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ABSTRACT 

Epilepsy represents a major health burden upon society. Approximately 30% of 

patients still remain symptomatic despite therapy. Complicating development of more 

efficacious therapies is the fact that patients with similar underlying genetic causes 

display a range of phenotypes and those with similar phenotypes may display a range of 

genetic mutations. While not a current medicinal target for epilepsy, the family of 

inhibitory G-proteins appears to play an important role in this disease, as blocking their 

function in animal models increases both acute seizure susceptibility and the rate of 

spontaneous seizure development in kindling, a research model with parallels to 

epilepsy. 

 The most abundant inhibitory G-protein in the brain is Go, composing roughly 

2% of membrane bound protein. To further clarify the role of Go in epilepsy a Gnao1 

gain-of-function mouse line (RGSi/G184S) was employed. Hippocampal slices from 

Gnao1 
+/RGSi

 mice show enhanced epinephrine-mediated suppression of epileptiform 

burst firing of neurons demonstrating that Gnao1 
+/RGSi

 mice have enhanced Go 

signaling. 

The aforementioned work lead me to hypothesize that C57BL/6J Gnao1 
+/RGSi

 mice 

would be protected from kindling. In fact, the mice experience premature death, 

enhanced kindling susceptibility and over a ten-fold increase in frequency of electrical 

disturbances within their brain. C57BL/6J Gnao1 
+/RGSi

 mice also display an unexpected 
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loss of inhibitory signaling within specific brain regions. This loss may be due to changes 

in brain development as spine density on pyramidal cells within the CA1 is reduced as 

early as four weeks of age. 

Interestingly, the mutation is only lethal on the C57BL/6J background. The 

progenitor 129S1/SvImJ strain demonstrates no change in seizure susceptibility or 

viability. A genome-wide SNP analysis identified a region on chromosome 17 between 

41-70 megabases that affords protection from spontaneous lethality. Further, this region 

also reduces the rate at which mice develop seizures in response to a chemically induced 

model of epilepsy (kindling). This region was further refined to a subregion from 41-51 

megabases which was found sufficient to afford protection to kindling. Consequently, I 

have identified two genomic loci, Gnao1 and the Chr17 modifier which I term Mogs1 

(modifier of G-protein seizures), that should be examined as candidates in human 

epilepsy. Additionally, future use of this model should prove informative in assessing the 

utility of novel therapeutics to prevent the progression of epilepsy. 
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Chapter 1  

Introduction 

Statement of purpose 

The goal of this thesis is to improve our understanding of the role of G-protein 

coupled receptors (GPCRs), a major target of current medications for other diseases, in 

convulsive epilepsy. My thesis will focus on a highly abundant protein within the brain, 

Go, that is downstream of many GPCRs, and dissect its role in controlling neuronal 

excitability. 

This introduction will start with a historical overview of epilepsy and background 

on the traditional focus of ion channels in disease pathology. The limitations upon current 

therapies will then be highlighted followed by support for the potential of novel 

therapeutics targeting GPCR signaling. Details of GPCR signaling will then be discussed. 

This comprehensive background will then be leveraged to outline the approach I 

employed to achieve the goal of my thesis. 

History and health burden of epilepsy 

Epilepsy is one of the most common neurological disorders and is associated with 

a large societal burden. Epilepsy affects approximately 0.7% of the population (Hirtz et 

al. 2007) with current treatments leaving roughly one-third of patients without relief 

(Organization 2012). Epilepsy is defined as recurrent spontaneously occurring seizures. 
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Seizures may involve involuntary body movements of all or part of the body and 

consciousness can be lost during these periods. Because of the potential to interfere with 

daily activities, epilepsy dramatically reduces the quality of life of those afflicted. Life 

expectancy is reduced by 18 years and patients are at greater risk of developing 

depression or a panic disorder (de Boer et al. 2008). 

The refractory nature of this disease may be, in part, due to two major factors. The 

first factor is the common focus of current therapies on modulating ion channels. The 

second factor is that many different rare genetic mutations likely play an important role in 

epilepsy (Michelucci et al. 2012). For about 30% of patients (Michelucci et al. 2012) the 

specific genes affected are not known. Further, even in patients with known genetic 

causes, the severity of their disease and the response to treatment are modulated by 

interactions with their genetic background (Loscher et al. 2009).  

How the brain communicates 

To understand how large networks of neurons fire in unison to create a seizure, 

we must first understand the basic principles that modulate firing of an individual neuron. 

Excitatory and inhibitory signals converge on the axon initial segment (AIS) of a neuron. 

This region acts as a gate between the cell body and the axon (Mantegazza & Catterall 

2012). A variety of ion channels in the region integrate the signals received from the 

soma leading to either the initiation of an action potential or termination of any 

depolarization further along the axon. If initiated, an action potential propagates down the 

myelinated axon via sodium channel-mediated depolarization at nodes of Ranvier 

(Mantegazza & Catterall 2012). Eventual depolarization at axon terminals promotes 

release of neurotransmitters at the synapse. These neurotransmitters then act as ligands to 
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activate various receptors on target cells, some of which are ionotropic ligand-gated ion 

channels which allow ions to flow in or out of the cell to depolarize or hyperpolarize the 

target. Neurotransmitters may also bind metabotropic G-protein coupled receptors 

(GPCRs) to induce longer term changes to cellular processes. Metabotropic receptors are 

transmembrane receptors that generate intracellular signals through generation of second 

messengers which influence a wide range of cellular processes. The major 

neurotransmitters in the brain are glutamate for excitation, gamma-amino-butyric acid 

(GABA) for inhibition, as well as acetylcholine (ACh), norepinephrine, dopamine, 

serotonin, and histamine for more specific functions within the brain. The following 

sections will discuss many of the steps in this process while highlighting literature 

relevant to epilepsy. 

Sodium Channels 

Voltage-gated sodium channels are large multi-subunit channels that play a 

critical role in the initiation and propagation of action potentials. They consist of a large 

pore forming α subunit with voltage sensing properties in the S4 segments (Mantegazza 

& Catterall 2012). During membrane depolarization the S4 segments rotate causing the 

pore to open (Mantegazza & Catterall 2012). After sustained opening, an inactivation 

gate blocks the pore, limiting the time the pore can remain open (Mantegazza & Catterall 

2012). One or two β subunits also compose a mature sodium channel where, among other 

roles, they regulate channel levels at the plasma membrane and participate in cell-cell 

adhesion(Brackenbury et al. 2008). 

 Sodium channels play a role in the pathophysiology of many types of epilepsy. 

mRNA levels of many α subunits are altered in animal models of epilepsy (Bartolomei et 
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al. 1997). Changes are also observed in human tissue taken from epileptic brains 

(Lombardo et al. 1996). Although mRNA does not always directly correlate to protein 

levels, these changes do result in functional consequences. Temporal lobe neurons taken 

from an animal model of epilepsy involving repeated electrical stimulation of the 

amygdala have larger persistent sodium channel current (INaP) than control (Blumenfeld 

et al. 2009). INaP is the result of incomplete inactivation of sodium channels after an 

action potential. This phenomenon leads to a persistent current lasting on the order of 10s 

of seconds. Typically INaP is the result of sustained opening of less than 1% of previously 

activated sodium channels, but it plays key roles in modulating repetitive firing patterns 

and with small changes can have a large impact on rhythmicity of neuronal activity, a key 

disturbance in seizures (Mantegazza & Catterall 2012). Similar changes in INaP are also 

found in resected brain tissue from human patients with temporal lobe epilepsy 

(Vreugdenhil et al. 2004). Thus increased INaP may contribute to human epilepsy in some 

cases. 

While the data above focused on gain-of-function changes, loss-of-function 

within inhibitory cells may also result in epilepsy. This is due to less inhibitory neuron 

firing leading to disinhibition of excitatory neurons for a net gain in excitation. For 

example, Dravet Syndrome can result from mutations in SCN1A, encoding the Nav1.1 

channel, which reduce sodium channel function within inhibitory neurons (Catterall et al. 

2010). This simplified view has been recently challenged by others in the field. Testing 

patient derived neurons demonstrates that SCN1A mutations initially thought to reduce 

sodium currents only within inhibitory neurons may, in fact, increase sodium currents 
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within both inhibitory and excitatory neurons through an unknown mechanism (Liu et al. 

2013). 

Potassium channels 

Among the diverse roles that potassium channels play in modulating neuronal 

excitability I will highlight their critical role in modulating the likelihood of an action 

potential leading to neurotransmitter release. The voltage-dependent potassium channel 

family is large, but all members are selective for potassium. Due to the high relative 

concentration of intracellular potassium, family members typically lead to repolarization 

of the cell and reduce neuronal excitability. Despite these similarities there are many 

differences. Each family member serves a distinct role in modulating cellular excitability 

resulting from their specific cellular localization and activity tuned to a specific 

membrane potential. This section will only discuss Kv1.1, encoded by KCNA1, in its role 

in modulating transmitter release, and mutations in KCNA1 involved in epilepsy. 

 Mutations in KCNA1 result in epilepsy through loss of function mutations. A 

T226R mutation in KCNA1 was initially discovered in patients with episodic ataxia 

(Browne et al. 1994). A subset of episodic ataxia patients with the T226R mutation 

experience epilepsy. This indicates the potential for environmental or genetic modifiers to 

play a role in modifying outcome (Eunson et al. 2000). When studied in vitro, the 

mutation reduces surface expression of the protein (Rea et al. 2002) implicating loss-of-

function as the likely mechanism. 

 A causal link between loss of Kv1.1 function and epilepsy is further supported by 

Kcna1 
-/-

 mice. These mice have spontaneous seizures accompanied by a decreased rate 
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of axonal repolarization (Smart et al. 1998). This is in concordance with data that Kv1.1 

channels predominately localize to axons and presynaptic terminals (Wang et al. 1994). 

Isolated neurons expressing T226R also exhibit enhanced release probabilities without 

enhanced intrinsic excitability (Heeroma et al. 2009). 

Calcium channels 

Voltage-dependent calcium channels are responsible for the calcium influx in 

response to cellular depolarization. The family is quite large, with various family 

members performing distinct roles. For an exhaustive review see (Catterall 2011). This 

section shall focus on N, P/Q-type calcium channels (Cav2), the activity of which is 

inhibited by GPCR signaling (Tedford & Zamponi 2006). Activation of Cav2 channels 

promotes release of neurotransmitters. Similar to sodium channels, calcium channels 

require membrane depolarization, only activate for a brief period before being 

inactivated, and require repolarization of the membrane before reopening. Despite Cav2 

channels being particularly important in regulating neurotransmitter release, few 

mutations have been reported in connection with convulsive human epilepsy.  

GABA 

GABAA receptors play a critical role in the response to GABA, the major 

inhibitory neurotransmitter in adult mammals. They are ligand-gated ion channels 

generally composed of two α, two β and one γ or δ subunits. In response to GABA 

binding, they allow influx of chloride leading to membrane hyperpolarization and a 

decreased probability of an action potential. Over 15 different mutations across all the 

subunits have been linked to a various idiopathic epilepsy syndromes (Macdonald et al. 

2012). 
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To more directly assess the correlation of the mutations to epilepsy and to 

determine the mechanisms of action, transfected cell systems have been employed. 

Though the mechanisms vary, many mutations appear relevant as they have been found 

to reduce chloride conductance. Mechanisms include reduced mRNA stability, trafficking 

defects, loss of proper oligermization or altered inactivation kinetics (Ding et al. 2010; 

Frugier et al. 2007). 

Another approach to determine the impact mutations have on a disease is to 

cluster the type of mutation with the associated phenotype. If the mutation is causative 

similar mutations should result in similar syndromes. This hypothesis has been borne out 

in studies of GABAA mutations in epilepsy. Distal N terminal missense mutations are 

associated with the less severe epilepsies while proximal N terminal missense mutations 

are associated with the more severe epilepsy (Macdonald et al. 2012). 

Current therapies 

Current therapies predominantly act through modulation of ion channels. In fact, 

progress over the last several decades in treatment of epilepsy has focused on improving 

the side-effect profiles of drugs acting through the same mechanism of action (Loscher 

2002, 2011). While improving the quality of life for those whose disease is well-treated 

by current drug classes, it has continued to leave seizures in a third of patients poorly 

controlled. There are several obstacles to the successful development of new therapies for 

epilepsy which are highlighted below. 
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Complications limiting current therapies 

Genetics 

Genetics play a significant role in epilepsy with many genetic modifiers of 

epilepsy still to be discovered. Mutations in over 20 genes are known to lead to inherited 

epilepsies, examples of which were highlighted in prior sections. Risk is increased two to 

four-fold in relatives of those who suffer from idiopathic epilepsy (unknown cause) 

(Ottman et al. 1996). There is also a higher rate of idiopathic epilepsy among genetically 

identical twins compared to fraternal twins (Berkovic et al. 1998). Mendelian inheritance 

of epilepsy is however quite uncommon since many patients have no afflicted relatives 

(Ottman et al. 1996). 

There are several explanations for the genetic complexity of epilepsy. One model 

proposes epilepsy as multifactorial disease requiring multiple “hits”. In this model many 

detrimental alleles have a modest effect on their own (low penetrance). However when 

inherited together they act in an additive or synergistic fashion to promote epilepsy. In 

this model relatives would statistically be unlikely to have inherited a sufficient number 

of low penetrance alleles. A second model highlights the role of de novo mutations, the 

significance of which is already well-recognized in Dravet-Syndrome where almost 70% 

of patients have de novo mutations in SCN1A (Chakravarti 2001). De novo mutations are 

often associated with severe juvenile epilepsies whereby the severity of the phenotype 

generally prevents transmission of the mutation to subsequent generations. 

A major limiting factor in elucidating the genetics of epilepsy stems from the fact 

that there is not a one-to-one correspondence between phenotype and genotype. Many 
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syndromes can be caused by either complex inheritance or high penetrance genetic 

mechanisms which limits correlation of phenotype to genotype. Even in clearly inherited 

epilepsies, mutant alleles in a variety of genes or different mutant alleles of the same gene 

can lead to the same syndrome (Ottman & Risch 2012). 

 Complex genetic and environmental modifiers further complicate the picture as 

even the same genetic mutation does not always result in the same phenotype. This is 

exemplified by a family with an inherited mutation in SCN1A whereby various family 

members were classified with epilepsy syndromes from mild febrile seizures to severe 

temporal lobe epilepsy despite all having the same SCN1A mutation (Ottman & Risch 

2012). 

Remodeling 

In addition to the difficulty complex genetics raises, there are also complications 

due to the progressive nature of the disease. In many ways epilepsy becomes a positive 

feed-forward loop, making intervention more difficult, and the best course of action 

likely dependent upon changes that have already occurred in a patient’s brain. This is 

highlighted by three basic observations. Following seizures, the ion-channel composition 

of many neurons changes which promotes excitation, and potentially alters the 

effectiveness of current therapies (Houser et al. 2012). However, even further 

complicating matters is that the network of neurons itself changes. Death of inhibitory 

neurons leads to less inhibition of excitatory neurons (Andre et al. 2001; Dudek & Shao 

2003; Fritsch et al. 2009). A positive feed-forward loop can also develop as excitatory 

neurons sending new processes out onto other excitatory neurons in a process called 

mossy fiber sprouting (Buckmaster 2012). Lastly, new neurons can even be 
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inappropriately integrated into the network, further promoting seizures (Parent & Kron 

2012). 

GPCRs: a classic target underutilized in the treatment of epilepsy 

In the treatment of other diseases, the family of G-Protein Coupled Receptors 

(GPCRs) is a common target. Approximately 40% of prescription drugs act either 

directly or indirectly on GPCRs (Whalen et al. 2011). GPCRs reside on the plasma 

membrane where they function to convert signals from the extracellular space into 

intracellular changes. They have been a predominant focus of drug discovery efforts due 

to their distinct tissue distributions, each family member’s involvement in a limited 

subset of physiological processes, and well defined pockets for easy drugability. As of 

yet, however, they are not widely targeted in the treatment of epilepsy. 

 Both pharmacological and genetic literature support the role of GPCRs in 

modulation of seizures and the development of epilepsy in rodent models. Seizures are 

modulated by signaling through many GPCRs including: adenosine A1 (Chen et al. 

2012), galanin R2 (Lu et al. 2010), α2 adrenergic (Shouse et al. 2007), serotonin 5HT-

1(Bagdy et al. 2007; Pericic et al. 2005), and µ-opioid receptors (Grecksch et al. 2004).  

 Most interestingly, in several of these models GPCR signaling appears to impact 

the remodeling process. An experimental paradigm referred to as kindling has many 

parallels to the remodeling process in human epileptogenesis (Golarai et al. 1992; 

Morimoto et al. 2004). μ-opioid receptor null mice are more susceptible to kindling 

which supports a protective role for their action in epileptogenesis (Grecksch et al. 2004). 

Genetic models, however, can involve complex development changes. Further buttressing 
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a protective role for acute GPCR signaling, adenosine A1 activation during kindling 

suppresses the development of seizures (Li et al. 2007), indicating that activity during 

embryonic and neonatal development is not required for GPCR signaling to impact 

remodeling. 

My thesis focuses on understanding the role of GPCR signaling in epilepsy. 

Instead of focusing on a specific receptor, I will explore common downstream pathways 

of GPCRs with the goal of facilitating drug development targeting these pathways. 

Targeting downstream pathways as opposed to the GPCR itself should avoid several 

potential pitfalls that are highlighted below. 

Limitations of drugs targeting a specific GPCR 

One drawback to the use of drugs that activate GPCRs (agonists) on a chronic 

basis is the development of tolerance (Whalen et al. 2011), whereby an equivalent dose 

of a drug becomes less effective. This is a consequence of receptor phosphorylation by 

G-protein Receptor Kinases (GRKs) in response to agonist binding and subsequent 

receptor inactivation. β-arrestins may also be recruited to the receptor leading to receptor 

internalization (Whalen et al. 2011).  

A second challenge of developing drugs targeting specific GPCRs is the need to 

differentiate among structurally similar receptors that respond to a single endogenous 

ligand. For example the five muscarinic acetylcholine receptors are involved in a variety 

of cellular processes. They have a very similar binding pocket for endogenous ligand 

recognition. This has made development of subtype-specific agonists extremely 

challenging. However, without subtype-specific agonists, therapeutic utility is reduced, 
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since other family members have opposing actions or create adverse side effects (Conn et 

al. 2009). Developing therapies that act not on the receptor itself, but downstream to 

potentiate desired signaling, may eliminate these potential pitfalls. It does, however, raise 

concerns about greater side-effects due to lower specificity. 

The GABAB GPCR, a practical example of GPCR drug development limitations 

GABA, the major inhibitory neurotransmitter of the CNS, not only acts through 

the ionotropic GABAA receptor, as highlighted previously, but also acts through a single 

GPCR, the metabotropic GABAB receptor. GABAB receptors can be found both in 

presynaptic and postsynaptic locations. The major effects of GABAB activation include: 

autoreceptor inhibition of GABA release, inhibition of glutamate release, and 

hyperpolarization of cells through increased potassium conductance (Bettler et al. 2004). 

The literature supports GABAB receptors as a therapeutic target for many 

diseases. One currently used drug used is baclofen, a GABAB agonist, which serves as a 

muscle relaxant (Bettler et al. 2004). Baclofen administration can also be of assistance in 

reducing cravings in many paradigms of addiction (Bowery et al. 2002). Rats that receive 

low doses of baclofen do not self-administer heroin as often (Di Ciano & Everitt 2003; Xi 

& Stein 1999), nor do alcohol-preferring strains of mice consume as much alcohol 

(Besheer et al. 2004). Additionally, baclofen has pain relieving effects (Bowery et al. 

2002). Blockade of GABAB is also an area of interest. Antagonists are efficacious in the 

treatment of absence seizures (Vergnes et al. 1997) and improve cognitive deficits in 

animal models (Helm et al. 2005; Mondadori et al. 1996). 
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Further development of drugs modulating GABAB signaling is limited due to 

adverse side effects and the development of tolerance. Therapeutic actions occur at lower 

doses of baclofen than those required for general sedative effects (Bettler et al. 2004; 

Bowery et al. 2002). Unfortunately the difference in the dose of baclofen required for the 

beneficial effect and the sedative effect is not sufficiently large to be separable in a less 

controlled clinical setting. Tolerance also develops rapidly to baclofen's pain-relieving 

properties through an unknown mechanism (Bettler et al. 2004). Development of GABAB 

antagonists for cognitive improvements (Froestl et al. 2004) is also likely to face 

significant difficulty due side-effects, as antagonists are likely to phenocopy GABAB(1) 

knock-out mice which display a host of negative effects including increased pain 

sensitivity (Schuler et al. 2001). 

GABAB signaling occurs through only one receptor subtype, and thus selective 

agonists/antagonists with limited side-effect profiles probably cannot be developed. This 

is demonstrated by the fact that a knock out of the GABAB subunit known to bind 

GABA, GABAB(1), prevented the classical effects of baclofen administration and ablated 

radio-ligand binding of a GABAB antagonist (Schuler et al. 2001). Alternatively, if one 

could potentiate signaling of GABAB receptors to only reduce glutamate release without 

influencing other functions, this may be a novel method for the control of seizures. To 

understand how this might be possible we must understand GPCR signaling and its 

regulation in more depth. 

GPCR signaling 

GPCRs function in part through the activation of heterotrimeric G-proteins. There 

are several families of heterotrimeric G-proteins, each activates or inhibits a specific set 
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of effectors. Effectors may include enzymes or ion channels in the cell. As previously 

mentioned, activation of a number of GPCRs appears protective from seizures. The one 

commonality of these receptors is that they activate the Gi/o family of heterotrimeric G-

proteins. The relevance of this family is further highlighted by the fact that in vivo 

administration of pertussis toxin (PTX), which inactivates the Gi/o family, lowers the 

amount of excitatory stimulus required to induce seizures in rats (Ormandy & Jope 1991). 

The Gi/o family consists of several members which generally act to reduce 

neuronal excitability. In recombinant systems, all members of the Gi/o family are capable 

of reducing neurotransmitter release by suppressing the prerequisite activity of N-type 

calcium channels Family members can also activate G protein-coupled inwardly-

rectifying potassium (GIRK) channels which hyperpolarize neurons. Lastly, the family 

blocks the production of cyclic AMP, a common signaling molecule within cells that 

influences a variety of cellular events (Albert & Robillard 2002). When studied in more 

physiologically relevant systems, however, distinct roles for particular family members 

begin to emerge. In these cases, each Gi/o family member is thought to preferentially 

signal through only a subset of potential effectors, some of which are unique to the family 

member (Duan et al. 2007). 

In an attempt to understand G-protein signaling, G-protein null mice have been 

generated. Mice lacking a single inhibitory G-protein display surprisingly mild 

phenotypes. This is likely due to compensation by other family members. For example, 

despite data showing that inhibition of N-type calcium currents by GABAB is Go-

dependent under physiological conditions (Campbell et al. 1993), Go knock-out mice 

have altered kinetics, but not diminished signaling (Greif et al. 2000). Results such as 
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these clearly limit the utility of using knock-out mice to study the G-protein component 

in physiological GPCR signaling. This background raises three questions.  

1) How can one understand the role of individual family members?  

2) Further, even if one were able to enhance their inhibitory action would it have 

a beneficial effect?  

3) Lastly, how would one pharmacologically target the function of a single 

family member?  

To answer these questions we need a better appreciation for the details of the system. 

The G protein cycle 

In their inactive state, heterotrimeric G-proteins exist as trimers, consisting of an 

α, β and γ subunit with the α subunit bound to a βγ complex and guanosine diphosphate 

(GDP) (Figure 1.1 step 1). Agonist binding to a GPCR causes a conformational change 

within the GPCR which induces the G-protein to exchange GDP for guanosine 

triphosphate (GTP) (Figure 1.1 step 2). The α subunit then dissociates from the βγ 

complex and each part of the trimer may then interact with downstream effectors (Figure 

1.1 step 3). The α subunit has intrinsic GTP hydrolysis activity allowing for cleavage of 

the GTP terminal phosphate, regenerating α bound to GDP. Inactive trimer is then able to 

reform (Birnbaumer 2007a). To understand how to leverage this system in the study of 

individual G-proteins requires one additional component which is introduced below. 



 

16 

 

Figure 1.1GPCR cycle 

GPCRs form complexes with heterotrimeric G-proteins in the basal state (Step 1). Upon agonist binding 

(star) GPCRs induce heterotrimeric G-proteins to exchange GDP for GTP (Step 2). The α and βγ subunits 

of the G-protein dissociate and interact with effectors (Step 3). Activation of some G-proteins is then 

terminated by a family of proteins called Regulators of G-protein Signaling (RGS). If RGS proteins are 

unable to act on the α subunit only a substantially slower self-catalyzed pathway is available to terminate 

signaling.  

 

Discovery of Regulators of G-protein Signaling (RGS) proteins 

 After the isolation of G-proteins in 1981 (Sternweis et al. 1981), a clear 

understanding emerged about the role of GTP hydrolysis in the termination of GPCR 

signals (Ross & Gilman 1980). However, it became obvious by the late 1980s and early 

1990’s that there was a discrepancy between the biochemical GTPase activity of G 

subunits and the turn-off rate of physiological signals. This was clearly documented in 

the visual system where the measured GTPase activity of transducin (Gαt) was about 10 

times slower than the turn-off of physiological responses to light (Chabre & Deterre 

1989). This was attributed in part to effects of the phosphodiestrase (Arshavsky & 

Bownds 1992) but other studies suggested the involvement of another protein (Dratz et 

al. 1987). This was also about the time when GTPase accelerating proteins (GAPs) for 

the oncogene ras were discovered (Adari et al. 1988) leading to the suggestion that there 
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might be similar GAPs for heterotrimeric G-proteins. The solution to this conundrum 

ultimately came from studies of yeast and worms. 

