered and the combined 

P– exceeded the intrinsic threshold. With a higher proportion of the high-frequency 

probe pulse, a smaller lesion could be generated. The shape and size of the lesion 

could further be altered by changing the relative propagation direction between the 

pump and probe pulses [3]. Additionally, an imaging transducer could provide the 

high-frequency probe pulse for dual-beam histotripsy wherein the lesion could be 

easily controlled and steered using the imaging transducer in conjunction with a 

programmable ultrasound imaging system [4]. This dual-beam histotripsy can be 

useful in clinical applications in which precise tissue ablation is required with a 

longer propagation depth or through a highly attenuative or aberrative medium, 

especially if a small low-attenuation acoustic window is available for high frequency 

probe pulses (which can be provided by an imaging probe). 

3) Near monopolar pulses generated by frequency compounding: Using an array 

transducer composed of elements with various resonant frequencies, a near 

monopolar negative-polarity pulse could be generated by constructively combining 

their negative peaks at the focus. A near monopolar positive-polarity pulse could be 

generated in a similar way by constructively combining their positive peaks. Using 

negative-polarity monopolar pulses can potentially result in more precise lesion 

formation in histotripsy as the shock scattering process is completely eliminated. 
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These monopolar pulses may have many interesting applications in ultrasound 

diagnostic imaging, for example, pulse inversion contrast imaging. [1] 

The first two pulsing methods for histotripsy have been examined and validated in both 

RBC tissue-mimicking phantoms and ex vivo tissues. The third pulsing method has been 

validated in RBC tissue-mimicking phantoms.  

Lastly, an application of precise lesion formation in metastatic lymph node ablation is 

investigated using bubble cloud generated by single-frequency supra-intrinsic-threshold 

histotripsy pulses. Lymph nodes are generally small (5 – 40 mm) and shallow (5 – 50 mm), 

which require precise lesion formation at a superficial location. Both in vivo and ex vivo 

experiments demonstrated that supra-intrinsic-threshold histotripsy pulses (microtripsy approach) 

are capable of producing controlled and precise tissue fractionation in superficial lymph nodes. 

Bubble clouds generated by the shock scattering mechanism were also investigated in in vivo 

models.  

 

7.2 Future Work 

7.2.1 In Vivo Validation for Precise Lesion Formation Pulsing Methods 

The pulsing methods for precise lesion formation developed in this dissertation have 

demonstrated their feasibility in RBC tissue-mimicking phantoms and ex vivo tissues, and should 

be further validated in in vivo settings.  

The study in metastatic lymph node ablation (Chapter 6) demonstrated the capability of 

supra-intrinsic-threshold pulses in treating in vivo porcine lymph node wherein prefocal 

cavitation was minimized. However, the sample size was only one porcine object. Further in vivo 

studies need to be performed with a larger sample size to demonstrate that supra-intrinsic-
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threshold pulses can produce precise lesion formation in vivo without causing significant 

prefocal cavitation. This often happens at boundaries near the focus (like the skin surface) when 

superficial targets are treated using bubble clouds generated by the shock scattering mechanism. 

Additionally, the feasibility of dual-beam histotripsy and frequency-compounded 

monopolar pulses needs to be investigated with in vivo animal studies. As mentioned in the 

discussion of the Chapter 4, two issues might occur when applying multi-frequency pulses to in 

vivo cases: (1) higher frequency components may suffer significantly more attenuation compared 

to lower frequency components such that the combined pulses will get distorted, and (2) spatial 

and temporal alignment between different frequency components may deteriorate due to various 

attenuation and aberration. Though possible solutions has been proposed in the same discussion 

section, such as amplitude compensation that increases the output pressure of higher frequency 

components or increases the number of higher frequency elements of the array, in vivo studies 

needs to be conducted to examine the significance of these issues in in vivo cases and the 

efficiency of the proposed solutions in addressing these issues. 

 

7.2.2 Imaging Applications for Frequency Compounding 

Chapter 5 demonstrates the feasibility of using frequency-compounded monopolar pulses 

for histotripsy treatment, and discusses their potential applications in diagnostic ultrasound 

imaging.  

Pulse inversion contrast imaging should be investigated. Conventional pulse inversion 

imaging transmits two short acoustic (several cycles) pulses with inverted polarity and creates an 

image that sums the two received signals. Any object that responds to these two pulses non-

linearly (i.e. not exactly inverted) will result in a significant signal in the summed image. This 
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contrast can potentially be amplified when using negative-polarity and positive-polarity 

monopolar pulses, wherein the negative pulse primarily expands the medium and the positive 

pulse mainly compresses the medium. If contrast agents are introduced in the imaging region, 

this contrast could be significantly amplified in the pulse inversion imaging. 

