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Abstract 

Heterogeneity, whether from polydispersity within the polymeric scaffold or due 

to a broad distribution of covalently conjugated products, is a remaining challenge in 

theranostics. Chapter 1 of this thesis presents the challenges conjugate heterogeneity 

introduces to synthesis, characterization, and application of multivalent conjugates. A 

brief review of recent literature approaches to address sample heterogeneity is also 

provided. Chapter 2 highlights the heterogeneity of the scaffold of interest, 

poly(amidoamine) dendrimer. It was found that the mass range of commercial polymer 

was ~1.4-115 kDa, and that skeletal defects in the dendrimer structure occur at a rate of 

8-15%. Methods to isolate dendrimer monomers with decreased polydispersity are 

introduced. Chapter 3 of this thesis presents the first application of these monomers as 

soft superatoms for the assembly of new, precise nanostructures. New chromatography 

strategies to obtain ligand-dendrimer conjugates with precise ratios are introduced, and 

these conjugates are employed as building blocks for novel megamers. In Chapter 4, 

dendrimers with precise numbers of ring-strain promoted click ligands are clicked to folic 

acid-azide derivatives to synthesize dendrimer-folic acid conjugates with narrow ligand-

to-dendrimer ratio distributions. These materials are evaluated for binding to a folate 

binding protein, and the results used to interpret the mechanism of increased binding of 

these conjugates compared to free folic acid. Mathematical models were developed to 

differentiate between three proposed mechanisms, and it was determined that the 

observed increase in avidity is due to nonspecific interactions between the polymer 

scaffold and protein, which are initiated by a specific interaction between folic acid and 

the protein. Chapter 5 examines the impact of scaffold size, ligand-to-scaffold linking 

systems, and conjugate valency on the activity of dendrimer-methotrexate conjugates. 

The larger mass and diameter of dimer impurities contributed significantly to observed 

activity of these and previous conjugates. The weaker methotrexate-folate binding protein 

interaction was not strong enough to key the nonspecific interactions until higher 

valencies in larger conjugates. The final chapter provides conclusions as to how this 
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thesis impacts the current field of multivalent conjugates for targeted drug delivery, and 

gives some insight to where the field must continue to grow. 
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Figure 1.1.  Theranostic consisting of targeting agents, drugs, 

and imaging agents to a polymer scaffold with many 

functional groups, which may be at the terminal ends of the 

polymer or spread within the polymer backbone. 

 

 

Chapter 1 

Multivalent Polymers for Drug Delivery and Imaging Agents:  

the challenges of conjugation 

This chapter is written as a review article for Biomacromolecules. 

 

The promise of multifunctional polymer scaffolds for therapeutics and diagnostics 

Conjugation of polymer scaffolds with multiple copies of targeting ligands, drugs, and 

dyes has become a popular approach for achieving the aim of “theranostics”; materials 

useful for both diagnosis and 

treatment of disease (Figure 

1.1).[1-3] Such materials may 

include enhanced targeting via 

multivalent binding and optimal 

impact at the target via delivery 

of a multidrug payload.   In this 

manner, researchers hope to 

improve a drug’s therapeutic 

index.[4-7]  This critical review 

examines work to date addressing 

challenges common to all 

multivalent polymer-based 

efforts: heterogeneity introduced 

by conjugation strategies.  First, 

the source of conjugation 

heterogeneity will be examined, 

and some examples will be given of how such heterogeniety is encountered and treated in 

the literature. We will then discuss why heterogeneity is often overlooked and how it can 

impact the behavior of multivalent theranostics. Finally, we will review several 
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interesting approaches from the last ten years to overcome conjugation heterogeneity. 

Scaffold heterogeneity (i.e. polydispersity index of the polymer) is also an important 

consideration for developing well defined, clinically relevant polymer therapeutics. 

Scaffold polydispersity is dependent on both the chemical nature of the polymer 

(common examples being polyamines and polyethylene glycol) and the backbone 

structure (linear, branched, dendritic).  For this review, scaffold heterogeneity will only 

be discussed to the extent it directly impacts conjugation heterogeneity.  

 

Approaches to Forming Conjugates on Multivalent Polymers 

Attachment of multiple copies of targeting ligands enhances binding of the conjugate to 

cells and tissues that overexpress a certain receptor.[8, 9] Active targeting can minimize 

negative side effects in healthy tissues and allow for a higher tolerable dosage of drug. 

High loading of molecular drugs, such as chemotherapeutics like methotrexate[8] or 

antibiotics like vancomycin,[10] onto the polymeric scaffold,[11-13] enables multivalent 

delivery of the drug to the same cell. Commonly, multivalent conjugation of fluorescent 

dyes is performed, either by design or chance, to allow for in vitro and in vivo imaging of 

the polymer conjugate. Two[14-17] or three[18-21] subsequent multivalent modifications 

are performed on the same scaffold to create a multifunctional, targeted, drug delivery 

vehicle that can be tracked by fluorescent microscopy. Coupling reactions are often 

accomplished by one-pot or sequential attachment of the ligands to the scaffold to 

achieve the desired ligand-to-scaffold ratio. The polymer scaffold must have many sites 

available for chemical modification of the desired ligands; for example, 

poly(amidoamine) (PAMAM) dendrimers have (theoretically) 4 to 4000 primary amines 

depending on generation (G1 – G11), available for peptide coupling.[22, 23] For non-

dendritic scaffolds, the number of functionalizable sites varies by formulation, 

architecture (branched, linear), and molecular weight. For example, consider a generic 

case where a multivalent scaffold with a large excess of functional sites conjugated to 4 

targeting ligands, 5 copies of a drug, and an average of 3 molecular dyes as commonly 

represented in the literature by an image such as the conjugate illustrated in Figure 1.1. 

Because each conjugation is a result of a statistical combination between available sites 
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and equivalents of ligand, a Poisson distribution of products is produced (Figure 1.2). In 

the case of attaching 5 targeting agents to the scaffold, approximately 14 unique species 

are produced with targeting ligand-to-scaffold ratios ranging from 0 to 13. Although the 

dendrimer conjugated to 4 targeting agents is the most common species in this theoretical 

conjugation, it only represents approximately one in five (20%) of the sample. To further 

complicate matters, heterogeneity due to stochastic conjugation is cumulative. When the 

targeted vector sample is further reacted with 5 equivalents of a drug, a new distribution 

is created. Again, approximately 15 drug-to-vector ratios are present in this new sample, 

with approximately 9 in 50 (18%) particles having exactly 5 copies of the drug attached. 

