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ABSTRACT

Predictive Models and Calibration Analysis in Large-Scale Computational Studies

by

Zhanyang Zhang

Chair: Vijay Nair and Ji Zhu

Computational modeling and simulation are used to study many complex phenomena

where physical experiments are not feasible or too expensive. Examples include cli-

mate models, nuclear stockpile analysis, design and fabrication of integrated circuits,

computer-aided manufacturing, and study of biological systems. Statistical methods

play a variety of crucial roles in this area, ranging from the design of computer exper-

iments to analysis of the outputs, developing predictive models, calibration analysis

and, more generally, uncertainty quantification. This dissertation deals with two as-

pects of these statistical problems. The first part is concerned with developing statis-

tical emulators for predictive modeling. In most applications of interest, a statistical

model is used to fit the output from limited number of evaluations of the computa-

tional model, and the resulting “emulator” is used to approximate the input-output

relationship. The current method of choice is a Gaussian Spatial Process (GaSP),

where the output is viewed as the realization of a Gaussian process. While GaSP

can be implemented using frequentist methods, it is most commonly used within a

Bayesian framework. We compare the performance of GaSP with flexible regression-

based approaches. These include existing methods such as multivariate adaptive

ix



regression splines (MARS), smoothing-spline anova (SS-ANOVA), multiple additive

regression tree model (MART), and two methods developed in this dissertation: an

expanded multivariate adaptive regression splines model (EMARS) and smoothing

spline model with a kernel function based on exponential products (SS-Prod). Our

empirical comparisons show that EMARS has better predictive performance than

GaSP in a variety of situations. It is computationally much more efficient and it

can be implemented using the current MARS algorithm. Given this computational

advantage, it can be applied to more complex problems with many more input di-

mensions. The second part of thesis focuses on the calibration problem, where we

have to determine the true (but unknown) values of certain input parameters to the

computational model. This is a challenging inverse problem that suffers from iden-

tifiability issues. We develop conditions for determining identifiability and examine

data-based approaches for checking the conditions in practice. The behavior of the

methods is examined under various situations.
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CHAPTER I

Introduction

Large-scale computational models are being increasingly used to study many com-

plex phenomena in situations where physical experiments are infeasible or too expen-

sive. This is typically the case in problems involving predictions such as climate

modeling and weather forecasting. Another area where this approach has been used

for a long-time is in examining nuclear stockpile readiness. Other examples include

design of complex systems, such as aircraft, automobiles, transportation networks,

and biological systems. In most of the applications, the output is multi-dimensional

and is often a field. In practice, however, the scientists typically focus on one or

a small number of output parameters (which may themselves be obtained by post-

processing the output).

The study of this class of problems is characterized by a few distinct features. The

computational models involve numerical solving partial differential equations, which

are often computationally expensive. In some cases, even one evaluation of the code

(one run) can take several days even on the largest and most efficient computing plat-

forms. As a consequence, the number of runs (evaluations of the code as a function

of the inputs) is limited. However, the input dimension can be large, which makes it

challenging to study the input-output relationship. A common approach to this prob-
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lem is to fit a statistical model to the observed input-output data and use the fitted

model (called an emulator or sometimes a meta-model) for various inference prob-

lems. However, the model-fitting problem in this application is quite different from

the usual ones with physical experiments because there is often very little “error” –

the usual measurement error and other sources of random variation. In fact, in many

situations, the input-output relationship can be viewed as deterministic in the sense

that the same set of inputs will lead to the same output in the computational model.

Thus, the major problem in developing a model is lack-of-fit rather than randomness.

We will discuss the implications of this problem later in this section. In some of

the applications, it is possible to conduct a (very) small number of field experiments

which can be used to “validate” the computer runs and also do calibration analysis

(to be discussed later).

However, many of the goals in the design and analysis of computational models

are similar to what is done in physical experiments. These include: a) identifying

the key input variables (also called variable screening in traditional design of exper-

iments); b) understanding the nature of the influence of input parameters on the

output (presence of nonlinear relationships and interactions as well as sensitivities);

and c) developing good predictive models for the input-output relationships. They

may also involve determining “optimum” values (maxima, minima, etc.). There are

also some unique features. The types of experimental designs used are different since

there is no (or very little) measurement error, so there is no need to replicate obser-

vations at the same input settings. The common class of experiments used are Latin

hypercube designs and other types of space-filling designs (designs intended to cover

the input space in some reasonable fashion) (see Santner et al. [61], Stein [68], Helton

and Davis [33]). In the case of determining optimum values, sequential designs are

often the most appropriate (see Robbins [58]). A second class of problems involves

2



calibration where a subset of the input parameters involve unknown global constants

whose values have to be determined from the combination of computer runs and field

experiments. This is a challenging inverse problem as it involves unraveling a many-

to-one relationship.

We use the application from the University of Michigan’s Center for Radiative

Shock Hydrodynamics (CRASH), of which we were members, to provide a concrete

illustration. Radiative shocks exist in many applications in astrophysics including

supernovae. The goal of the CRASH project was to study processes that simulate the

radiative shock hydrodynamics in supernovae. To quote from the Center’s website

“In nature, radiative shock waves occur in supernovae, the most dramatic explosions

in the universe. The shock waves that ripple from the demise of massive stars are

so hot and fast that they emit radiation. These radiative shocks, in turn, change

the structure and behavior of the exploding material, making the system difficult to

simulate accurately with computers. That’s why radiative shocks provide a great

test case for research to improve predictive science.” Research at the Center involved

computational modeling of the shock waves as well as limited experiments at large

laser facilities to create radiative shocks. The goal was to understand the difference

between the simulation models and reality, quantify the uncertainty, and advance the

“predictive science”. CRASH was one of several centers that were supported under

the Predictive Science Academic Alliance Program funded by the National Nuclear

Security Administration (NNSA). The primary mission of NNSA is to “certify the

safety of the US nuclear weapons stockpile.”

Figure 1.1 provides a simplified version of the CRASH study. The XH and D both

denote input parameters and were used in a pre-processor (another computational

model) to create YHP which were the input parameters to the CRASH simulator. For

3



Figure 1.1: The input-output process of the CRASH code.

the purposes of this discussion, we can view XH and D directly as input parame-

ters. Examples of XH included laser energy and pulse shape, initial Xenon pressure,

Beryllium drive disk thickness, and geometry of the tube in which the shock wave is

propagated. The goal was to understand the behavior of the shockwave propagation

as these input parameters vary. D was composed of calibration parameters such as

those involved in equation of state (EOS) and opacities. These are fixed but un-

known constants, and the goal was to use the computational experiments and limited

physical experiments to determine their values. There were also other “parameters”

associated with the numerical aspects (such as the mesh parameters involved in the

numerical solvers) that can contribute errors to the solutions, but we will not discuss

them here. The actual output in this example was an image (x-ray radiograph) of the

shock as it travels through the tube (see Figure 1.2). Certain features of this image

were extracted and analyzed as finite-dimensional outputs. The primary ones were

the shock positions at selected time points, the angle of the Xenon edge downstream

from the shock, and the average thickness of the Xenon layer.

We partition the input parameters into {X,Θ} where {X} = {x1, ...,xp}, the

p-dimensional regular input parameters, and {Θ} = {θ1, ...θk}, the k-dimensional

4



Figure 1.2: Primary shock in a xenon filled tube (physical experiment).

calibration parameters. Let Y denote the output. In the rest of this dissertation, we

will assume Y is one-dimensional. One of the main goals is to approximate the input

output relationship f(·) in

Y = f({X,Θ}). (1.1)

As noted earlier, the input-output relationship f(·) in these computational studies

is typically deterministic, i.e. the same input {X,Θ} yields the same output Y .

Nevertheless, statistical approaches have been used to approximate the input-output

relationship. Sacks and Welch (1989)[60] gave an early overview of the design and

analysis of computer models. They discuss an approach based on Gaussian spatial

processes (GaSP) where the output Y in Y = f({X,Θ}) is treated as a realization of

a Gaussian spatial process on the p+k−dimensional input space. Various researchers

have studied this formulation and constructed statistical emulators based on GaSP.

In particular, the use of GaSP with a Bayesian approach has gained popularity over

the past two decades. Additional formulations include

Y = f(X,Θ) + δ, (1.2)

where δ is random (intended to capture additional sources of variation), may depend

on the input parameters, and can itself be modeled by another Gaussian process.

The popularity of the GaSP approach (with or without the Bayesian add on) can

5



be attributed to the fact that inference about Y = f({X,Θ}) at the unobserved

values of the input parameters becomes a prediction problem and there are standard

approaches for quantifying the uncertainty. For simple cases, the prediction problem

is straightforward since the corresponding conditional multivariate Gaussian distri-

butions are easy to compute. There are also extensive results in the spatial analysis

literature for more complex situations (various types of kriging). Bayesian inference

when the parameters of the Gaussian covariance kernel are unknown is more com-

plex, but recent developments in Markov Chain Monte Carlo methods can be used to

compute the posterior distribution. Under the model in equation (1.1), with no error,

the predictor will be an interpolator, i.e., it reproduce the observations at the ob-

served points. Under equation (1.2), however, it will be a smoother in the sense that

it will not reproduce the observations at the observed points. These are well-known

points, and a recent review can be found in [61]. One major concern with the use

of Bayesian GaSP, however, is computational complexity as this involved inverting a

high-dimensional matrix multiple times. We will return to these issues in the next

chapter.

The use of regression-based approaches to approximate the input-output rela-

tionship in equation (1.1) has been limited since they do not fit naturally into the

framework where there is no random error or the random component is small in

relation to the lack-of-model fit. Further, the uncertainty computations under the

usual frequentist framework do not apply, and this has been viewed as a deficiency

by practitioners. Again, we will return to this point in the next chapter. However, it

still makes sense to consider regression-based approaches purely from an algorithmic

point of view to develop predictors. There has been only one paper [4] in the literature

that has compared the performance of regression-based approaches to the predictive

models obtained from GaSP. The goal of Chapter 2 is to fill this gap by consider-
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ing an extensive comparison of several regression-based approaches with Bayesian

GaSP. Because the underlying input-output relationships are likely to be complex,

we consider highly flexible regression-based methods. These include smoothing spline

ANOVA (SS-ANOVA [29]), multivariate adaptive regression splines or MARS [19]

and multivariate additive regression trees or MART[20]. The predictors from the

regression-based approaches will not interpolate the observed data (as they implic-

itly assume the data are observed with error). Our main goal, however, is predictive

performance (which will be formally defined in the next chapter). One advantage of

these flexible regression models is the fact that the model building process usually

involves minimizing the cross validated error as opposed to the training error, so that

over fitting can usually be avoided. In the first part of the Chapter 2, we review

four relevant methods –GaSP, MARS, MART, SS-ANOVA, and also proposed an

expanded MARS model (EMARS) and a smoothing spline model with exponential

product kernel (SS-Prod). Through numerical studies as well as real examples, we

show that those alternative models can outperform the benchmark GaSP model. In

particular, the EMARS approach does well under a variety of metrics.

Chapter 3 deals with calibration analysis. This problem usually arises in situa-

tion where we use both simulated and field data to infer some unknown parameters

(parameters that are fixed and unknown constants). These calibration parameters

are varied in the simulation or computational studies while they are fixed (by nature)

at their true value in the field studies. So, intuitively speaking, the goal is to match

the simulated data with the field data to determine the best match for the calibra-

tion parameters. This is a challenging inverse problem. Kennedy and O’Hagan [37]

have proposed a Bayesian approach based on GaSP for calibration. The basic idea

(expanded in more detail in Chapter 3) is to treat the simulated data and field data

as the realizations of two correlated Gaussian Processes. The Bayesian approach

7



combines both sources of data to do both prediction and calibration by accounting

for multiple source of uncertainties. Higdon et al. [34] have extended the Bayesian

calibration methods into cases with multiple outputs. Bayarri et al. [3] discussed

calibration problems with functional outputs.

There are, however, some important issues related to calibration which have not

been discussed much in the literature. The primary one deals with identifiability, and

there are two kinds of identifiability. The first one is the presence of multiple solutions.

