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CHAPTER I 

 

INTRODUCTION 
  

 

 

1.1 System TH Codes for Reactor Safety Analysis 

 

 Safety analysis is performed for nuclear power plants (NPPs) to assess the effectiveness  

of safety systems in NPP design and to calculate the consequences of reactor accidents.  A tool 

essential to safety analysis are system thermal-hydraulic (TH) computer codes used to model the 

transient behavior of the NPP and safety systems during accidents.  Over the past 40 years, TH 

codes have evolved from conservative evaluation models used to analyze Design Basis 

Accidents (DBAs) for NPP licensing to best-estimate (BE) TH codes such as RELAP5, MARS, 

TRACE, CATHERE, and ATHLET that can realistically model complex physical processes and 

phenomena that can occur in a NPP.  TH codes have broad applications in the nuclear industry 

including NPP licensing, Probabilistic Safety Assessment (PSA), severe accident research,  

design and analysis of experiments, and establishing Emergency Operating Procedures (EOPs) 

and Severe Accident Management Guidelines (SAMGs)  [Aur12].  

 Historically, TH codes have been computationally expensive requiring state-of-the-art 

computer resources, extensive storage, and long computation times.  The computational 

requirements for TH calculations were a constraint.  Over the past two decades, advancements in 

computer science and technology including the personal computer, exponentially faster 

processors, multi-core processors, and parallel computing have made performing tens to 

hundreds of detailed transient calculations with TH codes tractable at the desktop level for all 

engineers.  Large parallel to massively parallel computing and supercomputers make the ability 

to perform tens of thousands calculations a near term reality.  While brute force application of 
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ever expanding computational power to reactor safety problems may be enticing, efficient use of 

resources is always the prudent route since engineering judgment is required to interpret 

simulation results and draw meaningful conclusions.  The computing power available today and 

tomorrow gives an extra degree of freedom to engineers in approaching reactor safety problems 

enabling new or improved methods for licensing calculations and PSA.     

 Along with the increased availability of computational resources comes increased 

demand for TH codes and new applications that challenge the capabilities of the codes.  In the 

United States, the ageing NPP fleet is operated at higher power from power uprates, to higher 

fuel burnups, and on longer fuel cycles.  Changes to the safety margin of NPPs must be 

rigorously assessed considering ageing and operational issues.  Figure 1.1 illustrates the concept 

of safety margins for NPPs that TH codes are regularly used to calculate.  Furthermore, new TH 

problems such as spent fuel pool accidents are analyzed with TH codes originally developed to 

simulate loss-of-coolant accidents (LOCAs).  

 

 

Figure 1.1.  Safety margins for nuclear power plants.  From [IAE04]. 
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1.2 Uncertainty Quantification of Computer Experiments  

 

 Physical experiments are invaluable in science and engineering providing direct 

measurement of properties of natural or engineered systems.  In many fields, experiments are 

expensive requiring the construction of experimental facilities, complex measurement devices, 

and prototypes and in some applications, can pose real safety risks to the experimenters and the 

environment, e.g., test pilots flying experimental aircraft.  Cost and safety are particular 

constraints to reactor safety experiments where the use of radioactive material introduces 

unavoidable liabilities.  Most experimental results are irreproducible; the same experiment when 

repeated will yield different results due to continuously changing environmental variables and 

measurement error.          

 With advancement of computer science and technology, computer codes and simulation 

have become the go to tool across science and engineering disciplines, supplementing and 

sometimes replacing experiment.  Computer simulations or computer experiments are usually 

repeatable and give an "exact"  numerical result up to machine precision.  The fidelity of 

computer models and predictive accuracy have evolved to the point where simulation results 

may be more reliable than experiment in some situations.  However, the aforementioned 

challenges with physical experiments, cost and safety, are often driving the transition so 

simulation based engineering analysis and design.  In reactor safety, the loss of experimental 

facilities and thus the capacity to perform experiments from decommissioning for a variety of 

reasons (cost, political, environmental) forces the transition. 

 Computer codes attempt to accurately describe the underlying physics and behavior of 

natural or engineered systems through mathematical models.  These models can be derived from 

first principles, theory, semi-empirical, empirical derived, or a combination of these.  The 

physics of the problem are always simplified or approximated by the code models.  The system 

being modeled is also simplified or approximated by assumptions made in the code and the 

solution techniques.  For example, three-dimensional flow may be approximated to one-

dimension and truncation errors are introduced in finite differencing schemes through 

nodalization and time step size.  Furthermore, external data supplied to the code models, cross 

sections, fission product yields, material properties, heat transfer coefficients, etc., are not known 

values and have been experimentally measured (with error) or estimated from another model.      
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 The assumptions in computer codes and models makes every computer simulation an 

estimate of the system being modeled.  The estimate has bias, error, and uncertainty, all of which 

need to be quantified when using simulations in making an engineering dec ision.  In the context 

of this dissertation, bias is defined as a systematic under or over prediction of a model or the 

deliberate neglect of a process or phenomena in a model.  For example, assuming one-

dimensional flow in a reactor core is a bias.  Error is introduced from the level of refinement 

chosen for the system description as compared to an asymptotic solution obtained at the 

maximum refinement.  Nodalization, time step size, convergence criteria, and number of 

histories in Monte Carlo calculations are sources of error.  The bias and error of a simulation are 

generally functions of the models and solution techniques chosen for the problem and the 

acceptable magnitude of bias and error is problem specific.  Some applications may require a 

higher fidelity model at higher computational cost or a physical experiment.  For some reactor 

safety problems, bias may be acceptable or even intentionally introduced as long as the bias is 

conservative with respect to the calculation of the safety parameter of interest.      

  The uncertainty of a computer experiment is a measure of the precision of the models 

and the model input parameters used in the simulation.  Input parameters are both the external 

data supplied to the models and parameters defining the operating envelope of the system being 

analyzed.  The uncertainty of the input parameters can be described by probability density 

functions (PDFs) defining the range and associated probabilities of values that an input 

parameter can take.  Uncertainty  quantification (UQ) asks the question:  what range of outputs 

will be observed given the range of uncertain input parameter values?  UQ is the formal process 

of determining the range and probabilities of the outputs or the output PDF.  UQ allows 

engineering decisions to be made using the results of computer experiments while 

acknowledging the result is an estimate.  UQ can be used to answer the questions: how good is 

the estimate and is the estimate good enough for the application?  

 Figure 1.2 illustrates the UQ process for a computer experiment.  UQ involves 

propagating the uncertainty of the input parameters, described by their respective PDFs, through 

the computer code to obtain the output parameter PDF.  A computer code can be interpreted as a 

very large, complex nonlinear function of the input parameters.  Analytical solutions only exist 

for propagating PDFs through very simple functions so UQ methodologies must be utilized to 

either approximate the output PDF or obtain estimates of the statistical properties, the  mean, 
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variance, kurtosis, 95th percentile, etc., of the PDF.  Three classes of UQ methodologies are 

sampling based methods, code surrogates, and adjoint methods.  Adjoint methods require 

looking into where and how the input parameters appear in the mathematical models embedded 

within the code and the how the numerical methods solve the equations in order to calculate 

derivative and gradient information.  The models and the numerical methods used can be very 

complicated and implemented in thousands of lines of computer code so adjoint methods are 

difficult to implement especially at an engineering design level.  Sampling based methods and 

code surrogates use the computer code in black box mode using only the input and output 

streams from the simulation.                 

 

 

Figure 1.2.  Illustration of uncertainty quantification for computer experiments. 
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tallying the output of each simulation into a distribution.  For multi-dimensional input parameter 

spaces characteristic of many engineering problems including NPP transients, tens of thousands 

to millions of calculations would be required to obtain a statistically significant result from direct 

MC simulation making the MC method computationally impractical for UQ with TH codes.   

Statistical information about the output PDF must be estimated from samples of limited size.   For 

example, nonparametric order statistics, namely Wilks’ formula [Wil41], use random sampling 

to obtain confidence limits of the output PDF with limited sample size.  

  An alternative to the MC method is Latin hypercube sampling (LHS) [McK79].  LHS is a 

variance reduction technique for the MC sampling.  LHS designs subdivide each dimension in 

the input parameter space into N equal probability intervals or strata.  Data points are generated 

by randomly sampling one parameter value from within each interval and randomly combining 

with values from the other dimensions.  The resulting N data points ensure all portions of the 

input PDFs are sampled.  Figure 1.3 illustrates a four data point LHS design with two input 

parameters.  The mean and variance of the output PDF can be estimated from the sample of 

output values.   

 

Figure 1.3.  LHS design with two input dimensions and four strata.     
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 The last UQ method, code surrogates, are a special case of sampling.  Code surrogates are 

simplified mathematical models of the functional relationship between the inputs and outputs.  

Code surrogates are constructed through regression analysis on a limited number of code 

simulations, a data set of input parameter values and associated output response.  Once the 

surrogate is constructed, it is a fast-running approximation to the computer code and can be 

exhaustively sampled through a MC method to obtain an approximate output PDF at greatly 

reduced computational cost.  However, surrogate construction is a nontrivial task and the 

accuracy of the surrogate must be rigorously assessed and quantified.  The uncertainty of the 

surrogate, itself an UQ tool, must be quantified.           

 

1.3 Research Scope and Objectives 

 

 In this dissertation, our main goal is to develop and demonstrate new techniques based on 

code surrogates and deterministic sampling strategies for UQ in reactor safety analysis.  

Specifically, the techniques will address some of the computational challenges that limit the 

application of dynamic PSA methodologies to realistic NPP transients and simulation with 

system TH codes.  Our objectives are:              

 To demonstrate a new methodology to develop a dynamic code surrogate that can 

accurately simulate time dependent, nonlinear TH behavior of a NPP transient 

considering multiple safety system degradations or failures.  The methodology applies an 

existing nonparametric regression technique, the Alternating Conditional Expectation 

(ACE) algorithm, in a machine learning application to construct a discrete time dynamic 

system model that can replace a system TH code in a dynamic PSA model.   

 Quantify the uncertainty of the dynamic code surrogate.  A derivation of the variance of 

the ACE algorithm transformations provides a consistent estimation of the surrogate 

model uncertainty. Using the Unscented Transform (UT), an existing deterministic 

algorithm for uncertainty propagation and system state estimation in nonlinear dynamic 

systems, the time dependent uncertainty of the system state trajectory predicted by the 

dynamic code surrogate is calculated.   

 Demonstrate the accuracy of the UT as general UQ methodology for problems with 

multi-dimensional input parameter spaces.  The UT is a deterministic sampling based 
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strategy that scales linearly with the size of the input parameter space and can provide 

accurate estimates of the mean and variance of the output parameter PDF.   

 Apply the dynamic code surrogate and UT to a dynamic PSA study of a realistic NPP 

transient.  The recirculation phase of the hot leg large break LOCA (HL-LBLOCA) in a 

pressurized water reactor (PWR) is studied.  The subcooled water level in the core during 

the HL-LBLOCA is predicted with the dynamic code surrogate.  Multiple degradations in 

the high-pressure safety injection (HPSI) system and the containment sump are sampled 

with the UT and benchmarked against MC simulation with the surrogate.           

 

 In Chapter 2, an overview of dynamic PSA for NPPs will be given.  The current 

limitations of  use of system TH codes in dynamic PSA are discussed.  Chapter 3 will discuss 

engineering applications of code surrogates and the UT.  An overview of regression analysis will 

presented followed by detailed derivations of the Gaussian Process Model (GPM), ACE 

algorithm, and the UT.  All three methods are then applied to the UQ of the peak clad 

temperature (PCT) during a LBLOCA, a classical example of UQ in Best Estimate P lus 

Uncertainty (BEPU) methodologies used for NPP licensing.  Chapter 4 describes the Ulchin 3&4 

NPP, RELAP5 system TH code, and the LBLOCA RELAP5 model of Ulchin 3&4 which is used 

throughout this study.  Chapter 5 presents the methodology for the dynamic code surrogate 

construction including input parameter selection and benchmarking against RELAP5 results for 

the recirculation phase of the HL-LBLOCA.  Chapter 6 is the dynamic PSA study of the HL-

LBLOCA implementing the dynamic code surrogate and the UT to assess safety system 

degradations.           
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CHAPTER II 

 

DYNAMIC PROBABILISTIC SAFETY ASSESSMENT 
  

 

 Probabilistic safety assessments are systematic studies that calculate probabilities and 

consequences of accidents that could occur at NPPs.  A PSA estimates the risk, the probability 

times the consequence of an event, for the NPP being studied and provides insight into the 

strengths and weaknesses of the NPP design and operation procedures.  In the framework of 

PSA, the static event tree (ET) and fault tree (FT) approach is used to model the accident 

sequences from an initiating event to the end state.  TH codes are used to calculate the physical 

response of the NPP and determine the end state to the order of events and equipment states 

preset by the analyst in the ET/FT approach.  For decades, ET/FT methodologies have been a 

useful tool in PSA applications; however, limitations of the ET/FT to model coupling between 

failure events, operator actions, and the dynamic system states have been recognized [Sui94].  

The accident at Three Mile Island Unit 2 (TMI-2) clearly demonstrated the need to consider 

dynamic dependencies in ET/FT methodologies [Sui94].  Consequently, dynamic PSA 

methodologies have been under development to capture stochastic behavior arising from the 

interaction, coupling, and dependencies of plant dynamics with human operators, control systems 

and degradation of safety system function.  Dynamic PSA methodologies attempt to couple the 

probabilistic nature of failure events, component transitions, and human reliability to 

deterministic calculations of the time-dependent plant response.  Due to the overall complexity 

of PSA and NPP systems, no single method is sufficient for all situations so dynamic 

methodologies supplement the conventional ET/FT approach in PSA.                 

 

2.1 Overview of Dynamic PSA Methodologies 

 

 Dynamic PSA methodologies can be divided into two broad groups: continuous-time 

methods and discrete-time methods.  The first continuous-time method introduced for reactor 
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dynamics problems was the continuous event tree (CET) [Dev92].  The CET is derived from a 

stochastic balance equation obtained from the differential Chapman-Kolmogorov equation 

describing the transition rate of the component state or system configuration as a function of 

time.  The transitions are assumed to be governed by Markovian processes.  The integral form of 

the balance equation derived in [Dev92, Lee11] gives a joint PDF p(x,c,t) for the system and 

component states as a function of time  

 

                                                                  
 

    

                                   
 

                                      

                                                                   
 

                    .           (2.1) 

 

The probability per unit time of the discrete component state transition c' → c is W given system 

state x'.  The total probability per unit time of leaving component state c is 

 

                                                                             .           (2.2) 

 

The system state trajectory x(t) is uniquely determined from a previous system state x' and  

component state c(t) through the function g() which represents a deterministic TH code 

simulation 

 

                                                                              .         (2.3) 

 

Equation (2.1) representing the CET is mathematically complicated due to the deterministic 

calculation of Eq. (2.3) which is embedded within multiple integrals in Eq. (2.1) and the system 

state dependence of the component transition W.  Only after problem specific simplifications can 

one begin to Eq. (2.1), usually requiring Monte Carlo methods.  The continuous cell-to-cell-

mapping technique (CCCMT) [Tom97] is a version of the CET that partitions the system state 

into discrete cells.  Cell boundaries are usually defined by setpoint values of system state 

variables that would trigger component state changes such as pressure setpoints for safety relief 

valves.  Due to the complexity and extensive computation requirements of the continuous-time 
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methods, applications of these methods to realistic full-scale nuclear systems modeled by system 

TH codes have been limited [Dev92a,Kop05,Ald13].      

 Discrete-time methods for dynamic PSA are direct Monte Carlo simulation, dynamic 

event tree (DET), and Markov/cell-to-cell-mapping technique (Markov/CCMT).  The later 

modifies the CCCMT to a discrete-time formulation by assuming all component states will 

remain constant over an user defined time steps.  Cells are discretized in both the system state 

variables and time domains.  Direct Monte Carlo simulation samples component transitions at 

discrete time steps to produce branching in the system evolution.  The summation of each 

modeled sequence and respective cumulative branch probability can give  the frequency of end 

states. 

 The most common discrete-time method is the DET.  In conventional ET analysis, the 

timing and sequence of branches representing system failures and successes are generally preset 

by the analyst and the system response for each branch is calculated.  In a DET, branching rules 

and conditions are defined by the analyst.  As the system evolves from the initiating event, 

branches are generated when a system state parameter crosses a setpoint or operator action is 

required.  The DET realistically models the timing of the component, system, and operator action 

success or failure as demanded by the evolution of the system state for each sequence of 

branches.   

 The first DET methodology developed was the Dynamic Logical Analytical 

Methodology (DYLAM) [Coj96].  DYLAM allows both demand type and stochastic failures and 

transitions to be modeled with constant or functional dependent rates.  A fixed time step Δt is 

assumed for the analysis and all failures and transitions can only occur at multiplies of Δt so 

branch points can only occur at discrete times. If a demand type setpoint is reached during a time 

step, a branch is generated at the next branch time.  For stochastic transitions, transition 

probabilities for all components are generated at every branch time.  If  a transition probability 

exceeds an user defined threshold, a branch is generated.  Many software programs 

implementing DYLAM-based methodologies such as Dynamic Event Tree Analysis Method 

(DETAM) [Aco93], Accident Dynamic Simulator (ADS) [Hsu96], Monte Carlo Dynamic Event 

Tree (MCDET) [Klo06], and Analysis of Dynamic Accident Progression Trees (ADAPT) 

[Hak08, Cat10] have been developed for DET analysis.  While the implementation of specific 

branching rules can vary, most programs are similar in architecture coupling the generation of 
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branching to deterministic calculations of the time-dependent plant system state while tracking 

the probabilities of each path.     

  

2.2 System Modeling in Dynamic PSA 

 

 A key computational requirement of all dynamic PSA methodologies is the calculation of 

the accident sequences with a time-dependent system model.  For even a small problem, the 

system evolution for thousands of branches may need to be potentially evaluated.  In DET 

programs, the system model is usually evaluated as a subroutine in the calculation scheme with 

the DET program directing new system model executions.  As branch points are generated, the 

component states in the system model are updated and the new calculations must be performed 

following each new branch.  System state information is then passed back from the system model 

to the DET program to calculate any additional branching at the next calculation time step.   

 For NPP problems, transient calculations are usually performed by system TH codes such 

as RELAP5 or MELCOR.  Components such as valves and pumps can be represented by 

dedicated models or as boundary conditions to the system nodalization.  Control functions are 

used to actuate or stop components and define operational properties.  Some DET programs offer 

direct coupling to TH codes.  MCDET is hardwired to MELCOR and ADAPT can be linked to 

both RELAP5 and MELCOR.   These programs pause the calculation at each DET time step, 

extract necessary system state information from the simulation output and overwrites control 

function logic in the input deck if component transitions need to be modeled.  Then new 

simulations following all new branches are restarted from the paused calculation.   

 Coupling to TH codes require extensive use of output and restart files that are generated 

during transient calculations.  A single restart file can be gigabyte-sized so management of the 

data streams between the TH code calculations, which on their own are computationally 

expensive to obtain, and the DET program is a nontrivial task as the number of sequences being 

calculated grows with each additional branch of the DET.  ADAPT attempts to manage the 

computational load with massively parallel processing now available with modern computing 

architectures [Cat10].    