However, there are now over 200 unique species present in the sample resulting from the 

product of the first two Poisson distributions. After adding a third entity (3 equivalents of 

dye), there are now approximately 2,500 unique species present in the sample. The single 

entity pictured in Figure 1 illustrates the mean number of each individual distribution (i.e. 

4 targeting agents, 5 drugs, 3 dyes), but it represents just 1 out of every 250 (0.8%) 

particles present.  Although it is the “average” material present, this mean may well not 

be meaningful average in terms of biological behavior for any of the functional 

behaviors; targeting, therapeutic effects, or imaging characteristics.  In addition, for any 

observed function of this material, whether in cell culture or in vivo, a very large 

challenge is presented to understand which fraction(s) of the 2500 species are providing 

the desirable activity.  

Figure 1.2. Distributions resulting from stochastic conjugations with an average of 4, 5, and 3 have a 

cumulative, multiplicative effect on sample heterogeneity.  With each subsequent serial conjugation, 

the resulting set of products is the product of the resulting Poisson distributions. 
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The challenges inherent in these distributions can be further explored by considering 

some of the quantitative aspects. Two percent of the sample contains no targeting entity; 

therefore attached drug will be systemically delivered. One out of every 25 (4%) particles 

has fewer than 2 drugs attached and no longer has the potential for increased activity 

compared to the free drug. One particle in 20 (5%) has no dye on it and is essentially 

“invisible” to further analyses. One particle in 20 also has twice the amount of expected 

dye, and 1 in 100 (1%) particles has three times the average amount of dye, the 

consequences of which will be discussed later. The preceding analysis has not yet 

considered the heterogeneity of the sample resulting from the polymeric scaffold, which 

can vary greatly, or spatial and regioisomers, which can further impact the system.  For 

polymer systems containing substantially restricted motion of the surface groups, spatial 

isomers can rapidly lead to tens of thousands of functionally different isomers from a 

targeting, and possibly therapeutic, standpoint for the simple example illustrated in 

Figure 1.  Size heterogeneity can lead to the presence of the > 2500 species present from 

statistical consideration on materials with remarkably different biodistribution properties.  

For example, although polymers in the 20-30 kDa range are expected to be excreted 

through the kidney, oligomers of 60-100 kDa may instead be trafficked to the liver.  This 

full statistical range of materials for each mass range generates further challenges for 

understanding the origin(s) of both the positive, desired effects as well as origin(s) of the 

negative side-effects.  

 

Analysis of Conjugation Heterogeneity in the Literature 

The above example was a theoretical conjugation; however similar serial conjugations 

are often encountered in the literature. Explicit analysis to determine even averaged 

conjugation numbers are often not reported with product averages assumed from initial 

stoichiometry, further complicating the understanding of the material present. Instead, 

authors give a visual which “represents” the product, or provide a percent loading of 

drugs etc. A theranostic synthesized by Baker et al.[8] of G5 PAMAM covalently 

conjugated to 5 dyes (FITC), 5 targeting ligands (folic acid), and 5 methotrexates showed 

promising in vitro and in vivo activity. Close examination of this conjugate reveals that 
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the three stepwise conjugations result in over 4,000 unique combinations. Only one 

particle in 200 (0.5% of the sample) has 5 copies of each ligand. Additionally, both folic 

acid and methotrexate have two carboxylic acids that can react with the amines of the 

scaffold (one isomer being more active than the other); leading to 14,400 possible 

combinations of generation 5 PAMAM (MN~28 kDa, PDI~1.1, with ~110 functional 

groups) conjugated 5 folic acids and 5 methotrexates. Consequently, less than 1 in 2 

million particles (0.00005%) have the average valency of all three ligands conjugated in 

their most active form. Mullen et al. employed a different approach to generate 

FITC/folic acid conjugated dendrimer system.[24] First, a generation 5 PAMAM was 

conjugated to an average of 1.6 alkyne functionalized click chemistry linkers and 3.5 

folic acids, generating ~117 combinations. A second sample was conjugated to an 

average 2.5 azide click ligands and 3.2 FITC dyes, generating ~140 unique combinations. 

The two samples were then “clicked” together to give a barbell-like dimers with an 

average of 3.5 folic acids and 3.2 dyes. However, around one in five particles of the 

alkyne material, and two particles in 25 (~8%) of the azide material contained zero click 

ligand and was unable to undergo the reaction. Over 80% of both samples contained 

multiple click ligands, allowing for larger-than-dimer structures to form. Of the material 

that does form dimers, ~180 combinations of dyes and targeting agents are still possible, 

of which one in 25 (4%) are still without a dye and 1 in 33 (3%) are untargeted. In 

another example, Minko et al.[20] reported a comparison of three scaffolding systems: a 

bifunctional PEG, a G4 PAMAM (MN~14kDa, PDI~1.1, with ~64 functionalizable 

groups) conjugate, and a liposome. The systems incorporated a luteinizing hormone-

releasing hormone (LHRH) decapeptide as a targeting agent, cyanine Cy5.5 as an 

imaging agent, and paclitaxel, a chemotherapeutic. Equivalents of each molecule added 

or a final average number of conjugates was not reported, however a cartoon of the 

PAMAM conjugate implies that 2 LHRH units, 2 dyes, and 2 drugs were covalently 

attached. However, this single image depicted in the cartoon is just 1 of ~1,500 (0.07%) 

species that would exist in a conjugation with these averages, assuming good mixing 

during the synthetic procedures and a stochastic distribution.  Of these many species, 200 

(13%) would have no dye attached and 200 would not contain a single targeting moiety. 

Consequently, 30 particles (2% of the sample) is both untargeted and “invisible” by 
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fluorescent microscopy, so its in vivo destination remains a mystery. In the bifunctional 

PEG system that was also studied, two modified PEGs were mixed together. In this case, 

only 6 combinations of PEG units are possible (completely unmodified PEG, 3 

monofunctionalized PEGs, and 2 bifunctionalized PEG). However, no single PEG unit 

contains all three entities in this formulation. Holler et al.[25] introduced a particularly 

complex system involving the serial covalent conjugation of a mouse anti-human TfR 

mAB (RVS10) as a targeting moiety, AlexaFluor 680, 2 antisense RNA sequences, and 

PEG to poly(β-L-malic acid) (PLMA) (Mw~50kDa, PDI~1.3, ~435 functionalizable 

carboxylic acids). In this case, the amount of each entity was reported in terms of 

percentage of backbone modified. A brief mathematical analysis reveals that, assuming a 

50 kDa polymer, each polymer unit contains on average only 1 targeting entity, 11 dyes, 

11 copies of each RNA sequence, and around 22 PEGs.  The result is around 20,000 

unique species (without considering another entity incorporated into the backbone at a 

high loading to allow endosomal escape). Seven out of every 20 (35%) of these polymers 

is untargeted. Additionally, there are 600 unique combinations of the two therapeutic 

sequences present. In this discussion of conjugation heterogeneity, spatial isomers 

resulting relative placement of each entity along the polymer background was not 

explicitly considered, and would result in >100,000 species.   