It is intuitively clear that this can (and often will) happen since the the input-output

relationship is not monotone. A more vexing problem is when the solution to the

calibration problem lies in a lower-dimensional subspace. A simple toy example is

where the computer simulator is f(x1, x2, θ1, θ2) = x1 + x2 + θ1− θ2, and the field ex-

periment comes from yf (z) = f(z1, z2, 0.2, 0.8)+ ε. There is no way to distinguish the

two calibration parameters θ1 and θ2 here. These issues are recognized among practi-

tioners and researchers. In particular, there has been some discussion of the multiple

solution problem; for example, authors who use Bayesian calibration techniques indi-

cate that the posterior distributions will have multiple modes. Kennedy and O’Hagan

note that the inference of calibration parameters is not necessarily related the “true”

parameters, rather to determine the calibration parameters that “fit” the best for

the purpose of physical process prediction. However, the identifiability issues have

not been studied systematically. Chapter 3 develops a necessary and sufficient con-

dition for identifiability and an additional sufficient condition. These are theoretical

conditions that can be implemented only if the true function (input-output relation-

ship) is known (not necessarily analytically but can be evaluated easily so that its

derivatives can be computed). We then study some empirical methods for assessing

these conditions based on the emulator. To address this issue, we propose a two-step

solution – at first, estimate the unknown relationship between computer simulator
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output and its inputs using the computer data, for example using a Gaussian Process

model or EMARS; then investigate the estimated function to see whether or not there

is parameter redundancy in the calibration parameters. In this work, we first define

different types of non-identifiability, and then developed several statistical methods to

test the existence of such issues. Using simulations, we showed that our tests can be

quite effective. For those identifiable calibration problems, we compared the widely

used Bayesian GaSP calibration method and a proposed calibration approach based

on EMARS. And our results show that the proposed method improves the GaSP

model in both calibration parameter estimation and prediction of outputs.
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CHAPTER II

Comparing different statistical approaches in

predictive modeling of computational studies

This chapter deals with predictive modeling of the input-output relationship based

on data from computer models. It provides a comparison of the performance of sev-

eral approaches for prediction. Specifically, we compare the Gaussian Spatial Pro-

cess (GaSP) approach with several techniques based on flexible regression modeling.

These include smoothing spline ANOVA (SS-ANOVA), multivariate adaptive regres-

sion splines (MARS), and the multiple additive regression tree (MART). In addition,

we also propose two modifications of existing methods, called expanded multivariate

adaptive regression splines model (EMARS) and smoothing spline ANOVA with an

exponential product kernel (SS-Prod). Our results showed that the EMARS method

is a good competitor to GaSP. It can be implemented using existing MARS algorithms

which makes it computationally faster, so we can apply it to situations with a larger

number of input parameters.

2.1 Introduction

We provide an overview of the different approaches that will be considered in our

study. As noted earlier, we will restrict attention to univariate outputs in this dis-
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sertation. In this chapter, we will not differentiate between regular input parameters

and calibration parameters, and we will refer to the p−dimensional parameters as

x = {x1, ..., xp}. Suppose we execute the computer code at n input points. As noted

in the last chapter, these are usually chosen according to some space-filling design.

We let (yi,xi), i = 1, ..., n denote the “observations”. Let X denote the n× p matrix

of input values and Y denote the corresponding n× 1 row vector of output values.

2.1.1 Gaussian spatial process (GaSP)

Sacks et al. [60] was among the first to describe a framework for inference that is

based on treating the output as a realization of a Gaussian stochastic process (GaSP)

Y (x) with some mean function µ(x) and covariance matrix. (See Santner et al. [61]

for a more recent discussion.) For example, the mean can be taken as

E[Y (x)] =
∑
j

βjfj(x)

with fj being some known functions and βj unknown parameters. There are several

choices for the covariance functions [61, 56]. In this paper, we restrict attention to

the popular product form:

Cov(Y (x), Y (x′)) =
1

λ

p∏
j=1

e−τj(xj−x
′
j)
q

(2.1)

The parameter λ measures the overall precision; τj ≥ 0 measures the importance of

one particular variable in the correlation; q controls the roughness of sample path. A

typical choice of q is 2, in which the fitted function is very smooth.

The parameters β, τ, λ can be estimated using maximum likelihood, i.e., by max-

imizing the log-likelihood

l(β, τ, λ) ∝

11



−1

2
log |Σ| − 1

2
(y −

∑
j

βjfj(x))′Σ−1(y −
∑
j

βjfj(x))

where Σ is the covariance matrix generated using (2.1). With τ and λ known, the

maximum likelihood estimate for β is given by

β̂ = (F ′Σ−1F )−1F ′Σ−1Y

with F being the design matrix of fj(xi). It should be noted that in practice, typically

one assumes a simple mean structure, i.e., constant mean or zero mean (after first

centering the response by subtracting its mean). There is no explicit solution for the

MLEs of τ and λ, but they can be obtained numerically.

Prediction at a future input x∗ can be obtained from the conditional distribution:

Y (x∗)|[Y1, Y2, ....Yn] ∼ N(E[Y (x∗)|Y ], var[Y (x∗)|Y ]).

Here

E[Y (x∗)|Y ] =
∑
j

fj(x
∗)β̂j +

n∑
i=1

r(xi, x
∗)ĉi

where r(xi, x
∗) = Cov(Y (xi), Y (x∗)), and ĉ = Σ−1(Y − Fβ̂) and

var[Y (x∗)|Y ]) =
1

λ
− r′Σ−1r

where r = {r(x1, x
∗), r(x2, x

∗).....r(xn, x
∗)}.

A Bayesian version of GaSP is often more commonly used [10, 34, 37, 52, 35]. This

involves specifying prior distributions for the underlying parameters. For numerical

reasons, it is common to assume an additional random error term to the GaSP, i.e

Y (x) = Z(x) + ε, where Z(x) is a zero mean GaSP with spatial covariance defined

12



by (2.1) and ε ∼ N(0, 1
λe

). Common choices of priors for those covariance parameters

are:

π(τ) ∝
∏
j

(1− e−τj)−0.5e−τj , τj ≥ 0

π(λ) ∝ λa−1e−bλ, λ > 0

π(λε) ∝ λaε−1
ε e−bελε , λε > 0

with proper choice of a, b, aε, bε. The estimation of the posterior distribution of the

parameters and the predictive distribution of the outputs are based Markov Chain

Monte Carlo (MCMC) methods:

L(τ, λ, λε|y1, ...yn) ∝ π(τ)π(λ)π(λε)× L(y1, y2....yn|τ, λ, λε)

At a new point x∗, the inference of Y (x∗) comes from the conditional distribution of

p(Y ∗|y1, y2, ...yn) =

∫
τ,λ,λε

p(Y ∗|, y1, y2...yn, τ, λ, λε)p(τ, λ, λε|y1, ...yn).

2.1.2 Smoothing Spline ANOVA and Smoothing Spline with Product

Kernels

Smoothing splines have been discussed extensively in the literature [14, 63, 74,

29] although not very much in the context of computer models. To describe it,

consider the regression problem yi = f(xi) + εi, i = 1, 2...n, where xi ∈ [0, 1] and

εi ∼ N(0, σ2). Common parametric methods, such as regression, assume that f

is from a space spanned by known finite basis functions. The coefficients have to

be estimated from data. For example, f(x) =
∑

j βjφj(x), where φj are known

basis functions. Smoothing splines (SS) allow f to be flexible enough to vary in a

possibly infinite dimensional space. The underlying function space is spanned by a

kernel function R(s, t), which lies in a reproducing kernel Hilbert space (RKHS). The
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estimation of f is through the minimization of a penalized least square criterion,

1

n

n∑
i=1

(yi − f(xi))
2 + λ‖f‖2

rkhs

where f ∈ H0 ⊕ H1 and H0 = span{φ1, ...φJ}, H1 = span(R(s, t)),with R(s, t) the

kernel function. It is known that the optimal estimator of f(x) has an additive

structure of parametric part and nonparametric part:

f̂(x) =
J∑
j=1

βjφj(x) +
n∑
i=1

ciR(x, xi)

where β and c can be solved by minimizing the penalized least square criterion. The

choice of λ, which controls how smooth the function is, turns out to be critical.

Methods based on generalized cross validation (known as GCV) [11] can be used to

estimate λ. When λ̂ = 0, the model will interpolate data; when λ̂ → ∞, the model

converges to least square estimate.

For computer models, generally speaking, the observational error is very small.

Nevertheless, one ignores this and fits the (implicit) model yi = f(xi) + εi. Thus a

non-zero GCV estimate for λ does not interpolate the data.

One typical subclass of smoothing spline models is polynomial smoothing splines.

(Without loss of generality, the support of the input variables can be restricted to

[0, 1].) It seeks a minimizer of

n∑
i=1

(yi − f(xi))
2 + λ

1∫
0

(f (m))2dx

in the space C(m)[0, 1] = {f : f (m) ∈ L2[0, 1]}. This is a RKHS with H0 = {f : f (m) =

0} and H1 = {R(x, y)}, where one basis function of H0 is polynomial functions
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{xk, k = 0, ...m− 1}, and the reproducing kernel function is given by

R(x, y) =

1∫
0

(x− u)m−1
+

(m− 1)!

(y − u)m−1
+

(m− 1)!
du

It should be noted that there are other representation forms of the reproducing kernel

functions, which leads to the same functional space. The above representation is one

of the most commonly used forms.

In a p-dimensional problem, a weighted linear combination of the form

R̃ =
L∑
l=1

θlRl

is often used, where {R1, R2....RL} corresponds to a tensor product set of one-

dimensional kernels of degree d (see [29] for details). The total number of kernels

involved L depends on both p and d. This is usually called Smoothing Spline ANOVA

(SS-ANOVA), in which the model fits an ANOVA decomposition of the targeted func-

tion f using tensor-product kernels. Each of the parameters θ` (often called smoothing

parameters) needs to be optimized from the data. When the dimension p is large,

the number of smoothing parameters involved could become huge even with a mild

choice of d = 2 (up to quadratic effects). As we will see, SS-ANOVA does not scale

up to situations with even moderately large input space.

Therefore, we also consider an alternative: smoothing splines with product kernel

(SS-Prod): Assume f is from a RKHS space associated with a kernel function K(s, t),

K(s, t) =
∏
j

e−τj(sj−tj)
2

.
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We estimate f by minimizing the criterion

1

n

n∑
i=1

(yi − f(xi))
2 + λ‖f‖2

rkhs.

Define θ = (τ1, ...τp, λ), given θ, the explicit estimation of f can be given as discussed

before. To estimate θ, we can use the generalized cross validation (GCV) criterion

proposed by [74].

2.2 MARS, Expanded-MARS (EMARS) and MART

2.2.1 MARS and Expanded-MARS (EMARS)

Multivariate Adaptive Regression Splines (MARS) was first introduced by Fried-

man [19], and it has been applied in many applications. It is built on hinge functions

of the form [xi − u]+ or [u− xi]+. Formally, MARS builds a model of the form

f̂(x1, ...xp) = α0 +
∑
j

αjBj(x1, ...xp)

with eachBj being either a hinge function or product such as [xi−u]+[xj−v]+[xk−w]+.

The knots are determined at the data values and the coefficients α are estimated us-

ing a least square form of criterion.

The model building process usually involves two stages: forward selection and

backward pruning. At the first forward selection stage, the model starts with a con-

stant term 1; then at each step, it finds a new pair of hinge functions [xi − u]+ and

[u − xi]+ to make some new basis functions, which gives the maximum reduction in

residual errors. Once a pair ([xi − u]+, [u− xi]+) got selected, it is removed from the

set of candidate basic functions. Next, additional basis functions are added, based

on the product of the existing set and all other available candidate basis functions.
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For example, the next choice could be product of the form [xi − u]+[xj − v]+ or

[xi − u]+[v − xj]+ where i 6= j.

The choice of which variable to use and the choice of knot u depends on a greedy

search algorithm. The search can be done fairly fast by using a least-square update

technique, and there are efficient algorithms in R. This process of repeatedly adding

basis functions is stopped until the reduction in residual error is smaller than a preset

threshold or some other condition.

To avoid over-fitting, a second stage – backward pruning is used in the algorithm.

This deleting process is done one by one until some condition is satisfied. An existing

term will be deleted if the resulting sub-model gives better cross validation error.

After pruning, some unimportant variables will be eliminated from the model. The

final model consists of a constant term, main effects [xi − u]+, two way interactions

[xi − u]+[xj − v]+ and three-way interactions etc.

MARS has been shown not to do as well as GaSP for predictive modeling in

comparative studies on computer models ([4]). It appears that the reason is because

it explicitly does not allow interaction terms within the same variable. For instance,

it would not allow terms like [xi − u]+[xi − v]+. To overcome this limitation, we

considered an expansion of MARS by expanding the predictor space. [We will assume

throughout the space of the input variables is non-negative. Typically we can scale

the inputs to be in [0, 1] before fitting emulators.] There are in fact two ways to do

this.