 

2.3 The Curse of Dimensionality  
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 In the dynamic PSA methodologies discussed in previous sections, components are 

assumed to occupy discrete states.  The simplest component state model is a binary system 

(nominal/failed, on/off, open/closed, etc.).  Some components can occupy a continuous spectrum 

of states so a binary description may not be adequate.  For example, a valve that is demanded to 

be fully open could be considered in any number of degraded states if the valve only partially 

opens between 0% and 100% of the nominal flow area.  A high pressure safety injection system 

that automatically starts at full flow capacity can be manually throttled to a reduced flow by 

operator action as was the case in the TMI-2 accident.  In accident sequences where partial 

system degradations could be important, a refined discretized component state description may 

be needed. 

 For a system comprised of multiple components, the total number of component state 

combinations N follows a power law formula given by 

 

             
                (2.4) 

 

where k  is the number of discrete states and nk is the number of components discretized with k  

states.  If a system is only comprised of n binary components, Eq. (2.1) simplifies to 2
n
 unique 

combinations of component states.  As a system becomes more complex with an increasing 

number of components modeled or refined component state discretization, the consequence of 

Eq. (2.4) is the explosion of component state combinations.  In a DET, every component state 

combination at each time step can represent a branch so the number of possible sequences 

increase geometrically as the number of time steps increases.  An early application of DETAM to 

a steam generator tube rupture (SGTR) problem assumed 7 binary systems for a total of 128 

component states,  324 crew planning states, and 2304 crew diagnostic states for a total of 9.6 

×10
7
 distinct component states at each time step [Aco93].  The curse of dimensionality in both 

the component state space and time domain is a fundamental limitation of DET and other 

dynamic methodologies when applied to realistic NPP systems.   

 In order to limit the total number of accident sequences that need to be analyzed and 

manage the size of the DET, DET methodologies must apply simplifying assumptions to the 

failure modes and transitions.  Failure modes for components can generally be classified as on 
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demand or in time failures.  On demand failures only generate branching when a system state 

setpoints or operator action criteria are satisfied while in time failures are stochastic in nature and 

can occur at any time step after the successful start of  a system.  To limit the number of in time 

branching in the DET, branches are only generated after the time-dependent cumulative 

distribution function for the failure of the component in its current state exceeds a probabilistic 

threshold provided by the user.  Simultaneous failure of multiple components are not considered.  

Lastly, repair transitions for some components are not allowed so once those components 

transition to a failed state, they remain failed for the rest of the time steps. 

 The second method to manage the size of the DET is to incorporate stopping rules that 

terminate particular sequences and prunes them from the DET.  The first type of stopping rule is 

a probability cutoff that terminates a sequence once the cumulative branch probability falls 

below a minimum probability value.  Probability cutoffs prevent computational resources from 

being spent on very low probability sequence.  The second stopping rule is halting sequences if 

an absorbing state is reached.  An absorbing state occurs when the system state reaches a 

particular high-level safe or unsafe state.  For example, the SGTR problem used successful 

completion of reactor coolant system (RCS) cooldown and depressurization or successful 

depressurization through feed and bleed cooling as safe absorbing states and steam generator 

dryout or failure to initiate feed and bleed when demanded as unsafe absorbing states.  The last 

stopping rule is grouping which allows two sequences which are in similar hardware and 

operator crew state to be grouped together at any time step if their system states such as primary 

pressure and temperature are approximately equal.          

 Successful application of simplifying assumptions and stopping rules can generate 

manageable DET from which meaningful conclusions about realistic NPP transients can be 

drawn as demonstrated by the SGTR problem that ultimately calculated only 52 scenarios out of 

a possible sequences numbering in the hundreds of millions [Aco93].  However, the accuracy of 

a dynamic  PSA is a function of the number of sequences analyzed, the size of the time steps and 

refinement of component states that represent all realistic failure and degradation modes.  

Furthermore, low probability sequences can explore unique regions of the joint system, 

component, and human reliability state space and could have large consequences so they should 

not be completely eliminated from the analysis.  The size of the DET must be balanced with the 

computational expense of running deterministic TH calculations.  Any new methods that could 
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help alleviate the dimensional explosion of branches in state space and time domain or reduce 

the computational expense of TH calculations would help the application of dynamic PSA to 

NPP systems. 

 The objective of this dissertation is to demonstrate the feasibility of two methods, 

dynamic code surrogates and the unscented transform, and their applicability to reactor safety 

analysis.  Both methods address current computational challenges of dynamic PSA, unavoidable 

deterministic TH calculations and how to obtain an accurate PSA result while sampling a large  

input parameter space (branch times and component states transitions) efficiently.  Chapter 6 

presents a dynamic code surrogate and the unscented transform in a DET framework for the 

recirculation phase of a LBLOCA.     
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CHAPTER III 

 

CODE SURROGATES FOR ENGINEERING APPLICATIONS 

 

 
 In the previous chapters, the use of system TH codes for NPP accident analysis was 

presented.  Decades of active research in nuclear safety, TH code development, and computer 

science has produced a suite of TH codes that is readily available to engineers for a variety  

applications in the nuclear industry.  However, the complexity of nuclear systems and the need to 

meet rigorous safety regulations poses nontrivial challenges to NPP accident analysis.  Chapter 2 

discussed the computational challenges associated direct use of system TH codes in dynamic 

PSA. 

 In this chapter, we introduce code surrogates as fast running models to computationally 

expensive TH codes.  First, an overview of code surrogates for engineering applications is given.  

Next, two nonparametric surrogate models, the Gaussian Process Model (GPM) and Alternating 

Conditional Expectation (ACE) algorithm are derived.  The Unscented Transform (UT) is 

presented as an alternative sampling based tool for uncertainty quantification.  Finally the 

historical use of code surrogates in NPP licensing is examined and contemporary applications of 

the GPM, ACE algorithm, and UT to a LBLOCA is presented.     

 

3.1 Overview of Code Surrogates  

 

 Code surrogates are mathematical models that approximate the input/output relationship 

of a more complex computer code simulation.  Surrogates can also be used to approximate the 

outcome of a physical experiment but the discussion will be limited to computer experiments.  

Alternative expressions for code surrogates are response surface models,  metamodels, and code 

emulators.  Code surrogates are fast running and are computationally inexpensive to execute 

making them attractive to use in applications such as design optimization and uncertainty 

quantification where many simulations need to be performed and direct use of the computer code 

would be computationally prohibitive.  Many code surrogate models and algorithms are readily 
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available in open source and commercial scientific computing packages such as R, Matlab, and 

the DAKOTA project [Ada09].   

 Surrogate models must be constructed through regression analysis.  Regression analysis 

estimates the input/output relationship from a data set obtained from a finite number of code 

simulations.  Surrogate models can be grouped into two broad classes of regression analysis, 

parametric and nonparametric methods.  Parametric regression assumes the functional form of 

the input/output relationship and specific function parameters and coefficients are learned 

through regression of the data.  Linear regression, nonlinear regression, and spline models are 

examples of parametric regression.  Nonparametric techniques make no assumptions about the 

functional form of the input/output relationship and the regression model is learned from 

properties of the data set.  A broad spectrum of models including multivariate adaptive 

regression splines (MARS) [Fri91], artificial neural networks (ANNs), Gaussian process models 

(GPMs) and alternating conditional expectation (ACE) algorithm [Bre85] are nonparametric.  

Parametric regression is well suited for problems where some prior information about the 

underlying function form is known while nonparametric regression works best on large data sets 

from which inferences can be made.    

 

3.1.1  Linear Regression Models 

 

          The goal of regression analysis is to estimate the relationship  y = f(x) + ε where x = {x1, 

x2, ...,xp}
T
 and ε is model noise given a data set (X,y) = {(x11,.. ,x1p, y1);…;(xn1,.. ,xnp, yn)}.  A linear 

regression model assumes the relationship is linear in fitting coefficients βi: 

 

                                                                          .                 (3.1) 

 

Each    is an assumed basis function of x.  For each data point (xj,yj), Eq. (3.1) is     

 

                                                                                .             (3.2) 

 

Expressed in matrix notation, 
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            with                      (3.3) 
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The optimal fitting coefficients    that minimize the error term ε can be calculated through 

ordinary least squares.  The resulting equations for    and the fitted regression model       that 

approximates the true function f(x) are 

 

                                                                            
  
     and                     (3.4) 

 

                                                                                     .                 (3.5) 

 

The straight forward matrix inversion and subsequent matrix operations given in Eq. (3.4) and 

flexibility to use any number and types of basis functions   result in the common use of linear 

regression models as code surrogates.   

 A specialized class of linear regression models are spline models.  Spline models are 

piecewise functions usually comprised of low-degree polynomial functions called splines.  The 

input parameter space is partitioned into subspaces and a spline is fitted to the subset of data 

points residing in each subspace.  Continuity requirements for the function value and derivates 

can be applied at the knots where splines connect at subspace boundaries.   Spline models allow 

relatively complex nonlinear functions to be approximated with simple low-degree polynomial 

functions while avoiding numerical instabilities that are often encountered with fitting a single 

high-degree polynomial function to an entire input space.   Figure 3.1 shows an example of a 

spline model with one knot, continuity requirement for only the function value, and using 

polynomials of degree one to approximate a piecewise linear function with additive noise ε 

distributed as N(0,0.25).  The fitted spline model closely approximates the underlying function.  

MARS is a nonparametric extension of spline models.  The number of splines and location of 

knots are learned from data through a recursive partitioning method [Fri91].     
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Figure 3.1.  Spline model with one knot at x = 0 fitted to noisy data sampled from a 

          piecewise linear function.  

 

3.1.2 Verification and Validation of Surrogate Models 

 

 The process of generating a data set from code simulations and constructing a surrogate 

model through regression analysis is known as surrogate training.  The data set is referred to as 

the training set.  Before the code surrogate can be applied to an engineering application, the 

surrogate must be validated and verified. The required performance of a surrogate will be 

application specific but in general, the adequacy is measured by the capability of the surrogate to 

accurately predict the output response of interest for a range of input parameter values within an 

acceptable uncertainty or error to the original code model.  

 In practice, when constructing a code surrogate to approximate a complex engineering 

computer code such as a TH system code, the input parameter space will be large and very little 

a priori information about the possibly highly nonlinear functional relationship will be known.  

For this type of application, a sufficiently complex and flexible parametric model which could 

run a high risk of over fitting or a nonparametric model would have to be used.  If the latter 
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option is chosen the training set must be sufficiently large.  Even if a priori information about 

the functional form is known and a parametric model can be used, the model will likely have to 

incorporate many basis functions to capture the interaction terms between input parameters.  The 

training set would still need to be large enough in order to calculate the large number of fitting 

coefficients.  Regardless of regression method, the training set must also adequately cover the  

large input parameter space.  Numerical strategies referred to as experimental design such as 

stratified and Latin hypercube sampling (LHS) [McK79] and space filling designs [Joh90]  exist 

for selecting input values for the training set.  

 For a desired accuracy of the surrogate, there is some optimal set of data points required 

for training that represents the lower bound on the size of the training set.  The training set can 

only be generated by running expensive code simulations so the upper bound on size of the set 

must always be finite and limited by the computational resources available.  Ultimately, the  

decision to use a code surrogate in place of the original code model is a subjective process using 

engineering judgment to interpret a variety of quantitative tests such as goodness of fit and 

resampling techniques used to assess the surrogate model constrained by the finite training set 

size.         

 The goodness of fit is a measurement of how well a surrogate model fits to the data in 

training set.  The surrogate can be evaluated at each set of input values from the training set and 

the residual error calculated for each prediction     from which the coefficient of determination or 

R
2
 value can be calculated.  The coefficient of determination is calculated as  

 

                                                                  
         

  
   

          
   

   ,       (3.6) 

 

with    equal to the sample mean of the outputs in the training set.  R
2
 values close to 1 indicates 

close agreement between the surrogate model and the observations in the training set.  While the 

coefficient of determination is a useful statistic for goodness of fit, there are subtleties to 

consider when interpreting R
2 

values of code surrogates.  To illustrate this point, we will consider 

two simple linear regression problems applied to points drawn from a linear function  y =  x + ε 

with ε distributed as U(-1,1) and an exponential function y = e
x
.  Figure 3.2 shows plots of 1st 

degree polynomial linear regression models fitted to data both sets of data points and an 

additional 15th and 3rd degree polynomial linear model fitted to the linear function data set and 



23 
 

exponential function data set, respectively.  For the linear function data set, the 1st degree 

polynomial fit yielded a R
2
 value of 0.23 suggesting a poor fit to the noisy data.  However, the 

equation of the fit is y = 0.9177x + 1.49×10
-4

 which is a very accurate estimate of the true 

underlying function.  The small R
2
 value is a result of the large variance of the sampled data.  

The 15th degree polynomial fit yielded a R
2
 value of 0.88 suggesting a good fit.  Inspection of 

Figure 3.2 shows the highly oscillatory behavior of the 15th degree polynomial fit which is a 

clear over fitting of the data by an overly complex surrogate model.  The 1st degree polynomial 

model fitted to the exponential function yielded a R
2
 value of 0.79 suggesting an acceptable fit to 

the data but through visual inspection of the fit and knowledge of the underlying exponential 

function, we know a 1st degree polynomial is not a very good approximation to an exponential 

function.  The Taylor series expansion of the exponential function is the infinite sum 

 

                                                           
  

 
 

  

 
    

  

  

 
        ,       (3.7) 

 

so it is not surprising the 3rd order polynomial fit is a very good approximation yielding a R
2
 

value of 0.999 because a 3rd order polynomial matches the functional form of the first four 

moments of the Taylor series expansion.   

 Important conclusions can be drawn from this simple example.  The calculated R
2
 value 

alone is not enough information to conclude whether or not a surrogate model is an adequate 

approximation to the underlying function.  Over fitting the surrogate model to the data needs to 

be avoided.  Over fitted surrogates can yield an R
2
 value close to 1 for the training set data but 

predictive accuracy at new points in the input parameter space will often be very poor.  If 

information about the underlying functional form of the input/output relationship is known, a 

very accurate surrogate can be trained from the data using parametric regression analysis.   
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Figure 3.2.  Linear regression models fitted to data drawn from y = x with noise and y = e
x
. 

   

 When dealing with a finite sample of data, extra information can be extracted through 

careful manipulation of the data set and analyzing subsets of the complete sample through 

resampling techniques, namely cross-validation, jackknifing, and bootstrapping methods.  Cross-

validation purposely leaves a subset of data, the test set, out of the training set.  To test the 

predictive accuracy of the surrogate, the surrogate predictions at the test set of inputs are 

compared with the output response variables in the test set.  Statistical properties of the error 

residuals give information about the accuracy and bias of the surrogate.  The surrogate 

predictions should meet the desired accuracy required and be unbiased or else additional data 

points need to be added to the training set or a different functional form chosen for the surrogate 

if the surrogate is a parametric model.  Bias in the surrogate is generally undesirable but in some 

nuclear safety applications, bias is acceptable as long as the model is conservat ive.          

 Similar to cross-validation, jackknifing removes a subset of data from the training set.  

The surrogate is retrained on the remaining data.  The process is repeated for different subsets 

from training set and the statistics from each resulting surrogate can be compared.  For a training 

set that is sufficiently large and surrogate functional form that is complex and flexible enough to 

model the underlying functional relationship, the performance of the surrogate trained on the 
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complete training set and each jackknife sample should be comparable and any surrogate model 

coefficients and parameters should not fluctuate significantly in value across the different data 

sets.  Fluctuating model parameter values indicate the fitted surrogate is sensit ive to individual or 

subsets of data points in the training set either from over fitting or a training set that is too small 

to capture all of the underlying functional relationships so each data point provides a new or 

unique piece of information for surrogate training.          

     Bootstrapping does not remove data points from the training set but rather resamples 

by adding randomly generated error residuals to the output response variables in the training set.  

The surrogate is retrained on the bootstrapped data set and variation between the models are 

observed.  Bootstrapping has the benefit of retaining all of the test data, which may be very 

expensive to obtain, in the training set. 

 

 3.2 Gaussian Process Model 

 

The GPM is unique among regression methods because it defines a predictive 

distribution              of the output    at any input    ={xi,i=1,…,p} given a training set of n  

data points (X,y)={xj,yj,j=1,…,n}.  The predictive distribution is a Gaussian N(      ) defined by a 

mean function and variance:  

 

                                                                 
        

  
             (3.8) 

 

                                                                   
        

  
                 (3.9) 

 

   

 
                 

   
                 

                                               (3.10) 

 

                                   .                                   (3.11) 
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Here the kernel or covariance function                           has been introduced 

which defines the covariance between any two data points.  I is the identity matrix.  We will 

formally derive Eqs. (3.8) and (3.9) following the derivation given in [Ras06].   

 We begin with the linear regression model discussed in section 3.1.1 assuming a simple 

linear polynomial fit and replacing the notation of fitting coefficients β with regression weights w 

  

                                                       ,                    ,         (3.12) 

 

where noise  is distributed as a zero mean Gaussian with variance Vy 

 

                                                                      .         (3.13) 

 

Given the model, the likelihood of observing the data y is the joint PDF 

 

                                         
 

     
     

 

   
                        .   (3.14) 

 

Unless prior constraints are applied, Eq. (3.14) will hold for any set of weights recognizing there 

are an infinite number possible weight values.  An arbitrarily chosen set of weights will most 

likely yield a low likelihood probability while a set derived from the data by ordinary least 

squares given by Eq. (3.4), will yield a higher likelihood.  Through Bayes' theorem, the posterior 

distribution of the weights given the data can be computed by 

 

                                                                
            

      
                    (3.15) 

 

with the prior distribution of the weights assumed to be a zero mean Gaussian with covariance 

matrix Vw  

 

                                                                              .            (3.16) 

 

The marginal likelihood p(y|X) is a normalization constant so Eq. (3.15) can be expressed as 
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with      
      and        

        
   .  Equation (3.17) has the form of a Gaussian 

with mean    and covariance matrix V.  Next we will explicitly derive Eq. (3.17).  In order to 

avoid the complicated vector and matrix notation, we consider a simplified one-dimensional case 

where f(x) = wx and a single measurement y has been taken.   The posterior distribution for w is  
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We are seeking a distribution for w that has a form of a Gaussian so we rearrange Eq. (3.18) 
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Completing the square with the quadratic expression involving w, we obtain: 
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The first exponential term is only dependent on constant values so it evaluates to a constant and 

can be included within the proportionality constant of the distribution and Eq. (3.20) simplifies to  

                                                  
 

  
  

  
   

   
   

  

    
 

  
   

   
 

 

     ,     (3.21) 

 

which we recognize as a Gaussian with mean          
       

   
  

   and variance 

   
       

    and is equivalent to Eq. (3.17).   