 Pheromone signaling in the mating of yeast (Saccharomyces cerevisiae) utilizes 

GPCRs and its study has revealed a number of key insights into G-protein signaling 

mechanisms including the role of G subunits as active signaling elements and the 

identification of RGS proteins. Haploid yeast secrete pheromones which act on GPCRs in 

yeast of the opposite mating type. This induces growth arrest and events that that promote 

fusion of the two cells for mating. Chan and Otte discovered a mutant yeast strain (sst2) 

that was supersensitive to the  factor pheromone (Chan & Otte 1982). The mutant strain 

also had a prolonged pheromone response; in continuous presence of α factor, the 

budding returned to baseline after about 4 hrs for the wild type cells but in sst2 yeast the 

effect of α factor lasted more than 6 hours after just 1 hr of exposure. This effect of the 

Sst2 protein was through direct actions on the G protein α subunit (Dietzel & Kurjan 

1987; Dohlman et al. 1995) and Sst2p is now known to represent the first member of the 

family of RGS proteins. 

Studies about the same time in the model organism Caenorhabditis elegans 

identified the gene EGL-10 which suppresses serotonin signaling through the Goa protein 

(Koelle & Horvitz 1996). This study and several others (Druey et al. 1996) defined the 

large mammalian RGS family, members of which have sequence homology to the G-

protein regulators from the model organisms. Soon thereafter, the mechanism of action 

was shown to be GAP activity on the α subunits of Gαi and Gαq G-protein family 

members (Berman et al. 1996). 
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One primary principle of RGS action on G subunits relates to specificity of 

different RGS proteins for the G subunits. Surprisingly, this specificity is relatively 

limited when examined in biochemical studies with purified RGS and G proteins. The 

Gi/o and Gq family are the primary targets and to date there have not been convincing 

demonstrations of an RGS protein acting as a GTPase Accelerating Protein (GAP) at a Gs 

protein. Figure 1.2 summarizes extensive literature on this point.  

Beyond this simple analysis of purified proteins – generally in solution – there is 

clear specificity at the level of expression in different cell types and brain regions. Also 

substantial emerging literature addresses specificity driven by complex formation 

between RGS proteins and other signaling molecules in cells – including receptors and 

several scaffold proteins such as spinophilin, R7 binding protein, and RGS-GAIP-

interacting protein. 

Combined these data indicate the potential role for RGS inhibitors as possible 

therapeutics in the modulation of GPCR signaling. It remains to be determined which 

RGS would be most useful to target. Each family member is distributed in a subset of 

tissues indicating a potential role in modulating specific disease states (Blazer & Neubig 

2009). In an attempt to identify the function of individual family members in specific 

disease states, RGS null mice were generated for many different RGS family members. 
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Figure 1.2 Selectivity of RGS proteins for heterotrimeric G-proteins 
 

Drawback of individual RGS null models 

Since RGS proteins reduce GPCR signaling, Genetic deletion of an RGS should 

potentiate signaling by the G-protein upon which the RGS acts physiologically. Several 

RGS proteins for which there is quite specific tissue expression show prominent effects 

in knockouts that relate to their tissue locus (RGS1 in lymphocytes, RGS4 in SA node, 

RGS9 in eye and striatum, and RGS13 in mast cells). Unfortunately, the phenotypes of 

most RGS null mice have been surprisingly modest; many RGS null mice appearing 

normal unless careful testing is done to elicit a specific phenotype. This is probably due 

at least in part to the functional redundancy among the ~20 RGS protein family members 

(Zhong & Neubig 2001). For example, in atrial myocytes there are 7 RGS proteins with 

abundant RNA expression (Doupnik et al. 2001) and 5 of them (RGS3, 4, 10, 17, and 19) 

have broad specificity for Gi and Gq proteins.  

These findings create some concern about the utility of RGS inhibitors as 

potential therapeutics. However this concern is mollified through several lines of 
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evidence. One potential reason for the limited phenotypes is that RGS proteins may play 

a more prominent physiological role under stress or in pathological situations, thus 

requiring analysis of these animals in specific disease models. This is supported by the 

fact that RGS mRNA levels are modulated by seizures (Gold et al. 2002). Also, while 

RGS4 null mice do not display striking baseline phenotypes, in a mouse model of fragile 

X syndrome with spontaneous seizures, elimination of RGS4 function is able to 

ameliorate many of the pathophysiological phenotypes (Pacey et al. 2009). This suggests 

that RGS inhibitors should have minimal side-effects in normal individuals, but hopefully 

provide benefit in disease processes. 

Given their likely functional redundancy and the large number of different RGS 

proteins, it will be virtually impossible to undertake combinatorial knockouts of all RGS 

combinations to understand the full contribution of RGS proteins to physiological 

processes. Despite the large family size, and lack of specificity of many RGS proteins for 

specific Gα subunits how can the goal of my thesis, to identify the function of Go in vivo 

be addressed? Genetics studies in yeast will provide a solution in the form of a mutation 

that prevents the action of all RGS proteins on a particular Gα subunit. This eliminates 

the need for genetic deletion of RGS proteins and provided the ability to dissect the role 

of specific Gi/o family members due to the significant role RGS proteins play in 

negatively relating Gi/o signaling. 

Development of a novel model to study GPCR signaling 

 In 1998, Dohlman and colleagues undertook a genome-wide mutagenesis study in 

yeast to discover mutations that could phenocopy the enhanced pheromone sensitivity of 

the sst2 RGS knockout allele. The only mutation identified was a glycine to serine 
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mutation at residue 302 (RGSi) in the G subunit Gpa1 (DiBello et al. 1998). The 

mutation had no effect on nucleotide binding to or release from Gpa1. However, the RGS 

protein GAIP (a.k.a. RGS19) failed to increase GTP hydrolysis by the G302S mutant 

Gpa1.  

Subsequent biochemical studies showed that this mutation had general effects across 

multiple G and RGS proteins. In the Neubig lab, Lan et al showed that the analogous 

G184S mutations in Go and Gi1 blocked GAP activity and binding of the mutant G 

subunits to RGS4 and 7 (Lan et al. 1998). There was a >100-1000-fold reduction in the 

affinity of AlF4
-
 activated G subunits for the RGS proteins and GAP activity was 

undetectable on those mutants. Due to nature of the mutation it will be referred to 

throughout this thesis either by the amino acid substitution G184S or as RGSi for RGS 

insensitive. This mutation is in the critical switch II glycine of G subunits which occurs 

at the contact interface between RGS4 and Gi1 (PDB: 1agr) (Tesmer et al. 1997) as well 

as in other RGS proteins whose co-crystal structures with a G subunit have been solved. 

A different situation exists for RGS homology (RH) domain-containing proteins that 

don’t function primarily as GAPs for a G subunit (including the RH-domain-containing 

RhoGEFs such as LARG, PDZRhoGEF, and p115rhoGEF as well as the G protein 

coupled receptor kinase or GRK RH domains). Their interaction mode with G is quite 

different. Distinct surfaces on those RH domains bind to the G subunit and they contact 

different surfaces on the G subunit as well. In the case of these RH domains, the G184S 

mutation in switch II of the G subunit does not prevent G/RH binding or function 

(Kaur et al. 2011). 
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For all examples to date in the “classical” RGS proteins (families R4, R7, R12, and 

RZ) the RGSi mutation appears to abolish RGS binding to G and GAP function. Also, 

there has been no demonstrated effect on other functions of the G subunit including: 

binding to G, activation by receptor, or coupling to effector (Fu et al. 2004). 

Consequently, the switch II G184S mutation provides a clean molecular phenotype for 

analysis of the role of individual Gsubunits and RGS binding and/or GAP activity in 

biological function. 

Utilizing this mutation to study inhibitory G protein signaling provides three 

advantages compared to RGS null mice. First, this approach eliminates the action of all 

RGS proteins at the expressed mutant G subunit, overcoming potential functional 

redundancy. Second, the results differ from an RGS deletion in that only effects mediated 

through the RGS domain/G interaction would be affected. The role of other functional 

domains of the RGS protein (e.g. GoLoco or RhoGEF) would not be altered in these 

mutants but would be lost through genomic RGS deletion. In that sense, the G G184S 

mutants give better insights into the actions of potential drugs that would block RGS 

binding to G subunits (Neubig & Siderovski 2002); (Jin et al. 2004) (Roman et al. 

2007) than a null mouse might. Third, this approach allows one to study the role of 

specific Gi/o family members because signaling will only be potentiated through 

pathways which depend upon the mutant Gα subunit. This therefore provides a key 

method to accomplish one of my thesis goals, dissecting the role of Go within the CNS. 

To support these ideas prior in vitro work is presented. 
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Cellular studies  

In the original paper defining the yeast G184S mutation, DiBello et al. also showed a 

functional effect of the analogous mutation in mammalian Gq (DiBello et al. 1998). In 

CHO cells, transfected with the 5-HT2c receptor, serotonin increases calcium 

mobilization through Gq activation. RGS7 co-expression along with wildtype Gq reduced 

this calcium mobilization but the effect of RGS7 was abolished when a G188S mutant 

Gαq subunit was co-transfected with the RGS.  

Similarly strong effects of the G184S mutation have been defined on Gi/o functions in 

cellular systems. One commonly used tool to study inhibitory G-proteins (i.e. the Gi/o 

family) is pertussis toxin (PTX) which modifies the G to prevent activation by GPCRs. 

Protecting the G through an amino acid mutation can protect it from modification, 

making it insensitive to PTX (i.e. PTXi). Treating cells with PTX and then transfecting in 

PTXi G-proteins allows one to study their unique contribution without any endogenous 

activity due to PTX treatment. 

Clark et al used this approach to determine the effect of the G184S mutation in Go 

on opioid-induced inhibition of adenylyl cyclase (AC) in C6-mu cells – a rat glioma cell 

line stably expressing mu opioid receptors (Clark et al. 2003). PTX abolished the opioid-

dependent AC inhibition which was restored by stable expression of the PTXi-Go. Use 

of a PTXi/RGSi double mutant showed a strikingly greater inhibition of AC with 

morphine being converted from a weak partial agonist to a full agonist. Also, the full 

agonist [D-Ala2, N-MePhe4, Gly-ol]-enkephalin (DAMGO) showed a nearly 50-fold left 

shift of the dose response curve. These data were interpreted to indicate that endogenous 

RGS proteins were strongly suppressing the opioid inhibition of AC through Go and that 
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elimination of the RGS GAP on Gαo activity enhances inhibition. Subsequent studies 

extended this finding to other Gi/o family members and substantially larger effects were 

seen on the maximum AC inhibition for partial agonists while full agonists generally 

showed an increase in potency (decrease in EC50) when RGSi G subunits were 

expressed (Clark et al. 2008). 

 The RGSi mutant G subunits also profoundly change ion channel regulation in 

primary neuron cultures. Jeong and Ikeda (Jeong & Ikeda 2000) showed, using this 

approach, that norepinephrine (NE) induced inhibition of N-type calcium currents in rat 

superior cervical ganglion (SCG) is subject to regulation by RGS proteins. SCG neurons 

were transfected by intranuclear injections with PTXi Go or PTXi/RGSi Go. The 

kinetics of calcium current inhibition and recovery with a 60 sec pulse of NE were 

similar for neurons with PTXi Go compared to control neurons. PTXi/RGSi Go 

mutants showed a similar maximum NE-induced inhibition of the calcium current but the 

rate of recovery from the inhibition was greatly slowed in PTXi/RGSi mutants as 

compared to that seen in PTXi-transfected or normal cells (from 10-30 seconds in 

controls to >1-3 minutes with RGSi Go). In addition to the change in channel kinetics, 

the PTXi/RGSi mutants also resulted in an 8-fold leftward shift in the dose response 

curve for NE induced current inhibition. This was one of the first demonstrations that 

elimination of endogenous RGS function could strongly potentiate agonist function in a 

mammalian system. These actions of RGS function on calcium channels also have 

important implications for synaptic function. Chen and Lambert (Chen & Lambert 2000) 

showed that adenosine-mediated presynaptic inhibition in primary cultures of rat 

hippocampal neurons was restored to PTX-treated cells by viral transduction with PTXi 
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G-proteins (Go or Gi1). Furthermore, the recovery from adenosine-induced presynaptic 

inhibition was much slower in neurons expressing PTXi/RGSi G subunits as compared 

to those with only PTXi G protein. The time constant for recovery in the RGSi/PTXi Go 

mutant was increased to 40 sec as compared to 3 sec in the PTXi mutant Go.  

Based upon this evidence, RGS protein function, as detected by use of the RGSi 

G subunits is profound – especially in neural systems. Furthermore, these data support 

the premise that Gα function can be elucidated using an RGSi approach as RGS proteins 

are significant negative regulators of Gi/o signaling and selective blockade of their action 

on a single Gi/o family member in vivo is likely to yield profound molecular changes. 

In vivo studies 

Given the pronounced effects of the RGSi G subunit mutations in the cellular 

studies described above, the Neubig lab embarked on an effort to apply this system to in 

vivo studies in whole animals. One key consideration was how to maintain normal 

patterns and levels of expression of the mutant Gα. To address this, a knock-in strategy 

was employed where the mutant gene replaces the wild-type gene at its normal genomic 

locus. The details of how this was accomplished are outlined in previous studies (Fu et al. 

2004). In brief, the targeting construct contains the mutant codon (G184S) in exon 5 of 

Gnao1 or Gnai2 as well as a diagnostic restriction site (PvuI) that is compatible with the 

coding sequence in the mutant protein. The neo selection marker for isolating targeted 

embryonic stem (ES) cells was placed in the intron between exons 5 and 6. Preliminary 

studies (Fu et al. 2004) showed that leaving the entire neo marker intact lead to markedly 

reduced expression of the mutant Go so loxP sites flanking the neo marker were 

introduced to permit its removal after the mice were generated. Introduction of cre 
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recombinase by transfection in ES cells or by breeding mutant strains with cre-expressing 

mice left only the small single loxP site in the intron which permitted normal levels of 

G subunit expression (Fu et al. 2004). 

Gene dosage effects 

The G G184S mutation, unlike RGS null mutants, has a dominant gain-of-

function phenotype. To understand this, it is worth considering a scenario in which there 

is one G protein and one RGS protein in a system and the RGS protein suppresses the 

action of the G protein by 99% due to acceleration of turn off. In Table 1.1, the predicted 

effects of a heterozygous mutation of Gnai2 
+/G184S

 (or generically G
+/G184S

) compared 

to a RGS 
+/-

 is illustrated using a simple model based on rates of RGS-mediated G 

subunit deactivation.  
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 Signal Strength 

 RGS
+/+ 

RGS
+/- 

RGS
-/- 

G 
+/+ 1 2 91 

G
+/RGSi 46 46.5 91 

G
RGSi/RGSi 91 91 91 

Table 1.1 Predicted effects due to mutations in G subunit and RGS protein 

This table illustrates predictions of a simple model of G protein activation and deactivation and compares 

results for loss-of-function mutations in the RGS vs RGSi mutations in the G subunit. A simple 

equilibrium is assumed between an inactive G protein (G) and an active G protein G*. The total amount of 

G protein is 100. The rate of activation is constant for all situations (1 sec
-1

). The rate of deactivation is 

equal to 0.1 sec
-1

 for G protein with no RGS present and is 100 sec
-1

 with the full amount of RGS present 

(1000x stimulation). A heterozygote RGS
+/-

 is presumed to have half as much RGS so would have half the 

rate of deactivation. A heterozygous G 
+/RGSi

 is presumed to have half of its G protein behave like the 

RGS
+/+

 situation and half like the RGS
-/-

 situation. The signal strength is calculated to be equal to the 

amount of G* with 100 being full activation. 

 

 It is striking that, with these parameters, a RGS 
+/-

 shows only a 2-fold increase in 

signaling while a heterozygous G mutant (Gα 
+/RGSi

) shows a 46-fold increase. 

Homozygotes of both sorts show a strong 91-fold increase since both produce a complete 

loss of RGS function. Different parameters for the rates of activation and basal and 

stimulated deactivation would alter the magnitude of the effects but the qualitative result 

that the heterozygous RGSi G mutants give a much larger effect than the heterozygous 

RGS 
+/-

 would always be the case. Also, if there was more than one RGS acting on the 

system, a complete knock-out of a single RGS might behave more like a heterozygote 

RGS
+/-

 in this model in which only one RGS is present. Consequently, the G G184S 

mutants are expected to have much stronger phenotypes, with G
 +/RGSi

 heterozygotes 

showing clear effects perhaps approaching those of a homozygous RGSi mouse. 

RGS-regulated, Gα subtype-selective signaling in the central nervous system 

The Cornu Ammonis region 3 (CA3) of the hippocampus has one of the lowest 

seizure thresholds in the CNS due to recurrent collaterals that can mediate synchronous 
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burst firing behavior in neurons, a feature found among large populations of neurons 

during many seizures (Goldenstein et al. 2009). Synchronous firing within this region can 

be brought on experimentally by bicuculline-mediated blockade of the inhibitory GABAA 

receptors. The synchronous firing is suppressed by 2 adrenergic agonists such as 

epinephrine and UK14304, an effect mediated by 2a adrenergic receptors (Goldenstein 

et al. 2009). Gnao1
+/G184S

 RGSi mice show an 8-fold increase in epinephrine potency 

compared to wild-type mice, whereas Gnai2
+/1G84S

 RGSi mice are comparable to control 

mice. The selective potentiation of the 2a adrenergic receptor effect by the RGSi Go 

mutant suggests that this mechanism is primarily mediated by Go (at least compared to 

Gi2). While it is possible that Gi2 is involved but is not regulated by RGS proteins, the 

contrast of this result to those in serotonin signaling (see below) suggests otherwise. 

Another exciting phenotype that further supports the role of differential Gi/o 

subtype function in the CNS relates to the actions of serotonin in murine models of 

antidepressant action. In tail suspension tests, antidepressants reduce the immobility time 

of mice. The Gnai2
G184S/G184S

 mice show a spontaneous and nearly maximal reduction of 

immobility time that is reversed by a serotonin 5HT1A antagonist suggesting that 

endogenous serotonin signals sufficiently strongly in the mutants to produce an 

antidepressant-like effect. The Gnai2 
+/G184S

 mice produce an intermediate reduction of 

immobility times and, in those mice, the dose-response for the 5HT1A agonist 8-OH-

DPAT is “left-shifted” 14-fold while that for the selective-serotonin-reuptake inhibitor 

(SSRI) fluvoxamine is left-shifted 6-fold (Talbot et al. 2010). Consequently, an RGS 

protein action at Gi2 seems to be strongly suppressing the antidepressant-like actions of 

serotonin. Intriguing evidence of the specificity of this effect is seen in two observations. 
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First, norepinephrine-dependent antidepressants (e.g. amitriptyline) are not potentiated in 

the Gnai2 
+/G184S

 mutant mice. Second, there is no effect of the mutation on the 

hypothermic effect of 8-OH-DPAT. The strong effect that the RGSi Gi2 mutation has on 

5HT-dependent antidepressant-like effects with no effect on hypothermia raises the 

possibility that modulating RGS actions could greatly enhance the specificity of drug 

action – enhancing beneficial effects while not potentiating side effects.  

 

Overview of findings  

My thesis will accomplish the goals set forth at the outset of this chapter through 

the use of the unique model that the G184S mutation provides. I will outline a significant 

role for Go in modulating kindling susceptibility within a murine model. In contrast to 

prior work that only highlighted a protective role for Go in the development of seizures, 

my thesis will highlight the detrimental effects enhanced activity has in a murine model 

of epilepsy. Both pharmacological and physiological changes will demonstrate that 

enhanced Go activity induces epileptogenesis. Genetics will also be employed to identify, 

for the first time, a putative modifier region of epilepsies of GPCR signaling origin. 

In Chapter 2, I determine that mice heterozygous for the Gnao1 G184S gain-of-

function allele display phenotypes indicative of enhanced presynaptic dopamine 

autoreceptor inhibition of transmitter release. I also demonstrate that mutants experience 

spontaneous adult lethality, abnormal spontaneous electrical activity within the brain, and 

marked sensitization to an experimental model of epilepsy.  

In Chapter 3, I define a novel epilepsy modifier locus, Mogs1, on Chr 17 (41-

70Mb) which mitigates both premature death and sensitization to the experimental model 
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of epilepsy in mutant mice on the B6 background. Development of recombinant mice 

allow for the identification of the 41-51Mb subregion of Mogs1 as sufficient to afford 

protection.  

In Chapter 4, I demonstrate that the Gnao1 G184S mutation reduces GIRK action 

among three GPCRs known to modulate seizure and/or kindling susceptibility. Further, I 

confirm that these findings are not due to a loss of Go function or disruption of 

transcriptional control of GIRK channels.  
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Chapter 2  

Initial characterization of Gnao1 
+/RGSi

 mice reveals a pro-seizure 

phenotype 

Summary 

Many physiological processes, including those involved in epilepsy, are 

modulated by the Gi/o family; however the specific family member involved is 

controversial in many cases. Here, I examine the role of one family member, Go, the most 

abundant inhibitory G-protein in the brain. A gain-of-function knock-in mutation that 

prevents termination of Go-mediated signaling by Regulators of G protein signaling 

(RGS) proteins results in enhanced Go signaling. Homozygous Gnao1
G184S/G184S

 

mutations are perinatal lethal. Heterozygotes are viable, but experience strain-dependent 

death between 15-40 weeks of age and increased frequency of interictal epileptiform 

discharges. Gnao1
+/G184S

 mice also have an increased rate of sensitization to 

pentylenetetrazol (PTZ) kindling, a model with parallels to human epileptogenesis. One 

potential mechanism for these findings would be enhanced suppression of GABA release. 

While suppression of GABA release could not be directly measured, autoreceptor 

function in another neurotransmitter system, dopamine, was assessed. A reduction in 

novelty-induced locomotion and levels of a common dopamine metabolite are indicative 

of less dopamine release, possibly through enhanced autoreceptor function. 
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 This work was the effort of many people. Kadee Luderman in the Gnegy lab was 

instrumental in planning and execution of dopamine studies. However, I physically 

performed all the dopamine experiments. The Parent lab performed all video EEG work. 

Undergraduates who contributed meaningfully to this work by doing genotyping and 

assisting with kindling experiments include Kristen Gilbert, Hans Dalton and Kevin 

Kohut. 

Introduction 

Epilepsy 

Despite epilepsy being one of the most common serious neurological disorders, 

current treatments leave roughly one third of patients without relief (Engel 1996). Many 

current therapies target ion channels. This common mechanism of action may contribute 

to the high percentage of patients that are refractory to current medication. New 

therapeutics targeting metabolic pathways might be an effective adjuvant for a portion of 

the refractory population. 

One potential new target to treat epilepsy is the family of G-Protein Coupled 

Receptors (GPCRs). Seizures can be suppressed by increased signaling through many Gi/o 

coupled receptors such as adenosine A1 (Chen et al. 2012), GAL2 (Lu et al. 2010), α2 

(Shouse et al. 2007), 5HT1A (Bagdy et al. 2007; Pericic et al. 2005), µ-opioid (Grecksch 

et al. 2004), and metabotropic glutamate (Alexander & Godwin 2006) receptors. Also, 

pretreatment of rats with pertussis toxin, which inhibits Gi/o family function, greatly 

potentiates seizure induction through pilocarpine or kainic acid administration (Ormandy 
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& Jope 1991). Further, genetic ablation or chemical inhibition of RGS4, a negative 

regulator of Gi/o and Gq signaling, reduces seizures (Chen et al. 2012; Pacey et al. 2009). 

The picture, however, is more complicated than simple protection by Gi/o family 

member activation. While increased activation or expression of the Gi/o coupled GABAB 

receptor can suppress generalized tonic-clonic seizures (Pacey et al. 2009), it can also 

lead to absence seizures (Hosford et al. 1992). This complexity may be partially 

explained by the fact that GABAB receptors activate multiple downstream effectors, 

likely including multiple Gi/o family members. Thus it is possible that specific effectors 

are preferentially involved in specific outcomes. The specific effector involved in 

GABAB-mediated protection against convulsive seizures has yet to be identified. 

Another potential pitfall in the current development of epilepsy medications is the 

use of acute seizure models in initial screening for efficacy. Acute seizure models 

(Loscher 2011) do not assess epileptogenesis (ie the maladaptive changes that occur after 

excitatory stimuli that lead to subsequent enhancement of seizure susceptibility) which is  

a process thought to occur in human epilepsy (Morimoto et al. 2004). Electrical or 

chemical kindling models (Bialer & White 2010) attempt to assess this with repeated sub-

threshold excitatory stimuli that eventually result in generalized seizures. 

Pentylenetetrazol (PTZ) is a non-competitive GABAA antagonist and a single large dose 

induces seizures by engaging the brainstem (Peterson & Albertson 1998). However, 

lower doses of PTZ, in a repeated-dose kindling protocol, preferentially activate the deep 

prepiriform cortex (Peterson & Albertson 1998). This causes remodeling that parallels 

changes in human epileptic brains such as mossy fiber sprouting within the dentate gyrus 
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(Golarai et al. 1992; Lee et al. 2012). Therefore to better assess the role of inhibitory G-

proteins in epilepsy I employed a PTZ kindling model. 

