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Abstract 

Plants have many attractive characteristics for developing multi-functional adaptive struc-

tures, such as high strength and toughness per unit density, self-healing and reconfigura-

tion, and nastic motion with short response time and large deformation.  The vision of this 

thesis research is to develop enabling knowledgebase and design methodologies to synthe-

size plant-inspired adaptive structures.  More specifically, investigations will focus on 

achieving multiple mechanical functionalities concurrently, such as actuation, variable me-

chanical properties, and vibration control.  To reach this vision, this thesis research adopts 

the concept of multi-cellular structure based on the fluidic flexible matrix composite 

(F2MC) cells.  Because such concept offers a natural platform to incorporate design inspi-

rations from plants into artificial adaptive structure study, both at the local level of individ-

ual cell development and at the global level of structure architectural design and synthesis.  

This thesis research identifies several critical issues related to the development of 

F2MC based cellular adaptive structure.  It investigates the dynamic characteristics of a 

multi-cellular structure, where F2MC cells with different configurations are connected to 

each other not only mechanically but also fluidically.  It discovers new dynamic function-

alities that are not feasible in an individual cell, including vibration isolation and dynamic 

actuation with enhanced authority within a designated frequency band.  It provides a list of 
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unique architectural designs of the cellular structure based on rigorous mathematical prin-

ciples, and compares their performance to gain design insights.  Finally, it derives novel 

and comprehensive synthesis procedures that are capable of selecting appropriate design 

variables for the F2MC cells, so that the cellular structure can achieve multiple performance 

targets concurrently, such as desired variable stiffness, actuation authority, and spectral 

data. 

The plant inspired design principles, physical knowledgebase and synthesis meth-

odologies developed from this thesis fully manifests the rich functionalities and design 

versatilities of the F2MC based multi-cellular structure.   They could foster the adoption of 

such novel adaptive structure concept to advance the state of art of many engineering ap-

plications, including aviation and aerospace, soft robotics, and intelligent civil infrastruc-

ture.  The biologically inspired, multiple-cell oriented approach towards developing adap-

tive structure could also create a paradigm shift in other related academic research. 
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Chapter 1                                                               

Introduction 

The field of adaptive structures (also referred to as smart structures or intelligent structures) 

has been an active research field for the past several decades (Wagg et al. 2008).  The 

vision is to eventually create autonomous structures capable of altering their configuration, 

behavior, and properties, so that they can achieve desired functions or respond to changes 

in environment.  In recent years, the research works in adaptive structures have developed 

into a richly diverse inter-disciplinary topic involving material science, electronics and 

transducers, solid mechanics, structural dynamics and controls, and even biological sys-

tems.  One promising trend in this field is to seek inspirations from nature.  While many 

novel biologically inspired adaptive structure concepts have been proposed, most of them 

focused on exploiting the knowledge from the animal kingdom.  Relatively speaking, little 

research work has been performed on plant-inspired adaptive structures, despite of the fact 

that plants have many attractive characteristics for such purpose.  For example, mature 

wood tissues are known for their excellent combination of strength, stiffness, and tough-

ness per unit density.  These tissues are organized to form tree trunk and branches with an 

optimized geometric shape so that any stress concentrations induced by self-weight, exter-

nal load and injuries are minimized.  These characteristics can be translated, in engineering 

terms, as efficient, lightweight, and high strength structural designs.  Plants can also sense 
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external damages, heal themselves, and grow according to the environmental constraints; 

and this can be translated as the self-healing and self-reconfiguration in engineering sys-

tems.  Furthermore, several plant species, such as Mimosa Pudica, are capable of rapid 

nastic motions at the macroscopic level (Burgert and Fratzl 2009) via microscopic cellular 

deformations.  When Mimosa is stimulated, its leaves would fold up, and branches bend 

down as a self-defense mechanism.  This kind of reversible motion can be translated as an 

actuation with a large stroke and block force yet in a short response time (Balmer and 

Franks 1975, Volkov et al. 2010a, Volkov et al. 2010b).  All of the aforementioned char-

acteristics are ideal functions that many adaptive structure researchers have tried to 

achieve.  While animal tissue and organs exhibit some similar characteristics as well, plants 

achieve these concurrently with limited resources.  Moreover, these characteristics can vary 

significantly over time and location in a single plant as dictated by global and local stimuli 

(Niklas, 1992).  Therefore, plants have much to offer in terms of basic material develop-

ment, structural architecture design, and actuation/sensing approaches that could cause a 

significant technology leap for future multi-functional adaptive structures. 

Based on the arguments above, the vision of this thesis research is to develop ena-

bling knowledgebase and design methodologies to synthesize plant-inspired adaptive 

structures.  More specifically, investigations will focus on several mechanical functionali-

ties, including actuation/morphing, variable mechanical properties, and vibration control.  

These functions should be achieved concurrently in one integrated system just like plants, 

because concurrent multi-functionality offers wide advantages in applications with a strict 

space and weight constraint.  To achieve this aim, we propose adopting a cellular structure 

approach inspired by the nastic plant cellular architecture and functions as described above.  
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A cellular structure consists of a network of “cells” or basic structural elements, where 

each individual cell is capable of some simple functions by its own, yet integrating them 

together could extend their capabilities to a new level.  This approach is a “bottom-up” 

process: the properties and behaviors of the individual cell are studied in priori; then the 

overall structural performance is an assembly or extension from the individual cells.  Such 

approach offers a greater freedom to tailor structural characteristics as compared to the 

more conventional “bulk material” approach.   

Furthermore, the cellular structure approach offers two unique aspects through 

which inspirations from the plant kingdom can be applied to advance the state of art.  The 

first aspect is the design of the individual cell.  A single plant cell by itself is already an 

engineering marvel, and its unique properties and behaviors are directly related to some of 

the aforementioned attractive characteristics.  Therefore, the anatomy of individual plant 

cell is a rich source of engineering design inspirations.  In this thesis research, the specific 

artificial “cell” we utilize and build upon is the fluidic flexible matrix composite cell 

(F2MC for short).  F2MC is a fruit of biomimicry of plant motor cell; it emulates the plant 

cell wall fibrillar organization and the internal turgor pressure dynamics.  After almost a 

decade of development, the artificial F2MC cell has successfully demonstrated mechanical 

functions similar to the plant motor cell, even functions not seen in plants.  Therefore, 

F2MC is a solid foundation for developing more capable cellular structures.   More details 

about the biological inspiration for the F2MC development are discussed in the following 

chapter (section 2.2). 
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Once F2MC is chosen as the basic structural element, the next challenge arises nat-

urally: effective methodologies to design and assemble the F2MC together to form a struc-

ture with compelling performance.  This leads to the second aspect through which one can 

learn from plants: structural architecture and synthesis.  Physiology study revealed many 

principles on how plants maximize the potential of their cells, and many of the principles 

can be applied to tackle the synthesis challenge.  For example, differentiation is widely 

observed in the plant kingdom.  The variation of the cell wall cellulose micro-fibril orien-

tations among adjacent cells is directly related to the excellent combination of strength and 

stiffness of a tree branch (Fratzl 2003).  This principle can be applied to the artificial struc-

ture by allowing F2MC cells to differ from each other, so that the interaction between cells 

can be exploited for new type of functions.  A list of design principles employed in this 

research is discussed in detail in the following chapter as well (section 2.3). 

In summary, the F2MC based cellular structure approach offers a solid platform on 

which one can apply lessons from plants to advance the state of art of adaptive multi-func-

tional structure.  This thesis research is novel and unique because, for the first time, it 

systematically incorporates both the aspects of local cellular design and global structure 

synthesis based on F2MC composites.  It provides knowledgebase and design tools to de-

velop F2MC based cellular structure that can concurrently achieve the targeted functions 

of actuations, variable mechanical properties and vibration control.  The outcome of this 

thesis research can facilitate the adoption of F2MC based cellular structure concept to a 

variety of engineering applications such as airframe morphing, soft robot, and intelligent 

civil infrastructure.  Furthermore, even though this thesis is tailored specifically for F2MC 

based structure, its lessons and experiences could trigger a paradigm shift in the field of 
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adaptive structure in general, and foster a new generation of cellular adaptive structure 

across different physical disciplines. 
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Chapter 2                                                               

Literature Review and Problem Statement 

This chapter first reviews the current state of art of the cellular adaptive structure research 

in general; then discusses the previous research on F2MC in detail, covering the develop-

ment of individual F2MC cell inspired by plant cell anatomy and some earlier attempts on 

multi-cellular structure.  Critical research issues are identified.  To address these issues, 

this chapter turns its focus into plant physiology studies again to search for lessons and 

guidelines, based on which research problem statements and objectives are defined.  Fi-

nally, the overall research approach of this thesis is laid out.  Section 2 of this chapter 

discusses the inspirations from plants through the aspects of local individual cell design; 

while section 3 of this chapter discuss the inspirations through the aspects of global struc-

tural architecture and synthesis. 

2.1 Review of adaptive structures with a cellular architecture 

The cellular adaptive structure approach itself is not new, as there are several concepts in 

this category in active investigation.  They operate across a wide range of physical disci-

plines; yet they are all essentially assemblies of many structural elements or cells.  These 

cells are usually arranged in a periodic pattern; they can perform some simple mechanical 
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functions individually; and combining them tougher can extend the overall structural per-

formance to a new level.  In the following, various cellular adaptive structure concepts are 

categorized and reviewed based on their functionalities. 

Actuation/shape morphing:  This is the most common type of cellular adaptive 

structures because of its potential in morphing applications in aviation and aerospace.  For 

example, Pagitz et al. (2012) connected prismatic cells with tailored pentagonal or hexag-

onal geometry to form a leading edge of the airplane wing.  When these cells are pressur-

ized, the whole structure morphs between designated target shapes with geometric accu-

racy to maintain aerodynamic efficiency.  Ramrakhyani et al. (2005) used tendon-activated 

compliant cellular trusses to construct a lattice structure for continuous shape change.  

Ueda et al. (2010) connected a series of piezoelectric stack actuators with a nested cellular 

architecture to amplify their effective strains, creating a linear actuator that combines both 

large stroke and large operating frequency bandwidth.  More examples in this category can 

be found in Pagtiz and Bold (2013), Vasista and Tong (2012), Vos et al. (2011), and Luo 

and Tong (2013a and 2013b). 

Variable mechanical properties: Changing mechanical property, such as stiffness, 

of a specific group of cells can give the whole structure highly tunable characteristics.  For 

example, Puttmann et al. (2012) applied multi-state polymer infills into a traditional hon-

eycomb core to form a semi-active panel.  By switching the infill stiffness in the designated 

honeycomb cell between “rigid” and “soft” states, the overall in-plane stiffness profile of 

the panel becomes anisotropic and tunable with a large degree of freedom. 

Unique load bearing capacity:  Different cells can have different “specialties” in 

load bearing capacity, and assembling these cells together can result in a structure with 
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unique properties unseen from conventional materials.  For example, Pontecorvo et al. 

(2012) proposed adding various internal features, such as contact elements, buckling 

beams, and dashpots into honeycomb core so that the whole panel exhibits some unique 

combinations of both high stiffness and high damping properties.  And Schenk and Guest 

(2013) molded several layers of Miura sheets together to form a cellular “meta-structure” 

with different Poisson’s ratio related to in-plane expansion and out-of-plant bending. 

The aforementioned examples are not intended to be an exhaustive review on cel-

lular adaptive structure, but rather, they illustrate the promising potentials and rich research 

opportunities in this subject.  Compared to these cellular structure concepts, a significant 

uniqueness of the F2MC based cellular structure is its multi-functional capability even on 

the individual cell level.  The following section shall give a detailed review on the previous 

work on F2MC. 

2.2 Review on previous research of F2MC 

As mentioned earlier, F2MC was developed by emulating one of the most distinc-

tive features of the plant motor cell wall: fibrous organization.  A mature cell wall usually 

consists of several layers of cellulose micro-fibrils that are cross-linked together by poly-

saccharides such as pectin and hemicelluloses (Cosgrove 2005).  These micro-fibrils could 

orient randomly in the cell wall to act like structural reinforcements, similar to the short 

fiber reinforced composite seen in some engineering applications.  In certain scenarios, 

however, these micro-fibrils arrange themselves into a helix pattern with a relatively uni-

form orientation, giving the cell wall anisotropic elasticity.  This anisotropy, combining 

with the variation of internal turgor pressure, plays a vital role in some cellular functions 
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such as elastic osmotic swelling/shrinking, or plastic elongation.  For example, there are 

evidences showing that the reversible bending motion of the guard cells in plant leaves is 

related to this cellulose micro-fibril distribution in the cell wall. 

An F2MC cell can be illustrated as a fiber composite tube filled with pressurized 

working fluid as shown in figure 2.1.  The stiff fibers, winded in double helix pattern, are 

embedded into a soft matrix resin at a prescribed angle, resembling the micro-fibrils in the 

plant cell wall.  Inner liner is included for sealing purpose if necessary.  The F2MC tube is 

fabricated by the filament winding procedure.  In this procedure, a carriage applies wet 

carbon fiber strip onto a spinning mandrel to form the cell wall.  The carriage moves along 

the mandrel axial direction at a customized speed, so that the fiber strip can be laid at a 

desired angle.  

Because of the fibrous organization, the F2MC cell wall is elastically anisotropic 

similar to the plant cell wall.  This anisotropy, combined with the working fluid bulk mod-

ulus and pressure, gives a single F2MC cell different cellular functions under different op-

erating conditions.  The work of Philen et al. (2007) and Shan et al. (2006) demonstrated 

that the F2MC cell acts as an active device/actuator with large stroke and block force when 

fluids are pumped in.  The stiff reinforcing fibers restrict the deformation of the pressurized 

F2MC cell, and transform the internal pressure into axial pulling/pushing force.  The cell 

will contract under internal fluid pressure increase if the fiber angle is less than ±55°, ex-

tend if the angle is greater than ±55° (figure 2.2b), such actuation mechanism closely re-

sembles the elastic motor cell swelling/shrinking process.  
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Figure 2.1 Construction of a single F2MC cell.  From (a) cell level, to the (b) 
laminate level, to the (c) ply level.  Comparing to the confocal microscopic im-
age of the plant cell wall (d), one can see the similar fibrillar organizations be-
tween the plant cell and the F2MC cell 1.  

 

In the active actuation operation, the F2MC cell has some similarities to another 

type of elastic linear actuator called pneumatic artificial muscle (also called “McKibben 

actuator” or simply “PAM”).  A typical McKibben actuator is made by inserting a rubber 

tube (bladder) into a braided fiber sleeve, and linear actuation is also achieved by internal 

pressurization, usually though pneumatic system.  Many research were devoted to the mod-

eling and controlling of the McKibben actuator, and it had already been adopted in various 

                                                 
1 Strictly speaking, the fibrillar feature in the confocal microscopic image is not the image 

of the cellulose micro-fibril themselves, but rather the movement of the proteins that synthesis the 
fibril.  It is a good representation of the orientation of the newly deposited fibril in the inner layer 
of the cell wall.  The credit of the confocal microscopic images in figure 2.1 and 2.4 belong to Chris 
W. Paran, Dr. Feng Guo and Dr. Erik E. Nielsen at the Department of Molecular, Cellular and 
Developmental Biology at the University of Michigan. 

(a) Cell level (c) Ply level
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industrial and medical robotic applications.  Interested readers can refer to Chou and Han-

naford (1996), Tondu and Lopez (2000), and Zhang and Philen (2012) for a comprehensive 

review on its development.  The F2MC, on the other hand, has several distinctive features 

compared to McKibben actuator.  First, F2MC can be fabricated with precision control on 

fiber angles to provide different type of actuation motions (contraction, extension; or twist-

ing if there is only one helix fiber layer instead of two), while a typical McKibben actuator 

can only achieve contraction.  Secondly, the reinforcing fiber of the F2MC is imbedded 

into soft resin while McKibben has two separate layers of internal rubber bladder and ex-

ternal braided sleeve.  The integrative construction of F2MC can minimize the friction be-

tween the fibers to achieve a better actuation performance.   

Another distinctive feature of F2MC cell is its multi-functionality.  While McKib-

ben is developed solely for actuation purpose, F2MC can also act as a variable stiffness 

element with simple on-off valve control (Shan et al. 2008).  This is under adaptive-passive 

or semi-active type of operation condition where external pumping is removed.  For certain 

fiber angles, the F2MC cell has a low axial stiffness and high axial extensibility with open 

valves at both ends of the cell.  When the valves are closed, the cell becomes significantly 

stiffer in its axial direction because the confined working fluid resists the volume change 

induced by the deformed fiber composite cell wall (figure 2.2c).  A closed/open stiffness 

ratio of 56 was achieved in laboratory tests (Shan et al. 2008).  Analysis showed that F2MC 

cells could achieve a large range of combination between stiffness ratio and absolute open 

valve stiffness value.  
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Figure 2.2 Functionality of a single F2MC cell.  a) Neutral state; b) active actu-
ation; c) passive variable stiffness.  

 

Multiple F2MC cells can be grouped together to form simple cellular structures in 

order to expand the aforementioned functions of an individual cell.  For example, for active 

actuation, two layers of parallel F2MC cells were molded into a panel, and by applying 

pressure to different cells, this panel can provide complicated in-plane bending, out-of 

plane bending, and twisting actuation motions (Li and Wang. 2012).  Regarding adaptive-

passive type of operation, three layers of F2MC cells spanning at 60 degree angles with 

respect to each other were molded together to form a panel, and by on/off valve control on 

different layers of cells, it can provide a tunable in-plane anisotropic variable stiffness 

(Shan et al. 2008). 

The F2MC cells can also be integrated with other types of structural elements.  For 

example, a F2MC cell was integrated with a honeycomb core to form a sandwich panel (Li 
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et al. 2008, figure 2.3).  The honeycomb core is soft against bending but stiff against shear, 

so the transverse load on the sandwich panel was translated into the longitudinal load onto 

the F2MC cell.  As a result, the variable stiffness of the F2MC cell in its longitudinal direc-

tion is transformed into a variable stiffness of the panel in its transverse direction.  Analysis 

showed that a honeycomb sandwich panel with a single F2MC cell as its face sheet could 

provide a high/low stiffness ratio of up to four, while multiple F2MC cells connected in 

series could further increase this ratio (Li et al. 2008).  To illustrate the potential of inte-

grating the actuation and variable stiffness functionalities into one compact system, the 

F2MC-honeycomb structure was connected to a piezoelectric-hydraulic pump (PHP) which 

can exercise both valve control and supply pressurization, making it dual functional (figure 

2.3, Kim et al. 2010). 

A series of efforts were carried out to explore potential applications for F2MC fea-

tured adaptive structure other than actuation and variable stiffness.  One of the promising 

applications is vibration control.  So far, two approaches had been investigated for this 

purpose.  One was to exploit the variable stiffness function by connecting the cell to a fast 

open/closing solenoid valve, the stiffness of the F2MC cell can be switched between 

high/low state to reduce or isolate the vibrations applied onto the cell (Lotfi et al. 2012 and 

Philen 2012a).  The other approach was to connect the cell (in open valve state) to an 

external flow port, so that the port inertance acted like a sacrificial mass in a vibration 

absorber (Scarborough et al. 2012).  Other applications were also explored such as force 

tracking control (Philen 2012b), or variable impedance material for prosthetic devices 

(Philen 2009); these two applications were still based on the variable stiffness function of 

a single F2MC cell. 
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Figure 2.3 F2MC based dual functional structure (Kim et al. 2010).  An F2MC-
honeycomb sandwich beam is integrated with a piezoelectric-hydraulic pump, 
which can provide us with both actuation and variable transverse stiffness in one 
compact system. 

 

As can be concluded from these previous works on F2MC, the physical properties 

and behaviors of an individual F2MC cell were extensively studied and well understood.  

And even some F2MC based multi-cellular structural concepts were explored.  However, 

these early attempts on cellular structure were far from systematic, because they mostly 

focued on extending one specific type of function, and serve only for a proof-of-concept 

purpose.  To systematically develop the F2MC based multi-cellular structure for its poten-

tial of achieving concurrent multi-functionality, several critical questions need to be an-

swered, such as: 

i) Are there any new functions from multi-cellular structures that are 

not feasible from a single cell?  Because all of the previous attempts on 

PZT stack
& cover

Piezo-hydraulic
Pump

F2MC-honeycomb 
sandwich beam

Pressure
transducer

On-off solenoid valve



15 
 

F2MC based cellular structure focused on extending the functions that are 

already known from a single cell. 

ii) What are the unique architectures by which F2MC cells can be as-

sembled together to achieve multi-functionality?  In the previous work, 

F2MC cells were simply laid out in parallel and molded into a rubber-based 

panel, and each cell are controlled separately without any direct interaction. 

iii) How to design each individual cell so that the overall structural per-

formance can be optimized?  In the previous work, all of the F2MC cells 

were assumed identical, which negated the advantage of design versatility 

of individual cell. 

To answer these questions, deeper physical insights, new methodologies and robust 

synthesis procedures are necessary, so we turn to plants for inspirations and guidelines for 

structural architecture and synthesis.  The following section shall review the lessons we 

learned from plant physiology studies. 

2.3 Lessons from plant physiology studies 

Extensive physiology research revealed numerous design and synthesis principles behind 

those attractive characteristics in plants as mentioned in the introduction, and many of these 

principles are applicable to advance the development of artificial cellular structures. 

The advantage of multiple cells:  Some of the rapid motion in plant world is not 

physically possible without a large number of small cells.  For example, mimosa pulvinus, 

the organ responsible of the fast leave-folding motion, consists of a large number of small 

motor cells.  These motor cells activate the folding motion by osmotic swelling or shrinking 
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(Burgert and Fratzl, 2009; Martone et al. 2010).  Osmosis itself is a relatively slow process; 

however, the small motor cell size guarantees a large surface-to-volume ratio to overcome 

this limitation.  Moreover, if the response time and deformation requirement exceed the 

physical limit of osmotic process, elastic bi-stability or “snap-through” behavior is intro-

duced to further increase the nastic motion speed, the best know example of this is the 

venus flytrap (Skotheim 2005; Dumais and Forterre 2012).  Such kind of bi-stability, as 

argued by the work of Pagtiz and Bold (2013), can be achieved naturally from a cellular 

structural organization.  On top of fast response time, a cellular layout is also beneficial for 

structural maintaining high strength per unit density. 

Therefore, understanding the advantage of multiple cells is crucial for developing 

artificial cellular structure, because some functions might be feasible only with multiple 

F2MC cells.  This requires a deep understanding in physics behind cellular interaction. 

Differentiation in the cell wall fibrous organization:  As mentioned earlier, one of 

the most distinctive features of the plant cell wall is its fibrous organization.  And the dif-

ferentiation of this fibrous organization, both within one plant cell or between adjacent 

cells, plays a vital role in some plant functions. 

For example, the orientation of the micro-fibril has a strong linkage to the rate and 

direction of fast cell expansion and growth.  Different from the nastic motion, the rapid cell 

growth is initiated by plastic “loosening” of the cell wall while the internal turgor pressure 

is hold unchanged.  Yet, the stiff cellulose micro-fibrils can still constrain the direction of 

wall expansion if they are organized at a uniform orientation.  It was argued that at different 

stages of the rapid cell elongation, the micro-fibril orientation will adjust accordingly to 
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control the elongation rate (Richmond et al. 1980, Baskin 2005, and Cosgrove 2005, An-

derson et al. 2010).  Figure 2.4 presents an illustrative example of the dynamic changes of 

fibril orientation in the elongating hypocotyl cell. 

 

 

 

Figure 2.4 Variation of the plant cell wall micro-fibril orientation.  (a) The con-
focal microscope image shows two adjacent hypocotyl cells in an A. thaliana 
seedling.  A Fast Fourier Transformation (FFT) script is applied to the two sam-
ple areas (the two white boxes) to calculate the net fibril orientation.  (b) The 
FFT results, where the peak in the curve represents the dominant fibril orienta-
tion in the corresponding sample area.  One can clearly see the orientation dif-
ference between the two cells, where cell #1 has a fibril orientation at around 
130°; cell #2 around 0° 1. 

 

Another example, since the relatively stiff cellulose micro-fibril provides highly 

anisotropic elastic properties, differentiation of micro-fibril orientations can give an opti-

mized structural performance.  The cylindrical shaped plant cell with the micro-fibril ori-

ented close to its longitudinal axis has a relatively higher longitudinal stiffness, so that it is 

capable of withstanding large tensional loads.  On the other hand, cell with fibril perpen-

dicular to its longitudinal axis is better suited for compression load (Cave and Hutt 1968).  
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In tree branches, the orientation of the micro-fibril varies between cells at different loca-

tions in order to optimize the balance between the branch load bearing capacity and its 

flexibility (Fratzl 2003, and Fratzl et al. 2004).   

The differentiation of cellulose micro-fibro orientation also enables some plants 

nastic motion without any energy cost (Stahlberg and Taya 2006).  The most impressive 

example is probably the wheat awn in the seed disposal unit (Fratzl et al 2008; and Elbaum 

et al. 2011).  The cellulose fibrils in the cap and ridge side of wheat awn have different 

orientations, which cause the awn to bend with changing humidity.  As a result, the awn 

can propel the seed deeper into soil with the help of the high-low air humidity cycle be-

tween nighttime and daytime.  Another similar example is the opening and closing of pine-

cone (Dawson et al. 1997). 

The principle of differentiation observed in plants suggests that the F2MC cells can 

be different from each other in the same structure.  This could bring in richer cellular in-

teractions that can be exploited for our benefits.  On the other hand, rigorous synthesis 

procedure is necessary to manage the large number of design variables in the system once 

the cell can differ from each other. 

Hydraulic network and fluidic properties:  Plants, especially the higher vascular 

species, are essentially hydraulic machines.  The change of internal turgor pressure is the 

activating mechanism of the many nastic motions, such as mimosa pudica, venus flytrap, 

and ice-plant seed capsules (Hill and Findlay 2009; Volkov et al. 2010a and 2010b; Forterre 

et al. 2005; and Harrington et al. 2011).  There are also evidences that the internal turgor 

pressure, together with the micro-fibril can provide pre-tension stress to the tree trunk to 

better withstand external load.  Other than turgor pressure, the vascular plants also have a 
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complex fluidic network (xylem and phloem) to transport water and nutrients throughout 

the plant body, enabling the plants to grow into a larger size.   

Other than pressure, plants also exploit different types of fluid properties.  An im-

pressive example is the catapult mechanism of distributing fern spore (Burgert and Fratzl, 

2009), which is achieved by the water cohesion force in a ring of small annular cells.  Dur-

ing this catapult process, there is an intricate balance between the cohesion force and the 

cell wall spring force in a tug-of-war style.  When this balance reaches a threshold level, 

the stored elastic deformation energy is released rapidly to catapult the spores over a large 

distance. 

In the previous artificial cellular structure research, most attention is focused on 

pressure related applications, and the cells are not fluidically connected to each other.  

Therefore, it is worthwhile to investigate the potential from connecting different cells to-

gether through fluidic network, so that other fluid properties such inertia and viscosity can 

be exploited for new types of structural functions.  

2.4 Problem statement 

Based on the critical issues raised in the F2MC based cellular structure development (sec-

tion 2.2) and the inspirations from plants (section 2.3), several technical problems are iden-

tified for this thesis work.  Addressing these problems successfully can significantly ad-

vance the state of art in this research field. 
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2.4.1 Insights on F2MC cellular interaction 

Understand cellular interaction through fluidics:  In the previously reviewed simple 

multi-cellular structures (Li and Wang 2012; Shan et al. 2008), the F2MC cells are simply 

molded into an elastomer matrix, so they interact with each other only through transferring 

mechanical stress.  However, F2MC cell operates based on both mechanical and hydraulic 

principles, so adding a fluidic link between cells could be beneficial.  If the F2MC cells are 

connected through fluid circuits, the fluid inertia, viscosity and bulk modulus could be 

exploited to develop new type of functions.  Moreover, fluid circuits can assist transporting 

chemicals for non-mechanical adaptive functions such as self-healing. 

Explore the advantages of varying cellular configuration:  Cell wall fiber orienta-

tion is one of the most important physical variables of F2MC because it determines the 

orientation of anisotropy. The previously reviewed F2MC cellular structure assume the 

same fiber orientation among all cells, however, the distribution of plant cell wall micro-

fibril orientation is much more complicated as discussed earlier.  This raises the topic of 

how the structural behavior would change if the F2MC cells have different fiber orienta-

tions.  It is particularly interesting when the cells are connected through a fluid circuit, 

because the difference between F2MC cells will generate a pressure gradient and induce 

internal pulsate fluid flows under dynamic loading.   

It is worth noting that other than the variation of fiber orientation, the variation of 

other cell wall properties between different cells, such as wall thickness, anisotropic elas-

ticity are also subjects of interests in this thesis work. 

Investigate dynamic characteristics:  Many cellular-based adaptive structure func-

tions require the understanding of the dynamic characteristics of the cellular elements.  
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Several studies reviewed earlier in this chapter have initiated the investigations on this 

topic, however most research to date are based on the principles and knowledge developed 

from static operations.  It is thus necessary to investigate the system dynamics in order to 

search for functions that would otherwise not be feasible in the static regime.   

2.4.2 Structural integration and synthesis 

Discover unique structural architecture:  Plant cells have unique ways to spatially 

distribute and connect themselves together, enabling a diverse structure performance to 

adapt to their changing environment.  When integrating multiple F2MC cells, it is also im-

portant to survey the unique architectures by which the cell can be kinematically and flu-

idically connected together to achieve various target performance. 