 

Characterizing Sample Heterogeneity 

Heterogeneity in polymer conjugation is often overlooked or underestimated due to the 

difficulty in “seeing” it using traditional characterization tools. Many examples in the 

literature generate an equivalent to the product schematic in Figure 1 via experimental 

values that give an “average” value for the entire sample, such as nuclear magnetic 

resonance or UV/Vis and IR spectroscopies. Although such average values are not 

incorrect, they do not give any information about the distribution of species present. Non-

averaged techniques can also be problematic for characterizing sample distributions due 

to conjugation because of the presence of mass and structural distributions of the 

scaffold.  Dendrimers are often touted as having some of the lowest polydispersity 

indices (PDIs) for a polyvalent scaffold with values reported well less than 1.1. However, 
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G5 PAMAM dendrimers (considered to be highly homogeneous compared to linear or 

branched polymers) have been shown to have branching defects leading to mass ranges 

of ~8,000 Daltons (even after oligomer and trailing defects are removed),[26] compared 

to the molecular weights of the molecular drugs or dyes which are generally under 1000 

Daltons. Therefore, the distribution of molecular weights generated by multivalent 

attachment of such ligands is generally narrower than the mass distribution of the 

polymer scaffold itself (even for a highly monodisperse polymer like a dendrimer). Mass 

spectrometry or size exclusion chromatography are generally incapable of distinguishing 

the unique species.[27, 28] Chromatographic techniques, such as high performance liquid 

chromatography (HPLC), have recently been shown to have the potential to be used to 

visual conjugate distributions of hydrophobic ligands on hydrophilic dendrimers (Figure 

1.3).[27-31] This visualization allows for analyses of the mean and median of 

conjugation, as well as the full distribution of ligands/dendrimer present within a sample. 

In order to enable such an 

analysis, the chromatographic 

methods employed must be 

tailored to resolve the entities (i.e. 

stationary phase selection, mobile 

phase gradient development). 

Such processes can be time 

consuming and are not applicable 

to all scaffold and ligand systems. 

However, at present, these 

approaches offer a powerful 

window into the details of 

conjugate heterogeneity for some 

classes of bioconjugates.  

The previous scenario assumed 

perfectly random statistics, which 

is not necessarily the case for real 

samples where properties such as mass transport, solubility, and cooperativity in binding 

Figure 1.3. HPLC chromatogram of an average conjugate 

overlaid with the predicted distribution for an average of 2 

ligands-per-particle. 
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may be encountered. Non-ideal conjugations can lead to drastically different samples that 

“appear” the same by various characterization techniques (Figure 1.4). Mullen et al.[28, 

32] examined a scenario where non-optimal reaction conditions created a less reactive 

subpopulation within the parent scaffold.  In the optimized case (Figure 1.4a), a Poisson 

distribution of ligand-to-scaffold ratios is observed, with around 4% of the material 

having no ligands, and around 7% being monofunctional. However, the non-ideal 

distribution generated by the non-ideal conjugation has 4 times as much unfucntionalized 

material, and 10% monofunctionalized material. These two vastly different samples 

would appear the same by NMR spectroscopy, but likely have immensely different 

biological profiles. 

 

Impact of Conjugation Heterogeneity on Multivalent Behavior 

The modes of multivalent binding have been thoroughly reviewed elsewhere.[33, 34] 

Briefly, three mechanisms are generally described to explain the favorable influence of 

multivalency on binding kinetics (Figure 1.5). The first mechanism is effective 

concentration. Attaching multiple copies of a ligand to a single scaffold in essence 

“prepays” the entropic penalty of achieving high local concentrations. This local increase 

Figure 1.4. The distributions of samples  from two actual conjugations with an average of 6.8 ligands-

per-dendrimer scaffold generated by (a) conditions where mass transport was effective and  (b) 

conditions in which ineffective mass transport  hindered the reaction. Adapted from Mullen et al., 

Accounts of Chemical Research, 2012.  
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in concentration is higher than 

the equivalent solution 

concentration containing the 

same amount of free ligand, as 

the scaffold immobilizes the 

ligand in a defined volume 

(Figure 1.5a). Statistical 

rebinding describes the increased 

chance of a reattachment of the 

ligand/target interaction upon 

dissociation of the initial event, 

due to the high local ligand 

concentration (Figure 1.5b). The 

localization of additional ligands 

increases the chances that, upon 

dissociation of the initial 

reaction, the same conjugate will 

rebind to the protein. Both of 

these concentration-dependent 

mechanisms become important when considering sample populations like those in Figure 

1.4. There is a significantly larger population of particles in the non-ideal (Figure 1.4b) 

sample with ligand-to-scaffold ratios over 15 (~20%) as compared to the ideal case 

(Figure 4a, ~7%). This population would have a much greater effective concentration 

than the average sample, which has less than half as many ligands attached. This high 

population will likely decrease the time needed to form a single binding event with a 

target, such as protein on a surface. On the other hand, the non-ideal sample also has 

significantly more unfunctionalized and monofunctional material, which will have 

distinctly different binding behavior as the effective concentration is much lower, and re-

binding events are less favored. The third mechanism, the chelate effect, describes the 

ability of a multivalent conjugate to undergo multiple binding interactions, which can 

increase avidity more than the sum just the sum of the independent interactions. This 

Figure 1.5. Multivalent mechanisms (a) Effective 

concentration increases chances of binding. (b) Statistical 

rebinding is higher for multivalent conjugates if the original 

interaction dissociates. (c) The chelate effect allows for 

multiple interactions through one conjugate 



10 
 

mechanism, which is likely the first that comes to mind when discussing multivalency, 

can be achieved by 98% of the blue population in Figure 4, but only 80% of the red 

population. These mechanisms work together, and large differences in behavior as a 

function of sample distributions can be expected. 

Measuring Multivalent Behavior 

Multivalent conjugates are oft touted as having favorable kinetic, thermodynamic, and 

biological activity compared to their monovalent and/or small molecule counterparts. 