I hypothesized that Go is the major inhibitory G protein responsible for suppressing the 

development of seizures. 

The rationale includes the following observations: 

1) Gnao1 
+/G184S

 mice show enhanced epinephrine-mediated suppression of epileptiform 

bursting in hippocampal slices (Goldenstein et al. 2009) 

2) Go is the most highly expressed Gi/o family member within the brain, composing 2% of 

membrane bound protein (Birnbaumer 2007b) 

3) Go suppresses neurotransmitter release paralleling the actions of many epilepsy 

medications (Chen & Lambert 2000)  

4) Go is activated by the adenosine A1 receptor (Fu et al. 2006), the activation of which is 

protective in several seizure and epilepsy models (Masino et al. 2011); (Chen et al. 2012; 

Li et al. 2007) 

Contrary to my hypothesis, enhanced Go signaling resulted in spontaneous death 

by 15-40 weeks of age, frequent interictal epileptiform discharges (IEDs), and 

accelerated sensitization in a PTZ kindling model. Possible explanations for these 

unexpected findings represent a focus of my thesis. 

Enhanced presynaptic suppression of GABA release is one potential mechanism 

to explain the aforementioned data. While I was not able to directly assess this 



 

35 

hypothesis, the dopamine system was used as a model to study the effect of the Gnao1 

G184S
 
mutation on neurotransmitter release. 

Dopamine D2 receptors, a model of presynaptic inhibition by Go signaling 

Existing literature supports the hypothesis that Go is one of the major 

heterotrimeric G proteins to be activated by dopamine D2 autoreceptors. Gnao1 
-/-

 mice 

lack the high affinity D2 binding conformation which indicates that the majority of D2 

receptors are likely to associate with Go. Further, mice lacking both Gi1/2, or Gi1/i3 did not 

display a similar loss in high affinity binding (Jiang et al. 2001). In vitro data also 

provides functional evidence of D2 coupling to Go. In a pituitary cell culture model using 

GH4ZR7 cells, the D2 receptor inhibits calcium channel activity primarily through Go 

(Banihashemi & Albert 2002). 

Results 

Gnao1 
+/G184S

 mutant mice die perinatally 

Gnao1 
G184S/G184S

 mice die perinatally. Of mice surviving to weaning from N4 

heterozygote x heterozygote crosses on the 129S1/SvImJ background only 5% (2 of 41, 1 

male & 1 female) were homozygous mutants, with heterozygotes also underrepresented 

(Figure 2.1a Chi-squared χ² df(2)=16.02 p < 0.001). On the N4 B6;129S background, no 

homozygotes survived to weaning out of fifty-five offspring from heterozygote x 

heterozygote crosses and heterozygotes were underrepresented (Figure 2.1b Chi-squared 

χ² df(2)=45 p < 0.0001). Sex does not influence genotype distributions on either 

background (data not shown). To understand the loss of viability of mice carrying the 

G184S allele, timed pregnancies were performed for N7 B6 heterozygote x heterozygote 

crosses and embryos were collected. At E18.5, genotypes did not differ from the expected 
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Mendelian ratio (Figure 2.1c) indicating that the loss of viability occurred after E18.5 but 

before two weeks of age. Pregnant females were then monitored starting at E19 for birth 

of pups every 4-5 hours. There were very few viable homozygous offspring and 

heterozygotes were also under-represented (Figure 2.1d, Chi-squared χ² df(2)=8.76 p < 

0.02). Many homozygotes and some heterozygotes were found dead but there were no 

obvious anatomical abnormalities. This does not appear to be due to reduced Go 

expression as Go protein expression in the brain of heterozygotes at 8-12 weeks of age 

was found to be normal (Figure 2.2).  
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Figure 2.1 Gnao1 +/G184S mutant mice experience decreased perinatal viability 

Heterozygotex heterozygote crosses were performed on either the 129S1/SvImJ or C57BL/6J background 

as indicated. Viability was determined at various ages from E18.5 to weaning. a) N4 129S Gnao1 G184S 

mutant mice are under-represented at weaning (Chi-squared χ² df(2)=16.02 p < 0.001). b) No N4 B6;129S 

Gnao1 
G184S/G184S mice were observed by 2 weeks of age and heterozygotes are under-represented (Chi-

squared χ² df(2)=45 p < 0.0001). c) N7 B6 Gnao1 
G184S/G184S and Gnao1

 +/G184S mice are present at expected 

numbers at E18.5. d) Viable N7 B6 Go mutant mice are underrepresented within a few hours of birth (Chi-

squared χ² df(2)=8.76 p < 0.02). 
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Figure 2.2 Gnao1 +/G184S mice have normal Gαo protein levels 

a) Go expression in whole brain lysates from drug-naïve, B6129F1-Gnao1
 +/G184S female mice at 8-12 

weeks of age was assessed by Western blot. b) The ratio of Go immunoreactivity to that of the Tuj1 

loading control was quantified and found to be similar regardless of mutation status. 
 

Epilepsy 

Gnao1
+/G184S mice experience spontaneous death in adulthood 

Both male and female N7 B6 

heterozygotes, sired from a single N6 B6 

heterozygote male, experience lethality 

starting at ~80 days (11-12 weeks) with 

~50% dead by 25 weeks of age (Figure 2.3 

Gehan-Breslow-Wilcoxon df(1)=12.8 

p<0.001 B6 mutant vs wildtype control). 

Interestingly, there appeared to be 

heterogeneity in survival as the ~50% that survived to 25 weeks showed little further 

premature lethality.  

Gnao1
+/G184S mice have EEG abnormalities 

Figure 2.3 Gnao1+/G184S mice experience spontaneous 

death in adulthood 

N7 B6-Gnao1
 +/G184S 

mice die prematurely regardless 

of gender 
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To try to identify a cause of 

death, N7 B6-Gnao1 +/G184S mice 

(n=11) were observed three times per 

week for 30 weeks for changes in 

weight, grooming behavior, activity 

level and evidence of seizures. Three 

out of four male mice died during the 

observation period. No seizures were 

observed, nor were changes in weight 

or behavior in the days prior to death 

(Figure 2.4). However, subsequent IR video surveillance conducted around the clock (8 

mice for 16 weeks) revealed a spontaneous seizure in one mouse just prior to death. 

To further support seizures as a cause of death we employed video EEG on B6 

females. A representative EEG trace of all mice at one point in time is presented in 

Figure 2.5a. Mutant mice had a substantially elevated frequency of interictal epileptiform 

discharges (IEDs) (Figure 2.5b, unpaired t-test t=7.37 df=2.2, p < 0.02). The IEDs 

seemed to occur more frequently during electrographic sleep than during wakefulness. 

Frequently, they occurred in runs of 1-3 Hz, but they did not meet criteria of 

electrographic seizures due to their short duration. Tapes of mice were also observed 

during the lights-on period for behavioral signs of seizure activity, as it is possible that 

cortical electrodes would not detect localized seizure activity. During this time multiple 

potential seizures (with modified racine score above 1 & lasting > 10 seconds) were 

observed in the mutant mice, however they could not be confirmed via EEG data.  

Figure 2.4 No changes are observed in mouse behavior or 

weight prior to sudden death 

Male N7 B6 Gnao1
 +/+

 (average shown with SEM) and 

B6 Gnao1
 +/G184S mice were observed three times per 

week. Behavior, weight, and deaths were recorded 3 

times per week. No reproducible trend was observed in 

mutant mice prior to death. Three deaths were observed 

as indicated by skull and crossbones. 

 



 

40 

 

Figure 2.5 B6 Gnao1 +/G184S mice have a greater frequency of IEDs 

a) Simultaneous EEG of heterozygote (n=3) and wildtype (n=2) mice is presented at a representative time 

point. Vertical bars demark the passage of 1 second. B) Mutant B6 females experience greater than 10 fold 

increase in IEDs compared to control (unpaired t-test t=7.37 df=2.2, p < 0.02). 
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Gnao1 
+/G184S mice are sensitized to PTZ kindling  

To determine the physiological 

significance of the elevated IEDs we 

assessed susceptibility to epileptogenesis in 

mutant mice. Female B6 Gnao1+/G184S 

mutants were more sensitive to PTZ 

kindling than control (Figure 2.6a Gehan-

Breslow-Wilcoxon df(1)=5.74 p<0.02). The 

increased PTZ kindling susceptibility on the 

C57BL/6J background was independent of 

gender as males also showed sensitization 

(Figure 2.6b, Gehan-Breslow-Wilcoxon 

df(1)=6.88 p<0.01) just as was the case for 

spontaneous death.  

  

Figure 2.6 Gnao1 +/G184S mice have a strain-dependent 

reduction in time to sensitize to repeated low dose PTZ 

The time to undergo sensitization to PTZ kindling 

(see Methods for definition) was recorded. a) B6-

Gnao1
 +/G184S females sensitize more rapidly than 

littermate controls (Gehan-Breslow-Wilcoxon 

df(1)=5.74 p<0.05). b) B6-Gnao1
 +/G184S males also 

sensitize more rapidly than littermate controls 

(Gehan-Breslow-Wilcoxon df(1)=6.88 p<0.01). 
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Dopamine 

Gnao1 
+/G184S

 mice have reduced novelty-induced locomotion 

Mice were exposed to a new environment, which activates reward pathways 

leading to an increased exploratory behavior. More dopamine release is associated with 

more novelty-induced locomotion. Both male and female Gnao1 
+/G184S

 mice have 

reduced novelty induced locomotion (Figure 2.7). One potential explanation for this 

finding is that mutant mice release less dopamine due to enhancement of Go action. 

However, the fact that males display differences in baseline locomotion complicates 

interpretation. 
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Figure 2.7 Gnao1 +/G184S mice experience less novelty-induced locomotion 

a) Male mutant mice travel less distance within the first 30 minutes of a novel environment. [n=3, p < 0.02, 

unpaired t-test t=3.636 df=5] b) Female mutants also experience a reduction in distance traveled within the 

first 30 minutes. [n=10, p < 0.01, unpaired t-test t=3.438 df=19] c) Male wildtype mice do not reach an 

equivalent baseline level of locomotion after acclimation complicating interpretation d) Female wildtype 

mice do reach an equivalent baseline. 
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Total dopamine is unaffected, but dopamine metabolites are reduced in Gnao1 

+/G184S
 mice 

In an intact animal model, alterations in many other signaling pathways may 

result in the observed reduction in novelty induced locomotion. To more directly assess 

changes in dopamine release levels of dopamine and various metabolites were measured. 

Lower release of dopamine should result in a reduction of its metabolites. This was found 

to be the case with mutant mice having a reduced amount of the dopamine metabolite 

homo-vanilic acid (HVA). (Figure 2.8). 

 

Figure 2.8 The level of HVA is reduced in Gnao1 
+/RGSi mice 

Brains of drug naïve mice were rapidly dissected 

using a brain matrix to harvest the indicated 

regions. a) Total dopamine levels were unaffected 

by mutation [n=7] b) A common metabolite of 

dopamine, HVA was decreased within the CCP of 

mutant mice [n=7]. Abbreviations are as follows - 

CCP – caudal slide of caudate putamen. RCP – 

rostral slice of caudate putamen. NAc – nucleus 

accumbens. POA – preoptic area. VTA – ventral 

tegmental area. SN – substantia nigra. 
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Motor coordination and dopamine-induced motor activity is normal in Gnao1 
+/G184S

 

mice 

 Alternative hypotheses to explain a reduction in novelty induced locomotion 

include: less downstream response to dopamine despite equivalent release or defective 

motor coordination. To rule this out in in Gnao1 
+/G184S

 mice the ability of a D1 agonist to 

stimulate locomotion was tested. Here no 

difference was detected at roughly an EC50 dose 

suggesting that response to dopamine is not 

outside of the physiological range (Figure 2.9). 

Additional testing of motor coordination on a 

rotarod did not demonstrate a significant 

decrease in motor function due to the 

mutation ( 

Figure 2.10). 

 

 

Figure 2.10 Gnao1 +/G184S mice do not have baseline 

motor deficits 

Gnao1 
+/G184S

 mice and controls were placed on a 

rotarod at 12RPM to assess motor function. 

Gnao1 
+/G184S

 mice have a similar baseline to 

control but slightly underperformed control with 

repeated trials. This difference however was not 

significant despite a robust sample size. [n=19] 

 

 

  

Figure 2.9 D1 function is not altered in Gnao1 +/G184S 

mice  

Mice were acclimated to the recording chamber 

followed by a saline injection. Locomotion 

recorded following saline injection is “baseline.” 

D1 agonist was then injected and locomotion 

recorded as “stimulated.” Differences in baseline 

locomotion were compensated for by determining 

magnitude of increase in locomotion from saline. 

See “delta.” The mutant did not influence the 

ability of the D1 agonist to increase locomotion. 
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Discussion 

In this chapter I demonstrate that Gnao1 
+/G184S

 mutants experience spontaneous 

adult lethality, enhanced frequency of IEDs, and marked sensitization to PTZ kindling. 

This is in contrast to previous work focusing on acute inhibition of Go signaling which 

indicated a protective role for the protein. This suggests that GNAO1 should be 

considered as a potential candidate gene in human epilepsy studies as either gain or 

reduction of function appears to be detrimental. Indeed, Nakamura et al. recently found 

de novo mutations likely to cause loss-of-function or gain-of-function are associated with 

epileptic encephalopathy (Nakamura et al. 2013). 

 It was surprising that enhanced Go signaling would lead to PTZ kindling 

sensitization. Go suppresses neurotransmitter release (Campbell et al. 1993; Chen & 

Lambert 2000) and Gi/o proteins have been shown to protect against seizure activity 

(Goldenstein et al. 2009; Ormandy & Jope 1991). Given the role for Go in the inhibition 

of calcium channels, this gain-of-function mutation may mimic the paradoxical results of 

high-dose levetiracetam treatment. Levetiracetam, which is used in therapy of partial 

onset seizures, also acts on presynaptic calcium channels (Lee et al. 2009; Vogl et al. 

2012). While it has anticonvulsant effects at low doses, it can become proconvulsant at 

high doses (Shorvon 2010). 

It is also possible that developmental changes due to mutant Go are responsible for 

our observations. This is supported by the prior findings that Go activation can stimulate 

neurite outgrowth in cell culture models (He et al. 2006) and the related Gi2 G184S 

mutant alters self-renewal and differentiation in neural progenitor cells (Murai et al. 

2010). However, prior work in Gnao1 
-/-

 mice lacking functional Go has failed to identify 
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any defects in brain development (Valenzuela et al. 1997). 

Understanding the relationship between IEDs and PTZ kindling within this model 

may also provide key insights into epileptogenesis. Currently, the role of IEDs in the 

development of epilepsy is under debate. Some researchers believe that IEDs serve as a 

protective mechanism to reduce the likelihood of future ictal events (Avoli 2001). Others 

have postulated that the enhancement in interictal firing promotes mossy fiber sprouting 

and enhances development of epilepsy (Staley et al. 2011). As this debate continues, this 

mouse line should serve as a tool to validate novel anti-IED drugs and assist in the 

determination of how these novel therapeutics impact outcomes. 

The initial phenotype observed in this mouse model was sudden death and not an 

overt epilepsy syndrome. We were, however, able to observe seizures prior to death in a 

few mice with one documented on video. The Gnao1 G184S mutation also enhances 

bradycardia to muscarinic and adenosine signaling (Fu et al. 2006). One proposed 

mechanism of SUDEP is post-ictal bradycardia or hypoventilation (Surges & Sander 

2012) so a mutation in GNAO1 could exacerbate bradycardia in the setting of seizures 

which might contribute to SUDEP. Also, hypoventilation may underlie the perinatal 

lethality of the homozygous Gnao1
G184S/G184S

 mutants given the large number of non-

viable births (74%). With the combination of seizures and enhanced bradycardia, it will 

be of significant interest to determine whether humans with SUDEP might carry such a 

mutant GNAO1 allele. 

One potential mechanism behind the enhancement of Gnao1 
+/G184S

 kindling 

susceptibility is enhanced inhibition of GABA release. While this was not directly 

assessed, the dopamine system was used as a model for assessing the mutation’s effect on 
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neurotransmitter release. Here my data are in line with the hypothesis that Gnao1 
+/G184S

 

mice have reduced neurotransmitter release. Normally in response to a novel environment 

dopamine is released which promotes locomotion. Enhanced suppression of 

neurotransmitter release through D2 activity would be expected to reduce novelty-induced 

locomotion (Benoit-Marand et al. 2001). Mutants have decreased novelty-induced 

locomotion potentially indicating less dopamine release or less responsiveness to 

dopamine. This was further tested through analysis of dopamine metabolites at baseline 

which were found to be lower in mutant mice. Additionally, responsiveness to dopamine 

was assessed through direct activation of dopamine receptors known to stimulate 

locomotion. In this case the mutation had no impact on outcome. Thus, decreased 

responsiveness to dopamine and motor impairment are unlikely to be major contributing 

factors. The reduction in novelty-induced locomotion among mutants could, however, be 

due to decreased stimulus input in the novel environment. This alternative hypothesis will 

need to be tested through further experimentation. Connecting these observations to 

epilepsy, preliminary data generated by Dr. Yuan suggests that GABA release is also 

inhibited in Gnao1 
+/G184S

 mice. Figure A.3 illustrates that the mice experience both a 

lower probability and lower amplitude of spontaneous inhibitory post synaptic currents 

within the hippocampus which is indicative of presynaptic changes. Future work will 

need to be done to confirm these results and identify the mechanism. 
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Materials and Methods 

Generation of Gnao1 
+/G184S

 mice and perinatal viability experiments 

We previously reported (Fu et al. 2007; Fu et al. 2006) enhanced bradycardia in 

studies of ES-cell derived cardiocytes carrying a Gnao1 G184S knock-in. The tm1Rneu 

allele in those reports was generated in DE3 ES cells but never resulted in germline 

transmission. Subsequently, we generated a similar Gnao1 G184S knock-in (tm2Rneu) 

allele in the 129-steel derived ES line, CJ7. This allele is referred to as G184S or RGSi 

throughout this thesis. The mutant allele construction from a CJ7 bac library was detailed 

previously (Goldenstein et al. 2009). After germline transmission of the mutant allele, 

pure agouti offspring were crossed to a 129-steel derived mouse expressing Cre 

(129S/Sv-Tg Prm-cre 58Og/J stock # 003328 from Jackson Labs, Bar Harbor, ME) and 

tested for excision of the loxP-flanked Neo cassette which was previously found to 

reduce Go expression (Fu et al. 2007; Fu et al. 2006). Subsequent breeding on all genetic 

backgrounds was performed with a Gnao1
+/G184S

 male and Gnao1
+/+

 females with the 

exception of heterozygote x heterozygote crosses. Mice lacking the Neo cassette were 

backcrossed to the 129-steel line 129S1/SvImJ (Jackson Labs stock # 002448). After 

reaching N8, brother-sister crosses were performed. To limit the effect of genetic drift 

associated with repeated brother-sister crosses in our 129S1/SvImJ breeding we bred 

G184S carriers to female 129S1/SvImJ mice directly obtained from Jackson Labs 

roughly once after every 4 brother-sister crosses.  

To obtain mutant mice on the C57BL/6J background, the tm2Rneu allele, after 

Neo excision, was successively backcrossed onto the C57BL/6J background (Jackson 

Labs stock # 000664). 
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Perinatal viability was established through timed pregnancies testing for plugs 

every morning which, if found, were designated E0.5. Eighteen mice were used at E18.5 

and 33 at P0. 

Genotyping 

All mice had eartags inserted and tail biopsies taken prior to weaning. DNA was 

extracted from tails by an alkaline lysis method (Truett et al. 2000). The G184S allele of 

Gnao1 was identified by PCR with primers GoFlankLoxP.A CGC AGG CTC TGA GGG 

CCT AAG & GoFlankLoxP.B TGC CTC ACC TCT CCG TCT CC. Reaction conditions 

were as follows: 1µl template, 4µl 5x Promega PCR buffer, 0.4µl 10mM dNTPs, 0.4µl 

20µM GoFlankLoxP.A, 0.4µl 20µM GoFlankLoxP.B, 0.2µl Promega GoTaq and 13.6 µl 

DNase free water (Promega catalog # M3005, Madison WI). Reaction mixtures were 

denatured for 4 minutes at 95
o
C and then cycled 32 times through denaturing at 95

o
C for 

30 seconds, annealing at 64
o
C for 30 seconds, and extension at 72

o
C for 30 seconds. A 

final extension of 8 minutes at 72
o
C was then performed. The wildtype allele generates a 

181bp product and the G184S allele produces a 361bp product. 

Western blot 

Brain homogenates were collected from group housed B6129F1 female mice 8-12 

weeks of age. Mice were anesthetized by an overdose of sodium phenobarbital 

(University of Michigan Pharmacy) and the right hemisphere was collected in a 

microcentrifuge tube filled with 100ul of 0.5 mm glass beads (Next Advance, Averill 

Park, NY) and 600ul RIPA buffer. Brains were then homogenized and tissue lysed via a 

bullet blender (Next Advance) following the manufacturer’s recommended settings. 

Samples were then centrifuged at ~10,000 RCF for 10 minutes. Protein in the supernatant 
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was quantified by a BCA kit (Pierce, Rockford, IL) and diluted to 2ug/ul protein in 

Laemmli buffer (Biorad, Hercules, CA). Western blots were then performed following 

standard protocols using 10% acrylamide gels transferred to PVDF membrane (Millipore, 

Billerica, MA). Gαo antibody was provided by Dr. Thomas Gettys (Louisiana State 

University) and used at a dilution of 1:1,000. TuJ1 antibody PRB_435P (Covance, Battle 

Creek, MI) was used at 1:5,000. Goat anti rabbit-HRP (Sigma, St. Louis, MO) was used 

at 1:10,000. Chemiluminescent substrate (Pierce) was applied for 5 minutes and blots 

were visualized and analyzed using a LiCor Odyssey imager using Image Studio 1.1. 

Video EEG 

Female mutant and control mice approximately 24 weeks old were implanted with 

electrodes, given one week to recover, and monitored under video EEG as described 

previously with a sampling frequency 256 Hz, sensitivity 30 uV/mm, and low frequency, 

high frequency and notch filter settings of 1 Hz, 100 Hz and 60 Hz, respectively (Lee et 

al. 2012). Older females were chosen due to the progressive nature of epilepsy and 

because females of inbred strains generally have a lower seizure threshold, increasing the 

likelihood of detection if seizures were the cause of spontaneous death (Frankel et al. 

2001). The animals were continuously recorded for 96-206 h.  

Automated spike detection analysis gave a high proportion of false positive and 

false negative calls based on manual confirmation. Therefore the results of automated 

detection are not reported. Semi-quantitative assessment of interictal epileptiform 

discharges (IEDs) was performed. The total number of IEDs was counted during 24 

discrete and random 5 min epochs (Research Randomizer Version 3.0 retrieved on April 

29, 2013 from http://www.randomizer.org/) and presented as aggregate count of IEDs/h. 
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IEDs were defined as waveforms lasting 20-200 ms, at least 3 times the background 

activity in amplitude, disturbing the background and not better described as waveforms of 

normal sleep or wakefulness. Seizures were defined as discrete events characterized by 

appearance of continuous repetitive IEDs or rhythmic high-amplitude activity, lasting at 

least 10 s and with unequivocal evolution in frequency, morphology or distribution.  

Seizure susceptibility and epileptogenesis susceptibility 

To test susceptibility to epileptogenesis, a PTZ kindling protocol was performed 

on both male and female mice. PTZ was administered 3 times per week at 35mg/kg 

starting at 8-12 weeks of age; mice were monitored for 30 minutes for behavioral signs of 

seizures as described by (Wilczynski et al. 2008), (Grecksch et al. 2004) and (Dhir 2012). 

This dose does not typically elicit effects greater than behavioral arrest on the first dose in 

wildtype mice regardless of gender or strain (lab observation). Behavior was recorded 

and then scaled to a modified Racine scale where 0 indicates no response, 1 is behavioral 

arrest, 2 is a tail flick, twitch, or body tremble, 3 is a forepaw press, 4 is a tonic clonic 

seizure involving loss of upright posture, and 5 is wild jumping or death (Racine 1972). 

Loss of upright posture was defined as having at least one front and one rear paw off the 

cage floor. Sensitization is defined as death or having 2 sequential sessions with a score 

of 4 or greater. The number of injections for each mouse to reach a sensitized state is 

reported in a survival curve in the results section. Survival curves for time to first tail 

flick and time to first forepaw press are also presented in Appendix A. Mice that died 

between observational periods were excluded from the survival curve at the last dose for 

which they could be observed since seizure could not be confirmed as cause of death. 

These exclusions were rare (less than 5%). In females, kindling could be influenced by 
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estrus cycle. To control for this, females were group housed with mutant and wildtype 

genotypes in equal numbers in each box to obtain synchronization of estrus cycle 

(Jemiolo et al. 1986). All mice in a given box entered kindling on the same day to ensure 

that an equal number of females per genotype were started at the same point in their 

cycle. 

Novelty induced locomotion 

Mice were habituated to the testing room first thing in the morning for a minimum 

of an hour. All tests were completed in the morning due to the circadian influence on 

dopaminergic stimuli (Abarca et al. 2002). Activity was recorded for two hours by an 

automated camera and computer system in collaboration with the Murphy laboratory. 

Motor coordination and learning 

Mice were placed onto a rotarod at 12RPM and time on rotarod was scored out of 

a maximum of 300 seconds. Time spent clinging to the rotarod was excluded, similar to 

prior studies (Jacobson & Cryan 2005). 30 minutes was provided between trials. 