Derive robust synthesis procedure:  Synthesizing a cellular structure is very chal-

lenging because of the large number of design variables involved, especially when the cells 

can be different from each other.  Plant structure is efficient in this aspect because it can 

maximize the potential of each individual plant cells through selective growth, turgor pres-

sure distribution, and cell reconfiguration.  For the artificial cellular structure, synthesis 

procedures need to be developed in order to maximize the potential of individual F2MC 

cells as well.  Such procedures should incorporate the knowledge on individual cells and 

the insights on cellular interactions, so that it can assign appropriate values to the large 

number of design variables to achieve a set of performance targets. 
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2.5 Research objectives and approach 

To address the problem statements from the previous section, this thesis research proposes 

to investigate the dynamic characteristics and the application potentials of F2MC based 

multi-cellular structures.  It will rigorously analyze the fluidic interactions between cells 

with varying configurations; gain good insight on the system behavior; survey unique 

structural architectural designs, and then develop systematic methodologies to synthesize 

and optimize such advanced structural system.  The outcome of this research would be the 

building blocks towards synthesizing “hyper-cellular structures” with a large number of 

F2MC cells (figure 2.5), and such structure could be capable of performing different types 

of functions simultaneously by controlling different cells strategically. 

 

 

Figure 2.5 A conceptual illustration of a hyper-cellular structure.  It consists of 
a large number of F2MC cells of different configurations, so that multiple func-
tions can be achieved concurrently by activating and controlling different group 
of cells strategically. 
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In order to gain a basic understanding on the F2MC based cellular structural behav-

ior, the thesis research first investigates the dynamic characteristics and functions of a dual-

cellular “string” structure with two F2MC cells with different fiber orientations (chapter 3).  

An analytical model is developed, which incorporates the performance of the individual 

F2MC cell, as well as the dynamics of the end mass and flow port inertia.  Experimental 

efforts are carried out in parallel.  As a result of this preliminary investigation, two new 

dynamic functions are discussed; they are 1) vibration absorption and 2) dynamic actuation 

with an enhanced authority in a designated frequency band.  This significantly enriches the 

list of functions that the F2MC based cellular structure can offer.  The knowledge and ex-

periences from this preliminary investigation become the basis of the thesis research. 

Chapter 4 furthers the analysis on the dual-cellular “string” structures in order to 

obtain deeper physical insight, and to lay down the basics for structure synthesis.  A non-

dimensional dynamic model is developed based on the preliminary version discussed in 

chapter 3.  This model reveals the missing linkage between individual cell performance 

and structural dynamics as a whole.  It also defines a set of non-dimensional performance 

parameters that describes the performance of an individual F2MC cell; working with these 

parameters can significantly simplify the math derivation.  Experimental effort is carried 

out to test the derivation of these parameters.  A synthesis tool for the dual cell string is 

then derived based on the non-dimensional model, where the system poles and zeros posi-

tions are the performance target.  Synthesis case studies in this chapter demonstrate the 

strong design versatility of F2MC based cellular structure, which are exploited in more 
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sophisticated synthesis in the following chapters.  And the concept of performance param-

eters also becomes a useful tool to mathematically simplify the research work presented in 

the following chapters. 

In Chapter 5, the synthesis effort is attempted on a multi-cellular “string” structure 

with at least three F2MC cells connected by an internal fluid circuit.  The system poles and 

zeros positions are again the synthesis target, since they are closely related to the dynamic 

functions.  The mathematical problem behind multiple-cell synthesis is fundamentally dif-

ferent from the dual cell synthesis and more challenging, thus a brand new procedure is 

required.  This new procedure relies on the generalized dynamic model, which is applicable 

to a string structure with any number of cells; and it attempts to tackle the complexity of 

the problem by integrating two ingredients together: one is genetic algorithm with discrete 

variables, and the other is the Jacobi inverse eigenvalue problem solver (JIEP).  Such hy-

brid procedure should be computationally more efficient compared to brute force optimi-

zation iteration.  Case studies demonstrate that the proposed hybrid synthesis procedure is 

successful for a string structure with three different F2MC cells.  And the design versatility 

of the triple cellular structure is again illustrated by the large range of achievable spectral 

data targets.  On the other hand, the hybrid synthesis procedure fails to converge to feasible 

designs when the cell number exceeds three due to numerical complexities.  Nevertheless, 

such efforts and findings would pave the path for future research on multi-cell synthesis.   

Chapter 6 consolidates the experiences and lessons from the previous chapters and 

focuses on exploiting the full potential of an F2MC based dual cellular structure in order to 

fully address the thesis problem statements.  This chapter includes two sections: the first is 

on the architecture design of a dual-cell structural unit, and surveys the unique ways to 
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fluidically and kinematically connect the two cells together to achieve multiple functions.  

Four types of architectures are identified based on rigorous mathematical principles, and 

then their governing equations of motion are derived and experimentally tested.  The sec-

ond section of this chapter discusses the synthesis strategy with multiple function targets, 

where spectral data, variable stiffness, and actuation authorities are all considered concur-

rently.  Case studies are presented to compare the performance of different architectures 

based on the same target to offer design insights and guidelines. 

At the end of this chapter 6, a viable approach is proposed to reach our research 

vision: plant-inspired, large-scale adaptive structure concept capable of sophisticated, con-

current multiple functions.  Instead of connecting a large number of F2MC cells together 

through a single fluidic circuit, it is more efficient to first synthesize duals or triples of 

fluidically connected F2MC cells as a functional unit, and then assemble them mechanically 

into a large-scale structure.  The generic analysis tools and robust synthesis methodologies 

developed in this thesis can be utilized extensively to optimize the performance of each 

F2MC pair or triple, so that the overall structural performance can be tailored for various 

application requirements.  

The final chapter 7 proposes the possible future work on F2MC based cellular struc-

ture, and discusses the potential impact of this thesis work to the field of adaptive structure 

development in general.  
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Chapter 3                                                               

Preliminary Study on a Dual F2MC String Structure 

This chapter discusses the preliminary investigation on a F2MC based dual cell “string” 

structure in order to gain a basic understanding on the system behavior.  The first section 

of this chapter discusses the derivation and experimental testof an analytical model for the 

dual cell structure.  The second section is on the analysis process and results, where both 

active and passive operating conditions are considered to search for new types of dynamic 

functions.  Parametric analyses are conducted to identify some system parameters that sig-

nificantly influence the structure performance.  The knowledge and experiences gain from 

this preliminary work form the basis of the overall thesis research.  

3.1 Analytical model 

The concept of the F2MC based dual cellular structure is illustrated in figure 3.1.  The cells 

are connected through an internal flow port, which is, in essence, an inertance tube.  A fluid 

flow supply is connected to the grounded cell (cell # 1) and an end mass is attached to the 

other cell (cell # 2) with an external dynamic force applied on it.  

3.1.1 F2MC cellular analysis 

The free body diagram in figure 3.1b illustrates that each F2MC cell is subjected to 

two external loads: an axial force ( f ), and net fluid pumping ( netv ) both through the flow 
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port and from the external flow supply; these two loads will consequently change the two 

system states: the axial strain ( x ) and internal fluid pressure ( p ).  It is necessary to un-

derstand the correlation between these external loads and system states, because it de-

scribes the constitutive relations of the cell wall as well as the coupling between structural 

deformation and fluid flow.  The challenge here is the anisotropy of cell wall in terms of 

both elasticity and damping.  In this study, a hybrid method proposed by Shan (2006) is 

adopted because it is capable of analyzing the anisotropy by linking the mechanical prop-

erties of the cell wall at three different structural scale levels: ply, laminate, and cell level 

as shown in figure 2.1.  

 
 

Figure 3.1 Schematic diagram of the dual cellular “string” structure.  (a) The 
dual F2MC cellular structure, and (b) free body diagram of an individual cell.  
Positive f means tension force, and positive vnet follows the direction to increase 
the internal volume of F2MC cell, as shown by its arrow. 

 

Cell wall elasticity: In order to analyze the anisotropic elasticity of the cell wall, 

one can start from the ply level by measuring the storage modulus of the fiber ply in the 

principle orientations: parallel to fiber ( 1E ) as well as transverse to the fiber ( 2E  and 3E

).  Then apply Sun’s (1998) three-dimensional analysis of thick laminates to calculate the 

compliance matrix at the laminate level ( mna  in the following equations, where m, n = r, θ, 
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x as illustrated in figure 2.1a).  Finally, apply Lekhnitskii’s (1963) solution to calculate the 

normal stress field under the external loads at the cell level: 
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where 1( ),Q r  2 ( ),Q r  3 ( ),Q r  and 4 ( )Q r  are high order polynomial terms that describe the 

stress distribution in the radial direction.  Since the cell wall is physically axisymmetric, 

the stress and strain distribution is independent to the circumferential coordinate θ.  

Lekhnitskii gave us the closed form analytical descriptions of these term as follows, 
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where oa and ia are the outer and inner radius of F2MC cell wall and the constants h and κ 

are calculated as follows, 
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The normal strain in the fiber composite cell wall can be calculated using three 

dimensional Hooke’s law, 
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Note that in the F2MC cell wall constitutive relationship in equation (3.1-3), the 

fluid pressure inside each individual cell is assumed be uniform.  This is essentially a low 

frequency simplification because at higher frequencies, the fluid pressure wave propaga-

tion along the axis of the cylindrical cell might form higher order standing wave modes 

within.  Analytical estimation on the propagation wave length as well as some experiments 

suggest that the frequency of interest in this study should be below the first acoustic wave 

propagation natural frequency 0
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, where 1k  is related to the phase velocity of 

the wave propagation in F2MC and it can be calculated from dispersion equation, 0c  is the 

reference velocity, and l is the F2MC cell length.  The technical details leading up to crf

are discussed in appendix A.  Based on the available F2MC samples, it is recommended to 

maintain the frequency of interest below 100Hz in this thesis as a rule of thumb to guaran-

tee the accuracy of this uniform pressure distribution assumption. 
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Cell wall damping: The damping of the fiber composite material could come from 

different sources (Chandra et al. 1999).  In some related studies on the dynamic perfor-

mance of pneumatic artificial muscles, it is argued that the damping of the fiber composite 

layer comes from the contact friction between fiber strands, as well as the structure damp-

ing of rubber bladder (Tondu and Lopez 2000, Chou and Hannaford 1996, Davis et al. 

2003, Kang et al. 2009 and Reynolds et al. 2003).  In F2MC cell, however, the fibers are 

embedded into the resin so they do not contact with each other directly; therefore, the cel-

lular damping comes mostly from the structural damping of the soft matrix resin material.  

Two hysteric loss factors of the cell level ( p and  ) are proposed in corresponding to 

the two system states.  To calculate p , for example, one can prescribe an internal pressure 

to the cell without axial strain in equation (3.1) and (3.2).  Then calculate the principle 

stress and strain at the ply level to derive the total wall strain energy (Shan 2006),  

 

 11 11 22 22 33 33 12 12

1
( )  d

2 V
W p V           , (3.12)

 

where the sub-index 1 represents the orientation parallel to the fiber, 2 and 3 transverse to 

fiber (figure 2.1c), and V stands for the volume of the F2MC cell wall.  The total energy 

loss due to damping can then be calculated as, 

 

 11 11 11 22 22 22 33 33 33 12 12 12( )  d
V

W p V                 , (3.13)

 

where mn  (m, n = 1, 2, 3) are the principle material loss factors, which can be measured 

by dynamic modulus analysis test (DMA) on the fiber composite sample.  The loss factor 

at the cell level is the ratio of net strain energy loss over total strain energy: 
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( )

2 ( )
p W p

W p





 . (3.14)

 

The other cell loss factor  can be calculated in a similar fashion by prescribing 

an axial strain to the cell without internal pressure. 

Correlation between system states and external loads: With the anisotropic elastic-

ity and damping analyzed, one can calculate the internal cell volume change as follows, 

 

(2 )
i

cell cell
o x r a

V V  


   , (3.15)

 

where cell
oV  is the initial cell internal volume.  If the working fluid is incompressible, the 

change in cell volume ( cell
oV ) equals to the net volume of the fluid flow into the cell.  In 

reality, however, the fluid is compressible and its effective bulk modulus ( fB ) is influ-

enced by the entrapped air bubbles and other structural compliances such as fluid circuit 

dead volume and flow port wall elasticity.  Under such conditions, we can apply the ideal 

linear compressible fluid model to relate the net fluid flow ( netv ) to cell volume change as 

follows, 

 

  .fnet cell cell cell
o o

f

B
v V V V Ap B

B p
    


 (3.16)

 

For simplicity, we will denote x  as   from now on.  Note that the linearization in 

equation (3.16) uses Taylor expansion, assuming only small deformations considered in 

this study.  One can calculate the internal axial force on F2MC cell from its storage modulus 

as follows, 
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22 d .
o

i

a

x ia
f r r a p Cp D        (3.17)

 

If the cell is subject to dynamic loading, the loss factor needs to be considered, 

 

   1 1 ,pf C p D      i i  (3.18)

 

where i is the imaginary unit.  A sub-index k is introduced to distinguish the variables cor-

responding to different cells (in this chapter, k = 1 and 2), and the correlation between the 

system states of the F2MC cells ( kp  and k ) and the applied loads ( kf  and net
kv ) can be 

written based on equation (3.16) and (3.18) 

 

,net
k k k k kv A p B    (3.19)

 

   1 ,1p
k k k k k k k k k k kf CC p D p D        i i  (3.20)

 

where the detailed derivations of ,kA  ,kB  ,kC  and kD  are given in appendix B.   

3.1.2 Flow port dynamics 

Figure 3.2 is a detailed blow-up view of the flow port layout.  The flow port is 

essentially an inertance circular tube embedded through the plug with two ends intruding 

into the two adjacent F2MC cells.  The inertance tube has a cross-section area of S and 

length of pl , while the length of its intrusion into the two cell are 
1i

l  and 
2i

l , respectively.  

Denote 2S  as the annular area between the cell wall and inertance tube ( 2
2 iS a S  ), ρ 

as the fluid density, c is the wave propagation speed, and   as the angular frequency.  De-

note 1v  as the flow volume from cell #1 into the flow port, and 2v  as the flow volume from 

cell #2.  The pressure kp  and flow volume kv  (not to be confused by flow rate, which is 
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the time derivative of the flow volume) between the two ends of the inertance tube can be 

related by a transfer matrices, in Laplace domain, as follows: 

  

1 2

1 2

1 2

,i f i

p p

v v

   
      

T T T  (3.21)

 

where the minus sign before 1v  is added to be consistent with the definition in figure 3.1.   

 

 

 

Figure 3.2 Schematic layout of the interface between two adjacent F2MC cells.  A mass-
less plug block the fluid flow between two cylindrical shaped cells except though the 
flow port.  The dimension of the flow port, as well as length of its intrusion into the cell 
interior all affects the fluid dynamics. 

 

The transfer matrixes 
ki

T relates to the two intrusions, and fT relates to the in-

ertance of the flow port: 

  

2

1 0

,   1, 2,
tan( ) 1kk ii l kS

c c




 
   
  

T  (3.22)
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Since the frequency of interest in this thesis work is below 100Hz ( 1
l

c


 ), low 

frequency estimation can be applied to simplify the transfer matrixes as follows, 

 

2

2

1 0

,
1kk ii S l

c

 
   
  

T  (3.24)
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           
 

T  (3.25)

 

Note that the
2

fSl

c
  element in equation (3.25) is assumed to be zero since it’s in-

finitesimally small compared to other elements in fT ; this indicates that the flow volume 

into and out of the flow port are assumed to be the same ( 1 2v v  ).  Finally, if the intrusion 

is short enough so that 2

2
ki

S l

c
  in equation (3.24) becomes a magnitude smaller than kA  

from equation (3.19 and 20, k = 1 or 2), its effects onto the fluid dynamics become negligi-

ble (see appendix C).  As a result, the flow port dynamics equation (3.21) can be simplified 

into a classic flow port equation in time domain (Watton, 1989), 

 

 2 1 0,Iv Rv p p      (3.26)
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where v ( 2 1v v   ) is defined as the flow volume through the flow port.  I is the flow port 

inertance as defined in equation (3.25), and R is the port resistance.  To estimate the re-

sistance, a laminate flow port inertance model is employed (Merritt, 1991), 

 

4

128 2.28
1 ,

64
f f em

f f

l d RK
R

d l




 
   

 
 (3.27)

 

where   is the dynamic viscosity of the working fluid, mK  is the minor head loss in the 

flow circuit from the inlet and outlet of the flow port, eR  is the Reynolds number and fd  

is the flow port diameter.  It is hard to characterize the Reynolds number of the oscillating 

flow through the port, so the value of 2000 will be used as an estimation based on the 

laminate flow assumption. 

3.1.3 System governing equation 

Two compatibility conditions are derived based on physical principles.  The first 

compatibility condition states the conservation of fluid mass, 

 

1

2

net

net
ev v

v v

v  



 (3.28)

 

where ev  is the fluid volume displacement from external pumping.  Assuming the flow 

port massless, the second compatibility condition states the balance of internal force be-

tween the two F2MC cells (figure 3.3), 

 

21 .f f  (3.29)
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And, the end mass dynamics can be characterized as, 

 

2 ,emx f f   (3.30)

 

where the end displacement 1 1 2 2x l l   , and kl  are the length of the corresponding F2MC 

cells, and m is the end mass. 

 

 

 

Figure 3.3 Schematic illustration of the compatibility conditions between the two F2MC 
cell for equations (3.28, 29). 

 

Choosing the end mass displacement (x) and the flow port fluid flow volume (v) as 

the dependent variables, one can combine the compatibility conditions (3.28, 3.29), the 

dynamic equations (3.26, 3.30), and performance relationship (3.19, 3.20) to write the sys-

tem governing equations in the following form: 
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 (3.31)

 

where the complex value variables ij
K  and j

G are complicated expressions of the afore-

mentioned material and design parameters.  As can be seen, this F2MC dual cellular ele-

f2

F2MC cell #1 F2MC cell #2

Flow port flow vExternal flow ve Massless interface (plug)

f2f1f1
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ment is equivalent to a two-degree of freedom oscillator that consists of a structural gener-

alized coordinate (x) and a fluidic generalized coordinate (v).  These two generalized coor-

dinates are coupled through 12
K , which relates to the difference between anisotropic prop-

erties of the two F2MC cells.  From this observation, it is clear that the design of the two 

F2MC cells, especially the difference between them, plays an important role in the system 

dynamical response. 

 Overall, the dual-cell F2MC cellular structure model presented above provides us 

with an effective analytical tool for system functionality analysis, as discussed in the fol-

lowing section.   

3.2 System function analysis  

In this section, the dynamic characteristics of the cellular structure are analyzed based on 

the derived model, under both passive and active operation conditions.  In parallel, exper-

imental investigations are carried out on several specimens to test the analytical observa-

tions. 

3.2.1 Experimental set up 

Three F2MC cell samples are fabricated, with ±32º, ±42º, and ±70º fiber angles, by 

filament winding (AS4D carbon fiber and Reoflex20 urethane rubber resin at 57% fiber 

volume ratio).  The cell samples are assembled into a dual cell testing setup for passive 

type of functions, where the external force is provided by a shaker and the end mass motion 

measured by an accelerometer (figure 3.4).  The measurement data from the force trans-
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ducer and accelerometer are sent to a digital signal analyzer (HP 35670A) for signal anal-

ysis, and uniform windowing and simple moving average technique are used to reduce the 

instrument electronic noise.  Water is selected as the working fluid.  The flow port is made 

of PVC tubing with three different lengths.  Table 3.1 outlines the material properties and 

structural parameters, and table 3.2 outlines the key performance parameters of the sample 

F2MC cells.   

The principle loss factor ( p and  ) and ply stiffness transverse to the fiber ori-

entation ( 2E ) are estimated by the following procedure: 1) the empty ±70º cell sample is 

connected to the end mass, a sweeping frequency signal is applied by the shaker to identify 

the resonance peak in the frequency response.  2) The 2E  value is estimated by matching 

the position of the measured peak to the analysis prediction, and ,p  are estimated by 

matching the amplitude of the peaks.  To test the estimated 2,E  p  and   values, they 

are used to predict the frequency responses of the ±42º and ±32º cells and compared with 

the direct experimental results obtained via sweeping frequency tests on the corresponding 

cell samples.  The outcomes show that the measured resonance peaks match the predictions 

well, indicating that the 2,E  ,p  and   values are correctly estimated.  Figure 3.5 

demonstrates the variation of the cell wall damping coefficient with respect to the fiber 

angle.  The rest of the experimental results are also obtained by the same sweeping fre-

quency test set up.  These results are reported in the following section and they are com-

pared to the analysis predictions. 

 



39 
 

  

Figure 3.4 The dual cellular test setup under passive type of operation.  This set 
up follows closely to the schematic design shown in figure 3.1.   

 

 

Table 3.1 Material and design parameters of the dual cell structure test 

Properties Value Properties Value

E1 145 GPa E2 ,E3 50 MPa

G12 = 0.8 E2 40 MPa η11 0.011

η22, η33 0.4 η12 = η22 0.4

Cell outer radius (ao) 11.3 mm Flow port length (lf) 10.1, 15.2, 20.3 cm

Cell inner radius (ai) 10 mm Flow port diameter (df) 4.3 mm

Cell length (l1, l2) 20 cm Minor head loss (Km) 0.8

End mass (m) 0.9 kg Dynamic viscosity (μ) 0.798x10-3 N s/m2

F2MC cell mass (mcell) 0.03 kg  

 

 

Shaker:
Ling Dynamics
V408 Series

Accelerometer:
PCB 352C67

Force Transducer:
PCB 208A02

F2MC cell #2

F2MC cell #1

Flow port

End Mass
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Table 3.2 Parameters of the sample F2MC cells 
as in equation (3.19, 20), the estimated critical 
frequency uniform pressure distribution is calcu-
lated based on appendix A.  (fluid effective bulk 
modulus: 17 MPa) 

φ ±32º ±42º ±70º 

A (m3/Pa) 3.80×10-12  3.74×10-12 3.71×10-12 

B (m3) -2.88×10-4  -1.02×10-4 5.01×10-5 

C (N/Pa) 1.44×10-3  5.11×10-4 -2.51×10-4 

D (N) 6.51×104  2.33×104 8.98×103  

ηp 0.07 0.11 0.18 

ηε 0.30 0.31 0.31 

fcr (Hz) 76 91 158 

 

 

 

Figure 3.5 Variation of cell wall damping with respect to fiber angle (equation 
3.12-14).  The circles are the test results of ηε from the cell samples 

3.2.1 Passive type of operation 

In a passive operation, the working fluids are not being pumped into the cell and 

the dual cellular pair is subject to external load on the end mass.  As mentioned in the 
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review section of chapter 2, a single F2MC cell exhibits variable axial stiffness with on/off 

valve control at both ends of the cell.  It is then natural to investigate whether a dual F2MC 

cellular structure can exhibit similar variable stiffness. 

The analytical model derived in the previous section can answer this question by 

comparing the static displacement of the end mass when the two cells have different fiber 

angle combinations.  Figure 3.6 shows the close/open valve axial stiffness ratio of the dual 

cell structure, where the fiber angle of cell #1 is fixed, and the fiber angle of cell #2 span 

from 0º to 90º.  The close valve stiffness is calculated as the ratio of external force ef  over 

the end mass displacement, at static condition, 

 
2
12

11
22

e
close

f
K

x
  

K
K

K
, (3.32)

 

where ijK  is the real part of the stiffness matrix entries in governing equation (3.31).  Note 

that in the closed valve stage, the working fluid could not flow in and out of the cellular 

structure, but is still free to flow between the two cells through the flow port.  When the 

two cells have the same fiber angle, the dual cell structure is equivalent to a single cell 

structure in static condition.   

The dual cellular structure is considered in open valve stage when the working fluid 

is free to flow in and out of the whole system as well as in between the cells.  The open 

valve stiffness is of the whole structure is equivalent to the two individual cell wall axial 

stiffness connected in series: 
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As can been seen from the simulations, the dual cellular structure still exhibit vari-

able axial stiffness by opening and closing the valve, however the equivalent stiffness ratio 

is less than those of a single F2MC cell.  This is due to the fact that the axial stiffness 

increases in closed valve state because the high bulk modulus working fluid resists the 

volume change induced by the anisotropic cell wall.  When the two cells have different 

fiber angles, the working fluid is free to flow from one cell to another, so it cannot effec-

tively resist the volume change. 

 

 

Figure 3.6 The variable stiffness of a dual cellular string structure.  Bulk mod-
ulus is assumed 2GPa.  The peaks represent the stiffness ratio when the two 
cells have the same fiber angle. 

 

Although the going from single cell to dual cell does not directly benefit us regard-

ing to increasing the ratio of open/close valve static stiffness, it will offer us new type of 
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functionalities in the dynamic regime.  Compared to a single F2MC cell, the extra flow port 

inertance in the dual cellular structure resembles a sacrificial mass in a vibration absorber.  

Therefore, we could exploit the system dynamic characteristics for vibration management 

purposes.  Here the ratio of the end mass acceleration over the external force magnitude is 

used as the performance index. 

If the two F2MC cells are identical, the coupling stiffness *
12K  term in equation 

(3.31) becomes zero, which means the fluidic dynamics is decoupled from the structural 

dynamics, and it would not be excited by external force alone.  As a result, the structural 

system response resembles a typical single degree of freedom oscillator.  On the other hand, 

when the two cells have different fiber angles, *
12K  becomes finite and the system response 

will show a zero-poles response, where the lower frequency pole is dominated by the flow 

port dynamics (here referred as fluidic pole and fluidic mode), and the higher frequency 

pole is dominated by the cell wall structural dynamics (structural pole and structural 

mode).  The system zero can then be used as the vibration absorption frequency (figure 

3.7).   

The experiment results plotted in figure 3.7 match well with analytical predictions 

in terms of the pole and zero positions.  There are some discrepancies in terms of the mag-

nitude of the poles and zeros, indicating that overall damping from the tested prototype is 

higher than the analysis prediction.  Given the fact that the F2MC cell wall damping is 

predicted well by the analytical model, the extra damping is probably due to the turbulent 

nature of the pulsate flow in the flow port.  Luo et al. (2005) pointed out that the viscous 

component becomes predominant in the small diameter inertance tube from turbulent flow, 

especially at higher frequencies.  One can reduce this extra flow resistance by adjusting the 



44 
 

flow circuit design for a lower Reynolds number, such as using a larger flow port diameter, 

smoother port inlet and outlet, and other type of working fluid.  Overall, despite the dis-

crepancies, the proposed model can still be utilized for system analysis of the F2MC cellular 

structure, for it gives us clear physical insights on the characteristics of the integrated sys-

tem, as well as how its dynamics are influenced by the key parameters.  

The effective fluid bulk modulus plays an important role in the frequency response.  

If the effective fluid bulk modulus is reduced because of entrapped air bubble, the system 

zero and the structural modal frequency will shift to the lower frequency range (figure 3.8).  

By examining the mode shapes, one can find that the structural mode (the higher frequency 

pole) involves compressing the working fluid while the fluidic mode not as much, and thus 

the fluidic modal frequency is not much affected by the bulk modulus variations.  Since 

the bulk modulus serves as a potential energy storage element, a decrease in effective bulk 

modulus will reduce the system equivalent stiffness contributing to the structural mode, 

therefore lower its frequency.  In the experiment results, the effective bulk modulus is es-

timated to be 17MPa by fitting the poles and zero positions on the 32º-70º pair test with 

15.2cm port length.  This estimated value produces good matching between the analysis 

and experimental results for all the other tests. 

Different combinations of fiber angles will assign the system poles and zeros to 

different positions, which can be seen in results shown in figures 3.9 and 3.10.  The system 

zero varies in a wide range, especially when both cells are of contraction type (fiber angle 

smaller than 55°) and the fluid bulk modulus is high.  In each plot, there are two points 

where pole-zero cancellation occurs.  One with the same fiber angles between two cells, 

the other with one fiber angle close to ±55°.  This ±55° fiber angle is a critical value where 
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axial strain would not induce any noticeable internal cell volume change, and consequently 

no fluid flow.   

 

 

 

Figure 3.7 Vibration absorption performance of the F2MC cellular structure. (a) 
Response of a 32°-70° pair compared to a 32°-32° pair.  (b) Response of a 42°-
70° pair compared to a 42°-42° pair. The black solid lines are analysis predic-
tion, and the red solid lines are experiment results. The effective fluid bulk mod-
ulus is 17 MPa, and port length is 15.2 cm. 
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Figure 3.8 System response with different effective bulk modulus (Bf). 
32º-70º pair, port length 15.2cm. The dashed line is the experiment result. 

 

 

 

Figure 3.9 Poles and zeros position with different fiber angle combinations. Cell 
#1 fiber angle is fixed at 70º, port length at 15.2 cm.  The markers are corre-
sponding experiment results 
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Figure 3.10 Poles and zeros position with different fiber angle combinations, 
Cell #1 fiber angle is fixed at 30º, Bf = 200MPa. 

 
 

 

Figure 3.11 Poles and zeros position moves as the flow-port length changes. The 
markers are corresponding experiment results.  The solid lines and solid markers 
represent the test with port length of 10.1cm, dashed lines and hollow markers 
with 20.3cm port length. 
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The flow port length is another parameter for tuning the vibration absorber, which 

is tested by the experiments with 3 different flow port lengths (figures 3.9 and 3.11).  As 

shown, the test results agree with the analysis in terms of the pole and zero positions with 

error less than 5Hz.  Based on these plots, one can make the vibration absorber adaptable 

to system operating condition changes by adjusting the flow port inertance.  

