
Database and System Design for Emerging Storage
Technologies

by

Steven Pelley

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in the University of Michigan
2014

Doctoral Committee:

Associate Professor Thomas F. Wenisch, Chair
Professor Peter M. Chen
Assistant Professor Michael J. Cafarella
Assistant Professor Zhengya Zhang

© Steven Pelley 2014

All Rights Reserved

ACKNOWLEDGEMENTS

Completing a Ph.D. is a long, daunting process, and I could not have succeeded without
help from many people. I would first like to thank my close friends and family for all their
support, especially my parents; my sister, Carolyn; and Christie Ferguson. Next I would
like to thank my collaborators, advisors, and committee for teaching by example, espe-
cially my dissertation advisor, Tom Wenisch; James VanGilder; Jack Underwood; Partha
Ranganathan; Jichuan Chang; Kristen LeFevre; Brian Gold; Bill Bridge; Peter Chen; Mike
Cafarella; and Zhengya Zhang. Thank you to all of my lab mates and department friends
who assisted me with projects, listened to my problems over coffee, released steam playing
basketball, or procrastinated with a game of Starcraft, including David Meisner, Faissal
Sleiman, Mark Woh, Ben Cassell, Dan Fabbri, Timur Alperovich, Aasheesh Kolli, Richard
Sampson, Prateek Tandon, Neha Agarwal, and Jeff Rosen. Finally, thank you to everyone
else in the department, Trevor Mudge’s lab across the hall, Scott Mahlke’s lab next door,
the ACAL reading group, and everyone attending my defense.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . ii

LIST OF FIGURES . vi

LIST OF TABLES . ix

LIST OF APPENDICES . xi

ABSTRACT . xii

CHAPTER

I. Introduction . 1

1.1 Analytics . 1
1.2 Transaction Processing . 3
1.3 Memory Persistency . 4
1.4 Data Center Infrastructure . 4
1.5 Summary . 5

II. Background . 6

2.1 Storage Technologies . 6
2.1.1 Disk . 6
2.1.2 Flash Memory . 7
2.1.3 NVRAM . 8

2.2 Analytics Optimization . 9
2.2.1 Scans . 9
2.2.2 Joins . 11

2.3 Durable and Recoverable Transactions 11
2.4 Memory consistency models . 12
2.5 Conclusion . 15

III. SSD-aware Query Optimization . 16

iii

3.1 Introduction . 16
3.2 Methodology . 18
3.3 Scan Analysis . 19
3.4 Join Analysis . 22
3.5 Related Work . 25
3.6 Conclusion . 26

IV. Architecting Recovery Management for NVRAM 28

4.1 Introduction . 28
4.2 Recovery Management Design 30

4.2.1 NVRAM Reads . 31
4.2.2 NVRAM Writes . 31

4.3 NVRAM Group Commit . 34
4.3.1 Operating Principles and Implementation 34
4.3.2 High Performance Group Commit 36

4.4 Design Space . 38
4.5 Related Work . 39
4.6 Conclusion . 41

V. An Evaluation of NVRAM Recovery Management 42

5.1 Methodology . 42
5.2 NVRAM Reads . 47

5.2.1 NVRAM Caching Performance 47
5.2.2 Analysis . 48
5.2.3 Summary . 52

5.3 NVRAM Persist Synchronization 52
5.3.1 Persist Barrier Latency 53
5.3.2 Transaction Latency 55
5.3.3 NVRAM Persist Limitations 57
5.3.4 Summary . 61

5.4 Conclusion . 61

VI. Memory Persistency . 62

6.1 Introduction . 62
6.2 Memory Persistency Goals . 64
6.3 Memory Persistency . 66

6.3.1 Strict Persistency . 67
6.3.2 Relaxed Persistency 68
6.3.3 Relaxed Persistency and Cache Coherence 69

6.4 Conclusion . 70

VII. Memory Persistency Models . 71

iv

7.1 Persistent Queue . 71
7.2 Memory Persistency Models . 75

7.2.1 Strict Persistency . 75
7.2.2 Epoch Persistency . 77
7.2.3 Strand Persistency . 81

7.3 Related Work . 82
7.4 Conclusion . 85

VIII. An Evaluation of Memory Persistency 86

8.1 Methodology . 86
8.2 Evaluation . 88

8.2.1 Relaxed Persistency Performance 88
8.2.2 Atomic Persist and Tracking Granularity 90

8.3 Future Work . 92
8.4 Conclusion . 94

APPENDICES . 95
A.1 Introduction . 96
A.2 Related Work . 98
A.3 Data Center Power Flow . 99
A.4 Modeling Data Center Power . 99
A.5 Conclusion . 109
B.1 Introduction . 111
B.2 Background . 114
B.3 Power Routing. 118

B.3.1 Shuffled Topologies. 118
B.3.2 Power Routing. 121
B.3.3 Implementation. 122
B.3.4 Operating Principle. 123

B.4 Scheduling . 124
B.5 Evaluation . 127

B.5.1 Methodology . 128
B.5.2 Impact of Shuffled Topologies 130
B.5.3 Impact of Power Routing 131
B.5.4 Power Routing For Low Variance Workloads 132
B.5.5 Power Routing With Energy-Proportional Servers 134
B.5.6 Limitations . 135

B.6 Conclusion . 136

BIBLIOGRAPHY . 137

v

LIST OF FIGURES

Figure

3.1 Scan operator performance on Disk. Relation scan outperforms the
alternatives at selectivities above 4%, while index scan is optimal only for
vanishingly small selectivities (e.g., single-tuple queries). Best fit curves
drawn for convenience. 19

3.2 Scan operator performance on Flash SSD. Though both break-even
points shift as intuition suggests, the selectivities where the optimal de-
cision differs between Disk and SSD are so narrow that the difference is
inconsequential in practice. Best fit curves drawn for convenience. 20

3.3 Expected page accesses. Index scans touch the majority of pages even
at low selectivities. 21

3.4 Join performance. Join runtimes on Flash SSD and Disk, normalized for
each join to the runtime of sort-merge on disk. Though there is significant
variability in join algorithm performance on disk, performance variability
on SSD is dwarfed by the 6× performance advantage of moving data from
disk to SSD. 23

4.1 TPCB recovery latency vs throughput. Increasing page flush rate re-
duces recovery latency. Removing WAL entirely improves throughput by
50%. 29

4.2 Durable atomic updates. persist wal appends to the ARIES log using
two persist barriers. persist page persists pages with four persist barriers. 32

4.3 Hierarchical bitmap set. Each bit of top level bitmap corresponds to a
cache line of bits (64 bytes, 512 bits) in the primary bitmap; top level bit is
set if any associated bits in primary bitmap are set (boolean or operation).
Each bit in the primary bitmap corresponds to a cache line in the database
buffer cache and is set if the cache line is dirty (contains modifications
since the start of the batch). 36

5.1 Delay precision. Delays are implemented by repeatedly reading the TSC
register. Resulting delays form a step function. Inserted delays are within
6ns of the intended delay. 43

5.2 Throughput vs NVRAM read latency. 100ns miss latency suffers up
to a 10% slowdown over DRAM. Higher miss latencies introduce large
slowdowns, requiring caching. Fortunately, even small caches effectively
accelerate reads. 49

vi

5.3 Page caching effectiveness. High level B+Tree pages and append-heavy
heap pages cache effectively. Other pages cache as capacity approaches
table size. 50

5.4 Throughput vs persist barrier latency. In-Place Updates performs best
for zero-cost persist barriers, but throughput suffers as persist barrier la-
tency increases. NVRAM Disk-Replacement and NVRAM Group Commit
are both insensitive to increasing persist barrier latency, with NVRAM
Group Commit offering higher throughput. 54

5.5 95th percentile transaction latency. All graphs are normalized to 0µs
persist barrier latency In-Place Updates throughput. Experiments use 3µs
persist barrier latency. NVRAM Group Commit avoids high latency per-
sist barriers by defering transaction commit, committing entire batches
atomically. 56

5.6 Required NVRAM bandwidth. Persist/write bandwidth required to achieve
95% performance relative to no bandwidth constraint. Bandwidth re-
quirements are far below expected device bandwidth. 57

5.7 NVRAM cell endurance for 10-year lifetime. Without hardware wear
leveling the most-written cell limits device lifetime. NVRAM Disk-Rep-
lacement requires conservative page flushing (3s recovery latency vs 0s,
instantaneous, recovery) and NVRAM Group Commit requires longer batch
periods (200ms vs 20ms) to improve device lifetime. We expect hardware
wear leveling to always be required with In-Place Updates. With perfect
wear leveling (all writes occur evenly throughout cells in the device) and
a 32GB storage device all workloads and configurations achieve a 10-year
device lifetime for cell endurance of 106 writes and greater. 59

6.1 Cache Coherence Ordered Persists. Thread 1’s store visibility reorders
while still attempting to enforce persist order. The resulting persist order
cycle is resolved by violating cache coherence persist order or by pre-
venting stores from reordering across persist barriers. 69

7.1 Psuedo-code for insert operations. I include the annotations required
by relaxed persistency models, discussed in Section 7.2. PersistBarrier
applies to epoch persistency and strand persistency, NewS trand applies
only to strand persistency. 72

7.2 Queue Persist Dependences. Persist ordering dependences for Copy
While Locked and Two-Lock Concurrent. Constraints necessary for proper
recovery shown as solid arrows; unnecessary constraints incurred by strict
persistence appear as dashed arrows and are labeled as A (removed with
epoch persistency) and B (further removed by strand persistency). 73

7.3 Queue Holes Dependences. The head pointer may not persist before
endBit and length; final endBit may not persist until the entry persists
to the data segment. Strict persistency introduces several unnecessary
constraints. 74

vii

7.4 Epoch persistency persist order. Persistent memory order is enforced
through persist barriers (shown as “ | ”) and access conflicts. Access A is
ordered by transitivity before access F. If these accesses are persists they
may not be reordered with respect to the recovery observer. This order is
enforced even if accesses are to the volatile address space. Access B is
concurrent with all shown accesses from threads 2 and 3, while access D
is concurrent with accesses from thread 1. 79

8.1 Persist Latency. Copy While Locked, 1 thread. All models initially
compute-bound (line at top). As persist latency increases each model
becomes persist-bound. Relaxed models are resilient to large persist la-
tency. 90

8.2 Atomic Persist Size. 1 Thread. Large atomic persists allow coalesc-
ing, increasing persist concurrency. While effective for strict persistency,
large atomic persists do not improve persist concurrency for relaxed models. 91

8.3 Persistent False Sharing. 1 Thread. False sharing negligably affects
strict persistency (persists already serialized); relaxed models reintroduce
constraints. 92

A.1 Power and Cooling Flow. 98
A.2 Data Flow. 101
A.3 Individual Server Utilization. 103
A.4 Individual Server Power. 103
A.5 Power Conditioning Losses. 103
A.6 CRAH Supply Temperature. 105
A.7 CRAH Power. 105
A.8 Chilled Water Temperature. 105
A.9 Effects of U and TOutside on PChiller . 108
A.10 A Case Study of Power-Saving Features. 108
B.1 The cost of over-provisioning. Amortized monthly cost of power infras-

tructure for 1000 servers under varying provisioning schemes. 111
B.2 Example power delivery system for a high-availability data center. . . 114
B.3 Reduced reserve capacity under shuffled topologies (4 PDUs, fully-

connected topology). 117
B.4 Shuffled power distribution topologies. 118
B.5 Shuffled Topologies: 6 PDUs, fully-connected 123
B.6 Minimum capacity for redundant operation under shuffled topolo-

gies (no Power Routing). 130
B.7 Power Routing infrastructure savings as a function of topology. . . . 132
B.8 Sensitivity of the fully-connected topology to number of PDUs. 133
B.9 Power Routing effectiveness in homogeneous data centers. 134
B.10 Impact with energy-proportional servers. 135

viii

LIST OF TABLES

Table

2.1 Storage characteristics. 6
3.1 Absolute join performance. Join runtimes in seconds. Variability in

join runtimes is far lower on Flash SSD than on Disk. 24
4.1 NVRAM design space. Database designs include recovery mechanisms

(top) and cache configurations (left). 31
4.2 Concurrent NVRAM Group Commit persist. NVRAM Group Commit

must use many threads to concurrently persist the batch log and data.
Here I show the relative throughput of using only a single thread versus
additionally using quiesced transaction threads to accelerate batch persist
and commit. Results assume a 20ms batch period. 38

5.1 Experimental system configuration. 42
5.2 Bandwidth reservation bendmark. Benchmark repeatedly reserves band-

width as time and delays until end of the reservation. Reservations are
inaccurate if entire time cannot be reserved (reservation overhead domi-
nates). Results shown are reservation sizes (in ns) to reserve 99% time.
Thread placement is varied across CPU sockets and cores: packed (fill
socket/core before allocating new) or spread (round robin assign to re-
sources). 122ns and greater reservations accurately model constrained
bandwidth. 45

5.3 Workloads and transactions. One transaction class from each of three
workloads, sized to approximately 10GB. 47

5.4 NVRAM access characteristics. “% lines” indicates the percentage
breakdown of cache line accesses. “lines/latch” reports the average num-
ber of cache line accesses per page latch. Indexes represent the majority
of accesses. 47

5.5 Required NVRAM read bandwidth. Workloads require up to 1.2 GB/s
read bandwith. 52

5.6 Break-even persist latency Persist barrier latency (µs) where NVRAM
Disk-Replacement and In-Place Updates achieve equal throughput. La-
tencies reported for full transaction mixes and single write-heavy trans-
action per workload. 54

ix

8.1 Relaxed Persistency Performance. Persist-bound insert rate normal-
ized to instruction execution rate assuming 500ns persist latency. System
throughput is limited by the lower of persist and instruction rates—at
greater than 1 (bold) instruction rate limits throughput; at lower than 1
execution is limited by the rate of persists. While strict persistency limits
throughput, epoch persistency maximizes performance for many threads
and strand persistency is necessary to maximize performance with one
thread. 88

A.1 Typical Data Center Power Breakdown. 98
A.2 Variable Definitions. 100
A.3 Hypothetical Data Centers. 108

x

LIST OF APPENDICES

Appendix

A. Understanding and Abstracting Total Data Center Power 96

B. Power Routing: Dynamic Power Provisioning in the Data Center 110

xi

ABSTRACT

Database and System Design for Emerging Storage Technologies
by

Steven Pelley

Chair: Thomas F. Wenisch

Emerging storage technologies offer an alternative to disk that is durable and allows faster
data access. Flash memory, made popular by mobile devices, provides block access with
low latency random reads. New nonvolatile memories (NVRAM) are expected in upcom-
ing years, presenting DRAM-like performance alongside persistent storage. Whereas both
technologies accelerate data accesses due to increased raw speed, used merely as disk re-
placements they may fail to achieve their full potentials. Flash’s asymmetric read/write
access (i.e., reads execute faster than writes) opens new opportunities to optimize Flash-
specific access. Similarly, NVRAM’s low latency persistent accesses allow new designs
for high performance failure-resistant applications.

This dissertation addresses software and hardware system design for such storage tech-
nologies. First, I investigate analytics query optimization for Flash, expecting Flash’s fast
random access to require new query planning. While intuition suggests scan and join se-
lection should shift between disk and Flash, I find that query plans chosen assuming disk
are already near-optimal for Flash. Second, I examine new opportunities for durable, re-
coverable transaction processing with NVRAM. Existing disk-based recovery mechanisms
impose large software overheads, yet updating data in-place requires frequent device syn-
chronization that limits throughput. I introduce a new design, NVRAM Group Commit,
to amortize synchronization delays over many transactions, increasing throughput at some
cost to transaction latency. Finally, I propose a new framework for persistent program-
ming and memory systems to enable high performance recoverable data structures with
NVRAM, extending memory consistency with persistent semantics to introduce memory

persistency.

xii

CHAPTER I

Introduction

For decades disk has been the primary technology for durable and large-capacity stor-
age. Although inexpensive and dense, disk provides high performance only for coarse-
grained sequential access and suffers enormous slowdowns for random reads and writes.
Recently, several new technologies have emerged as popular or viable storage alternatives.
Flash memory, primarily used for mobile storage, has gained traction as a high-performance
enterprise storage solution. Nonvolatile Random Access Memories (NVRAM), such as
phase change memory and spin-transfer torque RAM, have emerged as high performance
storage alternatives [14].

These technologies offer significant performance improvements over disk, while still
providing durability with great storage capacity. As drop-in replacements for disk, Flash
and NVRAM greatly accelerate storage access. However, the disk interface fails to lever-
age specific device characteristics. Section 2.1 provides a background on these storage
technologies and specifically how their performance differs from disk.

This dissertation investigates how several data-centric workloads interact with future
storage technologies, the relevant software and algorithms, and in some instances com-
puter hardware. Specifically, I consider analytics (commonly Decision Support Systems –
DSS – popular in “Big Data”) and On-Line Transaction Processing (OLTP). Both work-
load classes have been optimized to surmount disk’s constraints, yet storage devices often
remain the performance bottleneck and dominant cost. I match each workload to the emerg-
ing storage technology that suits it best and address specific opportunities or deficiencies
in the software and hardware systems.

1.1 Analytics

Analytics relies on disk to provide enormous data capacity. Typical analytics work-flow
involves taking a snapshot of data from an online database and mining this data for com-

1

plex, yet useful, patterns. While applications do not rely on disk’s durability for recovery
(in fact, instances that fit in main memory have no need for disk), modern analytics data sets
reach peta-byte scale [1], and accessing such large data imposes the dominant bottleneck.
Such capacity is currently achieved only by dense disk and Flash memory.

Decades of research have provided modern analytics databases with tools to minimize
storage accesses, particularly slow random accesses (e.g., disk-specific indexes, join algo-
rithms to minimize page access and produce large sequential runs). Whereas these opti-
mizations are still effective for Flash, they fail to leverage Flash’s ability to quickly read
non-sequential data (many optimizations purposefully avoid random access patterns on
disk). As examples, I consider access paths (various scan types) and join algorithms. An
historic rule of thumb for scans is that an index should be used when less than 10% of rows
in a table are returned, otherwise the entire table should be scanned [90]. The intuition is
that locating rows from an index requires random reads as well as reading additional pages
from the index itself. At sufficiently high selectivities, accessing the entire table, scanning
all rows and returning those that satisfy the query, provides a faster access path. One would
expect this selectivity (10%) to increase when replacing disk with Flash – Flash is no longer
penalized by random reads, preferring any scan that minimizes total page accesses. Sim-
ilarly, different ad hoc join algorithms (those that do not use indexes: block-nested loops,
sort-merge join, and hybrid-hash join) present different storage access patterns and may
be variably suited to disk and Flash. These algorithms and query optimization are further
discussed in Section 2.2.1.

My results, originally presented in ADMS 2010 [85] and discussed in Chapter III, show
that while both previous hypotheses are correct, their significance is negligible. Optimal
access path (index vs. table scan) only changes between disk and Flash for a small range
of query selectivities, and queries within that range see only a small performance improve-
ment. Additionally, join algorithm choice makes little difference, as optimized join algo-
rithms already minimize storage accesses, regardless of access pattern—join algorithms
optimized for disk are already optimized for Flash. I conclude that the page-oriented na-
ture of Flash limits further analytics-Flash optimization. On the other hand, emerging
byte-addressable NVRAMs offer finer-grained access. However, analytics does not require
persistent storage, instead using NVRAM as a replacement for DRAM. As DRAM-resident
analytics techniques are already well established, I instead investigate using NVRAM per-
sistence specifically to provide failure recovery, supporting durable transactions.

2

1.2 Transaction Processing

Databases have been designed for decades to provide high-throughput transaction pro-
cessing with disk. Write Ahead Logging (WAL) techniques, such as ARIES [71], trans-
form random writes into sequential writes and minimize transactions’ dependences on disk
accesses. Section 2.3 outlines modern recovery management, focusing on ARIES. With
sufficient device throughput (IOPS) and read-buffering, databases can be made compute-
bound and recover near-instantly. NVRAMs provide this massive storage throughput to the
masses.

Whereas ARIES is necessary for disk, it presents only unnecessary software overheads
to NVRAM. I show that removing ARIES improves transaction throughput by alleviating
software bottlenecks inherent in centralized logging. Instead, NVRAM allows data to be
updated in-place, enforcing data persistence immediately and providing correct recovery
via transaction-local undo logs.

NVRAMs, however, are not without their limitations. Several candidate NVRAM
technologies exhibit larger read latency and significantly larger write latency compared
to DRAM [14]. Additionally, whereas DRAM writes benefit from caching and typically
are not on applications’ critical paths, NVRAM writes must become persistent in a con-
strained order to ensure correct recovery. I consider an NVRAM access model where
correct ordering of persistent writes is enforced via persist barriers, which stall until pre-
ceding NVRAM writes complete; such persist barriers introduce substantial delays when
NVRAM writes are slow.

To address these challenges I investigate accelerating NVRAM reads with various cache
architectures and capacities, and avoid persist barrier delays by introducing a new recov-
ery mechanism, NVRAM Group Commit. Database designs are discussed in Chapter IV.
As expected, low latency memory-bus-connected NVRAM needs little additional caching
(on-chip caches suffice) and updating data in-place is a simple and viable recovery strat-
egy. However, long latency NVRAM and complex interconnects (e.g., Non-Uniform Mem-
ory Architectures – NUMA, PCIe-attached NVRAM, or distributed storage) benefit from
DRAM caching and NVRAM Group Commit, improving throughput. I investigate specif-
ically how NVRAM read and persist barrier latencies drive OLTP system design. These
results and additional evaluations are presented in Chapter V. This work was originally
published at VLDB [84].

3

1.3 Memory Persistency

The previous work looks at how OLTP recovery mechanisms should be designed, con-
sidering only the average delay incurred by persist barriers. The final portion of my disser-
tation investigates specific programming interfaces to order NVRAM writes. Whereas ex-
isting memory consistency models provide control over the order and visibility of volatile
memory reads and writes across threads, there are no equivalent models to reason about
data persistence. Memory consistency may be relaxed, allowing communicating threads to
each observe different memory read and write orders. Such memory consistency models
improve performance, but require complex reasoning and additional programming mech-
anisms (memory barriers) to ensure expected behavior. Memory models are described in
Section 2.4.

Similarly, NVRAM write order may be relaxed, improving performance by allowing
writes to occur in parallel or out of order while still ensuring correct recovery. I intro-
duce memory persistency, a framework that extends memory consistency, to reason about
NVRAM write order. Relaxed memory persistency models use persist barriers to enforce
specific write orders, guaranteeing that data is correctly recovered after failure. I define
memory persistency and enumerate the possible design space in Chapter VI. Interestingly,
memory persistency models may be de-coupled from the underlying memory consistency
models, separately enforcing the order in which writes become durable and the order in
which writes become visible to other threads. I introduce a persistent queue benchmark
and several memory persistency models in Chapter VII. Finally, I evaluate these models
in Chapter VIII. Strict persistency models slow execution nearly 30× relative to existing
throughput on volatile, nonrecoverable systems. Relaxed persistency models regain lost
throughput by improving NVRAM write concurrency.

1.4 Data Center Infrastructure

The themes of this dissertation include performance, cost efficiency, and reliability.
While I focus on storage architectures, I additionally published work regarding the cost
and reliability of data center infrastructure. Appendix A contains “Understanding and Ab-
stracting Total Data Center Power,” published at WEED 2009 [82]. This work presents
power/energy models for all aspects of the data center, including power distribution, bat-
tery backups, cooling infrastructure, and IT equipment. Appendix B contains “PowerRout-
ing: Dynamic Power Provisioning for the Data Center,” published at ASPLOS 2010 [83].
PowerRouting spreads power distribution responsibility throughout the data center to mini-

4

mize installed power infrastructure capacity while maintaining reliability, minimizing data
center cost. The key insight is that data centers typically over-provision infrastructure,
resulting in under-utilized (and often unnecessary) equipment. PowerRouting leverages
compute-specific knowledge of the IT workload to more effectively utilize power infras-
tructure. Both of these works are included without modification.

During my investigations I discovered that, in many regards, industry is ahead of academia
at decreasing operating costs and improving infrastructure efficiency. As such, the opportu-
nity to contribute meaningful new techniques to improve infrastructure is rapidly diminish-
ing. Recognizing storage and memory as primary concerns for energy efficiency, reliability,
and cost, I focus on new and emerging storage technologies in this dissertation.

1.5 Summary

This dissertation investigates new techniques for accelerating data access for new NV-
RAM storage technologies, and is organized as follows: Chapter II contains background
information on storage technologies, database optimizations, and memory consistency.
This background forms the foundation of the work that follows. Chapter III considers
taking advantage of Flash’s fast random reads to accelerate database analytics. In Chap-
ter IV, I describe potential software designs for OLTP using NVRAM. Chapter V details
a methodology to evaluate NVRAM (devices not readily available) on modern hardware
and evaluates several aspects of OLTP running on NVRAM. Chapter VI introduces and
defines memory persistency. Specific memory persistency models and a persistent queue
data structure are proposed in Chapter VII. Finally, I evaluate these memory persistency
models in Chapter VIII.

5

CHAPTER II

Background

This chapter provides details necessary to understand the investigations and experi-
ments in this dissertation. I focus on storage technologies, database analytics optimization,
database transaction processing optimizations, and memory consistency models. The pur-
pose of discussing database optimizations is to understand the complications that arise
when using disk, and how resulting mechanisms interact with new storage technologies.
Additionally, memory consistency forms the foundation for memory persistency.

2.1 Storage Technologies

Many technologies provide storage persistent storage, including disk, Flash, and up-
coming NVRAM. For each, I outline the operating principles and important technological
trends.

2.1.1 Disk

Disk has been the primary durable and high capacity storage technology for decades.
Disk functions by storing data on spinning magnetic platters. Accessing data requires mov-
ing the hard disk head onto the proper track. Once the head settles, it may read or write

Disk Flash

Model WD VelociRaptor 10Krpm OCZ RevoDrive
Capacity 300gb 120gb
Price $164 $300
Random Read 10ms 90µs
Seq. Read 120mb/s 190mb/s

Table 2.1: Storage characteristics.

6

data as the platter rotates and the correct sector within the track reaches the head. Disk
capacity increases with the areal size and number of platters, as well as areal density (plac-
ing more sectors and tracks within the same area). Because capacity has scaled so well
(and continues to), disk remains the lowest cost technology for large datasets and persistent
storage.

While popular and inexpensive, disk suffers relatively slow access and undesirable ac-
cess behavior [97]. Rotational speed limits the rate that data transfers to or from the disk.
Further, random reads and writes must first seek to the proper track and then wait until the
correct sector reaches the head, a process which takes several ms. Table 2.1 lists the mea-
sured performance characteristics of an enterprise disk (2011). This disk achieves nearly
120 MB/s sequential transfers, but random reads take an average of 10ms (only 50 KB/s
for 512-byte sectors). As a result, there is a large history of optimization for disk-resident
storage, as I discuss in Section 2.3.

2.1.2 Flash Memory

Driven by the popularity of mobile devices, Flash memory has quickly improved in
both storage density and cost to the point where it has become a viable alternative for
durable storage in enterprise systems. Unlike conventional rotating hard disks, which store
data using magnetic materials, Flash stores charge on a floating-gate transistor forming
a memory cell. These transistors are arranged in arrays resembling NAND logic gates,
after which the “NAND Flash” technology is named. This layout gives NAND Flash a
high storage density relative to other memory technologies. Though dense, the layout
allows only coarse-grained access and sacrifices read latency—an entire array (a.k.a. page,
typically 2KB to 4KB) must be read in a single operation—making NAND Flash more
appropriate for block-oriented IO than as a direct replacement for RAM.

One of the difficulties of Flash devices is that a cell can be more easily programmed
(by adding electrons to the floating gate) than erased (removing these electrons). Erase
operations require both greater energy and latency, and typically can be applied only at
coarse granularity (e.g., over blocks of 128KB to 512KB). Moreover, repeated erase oper-
ations cause the Flash cell to wear out over time, limiting cell lifetime (e.g., to 105 to 106

writes [96]). Recent Flash devices further increase storage density by using several distinct
charge values to represent multiple bits in a single cell at the cost of slower accesses and
even shorter lifetimes.

A Flash-based SSD wraps an array of underlying Flash memory chips with a controller
that manages capacity allocation, mapping, and wear leveling across the individual Flash
devices. The controller mimics the interface of a conventional (e.g., SATA) hard drive,

7

allowing Flash SSDs to be drop-in replacements for conventional disks.
As previously noted, Flash SSDs provide substantially better performance than disks,

particularly for random reads, but at higher cost [12]. Table 2.1 lists specifications of
a typical Flash SSD as compared to a 10,000 RPM hard drive (2011). Though neither of
these devices are the highest-performing available today, they are representative of the mid-
range of their respective markets. The latency for a random read is over 100× better on the
SSD than on the disk, while the sequential read bandwidth is 1.6× better. Unlike disks,
where each random read incurs mechanical delays (disk head seek and rotational delays),
on SSDs, a random read is nearly as fast as a sequential read.

2.1.3 NVRAM

Nonvolatile memories will soon be commonplace. Technology trends suggest that
DRAM and Flash memory may cease to scale, requiring new dense memory technologies
[58].

Memory technology characteristics. Numerous technologies offer durable byte-addressable
access. Examples include phase change memory (PCM), where a chalcogenide glass is
heated to produce varying electrical conductivities, and spin-transfer torque memory (STT-
RAM), a magnetic memory that stores state in electron spin [14]. Storage capacity in-
creases by storing more than two states per cell in Multi-level Cells (MLC) (e.g., four
distinct resistivity levels provide storage of 2 bits per cell).

While it remains unclear which of these technologies will eventually gain traction,
many share common characteristics. In particular, NVRAMs will likely provide somewhat
higher access latency relative to DRAM. Furthermore, several technologies are expected
to have asymmetric read-write latencies, where writing to the device may take several mi-
croseconds [88]. Write latency worsens with MLC, where slow, iterative writes are neces-
sary to reliably write to cells.

Similarly to Flash, resistive NVRAM technologies suffer from limited write endurance;
cells may be written reliably a limited number of times. While write endurance is an
important consideration, proposed hardware mechanisms (e.g., Start-Gap [87]) are effective
in distributing writes across cells, mitigating write endurance concerns.

NVRAM storage architectures. Future database systems may incorporate NVRAM
in a variety of ways. At one extreme, NVRAM can be deployed as a disk or Flash SSD
replacement. While safe, cost-effective, and backwards compatible, the traditional disk
interface imposes overheads. Prior work demonstrates that file system and disk controller
latencies dominate NVRAM access times [15]. Furthermore, block access negates advan-
tages of fine-grained access.

8

Recent research proposes alternative interfaces for NVRAM. Caulfield et al. propose
Moneta and Moneta Direct, a PCIe attached PCM device [16]. Unlike disk, Moneta Di-
rect bypasses expensive system software and disk controller hardware to minimize access
latency while still providing traditional file system semantics. However, Moneta retains a
block interface. Condit et al. suggest that NVRAM connect directly to the memory bus,
with additional hardware and software mechanisms providing file system access and con-
sistency [30]. I later adopt the same atomic eight-byte persistent write, enabling small, safe
writes even in the face of failure. NVRAM will eventually connect via a memory inter-
face, but it is unclear how storage technologies will evolve or what their exact performance
characteristics will be. Instead of assuming specific NVRAM technologies and intercon-
nects, I measure the affect that NVRAM performance (both latency and bandwidth) has on
workload throughput.

2.2 Analytics Optimization

Large scale data processing requires efficient use of storage devices. Relational data is
stored in tables (relations). Tables are a collection of rows (tuples), each row containing
values for the different columns (attributes) defined on the table. I discuss two important
operations common to the relational model that are expected to be affected by Flash’s per-
formance characteristics: scans and joins.

2.2.1 Scans

Each data access requires the query optimizer to choose access paths to each table. The
goal is to select all relevant rows from the table while retrieving the fewest storage pages,
frequently with the use of indexes. Work on access path selection dates back to the late
1970s [99].

There are two classic scan operators implemented by nearly all commercial DBMS sys-
tems: relation scan and index scan. An index is a database data structure that maps column
values to rows within a table, supporting fast look-ups by that column. Indexes may be
ordered (as in an in-memory balanced tree or disk-resident B-Tree) to efficiently retrieve
all rows satisfying a range query (e.g., an ordered index on “last name” would acceler-
ate a query asking for all people whose last name is between “Pelley” and “Wenisch”).
Additionally, indexes may be clustered (the primary table is stored in sorted/hashed or-
der and supports searching) or non-clustered (the index is separate from the primary store
and contains references to rows). A table can only be physically ordered according to one
key, limiting the use of clustered indexes. Database indexes are themselves stored on disk.

9

Many types of indexes exist, but all provide a more direct way to filter specific data than
scanning an entire data set.

When no indexes are available, the only choice is to perform a relation scan, where all
data pages in the table are read from disk and scanned tuple-by-tuple to select tuples that
satisfy the query. When a relevant index is available, the DBMS may instead choose to per-
form an index scan, where the execution engine traverses the relevant portion of the index
and fetches only pages containing selected tuples as needed. For clustered indexes (i.e., the
row itself exists within the index, and all rows are sorted according to the index key), an
index scan is nearly always the preferred access path, regardless of the underlying storage
device. For non-clustered indexes, whether the optimizer should choose a relation scan or
index scan depends on the selectivity of the query (expected number of rows that satisfy the
query); relation scans have roughly constant cost regardless of selectivity (cost depends on
table size), whereas index scan costs grow approximately linearly with selectivity. When
selectivity is low, the index scan provides greater performance because it minimizes the
total amount of data that must be transferred from disk. However, as selectivity increases,
the fixed-cost (and simpler) relation scan becomes the faster option. Though the relation
scan reads the entire table, it can do so using sequential rather than random IO, leveraging
the better sequential IO performance of rotating hard disks. A classic rule of thumb for
access path selection is to choose a relation scan once selectivity exceeds ten percent [90].

Recent databases implement a third, hybrid scan operator, which I call rowid-sort scan.
In this scan operator, the unclustered index is scanned to identify relevant tuples. However,
rather than immediately fetching the underlying data pages, the rowid (a unique identifier
that signifies the row’s page and offset within that page) of each tuple is stored in a tem-
porary table, which is then sorted at the end of the index scan. Then, the pages identified
in the temporary table are fetched in order, and relevant tuples are returned from the page.
The rowid-sort scan has the advantage that each data page will be fetched from disk only
once, even if multiple relevant tuples are located on the page. Rowid-sort scan is provided
by IBM’s DB2, although they may refer to it by a different name. Other databases use dif-
ferent terminology or algorithms to ensure that each heap page is fetched exactly once (for
example, PostgreSQL uses a bitmap index, sorting the list of pages with tuples that satisfy
the query [64]). Rowid-sort scan is the optimal access path for intermediate selectivities.
Section 3.3 investigates choosing an optimal access path depending on whether data resides
on disk or Flash.

10

2.2.2 Joins

One of the most important aspects of query optimization is choosing appropriate join
algorithms. The development of join algorithms and optimization strategies dates back
over 30 years [99, 101]. Most commercial DBMS systems implement variants of at least
three join algorithms: nested-loop join, sort-merge join, and hybrid hash join. At a high
level, the nested-loop join iterates over the inner relation for each tuple of the outer relation;
the sort-merge join sorts both relations and then performs concurrent scans of the sorted
results; and the hybrid hash join forms in-memory hash tables of partitions of the inner
relation and then probes these with tuples from the outer relation.

The relative performance of these algorithms depends on a complex interplay of mem-
ory capacity, relation sizes, and the relative costs of random and sequential IOs. One exam-
ple performance model that captures this interplay was proposed by Haas et al. [50]. Their
model estimates the number of disk seeks and the size of each data transfer and weights
each by a cost based on assumed characteristics of the IO device. The model further iden-
tifies the optimal buffering strategy for the various phases of each join algorithm. Seek and
random/sequential transfer times are central parameters of this model, suggesting that new
technologies require new device-specific query optimization.

As accessing large amounts of data on disk can limit system throughput, it is impera-
tive that the query optimizer choose the best query plan. Typical query optimizers use data
statistics to approximate query selectivity and cardinality as well as physically-based mod-
els to estimate the runtime of candidate query plans. Sections 3.3 and 3.4 will investigate
when the query plan changes between disk and Flash, and what performance is lost when
the incorrect decision is made (i.e., when assuming disk but actually using Flash).

2.3 Durable and Recoverable Transactions

Database applications typically provide transaction semantics described as ACID (Atomic,
Consistent, Isolated, Durable) [48]. While the first three are primarily impacted by the
database’s concurrency control mechanisms within main memory, transaction durability
and database recovery interacts with persistent storage. The goal of recovery management
is to ensure that during normal transaction processing no transaction reports that it has com-
mitted and is later lost after a system failure, and that any transaction that fails to commit
before a failure is completely removed (i.e., no partial updates remain). Additionally, re-
covery should occur as quickly as possible and allow efficient forward processing. Several
schemes provide correct, high performance recovery for disk. I describe ARIES [71], a
popular Write Ahead Logging (WAL) system that provides atomic durable transactions.

11

ARIES. ARIES uses a two-level store (disk and volatile buffer cache) alongside a
shared persistent log. The buffer cache is necessary to accelerate reads and defer writes
to the disk. Transaction writes coalesce in the buffer cache while being durably recorded in
the log as ordered entries describing page updates and logical modifications, transforming
random writes into sequential writes.