 To obtain the predictive distribution             ,  an average over all possible models 

defined by weights w must be taken weighted by the posterior distribution of the weights given 

by Eq. (3.17).  First,           , the probability of obtaining the prediction    given a model 

with weights w and input   , must be defined.  A delta function is an appropriate form for 

           because an unique set of weights and single input will yield an unique output.  The  

predictive distribution is obtained by the integral 

 

                                   

 

                               
              

 

                  
      

       .        (3.22) 

 

Equation (3.22) was derived with the initial assumption of the simple linear polynomial fit of Eq. 

(3.12).  Of course linear regression models are not limited to linear fits and any set of basis 

functions                            can be incorporated into the model replacing x  

with      and X with      where the columns of   are      for x in the training set.  After 

substitutions, Eq. (3.22) is   

 

                                                                            
      

       ,     (3.23) 
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with the shorthand notation          introduced.  The mean weights and covariance matrix 

are      
      and        

    
    

   , respectively.  Through a series of matrix 

operations given in [Ras06], Eq. (3.23) can be expressed as 

 

                
               

  
     

                                                      
        

               
  
 

        .        (3.24) 

  

Taking a closer look at Eq. (3.24), input variables always appear in vector and matrix operations 

with the covariance matrix Vw as   
     ,   

    ,  
     , or  

    . Since the columns of   

are  , every matrix operation is comprised of the inner products      
 
        where xq and 

xr are either part of the training set or the prediction point.  A new variable, the covariance 

function, can be defined               
 
       .  From the definition for         , Eqs. 

(3.8) and (3.9) are equivalent to Eq. (3.24) recognizing          and      
     

 
     .    

 

3.2.1 GPM Covariance Function 

 

 The covariance function          is the most important element of the GPM because it 

encodes all information about the underlying function we are trying to infer from the training 

data.  The basic assumption applied to the selection of          is that data points with inputs 

that are close in the input parameter space are likely to have correlated outputs; therefore, 

         should define the covariance between two outputs                   based on the 

input data locations.  A common covariance function is the squared exponential function  
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The constant θ1 is a scaling factor and each ri is the characteristic length scale of the process in 

the dimension i of the input parameter space.  The second term θ2 in the covariance function  is a 

constant offset which allows the underlying function to have nonzero mean.  These factors are 

generally referred to as hyperparameters.  The squared exponential covariance function is widely 

used in GPMs and has performed well in previous analysis [Bai99,Ras06]. 

 The squared exponential covariance function assigns covariances through a 

parameterized (by hyperparameters θ and ri,i=1,…,p) distance-based metric.  The values of the 

hyperparameters must be inferred or learned from the data by maximizing the likelihood of the 

hyperparameters given the data by gradient search methods [Ras06] through a procedure referred 

to as Automatic Relevance Determination (ARD) [Nea96].  The squared exponential covariance 

function is amenable to ARD because the inverse of each length scale determines the sensitivity 

of the output to the input dimension.  If an ri is large, the covariance is independent of the ith  

input dimension.      

 

3.2.2 Interpreting the GPM 

 

 The GPM is the mean and variance functions of Eqs. (3.8) and (3.9) comprised of matrix 

and vector operations.  The entries of the  n × n matrix K are the covariances between the 

training set data points with the measurement noise added to the diagonal entries.  The first 

matrix-vector multiplication of Eq. (3.8) is        
  

   which yields a new n × 1 vector ys of 

"smoothed" output data values for each training point.  The inner product of the ith row and y  

yields a weighted average of the output y for the ith data point with the weights determined by 

the covariance between the ith point and each of the other data points in the training set.  The 

weighted average is the smoothing operation.  The matrix inversion and multiplication with y 

only has to be performed once and the result stored electronically.  The final operation to 

calculate the prediction mean at the prediction point    is a second smoothing operation of   
   .  

The weighted average of the vector of smoothed output data is taken with the weights 

determined by the covariance between     and each of the data points in the training set.  After 

the initial matrix inversion, calculating the prediction mean requires order (n) operations for each 
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prediction point.  Similarly for Eq. (3.9), the matrix inversion only has to be performed once and 

each prediction variance calculation requires order (n
2
) operations.   

 In a classical response surface formulation, the prediction mean function could be 

interpreted as the input/output mapping and the prediction variance function would a quantitative 

measure of the model uncertainty.  However, the GPM is not trying to approximate the 

functional relationship between the input and output parameters in the traditional data fitting 

sense but rather is describing a predictive distribution at any location in the input parameter 

space which is a Gaussian defined by the prediction mean and variance.  The GPM is often 

described as a distribution over functions implying there are many (possibly infinite) functions 

that could be the true underlying function with certain functions having a higher likelihood given 

the training set.  The prediction mean is the most probable output value an arbitrary function 

selected from the complete set of possible functions would produce at that particular location in 

the input parameter space, noting that the GPM is not making any inference about the function 

behavior anywhere else in the input parameter space other than at the prediction point.  The 

prediction variance constrains the range of probable values a function can take about the mean.     

  

3.3 Alternating Conditional Expectation Algorithm 

  

 The ACE algorithm [Bre85] yields an optimal relationship between the dependent 

variable and multiple independent variables by obtaining one-dimensional transformations θ(y) 

and ϕi(xi) of each variable through an iterative procedure that maximizes the statistical 

correlation between θ(y) and        
 
   .  The transformations satisfy the linear relationship  

 

                                                                      
 
         .          (3.27) 

 

The transformations are obtained by minimizing the square error of a linear relationship between 

the transformed dependent variable θ(y) and the sum of the transformed independent variables 

       
 
    

 

                                                                    
 
   

 
 
   .                               (3.28)  
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The minimization of ε
2 

with respect to each transformed variable yields  

 

                                                                                          
 
              ,                                 (3.29) 

 

                                                         
           

 
   

 

            
 
   

  
          ,                                             (3.30) 

 

with the square-norm ||·|| introduced such that E[θ
2
(y)]=1.  The ACE algorithm iteratively solves  

Eqs. (3.29) and (3.30) to converge to an estimate of the optimal transformations θ
*
(y) and ϕi

*
(xi).  

The derivation of the ACE algorithm given in [Bre85] provides a mathematical proof of the 

existence of the optimal transformations θ
*
(y) and ϕi

*
(xi).  Given the training set of n data points 

(X,y)={xij,yj, i=1,..,p, j=1,…,n}, the ACE algorithm must compute a set of transformed data 

points {ϕi(xij), θ(yj)} that are realizations of the continuous transformations θ(y) and ϕi(xi). The 

ACE algorithm is  

 

 1)  Initialize  θ(y)  = y/||y||  and all ϕi(xi) = 0. 

 

 2)  Calculate ϕi(xi) conditioned on xi.  Sort θ(y) and ϕl(xl) in ascending order of xi and  

      evaluate for i = 1,..,p : 

                      
 
         

       

      Iterate through all i until squared error fails to decrease 

 

              
 

 
                

 
   

 
  

     

 

      All θ(y) are held constant and ϕi(xi)  is updated after each iteration.   

 

 3)  Calculate θ(y) conditioned on y.  Sort ϕi(xi) in ascending order of y and  

      evaluate: 
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 4)  Alternate between steps 2 and 3 until               does not change. 

 

In steps 2 and 3, the individual transformed data points ϕi(xij) and θ(yj) are calculated by a 

localized smoothing operation about the jth point 

 

                                                       
 
               

                                                               
 
            ,                   (3.31) 

 

                                          
              

 
   

 

               
 
   

  
 

             
 
   

 

              
 
   

  
  ,      (3.32) 

 

                                                                         
   
       .            (3.33) 

 

The smoothing operation defined in Eq. (3.33) takes the form of a weighted average about the 

window of data points.  The weights Wk and window width 2M are determined by the type of 

smoothing operation which must be chosen by the user.  The supersmoother [Fri82] which 

allows the window width to vary is implemented in the ACE algorithm presented in [Bre85] and 

in the 'acepack' package available in the R program.  [Kim97] implemented the tri-cube function 

[Cle79].  The smoothing operation is the conditional expectation from which the name for the 

ACE algorithm is derived.          

 The ACE algorithm is a very powerful nonparametric regression technique.  ACE 

guarantees convergence without assumptions about the underlying functional for ms of the 

transformations.  After the iterations have converged, each transformed set of points {xi, ϕi(xi)} 

and {y,θ(y)} are slowly varying and the multi-dimensional input space x is mapped to the single 

dimension transform space.  Likewise, the output dimension y is mapped to the same transform 

space.  The global variation of y to the transform space is represented by θ(y) and each ϕi(xi) 

represents the local variation in the transformed space by variation in the input parameter xi.  

Through the common transform space, the nonlinear mapping x →{Σϕ,θ}→ y is achieved.  Each 

value of ϕi at a prediction point is obtained using transformations as interpolation tables and the 

corresponding θ is calculated using Eq. (3.27).  The final step in the nonlinear mapping involves 
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taking the inverse transform            
 
   

  to obtain y.  The one-dimensional transformations 

can be visually inspected giving physical insights into the input-output relationship of the 

variables.             

 

3.3.1  Variance Estimate of ACE Transforms 

 

 Both the GPM and ACE are nonparametric regression techniques that use data 

smoothing as the primary tool for surrogate training.  ACE performs data smooths on the 

transformed data points for each input dimension and the output dimension and the GPM 

performs a data smooth directly on the output values in the training set.  A subtle difference 

between the methods is that the ACE transformations represent the best estimate of the true 

underlying functional relationship whereas the GPM is a distribution over functions as discussed 

in Section 3.2.2.  The distinct advantage of the GPM is the prediction variance which quantifies 

the model uncertainty of the GPM.  Drawing on the similarities of methods, we propose a 

prediction variance formulation for the ACE algorithm.  

 In the last iteration of the ACE algorithm, the f inal converged transformed dependent 

variable points θ(yj) are obtained through the data smooth given by Eqs. (3.32) and (3.33)       

 

                                                                      
   
     

  
     .     (3.34) 

 

The inner summation in Eq. (3.34) is a weighted average over the subset of  2M transformed data 

points in the transformed dimension i yielding a weighted mean of ϕi|yj to be used in the 

calculation of θ(yj).  Similarly, the weighted variance of the subset can be calculated.  The 

weighted mean and variance for dimension i is 

 

                                                                         
   
          and     (3.35) 

 

                                                           
  

                  
    

     
    

  
    

   
     

     .       (3.36) 
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Next we use Eqs. (3.35) and (3.36) to assume  p(ϕi|yj) is distributed as a Gaussian           
  .  

Each θ(yj) is now a summation of p Gaussian random variables so θ|Σϕi is best described as a 

PDF which is a Gaussian 

 

                      
 
               

   
     

 

         
 
        

  
   

   

 

                                               
   
     

  
 
        

  
   

   

 

                                                                          .          (3.37) 

 

Equation (3.37) indicates the mean of θ|Σϕi is θ(yj) obtained from the last converged iteration of 

ACE and the variance is the summation of the weighted variances given by Eq. (3.36).   

 The training set is now represented as a set of transformed data points {ϕi(xij), θ(yj), 

V[θ(yj)]}.  The uncertainty of the ACE model appears in the θ component of the mapping of Σϕi 

→ θ  in the transform space.  The uncertainty is derived from the sample statistics of the subsets 

of transformed data used in the data smoothing operations of the ACE algorithm.  As a code 

surrogate, the ACE model can be expressed with model uncertainty added as model noise v 

which is distributed as N(0, V[θ(yj) = Σϕi])  

 

                                                                 
 
           .        (3.38) 

 

 As in the GPM, we want to know the uncertainty in a prediction y given the uncertainty of the 

surrogate model.  For the ACE model, this means the uncertainty in θ must be propagated to y 

involving the nontrivial transform of the Gaussian distribution of v through the possibly 

nonlinear inverse transformation θ
-1

( ) 

  

                           
 
            .       (3.39) 
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The unscented transformation presented in the following sections is the method proposed to 

evaluate Eq. (3.39) and obtain estimates of the mean and variance of y subject to the model 

uncertainty of the ACE model.      

  

3.4 Unscented Transform 

 

 Nonparametric regression techniques, the GPM and ACE algorithm, were presented in 

Sections 3.2 and 3.3 as alternatives to conventional linear regression models.  We present a new 

deterministic sampling method, the unscented transform (UT) to complement random sampling 

methods such as Wilks' formula in direct sampling approaches for safety analysis for NPPs.  The 

UT is a general method for propagating distributions through nonlinear functions.      

 The UT was developed by Julier and Uhlmann [Jul04] in the context of extending the 

Kalman Filter (KF) to nonlinear system dynamics.  The KF is one of the most widely used 

predictor-corrector algorithms used to estimate the mean and covariance of system states of 

dynamic systems described by linear process and observation models subject to noise.  The KF 

would break down when applied to nonlinear systems so there was a need to accurately predict 

statistical properties of random variables transformed through nonlinear functions.     

 Consider a random variable x that is a n × 1 vector defined by a mean vector    and 

covariance P that is related to the output variable y by the nonlinear function  

 

                                                                             .       (3.40) 

 

The statistics of y are dependent on the propagation of the statistical properties of x through f().  

Although it is difficult or impossible to transform a PDF through a nonlinear function, nonlinear 

transforms of individual points are easy to perform.  The foundation of the UT is that if a set of 

m carefully chosen points, called sigma points, and associated weighting coefficients X = {x
(i)

, 

W
(i)

: i = 0,1,...,m} whose sample mean and covariance is equal to    and P, are passed through f(), 

the statistics of the transformed points which are realizations of the output response y, contain 

high order accuracy information about the PDF of y.  The weights can be positive or negative but 

are constrained by 
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       .         (3.41) 

 

One generalized set of m = 2n+1 sigma points x
(i)

 satisfying the criteria for the UT is  

 

        

                         

               
 
            

                                                                    
 
            .          (3.42) 

 

The 2n+1 weighting coefficients are 

 

     
 

   
 

 

                                                                
 

      
            .         (3.43) 

 

The unscented estimate of the mean and covariance of y are calculated from the transformed 

sigma points y
(i)

 

                     

             
  

   
 

 

                                                                  
  
             

 
  .     (3.44) 

 

The UT mean and covariance     and    are accurate up to the 3rd order if the distribution of x is 

symmetric [Jul04,Sim06].  The variable k in Eqs. (3.42) and (3.43) is a free parameter that can 

take on any value as long as (n + k) ≠ 0.  However, certain values of k can reduce the error in the 

4th and higher-order terms dependent on the type of input PDFs.  If x is Gaussian then k  = 3 - n 

will minimize error in the 4th order terms [Jul04,Sim06].  If k = 0, then a zero weight is assigned 

to the central sigma point x
(0) 

and the sigma set is reduced to 2n symmetric points.    
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 Equations (3.42) through (3.44) are the UT.  A mathematical subtlety that must be 

considered is the calculation of the matrix square root A =         that appears in the 

definition of the sigma points. If the matrix square root A of (n + k)P has the form (n + k)P = 

AA
T
 then          

 
 designates the i

th
 column of A.  If it has the form (n + k)P = A

T
A, then 

the transpose of the rows of A are taken.  If the variables of x are independent of each other, the 

covariance matrix P will be a diagonal with the diagonal entries equal to the variance of each 

dimension of x.  A diagonal matrix P with real entries has a unique matrix square root Au which 

is simply another diagonal matrix with diagonal entries equal to the square root of the diagonal 

entries of P.  However, for a matrix P, there are an infinite number of matrix square roots 

considering a new matrix square root A2 = AQ can be defined where Q is any orthogonal matrix 

that is the same size of A.  Q performs an orthogonal transformation of A.  From the properties 

of matrix multiplication,       
                        .  For the UT, any 

matrix square root can be used [Jul04].   

 Considering a nuclear safety calculation where a safety parameter such as peak clad 

temperature (PCT) is the output variable y of interest, the TH computer code used to simulate the 

transient can be interpreted as a complex nonlinear function with many uncertain input 

parameters.  For most TH code calculations, the input parameters will be independent so the 

covariance matrix P will be diagonal and the unique matrix square root Au can be readily 

calculated.  If the UT is to be used to estimate the mean and variance of the PCT and Au is the 

specific matrix square root used in Eq. (3.42), then the resulting sigma point set will have an 

undesirable property.  Each column of Au has only one non-zero element so only one input 

dimension will be modified for each sigma point leaving the other n - 1 dimensions held at the 

mean values.  Modifying one variable at a time while holding all others constant is analogous to 

a sensitivity calculation.  A sigma point set with this property would not be expected to account 

for combined effects of simultaneous variation of input parameters resulting from interaction 

terms or coupling of variables in the nonlinear function.  A more robust sigma set would be 

obtained by transforming Au by an orthogonal matrix [Zan01].  A randomly generated orthogonal 

matrix could ensure that all elements of       would be nonzero and all input parameters would be 

varied for each sigma point except for the central point x
(0)

.  Figure 3.3 illustrates an orthogonal 

transform of a two variable sigma point.  
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Figure 3.3.  Orthogonal transform of a sigma point set. 

 

3.4.1 Derivation of UT Accuracy 

 

 To prove the accuracy claim of the UT, we present the derivation given in [Sim06].  First, 

consider a random variable x described by a PDF p(x). The mean of x is calculated  

 

                                                                     
 

     .         (3.45) 

 

The variance of x is  

 

                                                                    .        (3.46) 

 

A special case occurs if x has a zero mean and symmetric PDF.   A symmetric PDF implies 

          .  Uniform with zero mean and normal distributions are examples of symmetric 

PDFs and any uniform and Gaussian distributions, which are commonly used to describe input 

parameter uncertainties, can be easily transformed to uniform with zero mean and normal 

distribution by shifting the mean.  The ith moment of x can be calculated 

 

                                   
 

               

                                                                                
 

            
 

   .         (3.47) 
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Substitute               into the first term of Eq. (3.47)  u =            

 

                                         
 

             
  

               
 

    .      (3.48) 

 

If i is odd,             and            from symmetry of p.  The result of Eq. (3.48) 

after quick change of variables     is 

 

                                                
 

              
 

            
 

     .           (3.49) 

 

If the result of Eq. (3.49) is substituted back into Eq. (3.47), we see that all odd moments are 

equal to zero if a zero mean random variable has a symmetric PDF.   

 Any function can be expanded as a Taylor series about a nominal linearization point.  For 

notational simplicity, we will assume Eq. (3.40) has a single input dimension x with PDF p(x) 

and the linearization point is the mean   .  The Taylor series expansion of Eq. (3.40) is  

 

                              
      

  
   

 

  

       

   
    

 

  

       

   
            .   (3.50) 

 

The expectation value of Eq. (3.50) gives the mean    of y. 