3.2.3 Active function as an enhanced actuator 

With the analytical model, it is feasible to further explore the active function of the 

F2MC as an actuator.  In this case external flow is pumped into the cellular structure and 

no external force is applied to the end mass.  The actuation performance of a dual F2MC 

cellular structure is compared to that of a single cell device based on actuation free stroke 

and power density.  As the system would be excited by a harmonic external flow, the power 

density is defined as the end mass kinetic energy per time period, normalized by the total 

mass of fluid-filled F2MC cells ( cellm ): 

 
21

( )
2

mass

cell cell

KE m x
PD

T m m T
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
, (3.34)

 

where T is the period corresponding to exciting frequency.  Figure 3.12 shows the system 

performance of a single 30° F2MC cellular structure (dashed line), which resembles a typ-

ical single degree of freedom elastic actuator.  If half of the 30° cell at the flow supply end 

is replaced by an 80° cell, with an internal flow port connecting the two segments (figure 

3.12a), one can identify a frequency range where the dual cellular actuator has a higher 

actuation authority over the single cell device (the dot overlay on solid line).  This higher 
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authority frequency bandwidth is defined according to the industrial convention as the fre-

quency between the two peaks with 3 dB drop from the peak value.  This range spans from 

below 20 Hz to the 50 Hz level, which is practical for a hydraulic actuation system. 

With a quasi-static external fluid supply, the deformations of the 30º and 80º cell 

are out of phase, so they will cancel out each other at the free end and the frequency re-

sponse shows a system zero very close to 0 Hz.  However, once the driving frequency 

exceeds the system zero frequency, the resonance effect will increase the system response 

amplitude between the two system poles.  F2MC cell, by nature, is a heavily damped com-

posite so utilizing this resonance effect is safe in practical applications. 

Similar to the passive type of operation, the system response can be tailored by 

changing the fiber angle combination.  However, not all of the combination will provide 

the desired increase in actuation authority.  Generally speaking, starting from a contraction 

type of actuator with fiber angle smaller than  55o, actuation authority can be increased in 

the desired frequency range by replacing part of the cell with a fiber angle higher than  at 

the flow supply end.  

Figure 3.13 shows the effects of flow port length on actuator authority (for com-

parison sake, the increase of power density is plotted against their corresponding operation 

frequency).  It can be shown that, the longer the flow port length (i.e. higher flow port 

inertance), the wider the high authority frequency bandwidth.  However, the tradeoff is that 

the corresponding increase in authority would be reduced.  Effective working fluid bulk 

modulus, again, has impact on actuation performance similar to the passive case.  Figure 

3.14 shows that a decrease in the bulk modulus will reduce the available operation band-

width for higher authority. 
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Figure 3.12 Actuation performance of a single and dual cell structure.  (a) The 
laid out of the dual cellular structure for actation purposes, compared to a single 
cell. (b) Actuation performance in terms of free stroke. (c) Actuation perfor-
mance in terms of power density.  Dashed line: singe 30o cell, solid line: 30o-
80o pair, port length: 15.2cm, bulk modulus 17MPa 
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Figure 3.13 Effects of flow port length on the power density improvement (bulk 
modulus 17MPa) 

 
 

 

Figure 3.14 Effects of effective fluid bulk modulus.  
solid line: Bf =17MPa, dashed line: Bf =100MPa, port length 15.2cm 

 

 

15.2cm

20.3cm

25.4cm

10

15

20

25

30

35

40

In
cr

ea
se

 in
 p

ow
er

 d
en

si
ty

 (d
B

)

20 25 30 35 40 45 50

Driving frequency (Hz)

101 102

40

50

60

70

80

Driving frequency (Hz)

Fr
ee

 st
ok

e 
(d

B
)

Bf =100MPa

Bf =17MPa



52 
 

It is worth noting that in governing equation of motion (3.31), the activating input 

is external fluid volume input .ev   In practical engineering applications, external pressure 

supply is another common activating input.  Working with pressure pumping will result in 

a different dynamic system, and it will be discusses in chapter 6. 

3.3 Summary 

The dynamic characteristics of an F2MC based dual cellular structure are investi-

gated to gain new understanding and explore new types of functionalities.  An analytical 

model is developed and analyzed, and experimental investigations are performed.  This 

preliminary investigation is the first attempt in this research field to understand interaction 

between different F2MC cells through fluidics, therefore it brings a paradigm shift from a 

single cell focused study to multiple cell focused study.  The functionality study results in 

the development of two new types of dynamic functions.  In a passive operation, the dual 

cellular structure can be used as a vibration absorber.  On the other hand, in an active op-

eration, the dual cellular structure can be used as a resonance actuator with an enhanced 

authority in certain bandwidth as compared to the single cell actuator.  Combined with the 

previous work on actuation and variable stiffness discussed in chapter 2, these new dy-

namic functions makes the F2MC based cellular structure even more appealing for various 

engineering applications.   

The versatility of design of the proposed cellular structure is also explored in the 

preliminary parametric analysis.  The fiber angle combination of the F2MC cells and the 

flow port inertance are identified as two of the parameters that affect system performance 

significantly.  It is recognized that the system performance can be tailored in a large range 
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in terms of pole and zero positions.  It is also recognized that the variation of effective bulk 

modulus of the working fluid has significant effects on the system characteristics.  There-

fore the effective bulk modulus shall be closely monitored in the experiment efforts in the 

following research works. 

Despite of the development of new functionalities and the knowledge of the system 

dynamic behavior, the research work in this chapter focuses on performance modeling and 

case studies.  Deeper physical insights and robust design methodologies are necessary, and 

they are discussed in the next chapter. 
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Chapter 4                                                               

Dual Cellular String Structure: Physical Insight and Synthesis 

The preliminary development of the dual F2MC cellular string structure discussed in chap-

ter 3 has demonstrated promising potential.  However, these investigations have focused 

on performance modeling and case studies.  It is clear that to advance the state of the art, 

the next steps are to develop rigorous and systematic methodologies so one can gain better 

insights and synthesize dual-cell F2MC structural systems to achieve desired performance. 

First, the complexity of a multiple cellular structure requires us to understand how 

a change in individual cell influences the overall structural dynamics.  This requires a 

model that one can efficiently perform large-scale parametric analysis, which is beyond the 

capability of the model in chapter 3.  The challenge comes from the large number of system 

parameters: the F2MC cellular structural dynamics is determined by different types of phys-

ical variables, such as the cell wall material properties, fiber layout, and fluid circuit design.  

The complicated mathematics employed in the previous model makes it challenging to 

systematically analyze and understand the correlation between all of these individual pa-

rameters to the system dynamics as a whole.  That is, the previous model could neither 

provide much physical insight nor be used to perform parametric analysis effectively and 

efficiently. 
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Secondly, in order to investigate the potential of the multiple F2MC cellular struc-

tures in any real-world applications, a viable synthesis tool is a necessity.  Such tool needs 

to be able to search for feasible cellular structural designs for a given target performance 

(e.g., poles and zero positions, or spectral data).  However, with the previous model one 

could only rely on an optimization iteration procedure to perform such synthesis, which 

might be computational expensive yet non-comprehensive. 

In this chapter, we propose to address the aforementioned issues and advance the 

state of the art through a three-step effort.  The first step is to develop a non-dimensional 

dynamic model of the F2MC based dual-cellular “string” structure.  Through this process, 

the number of analysis and design parameters can be reduced.  The second step is to analyze 

and gain physical insight of the equivalent “stiffness matrix” in the governing equation of 

motion in the non-dimensional model.  This helps us uncover the missing link between the 

overall structural dynamics and the individual cell performance.  The third step is to de-

velop a synthesis tool for the dual cellular structure based on the performance parameters 

of each individual cell.  Working with these parameters, rather than the physical variables, 

can greatly simplify the synthesis procedure and makes it realistic to handle. The following 

sections of this chapter are organized according to the aforementioned three steps.    

4.1 Non-dimensional model development 

The dual cellular structure studied in this chapter is the same as the one in chapter 3 (figure 

3.1), however, to illustrate the physical principles without unnecessary complexity, only 

the passive cases are studied; that is, there would be no external pumping of fluids into the 

dual cellular system.  Therefore, the total amount of working fluid contained in the two 
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F2MC cells is a constant, even though the fluid can flow from one cell to another through 

the flow port.  The structural damping of the F2MC cell is neglected as well but this will 

not compromise the purpose of the study in this chapter. 

To non-dimensionalize the analytical model, the following characteristic units are 

employed: inner radius of the F2MC cell ( ia  [m]), the elastic modulus of the cell wall fiber 

ply transverse to the fiber direction ( 2E  [m sec-2 kg-1], figure 2.1c), and the working fluid 

density (  [kg m-3]).   These three units are intrinsic to the cellular structure and they form 

an equivalent basis as the three fundamental dimensions in mechanical system: mass, 

length, and time (Palacios, 1964). 

4.1.1 Non-dimensional F2MC cellular model 

One can use these characteristic units to non-dimensionalize the internal pressure 

in F2MC cell #k ( kp ), axial strain ( k ), internal force ( kf ), and the flow volume through 

flow port (v) (figure 3.1b), note that from equation (4.1) to (4.13), the sub index k are omit-

ted for clarity, and these equations are intended for an individual cell. 
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Here the parameters with an over-hat are in their dimensionless form.  g is the as-

pect ratio relating to the shape of the cell ( ig l a ).  Equation (3.19) and (3.20) can be 

normalized as, 

 

ˆˆ ˆˆ ˆk k k k kv g p     , (4.5)

 
ˆ ˆˆ ˆˆk k k k kf p g    , (4.6)

 

where the constant k  equals to -1 when k = 1; or equals to 1 when k = 2.  The dimensionless 

parameters ˆ
k , ˆ

k , ˆ
k , and ˆ

k  can be called performance parameters, and they are cal-

culated in detail as follows, 
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(4.10)

 

In equation (4.7) to (4.10), mna  ( , , ,m n r x ) are the elements of the compliance 

matrix of F2MC cell wall at the laminate level (figure 2.1b, and Sun 1998).  fB  is the 

effective bulk modulus of the working fluid, and c is the ratio of the inner cell radius to 
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outer cell radius: i oc a a .  The constants h and κ can be calculated based on equations 

(3.8 to 3.10). 

It is worth noting that the parameter ̂  and ̂  are identical in value but opposite in 

sign.  Later this relation will be used to explain the symmetry of the equivalent stiffness 

matrix. 

 

 

 

Figure 4.1 A schematic diagram of the construction of F2MC cells with three 
important design variable groups: (a) fiber orientation φ; (b) cell wall thickness 
ai/ao, and (c) the ratio of elastic anisotropy E1/E2. 

 

While the performance parameter formulations look complicated, they are essen-

tially functions of three physical variables: the fiber angle  , the cell wall thickness ratio 

i oa a , and the level of elastic anisotropy 1 2E E  (figure 2.1c), these three physical varia-

ble are illustrated in figure 4.1.  The only exception is ̂  since it also depends on the in-
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verse of normalized fluid bulk modulus 2 fE B .  If our focus is on the F2MC cellular struc-

tural design, we can assume the normalized bulk modulus a constant.  The performance 

parameters cannot take any arbitrary values because they are determined by the physical 

variables, so it is necessary to calculate their range.  Through numerical analysis, one can 

construct a three-dimensional mesh grid corresponding to the combinations of the three 

physical variables within their feasible range, and then calculate the performance parame-

ters at each grid point to form a parametric space.  Figure 4.2 illustrates the parametric 

space spanned by the performance parameters mapped from a physical variable mesh grid 

defined by 1 89   , 0.6 0.95i oa a  , and 1 250 3000E E   ( 2 0.4fB E  ).  This 

performance parametric space will be called   for simplicity.  

Since the F2MC cell is fabricated through a filament winding process, the fiber an-

gle and cell wall thickness ratio can be tailored by programming the winding machine.  The 

elastic anisotropy ratio can be tailored by selecting the fiber and resin materials with ap-

propriate elastic stiffness, as well as by adjusting the fiber volume fraction. 

The mapping from physical variables to   is non-linear, however it is a one-to-

one, smooth mapping, so that each point within   corresponds to only one unique F2MC 

physical design.  This uniqueness can be verified by the non-zero Jacobian of the mapping, 

which can be calculated by a numerical difference scheme (Hubbard, 2006). 
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Figure 4.2 Performance parametric space Ω. (a, b): two equivalent plots but 
from different views. The surface grid reflects the discrete three-dimensional 
grid, which will be used in synthesis procedure.  Part of Ω is blown up for a 
clearer view, and the complex geometry poses a challenge for developing the 
synthesis procedure. (The normalized fluid bulk modulus Bf/E2 is assumed at 
0.4) 

4.1.2 Non-dimensional system governing equation 

With the three characteristic units, one can derive the time unit as,  
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One can substitute the characteristic units into the end mass dynamic equation:  
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which can be simplified to, 
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where m̂  is the normalized end mass ( 3ˆ im m a ), and x̂  is the normalized displacement 

( 1 2
ˆ ˆx̂    ). 

Similarly, one can substitute the characteristic units into the flow port dynamic 

equation,  
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which can be simplified into,  
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where the non-dimensional flow port inertance and resistance can be calculated as,  
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where fa  and fl  are the radius and length of the flow port inertance tube, respectively. 

Finally, one can combine the non-dimensional F2MC cellular model, compatibility 

conditions as well as the two dynamic equations to derive the dimensionless system gov-

erning equation: 
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where the detailed calculation of ˆ
ijK  will be discussed later.  In the following, we will 

neglect the fluid viscous damping for simplicity; and this will not compromise the purpose 

of this chapter. 

One can already see the benefits of dimensional analysis. The normalized stiffness 

matrix is now only a function of performance parameters of individual F2MC cells, reduc-

ing the number of parameters involved.  Furthermore, the definitions of the normalized 

mass and flow port inertance are combinations of the physical end mass, flow port dimen-

sion, and size of the F2MC cells, so they can provide us with a principle of scaling should 

the F2MC cellular structure need to be scaled for practical applications. 

4.1.3 Experimental test 

The experiment has two purposes.  The first is to test the correlation between the 

cellular performance parameters and physical design variables as in equations (4.7 to 4.10); 

the second purpose is to test the derivation of the equivalent stiffness matrix in equation 
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(4.18).  Two new F2MC cell samples, with thicker cell wall than those in chapter 3, are 

fabricated by filament winding processes (AS4D carbon fiber and Reoflex 20 urethane 

rubber resin at 57% fiber volume ratio).  The two samples have fiber angels of ±40° and 

±70° respectively; a wall thickness ratio ( /i oa a ) of 0.78 and elastic anisotropic ratio (

1 2/E E ) of 2300. 

To achieve the first purpose of the experiment, the performance parameters are di-

rectly measured from each individual F2MC sample according to their physical meanings.  

For example, ̂  is related to the internal volume change when the cell is subject to an axial 

strain, so the F2MC sample, filled with working fluid, is loaded onto a tensile test machine 

(INSTRON® Model 1331).  A graduated tube is attached to the upper end of the cell, and a 

camera monitors the position of the fluid meniscus inside of the graduated tube while the 

tensile test machine applies different strain levels (figure 4.3).  Another performance pa-

rameter ̂  is related to the longitudinal cell stiffness, so an F2MC sample is attached to the 

shaker as shown in figure 4.4 (note that the F2MC is kept empty to measure ̂ ).  A sweep-

ing frequency input is applied to the end mass, and ̂  can be calculated from the measured 

natural frequency n  as follows (figure 4.4a),  
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 . (4.19)

 

The third performance parameter ̂  is measure by the same set up in figure 4.4 but 

with F2MC and end inertance tube filled with fluid.  The system zero obtained from the 

sweeping frequency test is directly related to ̂  as follows (figure 4.4b),  
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Figure 4.3 Experiment set up to measure the performance parameter β. The 
F2MC is filled with working fluid, and the camera monitories the change of the 
meniscus position inside of the graduated tube while Instron machine applies 
axial strain to the F2MC tube.  

 

The values of the variables on the right hand side of equation (4.19) and (4.20) can 

be found in table 4.1, interested readers can refer to appendix D for the detailed derivation 

of these two equations.  Table 4.2 summarizes the measured performance parameters and 

their corresponding theoretical prediction based on physical design variables; the predic-
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tion is based on the Lekhnitskii’s solution in equations (4.7 to 4.10).  The prediction cor-

relates well with the experiment data, so it is viable to utilize performance parameters in 

the system analysis and synthesis to simplify the mathematics derivation. 

 
 

 

Figure 4.4 Experiment set up to measure δ and α.  (a) The end mass dynamic 
response while the F2MC is empty. The natural frequency ωn is used to calculate 
δ.  (b) The dynamic response of the same system except for a fluid filled F2MC 
and external flow port. The zero ωz is used to calculate α.  The frequency re-
sponse results are from the ±70ocell.  Shaker: Ling Dynamics V408 series; ac-
celerometer: PCB 532C04; force transducer: PCB 208C02. 
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Table 4.1 Some F2MC sample design parameters 
and experiment setup to measure the individual cel-
lular performance parameters. 

End mass (m) 0.89kg

Ply modulus (E2) 50MPa

F2MC inner radius (ai) 0.01m

Aspect ratio (g) 20

End port Inertance (Ie)
(in kg/m4)

2.28×106 (±40° tube) 
4.57×106 (±70° tube)  

 

Table 4.2 The measured performance parameters 
and their corresponding prediction. 

 ±40° tube ±70° tube

 Measured Predicted Measured Predicted 

â  1.75 1.47 1.43 1.45

̂   -1.98 -2.20 0.84 0.83

̂   6.06 5.96 1.74 1.78

 

To test the derivation of the system governing equation, the two F2MC samples are 

connected through an internal flow port to form a simple dual cellular structure (as shown 

in figure 3.1).   Sweeping frequency test is conducted on this structure, and the measured 

system poles and zero matches well with the prediction based on the measured performance 

parameters from individual cells (figure 4.5).  It is worth noting that the value of ̂ , ̂  is 

closely related to the elastic modulus of the F2MC cell wall soft matrix material, which is 

frequency dependent.  Therefore, frequency sweeping is used in ̂ , ̂  measurements and 

the dual cell test, so that the ̂ , ̂  values are consistent throughout the experiment results.  

Overall, the experiment result agree with the analytical modeling in terms of system poles 

and zero positions so it can be utilized in the synthesis procedure in the following sections. 
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Figure 4.5 Measured dual cellular structure system poles and zero positions 
matches well with prediction. The inertance of the internal flow port is 3.1×106 
kg/m4.  The modeling of cell wall damping and flow port resistance is adopted 
from chapter 3, and the value of the flow port resistance is back calculated from 
the experiment result. 

4.2 Physical insights 

In this section, the physical meaning of the elements of the normalized equivalent stiffness 

matrix ˆ
ij

  K  is discussed in detail. 

4.2.1 Physical meaning of the equivalent stiffness matrix 

The elements of the stiffness matrix ˆ
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  K  can be calculated based on the normal-

ized F2MC cellular parameters: ˆ ,k  ˆ ,k  ˆ ,k  ˆ
k  and g, which are complicated expressions 

of the physical variables.  A close investigation on the physical meanings of the stiffness 

matrix element will reveal the principle of how the overall structural dynamics is related 

to the performance of each individual F2MC cell, as well as the difference between the 

cellular performances. 
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The first element of the equivalent stiffness matrix, 11K̂ , can be calculated as fol-

lows, 

 
1 1

1 2
11

1 1 1 1 2 2 2 2 1 2

ˆ ˆ 1 1 ˆˆ
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   

              
K 

 
, (4.21)

 

where ˆ
k  is simply the normalized closed valve stiffness of the kth F2MC cell.  The closed 

valve stiffness is defined as the individual F2MC cell axial stiffness when the cell is filled 

with working fluid and the valves at both ends of the cell are closed (figure 2.2c).  One can 

calculate the closed valve stiffness by setting v̂  to zero in performance equations (4.5) and 

(4.6) and ˆ
k  is the ratio of ˆ

kf  over k̂ .  Therefore, 11K̂  is the equivalent stiffness of the 

two F2MC cells connected in series when both are in closed valve state.   

This claim of the physical meaning of 11K̂  can be validated by the normalized sys-

tem governing equation as well, if one only considers the static response, the first row of 

governing equation (4.18) can be simplified to: 

 

11 12
ˆ ˆ ˆˆˆ ex fv K K , (4.22)

 

21 22
ˆ ˆˆ ˆ 0vx  K K . (4.23)

 

In these two equations, setting both F2MC cells to the closed valve state is equiva-

lent to setting the flow port flow v̂  to zero as if the port is blocked, then the mechanical 

force balance in (4.22) is reduced to 11
ˆˆ ˆ ex fK , which gives 11K̂  the same physical meaning 

as mentioned above. 

The element 21K̂  in the normalized stiffness matrix can be calculated as, 
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 2 1
21 11 11 2 1 11

2 2 2 2 1 1 1 1

ˆ ˆ
ˆ ˆ ˆˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ

 
       

 
        

K K K K   , (4.24)

 

where ˆ
k  is the correlation between the axial load and internal pressure rise for an indi-

vidual F2MC cell in the closed valve state, one can calculate ˆ
k  by setting v̂  to zero in 

performance equations (4.5) and (4.6), and /ˆ ˆˆk ekp f .  Substituting in the previous defi-

nition of 11K̂ , 21K̂  can be defined as, 

 

2 1
21

ˆ ˆˆ ,
ˆ

p p

x


K  ˆ( 0).v   (4.25)

 

Therefore, the element 21K̂  describes the difference of pressure rise between the 

two closed valve F2MC cells when they are connected in series and subjected to the same 

axial load.   

The 12K̂  element in the normalized stiffness matrix can be calculate as, 

 

1 2
12 11

1 1 1 1 2 2 2 2

ˆ ˆ
ˆ ˆ ˆ ˆˆ ˆ ˆ

ˆ
ˆ

ˆ  
       

 
     

K K . (4.26)

 

Given the fact that ̂  and ̂  are same in amplitude but opposite in sign, 12K̂ is iden-

tical to 21K̂ , making the stiffness matrix symmetric. 

With these physical meanings of 12K̂  and 21K̂ , some previous observations by the 

authors become clear to explain.  In chapter 3 the two F2MC cells had the same wall thick-

ness ( /i oa a ) and anisotropic ratio ( 1 2/E E ).  It was shown that when the two cells have 

the same fiber angle, 12K̂ and 21K̂  becomes zero so that the system dynamics is reduced to 

a single degree of freedom mass spring oscillator.  Now it becomes clear that, when the 
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two cells have the same fiber angle, their internal pressure rise is the same, so no flow can 

be generated through the flow port.  As a result, the fluidic dynamics will not show up in 

the system response.  

The 22K̂  element in the normalized stiffness matrix can be calculated as, 

 

1 2 1 2 1 2 1 2
22 21 21

1 2 2 2 2 2 1 1 1 1

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ( )( ) ( )( ) ˆ
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ( ) (

ˆ ˆ ˆ
)

       
         
    

  
  

K K K  . (4.27)

 

One can substitute the derivation of 22K̂  into (4.23) to show that ˆ ˆ ˆx v�.  There-

fore 22K̂  describes the amount of static fluid flow displacement through the flow port be-

tween the two F2MC cells when the cell string is subject to axial strain. 

4.2.2 Correlating physical parameters to structural dynamics 

With the physical insights on the F2MC cellular structure, one can update the gov-

erning equation of motion (4.18) to quantitatively correlate the cellular performance to the 

system poles and zero position: 

 
2

2

ˆ ˆˆˆ 0 1d ˆ ˆ
ˆ ˆ ˆ ˆd0 0

e
m f

I 

    
     

     

X
X


 

, (4.28)

 

The system poles are the roots of the corresponding characteristic equation: 

 
4 2 2ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆˆ ˆˆ ˆ( ) ( ) 0mI m I           , (4.29)

 

And the zero is square of the natural frequency of the system when the end mass is 

fixed to the ground: 
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2 ˆ ˆ ˆ ˆˆ
z I   , (4.30)

4.3 Synthesize the cellular structure 

Structural system synthesis is, in essence, the inverse problem to analysis.  That is, to find 

the appropriate cellular structure designs based on given poles and zero positions (spectral 

data).  Synthesis is a valuable tool not only because it helps us find appropriate cellular 

structure design for target performance, but also because it provides us with the limit of 

achievable spectral data and thus quantitatively demonstrates the potential of the cellular 

structure.  For example, if the cellular structure is used as a vibration absorber, one can use 

the synthesis tool to find out the achievable range of absorption frequency (zero), and come 

up with a structure design that precisely place the absorption frequency at the desired lo-

cation. 

In this section, the synthesis tool and process is presented in detail, and several 

sample results are discussed. 

4.3.1 Definition of the synthesis problem 

Since dynamic response of a dual cellular F2MC structure features two system poles 

(
1p and

2p ,
1 2p p  ) and one system zero ( z ), one can utilize the physical insights 

revealed in the previous section to calculate the correlation between the performance pa-

rameters for each F2MC cell based on given target, 

 
2

1 1 1 1 1 1
2

ˆ ˆˆ ˆ[ ( ) ]
ˆ

S g S     



, (4.31)

 
2

1 1 1 1 1 2
2

ˆ ˆ ˆˆ[ ( ) ]ˆ gS S     
 


, (4.32)
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2

2 1 1 1 2 3 1 1
2

ˆ ˆ ˆˆ[ ( )( ) ]ˆ g gS S S S      



. (4.33)

 
2 2 2

1 1 1 2 2 3 1 1 2 2 3 1 1 1
ˆ ˆ ˆ ˆˆ ˆ( ) [2 ( ) 1]S g S S S gS S S S             , (4.34)

 

where parameter kS  are:  
1 2

1
2 2 2

1 p p zS M   


     , 
2 1

2 2 2 2
2 1

ˆ ˆ ( )( )p z z pS S IM       , 

and 2
3 1 2

ˆ
zS IS S .  Equation (4.31) to (4.33) illustrate the benefit of working with the 

performance parameters rather than physical variables, because now the relation between 

the two cells is of much simpler algebraic form.  Furthermore, they show that for a given 

F2MC cell #1 design, there exits only one unique cell #2 design corresponding to the target 

poles and zero.  With these relations, the synthesis problem can be defined as follows:   

Given a target system poles and zero position  
1 2

,p z p     find 

any pairs of performance parameter triples for the two F2MC cells: 1 

1 1 1  ˆ ˆ̂   
   and 2 2 2 2 ˆ ˆ̂        respectively, such that both 1 2,    

as in figure 4.2 (so that they are physically feasible), and equations (4.31) 

to (4.34) hold valid (so that they can provide the target performance).   

4.3.2 Synthesis procedure 

The synthesis process can be illustrated by a flow chart in figure 4.6.  It can be 

described as a numerical survey.  First, a three-dimensional grid mesh of 1 1 1 1 ˆ ˆ̂        

is constructed to span the parametric space  .  Secondly, the iteration loop (steps 3-4-5) 

is executed onto each point in the 1  mesh, so that for each cell #1 design, the correspond-

ing cell #2 design candidate is calculated based on the target poles and zero position (step 

4), and then this cell #2 design candidate is checked for physical feasibility (step 5). 
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Figure 4.6 Flow chart for the synthesis procedure. 

 

To determine whether the candidate 2  lies within   is not trivial because of its 

complicated geometry.  One can compare the position of candidate Ψ2 relative to the six 

boundary surfaces of   in the ̂ - ̂ - ̂ parametric space.  Since each boundary surface 

separates the space into two sides: one side contains   and the other side does not.  The 

candidate 2  can be determined to lie inside of   if it locates on the side containing   

for all 6 boundary-surfaces.  To do this in the numerical script, one can first extract the 

mesh point coordinates of these boundary surfaces (noted as ,i  i = 1...6, see figure 4.7).  

Then the surface normal vector of i at each mesh point can be calculated numerically 

(such as using the “surfnorm” command in MATLAB®), where the norm vectors are 

directed into  .  For a candidate 2
 
triple, one can find the mesh point on i with the 

closest distance to 1  (point O in figure 4.7), and then calculate the scalar product of the 

norm vector at point O and the position vector 2O


.  2  is considered to be locate on 

the side containing   if the scalar produce is greater than zero. 

 
 

2. Calclulate Sk
1. Select the target
poles and zero

3. Select Ψ1 = [α1 β1 δ1] 
from the 3D grid in Ω

4. Calculate Ψ2 = [α2 β2

δ2] based on Sk and Ψ1 

5.  Is Ψ2  in Ω? 6. Store Ψ1  and Ψ2 as
feasible designs

Repeat for all Ψ1 points in Ω

Yes



74 
 

 

Figure 4.7 Illustration of step 5 in the synthesis flow chart.  The boundary sur-
face ∂Ωi here is determined by 16 mesh points, and point O is the closest to 
candidate Ψ2.

 
n is the surface norm pointing into Ω.  In this case, Ψ2 locates on 

the side containing Ω. 

 

4.3.3 A synthesis case study 

This section presents a synthesis example result for the target poles at 60 and 90Hz, 

and zero at 70Hz.  Figure 4.8 demonstrates the feasible cell #1 design in the performance 

parametric space, and figure 4.9 demonstrates the corresponding cell #2 designs (several 

other parameters are listed in table 4.3).  The analysis is based on a 50×50×50 mesh grid 

in   for cell #1.  Due to the nature of numerical simulation, the feasible designs appear to 

be groups of discrete points, however, these points reflect the position and boundary of a 

continuous feasible design sub-space in   since equations (4.31-4.34) is continuous and 

invertible.  One can translate the feasible designs back into the physical variables by an 

inverse mapping of equations (4.7) - (4.10).   
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β

Ψ2
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^

^

n
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Table 4.3 Several parameters in the synthesis case study. 

Mass (M) 200 F2MC inner radius (ai) 0.01m

Port Inertance (I) 251.3 Aspect ratio (g) 20

Ply modulus (E2) 50MPa Time unit (τ) 2.52×10-5s

 

 

Table 4.4 Two sample synthesis results. 