The log improves disk write performance while simultaneously providing data recovery
after failure. Transaction updates produce both redo and undo entries. Redo logs record
actions performed on heap pages so that they can be replayed in the event data has not yet
written to disk in-place upon failure. Undo logs provide roll back operations necessary to
remove aborted and uncommitted transaction updates during recovery. The database occa-
sionally places a checkpoint in the log, marking the oldest update within the database still
volatile in the buffer cache (and therefore where recovery must begin). Recovery replays
the redo log from the most recent checkpoint to the log’s end, reproducing the state at failure
in the buffer cache; ARIES “replays history,” recovering the failed database. Afterwards,
incomplete transactions are removed using the appropriate undo log entries.

While a centralized log orders all database updates, the software additionally enforces
that log entries are durable before corresponding buffer cache pages may write back. Trans-
actions commit by generating a commit log entry, which must necessarily become durable
after the transaction’s other log entries (since the log writes to disk in order). This process
guarantees that no transaction commits, and no page writes back to disk, without a durable
history of its modifications in the log.

Though complex, ARIES improves database performance with disk. First, log writes
appear as sequential accesses to disk, maximizing device throughput. Additionally, aside
from reads resulting from buffer cache misses, each transaction depends on device access
only at commit to flush log entries. All disk writes to the heap may be done at a later time,
off of transactions’ critical paths. In this way ARIES is designed from the ground up to
minimize the effect of large disk access latencies.

2.4 Memory consistency models

This section provides a background on memory consistency models, outlining four
models: Sequential Consistency (SC), Total Store Order (TSO), Relaxed Memory Order
(RMO), and Release Consistency (RC). Much of this discussion assumes that caches are
completely coherent—that is, any two accesses to a cache line (by any core/thread) have a
total order. Release Consistency may guarantee this property only for properly annotated
programs. Other systems enforce cache coherence in hardware without annotation.

12

Consistency models define the order of loads and stores observed by threads. While
every thread observes its own execution in program order, it may appear that other threads
execute out of order. Processors (and compilers) are generally free to reorder instructions
to accelerate performance so long as they produce equivalent results assuming no shared
memory accesses (single thread execution). However, loads and stores that are independent
from a single-threaded point of view may in fact interact with other threads. Reordering
these memory accesses often results in unintended program behavior.

Two popular solutions to this problem are to (1) force all threads to observe the loads
and stores of other threads in a single globally defined order (SC) or (2) relax this guar-
antee, introducing memory barriers that allow the programmer to enforce a certain order
when necessary (i.e., relax consistency). While relaxing consistency may provide higher
performance, it places a greater burden on programmers to be aware of possible instruc-
tion reordering and correctly use memory barriers. Synchronization is often provided by
software libraries, shielding the average programmer from the complexities of memory
consistency.

The consistency model provides guarantees on observed memory orders that the pro-
grammer can expect and mechanisms to enforce additional constraints. Implementations
may momentarily violate the consistency model so long as no program is able to observe
the violation. For example, implementations are free to speculate, executing with relaxed
consistency, and later determine whether consistency has been violated. When consistency
is violated the implementation must roll back and re-execute memory instructions, provid-
ing the illusion that threads execute with strict consistency.

Sequential Consistency. Sequential Consistency [57] provides the most intuitive pro-
gramming model, yet necessarily the worst performance (although modern techniques use
speculation to improve performance). All loads and stores appear in a globally consistent
order that is an interleaving of program order from all threads. A popular view of SC is that
memory switches between the various processors; only a single processor accesses mem-
ory at any single time. Additionally, many architectures define atomic Read-Modify-Write
(RMW; e.g., compare-and-swap, atomic add) operations that perform several operations
atomically. The programmer need not consider memory instructions reordering and there-
fore barriers are unnecessary (compiler barriers must still be used).

Total Store Order. Total Store Order [103] provides greater performance than SC at
the cost of requiring the programmer to insert memory barriers. Most memory operations
are still observed to occur in program order from the perspective of other threads: (1)
stores may not reorder with other stores, (2) loads may not reorder with other loads, and (3)
a store that occurs after a load may not reorder and appear to bypass that load. However,

13

loads that occur after a store in program order may reorder and bypass the store, appearing
to occur before the store from the perspective of other processors. The rationale for doing
so is that load execution is often on the application’s critical path—executing a load only
after all previous stores are visible additionally slows execution. Executing loads as soon
as possible (before prior stores become visible) improves performance.

The programmer is responsible for recognizing any code where allowing a load to by-
pass a store allows incorrect behavior. A barrier is provided by the architecture for such
cases to force loads to delay until previous stores become visible to other threads. Addi-
tionally, RMW instructions act as barriers, preventing memory operations from reordering
around the RMW instruction. As concurrent programming commonly uses RMW opera-
tions, explicit memory barriers are rarely required in practice.

Relaxed Memory Order. Relaxed Memory Order [103] further relaxes consistency,
allowing stores and loads to reorder around each other. To enforce the intended behavior
the programmer must use memory barriers to constrain memory operation visibility. RMO
barriers constrain (1) loads from reordering with other loads, (2) stores from reordering
with other stores, (3) loads from bypassing stores, and (4) stores from bypassing loads.
These constraints are enforced separately and explicitly. RMO requires frequent barriers
for correct thread communication and is generally considered more difficult to program
than SC and TSO.

Release Consistency. Release Consistency [44] provides a relaxed consistency model
with two instruction instruction—acquire and release. In the absence of these labels threads
may observe memory operations in any order and may read stale data (loading an old value
when some other processor has recently written to the same address). Reading shared
memory requires an acquire label. Similarly, after writing to shared memory a release

label is used to make the updates visible to other processors; acquire and release used as a
pair ensure proper synchronization between communicating threads. Additionally, acquire
and release labels prevent memory operations from reordering (for example, to ensure that
operations in a critical section occur only after the lock is acquired and before the lock is
released). RMW operations implicitly contain both acquire and release labels.

Release Consistency improves performance by (1) allowing maximum instruction re-
ordering for unannotated single threaded code, (2) providing precise synchronization, in-
troducing the minimal number of ordering constraints to provide the intended behavior, and
(3) enforcing cache coherence only at acquire and release labels, allowing simpler cache
coherence hardware. However, release consistency requires the programmer to be aware of
and understand acquire and release labels.

A similar trade-off exists for enforcing data persistence—the order in which data be-

14

comes persistent may be relaxed and deviate from program order stores. Removing NV-
RAM write constraints improves performance, yet mechanisms must be provided to en-
force expected behavior. The interaction between persistence, performance, and ease of
programming is explored in Chapter VI.

2.5 Conclusion

This chapter provides a brief history and outline of storage devices, database technolo-
gies, and memory consistency. The remainder of my dissertation builds on these ideas to
explore how best to use NVRAM in future storage systems.

15

CHAPTER III

SSD-aware Query Optimization

This chapter asks if database query optimizers must be SSD-aware. The work was pub-
lished in the Second International Workshop on Accelerating Data Management Systems
Using Modern Processor and Storage Architectures (AMDS 2011), collocated with VLDB
[85]. I worked on this project with my advisor, Thomas F. Wenisch, and assistant professor
Kristen LeFevre. Refer to Sections 2.1 and 2.2 for background on storage technologies and
query optimization.

3.1 Introduction

For decades, database management systems (DBMSs) have used rotating magnetic
disks to provide durable storage. Though inexpensive, disks are slow, particularly for non-
sequential access patterns due to high seek latencies. With the rapid improvements in stor-
age density and decreasing price of Flash-based Solid State Disks (SSDs), DBMS admin-
istrators are beginning to supplant conventional rotating disks with SSDs for performance-
critical data in myriad DBMS applications. Though SSDs are often significantly more
expensive than conventional disks (in terms of $ per GB), they provide modest (2×) im-
provements in sequential IO and drastic (over 100×) improvements for random IO, closing
the gap between these access patterns.

Many components of modern DBMSs have been designed to work around the ad-
verse performance characteristics of disks (e.g., page-based buffer pool management, B-
tree indexes, advanced join algorithms, query optimization to avoid non-sequential IO,
prefetching, and aggressive IO request reordering). As SSDs present substantially different
performance trade-offs, over the past few years researchers have begun to examine how
SSDs are best deployed for a variety of storage applications [13, 23], including DBMSs
[59, 120, 62, 8, 110]. A common theme among these studies is to leverage the better ran-
dom IO performance of SSDs through radical redesigns of index structures [120, 62] and

16

data layouts [8, 110]. However, even within the confines of conventional storage manage-
ment and indexing schemes in commercial DBMSs, there may be substantial opportunity
to improve query optimization by making it SSD-aware.

In this chapter, I examine the implications that moving a database from disk to Flash
SSDs will have for query optimization in conventional commercial DBMSs. I focus on
optimization of read-only queries (e.g., as are common in analytics decision support work-
loads) as these operations are less sensitive to the SSD adoption barriers identified in prior
work, such as poor SSD write/erase performance [23] and write endurance [96]. Con-
ventional query optimizers assume a storage cost model where sequential IOs are far less
costly than random IOs, and select access paths and join algorithms based on this assump-
tion. The recent literature [8] suggests that on SSDs, optimizers should instead favor access
paths using non-clustered indexes more frequently; SSDs will favor retrieving more rows
via an index if it reduces the number of pages accessed, even if it increases random IO
accesses. Furthermore, as SSDs change the relative costs of computation, sequential, and
random IO, the relative performance of alternative join algorithms should be re-examined,
and optimizer cost models updated.

My original intent was to leverage this idea to 1) improve query optimization by making
device-specific decisions, and 2) accelerate database analytics and reduce operating costs
by intelligently placing data on different devices. While Flash is faster than disk, it is
generally more expensive per equal capacity. It makes sense to place small amounts of
frequently accessed data on Flash, and the rest on disk. Furthermore some data “prefers”
to live on Flash as it is naturally accessed in ways that Flash holds a comparative advantage
over disk (e.g., queries typically access this data in selectivities or join types that prefer
Flash).

Despite this intuition, my empirical investigation using a commercial DBMS finds it is

not necessary to make any adjustments to the query optimizer when moving data from disk

to Flash—an SSD-oblivious optimizer generally makes effective choices. I demonstrate
this result, and explore why it is the case, in two steps.

First, I analyze the performance of scan operators. Classic rules of thumb suggest that
non-clustered index scans are preferable at low selectivity (i.e., below 10%), whereas a
relation scan is faster at high selectivity, because it can leverage sequential IOs. Therefore,
the optimizer should prefer index scans at much higher selectivities on SSDs. I demonstrate
analytically and empirically that this intuition is false—the range of selectivities for which
an index scan operation can benefit from SSDs’ fast random reads is so narrow that it is
inconsequential in practice.

Second, I measure the relative performance of hybrid hash and sort-merge joins on disk

17

and Flash. My results indicate that the performance variation between the join algorithms
is typically smaller (and often negligible) on Flash, and is dwarfed by the 5× to 6× per-
formance boost of shifting data from disk to SSD. I conclude that because commercial
DBMSs have been so heavily optimized to hide the long access latencies of disks (e.g.,
through sophisticated prefetching and buffering), they are largely insensitive to the latency
improvements available on SSDs. Overall, the small and inconsistent performance gains
available by making query optimizers SSD-aware are not worth the effort.

3.2 Methodology

The objective of this empirical study is to contrast the performance of alternative scan
and join algorithms for the same queries to discover whether the optimal choice of access
path or join algorithm differs between SSDs and conventional disks. For either storage
device, the optimal access path depends on the selectivity of the selection predicate(s). The
optimal join algorithm depends on several factors: the sizes of the inner and outer relations,
the selectivity and projectivity of the query, the availability of indexes, and the available
memory capacity. The goal is to determine whether the regions of the parameter space
where one algorithm should be preferred over another differ substantially between SSD
and disk because of the much better random read performance of the SSD. In other words,
I am trying to discover, empirically, cases where an access path or join algorithm that is
an appropriate choice for disk results in substantially sub-optimal performance on an SSD,
suggesting that the optimizer must be SSD-aware.

I carry out this empirical investigation using IBM DB2 Enterprise Server Edition ver-
sion 9.7. Experiments use the Wisconsin Benchmark schema [10] to provide a simple,
well-documented dataset on which to perform scans and joins. Though this benchmark
does not represent a particular real-world application, modeling a full application is not
my intent. Rather, the Wisconsin Benchmark’s uniformly distributed fields allow precise
control over query selectivity. Whereas real world queries are more complicated than the
simple scans and joins studied here, these simple microbenchmarks reveal the underlying
differences between the storage devices and scan/join algorithms most clearly. Alternative
“real world” benchmarks (namely TPC-H [109]) complicate matters, making it difficult to
discern why different query plans prefer disk or SSD. I aggregate results of all queries to
avoid materializing output tables as I am primarily interested in isolating other database op-
erations; typically all results must be materialized regardless of device, so I remove this step
to provide a better comparison. I run queries on a Pentium Core Duo with 2GB main mem-
ory, a 7200 RPM root disk drive, and the conventional and SSD database disks described

18

0 1 2 3 4
Selectivity (%)

0

20

40

60

80

Ru
nt

im
e

(s
)

Index Scan
Rowid-Sort Scan
Relation Scan
Best Fit Curves

Figure 3.1: Scan operator performance on Disk. Relation scan outperforms the alter-
natives at selectivities above 4%, while index scan is optimal only for vanishingly small
selectivities (e.g., single-tuple queries). Best fit curves drawn for convenience.

in Table 2.1. Both the hard disk and SSD were new at the beginning of the experiments.
While other work has shown that SSD performance may degrade over the lifetime of the
device I did not observe any change in performance.

Note that I am not concerned with the optimization decisions that DB2 presently makes
for either disk or SSD; rather, I am seeking to determine the ground truth of which algo-
rithm a correct optimizer should prefer for each storage device. In general, multiple query
plans are achieved by varying the optimizers inputs—disk random and sequential access
latencies. Databases often have planner hints to select specific plans (for example, DB2’s
optimization profiles).

3.3 Scan Analysis

I now turn to the empirical and analytic study of scan operators. I demonstrate that
although the expectations outlined in Section 3.1 are correct in principle, the range of se-
lectivities for which an index scan operation benefits from SSDs’ fast random reads is so
narrow that it is inconsequential in practice.

Empirical results. I compare the measured performance of the different scan oper-
ators as a function of selectivity on SSD and disk. The objective is to find the break-even
points where the optimal scan operator shifts from index scan to rowid-sort scan and finally

19

0 1 2 3 4
Selectivity (%)

0

2

4

6

8

10

12

14

Ru
nt

im
e

(s
)

Index Scan
Rowid-Sort Scan
Relation Scan
Best Fit Curves

Figure 3.2: Scan operator performance on Flash SSD. Though both break-even points
shift as intuition suggests, the selectivities where the optimal decision differs between Disk
and SSD are so narrow that the difference is inconsequential in practice. Best fit curves
drawn for convenience.

to relation scan on each device, and the performance impact in regions where this decision
differs. I issue queries for ranges of tuples using a uniformly distributed integer field on
a table with 10 million rows, or roughly 2 GB. I use a pipelined aggregation function to
ensure that no output table is materialized.

Figures 3.1 and 3.2 report scan runtime on disk and Flash SSD, respectively. The fig-
ures show the measured runtime of each scan (in seconds); lower is better. Recall from
Section 3.1 that classic rules of thumb suggest that, on disk, the break-even point between
index and relation scan should occur near 10% selectivity, and intuition suggests an even
higher break-even point for SSD. Clearly, the conventional wisdom is flawed even for ro-
tating disks; relation scan dominates above selectivities of just 4% (the trends shown in the
figure continue to the right). In the intermediate range from about 0.1% to 4% selectivity
the rowid-sort scan performs best.

However, the more important analysis is to compare the locations of the break-even
points across SSD and disk. Both crossover points shift in the expected directions. The
slope of the index scan curve is considerably shallower, and the break-even with the relation
scan shifts above 0.5% selectivity. Furthermore, the range in which rowid-sort scan is
optimal becomes narrower. Nevertheless, the key take-away is that the range of selectivities
for which the optimal scan differs across SSD and Disk is vanishingly small. Only a minute

20

0 20 40 60 80 100
Scan Selectivity (%)

0

20

40

60

80

100

Ex
pe

ct
ed

 P
ag

es
 R

et
rie

ve
d

(%
)

Tuples Per Page
27
9
3
1

Figure 3.3: Expected page accesses. Index scans touch the majority of pages even at low
selectivities.

fraction of queries fit into this range, and queries that make the incorrect decision (between
disk and Flash) see a small performance impact. Hence, it is unnecessary for the optimizer
to be SSD-aware to choose an effective scan operation.

Whereas these measurements demonstrate my main result, they do not explain why
index scans fail to leverage the random access advantage of Flash. I turn to this question
next.

Analytic results. The previous results show that index scan underperforms at selectiv-
ities far below what the classic 10% rule of thumb suggests. The flaw in the conventional
wisdom is that, when there are many tuples per page, the vast majority of pages need to
be retrieved even if only a few tuples are accessed. When the 10% rule is applied to page-
rather than tuple-selectivity, the guideline is more reasonable. Yue et al. provide an analyt-
ical formula for the expected number of pages retrieved given the size of the table, tuples
per page, and selectivity [121], assuming tuples are randomly distributed among pages (a
reasonable assumption given that each table can be clustered on only a single key). Based
on this formula, Figure 3.3 shows the expected percentage of pages retrieved as a function
of query selectivity and tuples per page. When a page contains only a single tuple, clearly,
the number of tuples and pages accessed are equal. However, as the number of tuples per
page increases, the expectation on the number of pages that must be retrieved quickly ap-
proaches 100% even at small selectivities. As a point of reference, given a 4kb page size
and neglecting page headers, the Wisconsin Benchmark stores 19 tuples per page while

21

TPC-H’s Lineitem and Orders tables store 29 and 30 tuples per page, respectively.
The implication of this result is that, for typical tuple sizes, the vast majority of pages

in a relation must be read even if the selectivity is but a few percent. Hence, with the
exception of single-tuple lookups, there are few real-world scenarios where scan perfor-
mance improves with better random access latency under conventional storage managers
that access data in large blocks. To benefit from low access latency, future devices will
need to provide random access at tuple (rather than page) granularity. Until such devices
are available, relation and rowid-sort scans will dominate, with IO bandwidth primarily
determining scan performance.

3.4 Join Analysis

I next study the variability in join performance across disk and Flash SSD. Again, the
objective is to identify cases where the optimal join algorithm for disk consistently results
in grossly sub-optimal performance on Flash SSD. Such scenarios imply that it is important
for the optimizer to be SSD aware.

DB2 implements nested loop, sort-merge, and hybrid hash join operators. However,
DB2 does not support a block nested loop join; its nested loop join performs the join tuple-
by-tuple instead of prefetching pages or other blocks, relying on indexes to provide high
performance. Hence, unless the join can be performed in memory, the nested loop grossly
underperforms the other two algorithms for ad-hoc queries (those that do not use indexes)
regardless of storage device and will not be selected by the query optimizer unless it is
the only alternative (e.g., for inequality joins). I therefore restrict the investigation to a
comparison of sort-merge and hybrid hash joins.

When a clustered index exists for a particular scan or join this index should almost
always be used, regardless of the nature of the storage device. Hence, I do not include
clustered indexes in my analysis. Furthermore, I evaluate only ad hoc joins. When indexes
are available, the choice of whether or not to use the index is analogous to the choice of
which scan operator to use for a simple select query, which is covered by the previous
analysis of scans.

Because of the complex interplay between available memory capacity and relation sizes
for join optimization [50], I do not have a specific expectation that one join algorithm will
universally outperform another on Flash SSD as opposed to disk. Rather, I perform a
cross-product of experiments over a spectrum of relation sizes and output projectivities
using the Wisconsin Benchmark database. Haas’s model demonstrates the importance of
the relative sizes of input relations and main memory capacity on join performance; hence

22

Projectivity Disk Sort Flash Sort Disk Hash Flash Hash
4% 1.9 x 1.9 GB 186.9631 40.24737 202.3909 34.46946 ‐0.14356

3.9 x 3.9 GB 357.9806 79.97483 451.191 71.62631 ‐0.10439
3.9 x 6.8 GB 486.5173 103.065 573.6068 92.67121 ‐0.10085
6.8 x 6.8 GB 648.8311 142.3273 795.2711 139.6267 ‐0.01897
6 8 x 9 7 GB 815 6787 165 7582 997 071 166 3078 0 0033166.8 x 9.7 GB 815.6787 165.7582 997.071 166.3078 0.003316
9.7 x 9.7 GB 1084.255 201.9948 1189.322 182.9522 ‐0.09427

27% 1.9 x 1.9 GB 236.3222 48.28639 354.7872 48.16561 ‐0.0025

3.9 x 3.9 GB 751.4387 97.33106 662.6422 100.9278 0.036953
3.9 x 6.8 GB 946.6113 125.2033 781.3639 122.0176 ‐0.02544
6.8 x 6.8 GB 1415.058 173.881 1182.409 172.7904 ‐0.00627
6.8 x 9.7 GB 1581.155 198.6156 1298.426 198.5034 ‐0.00057
9.7 x 9.7 GB 2081.332 249.8118 1955.245 633.5905 1.536272

 Sequential 1.58 1.58

Random Re 111.1 111.1

ge Disk Sort Merge Disk Hybrid Hash Flash Sort Merge Flash Hybrid Hash

0.8

1

1.2

1.4

1.6

m
.
to
 D
is
k
So
rt
‐M

er
ge Disk Sort‐Merge Disk Hybrid Hash Flash Sort‐Merge Flash Hybrid Hash

0

0.2

0.4

0.6

0.8

1

x
1.
9
G
B

x
3.
9
G
B

x
6.
8
G
B

x
6.
8
G
B

x
9.
7
G
B

x
9.
7
G
B

x
1.
9
G
B

x
3.
9
G
B

x
6.
8
G
B

x
6.
8
G
B

x
9.
7
G
B

x
9.
7
G
B

Ru
nt
im

e
N
or
m
.
to
 D

1.
9
x
1.
9
G
B

3.
9
x
3.
9
G
B

3.
9
x
6.
8
G
B

6.
8
x
6.
8
G
B

6.
8
x
9.
7
G
B

9.
7
x
9.
7
G
B

1.
9
x
1.
9
G
B

3.
9
x
3.
9
G
B

3.
9
x
6.
8
G
B

6.
8
x
6.
8
G
B

6.
8
x
9.
7
G
B

9.
7
x
9.
7
G
B

5% projectivity 25% projectivity

Projectivity & Relation Sizes

Figure 3.4: Join performance. Join runtimes on Flash SSD and Disk, normalized for
each join to the runtime of sort-merge on disk. Though there is significant variability in
join algorithm performance on disk, performance variability on SSD is dwarfed by the
6× performance advantage of moving data from disk to SSD.

I explore a range of joins that are only slightly larger than available memory (joining two
1.9GB tables) to those that are an order of magnitude larger (joining two 9.7GB tables).
I vary projectivity, having discovered empirically that it significantly impacts the optimal
join algorithm on disk, as it has a strong influence on partition size in hybrid hash joins.
I execute queries with two projectivities: approximately 5% (achieved by selecting all the
integer fields in the Wisconsin Benchmark schema), and approximately 25% (selecting an
integer field and one of the three strings in the schema). In all experiments, I perform
an equijoin on an integer field, and use an aggregation operator to avoid materializing the
output.

I report results in graphical form in Figure 3.4 and absolute run times in Table 3.1. In
Figure 3.4, each group of bars shows the relative performance of sort-merge and hybrid
hash joins on disk (darker bars) and Flash SSD (lighter bars), normalized to sort-merge
performance on disk. Lower bars indicate higher performance. I provide the same data in
tabular form to illustrate the runtime scaling trends with respect to relation size, which are
obscured by the normalization in the graph.

Two critical results are immediately apparent from the graph. First, Flash SSDs typi-
cally outperform disk by 5× to 6× regardless of join algorithm, a margin that is substantially
higher than the gap in sequential IO bandwidth, but far smaller than the gap in random IO

23

Projectivity Table Sizes
Disk Flash SSD

Sort-merge Hybrid hash Sort-merge Hybrid hash

5% 1.9 × 1.9 GB 187 202 40 34
3.9 × 3.9 GB 358 451 80 72
3.9 × 6.8 GB 487 574 103 93
6.8 × 6.8 GB 649 795 142 140
6.8 × 9.7 GB 816 997 166 166
9.7 × 9.7 GB 1084 1189 202 183

25% 1.9 × 1.9 GB 236 355 48 48
3.9 × 3.9 GB 751 662 97 101
3.9 × 6.8 GB 947 781 125 122
6.8 × 6.8 GB 1415 1182 174 173
6.8 × 9.7 GB 1581 1298 199 199
9.7 × 9.7 GB 2081 1955 250 634

Table 3.1: Absolute join performance. Join runtimes in seconds. Variability in join
runtimes is far lower on Flash SSD than on Disk.

bandwidth (see Table 2.1). Hence, though both join algorithms benefit from the improved
random IO performance of SSDs, the benefit is muted compared to the 100× device-level
potential. Second, whereas there is significant performance variability between the join
algorithms on disk (typically over 20%), with the exception of a single outlier, the vari-
ability is far smaller on Flash SSD (often less than 1%). From these results I conclude
that although important on disk, the choice of sort-merge vs hybrid hash join on SSD leads
to inconsequential performance differences relative to the drastic speedup of shifting data
from disk to Flash. Hence, there is no compelling reason to make the query optimizer
SSD-aware; the choice it makes assuming the performance characteristics of a disk will
yield near-optimal performance on SSD.

I highlight two notable outliers in the results. On disk, the best join algorithm is strongly
correlated to query projectivity with the exception of the 1.9GB × 1.9GB join at 25% pro-
jectivity. Because the required hash table size for this join is close to the main memory
capacity, I believe that this performance aberration arises due to DB2 selecting poor par-
tition sizes for the join. Second, on Flash, I observe a large performance difference (over
2×) between sort-merge and hybrid hash join for the largest test case, a 9.7GB × 9.7GB
join at 25% projectivity. For this query, I observe a long CPU-bound period with negligible
IO at the end of the hybrid hash join that does not occur for any of the other hash joins.
Hence, I believe that this performance aberration is unrelated to the type of storage device,
and may have arisen due to the methods employed to coax the optimizer to choose this join

24

algorithm. In any event, neither of these outliers outweigh the broader conclusion that there
is no particular need for the query optimizer to be SSD aware.

3.5 Related Work

Previous work studying the applicability of Flash memory in DBMS applications has
focused on characterizing Flash, benchmarking specific database operations on Flash, and
designing new layouts, data structures, and algorithms for use with Flash.

Both Bouganim et al. and Chen et al. benchmark the performance of Flash for various
IO access patterns [13, 23]. Bouganim introduces the uFLIP micro-benchmarks and tests
their performance on several devices. Chen introduces another set of micro-benchmarks,
concluding that poor random write performance poses a significant barrier to replacing con-
ventional hard disks with Flash SSDs. While these micro-benchmarks are instructive for
understanding database performance, I focus specifically on the performance of existing
scan and join operators on SSD and disk. Others have also benchmarked Flash’s perfor-
mance within the context of DBMS systems. Lee et al. investigate the performance of spe-
cific database operations on Flash, including multiversion concurrency control (MVCC),
external sort, and hashes [59]. Similar to my study, Do et al. benchmark ad hoc joins,
testing the effects of buffer pool size and page size on performance for both disk and Flash
[34]. Although related to this study, neither of these works look at the specific performance
differences between disk and Flash for scans and joins and how this might impact query
optimization.

Whereas the above works (and this study) focus on measuring the performance of ex-
isting databases and devices, others look ahead to redesign DBMS systems in light of the
characteristics of Flash. Yin et al. and Li et al. present new index structures, focusing on
maintaining performance while using sequential writes to update the index [120, 62]. Bau-
mann et al. investigate Flash’s performance alongside a hybrid row-column store referred
to as “Grouping” [8]. Similarly, Tsirogiannis et al. use a column store motivated by the
PAX layout to create faster scans and joins [110].

Interestingly, my findings contradict recommendations from many of these studies.
Baumann concludes that SSDs shift optimal query execution towards index-based query
plans. The study bases this conclusion on the observation that asynchronous random reads
on Flash are nearly as fast as sequential reads. Indeed, the arguments made by Baumann
are a key component of the intuition laid out in Section 3.1 that led me to expect a need
for SSD-aware query optimization. However, the conclusion neglects the observations dis-
cussed in Section 3.3 demonstrating that queries selecting more than a handful of tuples

25

will likely retrieve the majority of pages in a relation, and thus gain no advantage from fast
random IO. Tsirogiannis introduces a join algorithm that retrieves only the join columns,
joins these values, and then retrieves projected rows via a temporary index. By the previous
argument, scanning for projected data should retrieve the majority of data pages, preferring
a relation scan, and thus provide comparable advantage on disk and SSD.

Finally, Bausch et al. implement asymmetry-aware query optimization in PostgreSQL
[9]. They calibrate and evaluate their system using the TPC-H benchmark and find sub-
stantial improvement. However, I believe their calibration and evaluation are skewed and
lead to false conclusions (their results are insufficient to demonstrate that query optimizers
should be SSD-aware). First, their results show that an external sort of unordered data re-
sults results in 95% random read accesses to disk. This is indicative of poorly configured
memory buffers; external soft algorithms should exhibit almost entirely sequential access
patterns. Furthermore, the results of their calibration (shown in their appendix) differ sub-
stantially from expected physical traits. For example, the relative cost of disk’s random
access is only 6.8× that of a sequential access, the relative cost of Flash’s random read
access is 5.6× that of its sequential read access (nearly the same as the relative difference
on disk), and Flash’s sequential writes are roughly 2.5× slower than random writes (se-
quential writes should be faster). Using a physically-based model only makes sense if the
model is accurate. I believe the improvement shown is a function of (1) using the total
time of 21 queries as the performance and calibration metric instead of arithmetic or geo-
metric mean (query 21 shows improvement of 549% and has a greater runtime than most
other queries), (2) using search-based calibration instead of physically derived optimiza-
tion parameters (e.g., the cost of a disk seek should be measured directly from the disk,
not by fitting the model), and (3) the asymmetric model has seven parameters versus the
original model’s five; these additional degrees of freedom allow more effective search-
based calibration even when using an incorrect optimization model. I believe that my work
demonstrates fundamental principles suggesting that query optimization sees little benefit
from SSD-awareness.

3.6 Conclusion

Flash-based solid state disks provide an exciting new high-performance alternative to
disk drives for database applications. My investigation of SSD-aware query optimization
was motivated by a hope that the drastically improved random IO performance on SSDs
would result in a large shift in optimal query plans relative to existing optimizations. At
a minimum, I expected that constants capturing relative IO costs in the optimizer would

26

require update. This chapter presented evidence that refutes this expectation, instead show-
ing that an SSD-oblivious query optimizer is unlikely to make significant errors in choosing
access paths or join algorithms. Specifically, I demonstrated both empirically and analyti-
cally that the range of selectivities for which a scan operation can benefit from SSDs’ fast
random reads is so narrow that it is inconsequential in practice. Moreover, measurements
of alternative join algorithms reveal that their performance variability is far smaller on
SSDs and is dwarfed by the 5× to 6× performance boost of shifting data to SSD. Overall,
I conclude that the small and inconsistent performance gains available by making query
optimizers SSD-aware are not worth the effort.

27

CHAPTER IV

Architecting Recovery Management for NVRAM

The following two chapters consider the impact of using emerging NVRAM technolo-
gies for durable transaction processing. Refer to Section 2.1.3 for an overview of storage
technologies and Section 2.3 for a description of ARIES, a popular recovery mechanism
for disk. The work presented in these two chapters was originally published in VLDB 2014
[84]. I completed this work under the guidance of my advisor, Thomas F. Wenisch, and
collaborators at Oracle, Brian T. Gold and Bill Bridge. I would especially like the thank
Brian and Bill for bringing industry’s point of view and “real world” examples to this col-
laboration. This chapter outlines the problems with existing disk recovery management, the
potential pitfalls of using NVRAM for persistent applications, and a description of several
candidate software designs for NVRAM recovery management, to be evaluated in the next
chapter.

4.1 Introduction

Emerging nonvolatile memory technologies (NVRAM) offer an alternative to disk that
is persistent, provides read latency similar to DRAM, and is byte-addressable [14]. Such
NVRAMs could revolutionize online transaction processing (OLTP), which today must
employ sophisticated optimizations with substantial software overheads to overcome the
long latency and poor random access performance of disk. Nevertheless, many candidate
NVRAM technologies exhibit their own limitations, such as greater-than-DRAM latency,
particularly for writes [58].

Prior work has already demonstrated the potential of NVRAM to enhance file systems
[30] and persistent data structures [115], but has not considered durable, recoverable OLTP.
Today, OLTP systems are designed from the ground up to circumvent disk’s performance
limitations while ensuring that data is properly recovered after system failure. For exam-
ple, many popular database systems use Write-Ahead Logging (WAL; e.g., ARIES [71])

28

0 20 40 60 80 100 120
Throughput (kTPS)

0

10

20

30

40

50

R
ec

ov
er

y
ti

m
e

(s
)

127k

35k

14k

6kARIES/WAL
(page writes/s)
No WAL/
write back

Figure 4.1: TPCB recovery latency vs throughput. Increasing page flush rate reduces
recovery latency. Removing WAL entirely improves throughput by 50%.

to avoid expensive random disk writes by instead writing to a sequential log. Although
effective at hiding write latency, WAL entails substantial software overheads.

NVRAM offers an opportunity to simultaneously improve database transaction pro-
cessing throughput and recovery latency by rethinking mechanisms that were designed to
address the limitations of disk. Figure 4.1 demonstrates this potential, displaying recovery
time and transaction throughput for the TPCB workload running on the Shore-MT storage
manager [54] for hypothetical NVRAM devices (see Section 5.1 for a description of the
methodology).

The ARIES/WAL points (black circles) in the Figure show forward-processing through-
put (horizontal axis) and recovery time (vertical axis) as a function of device write through-
put (annotated alongside each point as pages per second). As database throughput can
greatly outpace existing storage devices (this configuration requires 6,000 page writes/s
to bound recovery; measured disk and Flash devices provide only 190 and 2,500 page
writes/s, respectively) I model recovery performance under faster NVRAM using a RAM
disk for log and heap while limiting the page flush rate. As intuition would suggest, greater
write bandwidth enables more aggressive flushing, minimizing the number of dirtied pages
in the buffer cache at the time of failure, in turn reducing recovery time. With enough
write bandwidth (in this case, 127,000 flushes/s, or 0.97 GB/s random writes for 8KB
pages) the database recovers near-instantly, but forward-processing performance remains
compute bound. Achieving such throughput today requires large, expensive disk arrays or

29

enterprise Flash storage devices; future NVRAM devices might enable similar performance
on commodity systems.

NVRAM opens up even more exciting opportunities for recovery management when
considering re-architecting database software. Figure 4.1 shows this additional potential
with a design point (red triangle) that removes WAL and asynchronous page flushing—
optimizations primarily designed to hide disk latency. Throughput improves due to three
effects: (1) threads previously occupied by page and log flushers become available to serve
additional transactions, (2) asynchronous page flushing, which interferes with transactions
as both flusher and transaction threads latch frequently accessed pages, is removed, and
(3) transactions no longer insert WAL log entries, reducing the transaction code path.
In aggregate these simplifications amount to a 50% throughput increase over ARIES’s
instantaneous-recovery NVRAM performance. The key take-away is that database opti-
mizations long used for disk only hinder performance with faster devices. In this chapter,
I investigate how to redesign durable storage and recovery management for OLTP to take
advantage of the low latency and byte-addressability of NVRAM.

NVRAMs, however, are not without their limitations. Several candidate NVRAM
technologies exhibit larger read latency and significantly larger write latency compared
to DRAM. Additionally, whereas DRAM writes benefit from caching and typically are not
on applications’ critical paths, NVRAM writes must become persistent in a constrained
order to ensure correct recovery. I consider an NVRAM access model where correct or-
dering of persistent writes is enforced via persist barriers, which stall until preceding NV-
RAM writes complete; such persist barriers can introduce substantial delays when NV-
RAM writes are slow.

This chapter outlines an approach to architecting recovery management for transaction
processing using NVRAM technologies. I discuss potential performance concerns for both
disk and NVRAM, proposing software designs to address these problems. In the next
chapter I outline an NVRAM performance evaluation framework involving memory trace
analysis and precise timing models to determine when OLTP must be redesigned.

4.2 Recovery Management Design

Upcoming NVRAM devices will undoubtedly be faster than both disk and Flash. How-
ever, compared to DRAM many NVRAM technologies impose slower reads and signif-
icantly slower persistent writes. Both must be considered in redesigning OLTP for NV-
RAM.

30

NVRAM
Disk-Replacement In-Place Updates NVRAM Group Commit

Software buffer Traditional
WAL/ARIES

Updates both buffer and
NVRAM Buffer limits batch size

Hardware buffer Impractical Slow uncached NVRAM
reads

Requires hardware support

Replicate to DRAM
Provides fast reads and removes buffer management, but requires large
DRAM capacity

Table 4.1: NVRAM design space. Database designs include recovery mechanisms (top)
and cache configurations (left).

4.2.1 NVRAM Reads

While the exact read performance of future NVRAM technologies is uncertain, many
technologies and devices increase read latency relative to DRAM. Current databases and
computer systems are not equipped to deal with this read latency. Disk-backed databases
incur sufficiently large read penalties (on the order of milliseconds) to justify software-
managed DRAM caches and buffer management. On the other hand, main-memory databases
rely only on the DRAM memory system, including on-chip data caches. Increased mem-
ory latency and wide-spread data accesses may require hardware or software-controlled
DRAM caches even when using byte addressable NVRAM.