Metabolite analysis 

Mice were cervically dislocated and then decapitated. Brains were rapidly 

dissected on ice and placed into a 30g mouse coronal brain matrix. 1mm slices containing 

specific regions were isolated and anatomically confirmed through use of a mouse atlas. 

Wet weight of each brain region isolated was recorded for normalization. Tissues were 

suspended in 100ul 2N percholric acid and homogenized followed by a spin at max rcf in 

a bench top centrifuge for 20 mins at 4 degrees. Samples were then diluted in ISS at the 

following concentrations - 1 / 100 for CP, 2/100 for Nac, and 20/100 for POA, SN, and 

VTA. 
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Diluted samples were then filtered with a 0.22um pore size syringe filter and then 

injected at 300mV with 10nA sensitivity for 13 minute runs except the CP, Nac and POA 

which was run with 20nA sensitivity because the dopamine signal was being clipped. 

For quantification a standard curve with HVA, DPOAC, and dopamine in ISS was 

run at 10 & 20nA. DOPAC standards ranged from 100nM to 0.1nM. HVA standards 

ranged from 100nM to 1nM. 

D1 stimulated locomotion 

To test D1 mediated stimulation of locomotor activity mice were habituated to the 

automated activity recorder. Once mice displayed baseline locomotion within the 

chamber (no novelty induced locomotion) mice were injected with saline and recorded 

for 2 hours to quantify baseline activity. Mice were then injected with the D1 agonist 

SKF81297 and their activity measured for another two hours (Usiello et al. 2000). 

Statistical analysis 

Data were analyzed using GraphPad Prism 5.0 and GraphPad QuickCalcs (GraphPad; 

LaJolla, CA). Chi squared analysis was used to evaluate deviation from Mendelian ratios. 

Proportionality of hazards for survival curves were analyzed using SAS 9.3 (SAS 

Institute; Cary, NC). The Gehan-Breslow-Wilcoxon test was applied to survival and 

kindling data as opposed to logrank because the survival curves failed to meet the 

proportional hazard assumption required for valid application of logrank (Machin et al. 

2006). In analysis of EEG data, a parametric unpaired t-test was performed assuming 

populations with different standard deviations using Welch’s correction. Two tailed P 

values less than 0.05 were considered significant. 
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Chapter 3  

Genetics of strain-dependent lethality and kindling 

Summary 

Chapter 2 introduced the Gnao1 
+/G184S

 mouse model and identified their 

enhanced response to PTZ kindling, abnormal EEG and spontaneous death. Here I 

identify a novel Chr17 modifier region that affects both PTZ kindling and spontaneous 

death in Gnao1 
+/G184S

 mutant mice. The initial region identified spanned from 41-70Mb. 

However this was further refined through use of recombinant mice to 41-51Mb. 

Consequently, I have identified a novel genomic locus, the Chr17 modifier region, which 

we term Mogs1 (modifier of G-protein seizures), that should be examined as candidates 

in human epilepsy and sudden unexplained death in epilepsy (SUDEP). 

I designed all experiments in collaboration with my mentor Dr. Neubig. I 

instructed undergraduates on how to perform genotyping and kindling which was 

predominately completed by them. Mouse breeding and final assembly and interpretation 

of data were performed by me. The genome-wide sequencing was performed by the DNA 

sequencing core based on a design by Dr. Neubig. Past and current undergraduates who 

meaningfully contributed to this work include Kevin Kohut, Kristen Gilbert, Madeline 

Pelz and Hans Dalton. 
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Introduction 

The majority of epilepsy cases are not due to a known environmental cause, 

leaving genetic factors to play an important role (Michelucci et al. 2012). Rare mutations 

in ion channels (Ryan 1999), metabolic mechanisms (Suls et al. 2009), and 

neurodevelopmental pathways (Eksioglu et al. 1996) produce genetic epilepsies with 

strong Mendelian inheritance. Also, a catch-all category of “general genetic epilepsy” 

accounts for about 30% of patients (Michelucci et al. 2012) but the specific genes 

affected are not known. Indeed, most of the genes from well-defined familial epilepsies 

have been ruled out in those patients (Klassen et al. 2011). A role for more than one gene 

in individual patients (Leu et al. 2012) or modifier loci (Bergren et al. 2009; Meisler & 

Kearney 2005) has been proposed as an explanation for why the genetic basis has been 

difficult to discern. 

Beyond causation, treatment response and prognosis are also highly variable 

among patients and are probably influenced by genetic determinants. In severe myoclonic 

epilepsy of infancy (SMEI), which is caused by loss of function in the sodium channel 

SCN1A (Claes et al. 2001), patients do not respond to typical anti-epileptic treatments 

that further decrease sodium channel activity. Efficacy of treatment response in the 

general epilepsy population is also determined in part by genetic modifiers (Loscher et al. 

2009; Szoeke et al. 2006). Genetic factors also appear to contribute to the phenomenon of 

sudden unexplained death in epilepsy (SUDEP) (Sperling 2001). About 10-15% of 

SUDEP patients have mutations related to long QT syndrome that could lead to cardiac 

arrhythmias (Surges & Sander 2012) but the majority of cases remain unexplained.  
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Many labs have worked to understand the influence of genetics on modifying 

outcome in various seizure models. Loci on mouse Chr 1, 2, 3, 4, 5, and 6 have all been 

previously identified to modify seizures induced by acute Pentylenetetrazol (PTZ) 

(Ferraro et al. 1999; Legare et al. 2000). Mouse Chr 4, 15 and 8 have also been 

implicated in the Kainic Acid (KA) model (Schauwecker et al. 2004). Unfortunately due 

to the acute nature of these models, they do not provide insight into genetic modifiers of 

the remodeling process leading to many human epilepsy syndromes. Therefore better 

therapy for refractory cases relies upon a better understanding of the complex genetic 

interactions leading to epilepsy and identification of novel targets.  

Here I identify a novel Chr17 modifier region that affects both PTZ kindling and 

spontaneous death in Gnao1 
+/G184S

 mutant mice. The initial region identified spanned 

from 41-70Mb. However this was further refined through use of recombinant mice to 41-

51Mb. Consequently, we have identified two genomic loci, Gnao1 and the Chr17 

modifier which we term Mogs1 (modifier of G-protein seizures), that should be examined 

as candidates in human epilepsy. 
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Figure 3.1 Gnao1 +/G184S mice experience strain-

dependent lethality 

a) N6 129S1/SvImJ-Gnao1 
+/G184S and N7 B6 

wildtype mice experience a relatively normal 

lifespan compared to N7 B6-Gnao1 
+/G184S

 

(Gehan-Breslow-Wilcoxon df(1)=12.8 p<0.001) 

b) N7 B6-Gnao1
 +/G184S 

mice die prematurely 

regardless of gender 

Results 

Heterozygous Gnao1
+/G184S mice experience strain-dependent spontaneous death 

In contrast to the spontaneous death in B6 

Gnao1 
+/G184S

 mice reported in Chapter 2, 

heterozygous Gnao1 
+/G184S

 on the 

129S1/SvImJ background live a relatively 

normal lifespan with 100% surviving >1 

year (Figure 3.1). The difference in 

outcome, based upon genetic background, 

suggests that a genetic approach could 

provide insights into the mechanism 

behind the Gnao1 
+/G184S

 mediated 

premature death and sensitivity to PTZ 

kindling. 
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Gnao1
 +/G184S 

spontaneous death is modified by a region within 41-70 Mb on 

Chromosome 17 

No deaths were observed up to 47 weeks in mutant B6129SF1 (F1) mice 

regardless of their gender (n=8 per sex per genotype). Thus 129S alleles appear to 

provide a dominant protective effect against the spontaneous death phenotype of 

Gnao1
+/G184S mice or, conversely, the C57BL/6J background effect is recessive. 

To define the genetic locus underlying the strain differences, the 11 male and 7 

female N7 B6 Gnao1+/G184S mice from Figure 3.1b were split into two groups, the short-

lived group was defined as those that died prior to the survival curve leveling off at ~ 25 

weeks of age. The long-lived group included those that lived past the 25 week cutoff. 

Females were equally represented in both the short and long-lived cohorts. Males were 

skewed towards the long lived cohort, but this was not significant. The frequency and 

location of 129S alleles were compared between the short-lived and long-lived groups. 

Given the dominant effect of 129S alleles in F1 mice, we expected that a single copy of 

the 129S alleles in B6 mutant mice would be protective and therefore be found at a 

greater frequency in the long lived cohort. All mice retained 129S alleles on Chr 8 that 

are near the Gnao1 locus as expected (Figure 3.2a). The only region that preferentially 

retained 129S alleles in the long-lived cohort was on Chr17 after 39Mb through the end 

of the chromosome (Figure 3.2 a & b). The x axis labels in Figure 3.2b represent the 

locations tested where SNPs differ between 129S and C57BL/6J mice. This initial 

analysis was not sufficiently powered to statistically validate the modifier due to the 

required correction for multiple comparisons.  
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To both confirm and reduce the size of the modifier, we obtained recombinant 

mice that only maintained 129S alleles at 47Mb and 62Mb but were homozygous for B6 

alleles at 41Mb & 70Mb allowing us to roughly split the putative modifier region in half. 

In an independent experiment with these 44 mice, we tested the ability of the 41-70Mb 

subregion to afford protection, thus eliminating the need for the multiple comparison 

correction. The Chr17 129S 41-70Mb subregion protected B6-Gnao1 
+/G184S

 mice from 

spontaneous death in the independent cohort (Figure 3.2c Gehan-Breslow-Wilcoxon 

df(1)=4.9 p < 0.05). 
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Figure 3.2 A locus on chromosome 17 modifies 

the strain-dependent lethality 

a) Whole genome SNP analysis was done and 

retained 129S alleles were assessed. Plots 

show the percentage of the B6 Gnao1 
+/G184S

 

mice carrying 129S alleles at a particular 

location in the genome. Those that lived past 

25 weeks of age are in red and those that died 

prior are in black. b) Only one region on Chr 

17 showed preferential retention of 129S 

alleles in the population that lived past 25 

weeks of age. c) In an independent cohort we 

tested for the ability of the first half of this 

putative modifier region to enhance viability of 

B6-Gnao1 
+/G184S mice. Those mice retaining 

129S alleles at both 47Mb and 62Mb (but 

homozygous B6 at 41Mb & 70Mb) on Chr 17 

showed increased survival (Gehan-Breslow-

Wilcoxon df(1)=4.9 p < 0.05). 
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Figure 3.3 Gnao1 +/G184S mice have a strain-dependent 

reduction in time to sensitize to repeated low dose PTZ 

The time to undergo sensitization to PTZ kindling (see 

Methods for definition) was recorded. a) N7 129S-

Gnao1 
+/G184S

 female mice sensitize in response to PTZ 

similar to control. b) B6-Gnao1 
+/G184S

 females sensitize 

more rapidly than littermate controls (Gehan-Breslow-

Wilcoxon df(1)=5.74 p<0.05). 

Heterozygous Gnao1 
+/G184S mice also have a strain-dependent sensitization to PTZ 

kindling  

In the PTZ kindling model, 

paralleling the strain-dependent nature 

of the adult lethality, female N7 

129S1/SvImJ Gnao1
+/G184S mice 

generally showed no difference in 

sensitization to PTZ kindling compared 

to wild-type littermates (Figure 3.3a), 

while as reported in Chapter 2 female 

B6 Gnao1+/G184S mutants were more 

sensitive to PTZ kindling than control 

(Figure 3.3b Gehan-Breslow-Wilcoxon 

df(1)=5.74 p<0.02).  
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Chr 17 locus modifies PTZ susceptibility 

We next tested the hypothesis that the Chr 17 spontaneous death modifier 

protected against the enhanced PTZ susceptibility. In this case, all experiments were 

restricted to females for reasons discussed in methods. Female F1 Gnao1 
+/G184S

 mice 

were protected from PTZ kindling sensitization compared to B6 Gnao1 
+/G184S

 female 

mice (Figure 3.4a, Gehan-Breslow-Wilcoxon df(1)=7.9 p < 0.01). This indicates, as in the 

spontaneous lethality, that a single copy of 129S alleles was sufficient for protection. 

129S alleles within just the Chr 17 41-70Mb modifier region also protected B6 female 

Gnao1 
+/G184S

 from sensitization to kindling (Figure 3.4b Gehan-Breslow-Wilcoxon 

df(1)=4.28 p<0.05).We then asked whether the Chr 17-mediated protection against 

kindling depended on the presence of the Gnao1 G184S allele. If so, that could indicate a 

specific interaction with Go and a gene product from the modifier region. If not, the 

region is likely to be a general modifier of kindling unrelated to our G protein mutant 

model. To address this, we compared female B6 Gnao1 
+/+

 mice both with and without 

the Chr 17 modifier for the rate at which they were sensitized. The region did not afford 

robust protection against PTZ sensitization (Figure 3.4c). While there may be a modest 

effect without the Gnao1 G184S allele, the striking effect in its presence prompted us to 

name this Chr17 locus Mogs1 (modifier of G protein-induced PTZ susceptibility 1) in 

parallel with the Moe1 and Moe2 loci which have been previously described for 

protection against spontaneous seizures induced by sodium channel mutants (Bergren et 

al. 2005; Bergren et al. 2009). 

The modifier Mogs1, however, does not appear to be the sole modifier locus. 

Analysis of F2 offspring from intercrosses of B6129SF1-Gnao1 
+/G184S

 mice showed that 
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only 4 out of 60 mice died before one year of age. Given that 25% of the F2 genome 

should be homozygous for B6 alleles at any given locus, 15 mice should have died if 

there was a single high-penetrance modifier region. Thus Mogs1 is likely to be one of two 

or more dominant or additive modifier regions. 
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Figure 3.4 The locus on chromosome 17 also protects  

B6-Gnao1 +/G184S mice from sensitization to kindling. 

a) Female B6-Gnao1 
+/G184S

 female mice sensitize 

to kindling faster than female F1-Gnao1 
+/G184S 

mice demonstrating that a single copy of 129 

alleles is sufficient to delay sensitization to PTZ 

kindling (Gehan-Breslow-Wilcoxon df(1)=7.9 p < 

0.01). b) The onset of sensitivity to kindling for 

B6-Gnao1 
+/G184S 

mutants is delayed by the 

presence of a single copy of 129S alleles in the 41-

70Mb Chr 17 modifier region. c) In a sample of 

similar size to that in b, the Chr 17 modifier region 

did not significantly alter sensitization to PTZ 

kindling in B6-Gnao1 
+/+

 mice. 
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One modifier is likely linked to 47Mb on Chr17 

 Given the size of the modifier region and large number of genes present therein I 

have developed several Gnao1 
+/RGSi

 lines that contain subregions of the 41-70Mb 

modifier. Regions currently developed include markers at 47Mb, 62Mb, 51-62Mb, and 

51-57Mb. Each of these lines contains 129 alleles at the locations listed in their name but 

are pure B6 at all the other test sites on Chr17. They are, however, not defined by whole 

genome mapping. Some still have 129 alleles on Chr5 or Chr16. Subsequent breeding 

will be required to produce true congenic mice containing the various Chr17 129 allele 

sets. Preliminary results using offspring of the 62Mb line, which has a single copy of 129 

alleles surrounding 62Mb on Chr17, rule out this region as a strong modifier. The Chr17 

47Mb line demonstrated significant protection for those mice retaining 129 alleles at 

47Mb alone (Figure 3.5b, Gehan-Breslow-Wilcoxon df(1)=.3.68 p < 0.05). Thus at least 

one modifier gene from Mogs1 is likely to occur between 41-51Mb as these mice are 

pure B6 outside of the 41 and 51Mb region on Chr 17. 
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Figure 3.5 One modifier within Mogs1 occurs between 41-51Mb 

Female Gnao1 
+/G184S

 mice were generated from a male carrying both a subregion of the 41-70Mb and the 

Gnao1G184S allele. a) 129S alleles around 62Mb on Chr17 appear unable to protect from kindling b) 129S 

alleles between 41-51Mb are protective from Gnao1 +/G184S induced sensitization to PTZ kindling 
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Discussion 

In this Chapter I demonstrated that the PTZ kindling and spontaneous death were 

strain-dependent. This provided an experimental handle allowing us to identify a genetic 

modifier locus. The modifier region Mogs1 (Chr 17, 41-70 Mb) alters both the 

spontaneous death and PTZ-induced kindling phenotype in the Gnao1
 +/G184S 

mice. This 

region has been further refined by demonstrating that 41-51Mb is sufficient to afford 

protection (Mogs1a). However, the rest of the region has not been conclusively 

eliminated yet. Interestingly, the protective modifier alleles on Chr17 come from the 

129S strain, which is more sensitive to PTZ kindling compared to C57BL/6J. The 

modifier region also appears to have its effect on PTZ susceptibility in Go mutant mice 

but not control mice. Mogs1 also may not influence response to acute PTZ administration 

as it was not found in a genomic analysis of acute PTZ-induced seizures (high dose - 80 

mg/kg) in B6 vs DBA mice (Ferraro et al. 1999). These two observations suggest that 

this modifier region (Mogs1) may have a unique interaction with Go function in PTZ 

kindling-type remodeling mechanisms.  

The Mogs1 region (41-70Mb) includes the coding sequences of ~ 130 known 

proteins. One that was an obvious candidate was Rab5a protein which has been proposed 

as a novel Go effector in studies in Drosophila (Purvanov et al. 2010). Loss of an effector 

molecule could easily suppress a gain-of-function mutation in Go. There are no non-

synonymous coding SNPs in Rab5a and despite several SNPs in the 5' and 3' UTR, there 

were no changes in mRNA expression as detected by quantitative real-time PCR (data 

not shown). Thus it is unlikely that Rab5a is the modifier gene. To develop a list of other 

possible candidates, we looked for non-synonymous SNPs or splice site variants 
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identified in the Sanger informatics website (Table 3.1). Three proteins have altered stop 

codons. Two genes, 9130008F23Rik K55* and Trem2 149*, have premature stops while 

Yipf3 lost a stop codon, *202W. The gene Polh has a variant in a splice site while Ttbk1, 

Tbc1d5 and Lrfn2 have in-frame dels in the 129S sequence. For non-synonymous SNPs, 

the predicted effect on protein function was assessed using Provean (Choi et al. 2012). 

Seven genes Pgk2, Gpr115, Gm5093, BC048355, Lrfn2, Kcnh8 and Vmn2r118 were 

predicted to have non-synonymous SNPs disruptive of protein function in the 129S 

strain. Given that the informatics databases that I had access to may be incomplete and 

that distal SNPs may influence gene expression, a high-priority candidate list of 20 genes 

with known CNS function or a role in GPCR signaling was generated regardless of 

Sanger SNP status (Table 3.2). These lists represent a starting point for future candidate 

analysis in conjunction with higher resolution experimental mapping of Mogs1. Whole 

exome and targeted exome sequencing is currently underway. 

 The approach that we took to find this modifier region started from N7 mice in 

which significant selection for loci affecting survival of the mutants may have already 

occurred. Consequently, it cannot be concluded that Mogs1 is the only modifier. Indeed, 

a more unbiased approach suggests that it is not. Analysis of F2 crosses from (C57BL/6J 

x 129/SvImJ Gnao1 +/G184S)F1 mice showed that only 4 out of 60 mice died before one 

year of age. Given that 25% of the F2 genome should be pure B6, 15 mice should have 

died if there was a single high-penetrance suppressor region. Thus Mogs1 is likely one of 

two or more modifier regions. 

The present results buttress recent work implicating alleles encoding GPCRs, 

RGS proteins, and Go as candidates in future human genetic analyses of epilepsy. Only 
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12 non-synonymous SNPs were reported in GNAO1 in the exome variant server database 

out of ~13,000 alleles tested (evs.gs.washington.edu). Most were conservative, 

suggesting that damaging mutations may not be tolerated for medallion inheritance. 

However paralleling the de novo mutations found in severe early onset epilepsies, a 

recent report by Nakamura et al. documented de novo mutations in GNAO1 in four 

patients with epileptic encephalopathy (Nakamura et al. 2013). Interestingly one of the de 

novo mutations also occurs within the switch II region of Go, as our G184S mutation 

does, and involves a similar substitution of a bulky amino acid for glycine. Thus, while 

not likely to contribute to inherited epilepsies, GNAO1 may be a particularly important 

candidate to consider when structural abnormalities of the brain are comorbid with 

epilepsy in human patients. Studies of our animal model should also provide an attractive 

opportunity to learn more about brain function and treatment options in these patients. 

 In this chapter we defined a novel epilepsy modifier locus, Mogs1, on Chr 17. The 

mechanism underlying this model, enhanced Go signaling, is a surprising cause of a 

seizure disorder as Gi/o signaling has typically been thought to have neuroinhibitory 

actions. This could, however, result from an overall greater inhibition of inhibitory 

signaling leading to a net gain in excitatory signaling. Our results thus suggest new 

candidate genes for genetic epilepsies. Also the modifier effect is consistent with an 

emerging recognition that complex diseases may depend on multiple rare mutations, 

preventing their detection in large GWA studies (Sisodiya & Mefford 2011; Tan et al. 

2004). A better understanding of Go signaling in seizure disorders may facilitate the 

identification of novel GPCR drug targets for epilepsy. 
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Materials and Methods 

Animal studies were performed in accordance with the Guide for the Care and 

Use of Laboratory Animals established by the National Institutes of Health; all 

experimental protocols were approved by the University of Michigan Committee on the 

Use and Care of Animals. Experiments were performed using male and female mice as 

indicated in methods below. All experimental mice were group-housed with unlimited 

access to food and water until experimentation. Lights were maintained on a 12 hour 

light/dark cycle with lights on at 5:00/6am depending on time of year. All experiments 

were conducted during the light phase with the exception of the EEG video recordings 

which were throughout the light cycle. 

Generation of Gnao1 
+/G184S

 mice and perinatal viability experiments 

Most details were reported in Chapter 2. Only additional details are provided here. 

A single N6 B6-Gnao1
+/G184S

 male ancestor gave rise to all B6-Gnao1
+/G184S

 mice 

presented in this study. The reduced viability and premature lethality of the Gnao1
+/G184S

 

mutants reported in chapter 2 precluded congenic development due to strain collapse by 

N10. Thus, data presented in this paper are from N7, N8, and N9 which will collectively 

be referred to as B6. To control for the genetic variability within the generations, we 

tested regions that had 129S alleles present in the N6 founder to ensure that retention of 

other 129S regions did not influence the results. All B6129SF1-Gnao1
+/G184S

 and 

littermate control mice were generated from crosses with Gnao1
+/G184S

 129S1/SvImJ 

male mice and C57BL/6J females to ensure genetic homogeneity. 

Genotyping 

See Chapter 2 for details on genotyping. For genome-wide SNP analysis mouse 
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tail DNA was purified using proteinase K (Invitrogen) digestion followed by ethanol 

precipitation. 

Viability 

Data on survival to weaning was determined by observed genotype frequencies of 

male and female mice at 2-3 weeks of age using 41 N4 129S1/SvImJ (25 males and 16 

females) and 55 N4 B6;129 (29 males and 26 females) offspring from heterozygote x 

heterozygote crosses. For adult survival in Figure 3.1 data were collected from 36 N6 

129S1/SvImJ-Gnao1
+/G184S

 (10 males 26 females) and 18 N7 B6.129 -Gnao1
+/G814S

 (11 

males and 7 females) group-housed mice. All N7 B6 mice in this figure were sired by the 

single N6 B6 founder male crossed to C57BL/6J females that were within F4 generations 

from mice purchased directly from Jackson Labs.  

Identification of modifier region 

To determine whether the protective effect of the 129S1/SvImJ background on 

spontaneous lethality was dominant, we generated mutant B6129SF1 mice from an N7 

129S1/SvImJ male mouse carrying the Gnao1 G184S allele and assessed them for deaths 

out to 47 weeks of age (see results). After determining that 129S alleles were dominant in 

protecting from premature lethality we employed a genome-wide scan on the 18 mice 

from the survival curve study in Figure 3.1b (11 N7F0 B6 -Gnao1
+/tm2Rneu

 males & 7 

females) to identify regions where 129S alleles were preferentially retained in mice that 

lived past the early phase of mortality (i.e. 25 weeks). The scan was performed utilizing 

an Illumina GoldenGate medium density mouse panel at the University of Michigan 

Sequencing core. A confirmation study on Chr 17 was then done to overcome the low 

power of the initial screen and reduce the modifier’s size using an independent cohort of 
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drug naïve, group-housed B6-Gnao1
+/G184S

 mice (10 males & 4 females retain 129 on 

Chr17, 12 females & 18 males lack 129 on Chr17). They carried 129S alleles at 47Mb 

and 62Mb on Chr17 but had only B6 alleles by 41Mb and 70Mb. Tests were also 

performed on Chr 5 and Chr16 as covariates to ensure they did not influence the results 

as these mice were not congenic for 129S only on Chr 17. 

Each primer pair amplified two discrete SNPs identified on the Jackson lab 

informatics website (informatics.jax.org) to limit sequencing errors. DNA sequences 

surrounding the two SNPs were obtained from the UCSC Genome Browser 

(http://genome.ucsc.edu/cgi-bin/hgGateway NCBI37/mm9 NCBI37/mm9 build). Primers 

were then designed using Primer 3 (http://frodo.wi.mit.edu/primer3/ v.0.4.0) using the 

rodent mispriming database and only primers that were a minimum of 60 bases and a 

maximum of 600 bases from the desired SNPs were selected. PCR primers and the SNPs 

tested are listed in Table 3.3. All PCR reactions were performed with the same cycling 

parameters and reagent concentrations used for genotyping except the annealing 

temperature was 59
o
C. PCR products were isolated by ethanol precipitation and 

sequenced by the University of Michigan DNA Sequencing Core. Chromatograms were 

analyzed to determine which alleles were carried within the modifier region. 