Cell # 1 Design Cell # 2 Design 

Fiber 
Angle 

E1/E2 
Ratio 

Thickness
Ratio

Fiber 
Angle

E1/E2  
Ratio 

Thickness 
Ratio

46.2° 1976 0.93 45.2° 64 0.67

28.6° 857 0.68 62.5° 103 0.84

 

 

 

Figure 4.8 Synthesis results for cell #1.  The target poles and zero position is at 
60Hz, 90Hz, and 70Hz.  Each red point represents a feasible design.  And the 
outlining parametric space is the close up view of figure 4.2b. 
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Figure 4.9 Synthesis results for cell #2.  The target poles and zero position are 
60Hz, 90Hz, and 70Hz. The outlining parametric space is from figure 4.2a. 

 

Figure 4.10 illustrates the design space in figure 4.8 translated into the physical 

variable domain.  In this particular case, there are two separate design spaces: one repre-

sented by the red points with cell #1 fiber angle less than 50°, the other represented by the 

green points with angle larger than 50°.  The three dimensional shape of these design spaces 

provide practical guidelines for mechanical designers.  For example, the second design 

space ( 50   ) is relatively insensitive to variations in fiber angle, because the shape of 

this space is almost parallel to the fiber angle axis.  Therefore, engineers can choose designs 

in this space if the fiber angle of the F2MC cell might be not accurately controlled. 

Table 4.4 outlines two sample cellular physical designs from figure 4.8 and 4.9.  

One point worth noting is that for the first design, the fiber angles of the two F2MC cells 

are very close.  In chapter 3, the wall thickness and anisotropic ratio is assumed the same 

between the two F2MC cells, so the two cells need to have different fiber angles in order 
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to actuate the internal fluid dynamics to exhibit the two-degrees-of-freedom oscillation re-

sponse.  However, the new synthesis tool shows that the difference of cell wall thickness 

and anisotropic ratio could also induce a pressure differential effect even with similar fiber 

orientations. 

 

 

Figure 4.10 Synthesis results for cell #1 in terms of physical design variables.  
(a to d) The same plot viewing from four different perspectives with 90º incre-
ment. The target poles and zero position are at 60, 90 and 70Hz, respectively.  
One can see two separate design spaces, one with fiber angle smaller than 50o 

(red), and one with fiber angle bigger than 50o (green). 

 

Figure 4.11a is a heat map demonstrating the achievable pole positions when the 

system zero is fixed at 70 Hz. The heat map color represents the number of feasible designs 

a i/
a o

 ra
tio

a i/
a o

 ra
tio

E
1 /E

2  ratio

E
1 /E

2  ratio

E1/E2 ratio

E1/E2 ratioFiber angle (o)

Fiber angle (o)

Fiber angle ( o)

Fiber angle ( o)

0.6

0.7

0.8

0.9

1.0

0.6

0.7

0.8

0.9

1.0

0.6

0.7

0.8

0.9

1.0

0.6

0.7

0.8

0.9

1.0

500

1500

2500

2500

1500

500

500
1500

2500

500
1500

2500

20
40

60
80

80
60

40
20

20
40

60
80

80
60

40
20

(a) (b)

(c) (d)



78 
 

based on the same 50×50×50 mesh grid in Ω as in the previous case study.  In figure 4.11a, 

there is a ‘hot ridge’ corresponding to the target poles with a relatively large design space.  

A similar ‘hot spot’ can be seen in the heat map corresponding to the system zero fixed at 

70 Hz (figure 4.11b).  And the transparent region in the heat map corresponds to un-achiev-

able target pole positions. 

 

 

Figure 4.11 The achievable pole positions with different zero target: (a) 50Hz 
and (b) 70Hz.  The heat map represents the number of feasible designs out of 
the 50×50×50 mesh grid in Ω. 
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4.4 Summary 

In this chapter, a non-dimensional dynamic model is derived for a dual F2MC cellular 

structure.  Based on this model, the physical meaning of the equivalent stiffness matrix is 

investigated to reveal the missing linkage between individual cell performances to the over-

all structure dynamics.  It is concluded that the dynamics of the cellular structure is directly 

correlated to three factors: the closed valve stiffness of the individual F2MC cell, the dif-

ference of internal pressure rise between the cell, as well as the volume of static fluid dis-

placement through the flow port.  Such observations offer the physical insight that are 

lacking in the preliminary study of chapter 3, they are also valuable to understand more 

complicated system with larger number of cells and sophisticated architecture layout.   

Furthermore, based on the non-dimensional model, three performance parameters 

are identified for each individual cell.  Working with these parameters, rather than a large 

number of physical variables, can significantly simplify the mathematical derivation.  They 

are investigated and experimentally tested for their physical meanings, value ranges, as 

well as their correlation to the system spectral data.  These non-dimensional performance 

parameters can be a rigorous analytical tool not only for this thesis research, but also for 

other F2MC related engineering development as well. 

A synthesis procedure is then developed based on these parameters and the non-

dimensional model.  Synthesis results revealed that the F2MC based dual string cellular 

structure can achieve a wide range of spectral data targets.  It is also revealed that for each 

set of achievable spectral data, there exist multiple F2MC designs, forming a design space.  

Such design versatility offers great freedom for the engineers to incorporate other consid-
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erations into the structure synthesis, so that the F2MC based cellular structure can be tai-

lored for a variety of applications.  This advantage will be exploited in the more sophisti-

cated synthesis procedure in the following chapters. 

While the studies presented in this chapter focus only on a dual F2MC-cell string 

structure, the principles and results will become the building blocks for future multiple 

cellular structure investigations in the following chapter. 
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Chapter 5                                                               

Multi-Cellular String Structure Synthesis 

In this chapter, the synthesis effort is extended on a multi-cellular “string” structure with 

at least three F2MC cells connected by an internal fluid circuit.  The spectral data is again 

the synthesis target, because they are closely related to the dynamic structural functions.  

The synthesis procedure from chapter 4 is only tailored towards dual cellular structure, and 

it does not apply to structures with a larger number of cells.  Especially, in the dual cellular 

system, there exists a closed form analytical relation between the two F2MC performance 

parameters (equation 4.31-34), but such closed form relation no longer exists when the cell 

number exceeds two.  Therefore, the mathematical problem behind triple cell synthesis is 

fundamentally different from the dual cell synthesis and more challenging, requiring a 

brand new synthesis procedure.  This new procedure relies on the generalized dynamic 

model, which is applicable to a string structure with any number of cells; and it attempts to 

tackle the complexity of the problem by integrating two ingredients together: one is genetic 

algorithm with discrete variables, and the other is the Jacobi inverse eigenvalue problem 

solver (JIEP).  Synthesis case studies are presented for a F2MC based triple cellular struc-

ture, and the advantages and limitations of this procedure are discussed. 
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5.1 Multi-cellular structure analytical model 

Figure 5.1 illustrated the proposed multi-cellular string structure for investigation, which 

is essentially a string of F2MC cells with different properties.  All of the cells are connected 

through internal flow ports (inertance tubes).   

5.1.1 Performance of the individual cell 

The free body diagram in figure 5.1b shows that each F2MC cell is subjected to two 

loads: axial force ( kf ), and the net fluid flow ( net
kv ) through flow ports connected to this 

cell ( 1
net
k k kv v v    where kv  is the volume of fluid flow passing through flow port #k).  

These two load factors will consequently change the two system states: the axial strain ( k

) and internal fluid pressure ( kp ).  The correlation between these loads and system states 

is crucial in the analysis because it describes the anisotropic elasticity of the cell wall as 

well as the coupling between structural deformation and fluid flow.  It can be summarized 

as follows, 

 

1 ,k k k k k kv v g p      (5.1)

 

,k k k k kf p g      (5.2)

 

where the aspect ratio / ig l a  is related to the shape of the F2MC cell, and the variables 

,k  ,k  and k  are the “performance parameters” of cell #k as defined in the previous 

chapter.  Unless specially noted, all of the variables from now on are in their dimensionless 

form and thus the over hat above the dimensionless variables are dropped for simplicity. 
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Figure 5.1 Illustration of the multi-cellular string structure. (a): The schematic 
diagram of the whole structure and (b) the free body diagram of an individual 
cell.  Positive fk means tension force, and positive vk follows the direction shown 
by its arrow.  

 

5.1.2 Principles of cellular interaction 

The F2MC cells are directly connected through end fitting, and the working fluid are al-

lowed to flow from one cell to another through flow ports (inertance tubes). Therefore, the 

interactions between adjacent cells are based on mechanical and fluidic principles.  Out of 

the mechanical principle there is the physical condition stating the internal force balance 

between adjacent cells: 

 

1 2 .nf f f    (5.3)

 

Out of fluidic principles there is the flow port equation, describing the dynamic 

fluid flow through flow port due to the pressure difference between adjacent cells:   

 

 12
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v
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where kI  is the normalized flow port inertance.  

5.1.3 System level derivation 

The proposed cellular structure is a closed fluidic system so that the working fluid 

is only allowed to flow between the cells, but not flow in or out of the whole structure; 

therefore one can apply the fluidic boundary condition as: 

 

1 1 0.nv v    (5.5)

 

One can combine the fluidic equations (5.1 and 5.5) and the structural equations 

(5.2 and 5.3) as follows: 

 

 
1

0,
n

k k k kk
g p  


   (5.6)

 
, .k k k k j j j jp g p g k j           (5.7)

 

With some mathematical manipulation, equations (5.5-7) can be combined into one 

equation as follows: 

 

1 1

1
, where = .

n n
j j jk k

k j j
j jk k j j

p
g g

     
    

   
              

 
 

(5.8)

 

Denote the strain vector  1 2,  ,  ,  n  e  
 and the normalized pressure vector 

 1 2,  ,  ,  np ppp  
, equation (5.8) can be written as a matrix form as, 

 

1
, where ,  j

ij j j ij j
i jg


  

 
 

       
p e=   (5.9)
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where ij  is the Kronecker delta.  Denote the fluid volume vector  2 3,  ,  ,  nv vvv  
, 

one can re-write equations (5.1) and (5.5) into matrix forms as, 

 

2 3 1 2 3 1

3 1 3 1

1 1

0 0

0 0

0 0

0 0 0 0

.

n n n n

n n n n

n n n n

n n

g

       
     

   
 

 

 

 

   
   
   
   
   
   
      


v = p + e

    = Αp Βe

 
 
   
 

 (5.10)

 

Substituting (5.9) into (5.10), one can write v e , where      is an 

(n−1)×n matrix, then one can substitute this into the flow port dynamic equation (5.4) as 

follows, 

 

1

2 2 10

.

0 n n n

I

I 

   
   
   

      

Φ Φ

e + e = 0

Φ Φ

   (5.11)

 

where i  is the ith row of the matrix  .  Finally, the end mass dynamic equation is: 

 

1 2 ( ),n e nmx f f x          (5.12)

 

where ef  is the normalized external force on the end mass.  Choose  2,  ,  ,  nx v vX  
 

as the system state vector, the system governing equation can be written as follows, 

 
* 1 ,e

 MX K T X F  (5.13)
 
where 
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  (5.14a,b,c,d)

 

where  0  0 n ga   and  1  1b   are both 1× n vectors.  Based on equation 

(5.14), the dynamic response of the F2MC based multi-cellular structure can be described 

as an n degrees of freedom mass-spring oscillator, where the inertia elements come from 

the end mass and the flow port inertance (there is one mass and n-1 flow ports), and the 

spring elements come from the cell wall anisotropic elasticity and fluid bulk modulus.  De-

note the system equivalent stiffness matrix as 1 K K T , the set of system poles   1

n

i i


  

can be calculated as follows,   

 

   1/2 1/2

1
,

n

i i
   


 M KM  (5.15)

 

where “    ” is the operation of calculating matrix eigenvalues.  The set of system zeros 

  1

1

n

j j





 can be calculated as, 

 

   1 1/2 1/2

1
,

n

j j
 

  


 M KM  (5.16)

 

where M and K are the principal sub-matrix of M and K without their first column and 

row.  In other words, the zeros of the multi-cellular structure as shown in figure 5.1 is 

equivalent to the poles of the system when the end mass is grounded.  
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5.1.4 Physical insight of the stiffness matrix 

The system equivalent stiffness matrix 1 K K T  is a dense, symmetric n n  ma-

trix.  It has no trivial elements except when there are identical cells in the structure.  The 

physical meaning of the elements in this matrix reveals the correlation between the indi-

vidual cell performance and the overall structure spectral data. 

The expression for the first element of the stiffness matrix, 11K  in equation (5.14) 

can be re-organized as follows, 

 

  11 1 1
11 1 2 ,n

     K     (5.17)

 

where i , as defined in equation (4.21) in chapter 4, is related to the close valve stiffness 

of the corresponding F2MC cell.  Therefore, 11K  equals to the normalized longitudinal 

stiffness of the string structure when all of the flow port is closed (no fluid flow allowed 

between cells).  The expression of the other elements in the first row or column, 1 jK , (j = 

2…n) can be re-organized as, 

 

 1 11 1 , 2j j j j n  K K    (5.18)

 

where j , as defined in equation (4.24) in chapter 4, is related to the closed valve pressure 

rise of the corresponding F2MC cell.  Therefore, 1 jK  represent the pressure difference be-

tween adjacent cell #j and cell #j−1, under the condition that all of the flow ports are closed.  

The physical meaning of the rest of the stiffness matrix ijK  (i, j = 2…n) can be found 

through the governing equation at the static state ( eKX F ) and the 2nd to nth row of the 

static governing equations can be written explicitly as, 
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Therefore, the rest of the matrix represents the static fluid displacement through 

each flow port when the structure is subject to a static end displacement.  In summary, the 

system spectral data is closely related to the individual cell stiffness, pressure rise differ-

ence between adjacent cells, as well as the static fluid displacement through each flow port.  

This observation is consistent with the physical meaning of the stiffness matrix of the dual 

cell string structure as discussed in section 4.2 of previous chapter. 

5.2. Synthesis procedure for a prescribed spectral data 

The purpose of the synthesis procedure is to find physically feasible F2MC cellular struc-

ture designs to reach the prescribed spectral data.  A rigorous mathematical definition of 

the procedure can be described as follows: 

The design of the F2MC based multi-cellular structure is defined by 

a set of cellular performance parameters     1
,  ,  ,

n

k k k k
  


    be-

cause the equivalent stiffness matrix K is a function of   as in equation 

(5.14).  Given a set of target poles and zeros  
1

n

i i



and   1

1

n

j j




  such that 

1,i i i    
   1 1i n  .  Find a set  *  such that 
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 (5.20)
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The problem defined in equations (5.20) is a group of constrained nonlinear alge-

braic equations.  There are 2n-1 equations (n system poles plus n-1 zeros) and 3n unknowns 

in  , so the number of unknowns is always greater than the number of equations, making 

the problem mathematically under-determinant.  As a result, there might be multiple syn-

thesis results for a single target.  The nonlinear relations in equations (5.14 and 5.20) and 

the complex constraint from   onto    make the synthesis problem challenging to 

solve.  In this chapter, we propose adopting inverse eigenvalue problem (IEP) solvers.  The 

IEP concerns the reconstruction of a system stiffness matrix from a set of prescribed spec-

tral data, so instead of searching for    directly from the target, one can first construct a 

matrix K that can reach the target, then find a set of    that gives such K matrix.  In this 

way, the characteristics of matrix K can be exploited to simplify the overall synthesis pro-

cedure. 

There are different categories of IEP based on the characteristics of the matrix, and 

each category requires a specific technique to be solved (Joseph 1992, Chu and Golub 

2005, and Gladwell 2006).  For the F2MC cellular structure synthesis problem, the K ma-

trix is real, symmetric, and more importantly, parametric as in equation (5.14).  Deriving 

an original IEP solver specifically for the type of stiffness matrix in the F2MC problem is 

beyond the scope of this thesis research, instead, a hybrid method is proposed to incorpo-

rate the well-developed Jacobi inverse eigenvalue problem (JIEP) solver and a genetic al-

gorithm with discrete variables.  The logic flow of the proposed hybrid synthesis procedure 

is summarized in figure 5.2.  Once the target spectral data (poles and zeros position) are 

chosen, a generic algorithm with discrete variables are first employed to generate a popu-

lation of design candidates.  Each of the design candidate can achieve poles and zeros close 



90 
 

to the target but not accurately.  Then JIEP is applied to update each of these candidate so 

that the updated design can accurately reach the target.  In the final step, these updated 

design are checked against the physical requirement of Ω, and the physical unfeasible de-

signs are discarded.  The following sections of this chapter shall discuss the technical de-

tails of this hybrid procedure. 

 

 

 

Figure 5.2 Logic flows of the proposed hybrid synthesis procedure.  The two major 
ingredients are genetic algorithm with discrete variables (step ii) and a JIEP solver 
(step iv).  The detail of step iv is in figure 5.4.  

 

5.2.2 Implementing genetic algorithm.   

The purpose of implementing genetic algorithm is to generate a population of cel-

lular structure candidate designs, each denoted as    , so that   
 satisfies the con-

straints from Ω and gives a spectral data close to the target.  Since Ω has a very complicated 

i. Select the target spectral 
data: {λ*} and {μ*}

ii. Apply genetic algorithm
with constraints from Ω 

iii. A population of 500 
candidate designs {Ψo} 

iv. Calculate Ko from {Ψo},
then find K* based on JIEP 

v. Calculate {Ψ*} from K*

based on equation (5.14)

vi.  Is {Ψ*}  in Ω?

vii. A valid design is found

Yes

Pick one dandidate

Repeat for all candiates {Ψo}
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geometry, a three dimensional grid is constructed to span the space of Ω as reflected in 

figure 4.2, in this chapter, the size of the grid is set at 150×50×50, which is denser than the 

mesh grid in the previous chapter.  And the genetic algorithm can be applied based on the 

discretized performance parameters as follows, 

Assume     consists of n points from the three-dimensional grid 

in Ω, and denote  o

1

n

i i



and   1o

1

n

j j





 as the poles and zeros based on  .  

Find     to minimize the vector norm objective function:  

 

1 1 1 1 1 1,..., , ,..., .n n n nS           
          (5.21)

 

By restricting     to the grid, the constraints from Ω are automatically satisfied.  

Since the under-determined nature of the synthesis problem allows multiple solutions, the 

genetic algorithm can be repeated from random initial points to generate a population of 

different candidate designs.  Two sample results of     are summarized in table 5.1 with 

their achieved spectral data.  The genetic algorithm in this chapter comes from the global 

optimization toolbox of MATLAB® (version R2011a or above). 

5.2.3 Implementing JIEP Solver 

The purpose of implementing JIEP solver is to adjust     to    so that the 

target spectral data can be accurately achieved.  JIEP solver is originally intended to con-

struct a symmetric, tri-diagonal matrix (Jacobi matrix) from prescribed spectral data.  For 

example, JIEP solver can be used to assign the spring and mass values of an oscillator 

series in figure 5.3.  There are two advantages of adopting the JIEP solvers.  The first 

advantage is that the system intended for JIEP shares some physical similarities with the 
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F2MC based structure.  The second advantage is that JIEP solver is mathematically well 

posed: the theories for the existence and uniqueness of solution are well developed, and it 

can guarantee that the target poles and zeros can be reached simultaneously (Chu and 

Golub. 2005, and Hald 1976).  

 
 

 

Figure 5.3 Illustration of a mass spring-oscillator series. The JIEP technique can 
solve the spring mass assignment problem for an oscillator like this for a set of 
prescribed spectral data, as long as the system stiffness matrix is a symmetric, tri-
diagonal matrix (Jacobi matrix). 

 

On the other hand, there are two crucial differences between the oscillator series in 

figure 5.3 and the F2MC based cellular structure.  The first difference is that the matrix K 

of the cellular structure in equation (5.14) is not a Jacobi matrix.  The second difference is 

that the elements in K must satisfy the restriction from Ω so they cannot take arbitrary 

values.  To address the differences, the JIEP solver is implemented together with House-

holder tri-diagonalization.  Define 1/2 1/2 S M K M  , where K is based on a structural 

design candidate     from the genetic algorithm.  The Householder transforms S into a 

Jacobi matrix J  while preserving its spectral data (figure 5.4). 

Once the Jacobi matrix J  is calculated, its elements can be updated with JIEP 

solver to J so that it gives the exact target poles and zeros.  In this paper, the Lanczos 

Method in Chu and Golub (2005) is adopted as follows.  Define  21,  ,  ,  n nc c cq  
such 

that 

k1 k2 knk3

m1 m2 mn
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Then one can calculate the first set of elements in J as follows, 

 

n n na  q q , 1n n n nb a 
   q q , and  1 1n n n n na b 

   q q q . (5.23)

 

For 1 2i n  , one can compute recursively the following elements, 
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(5.24)

 

where  1 2diag , ,n        and finally 1 1 1a  q q , the final Jacobi matrix J

can be written as, 
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 (5.25)

 

Then an inverse Householder transformation is applied to J to calculate the up-

dated cellular structure equivalent stiffness matrix K  (figure 5.4).  And finally, the final 

solution of cellular performance parameters    can be calculated based on equation 

(5.14), which can be done by commercial numeric nonlinear algebraic equation solver, 

such as “fsolve” in the MATLAB®.  Two synthesis sample results are listed in table 5.1, 
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and their corresponding physical cellular design parameters are also listed.  In these two 

sample results, even though the genetic algorithm produces results with some error, the 

JIEP solver manages to correct the candidate designs to reach the target accurately. 

 
 

 

Figure 5.4 JIEP solver integrated with Householder tri-diagonalization. These 
steps combined represent the step iv in figure. 5.2.  

 

Note that, the JIEP solver does not enforce the constraint from  , however, if 

    gives a spectral data close to the target,    is not far away from    , so there 

is a good chance that    still lies within  . Interested readers are encouraged to refer 

chapter 4 to review how to decide whether    satisfies the constraint from  .  The 

intention of the proposed hybrid synthesis procedure is not to mathematically prove the 

existence of the synthesis solution for a target spectral data, instead, Step iii-vi in figure 5.2 

are repeated for all of the candidate designs from the genetic algorithm, which is computa-

tionally inexpensive, and if the JIEP solver could not produce any final valid designs out 

Calculate Ko from 
{Ψo} based on (5.14)

So = M-1/2KoM-1/2

Tri-diagonization:
Jo = Q-1SoQ

Q

Jo

S* = QJ*Q-1

K* = M1/2S*M1/2

Jo         J*

JIEP Solver
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of the candidates, the corresponding target spectral data is probably not achievable. The 

complete MATLAB™ script for the hybrid synthesis procedure is attached in appendix E. 

5.2.3 Synthesis results case study 

This sub-section will present some synthesis case studies on a F2MC based triple 

cellular structure.  Figure 5.5 is a pair of “heat map” that demonstrate the results of a nu-

merical survey on the achievable spectral data from the F2MC based triple cellular struc-

ture.  In figure 5.5a, the target poles are fixed at 40, 60 and 80Hz and the two zeros can 

vary between the two adjacent poles.  For each set of target zeros (a square “pixel” in the 

heat map), the genetic algorithm will first generate 500 candidate designs    , then the 

hybrid JIEP solver will search for valid designs    out of this candidate pool.  The tem-

perature of the corresponding “pixel” in the heat map represents the number of final designs 

found.  This process is then repeated for every set of target zeros.  Since the genetic algo-

rithm starts searching for solution from random initial designs, a “hotter” pixel indicates a 

wider distribution of feasible cellular designs from the corresponding target.  There is also 

the transparent regions indicating the probably un-achievable set of spectral data.  Figure 

5.5b is a similar survey results with the target poles fixed at 35, 65, and 95Hz. 

The histograms in figure 5.6 demonstrate the distribution of the synthesis results 

for a single set of achievable spectral data.  These results are distributed by the physical 

design variables.  Two sets of structure designs are represented and compared, the first set 

(solid lines) are synthesis results for target poles at 40, 60, and 80Hz and zeros at 50 and 

70Hz, the second set (dashed lines) are for the same target except for the second zero 

changed to 65Hz.  These histograms are based on 300 final valid designs (not candidate 
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design) for each target, which is sufficiently large because adding more designs will not 

significantly alter the histogram distribution. Based on these histograms, one can observe 

some narrow distributions of the final designs, such as fiber angle of cell #1 and cell wall 

thickness of cell #3, and the small change in target spectral data could bring up some sig-

nificant changes in some cellular designs as well (such as the wall thickness of cell #2).  

Among the three major physical design variables, the elastic anisotropy ratio of the cell 

wall material seems to be the least sensitive to the change of spectra data targets.  This is 

advantageous because in the F2MC fabrication process (filament winding), elastic anisot-

ropy is the most difficult design variable to tailor. 

The case studies highlight the advantages of the proposed synthesis procedure: 

computationally efficient, accurate, and capable of quickly providing a large number of 

valid designs for a target spectral data.  On the other hand, further case studies revealed 

that the proposed procedure is no longer accurate for structure with more than three cells, 

that step v in figure 5.4 couldn’t produce    that both satisfy the constraint from   and 

reach target accurately.  This is probably due to two factors.  The first factor is the mathe-

matical complexity of the system stiffness matrix K in equation (5.14).  As the number of 

F2MC cell increases, K becomes an extremely complex function of all of the performance 

parameters.  The second factor is the narrow distribution of some final valid designs as 

mentioned earlier.  It is possible that there are more of these kind of narrow distributions 

in the synthesis problems with more F2MC cells, so it is more challenging for the synthesis 

procedure to locate any valid designs.  Therefore the synthesis procedure might need to be 

revised to be more mathematically rigorous.  Nonetheless, the general dynamic model and 

the triple cell synthesis study in this paper are significant advancements that provide us 
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with valuable tools on designing and investigating the functionalities of the F2MC based 

multi-cellular structure. 

 

 

Table 5.1 Sample synthesis results.  Set A has target poles at 40, 60, 80Hz and 
zeros at 50, 70Hz.  Set B has target poles at 35, 65, 95Hz and zeros at 50, 80Hz.  
The candidate design from GA are restricted to the 150×50×50 grid, here the 
actual values of α, β, and δ are shown. 

  Candidate from GA 
{Ψo}

Final design from JIEP 
{Ψ*}

Physical cellular de-
signs

  α β δ α β δ φ (o) ai/ao E1/E2

Set 
A 

Cell #1 2.54 1.01 0.48 2.55 0.97 0.36 76.2 0.89 498

Cell #2 7.91 -14.39 75.17 7.10 -12.02 99.44 14.0 0.67 125

Cell #3 2.62 0.30 1.05 2.54 0.31 0.98 58.7 0.79 788

Achieved 
ωp, ωz 

ωp= 41.9, 59.4, 81.0Hz,
ωz=50.2, 67.1Hz

ωp= 40, 60, 80Hz,  
ωz=50, 70Hz 

Set 
B 

Cell #1 2.93 -2.13 2.78 3.00 -2.00 2.66 40.2 0.80 120

Cell #2 2.70 -2.97 5.08 2.59 -2.88 4.91 37.5 0.80 1073

Cell #3 2.64 1.01 0.47 2.61 0.99 0.33 77.0 0.89 206

Achieved 
ωp, ωz 

ωp= 37.5, 66.4, 97.5Hz, 
ωz=49.9, 78.9Hz

ωp= 35, 65, 95Hz,  
ωz=50, 80Hz 
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Figure 5.5 Achievable poles and zeros from a triple cell string structure. The heat 
map represents the number of valid designs found from the 500 candidate designs 
from the genetic algorithm for each set of target zero.  The plot (a) has poles fixed 
at 40, 60, and 80Hz, plot (b) has poles fixed at 35, 65, and 95Hz.  

 

 

First Zero Frequency (Hz)

Se
co

nd
 Z

er
o 

Fr
eq

ue
nc

y 
(H

z)

42 46 50 54 58

62

66

70

74

78 (a)

40

120

200

280

360

First Zero Frequency (Hz)

Se
co

nd
 Z

er
o 

Fr
eq

ue
nc

y 
(H

z)

40 45 50 55 60

70

75

80

85

90

(b)

40

120

200

280

360



99 
 

Figure 5.6 The histogram plot of the cellular synthesis results for a specific set of 
prescribed spectral data.  The solid lines represent the target poles at 40, 60 and 
80Hz and zeros at 50 and 70 Hz, the dashed lines represent the same target except 
for the second zero changed to 65Hz. 
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5.3 Summary 

The research presented in this chapter aims at developing systematic synthesis procedure 

for the F2MC based multi-cellular structure for a prescribed set of spectral data.  This is the 

first systematic attempt to design a multiple cellular structure where different F2MC are 

allowed to be different from each other.  As the first step toward this goal, a non-dimen-

sional dynamic model is developed based on the F2MC performance parameters that are 

defined in the previous chapter.  This model reveals some physical insights that the system 

spectral data is closely related to three factors: 1) the individual cell stiffness, 2) pressure 

rise difference between adjacent cells, as well as 3) the static fluid displacement through 

each flow port.  The derivation process of this generalized dynamic model clearly demon-

strates the benefits from the abstract performance parameters.  Without them, the mathe-

matics derivation will be simply too complicated for engineers to reveal any physical in-

sights. 

A synthesis procedure for the F2MC based multi-cellular structure is then devel-

oped.  This procedure combines Jacobi inverse eigenvalue problem (JIEP) solver and the 

genetic algorithm with discrete variables.  This hybrid procedure is computationally more 

efficient compared to brute-force optimization iteration, because it exploit the characteris-

tics of the system equivalent stiffness matrix, and produce multiple designs in one single 

simulation.  For a cellular string structure with three cells, it successfully overcomes the 

two mathematical challenges in the problem: 1) the complicated nonlinear, under-deter-

mined relationship between cellular performance parameters and system spectral data, and 

2) the physical constraints on F2MC cell designs.  The synthesis case studies demonstrate 

that the proposed procedure can effectively select triple F2MC cellular design parameters 
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to accurately achieve the target spectral data.  And numerical survey illustrates the large 

range of achievable spectral data targets as well.  