This behavior is typically demonstrated by ex vivo and in vitro methodologies that show 

an increase in a desired behavior (i.e. binding, inhibition, toxicity) for the conjugate 

species. Problematically, like many characterization techniques, these methods are often 

“average” techniques that are incapable of measuring separate contributions from 

different species within a sample distribution. Surface plasmon resonance (SPR) 

spectroscopy is employed to measuring the association and dissociation rates of 

multivalent ligand-conjugates being flowed over a surface functionalized with that 

ligand’s receptor.[35, 36] Although each unique binding or dissociation event is 

measured by this sensitive technique, the signal observed is the summation of all 

simultaneous events. Therefore, it is impossible to extract the contribution of each 

individual species to the overall kinetic measurement. A detailed example is provided in 

the next section. Thermodynamic information about multivalent interactions can be 

measured by Isothermal Titration Calorimetry (ITC), which measures the enthalpy and 

stoichiometry of binding in solution.[37] Like in SPR, however, the values obtained are 

averaged across the entire solution. Neither of these techniques can discriminate 

differences in binding affinities, for example, between a bivalent and trivalent interaction 

occurring from separate species within a sample. Instead, the observed measurement is a 

weighted average of all species within the sample. Assays of biological activity, for 

example to measure cellular uptake,[38-40] activity inhibition,[41-44] or cytotoxicity[8] 

of a conjugate are commonly employed to demonstrate clinical advantages of multivalent 

conjugates.  However, such techniques are incapable of identifying the active 

components within a heterogeneous sample.  In addition, for in vivo assays, large 

differences in particle hydrophobicity caused by different total numbers of particles per 
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particle has the potential to substantially change bio-localization properties.  Thus, 

changes in activity can be further complicated by differential localization.  It is not 

unfeasible, for example, to imagine that the high average subpopulation in Figure 1.4 

could be responsible for the majority of cytotoxicity, even though it only composes half 

of the sample. The presence of an inactive population would consequently lead to an 

underestimation of biological activities of active species because of an overestimation of 

concentration. 

 

Challenges in Interpretation of Models 

The presence of a range of ligand-to-scaffold ratios complicates evaluation of physical 

models of multivalent activity. Without a solid understanding of the distribution of 

conjugates present within a sample, it becomes impossible to assign the active 

components in the mixture. What minimum valency is needed to accomplish a 

multivalent interaction on a surface? Is there a kinetic advantage to achieving higher 

valencies? At what valency do thermodynamic effects (i.e. reduced solubility, steric 

crowding) negatively impact binding? How can activity differences be explained for 

samples that appear the same by 

other techniques such as NMR? 

Mechanistic understanding of 

multivalent behavior would 

allow for designing new 

conjugates with optimized 

behavior, but to date has 

remained an elusive challenge. 

Let us consider a specific 

example from the literature. In 

2007, Banaszak Holl et al. 

examined the binding of a series 

of stochastic G5 PAMAM 

conjugates to folic acid via 

Figure 1.6. Three proposed mechanisms proposed to explain 

G5-FA binding behavior. (a) Avidity increases with valency. 

(b) Two populations experience two different binding 

mechanisms. (c) Folic acid keys a stronger, nonspecific 

interaction between the conjugate and protein. 
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SPR.[36] A decrease in dissociation constant was observed as the average valency of the 

conjugate was increased from 2.6 to 13.7. The authors proposed a mechanism to explain 

this trend in which dissociation slows with each additional conjugated folic acid because 

a new ligand-protein interaction is formed (Figure 1.6a). However, upon further 

consideration of the distributions of folic acid-to-dendrimer ratios present in such 

samples, the authors proposed a different mechanism.[45] This model establishes two 

binding populations for each sample; monovalent conjugates that are only capable of 

weak, reversible interactions, and multivalent conjugates with two or more folic acids 

which all experience a strong, irreversible binding (Figure 1.6b). This model attributes 

differences in dissociation between samples not to separate mechanisms, but to the 

decrease in zero and monovalent material as the overall average increases (Figure 1.7). A 

third model was proposed by Licata and Tkachenko in 2008.[46] This model attributes 

the increased interaction of the conjugate to be due to nonspecific interaction between the 

protein and dendritic scaffold. This interaction must initially be keyed by the specific 

interaction of folic acid and folate binding protein (Figure 1.6c). The presence of 8 or 

more species with folic acid valency ranging from 0 to 20 in the original samples make 

distinguishing which mechanism is responsible for the observed behavior impossible. For 

example, imagine the two 

distributions with an average of 6 

were in Figure 4 represent two 

conjugations of G5 PAMAM to 

folic acid that were tested in a 

similar study. The original 

mechanism would likely show an 

overall stronger binding for the 

non-ideal case, because it 

contains significant materials 

with 15 or more folic acids that 

would experience much stronger 

binding than anything in the ideal 

sample. However, the non-ideal Figure 1.7. Ideal distributions for three G5-FA conjugates. 



13 
 

conjugation has ~14 in 100 particles (14%) monovalent material compared to just 1 in 

100 (1%) in the ideal conjugation; therefore the second model would predict weaker 

overall binding for the non-ideal case. The third mechanism would likely not distinguish 

between the two samples beyond a ~5% decrease in signal, because binding strength has 

no increase with valency. 

These problems translate to more complicated biological experiments, the effects of 

which are difficult to measure. Earlier, problems due to multiple conjugations were 

introduced, such as the presence of non-targeted particles, “invisible” particles without 

dye, or monovalent drugs without improved activity profiles. The preceding example, 

however, hints that heterogeneity can cause complications due to single distributions, as 

well. The possible effects of ligand-to-scaffold distributions will be closely examined the 

next section. 

 

Impacts of Conjugate Heterogeneity in Biological Applications 

Targeting and Specificity. In 2011, a simulation study by Martinez-Veracoechea and 

Frenkel on targeting specificity determined the relationship of ligand valency and binding 

strength to conjugate specificity to a biological target with high or low expression of a 

receptor.[47] The authors concluded that monovalent conjugates had no specificity 

regardless of receptor density; absorption varies linearly with receptor density. 