1. include L copies of (x1, ...xp) in the predictor space; or

2. in addition to (x1, ...xp), add {(x2
1, ...x

2
p); ....; (xL1 , ...x

L
p )}.
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To understand the difference between the two, consider just one input variable x and

let v be a knot point. Further, suppose we take L = 2 so that we are only adding a

quadratic term. Version1 adds the functions [(x− v)+]2 and [(v − x)+]2 as potential

basis functions in addition to the first-order hinge function. Version two, however,

will add the functions [(x2 − v2)+] [(v2 − x2)+] as new candidate functions. From a

conceptual point of view, Version One seems more natural. However, in numerical

comparisons, Version Two did slightly better, so we have restricted our analysis to

this version.

So we have the following algorithm for Expanded MARS (EMARS):

Step 1: For a multi-dimensional problem with p predictors (x1, ...xp), expand the

predictor space from p to L× p by augmenting the original predictors with

x̃ = (x1, ....xp;x
2
1, ....x

2
p; ....;x

L
1 ....x

L
p )

Step 2: Fit the ordinary MARS model based on the expanded predictor space x̃.

The maximal augmenting parameter L and interaction degree d can be decided by

minimizing the cross validated errors of the original MARS model. The idea is that

we can use candidate values of L and d, then search for the optimal pair which has

the smallest cross validated errors. In practice, we found that choosing d and L to be

at most three (allowing up to cubic and third-order interactions) gives good results.

2.2.2 Multiple Additive Regression Trees

Multiple Additive Regression Trees (MART) was introduced by Friedman [20].

Like MARS, it is designed for approximating functions with multidimensional inputs.

It uses regression trees as base functions (base learner).
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Typically, given data {yi; xi}ni=1, xi = {x1i, x2i...xpi}, MART tries to approximate

the function by using an additive structure

f(x) =
M∑
j=0

βjh(x; aj)

where each aj and βj are parameters needed to be learned from data. The functions

h(x; a) are regression trees indexed by parameter a, i.e at each iteration step j, the p

dimensional space is split into some disjoint hypercubes Rlj, and in each hypercube,

a constant value is estimated from data:

h(x; aj) = h(x; {Rlj}Ll=1) =
L∑
l=1

ȳlj1(x ∈ Rlj)

The model fitting process involves M iterations. Starting with a constant term γ:

f0(x) = arg minγ
∑n

i=1 Ψ(yi; γ), where Ψ is the loss function, i.e a square loss. With

j >= 1 till M , do the following:

1. Randomly take a subset with size ñ from the training data, and ñ < n. Use the

subset as training. (sample without replacement)

2. Calculate the pseudo residuals using gradient of the loss function. ỹ = −[∂Ψ
∂f

]f=fj−1(x).

With square error loss, the residual is ỹi = yi − fj−1(xi)

3. Fit a L-terminal regression tree model on the residual data {ỹi; xi} to get the

splitting rules Rlj, l = 1...L.

4. In each hypercube region Rlj, fit the coefficients of base learners:

γlj = arg minγ
∑

xi∈Rlj

Ψ(yi, fj−1(xi) + γ)
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5. Update the current estimate by

fj(x) = fj−1(x) + ν · γlj1(x ∈ Rlj)

where ν is the learning rate that need to be tuned when fitting the model and ν

is typically set to be less than .1 to have better generalization error. Besides the

learning rate ν, the number of trees M and tree size L also need to be tuned when

fitting MART.

2.3 Numerical Studies

2.3.1 Study Design

In this section, we compare the performance of six statistical approaches on several

different test cases.

• A: Additive function in five dimension:

y = x1 + 2x2
2 − 0.5x3

3 − 0.2 sin(x4) + e−0.3x5

where each xi lies in [−1, 1]. This is a linear combination of very smooth func-

tions. For training, we used a Latin hypercube design with 200 points on the

5-d space. To evaluate the predictive capabilities of the models, we used an

independent Latin hypercube design with another 100 points.

• A′: Five “inert” variables were added to case A:

Namely, in addition to the five inputs in scenario A, we augment the input space

with five inert (noise) variables {r1, r2, ..r5} that do not affect the response y.

The goal is to test how each method performs in a high-dimensional input space

with several unimportant input parameters. This is important in applications

with factor sparsity where many inputs variables have little or no effect. It is of
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interest to examine how an emulator performs in such situations. We use the

same set up for training and testing: 200 points (200 5-d LHS sample augmented

with 200 5-d inert variables) as training and 100 LHS sample as testing.

• B: Five-dimensional function with additive structure plus two second-order in-

teractions:

y = cos(x1 + 2x2)− x3/(1 + x2
4) + x2

5

where each xi lies in [−1, 1]. This model is a bit more complicated than scenario

A with the existence of low-order interaction. Similar to the settings in A, we

choose 200 LHS sample for training and another 100 LHS points for evaluation

purpose.

• B′: Five inert variables added to the model in B:

Similar to case A′, we expand the five-dimensional input space of case B with

additional five inert variables. Choose 200 LHS points as training and 100 LHS

points as testing.

• C: 5-dimensional function with higher-order interactions:

y =
e−0.5x1−x2

1 + 0.2x2
3 + 0.5x2

4 + 0.6x2
5

where each xi lies in [−1, 1]. In this case, the response function is a non-linear

function of all five input variables. Again, we choose 200 LHS as training and

100 LHS as testing.

• C ′: Five inert variables added to model in C.

The analogous scenario of B′ to B.

• D: Functions with highly local structures:
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– D1: We start with a one-dimensional function

f(x) = [sin(πx/5)+1/5 cos(4πx/5)]∗I(x < 10)+(x/10−0.8)∗I(x >= 10)

where x ∈ [0, 20].

The solid curve in the top left hand panel of Figure 2.1 shows the function.

We see that it has a lot of local curvatures when 0 <= x <= 10 and

the function becomes linear when x > 10. Unlike the globally smooth

functions in cases A, B, and C, this has many abrupt changes although

the function is still continuous. We will return to a discussion of this

figure and a comparison of the results. We selected 250 equally-spaced

points on [0, 20] for training, and an evaluation data set was chosen using

400 equally-spaced points on [0, 20].

– D2: We expand the function in D1 to a 2-d function as follows:

g(x1, x2) = f(x1) ∗ x2/20

where x1, x2 ∈ [0, 20]2. Figure 2.2 shows the true function, and we can see

the the interaction between x1 and x2 is localized. To assess the perfor-

mance of the methods on this example, 200 LHS points on the 2-d space

[0, 20]2 was used for training, and a 20×20 = 400 full-grid design was used

as the evaluation data set.

– D3: Expand D2 to five dimensions:

Define

y = f(x1) ∗ x2/20 + (x3/10− 1)2 ∗ x4/10 + cos(x5/10)

where each xi ∈ [0, 20]. This is a combination of globally smooth functions
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with global interaction and locally smooth functions with local interac-

tions. This is a very challenging scenario. For training, 500 LHS points

were chosen, and 100 LHS points were chosen independently as the evalu-

ation points.

– D′3: Add 5 inert variables to the model in D3:

This setting is similar to those in A′, B′, C ′.

• E: High-dimensional problem with factor sparsity:

For this, we considered a 20-dimensional function with sparse input effects.

y =
5x12

1 + x1

+ 5(x4 − x20)2 + x5 + 40x3
19 − 5x1 + 0.25x2

13

+0.05x2 + 0.08x3 − 0.03x6 + 0.07x7 − 0.09x9 − 0.01x10 − 0.07x11

with no effects on (x8, x14, x15, x16, x17, x18) (inert variables). The input domain

is [−0.5, 0.5]20. This is one of the testing functions used in Ben-Ari and Steinberg

(1994) [4]. In the previous cases, the dimensions have been no larger than 10.

Through this example, we want to test how those models perform on higher-

dimensional problems with sparse inputs. Again, 200 LHS points were chosen as

the training, and 100 LHS points were chosen independently as the evaluation

points.

2.3.2 Results

We now examine the predictive performance of the six methods on the different

test cases. Here prediction is based on RMSE (root-mean-squared-error) of the test

data set. More formally,

RMSE =

√√√√ 1

n

n∑
i

(yi − ŷi)2,

23



Table 2.1: Computational time comparison (elapsed CPU time in seconds)

Dimension MARS EMARS SS ANOVA MART Bayesian GaSP SS-Prod
5 0.067 0.199 11.731 13.742 15.871 14.574
10 0.089 0.641 NA 24.642 42.573 40.585
20 0.132 2.312 NA 58.57 142.313 138.542

where ŷi is the predictor obtained from the test set and RMSE is computed over

all the test samples. To get robust results, we replicated the results for each case

(except for D1). That is, we generated 20 LHS training and testing samples for each

case and computed an RMSE for each of the 20 replications. Table 2.2 shows the

average RMSE values. We will also examine the fitted functions and surfaces visu-

ally through the Figures 2.1 to 2.3 later. We also compared the computational times

of model fitting using the 6 emulators on the same computer. Table 2.1 shows a

comparison of the CPU time (in seconds) as the dimensions of the input space vary

from 5 to 10 to 20. These computations were done on a laptop with Intel Core 2 Duo

(2.26GHz) and 4GB memory. SS-ANOVA did not scale up to even 10 dimensions,

While SS-Prod did, it is not competitive. B-GaSP is known to be computationally

intensive as it is based on computing the inverse of high-dimensional covariance ma-

trices. The performance of MART is in between but orders of magnitude higher than

MARS and EMARS. The latter two are one to two orders of magnitude faster than

the others. MARS is faster than EMARS since it deals with a lower-dimensional

input space but, as we will see soon, its predictive performance is poor compared to

the others.

Table 2.2 provides a comparison of the predictive performances based on RMSE.

Here are main observations:

• In general, MARS does not perform as well as the other methods. EMARS

outperforms MARS in all cases; while this is to be expected (since EMARS

includes MARS as a special case), the extent to which it outperforms MARS
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Table 2.2: Average RMSE on test data averaged over 20 replications. Top performers
are indicated in bold.

Scenarios MARS EMARS SS-ANOVA MART B-GaSP SS-Prod
A - Additive 0.034 0.007 0.002 0.098 0.011 0.010
A′ - Additive with inerts 0.038 0.008 NA 0.101 0.016 0.012
B - Lower order interaction 0.111 0.015 0.007 0.135 0.021 0.019
B′ - B with inerts 0.121 0.017 NA 0.140 0.031 0.021
C - Higher order interaction 0.104 0.052 0.047 0.134 0.022 0.021
C ′ - C with inerts 0.124 0.055 NA 0.157 0.034 0.023
D1 - Locally smooth 1-d 0.299 0.026 0.008 0.016 0.097 0.077
D2 - Local interaction 2-d 0.098 0.021 0.029 0.021 0.057 0.055
D3 - Combination on 5-d 0.117 0.046 0.069 0.043 0.082 0.077
D′3 - D3 with inerts 0.119 0.047 NA 0.049 0.121 0.082
E - Higher dimension 0.021 0.011 NA 0.013 0.017 0.014

is quite surprising. Since the additional computational cost of EMARS is not

that much more than MARS, one could conclude that MARS is inadequate and

is dominated by EMARS for computational modeling.

• MART performs best when the input-output relationship is not as smooth, as

is the case in the four sub-cases of D. This is to be expected based on our

knowledge of regression trees. It is not competitive in the smooth cases of A,

B, and C (and their higher dimensional versions A′, B′, and C ′).

• SS-ANOVA does extremely well in all applications with five or fewer input pa-

rameters. For the 5-dimensional problems, it performs the best in Cases A and

B which are relatively smooth functions with global structures. D2 and D3 are

two- and five-dimensional problems with more local structures, and SS-ANOVA

does quite well (behind EMARS and MART). However, SS-ANOVA does not

scale up to dimensions higher than five in the problems that we considered. The

algorithms did not converge. Its computational cost is comparable to SS-Prod

and B-GaSP.

• SS-Prod performs quite well overall. It is the best for situations C and C ′ that

involve higher-order interactions. It dominates B-Gasp in almost all cases (ex-
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cept for a small difference for the case of C. Its computational cost is comparable

to that of GaSP, which is considered to be computationally expensive. It does

not do as well as EMARS, SS-ANOVA and MART for the four sub-cases on D

with local features – the RMSE are higher by a factor of two.

• B-GaSP, which is the method of choice in computational studies, performs rea-

sonably well overall except for all the four sub-cases of D with a lot of local

structure. As noted in the last item, SS-Prod outperforms it in terms of pre-

dictive performance in almost all cases.

• EMARS has the most “winners” among the cases studied: its performance is the

best or very close to the best for A′, B′, D2, D3, D4, and E. It is outperformed

by SS-ANOVA in small dimensions: A,B, and D1. It outperforms B-GaSP and

SS-Prod in all cases except C and C ′ (cases with high-order interactions). The

RMSE is bigger by a factor of 2 in these two cases. In others, the RMSE’s

are smaller, and a lot smaller (up to a factor of 1/3) for the 4 sub-cases of D.