 

                       
      

  
   

 

  

       

   
    

 

  

       

   
             

 

                         
      

  
   

 

  

       

   
    

 

  

       

   
                 

 

                                                  
 

  

       

   
              .       (3.51)   

 

The result shown in Eq. (3.51) is obtained noting 
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           and          (3.52) 

    

                             
 

  

       

   
     

 

  

       

   
          

 

          .       (3.53) 

 

Applying the UT to the same function f(x) and setting k  = 0, a two data point sigma set is 

generated 

                                                                       
 

 
 
 

 
    ,     (3.54) 

 

and two function evaluations are performed 

 

                                                                              .    (3.55) 

 

The UT mean     is calculated from Eq. (3.44) as 

 

                                          
 

 
                    .      (3.56) 

 

Performing a Taylor series expansion of Eq. (3.56) about x =    

 

    
 

 
 
            

      

  
  

      

  
  

 

  

       

   
   

 

  

       

   
   

 

  

       

   
   

  
 

  

       

   
   

 

  

       

   
   

 

  

       

   
   

        

 

                       
 

 

       

   
   

 

  

       

   
        .       (3.57) 

 

All of the odd moment terms canceled in Eq. (3.57) because the sigma point set was symmetric 

           }.  Equation (3.57), the UT mean compares exactly with Eq. (3.51), the true mean, 

up to the 3rd order term regardless of the choice of sigma point set and type of input PDFs.  

Error starts to creep into the 4th order term.   
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 If the input PDF is symmetric, all odd moments in Eq. (3.51) evaluate to zero and the true 

mean is 

 

                    
      

  
   

 

  

       

   
    

 

  

       

   
    

 

  

       

   
             

 

                             
 

  

       

   
   

 

  

       

   
                   .                                   (3.58)  

 

Comparing Eq. (3.58) to the UT mean of Eq. (3.57), the error in the 4th order term is introduced 

because          .  However, we can calculate        for any PDF.  For example, is x is a 

normal distribution, the 4th moment is equal to 3σ
4
.  Through careful selection of k in Eq. (3.43), 

a particular sigma point set and associated weighting factors can be chosen to minimize the error 

in the 4th order and higher terms given the type of input parameter PDF.  A similar derivation 

can show the UT variance approximation is accurate up to the 3rd order term of the true 

variance.        

 The UT generates sigma points around the mean input so the variation of the inputs from 

the linearization point of the expansion, which is usually the mean input, could be small.  For 

nonlinear functions that are sufficiently smooth, the higher order derivatives should be small.   

Furthermore, the higher order terms in the Taylor series expansion are divided by increasingly 

larger factorials.  All of these factors could minimize the error introduced into the UT from the 

higher order terms, thus improving the overall accuracy of the UT.     

 

3.4.2 UT and Nonlinear System Dynamics 

 

 The UT presented in the previous section is applicable to propagating distributions 

through any general nonlinear function f().  Next we consider the case where f() is a function 

describing nonlinear system dynamics which was the original application of the UT and will be 

relevant to the development of a dynamic code surrogate in Chapter 5.  Dynamic systems are 

often modeled as discrete time systems where the system state x is advanced over discrete time 

steps from the current system state estimate  
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                                                                                  ,      (3.59) 

 

where u is the input parameter vector, v is the model noise or model uncertainty and k  is the 

current time step.  From an initial condition x(0) at time zero, the model uncertainty introduces 

uncertainty into the subsequent state estimates.  Thus, the uncertainty of x(k) and the model 

uncertainty v(k) must be propagated through f() resulting in a distribution for x(k+1).  The UT 

provides an efficient means to accurately estimate the mean and variance of the new state 

estimate x(k+1).    

 

3.5  Code Surrogates in BEPU Methodologies  

 

 In 1988, the U.S. Nuclear Regulatory Commission (NRC) approved the revised rule on 

the acceptance of Emergency Core Cooling System (ECCS) which offered the option to use the 

evaluation model prescribed in Appendix K of 10CFR50.46 or a best-estimate (BE) computer 

code for safety analysis of NPPs provided that the uncertainty of the BE results are quantified.  

The evaluation model required the use of conservative models and assumptions that would 

sometimes lead to overly conservative results resulting in the performance of as designed safety 

systems not meeting the regulations.  BE codes using realistic physical models were attractive 

tools for NPP owners in the licensing process and power uprate applications.  However, applying 

BE computer codes to analyze full scale NPP transients and rigorously assessing the results was 

a new and challenging regulatory and engineering endeavor. 

 The NRC and its contractors developed the code scaling, applicability, and uncertainty 

(CSAU) methodology and applied it to a LBLOCA in a Westinghouse four-loop pressurized 

water reactor (PWR) demonstrating the use of BE codes for ECCS analyses [NRC89].  The 

CSAU methodology implemented a three element process in 14 steps.  The first element, 

Requirements and Code Capabilities, identifies the TH phenomena associated with selected 

transient and NPP type and compares with the code capabilities and possible limitations.  A 

phenomena identification and ranking table (PIRT) is generated through a systematic approach 

that evaluates the effects and importance of phenomena on primary safety criteria.   In the second 

element, Assessment and Ranging of Parameters, the code capabilities to calculate the important 

process and phenomena are assessed by simulating integral effects experiments and separate 
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effects experiments with the code. Scale-up capability, nodalization, bias, and range of parameter 

uncertainties are determined.  In the third element, Sensitivity and Uncertainty Analyses, bias 

and uncertainty identified in second element are combined with uncertainties of the initial NPP 

state to obtain a statement of total uncertainty in the safety criteria for the transient.   

 The result of the first two elements in the CSAU methodology is a set of uncerta in input 

parameters defined by PDFs that must be propagated through the BE code simulation to see the 

variation in the output system parameters relevant to the safety criteria.  Two general approaches 

for the input uncertainty propagation exist.  The first is input parameter sampling and direct 

computer code simulation which yields a data set from which statistical properties of the output 

distribution can be estimated.  The second approach is to develop a code surrogate and generate 

the output distribution from Monte Carlo simulation using the surrogate.  In the CSAU 

demonstration, response surfaces were constructed from 184 PCT values obtained from eight 

TRAC simulations and output PDFs of the PCT were generated by sampling the response 

surfaces through Monte Carlo methods.  For the time period, performing eight TH code 

calculations of a full scale NPP transient model required the state-of-the-art in computational 

resources.  The response surface models were linear regression models with up to 4th degree 

polynomial basis functions.  The response surfaces were limited to the seven most important 

input parameters.  Westinghouse developed a Best Estimate Plus Uncertainty (BEPU) 

methodology similar to the CSAU implementing response surfaces of low order polynomial 

linear regression models and applied the methodology to the analysis of a LBLOCA for the 

AP600 NPP design [You98, Zha98].    

 Advances in computer science and technology through the widespread availability of the 

personal computer and increasingly faster processors since the first demonstration of the CSAU 

methodology allows for greater flexibility in uncertainty propagation. Consequently, reactor 

vendors and nuclear industry research organizations have developed BEPU methodologies 

generally following the CSAU methodology but use the direct simulation method with  

nonparametric order statistics to estimate probability levels of the output parameter distributions 

instead of response surface methods [Mar05,Fre08,Gla08].  The 95%/95% limits, the 95th 

percentile at a 95% confidence level, are calculated from Wilks' formula [Wil41].  A 95% 

confidence level generally assures a conservative estimate of the 95th percentile and qualifies the 

95%/95% limits as the statement of total uncertainty.  Wilks' formula allows all uncertainty 
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contributors to be randomly sampled from their underlying PDFs for each code run and only 

require a total of  59, 93, or 124 simulations for 1st, 2nd, and 3rd order Wilks' formula, 

respectively.  While Wilks' formula is simple to apply and requires finite computational 

resources making it attractive to use in BEPU methodologies, the numerical limits obtained are 

subject to statistical fluctuations inherent with any randomly sampled data set of limited size and 

the full output parameter PDFs are not calculated.  

 

3.5.1 LBLOCA Application of GPM and ACE 

 

 In this section, we summarize the uncertainty analysis of a LBLOCA for a PWR 

presented in [Fyn12, Fyn13].  The uncertainty analysis demonstrates the relevance of the GPM 

and ACE algorithm to nuclear reactor safety calculations and BEPU methodologies while 

demonstrating the process of surrogate construction.  The MARS code [KAE09] was selected as 

the system TH code to model a 200% double-ended guillotine break in a cold leg of an 

OPR1000, a two-loop PWR.  The PCT during the blowdown phase of the LBLOCA was the 

safety parameter of interest in the study.  The GPM and ACE algorithm were used to generate 

response surfaces for the blowdown PCT as a function of 20 input parameters to the MARS 

model of the OPR1000.  Table 3.1 lists the 20 input parameters and associated PDFs used in the 

study.  The parameters cover physical models in the MARS code and plant parameters important 

to a fuel behavior and TH conditions in the core during the LBLOCA blowdown phase.  A 

training data set with 400 data points was generated by sampling the input parameter 

distributions and performing MARS simulations.  A 200 sample LHS design was selected for 

coverage of the input parameter space supplemented by an additional 200 random samples.  A 

cross-validation test set of 111 random samples was also generated for a total 511 MARS 

simulations performed.  The MOSAIQUE uncertainty analysis software [Lim11] was used to 

automate the LHS and random sampling schemes, input file generation, and execution of the 

MARS simulations.     
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Table 3.1.  MARS Input Parameters and PDFs. 

 

 

 The ACE response surface is the one-dimensional transformations for each of the twenty 

input parameters and dependent variable, the blowdown PCT, derived from the 400 data point 

training set.  Figure 3.4 shows the ACE transformations.  A GPM was constructed using the 

squared exponential covariance function given in Eq. (3.25).  The Gaussian Processes for 

Machine Learning (GPML) Toolbox [Ras10], an open source GPM code package written in 

Matlab and GNU Octave programming languages, was used to learn the covariance function 

hyperparameter values.  To improve the numerical stability and interpretability of the GPM, all 

of the input parameters were normalized by scaling linearly from -0.5 to 0.5 corresponding to the 

min/max for uniformly distributed parameters or +/-3σ for normally distributed parameters.  The 

PCT values were shifted by the sample mean so that the GPM has a zero mean function.  Table 

3.2 lists the characteristic length scale hyperparameters ri for each input parameter dimension 

learned by the ARD minimization algorithm in the GPML software.  The GPM response surface 

is the mean function given by Eq. (3.8).  The inversion of the 400 × 400 covariance matrix was 

only performed once and multiplied by the 400 × 1 vector of PCT values to yield the 400 × 1 

vector of smoothed PCT values which is stored.  To make a prediction, the 1 × 400 prediction 

covariance vector must be generated and product taken with the smoothed PCT vector.  Each 

element of the prediction covariance requires the vector and matrix operations involving the 20 

dimension input parameter space.    

Code 

Input x i

Independent parameter PDF
Uncertainty range    

(min/max or σ)
Reference Value Units

1 Gap Width Uniform 0.05-.134 0.092 mm

2 Cladding Roughness Normal +/- 0.3 0.5 micron

3 Pellet Roughness Normal +/- 0.5 2 micron

4 Fuel Thermal Conductivity Normal +/-10% Table %

5 Cladding Thermal Conductivity Normal +/-12% Table %

6 Fuel Heat Capacity Normal +/-10% Table %

7 Cladding Heat Capacity Uniform 90 - 110 % Table %

8 Rod Internal Pressure Uniform 2.0-15.0 8 MPa

9 Power Peaking Factor Uniform 1.5054-1.7147 1.61

10 Operating Plant Power Normal +/-2% 2815 MWt

11 Pump 2-1 phase head multiplier Uniform 0-1.0 RELAP5 Default

12 Pump Torque Multiplier Uniform 0-1.0 Table

13 Pump Inlet K-factor Uniform 0.02-0.8 0.41

14 Pump Momentum of Inertia Uniform 4487.2-5484.4 4985.8 kg/m
2

15 CCFL Model Uniform 0-1.0 0 (Wallis)

16 Chen's Nucleate Boiling HT Multiplier Normal +/-11.6% 1

17 AECL lookup CHF Multiplier Normal +/-37% 1

18 Transition Boiling Multiplier Normal +/-16% 1

19 Film Boiling HT Multiplier Normal +/-18% 1

20 Decay Heat Normal +/- 6.6% ANS79-1 , 1.02 multiplier
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Table 3.2.  GPM and ACE model parameters corresponding to MARS inputs and    

        sensitivity rankings. 

 

Code 

Input x i

Independent parameter

GPM Length 

Scale 

Hyperparameter 

 Range of ACE 

Transformation 

Δϕ(x i )

ACE Sensitivity 

Rank

1 Gap Width 2.711 1.645 2

2 Cladding Roughness 5.146 0.649 10

3 Pellet Roughness 1.674 1.335 4

4 Fuel Thermal Conductivity 0.657 3.108 1

5 Cladding Thermal Conductivity 1.543 0.674 9

6 Fuel Heat Capacity 2.949 0.415 12

7 Cladding Heat Capacity 8.714 0.421 11

8 Rod Internal Pressure 58.603 0.097 17

9 Power Peaking Factor 2.428 0.713 8

10 Operating Plant Power 3.505 1.182 5

11 Pump 2-1 phase head multiplier 0.869 0.794 7

12 Pump Torque Multiplier 5.049 0.066 18

13 Pump Inlet K-factor 6.937 0.038 19

14 Pump Momentum of Inertia 403.611 0.032 20

15 CCFL Model 2.239 0.158 15

16 Chen's Nucleate Boiling HT Multiplier 14.556 0.104 16

17 AECL lookup CHF Multiplier 1.529 1.152 6

18 Transition Boiling Multiplier 5.048 0.303 13

19 Film Boiling HT Multiplier 2.713 1.575 3

20 Decay Heat 16.777 0.243 14



48 
 

 

Figure 3.4.  ACE transformations for LBLOCA blowdown PCT response surface. 
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 A practical advantage of the GPM with a squared exponential covariance function and 

the ACE algorithm one-dimensional transformations over conventional regression models is that 

sensitivity information is automatically obtained during surrogate construction. The inverse of 

the characteristic length scales, which have been conveniently normalized, can be interpreted as 

sensitivity coefficients for the input dimensions.  The ACE transformations are all normalized to 

the single dimension transform space.  The absolute range of each ϕi(xi) is a measure of what 

fraction of the range of y, through θ(y), is explained by the variation in xi.  This is a function both 

the sensitivity of y to xi and the assumed uncertainty range of xi so the range of the transforms are 

not sensitivity coefficients from a strict definition sense but do offer quantitative sensitivity or 

importance information.  A range of 1 in the transforms space corresponds to approximately a 

range of 45 K for PCT.   Table 3.2 lists the ACE transformation range for each input and the 

associated sensitivity ranking.  A semi-quantitative comparison of the GPM length scales and 

ACE sensitivity rankings reveal that both methods are generally identifying the same parameters 

as sensitive or insensitive.  For example, the fuel thermal conductivity has the shortest GPM 

length scale and is ranked most sensitive by the range of the ACE transforms whereas the pump 

moment of inertia has the longest GPM length scale and is rank last by the ACE transform.  An 

inspection of the least sensitive input transformations in Figure 3.4 show highly nonlinear or 

oscillatory behavior but over a small range of ϕ indicating these variables are free parameters 

that are adjusted arbitrarily by the ACE algorithm to account for any residual unexplained 

variance.                       

 Figure 3.5 compares the predictive accuracy of the GPM and ACE response surfaces to 

the MARS simulation cross-validation test set.  The surrogate predictions are tightly scattered 

about the 45 degree goodness of fit line.  The maximum observed deviation of the GPM and 

ACE response surfaces from the test set PCT was 27 K and 25 K, respectively.  The cross-

validation data provides evidence that the surrogates are accurate and unbiased and when 

considered coupled with the agreement of the sensitivity information, we can confidently move 

forward with applying the surrogates to the UQ of the blowdown PCT.    
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Figure 3.5.  Cross-validation of GPM and ACE response surface PCT predictions to MARS 

          code results.  

 The uncertainty of the blowdown PCT can be quantified by obtaining a PDF of PCT.  

The input parameter distributions are sampled through a Monte Carlo method and the PCT 

values are obtained at very low cost from the response surface models.  Figure 3.6 shows the 

PCT PDFs from 100,000 random samples with PCT calculated with the GPM and the  ACE 

models.  From the GPM derived PDF, the mean value for PCT of the LBLOCA is 1161.9 K and 

the 95
th

 percentile is 1235 K.  From the ACE derived PDF, the mean value for PCT of the 

LBLOCA is 1162.7 K and the 95
th

 percentile is 1236 K.  The decimal place used in the mean 

PCT values is included for comparison purposes only and does not quantify the precision of the 

surrogate predictions.  Despite being obtained from two different response surface models, the 

statistical data obtained from the PCT PDFs are in very close agreement.  The mean PCT value 

obtained from the response surface analysis is approximately 1162 K which is significantly 

greater than the PCT value of 1072 K from the reference case MARS simulation.  Many of the 
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input parameter uncertainties used in this study are uniform distributions so the nominal values 

chosen for these parameters may bias the result if only a reference case is considered.  Thus 

performing an uncertainty analysis to determine the true mean and other statistical information 

about the output parameters is an important element of BE modeling and simulation.    

 

Figure 3.6.  PDFs of blowdown PCT from 100,000 random samples evaluated with ACE  

         and GPM response surfaces. 

 

3.5.2 LBLOCA Application of UT  

 

 Once a surrogate has been constructed, it is a computationally efficient tool that can be 

used for a variety of purposes including UQ.  We now use the ACE response surface presented in 

Section 3.5.1 as a benchmarking tool to assess the applicability of the UT as a deterministic 

sampling based approach for UQ.  Specifically, we apply the UT to the estimate the mean and 

variance of LBLOCA blowdown PCT and perform a parametric study to determine the optimal 

set of sigma points through the selection of parameter k in Eqs. (3.42) and (3.43) and the use of 

orthogonal transforms.  In place of the MARS code, all simulations are performed with the ACE 

response surface so the UT results can be directly compared with the ACE derived PCT PDF.  
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 The UT transform should be able to accurately estimate the mean and variance of the 

PCT requiring only 41 samples and evaluations of the ACE response surface.  The central point 

x
(0)

 is equal to the mean values    of the input parameter distributions given in Table 3.1 and the 

covariance matrix P is a 20 × 20 diagonal with the diagonal entries equal to the variance of the 

input PDFs.  To test the sensitivity of the UT to the specific chosen sigma point set, seven 

different matrix square roots were selected by multiplying the unique square root Au by a 20 × 20 

orthogonal matrix.  Table 3.3 summarizes the orthogonal matrices used to define the matrix 

square roots.  For matrix square roots A2 through A4, specific transforms such as the Hartley 

transform and discrete cosine transform are used to produce symmetric orthogonal matrices.  For 

matrix square roots A5 through A7, orthogonal matrices were randomly generated by performing 

singular value decomposition (SVD) on randomly generated 20 × 20 matrices.      

Table 3.3.  Orthogonal transforms used for sigma point set generation. 

 

 For each orthogonal transform, the mean and variance of the PCT were calculated with 

the UT for varying values of k .  Figure 3.7 compares the UT mean estimates to the true mean of 

1163 K from the ACE response surface benchmark as a function of k .  Figure 3.8 compares the 

UT variance estimates to the true variance of 1702 K
2
 corresponding to a standard deviation of 

41.25 K as a function of k .  The orthogonal transform A1 which is equal to the unique square root 

Au performed poorly for all k .  For the symmetric orthogonal transforms, the sigma point sets 

using k  = 2 and k  = 0  gave the most accurate mean and variance estimates, respectively.  The 

symmetric orthogonal transforms  still performed well for the range k  = [-4,6].  For the randomly 

generated orthogonal transforms, the sigma point sets using k  = -4 gave the most accurate mean 

and variance estimates.  The randomly generated orthogonal transforms still performed well for 

the range k  =[-6,4].   