I consider three configurations of cache management; these alternatives form the three
rows of Table 4.1 (subsequent sections consider the recovery management strategies, form-
ing the three columns). The first option, Software Buffer, relies on software to manage
a DRAM buffer cache, as in conventional disk-backed database systems. The cache may
be removed entirely or execution relies solely on a Hardware Buffer, as in main-memory
databases. Hardware caches are fast (e.g., on-chip SRAM) and remove complexity from the
software, but provide limited capacity. Third, one might replicate to DRAM all data stored
in NVRAM—writes update both DRAM and NVRAM (for recovery), but reads retrieve
data exclusively from DRAM. Replicating data ensures fast reads by avoiding NVRAM
read latencies (except for recovery) and simplifies buffer management, but requires large
DRAM capacity.

4.2.2 NVRAM Writes

Persistent writes, unlike reads, do not benefit from caching; writes persist through to the
device for recovery correctness. Additionally, NVRAM updates must be carefully ordered
to ensure consistent recovery. I assume that ordering is enforced through a mechanism

31

Figure 4.2: Durable atomic updates. persist wal appends to the ARIES log using two
persist barriers. persist page persists pages with four persist barriers.

1: function persist wal(log bu f f er, nvram log)
2: for entry in log bu f f er do
3: nvram log.force last lsn invalid(entry)
4: nvram log.insert body(entry) . no LSN
5: end for
6: persist barrier()
7: nvram log.update lsns() . for all entries
8: persist barrier()
9: end function

10: function persist page(page v, page nv, page log)
11: page log.copy from(page nv)
12: persist barrier()
13: page log.mark valid()
14: persist barrier()
15: page nv.copy from(page v)
16: persist barrier()
17: page log.mark invalid()
18: persist barrier()
19: end function

called a persist barrier, which guarantees that writes before the barrier successfully persist
before any dependant operations after the barrier execute (including subsequent persists
and externally visible side effects).

Persist barriers may be implemented in several ways. The easiest, but worst perform-
ing, is to delay at persist barriers until all pending NVRAM writes finish persisting. More
complicated mechanisms improve performance by allowing threads to continue executing
beyond the persist barrier and only delaying thread execution when persist conflicts arise
(i.e., a thread reads or overwrites shared data from another thread that has not yet per-
sisted). BPFS provides an example implementation of this mechanism [30]. Regardless of
how they are implemented, persist barriers can introduce expensive synchronous delays on
transaction threads; the optimal recovery mechanism depends on how expensive, on aver-
age, persist barriers become. To better understand how persist barriers are used and how
frequently they occur, I outline operations to atomically update persistent data using persist
barriers, and use these operations to implement three recovery mechanisms for NVRAM.

Atomic durable updates. Figure 4.2 shows two operations to atomically update NV-
RAM data. The first, persist wal(), persists log entries into an ARIES log. Shore-MT
log entries are post-pended with their Log Serial Number (LSN—log entry file offset). Log

32

entries are considered valid only if the tail LSN matches the starting location of the entry.
I persist log entries atomically by first persisting an entry without its tail LSN and only
later persisting the LSN, ordered by a persist barrier. Additionally, I reduce the number of
persist barriers by persisting entries in batches, writing several log entries at once (without
LSNs), followed by all LSNs. Log operations introduce two persist barriers—one to ensure
that log entries persist before their LSNs, and one to enforce that LSNs persist before the
thread continues executing.

The second operation, persist page(), atomically persists page data using a persis-
tent undo page log. First, the page’s original data is copied to the page log. The page log
is marked valid and the dirty version of the page is copied to NVRAM (updated in-place
while locks are held). Finally, the log is marked invalid, and will no longer be applied
(rolled back) at recovery. Four persist barriers ensure that each persist completes before the
next, enforcing consistency at all points in execution. Recovery checks the valid flags of
all page logs, copying valid logs back in-place.

The log is always valid while the page persists in-place, protecting against partial NV-
RAM writes and giving the appearance of atomic page updates. Together, persist wal()
and persist page() provide the tools necessary to construct recovery mechanisms. I
discuss these mechanisms next, describing their implementation and performance.

NVRAM Disk-Replacement. NVRAM database systems will likely continue to rely
on ARIES/WAL at first, using NVRAM as NVRAM Disk-Replacement. WAL provides re-
covery for disk by keeping an ordered log of all updates, as described in Section 2.3. While
retaining disk’s software interface, NVRAM block accesses copy data between volatile and
nonvolatile address spaces. NVRAM Disk-Replacement in Shore-MT persists the log and
pages with persist wal() and persist page(), respectively. Persists occur on log and
page flusher threads, and transaction threads do not delay (except when waiting for com-
mit log entries to persist). NVRAM Disk-Replacement provides low recovery latency by
aggressively flushing pages, minimizing recovery replay. While requiring the least engi-
neering effort, NVRAM Disk-Replacement contains large software overheads to maintain a
centralized log and asynchronously flush pages. Next, I leverage NVRAM’s low latency to
reduce these overheads.

In-Place Updates. Fast, byte-addressable NVRAM allows data to persist in-place,
enforcing persist order immediately in a design called In-Place Updates. In-Place Updat-

es permits the centralized log to be removed by providing redo and undo log functionality
elsewhere. I remove redo logs by keeping the database’s durable state up-to-date. In ARIES
terms, the database maintains its replayed state—there is no need to replay a redo log after
failure. Undo logs need not be ordered across transactions (transactions are free to roll

33

back in any order), and are instead distributed by transaction. Such private logs are simpler
and impose fewer overheads than centralized logs. Other databases (such as Oracle) already
distribute undo logs in rollback segments and undo table spaces [32]. Transaction undo logs
remain durable so that in-flight transactions can be rolled back after failure. Page updates
(1) latch the page, (2) insert an undo entry into the transaction-private undo log using
persist wal(), (3) update the page using persist page() (without an intermediate
volatile page), and (4) release the page latch. This protocol ensures all updates to a page,
and updates within a transaction, persist in-order, and that no transaction reads data from a
page until it is durable.

Persisting data in-place removes expensive redo logging and asynchronous page flush-
ing, but introduces persist barriers on transactions’ critical paths. For sufficiently short
persist barrier delays In-Place Updates outperforms NVRAM Disk-Replacement. However,
one would expect transaction performance to suffer as persist barrier delay increases.

In response, I introduce NVRAM Group Commit, a recovery mechanism designed to
minimize the frequency of persist barriers while still removing WAL. NVRAM Group Com-

mit is an entirely new design, committing instructions in large batches to minimize persist
synchronization. The next section describes, in detail, the operation and data structures
necessary to implement NVRAM Group Commit.

4.3 NVRAM Group Commit

The two previous recovery mechanisms provide high throughput under certain circum-
stances, but contain flaws. NVRAM Disk-Replacement is insensitive to large persist barrier
delays. However, it assumes IO delays are the dominant performance bottleneck and trades
off software overhead to minimize IO. In-Place Updates, on the other hand, excels when
persist barriers delays are short. As persist barrier latency increases performance suffers,
and NVRAM Disk-Replacement eventually performs better. Here, I present NVRAM Group

Commit, coupling NVRAM Disk-Replacement’s persist barrier latency-insensitivity with
In-Place Updates’s low software overhead.

4.3.1 Operating Principles and Implementation

NVRAM Group Commit operates by executing transactions in batches, whereby all
transactions in the batch commit or (on failure) all transactions abort. Transactions qui-
esce between batches—at the start of a new batch transactions stall until the previous
batch commits. Each transaction maintains a private ARIES-style undo log, supporting
abort and roll-back as in In-Place Updates, but transaction logs are no longer persistent.

34

As batches persist atomically, transactions no longer roll back selectively during recovery
(rather, aborted transactions roll back before any data persists), obviating the need for per-
sistent ARIES undo logs. Instead, recovery relies on a database-wide undo log and staging
buffer to provide durable atomic batches.

NVRAM Group Commit leverages byte-addressability to reduce persist barrier frequen-
cy by ordering persists at batch rather than transaction or page granularity. Batch commit
resembles persist page(), used across the entire database, once per batch. Because
undo logging is managed at the batch level, transactions’ updates must not persist in-place
to NVRAM until all transactions in the batch complete (no-steal policy applied to batches).
Rather, transactions write to a volatile staging buffer, tracking dirtied cache lines in a con-
current bit field. Once the batch ends and all transactions complete, the pre-batch version
of dirtied data is copied to the database-wide persistent undo log, only after which data is
copied from the staging buffer in-place to NVRAM. Finally, the database-wide undo log
is invalidated, transactions commit, and transactions from the next batch begin executing.
On failure the log is copied back, aborting and rolling back all transactions from the in-
flight batch. The key observation is that NVRAM Group Commit persists entire batches
of transactions using four persist barriers, far fewer than required with In-Place Updates.
Note, however, that it enables recovery only to batch boundaries, rather than transaction
boundaries.

I briefly outline two implementation challenges: long transactions and limited staging
buffers. Long transactions force other transactions in the batch to defer committing until
the long transaction completes. Limited staging buffers, not large enough to hold the entire
data set, may fill while transactions are still executing. I solve both problems by resorting to
persistent ARIES-style undo logs, as in In-Place Updates. Long transactions persist their
ARIES undo log (previously volatile), allowing the remainder of the batch to persist and
commit. The long transaction joins the next batch, committing when that batch commits.
At recovery the most recent batch rolls back, and the long transaction’s ARIES undo log
is applied, removing updates that persisted with previous batches. Similarly, if the staging
buffer fills, the current batch ends immediately and all outstanding transactions persist their
ARIES undo logs. The batch persists, treating in-flight transactions as long transactions,
reassigning them to the next batch. This mechanism requires additional persistent data
structures to allow transaction and batch logs to invalidate atomically.

NVRAM Group Commit requires fewer persist barriers than In-Place Updates and avoids
NVRAM Disk-Replacement’s logging. Batches require four persist barriers regardless of
batch length. Persist barrier delays are amortized over additional transactions by increas-
ing batch length, improving throughput. However, increasing batch length defers commit

35

Top level bitmap

Primary bitmap

Heap data ... 12GB

64 bytes

... 48kB10011...

... 24MB

64 bytes

101... (all 0s)...

dirty dirtyclean

Figure 4.3: Hierarchical bitmap set. Each bit of top level bitmap corresponds to a cache
line of bits (64 bytes, 512 bits) in the primary bitmap; top level bit is set if any associated
bits in primary bitmap are set (boolean or operation). Each bit in the primary bitmap
corresponds to a cache line in the database buffer cache and is set if the cache line is dirty
(contains modifications since the start of the batch).

for all transactions in the batch, increasing transaction latency. Batch length must be large
enough such that batch execution time dominates time spent quiescing transactions between
batches.

4.3.2 High Performance Group Commit

NVRAM Group Commit improves on In-Place Updates by minimizing persist barrier
frequency. However, additional overheads are introduced to (1) track modified addresses
while transactions execute, (2) quiesce transactions at batch end, and (3) persist and commit
each batch. I outline new mechanisms to accelerate batch performance.

Hierarchical bitmap set. Modified addresses must be tracked so that dirtied data can
be quickly located and persisted at the end of each batch. Adding to, iterating over, and
clearing the set must be fast. I track modifications at cache line (64-byte) granularity. Batch
logging and persisting additionally occurs at this granularity. My first attempts considered
a balanced tree set (STL set), which resulted in unacceptably large overheads to add to the
set, and a bitmap set, which provided slow iteration—a 12GB buffer cache implies 24MB
of bitmap, which requires too many instructions to scan quickly. Instead, I leverage the
fact that updates to the buffer cache by each batch are sparse to introduce a new set data
structure, the hierarchical bitmap set.

The ideal set data structure would use an insert operation similar to the bitmap set (re-
quiring only a bitwise-or operation) but iterate through the set faster. I observe that at the
end of each batch only a small portion of the buffer cache is dirty—set iteration should rec-
ognize large contiguous blocks of clean addresses and skip these. The hierarchical bitmap

36

set introduces an additional bitmap, the top level bitmap, which indicates if an entire cache
line of the primary bitmap contains any 1s—each bit of the top level bitmap maps to 512
bits of the primary bitmap. Figure 4.3 shows the hierarchical bitmap set. The top level
bitmap (48kB) contains bits corresponding to cache lines of the primary bitmap (24MB)
which in turn contains bits corresponding to cache lines of the heap (12GB buffer cache).
In the Figure the first bit of the top level bitmap is set, denoting that at least one bit in the
first cache line of the primary bitmap must be set. On the other hand, the second bit of the
top level bitmap is not set, indicating that no bits in the second cache line of the primary
bitmap are set, and that all corresponding cache lines in the heap are clean.

During batch execution addresses are added to the hierarchical bitmap set by setting
the correct bits in both the primary and top level bitmaps. Since bits within the same byte
in the top level bitmap correspond to different heap pages, and thus must allow concurrent
operations, the top level bitmap must be updated using an atomic-or instruction. Iteration
is performed by scanning the top level bitmap until a 1 is found, and then scanning the
corresponding cache line of the primary bitmap. I additionally optimize bitmap scanning
by testing data at eight-byte granularity, then one-byte granularity, and then by bit. Any
block without a set bit (i.e., the block equals zero) is skipped. Scanning at successively
smaller granularity minimizes the number of instructions necessary to search the bitmap.
Processor-specific instructions enable scanning of larger data blocks, but I found additional
optimization unnecessary. Finally, the bitmaps are cleared using memset; clean portions of
the primary bitmap need not be cleared and may be skipped.

I map each bit of the top level bitmap to 64 bytes (512 bits) of the primary bitmap to
minimize the number of primary bitmap cache lines accessed, but this mapping may be
modified. Additional layers of bitmaps may also be added. Whether modification would
help depends on the access characteristics and sparseness of data within the set. My struc-
ture appears to match my workloads and minimizes insert, iteration, and clearing over-
heads.

Concurrent batch persist. I have shown that dirty lines can be tracked and iterated
over efficiently. However, persisting each batch with the batch coordinator alone results
in long persist delays. These delays are due to the software overhead of copying data,
not NVRAM limitations. To reduce these delays persist operations must be parallelized
across threads. I use quiesced transaction threads, formerly waiting for the previous batch
to commit, to log and persist the batch and accelerate batch commit.

The buffer cache address space and corresponding portions of the primary bitmap are
partitioned into segments and placed in a task queue. The batch coordinator and trans-
action threads blocked by batch commit each participate by processing tasks, persisting

37

Workload Relative performance
TPCC 79.2%
TPCB 86.2%
TATP 83.8%

Table 4.2: Concurrent NVRAM Group Commit persist. NVRAM Group Commit must
use many threads to concurrently persist the batch log and data. Here I show the relative
throughput of using only a single thread versus additionally using quiesced transaction
threads to accelerate batch persist and commit. Results assume a 20ms batch period.

buffer cache partitions (both log and then data in-place). Once all tasks complete the batch
commits, allowing the next batch to begin.

Table 4.2 shows the relative slowdown that results from using only a single thread
to persist and commit each batch using a 20ms batch period (methodology discussed in
Section 5.1). At worst, 20% throughput is lost (TPCC), yet all workloads suffer at least a
13.8% slowdown. Threads must persist each batch concurrently to achieve the throughput
of In-Place Updates while remaining resilient to large persist barrier latency.

Using the hierarchical bitmap set and concurrent batch persists minimizes batch over-
heads. Profiling indicates that memcpy operations, copies from the buffer cache to the per-
sistent address space, form the remaining bottleneck (memcpy is implemented using fast
SSE instructions and cannot be optimized further), indicated few additional opportunities
for optimization.

4.4 Design Space

I describe the space of possible designs given choices regarding NVRAM read and
write performance. This discussion ignores possible uses of hard disk to provide additional
capacity. Each design works alongside magnetic disk with additional buffer management
and the constraint that pages persist to disk before being evicted from NVRAM. Many
modern OLTP applications’ working sets are small, fitting entirely in main-memory.

Table 4.1 lists the possible combinations of caching architectures and recovery mecha-
nisms. The left column presents NVRAM Disk-Replacement, the obvious and most incre-
mental use for NVRAM. Of note is the center-left cell, NVRAM Disk-Replacement without
the use of a volatile buffer. WAL, by its design, allows pages to write back asynchronously
from volatile storage. Removing the volatile cache requires transactions to persist data in-
place, but do so only after associated log entries persist, retaining the software overheads
of NVRAM Disk-Replacement as well as the frequent synchronization in In-Place Updates.
Thus, this design is impractical.

38

The middle-column recovery mechanism, In-Place Updates, represents the most intu-
itive use of NVRAM in database systems, as noted in several prior works. Agrawal and
Jagadish explore several algorithms for atomic durable transactions with an NVRAM main-
memory [3]. They describe the operation and correctness of each mechanism and provide
an analytic cost model to compare them. Their work represents the middle column, middle
row of Table 4.1 (In-Place Updates with no volatile buffer). Akyürek and Salem present a
hybrid DRAM and NVRAM buffer cache design alongside strategies for managing cache
allocation [98]. Such Partial Memory Buffers resemble the middle-top cell of the design
space table (In-Place Updates with a software-managed DRAM buffer), although their
design considers NVRAM as part of a hybrid buffer, not the primary persistent store. Nei-
ther of these works considers alternative approaches (such as NVRAM Group Commit), to
account for large persist barrier latency and associated delays. Additionally, this work ex-
tends prior work by providing a more precise performance evaluation and more detailed
consideration of NVRAM characteristics.

The right column presents NVRAM Group Commit. Each of the three recovery mech-
anisms may replicate all data between NVRAM and DRAM to ensure fast read accesses,
manage a smaller DRAM buffer cache, or omit the cache altogether. In Section 5.2 I con-
sider the importance of NVRAM caching to transaction throughput. Then, in Section 5.3 I
assume a DRAM-replicated heap to isolate read performance from persist performance in
evaluating each recovery mechanisms’s ability to maximize transaction throughput.

4.5 Related Work

To the best of my knowledge, this work is the first to investigate NVRAM write la-
tency and its effect on durable storage and recovery in OLTP. A large body of related work
considers applications of NVRAM and reliable memories.

Ng and Chen place a database buffer cache in battery-backed DRAM, treating it as
reliable memory [77]. However, the mechanisms they investigate are insufficient to pro-
vide ACID properties under any-point failure or protect against many types of failure (e.g.,
power loss).

Further work considers NVRAM in the context of file systems. Baker et al. use NV-
RAM as a file cache to optimize disk I/O and reduce network traffic in distributed file
systems, yet continue to assume that disk provides the bulk of persisted storage [5]. More
recently, Condit et al. demonstrate the hardware and software design necessary to imple-
ment a file system entirely in NVRAM as the Byte-Addressable Persistent File System
(BPFS) [30]. While I assume similar hardware, I additionally consider a range of NVRAM

39

performance and focus instead on databases.
Other work develops programming paradigms and system organizations for NVRAM.

Coburn et al. propose NV-Heaps to manage NVRAM within the operating system, pro-
vide safety guarantees while accessing persistent stores, and atomically update data using
copy-on-write [29]. Volos et al. similarly provide durable memory transactions using Soft-
ware Transactional Memory (STM) and physical redo logging per transaction [116]. While
these works provide useful frameworks for NVRAM, they do not investigate the effect of
NVRAM persist latency on performance, nor do they consider OLTP, where durability is
tightly coupled with concurrency and transaction management.

Recently, researchers have begun to focus specifically on databases as a useful applica-
tion for NVRAM. Chen et al. reconsider database algorithms and data structures to address
NVRAM’s write latency, endurance, and write energy concerns, generally aiming to reduce
the number of modified NVRAM bits [24]. However, their work does not consider durable
consistency for transaction processing. Venkataraman et al. demonstrate a multi-versioned
log-free B-Tree for use with NVRAM [115]. Indexes are updated in place, similarly to my
In-Place Updates, without requiring any logging (physical or otherwise) and while provid-
ing snap shot reads. This work considers durability management at a higher level—user
transactions—and consistency throughout the entire database. Finally, Fang et al. develop
a new WAL infrastructure for NVRAM that leverages byte addressable and persistent ac-
cess [37]. Fang aims to improve transaction throughput but retains centralized logging. I
distinguish myself by investigating how NVRAM write performance guides database and
recovery design more generally.

More similar to my work, Coburn et al. introduce hardware support for durable trans-
actions in NVRAM storage devices [28]. These editable atomic writes provide the same
functionality as traditional ARIES logs. Such hardware must still serialize and persist
log entries; contention while serializing entries and ordering persists may still limit system
throughput. Additionally, editable atomic writes use physical logging (updates are recorded
as location-data-length tuples), as opposed to logical logging (updates are recorded as a
set of data and functions to apply/roll back the update). Logical logging is necessary to
precisely control data placement when supporting concurrent transactions. For example,
to maintain B+Tree elements in sorted order within a page each transaction must modify
large portions of the page (to shift entries), even if those entries were recently modified by
another outstanding transaction. It is unclear if physical logging provides all the features
expected from ARIES.

Prior work (e.g., H-Store [104]) has suggested highly available systems as an outright
replacement for durability. I argue that computers and storage systems will always fail, and

40

durability remains a requirement for many applications.

4.6 Conclusion

This chapter motivated the need to reconsider system design for NVRAM recovery
management. I highlight possible caching architectures as well as three candidate recovery
management software designs and their implementations. The next chapter compares these
system designs, considering performance related to NVRAM read and persist latencies.

41

CHAPTER V

An Evaluation of NVRAM Recovery Management

This chapter builds on the previous to investigate the performance effects of different
caching architectures and recovery mechanisms for NVRAM. I introduce a methodology
for evaluating database performance with upcoming NVRAMs and look at NVRAM read
and write performance concerns separately.

5.1 Methodology

This section details the methodology for benchmarking transaction processing and
modeling NVRAM performance. Experiments use the Shore-MT storage manager [54],
including the high performance, scalable WAL implementation provided by Aether [55].
While Aether additionally provides a distributed log suitable for multi-socket servers, the
distributed log exists as a fork of the main Shore-MT project. Instead, I limit experiments
to a single CPU socket to provide a fair comparison between WAL and other recovery
schemes, enforced using the Linux taskset utility. Experiments place both the Shore-MT
log and volume files on an in-memory tmpfs, and provide sufficiently large buffer caches
such that all pages hit in the cache after warmup. The intent is to allow the database to
perform data accesses at DRAM speed and introduce additional delays to model NVRAM
performance. Table 5.1 shows the experimental system configuration.

Operating System Ubuntu 12.04
CPU Intel Xeon E5645

2.40 GHz
CPU cores 6 (12 with HyperThreading)
Memory 32 GB

Table 5.1: Experimental system configuration.

42

0 20 40 60 80 100
Intended Delay (ns)

0

20

40

60

80

100

120

M
ea

su
re

d
D

el
ay

(n
s) Fit

Measured

Figure 5.1: Delay precision. Delays are implemented by repeatedly reading the TSC reg-
ister. Resulting delays form a step function. Inserted delays are within 6ns of the intended
delay.

Modeling NVRAM delays. Since NVRAM devices are not yet available, I must pro-
vide a timing model that mimics their expected performance characteristics. I model NV-
RAM read and write delays by instrumenting Shore-MT with precisely controlled assembly-
code delay loops to model additional NVRAM latency and bandwidth constraints at 13ns
precision. Hence, Shore-MT runs in real time as if its buffer cache resided in NVRAM
with the desired read and write characteristics.

I introduce NVRAM delays using the x86 RDTSCP instruction, which returns a CPU-
frequency-invariant, monotonically increasing time-stamp that increments each clock tick.
RDTSCP is a synchronous instruction—it does not allow other instructions to reorder with
it. The RDTSCP loop delays threads in increments of 13ns (latency per loop iteration and
RDTSCP) with an accuracy of 2ns.

Figure 5.1 shows the measured delay that results from iterating on an intended delay
(both in ns). Points show the median of ten thousand delay trials (a small number of trials
result in excessively large delays and skew the mean). The delay function resembles a step
function—delays may only be inserted in multiples of the loop iteration latency.

To better understand delay behavior I perform a least squares regression of a step func-
tion against the measured data of the form:

delay(intended) = a × f loor(intended/a + b) + c

which results in an R2 of .997 and the following parameter values: a = 12.5, b = .434, and
c = 10.1. This indicates that each iteration takes 12.5ns.

43

As delays can only be introduced in steps I subtract 9.3ns from the intended delay
to match to the closest step. The resulting delay is within 6.25ns of the intended delay.
However, a given delay contains a constant skew (for example, an intended delay of 30ns
always results in a 35ns delay). As NVRAM persist latencies are expected to be in the
hundreds of ns or greater, such error will negligibly affect my results.

Modeling NVRAM persist bandwidth. In addition to NVRAM latency, I model
shared NVRAM write bandwidth. Using RDTSCP as a clock source, I maintain a shared
next available variable, representing the next clock tick in which the NVRAM device is
available to be written. Each NVRAM persist advances next available to account for the
latency of its persist operation. Reservations take the maximum of next available and the
current RDTSCP and add the reservation duration. The new value is atomically swapped
into next available via a Compare-And-Swap (CAS). If the CAS fails (due to a race with
a persist operation on another thread), the process repeats until it succeeds. Upon success,
the thread delays until the end of its reservation. The main limitation of this approach is
that it cannot model reservations shorter than the delay required to perform a CAS to a
contended shared variable. The delay incurred by a CAS instruction depends on contention
to the address and the scheduling of threads across cores and processors. I demonstrate
that this technique models reservations above 120ns accurately, which is sufficient for my
experiments.

Several factors affect the speed of bandwidth reservations (and therefore reservation ac-
curacy) including the number of threads and their placement across sockets and cores. I test
the reservation system’s accuracy by constraining thread placement while threads repeat-
edly reserve time and delay until the end of the reservation. If all available time is reserved,
reservation overhead is negligible and the modeled bandwidth is accurate. However, when
reservation length is sufficiently short reservation overheads will dominate, resulting in
unreserved time.

Table 5.2 shows the required reservation length (in ns) to reserve 99% of time with six
and 12 threads. Additionally, the Table shows different thread placement across sockets and
cores. “Spread” implies assigning threads round-robin to resources, while “pack” indicates
that each resource is filled before assigning any threads to the next. For example, assigning
six threads in a pack sockets–spread cores policy (on a two socket server, each with six
cores and two-way SMT) results in all six threads scheduled on the same socket but each
thread on its own core (thus SMT is unused). Such a configuration requires reservations of
only 44ns to reserve 99% of bandwidth-time.

Spreading threads across sockets or packing within cores slows reservations by requir-
ing long-latency communication between sockets or forcing threads to contend with each

44

socket policy spread cores pack cores
spread 109 122
pack 44 104

(a) 6 threads

socket policy spread cores pack cores
spread 96 101
pack 51 51

(b) 12 threads

Table 5.2: Bandwidth reservation bendmark. Benchmark repeatedly reserves bandwidth
as time and delays until end of the reservation. Reservations are inaccurate if entire time
cannot be reserved (reservation overhead dominates). Results shown are reservation sizes
(in ns) to reserve 99% time. Thread placement is varied across CPU sockets and cores:
packed (fill socket/core before allocating new) or spread (round robin assign to resources).
122ns and greater reservations accurately model constrained bandwidth.

other while scheduling instructions on cores. At worst, when threads are spread across
sockets and packed within cores a reservation length of 122ns is required to reserve 99%
of time.

A similar trend is true when considering 12 threads. Packing threads into a socket com-
pletely fills all cores and SMT contexts of the socket (the bottom two cells represent the
same configuration), needing 51ns reservations for accurate bandwidth modeling. Spread-
ing threads across sockets while packing cores requires 101ns to reserve 99% of time. The
required time decreases from six to 12 threads as more threads are available to reserve time
and it is less likely that time will go unreserved.

These results suggest that bandwidth reservations will be accurate, regardless of how
threads are scheduled across processors and cores, so long as each reservation exceeds
120ns. My additions to Shore-MT reserve bandwidth for each cache line persisted. The
persist bandwidth analysis study (presented later in Section 5.3.3) shows that 35ns per
cache line (approximately 1.7GB/s persists) represents sufficient bandwidth to negligi-
bly limit performance. Since at least four cache lines are always reserved together (in
persist page and persist wal) the bandwidth reservation is accurate.

NVRAM performance. I introduce NVRAM read and write delays separately. Accu-
rately modeling per-access increases in read latency is challenging, as reads are frequent
and the expected latency increases on NVRAM compared to DRAM are small. It is in-
feasible to use software instrumentation to model such latency increases at the granularity
of individual reads; hardware support, substantial time dilation, or alternative evaluation

45

techniques (e.g., simulation) would be required, all of which compromise accuracy and the
ability to run experiments at full scale. Instead, I use offline analysis with PIN [67] to de-
termine (1) the reuse statistics of buffer cache pages, and (2) the average number of cache
lines accessed each time a page is latched. Together, these offline statistics provide an av-
erage number of cache line accesses per page latch event in Shore-MT. I then introduce
a delay at each latch based on the measured average number of misses and an assumed
per-read latency increase based on the NVRAM technology.

I model NVRAM persist delays by annotating Shore-MT to track buffer cache writes
at cache line granularity—64 bytes—using efficient “dirty” bitmaps. Depending on the
recovery mechanism, I introduce delays corresponding to persist barriers and to model
NVRAM write bandwidth contention. Tracking buffer cache writes introduces less than a
3% overhead to the highest throughput experiments.

I choose on-line timing modeling via software instrumentation in lieu of architectural
simulations to allow experiments to execute at full scale and in real time. While modeling
aspects of NVRAM systems such as cache performance and more precise persist barrier
delays require detailed hardware simulation, I believe NVRAM device and memory system
design are not sufficiently established to consider this level of detail. Instead, I investigate
more general trends to determine if and when NVRAM read and write performance warrant
storage management redesign.

Recovery performance. Figure 4.1 displays recovery latency vs transaction throughput
for the TPCB workload, varying page flush rate. Page flush rate is controlled by maintain-
ing a constant number of dirty pages in the buffer cache, always flushing the page with the
oldest volatile update. Experiments run TPCB for one minute (sufficient to reach steady
state behavior) and then kill the Shore-MT process. Before starting recovery I drop the file
system cache. Reported recovery time includes only the recovery portion of the Shore-MT
process; I do not include system startup time nor non-recovery Shore-MT startup time.

Workloads. I use three workloads and transactions in this evaluation: TPCC, TPCB,
and TATP. TPCC models order management for a company providing a product or ser-
vice [108]. TPCB contains one transaction class and models a bank executing transactions
across branches, tellers, customers, and accounts [107]. TATP includes seven transactions
to model a Home Location Registry used by mobile carriers [76]. Table 5.3 shows the
workload configuration. I scale workloads to fit in a 12GB buffer cache. Persist perfor-
mance experiments use a single write-heavy transaction from each workload while read
performance experiments use each workload’s full mix. All experiments report throughput
as thousands of Transactions Per Second (kTPS). Experiments perform “power runs”—
each thread generates and executes transactions continuously without think time—and run

46

Workload Scale factor Size Write transaction
TPCC 70 9GB New order
TPCB 1000 11GB
TATP 600 10GB Update location

Table 5.3: Workloads and transactions. One transaction class from each of three work-
loads, sized to approximately 10GB.

TATP TPCB TPCC Average

% lines lines/
latch

% lines lines/
latch

% lines lines/
latch

% lines lines/
latch

Heap 7.26% 4.19 15.47% 4.25 15.27% 6.10 12.66% 4.85
Index 92.45% 11.82 81.18% 11.17 81.54% 11.44 85.06% 11.48
Other 0.29% 3.00 3.36% 3.00 3.19% 8.31 2.28% 4.77
Total 11.24 9.83 10.52 10.48

Table 5.4: NVRAM access characteristics. “% lines” indicates the percentage breakdown
of cache line accesses. “lines/latch” reports the average number of cache line accesses per
page latch. Indexes represent the majority of accesses.

an optimal number of threads per configuration (between 10 and 12).

5.2 NVRAM Reads

I first evaluate database performance with respect to NVRAM reads. Many candidate
NVRAM technologies exhibit greater read latency than DRAM, possibly requiring addi-
tional hardware or software caching. I wish to determine, for a given NVRAM read latency,
how much caching is necessary to prevent slowdown, and whether it is feasible to provide
this capacity in a hardware-controlled cache (otherwise software caches must be used).

5.2.1 NVRAM Caching Performance

Traces. The NVRAM read-performance model combines memory access trace analysis
with the timing model to measure transaction throughput directly in Shore-MT. Traces
consist of memory accesses to the buffer cache, collected running Shore-MT with PIN for
a single transaction thread for two minutes. I assume concurrent threads exhibit similar
access patterns. In addition, I record all latch events (acquire and release) and latch page
information (i.e., table id, store type—index, heap, or other). I analyze traces at cache line
(64 bytes) and page (8KB) granularity.

These traces provide insight into how Shore-MT accesses persistent data, summarized

47

in Table 5.4. Index accesses represent the great majority of cache line accesses, averaging
85% of accesses to NVRAM across workloads. Any caching efforts should focus primarily
on index pages and cache lines. Note also that indexes access a greater number of cache
lines per page access than other page types (average 11.48 vs 4.85 for heap pages and 4.77
for other page types), suggesting that uncached index page accesses have the potential to
introduce greater delays.

Throughput. I create a timing model in Shore-MT from the previous memory traces.
Given traces, I perform cache analysis at page granularity, treating latches as page ac-
cesses and assuming a fully associative cache with a least-recently-used replacement policy
(LRU). Cache analysis produces an average page miss rate to each table. I conservatively
assume that every cache line access within an uncached page introduces an NVRAM stall,
neglecting optimizations such as out-of-order execution and simultaneous multi-threading
that might hide some NVRAM access stalls. The model assumes the test platform incurs
a 50ns DRAM fetch latency, and adds additional latency to mimic NVRAM (for example,
a 200ns NVRAM access adds 150ns delay per cache line). I combine average page miss
rate and average miss penalty (from lines/latch in table 5.4) to compute the average delay
incurred per latch event. This delay is inserted at each page latch acquire in Shore-MT,
using In-Place Updates, to produce a corresponding throughput.

Figure 5.2 shows throughput achieved for the three workloads while varying the number
of pages cached (horizontal axis) and NVRAM miss latency (various lines). The vertical
axis displays throughput normalized to DRAM-miss-latency’s throughput (no additional
delay inserted). Without caching, throughput suffers as NVRAM miss latency increases,
shown at the extreme left of each graph. A 100ns miss latency consistently achieves at least
90% of potential throughput. However, an 800ns miss latency averages only 50% of the
potential throughput, clearly requiring caching. TPCB and TPCC see a 10-20% through-
put improvement for a cache size of just 20 pages. As cache capacity further increases,
each workload’s throughput improves to varying degrees. A cache capacity of 100,000 (or
819MB at 8KB pages) allows NVRAMs with 800ns miss latencies to achieve at least 80%
of the potential throughput. While too large for on-chip caches, such a buffer might be
possible as a hardware-managed DRAM cache [88].

5.2.2 Analysis

I have shown that modest cache sizes effectively hide NVRAM read stalls for these
workloads, and further analyze caching behavior to reason about OLTP performance more
generally. Figure 5.3 shows the page miss rate per page type (index, heap, or other) as
page cache capacity increases. Each graph begins at one at the left—all page accesses miss

48

100 101 102 103 104 105

Pages cached

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

th
ro

ug
hp

ut

Miss latency (ns):
100
200
400
800

(a) TATP

100 101 102 103 104 105

Pages cached

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

th
ro

ug
hp

ut

(b) TPCB

100 101 102 103 104 105

Pages cached

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

th
ro

ug
hp

ut

(c) TPCC

Figure 5.2: Throughput vs NVRAM read latency. 100ns miss latency suffers up to a
10% slowdown over DRAM. Higher miss latencies introduce large slowdowns, requiring
caching. Fortunately, even small caches effectively accelerate reads.

49

100 101 102 103 104 105

Page cache capacity

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ge

m
is

s
ra

te

Page type
Other
Index
Heap

(a) TATP

100 101 102 103 104 105

Page cache capacity

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ge

m
is

s
ra

te

(b) TPCB

100 101 102 103 104 105

Page cache capacity

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ge

m
is

s
ra

te

(c) TPCC

Figure 5.3: Page caching effectiveness. High level B+Tree pages and append-heavy heap
pages cache effectively. Other pages cache as capacity approaches table size.

50

for a single-page cache. As cache capacity increases, workloads see their miss rates start
to decrease between cache capacity of five and 20 pages. TATP experiences a decrease in
misses primarily in index pages, whereas TPCB and TPCC see decreases across all page
types.

While cache behavior is specific to each workload, the results represent trends applica-
ble to many databases and workloads, specifically, index accesses and append-heavy tables.
First, all workloads see a decrease in index page misses as soon as B+Tree roots (accessed
on every traversal) successfully cache. The hierarchical nature of B+Tree indexes allows
high levels of the tree to cache effectively for even a small cache capacity. Additionally,
TPCB and TPCC contain history tables to which data are primarily appended. Trans-
actions append to the same page as previous transactions, allowing such tables to cache
effectively. Similarly, extent map pages used for allocating new pages and locating pages
to append into are frequently accessed and likely to cache. The remaining tables’ pages
are accessed randomly and only cache as capacity approaches the size of each table. In the
case of TPCB and TPCC, each transaction touches a random tuple of successively larger
tables (Branch, Teller, and Account for TPCB; Warehouse, District, Customer, etc. for
TPCC). This analysis suggests that various page types, notably index and append-heavy
pages, cache effectively, accelerating throughput for high-latency NVRAM misses with
small cache capacities.