EMARS also does well in high-dimensional cases with sparse inputs.

We now turn to a visual examination of some of the fitted input-output relation-

ships and residuals. We consider first the performance of the six methods on the

one-dimensional problem in Case D1, which has complex local features. As we can

see from Figure 2.1, MARS performs quite poorly in this case. It ends up with three

knots. The fit is piecewise linear as the original version of MARS does not allow for

polynomials. On the other hand, EMARS does a good job of recovering the under-

lying function. It does not do as a good a job near the sharp curves, but its overall

performance is quite good. B-GaSP does not perform as well in recovering some of

the curvatures. The same is true for SS-Prod. On the other hand, SS-ANOVA and

MART do extremely well, and this was seen in our discussion of the results in Table

2.2. Unfortunately, as discussed earlier, SS-ANOVA does not scale up to applications
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Figure 2.1: Case D1 – A comparison of 6 emulators: MARS, EMARS, SS-ANOVA,
MART, Bayesian-GaSP, SS-Prod: f(x) = [sin(πx/5) + 1/5 cos(4πx/5)] ∗
I(x < 10) + (x/10 − 0.8) ∗ I(x >= 10). The solid line shows the true
function curve, while the dashed line shows the 6 fitted curves.

to dimensions much higher than five.

Figure 2.2, which corresponds to case D2, is a two-dimensional version of D1

(Figure 2.1). Figure 2.3 shows the fitted response surfaces using the six different

emulators. Overall, they all do a reasonable job of reconstructing the original surface

except for MARS (top left hand panel). EMARS, SS-ANOVA, and MART do a better

job than B-GaSP and SS-Prod in recreating the ridge in the middle (blue) as well as

the shape of the flap (green) to the left.
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Figure 2.2: Case D2 – True surface in scenario D2: g(x1, x2) = f(x1) ∗ x2/20, where
f(x) = [sin(πx/5) + 1/5 cos(4πx/5)] ∗ I(x < 10) + (x/10− 0.8) ∗ I(x >=
10), and each xi ∈ [0, 20]. The plot has been rotated so that a better
visualization can be obtained.
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Figure 2.3: Case D2 – Fitted surface on case D2 using MARS (upper left),
EMARS(upper right), SS-ANOVA(middle left), MART(middle right),
Bayesian-GaSP (lower left), SS-Prod (lower right) respectively. The eval-
uation points are 20× 20 = 400 points on the [0, 20]2 space.
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2.4 Assessing the Emulators on Illustrative Test Cases

We now use several illustrative test cases to compare the emulators. Some of these

test cases have analytical expression for the input-output relationships and been used

by other papers in the literature.

2.4.1 Piston simulator

This deals with an example for simulating a piston moving within a cylinder [4].

One of the quantities of interest is the time the piston takes to complete one cycle.

The seven factors affecting the cylinder time are:

• M = Piston weight (kg), 30-60

• S = Piston surface area (m2), 0.005− 0.020

• V0 = Initial gas volume (m3), 0.002− 0.010

• k = Spring coefficient (N/m), 1000− 5000

• P0 = Atmospheric pressure (N/m2), 9× 104 − 11× 104

• T = Ambient temperature (K), 290 - 296

• T0 = Filling gas temperature (K), 340-360

The input-output relationships has been modeled by the function:

Cycle Time = 2π

√
M

k + S2 P0V0

T0

T
V 2

where

V =
S

2k
(

√
A2 + 4k

P0V0

T0

T − A)

and

A = P0S + 19.62M − kV0

S
.
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Table 2.3: Comparison of RMSE on the Piston circular data

Data MARS EMARS SSANOVA MART B-GaSP SS-Prod
Piston simulator 0.028 0.009 0.013 0.089 0.012 0.011
Piston simulator with inerts 0.029 0.014 NA 0.091 0.025 0.016

Although there is an analytical expression for the input-output relationship, it is fairly

complex.

To compare the methods, we chose the size of the training data to be 200, and the

size of test size to be 100. Latin Hypercube designs were used to generate samples.

We also added seven inert variables to test the performance under sparsity. Table 2.3

provides a comparison of the predictive performances of the six methods. EMARS

does the best for both cases, with and without the inert variables, and its RMSE is

almost a factor of 2 smaller than that of B-GaSP for the case with inert variables.

The fitted function using EMARS:

ˆcycle.time = 0.5177 +−67.2662(S − 0.0062)+ + 72.3274(V 0− 0.0027)+

+1813.7953(S2 − 0)+ − 33.2036(V 0− 0.0049)+

−0.0025(V 0− 0.0027)+(k − 1889.9493)+ − 3209212.7568(V 0− 0.0027)+(S3 − 0)+

−1.4965(V 0− 0.0027)+(42.2078−M)+ + 1e− 04(M3 − 81413.6129)+(0.0099− S)+

+0.3477(S − 0.0113)+(V 0− 0.0027)+(k − 1889.9493)+

−2.1987(V 0− 0.0027)+(k − 1889.9493)+(0.0113− S)+

The predicted model is not always the best for the purposes of interpretation.

Nevertheless, examining this function provides an insight into the fitted model. We

see that input factors P0, T and T0 do not appear in the model. This is confirmed
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from Figure 2.4, the factor-effects plot, which shows the relative contribution of the

factors to the MSE. (To produce such plots, we vary one input across its domain

and calculate the predicted output using EMARS, averaging over the other inputs.)

S, piston surface area, has the major contribution, followed by V0, initial gas vol-

ume. M and k have much smaller contributions. Returning to the fitted model from

EMARS, we see that S has a cubic effect on the response. Figure 2.5 shows the one-

dimensional marginal relationships between the inputs and output which demonstrate

some of these conclusions through the projections to one-dimensional input-output

relationships.

Figure 2.6 shows three-dimensional views of the relationship: Cycle time versus

(S, V0). The left panel is the true marginal relationship between Cycle Time and

(S, V0) (averaged over the other factors) and the right panel shows the fitted surface

from EMARS. We can see the ridges in the fitted model. This is an artifact of using

the hinge functions and is common to MARS-type fits. Figure 2.7 shows the one-way

marginal residuals using EMARS for the six different methods. Again, we see the

sharp ridges of MARS and to a lesser extent EMARS. Figure 2.8 shows the two-

way marginal residuals. These figures provide additional (visual) comparisons of the

overall performance of the six different emulators.

2.4.2 OTL Circuit

This application is based on codes to simulate an output transformerless (OTL)

push-pull circuit [4]. The target variable of interest is the midpoint voltage (Vm)

which is affected by the following six input variables.

• Rb1 = Resistance b1(K −Ohms), 50− 150

• Rb2 = Resistance b2(K −Ohms), 25− 70
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Figure 2.4: The relative variable contribution on the piston data analysis using
EMARS.
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Figure 2.5: The one way marginal effects analysis on the piston data – true effects vs
fitted effects using EMARS: solid black curves show the truth, while blue
dashed lines show the fitted effects using EMARS. Black points are the
observed points.
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Figure 2.6: One example of a two way marginal effect analysis on the piston data –
left panel shows the true marginal effects of cycle.time ∼ S × V0; right
panel show the fitted surface using EMARS.
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Figure 2.7: A comparison of one way marginal residual curves on the piston data
analysis.

34



Figure 2.8: A comparison of two way marginal residual surfaces on the piston data

analysis. The residual surfaces showed are: (cycle.time − ̂cycle.time) ∼
S × V0.
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• Rf = Resistance f(K −Ohms), 0.5− 3

• Rc1 = Resistance c1(K −Ohms), 1.2− 2.5

• Rc2 = Resistance c2(K −Ohms), 0.25− 1.2

• β = Current Gain (Amperes), 50− 300

Vm =
(Vb1 + 0.74)β(Rc2 + 9)

β(Rc2 + 9) +Rf

+
11.35Rf

β(Rc2 + 9) +Rf

+
0.74Rfβ(Rc2 + 9)

(β(Rc2 + 9) +Rf )Rc1

where

Vb1 =
12Rb2

Rb1 +Rb2

.

As before, we analyzed the application as is and with six inert variables. Again, we

chose training size to be 200, and test size to be 100. Latin Hypercube designs were

used to generate samples.

Table 2.4 shows a comparison of the predictive performance. Again, EMARS

performed the best. The RMSE was about 1/2 of that of B-GaSP and SS-Prod for

the situation with inert variables. The fitted function using EMARS is

ˆV m = 4.769 + 1e− 04(Rb12 − 5682.2559)+ + 1e− 05(5682.2559−Rb12)+

+0.1075(Rb2− 60.1751)+

−0.0943(60.1751−Rb2)+ + 0.3373(Rf − 2.5513)+ − 0.3299(2.5513−Rf)+

−0.0359(Rc12 − 4.1695)+ + 0.1835(4.1695−Rc12)+ − 0.0499(Rb1− 111.7794)+

+0.0519(111.7794−Rb1)+−6e−04(Rb22−4205.3081)+ +4e−04(4205.3081−Rb22)+
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Figure 2.9: The relative variable contribution on the OTL data analysis using
EMARS.

Table 2.4: Comparison of RMSE on the OTL Data

Data MARS EMARS SSANOVA MART B-GaSP SS-Prod
OTL circular 0.027 0.007 0.011 0.087 0.008 0.009
OTL circular with inerts 0.031 0.007 NA 0.088 0.015 0.011

+1e− 05(Rb13 − 1396641.9615)+(60.1751−Rb2)+

−1e− 05(60.1751−Rb2)+(1396641.9615−Rb13)+

+0.109(Rf − 2.2089)+(4.1695−Rc12)+ − 0.0877(2.2089−Rf)+(4.1695−Rc12)+ .

Only the factor β, current gain, does not appear in the fitted model. Although

all the other five appear in the model, Figure 2.9 shows that Rb1 and Rb2 are the

main contributors to variance explained. Figures 2.10, 2.11, 2.12, and 2.13 provide

additional visual information on the fitted model.
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Figure 2.10: The one way marginal effects analysis on the OTL data – true effects
vs fitted effects using EMARS: solid black curves show the truth, while
blue dashed lines show the fitted effects using EMARS. Black points are
the observed points.

Figure 2.11: One example of a two way marginal effect analysis on the OTL data –
left panel shows the true marginal effects of Vm ∼ Rb1×Rb2; right panel
show the fitted surface using EMARS.
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Figure 2.12: A comparison of one way marginal residual curves on the OTL data
analysis.

2.4.3 The 512 Hyades Runs

This example is from the astrophysics applications at the University of Michigan

Center for Radiative Shock Hydrodynamics (CRASH). As mentioned in the Intro-

duction, the goal of this project is to develop and qualify the computational model

for radiation hydrodynamics in applications that mimic supernovae [36]. As noted

in this reference, the computational code simulates “an experiment where a laser is

used to irradiate a Be disk and launches a radiative shock down a Xenon filled tube.

Besides this primary shock traveling the tube, there is a second shock called “wall

shock”, which is caused by the ablation of the tube wall because of radiation heat.

The two shocks as well as the Xe-Be interface interacts together to produce a com-

plex system. The physics involved is relevant to astrophysics and high-energy-density

physics research. The CRASH code, which simulates this experiment, will help to

gain insights into the physical process.”
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Figure 2.13: A comparison of two way marginal residual surfaces on the OTL data
analysis. The residual surfaces showed are: (Vm − V̂m) ∼ Rb1 ×Rb2.
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Table 2.5: Comparison of RMSE on the Hyades study

Data MARS EMARS SSANOVA MART B-GaSP SS-Prod
512 Hyades run 0.0030 0.0017 NA 0.0027 0.0032 0.0029

Because the CRASH code does not have the ability to model the first nanosecond of

the experiment, the Hyades code [40] is used to develop initial inputs to the which

will initialize the CRASH code. Our discussion here will focus on the Hyades code

which has 15 input parameters and 40 output parameters. The 15 inputs include Be

thickness, laser energy, xenon density, and other variables, including mesh parame-

ters, Be opacity and Xe opacity parameters, etc. The 42 outputs measure a number

of different quantities such as shock position, velocity, density and pressure. We pick

one particular variable – the shock location, to test our emulators. A Latin hypercube

design with sample size of 512 was used in the experiment. We hold out 100 of these

points randomly for testing and use the rest to train the emulators.

Table 2.5 shows the predictive performance of the six methods on the Hyades

example. Again, EMARS performed the best and does almost twice as well as B-GasP.

Figure 2.14 shows the results of the analysis, using EMARS, for factor screening.