A i  = A uQ Q

A 1 I

A 2 Q(i,j)=√(2/(n+1))sin((i*j*π)/(n+1))

A 3 Q(i,j)=sin(2π(i-1)(j-1)/n)+cos(2π(i-1)(j-1)/n)

A 4 Q(i,j)=√(2/n)cos((i-1/2)(j-1/2)π/n)

A 5 ,  A 6 , A 7 SVD of random 20 × 20 matrix
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Figure 3.7.  Accuracy of UT mean estimate for different matrix square roots and k.  

 

Figure 3.8.  Accuracy of UT variance  estimate for different matrix square roots and k.   
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 The UT appears to be robust and performs well for sigma sets derived from matrix square 

roots that are transformed by an orthogonal matrix and a range of values of k .  For the LBLOCA 

example, values of k  approximately equal to zero gave accurate estimates of the mean and 

variance of the PCT. Given the definition of W
(0)

 in Eq. (4), the magnitude of the weight applied 

to the central point is minimized for k  = 0.  The PCT y
(0)

 calculated at the central point is 1145 K 

which is significantly less than the true mean of 1163 K.  For k  > 0, W
(0)

 is positive and the UT 

mean is biased less than the true mean because a positive weight has been assigned to the point 

y
(0)

 which is an underestimation of the true mean.  Conversely, for k < 0, a negative weight on y
(0)

  

biases the UT mean above the true mean.  Therefore, it is not surprising that sigma point sets 

which minimize the contribution of the central point in the estimation of the mean and variance 

give the best results.  However, this conclusion may only be valid for the particular nonlinear 

function considered in this study, the ACE response surface, and the assumed PDFs for the input 

parameters. 
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CHAPTER IV 

 

RELAP5 MODEL OF ULCHIN 3&4 NUCLEAR POWER PLANT  
  

 

 This chapter will introduce the modeling of a LBLOCA for a pressurized water reactor 

(PWR). The optimized power reactor 1000 MWe (OPR1000), formally known as the Korean 

Standard Nuclear Power Plant (KSNP), is the selected reference plant design for the analysis of a 

LBLOCA.  The Ulchin 3&4 NPP (UCN3&4) is the specific reference plant we are analyzing.  

RELAP5 is the system TH code used to simulate the LBLOCA.   In section 4.1, we will discuss 

the design and safety features of UCN3&4.  An overview of RELAP5 will be given in section 

4.2.  The RELAP5 model of UCN3&4 will be presenting in section 4.3 and the TH behavior of 

the plant during the LBLOCA will be discussed.              

 

4.1 Description of Ulchin 3&4 Nuclear Power Plant 

 

 In 1971, construction began for the Kori-1 NPP marking the start of commercial nuclear 

power in the Republic of Korea.  Kori-1 is a two-loop, Westinghouse PWR and was constructed 

under a turnkey contract with foreign companies providing the majority of the engineering 

design, component manufacturing, and construction.  The following NPP projects in Korea 

including several three-loop Westinghouse PWRs and four CANDU-6 heavy water reactors at 

Wolsong Nuclear Power Complex involved Korean firms taking over some of the primary 

project management and construction roles and component manufacturing.  In the late 1980s, 

construction began for Yonggwang Units 3&4 (YGN3&4), 1000 MWe PWRs based on the 

Combustion Engineering (CE) two-loop System 80 design.  These reactors were constructed 

under the third phase of Korea's nuclear power program which called for technology self-reliance 

in the Korean nuclear industry.  YNG3&4 included a technology transfer agreement between CE 

and the Korea Electric Power Corporation (KEPCO).  YNG3&4 became the reference plant for 
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the first Korean standardized NPP design, the OPR1000.  The first OPR1000s are UCN3&4 

which began operation in 1998 and 1999, respectively.  Subsequently, an additional eight 

OPR1000 units are operating or nearing completion in Korea. 

 The OPR1000 is a two-loop PWR with a rated power of 2815 MWt corresponding to 

1000 MWe [KEP96].  Each loop consists of a steam generator (SG), two cold legs, one hot leg, 

and two reactor coolant pumps (RCP).  The reactor core is normally loaded with 177 fuel 

assemblies with a 16 × 16 design.  The reactor operates on a 12 to 18 month refueling cycle.  

Figure 4.1 shows the configuration of the reactor coolant system (RCS) of the OPR1000.  

 

Figure 4.1.  Reactor coolant system of the OPR1000.  From [KEP96]. 

 

4.1.1 Engineered Safety Systems of the OPR1000 

 

 The OPR1000 has several engineered safety systems to prevent the release of radiation to 

the environment during an accident.  This section will discuss three systems important to the 

loss-of-coolant accidents (LOCA), the safety injection system (SIS), containment spray system 

(CSS), and auxiliary feedwater system (AWFS).  The SIS is responsible for injecting borated 
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water into the reactor coolant system (RCS) to flood and cool the core following a LOCA to 

prevent cladding and fuel damage.  The SIS also provides long term heat removal from the core.  

The major components of the SIS are four safety injection tanks (SITs), high-pressure safety 

injection (HPSI) system and a low-pressure safety injection (LPSI) system.   

 The SITs are designed to rapidly inject large volumes of water into the RCS immediately 

following a LBLOCA to reflood the core.  Each SIT contains approximately 14,000 gallons of 

borated water and is pressurized with nitrogen gas.   During the blowdown of a LBLOCA, most 

of the core water inventory flashes to steam and RCS rapidly depressurizes as large amounts of 

water and steam flows out the break.  When the RCS pressure drops below the SIT pressure 

setpoints, the SITs to inject into the cold legs.  The SITs are the only source of SI water until 

other active components requiring AC power in the SIS can start.    

 The HPSI system consists of two HPSI pumps and associated valves and piping.  The 

pumps are AC powered, horizontal, centrifugal type with a design flow of 815 gpm.  The HPSI 

pumps are designed to match the boil off rate at the earliest time of recirculation during a 

LBLOCA.  The shutoff head is 1775 psig so the pumps can deliver SI water to the RCS during 

small-break LOCAs where the RCS pressure may remain high.  The HPSI pumps are designed to 

automatically start after receiving the Safety Injection Actuation Signal (SIAS) and pump SI 

water from the refueling water storage tank (RWST) to each of the four discharge legs of the 

cold leg piping through SI lines.  After the RWST depletes and the Recirculation Actuation 

Signal (RAS) is received, the HPSI pump suctions are automatically realigned to the containment 

sumps.  Eventually, the operators can manually align the HPSI system to the hot legs for 

simultaneous cold and hot leg injection.      

 The LPSI system consists of two LPSI pumps and associated valves and piping. The 

pumps are AC powered, vertical, single stage, centrifugal type with a design flow of 4200 gpm at 

a design head of 335 ft.  The LPSI pumps are also used in the shutdown cooling system (SCS) 

and are sized for SCS functional requirements.  The LSPI pumps automatically start after 

receiving the SIAS and provide large mass flow rates of SI water to the RCS during the injection 

phase of a LBLOCA.      

 The CSS provides cooling spays of water to the containment atmosphere to reduce 

containment pressure by condensing steam and scrubs the atmosphere of volatile fission 

products.  The CSS is designed to limit the containment pressure and temperature during the 
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blowdown during a LOCA or a steam line break inside the containment.   The CSS consists of 

two redundant trains each with a CS pump, shutdown cooling heat exchanger (SCX), spray 

headers and associated valves and piping.  The CS pumps are AC powered, vertical, single stage. 

centrifugal type with a design flow of 3890 gpm.  The CSS automatically starts upon receiving 

the  Containment Spray Actuation Signal (CSAS)  on high containment  pressure.   During the 

injection phase, the water source for the CSS is the RWST.  During recirculation, the CS pumps 

draws water from the containment sumps and passes the water through the SCX before the spray 

headers.  This mode of operation allows the removal heat from the containment to the ultimate 

heat sink. 

 The AFWS supplies feedwater to the SGs whenever the main feedwater system is 

unavailable and reactor cooldown needs to be performed.  During normal shutdown or accident 

conditions, heat removal through the SGs can cool down the primary system so the AFWS is 

designed to provide enough feedwater to cool down the plant to conditions where the SCS can be 

utilized.  The AFWS consists of two trains, one for each SG.  Each train has a turbine-driven 

(TD) pump and a motor-driven (MD) pump to pump feedwater from the condensate storage tank 

(CST) to the SG.  During a LBLOCA, the AFWS is of secondary importance to the SIS and CSS 

but is very important during other operational transients and accidents.          

 

4.2  Overview of RELAP5 

 

 RELAP5 (Reactor Excursion and Loss of Coolant Analysis Program) [NRC01] is a 

system TH code designed for modeling single and two-phase flow in light water reactors for a 

variety of transient conditions including design basis accidents and operational transients.  

RELAP5 is used in the nuclear industry for licensing calculations, PSA, evaluating accident 

mitigation strategies and operator procedures, and TH experiment design and analysis.  

Calculations can be performed in standalone mode or with RELAP5 coupled to subchannel, 

neutronics, or containment codes.    

 The RELAP5 code structure is modular with three top level blocks consisting of input, 

transient/steady-state, and strip functions.  The input block processes and checks input data from 

user supplied input cards or from a RELAP5 restart file.  The strip block simply extracts 

simulation results from the restart file and prints the tabular data to a file that can be used in 
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postprocessing.  The actual simulation is performed by the transient block which solves a system 

of coupled differential equations representing reactor kinetics and TH behavior of the system.              

 The physical NPP structures and components, the reactor vessel, piping, pumps, valves, 

fuel rods, SG tubes, etc., are modeled as hydrodynamic volumes and heat structures.  Water, 

steam and air reside in and flow to and from the hydrodynamic volumes that are interconnected 

by hydrodynamic junctions.  The heat structures represent the solid boundaries of the 

hydrodynamic volumes.  Heat structures can be heat sources, heat sinks, or permit heat transfer 

from one hydrodynamic volume to another as is the case with heat transfer through SG tube 

walls from the tube side to the shell side of the SG.       

 

4.2.1 RELAP5 Hydrodynamic Model 

 

 The RELAP5 hydrodynamic model is a one-dimensional, transient, two-fluid, 

nonequilibrium, nonhomogeneous model and is executed by the transient block to solve for the 

two-phase flow conditions in the hydrodynamic volumes. The model is derived from six basic 

field equations, two phasic continuity equations, two phasic momentum equations, and two 

phasic energy equations.  With the addition of two mass continuity equations to include 

noncondensable gases and dissolved boron, the six basic field equations are solved to obtain 

eight dependent variables describing time-averaged and volume-averaged two-phase flow.  The 

eight dependent variables are the pressure (P), phasic specific internal energies (Ug, Uf), void 

fraction (αg), phasic velocities (vg, vf), noncondensable quality (Xn), and the boron density (ρb).   

The subscripts g and f denote the vapor and liquid phases, respectively.     

 The phasic continuity equations for conservation of mass are 
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with volume fraction (α), density (ρ), flow area (A), and mass generation rate ( ).  The mass 

generation term   allowing for the transfer of mass between the vapor and liquid phases 



62 
 

representing vapor generation or condensation.  In the absence of any mass sources or sinks, the 

liquid generation term is equal to the negative of the vapor generation  f  = −  g.      

 The momentum equations are 
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  ,           (4.4) 

 

The subscript i and w denotes the vapor/liquid interface and wall, respectively.  The force terms 

are aggregated on the right hand side of Eqs. (4.3) and (4.4) and are the pressure gradient, body 

force, wall friction, momentum transfer at interface from mass transfer, interface frictional drag, 

and virtual mass force, respectively.  The force terms are parameterized by the body force (Bx), 

the wall frictional drag coefficients (FWG, FWF), the interface drag coefficients (FIG , FIF), and 

the virtual mass coefficient (C) which is flow regime dependent.  Equations (4.3) and (4.4) were 

developed under the assumption that momentum effects in the fluid flow are secondary to mass 

and energy conservation in reactor safety analysis so a less exact formulation for the momentum 

equations could be used [NRC01].   

 The energy conservation equations are  
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Recognizing the heat transfer and flow conditions can be different in the bulk fluid  than in the 

boundary layer near the wall of a heat structure, Eqs. (4.5) and (4.6) separate  g into two 

components, the vapor generation rate at the vapor/liquid interface in the bulk fluid ( ig) and the 

vapor generation near the wall ( w).  The phasic enthalpies (h) associated with each vapor 

generation term use the superscripts (*) and (') to des ignate interface and wall, respectively.  

Similarly, the heat transfer rates (Q) are separated into the wall transfer rates for each phase and 

the interface terms.  The phasic energy dissipation terms (DISS) are the summation of the wall 

friction and pump effects.   

 

4.2.2 RELAP5 Heat Conduction Model 

 

 The heat conduction model in RELAP5 calculates the temperature profiles in the heat 

structures and the heat transfer rates to the fluid in the hydrodynamic volumes.  The temperature 

profiles T(x,t) are obtained from the integral form of the heat conduction equation 

 

                             
  

  
                                       ,     (4.7) 

 

with volumetric heat capacity (cp), thermal conductivity (k), and internal heat source (S).  The 

boundary conditions 

 

                                                    
  

  
                and           (4.8) 

 

                                                         
  

  
                        (4.9)   

 

are applied to Eq. (4.7) where n is defined as the outward unit normal vector from the heat 

structure surface.  Equation (4.8) represents heat transfer out of the surface as a function of the 

surface temperature (T), the sink temperature (Tsk), and the heat transfer coefficient (h).  

Equation (4.9) is the symmetric or insulated boundary condition.  For heat transfer to an 

hydrodynamic volume, h is calculated by the heat transfer correlation package which contains 

empirical correlations for convective, nucleate boiling, transition boiling and film boiling heat 
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transfer.  Alternatively, time-dependent heat transfer rates or heat transfer coefficients can be 

directly input as table data.   

 Equation (4.7) with Eq. (4.8) is solved by finite differences in one-dimensional 

rectangular, cylindrical, or spherical geometry.  For rectangular geometry where the heat 

structure is assumed to be a rectangular solid, a calculation mesh is applied in the positive x 

direction.  For cylindrical and spherical geometry where the heat structure is a cylindrical 

annulus or sphere, a radial mesh is applied.  Mesh points are usually placed at the desired 

intervals, the external boundaries of the heat structure, and material interfaces within the 

structure.  Over each mesh interval, the material type and S(x) are supplied by the user and are 

assumed constant.  RELAP5 calculates cp(T) and k(T) for each mesh interval using an average 

temperature calculated from the bounding mesh point temperatures and temperature dependent 

tabular data for cp and k   for each material type.  

 

4.2.3 RELAP5 Point Kinetics Model 

 

 The point kinetics model is used in RELAP5 to calculate the time-dependent fission 

power and the decay power of the reactor.  The main assumption of the point kinetics 

approximation is the neutron flux which is proportional to power can be separated into space and 

time functions.  Point kinetics are adequate for transients where the space distribution of the flux 

remains relatively constant and the change in the magnitude of the reactor power is reflected in 

the time function of the flux.  The point kinetic equations are a set of coupled differential 

equations for the time-dependent neutron flux (φ) and the concentration of delayed neutron 

precursors groups (Ci)     

 

                                         
 

  
     

        

 
                

            and                     (4.10) 

 

                                        
 

  
      

   

 
              ,  i = 1,2,...,6 ,                                  (4.11) 

 

Data based on the core design and fuel cycle must be supplied to define the kinetics parameters 

reactivity (ρ), effective delayed neutron fraction (β), prompt neutron generation time ( ), decay 
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constant (λ), neutron source (S), and fraction of delayed neutrons in group i (fi).  Six delayed 

neutron groups are commonly used for LWR analysis.  The reactor power (P) from fission can 

be calculated from the neutron flux, energy released per fission (Q), and the macroscopic fission 

cross section (Σf) by  

 

                                                                          Σ       .                 (4.12) 

 

 The time-dependent reactivity ρ(t) is dependent on many system variables so a feedback 

model is used to calculate ρ as the reactor system evolves through a transient.  The feedback 

model is assumed to be separable and individual reactivity contributions from the coolant 

density, coolant temperature, and fuel temperature or doppler reactivity are summed from tabular 

data.  The active core usually spans many hydrodynamic volumes and heat structures so axial 

temperature and density gradients exist.  Equations (4.10) and (4.11) are derived in zero-

dimensional space so the reactivity contributions from the system variables that vary axially and 

radially for the case of the fuel temperature in core region must be lumped into single terms.  

Volume and heat structure weighting factors are used to obtain weighted point values of the 

reactivity contributions based on the neutronic importance of each core region.  Time-dependent 

reactivity data representing a SCRAM or control rod ejection can also be incorporated into the 

feedback model.  

 The decay power from fission products and actinides is calculated from a model based on 

the American Nuclear Society Proposed Standard ANS 5.1, Decay Energy Release Rates 

Following Shutdown of Uranium-Fueled Thermal Reactors, revised October 1973, or the 

American National Standard for Decay Heat Power in Light Water Reactors, ANSI/ANS-5.1-

1979.  Both models use the power history from the kinetics model and the user supplied fuel 

cycle history.  A fission product yield factor multiplier to adjust the decay power for 

conservative or best estimate problems.     

 The solution of the point kinetics equations gives the immediate fission power of the 

reactor through Eq. (4.12).  The total power is obtained from the sum of the fission power and 

decay power.  The total power becomes a multiplier variable to the heat conduction model for 

the internal heat source in the heat structures representing the fuel pins.  The internal heat 
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sources in the fuel pin structures are defined to reflect the spatial power distribution of the core 

so the total power scales the internal heat sources.    

 

4.3 RELAP5 Model of Ulchin 3&4 Nuclear Power Plant   

 

 The RELAP5 model for the UCN3&4 was developed at the Korea Atomic Energy 

Research Institute (KAERI) from the small-break LOCA RELAP5 model for YGN3&4 [Jeo93].  

The UCN3&4 model can simulate a LBLOCA in either loop of the RCS.  The break can occur in 

the hot leg or the discharge leg of the cold leg between the RCP and the reactor vessel inlet.   