Seizure susceptibility and epileptogenesis susceptibility 

See Chapter 2 methods for details on the kindling protocol. For comparison across 

strains, we relied on the fact that kindling is a repeated process and thus should sample 

various points within the estrus cycle as different strains of mice must be housed 

separately. To assess the ability of the Chr17 modifier to influence response to PTZ, we 

only analyzed mutant B6 females. Females were group housed together a minimum of 

http://genome.ucsc.edu/cgi-bin/hgGateway
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two weeks prior to initiation of kindling. Experiments were limited to females due to the 

limited number of mutant males available for breeding, and animal use protocol 

requirements that preclude combining males from separate litters which would have 

increased environmental variability. 

Candidate gene identification 

The exhaustive list of candidate genes was generated with Biomart 

(http://www.ensembl.org/biomart/martview). A list of known non-synonymous SNPs 

within the modifier region was generated from the Sanger informatics website 

(http://www.sanger.ac.uk/resources/mouse/genomes/). These were then translated into 

relative amino acid substitutions for specific splice variants using Ensembl. Provean, a 

computational method with predictive power similar to SIFT and PolyPhen-2 was then 

used to determine likely functional consequences (http://provean.jcvi.org/index.php) 

(Choi et al. 2012). 

Statistical analysis 

 

Data were analyzed using GraphPad Prism 5.0 and GraphPad QuickCalcs 

(GraphPad; LaJolla, CA). Chi squared analysis was used to evaluate deviation from 

Mendelian ratios. Proportionality of hazards for survival curves were analyzed using SAS 

9.3 (SAS Institute; Cary, NC). The Gehan-Breslow-Wilcoxon test was applied to survival 

and kindling data as opposed to logrank because the survival curves failed to meet the 

proportional hazard assumption required for valid application of logrank (Machin et al. 

2006). In analysis of EEG data, a parametric unpaired t-test was performed assuming 

populations with different standard deviations using Welch’s correction. Two-tailed P 

values less than 0.05 were considered significant. 
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Informatics Tables 

Ensembl Gene ID Gene Number of SNPs Predicted Effect 

of coding nsSNPs 
  5’UTR NSC 3’UTR  

ENSMUSG00000031233 Pgk2 
 1  Deleterious 

ENSMUSG00000090747 Gm17495 1 3*  Neutral 
ENSMUSG00000073396 Gm6084  1 1 Neutral 

ENSMUSG00000023930 

Crisp2 1  1  

ENSMUSG00000023926 Rhag 1  1  

ENSMUSG00000054951 9130008F23Rik  6  Premature stop 
ENSMUSG00000091043 Glyatl3  2*  Neutral 
ENSMUSG00000023919 Cenpq 4 3  Neutral 

ENSMUSG00000023921 

Mut   15  

ENSMUSG00000042256 

3110082D06Rik   29  

ENSMUSG00000023918 Gpr115 3 4 10 Deleterious 
ENSMUSG00000057899 Gpr111  3 3 Neutral 
ENSMUSG00000061665 CD2ap 1 2 5 Neutral 
ENSMUSG00000023915 Tnfrsf21 3 1 6 Neutral 
ENSMUSG00000041293 Gpr110 2 3 5 Neutral 
ENSMUSG00000056492 Gpr116   44  
ENSMUSG00000023914 Mep1a   1  

ENSMUSG00000023913 Pla2g7 1 1 3 Neutral 
ENSMUSG00000040140 Tdrd6  8  Neutral 
ENSMUSG00000023912 Slc25a27   1  

ENSMUSG00000023963 Cyp39a1  2 3 Neutral 
ENSMUSG00000039601 Rcan2 1    

ENSMUSG00000023960 Enpp5 2 2 1 Neutral 
ENSMUSG00000023961 

Enpp4 
  20  

ENSMUSG00000023959 Clic5   22  
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ENSMUSG00000039153 Runx2 4  9  

ENSMUSG00000038954 Supt3h 1    

ENSMUSG00000023932 Cdc5l 
 2# 1 All NSC low 

confidence 
ENSMUSG00000023949 Tcte1   1  

ENSMUSG00000096847 Tmem151b 
 1#  All NSC low 

confidence 
ENSMUSG00000037089 Slc35b2 1  1  

ENSMUSG00000023951 Vegfa   1  

ENSMUSG00000034509 MaD2L1bp  1  Neutral 
ENSMUSG00000023952 Gtpbp2 1  3  

ENSMUSG00000023953 Polh 2 2*  Neutral 
ENSMUSG00000067150 Xpo5  2  Neutral 
ENSMUSG00000071074 Yipf3  1 3 Premature stop 

ENSMUSG00000071073 

Gm88  1*   

ENSMUSG00000012296 Tjap1 2 1 1 Neutral 
ENSMUSG00000032842 Abcc10 3    

ENSMUSG00000015597 Zfp318 2 2 1 Neutral 
ENSMUSG00000067144 Slc22a7  2  Neutral 
ENSMUSG00000091742 Gm5093  6*  Deleterious 
ENSMUSG00000015599 Ttbk1  3# 8 Neutral 
ENSMUSG00000040658 BC048355  3 1 Deleterious 
ENSMUSG00000040327 Cul9 1 6*  Neutral 
ENSMUSG00000015605 

Srf 
1  3  

ENSMUSG00000023972 Ptk7  2 2 Neutral 
ENSMUSG00000003546 

Klc4 
  3  

ENSMUSG00000038545 Cul7 1 1  Neutral 
ENSMUSG00000063576 Klhdc3  1  Neutral 
ENSMUSG00000002768 

Mea1 
  2  
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ENSMUSG00000059409 Ppp2r5d 2  4  

ENSMUSG00000002763 Pex6 1 1 1 Neutral 
ENSMUSG00000023973 Cnpy3  1 5 Neutral 
ENSMUSG00000062619 2310039H08Rik 1    

ENSMUSG00000063888 Rpl7l1   3  

ENSMUSG00000036568 BC032203   1  

ENSMUSG00000036430 

Tbcc 
  1  

ENSMUSG00000023978 Prph2   2  
ENSMUSG00000023977 Ubr2   1  
ENSMUSG00000064043 Trerf1  2*  Neutral 
ENSMUSG00000034729 Mrps10 6 3  Neutral 
ENSMUSG00000023979 Guca1b  2 13 Neutral 
ENSMUSG00000023982 Guca1a 3 1  Neutral 
ENSMUSG00000047150 1700001C19Rik  1 5 Neutral 
ENSMUSG00000034382 AI661453  1* 1  
ENSMUSG00000034165 

Ccnd3 
1    

ENSMUSG00000090115 Usp49   1  

ENSMUSG00000032717 Mdfi  2 2 Neutral 
ENSMUSG00000073386 9830107B12Rik   4  

ENSMUSG00000042265 Trem1   6  

ENSMUSG00000051682 Treml4  3 3 Neutral 
ENSMUSG00000071068 Treml2 2 2 4 Neutral 
ENSMUSG00000023992 Trem2  6 3 Premature Stop 
ENSMUSG00000023994 Nfya 2  5  

ENSMUSG00000040771 AI314976 2  1  

ENSMUSG00000040694 Apobec2  1 1 Neutral 
ENSMUSG00000023995 Tspo2   1  
ENSMUSG00000043592 Unc5cl  1 7 Neutral 
ENSMUSG00000040490 Lrfn2  1  Deleterious 
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ENSMUSG00000023999 Kif6   22  

ENSMUSG00000039316 Rftn1  1 2 Neutral 
ENSMUSG00000067103 AY702103   16  

ENSMUSG00000010592 

Dazl 
1  2  

ENSMUSG00000044645 Gm7334  1*   
ENSMUSG00000023923 Tbc1d5 1 1# 23  
ENSMUSG00000035580 Kcnh8  1  Deleterious 
ENSMUSG00000017831 

Rab5a 
1  4  

ENSMUSG00000044957 4921523A10Rik  1  Neutral 
ENSMUSG00000000708 Kat2b 1  1  

ENSMUSG00000023940 Sgol1 4 5 4 Neutral 
ENSMUSG00000023122 Sult1c2 2    

ENSMUSG00000023945 Slc5a7 1  16  

 Gm17474  4^   
ENSMUSG00000024172 St6gal2 1 1 36 Neutral 
ENSMUSG00000091504 Vmn2r118  7  Deleterious 
ENSMUSG00000024174 Pot1b  1 9 Neutral 
ENSMUSG00000032915 

Emr4 
  1  

ENSMUSG00000002831 Plin4 1 1 1 Neutral 
ENSMUSG00000001228 Uhrf1   1  

ENSMUSG00000013236 Ptprs   1  

ENSMUSG00000042625 Safb2  3* 6 Neutral 
ENSMUSG00000071054 Safb   2  

ENSMUSG00000049760 2410015M20Rik   1  

ENSMUSG00000041168 Lonp1  1  Neutral 
ENSMUSG00000054723 Vmac   1  
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ENSMUSG00000002379 Ndufa11 1    

ENSMUSG00000024207 Acsbg2 1 1 1 Neutral 
ENSMUSG00000024209 1700061G19Rik   1  

ENSMUSG00000024212 Mllt1   2  

ENSMUSG00000045019 Acer1   5  

ENSMUSG00000002660 Clpp   1  

ENSMUSG00000002664 Pspn  1  Neutral 
ENSMUSG00000007670 Khsrp 1 1* 4  
ENSMUSG00000046329 Slc25a23   1  

ENSMUSG00000044279 Crb3 1 1 2 Neutral 
ENSMUSG00000002668 Dennd1c  1  Neutral 
ENSMUSG00000038048 Cntnap5c  2  Neutral 
ENSMUSG00000024227 2610034M16Rik   6  

ENSMUSG00000023965 Fbxl17   2  

Table 3.1 Variants between C57BL/6J and 129S1/SvImJ between 41-70Mb on Chromosome 17 

Non-synonymous SNPs (nsSNPs) in the coding region and SNPs in 5' or 3' UTRs were determined between 

the C57BL/6J and 129S1/SvImJ strain using the Sanger Mouse Genomes Project website. Effects of non-

synonymous SNPs were predicted using Provean with a cutoff score of -2.5. See methods for details. * 

Indicates not all SNPs could be identified in Ensembl and thus the prediction is only based on those SNPs 

that were found in both Sanger and Ensembl. # Indicates some or all of the predicted SNPs are low 

confidence and were not used to compute potential changes in protein function. ^ Indicates that the protein 

was not found in ensemble and therefore no prediction could be made. 
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Gene Location on 

Chr 17 (Mb) 

Function Reference 

Gpr115 42.79 Orphan GPCR  

Gpr111 42.84 Orphan GPCR  

Gpr110 43.4 Orphan GPCR  

Gpr116 43.5 Orphan GPCR  

Rcan2 43.94 Regulates calcineurin activity in brain (Porta et al. 

2007) 

Slc29a1 45.72 Transporter that regulates adenosine levels and controls sensitivity 

to ethanol withdrawal induced seizures 

(Kim et al. 

2011) 

Gtpbp2 46.29 GTPase of unknown function  

Ubr2 47.1 Influences neural stem cell development (Naujokat 

2009) 

Foxp4 48 transcription factor involved in brain development (Takahashi 

et al. 2008) 

Mocs1 49.6 Deficiency leads to altered EEGs (Sie et al. 

2010) 

Satb1 51.9 Controls dendritic spine density during development (Balamotis 

et al. 2012) 

KcnH8 52.7 Potassium channel in a region linked to temporal lobe epilepsy (Combi et 

al. 2005) 

Rab5a 53.6 Putative Go effector (Purvanov 

et al. 2010) 

Slc5a7 54.4 choline transporter (Sales et al. 

2010) 

St6gal2 55.6 Sialylation affects neural plasticity (Okabe et 

al. 2001) 

Sema6b 56.3 maturation of dendritic spines (Pasterkamp 

& Giger 

2009) 

Nrtn 56.9 KO has reduced hippocampal kindling (Nanobashv

ili et al. 

2000) 

Pspn 57.1 neuronal survival and outgrowth (Yang et al. 

2004) 

Gpr108 57.4 Orphan GPCR  

Table 3.2 Candidate Genes in the extended Chr17 region (41-70Mb) based upon function 

The gene list for the entire conservative estimate of the modifier region from 39-65.5Mb on Chr 17 was 

examined using Biomart. A literature search was performed for each gene for a connection to epilepsy, 

GPCR signaling, seizure threshold and sudden death. Those genes with a connection to one of the search 

terms are provided in the table. 
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SNP names Chromosom

e location 

Forward Primer Reverse Primer 

rs29685319 

rs29546941 

5 – 5.9Mb Tcaggaaaccctactccccta tcattgcaagaaagccaaact 

rs4221298 

rs4221299 

16 - 96Mb Tccaaggaggccaaagatact aaaaacagggtacaggcatcc 

rs33479194 

rs13482982 

17 – 41Mb Ctgtgttcccaaccacctct tctagtcagtgcctcgctca 

rs29605468 

rs33703249 

17 - 47Mb Tggcaagacgtgttcattttc tcagagggcttttgaggagag 

rs33050836 

rs29523235 

17 - 62Mb Ggtcatctggaggagcaacc gaacgcgagtgacttgatgc 

rs33464243 

rs33400606 

17 – 70Mb Catggcctcaggtaggtgata tttgaactgcttgaaggaagc 

Table 3.3 Primer sequences for each SNP tested 

Regions of retained 129S alleles on each chromosome were analyzed using the Jackson Lab informatics 

website to identify a test site with two SNPs within a 100 bp region. DNA sequences flanking this region 

were then obtained from the UCSC Genome Browser and subjected to primer design using the primer3 

website. Validated primers are listed in the table above. See methods for further detail. 
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Chapter 4  

Disruption of GIRK channel activation in Go gain-of-function 

mice 

Summary 

Chapter 2 provided an initial characterization of the Gnao1 
+/RGSi

 mice. The 

chapter also highlighted a conundrum in that mutant mice are susceptible to PTZ kindling 

despite initial expectations they would be protected. Chapter 3 worked towards dissecting 

the mechanism behind the enhanced spontaneous death and susceptibility to PTZ 

kindling using a genetic approach. Now I will shift gears to approach the problem from a 

receptor-centric view by working to better understand signaling through three receptor 

systems implicated in epilepsy, GABAB,, μ-opioid, and 5-HT1A.  

Here I demonstrate that Gnao1 
+/RGSi

 exhibit normal motor impairment due to 

baclofen, but exhibit substantially less hypothermia. Gnao1 
+/RGSi

 mice also experience 

diminished hypothermia due to a variety of pharmacological treatments known to depend 

upon GIRK channel function. The altered response of Gnao1 
+/ RGSi

 mice may be due to 

diminished GIRK signaling within the Periaqueductal Gray (PAG), a key region in 

thermoregulation. The decrease in GIRK channel activity is unlikely to be due to a simple 

loss-of-function of the mutant Gα subunit as mice lacking 50% of Go do not have 

equivalent changes. 



 

82 

 This work was highly collaborative. I designed all experiments and then 

instructed and supervised undergraduates who performed the work with the following 

exceptions: 1) Nick Senese generated the morphine hypothermia data following my 

protocols 2) Susan Ingram and Minghua Li designed and planned all electrophysiology 

involving the PAG. Past and current undergraduates who meaningfully contributed to this 

work by running behavioral experiments include Kevin Kohut, Matthew Stern, and Hans 

Dalton. 

Introduction 

 Side-effects of clinically prescribed drugs are a major health problem. Roughly 

30% of patients on medication for a chronic condition stop treatment due to side-effects 

(Dusing et al. 1998; Hugtenburg et al. 2006). This and other issues of non-compliance 

with prescription drugs are associated with $289 billion in annual healthcare costs and 

lead to over 100,000 deaths per year within the US alone (Viswanathan et al. 2012). With 

many current therapies focused on activation of G-protein Coupled Receptors (GPCR), it 

may be impossible to pharmacologically separate on-target effects from side-effects. For 

example baclofen, a GPCR agonist, induces both muscle relaxation and disrupts 

thermoregulation through GABAB receptor activation (Costa et al. 2005; Pravetoni & 

Wickman 2008). 

Through modulation of G-protein activity downstream of GPCR activation it may 

be possible to potentiate desired effects while minimizing side-effects. This is a result of 

the region specific localization of G-proteins and their negative regulators, the Regulators 

of G-protein Signaling (Blazer & Neubig 2009). For example, we recently demonstrated 
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that mice with enhanced Gi2 signaling have enhanced 5-HT1A mediated antidepressant 

action without altering 5-HT1A mediated hypothermia (Talbot et al. 2010). 

 In this work I specifically chose to focus on one clinically relevant side-effect, 

disruption of thermoregulation. Two to three percent of patients treated with anti-

psychotics will develop hyperthermia associated with Neuroleptic Malignant Syndrome 

(NMS) (Mann & Lazarus 2003). NMS has also been observed in the treatment of 

Parkinson's disease and with the use of the anti-spastic agent baclofen (Mann & Lazarus 

2003; Turner & Gainsborough 2001). A host of other drugs, including anti-depressants 

(SSRIs, MOIs) and ecstasy (MDMA), can induce CNS-mediated hyperthermia (Eyer & 

Zilker 2007). As of 2004, ecstasy-induced hyperthermia was treated by ice baths 

(Fantegrossi et al. 2004). With treatment, the aforementioned hyperthermia syndromes 

are still lethal in 40% of patients (Mann & Lazarus 2003). With several distinct drug 

classes potentially leading to fatal hyperthermia further research in how these drugs alter 

thermoregulation is warranted. 

The inhibitory G-protein family, Gi/o is known to mediate actions of a variety of 

GPCRs that disrupt thermoregulation through G-protein-coupled Inwardly-Rectifying 

Potassium (GIRK) channel activation, including – 5-HT1A, GABAB, and the µ opioid 

receptors (Albert & Robillard 2002; Costa et al. 2005). Unfortunately, in vitro transfected 

systems are typically unable to identify which Gi/o family member is responsible for a 

given signaling output (Fernandez-Fernandez et al. 2001). This is compounded by the 

difficulty of extrapolating from a cellular response to a physiological one.  
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I hypothesize that distinct Gi/o family members are involved in specific subsets of 

the therapeutic and/or side-effects of many clinically relevant drugs.  

 Here I demonstrate that mice with enhanced Go signaling experience expected 

motor impairment due to baclofen, but exhibit substantially less hypothermia. Gnao1 

+/RGSi
 mice also experience diminished hypothermia due to a variety of pharmacological 

treatments known to depend upon GIRK channel function. The altered response of 

Gnao1 
+/ RGSi

 mice may be due to diminished GIRK signaling within the Periaqueductal 

Gray (PAG), a key region in thermoregulation (Romanovsky 2007); (Bachtell et al. 2003; 

Yoshida et al. 2005); (de Menezes et al. 2006). The decrease in GIRK channel activity is 

unlikely to be due to a simple loss-of-function of the mutant Gα subunit as mice lacking 

50% of Go do not have equivalent changes. Thus we have demonstrated, for the first time, 

the ability to selectively modulate a subset of baclofen’s effects by targeting downstream 

effectors. 

Results 

Gnao1 
+/RGSi

 mice have decreased hypothermia but equivalent or slightly enhanced 

motor impairment due to baclofen 

 Given that GABAB receptors are thought to signal through Go (Campbell et al. 

1993; Greif et al. 2000), we tested two physiological outputs of GABAB receptor 

activation, hypothermia and motor impairment. Each of these effects is thought to be due 

to GIRK channel activation (Costa et al. 2005; Pravetoni & Wickman 2008). However, 

different brain regions are likely involved. The neural basis of baclofen-mediated ataxia 

has been localized to the cerebellum, a region not associated with thermoregulation 
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(Maity et al. 2012). B6-Gnao1 
+/RGSi

 male mice have reduced hypothermia but normal 

motor impairment in response to baclofen administration (Figure Figure 4.1, Two-way 

ANOVA: 1A F(1, 14)= 28.89 p < 0.0001, 1B F(1, 19)= 16.32 p < 0.001).  
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Figure 4.1 Gnao1+/RGSi mice have an altered response profile to baclofen 

A) Hypothermia is reduced in response to escalating doses of baclofen 

in B6-Gnao1 
+/RGSi

 mice. B) Hypothermia is reduced in response to a 

6mg/kg baclofen in B6-Gnao1 
+/RGSi

 mice. C) Motor impairment is 

equivalent across genotypes due to escalating doses of baclofen. D) 

Kinetics of motor impairment are unaffected by genotype. 
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Gnao1 
+/RGSi

 mice have decreased pharmacologically induced hypothermia by other 

drugs that act through GIRK channels 

Due to limited viability of mutant mice on the B6 background we switched to 

using B6129F1 mice (F1). In Figure 4.2A we reproduce the defect in baclofen-mediated 

hypothermia in F1 Gnao1 
+/RGSi

 mice indicating that the phenotype is not background-

dependent (2-way ANOVA, F(1, 7) = 8.26 p=0.02). F1 Gnao1 
+/RGSi

 mice also have a 

reduction in hypothermia due to 5-HT1A and μ-opioid receptors as assessed by their 

respective agonists, 8-OH-DPAT and morphine. Each receptor is known to induce 

hypothermia, in part, through GIRK channels (Figure 4.2B morphine single-dose F(1,8)= 

88.97 p<0.0001; Figure 4.2C single-dose 8-OH-DPAT 2-way ANOVA F(1,14)=43.41 p< 

0.0001, Figure 4.2D escalating-dose F(1, 7)= 15.44 p<0.01) (Costa et al. 2005). 
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Figure 4.2 GIRK mediated hypothermia is disrupted in F1 Gnao1 +/RGSi mice 

A) Hypothermia due to baclofen is attenuated in F1 Gnao1 
+/RGSi

 mice as 

assayed by an escalating dose response curve. B) Both the maximal response 

and time course of 30 mg/kg morphine mediated hypothermia is altered in F1 

Gnao1 
+/RGSi

 mice as assayed by a single dose time course. C) Both the 

maximal response and time course of 1mg/kg 8-OH-DPAT mediated 

hypothermia is altered in F1 Gnao1 
+/RGSi

 mice as assayed by a single dose 

time course. D) 8-OH-DPAT mediated hypothermia is reduced in F1 Gnao1 
+/RGSi

 mice as assayed by an escalating dose response curve. 
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F1 Gnao1 
+/RGSi

 mice have a normal hypothermia response to drugs that act 

independent of GIRK channel activity 

The reduced hypothermia in Figure 4.2 could be due to a global disruption of 

thermoregulation. Therefore we tested D2-like receptor-mediated hypothermia which is 

known to be independent of GIRK channel function (Costa et al. 2005). It has been 

postulated to be mediated through a presynaptic mechanism (Zarrindast & Tabatabai 

1992). In Figure 4.3, it can be seen that the Go mutation has no statistically significant 

influence on the hypothermia response in an equivalently powered experiment. Thus the 

defect in hypothermia is pathway-dependent and not a universal downstream defect. 

  

Figure 4.3 Non-GIRK channel mediated hypothermia is 

preserved in F1 Gnao1 +/RGSi mice 

Non-GIRK channel dependent hypothermia was 

tested using 0.5 mg/kg of the D2-like agonist 

quinpirole. Here hypothermia was indistinguishable 

among genotypes. 
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Gnao1 
+/RGSi

 mice have decreased GABAB and μ-opioid receptor (MOR) activation 

of GIRK channel activity in the PAG 

While the in vivo changes in hypothermia are indicative of decreased GIRK 

channel activation, this could also have been due to effects up-or downstream of the 

GIRK channel in the hypothermia pathway. Therefore to reduce the level of system 

complexity, I collaborated with the Ingram laboratory to directly test GIRK activity 

within the periaqueductal gray area (PAG), a region known to play a central role in 

thermoregulation and to contain both GABAB and MOR receptors (Romanovsky 2007). 

Here we found a decrease in the magnitude of both GABAB and the MOR receptor-

mediated stimulation of GIRK channel currents (Figure 4.4). These data indicate that 

GPCR-mediated activation of GIRK channels is disrupted in the PAG of mutant mice.  
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Figure 4.4 GPCR activation of GIRK channel currents is reduced in Gnao1 +/RGSi mice 

A) Baclofen (10 µM) activates GIRK channel currents in PAG neurons in control mice but had a 

minimal response in neurons of the Gnao1 
+/RGSi

 mice (t-test, t(6) = 2.906, p < 0.05). B) The μ-opioid 

receptor agonist met-enkephalin (ME) activates GIRK channel currents in control mice but the 

magnitude of the current is substantially reduced in Gnao1 
+/RGSi

 mice (F(1,11) = 6.354, p < 0.05).  
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Reduced Go function does not explain altered hypothermia 

 Given that the mutation was designed as a gain-of-function mutation, it was 

unexpected to see the loss of signaling. One potential way this mutation may result in a 

loss of function is through a reduction in protein level. It has been previously reported 

that 129S1/SvImJ Gnao1 
+/ RGSi

 mice exhibit a slight reduction in Go protein level 

(Lamberts et al. 2013). This was not found in our own hands on the F1 background 

(Figure 2.2). To further assess whether reduced Go protein could cause this effect, we 

tested Gnao1 
+/-

 mice which have a 50% reduction in protein levels (Lamberts et al. 