Main-memory databases. While I use Shore-MT (a disk-based storage manager) as
a research platform, main-memory database optimizations (e.g., [33, 6, 78]) also apply to
byte-addressable NVRAM. Main-memory databases assume heap data resides solely in
byte-addressable memory, improving throughput relative to traditional disk-backed storage
by removing expensive indirection (i.e., using memory pointers instead of buffer transla-
tion tables), reducing overheads associated with concurrency control and latches, and opti-
mizing data layout for caches and main-memory, among other optimizations. While such
optimizations will increase transaction throughput, removing non-NVRAM overheads will
amplify the importance of read-miss latency (an equal increase in NVRAM read-miss la-
tency will yield a relatively greater drop in performance). At the same time, data layout
optimizations will reduce the number of cache lines and memory rows accessed per ac-
tion (e.g., per latch), minimizing NVRAM read overheads. Investigating main-memory
database optimizations for NVRAM remains future work.

Bandwidth. Finally, I briefly address NVRAM read bandwidth. For a worst-case anal-
ysis, I assume no caching. Given the average number of cache line accesses per page latch,
the average number of page latches per transaction, and transaction throughput (taken from
Section 5.3), I compute worst-case NVRAM read bandwidth for each workload, shown

51

Workload Bandwidth (GB/s)
TATP 0.977
TPCB 1.044
TPCC 1.168

Table 5.5: Required NVRAM read bandwidth. Workloads require up to 1.2 GB/s read
bandwith.

in Table 5.5. The considered workloads require at most 1.2 GB/s (TPCC). Since this is
within expected NVRAM bandwidth constraints and caching reduces the required band-
width further, I conclude that NVRAM read bandwidth for persistent data on OLTP is not
a performance concern.

5.2.3 Summary

NVRAM presents a new storage technology, requiring new optimizations for database
systems. Increased memory read latencies require new consideration for database caching
systems. I show that persistent data for OLTP can be cached effectively, even with limited
cache capacity. I expect future NVRAM software to leverage hardware caches, omitting
software buffer caches. Next, I turn to write performance for storage management on NV-
RAM devices.

5.3 NVRAM Persist Synchronization

Whereas NVRAM reads benefit from caching, persists must always access the storage
device. Of particular insterest is the cost of ordering persists via persist barriers. Sev-
eral factors increase persist barrier latency, including ordering persists across distribut-
ed/NUMA memory architectures, long latency interconnects (e.g., PCIe-attached storage),
and slow NVRAM MLC cell persists. I consider the effect of persist barrier latency on
transaction processing throughput to determine if and when new NVRAM technologies
warrant redesigning recovery management.

Refer to Sections 4.2 and 5.1 for a more thorough description of recovery mechanisms
and experimental setup. All experiments throttle persist bandwidth to 1.5GB/s, which I
believe to be conservative (already possible with PCIe-attached Flash). Ideally, NVRAM
will provide low latency access, enabling In-Place Updates. However, one would expect
In-Place Updates’s performance to suffer at large persist barrier latencies, requiring either
NVRAM Disk-Replacement or NVRAM Group Commit to regain throughput.

52

5.3.1 Persist Barrier Latency

Figure 5.4 shows throughput for write-heavy transactions as persist barrier latency in-
creases from 0µs to 5µs, the range believed to encompass realistic latencies for possible
implementations of persist barriers and storage architectures. A persist barrier latency of
0µs (left edge) corresponds to no barrier/DRAM latency. For such devices (e.g., battery-
backed DRAM), In-Place Updates far out-paces NVRAM Disk-Replacement, providing up
to a 50% throughput improvement. The speedup stems from a combination of remov-
ing WAL overheads, removing contention between page flushers and transaction threads,
and freeing up (a few) threads from log and page flushers to run additional transactions.
In-Place Updates also outperforms NVRAM Group Commit, providing an average 10%
throughput improvement across workloads.

As persist barrier latency increases, each recovery mechanism reacts differently. In-

Place Updates, as expected, loses throughput. NVRAM Disk-Replacement and NVRAM

Group Commit, on the other hand, are both insensitive to persist barrier latency; their
throughputs see only a small decrease as persist barrier latency increases. TATP sees the
largest throughput decrease for NVRAM Disk-Replacement (14% from 0µs to 5µs). The
decrease stems from NVRAM Disk-Replacement’s synchronous commits, requiring the log
flusher thread to complete flushing before transactions commit. During this time, transac-
tion threads sit idle. While both NVRAM Disk-Replacement and NVRAM Group Commit

retain high throughput, there is a large gap between the two, with NVRAM Group Commit

providing up to a 50% performance improvement over NVRAM Disk-Replacement. This
difference, however, is workload dependent, with WAL imposing a greater bottleneck to
TATP than to TPCB or TPCC.

Of particular interest are persist barrier latencies where lines intersect—the break-even
points for determining the optimal recovery mechanism. Whereas all workloads prefer
In-Place Updates for a 0µs persist barrier latency, NVRAM Group Commit provides bet-
ter throughput above 1µs persist barrier latency. When only considering In-Place Updates

and NVRAM Disk-Replacement the decision is less clear. Over the range of persist bar-
rier latencies TATP always prefers In-Place Updates to NVRAM Disk-Replacement (the
break-even latency is well above 5µs). TPCB and TPCC see the two mechanisms inter-
sect near 3.5µs and 2.5µs, respectively, above which NVRAM Disk-Replacement provides
higher throughput. TATP, unlike the other two workloads, only updates a single page per
transaction. Other overheads tend to dominate transaction time, resulting in a relatively
shallow In-Place Updates curve.

The previous results show throughput only for a single transaction from each work-
load. Table 5.6 shows break-even persist barrier latency between NVRAM Disk-Replace-

53

0 1 2 3 4 5
Persist barrier latency (us)

0

50

100

150

200

250

T
hr

ou
gh

pu
t

(k
T

P
S)

Recovery mechanism:
In-place updates
NVRAM disk
Group commit

(a) TATP – Update Location

0 1 2 3 4 5
Persist barrier latency (us)

0

20

40

60

80

100

T
hr

ou
gh

pu
t

(k
T

P
S)

(b) TPCB

0 1 2 3 4 5
Persist barrier latency (us)

0

2

4

6

8

T
hr

ou
gh

pu
t

(k
T

P
S)

(c) TPCC – New Order

Figure 5.4: Throughput vs persist barrier latency. In-Place Updates performs best
for zero-cost persist barriers, but throughput suffers as persist barrier latency increases.
NVRAM Disk-Replacement and NVRAM Group Commit are both insensitive to increasing
persist barrier latency, with NVRAM Group Commit offering higher throughput.

Workload Full mix Single transaction
TATP 25 12
TPCB 3.2 3.2
TPCC 3.6 2.4

Table 5.6: Break-even persist latency Persist barrier latency (µs) where NVRAM Disk-
Replacement and In-Place Updates achieve equal throughput. Latencies reported for full
transaction mixes and single write-heavy transaction per workload.

54

ment and In-Place Updates for these transactions and full transaction mixes. Full transac-
tion mixes contain read-only transactions, reducing log insert and persist barrier frequency
(read-only transactions require no recovery). NVRAM Disk-Replacement sees improved
throughput at 0 µs and In-Place Updates’s throughput degrades less quickly as persist bar-
rier latency increases. As a result, the break-even persist barrier latency between these two
designs increases for the full transaction mix relative to a single write-heavy transaction and
the opportunity to improve throughput by optimizing recovery management diminishes—
improved recovery management does not affect read-only transactions and actions.

These results suggest different conclusions across storage architectures. NVRAM con-
nected via the main memory bus will provide low latency persist barriers (less than 1µs) and
prefer In-Place Updates. Other storage architectures, such as distributed storage, require
greater delays to synchronize persists. For such devices, NVRAM Group Commit offers
an alternative to NVRAM Disk-Replacement that removes software overheads inherent in
WAL while providing recovery. However, NVRAM Group Commit increases transaction
latency.

5.3.2 Transaction Latency

NVRAM Group Commit improves transaction throughput by placing transactions into
batches and committing all transactions in a batch atomically. Doing so minimizes and lim-
its the number of persist barriers. However, deferring transaction commit increases trans-
action latency, especially for the earliest transactions in each batch. To achieve reasonable
throughput, batches must be significantly longer than average transaction latency (such that
batch execution time dominates batch quiesce and persist time). The batch period acts as
a knob for database administrators to trade off transaction latency and throughput. I use
this knob to measure the relationship between throughput and high-percentile transaction
latency.

Figure 5.5 shows throughput, normalized to In-Place Updates at 0µs persist barrier
latency. The results consider a 3µs persist barrier latency, where NVRAM Group Com-

mit provides a throughput improvement over other recovery mechanisms. The different
NVRAM Group Commit points represent different batch periods, and I report the measured
95th percentile transaction latency for all recovery mechanisms. I measure transaction
latency from the time a transaction begins to the time its batch ends (Shore-MT does not
model any pre-transaction queuing time).

The results illustrate that NVRAM Group Commit is capable of providing equivalent
throughput to the other recovery mechanisms with reasonable latency increases (no more
than 5×). Further, high-percentile transaction latencies fall well below the latency expec-

55

0.0 0.2 0.4 0.6 0.8 1.0 1.2
95th percentile transaction latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

th
ro

ug
hp

ut

Recovery mechanism:
In-place updates
NVRAM disk
Group commit

(a) TATP – Update Location

0 1 2 3 4 5 6
95th percentile transaction latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

th
ro

ug
hp

ut
(b) TPCB

0 5 10 15 20
95th percentile transaction latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

th
ro

ug
hp

ut

(c) TPCC – New Order

Figure 5.5: 95th percentile transaction latency. All graphs are normalized to 0µs persist
barrier latency In-Place Updates throughput. Experiments use 3µs persist barrier latency.
NVRAM Group Commit avoids high latency persist barriers by defering transaction commit,
committing entire batches atomically.

56

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Pe
rs

is
t

ba
nd

w
id

th
(G

B
/s

)

TATP TPCB TPCC

Expected NVRAM
device bandwidth

Recovery mechanism:
NVRAM disk
In-place updates
Group commit - 20ms
Group commit - 200ms

Figure 5.6: Required NVRAM bandwidth. Persist/write bandwidth required to achieve
95% performance relative to no bandwidth constraint. Bandwidth requirements are far
below expected device bandwidth.

tations of modern applications. TPCC, the highest latency workload, approaches optimal
throughput with a 95th percentile transaction latency of 15ms—similar to latencies incurred
by disk-backed databases. For latency sensitive workloads, the batch period can be selected
to precisely control latency, and In-Place Updates and NVRAM Disk-Replacement remain
alternatives.

5.3.3 NVRAM Persist Limitations

In addition to persist delays NVRAM may suffer limitations due to persist bandwidth
and write endurance. I quantify these limitations and determine how database design affects
each.

Persist bandwidth. Different NVRAM storage architectures impose a variety of limita-
tions on persist bandwidth (e.g., memory bus-attached NVRAM will allow greater through-
put than PCIe-attached NVRAM). Different software designs place varying requirements
on bandwidth.

Figure 5.6 shows the bandwidth required for each workload and recovery mechanism
to achieve 95% throughput compared to same configuration with no bandwidth constraint.
Each recovery mechanism sees different bandwidth requirements, and required bandwidth
varies across workloads.

The NVRAM Disk-Replacement configuration flushes pages aggressively (attempts to
flush continuously) and consumes all available bandwidth. Since bandwidth is restricted
recovery latency may increase (not reflected in the results). Page flushing contends with

57

log flushing for bandwidth, but so long as log flushes are minimally delayed throughput
will not be affected. TATP, which contains short transactions, requires the most bandwidth
(1.7GB/s) to reduce transaction commit delays. I believe that asynchronous commit (al-
lowing a new transaction to begin processing on the hardware thread while the previous
transaction waits to commit) would lower the bandwidth requirement. TPCC, on the other
hand, has long transactions and transaction commit is less of a concern.

In-Place Updates requires the least bandwidth of the recovery mechanisms. TATP’s
Update Location transaction needs only 0.4GB/s since each transaction contains a single
small update. TPCC’s New Order transaction modifies much more data, requiring 0.8GB/s
persist bandwidth to achieve 95% throughput.

Finally, NVRAM Group Commit sees varying requirements on persist bandwidth. All
persists occur at batch boundaries, resulting in persist bursts. I consider two batch periods—
20ms and 200ms. TATP and TPCC require relatively small bandwidths while TPCC re-
quires over 1.5GB/s persist bandwidth to achieve 95% throughput. The bursty nature of
NVRAM Group Commit and large modifications by TPCC’s New Order transaction result
in persist bandwidth quickly creating a bottleneck. Longer batches help slightly by al-
lowing updates to coalesce within the batch, reducing the total number of bytes persisted.
The bandwidth requirements would be reduced by introducing mechanisms to enable early
persists (persist data before the batch ends), removing persist bursts.

While persist bandwidth requirements vary, the strictest configuration (NVRAM Disk-

Replacement for TATP) requires only 1.7GB/s. Such bandwidth is currently possible with
existing PCIe Flash memory SSDs, and I believe is attainable for all candidate NVRAM
technologies. I expect that persist bandwidth will not be a concern for OLTP systems using
NVRAM.

Device lifetime. NVRAM technologies, much like Flash memory currently, will have
limited write endurance; each cell may only be reliably written a finite number of times.
Device lifetime is generally determined by the most frequently written addresses. Previous
work proposes hardware techniques to evenly distribute writes amongst cells by constantly
changing the mapping between between memory addresses and the underlying memory
cell [87]. These techniques prolong device lifetime by ensuring that frequently written ad-
dresses do not wear out individual cells. While the recovery mechanisms presented here
each produce varying persist rates with different abilities to naturally distribute persists
across addresses, it is unclear if software mechanisms are sufficient to prolong device life-
time.

Figure 5.7 shows the required cell endurance (number of persists) to achieve a 10-year
device lifetime assuming the database runs at maximum throughput continuously. All re-

58

103

104

105

106

107

108

109

1010

1011

1012

1013

R
eq

ui
re

d
ce

ll
en

du
ra

nc
e

TATP TPCB TPCC

Recovery mechanism:
NVRAM disk - 0s
NVRAM disk - 3s
In-place updates
Group commit - 20ms
Group commit - 200ms

(a) No wear leveling

103

104

105

106

107

108

109

1010

1011

1012

1013

R
eq

ui
re

d
ce

ll
en

du
ra

nc
e

TATP TPCB TPCC

(b) Perfect wear leveling

Figure 5.7: NVRAM cell endurance for 10-year lifetime. Without hardware wear level-
ing the most-written cell limits device lifetime. NVRAM Disk-Replacement requires con-
servative page flushing (3s recovery latency vs 0s, instantaneous, recovery) and NVRAM
Group Commit requires longer batch periods (200ms vs 20ms) to improve device lifetime.
We expect hardware wear leveling to always be required with In-Place Updates. With
perfect wear leveling (all writes occur evenly throughout cells in the device) and a 32GB
storage device all workloads and configurations achieve a 10-year device lifetime for cell
endurance of 106 writes and greater.

59

covery mechanisms assume In-Place Updates’s throughput for a more fair comparison.
Persists are tracked at byte granularity. I consider two scenarios: no wear leveling—
lifetime is limited by the most frequently written address—and perfect wear leveling—all
persists are evenly distributed across all physical addresses (provided in hardware). I con-
sider NVRAM Disk-Replacement with both instantaneous recovery and 3s recovery latency,
In-Place Updates, and NVRAM Group Commit with 20ms and 200ms batch latencies. Logs
are implemented as circular buffers. Thus, logs do not contribute to the most written byte
and have no bearing on device lifetime when hardware wear leveling is unavailable. Perfect
wear leveling assumes a 32GB device.

Without hardware wear leveling NVRAM Disk-Replacement with instantaneous recov-
ery (aggressive page flushing) and In-Place Updates require the greatest cell endurance.
Both mechanisms persist each update directly to the NVRAM store. NVRAM Disk-Rep-

lacement must additionally persist LSNs, which constitute the most frequently persisted
addresses, while LSNs are no longer used with In-Place Updates and NVRAM Group Com-

mit. Both of these configurations require greater cell endurance far greater than 108 writes,
the endurance expected of phase change memory [14].

NVRAM Disk-Replacement with 3s recovery latency requires much lower cell endurance
for a 10 year lifetime. Writes to heap pages coalesce and only occasionally persist to NV-
RAM. NVRAM Disk-Replacement effectively increases device lifetime by reducing the to-
tal number of persists and limiting the rate that any single page may write back. However,
doing so requires an increase in recovery latency. NVRAM Disk-Replacement may possibly
provide acceptable software wear leveling so long as recovery latency is reasonable.

Finally, NVRAM Group Commit provides wear leveling by only allowing a single persist
to each address per batch (all other persists coalesce). However, neither 20ms nor 200ms
batches is capable of coalescing enough writes to guarantee a 10 year device lifetime.
NVRAM Group Commit would require far too large a batch period, increasing transaction
latency, to reliably wear-level NVRAM.

When hardware distributes persists evenly across NVRAM cells all recovery mech-
anisms achieve a 10 year lifetime assuming 108 writes per cell. In this case lifetime is
determined by the total number of persists rather than the most-persisted address. Due to
the inability of software to reliably and sufficiently extend device lifetime, and the effec-
tiveness of hardware wear leveling, I expect future NVRAM SSDs to include hardware
wear leveling.

60

5.3.4 Summary

Persist barriers used to enforce persist order pose a new performance obstacle to provid-
ing recoverable storage management with NVRAM. I show that, for memory bus-attached
NVRAM devices, ensuring recovery using In-Place Updates is a viable strategy that pro-
vides high throughput and removes the overheads of WAL. For interconnects and NVRAM
technologies that incur larger persist barrier delays, NVRAM Group Commit offers an al-
ternative that yields high throughput and reasonable transaction latency. NVRAM Group

Commit’s batch period allows precise control over transaction latency for latency-critical
applications. Finally, I demonstrate that persist bandwidth is not a concern, and that while
NVRAM Disk-Replacement may provide an effective mechanism to cope with limited write
endurance I expect future devices to include hardware wear leveling.

5.4 Conclusion

New NVRAM technologies offer an alternative to disk that provides high performance
while maintaining durable transaction semantics, yet existing database software is not op-
timized for such storage devices. In this chapter, I evaluated recovery management to
optimize for NVRAM read and persist characteristics. I found that even small caches effec-
tively reduce NVRAM read stalls. I also considered database performance in the presence
of persist barrier delays. Treating NVRAM as a drop-in replacement for disk, NVRAM

Disk-Replacement retains centralized logging overheads. In-Place Updates reduces these
overheads, but for large persist barrier latencies suffers from excessive synchronization
stalls. I proposed a new recovery mechanism, NVRAM Group Commit, to minimize these
stalls while still removing centralized logging. While NVRAM Group Commit increases
high-percentile transaction latency, latency is controllable and within modern application
constraints.

This work assumed that persist barriers are expensive, stalling instruction and thread
execution at each barrier. However, it is possible for systems to implement high perfor-
mance barriers that overlap instruction execution with persists while still enforcing proper
persist order. Additionally, persist barriers must interact with existing memory execution
and the memory consistency model to enforce an order between persists from different
threads. The remainder of this dissertation investigates programming interfaces that to en-
force persist order while still maximizing persist concurrency.

61

CHAPTER VI

Memory Persistency

The previous chapters considered how to design recoverable software assuming vari-
ous latencies for persist barriers. However, the memory system implementation remained
unspecified, and ultimately will determine performance. The remainder of this dissertation
in turn investigates programming interfaces for persistent memory and how the interface
might affect system performance.

This chapter motivates and defines memory persistency, a framework for reasoning
about and enforcing the order of persist operations. The following chapters propose and
evaluate example persistency models. This work was completed in collaboration with my
advisor, Thomas F. Wenisch, and Professor Peter M. Chen. Refer to Section 2.4 for a
discussion of memory consistency and consistency models.

6.1 Introduction

Emerging nonvolatile memories (NVRAM) promise high performance recoverable sys-
tems. These technologies, required as replacements for Flash and DRAM as existing tech-
nologies approach scaling limits [58], pair the high performance and byte addressability of
DRAM with the durability of disk and Flash memory. Future systems will place these de-
vices on a DRAM-like memory bus, providing systems with throughput similar to DRAM,
yet recoverability after failures.

However, ensuring proper recovery requires constraining the order of NVRAM writes.
Existing DRAM architectures lack the interface to describe and enforce write ordering
constraints; ordering constraints that arise from memory consistency requirements are usu-
ally enforced at the processor, which is insufficient for failure tolerance with acceptable
performance. Recent work has suggested alternative interfaces to enforce NVRAM write
order and guarantee proper recovery, for example durable transactions and persist barri-
ers [116, 30]. While intuitive and suitable to specific applications, I wish to investigate

62

a more general framework for reasoning about NVRAM write ordering including mecha-
nisms for expressing write constraints that are independent of specific concurrency control
mechanisms.

Instead, I recognize that the problem of constraining NVRAM write concurrency re-
sembles memory consistency. Memory consistency restricts the visible order of loads and
stores (equivalently, allowable visible memory states) between processors or cores, allow-
ing operations to reorder so long as expected behavior is guaranteed. Memory consis-
tency models provide an interface and set of memory order guarantees for the program-
mer, but separate the implementation; several distinct implementations may fulfill the
same memory consistency model, allowing sophisticated optimization (e.g., speculation
[11, 119, 19, 45, 92]). Relaxing the memory consistency model places an additional bur-
den on the programmer to understand the model and insert the correct annotations, but
often allows greater performance.

I introduce Memory Persistency, a framework motivated by memory consistency to
provide an interface for enforcing the order in which NVRAM writes become durable, an
operation referred to as a “persist” (as in previous chapters). Memory persistency pre-
scribes the order of persist operations with respect to one another and loads and stores, and
allows the programmer to reason about guarantees on the ordering of persists with respect
to system failures. The memory persistency model relies on the underlying memory con-
sistency model and volatile memory execution to define persist ordering constraints and the
values written to persistent memory.

In the following chapters, I define memory persistency, describe the design space of
memory persistency models, and introduce and evaluate several new persistency models.
Much like consistency, I identify strict and relaxed classes of persistency models. Strict
persistency relies on implicit guarantees to order persists and couples persistent seman-
tics to the underlying memory consistency model: any two stores to the persistent address
space that are guaranteed to be observed in a well-defined order from the perspective of a
third processor imply well-ordered NVRAM writes. Thus, the same mechanisms the con-
sistency model provides a programmer to enforce order for stores also enforce order for
the corresponding persists. Alternatively, relaxed persistency separates volatile and persis-
tent memory execution, allowing the order of persist operations to differ from the order in
which the corresponding stores become visible. Relaxed persistency facilitates concurrent
persists even when volatile memory operations become visible according to sequential con-
sistency. Memory persistency further provides an interface for uniprocessors, which may
not ordinarily order stores, to specify persist ordering constraints. While separating mem-
ory consistency and persistency provides advantages to programmability and performance,

63

it also introduces new challenges, as separate annotations define allowable reorderings for
visibility and persistence of writes to the persistent address space.

Using this framework, I introduce successively relaxed memory persistency models and
demonstrate how programmers can exploit the reorderings they allow through several ex-
ample implementations of a thread-safe persistent queue. I demonstrate that conservative
memory consistency (such as sequential consistency) with strict persistency must rely on
thread parallelism to enable NVRAM write concurrency. On the other hand, relaxed per-
sistency allows high instruction execution performance, NVRAM write concurrency, and
simplified data structures.

Finally, I evaluate my memory persistency models and queue designs. Just as with
memory consistency, a memory persistency model is defined separately from its imple-
mentation. Instead of assuming specific storage technologies and memory system imple-
mentations, I measure NVRAM write performance as the critical path of persist ordering
constraints, assuming that NVRAM writes form the primary system bottleneck and that
practical memory systems effectively use available concurrency. I demonstrate that relaxed
persistency models substantially improve write-concurrency over sequential consistency
with strict persistency; for a 500ns NVRAM write latency, these concurrency gains improve
performance to the throughput limit of instruction execution—as much as 30x speedup over
strict persistency.

6.2 Memory Persistency Goals

Correct recovery of durable systems requires persists to observe some set of happens-
before relations, for example, that persists occur before an externally observable action,
such as a system call. However, I expect NVRAM writes to be much slower than writes to
volatile memory. Provided the minimal set of happens-before relations is observed, the gap
between volatile execution and NVRAM write performance can be shrunk by optimiza-
tions that increase concurrency. I am interested in defining persistency models that cre-
ate opportunities for two specific optimizations: persist buffering, and persist coalescing.
Additionally, I intend to propose persistency models that maximize instruction execution
throughput and preserve existing thread synchronization patterns, including synchroniza-
tion to the persistent address space.

Persist Buffering. Buffering durable writes and allowing thread execution to proceed
ahead of persistent state greatly accelerates performance [30]. Such buffering overlaps NV-
RAM write latency with useful execution. To be able to reason about buffering, I draw
a distinction between a “store”, the cache coherence actions required to make a write (in-

64

cluding an NVRAM write) visible to other processors, and a “persist”, the action of writing
durably to NVRAM. Buffering permits persists to occur asynchronously.

Ideally, persist latency is fully hidden and the system executes at native volatile mem-
ory speed. With finite buffering, performance is ultimately limited by the slower of the
average rate that persists are generated (determined by volatile execution rate) and the rate
persists complete. At best, the longest chain (critical path) of persist ordering constraints
determines how quickly persists occur (at worst, constraints within the memory system
limit persist rate, such as bank conflicts or bandwidth limitations). In defining persistency
models, my goal is to admit as much persist concurrency as possible by creating a memory
interface that avoids unnecessary constraints. Persistency model implementations might
buffer persists in existing store queues and caches or via new mechanisms, such as buffers
within NVRAM devices.

Persist Coalescing. I expect that NVRAM devices will guarantee atomicity for persists
of some size (e.g., eight-byte atomicity [30]). Persists to the same atomically persistable
block may coalesce (be performed in a single persist operation) provided no happens-before
constraints are violated. Persist coalescing creates an opportunity to avoid frequent persists
to the same address, and allows caching/buffering mechanisms to act as bandwidth filters
[46]. Coalescing also reduces the total number of NVRAM writes, which may be important
for NVRAM devices that are subject to wear. Larger atomic persists facilitate greater co-
alescing. Similarly, persistency models that avoid unnecessary ordering constraints allow
more coalescing.

While similar gains may be achieved through software (by caching values in nonper-
sistent memory and precisely controlling when they are persisted), I believe that hardware-
enabled persist coalescing is an important feature. Automatic coalescing relieves the pro-
grammer of the burden to manually orchestrate coalescing and specify when persists occur
via copies. Additionally, automatic coalescing provides backwards compatibility by allow-
ing new devices to increase the size of atomic persists to improve coalescing performance.
I do not consider specific hardware implementations to detect when persists may coalesce,
but assume that it is an important property of high performance persistent memory systems.

Minimizing non-persistent overheads. Existing data structures intended for volatile
memory must be modified for persistent memory, for example, by adding logging or copy-
on-write to make persistent updates atomic with respect to recovery. Additionally, new
synchronization delays will be introduced with strict persistency if store barriers are in-
serted to enforce persist order (under strict persistency store barriers are also persist bar-
riers). Data structures modified to be recoverable will ultimately run more slowly even
on existing volatile memory systems. The persistency model will determine how invasive

65

these software transformations are as well as the extent of their performance impact, thus
motivating the need to explore the design space of persistency models.

Finally, persistent memory systems must continue to support advanced thread synchro-
nization mechanisms. One area that has not yet been investigated is synchronization to
persistent memory, including locks, atomic read-modify-write (e.g., add, exchange, test-
and-set), and compare-and-swap. While this work does not attempt to use these primitives,
I intend to introduce persistency models that properly define their with NVRAM. Extending
existing consistency models provides a framework to define persistent behavior for atomic
synchronization primitives.

6.3 Memory Persistency

Recovery mechanisms require specific orders of persists. Failure to enforce this order
results in data corruption. A persistency model enables software to label those persist-
order constraints necessary for recovery-correctness while allowing concurrency among
other persists. As with consistency models, my objective is to strike a balance between
programmer annotation burden and the amount of concurrency (and therefore improved
performance) the model enables.

I introduce memory persistency as an extension to memory consistency to additionally
order persists and facilitate reasoning about persist order with respect to failures. Concep-
tually, I reason about failure as a recovery observer that atomically reads all of persistent
memory at the moment of failure. Ordering constraints for correct recovery thus become
ordering constraints on memory and persist operations as viewed from the recovery ob-
server. With this abstraction, one may apply the reasoning tools of memory consistency to
persistency—any two stores to the persistent memory address space that are ordered with
respect to the recovery observer imply an ordering constraint on the corresponding persists.
Conversely, stores that are not ordered with respect to the observer allow corresponding
persists to be reordered or performed concurrently. The notion of the recovery observer
implies that even a uniprocessor system requires memory persistency as the single pro-
cessor must still interact with the observer (i.e., uniprocessor optimizations for cacheable
volatile memory may be incorrect for persistent memory).

Much like consistency models, there may be a variety of implementations for a particu-
lar memory persistency model. Like the literature on consistency, I separate model seman-
tics from implementation; my focus in this work is on exploring the semantics. While I
do discuss some implementation considerations, I omit details and leave system design and
optimization to future work. I divide persistency models into strict and relaxed classes, and

66

consider each with respect to the underlying consistency model.

6.3.1 Strict Persistency

The most intuitive memory persistency model is strict persistency. Strict persistency
couples memory persistency to the memory consistency model, using the existing consis-
tency model to specify persist ordering. Minimal programmer annotations are required—
while processor memory barriers are unnecessary, compiler barriers prevent optimizations
that interfere with proper recovery. Under strict persistency, the recovery observer par-
ticipates in the memory consistency model precisely as if it were an additional processor.
Hence, any store ordering that can be inferred by observing memory order implies a persist
ordering constraint. Persist order must match the (possibly partial) order in which stores
are performed in a particular execution.

Conservative consistency models, such as SC, do not allow stores from each thread to
reorder from the perspective of other threads; all stores, and therefore persists, occur in
each thread’s program order. However, such models can still facilitate persist concurrency
by relying on thread concurrency (stores from different threads are often concurrent). On
the other hand, relaxed consistency models, such as RMO, allow stores to reorder. Using
such models it is possible for many persists from the same thread to occur in parallel.
However, the programmer is now responsible for inserting the correct memory barriers to
enforce the intended behavior, as is currently the case for shared-memory workloads.

Strict persistency unifies the problem of reasoning about allowable memory order and
allowable persist order (equivalently, allowable persistent states at recovery); a program
that is correctly synchronized with respect to the consistency model is also correctly la-
beled with respect to the recovery observer. However, directly implementing strict per-
sistency implies frequent stalls—consistency ordering constraints (e.g., at every memory
operation under SC and at memory barriers under RMO) stall execution until NVRAM
writes complete. A programmer seeking to maximize persist performance must rely ei-
ther on relaxed consistency (with the concomitant challenges of correct program labeling),
or must aggressively employ thread concurrency to eliminate persist ordering constraints.
As I will show, decoupling persistency and consistency ordering allows recoverable data
structures with high persist concurrency even under SC.

I introduce one important optimization to strict persistency, buffered strict persistency,
which can improve performance while still guaranteeing strict ordering of persists and vis-
ible side effects. Buffered strict persistency allows instruction execution to proceed ahead
of persistent state, thus allowing overlap of volatile execution and serial draining of queued
persist operations. In terms of the recovery observer, buffered strict persistency allows the

67

observer to lag arbitrarily far behind other processors in observing memory order. There-
fore, the persistent state of the system corresponds to some prior point in the observable
memory order. As side effects may otherwise become visible prior to earlier persists, I
additionally introduce a persist sync operation to synchronize instruction execution and
persistent state (i.e., require the recovery observer to “catch up” to present state). The
persist sync allows the programmer to order persists and non-persistent, yet visible, side
effects.

6.3.2 Relaxed Persistency

Strict persistency provides mechanisms to reason about persist behavior using pre-
existing memory consistency models. However, memory consistency models are often
inappropriate for persist performance. Conservative consistency models such as SC and
TSO serialize the visible order of stores; while high performance implementations of these
models exist for volatile instruction execution [102, 63], the high latency of NVRAM per-
sists suggests that more relaxed persistency models may be desirable.

I decouple memory consistency and persistency models via relaxed persistency. Re-
laxed persistency loosens persist ordering constraints relative to the memory consistency
model—that is, the visible order of persists (from the perspective of the recovery observer)
is allowed to deviate from the visible order of stores. Relaxing persistency requires sep-
arate memory consistency and persistency barriers. Memory consistency barriers enforce
the visibility of memory operation ordering with respect to other processors, while memory
persistency barriers constrain the visible order of persists from the perspective of only the
recovery observer.

Relaxing persistency allows systems with conservative consistency, such as SC, to im-
prove persist concurrency without requiring additional threads or complicating thread com-
munication. In later chapters I introduce and explore several relaxed persistency models
under SC.

Simultaneously relaxing persistency and consistency allows both the visibility of loads
and stores to reorder among processors, and further allows the order of persists to differ
from the order of stores. An interesting property of such systems is that memory consis-
tency and persistency barriers are decoupled—store visibility and persist order are enforced
separately—implying that persists may reorder across store barriers and store visibility may
reorder across persist barriers. Separating store and persist order complicates reasoning
about persists to the same address, as I show next.

68

Thread 1:

Persist A

Barrier

Persist B

Thread 2:

Persist B

Barrier

Persist A

Barrier enforced order
Coherence enforced order

Figure 6.1: Cache Coherence Ordered Persists. Thread 1’s store visibility reorders while
still attempting to enforce persist order. The resulting persist order cycle is resolved by vi-
olating cache coherence persist order or by preventing stores from reordering across persist
barriers.

6.3.3 Relaxed Persistency and Cache Coherence

Under SC, both strict and relaxed persistency imply that persists to a single address are
totally ordered by cache coherence. A recovery observer can only view stores to a single
address in the order observed by cache coherence, and therefore the associated persists
must follow this same order. On the other hand, allowing separate memory consistency
and persistency barriers can allow persists to occur in an order other than that observed by
cache coherence—a behavior that may astonish programmers. This behavior is desirable
when synchronization (such as a lock) already guarantees that races cannot occur; treat-
ing all persist barriers additionally as consistency store barriers would unnecessarily delay
instruction execution.

The example in Figure 6.1 demonstrates that it is not possible to simultaneously (1)
allow store visibility to reorder across persist barriers, (2) enforce persist barriers, and (3)
enforce persist order to a single address according to the order cache coherence observes
those stores. The example considers two distinct persistent objects, A and B. Threads 1
and 2 persist to these objects in different program orders. Thread 1’s execution reorders
the visibility of stores, while Thread 2 executes its stores in program order. Note that the
persist barrier implies that thread 1’s persist to B occurs after its persist to A, but the values
produced by these operations may become visible to other processors out of program order.

Figure 6.1 additionally annotates the persist order constraints (happens-before relation-
ships) due to persist barriers and cache coherence store order. As shown, these constraints
form a cycle and hence cannot be enforced. The cycle can be resolved by either cou-
pling persist and store barriers—every persist barrier also prevents store visibility from
reordering—or relaxing cache coherence persist order and providing additional mecha-
nisms to order persists across threads. It remains unclear how to best solve this dilemma.

Store atomicity. Cache coherence provides store atomicity for memory consistency
models and their resulting memory orders [2]. Store atomicity requires that stores become

69

visible in their entirety (no partial stores) and that stores are atomically visible to all pro-
cessors, and thus stores to each address are serializable. Store atomicity is violated when
a store is visible to only a subset of processors (although many memory systems allow
store buffering and forwarding within the same processor without violating store atomic-
ity). Similar principles apply to memory persistency.

I define a memory persistency model to be persist-atomic if persists to the same address
are serializable. Equivalently, a model is persist-atomic if recovery establishes a single
unique value for each address in the persistent address space. While persist atomicity
requires that persists of a certain size occur atomically, persist atomicity additionally places
constraints on the order of persists. Our failure model, the recovery observer, implies persist
atomicity (each processor sees stores and persists in a well defined order). However, more
complex failure models may violate persist atomicity if processors recover different values
for the same address (e.g., processors recover using persistent per-processors logs—similar
behavior in distributed caches violates store atomicity).

Store and persist atomicity are useful features for defining intuitive consistency and
persistency models. However, it is possible for a memory model to exhibit both store and
persist atomicity, but for the order of stores and persists to deviate. In such cases persists
to the same address are reordered relative to their underlying stores but still retain some
total order. I define strong persist atomicity as memory models that provide store and
persist atomicity and where the order of stores to each address agrees with the order of
persists. All persistency models discussed in the remainder of this study provide strong
persist atomicity.

6.4 Conclusion

Existing memory systems lack mechanisms to describe and enforce the order of per-
sists. I introduce memory persistency to explore the design space of interfaces and seman-
tics for persistent memory. Memory persistency builds on memory consistency to deter-
mine the values for and order of persist operations. Memory persistency may be strict,
relying on the consistency model to provide both thread and persist synchronization, or re-
laxed, decoupling thread synchronization from persist order and requiring additional persist
barriers. The next chapter introduces three persistency models and details their expected
performance using a thread-safe persistent queue.