Multivalent conjugates, by contrast, exhibit super-selective behavior (i.e. absorption 

increases much faster than linearly with receptor density). Therefore, low concentrations 

of multivalent conjugates can specifically target cell surfaces that are overexpressing a 

receptor protein, without affecting low expressing, healthy cells. However, stochastic 

multivalent conjugates with average ligand-to-scaffold ratios of ~5 or less have 

significant populations of unfucntionalized or monovalent conjugates. The monovalent 

species will bind to healthy or unhealthy cells equally, and may still be up taken via a 

receptor mediated pathway. There is also the possibility that valency may influence the 

localization of a conjugate within a patient’s body, tissue, or cells. Figure 1.8 presents a 

scenario where unfucntionalized materials bind non-selectively to a cell membrane (a 

possible case for positively charged polymer scaffolds), whereas functionalized particles 
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can bind to a surface receptor and be up taken via receptor mediated endocytosis.[48] In 

this hypothetical case, monovalent species cannot cause receptor clustering and 

endocytosis does not occur. By contrast, conjugates with 2 or more ligands are up taken, 

and may escape into the cytosol. However, over functionalized conjugates (with 5 or 

more ligands) are too hydrophobic to escape and are trapped within lysosomes and do not 

deliver their payload. In this case, all therapeutic activity measured would be from the 

subset of particles with 2-4 ligands-per-scaffold, while the remainder of the sample (at 

least 40% of the total) does not reach the intended target. The identification of such 

“active” populations for real samples, however, is impossible with stochastically 

synthesized conjugates.  

Therapeutic Effects. Beyond localization effects, the biological behavior of conjugates 

has been shown to vary as an effect of valency. The simplest mode of therapeutic 

enhancement is the delivery of a higher drug payload to a single cell than the monovalent 

equivalent. The amount of drug delivered, of course, varies directly with conjugate 

valency and therefore a conjugate with a distribution of drug-to-scaffold ratios will 

exhibit a distribution of effective enhancement, with the measured enhancement being the 

Figure 1.8. Conjugate valency may affect the biodistribution of the scaffold inside a cell or 

tissue. 
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average valency. However, a study by DeSimone et al.[49] observed a new behavior at 

high valency that was not observed at all in low valency conjugates or the monovalent 

ligand. The authors demonstrated that non-toxic transferrin and transferrin antibodies, 

which are employed as ligands to target various cancers for drug delivery, when 

multivalently conjugated to a PRINT nanoparticle, exhibit selective toxicity to a Ramos 

lymphoma cell, while remaining non-toxic to solid tumor cells and healthy kidney cells. 

The exhibition of novel behaviors at high valencies can create subpopulations within a 

sample with entirely unique properties. In our non-ideal conjugation in Figure 1.4, for 

example, the high average population may have desired cytotoxicity while the remaining 

50% of the sample would be inactive. 

Imaging Agents. Organic dyes are used as fluorescent probes in order to image biological 

processes, however, organic dyes are prone to photobleaching and self-quenching. The 

effects of the dye can change once conjugated to a polymer which can make polymer-dye 

conjugates useful for biological imaging. Poly(amidoamine) (PAMAM) dendrimers 

conjugates have shown promise as MRI contract agents, since they are large enough to 

prevent extravasation which is necessary for an effective imaging agent in biological 

tissue.[50] In 2013, Schroeder et al. determined the enhancement of organic fluorophore 

optical properties once conjugated to a G5 PAMAM or a G6 PAMAM dendrimer in order 

to create a new set of materials for biological imaging with enhanced stability and 

increased accuracy in single molecule imaging. Cy3 and Cy5 dyes were both used in 

order to determine if their organic properties could be optimized.[51] The fluorescent 

dendrimer nanoprobes (FDN) they synthesized showed that the stochastic materials they 

synthesized with average of 8 and 14 Cy5 dyes
2
. Dendrimers with an average of 8 Cy5 

dyes show slower photobleaching compared to the small molecule dye alone in solution 

with a 6 to 10 times increase in lifetime. The dendrimers with an average of 14 Cy5 dyes 

showed a 17 times increase in lifetime values. Schroeder et al. used these materials in 

single molecule fluorescence microscopy in order to determine localization of these 

materials in a cell. Sets of materials such as these are extremely useful biologically since 

the dendrimer allows for enhanced photostability and increased fluorescence intensity 

(brightness) which allows for more accurate imaging of where materials go in a 

biological environment that contain DNA, RNA, or proteins. Multivalent polymers such 
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as dendrimers are shown that they can be useful imaging agents due to their ability to 

change a small molecule dyes’ photophysical properties to increase stability and also 

their ability to conjugate multiple dyes per polymer. 

 

Synthetic Approaches to Overcoming Heterogeneity Problems in Multivalent 

Conjugates 

As indicated above, heterogeneous product can complicate the synthesis, evaluation, and 

clinical application of these multivalent conjugates. Many synthetic approaches to 

overcome this problem have been employed (Figure 1.9). Methods that have employed 

include using high densities of ligands to avoid under-modified populations with limited 

activity, techniques that create clusters of ligands to optimize local concentration effects, 

and the synthesis of precise conjugates, using biologically inspired scaffolds and both 

bottom up and top down synthetic approaches, in which all species in the sample have the 

same ligand-to-scaffold ratio. In this section, we will provide a brief review of some 

successful applications of 

controlled multivalent conjugates 

over the last 10 years. 

High Density Conjugates. At 

high percentages of modification, 

and assuming ideal or close to 

ideal conjugations (to avoid non-

ideal popluations like the example 

in Figure 1.4), the amount of 

unmodified and low average 

conjugates becomes insignificant, 

allowing for benefits of effective 

concentration based multivalent 

behavior. The average distances 

between conjugated ligands on a 

Figure 1.9. Synthetic approaches to control multivalency 

include (a) ligand density variation, (b) ligand clustering, and 

(c) synthesis of precise ligand-to-scaffold structures. 
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scaffold also decreases, and at some point it can be assumed that the ability to have 

chelate effect type multivalent interaction is limited by the scaffold size and not the 

relative location of the ligands.  