There are 3 important variables with three others of lesser importance. Figures 2.15

and 2.16 show additional one- and two-way marginal plots from the fitted models.

2.4.4 Climate Applications

Finally, we turn to an application on climate models to compare the methods.

The underlying computer model is NASA’s Global Environmental Observing System

(GEOS-5) (see Suarez et al. [70]), which is used to study the hydrological cycle for

oceanic and land-based deep convection. In this application, there are 19 inputs,

describing variety of cloud, convection parameters used in the model. The output

variable used in this study describes the convective precipitation rate (in mm/hr) in
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Figure 2.14: Relative variable contribution of the 15 inputs in the Hyades case using
EMARS model.

Table 2.6: Comparison of RMSE on the climate data study

Data MARS EMARS SSANOVA MART B-GaSP SS-Prod
Climate data 0.0092 0.0021 NA 0.0081 0.0052 0.0031

a certain region. In additional to those 19 inputs, we have one “inert” input to test

emulators’ variable screening abilities. The number of design points are 452, which

covers the 20-dimensional input space using a Latin Hypercube design. We fitted

the six methods using 400 randomly chosen data as training sample, and 52 points

as the independent validation set. Figure 2.17-2.20 shows the variable contribution

as well as the marginal sensitivity plots. The prediction metrics based on RMSE on

validation set shows EMARS stands out (see table 2.6). The results are discussed

further below.

2.4.5 Summary of the Comparisons

On the piston simulator study, the four methods EMARS, SSANOVA, Bayesian

GaSP and SS-Prod all did quite well, with EMARS having some edge over others.
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Figure 2.15: The 1-way marginal plots based on EMARS model on the Hyades data.
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Figure 2.16: One example of the 2-way marginal plots based on EMARS model on the
Hyades data. The surface plotted here is shock.location vs Be.gamma
and Flux.lim parameter.

However, when we augmented the inert variables, the performance of EMARS stands

out.

In the Piston-simulator study, from the marginal plots using EMARS (one-way

marginals in Figure 2.5 and two-way marginal in Figure 2.6), we can see the under-

lying output-input relationship is very smooth. Also, it seems the first four inputs

M,S, V0, K dominate the variation of output, while effects of the others are relatively

flat across their input domain. Figure 2.7 and 2.8 shows the residual plots of the 5

models and the results are consistent with the RMSE comparison in Table 2.3.

The OTL study gives similar story as the piston simulator study. Also notice

that the performance of MART is not competitive, as the study involves very smooth

functions. Figure 2.9-2.13 shows how the marginal plots and variable screening results
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Figure 2.17: The relative variable contribution of the 20 inputs in the climate data
study using EMARS model.
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Figure 2.18: The 1-way marginal sensitivity plots of the first 10 inputs in the climate
data study using EMARS model.
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Figure 2.19: The 1-way marginal sensitivity plots of the second 10 inputs in the cli-
mate data study using EMARS model.

Figure 2.20: The 2-way marginal sensitivity plots of 2 pairs of most important inputs
in the climate data study using EMARS model.
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look like in this case.

On the 512 Hyades run data study and the climate data study, EMARS again does

better than the others. SS-ANOVA fails to converge in this case because of the rela-

tively large dimension: d = 15. Figure 2.15 shows the one-dimensional effects of each

individual input, and we can see how the output interacts with those inputs. Figure

2.16 shows one example of the two-way marginal plots, shock.location vs Be.gamma

and Flux.lim.

One interesting point we can see is that out of the 15 inputs, only 7 inputs have

realistic impacts on the response, while the other 8 inputs stay relatively flat. This

can again be confirmed in Figure 2.14, where we calculate the relative contribution

of each individual inputs to the output. We used the permutation method to calcu-

late the marginal contributions: we start with RMSE e0 on the training data, and

to evaluate the contribution of each input, we randomly permute this input while

keep the other inputs unchanged, so that the effect of this particular input would be

depressed. Then we compute the RMSE on the permuted data ei, and use the differ-

ence as the contribution of that particular input ci = ri− r0. What has been plotted

in figure 6 the relative contribution, where we converted ci into percentages: c̃i = ciP
i ci

.

One additional comparison we have done is to see how well each method can screen

out the purposely added “inert” variables. And the results in Table 2.7 shows that

the EMARS is quite effective in screening inert variables out, while the benchmark

GaSP model tend to be impacted by those noise inputs.
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Table 2.7: Comparison of of inert variable screening abilities for 6 emulators. The
table below shows summation of relative contributions of inerts.

Data MARS EMARS SSANOVA MART B-GaSP SS-Prod
Piston with inerts 0.0002 0.0001 NA 0.0003 0.0031 0.0003
OTL with inerts 0.0003 0.000 NA 0.0005 0.0042 0.0006

2.5 Summary

In this study, we compared the performance of six different statistical emulators:

MARS, EMARS, MART, Bayesian GaSP, SS-Prod on a wide range of generated

functions as well as illustrative applications. The six methods included the expanded

MARS algorithm and the smoothing spline with product kernel. EMARS is a modi-

fied version of MARS to include polynomial terms such as [x2
i − u]+, [x

3
j − v]+... and

their interactions. We see that EMARS does quite well in a variety of situations; it

not only inherits the adaptivity of the MARS model, but is enriched by the additional

basis components. The proposed SS-Prod model is a modification on the SS-ANOVA

with a product exponential kernel function. It inherits the good parameter estimation

using the the same generalized cross validation method, but avoids the difficulty that

SSANOVA faces when the dimension of the problem goes up.

On the generated functions studies, we came up with 11 scenarios that covers

a wide range of function characteristics: additivity, lower order interaction, higher

order interaction, locally smooth and local interaction, the complexity due to inert

variables and higher dimensional problem with sparse inputs. We also compared

those 6 emulators on 4 known computer codes data. From the comparison results,

we see that the EMARS does well in general. It outperforms GaSP model in most

of the cases. The advantage of EMARS is especially high in cases where challenging

local features exist, and in higher dimensional cases. EMARS appears to be able

to do well in the presence of inert variables while the GaSP seems to be affected in
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such situations. SS-Prod has slightly better prediction result compared with GaSP.

SSANOVA can perform quite well in lower dimensional problem, but does not scale

up with dimension well. MART does not do well with smooth functions, but it can

be very useful when the underlying problem involves heavy local features. Overall, in

terms of computational efficiency and predictive performance, EMARS model stands

out as a good alternative.
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CHAPTER III

Calibration analysis of computer experiments

In this part of thesis, we focus on the calibration analysis of large-scale compu-

tational models. Calibrations problems have a long history and early studies had

focused on simple regression models that arise in measurement standards. The cali-

bration problem in our context involves complex models that are non-monotone and

with many-to-one relationships. So the calibration problem, which involves inverse

mappings, are challenging. Although the calibration problem has been studied in

this context in the literature, there are several important questions that have not

been addressed adequately. Perhaps the most important one is identifiability. We

discuss the different kinds of identifiability issues that can arise and then developed

several conditions that can be used to test for the existence of non-identifiability.

Using numerical methods, we illustrated how to implement such conditions in several

numerical examples as well as a case study.
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3.1 Introduction

We had noted in the Introduction that large-scale computational models are used

in applications where real physical experiments are impossible or difficult to conduct.

For the purposes of calibration, however, we need some results from physical experi-

ments against which the computational model and the calibration parameters can be

calibrated.

So we denote yf as the results from field experiments and yc as the results from

computer experiments. The inputs of computer experiments and the field experi-

ments, however, are not exactly the same. Beside common inputs shared by both field

experiments and computer experiments, which are usually refereed as variable inputs

or physical inputs, there are some additional inputs in computer experiments, usually

called calibration inputs. Specifically, a computer model output yc(x, θ) = f(x, θ)

depends on both physical inputs x and calibration inputs θ, but a field output

yf (x) = f(x, θ∗) + ε only depends on physical inputs x. Those θ∗s are fixed, un-

known, uncontrollable parameters in field experiments, but θs can vary as inputs

in computer models. The goal is to combine both computer data and field data to

calibrate the computer model by conducting inference on calibration parameters θ∗,

make prediction of future field experiments and quantify the uncertainty of such a

prediction. This is known as computer model calibration, which has been discussed

extensively in recent years [37] [34] [35] [3] [30].

The popular approach to deal with computer model calibration is using Gaus-

sian Spatial process models (GaSP). Kennedy and O’Hagan [37] proposed a Bayesian

method based on GaSP for calibration. The basic idea is to treat the computer data

and field data as the realizations of two correlated Gaussian Processes. The Bayesian

approach combines both sources of data to do both prediction and calibration by
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accounting for multiple source of uncertainties. Higdon et al. [35] have extended the

Bayesian calibration method into cases with multiple outputs. Bayarri et al. [3] ex-

tended the method to problems with functional outputs. As an alternative to the

Bayesian method, we will show later that one can also tackle the calibration problem

in a frequentist’s framework.

Despite extensive discussion of statistical approaches in computer model calibra-

tion, the question of whether or not an underlying calibration problem is identifiable

is still difficult to ascertain. As the functional relationship between the output of

a computer model and calibration parameters is generally unknown, there could be

cases when multiple sets (may be infinite) of calibration parameters that lead to the

same field output. This phenomenon is described as non-identifiability and we will

formally defined it in later sections. For instance, consider a simple example where

the computer model output is f(x1, x2, θ1, θ2) = x1 + x2 + θ1 − θ2 and the experi-

mental process yf (z) = f(z1, z2, 0.2, 0.8) + ε, where both x, z and θ are in [0, 1], and

ε is a random error. It is not difficult to see that in this case, θ1 and θ2 can not be

calibrated as there are infinitely many θ1 and θ2 pairs such that θ1−θ2 is equal to 0.6.

Figure 3.1 shows the results using two different calibration methods, which confirm

the conclusion.
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In order to tackle this problem, we first formally define parameter identifiability in

computer models and then developed several conditions to test the existence of such

issues. Using numerical methods, we illustrated how to implement the conditions in

several simulation examples as well as a case study. The outline of this paper is as

follows. In Section 3.2, we do a brief review of Bayesian Gaussian Process calibra-

tion method for computer experiments. In Section 3.3, we discuss an alternative way

to tackle the calibration problem in a freqentist approach. In Section 3.4, we for-

mally discuss the potential identifiability issue and developed statistical procedures

for checking parameter non-identifiability. In Section 3.5, we compare the EMARS

calibration method versus the widely used Bayesian GaSP calibration approach in

identifiable cases. In the last section, we conducted a real application case study on

the CRASH calibration problem.
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Figure 3.1: The upper plot shows the posterior distribution of the calibration pa-
rameter using the Bayesian GaSP method, in a simulation study with
f(x1, x2, θ1, θ2) = x1 + x2 + θ1 − θ2 and Y f (z1, z2) = f(z1, z2, 0.2, 0.8) + ε,
where ε ∼ N(0, 0.12) and all inputs are in [0, 1]. The lower panel shows
the calibration result using EMARS based bootstrap samples. As we can
see, θ1 and θ2 can not be calibrated in this case.
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3.2 A review of the Bayesian GaSP calibration method

As described in the introduction, in a lot of scientific studies where both computer

models and field experiments are available, there is a need to use both data to cal-

ibrate the computer model by estimating a set of calibration parameters. Formally,

we partition the inputs of a computer model into {x, θ} where {x} = {x1, ...,xp},

the p-dimensional regular (physical) input parameters, and {θ} = {θ1, ..., θk}, the

k-dimensional calibration parameters. In field data, we use {z1, ..., zp} to denote the

physical inputs and {θ∗1, . . . , θ∗k} to denote the true unknown calibration parameters

in the physical process. The outputs of simulator runs and field results are denoted

as yc and yf respectively.