On the other hand, further case studies reveal that the proposed procedure is no 

longer accurate for structure with more than three cells.  Although probable causes of this 

inaccuracy are discussed, connecting more than three cells directly by one internal fluidic 

circuit seems to make the system too complex to be analyzed and synthesized efficiently 

based on the knowledge and tools developed in this chapter.  Therefore, it is suggested to 

focus on the design and synthesis of dual or triple cell system as a structural unit, and then 

assemble these units mechanically into a large-scale cellular structure.  By this hierarchical 

approach, the rich list of adaptive functions from F2MC based system can still be achieved 

with great versatility, while the complexity in synthesis can be maintained at a manageable 

level.  This approach is advanced in the following chapter, where the architecture design 

and performance range of a dual cell unit are extensively investigated. 
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Chapter 6                                                               

Architectural Design and Comprehensive Synthesis 

This chapter strives to consolidate the lessons and experiences from the last three chapters, 

and to mature our knowledge base and synthesis methodologies in order to fully address 

the problem statements as laid out at the beginning of this thesis.  The previous analysis 

and synthesis results have demonstrated two outstanding advantages of the F2MC based 

cellular structure.  The first advantage is its rich functionality, including actuation with an 

enhanced authority, vibration isolation, as well as variable stiffness.  The second advantage 

is the versatile design space, especially regarding to the dynamic functions (spectral data).  

Extensive synthesis case studies revealed that 1) the dual and triple cell string structures 

can reach a wide range of spectral data, so it can be tailored to satisfy various dynamic 

application requirements; and 2) for a set of achievable spectral data, multiple cell designs 

are available, forming a design space, and this gives engineers the freedom to implement 

other design considerations and optimize the overall structural performance.   

On the other hand, there are still two crucial limitations in the previous work that 

prevent us from fully addressing the thesis problem statements.  The first limitation is the 

simple structural layout: all previous works assume the F2MC cells connected in a simple 

series with a closed internal flow circuit, yet there might be other unique configurations to 

fluidically and kinematically connect them.  A comprehensive list of such configuration is 
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especially important for efficiently distributing and connecting many of F2MC cells in a 

large-scale structure.  The second limitation is the simple synthesis target: previous syn-

thesis procedures only employ spectral data as the performance target, which is related to 

the dynamic functions; while other F2MC functions such as variable stiffness are not yet 

considered.  Incorporating multiple function targets in one integrated synthesis procedure 

is crucial for our original research vision of achieving multi-functionalities concurrently. 

Therefore, the research objective of this chapter is to address the aforementioned 

two limitations in order to fulfill the potential of the F2MC based cellular structures.  To 

achieve this objective, this chapter will first survey the unique configurations of fluidically 

and kinematically connecting F2MC cells, and these configurations will be named “archi-

tectures of the cellular structure”, or simply architecture.  Following the lessons from the 

end of last chapter, this chapter will focus on a dual F2MC system.  Dynamic system gov-

erning equations will be derived and experimentally tested for these architectures.  In the 

second part of this chapter, the research focus will then turn to developing synthesis pro-

cedures with multiple performance targets, where the actuation authority, variable stiff-

ness, and spectral data are considered concurrently.  This synthesis procedure will be ge-

neric and applicable to the different architectures.  Case studies will be presented to com-

pare the performance differences between architectures to offer design insights.  The out-

come of this chapter will provide a more comprehensive and rigorous knowledge base and 

design tools to foster the adaptation of F2MC based cellular structure concept to a wide 

range of engineering applications, such as soft robotics, morphing structures, and advanced 

civil infrastructures. 
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6.1 Architecture of the F2MC based cellular structural unit 

In this chapter, the “architecture” of the cellular structure is defined as the unique config-

urations by which different F2MC cells are fluidically and kinematically connected to each 

other.  The F2MC based dual and triple cell series structures discussed in the previous two 

chapters belong to a specific architecture example, where 1) all cells are kinematically 

connected in series so that their internal axial force are equal; and 2) their fluid circuit is 

closed without external connections; the working fluid can thus only flow between the 

adjacent cells but not in or out of the system.  A complete list of the unique architectures 

is a crucial knowledge once the number of cells in the structure becomes large, because it 

provides guidelines for an efficient F2MC distribution and connection.  The research work 

in this chapter will focus on a dual F2MC cell system because 1) two are the smallest cell 

number by which all of the aforementioned structural functions can be achieved; and 2) the 

mathematical principle that defines the unique architectures of the dual cell system is es-

sentially the same for systems with a larger number of cells, and 3) the synthesis problem 

for dual cell system is better posted mathematically as compared to system with more cells.  

Therefore, focusing on the dual cell system will offer us in-depth knowledge on architec-

tural design without unnecessary complexity.  

6.1.1 Mathematically defining the architectures 

This section will lay down the mathematical framework behind the architectures of 

a dual cellular structural unit; with a complete list of architectures generated at the end. 
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Figure 6.1 Free body diagram of an individual F2MC cell within the structure.  
There are four types of state variables describing a single cell: the internal fluid 
pressure (pk); the fluid flow volume (vk); the axial force (fk); and the axial strain 
(εk).  k is the id of the F2MC cell, so in the dual cell system it will take the value 
of either 1 or 2.  Positive vk corresponds to the flow direction as indicated by the 
arrow, and positive Fk corresponds to a tension force.  

 

Based on the free body diagram of an individual F2MC cell (figure 6.1), there are 

eight state variables describing the dual cell system: the internal working fluid pressure (

1,p  2p ); axial strain ( 1,  2 ); axial internal force ( 1,f  2f ); and the net flow volume into 

the cell ( 1
netv , 2

netv ).  For simplicity, net
kv will be denoted as kv  in the following derivations.  

These eight state variables are the eight “unknowns” of the system.  Note that all of these 

variables are in their dimensionless form as defined in chapter 3 and thus their over hats 

are emitted for simplicity.  There are four performance equations (two for each cell) to 

correlate these state variables defined in equation (5.1-2).  There are two more dynamic 

equations: the flow port equation (5.4) and external inertia dynamics.  In the previous work, 

this eternal inertia is simply an end mass.  Therefore, performance relationships and the 

system dynamics give six equations in total.  In order to make the dual cell system mathe-

matically determined, two extra equations (or constraints) are necessary, and it is the se-

lection of these two constraints that defines the unique cellular structure architecture.  The 

constraints are closely related to the eight state variables, because each type of state varia-

bles has its own physically admissible constraints as listed below (figure 6.2). 

fkfk

vk

pk

εk
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Constraint A on the fluid flow volume ( kv ): one can apply 1 2 0v v  , meaning that 

the working fluid is free to flow between the two cells through the flow port, but could not 

flow in or out of the whole system.  This leads to a closed fluidic circuit. 

Constraint B on the fluid pressure ( kp ): one can apply 1 ep p  or 2 ep p , where 

ep  is the external pressure.  This leads to an open fluid circuit where one F2MC cell can 

be connected to a pressure supply (pumping). 

Constraint C on the axial internal force ( kf ): one can apply 1 2f f , meaning that 

the two cells are connected in series so that their internal axial force is balanced. 

Constraint D on the axial cell wall strain ( k ): one can apply 1 2q   where q is a 

real constant, meaning that the two cells are connected with some kinematic constraints 

onto their axial deformation.  For example, q equals to -1 in figure 6.2d if the two cells 

have equal length. 

Constraint A and B are fluidic, while the constraint C and D are kinematic.  One 

can thus choose two out of the list of four constraints to make the system mathematically 

determined, so that the number of unknowns (eight state variables) equals to the number 

of equations.  It turns out that each unique combination of two constraints corresponds to 

a unique architecture of the cellular structural unit as illustrated in figure 6.3, where the 

simple dual cell series structure studied in the previous chapter belongs to the (AC) type of 

architectures. 
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Figure 6.2 Admissible constraints onto each type of state variables.  (A) Closed 
fluidic circuit; (B) open fluidic circuit connected to external pressure supply; 
(C) F2MC cells connected in series with balanced internal force and (D) F2MC 
cells connected with some kinematic constraint onto its axial deformation. 

 

The schematic diagrams in figure 6.3 are the simplest possible designs to demon-

strate these four unique architectures.  In practical applications, there can be numerous 

designs that essentially belong to the same architecture type.  For example, three apparently 

very different dual cellular structure designs are illustrated in figure 6.4.  The first design 

is a simple dual cell string, grounded at both ends, with an external mass attached between 

the cells.  In this set up the F2MC can be used to control the dynamic movement of the 

mass along their axial direction.  The second design is an antagonist pair similar to the 

human upper limb, where the two cells in parallel are connected to an external rotational 

inertia to provide some rotating or flapping motion.  The third design is a lattice unit, where 

m

m
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the ends of the two cells are connected to the pin joints of a rigid four-bar linkage mecha-

nism, so that the F2MC can actively control the deformation and dynamic characteristics 

of the lattice structure.  This type of lattice design is particularly interesting because it can 

be easily extended to multiple cellular designs with more sophisticated performance.  Yet 

despite the apparent differences among these three sample designs, they all belong to the 

(AD) type of architecture, where the kinematic constraint constant q is related to their spe-

cific designs.  Therefore, any generic synthesis procedure developed for the (AD) type of 

architectures can be applied to all of these three sample designs with minimal alteration. 
 

 

 
 

Figure 6.3 Architectures of the cellular structure.  Every unique combination of 
two constraints from figure 6.2 corresponds to a unique architecture of the dual 
cellular structural unit.  (AC): two cells connected with a balanced internal force 
and a closed fluidic circuit. (BC): two cells with balanced internal force but with 
an open circuit.  (AD): two cells connected with kinematic constraint on their 
strain and a closed fluidic circuit. (BD): two cells with kinematic constraint but 
an open fluid circuit. 
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Figure 6.4 Three different designs based on (AD) type of architrave. (a) two 
F2MC cells connected in a string; (b) an antagonist pair connected to an end 
rotational inertia, and (c) a lattice unit. 

 

6.1.2 Governing equations and physical insight 

Deriving the governing equations for the four unique architectures as in figure 6.3 

is necessary to understand their differences and similarities in dynamic characteristics; it is 

also necessary for deriving synthesis procedures later in this chapter.  Similar to the deri-

vations in the previous chapters, the system governing equations can be obtained by com-

bining the four performance equations, the two dynamic equations, and the two constraints 

related to the architecture design.  The dynamic response of the dual cell system can all be 

described with an analogy to a two-degrees of freedom mass-spring oscillator: 
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where x is the normalized external mass displacement, and v is the normalized flow volume 

though the flow port, R is the flow port resistance, and the derivation of the ijK  term are 

summarized in table 6.1.  The terms related to external pressure supply ( ep ) are only ap-

plicable to (BC) and (BD) architecture; and the kinematic constraint constant q ( 1 2/  ) 

in (AD) and (BD) takes the value of -1.  Since there are two external loads ( ef  and ep ), 

the system response can be characterized by two transfer functions: / ex f  and / ex p .   The 

poles for both transfer functions are the same: 

 

1 2

1/2 1/2

11 12

12 22

0 0
, ,

0 0p p

m m

I I
  

                      

K K

K K
   (6.2)

 

where     is the operator of calculating eigenvalues, and the zero of the two transfer 

functions ( / ex f   and / ex p ) can be calculated respectively as follows: 
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where the 1G , 2G  term for (BC) type of architecture can be calculate as 
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and the two terms for (BD) type of architecture are: 
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where ,k  ,k  and k  (k = 1, 2) are the performance parameters of the F2MC cell, and 

/k k ig l a  are the geometric aspect ratio.  In equations (6.4-5), the F2MC cell #1 is as-

sumed to be open and connected to external environment, if the cell #2 is open instead, the 

number 1 and 2 in the variable sub-index needs to swap.  The same rule also applies to the 

list of ijK  terms in table 6.1. 

 
 

Table 6.1 Derivation of Kij in the system governing equations. 

Architecture 11 K  12 K  22 K  

(AC)  
1 2

11 1

C C

    
2 1S S   

21 ACK   

(AD) 
1 2C C   

2 1P P   
21 ADK   

(BC)  
1 2

11 1

O C

    
2S  21 BCK   

(BD) 
1 2O C   

2P  
21 BDK   

 

In table 6.1, Ck
  (k = 1, 2) is the normalized longitudinal stiffness of the F2MC cell 

#k in the closed valve state, which can be calculated by setting kv  to zero in the perfor-

mance equations (5.1,2):  
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while Ok
  is the open valve stiffness, which can be calculated by setting kp  to zero as, 
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k
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
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Therefore, 11K  in the system governing equation is the equivalent stiffness of the 

two cells connected either “in series” as by constraint C or “in parallel” as by constraint D.  

The Sk
  (k = 1, 2) is the internal rise of pressure in F2MC cell #k against external mass 

displacement under constraint C; while Pk
  is the pressure rise under constraint D. 
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where  = -1 for k = 1 and  = 1 for k = 2 (figure 6.3).  Therefore, the 12K  terms in the 

governing equation relate to the pressure difference between the two F2MC cells.  In the 

open fluidic circuit architectures (BC and BD), it is assumed that cell #1 is open to external 

environment so that their internal pressure rise is zero. 

Finally, 22K  in the governing equation relates to the static fluid volume displace-

ment through the flow port when the external mass is subject to static displacement: 
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
  (6.13)

6.1.3 Experiment test 

The purpose of this experiment is to test the governing equation of motions as de-

rived in the previous section.  Since the (AC) type of architecture has been extensively 

tested in the previous chapters, the experiment efforts in this chapter will focus on the other 

three types of architectures as listed in figure 6.3.  To fulfill the experiment purpose, three 

new F2MC cell samples are fabricated using the filament-winding process: two cells have 

±70° fiber orientation, while the third cell has ±42° orientation.  The carbon fiber strips are 

AS4D-GP 12K manufactured by HEXCEL™; the soft resin is shore hardness 10A polyu-

rethane from the Industrial Polymers; and the fiber volume ratio is about 50%.   To test the 

(AD) and (BD) architectures, the two F2MC cells with ±70° fiber orientation are integrated 

into the lattice four-bar linkage mechanisms as illustrated in Fig. 6.4(iii).  This linkage 

mechanism has one degree of freedom, and applies a kinematic constraint onto the axial 

deflection of the two F2MC cells so that 1 2    (θ = 45°).  The two F2MC cells are flu-

idically connected through an external flow port, which is essentially a long plastic tube 

with a uniform circular cross-section.  Several end mass plates are attached to the end of 

the linkage mechanism, with a shaker (LDS V400 series) attached to it to provide frequency 

sweeping external force (figure 6.5).  The dynamic system responses transfer equation (

/ ex f ) are measured by the ratio of the end mass acceleration over the input shaker force.  

To test the (BC) architecture, two F2MC cells with ±70° and ±42° fiber orientations are 

simply connected in series according to figure 6.4.  Frequency-sweeping shaker force is 

also applied to the end mass to obtain the system frequency response.  The test setup for 
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(BC) architecture is very similar to the (AC) test setup from the previous chapters; there-

fore, interested reader can refer the previous works for technical details. 

 

Figure 6.5 (AD) and (BD) linkage mechanism set up. (a) The CAD model of 
the linkage design, and (b) fully assembled linkages.  The two F2MC tubes are 
sandwiched between three sets of identical four-bar linkages to guarantee a cen-
tered axial loading onto the tubes.  The physical prototype is shown in (c), where 
the detailed blown up views are shown in (d-g).  When the end valve (10) is 
closed, the system is of (AD) architecture with a closed fluidic circuit, when the 
valve is open, the system becomes (BD) architecture (pe = 0). 

 
Legend: (1) F2MC tube #1; (2) F2MC tube #2; (3) mount collar; (4) shafts; (5) 
acrylic linkage; (6) ball bearing; (7) end mass plates; (8) shaker; (9) external 
flow port (10-11) end valves (12) screw rods for extra rigidity.
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The ,  ,  and   values of the F2MC samples are estimated based on both exper-

iment testing and analytical calculation.  For example, to estimate the   value, which is 

essentially the normalized stiffness of the empty cell in its axial direction, each individual 

F2MC sample is connected to the end mass plates to form a spring-mass oscillator.  Fre-

quency-sweeping external force is applied to the end mass so that the   value can be esti-

mated based on the measured natural frequency.  Interested reader can refer to appendix D 

for details.  Once the   value is estimated, the fiber ply transverse elastic modulus ( 2E ) 

can be back-calculated based on Lekhniski’s solution, so that this 2E  value can be used to 

calculate   and   values (interested reader can refer to chapter 3 and 4 for details of the 

Lekhniski’s solution).  The properties of the three F2MC cell samples are summarized in 

table 6.2.  The test results for (AD), (BD), and (BC) types of architecture agree well to the 

theoretical prediction in terms pole and zero position, with error of no more than 5Hz (fig-

ures. 6.6-6.8).   

The working fluid apparent bulk modulus is estimated by fitting the dual cell sys-

tem frequency response (see the discussion in Chapter 3); it is lower than the ideal 2 GPa 

value, probably due to the entrapped air bubbles at the low-pressure operation condition as 

well as other source of unconsidered compliance such as the external flow port wall elas-

ticity.   The estimated apparent bulk modulus values varies between different architectures 

as well, and this is probably related to the different levels of internal pressure rises between 

different architecture.  There are some discrepancies in terms of pole and zero frequency 

response magnitude as well, especially for the tests with external fluidic port, indicating 

that the analytical prediction underestimates the flow port resistance.  The extra fluid damp-

ing is probably from the turbulent nature of the pulsate fluid flow, as well as the transferring 
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of fluid kinematic energy into the vibration of external flow port near the zero frequency.  

If the F2MC based cellular structure is to be implemented in practical engineering applica-

tions, more careful fluid circuit design is necessary to stabilize and monitor the effective 

working fluid bulk modulus, as well as to reduce the extra fluid damping.   Nonetheless, 

the reported experiment results agree with the governing equations of motion in terms of 

poles and zero position, so that they can be utilized in the following synthesis procedures. 

 
 

Table 6.2 The properties of the F2MC cell samples.  The E2 values are 
back calculated from the frequency sweeping tests on each individual 
cell sample.  And then this value is used to calculate α and β.  The δ 
values are complex to characterize the structural damping from the 
composite cell wall.  Cf is the normalized apprent fluid compliance (Cf 

= E2/Bk, where E2 is the value of cell #2) 

 F2MC cell #1 F2MC cell #2 F2MC cell #2

Fiber orientation (φ) ±70° ±70° ±42° 

Inner radius (ai) 11 mm 11 mm 11 mm 

Wall thickness (h) 1.6 mm 1.6 mm 0.7 mm 

Length (l)  0.23 m 0.26 m 0.22 m 

Filament modulus (E2) 8 MPa 13.5 MPa2 23 MPa

α 0.009+Cf 0.012+Cf 0.022+Cf

β 0.77 0.78 -1.55 

δ 0.61+0.19i 0.93+0.29i 1.04+0.36i

 

 

                                                 
2E2 value is also a characteristic unit to normalize the system variables, and the 

value for cell #2 is selected for such purpose. 
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Figure 6.6 Test results for (AD) architecture.  The test results are the solid line 
and analytical predictions are the dashed line.  Each plot is the result from a 
different end mass and flow port combination.  The normalized values of the 
end mass are i) 0.97×103, ii) 1.40×103, and iii) 1.83×103.  The normalized port 
inertance values are a) 3.46×103, b) 8.79×103, and c) 5.85×103. The bulk mod-
ulus is estimated to be 65 MPa (Cf = 0.21). 

 

Figure 6.7 Test results for (BD) architecture. The normalized values of the end 
mass are i) 0.97×103, ii) 1.40×103, and iii) 1.83×103.  The normalized values of 
the port inertance are a) 2.59×103, b) 3.46×103, and c) 5.85×103. The bulk mod-
ulus is estimates to be 32 MPa (Cf = 0.42). 
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Figure 6.8 Test results for (BC) architecture. The normalized values of the end 
mass are i) 390, ii) 820, and iii) 1250.  The normalized values of the port in-
ertance are a) 1.08×103, b) 1.41×103, and c) 1.74×103. The bulk modulus is es-
timates to be 50 MPa (Cf = 0.27). 

6.2 Structure synthesis with multiple target functions 

The following section shall address the second part of the problem statement: a synthesis 

procedure considering multiple performance targets.  More specifically, this procedure 

should be able to select appropriate F2MC designs so that the dual cellular structure can 

satisfy the requirements from the prescribed spectral data, and then calculate the achievable 

performance range of other type of structural functions.  It should also be applicable to all 

four unique architectures.  This comprehensive and generic synthesis procedure would di-

rectly help the engineers fulfill the mission of making F2MC based cellular structure con-

currently multi-functional. 
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6.2.1 Derivation of the synthesis procedure 

In chapter 4, a synthesis procedure was successfully derived for a single set of per-

formance target based on a single type of architecture: that is, synthesis for a set of desired 

1
,p  

2
,p  and 

fz  (
1 2fp z p    ) on the (AC) type of architecture.  Synthesis case 

studies based on this procedure revealed that for a set of achievable spectral data, the cor-

responding F2MC pair designs are not unique.  It is this non-uniqueness that gives us the 

freedom to further incorporate more performance targets, because different F2MC pair de-

signs could exhibit different structural performance even if they achieve the same poles 

and zero. Therefore, the proposed synthesis procedure in this chapter would be a direct 

extension of chapter 4.  To demonstrate the derivation without unnecessary complexity, 

the flow port resistance (R in equation 6.1) and the cell wall structural damping (complex 

part of k ) are neglected, since they have a relatively small effect on spectral data com-

pared to the other design parameters.  

There are six independent unknowns to be determined in the synthesis problem, 

which are the performance parameters ( ,k  ,k  and k ) for each F2MC cell.  To avoid 

mathematically over-determining the problem, the number of performance targets or con-

straints should not exceed six.  Since the previous synthesis procedure in chapter 4 incor-

porates three targets already (
1
,p  

2
,p  and 

fz ), up to three additional targets can be in-

corporated.  In this chapter, the performance targets cover both of the static and dynamic 

functionalities of the F2MC based cellular structure, and they can be categorized in the 

following four groups. 

Target group (I):  Spectral data 
1
,p , 

2
,p , and :

fz  which describes the dynamic 

characteristics of the structure in response to the external load on the end mass.  This target 
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is related to functions such as vibration isolation.  Once the positions of these poles and 

zeros are chosen, the equivalent stiffness matrix in equation (6.1) can be uniquely deter-

mined: 

  

 1 2

2 2 2
11 fp p zm     K  (6.14)

 

  2 1

1/2
2 2 2 2

12 f fp z z pmI        K  (6.15)

 
2

22 fzIK  (6.16)

 

Based on the equivalent stiffness matrix, a closed form correlation between the per-

formance parameters of the two F2MC cells can be specified for all four types of architec-

tures (the completed derivations of these correlation are listed in appendix F).  Therefore, 

for a given F2MC cell #1 design, there only exist one unique corresponding cell #2 design 

to reach this group of target spectral data.   

Target (II):  System zero 
pz which corresponds to the external dynamic pressure 

supply, shall neither exist nor positions between the two system poles (to be specific, 

2 0
pz  or 

2
5Hz

pz p    in equation (6.3).  Satisfying this target could lead to a high 

authority resonance actuation with a designated frequency band (interested readers can re-

fer to chapter 3 for related work).  However, this requirement on 
pz is not a rigorous and 

sufficient condition for the existence of the high authority frequency band, but rather it 

serves as an intuitive demonstration on how extra requirement can be imposed on the syn-

thesis procedure.  This target is only applicable to (BC) and (BD) architecture because the 

external dynamic pressure supply requires an open fluidic circuit; therefore, in (AC) and 

(AD) synthesis, this target is not applied. 
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Target (III): Static variable stiffness ratio which characterize the increase of equiv-

alent structural stiffness when both cells changes from open valve state to closed valve 

state.  The ratio of these two stiffness values ( KR ), is used as the performance index: 

 

 
1 2

1 2C 11
K O

1 2O O

   for (AC) (BC)

, where 

   for (AD) (BD)

gK
R K

K K

g

 
 

 


     


K
 (6.17)

 

Target (IV): Static actuation authority, which characterize the performance of the 

actuation related applications, can be defined as the ratio of structural deformation (free 

stroke) over static internal pressure increases as follows, 
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  

    


 

 (6.18)

 

Different functionalities can be achieved by integrating the cellular structure with 

some compact devices that can provide both valve control and pressure supply.  Interested 

readers can refer Kim et al. (2010) for an example, where a piezoelectric-hydraulic pump 

was connected to an F2MC based sandwich structure.  The variable stiffness ratio and static 

actuation authority shall be calculated for all of the F2MC pair designs that satisfies the 

targets (I) and (II).  This set up can offer more valuable information because the range of 

performance from different type of architectures can be directly compared for better design 
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insights.  It is also worth noting that the purpose of this work is to demonstrate the deriva-

tion process of the multi-target synthesis procedure and illustrate the design versatility of 

the F2MC based cellular structure.  Therefore, the aforementioned four targets are by no 

means comprehensive, because practical applications may require a more sophisticated tar-

get definition.  However, the proposed synthesis procedure could be easily adapted for 

other targets as long as they are defined based on the performance parameters of the F2MC 

cells. 

 

 

Figure 6.9 The logic flow of the comprehensive synthesis procedure.  It can be 
described as a numerical survey because each grid point in Ω.  Note that step 7 
and 8 is skipped if the architecture is of (AC) or (AD) type. 
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The logic flow of the synthesis can be summarized in figure 6.9; it can be best 

described as a numerical survey.  First of all, a three dimensional grid is constructed to 

span the parametric space  ; in this particular work, the gird size is set at 50×50×50, and 

each point in this grid is denoted as 1  (  1 1 1    ).  Then an iteration loop (step 4-5-6) 

is executed on every 1  point in this mesh, so that for each cell #1 design, the correspond-

ing cell #2 design  22 2 2       is calculated based on target (I) and the architecture 

type.  Then this cell #2 design candidate is checked for physical feasibility (step 6).  To 

determine whether 2   is not trivial; and interested readers can refer to chapter 4 for 

a detailed discussion.  If the cell #2 design is physical feasible (that is, 2  ), and the 

architecture is of (BC) or (BD) type, 
pz is calculated to check whether the 1 , 2  pair 

satisfies the requirement from target (II) (step 7-8).  If target (II) are satisfied, the variable 

stiffness ratio (target III), and static actuation authority (target IV) corresponding to the 1

, 2  pair are calculated and stored.  Based on the derivation of the performance parameters 

(chapter 4), 1  and 2  can be translated into physical design variables, which are fiber 

orientation, cell wall thickness, and cell wall anisotropic elasticity.  The complete 

MATLAB™ script of this multi-target synthesis procedure is attached in appendix G. 

6.2.2 Synthesis case studies 

This section shall present several synthesis case studies on the F2MC based dual 

cellular structural unit.  Especially, it will compare the synthesis results from different ar-

chitectures based on the same targets set.  Such comparison can offer design insights for a 

variety of practical engineering applications.   Some required parameters for synthesis is 

listed in table 6.3. 
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Table 6.3 Parameters for the synthesis case study.  If the values 
have no unit, they are in the normalized form (refer Chapter 4 for 
details). 

End mass ( M ) 1500 F2MC inner radius ( ai ) 0.01 m 

Flow port inertia ( I ) 1000 Aspect ratio ( g1,g2 ) 20 

Ply modulus ( E2 ) 15 MPa Time unit (τ) 4.61×10-5
 sec

Effective fluid modulus (Bf)     40 MPa  

 

Figure 6.10 presents a sample synthesis result.  Among the four sub-plots in this 

figure, two are synthesis results of (BC) type of architecture and two are of (BD) type.  

Each point in these plots represent a feasible physical design for cell #1 that satisfy the 

spectral data requirements from target group (I) and (II).  In this particular case, 
1p is set 

at 25 Hz, 
2p = 50 Hz, 

fz =35 Hz, and 
pz is higher than 55 Hz or non-exist.  The color of 

on each point represents the variable stiffness ratio or static actuation authority correspond-

ing to this particular design.  Due to the nature of the numerical simulation, these feasible 

designs appear to be groups of discrete points; however, they span the domain of a contin-

uous design subspace in  , since the closed form correlation between the performance 

parameters and the spectral data targets are continuous and invertible.  The synthesis results 

in figure 6.10 clearly demonstrate the wide physical design space of the F2MC based cel-

lular structure for a given set of target spectral data.  And each design gives a unique com-

bination of variable stiffness and static actuation authority even though they achieve the 

same spectral data.  Such versatility can be a great advantage from a system designer point 

of view. 
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Figure 6.10 A sample synthesis result for cell #1.  Each point represents a fea-
sible F2MC design in terms of its physical design parameters and reaches the 
same spectral data target.  The top two sub plots are of (BC) type of architecture, 
while the lower two are of (BD) type.  The colors of left two plots demonstrate 
the variable stiffness ratio, while the colors of the right two demonstrate the 
static actuation authority. One unit in RA is equivalent to 1.17x10-4 inch of end 
mass displacement per psi of internal pressure, and positive and negative value 
of RA corresponds to the direction of end mass displacement as defined in figure 
6.3. 