70

CHAPTER VII

Memory Persistency Models

This chapter provides examples of memory persistency models and data structures us-
ing the memory persistency framework defined in the previous chapter. I first introduce a
concurrent, persistent queue, outlining several design choices and reasoning about persist
performance. I then define specific memory persistency models under sequential consis-
tency (SC), demonstrating their use with the persistent queue. The final chapter of this
dissertation evaluates these persistency models using the persistent queue.

7.1 Persistent Queue

To understand and evaluate persistency models I first introduce a motivating bench-
mark: a thread-safe persistent queue. Several workloads require high-performance per-
sistent queues, such as write ahead logs (WAL) in databases and journaled file systems.
Previous work investigated the design of an NVRAM log assuming byte-addressable NV-
RAM with a persist barrier [37]. I extend this work, outlining three queue designs with
several persistency models.

Fundamentally, a persistent queue inserts and removes entries while maintaining their
order. The queue must recover after failure, preserving proper entry values and order.

My goals in designing a persistent queue are to (1) maximize the instruction execution
rate, including multi-thread throughput, (2) improve the persist concurrency of insert opera-
tions through greater thread concurrency, and (3) further improve persist concurrency using
relaxed persistency. All designs are concurrent (thread-safe) but allow varying degrees of
persist concurrency. Additionally, the three designs are fashioned as circular buffers, con-
taining a data segment and head and tail pointers. Psuedo-code for the three designs is
shown in Figure 7.1. I outline their execution, recovery, and the minimal necessary persist
dependences.

71

Figure 7.1: Psuedo-code for insert operations. I include the annotations required by
relaxed persistency models, discussed in Section 7.2. PersistBarrier applies to epoch per-
sistency and strand persistency, NewS trand applies only to strand persistency.

Require: head is a persistent pointer, data a persistent array.
1: sl← sizeof(length)
2: function InsertCWL(length, entry)
3: lock(queueLock)
4: NewStrand
5: copy(data[head], (length, entry), length + sl)
6: PersistBarrier
7: head ← head + length + sl
8: unlock(queueLock)
9: end function

10:
11: function Insert2LC(length, entry)
12: lock(reserveLock)
13: start ← headV; headV ← headV + length + sl
14: node← insertList.append(headV)
15: unlock(reserveLock)
16: NewStrand
17: copy(data[head], (length, entry), length + sl)
18: lock(updateLock)
19: (oldest, newHead)← insertList.remove(node)
20: unlock(updateLock)
21: if oldest then
22: PersistBarrier
23: head ← newHead
24: end if
25: unlock(reserveLock)
26: end function
27:
28: function InsertQH(length, entry)
29: lock(queueLock)
30: NewStrand
31: start ← head; endPos← start + length + sl
32: data[start]← length; data[endPos]← 0
33: PersistBarrier
34: head ← head + length + sl + 1
35: unlock(queueLock)
36: copy(data[start + sl], entry, length)
37: PersistBarrier
38: data[endPos]← 1
39: end function

72

Data:

Head:

Required Constraints:
Unnecessary Constraints:

B

A A

Figure 7.2: Queue Persist Dependences. Persist ordering dependences for Copy While
Locked and Two-Lock Concurrent. Constraints necessary for proper recovery shown as
solid arrows; unnecessary constraints incurred by strict persistence appear as dashed arrows
and are labeled as A (removed with epoch persistency) and B (further removed by strand
persistency).

The first design, Copy While Locked (CWL), serializes insert operations with a lock,
first persisting each entry’s length and data to the queue’s data segment, then persisting the
new head pointer. As a result, persists from subsequent insert operations, even if they occur
on separate threads, are ordered by lock accesses. If the systems fails before the persist to
the head pointer in line 6, the entry is ignored and the insert has failed.

I improve persist concurrency in the second design, Two-Lock Concurrent (2LC), by
using two different locks to reserve data segment space and persist to the head pointer,
respectively. Neither lock is held while entry data persists to the data segment, allowing
concurrent persists from different threads. Additionally, a volatile insert list is maintained
to detect when insert operations complete out of order and prevent holes in the queue.
The double-checked locking pattern prevents data races while updating the insert queue.
Two-Lock Concurrent employs the same recovery as Copy While Locked—an entry is not
valid and recoverable until the head pointer encompasses the associated portion of the data
segment.

Both queue designs use the persistency model to prevent persists to the head pointer
from occurring before persists to the data segment. Figure 7.1 includes barriers for two
different persistency models (described later in Section 7.2). Additionally, persist depen-
dences (and unnecessary constraints introduced by strict persistency models) are shown in
Figure 7.2. Recovery requires that persists to the head pointer are ordered after persists to
the data segment from the same insert operation and persists to the head pointer occur in
insert-order to prevent holes in the queue (persists to the head pointer may coalesce so long
as no ordering constraint is violated). All other persists within the same insert operation and
between operations may occur concurrently without compromising recovery correctness.

73

Data:

Head:

Length:

EndBit:
B

A A

0

A

1

B
A A

0

A

1

B

Figure 7.3: Queue Holes Dependences. The head pointer may not persist before endBit
and length; final endBit may not persist until the entry persists to the data segment. Strict
persistency introduces several unnecessary constraints.

While not necessary for correct recovery, these persist dependences are difficult to de-
scribe minimally; ordering mechanisms often introduce unnecessary persist constraints
(dashed lines in the Figure). Persistency models that enforce program order of persists
in each thread must serialize persists for the data of each entry to the data segment (when
the entire entry cannot be persisted atomically), shown as “A” in the Figure. Additionally,
persists to the data segment may be ordered after a previous insert’s persist to the head
pointer, denoted as “B” in the Figure.

The previous designs trade off concurrency and complexity. Copy While Locked, while
simple, serializes persists between insert operations. On the other hand, Two-Lock Con-

current allows greater concurrency, but requires two locks be acquired per insert and a
volatile insert list be maintained. I consider a third design, Queue Holes, that provides both
improved persist concurrency and a high execution rate (first introduced in [37]).

Queue Holes prepends each queue entry with its length and appends the entry with an
endBit. A single lock is held while reserving queue space and updating the head pointer,
but is released prior to persisting the entry into the data segment. An entry is recovered after
failure if the entry is located within the region indicated by the head pointer (as in CWL and
2LC) and the entry’s endBit is set. The minimal set of persist dependences necessary for
correct recovery are shown in Figure 7.3. The length and cleared endBit persist before the
head pointer; the data segment persists before setting the endBit; and persists to the same
address occur in the order observed by cache coherence (endBits and the head pointer). An
inserted entry is recoverable only after the persist at line 37 completes, even though the
head pointer is persisted earlier at line 33.

As with the other queue designs many unnecessary persist constraints may be intro-

74

duced by strict persistency models, shown as dashed lines in Figure 7.3. Many constraints
are introduced by persistency models that enforce the program order of persists, labeled
“A.” Additional constraints may be introduced between persists within an insert operation
or across insert operations, labeled “B.”

7.2 Memory Persistency Models

Section 6.3 outlined potential classes of persistency models. I now introduce several
specific persistency models to be evaluated in the next chapter. All models assume SC as
the underlying memory consistency model, and successively relax persistency to introduce
specific optimizations. For each model I discuss its motivation, give a definition, describe
necessary annotations for and performance of the persistent queues, and offer possible im-
plementations.

7.2.1 Strict Persistency

Motivation. The first persistency model is Strict Persistency, as discussed in Sec-
tion 6.3. Strict persistency simplifies reasoning about persist ordering by coupling per-
sist dependences to the memory consistency model. No additional persist barriers are re-
quired, easing the burden on the programmer. While strict persistency provides an intu-
itive first model, under SC, it imposes persist ordering constraints that unnecessarily limit
persist concurrency for many data structures, and requires programmers to resort to multi-
threading to obtain concurrency.

Definition. Under strict persistency, persist order observes all happens-before relations
implied by execution’s dynamic order of memory operations as viewed by the recovery
observer. Thus, all persists are ordered with respect to the program order of the issuing
thread. Note that, like store operations, persists from different threads that are unordered by
happens-before (i.e., the recovery observer cannot distinguish which is first) are concurrent.

Persist Performance. Strict persistency under SC introduces many unnecessary persist
dependences. Consequently, strict persistency must rely entirely on thread concurrency to
enable concurrent persists. Figures 7.2 and 7.3 illustrate these unnecessary dependences
and their causes. Lacking mechanisms to relax persist ordering, strict persistency under SC
introduces all the shown dependences (dashed lines).

These dependences are introduced because persists occur in program order under SC.
This persistency model lacks the ability to declare two persists from the same thread to
be concurrent. However, persist concurrency may be created by using multiple threads

75

to concurrently insert into the queue. Two-Lock Concurrent and Queue Holes each al-
low concurrent inserts, and thus persists from different threads into the data segment are
concurrent—The dashed line labeled “B” in Figure 7.2 no longer implies a constraint.

Implementation. A straight-forward implementation of strict persistency stalls issue
of subsequent memory accesses until a store and its corresponding persist both complete.
Conventional speculation mechanisms may allow loads to speculatively reorder with re-
spect to persistent stores [43]. Buffered strict persistency can be implemented by serializing
persists to a single, totally ordered queue in front of persistent memory (e.g., in a bus-based
multiprocessor, persists can be queued after they are serialized by the bus). Delays still
occur when buffers fill, to drain the queue at persist sync instructions, or under contention
to the persist queue.

More advanced implementations might consider distributed queues (i.e., one queue per
thread/core) or extensions to the existing cache system. Mechanisms must be introduced
to ensure that persists of each thread occur in program order and that persists are ordered
by conflicting accesses from different threads, but persists from several threads may occur
concurrently (they are not serialized) while persists buffer and execution proceeds ahead
of persistent state. Under the definition of SC such implementations must detect load-
before-store races between threads, ordering persists prior to the load (on the first thread)
before persists after the store (on the second thread). A single store may introduce persist
ordering constraints with many threads, each having loaded data from the store’s address.
It is unclear how to design a system that satisfies these constraints without frequent delays.

While insufficient for SC, TSO might be implemented by recording a “persist counter”
and thread in each cache line. Each time a thread persists it increments its persist counter,
and each store (both volatile stores and persists) writes the thread and persist counter into
the cache line. Persists drain in program order by maintaining a persist queue per thread-
/core. Persist order between threads is enforced at each load and store by observing the
previously recorded thread and counter in the operation’s cache line—all subsequent stores
from the executing thread must occur after the last persist to the cache line. These inter-
thread persist constraints may be recorded in threads’ queues or by delaying immediately
until the other thread’s queue drains. Such a system resembles BPFS (discussed next in
Section 7.2.2 and later in Section 7.3) where each persist occurs in its own epoch [30].

Strict persistency under SC may also be implemented using in-hardware NVRAM logs
or copy-on-write and indirection to give the appearance of SC while persists occur con-
currently. Hardware must ensure both that persists do not occur out of program order
for any thread and that conflicting accesses properly enforce persist order across threads.
An intriguing possibility would be to leverage existing hardware transactional memories

76

(HTM), partitioning program execution into transactions that enforce atomicity, isolation,
and durability—resembling BulkSC with durable transactions [20]. Transactions must be
long enough to minimize transaction overhead (including persist barriers for each durable
transaction) and improve persist concurrency (by placing many persists in the same trans-
action), but short enough to bound resources necessary for atomic transactions (such as a
log) and to minimize forward progress lost when a transaction aborts.

7.2.2 Epoch Persistency

Motivation. Strict persistency under SC introduces many persist dependences unnec-
essary for correct recovery. The most common unnecessary persist dependence occurs
due to the program-order constraint of SC. Programs frequently persist to large, contigu-
ous regions of memory that logically represents a single object, but which cannot occur
atomically (due to their size). Under strict persistency, the persists serialize. I remove the
program-order-implied persist order constraint with epoch persistency, allowing consecu-
tive persists from the same thread to reorder and persist in parallel. Doing so, however,
requires annotation by the programmer in the form of persist barriers to divide execution
into epochs when ordering is required by the recovery algorithm. Epoch persistency addi-
tionally allows persists to addresses protected by a lock to reorder with respect to the lock
operations (e.g., avoid delaying the lock release while the persist completes); my queue
implementations leverage this optimization opportunity.

Definition. Epoch persistency defines a new persistent memory order in addition to
execution’s existing memory order (referred to as the volatile memory order). Persistent
memory order contains a subset of constraints from the volatile memory order. Any pair of
persists ordered in the persistent memory order may not be observed out of that order with
respect to the recovery observer.

Volatile memory order satisfies SC. Each thread’s execution is additionally separated
into persist epochs by persist barrier instructions. Epoch persistency provides several rules
to inherit memory order constraints from the volatile memory order: (1) any two memory
accesses on the same thread and separated by a persist barrier are ordered, (2) any two
memory accesses (from the same or different threads) that conflict (they are to the same
or overlapping addresses and at least one is a store/persist) assume the order observed
from volatile memory order (enforced via cache coherence), and (3) eight-byte persists are
atomic with respect to the recovery observer and failure. This last rule is relaxed in my
evaluation, requiring only that eight-byte aligned persists be atomic.

Persist barriers enforce that no persist after the barrier may occur before any persist
before the barrier. Persists within each epoch (not separated by a barrier) are concurrent

77

and may reorder or occur in parallel. Additional complexity arises in reasoning about
persist ordering across threads. I define a persist epoch race as persist epochs from two
or more threads that include memory accesses (to volatile or persistent memory) that race,
including synchronization races, and at least two of the epochs include persist operations.
In the presence of a persist epoch race, rules (1) and (2) order accesses prior to the epoch
of the earlier access in the race before accesses following the epoch of the later access in
the race. Additionally, conflicting accesses are themselves ordered according to the volatile
memory order. Consequently, two persists to the same address are always ordered even if
they occur in racing epochs.

Discussion. Epoch persistency provides an intuitive mechanism to guarantee proper
recovery as it is impossible at recovery to observe a persist from after a barrier while failing
to observe a persist from before the same barrier. However, many persists (those within the
same epoch) are free to occur in parallel, improving persist concurrency.

As noted in the definition, reasoning about persist order across threads can be challeng-
ing. Synchronization operations within persist epochs impose ordering across the store
and load operations (due to SC memory ordering), but do not order corresponding persist
operations. Hence, persist operations correctly synchronized under SC by volatile locks
may nevertheless result in astonishing persist ordering. A simple (yet conservative) way to
avoid persist epoch races is to place persist barriers before and after all lock acquires and
releases, and to only place locks in the volatile address space. The persist behavior of strict
persistency can be achieved by preceding and following all persists with a persist barrier.

Persist epoch races may be intentionally introduced to increase persist concurrency; I
discuss such an optimization below. Enforcing persist order between threads with volatile
locks requires that the persists be synchronized outside of the epochs in which the persists
occur. However, synchronization through persistent memory is possible. Since persists
to the same address must follow the order observed by cache coherence, even if they oc-
cur in epochs that race, the outcome of persist synchronization is well defined. Hence,
atomic read-modify-write operations to persistent memory addresses provide the expected
behavior.

Persist ordering example. Figure 7.4 demonstrates a sample memory execution and
the resulting persistent memory order. Capital letters denote memory accesses (loads,
stores, and persists), accesses labeled by the same letter are to the same address. “ | ”
implies a persist barrier. Arrows show access conflicts and the order that the conflict is
observed in volatile memory order.

According to rule (1) of epoch persistency all accesses on the same thread are ordered
if separated by a persist barrier (A before B and C; C’ and D before E; and E’ before F). By

78

Conflict (same address, at least 1 write)

Thread 1: A | B C

Thread 2: C' D | E

Thread 3: E' | F

Figure 7.4: Epoch persistency persist order. Persistent memory order is enforced
through persist barriers (shown as “ | ”) and access conflicts. Access A is ordered by
transitivity before access F. If these accesses are persists they may not be reordered with
respect to the recovery observer. This order is enforced even if accesses are to the volatile
address space. Access B is concurrent with all shown accesses from threads 2 and 3, while
access D is concurrent with accesses from thread 1.

rule (2) all conflicts are ordered according to volatile memory order (C before C’; E before
E’). Transitivity of these rules additionally orders accesses (A before C’, E, E’, and F; C
before E, E’, and F; C’ and D before E’ and F; and E before F). Notably, B is unordered
with all shown accesses by threads 2 and 3, and D is unordered with accesses by thread 1
(such accesses are concurrent). Any accesses that are persists may not be observed out of
this order by the recovery observer (e.g., a persist to F may not be observed while a persist
to A is not).

This order is enforced on conflicts (between C and C’; E and E’) to both volatile and
persistent address spaces and as long as one of the accesses is a store or persist. This
includes the case where the first access is a load and the second a store/persist. Providing
an implementation to enforce this constraint remains a challenge, as persists must complete
before a subsequent load executes or all load-store conflicts must be detected and enforced
at some later time.

The resulting persist order resembles RMO [103] with (at least) one important differ-
ence: memory order constraints introduced due to control and register data dependencies
do not impose a persistent memory order constraint in epoch persistency. For example,
consider that access C is a persist, C’ a load, and D a persist whose value depends on C’.
According to RMO such a register dependence initiated by a load introduces a (volatile)
memory order constraint. Strict persistency under RMO would now allow persist D to be
observed without also observing persist C. Epoch persistency, on the other hand, allows
such behavior, violating RMO. In general persistent memory order need not order accesses
that contain a register dependence, but this may produce unintuitive or unintended behavior.

BPFS. My definition of epoch persistency is inspired by the programming model and
hardware extensions for caching persistent memory proposed for the Byte-addressable Per-
sistent File System (BPFS) [30]. However, I introduce several subtle differences that I be-
lieve make epoch persistency a more intuitive model. My definition considers all memory

79

accesses when determining persist ordering among threads, whereas the BPFS memory
system orders persists only when conflicts occur to the persistent address space. While the
BPFS file system implementation avoids persist epoch races, it is not clear that the burden
falls to the programmer to avoid such accesses or what persist behavior results when such
races occur (I believe the BPFS authors’ intent was to prohibit programs containing such
races—the cache implementation deadlocks under persist epoch races containing circular
persist dependences). Furthermore, BPFS detects conflicts to the persistent address space
by recording the last thread and epoch to persist to each cache line; the next thread to access
that line will detect the conflict. Such an implementation, however, cannot detect conflicts
where the first access is a load and the second a store. While occasionally unintuitive, such
behavior rarely results in unintended behavior and greatly simplifies the memory system.
Existing memory consistency models similarly order accesses, including TSO [103]).

Persist Performance. Epoch persistency removes all unnecessary persist dependences
that result from strict persistency’s program order constraint. All versions of the persistent
queue benefit from allowing persist entries to persist to the data segment concurrently.
Additionally, Queue Holes allows entry length and endBit to persist concurrently (although
both are ordered with respect to the subsequent persist of the head pointer). Finally, many
persist constraints between threads are removed by intentionally allowing persist epoch
races. Lock operations occur in the same epoch as the first persists of the insert operation,
while unlock operations occur in the same epoch as the last persists; persists from the last
epoch of an insert and the first epoch of the subsequent insert are concurrent. As a result,
persists protected by a lock now occur concurrently. Copy While Locked and Queue Holes

retain recovery correctness by still ordering all persists to the head marker (persists occur
according to cache coherence order).

Figure 7.1 demonstrates how to use epoch persistency’s barriers (shown in the code as
PersistBarrier) within each queue design. The constraints in Figures 7.2 and 7.3 annotated
with “A” are removed under epoch persistency relative to strict persistency.

Implementation. BPFS [30] outlines cache extensions that provide a persistency model
similar to persist epochs, assuming the TSO consistency model. Modifications must be
made to detect load-before-store conflicts (and thus enforce SC rather than TSO ordering)
and track conflicts to volatile memory addresses as well as persistent memory addresses;
detecting load-before-store conflicts and enforcing persist order without frequent delays
remains an open problem. Instead of delaying execution to enforce persist ordering among
threads, optimized implementations avoid stalling execution by buffering persists while
recording and subsequently enforcing dependences among them, allowing persists to occur
asynchronously despite access conflicts.

80

More advanced techniques might rely on hardware NVRAM logging and hardware
transactional memory, partitioning program execution into transactions as discussed above
for strict persistency. Under epoch persistency any transaction that contains only a single
epoch need not persist atomically, and therefore logging is unnecessary (persist order must
still be enforced between transactions). Persist barriers may be used as hints to establish
transaction boundaries and minimize durable transaction logging.

7.2.3 Strand Persistency

Motivation. Epoch persistency relaxes persist dependences within and across threads.
However, only consecutive persists within a thread may be labeled as concurrent. Like-
wise, persists from different threads are only concurrent if their epochs race or if they are
not synchronized. Many persists within and across threads may still correctly be made con-
current even if they do not fit these patterns. I introduce strand persistency, a new model to
minimally annotate persist dependences.

Definition. A strand is an interval of memory execution from a single thread. Strands
are separated via strand barriers; each strand barrier begins a new strand. The strand barrier
clears all previously observed persist dependences from the executing thread. Within each
strand new and observed persists are ordered using persist barriers according to the epoch
persistency model. Rule (1) of epoch persistency may be modified to read: any two mem-
ory accesses on the same strand separated by a persist barrier assume the order observed
from volatile memory order (accesses from different strands never assume a program order
constraint, and will only be ordered through conflicts or ordering constraints with accesses
in the same strand). Rules (2) and (3) of epoch persistency apply without modification.

Discussion. There are no implicit persist ordering constraints across strands for persists
to different addresses on the same thread of execution. Ordering constraints arise only for
persists to the same address as implied by cache coherence. Hence, persists on a new strand
may occur as early as possible and overlap with all preceding persists. Strand persistency
allows programmers to indicate that logical tasks on the same thread are independent from
the perspective of persistency. To enforce necessary ordering, a persist strand begins by
reading any memory locations after which new persists must be ordered. These reads
introduce an ordering dependency due to cache coherence, which can then be enforced with
a subsequent persist barrier. This programming interface allows ordering constraints to be
specified at the granularity of individual addresses; the minimal set of persist dependences
is achieved by placing each persist in its own strand, loading all addresses the persist must
depend on, inserting a persist barrier, and then executing the persist.

The performance of epoch persistency is achieved by using a single persist strand on

81

each thread (strand persistency is equivalent to epoch persistency under such conditions).
While I enforce persist order within strands according to epoch persistency, other persis-
tency models may be used (e.g., strict persistency/SC orders persists within strands but new
strands clear previously observed dependences).

While intended for persistency, strand persistency additionally functions as a consis-
tency model (strand consistency). Strand consistency requires full memory barriers in lieu
of persist barriers; loads and stores may not reorder across memory barriers. Additionally,
the execution of loads and stores may not reorder across strand barriers for the purpose of
observing memory dependences between strands on the same thread, but loads and stores
from different strands that do not interact may reorder with respect to other processors and
threads. Dependences propagate through memory execution and cache coherence, with
strands from the same thread being concurrent if they do not share conflicts through mem-
ory (i.e., the visibility of loads and stores from different strands may reorder). Recent trends
suggest that such a relaxed consistency model is unnecessary for typical memory architec-
tures as memory systems have tended towards stricter models with improved performance.

Persist Performance. The persistent queue implementations place each insert task in
a separate persist strand. The result is that all unnecessary persist constraints are removed,
including constraints between inserts from the same thread. Figure 7.1 includes the nec-
essary strand persistency annotations (NewS trand and PersistBarrier). All unnecessary
constraints from Figures 7.2 and 7.3 are removed; those removed in moving from epoch
persistency to strand persistency are labeled “B.” The required persist dependences (and
only those required for correct recovery) remain, maximizing persist concurrency.

Implementation. Strand persistency builds on the hardware requirements to track per-
sist dependencies as in epoch persistency, but further requires mechanisms to separate
tracking of dependencies for different strands. In addition to tracking the last thread to
access each persistent location, the strand within the thread must also be tracked. Un-
ordered persists on different strands can traverse separate queues (e.g., on separate virtual
channels) throughout the persistent memory system. Strand persistency gives enormous
implementation latitude and designing efficient hardware to track and observe only the
minimal ordering requirements remains an open research challenge. In this work, I focus
on demonstrating the potential performance that the model allows.

7.3 Related Work

Durable storage has long been used to recover data after failures. All systems that use
durable storage must specify and honor dependencies between the operations that update

82

that storage. For example, file systems must constrain the order of disk operations to meta-
data to preserve a consistent file system image [41, 25], and databases must obey the order
of durable storage updates specified in write-ahead logging [71].

Specifying and honoring these dependencies becomes harder when the interface to
durable storage are loads and stores to a persistent address space. Store instructions to
an address space are more frequent and fine grained than update operations when using a
block-based interface to durable storage (such as a file system). In addition, CPU caches
interpose on store instructions, which leads to the interaction of persistency and cache con-
sistency discussed in this dissertation.

Recent developments in nonvolatile memory technologies have spurred research on
how to use these new technologies. Some research projects keep the traditional block-based
interface to durable storage and devise ways to accelerate this interface [15]. Other projects
provide a memory-based interface to durable storage [29]. My approach follows the path
of providing a memory-based interface to durable storage, arguing that the high speed and
fine-grained access of new nonvolatile memories provides a natural fit with native memory
instructions.

Combining a memory interface to durable storage with multiprocessors adds concur-
rency control issues to those of durability. Transactions are a common and powerful
paradigm for handling both concurrency control and durability, so many authors have pro-
posed layering transactions on top of nonvolatile memory [65, 29, 116, 28]. Similarly, a
recent paper proposes to couple concurrency control with recovery management by com-
mitting execution to durable storage at the granularity of the outermost critical section [21].

While transactions and critical sections are powerful mechanisms for concurrency con-
trol, many programs use other mechanisms besides these, such as conditional waits. Be-
cause of this diversity of concurrency control, I believe it is useful to treat the issues of
consistency and persistency separately. Just as much work has been done to create a frame-
work of memory consistency models [2], I seek to begin a framework on memory persis-
tency models.

Kiln. Zhao et al. recently proposed Kiln, a persistent system using multi-versioning in
a persistent cache to provide durable transactions [122]. A key feature of this system is that
persistence control and thread synchronization are de-coupled; persistent transactions do
not ensure isolated transactions (I believe it is implied that additional synchronization must
already ensure that transactions are isolated). Several persistent transactions may occur
within a single critical section without the thread synchronization overheads of isolated
multi-thread transactions.

In my work I investigate additional interactions between thread communication and per-

83

sist ordering. Kiln provides no mechanism to allow concurrent persists between interacting
threads as I do with epoch persistency and strand persistency. Zhao introduces ordered and
unordered transactions, but it is unclear if ordered transactions are totally ordered between
all threads or interact with thread synchronization to establish order, and how to enforce
any order with unordered transactions (completely unordered transactions do not provide
functionality for useful recovery). Finally, as with racing persist epochs, durable transac-
tions that race break transaction atomicity; persists to cache lines that contain conflicting
writes from two transactions may reach NVRAM (and be visible at recovery) before or
after the transactions commit. A precise persistency model must specify how to avoid such
behavior or what intended behavior results from persistent transaction races.

BPFS. The techniques most closely related to those proposed in this dissertation are
the primitives for describing persist dependencies in the Byte-Addressable Persistent File
System (BPFS) [30]. Condit et al. introduce persist barriers, similar to existing mem-
ory barriers, that constrain the order of writes to the persistent address space. Any two
persists separated by a barrier must occur in program order, but persists within the same
epoch (interval of execution separated by barriers) are concurrent. Additionally, Condit
assumes that NVRAM allows eight byte atomic writes, allowing many updates to write
atomically in-place without additional recovery mechanisms. Finally, the proposed cache
implementation allows volatile execution of each thread to proceed ahead of the persistent
state, although sharing persistent data between threads causes processors to stall. I assume
similar mechanisms.

I view BPFS as a single point in the memory persistency design space. While similar
to my epoch persistency design, there are subtle, yet important differences, described in
Section 7.2.2. I highlight complications with the BPFS programming model, specifically
persist epoch races. Epochs that race and form a cycle may cause the BPFS system to
deadlock. This problem remains when the access cycle occurs at cache line granularity
(false sharing), even if true races do not occur. An important aspect of memory persistency
is to precisely define allowable behavior under such scenarios. I investigate the more-
general design space of memory persistency and its interactions with memory consistency.

Alternatives to persistent storage. Recent work (e.g., H-Store [104]) suggests highly
available systems as an outright replacement for durability. Additionally, battery-backed
memory and storage obviate the need for memory persistency, allowing more expensive
persist synchronization only when necessary (e.g., Whole-System Persistence [73]). I argue
that computers and storage systems will always fail, and durability remains a requirement
for many applications.

More importantly, highly available systems and battery-backed storage are not uni-

84

versally available. Mobile devices, for example, must rely on persistent storage for data
recovery. Devices in the ”Internet of Things” will require high performance while recov-
ering after failure. Any device expected to fail frequently (due to low power operation
or unreliable power sources) can use memory persistency alongside NVRAM to improve
performance while retaining data integrity.

7.4 Conclusion

Relaxed persistency offers new tools to enforce recovery correctness while minimizing
delays due to persists. In the next chapter I use these queue designs and persistency models
to quantitatively evaluate the opportunity relaxed persistency holds to improve performance
with NVRAM.

85

CHAPTER VIII

An Evaluation of Memory Persistency

The previous two chapters described a recoverable persistent queue data structure as
well as three memory persistency models. This chapter uses the queue and models to mo-
tivate the need for relaxed memory persistency models. First, I describe the methodology
used for this evaluation.

8.1 Methodology

To evaluate persistent queue designs and persistency models I measure instruction exe-
cution rate on a real server and persist concurrency via memory traces. All experiments run
the queue benchmarks optimized for volatile performance. Memory padding is inserted to
objects and queue inserts to provide 64-byte alignment to prevent false sharing. Critical
sections are implemented using MCS locks [70], a high-throughput queue based lock. Ex-
periments insert 100-byte queue entries. Instruction execution rate is measured as inserts
per second while inserting 100,000,000 entries between all threads using an Intel Xeon
E5645 processor (2.4GHz). The remainder of this section describes how I measure persist
concurrency for the queue benchmarks.

Persist Ordering Constraint Critical Path. Instead of proposing specific hardware
designs and using architectural simulation, I instead measure, via memory traces, the per-
sist ordering constraint critical path. The evaluation assumes a memory system with infi-
nite bandwidth and memory banks (so bank conflicts never occur), but with finite persist
latency. Thus, persist throughput is limited by the longest chain (critical path) of persist
ordering constraints observed by execution under different memory persistency models.
While real memory systems must necessarily delay elsewhere due to limited bandwidth,
bank conflicts, and other memory-related delays incurred in the processor, measuring per-
sist ordering constraint critical path offers an implementation-independent measure of per-
sist concurrency.

86

I measure persist critical path under the following assumptions. Every persist to the
persistent address space occurs in place (there is no hardware support for logging or in-
direction to allow concurrent persists). I track persist dependences at variable granularity
(e.g., eight-byte words or 64-byte cache lines). Coarse-grained persist tracking is suscep-
tible to false sharing, introducing unnecessary persist ordering constraints due to accesses
to the same cache line but not to overlapping addresses. I similarly track persist coalescing
with variable granularity. Every persist attempts to coalesce with the last persist to that
address. A persist successfully coalesces if the persist fits within an atomically persistable
memory block and coalescing with the previous persist to the same block does not violate
any persist order constraints.

Memory Trace Generation. I use PIN to instrument the queue benchmarks and gen-
erate memory access traces [67]. Tracing multi-threaded applications requires additional
work to ensure analysis-atomicity—application instructions and corresponding instrumen-
tation instructions must occur atomically, otherwise the traced memory order will not accu-
rately reflect execution’s memory order. I provide analysis atomicity by creating a bank of
locks and assigning every memory address (or block of addresses) to a lock. Each instruc-
tion holds all locks corresponding to its memory operands while being traced. In addition
to tracing memory accesses, I instrument the queue benchmarks with persist barriers and
persistent malloc/free to distinguish volatile and persistent address spaces. My tracing in-
frastructure is publicly available [81].

Tracing memory accesses in such a way ensures that the trace accurately reflects the
order of memory accesses from execution. As only one instruction from any thread can ac-
cess each address at once, and instructions on each thread occur in program order, the trace
observes SC. Thus, all evaluated memory persistency models assume SC as the underlying
consistency model.

Performance Validation. It is important that tracing not heavily influence thread inter-
leaving, which would affect persist concurrency. I measure the distance of insert operations
between successive inserts from the same thread. I observe that the distribution of insert
distance is the same when running each queue natively and with instrumentation enabled,
suggesting that thread interleaving is not significantly affected.

Persist Timing Simulation. Persist times are tracked per address (both persistent and
volatile) as well as per thread according to the persistency model. For example, under
strict persistency each persist occurs after or coalesces with the most recent persists ob-
served through (1) each load operand, (2) the last store to the address being overwritten,
and (3) any persists observed by previous instructions on the same thread. Persists’ ability
to coalesce is similarly propagated through memory and thread state to determine when co-

87

Threads Copy While Locked Two-Lock Concurrent Queue Holes
Strict Epoch Strand Strict Epoch Strand Strict Epoch Strand

1 0.034 0.17 12 0.080 0.56 29 0.032 0.17 13
8 0.058 3.2 21 0.43 3.4 22 0.25 1.9 20

Table 8.1: Relaxed Persistency Performance. Persist-bound insert rate normalized to
instruction execution rate assuming 500ns persist latency. System throughput is limited by
the lower of persist and instruction rates—at greater than 1 (bold) instruction rate limits
throughput; at lower than 1 execution is limited by the rate of persists. While strict persis-
tency limits throughput, epoch persistency maximizes performance for many threads and
strand persistency is necessary to maximize performance with one thread.

alescing will violate persist ordering constraints—a persist may coalesce if its most recent
persist dependence (greatest timestamp) occurs to the same atomically persistable memory
block and all other persist dependences are strictly older (timestamp strictly less). Under
such situations coalescing will not violate any of the earlier persist dependences. The per-
sistency models differ as to the events that propagate persist ordering constraints through
memory and threads.

Next, I use this methodology to establish the need for relaxed persistency models, as
well as measure their opportunity to accelerate recoverable systems.

8.2 Evaluation

This section uses the previously described methodology to demonstrate that persist or-
dering constraints present a performance bottleneck under strict persistency. However,
relaxed persistency improves persist concurrency, removing stalls caused by persists. I also
show that relaxed persistency models are resilient to large persist latency, allowing maxi-
mum throughput as persist latency increases. Finally, I consider the effects of larger atomic
persists and coarse-grained persist dependence tracking.

8.2.1 Relaxed Persistency Performance

NVRAM persists are only a concern if they slow down execution relative to non-
recoverable systems. If few enough persists occur, or those persists are sufficiently con-
current, performance remains bounded by the rate that instructions execute with few delays
caused by persists. To determine system performance, I assume that only one of the in-
struction execution rate and persist rate is the bottleneck: either the system executes at its
instruction execution rate (measured on current hardware), or throughput is limited solely
by persist rate (while observing persist dependencies and retaining recovery correctness).

88

Table 8.1 shows the achievable throughput for the queue benchmarks and persistency
models for both one and eight threads assuming 500ns persists. Rates are normalized to
instruction execution—normalized rates above one (bold) admit sufficient persist concur-
rency to achieve the instruction execution rate while normalized rates below one are limited
by persists. Instruction execution rates vary between log version and number of threads (not
shown).

Strict persistency, the most conservative model, falls well below instruction execution
rate, suggesting that memory systems with such restrictive models will be persist-bound.
Copy While Locked with one thread suffers nearly a 30× slowdown; over-constraining per-
sist order greatly limits workload throughput.

Relaxing persistency improves throughput for persist-bound configurations. Epoch per-
sistency improves persist concurrency by allowing entire queue entries to persist concur-
rently and removes a number of unnecessary persist constraints via intentional persist epoch
races. All queue designs see a substantial increase in throughput, with the eight thread
configurations achieving instruction execution rate. At the same time, the one thread con-
figurations remain persist-bound and their throughput suffers relative to a nonrecoverable
system. Nevertheless, Copy While Locked with one thread is now only 5.9× slower than
the instruction execution rate.

While execution for all queue designs with many threads is already compute bound
and does not benefit from further relaxing persistency, the single thread configurations
require additional persist concurrency to improve performance. Strand persistency allows
concurrent persists from the same thread while still ensuring correct recovery. This model
enables incredibly high persist concurrency such that all log versions are compute-bound
even for a single thread. Sufficiently relaxed persistency models allow data structures and
systems that recover from failure while retaining the throughput of existing main-memory
data structures.

Persist Latency. The previous results argue for relaxed persistency models under large
persist latency. However, for fast enough NVRAM technologies additional persist concur-
rency is unnecessary to achieve instruction execution rate. Figure 8.1 shows the achievable
execution rate (limited either by persist rate or instruction execution rate) for Copy While

Locked with one thread. The x-axis shows persist latency on a logarithmic scale, ranging
from 10ns to 100µs.

At low persist latency all persistency models achieve instruction execution rate (hori-
zontal line formed at the top). However, as persist latency increases each model eventu-
ally becomes persist-bound and throughput quickly degrades. Strict persistency becomes
persist-bound at only 17ns. Epoch persistency improves persist concurrency—instruction

89

10-2 10-1 100 101 102

Persist Latency (us)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

M
ill

io
n

In
se

rt
s/

s

Persistency Model
Strict
Epoch

Strand

Figure 8.1: Persist Latency. Copy While Locked, 1 thread. All models initially compute-
bound (line at top). As persist latency increases each model becomes persist-bound. Re-
laxed models are resilient to large persist latency.

execution rate and persist rate break even at 119ns. While this is a great improvement, I
expect most NVRAM technologies to exhibit higher persist latency. Finally, strand persis-
tency offers sufficient persist concurrency to become persist-bound only above 6us, greater
than expected NVRAM persist latency.