Kennedy and O’Hagan [37] (2001) proposed a Bayesian GaSP calibration method,

where yc and yf are considered as realizations of two correlated Gaussian processes

Y c and Y f :

Y c(x, θ) = η(x, θ) (3.1)

Y f (z) = η(z, θ∗) + δ(z) + ε (3.2)

where η is a stationary Gaussian process with constant mean µ and covariance gen-

erated by a radial basis kernel, δ(z) is used to characterize the possible discrepancy

between computer simulator and field runs and is also assumed be a Gaussian pro-

cess with mean 0 and a covariance structure similar to η, ε is assumed to be i.i.d.

observational random error with N(0, σ2), and η, δ, ε are assumed to be independent

of each other.
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In general, the covariances are given as:

Cov(Y c(x, θ), Y c(x′, θ′)) =
1

λc

p∏
j=1

e−τcj(xj−x
′
j)

2
k∏

j′=1

e
−τθj′ (θj′−θ′j′ )

2

(3.3)

Cov(Y c(x, θ), Y f (z)) =
1

λc

p∏
j=1

e−τcj(xj−zj)
2

k∏
j′=1

e
−τθj′ (θj′−θ∗j′ )

2

(3.4)

Cov(Y f (z), Y f (z′)) =
1

λc

p∏
j=1

e−τcj(zj−z
′
j)

2

+
1

λδ

p∏
j=1

e−τδj(zj−z
′
j)

2

+ σ2I(z = z′) (3.5)

Writing all the hyper parameters {λc, λδ, σ−2, τcj, τθj′ , τδj, j = 1..p, j′ = 1....k} as

ψ, and combing {yci , y
f
i′ , i = 1...n, i′ = 1...m} as one vector d, the log-likelihood is

given as

l(d|ψ, µ, θ∗) ∝ −1

2
log |Σ| − 1

2
(d− µ)′Σ−1(d− µ) (3.6)

where

Σ =

 Σcc(ψ) Σcf (ψ, θ)

Σ′cf (ψ, θ) Σff (ψ)


and Σcc, Σcf and Σff are calculated by (3.3), (3.4) and (3.5) respectively. By imposing

appropriate priors π on the parameters {ψ, µ, θ∗}, the posterior log-likelihood is given

as

l({ψ, µ, θ∗}|d) ∝ −1

2
log |Σ| − 1

2
(d− µ)′Σ−1(d− µ) + log(π(ψ, µ, θ)) (3.7)

For priors, normal or uniform priors are often assumed for θ∗ and µ. For hyper pa-

rameters in ψ, typical prior choices are λc ∼ Gamma(10, 10), σ−2 ∼ Gamma(10, 0.1)

(Note that in practice, inputs are usually scaled to be in [0, 1]); for those τ ’s, beta
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priors are often assumed in the following fashion:

π(τ) ∝
∏
j

(1− e−τj)−0.5e−τj , τj ≥ 0

A fully Bayesian analysis would use MCMC samples to construct posterior distribu-

tion from (3.7) for the calibration parameter θ∗ and further construct the predictive

distribution for a future field run of yf (z∗).

3.3 A frequentist’s approach for computer model calibration

As an alternative to the Bayesian Gaussian process calibration method, one may

consider to adopt a frequentist’s approach. First, suppose the underlying function of

the computer model is: Y c(x, θ) = f(x, θ) while the field data come from the process

Y f (z) = f(z, θ∗) + εf

where the errors εf is assumed to be i.i.d. random errors.

In an ideal case, where we assume the computer model is efficient enough to pro-

duce any output at a given input almost instantly (cheap code), then the calibration

problem boils down to find an optimal estimate θ̂∗:

θ̂∗ = argmin
θ∗∈Θ

m∑
i=1

|yfi − f(zi, θ
∗)|2 (3.8)

However, in practice, we typically have to rely on statistical emulators to first estimate

the unknown function of the computer model f(x, θ). For instance, we can use the

popular Gaussian krigging method, or the EMARS approach that we discussed in

Chapter 2 to estimate f(x, θ). For details of those emulators, please refer to chapter

2 of this thesis. Now given the fitted function f̂(x, θ), and the physical data yf , we
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may optimize the following criteriion to find the optimal calibration parameter θ̂∗:

θ̂∗ = argmin
θ∗∈Θ

m∑
i=1

|yfi − f̂(zi, θ
∗)|2 (3.9)

After obtaining θ̂∗, the prediction of the physical process at an input x∗ is given

by:

ŷ(x∗) = f̂(x∗, θ̂∗) (3.10)

To estimate the variance of θ̂∗ and ŷ(x), we may use bootstrap, i.e. randomly select

B bootstrap samples from the computer data as well as the physical data; for each

bootstrap sample, we obtain an estimate of the calibration parameter and the corre-

sponding prediction for y(x∗), thus variances and confidence intervals can be created

using bootstrap estimates.

3.4 Calibration parameter identifiability

In the above sections, we reviewed two types of approaches for computer model

calibration: the Bayesian GaSP calibration method and the frequentist’s approach.

However, one important prerequisite for these methods to work is that the underlying

calibration problem is identifiable, i.e. the calibration parameter of interest can be

calibrated. In this section, we focus on this identifiability issue, and we start with

some definitions.

3.4.1 Definition of identifiability in calibration

Definition 1: Identifiability in computer model calibration. Consider a com-

puter model with yc = f(x, θ), where x ∈ X is the physical input and θ ∈ Θ is

the calibration input. If f(x, θ) = f(x, θ′) for all x ∈ X implies θ = θ′, we call the

computer model calibration problem identifiable; otherwise the underlying calibration

problem is non-identifiable.
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Under this definition, we see that for non-identifiable calibration problems, there

exist at least two distinct sets of calibration parameters θ ∈ Θ and θ′ ∈ Θ, such

that f(x, θ) = f(x, θ′) for all x ∈ X. For instance, the example we discussed in the

introduction, i.e. f(x1, x2, θ1, θ2) = x1 +x2 + θ1− θ2, would be such a non-identifiable

problem. In fact, for this particular example, there exist infinitely many calibration

parameters θ such at they all lead to the same computer model f(x, θ) (as a function

of x). We define this phenomenon as intrinsic non-identifiability.

Definition 2: Intrinsic non-identifiability in computer model calibration.

For a calibration problem with k > 1 calibration parameters (θ1, ...θk), if there ex-

ists a transformed set of parameters β = (β1(θ), . . . , βq(θ)) with q < k such that

f(x, θ) = f(x, β) for all x, then we call the calibration problem intrinsically non-

identifiable.

Though the intrinsically non-identifiable problems cover a large portion of all the

non-identifiable calibration problems, there are other types of non-identifiability such

as f(x, θ) = x + θ2, where θ ∈ R. Note that for this type, there exist multiple but a

finite number of calibration points which lead to the same computer model f(x, θ).

We call this type as non-identifiability caused by “multiple solutions”. Further, there

are problems where the two types of non-identifiability mix together. In the coming

sections, we develop conditions to check the existence of intrinsic non-identifiability

and also give some empirical guidelines for checking non-identifiability caused by

multiple solutions.
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3.4.2 A sufficient and necessary condition on intrinsic non-identifiability

Based on the definition of intrinsic identifiability, it is not difficult to see that

identifiability is related to partial derivatives of f(x, θ) with respect to θ. Catchpole

and Morgan [9] proved a theoretical result on checking parameter redundancy for a

family of complicated models that originated in biological research. Motivated by

their result, we derive the following sufficient and necessary condition on intrinsic

non-identifiability for computer model calibration.

Proposition 1: A sufficient and necessary condition on intrinsic

non-identifiability.

Consider a computer model with yc = f(x, θ), where x ∈ X is the physical input and

θ ∈ Θ is the calibration input. Suppose the partial derivatives of f with respect to θ

exist on X ×Θ. Let

D(x, θ) =

{
∂f(x, θ)

∂θ1

,
∂f(x, θ)

∂θ2

, . . . ,
∂f(x, θ)

∂θk

}
.

Then the intrinsic non-identifiability of the calibration problem is equivalent to: there

exists a k-dimensional non-zero vector λ(θ), which only depends on θ, such that

λ′(θ)D(x, θ) ≡ 0 for all x ∈ X and θ ∈ Θ.

The proof of Proposition 1 resembles that given by Catchpole and Morgan [9]:

the necessity comes directly from the differential chain rule, and the sufficiency comes

from the general solution of the first order Lagrange linear partial differential equa-

tions. We omit the details.

To better understand this condition, we consider two examples.
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• Example 1: yc = f(x, θ) = fx(x) + fθ(θ), where the effects of x and θ are

completely additive, and the number of calibration parameters k > 1. Since

D = (f ′θ1 , ...f
′
θk

) does not involve x, it is not difficult to see the existence of such

λ(θ). For example, when k = 2, one may let λ1(θ) = 1 and λ2(θ) = −f ′θ1/f
′
θ2

;

when k > 2, one may keep the same λ1 and λ2 while set λ3 = . . . = λk = 0.

• Example 2: f(x, θ) =
∑

j θjφj(x). In this case, D(x, θ) = (φ1(x), φ2(x)....φk(x)),

and the existence of λ(θ) demands that these basis functions be linearly depen-

dent, which is what one would expect.

3.4.3 A numerical approach to implement the necessary and sufficient

condition

Recall that the sufficient and necessary condition of intrinsic parameter non-

identifiability boils down to the existence of non-zero λ(θ) = (λ1(θ), . . . , λk(θ)) such

that
k∑
j=1

λj(θ)Dj(x, θ) = 0 (3.11)

for all x ∈ X and θ ∈ Θ, where Dj(x, θ) = ∂f(x,θ)
∂θj

, j = 1, . . . , k.

Since the functional form of f(x, θ) is unknown, checking (3.11) directly is chal-

lenging. In this section, we propose a numerical approach to check whether (3.11)

holds. The idea is to find a λ(θ) such that the sum of
(∑k

j=1 λj(θ)Dj(x, θ)
)2

over a

grid of points is minimized. If the resulting minimum is close to zero, it implies the

existence of a λ(θ) such that (3.11) holds, otherwise, such a λ(θ) probably does not

exist.

Specifically, given n design points (x1, θ1), . . . , (xn, θn) we consider to minimize

min
λj(θi)

n∑
i=1

(
k∑
j=1

λj(θi)Dj(xi, θi)

)2

(3.12)
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subject to
k∑
j=1

n∑
i=1

λj(θi)
2 = 1 (3.13)

Note that (3.13) ensures the vector λ(θ) will not be a 0 vector.

In order to allow for flexible λ(θ), we consider to use the radial basis kernel func-

tions. Specifically, we model λ(θ) with λj(θ) =
∑n

i=1 αjiK(θ, θi) (for notational sim-

plicity we did not include the intercept term), where K(u, v) = exp(−
∑k

j=1 τj(uj −

vj)
2) and αji’s are unknown. Then (3.12) and (3.13) can be transformed to

min
α1,...,αp

n∑
i=1

(
k∑
j=1

K ′iαjDij

)2

(3.14)

subject to

H =
k∑
j=1

α′jKαj − 1 = 0 (3.15)

where Ki denotes the ith column of the kernel matrix K = [K(θi, θi′)]. The gradient

of the objective function can be computed as

Gj = 2
n∑
i=1

(
k∑
j=1

K ′iαjDij

)
DijK

′
i, j = 1, . . . , k (3.16)

Similarly, the Jocobian is:

Jj =
∂H

∂αj
= 2Kαj j = 1, ...k (3.17)

With the Jacobian and the gradient, one can solve for αj, j = 1, . . . , k using many

existing optimization packages, including the the package “alabama” in R.
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Evaluate λ̂(θ)

Let α̂ denote the minimizer of (3.14), and λ̂ij =
∑n

i′=1 α̂ji′K(θi, θi′). To determine

whether the conditions in (3.11) are met, we define a discrete (and normalized) version

of λ′(θ)D as follows:

Ĉ =
1

n

n∑
i=1

(
∑k

j=1 λ̂ijDij)
2∑k

j=1[λ̂ij]2 ·
∑k

j=1[Dij]2
=

1

n

n∑
i=1

[cos(γi)]
2 (3.18)

where γi can be considered as the angle between the vectors λ̂i and Di. Note that Ĉ

(0 ≤ Ĉ ≤ 1) is a normalized quantity so that it is invariant to the scale of inputs and

outputs. Intuitively if the calibration problem is non-identifiable, one would expect

Ĉ to be small (close to 0); on the other hand, if Ĉ is sufficiently large, the calibration

problem is probably identifiable.

To “test” whether Ĉ is large enough, we build a reference distribution for Ĉ.

Specifically we introduce two additional calibration inputs u1 and u2, and modify the

output as follows:

f ∗(x, θ, u1, u2) = f(x, θ) + b(u1 + u2) (3.19)

where b is a scalar. It is clear that the parameters set (θ1, . . . , θk, u1, u2) are non-

identifiable in the calibration setting. Nevertheless, we may apply (3.14) under this

new setting, with D∗ = [D, b, b] and record the resulting C∗ (which should be close

to 0). We repeat the procedure for different values of b (e.g. randomly drawn from

the uniform distribution U [−1, 1]), and obtain different C∗ values, e.g. {C∗1 , . . . , C∗M},

where B is the number of random draws for b. Let

p̂ =

∑B
`=1 I(C∗` ≤ Ĉ)

B
(3.20)

Note that if the calibration problem is non-identifiable, the value of p̂ would be close
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to 0, while if the value of p̂ is close to 1, one may conclude the calibration problem

as identifiable. Further, note that b(u1 + u2) is not the only functional form that can

be appended to f(x, θ). In fact, any general smooth function g(u1, u2) that does not

involve x could serve the purpose. For instance, we may also consider the following

modification to f(x, θ):

f ∗(x, θ, u1, u2) = f(x, θ) + b(u1u2) (3.21)

where b can be drawn from U [−1, 1]. In this case, the correspondingD∗ = [D, bu2, bu1].