2011). They still, however, exhibited normal 8-OH-DPAT induced hypothermia (Figure 

4.5). 
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Figure 4.5 A 50% reduction in Go protein does 

not impair GIRK-dependent hypothermia 

1mg/kg of 8-OH-DPAT was administered to 

mice lacking 50% of Go. All mice responded 

equivalently 
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Transcriptional regulation does not explain decreased GIRK channel activation 

Compensatory mechanisms may reduce transcription of key components within 

the signaling cascade. Therefore we checked GIRK and several other CNS proteins in 

both the hippocampus and cortex of F1 Gnao1 
+/RGSi

 males. Unfortunately, while an area 

of interest, the PAG could not be isolated due to technical limitations. Figure 4.6 

illustrates that despite seeing the expected increase of RGS4 within the cortex, no 

difference in GIRK was detected due to the mutation in either brain region. 

Discussion 

Here we support the 

hypothesis that modulating G-

protein signaling is able to 

selectively influence a subset of 

responses to a given 

pharmaceutical. Specifically, in 

this Chapter, I demonstrate 

Gnao1 
+/RGSi

 mice to have reduced 

baclofen-mediated hypothermia 

while the baclofen-mediated motor impairment is comparable to control. Further, this 

chapter demonstrates that morphine-induced hypothermia is reduced in mutant mice, 

despite previous reports demonstrating that the mutation enhances morphine-induced 

supraspinal antinociception (Lamberts et al. 2013). The reduction in hypothermia appears 

to be due to a disruption of GIRK channel activation within the PAG. These findings do 

Figure 4.6 GIRK transcription in cortex and hippocampus is 

unaltered 

mRNA levels for several excitatory and inhibitory signaling 

components were quantified using GAPDH for normalization. 

Cortex and hippocampus of mutant and control mice were 

assayed. The mutation did not influence mRNA levels. 
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not appear to be due to a loss of Go function nor does it appear to due to disruption of 

transcriptional control of GIRK channels. 

Historically, many labs have had difficulty in differentially modulating baclofen’s 

hypothermia and motor-impairing effects. Gabbr1 
-/-

 mice, which lack GABAB receptors, 

lose both effects indicating that a single receptor is responsible for both actions of the 

drug (Schuler et al. 2001). It also appears that both effects, in addition to being through 

the same receptor, are also due to the same effector, GIRK2 containing channels. Kcnj6 
-/-

 

mice have a significant loss in both measures of baclofen action (Costa et al. 2005); 

(Pravetoni & Wickman 2008). However Maity et al. recently identified the pathways 

upon which baclofen acts to induce muscle relaxation within the cerebellum (Maity et al. 

2012). Within the signaling cascade they identified RGS6 as a key modulator and 

confirmed that Rgs6 
-/-

 mice were dramatically sensitized to the motor-impairing effects. 

Conspicuously missing, however, is the impact that RGS6 has on other baclofen-

mediated effects such as sedation or hypothermia.  

The selective disruption in baclofen-mediated hypothermia in Gnao1 
+/RGSi

 mice 

appears to be due to altered GIRK channel activity. Gnao1 
+/RGSi

 mice have significantly 

reduced hypothermia in response to several drugs which induce hypothermia in a GIRK 

channel-dependent manner (Figure 4.1 & Figure 4.2). However quinpirole-mediated 

hypothermia, which acts independently of GIRK channels, is intact. This likely implies 

that central downstream thermoregulatory pathways are still intact. 

One may argue that by providing a large dose of quinpirole we have masked an 

effect on a central downstream hypothermia pathway, however this is unlikely. The dose 
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of quinpirole administered generated a comparable magnitude drop in core temperature 

as compared to those drugs that were GIRK channel-dependent. Further, it was not a 

maximal response as a dose of 1 mg/kg generated a two degree larger drop  and the 

mutation had no effect on that response either (data not shown). 

Another interesting conclusion to be drawn from these data is that enhanced Go 

activity must not universally impact GIRK channel signaling. Girk2 
-/-

 mice and Girk1 
-/-

 

mice lack a baclofen-mediated motor impairment. Therefore if the disruption in GIRK 

channel activity was universal across the brain of Gnao1 
+/RGSi

 mice they should have a 

blunted motor impairment responses as well. Yet based upon Figure 4.1 this is not the 

case. 

It was quite challenging to understand how a gain-of-function mutation would 

lead to a reduction in physiological signaling. Therefore we looked at the 

electrophysiological level which further confirmed that, at least within the PAG, GIRK 

channel activity was significantly reduced. There are at least four possible explanations 

for this finding including: reduced expression of G-protein, reduced GIRK channel, 

reduced receptor levels, or a role for RGS action to enhance G-protein-mediated GIRK 

signaling. Unfortunately, in light of data presented here and in other works, none of these 

hypotheses appear reasonable. First, loss of Go function appears unlikely as we tested if a 

50% reduction in protein level could phenocopy the blunted hypothermia but found a 

normal hypothermic response to 8-OH-DPAT in heterozygote Gnao1 
+/-

 mice. Second, 

we explored the potential role for transcriptional control of Kcnj6 to be a mediator of our 

observations. This is based upon a prior report indicating that Go signaling can suppress 

transcription of N-type calcium channel activity (Kim et al. 2003). However, I found the 
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mutation to have no effect within the cortex and the hippocampus. As mentioned above 

though, a brain region selective impact may be responsible; therefore a more robust 

analysis of mRNA from other brain regions, including the PAG, will be needed to fully 

eliminate this mechanism. The third potential explanation for the blunted hypothermia is 

that loss of RGS/G protein interactions diminishes GIRK channel activation. Previous 

reports, however, typically indicate a negative role for RGS proteins in GIRK channel 

activity (Labouebe et al. 2007; Mutneja et al. 2005). Work presented elsewhere also 

makes loss of receptor function an unlikely explanation. Dr. Lydic’s laboratory has 

conducted GTPγS binding on a variety of receptors in Gnao1 
+/RGSi

 brains and found little 

change indicating both relatively normal receptor levels and G-protein coupling. Work by 

Lamberts et al. demonstrated enhanced activity of μ-opioid receptors within the PAG of 

Gnao1 
+/RGSi

 mice by assaying μ-opioid mediated suppression of calcium channels. Thus 

the molecular mechanism behind the loss of GIRK channel activity remains elusive but 

may involve trafficking of GIRK channels or signaling complex assembly. 

Based upon the discussion thus far we are left with one alternative hypothesis, 

despite prior in vitro data, Go may function in vivo to reduce GIRK activation. This 

actually fits with some prior in vivo work where Gnao1 
-/-

 mice demonstrated enhanced 

GIRK channel activity within the hippocampus (Greif et al. 2000) which they attributed 

to disruption of the normal Go /RGS coupling leaving another Gi/o family member to 

compensate that was not subject to RGS regulation by the RGS proteins present within 

the hippocampus. However, I think this is actually quite an unlikely explanation due to 

two major findings. One, relatively few RGS proteins demonstrate Go selectively and 

mRNA from several non-selective of RGS family members is abundant within the 
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hippocampus (Gold et al. 1997), Chapter 1). Additionally, I have now demonstrated that 

Gnao1
 +/RGSi

 mice have reduced GIRK channel activity which would not be expected 

based upon the rational presented in the Gnao1 
-/-

 paper. Therefore a possible explanation 

is that Go’s function in vivo may be to reduce GIRK signaling. The biochemical 

mechanism could be through a dominant negative effect whereby Go activation generates 

second messengers which serve to block other Gi/o family members from activating 

GIRK. Further experiments will be necessary to test this hypothesis. 

In summary we have identified that introduction of a Gnao1 RGSi allele in vivo 

selectively disrupts GIRK channel-dependent hypothermia pathways including those 

within the PAG. Further analysis centered upon the PAG in our mouse system should 

yield insights to the role of Go and RGS proteins in controlling the function of GIRK 

channels within this region. 

Materials and Methods 

Animal studies were performed in accordance with the Guide for the Care and 

Use of Laboratory Animals established by the National Institutes of Health; all 

experimental protocols were approved by the relevant University Committee on the Use 

and Care of Animals. Experiments were performed using male mice. All experimental 

mice were group-housed with unlimited access to food and water until experimentation. 

Lights were maintained on a 12-hour light/dark cycle with lights on at 5:00/6am 

depending on time of year. All experiments were conducted during the light phase. 

Generation of mice and genotyping 

The Gnao1 RGSi mutation was initially generated on the 129S1/SvImJ 

background which was used to produce RGSi mice on the B6129F1 and C57BL/6J 
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background as described in previous chapters. All mice had eartags inserted and tail 

biopsies taken prior to weaning. DNA was extracted from tails by an alkaline lysis 

method (Truett et al. 2000). The RGSi allele of Gnao1 was identified by PCR as 

described in chapter 2. Gnao1 
-/-

 mice were a generous gift of Dr. Mortenson and 

genotyped as previously reported (Duan et al. 2007). 

Hypothermia 

Experimenter was blinded to genotype. Mice were moved from group housing to 

individual cages with free access to food and water for 2 hours prior to experimentation. 

Starting at 30 minutes prior to drug administration baseline temperatures were recorded 

using a Tcat 2df controller rectal thermometer (Physitemp Clifton, NJ) which was placed 

at a 20 mm probe depth. This was repeated every 10 minutes until just prior to i.p. drug 

injection. The temperature taken just prior to drug injection was used as the baseline 

value (t=0). For single-dose studies, no further injections were administered and 

temperature was taken by rectal thermometer at the times indicated. For cumulative-dose 

response curves the first physiological read outs post-injection were taken at the time of 

peak effect in the respective single-dose vs time curve (i.e. 60 minutes for baclofen and 

20 minutes for 8-OH-DPAT). Following physiological read outs an i.p. injection of the 

relevant drug was administered and the same amount of time was allowed to pass prior to 

taking readings and injecting the next dose. 8-OH-DPAT (Sigma), morphine, and 

baclofen (Sigma) were dissolved in saline. Drugs were made as stocks and used over 

multiple days. Control and mutant mice were tested in equal numbers each day. 

Motor Impairment 

For those hypothermia experiments that also involved testing for motor 
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impairment, mice were trained on a rotarod set at 12 RPM in four sessions spaced 30 

minutes apart the day before the experiment. On the day of the experiment baseline 

performance was measured. Only mice that fell once or less during a 300 second test 

were used. Mice were then injected with baclofen, had their temperature taken, and then 

time on the rotarod was determined. Time spent clinging to the rotarod was excluded, 

similar to prior studies (Jacobson & Cryan 2005). 

Electrophysiology 

Mice were deeply anesthetized with isoflurane and the brains rapidly removed 

and placed in ice cold "cutting buffer" containing (in mM): 75 NaCl, 2.5 KCl, 0.1 CaCl2, 

6 MgSO4, 1.2 NaH2PO4, 25 NaHCO3, 2.5 D-dextrose, 50 sucrose. Coronal slices (~230 

µm) containing the periaqueductal gray area (PAG) were sliced in 95% O2 and 5% CO2 

oxygenated "cutting buffer”. Slices were incubated in warm (35 
0
C) oxygenated artificial 

cerebrospinal fluid (aCSF) containing (in mM): 126 NaCl, 2.5 KCl, 2.4 CaCl2, 1.2 

MgCl2, 1.2 NaH2PO4, 21.4 NaHCO3, 11.1 D-Dextrose, pH 7.4, and the osmolarity was 

adjusted to 300-310 mOsm. 

Whole cell patch clamp recordings were made from visually identified PAG 

neurons. Patch pipettes were pulled from borosilicate glass (WPI, Sarasota, FL) on a two-

stage puller (Narishige, Tokyo, Japan). Pipettes had a resistance of 2-4 Mohm and 

intracellular solutions contained (in mM): 138 potassium methylsulfate, 10 KCl, 0.3 

CaCl2, 1 MgCl2, 10 HEPES, 1 EGTA, 30 D-dextrose, 4 Mg-ATP, 1 Na-GTP; pH 7.3, 

280-290 mOsm. Whole cell series resistance was compensated ~80%. Neurons were held 

at -70 mV. Currents were collected at 2 kHz and digitized at 5 kHz using an Axopatch 

200B amplifier controlled by Axograph Data Acquisition software (AxographX, Sydney, 
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Australia). Recordings in which access resistance or capacitance changed by >15% 

during the experiment were excluded from data analysis. 

Quantitative Real Time PCR 

F1 males 8 weeks of age were decapitated and heads were placed in liquid 

nitrogen for 6 seconds to prevent mRNA degradation. Cortex and hippocampus dissected 

using a 30g coronal mouse brain matrix (Electron Microscopy Sciences) and 

homogenized in a bullet blender (Next Advance) per the manufacturer’s directions using 

homogenization buffer from an RNeasy Mini kit (QIAGEN, Valencia, CA). RNA was 

extracted using the RNeasy Mini kit following the manufacturer's instructions. Total 

RNA (1 μg) was reverse-transcribed after digestion with DNase using a TaqMan cDNA 

reverse transcription kit with random hexemer primers (Applied Biosystems, Foster City, 

CA). Quantitative real-time PCR was performed in 20-μl reactions containing 1 μl of the 

cDNA sample and 0.3 μM forward and reverse primers with the RT2 SYBR Green qPCR 

Master Mix (SABiosciences, Frederick, MD). 

Statistics 

Data were analyzed using GraphPad Prism 5.0 (GraphPad; LaJolla, CA). All data are 

reported as mean ± SEM. Two-way ANOVA was employed in the analysis of thermal 

and motor impairment figures. Student's t-test and ANOVA were used where appropriate 

for electrophysiology. Two-tailed p values less than 0.05 were considered significant.
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Chapter 5  

Synthesis 

This thesis elucidated a role for Go in modulating kindling susceptibility. One 

method was a pharmacological approach assessing altered receptor signaling in a novel 

Go gain-of-function mouse model. The second was a genetic approach to identify unique 

modifiers of the pro-seizure phenotype found in mutant mice. The work presented in this 

thesis has further highlighted the critical role for Go signaling in models of epilepsy and 

modulation of specific outcomes in GPCR signaling. Future work building upon this 

foundation will be of critical importance in the development of therapies for the recently 

recognized role of mutations within GNAO1 in epileptic encephalopathy (Nakamura et al. 

2013). 

Unique role for Go in kindling susceptibility 

A variety of laboratories has previously identified activation of Gi/o-coupled 

GPCRs as protective from seizures (Grecksch et al. 2004; Pericic et al. 2005). However it 

remained to be determined which inhibitory G protein was involved in this process. 

Several labs generated Go null mice and noted no overt seizure phenotype (Duan et al. 

2007; Jiang et al. 1998). However my thesis suggests Go as a key player in modifying 

CNS excitability. This further supports the observation of one other laboratory that did 

report spontaneous seizures in Go null mice (Valenzuela et al. 1997). 
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The prior literature discussed above provided a simplistic understanding of Go 

where Go activation was considered to be protective from seizures. However recent 

research, including in my own thesis, has highlighted the importance of finely tuning the 

level of Go activity. Nakamura et al. identified a mutation that is highly analogous to our 

own RGSi mutation in patients with epileptic encephalopathy (Nakamura et al. 2013). In 

support of this mutation likely being a gain-of-function, my thesis demonstrates, for the 

first time, that enhanced Go signaling in a rodent model enhances susceptibility to 

kindling and promotes the development of spontaneous electrical disturbances within the 

brain. While other mutations found by Nakamura et al. were predicted to be loss-of-

function, this does not match my rodent data whereby mice with a 50% reduction in Go 

protein levels do not display sensitization to kindling (Figure A.2). Thus I would 

postulate that these mutations, might in fact, act as dominant negatives. 

Prior work in cell culture experiments has implicated a role for Go in neuronal 

development and migration, which is suggestive of a possible mechanism at play in the 

enhanced kindling susceptibility. Yet prior studies in Go null mice were unable to detect 

morphological abnormalities within the CNS (Valenzuela et al. 1997). Here, for the first 

time, I report anatomical abnormalities as a reduction in spine density due to enhanced Go 

signaling (Figure A.4). Though it remains to be determined if the changes are a primary 

result of the mutation or a secondary defect due to IEDs. 

Mouse models studying Go effectors implicate reduced GIRK activity as a likely 

mechanism of Gnao1 
+/RGSi

 enhancement of kindling. Historically within the literature 

two of the major targets of Go activation are N-type calcium channels and GIRK 

channels. Enhanced suppression of N-type calcium channels in Gnao1 
+/RGSi

 mice, 
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however, is unlikely to result in seizures based upon animal model data. N-type calcium 

channel null mice are viable, and despite three different independently generated lines no 

mention of altered seizure susceptibility is mentioned (Hatakeyama et al. 2001; Kim et 

al. 2001; Saegusa et al. 2001). Girk2 
-/-

 mice however display spontaneous seizures and 

premature death like Gnao1 
+/RGSi

 mice (Signorini et al. 1997). While prior in vitro 

literature proposed a positive role for Go in GIRK channel activation (Fernandez-

Fernandez et al. 2001), Chapter 4 of my thesis demonstrates a negative role for Go 

activity in GIRK channel activity. This conclusion is further supported by prior in vivo 

work which found enhanced GIRK activity in Gnao1 
-/-

 mice (Greif et al. 2000). One 

possible mechanism behind Go’s unexpected suppression of GIRK channel activity is that 

the specific βγ subunits that Go releases bind, but have low efficacy to activate GIRK 

channels. Thus βγ from Go may act in a dominant-negative fashion. Future studies in 

transfected primary neurons will be required to test this hypothesis. An additional way to 

test the significance of reduced GIRK channel activity in the enhanced kindling 

phenotype would be to see if administration of the newly discovered direct GIRK channel 

activator, ML297, ameliorates the phenotype (Kaufmann et al. 2013). 

Identification of a novel modifier of epilepsy with relevance to human patients 

Genetic modifiers which influence the progression of spontaneous seizures in 

mouse models of epilepsy have been identified (Bergren et al. 2009). However the model 

systems employed typical utilize ion channel mutations. It remains unknown if 

therapeutics leveraging these modifiers will improve treatment for epilepsies of other 

origins. Significantly, the novel work of my thesis indicates another modifier on mouse 

Chr17 could provide useful insights in the treatment of idiopathic epilepsies that depend 
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on altered GPCR signaling. This is particularly relevant in light of new data suggesting 

de novo mutations in GNAO1 can contribute to epilepsy (Nakamura et al. 2013). 

Understanding sudden unexpected death in epilepsy (SUDEP) has proved quite 

challenging with few known risk factors (Surges & Sander 2012). One animal model 

involving a loss of Kv1.1 demonstrated that mutations increasing parasympathetic tone 

can be a risk factor (Glasscock et al. 2010). Modifiers protective from this phenotype 

have yet to be identified. Interestingly, our Gnao1
+/RGSi

 mice are also likely to have 

enhanced parasympathetic signaling as Go plays a major role in these signaling pathways 

(Duan et al. 2007);(Valenzuela et al. 1997). Therefore Mogs1 should also be considered 

as a potential modifier of SUDEP. To support this theory it will be of interest to see if 

Mogs1 is able to reduce the incidence of SUDEP in mice lacking Kv1.1. 

 Future directions 

Model system development 

The model used in my thesis has a major limitation. Temporal or spacial 

dissection of Go signaling is not possible due to the global nature of the mutation. This is 

particularly significant in light of the IED activity found in the B6.129 Gnao1 
+/RGSi

 mice. 

Further dissecting the molecular mechanisms of any phenotype will prove challenging as 

the phenotype may be secondary to the IED activity. Time course experiments to find 

primary defects will be required to determine the origin of the IED activity. However to 

study the role of Go in other neurotransmitter systems within the mature brain alternative 

models will be required to overcome this limitation. 
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To avoid complications due to IED activity Gnao1 
+/RGSi

 mice could be studied on 

a different genetic background. The two alternative backgrounds currently available 

include B6x129 F1 and 129S1/SvImJ. Mutant F1 mice may not display spontaneous 

IEDs as, in contrast to their B6 counterparts, they do not experience spontaneous death. 

Normal baseline EEG activity may, however, be an unrealistic assumption because 

mutant F1 mice parallel their B6 counterparts in rapid PTZ kindling (Figure A.1). 

Studying mutants on the 129 background is a second option. The fact that they kindle at 

the same rate as control makes their having normal baseline EEG activity more likely. 

However the 129 strain has several disadvantages including poor breeding and minimal 

locomotion (Labs 1998). The minimal locomotion presents a problem due to the 

behavioral nature of many assays. Thus studying the mutation on the 129 genetic 

background may not prove fruitful. 

An alternate approach would be to develop a mouse model that could be 

temporally and spacially controlled. This could be accomplished through the 

development of a conditional knock-in. However, based upon the Neubig lab’s 

experience in developing the Gi2 conditional knock-in, the use of a minigene can 

dramatically reduce protein expression. Reduced protein expression was also a 

complicating factor for one researcher who attempted to create a conditional Gnao1 
+/RGSi

 

mouse (personal communcation). However, the cause of reduced protein expression can 

not be conclusively tied to the mutation as the neo cassette was not removed, which can 

also reduce protein expression. 

One approach to overcome the limitations of a conditional knock-in is the use of a 

transgenic BAC containing a Cre inducible Gnao1 RGSi allele. Gain-of-function 
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mutations typically lead to dramatic phenotypes as highlighted in the introductory 

chapter. Thus even if only 1/3 of the Go is from the RGSi allele it should be sufficient for 

experimental purposes. 

Future research areas 

The mechanism of IED development should be further pursued as IEDs are 

recognized as a clinically significant problem leading to deficits in cognitive function 

(Jaseja 2007) (Pressler et al. 2005). Despite their significance, the effectiveness of current 

medications in reducing IED frequency is under debate (D'Antuono et al. 2010; Pressler 

et al. 2005); (Stodieck et al. 2001). Despite the purported benefits of suppressing IEDs, 

evidence has also been presented for a protective role of IEDs to reduce frequency of 

seizures (Avoli 2001). Understanding the development of IEDs in Gnao1 
+/RGSi

 mice 

should yield insights into how best to suppress IEDs and the long term consequences of 

doing so. 

Understanding excitatory signaling within the piriform cortex and hippocampus 

of Gnao1 
+/RGSi

 mice is likely a key step in understanding the mechanism of IED 

development. This is a result of several lines of data. IEDs occur within the piriform 

cortex early in the kindling process and only later propagate to the hippocampus (de 

Curtis et al. 1999). B6.129 Gnao1 
+/RGSi

 mice kindle more quickly potentially indicating 

alterations in the propagation of IEDs within these mice. Yukun Yuan in our lab has 

generated preliminary data that spontaneous inhibitory post synaptic events are reduced 

both in frequency and amplitude (Figure A.3). This data could support the hypothesis that 

suppression of GABA release in Gnao1 
+/RGSi

 mice contributes to IED development. 



 

107 

 There are other alternative explanations for the changes observed by Yukun, 

including either death of inhibitory neurons, which commonly occurs in epileptic brains 

(Buckmaster & Jongen-Relo 1999), or a lower density of inhibitory synapses. The 

viability of interneurons in the adult brains should be further explored. A decrease in 

inhibitory cell number would support the hypothesis that Go 
+/RGSi

 mice experience 

spontaneous seizures, which is still under debate. If no changes were observed it would 

rule out a decrease in inhibitory neurons as an explanation of Yukun’s data. 

Future experimentation should also focus on cardiac function in Gnao1 
+/RGSi

 

mice. Go, beyond being expressed in the brain, is also present in the heart. Here it is 

responsible for controlling the bradycardia response to muscarinic agonists (Duan et al. 

2007). Thus I would hypothesize that Gnao1 
+/RGSi

 mice should have enhanced 

muscarinic induced bradycardia. This could have two significant implications for the 

findings of my thesis. First, cardiac dysfunction may precipitate seizures through 

hypoxia-induced neuronal cell death. Secondly, the strain-dependent spontaneous death 

may be a model for sudden unexpected death in epilepsy (SUDEP). 10-15% of those who 

experience SUDEP have long QT intervals, indicating cardiac dysfunction (Surges & 

Sander 2012). Further, one proposed mechanism of SUDEP is post-ictal bradycardia or 

hypoventilation (Surges & Sander 2012). Testing both a brain and cardiac specific Gnao1 

+/RGSi
 mouse line in kindling and spontaneous death would prove critical to ruling out the 

role of cardiac dysfunction in Gnao1 
+/RGSi

 enhanced kindling and spontaneous death. 
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Appendix 

Additional Data 
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Figure A.1 F1 Gnao1 +/RGSi mice kindle faster than control 

Female F1 mice were subjected to the kindling protocol 

in Chapter 2. Mutant mice kindle faster than control. 

p < 0.001 

 

  



 

109 

0 2 4 6 8 1 0
0

5 0

1 0 0

w t

+ /-

In je c tio n  #

P
e

r
c

e
n

t 
s

u
r
v

iv
a

l

n = 9

 

Figure A.2 A 50% reduction in Go protein levels does not alter kindling 

Female Gnao1
 +/-

 mice on the B6 background were subjected to 

kindling following the protocol in Chapter 2. Loss of protein 

did not influence rate of kindling. 
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Figure A.3 Gnao1 +/RGSi mice have lower amplitude and less frequent sIPSC 

Dr Yuan tested adult B6 mice for changes in inhibitory signaling. These findings 

are indicative of mutant mice having less inhibitory signaling. 