In all cases throughput quickly decreases once execution is persist-bound as persist
latency continues to increase. Persists limit the most conservative persistency models even
at DRAM-like write latencies. However, relaxed persistency models are resilient to large
persist latencies and achieve instruction execution rate.

8.2.2 Atomic Persist and Tracking Granularity

The previous experiments consider performance for queue designs and persistency
models assuming that persist ordering constraints propagate through memory at eight-byte
granularity (i.e., a race to addresses in the same eight-byte, aligned memory block in-
troduces a persist ordering constraint according to the persistency model). Additionally,
experiments assume that persists occur atomically to eight-byte, aligned memory blocks.
Both of these may vary in real implementations; I measure their effect on persist ordering
constraint critical path.

Atomic Persist Granularity. Atomic persist granularity is an important factor for per-

90

23 24 25 26 27 28 29

Atomic Persist Granularity (Bytes)

0

2

4

6

8

10

12

14

16

18

Pe
rs

is
t C

ri
tic

al
 P

at
h

Pe
r

In
se

rt Model and Queue
Strict; CWL
Strict; QH
Epoch; CWL
Epoch; QH

Figure 8.2: Atomic Persist Size. 1 Thread. Large atomic persists allow coalescing, in-
creasing persist concurrency. While effective for strict persistency, large atomic persists do
not improve persist concurrency for relaxed models.

sist concurrency and performance. As in [30] I assume NVRAM persists atomically to at
least eight-byte (pointer-sized) blocks of memory (a persist to an eight-byte, aligned mem-
ory block will always have occurred or not after failure; there is no possibility of a partial
persist). However, increasing atomic persist granularity creates opportunities for additional
persist coalescing. Nearby or adjacent persists may occur atomically and coalesce so long
as no persist dependences are violated. If the originally enforced ordering between two
persist operations appeared on the persist dependence critical path, coalescing due to in-
creased atomic persist granularity may decrease the critical path and reduce the likelihood
of delay due to persists.

Figure 8.2 displays average persist ordering critical path per insert for Copy While

Locked and Queue Holes for both strict persistency and epoch persistency as atomic persist
size increases from eight to 512 bytes. At eight-byte persists there is a large separation be-
tween strict persistency and epoch persistency. As atomic persist size increases the persist
critical path of strict persistency steadily decreases while the critical path of epoch persis-
tency remains largely unchanged. At 512-byte atomic persists (right of the Figure) strict
persistency matches epoch persistency. For these queue benchmarks larger atomic persists
provide the same improvement to persist critical path as relaxed persistency, but offer no
improvement to relaxed models. Increasing atomic persist granularity offers an alternative
to relaxed persistency models.

Persist False Sharing. Just as in existing memory systems, persists suffer from false

91

23 24 25 26 27 28 29

Persist Tracking Granularity (Bytes)

0

5

10

15

20

Pe
rs

is
t C

ri
tic

al
 P

at
h

Pe
r

In
se

rt

Model and Queue
Strict; CWL
Strict; QH
Epoch; CWL
Epoch; QH

Figure 8.3: Persistent False Sharing. 1 Thread. False sharing negligably affects strict
persistency (persists already serialized); relaxed models reintroduce constraints.

sharing, degrading performance. False sharing traditionally occurs under contention to the
same cache line even though threads access disjoint addresses in that cache line. Similarly,
persistent false sharing occurs when a persist ordering constraint is unnecessarily intro-
duced due to the coarseness at which races are observed. Persistent false sharing occurs
in races to both persistent and volatile memory, as races to both address spaces establish
persist ordering constraints.

Figure 8.3 shows average persist critical path per insert for Copy While Locked and
Queue Holes for both strict persistency and epoch persistency as the granularity at which
persist ordering constraints propagate increases. For fine-grained tracking epoch persis-
tency provides a far lower persist critical path than strict persistency. As tracking granu-
larity increases, strict persistency performance remains the same while epoch persistency
decreases (critical path increases). At 512-byte tracking granularity strict persistency and
epoch persistency provide comparable persist critical paths; many of the persist constraints
removed by relaxing consistency are reintroduced through false sharing.

8.3 Future Work

This dissertation lays the foundation for reasoning about NVRAM performance and
programming interfaces, culminating in memory persistency. However, I leave it to future
work to investigate how best to use persistency to build recoverable systems with NVRAM.

92

Software for NVRAM. NVRAM should eventually allow data structures with the per-
formance of existing DRAM systems but that recover after failures. Such software will re-
quire transformations to introduce logs or indirection, and to properly order writes. These
transformations slow execution on even volatile memory systems. However, an instruction-
direct memory interface holds the potential to improve execution beyond block and trans-
action interfaces by increasing thread concurrency and removing frequent copies inherent
in block storage interfaces.

New data structures must be developed to bridge the gap between existing high per-
formance main-memory versions and those that provide recovery with disk. For example,
ordered indexes are typically implemented as B+Trees with disk, but novel (and compli-
cated) variations exist for main memory, such as highly concurrent balanced trees and lock-
free skip lists. With NVRAM and memory persistency one might imagine a recoverable
lock-free tree or skip list with bounded recovery time. How to design such data structures
remains uncertain, as does their true performance potential.

New models and hardware implementations. Once software has been designed we
will require hardware implementations of persistency models and NVRAM memory sys-
tems. Existing memory consistency encompasses a broad literature of models and im-
plementations, detailing specific relaxations to improve performance. High performance
techniques involving speculation further improve performance for strict consistency mod-
els. The same will be true for persistency models, yet I expect persistency models must
be further relaxed compared to consistency models (an NVRAM persist may take an order
of magnitude longer than making a store visible to other processors). Akin to specula-
tion, logging and indirection (such as copy-on-write) may improve performance of strict
persistency models.

Designing high performance and highly concurrent data structures, even without re-
gard for persistency, remains a challenge. To simplify matters researchers have introduced
“programmer-centric” memory consistency models—models that provide the appearance
of SC when certain criteria are met (e.g., data-race-free-zero [2]). Memory persistency may
be similarly simplified by identifying programming patterns and the minimal synchroniza-
tion constructs to present the appearance of SC while still giving the compiler and processor
as much freedom as possible to reorder persists.

Implementing efficient persist coalescing. Finally, the previous chapters assume that
coalescing will be an important feature of NVRAM systems; indeed, recent work has al-
ready demonstrated that without hardware coalescing the software must cache and coalesce
persists, introducing additional instructions and increasing the likelihood of design errors
[30, 37]. Coalescing presents several problems such as detecting when coalescing is al-

93

lowable and determining how long persists should be delayed (delaying a persist increases
the chance that it will coalesce with future persists, but may delay important events such
as transaction commit). Future work must investigate language, compiler, and hardware
mechanisms to provide persist coalescing. It is possible for coalescing to occur only under
specific conditions (e.g., coalescing only occurs between persists on the same thread, coa-
lescing only occurs to a limited number of addresses labeled by the programmer), reducing
hardware complexity.

8.4 Conclusion

Future NVRAM technologies offer the performance of DRAM with the durability of
disk. However, existing memory interfaces are incapable of guaranteeing proper data re-
covery by properly enforcing persist order. In previous chapters I introduced memory per-

sistency, an extension to memory consistency that allows programmers to describe persist
order constraints. Additionally, I outlined the design space of possible memory persistency
models and detailed three persistency models and their use in implementing a persistent
queue. In this chapter I use memory tracing and simulation to demonstrate that strict per-
sistency models suffer a 30× slowdown relative to instruction execution rate, and that re-
laxed persistency effectively regains this performance. Memory persistency represents a
framework for defining programmer interfaces for NVRAM and reasoning about program
correctness for recoverable applications.

94

APPENDICES

95

APPENDIX A

Understanding and Abstracting Total Data Center Power

Steven Pelley, David Meisner, Thomas F. Wenisch, and James W. VanGilder

The alarming growth of data center power consumption has led to a surge in research

activity on data center energy efficiency. Though myriad, most existing energy-efficiency

efforts focus narrowly on a single data center subsystem. Sophisticated power management

increases dynamic power ranges and can lead to complex interactions among IT, power,

and cooling systems. However, reasoning about total data center power is difficult because

of the diversity and complexity of this infrastructure.

In this paper, we develop an analytic framework for modeling total data center power.

We collect power models from a variety of sources for each critical data center component.

These component-wise models are suitable for integration into a detailed data center sim-

ulator that tracks subsystem utilization and interaction at fine granularity. We outline the

design for such a simulator. Furthermore, to provide insight into average data center be-

havior and enable rapid back-of-the-envelope reasoning, we develop abstract models that

replace key simulation steps with simple parametric models. To our knowledge, our effort

is the first attempt at a comprehensive framework for modeling total data center power.

A.1 Introduction

Data center power consumption continues to grow at an alarming pace; it is projected
to reach 100 billion kWh at an annual cost of $7.4 billion within two years [113], with a
world-wide carbon-emissions impact similar to that of the entire Czech Republic [68]. In

96

light of this trend, computer systems researchers, application designers, power and cool-
ing engineers, and governmental bodies have all launched research efforts to improve data
center energy efficiency. These myriad efforts span numerous aspects of data center design
(server architecture [61, 69], scheduling [72, 79], power delivery systems [36], cooling in-
frastructure [80], etc.). However, with few exceptions, existing efforts focus narrowly on
energy-efficiency of single subsystems, without considering global interactions or implica-
tions across data center subsystems.

As sophisticated power management features proliferate, the dynamic range of data
center power draw (as a function of utilization) is increasing, and interactions among power
management strategies across subsystems grow more complex; subsystems can no longer
be analyzed in isolation. Even questions that appear simple on their face can become quite
complicated.

Reasoning about total data center power is difficult because of the diversity and com-
plexity of data center infrastructure. Five distinct sub-systems (designed and marketed by
different industry segments) account for most of a data center’s power draw: (1) servers
and storage systems, (2) power conditioning equipment, (3) cooling and humidification
systems, (4) networking equipment, and (5) lighting/physical security. Numerous sources
have reported power breakdowns [113, 69]; Table A.1 illustrates a typical breakdown today.
The first three subsystems dominate and their power draw can vary drastically with data
center utilization. Cooling power further depends on ambient weather conditions around
the data center facility. Even the distribution of load in each subsystem can affect power
draws, as the interactions among sub-systems are non-linear

In this paper, our objective is to provide tools to the computer systems community to
assess and reason about total data center power. Our approach is two-fold, targeting both
data center simulation and abstract analytic modeling. First, we have collected a set of
detailed power models (from academic sources, industrial white papers, and product data
sheets) for each critical component of data center infrastructure, which describe power
draw as a function of environmental and load parameters. Each model describes the power
characteristics of a single device (i.e., one server or computer room air handler (CRAH))
and, as such, is suitable for integration into a detailed data center simulator. We describe
how these models interact (i.e., how utilization, power, and heat flow among components)
and outline the design of such a simulator. To our knowledge, we are the first to describe
an integrated data center simulation infrastructure; its implementation is underway.

Although these detailed models enable data center simulation, they do not allow direct
analytic reasoning about total data center power. Individual components’ power draw vary
non-linearly with localized conditions (i.e., temperature at a CRAH inlet, utilization of an

97

Table A.1: Typical Data Center Power Breakdown.

Servers Cooling Power Cond. Network Lighting

56% 30% 8% 5% 1%

individual server), that require detailed simulation to assess precisely. Hence, to enable
back-of-the-envelope reasoning, we develop an abstract model that replaces key steps of
the data center simulation process with simple parametric models that enable analysis of
average behavior. In particular, we abstract away time-varying scheduling/load distribution
across servers and detailed tracking of the thermodynamics of data center airflow. Our
abstract model provides insight into how data center sub-systems interact and allows quick
comparison of energy-efficiency optimizations.

CRAH

CRAH

Server Racks

Chiller

... ...

PDU

Server Racks

PDU

UPS

Pump

Cooling Tower

Water

Electric
Air

TransformerPump

115kV13.2kV

1kV

208 V

Figure A.1: Power and Cooling Flow.

A.2 Related Work

The literature on computer system power management is vast; a recent survey appears
in [56]. A tutorial on data center infrastructure and related research issues is available in
[66].

Numerous academic studies and industrial whitepapers describe or apply models of
power draw for individual data center subsystems. Prior modeling efforts indicate that
server power varies roughly linearly in CPU utilization [36, 95]. Losses in power condi-
tioning systems and the impact of power overprovisioning are described in [36, 93]. Our
prior work proposes mechanisms to eliminate idle power waste in servers [69]. Other stud-
ies have focused on understanding the thermal implications of data center design [52, 80].

98

Power- and cooling-aware scheduling and load balancing can mitigate data center cooling
costs [72, 79]. Though each of these studies examines particular aspects of data center
design, none of these present a comprehensive model for total data center power draw.

A.3 Data Center Power Flow

We begin by briefly surveying major data center subsystems and their interactions. Fig-
ure A.1 illustrates the primary power-consuming subsystems and how power and heat flow
among them. Servers (arranged in racks) consume the dominant fraction of data center
power, and their power draw varies with utilization.

The data center’s power conditioning infrastructure typically accepts high-voltage AC
power from the utility provider, transforms its voltage, and supplies power to uninterrupt-
ible power supplies (UPSs). The UPSs typically charge continuously and supply power in
the brief gap until generators can start during a utility failure. From the UPS, electricity is
distributed at high voltage (480V-1kV) to power distribution units (PDUs), which regulate
voltage to match IT equipment requirements. Both PDUs and UPSs impose substantial
power overheads, and their overheads grow with load.

Nearly all power dissipated in a data center is converted to heat, which must be evac-
uated from the facility. Removing this heat while maintaining humidity and air quality
requires an extensive cooling infrastructure. Cooling begins with the computer room air
handler (CRAH), which transfer heat from servers’ hot exhaust to a chilled water/glycol
cooling loop while supplying cold air throughout the data center. CRAHs appear in various
forms, from room air conditioners that pump air through underfloor plenums to in-row units
located in containment systems. The water/glycol heated by the CRAHs is then pumped
to a chiller plant where heat is exchanged between the inner water loop and a second loop
connected to a cooling tower, where heat is released to the outside atmosphere. Extract-
ing heat in this manner requires substantial energy; chiller power dominates overall cooling
system power, and its requirements grow with both the data center thermal load and outside
air temperature.

A.4 Modeling Data Center Power

Our objective is to model total data center power at two granularities: for detailed
simulation and for abstract analysis. Two external factors primarily affect data center power
usage: the aggregate load presented to the compute infrastructure and the ambient outside
air temperature (outside humidity secondarily affects cooling power as well, but, to limit

99

Table A.2: Variable Definitions.

U Data Center Utilization T Temperature
u Component Utilization ṁ Flow Rate
κ Containment Index Cp Heat Capacity
` Load Balancing Coefficient NSrv # of Servers
E Heat Transfer Effectiveness P Power
π Loss Coefficient q Heat
f Fractional Flow Rate

model complexity, we do not consider it here). We construct our modeling framework by
composing models for the individual data center components. In our abstract models, we
replace key steps that determine the detailed distribution of compute load and heat with
simple parametric models that enable reasoning about average behavior.

Framework. We formulate total data center power draw, PTotal, as a function of total
utilization, U, and ambient outside temperature, TOutside. Figure A.2 illustrates the various
intermediary data flows and models necessary to map from U and TOutside to PTotal. Each box
is labeled with a sub-section reference that describes that step of the modeling framework.
In the left column, the power and thermal burden generated by IT equipment is determined
by the aggregate compute infrastructure utilization, U. On the right, the cooling system
consumes power in relation to both the heat generated by IT equipment and the outside air
temperature.

Simulation & Modeling. In simulation, we relate each component’s utilization (pro-
cessing demand for servers, current draw for electrical conditioning systems, thermal load
for cooling systems, etc.) to its power draw on a component-by-component basis. Hence,
simulation requires precise accounting of per-component utilization and the connections
between each component. For servers, this means knowledge of how tasks are assigned to
machines; for electrical systems, which servers are connected to each circuit; for cooling
systems, how heat and air flow through the physical environment. We suggest several ap-
proaches for deriving these utilizations and coupling the various sub-systems in the context
of a data center simulator; we are currently developing such a simulator.

However, for high-level reasoning, it is also useful to model aggregate behavior un-
der typical-case or parametric assumptions on load distribution. Hence, from our detailed
models, we construct abstract models that hide details of scheduling and topology.

4.1. Abstracting Server Scheduling.
The first key challenge in assessing total data center power involves characterizing

server utilization and the effects of task scheduling on the power and cooling systems.

100

Total Power

Load Balancing

IT Load (U)

Server Power

Network/Lighting Power

Power Conditioning Chiller

Outside Temperature (Toutside)

Heat Flow (W)
 Power (W)

CRAH

§4.1

§4.2

§4.5

§4.6

§4.7

§4.3

Utilization (%)

Heat and
Air Flow

§4.4

Figure A.2: Data Flow.

Whereas a simulator can incorporate detailed scheduling, task migration, or load balancing
mechanisms to derive precise accounting of per-server utilization, we must abstract these
mechanisms for analytic modeling.

As a whole, our model relates total data center power draw to aggregate data center
utilization, denoted by U. Utilization varies from 0 to 1, with 1 representing the peak
compute capacity of the data center. We construe U as unitless, but it might be expressed in
terms of number of servers, peak power (Watts), or compute capability (MIPS). For a given
U, individual server utilizations may vary (e.g., as a function of workload characteristics,
consolidation mechanisms, etc.). We represent the per-server utilizations with uS rv, where
the subscript indicates the server in question. For a homogeneous set of servers:

U =
1

NSrv

∑
Servers

uSrv[i] (A.1)

For simplicity, we have restricted our analytic model to a homogeneous cluster. In real
data centers, disparities in performance and power characteristics across servers require
detailed simulation to model accurately, and their effect on cooling systems can be difficult
to predict [74].

To abstract the effect of consolidation, we characterize the individual server utilization,
uS rv, as a function of U and a measure of task consolidation, `. We use ` to capture the
degree to which load is concentrated or spread over the data center’s servers. For a given

101

U and ` we define individual server utilization as:

uSrv =
U

U + (1 − U)`
(A.2)

uS rv only holds meaning for the NSrv(U + (1−U)`) servers that are non-idle; the remain-
ing servers have zero utilization, and are assumed to be powered off. Figure A.3 depicts the
relationship among uS rv, U, and `. ` = 0 corresponds to perfect consolidation—the data
center’s workload is packed onto the minimum number of servers, and the utilization of
any active server is 1. ` = 1 represents the opposite extreme of perfect load balancing—all
servers are active with uS rv = U. Varying ` allows us to represent consolidation between
these extremes.

4.2. Server Power.
Several studies have characterized server power consumption [66, 36, 69, 95]. Whereas

the precise shape of the utilization-power relationship varies, servers generally consume
roughly half of their peak load power when idle, and power grows with utilization. In line
with prior work [95], we approximate a server’s power consumption as linear in utilization
between a fixed idle power and peak load power.

PSrv = PSrvIdle + (PSrvPeak − PSrvIdle)uSrv (A.3)

Power draw is not precisely linear in utilization; server sub-components exhibit a vari-
ety of relationships (near constant to quadratic). It is possible to use any nonlinear analyt-
ical power function, or even a suitable piecewise function. Additionally, we have chosen
to use CPU utilization as an approximation for overal system utilization; a more accu-
rate representation of server utilization might instead be employed. In simulation, more
precise system/workload-specific power modeling is possible by interpolating in a table
of measured power values at various utilizations (e.g., as measured with the SpecPower
benchmark). Figure A.4 compares the linear approximation against published SpecPower
results for two recent Dell systems.

4.3. Power Conditioning Systems.
Data centers require considerable infrastructure simply to distribute uninterrupted, sta-

ble electrical power. PDUs transform the high voltage power distributed throughout the
data center to voltage levels appropriate for servers. They incur a constant power loss as
well as a power loss proportional to the square of the load [93]:

PPDULoss = PPDUIdle + πPDU(
∑

S ervers

PSrv)2 (A.4)

102

where PPDULoss represents power consumed by the PDU, πPDU represents the PDU power
loss coefficient, and PPDUIdle the PDU’s idle power draw. PDUs typically waste 3% of their
input power. As current practice requires all PDUs to be active even when idle, the total
dynamic power range of PDUs for a given data center utilization is small relative to total
data center power; we chose not to introduce a separate PDU load balancing coefficient and
instead assume perfect load balancing across all PDUs.

UPSs provide temporary power during utility failures. UPS systems are typically placed
in series between the utility supply and PDUs and impose some power overheads even when
operating on utility power. UPS power overheads follow the relation [93]:

PUPSLoss = PUPSIdle + πUPS

∑
PDUs

PPDU (A.5)

where πUPS denotes the UPS loss coefficient. UPS losses typically amount to 9% of
their input power at full load.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Data Center Utilization (U)

Se
rv

er
 U

tili
za

tio
n

(u
Sr
v)

! = 0.02
! = 0.25
! = 0.5
! = 0.75
! = 1

Figure A.3: Individual Server Utilization.

0 0.2 0.4 0.6 0.8 1
50

100

150

200

250

300

350

Server Utilization (uSrv)

P S
rv

 (W
at

ts
)

Dell PowerEdge 2970
Dell PowerEdge R710
Model

Figure A.4: Individual Server Power.

0 0.2 0.4 0.6 0.8 1
0

200

400

600

800

1000

1200

Data Center Utilization (U)

Po
we

r (
kW

)

Power Conditioning Loss
UPS Loss
PDU Loss

Figure A.5: Power Conditioning Losses.

103

Figure A.5 shows the power losses for a 10MW (peak server power) data center. At
peak load, power conditioning loss is 12% of total server power. Furthermore, these losses
result in additional heat that must be evacuated by the cooling system.

4.4. Heat and Air Flow.
Efficient heat transfer in a data center relies heavily on the CRAH’s ability to provide

servers with cold air. CRAHs serve two basic functions: (1) to provide sufficient airflow to
prevent recirculation of hot server exhaust to server inlets, and (2) to act as a heat exchanger
between server exhaust and some heat sink, typically chilled water.

In general, heat is transferred between two bodies according to the following thermo-
dynamic principle:

q = ṁCp(Th − Tc) (A.6)

Here q is the power transferred between a device and fluid, ṁ represents the fluid mass
flow, and Cp is the specific heat capacity of the fluid. Th and Tc represent the hot and cold
temperatures, respectively. The values of ṁ, Th, and Tc depend on the physical air flow
throughout the data center and air recirculation.

Air recirculation arises when hot and cold air mix before being ingested by servers,
requiring a lower cold air temperature and greater mass flow rate to maintain server inlet
temperature within a safe operating range. Data center designers frequently use computa-
tional fluid dynamics (CFD) to model the complex flows that arise in a facility and lay out
racks and CRAHs to minimize recirculation. The degree of recirculation depends greatly
on data center physical topology, use of containment systems, and the interactions among
high-velocity equipment fans. In simulation, it is possible to perform CFD analysis to
obtain accurate flows.

For abstract modeling, we replace CFD with a simple parametric model of recirculation
that can capture its effect on data center power. We introduce a containment index (κ),
based on previous metrics for recirculation [106, 114]. Containment index is defined as the
fraction of air ingested by a server that is supplied by a CRAH (or, at the CRAH, the fraction
that comes from server exhaust). The remaining ingested air is assumed to be recirculated
from the device itself. Thus, a κ of 1 implies no recirculation (a.k.a. perfect containment).
Though containment index varies across servers and CRAHs (and may vary with changing
airflows), our abstract model uses a single, global containment index to represent average
behavior, resulting in the following heat transfer equation:

q = κṁairCpair(Tah − Tac) (A.7)

104

0.9 0.92 0.94 0.96 0.98 1

72

73

74

75

76

77

Containment Index (!)

CR
AH

 S
up

pl
y

Te
m

pe
ra

tu
re

 (o F)

u = .1
u = .4
u = .7
u = 1

Figure A.6: CRAH Supply Temperature.

0.9 0.92 0.94 0.96 0.98 1
0

0.5

1

1.5

2

2.5

3

Containment Index (!)

P C
RA
H (k

W
)

Chilled Water = 52oF
Chilled Water = 49oF
Chilled Water = 46oF
Chilled Water = 43oF
Chilled Water = 40oF

Figure A.7: CRAH Power.

35 40 45 50 55 60

1000

1500

2000

2500

3000

3500

Chilled Water Temp (oF)

Ch
ille

r P
ow

er
 (k

W
)

U=.98
U=.71
U=.45
U=.18

Figure A.8: Chilled Water Temperature.

For this case, q is the heat transferred by the device (either server or CRAH), ṁair

represents the total air flowing through the device, Tah the temperature of the air exhausted
by the server, and Tac is the temperature of the cold air supplied by the CRAH. These
temperatures represent the hottest and coldest air temperatures in the system, respectively,
and are not necessarily the inlet temperatures observed at servers and CRAHs (except for
the case when κ = 1).

Using only a single value for κ simplifies the model by allowing us to enforce the con-
servation of air flow between the CRAH and servers. Figure A.6 demonstrates the burden
air recirculation places on the cooling system. We assume flow through a server increases
linearly with server utilization (representing variable-speed fans) and a peak server power
of 200 watts. The left figure shows the CRAH supply temperature necessary to maintain
the typical maximum safe server inlet temperature of 77◦F. As κ decreases, the required
CRAH supply temperature quickly drops. Moreover, required supply temperature drops
faster as utilization approaches peak. As we show next, lowering supply temperature re-

105

sults in super-linear increases in CRAH and chiller plant power. Preventing air recirculation
(e.g., with containment systems) can drastically improve cooling efficiency.

4.5. Computer Room Air Handler.
CRAHs transfer heat out of the server room to the chilled water loop. We model this

exchange of heat using a modified effectiveness-NTU method [17]:

qcrah = E κ ṁairCpair f 0.7(κ Tah + (1 − κ)Tac − Twc) (A.8)

qcrah is the heat removed by the CRAH, E is the transfer efficiency at the maximum
mass flow rate (0 to 1), f represents the volume flow rate as a fraction of the maximum
volume flow rate, and Twc the chilled water temperature.

CRAH power is dominated by fan power, which grows with the cube of mass flow
rate to some maximum, here denoted as PCRAHDyn . Additionally, there is some fixed power
cost for sensors and control systems, PCRAHIdle . We model CRAH units with variable speed
drives (VSD) that allow volume flow rate to vary from zero (at idle) to the CRAH’s peak
volume flow. Some CRAH units are cooled by air rather than chilled water or contain other
features such as humidification systems which we do not consider here.

PCRAH = PCRAHIdle + PCRAHDyn f 3 (A.9)

As the volume flow rate through the CRAH increases, both the mass available to trans-
port heat and the efficiency of heat exchange increase. This increased heat transfer effi-
ciency somewhat offsets the cubic growth of fan power as a function of air flow. The true
relationship between CRAH power and heat removed falls between a quadratic and cubic
curve. Additionally, the CRAH’s ability to remove heat depends on the temperature differ-
ence between the CRAH air inlet and water inlet. Reducing recirculation and lowering the
chilled water supply temperature reduce the power required by the CRAH unit.

The effects of containment index and chilled water supply temperature on CRAH power
are shown in Figure A.7. Here the CRAH model has a peak heat transfer efficiency of 0.5, a
maximum airflow of 6900 CFM, peak fan power of 3kW, and an idle power cost of 0.1 kW.
When the chilled water supply temperature is low, CRAH units are relatively insensitive
to changes in containment index. For this reason data center operators often choose low
chilled water supply temperature, leading to overprovisioned cooling in the common case.

4.6. Chiller Plant and Cooling Tower.
The chiller plant provides a supply of chilled water or glycol, removing heat from the

warm water return. Using a compressor, this heat is transferred to a second water loop,
where it is pumped to an external cooling tower. The chiller plant’s compressor accounts

106

for the majority of the overall cooling cost in most data centers. Its power draw depends
on the amount of heat extracted from the chilled water return, the selected temperature
of the chilled water supply, the water flow rate, the outside temperature, and the outside
humidity. For simplicity, we neglect the effects of humidity. In current-generation data
centers, the water flow rate and chilled water supply temperature are held constant dur-
ing operation (though there is substantial opportunity to improve cooling efficiency with
variable-temperature chilled water supply).

Numerous chiller types exist, typically classified by their compressor type. The HVAC
community has developed several modeling approaches to assess chiller performance. Al-
though physics-based models do exist, we chose the Department of Energy’s DOE2 chiller
model [35], an empirical model comprising a series of regression curves. Fitting the DOE2
model to a particular chiller requires numerous physical measurements. Instead, we use a
benchmark set of regression curves provided by the California Energy Commission [18].
We do not detail the DOE2 model here, as it is well documented and offers little insight
into chiller operation. We neglect detailed modeling of the cooling tower, using outside air
temperature as a proxy for cooling tower water return temperature.

As an example, a chiller at a constant outside temperature and chilled water supply
temperature will require power that grows quadratically with the quantity of heat removed
(and thus with utilization). A chiller intended to remove 8MW of heat at peak load using
3,200 kW at a steady outside air temperature of 85◦F, a steady chilled water supply tem-
perature of 45◦F, and a data center load balancing coefficient of 0 (complete consolidation)
will consume the following power as a function of total data center utilization (kW):

PChiller = 742.8U2 + 1,844.6U + 538.7

Figure A.8 demonstrates the power required to supply successively lower chilled water
temperatures at various U for an 8MW peak thermal load. When thermal load is light,
chiller power is relatively insensitive to chilled water temperature, which suggests using
a conservative (low) set point to improve CRAH efficiency. However, as thermal load
increases, the power required to lower the chilled water temperature becomes substantial.
The difference in chiller power for a 45◦F and 55◦F chilled water supply at peak load is
nearly 500kW. Figure A.9 displays the rapidly growing power requirement as the cooling
load increases for a 45◦F chilled water supply. The graph also shows the strong sensitivity
of chiller power to outside air temperature.

4.7. Miscellaneous Power Draws.
Networking equipment, pumps, and lighting all contribute to total data center power.

However, the contribution of each is quite small (a few percent). None of these systems

107

0 0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000

2500

3000

3500

4000

Data Center Utilization (U)

Ch
ille

r P
ow

er
 (k

W
)

TOutside = 55oF

TOutside = 65oF

TOutside = 75oF

TOutside = 85oF

TOutside = 95oF

Figure A.9: Effects of U and TOutside on
PChiller

Servers Chiller CRAH UPS
Austin 4122 1667 479 446
Ann Arbor 4122 1147 479 430
+Consolida 2239 796 222 352
+PowerNap 1612 690 151 327
+Opt. Cool 1612 295 45 312
+Container 1612 44 42 304

2000

4000

6000

8000

A
gg

re
ga

te
 P

ow
er

 (k
W

) Lights

Network

PDU

UPS

CRAH

0

Scenarios

Chiller

Servers

Figure A.10: A Case Study of Power-
Saving Features.

have power draws that vary significantly with data center load. We account for these sub-
systems by including a term for fixed power overheads (around 6% of peak) in the overall
power model. We do not currently consider the impact of humidification within our models.

4.8. Applying the Model: A Case Study.
To demonstrate the utility of our abstract models, we contrast the power requirements

of several hypothetical data centers. Each scenario builds on the previous, introducing a
new power-saving feature. We analyze each data center at 25% utilization. Table A.3
lists our scenarios and Figure A.10 displays their respective power draws. Austin and Ann

Arbor represent conventional data centers with legacy physical infrastructure typical of fa-
cilities commissioned in the last three to five years. We use yearly averages for outside air
temperature (reported in ◦F). We assume limited server consolidation and a relatively poor
(though not atypical) containment index of 0.9. Furthermore, we assume typical (ineffi-
cient) servers with idle power at 60% of peak power, and static chilled water and CRAH
air supply temperatures set to 45◦F and 65◦F, respectively. We scale the data centers such

Table A.3: Hypothetical Data Centers.

Data Center ` κ PIdle
PPeak

T (F) Opt. Cooling

Austin .95 .9 .6 70 no
Ann Arbor .95 .9 .6 50 no
+Consolidation .25 .9 .6 50 no
+PowerNap .25 .9 .05 50 no
+Opt. Cooling .25 .9 .05 50 yes
+Containers .25 .99 .05 50 yes

108

that the Austin facility consumes precisely 10MW at peak utilization. With the exception
of Austin, all data centers are located in Ann Arbor.

The outside air temperature difference between Austin and Ann Arbor yields substantial
savings in chiller power. Note, however, that aggregate data center power is dominated by
server power, nearly all of which is wasted by idle systems. Consolidation represents a
data center where virtual machine consolidation or other mechanisms reduce ` from 0.95
to 0.25, increasing individual server utilization from 0.26 to 0.57 and reducing the number
of active servers from 81% to 44%. Improved consolidation drastically decreases aggre-
gate power draw, but, paradoxically, it increases power usage effectiveness (PUE; total data
center power divided by IT equipment power). These results illustrate the shortcoming of
PUE as a metric for energy efficiency—it fails to account for the (in)efficiency of IT equip-
ment. PowerNap [69] allows servers to idle at 5% of peak power by transitioning rapidly
to a low power sleep state, reducing overall data center power another 22%. PowerNap
and virtual machine consolidation take alternative approaches to target the same source of
energy inefficiency: server idle power waste.

The Optimal Cooling scenario posits integrated, dynamic control of the cooling infras-
tructure. We assume an optimizer with global knowledge of data center load/environmental
conditions that seeks to minimize chiller power. The optimizer chooses the highest Twc that
still allows CRAHs to meet the maximum allowable server inlet temperature. This sce-
nario demonstrates the potential for intelligent cooling management. Finally, Container

represents a data center with a containment system (e.g., servers enclosed in shipping con-
tainers), where containment index is increased to 0.99. Under this scenario, the cooling
system power draw is drastically reduced and power conditioning infrastructure becomes
the limiting factor on power efficiency.

A.5 Conclusion

To enable holistic research on data center energy efficiency, computer system designers
need models to enable reasoning about total data center power draw. We have presented
parametric power models of data center components suitable for use in a detailed data cen-
ter simulation infrastructure and for abstract back-of-the-envelope estimation. We demon-
strate the utility of these models through case studies of several hypothetical data center
designs.

109

APPENDIX B

Power Routing: Dynamic Power Provisioning in the Data
Center

Steven Pelley, David Meisner, Pooya Zandevakili,
Thomas F. Wenisch, and Jack Underwood

Data center power infrastructure incurs massive capital costs, which typically exceed

energy costs over the life of the facility. To squeeze maximum value from the infrastructure,

researchers have proposed over-subscribing power circuits, relying on the observation that

peak loads are rare. To ensure availability, these proposals employ power capping, which

throttles server performance during utilization spikes to enforce safe power budgets. How-

ever, because budgets must be enforced locally—at each power distribution unit (PDU)—

local utilization spikes may force throttling even when power delivery capacity is available

elsewhere. Moreover, the need to maintain reserve capacity for fault tolerance on power

delivery paths magnifies the impact of utilization spikes.

In this paper, we develop mechanisms to better utilize installed power infrastructure,

reducing reserve capacity margins and avoiding performance throttling. Unlike conven-

tional high-availability data centers, where collocated servers share identical primary and

secondary power feeds, we reorganize power feeds to create shuffled power distribution

topologies. Shuffled topologies spread secondary power feeds over numerous PDUs, re-

ducing reserve capacity requirements to tolerate a single PDU failure. Second, we pro-

pose Power Routing, which schedules IT load dynamically across redundant power feeds

to: (1) shift slack to servers with growing power demands, and (2) balance power draw

across AC phases to reduce heating and improve electrical stability. We describe efficient

110

Figure B.1: The cost of over-provisioning. Amortized monthly cost of power infrastruc-
ture for 1000 servers under varying provisioning schemes.

heuristics for scheduling servers to PDUs (an NP-complete problem). Using data col-

lected from nearly 1000 servers in three production facilities, we demonstrate that these

mechanisms can reduce the required power infrastructure capacity relative to conventional

high-availability data centers by 32% without performance degradation.

B.1 Introduction

Data center power provisioning infrastructure incurs massive capital costs—on the or-
der of $10-$25 per Watt of supported IT equipment [66, 111]. Power infrastructure costs
can run into the $10’s to $100’s of millions, and frequently exceed energy costs over the life
of the data center [51]. Despite the enormous price tag, over-provisioning remains com-
mon at every layer of the power delivery system [51, 66, 36, 60, 91, 47]. Some of this spare
capacity arises due to deliberate design. For example, many data centers include redundant
power distribution paths for fault tolerance. However, the vast majority arises from the
significant challenges of sizing power systems to match unpredictable, time-varying server
power demands. Extreme conservatism in nameplate power ratings (to the point where they
are typically ignored), variations in system utilization, heterogeneous configurations, and
design margins for upgrades all confound data center designers’ attempts to squeeze more
power from their infrastructure. Furthermore, as the sophistication of power management
improves, servers’ power demands will become even more variable [69], increasing the
data center designers’ challenge.

Although the power demands of individual servers can vary greatly, statistical effects
make it unlikely for all servers’ demands to peak at the same time [47, 91]. Even in highly-
tuned clusters running a single workload, peak utilization is rare, and still falls short of

111

provisioned power capacity [36]. This observation has lead researchers and operators to
propose over-subscribing power circuits. To avoid overloads that might impact availability,
such schemes rely on power capping mechanisms that enforce power budgets at individ-
ual servers [60, 117] or over ensembles [91, 118]. The most common power-capping ap-
proaches rely on throttling server performance to reduce power draw when budgets would
otherwise be exceeded [60, 91, 117, 118].