One approach is the complete (100%) modification of a multivalent scaffold, which 

creates a conjugate where the heterogeneity is limited by the scaffold polydispersity. The 

most notable examples of such modification are glycodendrimers.[52-54] This class of 

materials is one of many that exhibit the “cluster glycoside effect”, which is broadly used 

to describe the enhanced binding and activity of multivalent carbohydrates compared to 

the monovalent equivalent to proteins involved in a variety of biological events.[55] The 

surface groups of the dendrimer are modified with a saccharide via coupling or click 

chemistry, using an excess of the saccharide to ensure full conversion. In this way, 

absolute valency can be controlled by generation number, as the number of end groups 

scales with generation.[22] For example, in recent work by Jayarman et al.,[56] 

generation 2, 3, 4, and 5 glycodendrimers were prepared with an expected 4, 8, 16, and 

32 mannos-6-phosphate valency, respectively. These structures were confirmed by NMR 

spectroscopy; however, mass spectrometry and elemental analysis failed due to the nature 

of the structures. The larger dendrimers had less-than-expected valencies (15 and 28, 

respectively). This example demonstrates the limit of such approaches in obtaining 

homogenous structures. Without further structural characterization, it is difficult to 

determine if the coupling reactions failed to go to completion, leaving unreacted 

carboxylic acids on the dendrimer, due to steric crowding. It is more likely, however, that 

this observation is actually a reflection of heterogeneity in the scaffold (PAMAM 

dendrimer), which is known to contain skeletal defects which reduce the average number 

of reactive groups and create a distribution of possible products including variation in 

terminal arm number.[26, 57] Another recent example of glycodendrimers by Riguera et 

al.[42] highlights the inherent coupling of size and valency by this technique. Generation 

1-3 dendrimers with 3, 9, or 27 surface conjugated mannose units were prepared and 

evaluated by SPR for the ability to bind to high and low density Concanavalin A (Con A) 

surfaces. In this work, two separate binding mechanisms were observed: a low affinity 

binding for all generations on the low density protein surface, and a high affinity binding 

for the largest dendrimer on the high density surface. The authors point out that the 
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distance between proteins on the low density surface is greater than the diameter of any 

of the dendrimers, and the only monovalent effects possible are based on effective 

concentration and rebinding. However, the distance between the proteins on the high 

density surface allows for the generation 3 structure to experience the chelate effect. 

However, this work cannot determine what multivalent effects a larger but lower valency 

dendrimer would experience, and whether there is any additional benefit to fully 

functionalizing the dendrimer surface. 

Other scaffolds have been 100% functionalized to achieve the glycoside cluster effect. 

Work by Jimenez Blanco et al.[43] exploited the architecture of β-cyclodextrin (βCD) to 

create multivalent precise, multifunctional mannose and lactose clusters with orientation 

specificity. A convergent synthesis of bifunctional dendrons followed by attachment to 

the βCD scaffold allows for precise control of both ligands and orients all the ligands in 

the same direction to maximize effective concentration effects. The resulting structures 

are monodisperse; however, unlike dendritic approaches this scaffold does not lend itself 

to easily increased valency or extending the reachable surface area of the conjugate. 

Renaudet et al.[44] employed a dendrimer-like multivalent display mannose. Their 

findings confirmed that display of 16 carbohydrates showed more multivalent 

interactions than a corresponding tetravalent unit. However, this work also used two 

linking systems to combine the four tetraclusters, and showed a significant enhancement 

of multivalent interaction with ConA with a more flexible linker. This observation hints 

at the importance of scaffold architecture in multivalent binding, a topic which will not 

be further explored here. 

Other ligands beyond glycosides have been used to 100% functionalize multivalent 

scaffolds. In 2008, Mier et al. showed that a PAMAM dendrimer derivative can be 

functionalized with a variety of different averages of organic dyes in order to show a 

change in fluorescence intensity; they determined a dendrimer 100% functionalized with 

dansyl chlorides showed the highest fluorescence intensity. This conclusion is dye 

dependent as they also show a decrease in fluorescence when stochastically 

functionalizing a dendrimer with multiple coumarins, rhodamines, and fluoresceins.[58] 

Dendrons were also used as scaffolds for multivalent peptides by Welsh and Smith.[59] 
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First and second generation dendrons conjugated to precisely 3 and 9 Arg-Gly-Asp 

peptides were prepared and evaluated for integrin binding affinity as a potential cancer 

targeting agent. Although the trivalent dendron showed enhanced affinity compared to 

the equivalent monovalent peptide, the higher valency generation 2 dendron had lower 

affinity for the integrin. The authors speculate that this trend is due to steric crowding of 

the ligands, interfering with the interaction between the peptide and target. This study 

emphasizes the importance of identifying the ideal valency for complex biological 

systems. 

As indicated by the peptide-dendron example, the higher-valency-is-better approach is 

not always optimal for multivalent activity. Complete modification of the scaffold is not 

always ideal, as well. Not all ligands can be solvated at such high valencies, and non-

toxic ligands may become toxic at high valencies as discussed earlier[49], which may not 

always be a desirable trait. Therefore, the distribution problem has been addressed by 

Choi et al. by systematically increasing the ligand density to reach desired activity levels. 

This approach allows for the comparison of the multivalent behavior at low average and 

high average valencies. In addition to the PAMAM-folic acid sample detailed in an 

earlier section, generation 5 PAMAM conjugates to methotrexate, a chemotherapeutic, 

and vancomycin, an antibiotic, have been studied. In a recent study by Choi et al.[38], 

two conjugates with average methotrexate valencies of 5 and 10 were prepared and 

evaluated by SPR for binding to a folate binding protein, and tested for uptake into FAR+ 

KB cells. The higher averaged conjugate was found to have both stronger binding to 

protein surfaces of various densities, and higher uptake into the FAR+ cells. Interestingly, 

the high (n=10) average sample exhibited multivalent binding on an intermediately dense 

surface, as indicated by incomplete dissociation of the conjugate on the SPR timescale, 

whereas the low (n=5) conjugate did not. This lack of activity cannot be explained simply 

by considering the ~4% of the n = 5 sample that is unfunctionalized or monovalent 

(Figure 1.10a). Therefore, it must be assumed that the portion of the population that is 

active at this protein density is not present at significant concentrations in the n=5 

samples but is in the n = 10, which likely places it somewhere at valency of ~7 or higher. 

Further studies would need to be undertaken to identify the exact ligand-to-scaffold ratio 

of the active entities in the sample. In a vancomycin conjugate SPR study, several ligand-
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to-scaffold ratios ranging from 1.2 

to 8.3 (Figure 1.10b) were tested 

for the ability to bind to two 

surfaces, one which mimicked 

vancomycin susceptible bacteria 

and a second which mimicked 

vancomycin resistant bacteria.[10] 

While free vancomycin did not 

significantly bind to the 

“resistant” surface, all of the 

multivalent conjugates did. 

Interestingly, the strength of 

binding was not influenced by 

valency, even when the average 

valency was increased from 1.2 to 

8.3, a reduction of the monovalent 

population from around 180 

particles of 500 (36%) to less than 

1 in 500 (0.2%). This observation 

suggests that either the 

monovalent species is not 

participating at all in the binding 

and therefore is not observed, or 

that the mechanism of binding 

depends more on the attachment of the ligand to the scaffold than the valency (similar to 

the proposed mechanism for PAMAM-folic acid in Figure 6 c). A purely monovalent 

conjugate without the presence of a distribution of would be necessary to distinguish 

between these mechanisms. As demonstrated by these examples, employing high ligand 

density samples is an approach that can be successful in creating conjugates with desired 

properties, but it does not generally lead to mechanistic insight of the systems being 

studied. 