The second application is to replace imaging pulses with frequency-compounded 

monopolar pulses in conventional ultrasound imaging, e.g. plane wave imaging or b-mode 

imaging. As mentioned in the introduction of Chapter 5, monopolar pulses with minimal 

oscillatory components could lead to less coherent constructive/destructive interference patterns 

in the image, thus decreasing its speckle noise (frequency dependence of the speckle noise can 

also explain why these broadband pulses can reduce speckle noise). However, the current low f-

number frequency compounding transducer in Chapter 5 produces monopolar pulses limited to 

its focal zone, and an ideal array transducer for imaging purposes will need to have a large 

“monopolar” zone across the imaging plane. This transducer could be a linear array with subsets 

of modules wherein each module alone can generate monopolar pulses consistently along the 

propagation axis. Figures 7.1 and 7.2 demonstrate an example design of a module that can create 

a consistent monopolar zone along the propagation axis. As shown in Figure 7.1(a), five 

elements with a size of 0.3 × 1.0 mm and various resonant frequencies (0.5, 1.0, 1.5, 2.0, and 3.0 

MHz) are arranged linearly and have a total size of 0.3 × 5.0 mm. A simulation using FOCUS 

software is performed with results shown in Figures 7.1(b) – (g) and 7.2. The individual time 

delays are chosen to allow their peaks of negative pressures to align at a depth of 15 mm (in the 

far field of the individual elements). The simulated 2D pressure fields in Figures 7.1(b) – (g) 

shows that this module with this specific time delay set can lead to a plane of monopolar region 

(i.e. large P–/P+ ratio). This region is narrow in the lateral direction, and very wide in the 
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elevational and axial directions. Figure 7.2 shows representative frequency-compounded 

temporal signals at 10, 15, 20, 30, 40, and 50 mm away from the surface of the center element. 

 

Figure 7.1 A simulation using FOCUS software showing an example of a 5-frequency module 

that can create a plane of monopolar region. (a) The arrangement of these elements (size of 

individual elements: 0.3 × 1 mm). The individual time delays are chosen to allow their peak of 

negative pressure to align at a depth of 15 mm. [X,Y, Z coordinates: (0, 0, 15)] 2-D pressure 

fields, (b) Normalized P–, (c) Normalized P+, and (d) P–/P+ in the X-Z plane (lateral-axial 

plane). 2-D pressure fields, (e) Normalized P–, (f) Normalized P+, and (g) P–/P+ in the Y-Z 

plane (elevational-axial plane).  
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Figure 7.2 Representative FOCUS-simulated temporal signals of the 5-frequency module 

described in Figure 7.1 at a depth of 10 (a), 15 (b), 20 (c), 30 (d), 40 (e), and 50 (f) mm. 

7.2.3 Other Applications in Ophthalmology 

The precise lesion formation techniques described in this dissertation could be very 

useful in ophthalmological applications because of two reasons: (1) eyeballs are small delicate 

organs that require very precise and microscopic treatment, and (2) eyeballs are very superficial 

wherein prefocal cavitation often renders problematic treatment for conventional histotripsy 

using shock scattering mechanism. The microtripsy technique developed in this dissertation can 

limit shock scattering process and constrain lesions to supra-intrinsic-threshold regions (smaller 

than the diffraction limit), thus decreasing the extent of prefocal cavitation. The dual-beam 

histotripsy approach can further reduce the size of the supra-intrinsic-threshold regions with an 

introduction of a high frequency component in histotripsy pulsing, thus leading to more precise 
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and confined lesions. Additionally, using near half-cycle negative pulses generated by the 

frequency-compounding approach could completely diminish shock scattering process, which 

could further decrease prefocal cavitation and increase treatment precision. Shallow targets like 

eyeballs have less intervening tissue which could benefit the high frequency components used in 

these techniques. Two potential ophthalmological applications for these precise lesion formation 

techniques are described in the following. 

 

Cataract Treatment 

Cataract is a clouding of the lens inside the eye which leads to a decrease in vision. It is 

mostly due to biological aging but may have a wide range of other causes. Over time, yellow-

brown pigment is deposited within the lens and this, together with disruption of the normal 

architecture of the lens fibers, leads to reduced transmission of light. As a result, vision loss 

occurs due to this opacification of the lens. An estimated 20.5 million (17.2%) Americans older 

than 40 years old have cataract in either eye [6]. Phacoemulsification [7] is a common surgery 

that removes cataract, and it can be performed at any stage and no longer requires ripening of the 

lens. The procedure involves a corneal incision, a phacoemulsification of the cataract with a 

handheld ultrasonic probe, an aspiration of emulsified content, and an insertion of an artificial 

intraocular lens.  

In this application, we are investigating the possibility of using histotripsy to fractionate 

or homogenize cataract within lenses noninvasively. In this case, a major incision for 

phacoemulsification with the handheld ultrasonic probe can be avoided, and only a smaller 

incision is required for the insertion of the artificial intraocular lens after histotripsy treatment.  

 

Strabismus Treatment 
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Strabismus (includes cross-eye and wall-eye) is a condition in which the eyes are not 

properly aligned with each other. It is often resulted from the lack of coordination of the 

extraocular muscles, and it may affect depth perception adversely. Strabismus affects 3.3% of 

white and 2.1% of African American children [8]. Current management for strabismus involves a 

combination of eyeglasses, vision therapy, and surgery, depending on the situation.  Surgery 

shortens, lengthens, or changes the position of one or more of the extraocular muscles in an 

attempt to align the eyes, and this is often the only way to achieve cosmetic improvement. 

Botulinum Toxin (Botox) [9] may also be used in treating strabismus, most commonly used in 

adults. Botox is injected in the stronger extraocular muscle, causing temporary paralysis, but it 

may be repeated 3 – 4 months later once the paralysis effect wears off.  

In this application, we’re investigating the possibility of using histotripsy to weaken or 

paralyze one or more of the extraocular muscles. This would be a noninvasive and non-chemical-

injection therapy for strabismus, which can potentially reduce the side effects created by surgery 

or botox injection. 
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