 

Figure A.4 Gnao1 +/RGSi mice have a lower 

CA1 spine density by 4 weeks of age 

Gnao1 
+/RGSi

 mice were bred with GFPm 

mice. At 4 weeks of age brains were 

harvested and spine density of CA1 

pyramidal cells was calculated. Mutant 

mice have a lower spine density at several 

distances from the soma. 
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Figure A.5 Gnai2 +/RGSi mutant mice kindle at a rate comparable to control 

The RGSi mutation in the Gi2 protein has no impact on the rate of kindling 

even on the B6 background. 
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Figure A.6 Gnai2 +/G184S mice display responses to baclofen similar to that of control 

A) 6 mg/kg hypothermia response B) 10 mg/kg hypothermia response C) 6mg/kg motor impairment D) 

10mg/kg motor impairment 
 

 



 

113 

Bibliography 

Abarca, C., Albrecht, U. & Spanagel, R. (2002) Cocaine sensitization and reward are under the 
influence of circadian genes and rhythm. Proc Natl Acad Sci U S A 99 9026-9030. 

Adari, H., Lowy, D.R., Willumsen, B.M., Der, C.J. & McCormick, F. (1988) Guanosine 
triphosphatase activating protein (GAP) interacts with the p21 ras effector binding 
domain. Science 240 518-521. 

Albert, P.R. & Robillard, L. (2002) G protein specificity: traffic direction required. Cell Signal 14 
407-418. 

Alexander, G.M. & Godwin, D.W. (2006) Metabotropic glutamate receptors as a strategic target 
for the treatment of epilepsy. Epilepsy Res 71 1-22. 

Andre, V., Marescaux, C., Nehlig, A. & Fritschy, J.M. (2001) Alterations of hippocampal 
GAbaergic system contribute to development of spontaneous recurrent seizures in the 
rat lithium-pilocarpine model of temporal lobe epilepsy. Hippocampus 11 452-468. 

Arshavsky, V. & Bownds, M.D. (1992) Regulation of deactivation of photoreceptor G protein by 
its target enzyme and cGMP. Nature 357 416-417. 

Avoli, M. (2001) Do interictal discharges promote or control seizures? Experimental evidence 
from an in vitro model of epileptiform discharge. Epilepsia 42 Suppl 3 2-4. 

Bachtell, R.K., Tsivkovskaia, N.O. & Ryabinin, A.E. (2003) Identification of temperature-sensitive 
neural circuits in mice using c-Fos expression mapping. Brain Res 960 157-164. 

Bagdy, G., Kecskemeti, V., Riba, P. & Jakus, R. (2007) Serotonin and epilepsy. J Neurochem 100 
857-873. 

Balamotis, M.A., Tamberg, N., Woo, Y.J., Li, J., Davy, B., Kohwi-Shigematsu, T. & Kohwi, Y. (2012) 
Satb1 ablation alters temporal expression of immediate early genes and reduces 
dendritic spine density during postnatal brain development. Mol Cell Biol 32 333-347. 

Banihashemi, B. & Albert, P.R. (2002) Dopamine-D2S receptor inhibition of calcium influx, 
adenylyl cyclase, and mitogen-activated protein kinase in pituitary cells: distinct Galpha 
and Gbetagamma requirements. Mol Endocrinol 16 2393-2404. 

Bartolomei, F., Gastaldi, M., Massacrier, A., Planells, R., Nicolas, S. & Cau, P. (1997) Changes in 
the mRNAs encoding subtypes I, II and III sodium channel alpha subunits following 
kainate-induced seizures in rat brain. Journal of neurocytology 26 667-678. 

Benoit-Marand, M., Borrelli, E. & Gonon, F. (2001) Inhibition of dopamine release via 
presynaptic D2 receptors: time course and functional characteristics in vivo. J Neurosci 
21 9134-9141. 

Bergren, S.K., Chen, S., Galecki, A. & Kearney, J.A. (2005) Genetic modifiers affecting severity of 
epilepsy caused by mutation of sodium channel Scn2a. Mamm Genome 16 683-690. 

Bergren, S.K., Rutter, E.D. & Kearney, J.A. (2009) Fine mapping of an epilepsy modifier gene on 
mouse Chromosome 19. Mamm Genome 20 359-366. 

Berkovic, S.F., Howell, R.A., Hay, D.A. & Hopper, J.L. (1998) Epilepsies in twins: genetics of the 
major epilepsy syndromes. Ann Neurol 43 435-445. 

Berman, D.M., Wilkie, T.M. & Gilman, A.G. (1996) GAIP and RGS4 are GTPase-activating proteins 
for the Gi subfamily of G protein alpha subunits. Cell 86 445-452. 



 

114 

Besheer, J., Lepoutre, V. & Hodge, C.W. (2004) GABA(B) receptor agonists reduce operant 
ethanol self-administration and enhance ethanol sedation in C57BL/6J mice. 
Psychopharmacology (Berl) 174 358-366. 

Bettler, B., Kaupmann, K., Mosbacher, J. & Gassmann, M. (2004) Molecular structure and 
physiological functions of GABA(B) receptors. Physiol Rev 84 835-867. 

Bialer, M. & White, H.S. (2010) Key factors in the discovery and development of new 
antiepileptic drugs. Nat Rev Drug Discov 9 68-82. 

Birnbaumer, L. (2007a) The discovery of signal transduction by G proteins: a personal account 
and an overview of the initial findings and contributions that led to our present 
understanding. Biochim Biophys Acta 1768 756-771. 

Birnbaumer, L. (2007b) Expansion of signal transduction by G proteins. The second 15 years or 
so: from 3 to 16 alpha subunits plus betagamma dimers. Biochim Biophys Acta 1768 
772-793. 

Blazer, L.L. & Neubig, R.R. (2009) Small molecule protein-protein interaction inhibitors as CNS 
therapeutic agents: current progress and future hurdles. Neuropsychopharmacology 34 
126-141. 

Blumenfeld, H., Lampert, A., Klein, J.P., Mission, J., Chen, M.C., Rivera, M., Dib-Hajj, S., Brennan, 
A.R., Hains, B.C. & Waxman, S.G. (2009) Role of hippocampal sodium channel Nav1.6 in 
kindling epileptogenesis. Epilepsia 50 44-55. 

Bowery, N.G., Bettler, B., Froestl, W., Gallagher, J.P., Marshall, F., Raiteri, M., Bonner, T.I. & 
Enna, S.J. (2002) International Union of Pharmacology. XXXIII. Mammalian gamma-
aminobutyric acid(B) receptors: structure and function. Pharmacol Rev 54 247-264. 

Brackenbury, W.J., Djamgoz, M.B. & Isom, L.L. (2008) An emerging role for voltage-gated Na+ 
channels in cellular migration: regulation of central nervous system development and 
potentiation of invasive cancers. Neuroscientist 14 571-583. 

Browne, D.L., Gancher, S.T., Nutt, J.G., Brunt, E.R., Smith, E.A., Kramer, P. & Litt, M. (1994) 
Episodic ataxia/myokymia syndrome is associated with point mutations in the human 
potassium channel gene, KCNA1. Nature genetics 8 136-140. 

Buckmaster, P.S. (2012) Mossy Fiber Sprouting in the Dentate Gyrus. In Noebels, J.L., Avoli, M., 
Rogawski, M.A., Olsen, R.W. & Delgado-Escueta, A.V. (eds), Jasper's Basic Mechanisms 
of the Epilepsies, 4th ed, Bethesda (MD). 

Buckmaster, P.S. & Jongen-Relo, A.L. (1999) Highly specific neuron loss preserves lateral 
inhibitory circuits in the dentate gyrus of kainate-induced epileptic rats. J Neurosci 19 
9519-9529. 

Campbell, V., Berrow, N. & Dolphin, A.C. (1993) GABAB receptor modulation of Ca2+ currents in 
rat sensory neurones by the G protein G(0): antisense oligonucleotide studies. J Physiol 
470 1-11. 

Catterall, W.A. (2011) Voltage-gated calcium channels. Cold Spring Harbor perspectives in 
biology 3 a003947. 

Catterall, W.A., Kalume, F. & Oakley, J.C. (2010) NaV1.1 channels and epilepsy. J Physiol 588 
1849-1859. 

Chabre, M. & Deterre, P. (1989) Molecular mechanism of visual transduction. Eur J Biochem 179 
255-266. 

Chakravarti, A. (2001) To a future of genetic medicine. Nature 409 822-823. 
Chan, R.K. & Otte, C.A. (1982) Isolation and genetic analysis of Saccharomyces cerevisiae 

mutants supersensitive to G1 arrest by a factor and alpha factor pheromones. Mol Cell 
Biol 2 11-20. 



 

115 

Chen, H. & Lambert, N.A. (2000) Endogenous regulators of G protein signaling proteins regulate 
presynaptic inhibition at rat hippocampal synapses. Proc Natl Acad Sci U S A 97 12810-
12815. 

Chen, Y., Liu, Y., Cottingham, C., McMahon, L., Jiao, K., Greengard, P. & Wang, Q. (2012) 
Neurabin scaffolding of adenosine receptor and RGS4 regulates anti-seizure effect of 
endogenous adenosine. J Neurosci 32 2683-2695. 

Choi, Y., Sims, G.E., Murphy, S., Miller, J.R. & Chan, A.P. (2012) Predicting the functional effect of 
amino Acid substitutions and indels. PLoS One 7 e46688. 

Claes, L., Del-Favero, J., Ceulemans, B., Lagae, L., Van Broeckhoven, C. & De Jonghe, P. (2001) De 
novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of 
infancy. Am J Hum Genet 68 1327-1332. 

Clark, M.J., Harrison, C., Zhong, H., Neubig, R.R. & Traynor, J.R. (2003) Endogenous RGS protein 
action modulates mu-opioid signaling through Galphao. Effects on adenylyl cyclase, 
extracellular signal-regulated kinases, and intracellular calcium pathways. J Biol Chem 
278 9418-9425. 

Clark, M.J., Linderman, J.J. & Traynor, J.R. (2008) Endogenous regulators of G protein signaling 
differentially modulate full and partial mu-opioid agonists at adenylyl cyclase as 
predicted by a collision coupling model. Mol Pharmacol 73 1538-1548. 

Combi, R., Ferini-Strambi, L., Montruccoli, A., Bianchi, V., Malcovati, M., Zucconi, M., Dalpra, L. & 
Tenchini, M.L. (2005) Two new putative susceptibility loci for ADNFLE. Brain Res Bull 67 
257-263. 

Conn, P.J., Christopoulos, A. & Lindsley, C.W. (2009) Allosteric modulators of GPCRs: a novel 
approach for the treatment of CNS disorders. Nat Rev Drug Discov 8 41-54. 

Costa, A.C., Stasko, M.R., Stoffel, M. & Scott-McKean, J.J. (2005) G-protein-gated potassium 
(GIRK) channels containing the GIRK2 subunit are control hubs for pharmacologically 
induced hypothermic responses. J Neurosci 25 7801-7804. 

D'Antuono, M., Kohling, R., Ricalzone, S., Gotman, J., Biagini, G. & Avoli, M. (2010) Antiepileptic 
drugs abolish ictal but not interictal epileptiform discharges in vitro. Epilepsia 51 423-
431. 

de Boer, H.M., Mula, M. & Sander, J.W. (2008) The global burden and stigma of epilepsy. 
Epilepsy Behav 12 540-546. 

de Curtis, M., Radici, C. & Forti, M. (1999) Cellular mechanisms underlying spontaneous 
interictal spikes in an acute model of focal cortical epileptogenesis. Neuroscience 88 
107-117. 

de Menezes, R.C., Zaretsky, D.V., Fontes, M.A. & DiMicco, J.A. (2006) Microinjection of muscimol 
into caudal periaqueductal gray lowers body temperature and attenuates increases in 
temperature and activity evoked from the dorsomedial hypothalamus. Brain Res 1092 
129-137. 

Dhir, A. (2012) Pentylenetetrazol (PTZ) kindling model of epilepsy. Curr Protoc Neurosci Chapter 
9 Unit9 37. 

Di Ciano, P. & Everitt, B.J. (2003) The GABA(B) receptor agonist baclofen attenuates cocaine- and 
heroin-seeking behavior by rats. Neuropsychopharmacology 28 510-518. 

DiBello, P.R., Garrison, T.R., Apanovitch, D.M., Hoffman, G., Shuey, D.J., Mason, K., Cockett, M.I. 
& Dohlman, H.G. (1998) Selective uncoupling of RGS action by a single point mutation in 
the G protein alpha-subunit. J Biol Chem 273 5780-5784. 

Dietzel, C. & Kurjan, J. (1987) Pheromonal regulation and sequence of the Saccharomyces 
cerevisiae SST2 gene: a model for desensitization to pheromone. Mol Cell Biol 7 4169-
4177. 



 

116 

Ding, L., Feng, H.J., Macdonald, R.L., Botzolakis, E.J., Hu, N. & Gallagher, M.J. (2010) GABA(A) 
receptor alpha1 subunit mutation A322D associated with autosomal dominant juvenile 
myoclonic epilepsy reduces the expression and alters the composition of wild type 
GABA(A) receptors. J Biol Chem 285 26390-26405. 

Dohlman, H.G., Apaniesk, D., Chen, Y., Song, J. & Nusskern, D. (1995) Inhibition of G-protein 
signaling by dominant gain-of-function mutations in Sst2p, a pheromone desensitization 
factor in Saccharomyces cerevisiae. Mol Cell Biol 15 3635-3643. 

Doupnik, C.A., Xu, T. & Shinaman, J.M. (2001) Profile of RGS expression in single rat atrial 
myocytes. Biochim Biophys Acta 1522 97-107. 

Dratz, E.A., Lewis, J.W., Schaechter, L.E., Parker, K.R. & Kliger, D.S. (1987) Retinal rod GTPase 
turnover rate increases with concentration: a key to the control of visual excitation? 
Biochem Biophys Res Commun 146 379-386. 

Druey, K.M., Blumer, K.J., Kang, V.H. & Kehrl, J.H. (1996) Inhibition of G-protein-mediated MAP 
kinase activation by a new mammalian gene family. Nature 379 742-746. 

Duan, S.Z., Christe, M., Milstone, D.S. & Mortensen, R.M. (2007) Go but not Gi2 or Gi3 is 
required for muscarinic regulation of heart rate and heart rate variability in mice. 
Biochem Biophys Res Commun 357 139-143. 

Dudek, F.E. & Shao, L.R. (2003) Loss of GABAergic Interneurons in Seizure-induced 
Epileptogenesis. Epilepsy Curr 3 159-161. 

Dusing, R., Weisser, B., Mengden, T. & Vetter, H. (1998) Changes in antihypertensive therapy--
the role of adverse effects and compliance. Blood pressure 7 313-315. 

Eksioglu, Y.Z., Scheffer, I.E., Cardenas, P., Knoll, J., DiMario, F., Ramsby, G., Berg, M., Kamuro, K., 
Berkovic, S.F., Duyk, G.M., Parisi, J., Huttenlocher, P.R. & Walsh, C.A. (1996) 
Periventricular heterotopia: an X-linked dominant epilepsy locus causing aberrant 
cerebral cortical development. Neuron 16 77-87. 

Engel, J., Jr. (1996) Surgery for seizures. N Engl J Med 334 647-652. 
Eunson, L.H., Rea, R., Zuberi, S.M., Youroukos, S., Panayiotopoulos, C.P., Liguori, R., Avoni, P., 

McWilliam, R.C., Stephenson, J.B., Hanna, M.G., Kullmann, D.M. & Spauschus, A. (2000) 
Clinical, genetic, and expression studies of mutations in the potassium channel gene 
KCNA1 reveal new phenotypic variability. Ann Neurol 48 647-656. 

Eyer, F. & Zilker, T. (2007) Bench-to-bedside review: mechanisms and management of 
hyperthermia due to toxicity. Crit Care 11 236. 

Fantegrossi, W.E., Kiessel, C.L., Leach, P.T., Van Martin, C., Karabenick, R.L., Chen, X., Ohizumi, 
Y., Ullrich, T., Rice, K.C. & Woods, J.H. (2004) Nantenine: an antagonist of the behavioral 
and physiological effects of MDMA in mice. Psychopharmacology (Berl) 173 270-277. 

Fernandez-Fernandez, J.M., Abogadie, F.C., Milligan, G., Delmas, P. & Brown, D.A. (2001) 
Multiple pertussis toxin-sensitive G-proteins can couple receptors to GIRK channels in 
rat sympathetic neurons when expressed heterologously, but only native G(i)-proteins 
do so in situ. Eur J Neurosci 14 283-292. 

Ferraro, T.N., Golden, G.T., Smith, G.G., St Jean, P., Schork, N.J., Mulholland, N., Ballas, C., Schill, 
J., Buono, R.J. & Berrettini, W.H. (1999) Mapping loci for pentylenetetrazol-induced 
seizure susceptibility in mice. J Neurosci 19 6733-6739. 

Frankel, W.N., Taylor, L., Beyer, B., Tempel, B.L. & White, H.S. (2001) Electroconvulsive 
thresholds of inbred mouse strains. Genomics 74 306-312. 

Fritsch, B., Qashu, F., Figueiredo, T.H., Aroniadou-Anderjaska, V., Rogawski, M.A. & Braga, M.F. 
(2009) Pathological alterations in GABAergic interneurons and reduced tonic inhibition 
in the basolateral amygdala during epileptogenesis. Neuroscience 163 415-429. 



 

117 

Froestl, W., Gallagher, M., Jenkins, H., Madrid, A., Melcher, T., Teichman, S., Mondadori, C.G. & 
Pearlman, R. (2004) SGS742: the first GABA(B) receptor antagonist in clinical trials. 
Biochem Pharmacol 68 1479-1487. 

Frugier, G., Coussen, F., Giraud, M.F., Odessa, M.F., Emerit, M.B., Boue-Grabot, E. & Garret, M. 
(2007) A gamma 2(R43Q) mutation, linked to epilepsy in humans, alters GABAA receptor 
assembly and modifies subunit composition on the cell surface. J Biol Chem 282 3819-
3828. 

Fu, Y., Huang, X., Piao, L., Lopatin, A.N. & Neubig, R.R. (2007) Endogenous RGS proteins 
modulate SA and AV nodal functions in isolated heart: implications for sick sinus 
syndrome and AV block. Am J Physiol Heart Circ Physiol 292 H2532-2539. 

Fu, Y., Huang, X., Zhong, H., Mortensen, R.M., D'Alecy, L.G. & Neubig, R.R. (2006) Endogenous 
RGS proteins and Galpha subtypes differentially control muscarinic and adenosine-
mediated chronotropic effects. Circ Res 98 659-666. 

Fu, Y., Zhong, H., Nanamori, M., Mortensen, R.M., Huang, X., Lan, K. & Neubig, R.R. (2004) RGS-
insensitive G-protein mutations to study the role of endogenous RGS proteins. Methods 
Enzymol 389 229-243. 

Glasscock, E., Yoo, J.W., Chen, T.T., Klassen, T.L. & Noebels, J.L. (2010) Kv1.1 potassium channel 
deficiency reveals brain-driven cardiac dysfunction as a candidate mechanism for 
sudden unexplained death in epilepsy. J Neurosci 30 5167-5175. 

Golarai, G., Cavazos, J.E. & Sutula, T.P. (1992) Activation of the dentate gyrus by 
pentylenetetrazol evoked seizures induces mossy fiber synaptic reorganization. Brain 
Res 593 257-264. 

Gold, S.J., Heifets, B.D., Pudiak, C.M., Potts, B.W. & Nestler, E.J. (2002) Regulation of regulators 
of G protein signaling mRNA expression in rat brain by acute and chronic 
electroconvulsive seizures. J Neurochem 82 828-838. 

Gold, S.J., Ni, Y.G., Dohlman, H.G. & Nestler, E.J. (1997) Regulators of G-protein signaling (RGS) 
proteins: region-specific expression of nine subtypes in rat brain. J Neurosci 17 8024-
8037. 

Goldenstein, B.L., Nelson, B.W., Xu, K., Luger, E.J., Pribula, J.A., Wald, J.M., O'Shea, L.A., 
Weinshenker, D., Charbeneau, R.A., Huang, X., Neubig, R.R. & Doze, V.A. (2009) 
Regulator of G protein signaling protein suppression of Galphao protein-mediated 
alpha2A adrenergic receptor inhibition of mouse hippocampal CA3 epileptiform activity. 
Mol Pharmacol 75 1222-1230. 

Grecksch, G., Becker, A., Schroeder, H., Kraus, J., Loh, H. & Hollt, V. (2004) Accelerated kindling 
development in mu-opioid receptor deficient mice. Naunyn Schmiedebergs Arch 
Pharmacol 369 287-293. 

Greif, G.J., Sodickson, D.L., Bean, B.P., Neer, E.J. & Mende, U. (2000) Altered regulation of 
potassium and calcium channels by GABA(B) and adenosine receptors in hippocampal 
neurons from mice lacking Galpha(o). J Neurophysiol 83 1010-1018. 

Hatakeyama, S., Wakamori, M., Ino, M., Miyamoto, N., Takahashi, E., Yoshinaga, T., Sawada, K., 
Imoto, K., Tanaka, I., Yoshizawa, T., Nishizawa, Y., Mori, Y., Niidome, T. & Shoji, S. (2001) 
Differential nociceptive responses in mice lacking the alpha(1B) subunit of N-type Ca(2+) 
channels. Neuroreport 12 2423-2427. 

He, J.C., Neves, S.R., Jordan, J.D. & Iyengar, R. (2006) Role of the Go/i signaling network in the 
regulation of neurite outgrowth. Can J Physiol Pharmacol 84 687-694. 

Heeroma, J.H., Henneberger, C., Rajakulendran, S., Hanna, M.G., Schorge, S. & Kullmann, D.M. 
(2009) Episodic ataxia type 1 mutations differentially affect neuronal excitability and 
transmitter release. Disease models & mechanisms 2 612-619. 



 

118 

Helm, K.A., Haberman, R.P., Dean, S.L., Hoyt, E.C., Melcher, T., Lund, P.K. & Gallagher, M. (2005) 
GABAB receptor antagonist SGS742 improves spatial memory and reduces protein 
binding to the cAMP response element (CRE) in the hippocampus. Neuropharmacology 
48 956-964. 

Hirtz, D., Thurman, D.J., Gwinn-Hardy, K., Mohamed, M., Chaudhuri, A.R. & Zalutsky, R. (2007) 
How common are the "common" neurologic disorders? Neurology 68 326-337. 

Hosford, D.A., Clark, S., Cao, Z., Wilson, W.A., Jr., Lin, F.H., Morrisett, R.A. & Huin, A. (1992) The 
role of GABAB receptor activation in absence seizures of lethargic (lh/lh) mice. Science 
257 398-401. 

Houser, C.R., Zhang, N. & Peng, Z. (2012) Alterations in the Distribution of GABAA Receptors in 
Epilepsy. In Noebels, J.L., Avoli, M., Rogawski, M.A., Olsen, R.W. & Delgado-Escueta, A.V. 
(eds), Jasper's Basic Mechanisms of the Epilepsies, 4th ed, Bethesda (MD). 

Hugtenburg, J.G., Blom, A.T. & Kisoensingh, S.U. (2006) Initial phase of chronic medication use; 
patients' reasons for discontinuation. Br J Clin Pharmacol 61 352-354. 

Jacobson, L.H. & Cryan, J.F. (2005) Differential sensitivity to the motor and hypothermic effects 
of the GABA B receptor agonist baclofen in various mouse strains. Psychopharmacology 
(Berl) 179 688-699. 

Jaseja, H. (2007) Cerebral palsy: Interictal epileptiform discharges and cognitive impairment. 
Clinical neurology and neurosurgery 109 549-552. 

Jemiolo, B., Harvey, S. & Novotny, M. (1986) Promotion of the Whitten effect in female mice by 
synthetic analogs of male urinary constituents. Proc Natl Acad Sci U S A 83 4576-4579. 

Jeong, S.W. & Ikeda, S.R. (2000) Endogenous regulator of G-protein signaling proteins modify N-
type calcium channel modulation in rat sympathetic neurons. J Neurosci 20 4489-4496. 

Jiang, M., Gold, M.S., Boulay, G., Spicher, K., Peyton, M., Brabet, P., Srinivasan, Y., Rudolph, U., 
Ellison, G. & Birnbaumer, L. (1998) Multiple neurological abnormalities in mice deficient 
in the G protein Go. Proc Natl Acad Sci U S A 95 3269-3274. 

Jiang, M., Spicher, K., Boulay, G., Wang, Y. & Birnbaumer, L. (2001) Most central nervous system 
D2 dopamine receptors are coupled to their effectors by Go. Proc Natl Acad Sci U S A 98 
3577-3582. 

Jin, Y., Zhong, H., Omnaas, J.R., Neubig, R.R. & Mosberg, H.I. (2004) Structure-based design, 
synthesis, and pharmacologic evaluation of peptide RGS4 inhibitors. J Pept Res 63 141-
146. 

Kaufmann, K., Romaine, I., Days, E., Pascual, C., Malik, A., Yang, L., Zou, B., Du, Y., Sliwoski, G., 
Morrison, R.D., Denton, J., Niswender, C.M., Daniels, J.S., Sulikowski, G.A., Xie, X.S., 
Lindsley, C.W. & Weaver, C.D. (2013) ML297 (VU0456810), the first potent and selective 
activator of the GIRK potassium channel, displays antiepileptic properties in mice. ACS 
chemical neuroscience 4 1278-1286. 