Figure 1.10. Distributions present in multivalent conjugates of 

PAMAM to (a) 5 or 10 methotrexates and (b) various amounts 

of vancomycin. 
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Ligand Clustering. High ligand densities are in part successful because they maximize 

local concentration and statistical rebinding mechanisms of multivalency. However, as 

alluded to in the preceding section, 100% modification is not possible for many 

ligand/scaffold systems due to challenges with solubility and steric crowding. However, 

lowering the density increases the separation of ligands on the surface, which reduces the 

effective concentration. This approach can be particularly problematic if the scaffold 

architecture is not flexible enough to allow localization of ligands. An approach to 

increase local ligand concentrations without fully functionalizing a surface is to create 

patches or clusters of the ligand on the scaffold (Figure 1.9b). In a recent study by Gilles 

et al.,[60] polymer vesicles were functionalized with dendritic clusters of ~7 mannose 

units. The surface density of these clusters was also varied by controlling the amount of 

azido-functionalized polymer in the vesicle scaffold to give statistical distributions. As a 

control, the same vesicles were functionalized with a monomeric azido-modified 

mannose to create multivalent mannose structures which did not have the localization 

effects of the clusters. The vesicles were evaluated by a hemagglutination assay, which 

measured the ability of the vesicles to inhibit red blood cell clustering by selectively 

binding the ConA. When compared to free mannose, the multivalent but non-clustered 

vesicle had a proximately 4 times the activity as free mannose relative to the amount of 

mannose present, likely due to a chelate type interaction. However, the activity of the 

equivalent cluster functionalized vesicle was over 40 times that of the monomer on a 

mannose-to-mannose basis. This example highlights the importance of controlling the 

distribution of ligands on a scaffold system for such systems. Pine and coworkers have 

recently published methods to synthesize polymeric scaffolds with localized, directional 

binding patches.[61] In this work, colloidal particles were prepared from nanoclusters 

with 1-7 amidine patches in symmetric orientations. The original work utilized these 

selectively active sites to assemble larger nanostructures; however the translation of these 

sites to directional multivalent binding scaffolds is clear. Complete functionalization of 

these sites with multivalent ligands would create areas of high local concentration, and 

multiple patch sites allow for well-defined, chelate type crosslinking.  Other scaffolds, 

such as PAMAM dendrimers, are more flexible then the cross-linked vesicle, which 

allows the ligands to be localized even if they are bound on different polymer 
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branches.[62] However, creating bifunctional conjugates (e.g. with a drug and a targeting 

ligand) still creates a more heterogeneous population.  In 2012, Baker et al.[63] 

synthesized triazine-based clusters of a single folic acid (targeting ligand) and a single 

methotrexate (drug ligand) with an azide click chemistry group. These clusters were then 

clicked to a previously synthesized, stochastic distribution of dendrimer-alkyne click 

ligand conjugate. In the resulting product, which still contained a distribution of ligand-

to-scaffold ratios, each unique 

species contained exactly the same 

number of drugs and target 

ligands. There is a reduction in 

unique species from ~170 in the 

equivalent, double conjugation 

approach (Figure 1.11a) to ~13 by 

employing only one conjugation 

(Figure 1.11b). Importantly, the 

single distribution conjugate 

exhibited higher growth inhibition 

for KB cells than a double-

conjugation sample that actually 

had a higher methotrexate 

valency. This observation is 

possibly due to the elimination of 

untargeted treatment populations 

and drugless targeted species from 

the sample. In this case, presence 

of a larger distribution of samples 

actually counteracts the benefits of 

multivalency. This example 

emphasizes the importance of 

considering the activity impacts of 

complicated, sequential synthesis 

Figure 1.11. Product species present in (a) a double 

conjugation of methotrexate and folic acid and (b) the single 

conjugation of the bivalent cluster. 
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of multifunctional systems. 

Precise Ligand/Polymer Ratio Conjugates. Although high density surfaces and ligand 

clustering improve conjugate behavior, mechanistic assignment of activity and 

identification of populations with optimal behavior are best done with homogenous 

samples. The presence of a heterogeneous mixture of products in these approaches 

(except for 100% functionalization approaches) may also present complications in scale-

up, prevent clinical application, or fail to meet FDA requirements for approval. 

Therefore, several strategies have been employed to synthesize precise, multivalent 

conjugates in which all species have the same exact ligand-to-scaffold ratio. These 

approaches can be broadly categorized as biologically inspired approaches, bottom-up 

approaches, and top-down approaches. 

Several groups have taken advantage of the homogeneity of biological nanoparticles as 

precise scaffolds. Proteins are of great interest as multivalent scaffolds because of their 

nanoscale sizes allowing them to span large areas for chelate effect binding, well defined 

structure which allows for precise functionalization, and the possible therapeutic potential 

of the protein itself.  One such application by Zhang and coworkers[64] employed a 

tetrameric far-red fluorescent protein (tfRFP) as both an imaging agent and a scaffold 

conjugated multivalently to cancer targeting peptides. The N and C termini of each unit 

in the tfRFP were conjugated to a copy of the targeting peptide to create conjugates 

consisting of exactly 8 targeting peptides per tfRFP. By comparison, random conjugation 

of an average of one fluorescent probe and 8 peptides to a PAMAM dendrimer would 

result in over 300 unique combinations, of which over 30% would not contain an imaging 

agent. Conjugation of the peptides to the tfRFP significantly increased the uptake of the 

probe, although it was shown to decrease the fluorescent intensity of the tfFRP. The 

location and number of functionalizable sites limits the placement of multivalent ligands 

on proteins, however, which may not allow for optimal effective concentration 

enhancements. Ikkala et al.[65] addressed this challenge by utilizing dendrons of varying 

generations to create DNA binding patches of varying valency on two different protein 

scaffolds, bovine serum albumin (BSA) and a genetically engineered Class II 

hydrophobin (HFBI). This work takes advantage of a single cysteine residue available on 
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each protein for thiol reactions to the dendrons. Employing dendrons with 3 or 9 surface 

primary amines allows for precise valency control of the resulting conjugate. Although 

there was only a 50% yield for the BSA scaffold (due to oxidation of the cysteine), the 

purified products contained a single dendron per protein. The DNA binding of the 

conjugates were then evaluated by an ethidium bromide displacement assay. The 

unmodified proteins did not bind the DNA, whereas the conjugates bound the DNA to 

varying degrees. The smaller HFBI conjugates had relatively higher affinity compared to 

the larger BSA conjugates, which the authors attributed to the differences dendron-to-

protein size (which could translate to a percent functionalization effect). As expected, the 

higher valency of the larger dendron also promoted DNA binding. 