 

4.3.1 Reactor Coolant System Nodalization 

 

 The RCS is modeled by 250 hydrodynamic volumes, 280 hydrodynamic junctions, and 

259 heat structures.  Figure 4.2 is the nodalization diagram for UCN3&4 RELAP5 mode l.  The 

reactor vessel is comprised as series of connected volumes representing the inlet annulus, 

downcomer, lower plenum, active core, core bypass, outlet plenum and upper head region.  The 

reactor internal structures and vessel walls are modeled as heat structures.  The active core is 

modeled as a single channel by a vertical pipe hydrodynamic volume with 14 axial segments 

coupled to a single cylindrical heat structure representing the fuel assemblies.  To preserve the 

three-dimensional flow and heat transfer characteristics of the core, the cross-sectional flow area 

of the pipe equals to interstitial space between all of the fuel pins and the surface area of the heat 

structure equals the total surface area of all of the fuel pins.  The heat structure has the same 

radial dimensions of a single fuel pin reflecting the clad thickness, gap width and fuel pellet 

radius.  The axial power distribution in the fuel is set to the top-skewed cosine shape specified in 

the Final Safety Evaluation Report (FSAR) for LBLOCA analysis [KEP96].  The pin power is 

scaled by the total reactor  power.  The axial and radial temperature profile obtained for the heat 

structure represents the profile from a single fuel pin with the core-averaged power density.  The 

hottest fuel pin in the core is also modeled as a separate cylindrical heat structure.           

 The SGs are modeled by hydrodynamic volumes representing the primary side and the 

shell side of the SG separated by a cylindrical heat structure representing the SG tube walls.  

Similar to the modeling of the fuel assemblies in the core volume, the SG tube bundle is modeled  
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Figure 4.2.  Nodalization diagram for UCN 3&4. 
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as a single pipe hydrodynamic volume with the cross-sectional flow area and heat transfer area 

of all of the individual tubes conserved.  The pipe has vertical and angled segments to preserve 

the U-shape of the tube bundle.  Heat is transfer from the tube bundle volume through tube wall 

heat structure to the shell side volumes.   

 For some NPP components with specific functions, RELAP5 provides individual 

component models.  These component models require additional user input and are treated with 

special numerical techniques during the simulation compared to the other generalized 

hydrodynamic volumes.  The RCPs are modeled with the pump component model.  The pump 

component model interacts with the hydrodynamic model by adding a pump head term to the 

mixture momentum equations and a dissipation term to the energy equations that is a function of 

the pump torque and angular momentum.  Empirical homologous head and torque curves and 

two-phase degradation curves are used by the pump model to calculate the pump performance.   

 

4.3.2 Safety System Modeling 

 

 The active safety systems of UCN3&4, mainly the AFWS, HPSI system, and LPSI 

system, are modeled as time-dependent volumes and junctions which are best described as time-

dependent boundary conditions to the physical plant model.  A time-dependent volume allows 

the user to define a hydrodynamic volume containing fluid with specified properties such as 

temperature and pressure as a function of time.  The mass flow rate through a time-dependent 

junction is specified by the user as a function of time or any other system variable such as the 

pressure in the connecting volume.  In the UCN3&4 model, the RWST and containment sump 

are modeled as time-dependent volumes and the HPSI and LPSI pumps are modeled as time-

dependent junctions connecting the RWST or containment sump volumes to the cold leg (CL) 

piping.  The RWST and containment sump volumes are essentially infinite water sources that 

define the temperature of the water flowing through the junctions.  Flow rates curves for the 

HPSI and LPSI pumps are input as functions of the pressure in the discharge legs where the SI 

lines connect to the CL piping.  The AFWS is modeled in the same way with the condensate 

storage tank (CST) modeled as time-dependent volumes and the MD pumps and TD pumps as 

time-dependent junctions connected to the shell side of the SGs.  The SITs are modeled with the 

accumulator component model.        
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 RELAP5 is usually not used for containment analysis so the containment volumes and 

CSS are not explicitly modeled.  Since the CSS draws water from the RWST during the injection 

phase of a LBLOCA, the flow rate of the CSS pumps is tracked along with the flow of the HPSI 

and LPSI pumps in order to calculate the water level in the RWST.  The water level is used to 

determine the RAS time and transition from the injection phase to the recirculation phase. 

 In the UCN3&4 plant, automatic instrumentation and control (I&C) signals or manual 

operator actions can actuate or stop safety systems, valves, pumps and other active components.  

Passive components such as safety relief valves automat ically open and close when system 

thresholds are reached.  The trip system in RELAP5 is extensively used to model I&C signals 

and the actuation or stopping of components in the UCN3&4 model.  The trip system allows the 

evaluation of logical statements to produce a true (+1) or false (-1) response.  Within component 

models, trip status (true or false) determines the component state.  For example, to control a 

time-dependent junction or valve, a trip in a true status opens the junction or valve while a false 

status closes.   

 The trip logical statements can be variable or logical trip.  Variable trips evaluate 

numerical statements comparing system or control variables.  Logical trips compare the true false 

results of other variable or logical trips.  Table 4.1 summarizes the variable and logical trips that 

produce the SIAS signal in the LBLOCA.  Trip 496 controls all of the time-dependent junctions 

of the HPSI and LPSI systems connecting to the CLs.  Physically, trip 496 is the 30 second delay 

time to start the HPSI and LPSI pumps after the SIAS signal is generated from the low pressure 

in the pressurizer (trip 427).  Other signals and system actuation such as the RAS and AFWS 

starting  are generated in a similar manner to the SIAS logic.   

 

Table 4.1.  Trip table for Safety Injection Actuation Signal.  

 

426  p  290100000        lt    null   0  121.5e5   n   1.  * PZR LO PRES R 121.5psi 

427  p  290100000        lt    null   0  121.0e5   n   1.  * PZR LO PRES S 121.0psi 

626   426        and           627                n   1.  * PZR LO PRES 

627   427        or             626                n    1.  * "PZR LO PRES TRIP" 

531  time     0          gt    null   0  1.0e6   l   1.  * "Manual reactor trip" 

740  531         or            627               l   1.  * "Rx Trip" 

532  time    0   gt    timeof   740  2.0    l     1.  * "Rods begins to drop" 

496  time    0   gt    timeof   427  30.0   l    1.   * "SI On with 30s Delay" 
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4.3.3 Break Modeling 

 

 In order to model a break in the CL or HL piping, the hydrodynamic junction connecting 

the two volumes of the piping at the break location is replaced with a valve component and two 

additional valves connecting each volume to time-dependent volumes representing the 

containment compartment. During the steady-state calculation and before the break is initiated, 

the valve connecting the two volumes remains open representing an intact pipe and the other 

valves representing the break area are closed.  At the time of the break, the valve at the junction 

is closed and the two break valves are opened creating new flow paths from the piping volumes 

to the containment volumes.  The time-dependent containment volumes are sinks for the water 

and steam that exit the break.  The break flow is not explicitly coupled to the containment 

conditions but the pressure of the containment volumes obtained from a separate containment 

calculation are input as time-dependent data to provide feedback to the break flow.    
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CHAPTER V 

 

DYNAMIC SURROGATE MODEL FOR RECIRCULATION PHASE 

LBLOCA  
  

 

 The GPM and ACE PCT surrogate models presented in Chapter 3 are examples of 

response surfaces that are static input-output nonlinear mappings.  Although the PCT was 

calculated from the dynamic simulation of the LBLOCA with the MARS code, the surrogates 

predict the variation in the PCT directly from variations in the input parameters without having 

to compute the complete time-dependent system behavior.  Obtaining only the limiting safety 

parameters distributions is acceptable for licensing calculations where the final result is to 

determine if regulatory safety limits are met.  Conversely, in dynamic PSA applications, the 

system state evolution under various different operation conditions coupled to interactions with 

component transitions and human operator actions that can lead to safe or unsafe plant states is 

the desired result.  Obtaining the system state evolution trajectories requires that complete 

simulations are performed.  A dynamic code surrogate that can predict time-dependent system 

behavior would significantly reduce the computational burden compared to direct calculations 

with a TH code. 

 

5.1 General Framework for Dynamic Surrogate Model Development 

 

 Dynamic models used in scientific and engineering applications are most commonly 

systems of differential equations that define the instantaneous rates of change of system state 

variables with respect to input variables and the current estimate of the system state variables.  

The RELAP5 UCN3&4 model can be simply described as a very large system of several 

thousand coupled differential equations, the field equations for every hydrodynamic volume and 

the heat conduction equation for the heat structures.  The system of equations must be solved by 
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numerical methods such as finite differencing using time-marching methods to calculate 

subsequent system states from states at previous time steps.  Forward Euler, backwards Euler, 

and Runge-Kutta are common time-marching methods.  Numerical methods generally involve 

the linearization of the system equations with time step size constrained by stability and 

truncation error considerations.  A single dynamic model can often produce very different system 

state trajectories depending on the time-dependent boundary conditions and initial conditions 

selected as input parameters.  Figure 5.1 shows a general example of time-dependent input 

parameter and corresponding system state trajectories.       

 

  

Figure 5.1.  Illustration of input parameter trajectories u(t) and system state trajectories 

               x(t) propagated through a dynamic model and the component state and system 

         state nonlinear phase plane.     

   

 Surrogate development always requires training on data obtained from experiment or a 

BE simulation model.  Through the training process correlations between the data are learned 

and the functional relationships are assigned to the input and output parameters.  For a general 

dynamic model, the data would be unique time-dependent input parameter trajectories and the 

corresponding system state trajectories illustrated in Figure 5.1.  Training a surrogate in the time 

domain would be difficult noting at a time t, several trajectories can have the same u(t) but 

different x(t) or the same x(t) but different u(t) resulting in training on a multivalued function.   

An alternative approach is to consider training the surrogate in the nonlinear phase space of the 
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component state represented by u(t) and the system state shown in Figure 5.1.  The nonlinear 

phase space treats time implicitly so the functional relationships between changes in u to changes 

in x  may be easier to resolve.     

 

5.1.1 Lumped Parameter Models for NPP Analysis 

   

 For some NPP transients, reactor physics and TH behavior can be accurately described 

with simple mathematical models.  In these cases, a computationally expensive coupled 

neutronics and TH code calculation can be replaced by a lumped parameter model.  Lumped 

parameters models usually represent the reactor kinetics with the point kinetics equations 

coupled to TH feedback calculated from average fuel temperatures and coolant densities.  The 

lumped parameter model manifests as a relatively simple system of differential equations that 

can be solved analytically or numerically with finite differencing to obtain reactor power, 

temperatures, and coolant properties as a function of time.  A recent study [Mar06] has 

incorporated effective parameters of into a lumped parameter model that are calibrated by fitting 

to BE code simulated data.   

 Lumped parameters models could be viewed as a special case of a dynamic code 

surrogate replacing coupled neutronics and TH code models.  In this case, lumped parameter 

models are analogous to the linear regression models discussed in Chapter 3 where if a priori 

information about the underlying function, i.e. physics of reactor kinetics and feedback, a simple 

mathematical model represented by the set of differential equations can perform well.  As with 

linear regression models, if the lumped parameter model is extrapolated to a transient where it 

cannot represent the underlying physics, the model will break down and give poor results.   

 We propose a general framework for developing dynamic code surrogates for NPP 

applications.  Borrowing from the discussion of dynamic models and lumped parameter models, 

the dynamic surrogate takes the form of a discrete time dynamic system given in Eq. (3.59) with 

input parameters representing known time-dependent boundary and initial conditions.  The 

functional form of the system equations are learned from data from BE code simulations using 

the ACE algorithm.  By training on BE code data, properties of the high-fidelity solution is 

retained in the surrogate in contrast to the lumped parameter model where the physics of the 
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problem are simplified at the very beginning of the model development process with the 

derivation of the model equations and simplified representation of the NPP. 

 The framework consists of simplifying the plant nodalization to a few key control 

volumes representing regions of pertinent TH phenomena.  After identifying all sources and 

sinks of mass and energy representing boundary conditions, conservation of mass and energy 

equations can be set up for each control volume from which independent variables can be 

identified to form the basis for surrogate equations.  The ACE algorithm is applied to data sets 

from the BE code simulations of the transient with variations in the boundary conditions of the 

model.   The ACE transformations become the dynamic surrogate model.  In the next section, we 

implement the general framework to develop a dynamic surrogate to predict the TH behavior in 

the core during the recirculation phase of a HL-LBLOCA for UCN3&4 for a spectrum of 

degraded HPSI system states.  

 

5.2 Dynamic Surrogate for Water Level During Recirculation Phase HL-LBLOCA  

 

 The PCT studied in Chapter 3 is one regulatory limit that must be analyzed for 

LBLOCAs.  The long term cooling of the core must also be verified by calculating the core 

temperature after successful initial operation of ECCS.  The core temperature must be 

maintained at an acceptably low value and decay heat removed.  For UCN3&4, the HPSI and 

LPSI systems and supporting subsystems discussed in Chapter 4 must operate successfully in 

several operational configurations including injection mode, recirculation mode, and 

simultaneous hot and cold leg injection for successful long term cooling.   

 During the injection phase, the HPSI and LPSI systems in their initial configuration 

supply large volumes of cold water from the RWST to the RCS resulting in single phase flow in 

the RCS and subcooling in the core.  During the recirculation phase, the LPSI pumps are tripped 

and the water source for the HPSI system is switched to the containment sump where water and 

condensed steam from the break and containment spray water collects.  Recirculation can be 

initiated as early as 20 minutes after a LBLOCA occurs so the relatively high decay power in the 

core, reduced SI flow rate after trip of LPSI pumps, higher temperature of the sump water 

compared to the RWST, and reflux heat transfer conditions in the intact SG loop transition the 

TH conditions in the RCS to two phase flow and steam production in the core.     
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5.2.1 Macroscopic Balance Statement for ACE Input Parameter Selection   

 

 For the recirculation phase of the HL-LBLOCA, the UCN3&4 RCS is represented by 

three volumes, the reactor core, the cold leg piping and downcomer, and the SG in the intact 

loop.  Figure 5.2 shows the simplified RCS nodalization.  The core can be further subdivided 

into two regions, a subcooled region with volume V where the flow is single phase and a two 

phase region.  In the intact SG loop, saturated steam generated from the core can either be 

condensed from heat transfer to the shell side of the SG or superheated from the reflux 

conditions that exist early on during recirculation when the shell side temperature has not cooled 

down below the primary side saturation temperature.  Counter current flow in the hot leg, loop 

seals and subsequent loop seal clearing develop in the intact loop.  Safety injection water from 

the containment sump is delivered by the HPSI pumps to the cold leg piping where the water 

mixes with any residual water and steam in the piping and any water flow that has circulated 

through the intact SG loop.    

 

 

Figure 5.2.  Simplified nodalization for UCN3&4 surrogate model. 
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 The HL break is a double-ended guillotine break so the RCS remains depressurized 

throughout the transient.  The system dynamics are further simplified because the clad and fuel 

temperatures are at thermal equilibrium with the fluid in the core in a quasi-steady state heat 

transfer regime.  The most observable changes in the system are transitions between single phase 

flow and two phase flow in the RCS and core as a function of HPSI system function, decay 

power, and heat transfer in the intact SG loop.  The subcooled volume V is chosen as the 

dependent variable of interest to parameterize the macroscopic TH behavior of the core during 

the recirculation phase. 

 To derive a functional relationship for V, we begin with the conservation of mass and 

energy equations for the core region of the simplified RCS nodalization 

 

                                                                  
  

  
                and          (5.1) 

 

                                                         
  

  
                            .        (5.2) 

 

The fluid density    and specific enthalpy    are volume averaged properties of V.  The mass 

flow Wp from the HPSI pumps is much greater than the mass flow Wsg circulating from the intact 

SG so the mass flow Wf into the core can be approximated as Wf  ≈ Wp and hfWf ≈ hpWp.  

Equations (5.1) and (5.2) are functions of the two unknowns V and Wsat.  Solving Eq. (5.1) for 

Wsat and substituting into Eq. (5.2) yields  

 

                                                 
  

  
                         

  

  
            

      

                                                    
  

  
                 .                              (5.3) 

 

The subcooling enthalpy is defined as Δh = hsat − h.  Using the forward Euler method, Eq. (5.3) 

can be discretized in time to be solved for the volume at time step tn+1 from the parameter values 

at time step tn 
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       .                   (5.4) 

 

Introducing the quasi-static assumption that V slowly varies with time, the time derivative in Eq. 

(5.3) can be set to zero yielding  

 

                                                                            .                                       (5.5) 

 

The decay power that is generated in V is a function of the axial power distribution f(V) so qd(V) 

in Eq. (5.5) can be separated into the time dependent term, the total decay power of the core 

qd(t), and f(V).  Equation (5.5) can yield a relationship for V as a function of the dimensionless 

parameter ΔhpWp/qd  which is similar to the Stanton number,   

 

                                                                 
     

  
        .                (5.6) 

 

 The results of Eqs. (5.1) through (5.6) have been derived using many assumptions and 

simplifications so they only provide a qualitative description of the system.  However, these 

equations suggest that over a time step, a general recursive relationship F exists between Vn+1 and 

Vn and the other independent variables describing HPSI system and decay power         

 

                                                                     
     

  
           .                  (5.7) 

 

The variables in Eq. (5.7) represent a set of input parameters to be used in surrogate training.   

The decay power and HPSI system variables are known or assumed whereas the heat transfer in 

the intact SG loop and mixing in the CLs and downcomer cannot be obtained without running 

RELAP5 simulations.  The ACE algorithm can be used to learn the recursive relationship F from 

RELAP5 simulations of the LBLOCA with variations in HPSI flow rate Wp and containment 

sump temperature determining Δhp.  The contributions of the phenomena in the intact SG loop, 
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CL piping and downcomer to F are not explicitly represented in the input parameters but are 

accounted for in the RELAP5 simulation data from which Vn+1 and Vn are obtained.        

 

5.2.2 Training Set Generation and ACE Surrogate Construction 

 

 The RELAP5 UCN3&4 model was used to simulate thirteen sequences of the 

recirculation phase of the HL-LBLOCA to generate a training set.  The HPSI flow rate was 

varied from 100% flow corresponding to both HPSI pumps operating at maximum flow rate 

conditions to degraded flow at 25%.  The containment sump water temperature which determines 

the subcooling enthalpy of the HPSI flow was varied from 300 K, the temperature of the RWST 

water to 370 K which is close to saturation temperature of the RCS.  Table 5.1 is the design 

matrix listing the HPSI flow rate and sump temperature for each sequence.  Sequences 12 and 13 

used a variable sump temperature given by the ramp function shown in Figure 5.3.  The HPSI 

flow rates and sump temperatures were chosen to reflect the spectra of possible containment 

sump conditions that would affect the HPSI system performance during recirculation.  Figure 5.4 

shows the subcooled water level for the RELAP5 sequences.  The subcooled water level is 

normalized to the height of the top of the active fuel in the core.    

 For each sequence, Vn+1 and Vn were extracted at 20 s intervals from the RELAP5 output.  

A 20 s time step is orders of magnitudes larger from the RELAP5 time steps which are on the 

order of hundredths of a second.  However, Vn+1 does not vary from Vn by more than a few 

percent over the 20 s time steps.  A decay power curve qd(t) is available from any RELAP5 

sequence so qd(tn) can be interpolated for any time step.  With the assumed HPSI flow rates and 

sump temperatures, the thirteen sequences provide 15916 data points representing realizations 

Eq. (5.7).  In the context of the component state and system state phase space shown in Figure 

5.1, each data point is a step change in the system state dimension  represented by Vn and Vn+1 at 

a position in the component state space defined by {qd(tn), ΔhpWp, Wp, ΔhpWp/qd}.  In Eq. (5.7), 

F is the nonlinear mapping of Vn → Vn+1 in the phase space.         