Figure B.1 illustrates the cost of conservative provisioning and the potential savings that
can be gained by over-subscribing the power infrastructure. The graph shows the amortized
monthly capital cost for power infrastructure under varying provisioning schemes. We
calculate costs following the methodology of Hamilton [51] assuming high-availability
power infrastructure costs $15 per critical-load Watt [111], the power infrastructure has a
15-year lifetime, and the cost of financing is 5% per annum. We derive the distribution
of actual server power draws from 24 hours of data collected from 1000 servers in three
production facilities (details in Section B.5.1). Provisioning power infrastructure based on
nameplate ratings results in infrastructure costs over triple the facility’s actual need. Hence,
operators typically ignore nameplate ratings, instead provisioning infrastructure based on
a measured peak power for each class of server hardware. However, even this provisioning
method overestimates actual needs—provisioning based on the observed aggregate peak
at any power distribution unit (PDU) reduces costs 23%. Provisioning for less-than-peak
loads can yield further savings at the cost of some performance degradation (e.g., average
power demands are only 87% of peak).

Power capping makes over-subscribing safe. However, power budgets must enforce
local (PDU) as well as global (uninterruptible power supply, generator and utility feed)
power constraints. Hence, local spikes can lead to sustained performance throttling, even if
the data center is lightly utilized and ample power delivery capacity is available elsewhere.
Moreover, in high-availability deployments, the need to maintain reserve capacity on re-
dundant power delivery paths to ensure uninterrupted operation in the event of PDU failure
magnifies the impact of utilization spikes—not only does the data center’s direct demand
rise, but also the potential load from failover.

An ideal power delivery system would balance loads across PDUs to ensure asymmetric
demand does not arise. Unfortunately, since server power demands vary, it is difficult
or impossible to balance PDU loads statically, through clever assignment of servers to
PDUs. Such balancing may be achievable dynamically through admission control [22] or
virtual machine migration [27], but implies significant complexity, may hurt performance,
and may not be applicable to non-virtualized systems. Instead, in this paper, we explore
mechanisms to balance load through the power delivery infrastructure, by dynamically

112

connecting servers to PDUs.
Our approach, Power Routing, builds on widely-used techniques for fault-tolerant power

delivery, whereby each server can draw power from either of two redundant feeds. Rather
than designating primary and secondary feeds and switching only on failure (or splitting
loads evenly across both paths), we instead centrally control the switching of servers to
feeds. The soft-switching capability (already present for ease of maintenance in many
dual-corded power supplies and rack-level transfer switches) acts as the foundation of a
power switching network.

In existing facilities, it is common practice for all servers in a rack or row to share
the same pair of redundant power feeds, which makes it impossible to use soft-switching
to influence local loading. Our key insight, inspired by the notion of skewed-associative
caches [100] and declustering in disk arrays [4]), is to create shuffled distribution topolo-

gies, where power feed connections are permuted among servers within and across racks.
In particular, we seek topologies where servers running the same workload (which are most
likely to spike together) connect to distinct pairs of feeds. Such topologies have two im-
plications. First, they spread the responsibility to bear a failing PDU’s load over a large
number of neighbors, reducing the required reserve capacity at each PDU relative to con-
ventional designs. Second, they create the possibility, through a series of switching actions,
to route slack in the power delivery system to a particular server.

Designing such topologies is challenging because similar servers tend to be collocated
(e.g., because an organization manages ownership of data center space at the granularity of
racks). Shuffled topologies that route power from particular PDUs over myriad paths re-
quire wiring that differs markedly from current practice. Moreover, assignments of servers
to power feeds must not only meet PDU capacity constraints, they must also: (1) ensure
that no overloads occur if any PDU fails (such a failure instantly causes all servers to switch
to their alternate power feed); and (2) balance power draws across the three phases of each
alternating current (AC) power source to avoid voltage and current fluctuations that in-
crease heating, reduce equipment lifetime, and can precipitate failures [49]. Even given a
shuffled topology, power routing remains challenging: we will show that solving the dy-
namic assignment of servers to PDUs reduces to the partitioning problem [42], and, hence,
is NP-complete and infeasible to solve optimally. In this paper, we address each of these
challenges, to contribute:

• Lower reserve capacity margins. Because more PDUs cooperate to tolerate fail-
ures, shuffled topologies reduce per-PDU capacity reserves from 50% of instanta-
neous load to a 1/N fraction, where N is the number of cooperating PDUs.

113

13.2kV

Utility B

Utility A 480V

PDU

ATS

ATS

PDU

PDU

Generator

Server Cluster 1

Server Cluster 2

Server Cluster 3

UPS

UPS

208V

Figure B.2: Example power delivery system for a high-availability data center.

• Power routing. We develop a linear programming-based heuristic algorithm that
assigns each server a power feed and budget to minimize power capping, maintain
redundancy against a single PDU fault, and balance power draw across phases.

• Reduced capital expenses. Using traces from production systems, we demonstrate
that our mechanisms reduce power infrastructure capital costs by 32% without per-
formance degradation. With energy-proportional servers, savings reach 47%.

The rest of this paper is organized as follows. In Section B.2, we provide background on
data center power infrastructure and power capping mechanisms. We describe our mecha-
nisms in Section B.3 and detail Power Routing’s scheduling algorithm in Section B.4. We
evaluate our techniques on our production data center traces in Section B.5. Finally, in
Section B.6, we conclude.

B.2 Background

We begin with a brief overview of data center power provisioning infrastructure and
power capping mechanisms. A more extensive introduction to these topics is available in
[66].

Conventional power provisioning. Today, most data centers operate according to
power provisioning policies that assure sufficient capacity for every server. These poli-
cies are enforced by the data center operators at system installation time, by prohibiting
deployment of any machine that creates the potential for overload. Operators do their best
to estimate systems’ peak power draws, either through stress-testing, from vendor-supplied
calculators, or through de-rating of nameplate specifications.

In high-availability data centers, power distribution schemes must also provision redun-
dancy for fault tolerance; system deployments are further restricted by these redundancy

114

requirements. The Uptime Institute classifies data centers into tiers based on the nature
and objectives of their infrastructure redundancy [112]. Some data centers provide no fault
tolerance (Tier-1), or provision redundancy only within major power infrastructure com-
ponents, such as the UPS system (Tier-2). Such redundancy allows some maintenance of
infrastructure components during operation, and protects against certain kinds of faults,
but numerous single points-of-failure remain. Higher-tier data centers provide redundant
power delivery paths to each server. Power Routing is targeted at these data centers, as it
exploits the redundant delivery paths to shift power delivery capacity.

Example: A high-availability power system. Figure B.2 illustrates an example of a
high-availability power system design and layout for a data center with redundant distribu-
tion paths. The design depicted here is based on the power architecture of the Michigan
Academic Computer Center (MACC), the largest (10,000 square feet; 288 racks; 4MW
peak load including physical infrastructure) of the three facilities providing utilization
traces for this study. Utility power from two substations and a backup generator enter
the facility at high voltage (13.2 kVAC) and meet at redundant automated transfer switches
(ATS) that select among these power feeds. These components are sized for the peak
facility load (4MW), including all power infrastructure and cooling system losses. The
ATS outputs in turn are transformed to a medium voltage (480 VAC) and feed redundant
uninterruptible power supply (UPS) systems, which are also each sized to support the en-
tire facility. These in turn provide redundant feeds to an array of power distribution units
(PDUs) which further transform power to 208V 3-phase AC.

PDUs are arranged throughout the data center such that each connects to two neighbor-
ing system clusters and each cluster receives redundant power feeds from its two neigh-
boring PDUs. The power assignments wrap from the last cluster to the first. We refer to
this PDU arrangement as a wrapped topology. The wrapped topology provides redundant
delivery paths with minimal wiring and requires each PDU to be sized to support at most
150% of the load of its connected clusters, with only a single excess PDU beyond the min-
imum required to support the load (called an “N+1” configuration). In the event of any
PDU fault, 50% of its supported load fails over to each of its two neighbors. PDUs each
support only a fraction of the data center’s load, and can range in capacity from under ten
to several hundred kilowatts.

Power is provided to individual servers through connectors (called “whips”), that split
the three phases of the 208VAC PDU output into the 120VAC single-phase circuits familiar
from residential wiring. (Some equipment may operate at higher voltages or according
to other international power standards.) Many modern servers include redundant power
supplies, and provide two power cords that can be plugged into whips from each PDU. In

115

such systems, the server internally switches or splits its load among its two power feeds.
For servers that provide only a single power cord, a rack-level transfer switch can connect
the single cord to redundant feeds.

The capital costs of the power delivery infrastructure are concentrated at the large, high-
voltage components: PDUs, UPSs, facility-level switches, generators, transformers and the
utility feed. The rack-level components cost a few thousand dollars per rack (on the order
of $1 per provisioned Watt), while the facility-level components can cost $10-$25 per pro-
visioned Watt [66, 111], especially in facilities with such high levels of redundancy. With
Power Routing, we focus on reducing the required provisioning of the facility-scale com-
ponents while assuring a balanced load over the PDUs. Though circuit breakers typically
limit current both at the PDU’s breaker panels and on the individual circuits in each whip,
it is comparatively inexpensive to provision these statically to avoid overloads. Though
Power Routing is applicable to manage current limits on individual circuits, we focus on
enforcing limits at the PDU level in this work.

Phase balance. In addition to enforcing current limits and redundancy, it is also de-
sirable for a power provisioning scheme to balance power draw across the three phases of
AC power supplied by each PDU. Large phase imbalances can lead to current spikes on
the neutral wire of a 3-phase power bus, voltage and current distortions on the individual
phases, and generally increase heat dissipation and reduce equipment lifetime [49]. Data
center operators typically manually balance power draw across phases by using care in
connecting equipment to particular receptacles wired to each phase. Power Routing can
automatically enforce phase balance by including it as explicit constraints in its scheduling
algorithm.

Power capping. Conservative, worst-case design invariably leads to power infrastruc-
ture over-provisioning [47, 91, 36, 118]. Power capping mechanisms allow data center
operators to sacrifice some performance in rare utilization spikes in exchange for substan-
tial cost savings in the delivery infrastructure, without the risk of cascading failures due
to an overload. In these schemes, some centralized control mechanism establishes a power
budget for each server (e.g., based on historical predictions or observed load in the previous
time epoch). An actuation mechanism then enforces these budgets.

The most common method of enforcing power budgets is through control loops that
sense actual power draw and modulate processor frequency and voltage to remain within
budget. Commercial systems from IBM [86] and HP [53] can enforce budgets to sub-watt
granularities at milli-second timescales. Researchers have extended these control mech-
anisms to enforce caps over multi-server chassis, larger ensembles, and entire clusters
[91, 60, 117, 38], examine optimal power allocation among heterogeneous servers [39]

116

PDU

A

PDU

B

PDU

C

PDU

D E

Base Load
1.0

Reserve
Capacity

0.5

PDU PDU

A

PDU

B

PDU

C D

Wrapped Topology Shuffled Topology

½B

½A

½C

½B

½E

½D
½C

½D

Base Load
1.0

Reserve
Capacity

0.33
¼A

¼B

¼C

¼D

¼C

¼D

¼A

¼B

¼C

¼D

1/12

ea.

1/12

ea.

1/12

ea.
¼A

¼B

Figure B.3: Reduced reserve capacity under shuffled topologies (4 PDUs, fully-
connected topology).

and identify the control stability challenges when capping at multiple levels of the power
distribution hierarchy [89, 118]. Others have examined extending power management to
virtualized environments [75]. Soft fuses [47] apply the notion of power budgets beyond
the individual server and enforce sustained power budgets, which allow for transient over-
loads that the power infrastructure can support. Finally, prior work considers alternative
mechanisms for enforcing caps, such as modulating between active and sleep states [40].

Like prior work, Power Routing relies on a power capping mechanism as a safety net
to ensure extended overloads can not occur. However, Power Routing is agnostic to how
budgets are enforced. For simplicity, we assume capping based on dynamic frequency and
voltage scaling, the dominant approach.

Though rare, peak utilization spikes do occur in some facilities. In particular, if a fa-
cility runs a single distributed workload balanced over all servers (e.g., as in a web search
cluster), then the utilization of all servers will rise and fall together [36]. No scheme that
over-subscribes the physical infrastructure can avoid performance throttling for such sys-
tems. The business decision of whether throttling is acceptable in these rare circumstances
is beyond the scope of this study; however, for any given physical infrastructure budget,
Power Routing reduces performance throttling relative to existing capping schemes, by
shifting loads among PDUs to locate and exploit spare capacity.

117

PDU

PDU

PDU

(a) Wrapped (conventional)

PDU

PDU

PDU

PDU

(b) Fully-connected

PDU

PDU

PDU

PDU

PDU

(c) Serpentine

PDU

PDU

PDU

PDU PDU PDU

(d) X-Y

Figure B.4: Shuffled power distribution topologies.

B.3 Power Routing.

Power Routing relies on two central concepts. First, it exploits shuffled topologies for
power distribution to increase the connectivity between servers and diverse PDUs. Shuffled
topologies spread responsibility to sustain the load on a failing PDU, reducing the required
reserve capacity per PDU. Second, Power Routing relies on a scheduling algorithm to as-
sign servers’ load across redundant distribution paths while balancing loads over PDUs
and AC phases. When loads are balanced, the provisioned capacity of major power infras-
tructure components (PDUs, UPSs, generators, and utility feeds) can be reduced, saving
capital costs. We first detail the design and advantages of shuffled topologies, and then
discuss Power Routing.

B.3.1 Shuffled Topologies.

In high-availability data centers, servers are connected to two PDUs to ensure uninter-
rupted operation in the event of a PDU fault. A naive (but not unusual) connection topology
provisions paired PDUs for each cluster of machines. Under this data center design, each
PDU must be sized to support the full worst-case load of the entire cluster; hence, the
power infrastructure is 50% utilized in the best case. As described in Section B.2, the more

118

sophisticated “wrapped” topology shown in Figure B.2 splits a failed PDU’s load over two
neighbors, allowing each PDU to be sized to support only 150% of its nominal primary
load.

By spreading the responsibility for failover further, to additional PDUs, the spare ca-
pacity required of each PDU can be reduced—the more PDUs that cooperate to cover the
load of a failed PDU, the less reserve capacity is required in the data center as a whole.
In effect, the reserve capacity in each PDU protects multiple loads (which is acceptable
provided there is only a single failure).

Figure B.3 illustrates the differing reserve capacity requirements of the wrapped topol-
ogy and a shuffled topology where responsibility for reserve capacity is spread over three
PDUs. The required level of reserve capacity at each PDU is approximately X/N, where
X represents the cluster power demand, and N the number of PDUs cooperating to provide
reserve capacity. (Actual reserve requirements may vary depending on the instantaneous
load on each phase).

The savings from shuffled topologies do not require any intelligent switching capability;
rather, they require only increased diversity in the distinct combinations of primary and
secondary power feeds for each server (ideally covering all combinations equally).

The layout of PDUs and power busses must be carefully considered to yield feasible
shuffled wiring topologies. Our distribution strategies rely on overhead power busses [94]
rather than conventional under-floor conduits to each rack. The power busses make it easier
(and less costly) to connect many, distant racks to a PDU. Power from each nearby bus is
routed to a panel at the top of each rack, and these in turn connect to vertical whips (i.e.,
outlet strips) that supply power to individual servers. The whips provide outlets in pairs
(or a single outlet with an internal transfer switch) to make it easy to connect servers while
assuring an appropriate mix of distinct primary and secondary power feed combinations.

Though overhead power busses are expensive, they still account for a small fraction of
the cost of large-scale data center power infrastructure. Precise quantification of wiring
costs is difficult without detailed facility-specific architecture and engineering. We neglect
differences in wiring costs when estimating data center infrastructure costs, and instead
examine the (far more significant) impact that topologies have on the capacity requirements
of the high-voltage infrastructure. The primary difficulty of complex wiring topologies
lies in engineering the facility-specific geometry of the large (and dangerous) high-current
overhead power rails; a challenge that we believe is surmountable.

We propose three shuffled power distribution topologies that improve on the wrapped
topology of current high-availability data centers. The fully connected topology collocates
all PDUs in one corner of the room, and routes power from all PDUs throughout the entire

119

facility. This topology is not scalable. However, we study it as it represents an upper bound
on the benefits of shuffled topologies. We further propose two practical topologies. The
X-Y topology divides the data center into a checkerboard pattern of power zones, routing
power both north-south and east-west across the zones. The serpentine topology extends
the concept of the wrapped topology (see Figure B.2) to create overlap among neighboring
PDUs separated by more than one row.

Each distribution topology constrains the set of power feed combinations available in
each rack in a different manner. These constraints in turn affect the set of choices available
to the Power Routing scheduler, thereby impacting its effectiveness.

Wrapped Topology. Figure 2.4(a) illustrates the wrapped topology, which is our term
for the conventional high-availability data center topology (also seen in Figure B.2). This
topology provides limited connectivity to PDUs, and is insufficient for Power Routing.

Fully-connected Topology. Figure 2.4(b) illustrates the fully-connected topology. Un-
der this topology, power is routed from every PDU to every rack. As noted above, the fully-
connected topology does not scale and is impractical in all but the smallest data centers.
However, one scalable alternative is to organize the data center as disconnected islands of
fully-connected PDUs and rack clusters. Such a topology drastically limits Power Routing
flexibility, but can scale to arbitrary-sized facilities.

Serpentine Topology. Figure 2.4(c) illustrates the serpentine topology. Under this
topology, PDUs are located at one end of the data centers’ rows, as in the wrapped topology
shown in Figure B.2. However, whereas in the wrapped topology a power bus runs between
two equipment rows from the PDU to the end of the facility, in the serpentine topology, the
power bus then bends back, returning along a second row. This snaking bus pattern is
repeated for each PDU, such that two power busses run in each aisle and four busses are
adjacent to each equipment row. The pattern scales to larger facilities by adding PDUs
and replicating the pattern over additional rows. It scales to higher PDU connectivity by
extending the serpentine pattern with an additional turn.

X-Y Topology. Figure 2.4(d) illustrates the X-Y topology. Under this topology, the
data center is divided into square zones in a checkerboard pattern. PDUs are located along
the north and west walls of the data center. Power busses from each PDU route either
north-south or east-west along the centerline of a row (column) of zones. Hence, two
power busses cross in each zone. These two busses are connected to each rack in the zone.
This topology scales to larger facilities in a straight-forward manner, by adding zones to
the “checkerboard.” It scales to greater connectivity by routing power busses over the zones
in pairs (or larger tuples).

120

B.3.2 Power Routing.

Power Routing leverages shuffled topologies to achieve further capital cost savings by
under-provisioning PDUs relative to worst-case demand. The degree of under-provisioning
is a business decision made at design time (or when deploying additional systems) based
on the probability of utilization spikes and the cost of performance throttling (i.e., the
risk of failing to meet a service-level agreement). Power Routing shifts spare capacity
to cover local power demand spikes by controlling the assignment of each server to its
primary or secondary feed. The less correlation there is among spikes, the more effective
Power Routing will be at covering those spikes by shifting loads rather than throttling
performance. Power Routing relies on a capping mechanism to prevent overloads when
spikes cannot be covered.

Power Routing employs a centralized control mechanism to assign each server to its
primary or secondary power feed and set power budgets for each server to assure PDU
overloads do not occur. Each time a server’s power draw increases to its pre-determined
cap (implying that performance throttling will be engaged), the server signals the Power
Routing controller to request a higher cap. If no slack is available on the server’s currently
active power feed, the controller invokes a scheduling algorithm (detailed in Section B.4)
to determine new power budgets and power feed assignments for all servers to try to locate
slack elsewhere in the power distribution system. The controller will reduce budgets for
servers whose utilization has decreased and may reassign servers between their primary and
secondary feeds to create the necessary slack. If no solution can be found (e.g., because
aggregate power demand exceeds the facilities’ total provisioning), the existing power cap
remains in place and the server’s performance is throttled.

In addition to trying to satisfy each server’s desired power budget, the Power Routing
scheduler also maintains sufficient reserve capacity at each PDU to ensure continued op-
eration (under the currently-established power budgets) even if any single PDU fails. A
PDU’s required reserve capacity is given by the largest aggregate load served by another
PDU for which it acts as the secondary (inactive) feed.

Finally, the Power Routing scheduler seeks to balance load across the three AC phases
of each PDU. As noted in Section B.2, phase imbalance can lead to numerous electrical
problems that impact safety and availability. The scheduler constrains the current on each
of the three phases to remain within a 20% margin.

The key novelty of Power Routing lies in the assignment of servers to power feeds;
sophisticated budgeting mechanisms (e.g., which assign asymmetric budgets to achieve
higher-level QoS goals) have been extensively studied [91, 60, 117, 38, 89, 118, 75, 39].
Hence, in this paper, we focus our design and evaluation on the power feed scheduling

121

mechanism and do not explore QoS-aware capping in detail.

B.3.3 Implementation.

Power Routing comprises four elements: (1) an actuation mechanism to switch servers
between their two redundant power feeds; (2) the centralized controller that executes the
power feed scheduling algorithm; (3) a communications mechanism for the controller to
direct switching activity and assign budgets; and (4) a power distribution topology that
provisions primary and secondary power feeds in varying combinations to the receptacles
in each rack.

Switching power feeds. The power feed switching mechanism differs for single- and
dual-corded servers. In a single-corded server, an external transfer switch attaches the
server to its primary or secondary power feed. In the event of a power interruption on the
active feed, the transfer switch seamlessly switches the load to the alternative feed (a local,
automatic action). The scheduler assures that all PDUs have sufficient reserve capacity
to supply all loads that may switch to them in the event of any single PDU failure. To
support phase balancing, the transfer switch must be capable of switching loads across
out-of-phase AC sources fast enough to appear uninterrupted to computer power supplies.
External transfer switches of this sort are in wide-spread use today, and retail for several
hundred dollars. In contrast to existing transfer switches, which typically switch entire
circuits (several servers), Power Routing requires switching at the granularity of individual
receptacles, implying somewhat higher cost. For dual-corded servers, switching does not
require any additional hardware, as the switching can be accomplished through the systems’
internal power supplies.

Control unit. The Power Routing control unit is a microprocessor that orchestrates the
power provisioning process. Each time scheduling is invoked, the control unit performs
four steps: (1) it determines the desired power budget for each server; (2) it schedules
each server to its primary or secondary power feed; (3) it assigns a power cap to each
server (which may be above the request, allowing headroom for utilization increase, or
below, implying performance throttling); and (4) it communicates the power cap and power
feed assignments to all devices. The control unit can be physically located within the
existing intelligence units in the power delivery infrastructure (most devices already contain
sophisticated, network-attached intelligence units). Like other power system components,
the control unit must include mechanisms for redundancy and fault tolerance. Details of
the control unit’s hardware/software fault tolerance are beyond the scope of this study; the
challenges here mirror those of the existing intelligence units in the power infrastructure.

The mechanisms used in each of the control unit’s four steps are orthogonal. As this

122

study is focused on the novel scheduling aspect of Power Routing (step 2), we explore only
relatively simplistic policies for the other steps. We determine each server’s desired power
budget based in its peak demand in the preceding minute. Our power capping mechanism
assigns power budgets that throttle servers to minimize the total throttled power.

Communication. Communication between the control unit and individual servers/-
transfer switches is best accomplished over the data center’s existing network infrastruc-
ture, for example, using the Simple Network Management Protocol (SNMP) or BACnet.
The vast majority of power provisioning infrastructure already supports these interfaces.
Instantaneous server power draws and power budgets can also typically be accessed through
SNMP communication with the server’s Integrated Lights Out (ILO) interface.

Handling uncontrollable equipment. Data centers contain myriad equipment that
draw power, but cannot be controlled by Power Routing (e.g., network switches, moni-
tors). The scheduler must account for the worst-case power draw of such equipment when
calculating available capacity on each PDU and phase.

B.3.4 Operating Principle.

Power Routing relies on the observation that individual PDUs are unlikely to reach
peak load simultaneously. The power distribution system as a whole operates in one of
three regimes. The first, most common case is that the load on all PDUs is below their ca-
pacity. In this case, the power infrastructure is over-provisioned, power capping is unneces-
sary, and the entire data center operates at full performance. At the opposite extreme, when
servers demand more power than is available, the power infrastructure is under-provisioned,
all PDUs will be fully loaded, and power capping (e.g., via performance throttling) is nec-
essary. In either of these regimes, Power Routing has no impact; the power infrastructure

Figure B.5: Shuffled Topologies: 6 PDUs, fully-connected

123

is simply under- (over-) provisioned relative to the server demand.
Power Routing is effective in the intermediate regime where some PDUs are overloaded

while others have spare capacity. In current data centers, this situation will result in perfor-
mance throttling that Power Routing can avoid.

To illustrate how Power Routing affects performance throttling, we explore its perfor-
mance envelope near the operating region where aggregate power infrastructure capacity
precisely meets demand. Figure B.5 shows the relationship between installed PDU capac-
ity and performance throttling (in terms of the fraction of offered load that is met) with
and without Power Routing (6 PDUs, fully-connected topology) and contrast these against
an ideal, perfectly-balanced power distribution infrastructure. The ideal infrastructure can
route power from any PDU to any server and can split load fractionally over multiple PDUs.
(We detail the methodology used to evaluate Power Routing and produce these results in
Section B.5.1 below.)

The graph provides two insights into the impact of Power Routing. First, we can use it
to determine how much more performance Power Routing achieves for a given infrastruc-
ture investment relative to conventional and ideal designs. This result can be obtained by
comparing vertically across the three lines for a selected PDU capacity. As can be seen,
Power Routing closely tracks the performance of the ideal power delivery infrastructure, re-
covering several percent of lost performance relative to a fully-connected topology without
power routing.

The graph can also be used to determine the capital infrastructure savings that Power
Routing enables while avoiding performance throttling altogether. Performance throttling
becomes necessary at the PDU capacity where each of the three power distributions dips
below 1.0. The horizontal distance between these intercepts is the capacity savings, and is
labeled “Power Routing Capacity Reduction” in the figure. In the case shown here, Power
Routing avoids throttling at a capacity of 255 kW, while 294 kW of capacity are needed
without Power Routing. Power Routing avoids throttling, allowing maximum performance
with less investment in power infrastructure.

B.4 Scheduling

Power Routing relies on a centralized scheduling algorithm to assign power to servers.
Each time a server requests additional power (as a result of exhausting its power cap) the
scheduler checks if the server’s current active power feed has any remaining capacity, grant-
ing it if possible. If no slack exists, the scheduler attempts to create a new allocation sched-
ule for the entire facility that will eliminate or minimize the need for capping. In addition

124

to considering the actual desired power budget of each server, the scheduler must also pro-
vision sufficient reserve capacity on each feed such that the feed can sustain its share of
load if any PDU fails. Finally, we constrain the scheduler to allow only phase-balanced
assignments where the load on the three phases of any PDU differ by no more than 20% of
the per-phase capacity.

The scheduling process comprises three steps: gathering the desired budget for each
server, solving for an assignment of servers to their primary or secondary feeds, and then,
if necessary, reducing server’s budgets to meet the capacity constraints on each feed.

Whereas sophisticated methods for predicting power budgets are possible [26], we use
a simple policy of assigning each server a budget based on its average power demand in
the preceding minute. More sophisticated mechanisms are orthogonal to the scheduling
problem itself.

Solving the power feed assignment problem optimally, even without redundancy, is an
NP-Complete problem. It is easy to see that power scheduling ∈ NP; a nondeterministic
algorithm can enumerate a set of assignments from servers to PDUs and then check in
polynomial time that each PDU is within its power bounds. To show that power scheduling
is NP-Complete we transform PARTITION to it [42]. For a given instance of PARTITION
of finite set A and a size s(a) ∈ Z+ for each a ∈ A: we would like to determine if there is a
subset A′ ∈ A such that the

∑
a∈A′ s(a) =

∑
a∈A−A′ s(a). Consider A as the set of servers, with

s(a) corresponding to server power draw. Additionally consider two PDUs each of power
capacity

∑
a s(a)/2. These two problems are equivalent. Thus, a polynomial time solution

to power scheduling will yield a polynomial time solution to PARTITION (implying power
scheduling is NP-Complete).

In data centers of even modest size, brute force search for an optimal power feed as-
signment is infeasible. Hence, we resort to a heuristic approach to generate an approximate
solution.

We first optimally solve a power feed assignment problem allowing servers to be as-
signed fractionally across feeds using linear programming. This linear program can be
solved in polynomial time using standard methods [31]. From the exact fractional solution,
we then construct an approximate solution to the original problem (where entire servers
must be assigned a power feed). Finally, we check if the resulting assignments are below
the capacity of each power feed. If any feed’s capacity is violated, we invoke a second
optimization step to choose power caps for all servers.

Determining optimal caps is non-trivial because of the interaction between a server’s
power allocation on its primary feed, and the reserve capacity that allocation implies on
its secondary feed. We employ a second linear programming step to determine a capping

125

strategy that maximizes the amount of power allocated to servers (as opposed to reserve
capacity).

Problem formulation. We formulate the linear program based on the power distribu-
tion topology (i.e., the static assignment of primary and secondary feeds to each server),
the desired server power budgets, and the power feed capacities. For each pair of power
feeds we calculate Poweri, j, the sum of power draws for all servers connected to feeds i

and j. (Our algorithm operates at the granularity of individual phases of AC power from
each PDU, as each phase has limited ampacity). Poweri, j is 0 if no server shares feeds i and
j (e.g., if the two feeds are different phases from the same PDU or no server shares those
PDUs). Next, for each pair of feeds, we define variables Feedi, ji and Feedi, j j to account
for the server power from Poweri, j routed to feeds i and j, respectively. Finally, a single
global variable, S lack, represents the maximum unallocated power on any phase after all
assignments are made. With these definitions, the linear program maximizes S lack subject
to the following constraints:
∀i, j , i, i and j are any phases on different PDUs:

Feedi, ji + Feedi, j j = Poweri, j (B.1)∑
k,i

Feedi,ki +
∑

lin j′sPDU

Feedi,ll + S lack ≤ Capacity(i) (B.2)

And constraints for distinct phases i and j within a single PDU:

|
∑
k,i

Feedi,ki −
∑
k, j

Feed j,k j| ≤ .2 ×Capacity(i, j) (B.3)

With the following bounds:

−∞ ≤ S lack ≤ ∞ (B.4)

∀i, j , i : Feedi, ji, Feedi, j j ≥ 0 (B.5)

Equation B.1 ensures that power from servers connected to feeds i and j is assigned to
one of those two feeds. Equation B.2 restricts the sum of all power assigned to a particular
feed i, plus the reserve capacity required on i should feeds on j’s PDU fail, plus the excess
slack to be less than the capacity of feed i. Finally, equation B.3 ensures that phases are
balanced across each PDU. A negative S lack indicates that more power is requested by
servers than is available (implying that there is no solution to the original, discrete schedul-
ing problem without power capping).

We use the fractional power assignments from the linear program to schedule servers
to feeds. For a given set of servers, s, connected to both feed i and feed j, the fractional
solution will indicate that Feedi, ji watts be assigned to i and Feedi, j j to j. The scheduler

126

must create a discrete assignment of servers to feeds to approximate the desired fractional
assignments as closely as possible, which is itself a bin packing problem. To solve this
sub-problem efficiently, the scheduler sorts the set s descending by power and repeatedly
assign the largest unassigned server to i or j, whichever has had less power assigned to it
thus far (or whichever has had less power relative to its capacity if the capacities differ).

If a server cannot be assigned to either feed without violating the feed’s capacity con-
straint, then throttling may be necessary to achieve a valid schedule. The server is marked
as “pending” and left temporarily unassigned. By the nature of the fractional solution, at
most one server in the set can remain pending. This server must eventually be assigned to
one of the two feeds; the difference between this discrete assignment and the optimal frac-
tional assignment is the source of error in our heuristic. By assigning the largest servers
first we attempt to minimize this error. Pending servers will be assigned to the feed with
the most remaining capacity once all other servers have been assigned.

The above optimization algorithm assumes that each pair of power feeds shares several
servers in common, and that the power drawn by each server is much less than the capacity
of the feed. We believe that plausible power distribution topologies fit this restriction.

Following server assignment, if no feed capacity constraints have been violated, the
solution is complete and all servers are assigned caps at their requested budgets. If any
slack remains on a feed, it can be granted upon a future request without re-invoking the
scheduling mechanism, avoiding unnecessary switching.

If any capacity constraints have been violated, a new linear programming problem is
formulated to select power caps that maximize the amount of power allocated to servers
(as opposed to reserve capacity for fail-over). We scale back each feed such that no PDU
supplies more power than its capacity, even in the event that another PDU fails. The ob-
jective function maximizes the sum of the server budgets. We assume that servers can be
throttled to any frequency from idle to peak utilization and that the relationship and limits
of frequency and power scaling are known a priori. Note, however, that this formulation
ignores heterogeneity in power efficiency, performance, or priority across servers; it con-
siders only the redundancy and topology constraints of the power distribution network. An
analysis of more sophisticated mechanisms for choosing how to cap servers that factors in
these considerations is outside the scope of this paper.

B.5 Evaluation

Our evaluation demonstrates the effectiveness of shuffled topologies and Power Rout-
ing at reducing the required capital investment in power infrastructure to meet a high-

127

availability data center’s reliability and power needs. First, we demonstrate how shuf-
fled topologies reduce the reserve capacity required to provide single-PDU-fault tolerance.
Then, we examine the effectiveness of Power Routing at further reducing provisioning re-
quirements as a function of topology, number of PDUs, and workload. Finally, we show
how Power Routing will increase in effectiveness as server power management becomes
more sophisticated and the gap between servers’ idle and peak power demands grows.

B.5.1 Methodology

We evaluate Power Routing through analysis of utilization traces from a large collection
of production systems. We simulate Power Routing’s scheduling algorithm and impact on
performance throttling and capital cost.

Traces. We collect utilization traces from three production facilities: (1) EECS servers,
a small cluster of departmental servers (web, email, login, etc.) operated by the Michigan
EECS IT staff; (2) Arbor Lakes Data Center, a 1.5MW facility supporting the clinical op-
erations of the University of Michigan Medical Center; and (3) Michigan Academic Com-

puter Center (MACC), a 4MW high-performance computing facility operated jointly by
the University of Michigan, Internet2, and Merit that runs primarily batch processing jobs.
These sources provide a diverse mix of real-world utilization behavior. Each of the traces
ranges in length from three to forty days sampling server utilization once per minute. We
use these traces to construct a hypothetical high-availability hosting facility comprising 400
medical center servers, 300 high performance computing nodes, and a 300-node web search
cluster. The simulated medical center and HPC cluster nodes each replay a trace from a
specific machine in the corresponding real-world facility. The medical center systems tend
to be lightly loaded, with one daily utilization spike (which we believe to be daily backup
processing). The HPC systems are heavily loaded. As we do not have access to an actual
300-node web search cluster, we construct a cluster by replicating the utilization trace of a
single production web server over 300 machines. The key property of this synthetic search
cluster is that the utilization on individual machines rises and falls together in response to
user traffic, mimicking the behavior reported for actual search clusters [36]. We analyze
traces for a 24-hour period. Our synthetic cluster sees a time-average power draw of 180.5
kW, with a maximum of 208.7 kW and standard deviation of 9 kW.

Power. We convert utilization traces to power budget requests using published SPECPower
results [105]. Most of our traces have been collected from systems where no SPECPower
result has been published; for these, we attempt to find the closest match based on vendor
descriptions and the number and model of CPUs and installed memory. As SPECPower
only provides power at intervals of 10% utilization, we use linear interpolation to approxi-

128

mate power draw in between these points.
Prior work [36, 91] has established that minute-grained CPU utilization traces can pre-

dict server-grain power draw to within a few percent. Because of the scope of our data col-
lection efforts, finer-grained data collection is impractical. Our estimates of savings from
Power Routing are conservative; finer-grained scheduling might allow tighter tracking of
instantaneous demand.

To test our simulation approach, we have validated simulation-derived power values
against measurements of individual servers in our lab. Unfortunately, the utilization and
power traces available from our production facilities are not exhaustive, which precludes a
validation experiment where we compare simulation-derived results to measurements for
an entire data center.

Generating data center topologies. For each power distribution topology described in
Section B.3.1, we design a layout of our hypothetical facility to mimic the typical practices
seen in the actual facilities. We design layouts according to the policies the Michigan
Medical Center IT staff use to manage their Arbor Lakes facility. Each layout determines
an assignment of physical connections from PDUs to servers. Servers that execute similar
applications are collocated in the same rack, and, hence, in conventional power delivery
topologies, are connected to the same PDU. Where available, we use information about
the actual placement of servers in racks to guide our placement. Within a rack, servers are
assigned across PDU phases in a round-robin fashion. We attempt to balance racks across
PDUs and servers within racks across AC phases based on the corresponding system’s
power draw at 100% utilization. No server is connected to two phases of the same PDU, as
this arrangement does not protect against PDU failure. We use six PDUs in all topologies
unless otherwise noted.

Metrics. We evaluate Power Routing based on its impact on server throttling activity
and data center capital costs. As the effect of voltage and frequency scaling on performance
varies by application, we instead use the fraction of requested server power budget that was
not satisfied as a measure of the performance of capping techniques. Under this metric,
the “cost” of failing to supply a watt of requested power is uniform over all servers, obvi-
ating the need to evaluate complex performance-aware throttling mechanisms (which are
orthogonal to Power Routing). Our primary evaluation metric is the minimum total power
delivery capacity required to assure zero performance throttling, as this best illustrates the
advantage of Power Routing over conventional worst-case provisioning.