3.4.4 Simulation studies for the sufficient and necessary condition

In this subsection, we use simulation examples to illustrate the implementation of

the sufficient and necessary condition in Proposition 1 through the numerical approach

described above. Specifically, we consider 6 functions:

• A: y = 1 + x2
1 + x2 + x3(θ2

1 + θ2)

• A′: y = 1 + x2
1 + x2 + x3(θ2

1 + θ2) + θ2

• B: y = 1 + x2
1 + x2 + exp[−x3(θ2

1 + θ2)]

• B′: y = 1 + x2
1 + x2θ2 + exp[−x3(θ2

1 + θ2)]

• C: y = 1 + x2
1 + θ3(x2 + x3) + exp[−x4(θ2

1 + θ2)]

• C ′:y = 1 + x2
1 + θ3(x2 + x3) + exp[−x4(θ2

1 + θ2)] + θ1

In all 6 functions, regardless of the dimension, we generate 100 Latin hypercube

design points on either [0, 1]5 or [0, 1]6 for each of the 6 functions. Clearly we see that

A,B,C are non-identifiable, while A′, B′, C ′ are identifiable. There are two calibra-
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tion parameters θ1, θ2 in cases A−B′ and three calibration parameters in cases C−C ′.

First, we assume the ideal situation where we can evaluate any inputs with no

cost. Thus we can compute the matrix D using numerical derivative with a sufficiently

small ∆, i.e.

∂f

∂θj
:=

f(x, θ−{j}, θj + ∆)− f(x, θ−{j}, θj)

∆
, j = 1, . . . , k (3.22)

Given D, we solve the optimization problem (3.14) and calculate the criterion Ĉ in

(3.18). To determine if Ĉ is sufficiently close to 0, we introduce two reference variables

u and v, and modify the function f(x, θ) as f(x, θ) + b(u+ v) or f(x, θ) + b(uv). We

generate B = 100 values of b from the uniform distribution U [−1, 1], calcuate C∗’s

and finally use equation (3.20) to compute p̂. Table 3.1 shows the values Ĉ and p̂ for

each of the 6 functions based on additive reference and product reference.

In practice, we usually do not have the “cheap code” and have to rely on statis-

tical emulators such as GaSP or EMARS to calculate D. Table 3.2 shows the results

using EMARS and table 3.3 shows the results using GaSP. From these 3 tables (Ta-

bles 3.1-3.3), we see that the estimated p̂ is quite consistent with the truth. While

EMARS and GaSP give similar results, the result based on the numerically calculated

derivative matrix D (ideal situation) is the best. This is not surprising, as estimation

based on emulators produced another layer of approximation. Comparing additive

reference with the product reference, we can see that C∗ based on the product refer-

ence is in general larger, so that the corresponding p̂ is smaller. This implies that if

one is conservative on claiming identifiability, the product reference is preferred.
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Further, we also investigated how random errors on yc could impact the results.

This is relevant because even many computational models can be viewed as deter-

ministic, there are cases where the output suffers from errors. For cases C and C ′,

we introduce an error term ε ∼ N(0, σ2 = γ · var(yc)), where γ varies from 0.01 to

0.1. Figure 3.2 shows the estimated p̂ vs σ. The result is reasonable, i.e., as the error

term gets larger, the problem becomes more difficult and the estimated p̂ becomes

less consistent with the truth.
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Table 3.1: Results based on numerical derivatives. The upper table uses the additive
reference and the lower table uses the product reference.

case Ĉ Avg(C∗) p̂ Identifiable(truth)?
A 2.2E-10 3.3E-10 7% No
A′ 4.57E-2 5.3E-10 100% Yes
B 4.7E-8 5.9E-8 13% No
B′ 1.34E-2 7.3E-8 100% Yes
C 3.2E-7 3.3E-7 19% No
C ′ 1.2E-3 5.5E-7 98% Yes

case Ĉ Avg(C∗) p̂ Identifiable(truth)?
A 2.2E-10 4.3E-10 6% No
A′ 4.57E-2 8.3E-10 100% Yes
B 4.7E-8 9.1E-8 11% No
B′ 1.34E-2 1.2E-7 100% Yes
C 3.2E-7 6.9E-7 15% No
C ′ 1.2E-3 8.01E-7 97% Yes
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Table 3.2: Results based on EMARS derivatives. The upper table uses the additive
reference and the lower table uses the product reference.

case Ĉ Avg(C∗) p̂ Identifiable(truth)?
A 3.70E-08 4.1E-8 11% No
A′ 8.87E-02 5.5E-7 98% Yes
B 8.61E-06 9.93E-6 21% No
B′ 2.71E-03 1.32E-6 93% Yes
C 1.09E-06 1.88E-6 29% No
C ′ 3.50E-03 8.01E-6 88% Yes

case Ĉ Avg(C∗) p̂ Identifiable(truth)?
A 3.70E-08 5.2E-8 9% No
A′ 8.87E-02 6.3E-7 97% Yes
B 8.61E-06 9.99E-6 19% No
B′ 2.71E-03 3.32E-6 91% Yes
C 1.09E-06 1.95E-6 26% No
C ′ 3.50E-03 9.31E-6 87% Yes
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Table 3.3: Results based on GaSP derivatives. The upper table uses the additive
reference and the lower table uses the product reference.

case Ĉ Avg(C∗) p̂ Identifiable(truth)?
A 6.30E-07 8.2E-7 13% No
A′ 1.32E-01 4.87E-6 96% Yes
B 4.52E-05 6.43E-5 23% No
B′ 4.31E-2 4.35E-05 94% Yes
C 3.33E-05 5.82E-5 31% No
C ′ 2.70E-02 6.19E-5 86% Yes

case Ĉ Avg(C∗) p̂ Identifiable(truth)?
A 6.30E-07 9.5E-7 12% No
A′ 1.32E-01 6.8E-6 95% Yes
B 4.52E-05 8.8E-5 21% No
B′ 4.31E-2 7.30E-05 90% Yes
C 3.33E-05 6.4E-5 28% No
C ′ 2.70E-02 9.5E-5 83% Yes
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Figure 3.2: Impact of a random error term: estimated p̂ vs the standard deviation
of the error term. Solid points correspond to case C and circle points
correspond to case C ′.
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3.5 A special case – a sufficient condition using additivity

In this section, we discuss a sufficient condition for checking calibration parame-

ter non-identifiability. As one can see in example 1 of section 3.4.2, when there are

more than one calibration parameters, additivity in physical input x and calibration

input θ implies non-identifiability in computer model calibration. In fact, it is not

required that x and θ are completely additive, as long as more than one calibration

parameters are additive to x, the calibration problem is non-identifiable. We give a

formal definition as follows.

Definition 3: Additivity of one calibration input to all physical inputs.

Consider a computer model with yc = f(x, θ), where x ∈ X is the physical input and

θ ∈ Θ is the calibration input. Suppose the Hessian matrix [∂
2f(x,θ)
∂xj∂θj′

] exists on X ×Θ.

For some θj′ , if

∂2f(x, θ)

∂xj∂θj′
= 0

for all j = 1, . . . , p, we call θj′ additive to the physical inputs x.

Using this definition, we have the following sufficient condition on intrinsic non-

identifiability.

Proposition 2: A sufficient condition using additivity. In a computer model

calibration problem, if there are more than one calibration inputs that are additive

to x, then the calibration problem is intrinsically non-identifiable.

To see why Proposition 2 holds, suppose θ1 and θ2 are additive to all physical

inputs x, then we can choose λ1(θ) = 1 and λ2(θ) = −f ′θ1/f
′
θ2

, and set the rest of λ(θ)

to be 0 (if the number of calibration parameters k > 2). Then the sufficient condition
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in Proposition 1 would hold, i.e.

λ′(θ)D(x, θ) ≡ 0 for all x ∈ X and θ ∈ Θ.

It should be noted that the condition in Proposition 2 is a special case of Proposi-

tion 1, however, the examination of individual additivity between θj′ and xj is useful

in terms of understanding which subset of calibration parameters can not be identified

due to their additivity to x.

3.5.1 A numerical approach to implement the special condition with ad-

ditivity

To check the special condition in Proposition 2, we also rely on numerical ap-

proaches. Intuitively, we need to check whether the second order partial derivatives

∂2f(x,θ)
∂xj∂θj′

are sufficiently small.

Given a grid of points (x1, θ1), . . ., (xn, θn), we define the following quantity to

measure the significance of the interaction between xj and θj′ :

Ijj′ =
1

n

n∑
i=1

∣∣∣∣∂2f(x, θ)

∂xj∂θj′
(xi, θi)

∣∣∣∣
If Ijj′ is sufficiently close to zero, it implies that xj and θj′ are nearly additive. To

compute the second order partial derivatives, one may, again, use either the numerical

derivatives (if the computer model is “cheap”), or a statistical emulator, such as the

GaSP or EMARS.

To decide whether an Ijj′ is sufficiently small, similar to what has been done in

section 3.4.3, we introduce an inert variable u (e.g. randomly generated from U [0, 1]),
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and modify the computer output as follows:

f ∗(x, θ, u) = f(x, θ) + u

For the modified computer data {f ∗;x, θ, u}, we may fit a statistical emulator, such

as the GaSP or EMARS, and calculate the quantities {Ixj ,u, Iθj′ ,u}. Since u is additive

to other inputs, we would expect Ixj ,u, Iθj′ ,u to be close to zero. Thus we define the

reference

Iu = max{Ixj ,u, Iθj′ ,u, j = 1, . . . , p, j′ = 1, . . . , k}

We repeat the procedure B times (with a different value of u for each time), obtain

I1
u, . . . , I

B
u and define

p̂jj′ =
B∑
`=1

I(Ijj′ − I`u < 0)/B, j = 1, . . . , p, j′ = 1, . . . , k

If the value of p̂jj′ is close to 1, it implies xj and θj′ are additive to each other; on the

other hand, if p̂jj′ is close to 0, it implies xj and θj′ are non-additive.

3.5.2 Simulation studies on the special condition with additivity

In this section, we use simulation studies to illustrate the implementation of the

additivity condition. We consider two examples:

• Case A: f(x, θ) = 0.2+x1x
2
2 +cos(x1 +x2)+0.5∗θ3 exp(−x1)+1.5∗ sin(θ3)x2 +

θ2
2 exp(−θ1 − θ2)

• Case B: f(x, θ) = x1x
2
2 + cos(x1 + x2) + exp(θ3 − x1) + x2

1+x2+θ3
+ θ1x2 + θ2x1

In the first example (case A), we randomly generate n = 50 data points, each

with 5 variables from [0, 1] using Latin hypercube design – x1 and x2 are considered
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Figure 3.3: Reference distribution of Ijj′−Iu for examples in section 3.5.2. The upper
panel corresponds to case A, and the lower panel corresponds to case B.
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as physical inputs and θ1, θ2, θ3 are considered as the calibration inputs. Note that

∂2f(x, θ)

∂θ1∂xj
=
∂2f(x, θ)

∂θ2∂xj
= 0, j = 1, 2

Therefore both θ1 and θ2 are additive to the physical inputs xj’s, and according to

Proposition 2, the calibration problem is non-identifiable. The second example (case

B) has the same data generating mechanism as A. However, case B is identifiable.

We adopted the GaSP as the statistical emulator. Figure 3.3 shows the results

with the distribution of Ijj′ − Iu over 100 replications. As we can see, in case A,

our method correctly identifies θ1 and θ2 are additive with other physical inputs,

while in case B, θ1 is additive with x1 and θ2 is additive with x2, while all other

physical/calibration input pairs are non-additive.

3.6 Non-identifiability caused by “multiple solutions”

As we discussed at the beginning of the chapter, there are two types of non-

identifiability in calibration: the first type is what we call “intrinsically non-identifiable”,

and the other type is the so-called “multiple solutions”, where there exist multiple

but finite number of calibration points which lead to the same function.

For example, consider f(x1, x2, θ1, θ2, θ3) = 1 + θ1x
2
1 + θ2x2 + (θ3 − 0.5)2x3, where

xj, θj′ ∈ [0, 1], the corresponding calibration problem is not intrinsically non-identifiable,

i.e, one can not find a smaller number of parameters to substitute (θ1, θ2, θ3). How-

ever, we can also see that if (θ1, θ2, θ3) are the true parameters, then (θ1, θ2, 1 − θ3)

is an equivalent truth. In such cases, we may consider marginal plots (or sensitivity

plots) of y versus individual θ1, θ2 and θ3 by averaging over the other dimensions;

if a marginal plot is not monotonic over its support, it implies that the calibration
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problem can be non-identifiable due to “multiple solutions”.