 

Such unique combination of variable stiffness and static actuation performance can 

be better illustrated by plotting the same design points in figure 6.10 in a different set up 

as shown in figure 6.11.  In this figure, the synthesis results of the (AC) and (AD) are also 
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included.  Different architecture designs demonstrate quite different combination of varia-

ble stiffness and actuation performance, even though they satisfy the same requirements 

on spectral data.  Again, due to the nature of this discrete numerical survey, all of the design 

points are actually spanning a continuous performance space, which is estimated by the 

gray area.  This plot also revealed a great advantage that, based on this particular set of 

spectral data target, higher variable stiffness ratio and larger magnitude actuation authority 

usually comes together.  

The difference of performance range between the four architectures is best illus-

trated in a heat map in figure 6.12.  In each heat map, the target zero 
fz is fixed at 35Hz, 

while the two target poles are allowed to vary, therefore, each pixel in the heat map corre-

sponds to a unique combination of target (I) pole and zeros.  Then the synthesis procedure 

laid out in figure 6.9 is applied at each pixel, and the results of the synthesis are represented 

by the pixel color.  In the first row of heat maps, the color maps represents the number of 

physically feasible  21,     designs that can satisfy target (I) and (II).  The number of 

feasible designs could be interpreted as the size of the physical design space for the F2MC 

cells as shown in figure 6.10.  The higher the number of designs, the larger the design space 

becomes.  The white region in the heat maps represents the target spectral data combina-

tions that cannot be achieved.  The pixel color in the second row of heat maps represents 

the maximum variable stiffness ratio while satisfying the spectral data requirement; while 

the third row represent the maximum static actuation authority.   

Among the four types of architectures, (BD) stands out regarding to the variable 

stiffness performance, while a subset of (AC) designs stands out in static deformation. The 

(BC) type of architecture is the least performing one.  It is worth emphasizing that these 
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results are based on 35Hz of target zero ,
fz  so setting the target zero at different value 

could lead to a different conclusion.  Nonetheless, a heat map like this demonstrate the rich 

design versatility offered by the F2MC based dual cellular structure, as well as the capabil-

ity of the proposed synthesis procedure. 

 
 

Figure 6.11 Combination of variable stiffness and actuation authority based on 
the same spectral data target.  This figure includes the same results as in figure 
6.10, but presents them in a different setup.  The discrete design points are ac-
tually spanning a continuous performance range, as estimated by the gray area.  
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Figure 6.12 Heat map summarizing the results of a performance survey.  The 
target zero ωzf is fixed at 35Hz. In the subplots of the first row, the pixel color 
represents the size of the design space; the second row represents the maximum 
variable stiffness ratio; the third row represents the largest static actuation mag-
nitude.  The four columns are the results from the four architectures.  Note that 
the color map of the first row results is in logarithm scale. 

6.3 Summary 

To fulfill the original research vision of developing adaptive structures with multiple and 

concurrent functionalities, this chapter matures the knowledge base and design tools of the 

F2MC based cellular structure.  Two crucial issues are identified from the efforts presented 

in the previous chapters: limited cellular structural design and limited synthesis targets.  

These issues prevent us from fully exploiting the potential of F2MC based cellular structure 

to satisfy the various demands from different engineering applications. 
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To address the first issue, four unique types of architectures are identified for a dual 

cellular structure based on rigorous mathematical principles.  These architectures differ 

from each other based on the type of fluidic and kinematic connection between the two 

F2MC cells.  A list of unique architectures offers the engineers a comprehensive library to 

foster unique designs of F2MC based structure for various applications.  The equations of 

motion of the four architectures are derived and then experimentally tested.  To address the 

second issue, a more comprehensive synthesis procedure is derived, incorporating a variety 

of the synthesis target that covers the static and dynamic functionalities discussed in the 

previous chapters.  The case studies presented in this chapter demonstrate the strong design 

versatility of the F2MC based cellular structure; they also demonstrate the capability of the 

synthesis procedure to select appropriate F2MC designs efficiently. 

 
 

 

Figure 6.13 Illustration of extending the dual cellular unit into a larger scale 
structure.  In this system, several pairs of fluidically connected, (AD) type of 
unit is assembled together into an active lattice. 

 

Finally, the outcome of this chapter advances the proposal at the end of previous 

chapter.  The multi-cellular synthesis of last chapter suggests that connecting more than 

three cells directly through fluidic circuit seems to make the system too complex to be 

analyzed and synthesized efficiently based on the analysis and synthesis model developed 

Fluidically connected F2MC pair Lattice linkage
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in this thesis work.  Therefore, it is suggested to focus on the design and synthesis of dual 

or triple cell system as a structural unit, and then incorporate these units mechanically into 

a larger-scale cellular structure.  This is essentially a hierarchical concept: the individual 

F2MC cell is the most basic structural level; the fluidically connected pair or triple is the 

higher level, in this level multiple-functions are achieved; and finally, the assembly of 

many F2MC pair is the highest level (an example is illustrated in figure 6.13).  The library 

of architectures from this chapter provides the guideline to integrate dual and triple cellular 

structure unit together into larger scale.  And the comprehensive synthesis procedure can 

be utilized to design the dynamic characteristics and static functionalities of these pairs 

individually, so that the overall structural performance can be tailored and optimized for 

various engineering applications.   

By this hierarchical approach focused on pairs or triples of fluidically connected 

cells, the rich list of adaptive functions from the F2MC based cellular structure can still be 

achieved with great versatility, while the complexity regarding to synthesis can be kept at 

a manageable level.  On the other hand, limiting the fluid circuits to every pair or triple of 

F2MC cells can increase implementation difficulty in practical applications, because more 

valves, pressure supplies and control units are needed for such de-centralized and distrib-

uted fluidic system, especially when the cellular structure is to be miniaturized.   The prac-

tical implementation is out of the scope of this thesis research, however it is recommended 

that the trade-off between performance versatility (the number of F2MC pairs or triples) 

and the practical implementation difficulty shall be considered for specific application re-

quirements.  
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Chapter 7                                                               

Concluding Remarks and Recommendation for Future Work 

7.1 Concluding remarks 

This thesis research takes the inspirations from plants to advance state of art of the F2MC 

based multi-cellular structure to achieve multi-functionalities concurrently.  It fosters a 

paradigm shift from individual cell oriented development to multiple-cell based study, 

where different F2MC cells can be fluidically connected.  This thesis brings major aca-

demic contributions with new analysis models, physical insights, and design methodolo-

gies that are never discussed before, and they are summarized as follows,  

 It develops a dynamic model to characterize the fluidic interaction be-

tween different F2MC cells that involves the cell wall anisotropy and 

fluid inertia, and discovers new functionalities from the F2MC based 

cellular structure. 

 By non-dimensionalizing the dynamic model, this thesis identifies crit-

ical performance parameters for the individual F2MC cell.  Based on 

these parameters, a performance space is constructed to explore the ver-

satility of the cellular structure, and the analysis and synthesis work is 

significantly simplified. 
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 It provides a library of architecture designs of the dual F2MC cellular 

structure unit based on rigorous mathematical principles.  These archi-

tectures could be practical guidelines for developing larger-scale cellu-

lar structures with many cells. 

 It derives comprehensive synthesis procedures for the F2MC based cel-

lular structure, so that appropriate designs parameters can be assigned 

to each cell in order to achieve different types of structural performance 

targets concurrently.  

These contributions are the fruits of four progressive research thrusts, and the potential 

impact of the F2MC based cellular structure is being manifested wider and deeper as the 

work progresses. 

In the first thrust (chapter 3), the dynamic characteristics of a dual F2MC cellular 

string structure are investigated, where the two cells differ from each other in fiber orien-

tation and they are connected through a simple internal flow port.  An analytical model is 

developed, analyzed, and experimentally tested in order to describe the dynamic character-

istics of the cellular structure, especially the interaction between different F2MC cells 

through fluidics.  Based on the analysis, two new dynamic functionalities are investigated: 

vibration absorber in a passive operation condition and in active operation, resonance ac-

tuation with an enhanced actuation authority within a designated frequency band.  This 

first thrust of research focuses on the parameter modeling and function analysis, it expands 

the list of feasible adaptive functions for the F2MC based structure; it also extends the study 

from static to dynamic regime.  



133 
 

The second thrust of the thesis research deepens our understanding of the physics 

behind the F2MC based dual-cellular structure, and it also brings the first attempt on syn-

thesis procedure (chapter 4).  A non-dimensional dynamic model is derived for the same 

dual cellular structure as in the first thrust.  Based on this model, it is learned that the overall 

dynamics of the cellular structure is directly correlated to three factors: the closed valve 

stiffness of the individual F2MC cell, the internal pressure difference between the cell, as 

well as the volume of static fluid displacement through the flow port.  Furthermore, based 

on the new model, three performance parameters are identified and experimentally verified 

for the individual F2MC cell.  The definition of these parameters reveals the most signifi-

cant design variable groups.  Utilizing these parameters can significantly simplify the math-

ematical derivation so that a synthesis problem can be developed.  This procedure can se-

lect appropriate F2MC design to reach a desired system pole and zero position (spectral 

data), which is closely related to the dynamic functionalities discussed in the first thrust.  

Case studies illustrate that for a set of desired spectral data, the corresponding F2MC de-

signs are not unique, forming a design space.  This non-uniqueness demonstrates the ver-

satility in the design of the F2MC cellular structure, and it also offers engineers the freedom 

to incorporate more design considerations for more sophisticated performance optimiza-

tion. 

In the third research thrust (chapter 5), the quest of deriving rigorous synthesis pro-

cedure is extended to the string cellular structure with more cells.  The non-dimensional 

dynamic model is extended based on the performance parameters of individual F2MC cells.  

This model is applicable to any number of F2MC cells and it helps reveal the linkage be-

tween the individual cell performance and the overall structural dynamics.  Based on this 
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model, a hybrid synthesis procedure for a multi-cellular structure is then developed.  This 

procedure combines Jacobi inverse eigenvalue problem (JIEP) solver and the genetic algo-

rithm with discrete variable in order to address the two technical challenges: 1) the com-

plicated nonlinear and under-determined relationship between cellular parameters and sys-

tem spectral data, and 2) the difficulty of implementing physical constraints onto F2MC 

designs.  The synthesis case studies demonstrate that the proposed procedure can effec-

tively select triple F2MC cellular design parameters to accurately achieve the target spectral 

data.  On the other hand, further case studies revealed that the proposed procedure is no 

longer accurate for structure with more than three cells.  This suggests that connecting more 

than three cells directly by an internal fluidic circuit may make the system too complex to 

be analyzed and synthesized efficiently.   

Following the conclusion from thrust 3, the last thrust of this research returns the 

focus to dual cellular structure to mature our knowledge base and synthesis methodologies 

in order to fulfill the original research vision of achieving multi-functionality concurrently 

(chapter 6).  This thrust of research consolidates the lessons and experiences from the pre-

vious thrusts, and identifies two crucial issues to be addressed: limited cellular structural 

design and limited synthesis targets.  To address the first issue, four unique types of archi-

tectures are identified for a dual cellular structure based on rigorous mathematical princi-

ples.  These architectures differ from each other based on the selection of fluidic and kin-

ematic connections between the two F2MC cells.  A list of unique architectures offers the 

engineers a comprehensive library to foster unique design of F2MC based structure for a 

variety of applications.  The equations of motion of the four architectures are derived and 
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experimentally tested.  To address the second issue, a more comprehensive synthesis pro-

cedure is developed, incorporating a variety of the synthesis target that covers the static 

and dynamic functionalities discussed in the previous thrusts.  Case studies demonstrate 

the strong design versatility of the F2MC based cellular structure; they also demonstrate 

the capability of the synthesis procedure to select appropriate F2MC designs efficiently. 

Many of the analysis on the dual cellular structures are experimentally tested, and 

during these experimental efforts, the variation of effective bulk modulus of the working 

fluid has significant effects on the system characteristics.  It is usually much lower than the 

2GPa ideal value, probably due to the entrapped air bubble in the fluid circuit as well as 

some un-modeled structure compliance, such as the elasticity of the flow port wall or dead 

fluid volume in the fluid circuit.  Since the effective bulk modulus has a significant influ-

ence of the system response, and the modulus values fluctuates among different test set ups 

thought out the thesis research, it is recommended to further investigate the root cause of 

the lower than ideal fluid modulus.  For this purpose, more sophisticated study in fluid 

mechanics within each cell, such as acoustic wave propagation, as well as the fluid-struc-

ture interaction might be necessary.  The simple flow port resistance model employed in 

the thesis also under-estimates the actual energy dissipation in the pulsating fluid flow be-

tween cells. To ensure a consistent performance, careful fluidic circuit design is necessary.  

This is not the core focus of the thesis research, but is recommended for practical applica-

tions. 

The analysis and synthesis results of this thesis research suggest a viable approach 

to develop larger-scale cellular structure with many F2MC cells for a more sophisticated 

functionality.  Instead of fluidically connecting many F2MC cells all together, it is more 
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efficient to assemble many pairs or triples of fluidically connected F2MC cells mechani-

cally into a larger scale structure, and utilize the synthesis tools from this thesis to design 

the structural performance based on the unit pairs or triples.  The static and dynamic func-

tionalities of these units can be tailored separately to fine-tune the performance of the over-

all structure.   

Therefore, in final conclusion, the deep physical knowledge, architectural design 

methodologies, and the comprehensive synthesis tools developed from this thesis research 

have successfully addressed the problem statements and advanced the state of art.  They 

fully manifested the rich functionality and designs versatility of the F2MC based cellular 

structure, and laid down a solid foundation for the bio-inspired, bottom-up, and hierarchical 

approach towards the larger-scale adaptive cellular structures.   The results of this thesis 

could foster the adoption of F2MC based structure to a variety of engineering applications 

with unique performance requirements, such as morphing air vehicles, soft robotics, as well 

as intelligent civil infrastructure.  Furthermore, the plant inspired cellular design principles 

in this thesis can be applied to other types of adaptive structure disciplines, such as piezo-

electric, shape memory alloy, or active honeycomb structures, creating broader impact to 

the discipline. 

7.2 Recommendation for future work 

 At the end of chapter 6, a viable approach to develop a larger-scale F2MC based 

cellular structure is proposed, such structure consists of many pairs and triples of fluidically 

connected F2MC cells.  Therefore, it is recommended that future research effort can focus 

onto the higher-level design methodology and synthesis tool development on such large-
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scale cellular structure.  It is essentially a hierarchical approach: the previous research on 

F2MC before this thesis was mainly on the most basic individual cell level; the current 

thesis work is mainly on the level of dual and triple cellular structural unit, where multi-

functionality can be achieved; and the future work can move to an even higher level.  There 

are two potential topics worthy investing.  The first topic is the topology layout.  When a 

large number of F2MC pairs, each with their own unique architectures, are assembled, it 

will be challenging to efficiently distribute and connect them.  A mathematical robust syn-

thesis procedure is necessary.  The second topic is to explore new functionalities from the 

large-scale structural layout.  There is a recent rise of research attention to the “meta-struc-

ture” or “meta-material” concept that can exhibit unique properties unseen from nature, 

such as negative stiffness or wave cloaking.  These unique properties are achieved by dis-

tributing “modules”, or basic structural elements, in a periodic pattern at a designated 

length scale.  The dual F2MC cellular unit, with its design versatility and rich functionality, 

could be a good candidate as a base module.  Brand new types of functionalities, other than 

those reported in this thesis, can be achieved by the large-scale cellular structure. 

This thesis research identified several design principles from the plant world to ad-

vance the state of art of the F2MC based structure.  Some of these principles are not limited 

to F2MC.  For example, the advantage of multi-cell layout can be exploited for other forms 

of cellular structure such as active honeycomb core; and the principle of fibrillar organiza-

tion and its differentiation can be applied to the shape memory alloy wire based structures.  

Therefore, it is recommended to extend the inspirations from plants to advance the devel-

opment of other types of adaptive structures. 
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Collaborative research is also recommended for future work, especially with mate-

rial scientist and biomedical engineering researchers.  The F2MC cell sample utilized in 

this study is relatively large, and developing robust technique to miniaturize the F2MC 

could open up new areas of potential application.  Furthermore, the synthesis case studies 

in this thesis suggest the importance of precision manufacturing, as the success of the syn-

thesis results relies on accurately fabricated F2MC cells.   Miniaturization and precision 

fabrication are not trivial on F2MC because of the elastomer based soft matrix material.  

Pumping and valve control is another essential element for the F2MC based structure per-

formance.  In the thesis, the usually bulky conventional valve and pumping techniques are 

utilized.  Plant inspired pumping and fluid circuit control technologies, such as osmosis, 

are being developed by the biomedical engineers, and it is recommended to integrate such 

technologies seamlessly with the F2MC based cellular structures in the future. 
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Appendix A                                                               

Uniform Pressure Assumption in a Single F2MC Cell 

Throughout the analysis of the F2MC cell wall constitutive relationship, the working fluid 

pressure is always assumed to be uniform inside the cell, so that pressure gradients only 

exist between the two ends of the thin flow port.  This is essentially a low frequency as-

sumption, because at a higher frequency the fluid pressure propagation might form a higher 

order standing wave within.  Therefore, it is necessary to estimate the frequency bandwidth 

where such uniform pressure assumption is correct.  To do this, one can compare the pres-

sure propagation wavelength to the F2MC cell length.  And the uniform pressure assump-

tion should be accurate if the cell length is smaller than a quarter of the wavelength, which 

corresponds to the first fundamental fluidic standing wave mode. 

This thesis adopts the work of Kuiken (1984) to estimate the wavelength.  In his 

work the linearly compressible fluid is assumed to be confined in a long, thin-walled, elas-

tically orthotropic circular tube with pre-stress and static internal pressure.  This is quite 

close to the case of F2MC.  Denote k  as the ratio between wave phase velocity c and a 

reference velocity 0c  0 ,k c c  the dispersion equation for wave propagation can be writ-

ten as an algebraic equation of k  in fourth order: 
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where the various parameters in this equation are defined as  
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where  nJ x  in equation (A2) is the nth order Bessel function of type J, and ijB   in equa-

tion (A2-A7) are related to the cell wall laminate elastic modulus as follows: 
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where ,xE  ,E  x , and   are the laminate axial elastic modulus, circumferential modu-

lus, and Poisson’s ratio, respectively.  These values can be calculated based on the three-

dimensional laminate theory proposed by Sun (1998). 

rK   and xK   are related to the cell well inertia, and xS  and S   in equation (A2-A7) 

are related to the static pre-stress inside of the F2MC cell, 
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Other parameters in equation (A1) are defined as follows, 
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where ω is the angular frequency; 0c  and  Tc  are the reference velocity and thermody-

namic speed of sound, respectively: 
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Equation (A1) can then be solved for k , and the pressure propagation wavelength 

is simply calculated as 
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where 1k  is the real part of the first root of k  in equation (A1).  Note that the wavelength 

calculation is a low-frequency estimation and is accurate only when 2 1.   

The wavelength estimation in this appendix is not intended to be a comprehensive 

investigation on the fluid-structural interaction inside of the F2MC cell wall, so it serves 

only to provide a rule-of-thumb estimate on the frequency bandwidth where the uniform-

pressure assumption is valid.  To assist this analytical estimation, a simple experiment is 

carried out in parallel.  In this experiment, a piezoelectric dynamic pressure transducer 

(PCB 101A06) is connected to the end of a F2MC cell which is filled with working fluid 

and attached to an end mass, and the cell is kept at closed valve state.  An accelerometer is 

attached to the end mass with a shaker providing frequency sweep excitation (figure A1).  

If the uniform pressure assumption holds valid as in equation (3.19 and 20), the accelera-

tion to pressure oscillation relationship ( x p ) should be simply: 
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which would show up as a parabola curve in the x p  versus frequency plot. 
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Figure A1 Experiment setup to test the bulk pressure assumption.  The purpose 
of this experiment is to measure the ratio of end mass acceleration to the dy-
namic internal pressure oscillation at different frequency.

 

Figure A2 summarize the wavelength calculation based on (A1) and experiment 

results from two sample F2MC cells; the material properties of these two sampled are sum-

marized in table A1 (these two F2MC samples come from the experiment efforts in chapter 

4).  As can been seen, the bulk-pressure assumption holds valid until the frequency of in-

terest increase to about 70-100Hz.  At this frequency range, the quarter wavelength de-

creases to the sample length, and the acceleration to pressure ratio starts to deviate from 

the ideal parabola curve defined by equation (A19).  While adjusting some system param-

eters can increase the uniform pressure frequency bandwidth, such as decreasing the F2MC 

cell length, it is still recommended, based on the available F2MC samples, that the fre-

quency of interest throughout this thesis research will be limited below 100Hz, and the 

analysis in this appendix should be applied to different F2MC cellular structure set-up to 

guarantee the accuracy of the uniform pressure assumption. 

m
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Figure A2 Wave length calculation based on equation (A1), and corresponding
experiment verification results.  (a1): the acceleration to pressure ratio of the 
±70º F2MC sample, the measurement data starts to deviate from the uniform 
pressure estimate at about 100Hz, indicating that some higher order fluid dy-
namic starts to occur above this frequency.  (a2): The wavelength calculation 
inside of the ±70º F2MC sample; the quarter wave length is very close to tube 
length at 100Hz, which agrees with the experiment.  The experiment and anal-
ysis on the ±40º F2MC sample in (b1) and (b2), respectively, give similar ob-
servation at about 75Hz.

 

 
Table A1 Material parameters for calculating the fluid wave speed. 

Properties Value Properties Value

E1 (figure 2.1) 120 GPa E2, E3 (figure 2.1) 50 MPa
Cell radius (a) 10 mm Cell wall thickness (h) 2.7 mm

Fluid density (ρ) 1000 kg/m3 Cell wall density (ρw) 1100 kg/m3

Fluid bulk modulus (Bk) 20 MPa Dynamic viscosity (μ) 1.002×10-3 Pa sec
Internal pre-pressure (pi) 138 KPa Axial pre-stress (Nx) 70 N
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Appendix B                                                               

Derivation of A, B, C, and D in (3.19 and 20) 
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Appendix C                                                               

Effects of Flow Port Intrusion into F2MC Cell 

To estimate the effects of flow port intrusions onto the dynamic characteristics of the sys-

tem, one can derive the transfer function of the proposed dual cell string structure with the 

flow port transfer matrix in equation (3.24) in Laplace (frequency) domain. 

The system transfer function can be obtained by combining the F2MC cellular con-

stitutive relationship equation (3.19 and 20), the flow port equation considering the intru-

sion (3.21, 24 and 25) and the end mass dynamic equation as follows, 
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where X is the magnitude of end mass displacement, 1 1 2 2X l l    (assuming the two 

F2MC cell have the same length l).  Denote a parameter related to the effects from intrusion 

as, 
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The transfer function can be written as polynomial function of ω: 
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The constants for the polynomials are as follows:  
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As can be seen from the underlined part of these equations, the intrusion parameter 

1  and 2  always come in pair with 1A  or 2A .  Therefore, if the value of 1 , 2  is a mag-

nitude smaller than 1A , 2A , the effects of flow port intrusion is negligible.  Similar to the 

recommendation at the end of appendix A, it is also recommended that this intrusion pa-

rameter be estimated for different F2MC based cellular structure design to guarantee that 

the simple flow port equation employed in the thesis research is valid. 
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Appendix D                                                               

Measure the Constitutive Parameters of F2MC Cell  

When the F2MC cell is empty, the internal pressure p is zero, so the experimental set up in 

figure 4.4 can be treated as a simple spring-mass oscillator, in which the equivalent spring 

stiffness of the F2MC cell ( eK ) is calculated directly from the measured natural frequency: 
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where eK  is related to the dimensionless parameter ̂   as follows  

 

2

ˆ ,e

i

K g

a E



  (D2)

 

which gives equation (4.19).  When the F2MC cell is filled with working fluid as in figure 

4.4, the system equation in (4.5, 6, 13, and 15) can be simplified as: 
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Then the zero for ˆˆ
ef  can be calculated as   1
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  where the dimension-

less frequency ˆ z and port inertance êI  is related to their full dimensional values as fol-

lows, 
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(D3) and (D4) together give (4.20). 
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Appendix E                                                               

MATLAB Script of the Multiple Cellular Structure Synthesis 

% =================================================================== % 
% This is the master synthesis routine for the multi F2MC-cellular    %  
% string structure to achieve a prescribed spectral data. This script % 
% is applicable to a string structure with any number of cells.  But  % 
% case study proved it most accurate for triple cell structure.       % 
% =================================================================== % 
 
function [SOL] = TriCellSyn() 
% reset the system                                                    % 
clear; 
clc; 
close all; 
  
% ============ Initialize the cellular structural design ============ % 
n      = 3;                     % number of cells                     % 
ri     = 0.01;                  % F2MC cell inner radius (m)          % 
g      = 20;                    % cell geometric shape aspect ratio   % 
l      = ri*g;                  % cell length (m)                     %  
m      = 0.20;                  % end mass (kg)                       % 
rho    = 1000;                  % working fluid density (kg/m^3)      % 
lf     = 0.20;                  % flow port length (m)                % 
lr     = 0.005;                 % flow port radius (m)                % 
E2     = 50e6;                  % fiber ply transverse modulus (Pa)   % 
Bk     = 20e6;                  % fluid bulk modulus (Pa)             % 
         
M      = m/rho/ri^3;            % normalized end mass                 % 
I      = pi*lf*ri/lr^2;         % normalized flow port inertia        % 
tau    = ri*sqrt(rho/pi/E2);    % time unit (s)                       % 
  
Msys   = [M 0 0; 0 I 0; 0 0 I]; % normalized inertia matrix           % 
  
%% ================== Construct the Omega space ===================== % 
N      = 50;                    % size of each parametric sub-space   % 
id1    = 1:N; 
id2    = N+1:2*N; 
id3    = 2*N+1:3*N; 
[ang,era,wth] = designvar(N);   % the physical variables              % 
% max(E1/E2) = 3000; min(E1/E2) =  50;                                % 
% max(c1/c2) = 0.95; min(c1/c2) = 0.6;                                % 
 
% prelocate the 148x50x50 grid that will span the Omega space         %     
a       = zeros(3*N,N,N);       % alpha value of the 3D grid          % 
b       = zeros(3*N,N,N);       % beta value of the 3D grid           % 
d       = zeros(3*N,N,N);       % delta value of the 3D grid          % 
  
% Calculate the Omega space based on "ang" "era" and "wth" values     % 
[a(id1,:,:),b(id1,:,:),d(id1,:,:)] = ... 
    paraspace(ri,l,Bk,E2,ang(1,:),era(1,:),wth(1,:)); 
[a(id2,:,:),b(id2,:,:),d(id2,:,:)] = ... 
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    paraspace(ri,l,Bk,E2,ang(2,:),era(2,:),wth(2,:)); 
[a(id3,:,:),b(id3,:,:),d(id3,:,:)] = ... 
    paraspace(ri,l,Bk,E2,ang(3,:),era(3,:),wth(3,:)); 
  
% Note: the data of a, b, d, can be saved for future                  %  
% synthesis, so that they don’t need to be calculated every time.     % 
save('a.mat','a'); 
save('b.mat','b'); 
save('d.mat','d'); 
 
% Delete the redundant data in a b and d                              % 
a(101,:,:) = []; 
a(51,:,:)  = []; 
b(101,:,:) = []; 
b(51,:,:)  = []; 
d(101,:,:) = []; 
d(51,:,:)  = []; 
  
% ============== Adjust the bulk modulus on alpha  ================== % 
a      = a  + E2/Bk; 
  
%% ===================== Genetic Algorithm ========================== % 
% Spectral data target, this is specifically for three-cell string    % 
pztar   = [40; 60; 80; 50; 70]; 
  
ldt     = (pztar(1:3)*2*pi*tau).^2; % normalized pole positions       % 
mut     = (pztar(4:5)*2*pi*tau).^2; % normalized zero positions       % 
  
margn   = 2; 
lb      = ones(1,3*n) + margn;  % lower index bound for GA code       % 
ub      = repmat([148 50 50],[1 n])- margn;  % upper index bound      % 
intcon  = 1:3*n;                % define the integer variables        % 
popsiz  = 200;                  % define population size for GA       % 
 
% assign the genetic algorithm conditions                             % 
gaopt   = gaoptimset('Display','off',... 
                     'Populationsize',popsiz,... 
                     'Generations',400,... 
                     'TolFun',1e-12,... 
                     'MigrationFraction',0.2,... 
                     'FitnessScalingFcn',@fitscalingtop,... 
                     'CrossoverFraction',0.5,... 
                     'PopInitRange',[1 1 1 1 1 1 1 1 1;... 
                                     148 50 50 148 50 50 148 50 50],... 
                     'vectorized','on',...' 
                     'UseParallel','always',... 
                     'PlotFcns',@gaplotbestf,... 
                     'StallGenLimit',100);       
  
 
% define the object function for the genetic algorithm                % 
G       = @(x)ind2res(x,a,b,d,Msys,tau,g,pztar); 
% global optimization toolbox in MATLAB 2011b or above is required    % 
disp('Running genetic algorithm...') 
  
ncand   = 500;                  % number of candidate designs         % 
elite   = 10;                   % count of the elite individuals      % 
gacand  = zeros(100,3*n+1); 
  
for ii = 1:(ncand/elite) 
    gapop   = zeros(popsiz,3*n+1); 
    % running genetic algorithm                                       % 
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    [~, ~, ~,~,gapop(:,2:end),gapop(:,1)] =... 
           ga(G,3*n,[],[],[],[],lb,ub,[],intcon,gaopt); 
    gapop  = sortrows(gapop,1); % sort the final population by score  % 
    gacand((ii-1)*elite+1:ii*elite,:) = gapop(1:elite,:); 
end 
  
gacand  = sortrows(gacand,1); 
  