 Figure 5.5 show the scatterplots Vn+1 as a function of each independent variable and time.  

The scatterplots reveal very little information about the functional form of Eq. (5.7) except the 

strong linear correlation between Vn+1  and Vn which is expected from a recursive relationship.      
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Table 5.1.  Design matrix of HPSI flow rate and containment sump temperature  
                 variation for RELAP5 simulations of recirculation phase HL-LBLOCA.  

 

 

Figure 5.3.  Containment sump temperature curve for ramp cases in design matrix. 

 

 

Figure 5.4.  Subcooled water level for RELAP5 HL-LBLOCA sequences. 
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Figure 5.5.  Scatterplots of Vn+1 from RELAP5 data. 
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 The ACE algorithm is applied to the data set to obtain the transformations shown in 

Figure 5.6.  In the transform space, the input parameter transformations are slowly varying and 

smooth functions.  The functional relationship of Eq. (5.7) is given by the ACE transformations  

 

        
 
         

 

                                                          
     

  
            .        (5.8) 

 

Since we are trying to generate a surrogate for the discrete time dynamic system described by 

Eqs. (3.59) and (5.7) and the recursive relationship between Vn+1  and Vn, the time step Δt = 20 s 

is the relevant time parameter.  The absolute transient time tn of each data point is implicitly 

represented in the input parameters, although the decay power is an explicit function of time.  

The significance of the implicit treatment of time in the surrogate training is that data points 

occurring at very different absolute times in the RELAP5 sequences, are smoothed together as a 

function of their location in the input parameter and system state nonlinear phase space, 

recognizing the TH conditions in the core can be similar at different transient times within a 

given sequence and across sequences.  For example, in Sequence 8 and 12 shown in Figure 5.4, 

the water level Vn+1 passes through 0.7 at approximately 2,170 s and 14,000 s for Sequence 8 and 

4,470 s and 16,210 s for Sequence 12.  These data points are smoothed together during the ACE 

iterations to calculate θ(Vn+1) and ϕ5(Vn) even though the data points are from four absolute 

transient times that are thousands of seconds apart.  Conversely, the HPSI flow rate for all of 

Sequence 8 was 50% versus 100% for Sequence 12 so the data points would not be smoothed 

together for the calculation of ϕ2, ϕ3 and ϕ4.      

 Table 5.2 lists the ranges of the independent variable transformations and comparison to 

the range of the θ(Vn+1) in the transform space as a measure of sensitivity or importance each 

variable.  The range of the recursive component ϕ5(Vn) of the ACE surrogate is equal to 73% of 

θ(Vn+1)  followed by subcooling enthalpy flow ϕ2(ΔhpWp) and decay power ϕ1(qd) at 33% and 

23%, respectively.  The consequence of the discrete time dynamic system model structure is the 

direct correlation between Vn+1 and Vn evident through the transformations ϕ5(Vn) and θ(Vn+1) 

which are linear.  The assumed 20 s time step limits the deviation of Vn+1 from Vn within a few 



82 
 

percent so Vn must be the most important parameter that determines Vn+1.  The other variables 

determine whether the water level increase or decreases from Vn.  

 

Figure 5.6.  ACE transformations for subcooled water level surrogate. 
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Table 5.2.  Range and sensitivity of ACE transformations.    

 

 

5.2.3 Variance Estimate of ACE Surrogate  

 

 To quantify the model uncertainty of the ACE surrogate, we want to estimate the 

variance of transformed data points comprising θ(Vn+1).  Using Eqs. (3.35) through (3.37), the 

total variance                 for each point j is calculated from the summation of weighted 

variances    
  from each transformed input dimension i.  Figure 5.7 shows the variance estimates 

for θ(Vn+1) with the standard deviation calculated from       plotted as error bars on the 

transformed points.  The mean variance is 0.064 corresponding to an average standard deviation 

of 0.25 in the transform space or approximately 5% variation in Vn+1.  Accounting for model 

uncertainty, the ACE surrogate for the subcooled water level can now be expressed with a model 

uncertainty added as a noise term v 

 

                                               
     

  
                 ,     (5.9) 

 

with v distributed as N(0,      ).   

 Figure 5.8 shows the contributions to the variance from    
  for each transformed input 

dimension.  Figure 5.8 shows that the variance from  ϕ1(qd) and ϕ2(ΔhpWp) contribute the most to 

min max Δφ % of θ

θ -1.91 2.08 3.99 1.00

φ1 -0.39 0.54 0.93 0.23

φ2 -0.74 0.58 1.32 0.33

φ3 -0.06 0.04 0.10 0.03

φ4 -0.11 0.42 0.53 0.13

φ5 -1.43 1.47 2.90 0.73
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the variance of θ(Vn+1).  This follows directly from the discussion of the implicit treatment of 

transient time during surrogate training.  In the final ACE iteration, the smoothing operation is 

performed over data points with similar values of Vn+1.  Since equivalent values of Vn+1 from 

different sequences occur at different transient times, the values of ϕ1(qd) in the data subset can 

vary significantly as well as Wp and Δhp between sequences. Despite having the largest range in 

the transform space, ϕ5(Vn) contributes less to the total variance of θ(Vn+1) because of the  direct 

correlation between Vn+1 and Vn.  All values of ϕ5(Vn) are similar in each data subset, thus having 

smaller variance.  The range of ϕ3(Wp) and ϕ4(ΔhpWp/qd) are small compared to the range of 

θ(Vn+1) so the contribution to the total variance from these transformed input dimensions are 

automatically limited.         

 

 

 

Figure 5.7.  Variance estimate of θ(Vn+1) for transformed data points. 
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Figure 5.8.  Individual contributions to variance estimate of θ(Vn+1) from each input    

          transformation dimension. 
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5.2.4 Prediction Accuracy of ACE Surrogate   

 

 To test the predictive accuracy of the ACE surrogate, the RELAP5 sequences in the 

training set are simulated with ACE surrogate.  Two additional RELAP5 sequences, , Sequence 

14 and Sequence 15, comprise a test set for cross-validation.  Sequence 14 assumed 100% HPSI 

flow rate and a constant sump temperature of 335 K.  Sequence 15 assumed 100% HPSI flow 

rate and a time dependent sump temperature curve shown in Figure 5.9 for the HL-LBLOCA 

recirculation phase obtained from the FSAR [KEP96].    

   

 

Figure 5.9.  Containment sump temperature curve for HL-LBLOCA recirculation phase.      
          From [KEP96].   

 

 Starting at a transient time of 1680 s, the time of the RAS, the ACE simulations are 

initialized with a subcooled water level V0 = 1.  Using 20 s time steps, Eq. (5.9) is evaluated and 

the inverse transform θ
-1

() is taken to obtain Vn+1   

 

                                                                    
 
         .     (5.10) 
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For subsequent time steps, Vn+1 → Vn  and the evaluation of Eq. (5.10) is repeated.  The model 

uncertainty v ~ N(0,      ) introduces uncertainty into each prediction of Vn+1 through θ
-1

() so 

Vn+1 is best described as a PDF P(Vn+1).  From the recursive nature of the surrogate, the 

uncertainty of Vn+1 ~ P(Vn+1) becomes the uncertainty of Vn  ~ P(Vn), an input variable for the 

next time step that must be propagated through ϕ5() and θ
-1

().    

 The UT is used to propagate N(0,      ) and P(Vn) through Eq. (5.10) to obtain an 

estimate of the mean and variance of Vn+1.  With two uncertain input parameters, the UT requires 

five sigma points a five evaluations of Eq. (5.10) and the UT equations given by Eqs. (3.42) 

through (3.44).  We assume the PDF for the water level is a Gaussian defined by the mean and 

variance obtained from the UT,                            and                     .  The 

UT sigma points are 

 

                                                 
 

  
    

 
 

 
   

 

                                                 
 

  
    

 
 

 
                          .            (5.11) 

 

The covariance matrix P is 

                                                                                      
      

      
    .       (5.12) 

 

The orthogonal transform Q used is 

                                                            
               
             

    .           (5.13) 

 

P is updated after each time step from the current estimate of          and         .  For input 

parameters that are Gaussian distributions, (n + k) = 3 minimizes the error in the kurtosis so k = 

1 is used.     

 Figures 5.10 and 5.11 show the fifteen RELAP5 sequences and the ACE predictions.  

The red curves are ACE predictions using Eq. (5.8) assuming no model uncertainty.  The yellow 
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curves are the ACE predictions accounting for uncertainty using the UT.  The mean water level 

      is plotted with error bars equal to the standard deviation from the variance estimate.  The 

ACE surrogate appears to reproduce the RELAP5 results with reasonable accuracy for all of the 

sequences.  The ACE prediction uncertainties estimated from the UT are on the order of 7% - 9% 

standard deviation for Vn+1.  The ACE model uncertainty derived in Section 5.2.3 accounts for 

approximately 5% variation in Vn+1 so it is not surprising that the total uncertainty of the 

prediction would be on the order of 7% - 9% when the model uncertainty is combined with 

uncertainty of Vn.     

 A noticeable difference between the ACE and the RELAP5 results is the ACE predictions  

are smooth curves compared to the noisy RELAP5 data.  During recirculation, portions of the 

RCS remain voided and the localized TH conditions in the core where the single phase flow is 

transitioning to two phase flow display high frequency fluctuations due to the low pressure and 

low flow rate conditions.  For example, Figure 5.12 shows the liquid fraction and pressure of 

control volume 110 of the UCN3&4 model, the inlet annulus of the downcomer, for Sequence 3 

which affects flow in the core.  The detailed RELAP5 UCN3&4 model can predict the 

oscillatory conditions which are evident in the water level data whereas the ACE surrogate was 

derived from a simplified description of the RCS.  The ACE surrogate was intended to predict 

the macroscopic behavior of the system and was capable of learning this behavior from noisy 

data, a clear benefit of the ACE algorithm.  

 Figures 5.10 and 5.11 show that the ACE surrogate can predict the TH behavior of the 

recirculation phase of the HL-LBLOCA for a wide range of HPSI flow rates, containment sump 

temperatures and transient times.  The ACE surrogate has the structure of a single equation  

discrete time dynamic system and takes large 20 s time steps compared to the detailed RELAP5 

model of UCN3&4 that must solve thousands of coupled differential equations for hundreds of 

control volumes and heat structures.  The ACE surrogate requires approximately 1 s of 

computation time to simulate 10,000 s of the recirculation phase compared to several hours  of 

computation time for the RELAP5 model.  For applications where a detailed solution for the 

entire NPP is not needed, a dynamic code surrogate can be an efficient alternative to a system 

TH code.    
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Figure 5.10.  Sequences 1 - 8 for recirculation phase HL-LBLOCA. 
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Figure 5.11.  Sequences 9 - 15 for recirculation phase HL-LBLOCA. 

0.5 1 1.5 2 2.5 3

x 10
4

0.2

0.4

0.6

0.8

Seq9 Time (s)

V

1 2 3 4

x 10
4

0.2

0.4

0.6

0.8

1

Seq10 Time (s)

V

 

 

1 2 3 4

x 10
4

0.2

0.4

0.6

0.8

Seq11 Time (s)

V

0.5 1 1.5 2 2.5

x 10
4

0.2

0.4

0.6

0.8

1

Seq12 Time (s)

V

RELAP5

ACE 

ACE & UT

1 2 3 4

x 10
4

0.2

0.4

0.6

0.8

Seq13 Time (s)

V

0.5 1 1.5

x 10
4

0.4

0.6

0.8

1

Seq14 Time (s)

V

5000 10000 15000

0.2

0.4

0.6

0.8

Seq15 Time (s)

V



91 
 

 

 

Figure 5.12.  Liquid fraction and pressure in inlet annulus of downcomer for Sequence 3. 
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CHAPTER VI 

 

DYNAMIC EVENT TREE FOR RECIRCULATION PHASE LBLOCA 

 

 
 In Chapter 2, an overview of methodologies for dynamic PSA was given.  While the 

theoretical basis for dynamic PSA methodologies such as the CET and DET is well grounded in 

several decades of development, the application of dynamic PSA to realistic NPP problems 

remain mathematically challenging and extremely computationally expensive.  In this chapter, 

we develop two DETs for the recirculation phase of a HL-LBLOCA considering degradations of 

the HPSI system.  The first DET models multiple degradations of the containment sump 

affecting the HPSI flow capacity.  The second DET considers the repair time of a failed HPSI 

pump.  The dynamic code surrogate developed in Chapter 5 is the time dependent system model 

used in the DET replacing direct use of the UCN3&4 RELAP5 model.  The unscented transform 

is presented as a new method to deterministically generate both branching representing a 

continuous spectrum of degraded component states and branch point times requiring 

significantly fewer system model executions compared to conventional branching rules.  The UT 

results are benchmarked against direct Monte Carlo generation of the DET with the surrogate 

model.    

 

6.1 HPSI System Degradations During Recirculation Phase  

 

 During the recirculation phase, the two HPSI pumps draw suction from coolant water that 

has spilled into the two containment sumps and recirculate the coolant back to the RCS.  

Continued operation of the HPSI system in recirculation mode provides long term cooling to the 

core.   The total flow delivered by the HPSI pumps is a function of the net positive suction head 

(NPSH) at the pump inlets and the primary system pressure in the discharge legs of the cold leg 

piping.  Figure 6.1 shows the NPSH curve for the HPSI pumps providing the total developed 
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head (TDH).  Operators can also manually throttle the HPSI pumps reducing flow rate to the 

primary system.  

 

 

Figure 6.1.  Required NPSH curve for HPSI pumps for the OPR1000.  From [KEP96].  

       

 High-energy pipe line breaks such as HL-LBOCA generate debris in the containment that 

can accumulate on the containment sump screens.  Debris accumulation is a safety issue because 

a clogged sump screen can reduce the available NPSH to the HPSI pumps, degrading the 

operability of the HPSI system and possibly failing the system completely.  This safety issue has 

been designated Generic Safety Issue 191 (GSI-191) by the USNRC [NRC03].  Debris transport 

to the containment sumps during blowdown and recirculation phase of a HL-LBLOCA in the 

OPR1000 has been recently analyzed by CFD simulation and experimental studies 

[Par11,Par12].  Uncertainties in initial generation of debris types and sizes, break and sump 
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location, and turbulent kinetic energy models used in the CFD simulations must be considered 

when calculating head loss at the sump screens due to debris transport.  These uncertainties 

suggest the consequence of the generation, transport, and accumulation of debris on HPSI system 

function is an uncertain and time dependent process so HPSI system degradation due to head loss 

at the sump screen should be considered in a probabilistic manner in dynamic PSA of 

recirculation phase of LOCAs. 

 

6.1.1 Joint Probability Statement for System and Component States 

 

 The CET given by Eq. (2.1) is the joint PDF p(x,c ,t) for the combined system state x and 

component state c at time t.  In the implementation of the CET [Dev92a], x and t are treated as 

continuous variables  and the component states c are binary or ternary systems.  For example, a 

pump is assumed to be working at nominal conditions or failed and a valve operates as 

demanded, fails closed, or fails open.  Binary and ternary  component systems are also assumed 

in DET applications [Klo06].  Discrete failure rates or transitions rates between failed states are 

defined for each component state and the CET or DET can be evaluated.   

 For the recirculation phase, the system state is the subcooled water level V and the 

component state is the NPSH of the HPSI pumps.  Through the curve in Figure 6.1, the NPSH 

determines the HPSI flow rate Wp which appears in input parameters in the ACE surrogate.  Here 

the component state is not a binary or ternary system.  The HPSI system can operate in a 

continuous spectrum of functional conditions from the minimum flow rate to maximum flow rate 

depending on the NPSH.  In a conventional CET or DET approach, the NPSH curve would be 

divided into intervals representing discrete component states noting if a higher refinement is used 

for a more accurate representation of the system, the curse of dimensionality rears its ugly head.  

We would like to avoid discretizing c and continue to treat c as a continuous variable.       

 Now we recast Eq. (2.1) with simplifications and assumptions specific to the recirculation 

phase problem.  As in a DET formulation, we assume a time step Δ t = t − t' to be used in the 

analysis over which component transitions can occur.  The containment sump conditions are 

independent of the TH behavior in the core so the generic component transition probability 

W(c',c) is independent of x.  W(c',c) also implicitly includes the no-transition probability W(c',c') 

so the   terms in Eq. (2.1) can be dropped.  Equation (2.1) over a time step is  
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                                                                                 .        (6.1)    

 

The system equation x(t) = g() is the ACE surrogate model for V and x(t) is uniquely determined 

by c(t) and W(c',c) resulting in 

 

                                                                                

 

                                                          .     (6.2) 

 

Equation (6.2) gives the updated PDF pn = p[x(cn), tn] given a component transition over tn-1 to tn 

governed by Mn.  The product of Eq. (6.2) yields the PDF pN for an end-state trajectory        

after N time steps from an initial distribution for the system state p0  

 

                                                             
 
        

 
      .          (6.3) 

 

A MC method can be used to solve (6.3) by sampling the PDFs {p0, M1, M2,..., MN} Z times 

obtaining Z values of       which are tallied to obtain an estimate of   .  Each MC sample i is 

     
     

    
      

   which are an initial condition and time dependent component state input 

variables for a deterministic calculation of     
   performed by the ACE surrogate.     

 Equation (2.1) and its subsequent form represented in Eq. (6.3) are a probability model 

for the system state treating the joint system and component state space in probabilistic terms 

representing the uncertainty of the system state arising from the uncertainty in component state 

which is governed by the component transition rules.  The deterministic system equations (the 

ACE surrogate) maps system state trajectories in the time domain of this joint probability space.  

The solution of Eq. (6.3) by a MC method resembles the UQ of a computer experiment discussed 

in Chapter 1.  There are N + 1 input variables                    with uncertainty defined by 

the PDFs {p0, M1, M2,..., MN} that are propagated through a nonlinear function, the ACE 

surrogate.  From this interpretation, any UQ method could be used to obtain    or estimates of 

the properties of   .  Specifically, the UT can be used to obtain an estimate of the mean and 

variance of    requiring only 2N + 3 simulations 
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      .           (6.4) 

 

Each sigma point trajectory     
   is calculated with the ACE surrogate from the corresponding 

sigma points      
     

 
   

 
     

   deterministically chosen by the UT algorithm of Eq. (3.42).  

The computational efficiency of the MC sampling and UT sampling to solve Eqs. (6.3) and (6.4) 

are unaffected by treating the component state c as a continuous variable.      

 

6.2   DET for Multiple  Degradations of the Containment Sump  

 

 To demonstrate efficiency of the proposed application of the UT to dynamic PSA and 

DET analysis, we will study the recirculation phase of the HL-LBLOCA in the context of GSI-

191 considering containment sump performance degrading HPSI system function.  The MC 

solution of Eq. (6.3) will be the benchmark for the UT result.  The containment sumps and HPSI 

system will be allowed to undergo multiple degradations representing cumulative effects of 

accumulation of debris at the sump screens over time.  As in conventional DET methodologies, 

we assume a fixed time step Δt = 1000 s for the analysis of the problem but we account 

explicitly for uncertainties in the degree of component transitions.  Thus, all component 

degradations or transitions can only occur at multiplies of Δt so branch points only occur at 

discrete times.   