129

400

450

)

Theoretical lower bound

(with redundancy)

A t l k IT

100

150

200

250

300

350

400

ir
e
d

 P
o
w
e
r
C
a
p
a
ci
ty

 (
k
W Actual peak IT power

(no redundancy)

0

50

100

R
e
q
u

Figure B.6: Minimum capacity for redundant operation under shuffled topologies (no
Power Routing).

B.5.2 Impact of Shuffled Topologies

We first compare the impact of shuffled topologies on required power infrastructure
capacity. Shuffled topologies reduce the reserve capacity that each PDU must sustain to
provide fault tolerance against single-PDU failure. We examine the advantage of several
topologies relative to the baseline high-availability “wrapped” data center topology, which
requires each PDU to be over-provisioned by 50% of its nominal load. We report the total
power capacity required to prevent throttling for our traces. We assume that each PDU
must maintain sufficient reserve capacity at all times to precisely support the time-varying
load that might fail over to it.

Differences in the connectivity of the various topologies result in differing reserve ca-
pacity requirements. For an ideal power distribution infrastructure (one in which load is
perfectly balanced across all PDUs), each PDU must reserve 1

c+1 to support its share of a
failing PDU’s load, where c is the fail-over connectivity of the PDU. Fail-over connectivity
counts the number of distinct neighbors to which a PDU’s servers will switch in the event
of failure. It is two for the wrapped topology, four for serpentine, and varies as a func-
tion of the number of PDUs for X-Y and fully-connected topologies. As the connectivity
increases, reserve requirements decrease, but with diminishing returns.

To quantify the impact of shuffled topologies, we design an experiment where we stat-
ically assign each server the best possible primary and secondary power feed under the
constraints of the topology. We balance the average power draw on each PDU using each
server’s average power requirement over the course of the trace. (We assume this average

130

to be known a priori for each server.)
In Figure B.6 each bar indicates the required power capacity for each topology to meet

its load and reserve requirements in all time epochs (i.e., no performance throttling or loss
of redundancy) for a 6 PDU data center. For 6 PDUs, the fail-over connectivities are 2, 3, 4,
and 5 for the wrapped, X-Y, serpentine, and fully-connected topologies, respectively. The
dashed line on each bar indicates the topology’s theoretical lower-bound capacity require-
ment to maintain redundancy if server power draw could be split dynamically and fraction-
ally across primary and secondary PDUs (which Power Routing approximates). The gap
between the top of each bar and the dashed line arises because of the time-varying load on
each server, which creates imbalance across PDUs and forces over-provisioning. The solid
line crossing all bars indicates the data center’s peak power draw, ignoring redundancy
requirements (i.e., the actual peak power supplied to IT equipment).

Topologies with higher connectivity require less reserve capacity, though the savings
taper off rapidly. The X-Y and serpentine topologies yield impressive savings and are viable
and scalable from an implementation perspective. Nevertheless, there is a significant gap
between the theoretical (dashed) and practical (bar) effectiveness of shuffled topologies. As
we show next, Power Routing closes this gap.

B.5.3 Impact of Power Routing

Power Routing effectiveness. To fully explore Power Routing effectiveness, we re-
peated the analysis above for all four topologies (wrapped, X-Y, serpentine, and fully-
connected) and contrast the capacity required to avoid throttling for each. For comparison,
we also reproduce the capacity requirements without Power Routing (from Figure B.6). We
show results in Figure B.7. Again, a dashed line represents the theoretical minimum ca-
pacity necessary to maintain single-PDU fault redundancy for our workload and the given
topology; the solid line marks the actual peak IT power draw. Because the overall load vari-
ation in our facilities is relatively small (HPC workloads remain pegged at near-peak uti-
lization; the medical facility is over-provisioned to avoid overloading), we expect a limited
opportunity for Power Routing. Nonetheless, we reduce required power delivery capacity
for all topologies (except wrapped) by an average of 12%.

From the figure, we see that the sparsely-connected wrapped topology is too constrained
for Power Routing to be effective; Power Routing requires 20% more than the theoretical
lower bound infrastructure under this topology. The three shuffled topologies, however,
nearly reach their theoretical potential, even with a heuristic scheduling algorithm. Un-
der the fully-connected topology, Power Routing comes within 2% of the bound, reducing
power infrastructure requirements by over 39kW (13%) relative to the same topology with-

131

350

400

450

y
 (
k
W
)

Without PR

Power Routing

50

100

150

200

250

300

R
e
q
u
ir
e
d

 P
o
w
e
r
C
a
p
a
ci
ty

0

50R

Figure B.7: Power Routing infrastructure savings as a function of topology.

out Power Routing and more than 35% relative to the baseline wrapped topology without
Power Routing. Our result indicates that more-connected topologies offer an advantage
to Power Routing by providing more freedom to route power. However, the the more-
practical topologies yield similar infrastructure savings; the serpentine topology achieves
32% savings relative to the baseline.

Sensitivity to number of PDUs. The number of PDUs affects Power Routing effec-
tiveness, particularly for the fully-connected topology. Figure B.8 shows this sensitivity
for four to eight PDUs. For a fixed total power demand, as the number of PDUs increases,
each individual PDU powers fewer servers and requires less capacity. With fewer servers,
the variance in power demands seen by each PDU grows (i.e., statistical averaging over
the servers is lessened), and it becomes more likely that an individual PDU will overload.
Without Power Routing, this effect dominates, and we see an increase in required infras-
tructure capacity as the number of PDUs increases beyond 6. At the same time, increasing
the number of PDUs offers greater connectivity for certain topologies, which in turn lowers
the required slack that PDUs must reserve and offers Power Routing more choices as to
where to route power. Hence, Power Routing is better able to track the theoretical bound
and the required power capacity decreases with more PDUs.

B.5.4 Power Routing For Low Variance Workloads

The mixed data center trace we study is representative of the diversity typical in most
data centers. Nevertheless, some data centers run only a single workload on a homogeneous
cluster. Power Routing exploits diversity in utilization patterns to shift power delivery
slack; hence, its effectiveness is lower in homogeneous clusters.

132

300

350

k
W
)

50

100

150

200

250

300

q
u
ir
e
d

 P
o
w
e
r
C
a
p
a
ci
ty

 (
k

0

5 6 7 8 5 6 7 8

Without Power

Routing

Power Routing

R
e

Number of PDUs

Figure B.8: Sensitivity of the fully-connected topology to number of PDUs.

To explore these effects, we construct Power Routing test cases for 1000-server syn-
thetic clusters where each server runs the same application. We do not study the web
search application in isolation; in this application, the utilization on all servers rise and
fall together, hence, the load on all PDUs is inherently balanced and there is no opportu-
nity (nor need) for Power Routing. Instead, we evaluate Power Routing using the medical
center traces and high performance computing traces, shown in Figures 2.9(a) and 2.9(b),
respectively.

The high performance computing cluster consumes a time-average power of 114.9 kW,
a maximum of 116.4 kW, and a standard deviation of 0.8 kW while the medical center
computing traces consume a time-average power of 254.6 kW, with maximum 263.6 kW
and standard deviation 2.4 kW. In both cases, the variability is substantially lower than in
the heterogeneous data center test case.

Although Power Routing comes close to achieving the theoretical lower bound infras-
tructure requirement in each case, we see that there is only limited room to improve upon
the non-Power Routing case. Even the baseline wrapped topology requires infrastructure
that exceeds the theoretical bound by only 7.5% for the high performance computing clus-
ter and 5% for the medical data center. We conclude that Power Routing offers substantial
improvement only in heterogeneous clusters and applications that see power imbalance, a
common case in many facilities.

133

450 Without PR

150

200

250

300

350

400

d
 P
o
w
e
r
C
a
p
a
ic
ty

 (
k
W
) Power Routing

0

50

100

R
e
q
u
ir
e
d

(a) Arbor Lakes (clinical operations)

0

20

40

60

80

100

120

140

160

180

200

R
e
q
u
ir
e
d

 P
o
w
e
r
C
a
p
a
ci
ty

 (
k
W
)

Without PR

Power Routing

(b) MACC (high-performance computing)

Figure B.9: Power Routing effectiveness in homogeneous data centers.

B.5.5 Power Routing With Energy-Proportional Servers

As the gap between servers’ peak and idle power demands grows (e.g., with the ad-
vent of energy-proportional computers [7]), we expect the potential for Power Routing to
grow. The increase in power variance leads to a greater imbalance in power across PDUs,
increasing the importance of correcting this imbalance with Power Routing.

To evaluate this future opportunity, we perform an experiment where we assume all
servers are energy-proportional—that is, servers whose power draw varies linearly with
utilization—with an idle power of just 10% of peak. This experiment models servers
equipped with PowerNap [69], which allows servers to sleep during the millisecond-scale
idle periods between task arrivals. We repeat the experiment shown in Figure B.7 under

134

300

350

400

450

a
ci
ty

 (
k
W
)

Without PR

Power Routing

0

50

100

150

200

250

R
e
q
u
ir
e
d

 P
o
w
e
r
C
a
p
a

Figure B.10: Impact with energy-proportional servers.

this revised server power model. The results are shown in Figure B.10. Under these as-
sumptions, our traces exhibit a time-average power of 99.8 kW, maximum of 153.9 kW,
and standard deviation of 18.9 kW.

Power Routing is substantially more effective when applied to energy-proportional
servers. However, the limitations of the wrapped topology are even more pronounced in this
case, and Power Routing provides little improvement. Under the more-connected topolo-
gies, Power Routing is highly effective, yielding reductions of 22%, 29%, and 28% for the
X-Y, serpentine, and fully-connected topologies, respectively, relative to their counterparts
without Power Routing. As before, the more-connected topologies track their theoreti-
cal lower bounds more tightly. Relative to the baseline wrapped topology, a serpentine
topology with Power Routing yields a 47% reduction in required physical infrastructure
capacity. It is likely that as computers become more energy-proportional, power infrastruc-
ture utilization will continue to decline due to power imbalances. Power Routing reclaims
much of this wasted capacity.

B.5.6 Limitations

Our evaluation considers workloads in which any server may be throttled, and our
mechanisms make no effort to select servers for throttling based on any factors except
maximizing the utilization of the power delivery infrastructure. In some data centers, it
may be unacceptable to throttle performance. These data centers cannot gain a capital cost
savings from under-provisioning; their power infrastructure must be provisioned for worst
case load. Nonetheless, these facilities can benefit from intermixed topologies (to reduce
reserve capacity for fault tolerance) and from the phase-balancing possible with Power

135

Routing.

B.6 Conclusion

The capital cost of power delivery infrastructure is one of the largest components of
data center cost, rivaling energy costs over the life of the facility. In many data centers, ex-
pansion is limited because available power capacity is exhausted. To extract the most value
out of their infrastructure, data center operators over-subscribe the power delivery system.
As long as individual servers connected to the same PDU do not reach peak utilization
simultaneously, over-subscribing is effective in improving power infrastructure utilization.
However, coordinated utilization spikes do occur, particularly among collocated machines,
which can lead to substantial throttling even when the data center as a whole has spare
capacity.

In this paper, we introduced a pair of complementary mechanisms, shuffled power
distribution topologies and Power Routing, that reduce performance throttling and allow
cheaper capital infrastructure to achieve the same performance levels as current data center
designs. Shuffled topologies permute power feeds to create strongly-connected topologies
that reduce reserve capacity requirements by spreading responsibility for fault tolerance.
Power Routing schedules loads across redundant power delivery paths to shift power deliv-
ery slack to satisfy localized utilization spikes. Together, these mechanisms reduce capital
costs by 32% relative to a baseline high-availability design when provisioning for zero per-
formance throttling. Furthermore, with energy-proportional servers, the power capacity
reduction increases to 47%.

136

BIBLIOGRAPHY

137

BIBLIOGRAPHY

[1] Data, data everywhere. The Economist, 2010. Special Report: Managing Informa-
tion.

[2] Sarita V. Adve and Kourosh Gharachorloo. Shared memory consistency models: a
tutorial. IEEE Computer, 29(12):66–76, December 1996.

[3] Rakesh Agrawal and H. V. Jagadish. Recovery algorithms for database machines
with nonvolatile main memory. In Proceedings of the Sixth International Workshop
on Database Machines, pages 269–285, 1989.

[4] G. Alvarez, W. Burkhard, L. Stockmeyer, and F. Cristian. Declustered disk array
architectures with optimal and near-optimal parallelism. In Proceedings of the 33rd
Annual International Symposium on Computer Architecture (ISCA), 1998.

[5] Mary Baker, Satoshi Asami, Etienne Deprit, John Ouseterhout, and Margo Seltzer.
Non-volatile memory for fast, reliable file systems. In Proc. of the 5th International
Conf. on Architectural Support for Programming Languages and Operating Systems,
pages 10–22, 1992.

[6] Chuck Ballard, Dan Behman, Asko Huumonen, Kyosti Laiho, Jan Lindstrom, Marko
Milek, Michael Roche, John Seery, Katriina Vakkila, Jamie Watters, and An oni
Wolski. IBM solidDB: Delivering data with extreme speed. 2011.

[7] Luiz André Barroso and Urs Hölzle. The case for energy-proportional computing.
Computer, 40(12), 2007.

[8] Stephan Baumann, Giel de Nijs, Michael Strobel, and Kai-Uwe Sattler. Flashing
databases: expectations and limitations. In Proceedings of the Sixth International
Workshop on Data Management on New Hardware, 2010.

[9] Daniel Bausch, Ilia Petrov, and Alejandro Buchmann. Making cost-based query op-
timization asymmetry-aware. In Proceedings of the Eighth International Workshop
on Data Management on New Hardware, DaMoN ’12, pages 24–32, New York, NY,
USA, 2012. ACM.

[10] Dina Bitton, David J. Dewitt, and Carolyn Turbyfill. Benchmarking database sys-
tems - a systematic approach. In Proceedings of the Very Large Database Confer-
ence, 1983.

138

[11] Colin Blundell, Milo M.K. Martin, and Thomas F. Wenisch. Invisifence:
Performance-transparent memory ordering in conventional multiprocessors. In Pro-
ceedings of the 36th Annual International Symposium on Computer Architecture,
ISCA ’09, pages 233–244, New York, NY, USA, 2009. ACM.

[12] Simona Boboila and Peter Desnoyers. Performance models of flash-based solid-
state drives for real workloads. In Proceedings of the 2011 IEEE 27th Symposium
on Mass Storage Systems and Technologies, MSST ’11, pages 1–6, Washington, DC,
USA, 2011. IEEE Computer Society.

[13] Luc Bouganim, Bjrn r Jnsson, and Philippe Bonnet. uFLIP: understanding flash
IO patterns. In Fourth Biennial Conference on Innovative Data Systems Research,
2009.

[14] G. W. Burr, B. N. Kurdi, J. C. Scott, C. H. Lam, K. Gopalakrishnan, and R. S.
Shenoy. Overview of candidate device technologies for storage-class memory. IBM
J. of Research and Development, 52:449–464, 2008.

[15] Adrian M. Caulfield, Arup De, Joel Coburn, Todor I. Mollow, Rajesh K. Gupta,
and Steven Swanson. Moneta: A high-performance storage array architecture for
next-generation, non-volatile memories. In Proc. of the 43rd International Symp. on
Microarchitecture, pages 385–395, 2010.

[16] Adrian M. Caulfield, Todor I. Mollov, Louis Alex Eisner, Arup De, Joel Coburn,
and Steven Swanson. Providing safe, user space access to fast, solid state disks.
In Proc. of the 17th International Conf. on Architectural Support for Programming
Languages and Operating Systems, pages 387–400, 2012.

[17] Y. A. Çengel. Heat transfer: a practical approach. McGraw Hill Professional, 2
edition, 2003.

[18] CEC (California Energy Commission). The nonresidential alternative calculation
method (acm) approval manual for the compliance with california’s 2001 energy
efficiency standards, april 2001.

[19] Luis Ceze, James Tuck, Pablo Montesinos, and Josep Torrellas. Bulksc: Bulk en-
forcement of sequential consistency. In Proceedings of the 34th Annual International
Symposium on Computer Architecture, ISCA ’07, pages 278–289, New York, NY,
USA, 2007. ACM.

[20] Luis Ceze, James Tuck, Pablo Montesinos, and Josep Torrellas. Bulksc: Bulk en-
forcement of sequential consistency. In Proceedings of the 34th Annual International
Symposium on Computer Architecture, ISCA ’07, pages 278–289, New York, NY,
USA, 2007. ACM.

[21] Dhruva R. Chakrabarti and Hans-J. Boehm. Durability Semantics for Lock-based
Multithreaded Programs. In Proceedings of the 2013 USENIX Workshop on Hot
Topics in Parallelism (HotPar), June 2013.

139

[22] Jeffrey S. Chase, Darrell C. Anderson, Prachi N. Thakar, Amin M. Vahdat, and
Ronald P. Doyle. Managing energy and server resources in hosting centers. SIGOPS
Oper. Syst. Rev., 35(5), 2001.

[23] Feng Chen, David A. Koufaty, and Xiaodong Zhang. Understanding intrinsic char-
acteristics and system implications of flash memory based solid state drives. In Pro-
ceedings of the 11th International Joint Conference on Measurement and Modeling
of Computer Systems, 2009.

[24] Shimin Chen, Phillip B. Gibbons, and Suman Nath. Rethinking database algorithms
for phase change memory. In Proc. of the 5th Bienniel Conf. on Innovative Data
Systems Research, pages 21–31, 2011.

[25] Vijay Chidambaram, Thanumalayan Sankaranarayana Pillai, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. Optimistic crash consistency. In Pro-
ceedings of the 2013 Symposium on Operating System Principles, November 2013.

[26] Jeonghwan Choi, Sriram Govindan, Bhuvan Urgaonkar, and Anand Sivasubrama-
nium. Profiling, prediction, and capping of power consumption in consolidated en-
vironments. In MASCOTS, September 2008.

[27] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul, Chris-
tian Limpach, Ian Pratt, and Andrew Warfield. Live migration of virtual machines.
In Proceedings of the 2nd conference on Symposium on Networked Systems Design
& Implementation (NSDI), 2005.

[28] Joel Coburn, Trevor Bunker, Meir Schwarz, Rajesh Gupta, and Steven Swanson.
From aries to mars: Transaction support for next-generation, solid-state drives. In
Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Princi-
ples, SOSP ’13, pages 197–212, New York, NY, USA, 2013. ACM.

[29] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Rajesh K. Gupta,
Ranjit Jhala, and Steven Swanson. NV-Heaps: making persistent objects fast and
safe with next-generation, non-volatile memories. In Proc. of the 16th International
Conf. on Architectural Support for Programming Languages and Operating Systems,
pages 105–118, 2011.

[30] Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin Ipek, Benjamin
Lee, Doug Burger, and Derrick Coetzee. Better I/O through byte-addressable, per-
sistent memory. In Proc. of the 22nd Symp. on Operating Systems Principles, pages
133–146, 2009.

[31] T Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms. MIT
Press, 2001.

[32] Oracle Corporation. Oracle database documentation library.
http://docs.oracle.com/cd/E16655 01/server.121/e17643/storage.htm#CACJFFJI.

140

[33] Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Ake Larson, Pravin Mittal,
Ryan Stonecipher, Nitin Verma, and Mike Zwilling. Hekaton: SQL server’s
memory-optimized OLTP engine. In Proceedings of the 2013 ACM SIGMOD In-
ternational Conference on Management of Data, pages 1243–1254, 2013.

[34] Jaeyoung Do and Jignesh M. Patel. Join processing for flash SSDs: remembering
past lessons. In Proceedings of the Fifth International Workshop on Data Manage-
ment on New Hardware, 2009.

[35] DOE (Department of Energy). Doe 2 reference manual, part 1, version 2.1, 1980.

[36] Xiaobo Fan, Wolf-Dietrich Weber, and Luiz Andre Barroso. Power provisioning
for a warehouse-sized computer. In Proceedings of the 34th Annual International
Symposium on Computer Architecture (ISCA), 2007.

[37] Ru Fang, Hui-I Hsiao, Bin He, C. Mohan, and Yun Wang. High performance
database logging using storage class memory. In Proc. of the 27th International
Conf. on Data Engineering, pages 1221–1231, 2011.

[38] Mark E. Femal and Vincent W. Freeh. Boosting data center performance through
non-uniform power allocation. In Proceedings of Second International Conference
on Autonomic Computing (ICAC), 2005.

[39] Anshul Gandhi, Mor Harchol-Balter, Rajarshi Das, and Charles Lefurgy. Optimal
power allocation in server farms. In Proceedings of ACM SIGMETRICS 2009 Con-
ference on Measurement and Modeling of Computer Systems, 2009.

[40] Anshul Gandhi, Mor Harchol-Balter, Rajarshi Das, Charles Lefurgy, and Jeffrey
Kephart. Power capping via forced idleness. In Workshop on Energy-Efficient De-
sign, 2009.

[41] Gregory R. Ganger, Marshall Kirk McKusick, Craig A. N. Soules, and Yale N. Patt.
Soft Updates: A Solution to the Metadata Update Problem in File Systems. ACM
Transactions on Computer Systems, 18(2):127–153, May 2000.

[42] MR Garey, D.S. Johnson, R.C. Backhouse, G. von Bochmann, D. Harel, CJ van
Rijsbergen, J.E. Hopcroft, J.D. Ullman, A.W. Marshall, I. Olkin, et al. A Guide to
the Theory of Computers and Intractability. Springer.

[43] Kourosh Gharachorloo, Anoop Gupta, and John Hennessy. Two techniques to en-
hance the performance of memory consistency models. In In Proceedings of the
1991 International Conference on Parallel Processing, pages 355–364, 1991.

[44] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gibbons, Anoop
Gupta, and John Hennessy. Memory consistency and event ordering in scalable
shared-memory multiprocessors. In Proceedings of the 17th annual international
symposium on Computer Architecture, ISCA ’90, pages 15–26, New York, NY,
USA, 1990. ACM.

141

[45] Chris Gniady, Babak Falsafi, and T. N. Vijaykumar. Is sc + ilp = rc? In Proceedings
of the 26th Annual International Symposium on Computer Architecture, ISCA ’99,
pages 162–171, Washington, DC, USA, 1999. IEEE Computer Society.

[46] James R. Goodman. Using cache memory to reduce processor-memory traffic. In
Proceedings of the 10th Annual International Symposium on Computer Architecture,
ISCA ’83, pages 124–131, New York, NY, USA, 1983. ACM.

[47] Sriram Govindan, Jeonghwan Choi, Bhuvan Urgaonkar, Anand Sivasubramaniam,
and Andrea Baldini. Statistical profiling-based techniques for effective power pro-
visioning in data centers. In Proceedings of the 4th ACM European Conference on
Computer systems (EuroSys), 2009.

[48] Jim Gray. The transaction concept: virtues and limitations (invited paper). In Pro-
ceedings of the seventh international conference on Very Large Data Bases - Volume
7, VLDB ’81, pages 144–154. VLDB Endowment, 1981.

[49] T.M. Gruzs. A survey of neutral currents in three-phase computer power systems.
IEEE Transactions on Industry Applications, 26(4), Jul/Aug 1990.

[50] Laura M. Haas, Michael J. Carey, Miron Livny, and Amit Shukla. Seeking the truth
about ad hoc join costs. VLDB Journal, 6(3), 1997.

[51] James Hamilton. Internet-scale service infrastructure efficiency. Keynote at the
International Symposium on Computer Architecture (ISCA), 2009.

[52] Taliver Heath, Ana Paula Centeno, Pradeep George, Luiz Ramos, Yogesh Jaluria,
and Ricardo Bianchini. Mercury and freon: temperature emulation and management
for server systems. In ASPLOS-XII: Proceedings of the 12th international confer-
ence on Architectural support for programming languages and operating systems,
2006.

[53] HP Staff. HP power capping and dynamic power capping for ProLiant servers. Tech-
nical Report TC090303TB, HP, 2009.

[54] Ryan Johnson, Ippokratis Pandis, Nikos Hardavellas, Anastasia Ailamaki, and
Babak Falsafi. Shore-MT: a scalable storage manager for the multicore era. In Proc.
of the 12th International Conf. on Extending Database Technology, pages 24–35,
2009.

[55] Ryan Johnson, Ippokratis Pandis, Radu Stoica, Manos Athanassoulis, and Anastasia
Ailamaki. Aether: a scalable approach to logging. Proc. VLDB Endow., pages 681–
692, September 2010.

[56] Stefanos Kaxiras and Margaret Martonosi. Computer Architecture Techniques for
Power-Efficiency. Morgan Claypool, 2008.

[57] L. Lamport. How to make a multiprocessor computer that correctly executes multi-
process programs. IEEE Trans. Comput., 28(9):690–691, September 1979.

142

[58] Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger. Architecting phase
change memory as a scalable DRAM alternative. In Proceedings of the 36th annual
international symposium on Computer architecture, pages 2–13, 2009.

[59] Sang-Won Lee, Bongki Moon, Chanik Park, Jae-Myung Kim, and Sang-Woo Kim.
A case for flash memory SSD in enterprise database applications. In Proceedings of
the ACM SIGMOD International Conference on Management of Data, 2008.

[60] C. Lefurgy, X. Wang, and M. Ware. Power capping: A prelude to power shifting.
Cluster Computing, 11(2), 2008.

[61] Charles Lefurgy, Karthick Rajamani, Freeman Rawson, Wes Felter, Michael Kistler,
and Tom W. Keller. Energy management for commercial servers. Computer, 36(12),
2003.

[62] Yinan Li, Bingsheng He, Qiong Luo, and Ke Yi. Tree indexing on flash disks. In
Proceedings of the 2009 IEEE International Conference on Data Engineering, 2009.

[63] Changhui Lin, Vijay Nagarajan, Rajiv Gupta, and Bharghava Rajaram. Efficient
sequential consistency via conflict ordering. SIGARCH Comput. Archit. News,
40(1):273–286, March 2012.

[64] Heikki Linnakangas. http://www.postgresql.org/message-
id/464F3C5D.2000700@enterprisedb.com.

[65] David E. Lowell and Peter M. Chen. Free Transactions with Rio Vista. In Pro-
ceedings of the 1997 Symposium on Operating Systems Principles, pages 92–101,
October 1997.

[66] Luiz André Barroso and Urs Hölzle. The Datacenter as a Computer. Morgan Clay-
pool, 2009.

[67] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff

Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: building
customized program analysis tools with dynamic instrumentation. In Proceedings
of the 2005 ACM SIGPLAN conference on Programming language design and im-
plementation, pages 190–200, 2005.

[68] Jennifer Mankoff, Robin Kravets, and Eli Blevis. Some computer science issues in
creating a sustainable world. IEEE Computer, 41(8), August 2008.

[69] David Meisner, Brian T. Gold, and Thomas F. Wenisch. Powernap: eliminating
server idle power. In Proceeding of the 14th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS),
March 2009.

[70] John M. Mellor-Crummey and Michael L. Scott. Algorithms for scalable synchro-
nization on shared-memory multiprocessors. ACM Trans. Comput. Syst., 9(1):21–65,
February 1991.

143

[71] C. Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and Peter Schwarz.
ARIES: a transaction recovery method supporting fine-granularity locking and par-
tial rollbacks using write-ahead logging. ACM Trans. Database Syst., pages 94–162,
March 1992.

[72] J. Moore, J. S. Chase, and P. Ranganathan. Weatherman: Automated, online and pre-
dictive thermal mapping and management for data centers. In ICAC ’06: Proceed-
ings of the 2006 IEEE International Conference on Autonomic Computing, 2006.

[73] Dushyanth Narayanan and Orion Hodson. Whole-system persistence. In Tim Harris
and Michael L. Scott, editors, ASPLOS, pages 401–410. ACM, 2012.

[74] R. Nathuji, A. Somani, K. Schwan, and Y. Joshi. Coolit: Coordinating facility and it
management for efficient datacenters. In HotPower ’08: Workshop on Power Aware
Computing and Systems, December 2008.

[75] Ripal Nathuji and Karsten Schwan. Virtualpower: coordinated power management
in virtualized enterprise systems. In Proceedings of twenty-first ACM SIGOPS Sym-
posium on Operating Systems Principles (SOSP), 2007.

[76] Simo Neuvonen, Antoni Wolski, Markku Manner, and Vilho Raatikka. Telecom Ap-
plication Transaction Processing Benchmark. http://tatpbenchmark.sourceforge.net.

[77] Wee Teck Ng and Peter M. Chen. Integrating reliable memory in databases. In Proc.
of the International Conf. on Very Large Data Bases, pages 76–85, 1997.

[78] Oracle America. Extreme performance using Oracle TimesTen in-memory database,
an Oracle technical white paper. July 2009.

[79] Luca Parolini, Bruno Sinopoli, and Bruce H. Krogh. Reducing data center en-
ergy consumption via coordinated cooling and load management. In HotPower ’08:
Workshop on Power Aware Computing and Systems, December 2008.

[80] C.D. Patel, R. Sharma, C.E. Bash, and A. Beitelmal. Thermal considerations in
cooling large scale high compute density data centers. In The Eighth Intersociety
Conference on Thermal and Thermomechanical Phenomena in Electronic Systems.,
2002.

[81] Steven Pelley. Atomic memory trace. https://github.com/stevenpelley/atomic-
memory-trace.

[82] Steven Pelley, David Meisner, Thomas F Wenisch, and James W VanGilder. Under-
standing and abstracting total data center power. In Workshop on Energy-Efficient
Design, 2009.

[83] Steven Pelley, David Meisner, Pooya Zandevakili, Thomas F. Wenisch, and Jack
Underwood. Power routing: dynamic power provisioning in the data center. In
Proceedings of the fifteenth edition of ASPLOS on Architectural support for pro-
gramming languages and operating systems, ASPLOS XV, pages 231–242, New
York, NY, USA, 2010. ACM.

144

[84] Steven Pelley, Thomas F. Wenisch, Brian T. Gold, and Bill Bridge. Storage manage-
ment in the nvram era. PVLDB, 7(2):121–132, 2013.

[85] Steven Pelley, Thomas F. Wenisch, and Kristen LeFevre. Do query optimizers need
to be SSD-aware? In Workshop on Accelerating Data Management Systems using
Modern Processor and Storage Architectures, 2011.

[86] P. Popa. Managing server energy consumption using IBM PowerExecutive. Techni-
cal report, IBM, 2006.

[87] Moinuddin K. Qureshi, John Karidis, Michele Franceschini, Vijayalakshmi Srini-
vasan, Luis Lastras, and Bulent Abali. Enhancing lifetime and security of PCM-
based main memory with start-gap wear leveling. In Proc. of the 42nd International
Symp. on Microarchitecture, pages 14–23, 2009.

[88] Moinuddin K. Qureshi, Vijayalakshmi Srinivasan, and Jude A. Rivers. Scalable
high performance main memory system using phase-change memory technology. In
Proc. of the 36th International Symp. on Computer Architecture, pages 24–33, 2009.

[89] Ramya Raghavendra, Parthasarathy Ranganathan, Vanish Talwar, Zhikui Wang, and
Xiaoyun Zhu. No “power” struggles: coordinated multi-level power management for
the data center. In Proceeding of the 13th International Conference on Architectural
Support for Programming Languages and Operating Systems, March 2008.

[90] Raghu Ramakrishnan and Johannes Gehrke. Database Management Systems. Mc-
Graw Hill, 3rd edition, 2002.

[91] Parthasarathy Ranganathan, Phil Leech, David Irwin, and Jeffrey Chase. Ensemble-
level power management for dense blade servers. In Proceedings of the 33rd Annual
International Symposium on Computer Architecture (ISCA), 2006.

[92] Parthasarathy Ranganathan, Vijay S. Pai, and Sarita V. Adve. Using speculative
retirement and larger instruction windows to narrow the performance gap between
memory consistency models. In Proceedings of the Ninth Annual ACM Symposium
on Parallel Algorithms and Architectures, SPAA ’97, pages 199–210, New York,
NY, USA, 1997. ACM.

[93] N. Rasmussen. Electrical efficiency modeling for data centers. Technical Report
#113, APC by Schneider Electric, 2007.

[94] N. Rasmussen. A scalable, reconfigurable, and efficient data center power distribu-
tion architecture. Technical Report #129, APC by Schneider Electric, 2009.

[95] Suzanne Rivoire, Parthasarathy Ranganathan, and Christos Kozyrakis. A compari-
son of high-level full-system power models. In HotPower ’08: Workshop on Power
Aware Computing and Systems, December 2008.

[96] David Roberts, Taeho Kgil, and Trevor Mudge. Integrating NAND flash devices
onto servers. Communications of the ACM, 52, April 2009.

145

[97] Chris Ruemmler and John Wilkes. An introduction to disk drive modeling. Com-
puter, 27(3):17–28, March 1994.

[98] Kenneth Salem and Sedat Akyürek. Management of partially safe buffers. IEEE
Trans. Comput., pages 394–407, March 1995.

[99] P. Griffiths Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price.
Access path selection in a relational database management system. In Proceedings
of the ACM SIGMOD International Conference on Management of Data, 1979.

[100] André Seznec. A case for two-way skewed-associative caches. In Proceedings of
the 20th Annual International Symposium on Computer Architecture (ISCA), 1993.

[101] L.D. Shapiro. Join processing in database systems with large main memories. ACM
Transactions on Database Systems, 11(3), 1986.

[102] Abhayendra Singh, Satish Narayanasamy, Daniel Marino, Todd Millstein, and
Madanlal Musuvathi. End-to-end sequential consistency. In Proceedings of the
39th Annual International Symposium on Computer Architecture, ISCA ’12, pages
524–535, Washington, DC, USA, 2012. IEEE Computer Society.

[103] SPARC International, Inc. The SPARC Architecture Manual, version 9 edition, 1994.

[104] Michael Stonebraker, Samuel Madden, Daniel J. Abadi, Stavros Harizopoulos, Nabil
Hachem, and Pat Helland. The end of an architectural era: (it’s time for a complete
rewrite). In Proc. of the 33rd International Conf. on Very Large Data Bases, pages
1150–1160, 2007.

[105] The Standard Performance Evaluation Corporation (SPEC). SPECpower Bench-
mark Results. http://www.spec.org/power ssj2008/results.

[106] R. Tozer, C. Kurkjian, and M. Salim. Air management metrics in data centers. In
ASHRAE 2009, January 2009.

[107] Transaction Processing Performance Council (TPC). TPC-B Benchmark.
http://www.tpc.org/tpcb/.

[108] Transaction Processing Performance Council (TPC). TPC-C Benchmark.
http://www.tpc.org/tpcc/.

[109] Transaction Processing Performance Council (TPC). TPC-H Benchmark.
http://www.tpc.org/tpch/.

[110] Dimitris Tsirogiannis, Stavros Harizopoulos, Mehul A. Shah, Janet L. Wiener, and
Goetz Graefe. Query processing techniques for solid state drives. In Proceedings of
the 35th SIGMOD International Conference on Management of Data, 2009.

[111] W. Turner and J. Seader. Dollars per kW plus dollars per square foot are a better
datacenter cost model than dollars per square foot alone. Technical report, Uptime
Institute, 2006.

146

[112] W. Turner, J. Seader, and K. Brill. Industry standard tier classifications define site
infrastructure performance. Technical report, Uptime Institute, 2005.

[113] U.S. EPA. Report to congress on server and data center energy efficiency. Technical
report, USEPA, August 2007.

[114] J. W. VanGilder and S. K. Shrivastava. Capture index: An airflow-based rack cooling
performance metric. ASHRAE Transactions, 113(1), 2007.

[115] Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ranganathan, and Roy H.
Campbell. Consistent and durable data structures for non-volatile byte-addressable
memory. In Proc. of the 9th Usenix Conference on File and Storage Technologies,
pages 61–75, 2011.

[116] Haris Volos, Andres Jaan Tack, and Michael M. Swift. Mnemosyne: lightweight
persistent memory. In Proc. of the 16th International Conf. on Architectural Support
for Programming Languages and Operating Systems, pages 91–104, 2011.

[117] Xiaorui Wang and Ming Chen. Cluster-level feedback power control for perfor-
mance optimization. In Proceedings of the 14th IEEE International Symposium on
High-Performance Computer Architecture (HPCA), 2008.

[118] Xiaorui Wang, Ming Chen, Charles Lefurgy, and Tom W. Keller. SHIP: Scalable hi-
erarchical power control for large-scale data centers. In Proceedings of the 18th
International Conference on Parallel Architectures and Compilation Techniques
(PACT), 2009.

[119] Thomas F. Wenisch, Anastasia Ailamaki, Babak Falsafi, and Andreas Moshovos.
Mechanisms for store-wait-free multiprocessors. In Proceedings of the 34th An-
nual International Symposium on Computer Architecture, ISCA ’07, pages 266–277,
New York, NY, USA, 2007. ACM.

[120] Shaoyi Yin, Philippe Pucheral, and Xiaofeng Meng. A sequential indexing scheme
for flash-based embedded systems. In Proceedings of the 12th International Confer-
ence on Extending Database Technology: Advances in Database Technology, 2009.

[121] P. C. Yue and C. K. Wong. Storage cost considerations in secondary index selection.
International Journal of Parallel Programming, 4, 1975.

[122] Jishen Zhao, Sheng Li, Doe Hyun Yoon, Yuan Xie, and Norman P. Jouppi. Kiln:
Closing the performance gap between systems with and without persistence sup-
port. In Proceedings of the 46th Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO-46, pages 421–432, New York, NY, USA, 2013. ACM.

147