Kaur, K., Kehrl, J.M., Charbeneau, R.A. & Neubig, R.R. (2011) RGS-insensitive Galpha subunits: 
probes of Galpha subtype-selective signaling and physiological functions of RGS 
proteins. Methods Mol Biol 756 75-98. 

Kim, B.J., Ghil, S.H., Kim, M.J., Yun Park, S., Kim, D.S., Hwan Kim, S., Chin, H., Birnbaumer, L., 
Jiang, M., Hong, S.Y., Suh-Kim, H. & Lee, Y.D. (2003) Modulation of the N-type calcium 
channel gene expression by the alpha subunit of Go. Brain Res Mol Brain Res 112 95-
102. 

Kim, C., Jun, K., Lee, T., Kim, S.S., McEnery, M.W., Chin, H., Kim, H.L., Park, J.M., Kim, D.K., Jung, 
S.J., Kim, J. & Shin, H.S. (2001) Altered nociceptive response in mice deficient in the 
alpha(1B) subunit of the voltage-dependent calcium channel. Mol Cell Neurosci 18 235-
245. 



 

119 

Kim, J.H., Karpyak, V.M., Biernacka, J.M., Nam, H.W., Lee, M.R., Preuss, U.W., Zill, P., Yoon, G., 
Colby, C., Mrazek, D.A. & Choi, D.S. (2011) Functional role of the polymorphic 647 T/C 
variant of ENT1 (SLC29A1) and its association with alcohol withdrawal seizures. PLoS 
One 6 e16331. 

Klassen, T., Davis, C., Goldman, A., Burgess, D., Chen, T., Wheeler, D., McPherson, J., Bourquin, 
T., Lewis, L., Villasana, D., Morgan, M., Muzny, D., Gibbs, R. & Noebels, J. (2011) Exome 
sequencing of ion channel genes reveals complex profiles confounding personal risk 
assessment in epilepsy. Cell 145 1036-1048. 

Koelle, M.R. & Horvitz, H.R. (1996) EGL-10 regulates G protein signaling in the C. elegans nervous 
system and shares a conserved domain with many mammalian proteins. Cell 84 115-
125. 

Labouebe, G., Lomazzi, M., Cruz, H.G., Creton, C., Lujan, R., Li, M., Yanagawa, Y., Obata, K., 
Watanabe, M., Wickman, K., Boyer, S.B., Slesinger, P.A. & Luscher, C. (2007) RGS2 
modulates coupling between GABAB receptors and GIRK channels in dopamine neurons 
of the ventral tegmental area. Nat Neurosci 10 1559-1568. 

Labs, J. (1998) Inbred Strains of Mice: 129. 
Lamberts, J.T., Jutkiewicz, E.M., Mortensen, R.M. & Traynor, J.R. (2011) mu-Opioid receptor 

coupling to Galpha(o) plays an important role in opioid antinociception. 
Neuropsychopharmacology 36 2041-2053. 

Lamberts, J.T., Smith, C.E., Li, M.H., Ingram, S.L., Neubig, R.R. & Traynor, J.R. (2013) Differential 
control of opioid antinociception to thermal stimuli in a knock-in mouse expressing 
regulator of G-protein signaling-insensitive Galphao protein. J Neurosci 33 4369-4377. 

Lan, K.L., Sarvazyan, N.A., Taussig, R., Mackenzie, R.G., DiBello, P.R., Dohlman, H.G. & Neubig, 
R.R. (1998) A point mutation in Galphao and Galphai1 blocks interaction with regulator 
of G protein signaling proteins. J Biol Chem 273 12794-12797. 

Lee, C.H., Javed, D., Althaus, A.L., Parent, J.M. & Umemori, H. (2012) Neurogenesis is enhanced 
and mossy fiber sprouting arises in FGF7-deficient mice during development. Mol Cell 
Neurosci 51 61-67. 

Lee, C.Y., Chen, C.C. & Liou, H.H. (2009) Levetiracetam inhibits glutamate transmission through 
presynaptic P/Q-type calcium channels on the granule cells of the dentate gyrus. Br J 
Pharmacol 158 1753-1762. 

Legare, M.E., Bartlett, F.S., 2nd & Frankel, W.N. (2000) A major effect QTL determined by 
multiple genes in epileptic EL mice. Genome Res 10 42-48. 

Leu, C., de Kovel, C.G., Zara, F., Striano, P., Pezzella, M., Robbiano, A., Bianchi, A., Bisulli, F., 
Coppola, A., Giallonardo, A.T., Beccaria, F., Trenite, D.K., Lindhout, D., Gaus, V., Schmitz, 
B., Janz, D., Weber, Y.G., Becker, F., Lerche, H., et al (2012) Genome-wide linkage meta-
analysis identifies susceptibility loci at 2q34 and 13q31.3 for genetic generalized 
epilepsies. Epilepsia 53 308-318. 

Li, T., Steinbeck, J.A., Lusardi, T., Koch, P., Lan, J.Q., Wilz, A., Segschneider, M., Simon, R.P., 
Brustle, O. & Boison, D. (2007) Suppression of kindling epileptogenesis by adenosine 
releasing stem cell-derived brain implants. Brain 130 1276-1288. 

Liu, Y., Lopez-Santiago, L.F., Yuan, Y., Jones, J.M., Zhang, H., O'Malley, H.A., Patino, G.A., O'Brien, 
J.E., Rusconi, R., Gupta, A., Thompson, R.C., Natowicz, M.R., Meisler, M.H., Isom, L.L. & 
Parent, J.M. (2013) Dravet syndrome patient-derived neurons suggest a novel epilepsy 
mechanism. Ann Neurol 74 128-139. 

Lombardo, A.J., Kuzniecky, R., Powers, R.E. & Brown, G.B. (1996) Altered brain sodium channel 
transcript levels in human epilepsy. Brain Res Mol Brain Res 35 84-90. 



 

120 

Loscher, W. (2002) Current status and future directions in the pharmacotherapy of epilepsy. 
Trends Pharmacol Sci 23 113-118. 

Loscher, W. (2011) Critical review of current animal models of seizures and epilepsy used in the 
discovery and development of new antiepileptic drugs. Seizure : the journal of the British 
Epilepsy Association 20 359-368. 

Loscher, W., Klotz, U., Zimprich, F. & Schmidt, D. (2009) The clinical impact of pharmacogenetics 
on the treatment of epilepsy. Epilepsia 50 1-23. 

Lu, X., Roberts, E., Xia, F., Sanchez-Alavez, M., Liu, T., Baldwin, R., Wu, S., Chang, J., Wasterlain, 
C.G. & Bartfai, T. (2010) GalR2-positive allosteric modulator exhibits anticonvulsant 
effects in animal models. Proc Natl Acad Sci U S A 107 15229-15234. 

Macdonald, R.L., Kang, J.Q. & Gallagher, M.J. (2012) GABAA Receptor Subunit Mutations and 
Genetic Epilepsies. In Noebels, J.L., Avoli, M., Rogawski, M.A., Olsen, R.W. & Delgado-
Escueta, A.V. (eds), Jasper's Basic Mechanisms of the Epilepsies, 4th ed, Bethesda (MD). 

Machin, D., Cheung, Y.B., Parmar, M.K.B. & Parmar, M.K.B. (2006) Survival analysis : a practical 
approach, 2nd ed. Wiley, Chichester, England ; Hoboken, NJ. 

Maity, B., Stewart, A., Yang, J., Loo, L., Sheff, D., Shepherd, A.J., Mohapatra, D.P. & Fisher, R.A. 
(2012) Regulator of G protein signaling 6 (RGS6) protein ensures coordination of motor 
movement by modulating GABAB receptor signaling. J Biol Chem 287 4972-4981. 

Mann, S.C. & Lazarus, A. (2003) Neuroleptic malignant syndrome and related conditions, 2nd ed. 
American Psychiatric Pub., Washington, DC. 

Mantegazza, M. & Catterall, W.A. (2012) Voltage-Gated Na+ Channels: Structure, Function, and 
Pathophysiology. In Noebels, J.L., Avoli, M., Rogawski, M.A., Olsen, R.W. & Delgado-
Escueta, A.V. (eds), Jasper's Basic Mechanisms of the Epilepsies, 4th ed, Bethesda (MD). 

Masino, S.A., Li, T., Theofilas, P., Sandau, U.S., Ruskin, D.N., Fredholm, B.B., Geiger, J.D., Aronica, 
E. & Boison, D. (2011) A ketogenic diet suppresses seizures in mice through adenosine 
A(1) receptors. J Clin Invest 121 2679-2683. 

Meisler, M.H. & Kearney, J.A. (2005) Sodium channel mutations in epilepsy and other 
neurological disorders. J Clin Invest 115 2010-2017. 

Michelucci, R., Pasini, E., Riguzzi, P., Volpi, L., Dazzo, E. & Nobile, C. (2012) Genetics of epilepsy 
and relevance to current practice. Curr Neurol Neurosci Rep 12 445-455. 

Mondadori, C., Moebius, H.J. & Zingg, M. (1996) CGP 36,742, an orally active GABAB receptor 
antagonist, facilitates memory in a social recognition test in rats. Behav Brain Res 77 
227-229. 

Morimoto, K., Fahnestock, M. & Racine, R.J. (2004) Kindling and status epilepticus models of 
epilepsy: rewiring the brain. Prog Neurobiol 73 1-60. 

Murai, K., Qiu, R., Zhang, H., Wang, J., Wu, C., Neubig, R.R. & Lu, Q. (2010) Galpha subunit 
coordinates with ephrin-B to balance self-renewal and differentiation in neural 
progenitor cells. Stem cells 28 1581-1589. 

Mutneja, M., Berton, F., Suen, K.F., Luscher, C. & Slesinger, P.A. (2005) Endogenous RGS proteins 
enhance acute desensitization of GABA(B) receptor-activated GIRK currents in HEK-293T 
cells. Pflugers Arch 450 61-73. 

Nakamura, K., Kodera, H., Akita, T., Shiina, M., Kato, M., Hoshino, H., Terashima, H., Osaka, H., 
Nakamura, S., Tohyama, J., Kumada, T., Furukawa, T., Iwata, S., Shiihara, T., Kubota, M., 
Miyatake, S., Koshimizu, E., Nishiyama, K., Nakashima, M., et al (2013) De Novo 
mutations in GNAO1, encoding a Galphao subunit of heterotrimeric G proteins, cause 
epileptic encephalopathy. Am J Hum Genet 93 496-505. 

Nanobashvili, A., Airaksinen, M.S., Kokaia, M., Rossi, J., Asztely, F., Olofsdotter, K., Mohapel, P., 
Saarma, M., Lindvall, O. & Kokaia, Z. (2000) Development and persistence of kindling 



 

121 

epilepsy are impaired in mice lacking glial cell line-derived neurotrophic factor family 
receptor alpha 2. Proc Natl Acad Sci U S A 97 12312-12317. 

Naujokat, C. (2009) Role of ubiquitin ligases in neural stem and progenitor cells. Arch Immunol 
Ther Exp (Warsz) 57 177-188. 

Neubig, R.R. & Siderovski, D.P. (2002) Regulators of G-protein signalling as new central nervous 
system drug targets. Nat Rev Drug Discov 1 187-197. 

Okabe, A., Tawara, Y., Masa, T., Oka, T., Machida, A., Tanaka, T., Matsuhashi, H., Shiosaka, S. & 
Kato, K. (2001) Differential expression of mRNAs for sialyltransferase isoenzymes 
induced in the hippocampus of mouse following kindled seizures. J Neurochem 77 1185-
1197. 

Organization, W.H. (2012) Epilepsy, Vol 2014. 
Ormandy, G.C. & Jope, R.S. (1991) Pertussis toxin potentiates seizures induced by pilocarpine, 

kainic acid and N-methyl-D-aspartate. Brain Res 553 51-57. 
Ottman, R., Annegers, J.F., Risch, N., Hauser, W.A. & Susser, M. (1996) Relations of genetic and 

environmental factors in the etiology of epilepsy. Ann Neurol 39 442-449. 
Ottman, R. & Risch, N. (2012) Genetic Epidemiology and Gene Discovery in Epilepsy. In Noebels, 

J.L., Avoli, M., Rogawski, M.A., Olsen, R.W. & Delgado-Escueta, A.V. (eds), Jasper's Basic 
Mechanisms of the Epilepsies, 4th ed, Bethesda (MD). 

Pacey, L.K., Heximer, S.P. & Hampson, D.R. (2009) Increased GABA(B) receptor-mediated 
signaling reduces the susceptibility of fragile X knockout mice to audiogenic seizures. 
Mol Pharmacol 76 18-24. 

Parent, J.M. & Kron, M.M. (2012) Neurogenesis and Epilepsy. In Noebels, J.L., Avoli, M., 
Rogawski, M.A., Olsen, R.W. & Delgado-Escueta, A.V. (eds), Jasper's Basic Mechanisms 
of the Epilepsies, 4th ed, Bethesda (MD). 

Pasterkamp, R.J. & Giger, R.J. (2009) Semaphorin function in neural plasticity and disease. Curr 
Opin Neurobiol 19 263-274. 

Pericic, D., Lazic, J., Jazvinscak Jembrek, M. & Svob Strac, D. (2005) Stimulation of 5-HT 1A 
receptors increases the seizure threshold for picrotoxin in mice. Eur J Pharmacol 527 
105-110. 

Peterson, S.L. & Albertson, T.E. (1998) Neuropharmacology methods in epilepsy research. CRC 
Press, Boca Raton, Fla. 

Porta, S., Marti, E., de la Luna, S. & Arbones, M.L. (2007) Differential expression of members of 
the RCAN family of calcineurin regulators suggests selective functions for these proteins 
in the brain. Eur J Neurosci 26 1213-1226. 

Pravetoni, M. & Wickman, K. (2008) Behavioral characterization of mice lacking GIRK/Kir3 
channel subunits. Genes Brain Behav 7 523-531. 

Pressler, R.M., Robinson, R.O., Wilson, G.A. & Binnie, C.D. (2005) Treatment of interictal 
epileptiform discharges can improve behavior in children with behavioral problems and 
epilepsy. The Journal of pediatrics 146 112-117. 

Purvanov, V., Koval, A. & Katanaev, V.L. (2010) A direct and functional interaction between Go 
and Rab5 during G protein-coupled receptor signaling. Sci Signal 3 ra65. 

Racine, R.J. (1972) Modification of seizure activity by electrical stimulation. II. Motor seizure. 
Electroencephalogr Clin Neurophysiol 32 281-294. 

Rea, R., Spauschus, A., Eunson, L.H., Hanna, M.G. & Kullmann, D.M. (2002) Variable K(+) channel 
subunit dysfunction in inherited mutations of KCNA1. J Physiol 538 5-23. 

Roman, D.L., Talbot, J.N., Roof, R.A., Sunahara, R.K., Traynor, J.R. & Neubig, R.R. (2007) 
Identification of small-molecule inhibitors of RGS4 using a high-throughput flow 
cytometry protein interaction assay. Mol Pharmacol 71 169-175. 



 

122 

Romanovsky, A.A. (2007) Thermoregulation: some concepts have changed. Functional 
architecture of the thermoregulatory system. Am J Physiol Regul Integr Comp Physiol 
292 R37-46. 

Ross, E.M. & Gilman, A.G. (1980) Biochemical properties of hormone-sensitive adenylate 
cyclase. Annu Rev Biochem 49 533-564. 

Ryan, S.G. (1999) Ion channels and the genetic contribution to epilepsy. J Child Neurol 14 58-66. 
Saegusa, H., Kurihara, T., Zong, S., Kazuno, A., Matsuda, Y., Nonaka, T., Han, W., Toriyama, H. & 

Tanabe, T. (2001) Suppression of inflammatory and neuropathic pain symptoms in mice 
lacking the N-type Ca2+ channel. EMBO J 20 2349-2356. 

Sales, I.M., Freitas, R.L., Saldanha, G.B., Souza, G.F. & Freitas, R.M. (2010) Choline 
acetyltransferase and acetylcholinesterase activities are reduced in rat striatum and 
frontal cortex after pilocarpine-induced seizures. Neurosci Lett 469 81-83. 

Schauwecker, P.E., Williams, R.W. & Santos, J.B. (2004) Genetic control of sensitivity to 
hippocampal cell death induced by kainic acid: a quantitative trait loci analysis. J Comp 
Neurol 477 96-107. 

Schuler, V., Luscher, C., Blanchet, C., Klix, N., Sansig, G., Klebs, K., Schmutz, M., Heid, J., Gentry, 
C., Urban, L., Fox, A., Spooren, W., Jaton, A.L., Vigouret, J., Pozza, M., Kelly, P.H., 
Mosbacher, J., Froestl, W., Kaslin, E., et al (2001) Epilepsy, hyperalgesia, impaired 
memory, and loss of pre- and postsynaptic GABA(B) responses in mice lacking 
GABA(B(1)). Neuron 31 47-58. 

Shorvon, S.D. (2010) Handbook of epilepsy treatment, 3rd ed. Wiley-Blackwell, Chichester, West 
Sussex, UK. 

Shouse, M.N., Scordato, J.C., Farber, P.R. & de Lanerolle, N. (2007) The alpha2 adrenoreceptor 
agonist clonidine suppresses evoked and spontaneous seizures, whereas the alpha2 
adrenoreceptor antagonist idazoxan promotes seizures in amygdala-kindled kittens. 
Brain Res 1137 58-68. 

Sie, S.D., de Jonge, R.C., Blom, H.J., Mulder, M.F., Reiss, J., Vermeulen, R.J. & Peeters-Scholte, 
C.M. (2010) Chronological changes of the amplitude-integrated EEG in a neonate with 
molybdenum cofactor deficiency. J Inherit Metab Dis. 

Signorini, S., Liao, Y.J., Duncan, S.A., Jan, L.Y. & Stoffel, M. (1997) Normal cerebellar 
development but susceptibility to seizures in mice lacking G protein-coupled, inwardly 
rectifying K+ channel GIRK2. Proc Natl Acad Sci U S A 94 923-927. 

Sisodiya, S.M. & Mefford, H.C. (2011) Genetic contribution to common epilepsies. Curr Opin 
Neurol 24 140-145. 

Smart, S.L., Lopantsev, V., Zhang, C.L., Robbins, C.A., Wang, H., Chiu, S.Y., Schwartzkroin, P.A., 
Messing, A. & Tempel, B.L. (1998) Deletion of the K(V)1.1 potassium channel causes 
epilepsy in mice. Neuron 20 809-819. 

Sperling, M.R. (2001) Sudden Unexplained Death in Epilepsy. Epilepsy Curr 1 21-23. 
Staley, K.J., White, A. & Dudek, F.E. (2011) Interictal spikes: harbingers or causes of epilepsy? 

Neurosci Lett 497 247-250. 
Sternweis, P.C., Northup, J.K., Smigel, M.D. & Gilman, A.G. (1981) The regulatory component of 

adenylate cyclase. Purification and properties. J Biol Chem 256 11517-11526. 
Stodieck, S., Steinhoff, B.J., Kolmsee, S. & van Rijckevorsel, K. (2001) Effect of levetiracetam in 

patients with epilepsy and interictal epileptiform discharges. Seizure : the journal of the 
British Epilepsy Association 10 583-587. 

Suls, A., Mullen, S.A., Weber, Y.G., Verhaert, K., Ceulemans, B., Guerrini, R., Wuttke, T.V., Salvo-
Vargas, A., Deprez, L., Claes, L.R., Jordanova, A., Berkovic, S.F., Lerche, H., De Jonghe, P. 



 

123 

& Scheffer, I.E. (2009) Early-onset absence epilepsy caused by mutations in the glucose 
transporter GLUT1. Ann Neurol 66 415-419. 

Surges, R. & Sander, J.W. (2012) Sudden unexpected death in epilepsy: mechanisms, prevalence, 
and prevention. Curr Opin Neurol 25 201-207. 

Szoeke, C.E., Newton, M., Wood, J.M., Goldstein, D., Berkovic, S.F., TJ, O.B. & Sheffield, L.J. 
(2006) Update on pharmacogenetics in epilepsy: a brief review. Lancet Neurol 5 189-
196. 

Takahashi, K., Liu, F.C., Hirokawa, K. & Takahashi, H. (2008) Expression of Foxp4 in the 
developing and adult rat forebrain. J Neurosci Res 86 3106-3116. 

Talbot, J.N., Jutkiewicz, E.M., Graves, S.M., Clemans, C.F., Nicol, M.R., Mortensen, R.M., Huang, 
X., Neubig, R.R. & Traynor, J.R. (2010) RGS inhibition at G(alpha)i2 selectively 
potentiates 5-HT1A-mediated antidepressant effects. Proc Natl Acad Sci U S A 107 
11086-11091. 

Tan, N.C., Mulley, J.C. & Berkovic, S.F. (2004) Genetic association studies in epilepsy: "the truth 
is out there". Epilepsia 45 1429-1442. 

Tedford, H.W. & Zamponi, G.W. (2006) Direct G protein modulation of Cav2 calcium channels. 
Pharmacol Rev 58 837-862. 

Tesmer, J.J., Berman, D.M., Gilman, A.G. & Sprang, S.R. (1997) Structure of RGS4 bound to AlF4--
activated G(i alpha1): stabilization of the transition state for GTP hydrolysis. Cell 89 251-
261. 

Truett, G.E., Heeger, P., Mynatt, R.L., Truett, A.A., Walker, J.A. & Warman, M.L. (2000) 
Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris 
(HotSHOT). Biotechniques 29 52, 54. 

Turner, M.R. & Gainsborough, N. (2001) Neuroleptic malignant-like syndrome after abrupt 
withdrawal of baclofen. J Psychopharmacol 15 61-63. 

Usiello, A., Baik, J.H., Rouge-Pont, F., Picetti, R., Dierich, A., LeMeur, M., Piazza, P.V. & Borrelli, E. 
(2000) Distinct functions of the two isoforms of dopamine D2 receptors. Nature 408 
199-203. 

Valenzuela, D., Han, X., Mende, U., Fankhauser, C., Mashimo, H., Huang, P., Pfeffer, J., Neer, E.J. 
& Fishman, M.C. (1997) G alpha(o) is necessary for muscarinic regulation of Ca2+ 
channels in mouse heart. Proc Natl Acad Sci U S A 94 1727-1732. 

Vergnes, M., Boehrer, A., Simler, S., Bernasconi, R. & Marescaux, C. (1997) Opposite effects of 
GABAB receptor antagonists on absences and convulsive seizures. Eur J Pharmacol 332 
245-255. 

Viswanathan, M., Golin, C.E., Jones, C.D., Ashok, M., Blalock, S.J., Wines, R.C., Coker-Schwimmer, 
E.J., Rosen, D.L., Sista, P. & Lohr, K.N. (2012) Interventions to improve adherence to self-
administered medications for chronic diseases in the United States: a systematic review. 
Ann Intern Med 157 785-795. 

Vogl, C., Mochida, S., Wolff, C., Whalley, B.J. & Stephens, G.J. (2012) The synaptic vesicle 
glycoprotein 2A ligand levetiracetam inhibits presynaptic Ca2+ channels through an 
intracellular pathway. Mol Pharmacol 82 199-208. 

Vreugdenhil, M., Hoogland, G., van Veelen, C.W. & Wadman, W.J. (2004) Persistent sodium 
current in subicular neurons isolated from patients with temporal lobe epilepsy. Eur J 
Neurosci 19 2769-2778. 

Wang, H., Kunkel, D.D., Schwartzkroin, P.A. & Tempel, B.L. (1994) Localization of Kv1.1 and 
Kv1.2, two K channel proteins, to synaptic terminals, somata, and dendrites in the 
mouse brain. J Neurosci 14 4588-4599. 



 

124 

Whalen, E.J., Rajagopal, S. & Lefkowitz, R.J. (2011) Therapeutic potential of beta-arrestin- and G 
protein-biased agonists. Trends in molecular medicine 17 126-139. 

Wilczynski, G.M., Konopacki, F.A., Wilczek, E., Lasiecka, Z., Gorlewicz, A., Michaluk, P., 
Wawrzyniak, M., Malinowska, M., Okulski, P., Kolodziej, L.R., Konopka, W., Duniec, K., 
Mioduszewska, B., Nikolaev, E., Walczak, A., Owczarek, D., Gorecki, D.C., Zuschratter, 
W., Ottersen, O.P., et al (2008) Important role of matrix metalloproteinase 9 in 
epileptogenesis. J Cell Biol 180 1021-1035. 

Xi, Z.X. & Stein, E.A. (1999) Baclofen inhibits heroin self-administration behavior and mesolimbic 
dopamine release. J Pharmacol Exp Ther 290 1369-1374. 

Yang, J., Lindahl, M., Lindholm, P., Virtanen, H., Coffey, E., Runeberg-Roos, P. & Saarma, M. 
(2004) PSPN/GFRalpha4 has a significantly weaker capacity than GDNF/GFRalpha1 to 
recruit RET to rafts, but promotes neuronal survival and neurite outgrowth. FEBS Lett 
569 267-271. 

Yoshida, K., Konishi, M., Nagashima, K., Saper, C.B. & Kanosue, K. (2005) Fos activation in 
hypothalamic neurons during cold or warm exposure: projections to periaqueductal 
gray matter. Neuroscience 133 1039-1046. 

Zarrindast, M.R. & Tabatabai, S.A. (1992) Involvement of dopamine receptor subtypes in mouse 
thermoregulation. Psychopharmacology (Berl) 107 341-346. 

Zhong, H. & Neubig, R.R. (2001) Regulator of G protein signaling proteins: novel multifunctional 
drug targets. J Pharmacol Exp Ther 297 837-845. 

 

 