% delete the repeated candidates in the genetic algorithm population  % 
ref     = gacand(1,1); 
for jj = 2:ncand 
    if gacand(jj,1) == ref 
        gacand(jj,1) = 0; 
    else ref = gacand(jj,1); 
    end 
end 
gacand(gacand(:,1) == 0,:) = []; 
  
%% ============= calculate the final design candidate =============== % 
siz    = size(gacand,1); 
SOL    = zeros(siz,3*n+2); 
chk    = zeros(siz,n); 
SOL0   = zeros(siz,3*n);        % initial population for fsolve       %     
scl    = [10 10 1];             % scale factor for delta values       % 
  
% Translate the GA results from indecies to constitutive parameters   % 
for ii = 1:n 
    id     = (ii-1)*3+1; 
    SOL0(:,id)   = a(sub2ind(size(a),... 
                   gacand(:,id+1),gacand(:,id+2),gacand(:,id+3))); 
    SOL0(:,id+1) = b(sub2ind(size(b),... 
                   gacand(:,id+1),gacand(:,id+2),gacand(:,id+3))); 
    SOL0(:,id+2) = d(sub2ind(size(d),... 
                   gacand(:,id+1),gacand(:,id+2),gacand(:,id+3))); 
end 
  
  
for ii = 1:siz 
    disp(['lookup ', num2str(ii), 'th candidate...']) 
    % the object function to calculate final design candidate.        % 
    F      = @(X)Eig2Cell(X,ldt,mut,g,Msys,tau); 
      
 
    fopt   = optimset('Disp','off',... 
                      'Algorithm',{'levenberg-marquardt',.1},... 
                      'MaxFunEvals',8000,'TolFun',1e-6,... 
                      'FinDiffType','central','FunValCheck','on',... 
                      'ScaleProblem','Jacobian'); 
  
    % solving for the final solution                                  % 
    [SOL(ii,3:end),~,~] = fsolve(F,SOL0(ii,:),fopt); 
  
    % checking for the accuracy of the final solutions                % 
    SOL(ii,2) = sqrt(F(SOL(ii,3:end))'*F(SOL(ii,3:end))); 
   
    % checking if the final design candidate is in Omega              % 
    for jj = 1:n 
        id         = 3*(jj-1)+3; 
        chk(ii,jj) = chkOmega(SOL(ii,id), SOL(ii,id+1), SOL(ii,id+2),... 
                     a,b,d,N,scl,n); 
    end 
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    if sum(chk(ii,:)) == n 
        SOL(ii,1) = 1; 
    end 
  
end 
  
% take away the results that are not in Omega                         % 
SOL(SOL(:,1)==0,:) = []; 
SOL(1:2,:) = []; 
  
% =================================================================== % 
% the output SOL is a matrix.  Each row of this matrix are an a-b-d   % 
% values of the feasible triple cellular structure designs.           % 
% Multiple rows means that multiple designs are found for the target  % 
% spectral data.                                                      % 
% =================================================================== % 
  
end % end of main function                                            % 
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function [ang,era,wth] = designvar(N) 
% =================================================================== % 
% This is the subroutine to construct the F2MC physical variables     % 
% =================================================================== % 
erai   = 50; 
eraf   = 3000; 
wthi   = 0.6; 
wthf   = 0.95; 
  
% set up the physical variables                                       % 
Q      = (1:N)'-1;   
q_ang1 = (30/1)^(1/(N-1));      % ratio of geometric series (angle)   %             
ang1   = 1*ones(N,1).*(q_ang1.^(Q)); % array of fiber angle           % 
q_ang2 = (50/30)^(1/(N-1));     % ratio of geometric series (angle)   %              
ang2   = 30*ones(N,1).*(q_ang2.^(Q));% array of fiber angle           % 
q_ang3 = (89/50)^(1/(N-1));     % ratio of geometric series (angle)   %             
ang3   = 50*ones(N,1).*(q_ang3.^(Q));% array of fiber angle           % 
ang = [ang1';ang2';ang3']; 
 
  
q_era  = (eraf/erai)^(1/(N-1)); % ratio of geometric series (E1/E2)   % 
era    = erai*ones(N,1).*(q_era.^(Q)); % array of E1/E2 ratio         % 
era    = [era';era';era']; 
  
wth    = (wthi:(wthf-wthi)/(N-1):wthf);% array of wall thickness ratio% 
wth    = [wth;wth;wth]; 
  
end % end of subroutine "desinvar"                                    % 
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function [a,b,d] = paraspace(ai,len,~,E2,ang,era,wth) 
% =================================================================== % 
% This is the subroutine to calculate the parametric (Omega) space    % 
% =================================================================== % 
N      = length(ang);           % size of the parametric space        % 
% initialize the parametric space                                     % 
a      = zeros(N,N,N); 
b      = zeros(N,N,N); 
d      = zeros(N,N,N); 
  
% populate the whole parametric space                                 % 
disp('Populating the parametric space...') 
for i = 1:N 
    for j = 1:N 
        for k = 1:N 
            cpara  = cellpa(ang(i),ai,ai/wth(k),len,E2,era(j)); 
            % dimensionless constitutive parameters                   % 
            a(i,j,k) = cpara(1)*E2/(pi*ai^2*len); 
            b(i,j,k) = cpara(2)/(pi*ai^2*len); 
            d(i,j,k) = cpara(4)/pi/E2/ai^2; 
        end 
    end 
end 
  
end % end of subroutine "paraspace"                                   % 
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function [cpara] = cellpa(fang,a1,a2,l,E2,ER21) 
%  =================================================================  % 
%  This subroutine calculate the constitutive parameters of a single  %     
%  F2MC cell based on Lekhniski's solution (chapter 3 and 4)          % 
%  V^net_k = alpha_k*p_k+beta_k*e_k                                   % 
%  f_k     = gamma_k*(1+ii*etap_k)*p_k+delta_k*(1+ii*etaE_k)*e_k      % 
%  =================================================================  % 
  
%    I. ply dynamic modulus                                           % 
%  eta2 are back calculated from experiments                          %  
eta2   = 0.4; 
%  estimating the ply modulus                                         % 
E11    = ER21*E2; 
E22    = E2; 
E33    = E22; 
G12    = 0.8*E2;                                                                    
v12    = 0.33; 
v23    = 0.93; 
G23    = E22/2/(1+v23); 
v13    = 0.33; 
%  estimating other loss factors                                      % 
eta11  = 0.011; 
eta12  = eta2; 
eta22  = eta2; 
eta33  = eta22; 
  
plyEij = [E11,E22,E33,G12,v12,v13,v23,G23];  % ply level Eij value    % 
cellge = [fang,a1,a2,l];                     % cell geometry          % 
etaij  = [eta11,eta12,eta22,eta33];          % loss coeffcient in ply % 
  
%    II. laminate elastic modulus                                     % 
[lamaij] = FMCini(plyEij,cellge); 
%  The output is aij in following format                              % 
%  lamaij = [arr ,art ,arx ;                                          % 
%            atr ,att ,atx ;                                          % 
%            axr ,axt ,axx];                                          % 
  
%    III. internal absolute volume change                             % 
%  vk  = ak*pk+bk*ek (a is alpha and b is beta )                      % 
%  Fk  = ck*pk+dk*ek (c is gamma and d is delta)                      % 
[a,b,c,d]  = F2MC(lamaij,cellge); 
  
%    IV. cell damping coefficient                                     % 
[etae, etap] = FMCdam(plyEij,cellge,lamaij,etaij); 
cpara  = [a,b,c,d,etap,etae]; 
end % end of subroutine "cellpa"                                      % 
  
  
  



157 
 

% "FMCini" are adapted and optimized from the work of Shan (2006)     % 
function [C]   = FMCini(plyEij,cellge) 
% Initiate the FMC tube elastic properties w.r.t global coordinates   % 
E11    = plyEij(1);      
E22    = plyEij(2);      
G12    = plyEij(4);      
v12    = plyEij(5); 
v23    = plyEij(7);      
G23    = plyEij(8); 
angle  = cellge(1); 
  
FiberAngle  = [angle,-angle,-angle,+angle]; 
PlyNum      = length(FiberAngle); 
Layer_Thickness     = [1,1,1,1]; 
Total_Thickness     = sum(Layer_Thickness); 
  
V      = ((1+v23)*(1-v23-2*v12^2*E22/E11)); 
c11    = (1-v23^2)*E11/V; 
c12    = v12*(1+v23)*E22/V; 
c13    = c12; 
c23    = (v23+v12^2*E22/E11)*E22/V; 
c22    = (1-v12^2*E22/E11)*E22/V; 
c33    = c22; 
c44    = G23; 
c55    = G12; 
c66    = c55; 
  
C0=[c11,c12,c13,0  ,0  ,0  ; 
    c12,c22,c23,0  ,0  ,0  ; 
    c13,c23,c33,0  ,0  ,0  ; 
    0  ,0  ,0  ,c44,0  ,0  ; 
    0  ,0  ,0  ,0  ,c55,0  ; 
    0  ,0  ,0  ,0  ,0  ,c66]; 
  
a = 0;     
b = 0;     
c = 0; 
  
for k=1:PlyNum 
     
    theta = FiberAngle(k)*pi/180; 
    vk    = Layer_Thickness(k)/Total_Thickness; 
     
    m     = cos(theta); 
    n     = sin(theta); 
     
    T_s   = [m^2 ,n^2 ,0  ,0  ,0  ,2*m*n ; 
             n^2 ,m^2 ,0  ,0  ,0  ,-2*m*n; 
             0   ,0   ,1  ,0  ,0  ,0     ; 
             0   ,0   ,0  ,m  ,-n ,0     ; 
             0   ,0   ,0  ,n  ,m  ,0     ; 
            -m*n ,m*n ,0  ,0  ,0  ,(m^2-n^2)]; 
        
  
  
  
    T_e   = [m^2 ,n^2 ,0  ,0  ,0  ,m*n   ;  % w.r.t. engineering strain 
             n^2 ,m^2 ,0  ,0  ,0  ,-m*n  ; 
             0   ,0   ,1  ,0  ,0  ,0     ; 
             0   ,0   ,0  ,m  ,-n ,0     ; 
             0   ,0   ,0  ,n  ,m  ,0     ; 
            -2*m*n,2*m*n,0,0  ,0  ,(m^2-n^2)]; 
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    C     = T_s\C0*T_e; 
     
    delta_k = C(4,4)*C(5,5)-(C(4,5))^2; 
    a = a+vk*C(4,4)/delta_k; 
    b = b+vk*C(5,5)/delta_k; 
    c = c+vk*C(4,5)/delta_k; 
     
end  
  
delta   = a*b-c^2; 
  
% the following is for the calculation of Cij % 
  
C_bar   = zeros(6,6); 
  
for k=1:PlyNum 
     
    theta   = FiberAngle(k)*pi/180; 
    vk      = Layer_Thickness(k)/Total_Thickness; 
     
    m       = cos(theta); 
    n       = sin(theta); 
     
    T_s   = [m^2 ,n^2 ,0  ,0  ,0  ,2*m*n ; 
             n^2 ,m^2 ,0  ,0  ,0  ,-2*m*n; 
             0   ,0   ,1  ,0  ,0  ,0     ; 
             0   ,0   ,0  ,m  ,-n ,0     ; 
             0   ,0   ,0  ,n  ,m  ,0     ; 
             -m*n ,m*n ,0  ,0  ,0  ,(m^2-n^2)]; 
         
    T_e   = [m^2 ,n^2 ,0  ,0  ,0  ,m*n   ;   
             n^2 ,m^2 ,0  ,0  ,0  ,-m*n  ; 
             0   ,0   ,1  ,0  ,0  ,0     ; 
             0   ,0   ,0  ,m  ,-n ,0     ; 
             0   ,0   ,0  ,n  ,m  ,0     ; 
             -2*m*n,2*m*n,0,0  ,0  ,(m^2-n^2)]; 
     
    C = T_s\C0*T_e; 
     
    delta_k = C(4,4)*C(5,5)-(C(4,5))^2; 
     
    C_bar(1,1)  = C_bar(1,1)+vk*C(1,1); 
    C_bar(1,2)  = C_bar(1,2)+vk*C(1,2); 
    C_bar(1,3)  = C_bar(1,3)+vk*C(1,3); 
    C_bar(1,6)  = C_bar(1,6)+vk*C(1,6); 
     
    C_bar(2,1)  = C_bar(1,2); 
    C_bar(2,2)  = C_bar(2,2)+vk*C(2,2); 
    C_bar(2,3)  = C_bar(2,3)+vk*C(2,3); 
    C_bar(2,6)  = C_bar(2,6)+vk*C(2,6); 
     
    C_bar(3,1)  = C_bar(1,3); 
    C_bar(3,2)  = C_bar(2,3); 
    C_bar(3,3)  = C_bar(3,3)+vk*C(3,3); 
    C_bar(3,6)  = C_bar(3,6)+vk*C(3,6); 
     
    C_bar(6,1)  = C_bar(1,6); 
    C_bar(6,2)  = C_bar(2,6); 
    C_bar(6,3)  = C_bar(3,6); 
    C_bar(6,6)  = C_bar(6,6)+vk*C(6,6); 
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    C_bar(4,4)  = C_bar(4,4)+vk*C(4,4)/delta_k/delta; 
    C_bar(4,5)  = C_bar(4,5)+vk*C(4,5)/delta_k/delta; 
    C_bar(5,4)  = C_bar(4,5); 
    C_bar(5,5)  = C_bar(5,5)+vk*C(5,5)/delta_k/delta; 
end 
  
S_bar   = inv(C_bar);       % compliance matrixn % 
  
Ex  = 1/S_bar(1,1); 
Ey  = 1/S_bar(2,2); 
Ez  = 1/S_bar(3,3); 
Vyz = -S_bar(2,3)/S_bar(2,2); 
Vxz = -S_bar(3,1)/S_bar(1,1); 
Vxy = -S_bar(2,1)/S_bar(1,1); 
  
EE1 = Ez; 
EE2 = Ey; 
EE3 = Ex; 
  
nu12 = Vyz*Ez/Ey; 
nu13 = Vxz*Ez/Ex; 
nu23 = Vxy*Ey/Ex; 
  
a11 = 1/EE1; 
a12 = -nu12/EE1; 
a13 = -nu13/EE1; 
a22 = 1/EE2; 
a23 = -nu23/EE2; 
a33 = 1/EE3; 
  
C   = [a11 ,a12 ,a13 ; 
       a12 ,a22 ,a23 ; 
       a13 ,a23 ,a33]; 
end % end of subroutine "F2MCini"                                     % 
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% "FMC" are adapted and optimized from the work of Shan (2006)        % 
function [a,b,c,d] = F2MC(lamaij,cellge) 
arr    = lamaij(1,1);        
art    = lamaij(1,2);       
arx    = lamaij(1,3);      
att    = lamaij(2,2);      
atx    = lamaij(2,3);    
axx    = lamaij(3,3); 
  
betarr = arr-arx^2/axx; 
betatt = att-atx^2/axx; 
betart = art-arx*atx/axx; 
k      = sqrt(betarr/betatt); 
h      = (atx-arx)/(betarr-betatt); 
  
a1     = cellge(2); 
a2     = cellge(3); 
l      = cellge(4); 
C      = a1/a2; 
Vo     = pi*a1^2*l; 
  
  
%  a, b, c, and d are calculated in full dimension                    % 
a = (-2*betart+2*k*betatt*(1+C^(2*k))/(1-C^(2*k)))*Vo; 
b = (2*h/axx*betatt*((k+1)-2*k*C^(k-1)+C^(2*k)*(k-1))/(1-C^(2*k))... 
         +2*atx/axx+1)*Vo;  
c = 2*a1^2*pi/axx*((-arx-k*atx)/(k+1)*(C^(k-1)-C^(2*k))/(1-C^(2*k))+... 
         (arx-k*atx)/(k-1)*(1-C^(k-1))/(1-C^(2*k))-axx/2); 
d = 2*a1^2*pi/axx^2*(h*(arx+atx*k)/(k+1)*(C^k-1/C)^2/(1-C^(2*k))+... 
         h*(arx-atx*k)/(k-1)*(1-C^(k-1))^2/(1-C^(2*k))+... 
         (axx-h*(arx+atx))*(C^(-2)-1)/2);    
  
end % end of subroutine F2MC                                          % 
  
  
  
  



161 
 

% "FMCdam" are adapted and optimized from the work of Shan (2006)     % 
function [etae,etap] = FMCdam(plyEij,cellge,lamaij,etaij) 
E11    = plyEij(1);      
E22    = plyEij(2);      
G12    = plyEij(4);      
v12    = plyEij(5); 
fang   = cellge(1); 
 
eta11  = etaij(1); 
eta12  = etaij(2); 
eta22  = etaij(3); 
eta33  = etaij(4); 
  
m      = cos(fang/180*pi); 
n      = sin(fang/180*pi); 
  
v21    = E22*v12/E11; 
Q11    = E11/(1-v12*v21); 
Q12    = v21*E11/(1-v12*v21); 
Q22    = E22/(1-v12*v21); 
Q66    = G12; 
  
Q11bar = Q11*m^4+2*(Q12+2*Q66)*n^2*m^2+Q22*n^4; 
Q12bar = (Q11+Q22-4*Q66)*n^2*m^2+Q12*(n^4+m^4); 
Q22bar = Q11*n^4+2*(Q12+2*Q66)*n^2*m^2+Q22*m^4; 
Q16bar = (Q11-Q12-2*Q66)*m^3*n-(Q22-Q12-2*Q66)*m*n^3; 
Q26bar = (Q11-Q12-2*Q66)*m*n^3-(Q22-Q12-2*Q66)*m^3*n; 
Q66bar = (Q11+Q22-2*Q12-2*Q66)*n^2*m^2+Q66*(n^4+m^4); 
  
Qbar   = [ Q11bar Q12bar Q16bar; 
           Q12bar Q22bar Q26bar; 
           Q16bar Q26bar Q66bar]; 
  
arr    = lamaij(1,1);        
art    = lamaij(1,2);       
arx    = lamaij(1,3);      
att    = lamaij(2,2);      
atx    = lamaij(2,3);    
axx    = lamaij(3,3); 
betarr = arr-arx^2/axx; 
betatt = att-atx^2/axx; 
k      = sqrt(betarr/betatt); 
h      = (atx-arx)/(betarr-betatt); 
  
a1     = cellge(2); 
a2     = cellge(3); 
C      = a1/a2; 
  
Qs     = [ m^2  n^2    2*m*n; 
           n^2  m^2   -2*m*n; 
          -m*n  m*n  m^2-n^2]; 
       
Qe     = [    m^2    n^2  0; 
              n^2    m^2  0; 
           -2*m*n  2*m*n  0]; 
  
no     = 100; 
t      = (1-C)/no; 
r      = (C+t/2):t:(1-t/2); 
  
A1     = C^(k+1)/(1-C^(2*k))*r.^(k-1); 
A2     = C^(k+1)/(1-C^(2*k))*r.^(-k-1); 
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A3     = (1-C^(k+1))/(1-C^(2*k))*r.^(k-1); 
A4     = (1-C^(k-1))/(1-C^(2*k))*C^(k+1)*r.^(-k-1); 
Pr     = A1-A2; 
Qr     = (1-A3-A4)*h/axx; 
Rt     = (-arx*atx+art*axx-atx^2*k+att*axx*k)/axx*A1+... 
         (arx*atx-art*axx-atx^2*k+att*axx*k)/axx*A2; 
Rr     = -(arx^2+arx*atx*k-axx*(arr+art*k))/axx*A1+... 
         (arx^2-arr*axx-arx*atx*k+art*axx*k)/axx*A2; 
Sr     = h*(arx^2+arx*atx*k-axx*(arr+art*k))/axx^2*A3+... 
         h*(arx^2-arr*axx-arx*atx*k+art*axx*k)/axx^2*A4+... 
         (-arx^2*h+(arr+art)*axx*h+arx*(axx-atx*h))/axx^2; 
St     = h*(arx*atx-art*axx+(atx^2-att*axx)*k)/axx^2*A3+... 
         h*(arx*atx-art*axx-atx*atx*k+att*axx*k)/axx^2*A4+... 
         (-atx^2*h+(art+att)*axx*h+atx*(axx-arx*h))/axx^2; 
  
Pr     = reshape(Pr,[1,1,no]); 
Qr     = reshape(Qr,[1,1,no]); 
Rr     = reshape(Rr,[1,1,no]); 
Rt     = reshape(Rt,[1,1,no]); 
Sr     = reshape(Sr,[1,1,no]); 
St     = reshape(St,[1,1,no]); 
Sx     = ones([1,1,no]); 
S1     = [Sx;St;zeros(1,1,no);Sr]; 
S2     = [Sx;St;zeros(1,1,no);Qr]; 
S3     = [zeros(1,1,no);Rt;zeros(1,1,no);Rr]; 
S4     = [zeros(1,1,no);Rt;zeros(1,1,no);Pr]; 
QE     = [Qe zeros(3,1); zeros(1,3) 1]; 
QS     = [Qs*Qbar zeros(3,1); zeros(1,3) 1]; 
Ue     = zeros(4,1,no); 
dUe    = zeros(4,1,no); 
Up     = zeros(4,1,no); 
dUp    = zeros(4,1,no); 
  
Eta    = [eta11     0     0     0; 
              0 eta22     0     0; 
              0     0 eta12     0; 
              0     0     0 eta33]; 
            
for i = 1:length(r) 
      Ue(:,:,i) = pi*abs((QE*S1(:,:,i)).*(QS*S2(:,:,i)))*r(i)*t; 
     dUe(:,:,i) = Eta*Ue(:,:,i); 
Up(:,:,i) = pi*abs((QE*S3(:,:,i)).*(QS*S4(:,:,i)))*r(i)*t; 
     dUp(:,:,i) = Eta*Up(:,:,i); 
end 
etae = sum(sum(dUe))/sum(sum(Ue)); 
etap = sum(sum(dUp))/sum(sum(Up)); 
  
end % end of subroutine "FMCdam"                                      % 
 
function [pzres] = ind2res(X,A,B,D,Msys,tau,g,pztar) 
% =================================================================== % 
% This is a subroutine that calculates the error towards target       % 
% spectral data set based on equation (5.21)                          % 
% =================================================================== % 
n      = size(X,2)/3; 
Y      = zeros(size(X)); 
  
for ii = 1:n 
% translating the grid idex to actual values                          % 
    id     = (ii-1)*3+1; 
    Y(:,id)   = A(sub2ind(size(A),X(:,id),X(:,id+1),X(:,id+2))); 
    Y(:,id+1) = B(sub2ind(size(B),X(:,id),X(:,id+1),X(:,id+2))); 
    Y(:,id+2) = D(sub2ind(size(D),X(:,id),X(:,id+1),X(:,id+2))); 
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end 
  
% calculating the stiffness matrix                                    % 
K      = Cell2K(Y,g); 
  
% constructing the Jacobi matrix array                                % 
sizK   = size(K); 
J1     = reshape((Msys^-.5)*K(:,:),[n sizK(2:end)]); 
dJ     = ndims(J1); 
Jt     = reshape(permute(J1, [1 3:dJ 2]),[prod(sizK)/sizK(2) sizK(2)]); 
J      = Jt*(Msys^-.5); 
J      = permute(reshape(J, [sizK([1 3:dJ]) n]), [1 dJ 2:dJ-1]); 
  
% calculating the residue pole and zeros error                        % 
pz     = zeros(2*n-1,length(X(:,1))); 
  
for ii = 1:length(X(:,1)) 
  
    po     = sort((eig(J(:,:,ii))).^.5/2/pi/tau);          
    ze     = sort(eig(J(2:end,2:end,ii)).^.5/2/pi/tau);    
    pz(:,ii) = [po;ze]-pztar; 
     
end 
  
pzres  = sqrt(dot(pz,pz,1))'; 
  
end % end of the subfunction "ind2res"                                % 
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function [K,J] = Cell2K(X,g) 
% =================================================================== % 
% This vectored subroutine calculates the stiffness matrix of k       % 
% cellular string structures, concurrently. Each string has n cells.  % 
% Input X is a 3n by k matrix                                         % 
% Output K is a n by n by k matrix                                    % 
% =================================================================== % 
  
n      = size(X,2)/3;           % number of cells in each string      % 
k      = size(X,1);             % number of cell strings              % 
  
K      = zeros(n,n,k); 
J      = zeros(n*(n+1)/2,3*n); 
  
for zz = 1:k 
  
    % extract and re-structure the input data matrix                  % 
    a      = X(zz,1:3:end)';                
    b      = X(zz,2:3:end)';  
    d      = X(zz,3:3:end)';  
    % construct the matrix relating pressure and strain               % 
    W      = sum(-a./b); 
    p2e    = (repmat((-a./b.*d-b)',[n,1])-diag(d)*W)... 
             .*(repmat(-1./b,[1,n])/W/g); 
    % construct the matrix relating flow port flow to strain          % 
    A      = repmat(g*a',[n-1,1]); 
    B      = repmat(b',[n-1,1]); 
    ind    = find((repmat(1:n,[n-1,1])-repmat((1:n-1)',[1,n]))<=0); 
    A(ind) = 0; 
    B(ind) = 0; 
    v2e    = A*p2e+B; 
    % construct the system K matrix                                   % 
    Q      = [ones(1,n); v2e]; 
    Ki     = [-b(n)*p2e(n,:); 
              p2e(2:n,:)-p2e(1:n-1,:)]; 
    Ki(1,n) = Ki(1,n)+d(n)/g; 
    % assign to the stiffness matrix corresponding to kth string      % 
    K(:,:,zz) = Ki/Q; 
end 
  
end % end of subroutine of "Cell2K"                                   % 
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function y = Eig2Cell(X,ldt,mut,g,Msys,tau) 
% =================================================================== % 
% This subroutine defines the object function to calculate the final  % 
% design candidate                                                    % 
% =================================================================== % 
K      = Cell2K(X,g); 
  
Vi     = (Msys^-.5)*K*(Msys^-.5); 
Vi     = (Vi+Vi')/2;                    % conditioning the Vi         % 
ldi    = sort(eig(Vi)); 
mui    = sort(eig(Vi(2:end,2:end))); 
  
y      = [ldi-ldt;mui-mut]/2/pi/tau; 
  
end % end of subroutine of "Eig2Cell"                                 % 
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function [SOL] = chkOmega(u,v,w,a,b,d,N,scl,n) 
% =================================================================== % 
% This subroutine checks if u,v,w is in Omega                         % 
% =================================================================== % 
chk    = zeros(n,1); 
  
% the omega space is split into three subspace, and the a-b-d         % 
% values for the three F2MC cells are checked against the boundaries  % 
% of these three subspaces                                            % 
for zz = 1:3 
     
    if zz == 1 
        idz = 1:50; 
    elseif zz==2 
        idz = 50:99; 
    else 
        idz = 99:148; 
    end 
  
    % the boundary surfaces and their normal for parametric subspace  % 
    [A,B,D,NA,NB,ND] = ... 
        bdsur(a(idz,:,:),b(idz,:,:),scl(zz)*log10(d(idz,:,:)),N); 
     
    % check if u,v,w are in the subspaces of omega                    % 
    chk(zz) = inOmega(u,v,scl(zz)*log10(w),A,B,D,NA,NB,ND); 
     
end  
SOL = sum(chk); 
 
end % end of subroutine of "chkOmega"                                 % 
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function [A,B,D,NA,NB,ND] = bdsur(a,b,d,N) 
% =================================================================== % 
% This is a subroutine to extract the boundary surface of Omega space % 
% =================================================================== % 
  
[U,V]  = meshgrid(1:N,1:N); 
W      = N*ones(N,N); 
I      = ones(N,N,6); 
J      = ones(N,N,6); 
K      = ones(N,N,6); 
  
% subindex corresponding to the six boundary surface % 
J(:,:,1) = U; 
K(:,:,1) = V; 
  
I(:,:,2) = W; 
J(:,:,2) = U; 
K(:,:,2) = V; 
  
I(:,:,3) = U; 
K(:,:,3) = V; 
  
I(:,:,4) = U; 
J(:,:,4) = W; 
K(:,:,4) = V; 
  
I(:,:,5) = U; 
J(:,:,5) = V; 
  
I(:,:,6) = U; 
J(:,:,6) = V; 
K(:,:,6) = W; 
  
% constructing the boundary surface % 
A       = ones(N,N,6); 
B       = ones(N,N,6); 
D       = ones(N,N,6); 
  
for x = 1:N 
    for y = 1:N 
        for z = 1:6 
            A(x,y,z) = a(I(x,y,z),J(x,y,z),K(x,y,z)); 
            B(x,y,z) = b(I(x,y,z),J(x,y,z),K(x,y,z)); 
            D(x,y,z) = d(I(x,y,z),J(x,y,z),K(x,y,z)); 
        end 
    end 
end 
  
% =========== Construct the normal vector of bd surface ============= % 
NA     = zeros(size(A)); 
NB     = zeros(size(B)); 
ND     = zeros(size(D)); 
  
  
  
  
% "path" like construction for surface norm vector % 
for I = 1:10 
    xspan = (5*(I-1)+1):(5*I); 
    for J = 1:10 
        yspan = (5*(J-1)+1):(5*J); 
        for z = 1:6 
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            if z==1 || z==4 || z==5 
% reverse the surfnorm to make sure it points inward to the space % 
                
[NA(xspan,yspan,z),NB(xspan,yspan,z),ND(xspan,yspan,z)]... 
                    = surfnorm(A(xspan,yspan,z),B(xspan,yspan,z),... 
                    D(xspan,yspan,z)); 
                NA(xspan,yspan,z)=-NA(xspan,yspan,z); 
                NB(xspan,yspan,z)=-NB(xspan,yspan,z); 
                ND(xspan,yspan,z)=-ND(xspan,yspan,z); 
            else 
                