We use a simulation example to illustrate the point. Specifically, we consider:

f(x, θ) = 1 + θ1x
2
1 + θ2x2 + (θ3 − 0.5)2x3 (3.23)

Y f (z) = f(z, θ1 = 0.5, θ2 = 0.5, θ3 = 0.2) + ε (3.24)

where xj, θj′ ∈ [0, 1] and ε ∼ N(0, 0.01). Note that although we set θ∗ = (0.5, 0.5, 0.2),

apparently there are two optimal solution, i.e θ̂∗ = (0.5, 0.5, 0.2) and θ̂∗ = (0.5, 0.5, 0.8).

For the computer data, we generate 100 data points in [0, 1]5 using the Latin

hypercube design, and for the field data, we generate 10 data points in [0, 1]2 also

using the Latin hypercube design. First, we use the method in section 3.4.3 to check

whether the calibration problem is “intrinsically identifiable” and obtained p̂ = 0.97,

which implies that the problem is not intrinsically non-identifiable. Next, we use both

GaSP and EMARS to estimate yc(x, θ) and obtain the marginal plots of ŷ vs θj′ (see

Figure 3.4). As we can see, the relationship between ŷ and θ3 is non-monotonic, which

implies that the calibration problem is non-identifiable due to “multiple solutions”.

3.7 A comparison study of Bayesian GaSP and EMARS in

identifiable cases

In the above sections, we discussed how to detect possible non-identifiability in

calibration. In this section, we focus on identifiable cases and compare EMARS with

Bayesian GaSP for parameter calibration.

We consider 4 simulation examples, which are specified as follows:
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GaSP and EMARS on case A of section 3.7.
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• Case A: f(x, θ) = 0.2+x1x
2
2 +cos(x1 +x2)+0.5∗θ3 exp(−x1)+1.5∗ sin(θ3)x2 +

θ1x2 + θ2x1

• Case B: f(x, θ) = 1 + e−θ1(x1+x2
2) + 1

1+θ2
(x3

3 + x2
4) + sin(x5 − θ3)

• Case C: f(x, θ) = 1 + e−θ1
P10
j=1 xj + 1

1+θ2
(
∑14

j=11 x
2
j) + sin(x15 − θ3)

• Case D: f(x, θ) = 1+e−θ1
P10
j=1 xj + 1

1+θ2
(
∑14

j=11 x
2
j)+sin(x15−θ3)+ 1

100
(
∑25

j=16 xj)

Note that case A has 5 inputs, with x1 and x2 being physical inputs and θ1, θ2

and θ3 calibration inputs. We generate n = 50 data points on [0, 1]5 using the Latin

hypercube design. In addition to the 50 simulator data points, we also generate 10

field data points with calibration parameter θ1 = 0.3, θ2 = 0.7, θ3 = 0.5, i.e.

Y f (z) = f(z, θ = (0.3, 0.7, 0.5)) + ε

where ε ∼ N(0, σ2) and σ = 0.1×std(Y c). To compare the prediction performance of

different methods, we also generate an independent field data set with 20 data points

so that one can compute the mean squared error mse = 1
20

∑20
i=1(yfi − ŷi)2.

The dimensions in cases B,C,D are higher. Case B has 5 physical inputs and

3 calibration inputs; Case C has 15 physical inputs and 3 calibration inputs; Case

D has 25 physical inputs and 3 calibration inputs. The sample sizes are chosen as:

nB = 50, nC = 100, nD = 150. Note that case C is a “sparse” case in the sense that

inputs x16, . . . , x25 do not have much impact on yc. Everything else is the same as

case A except that we fix θ∗1 = θ∗2 = θ∗3 = 0.5 for all three cases when generating the

field data.

We use both the GaSP method and the EMARS method to estimate the θ∗ and

further predict the field output yf . For the Bayesian GaSP method, we use priors de-
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Table 3.4: Comparison of calibration between GaSP and EMARS on simulation ex-
amples in section 3.7

Cases Model estimates of θ∗ (sd)
√

mse of Y f

θ̂∗1 θ̂∗2 θ̂∗3 on validation data
A Bayesian GP 0.32(0.0215) 0.67(0.016) 0.47(0.024) 0.03
A EMARS 0.29(0.0311) 0.69(0.010) 0.51(0.018) 0.02
B Bayesian GP 0.47(0.024) 0.44(0.036) 0.49(0.028) 0.04
B EMARS 0.51(0.021) 0.48(0.033) 0.50(0.019) 0.03
C Bayesian GP 0.42(0.032) 0.57(0.041) 0.55(0.029) 0.07
C EMARS 0.43(0.027) 0.55(0.033) 0.48(0.031) 0.04
D Bayesian GP 0.40(0.038) 0.39(0.044) 0.58(0.035) 0.13
D EMARS 0.45(0.031) 0.54(0.046) 0.54(0.028) 0.05

scribed in section 3.2 and 5000 MCMC samples for inference. For EMARS, we fit the

model allowing three-way interactions, and the model is tuned using cross-validation.

To make inference on θ, we use B = 100 bootstrap samples.

Figures 3.5 and 3.6 respectively show the calibration distribution and prediction on

field data for case A, using both Bayesian GaSP and EMARS. Table 3.4 summarizes

the calibration parameter estimates and MSE on the independent test set. As we can

see, EMARS in general outperforms GaSP in terms of both parameter calibration

and output prediction.

3.8 A case study – calibration with CRASH

In this study, the data comes from the Center of Radiative Shock-wave Hydro-

dynamics at the University of Michigan, where scientists conduct research on the

shock-wave hydrodynamics caused by lasers with high energy and high velocity. The

simulator data are based on computer code that depend on 8 inputs, 4 of which are

considered calibration inputs, with a total size of 319 data points. There are also 9

field data points, which are collected by conducting the experiment in an Xenon filled

tube, using laser to shock a Beryllium disk. The four regular inputs are Beryllium

81



1.40 1.50 1.60
1.
6

2.
0

Be.Gamma

S
ho
ck
.P
os
.

0.7 0.9 1.1 1.3

1.
6

2.
0

Be.OSF

S
ho
ck
.P
os
.

1.10 1.20 1.30 1.40

1.
6

2.
0

Xe.Gamma

S
ho
ck
.P
os
.

0.7 0.9 1.1 1.3

1.
6

2.
0

Xe.OSF

S
ho
ck
.P
os
.

18 19 20 21 22

1.
6

2.
0

Be.Thick

S
ho
ck
.P
os
.

2600 3000 3400

1.
6

2.
0

Energy

S
ho
ck
.P
os
.

1.00 1.10 1.20

1.
6

2.
0

Xe.Dens

S
ho
ck
.P
os
.

12.5 13.5 14.5

1.
6

2.
0

Obs.Time

S
ho
ck
.P
os
.

20.98 21.02 21.06

2.
0

2.
2

Be.Thick

S
ho
ck
.P
os
.

3850 3870 3890

2.
0

2.
2

Energy

S
ho
ck
.P
os
.

1.12 1.16 1.20

2.
0

2.
2

Xe.Dens
S
ho
ck
.P
os
.

13.0 13.4 13.8

2.
0

2.
2

Obs.Time

S
ho
ck
.P
os
.

Shock.pos Vs Inputs

Figure 3.7: Scatter plot of both the simulator data and field data in CRASH example.

thickness, laser energy, Xenon density and observation time, while the four calibration

inputs are Beryllium gamma, Xenon gamma, Beryllium.OSF (opacity scale factor)

and Xenon.OSF. Figure 3.7 contains scatter plots of both the simulator data and field

data. Figure 3.8 shows the calibration results using the Bayesian Gaussian Process

method. As we can see, the distributions of the 4 calibration parameters scatter all

around, which is not what scientists had expected. The leave-one-out prediction on

the right panel of figure 3.8 also shows problems.

We suspected there might be a parameter identifiability issue with this problem,

and applied the method in section 3.4.4. Since the computer code here is not “cheap”,

we have to rely on an emulator to calculate the derivate matrix. We used EMARS

in this case. Using the formulation (3.19) and (3.21), we calculated p̂ and the results

are shown in the upper half of table 3.5. Based on the values of p̂, it is clear that this

particular calibration problem is non-identifiable.
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Table 3.5: Checking calibration identifiability in the CRASH study. The upper table
shows the results of the original CRASH calibration problem, while the
lower table shows the modified problem.

Reference choice Ĉ Avg(C∗) p̂ Identifiable?

f̃ = f(x, θ) + b(u1 + u2) 2.5E-7 3.2E-8 7% No

f̃ = f(x, θ) + b(u1u2) 2.5E-7 4.3E-8 6% No

f̃ = f(x, θ) + b(u1 + u2) 1.5E-2 4.8E-8 96% Yes

f̃ = f(x, θ) + b(u1u2) 1.5E-2 7.5E-8 96% Yes

Further, we also applied the special additivity condition in Proposition 2, and

Figure 3.9 shows the result. Based on the distributions of the 4 × 4 referenced Ijj′ ,

it is clear that only 3 interaction terms are significant – Beryllium thickness versus

Beryllium gamma, Laser energy versus Beryllium gamma, and Laser energy versus

Xenon gamma. This implies that the other two calibration inputs (the opacity scale

parameters) are additive to all the physical inputs, which strengthens the conclusion

that the calibration problem here is non-idenfiable. Further analysis by EMARS

shows that these two calibration inputs do not contribute much to the fitted model of

EMARS. After excluding these two calibration inputs which do not have much effects

on the response, we redid the analysis and Figure 3.10 shows the new calibration

distributions and the leave-one-out prediction of experimental response. The lower

half of Table 3.5 now confirms that the modified CRASH calibration problem is indeed

identifiable. Further, the Beryllium gamma concentrates near 1.47 and Xenon gamma

concentrates near 1.27, which are more interpretable and the leave-one-out prediction

accuracy is also improved.
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Figure 3.8: Bayesian Gaussian Process calibration on 4 calibration parameters and
leave-one-out predictions on the field response.
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3.9 Summary

In this chapter, we have focused on the potential non-identifiability issue in the

computer model calibration problem. We defined two types of non-identifiability,

the “intrinsically non-identifiable”, and the non-identifiability caused by “multiple

solutions”. We offered sufficient and necessary conditions to check the intrinsic non-

identifiability. We also proposed numerical methods to implement these conditions.

Numerical studies indicated that the proposed method works well, and the case study

provided meaningful and promising results.
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CHAPTER IV

Future Studies

In this thesis, we have focused on two aspects in the modeling of computer ex-

periments: one is the accuracy of statistical emulators in predicting computer exper-

iments, and the other is the calibration problem.

On the first topic, we compared the predictive accuracy of the EMARS approach

and others versus Bayesian GaSP and found that the EMARS approach is a good

alternative under a variety of situations. There are, however, a number of points that

need further study. There are two different versions of EMARS that were discussed

in Chapter 2. Interestingly, Version Two performed slightly better than Version One,

but the latter is more natural as it includes polynomials in [x−v]+ and [v−x]+. The

reason for the better performance of Version Two needs further investigation. In ad-

dition, the comparisons are all made under Latin hypercube designs, which have been

widely used in the literature. In future studies, one interesting question is whether the

performance of different emulators depends on different types of design. The other

related question is for a specific emulator, what will be its optimal design given a fixed

number of design points? For instance, what will be the optimal design for an EMARS

approach? Another question is comparing the performance of the emulators under

other criteria such as predicting the maximum or minimum of a function. Finally, a
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very interesting question is the development of uncertainty regions for the regression-

based methods since the usual assumptions of random and iid errors are not valid.

We have tried to use bootstrap methods but this question needs to be further studied.

On the second topic of the calibration, we discussed the potential identifiability

issues and developed several statistical methods to detect such issues. However, it

should be noted that proposition 1 in chapter 3 discussed the identifiability condition

in a global fashion, where the conditions listed need to be satisfied for all θ ∈ Θ.

There are cases where calibration parameters are locally identifiable. Consider the

following continuous 3-dimensional function

f(x, θ1, θ2) = x(θ1 + θ2) + [θ2 − 0.5]+

where x, θ1, θ2 ∈ [0, 1]3. Clearly we see that when θ2 <= 0.5, there is no way to

differentiate θ1 and θ2. But when θ2 > 0.5, this is an identifiable case. More research

is needed to study this problem.
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