 To model uncertain degradations at all time steps, a degradation factor F is introduced 

that will be applied at each time step.  The factor F is assumed to be distributed normally about 

0.95 with a standard deviation of 0.1.  At each time step, the current NPSH value is multiplied by 

the degradation factor F for each pump to determine the new degraded NPSH value.  The 

Gaussian distribution N [0.95, 0.1] assumes an average 5% degradation of the NPSH over each 

time step and allows for the possibility of an increase in NPSH.  The component state at each 

time step is calculated  

 

                                                                               and          (6.5) 
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              .                                 (6.6) 

 

 The transition probability for a time step can be formally stated as  

 

                                                      
 

    
     

 
  

    
      

 

   
      .       (6.7) 

 

 The sequence begins at 1,680 s, the RAS time. Eight time steps of 1,000 s each are taken.  The 

sequence is terminated at 9,680 s.  The initial NPSH at each pump inlet is assumed to the 17 ft 

and the sump water temperature is assumed to be constant at 350 K. 

 

6.2.1  Monte Carlo Solution of DET 

 

  The DET is evaluated by the MC method with a sample size of 10,000 cases.  For each 

case, the distribution N [0.95, 0.1]  is sampled sixteen times to obtain eight degradation factors 

for each HPSI pump.  The NPSH at every time step for each pump is calculated with Eq. (6.6) 

and corresponding flow rates for the pumps are obtained from Figure 6.1.  The ACE surroga te 

presented in Chapter 5 is used to calculate the subcooled water level out to 9,680 s.  Figure 6.2 

shows the water level trajectories for 100 MC cases. 

 In most DET applications, a surrogate is not available and a TH code must be used to 

simulate the transient, thus limiting the analysis to several hundred cases.  Whether the branching 

is determined by preset branching rules as in DYLAM or by MC sampling, the limited sample 

size usually requires statistical treatment of any derived results to prevent outliers from biasing 

any conclusions.  The branch probabilities of each case can be used as weighting factors to limit 

bias introduced from low-probability transitions.  For example, Sequence 76 identified in Figure 

6.2 is obviously an outlier having undergone a single large degradation early on in the transient.  

The conditional branch probability of Sequence 76 is 2×10
-8

 compared to the average conditional 

branch probability of the 100 cases of 3×10
-3

.  However, the sample size for the DET is large and 

the sampling was unbiased so no special weight ing needs to be applied.  A benefit of MC 
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methods with large sample sizes is low-probability cases, which can often have high-

consequences in reactor safety, are occasionally sampled.    

 

 

Figure 6.2.  ACE surrogate simulations of 100 MC cases for the multiple degradations of       
         the containment sump DET. 

    

6.2.2  UT Solution of DET 

 

 The DET is evaluated by the UT method with sigma point set of 33 samples.  Each sigma 

point is a vector of the sixteen degradation factor values, eight factors for each HPSI pump.  The 

sigma points are generated using Eq. (3.42).  All entries of    are equal to 0.95, the mean of F, 

and the diagonal entries of the covariance matrix P are equal to 0.01, the variance of F.  Similar 
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to the UT analysis in Section 3.5.2,  P is transformed by a 16 × 16 orthogonal matrix obtained 

from a SVD of a randomly generated  16 × 16 matrix.  The NPSH at every time step for each 

pump is calculated with Eq. (6.6) and corresponding flow rates for the pumps are obtained using 

Figure 6.1.  The ACE surrogate is used to calculate the subcooled water level out to 9,680 s.  

Figure 6.3 shows the water level trajectories for the 33 UT cases.  Figures 6.4 and 6.5 show the 

component state trajectories of the NPSH for HPSI pump A and pump B, respectively for all 33 

UT cases.   

 

 

Figure 6.3.  ACE surrogate simulations of 33 UT cases for the multiple degradations of       
         the containment sump DET. 
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Figure 6.4.  HPSI pump A NPSH degradations for UT cases. 

 

Figure 6.5.  HPSI pump B NPSH degradations for UT cases. 
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6.2.3  Comparison of MC and UT Results  

 

 Figure 6.6 compares the mean and variance for the water level at each time step 

calculated from the MC and UT samples.  Figure 6.7 shows the conditional PDF for water level 

obtained from the MC samples at each time step compared to a Gaussian distribution with mean 

and variance equal to UT estimates.  The PDFs are conditioned on the eight pump degradation 

transitions.  Figure 6.6 shows that the UT estimate of the mean and variance of the water level 

during the recirculation phase subject to multiple degradations of the HPSI systems agree very 

well with the MC results.  Figure 6.7 shows that the true distribution of the system state at later 

time steps, approximated by the MC PDF, is close to a Gaussian distribution.  Figure 6.7 also 

shows that early on in the transient over the first few time steps, HPSI system degradations 

affecting the HPSI flow rate do not cause very much variation in the water level.  The system 

dynamics early on in the transient are dominated by the high decay power that decreases by 

almost over a factor of two over this time period.  This dependence of the system state on the 

decay power can be seen in the ACE transformations ϕ1 and ϕ4 shown in Figure 5.6.  The 

agreement of the UT, requiring only 33 samples, with MC results demonstrates the accuracy and 

efficiency of the UT in a DET framework.   

 

6.3   DET for Repair of Failed HPSI Pump 

 

 For the second DET example, we consider the repair of a failed component.  During a 

LOCA, the transition from the injection phase to the recirculation phase at the time of the RAS 

requires significant changes in the HPSI system configuration.  The HPSI pumps suctions are 

automatically aligned to the containment sumps and the operators must manually isolate the 

empty RWST.  According to the UCN3&4 EOPs, the operators must also verify that the 

alignment to the containment sumps was successful and the minimum NPSH requirements for 

the HPSI pumps are met or else the pump must be manually tripped.  Unsuccessful alignment 

from a valve failing to open, insufficient NPSH at the sump, or inadvertent manual trip are all 

possible failure modes of a HPSI pump.    
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Figure 6.6.  Comparison of MC and UT mean and variance estimates for the multiple     
         degradations of the containment sump DET. 

 

Figure 6.7.  Conditional PDFs of water level for the multiple degradations of the      
          containment sump DET.  UT PDF assumes a Gaussian distribution. 
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 In this DET, HPSI pump B is assumed to fail at the RAS time.  HPSI pump A continues 

to operate with available NPSH assumed to be uniformly distributed U[7 ft, 20 ft] reflecting 

possible degraded sump conditions.  HPSI pump B undergoes repair with the repair time 

normally distributed N[4500 s, 1800 s].  Once repaired and operating, the available NPSH for 

pump B is uniformly distributed U[7 ft, 20 ft].  The sump water temperature is assumed to be 

normally distributed N[345 K, 10 K].  These four variables reflecting uncertain repair time, 

degraded sump conditions and uncertain containment conditions are the input parameters to the 

DET.  The DET is evaluated using the MC method with 10,000 simulations and the UT to 

sample the input parameter distributions.  UT sample requires only nine simulations.  The ACE 

surrogate is used to calculate the water level in the core for each sequence from the RAS time out 

to 12,000 s.  All ACE water level calculations are truncated at 0.1 representing the lower plenum 

below the active fuel.     

 Figure 6.8 shows a subset of 100 MC simulations of the DET.  Figure 6.9 shows the nine 

UT simulations for eight cases that varied the UT parameter k.  The UT sample size is small so  

 

Figure 6.8.  ACE surrogate simulations of 100 MC cases for the repair of HPSI pump DET.    
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Figure 6.9.  ACE surrogate simulations of UT samples varying parameter k for the repair  

         of HPSI pump DET.     
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every simulation represents a large fraction of the total information in the sample so any derived     

result is sensitive to the parameter k which controls the weights and the spread of the sigma 

points about the central point.  The central point has the weight W
(0)

 = k /(n + k) and the spread of 

the other sigma points are determined by      .  A negative value of k  moves all of the sigma 

points inward in the parameter space closer to the central point and assigns a negative weight to 

the central sigma point.   

 Figures 6.10 through 6.12 compares the UT mean and variance estimates to the MC 

results for the repair of the HPSI pump DET.  The key sampled parameter is the repair time of 

the HPSI pump B because once the pump is operable, the total flow rate of the HPSI system can 

increase up to approximately 150% if pump A was operating in a degraded state.  The rapid 

change in water level once the pump is repaired can be seen in the simulations presented in 

Figures 6.8 and 6.9.  The mean repair time is 4500 s which is the repair time for the central point 

in the UT cases.  For the cases with negative k  shown in Figure 6.10, the effect of k on the spread 

of the sigma points can result in an underestimation of the variance and the large magnitude of 

the negative weight assigned to the central point can skew the mean prediction, especially around 

4500 s when the water level of the central point simulations is rapidly changing.  For k = 0 or k 

positive and small, the UT mean and variance estimates agree well with the MC results.  There is 

some variation and disagreement between 3000 s and 6000 s when repairs are occurring and the 

system state rapidly changes.  The asymptotic system behavior is well approximated by the UT 

for all cases.    

 

6.3.1 Incorporating Model Uncertainty in DET Results 

          

 The DET results presented account for uncertainty of component states governed by 

component transitions but did not incorporate the uncertainty of the ACE surrogate simulations.  

In Chapter 5, the surrogate predictions of the RELAP5 training cases included an estimate of the 

prediction uncertainty which was on the order of 7% - 9% for the standard deviation of the water 

level.  The ACE model uncertainty derived in Section 5.2.3 accounted for approximately 5% of 

the variation in the water level.  In this section, we consider the model uncertainty of surrogate 

and estimate the effect on the mean and variance of the end state water level in the repair of the 

HPSI pump DET.  
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Figure 6.10.  Comparison of MC and UT mean and variance estimates for the repair  
           of HPSI pump DET. 
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Figure 6.11.  Comparison of MC and UT mean and variance estimates for the repair  
           of HPSI pump DET.  
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Figure 6.12.  Comparison of MC and UT mean and variance estimates for the repair  

           of HPSI pump DET.  
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prediction is a random variable that is distributed approximately as a Gaussian with mean equal 

to the predicted end state and standard deviation of 0.05.  The distributions should be sampled to 

obtain the system state values that are used in calculating the sample statistics.  In the MC 

method, random samples can be drawn from each of the 10,000 distributions effectively 

increasing the size of the sample.  For the UT method, the system state distribution can be treated 

as a fifth uncertain input parameter in the sigma point set increasing the number of simulations to 

11.   

 Table 6.1 tabulates the mean and standard deviation for the end state water level at 

12,000 s for the MC sample and UT sample for k  = 0 and compares to the estimates accounting 

for model uncertainty.  The MC sample with model uncertainty is 10
6
 samples obtained by 

randomly sampling each of the 10,000 end state distributions 100 times.  The mean water level is 

in good agreement for all samples.  The UT variance estimate represented by the standard 

deviation agrees with the MC estimate.  When model uncertainty is accounted for, the variance 

of the MC and UT samples increase by approximately 60% corresponding to a 26% increase in 

the standard deviation.  For the repair of the HPSI pump DET, the component state uncertainty 

contributes approximately a variation σ = 0.127 in the normalized water level whereas the ACE 

model uncertainty contributes approximately an additional 0.035 to σ.  The component state 

uncertainty is the dominant uncertainty contributor to the system state so the ACE surrogate, as 

an approximate deterministic model that adds additional uncertainty to the analysis, is acceptable 

to use.  The results show that  the ACE model uncertainty does not change the mean prediction 

but increases the spread of the system state samples.               

 

Table 6.1.  Mean and standard deviation estimates for water level at 12,000 s for repair of          
        HPSI pump DET assuming 5% model uncertainty.   

 

 

 

 

Water Level MC
MC + Model 

Uncertainty

UT               

k = 0

UT + Model 

Uncertainty

mean 0.5417 0.5418 0.5425 0.5425

σ 0.1258 0.1607 0.1282 0.1622
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CHAPTER VII 

 

SUMMARY AND CONCLUSION 
  

 

 

 Advances in computer science and widespread availability of computational resources 

provide unprecedented opportunities for the application of computer codes to engineering 

problems including safety issues affecting NPPs.  In this dissertation, we developed new 

methodologies based on code surrogates and deterministic sampling strategies for UQ of NPP 

transients in reactor safety analysis.  These methodologies take advantage of and efficiently use 

the additional computational resources available to perform more simulations with system TH 

codes obtaining additional and more reliable uncertainty information compared to conventional 

UQ methods used in reactor safety analysis.  The methodologies were demonstrated for a  BEPU 

licensing calculation and the analysis of a DET for a realistic NPP transient.     

 To lay the groundwork for the dissertation and motivation, an overview of system TH 

codes for modeling NPP transients and UQ of computer experiments was given in Chapter 1.  In 

Chapter 2, dynamic PSA methodologies, the CET and DET, were discussed.  The complexity of 

dynamic PSA and NPPs systems were recognized and the case for computationally efficient 

simulations of transients and the need to control the dimensionality of dynamic PSA problems 

was made.  The theory of code surrogates,  nonparametric regression techniques, the GPM and 

ACE algorithm,  and the UT were presented in Chapter 3.  A UQ study using GPM and ACE 

code surrogates representing response surfaces of the PCT during a LBLOCA and the UT as a 

sampling based UQ strategy was presented in Chapter 3.  The LBLOCA is a classical example of 

UQ in BEPU methodologies used for NPP licensing and provided a benchmark for our proposed 

UQ methodologies.  The RELAP5 TH code and the LBLOCA model for the UCN3&4  NPP was 

summarized in Chapter 4.  
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 The first objective of the dissertation was to demonstrate a new methodology to develop a 

dynamic code surrogate that can accurately simulate time dependent, nonlinear TH behavior of a 

NPP transient considering multiple safety system degradations or failures.  In Chapter 5, we 

developed an ACE surrogate that predicts the subcooled water level in the core for the 

recirculation phase of a HL-LBLOCA in the UCN3&4 NPP as a function of four input 

parameters and a recursive relationship for the water level.  The dynamic surrogate is a discrete 

time dynamic system model and can model degradations in the HPSI system affecting the flow 

rate of the HPSI pumps and variation in the temperature of water in the containment sump, the SI 

water source during recirculation.  The input parameters for the surrogate were derived from a 

simplified representation of the RCS and macroscopic balance equations of conservation of mass 

and energy.  The surrogate was trained  on time dependent RELAP5 data from simulations of the 

recirculation phase.  A key feature of the surrogate is the ACE transformations represent the 

nonlinear phase space of the input parameters which implicitly treat the transient time of the 

simulations.  

 The second objective was to quantify the uncertainty of the dynamic code surrogate.  The 

variance of the ACE algorithm transformations was derived in Chapter 3 providing a consistent 

estimation of surrogate model uncertainty.  Model uncertainty was accounted for in the 

recirculation phase surrogate and the UT was used to estimate the uncertainty of the time 

dependent system state trajectory predicted by the dynamic code surrogate requiring the 

nonlinear transformation of model uncertainty and the system state uncertainty through the ACE 

model.  The surrogate predictions compared to RELAP5 simulations shown in Figures 5.10 and 

5.11 reveal the uncertainty band of the ACE estimates are on the order of 5 to 10% of the core 

height.  The RELAP5 data are noisy and account for all TH processes occurring in the RCS 

including the intact SG loop, the CL piping, and the downcomer.  The ACE surrogate only 

explicitly models the decay power, HPSI flow rate, and enthalpy of SI water in the input 

parameters so the other processes are implicitly represented in the data values for Vn and Vn+1 

used in the surrogate training.  The ACE model uncertainty reflects the noise in the RELAP5 

data and the TH behavior not explicitly represented in the input parameters.  The subjective 

decision to use a code surrogate in place of the original code model is application specific and 

requires engineering judgment to interpret a variety of quantitative measures of the surrogate.  
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The model uncertainty quantified by the variance estimate is a valuable measure that can be used 

in this process.   

 The third objective was to demonstrate the accuracy of the UT as a general sampling 

based UQ methodology.  The UT is a relatively new method and was originally developed for 

the specific application of extending the Kalman Filter  to nonlinear system dynamics subject to 

model and measurement noise.  In Chapter 3, the UT was applied to a BEPU calculation of a 

LBLOCA.  The mean and variance of the PCT as function of 20 input parameters was accurately 

estimated by the UT.  The primary advantage of the UT is the size of the UT sample determining 

the computational expense of the method scales linearly with the size of the input parameter 

space while guaranteeing accuracy up to the third order.  Linear scaling keeps the simulation of 

large complex systems computationally manageable compared to geometric scaling.    

 The final objective of the dissertation was to address the computational challenges of 

direct coupling of TH codes to CETs or DETs and the curse of dimensionality in dynamic PSA 

of realistic NPP transients.  In Chapter 6, the dynamic code surrogate replaced the direct use of 

the UCN3&4 RELAP5 model in a DET for the recirculation phase of a HL-LBLOCA.  Multiple 

degradations in the high-pressure safety injection (HPSI) system and the containment sump 

reflecting  GSI-191, a contemporary safety issue for PWRs, was studied in the DET.  The UT 

was used to sample component transition probabilities analogous to deterministic branching rules 

in DET formulations.  The dynamic surrogate was a computationally efficient tool allowing the 

MC simulation of the DET allowing the UT derived results to be benchmarked.  The UT gave 

accurate results at significantly less cost than the MC solution.     

 To summarize, nonparametric regression is a powerful technique to learn functional 

relationships from data sets.  Increased computational resources allow large training sets to be 

generated from best estimate computer code simulations so nonparametric regression techniques 

such as the ACE algorithm can be applied to reactor safety analysis.  Code surrogates as 

response surfaces for UQ in BEPU methodologies and computationally efficient dynamic system 

models for dynamic PSA have been demonstrated.  Some reactor safety problems will always 

require the high-fidelity solution of a BE code and inevitable future advances in computer 

science and technology may ultimately favor the direct use of the BE code in most applications.  

However, we have shown code surrogates can be an effective benchmarking tool for other UQ 

methodologies. 
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 The UT appears to be a promising new sampling based UQ methodology with 

applications beyond its original implementation in the Kalman Filter.  The UT is not limited to 

the symmetric sigma point set and associated weights that was used throughout the dissertation 

so the accuracy of other sigma point sets should be investigated.  The mathematical subtleties of 

using orthogonal transforms in sigma point set generation should also be further investigated.  

The output PDFs in the PCT LBLOCA and DET examples presented in this d issertation were 

unimodal distributions with skew and kurtosis of relatively small magnitudes and the UT gave 

accurate estimates for the mean and variance of these distributions.  The error in the UT 

equations are introduced in the  higher order terms which are dependent on the higher order 

moments of the distributions.  The accuracy of the UT should be tested for cases where  both the 

input and output PDFs deviate significantly from symmetric distributions like the Gaussian and 

uniform.  The accuracy and efficiency of the UT should also be compared to other MC based 

methods such as LHS that use variance reduction techniques improve the efficiency of random 

sampling schemes.         

 

 