[NA(xspan,yspan,z),NB(xspan,yspan,z),ND(xspan,yspan,z)]... 
                    = surfnorm(A(xspan,yspan,z),B(xspan,yspan,z),... 
                    D(xspan,yspan,z)); 
            end 
        end 
    end 
end 
  
end % end of subfunction "bdsur"                                      % 
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function [Sol,p] = inOmega(u,v,w,A,B,D,NA,NB,ND) 
%  =================================================================  % 
%  This subroutine check whether the cell #2 design point [u,v,w] is  % 
%  in the subspace of Omega (chapter 4)                               % 
%  =================================================================  % 
Libmin  = zeros(6,3); 
  
for z = 1:6 
    dist   = sqrt((A(:,:,z)-u).^2+(B(:,:,z)-v).^2+(D(:,:,z)-w).^2); 
    [minx, Idx] = min(dist); 
    [mdist,idy] = min(minx); 
    idx    = Idx(idy); 
    Libmin(z,:) = [idx idy round(mdist)]; 
end 
  
Mdist  = min(Libmin(:,3)); 
surid  = find(Libmin(:,3) == Mdist); 
  
chk    = zeros(size(surid)); 
  
for s = 1:length(surid) 
    p      = [A(Libmin(surid(s),1),Libmin(surid(s),2),surid(s))... 
              B(Libmin(surid(s),1),Libmin(surid(s),2),surid(s))... 
              D(Libmin(surid(s),1),Libmin(surid(s),2),surid(s))]; 
  
    dvec   = [u-p(1) v-p(2) w-p(3)]; 
     
  
    nvec   = [NA(Libmin(surid(s),1),Libmin(surid(s),2),surid(s))... 
              NB(Libmin(surid(s),1),Libmin(surid(s),2),surid(s))... 
              ND(Libmin(surid(s),1),Libmin(surid(s),2),surid(s))]; 
          
    if norm(dvec) > 0.01 
        dvec   = dvec/norm(dvec); 
        chk(s) = dot(dvec,nvec); 
    else 
        chk(s) = -1; 
    end 
    if chk(s) < 0.01 
        chk(s) = -1; 
    end 
end 
  
Sol = sum(chk>0)==length(chk); 
  
end % end of the subroutine "inOmega"                                % 
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Appendix F                                                               

Closed Form Relationships between the Constitutive Parameters of 

the Two F2MC Cells in Four Unique Architectures 

For AC type of architecture 
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For AD type of architecture 
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For BC type of architecture 
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For BD type of architecture 
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Appendix G                                                               

MATLAB Script of the Comprehensive Synthesis Procedure 

% =================================================================== % 
% This is the master synthesis routine for dual F2MC cellular         % 
% structure, all four types of architectures will be considered for   % 
% the same target                                                     % 
% =================================================================== % 
 
% =================================================================== % 
% Some of the required subroutines: “paraspace” “cellpa” “FMCini”     % 
% “F2MC” “FMCdam” “bdsur” and “inOmega” can be found in appendix E    % 
% =================================================================== % 
 
function [SOL] = DualCellSyn() 
% reset the system                                                    % 
clc; 
clear all; 
close all; 
  
%% ==================== Initialize the problem ====================== % 
ri     = 0.01;                  % F2MC cell inner radius (m)          % 
g      = 20;                    % cell length to radius ratio         % 
l      = ri*g;                  % cell length (m)                     %             
rho    = 1000;                  % working fluid density (kg/m^3)      % 
lf     = 0.30;                  % flow port length (m)                % 
rf     = 0.003;                 % flow port radius (m)                % 
E2     = 15e6;                  % fiber ply transverse modulus (Pa)   % 
Bk     = 40e6;                  % fluid bulk modulus (Pa)             % 
m      = 1.5;                   % end mass (kg)                       % 
  
M      = m/rho/ri^3;            % normalized external inertia         % 
I      = pi*lf*ri/rf^2;         % normalized flow port inertia        % 
tau    = ri*sqrt(rho/pi/E2);    % time unit (s)                       % 
  
%% =========== Assigning pole and zero target I and II ============== % 
Wp1    = 25;                    % first pole position (Hz)            % 
Wzf    = 35;                    % fe zero position (Hz)               % 
Wp2    = 50;                    % second pole position (Hz)           % 
  
wpz    = [Wp1 Wp2 Wzf]*2*pi*tau;% normalized pole and zero frequency  % 
wpp    = (Wp2+5)*2*pi*tau;      % normalized pressure zero requirement% 
  
%% ================== Construct the Omega space ===================== % 
N      = 50;                    % size of each parametric sub-space   % 
id1    = 1:N; 
id2    = N+1:2*N; 
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id3    = 2*N+1:3*N; 
[ang,era,wth] = designvar(N);   % the physical variables              % 
% max(E1/E2) = 6000; min(E1/E2) =  50;                                % 
% max(c1/c2) = 0.95; min(c1/c2) = 0.6;                                % 
  
% pre-locate the 150x50x50 grid that will span the Omega space        %     
a       = zeros(3*N,N,N);   % alpha value of the 3D grid              % 
b       = zeros(3*N,N,N);   % beta value of the 3D grid               % 
d       = zeros(3*N,N,N);   % delta value of the 3D grid              % 
  
% Calculate the Omega space based on "ang" "era" and "wth" values     % 
[a(id1,:,:),b(id1,:,:),d(id1,:,:)] = ... 
    paraspace(ri,l,Bk,E2,ang(1,:),era(1,:),wth(1,:)); 
[a(id2,:,:),b(id2,:,:),d(id2,:,:)] = ... 
    paraspace(ri,l,Bk,E2,ang(2,:),era(2,:),wth(2,:)); 
[a(id3,:,:),b(id3,:,:),d(id3,:,:)] = ... 
    paraspace(ri,l,Bk,E2,ang(3,:),era(3,:),wth(3,:)); 
% "a" "b" and "d" are used to calculate the boundary surfaces of Omega 
% "ai" "bi" and "di" are the candidate designs for cell #1            % 
[ai,bi,di] = ... 
    paraspace(ri,l,Bk,E2,ang(4,:),era(4,:),wth(4,:)); 
 
% Note: the data of a, b, d, ai, bi, di can be saved for future       % 
% synthesis, so that they don’t need to be calculated every time.     % 
save('a.mat','a'); 
save('b.mat','b'); 
save('d.mat','d'); 
save('ai.mat','ai'); 
save('bi.mat','bi'); 
save('di.mat','di'); 
 
%% ============= Adjust the bulk modulus on alpha  ================== % 
Cf     = E2/Bk;                 % normalized fluid bulk compliance    % 
a      = a  + Cf; 
ai     = ai + Cf; 
  
%% ========== Survey the design space for Target I ================== % 
% calculate the a-b-d values for cell #2 (Appendix E)                 % 
[afAC,bfAC,dfAC] = pair(ai,bi,di,wpz,M,I,g,'AC'); % AC architecture   % 
[afAD,bfAD,dfAD] = pair(ai,bi,di,wpz,M,I,g,'AD'); % AD architecture   % 
[afBC,bfBC,dfBC] = pair(ai,bi,di,wpz,M,I,g,'BC'); % BC architecture   % 
[afBD,bfBD,dfBD] = pair(ai,bi,di,wpz,M,I,g,'BD'); % BD architecture   % 
   
scl    = [10 10 1];             % scale factor for delta values       % 
az     = 330;                   % azimuth viewing angle of 3D plot    % 
el     = 5;                     % elevation viewing angle of 3D plot  % 
  
% check if the a-b-d values for cell #2 are in omega                  % 
IDAC   = check(afAC,bfAC,dfAC,a,b,d,N,scl); 
IDAD   = check(afAD,bfAD,dfAD,a,b,d,N,scl); 
IDBC   = check(afBC,bfBC,dfBC,a,b,d,N,scl); 
IDBD   = check(afBD,bfBD,dfBD,a,b,d,N,scl); 
% "ID~~" means the index position of the solution in the 3D grid      % 
  
%% ============= Find designs that satisfy target II ================ % 
if ~isempty(IDBC) 
    IDBC   = IDPP(bi,di,afBC,bfBC,dfBC,wpp,IDBC,'BC',g,I); 
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end 
  
if ~isempty(IDBD) 
    IDBD   = IDPP(bi,di,afBD,bfBD,dfBD,wpp,IDBD,'BD',g,I); 
end 
  
%% ======== Calculate the performance of target III and IV ========== % 
% Translate the constitutive parameters back into the physical design % 
[angAC,eraAC,wthAC] = ind2sub(size(ai),IDAC); 
[angAD,eraAD,wthAD] = ind2sub(size(ai),IDAD); 
[angBC,eraBC,wthBC] = ind2sub(size(ai),IDBC); 
[angBD,eraBD,wthBD] = ind2sub(size(ai),IDBD); 
  
angi = ang(4,:); 
wthi = wth(4,:); 
erai = era(4,:); 
  
% calculate the variable stiffness of the feasible designs            % 
[KRAC,rgbKRAC] = KR(ai,bi,di,afAC,bfAC,dfAC,IDAC,g,'AC'); 
[KRAD,rgbKRAD] = KR(ai,bi,di,afAD,bfAD,dfAD,IDAD,g,'AD'); 
[KRBC,rgbKRBC] = KR(ai,bi,di,afBC,bfBC,dfBC,IDBC,g,'BC'); 
[KRBD,rgbKRBD] = KR(ai,bi,di,afBD,bfBD,dfBD,IDBD,g,'BD'); 
  
% calculate the static actuation ratio of the feasible designs        % 
[SDAC,rgbSDAC] = SD(bi,di,bfAC,dfAC,IDAC,g,'AC'); 
[SDAD,rgbSDAD] = SD(bi,di,bfAD,dfAD,IDAD,g,'AD'); 
[SDBC,rgbSDBC] = SD(bi,di,bfBC,dfBC,IDBC,g,'BC'); 
[SDBD,rgbSDBD] = SD(bi,di,bfBD,dfBD,IDBD,g,'BD'); 
  
%% =================== Plotting the results ========================= % 
% the boundary surfaces of the whole parametric design space          % 
[Ai,Bi,Di,~,~,~] = bdsur(ai,bi,di,N); 
  
figure(1) 
% figure (1) plot the designs of F2MC cells that satisfy target I and 
II, in terms of the constitutive parameters                           %             
subplot(2,2,1) 
hold on; 
for z = 1:6 
    h      = mesh(Ai(:,:,z),Bi(:,:,z),10*log10(Di(:,:,z))); 
    set(h,'facecolor',[1 1 1],'facealpha',0.8,'edgecolor',[0.8 0.8 
0.8]) 
    view([az el]); 
end 
% the constitutive parameters of cell # 1 is plotted as red dots      % 
plot3(ai(IDAC),bi(IDAC),10*log10(di(IDAC)),'r.'); 
% the constitutive parameters of cell # 1 is plotted as green dots    % 
plot3(afAC(IDAC),bfAC(IDAC),10*log10(dfAC(IDAC)),'g.'); 
title('AC architecture') 
xlabel('\alpha') 
ylabel('\beta') 
zlabel('10log_{10}(\delta)') 
grid on; 
hold off; 
  
subplot(2,2,2) 
hold on; 
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for z = 1:6 
    h      = mesh(Ai(:,:,z),Bi(:,:,z),10*log10(Di(:,:,z))); 
    set(h,'facecolor',[1 1 1],'facealpha',0.8,'edgecolor',[0.8 0.8 
0.8]) 
    view([az el]); 
end 
plot3(ai(IDAD),bi(IDAD),10*log10(di(IDAD)),'r.'); 
plot3(afAD(IDAD),bfAD(IDAD),10*log10(dfAD(IDAD)),'g.'); 
title('AD architecture') 
xlabel('\alpha') 
ylabel('\beta') 
zlabel('10log_{10}(\delta)') 
grid on; 
hold off; 
  
subplot(2,2,3) 
hold on; 
for z = 1:6 
    h      = mesh(Ai(:,:,z),Bi(:,:,z),10*log10(Di(:,:,z))); 
    set(h,'facecolor',[1 1 1],'facealpha',0.8,'edgecolor',[0.8 0.8 
0.8]) 
    view([az el]); 
end 
plot3(ai(IDBC),bi(IDBC),10*log10(di(IDBC)),'r.'); 
plot3(afBC(IDBC),bfBC(IDBC),10*log10(dfBC(IDBC)),'g.'); 
title('BC architecture') 
xlabel('\alpha') 
ylabel('\beta') 
zlabel('10log_{10}(\delta)') 
grid on; 
hold off; 
  
  
subplot(2,2,4) 
hold on; 
for z = 1:6 
    h      = mesh(Ai(:,:,z),Bi(:,:,z),10*log10(Di(:,:,z))); 
    set(h,'facecolor',[1 1 1],'facealpha',0.8,'edgecolor',[0.8 0.8 
0.8]) 
    view([az el]); 
end 
plot3(ai(IDBD),bi(IDBD),10*log10(di(IDBD)),'r.'); 
plot3(afBD(IDBD),bfBD(IDBD),10*log10(dfBD(IDBD)),'g.'); 
title('BD architecture') 
xlabel('\alpha') 
ylabel('\beta') 
zlabel('10log_{10}(\delta)') 
grid on; 
hold off; 
  
%% 
figure(2) 
% figure (2) plot the F2MC cell #1 design in terms of its physical    % 
% design variables, and color code is the variable stiffness ratio.   % 
% This is the basis of figure 6.10                                    % 
subplot(2,2,1) 
scatter3(angi(angAC),erai(eraAC),wthi(wthAC),5,rgbKRAC/256,'fill'); 
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grid on; 
view([az el]); 
xlabel('fiber orientation (^o)'); 
ylabel('E_1/E_2 ratio') 
zlabel('a_i/a_o ratio') 
colorbar('YTickLabel',... 
    {round((min(KRAC):(max(KRAC)-min(KRAC))/10:max(KRAC))*10)/10}) 
ylim([50 6000]) 
view([az el]); 
title('AC architecture') 
grid on 
  
 
subplot(2,2,2) 
scatter3(angi(angAD),erai(eraAD),wthi(wthAD),5,rgbKRAD/256,'fill'); 
grid on; 
view([az el]); 
xlabel('fiber orientation (^o)'); 
ylabel('E_1/E_2 ratio') 
zlabel('a_i/a_o ratio') 
colorbar('YTickLabel',... 
    {round((min(KRAD):(max(KRAD)-min(KRAD))/10:max(KRAD))*10)/10}) 
ylim([50 6000]) 
view([az el]); 
title('AD architecture') 
grid on 
  
subplot(2,2,3) 
scatter3(angi(angBC),erai(eraBC),wthi(wthBC),5,rgbKRBC/256,'fill'); 
grid on; 
view([az el]); 
xlabel('fiber orientation (^o)'); 
ylabel('E_1/E_2 ratio') 
zlabel('a_i/a_o ratio') 
colorbar('YTickLabel',... 
    {round((min(KRBC):(max(KRBC)-min(KRBC))/10:max(KRBC))*100)/100}) 
ylim([50 6000]) 
view([az el]); 
title('BC architecture') 
grid on 
  
subplot(2,2,4) 
scatter3(angi(angBD),erai(eraBD),wthi(wthBD),5,rgbKRBD/256,'fill'); 
grid on; 
view([az el]); 
xlabel('fiber orientation (^o)'); 
ylabel('E_1/E_2 ratio') 
zlabel('a_i/a_o ratio') 
colorbar('YTickLabel',... 
    {round((min(KRBD):(max(KRBD)-min(KRBD))/10:max(KRBD))*10)/10}) 
ylim([50 6000]) 
view([az el]); 
title('BD architecture') 
grid on 
  
%% 
figure(3) 
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% figure (3) plot the F2MC cell #1 design in terms of its physical    % 
% design variables, and color code is the static actuation authority. % 
% This is the basis of figure 6.10                                    % 
subplot(2,2,1) 
scatter3(angi(angAC),erai(eraAC),wthi(wthAC),5,rgbSDAC/256,'fill'); 
grid on; 
view([az el]); 
xlabel('fiber orientation (^o)'); 
ylabel('E_1/E_2 ratio') 
zlabel('a_i/a_o ratio') 
colorbar('YTickLabel',... 
    {round((min(SDAC):(max(SDAC)-min(SDAC))/10:max(SDAC))*10)/10}) 
ylim([50 6000]) 
view([az el]); 
title('AC architecture') 
grid on 
  
subplot(2,2,2) 
scatter3(angi(angAD),erai(eraAD),wthi(wthAD),5,rgbSDAD/256,'fill'); 
grid on; 
view([az el]); 
xlabel('fiber orientation (^o)'); 
ylabel('E_1/E_2 ratio') 
zlabel('a_i/a_o ratio') 
colorbar('YTickLabel',... 
    {round((min(SDAD):(max(SDAD)-min(SDAD))/10:max(SDAD))*10)/10}) 
ylim([50 6000]) 
view([az el]); 
title('AD architecture') 
grid on 
  
subplot(2,2,3) 
scatter3(angi(angBC),erai(eraBC),wthi(wthBC),5,rgbSDBC/256,'fill'); 
grid on; 
view([az el]); 
xlabel('fiber orientation (^o)'); 
ylabel('E_1/E_2 ratio') 
zlabel('a_i/a_o ratio') 
colorbar('YTickLabel',... 
    {round((min(SDBC):(max(SDBC)-min(SDBC))/10:max(SDBC))*10)/10}) 
ylim([50 6000]) 
view([az el]); 
title('BC architecture') 
grid on 
  
subplot(2,2,4) 
scatter3(angi(angBD),erai(eraBD),wthi(wthBD),5,rgbSDBD/256,'fill'); 
grid on; 
view([az el]); 
xlabel('fiber orientation (^o)'); 
ylabel('E_1/E_2 ratio') 
zlabel('a_i/a_o ratio') 
colorbar('YTickLabel',... 
    {round((min(SDBD):(max(SDBD)-min(SDBD))/10:max(SDBD))*10)/10}) 
ylim([50 6000]) 
view([az el]); 
title('BD architecture') 
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grid on 
  
%% 
figure(4) 
% figure (4) plot the F2MC design in terms of variable stiffness      % 
% verses static actuation authority.                                  % 
% This is the basis of figure 6.11                                    % 
subplot(2,2,1) 
plot(KRAC,SDAC,'.'); 
xlabel('variable stiffness ratio') 
ylabel('normalized static free stroke') 
title('AC architecture') 
grid on 
  
subplot(2,2,2) 
plot(KRAD,SDAD,'.'); 
xlabel('variable stiffness ratio') 
ylabel('normalized static free stroke') 
title('AD architecture') 
grid on 
  
subplot(2,2,3) 
plot(KRBC,SDBC,'.'); 
xlabel('variable stiffness ratio') 
ylabel('normalized static free stroke') 
title('BC architecture') 
grid on 
  
subplot(2,2,4) 
plot(KRBD,SDBD,'.'); 
xlabel('variable stiffness ratio') 
ylabel('normalized static free stroke') 
title('BD architecture') 
grid on 
  
end % end of the Main function                                        % 
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function [ang,era,wth] = designvar(N) 
% =================================================================== % 
% This is the subroutine to construct the F2MC physical variables     % 
% =================================================================== % 
erai   = 50; 
eraf   = 6000; 
wthi   = 0.6; 
wthf   = 0.95; 
  
% set up the physical variables                                       % 
Q      = (1:N)'-1;   
q_ang1 = (30/1)^(1/(N-1));      % ratio of geometric series (angle)   %             
ang1   = 1*ones(N,1).*(q_ang1.^(Q));% array of fiber angle            % 
q_ang2 = (50/30)^(1/(N-1));     % ratio of geometric series (angle)   %             
ang2   = 30*ones(N,1).*(q_ang2.^(Q));% array of fiber angle           % 
q_ang3 = (89/50)^(1/(N-1));     % ratio of geometric series (angle)   %             
ang3   = 50*ones(N,1).*(q_ang3.^(Q));% array of fiber angle           % 
  
ang4   = (1:(89-1)/49:89)'; 
ang = [ang1';ang2';ang3';ang4']; 
  
q_era  = (eraf/erai)^(1/(N-1));  % ratio of geometric series (E1/E2)  % 
era    = erai*ones(N,1).*(q_era.^(Q));% array of E1/E2 ratio          % 
  
era    = [era';era';era';era']; 
  
wth    = (wthi:(wthf-wthi)/(N-1):wthf);% array of wall thickness ratio% 
wth    = [wth;wth;wth;wth]; 
  
end % end of subroutine "desinvar" 
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function [af,bf,df] = pair(ai,bi,di,wpz,M,I,g,style) 
% =================================================================== % 
% This is the subroutine to calculate 2nd cell design                 % 
% =================================================================== % 
ai     = reshape(ai,[],1); 
bi     = reshape(bi,[],1); 
di     = reshape(di,[],1); 
n      = numel(di); 
  
wp1    = wpz(1); 
wp2    = wpz(2); 
wz     = wpz(3); 
 
% required stiffness matrix element (mormalized value)                % 
S3     = wz^2*I; 
S1     = M*(wp1^2+wp2^2-wz^2); 
S2     = -sqrt((I*M)*(wp2^2-wz^2)*(wz^2-wp1^2)); 
  
% calculate the corresponding #2 cell design                          % 
switch style 
    case 'AC' 
        den    = -g*S1-g^2*S2^2*ai+g^2*S1*S3*ai+2*g*S2*bi... 
                 -g*S3*bi.^2+di-g*S3*ai.*di; 
        af     = (g*S1*ai-bi.^2-ai.*di)./den; 
        bf     = (-g*S1*bi+g*S2*bi.^2+g*S2*ai.*di)./den; 
        df     = -g*(-g*S2^2*bi.^2+g*S1*S3*bi.^2-S1*di... 
                 -g*S2^2*ai.*di+g*S1*S3*ai.*di)./den; 
    case 'AD' 
        den    = -1+g*S3*ai; 
        af     = ai./den; 
        bf     = (g*S2*ai-bi)./den; 
        df     = (-g*S1-g^2*S2^2*ai+g^2*S1*S3*ai+2*g*S2*bi... 
                 -g*S3*bi.^2+di-g*S3*ai.*di)./den; 
    case 'BC' 
        den    = g*S2^2-g*S1*S3+S3*di; 
        af     = -(g*S1-di)./den/g; 
        bf     = -S2*di./den; 
        df     = -g*(S2^2-S1*S3)*di./den; 
    case 'BD' 
        af    = ones(n,1)*1/g/S3; 
        bf    = ones(n,1)*S2/S3; 
        df    = -(g*S2^2+di*S3-g*S1*S3)/S3; 
end 
  
  
end % end of subroutine "pair"                                        % 
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function ID = check(af,bf,df,a,b,d,N,scl) 
%  =================================================================  % 
%  This subroutine check if the candidate constitutive parameters     %   
%  for cell #2: af, bf and df are in Omega space                      %   
%  =================================================================  % 
 
ID     = 0; 
% the omega space is split into three subspace, and the a-b-d value   % 
% for cell #2 is checked against the boundaries of the three subspace % 
for zz = 1:3 
     
    idz = (zz-1)*N+1:zz*N; 
    % the boundary surfaces and their normal for parametric subspace  % 
    [A,B,D,NA,NB,ND] = ... 
        bdsur(a(idz,:,:),b(idz,:,:),scl(zz)*log10(d(idz,:,:)),N); 
  
    % find the upper bound of the a, b, and d in the parametric sub-  % 
    % space                                                           % 
    a_ub   = max(max(max(a(idz,:,:)))); 
    b_ub   = max(max(max(b(idz,:,:)))); 
    d_ub   = max(max(max(d(idz,:,:)))); 
     
    % find the lower bound of the a, b, and d in the parametric sub-  %      
    % space                                                           % 
    a_lb   = min(min(min(a(idz,:,:)))); 
    b_lb   = min(min(min(b(idz,:,:)))); 
    d_lb   = min(min(min(d(idz,:,:)))); 
     
    % selecting a-b-d pair with its value locating within this range  %    
    ida    = find(and(af>a_lb,af<a_ub)); 
    idb    = find(and(bf>b_lb,bf<b_ub)); 
    idd    = find(and(df>d_lb,df<d_ub)); 
    id     = intersect(ida,intersect(idb,idd)); 
     
    sol    = zeros(size(id)); 
     
    % check if the remaining a-b-d pairs are in the subspaces of omega% 
    for ii = 1:length(id) 
        u      = af(id(ii)); 
        v      = bf(id(ii)); 
        w      = df(id(ii)); 
        sol(ii) = inOmega(u,v,scl(zz)*log10(w),A,B,D,NA,NB,ND); 
    end 
     
    id_sol = id(sol == 1); 
     
    ID     = [ID;id_sol]; 
end 
  
ID(1) = []; 
 
end % end of subroutine "check"                                       % 
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function IDP = IDPP(bi,di,af,bf,df,wpp,ID,style,g,I) 
%  =================================================================  % 
%  This subroutine check whether the cell #2 design satisfy the       % 
%  requirements from target II                                        % 
%  =================================================================  % 
  
switch style 
    
    case 'BD' 
        zp   = (1-bi(ID).*bf(ID))/g/I./af(ID); 
         
    case 'BC' 
        zp   = (bf(ID).*((-1).*bf(ID)+bi(ID))+(-1).*af(ID).*( ... 
              df(ID)+di(ID))).^(-1).*(bf(ID).^2+af(ID).*( ... 
              df(ID)+di(ID))).^(-1).*(bf(ID).*bi(ID).*(df( ... 
              ID)+(-1).*((-1)+bf(ID).^2+af(ID).*df(ID)).*di( ... 
              ID))+(-1).*(df(ID)+di(ID)).*(bf(ID).^2+af( ... 
              ID).*(df(ID)+di(ID)))).*I.^(-1).*g.^(-1); 
end 
  
IDp   = zp<0|zp>wpp^2; 
IDP   = ID(IDp==1); 
  
end % end of the subroutine "IDPP"                                    %  
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function [KR,RGBKR] = KR(ai,bi,di,af,bf,df,ID,g,style) 
%  =================================================================  % 
%  This subroutine calculate the variable stiffness ratio of each     % 
%  design contained in ai, bi, di, af, bf, df                         % 
%  =================================================================  % 
a1     = ai(ID); 
b1     = bi(ID); 
d1     = di(ID); 
a2     = af(ID); 
b2     = bf(ID); 
d2     = df(ID); 
  
%% calculate the variable stiffness performance                       % 
Kc1    = (a1.*d1+b1.^2)/g./a1;      % closed valve cell stiffness     % 
Kc2    = (a2.*d2+b2.^2)/g./a2;      % closed valve cell stiffness     % 
Ko1    = d1/g;                      % open valve cell stiffness       % 
Ko2    = d2/g;                      % open valve cell stiffness       % 
  
switch style 
    case 'AC' 
        Kc = Kc1.*Kc2./(Kc1+Kc2); 
        Ko = Ko1.*Ko2./(Ko1+Ko2); 
    case 'BC' 
        Kc = Kc1.*Kc2./(Kc1+Kc2); 
        Ko = Ko1.*Ko2./(Ko1+Ko2); 
    case 'AD' 
        Kc = Kc1+Kc2; 
        Ko = Ko1+Ko2; 
    case 'BD' 
        Kc = Kc1+Kc2; 
        Ko = Ko1+Ko2; 
end 
  
KR     = Kc./Ko; 
  
%% generate the heat map color index                                  % 
Rmin   = min(KR); 
Rmax   = max(KR); 
 
rgB    = [0 0 255]; 
Rgb    = [255 0 0]; 
rGb    = [0 255 0]; 
  
rgbKR  = (KR-Rmin)./(Rmax-Rmin); 
RGBKR  = zeros(length(rgbKR),3); 
  
for ii = 1:length(rgbKR) 
    if rgbKR(ii) <= 0.5 
        xrgb = rgbKR(ii)*2; 
        RGBKR(ii,:) = rGb*xrgb+rgB*(1-xrgb); 
    else 
        xrgb = (rgbKR(ii)-0.5)*2; 
        RGBKR(ii,:) = Rgb*xrgb+rGb*(1-xrgb); 
    end 
end 
  
end % end of subroutine "KR"                                          % 
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function [SD,RGBSD] = SD(bi,di,bf,df,ID,g,style) 
%  =================================================================  % 
%  This subroutine calculate the static actuation authority of each   % 
%  design contained in ai, bi, di, af, bf, df                         % 
%  =================================================================  % 
b1     = bi(ID); 
d1     = di(ID); 
b2     = bf(ID); 
d2     = df(ID); 
  
switch style 
    case 'AC' 
        SD = g*(b1./d1+b2./d2); 
    case 'BC' 
        SD = g*(b1./d1+b2./d2); 
    case 'AD' 
        SD = (b1-b2)./(d1+d2)*g; 
    case 'BD' 
        SD = (b1-b2)./(d1+d2)*g; 
end 
  
SDmin  = min(SD); 
SDmax  = max(SD); 
  
rgB    = [0 0 255]; 
Rgb    = [255 0 0]; 
rGb    = [0 255 0]; 
  
rgbSD = (SD-SDmin)./(SDmax-SDmin); 
RGBSD = zeros(length(rgbSD),3); 
  
for ii = 1:length(rgbSD) 
    if rgbSD(ii) <= 0.5 
        xrgb = rgbSD(ii)*2; 
        RGBSD(ii,:) = rGb*xrgb+rgB*(1-xrgb); 
    else 
        xrgb = (rgbSD(ii)-0.5)*2; 
        RGBSD(ii,:) = Rgb*xrgb+rGb*(1-xrgb); 
    end 
end 
  
end % end of the subroutine "SD"                                      % 
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