The precise interactions of nucleic and amino acids have also been utilized to craft 

homogenous multivalent structures. Antibodies can be employed to target cancer cells 

presenting tumor-associated antigens. Schultz et al.[66] genetically engineered an anti-

Her2 antibody to site-specifically incorporate two unnatural amino acids, p-

acetylphenylalanine (pAcPhe).  The pAcPhe can be orthogonally modified to form an 

oxime bond with an alkoxy-amine derivatized drug. In their recent work, Schultz and 

coworkers created antibody conjugates containing exactly two copies of a tubulin 

inhibitor, ausirtatin. Comparatively, randomly coupling a drug to natural amino acids can 

lead to up to ~1,000,000 unique species. The precise conjugates showed improved 

selectivity for the drug, due to the targeting ability of the antibody, although there did not 

appear to be a multivalent effect for having multiple drug copies. Importantly, the precise 

conjugate showed favorable pharmacokinetics, selectivity, and stability compared to 

similar work with traditionally (non-site specific) antibody conjugates. Seitz and 

coworkers[67] recently performed a thorough proof of concept study proving the 

usefulness of DNA as a template for creating precise multivalent architectures. In this 

work, base pairing between DNA and synthetic peptide nucleic acids modified with N-

acetyllactosamine (LacNAc) was employed to tailor scaffolds with precisely defined 

valency, precisely defined spacing, and varied flexibility. The binding of LacNAc to 

Ricinus communis agglutinin (RCA120) is known, with two binding sites that are ~130 

angstroms apart across the concave surface of the protein. As such, valency effects were 

studies by synthesizing complexes with 1-4 LacNAc. The strongest absolute binding, as 
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measured by KD, was observed for the tetravalent construct, although this sample did not 

have the highest relative potency per LacNAc, indicating that this enhancement was due 

to increased effective concentration/statistical rebinding. Two different spacers were used 

to vary the length between LacNAc units in divalent complexes. As expected, the spacer 

that more closely matched the separation of the active sites showed approximately twice 

the binding activity as the complex where the distance between the LacNAc units were 

too close. Finally, flexibility was evaluated be synthesizing divalent structures that were 

completely double stranded and partially single stranded between the LacNAc units. The 

less flexible complex had slightly higher binding, which may indicate unfavorable 

thermodynamic penalties to obtain binding conformation in the flexible complex. 

Biologically inspired approaches provide excellent control of scaffold heterogeneity, 

ligand valency and placement.  However, implementation in vivo is often limited by 

immunogenicity. Therefore, non-biological but precise conjugates which may be masked 

from immune systems are still actively pursued.  

Fully synthetic, bottom-up approaches to creating precise multivalent architectures allows 

for molecular control of stoichiometry and geometry optimized for a specific target. One 

such example is the sub-monomer unit assembly of peptoids to form oligomers with 

monomer chemical functionality in the desired positions. Kirshenbaum and 

coworkers[68] demonstrated this technique by synthesizing peptoids with precisely 1-6 

azide entities in the monomer side chains. From these multivalent constructs, multivalent 

displays of estradiol were prepared from alkyne modified steroids. The multivalent 

constructs were evaluated by a radiometric competitive binding assay. The monovalent 

peptoid showed ~6,500 weaker affinity than the free estradiol, perhaps due to entropic 

penalties due to immobilization on the scaffold, however the bivalent conjugate 

recovered to ~100 fold weaker affinity. This observation could possibly be attributed to 

chelate type binding as estrogen receptors can exist as dimers. Minor improvements for 

the tri and hexavalent conjugates can likely be attributed to effective concentration 

effects. The solid phase peptoid synthesis allows for tailoring of space between the active 

monomers, so that the biological structures of interest may be matched. Vidal et al.[69] 

employed peptoid and porphyrins as small scaffolds to match lectin symmetry. Two 

lectins with different symmetries were studied. A flexible, linear tetravalent glycol-
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peptoid conjugates and cyclic peptoids of the same valency were first compared. The 

linear peptoid did not exhibit any inhibition behavior in a hemagglutination inhibition 

assay, while the cyclic cluster selectively inhibited coagulation with one erythrocyte 

(Pseudomonas aeruginosa) but not the other (Erythrina cristagalli) tested. However, 

there was very little measurable effect of multivalency over the monovalent ligand (~4 

times the potency). By way of contrast, a square planar tetravalent porphyrin selectively 

inhibited the Erythrina cristagalli with over 150 times the relative potency of the 

monovalent glycoside. Increasing the valency to 6 had no additional favorable effect, and 

changing the symmetry to orient all 4 glycosides in one direction or placing 2 in an 

opposite direction both negatively impacted the behavior of the conjugate. This study 

demonstrates the importance of precise control of ligand orientation for minimizing 

thermodynamic costs in achieving ligand-target interactions, especially with inflexible 

scaffolds. 

One approach to achieve precise nano-size dendrimer conjugates is to use convergent 

synthesis of dendrons with small molecule precision to form nanoscaled conjugates with 

well-defined functionality. In 2010, Weck et al. developed a method to construct 

generation 2 poly(amide) based dendrons and dendrimer materials using copper catalyzed 

and copper free click chemistry developed by Sharpless and Bertozzi. These materials 

had the multi-functionality of amine, azide, and alkynes.[70] These materials made a 

large step in creating monodisperse polymers since the dendrimers synthesized had 100% 

completion reactions for each generation as determined by various characterization 

techniques which is a major challenge in creating many dendrimer materials, including 

the PAMAM dendrimer.[70] In 2011, Weck et al. used these well-defined dendrimer 

materials to click on near infrared cyanine dyes in order to create monodisperse polymer 

imaging agents that have the ability to be used in biological experiments due to their non-

cytotoxic nature.[71] 

Convergent approaches are difficult to extend to higher generation dendrimers. Recent 

work by Banaszak Holl et al.[27-30] utilized high performance liquid chromatography to 

isolate generation 5 PAMAM dendrimers with precise ligand-to-scaffold ratios. 

Stochastic average mixtures of products are prepared by mixing multiple equivalents of 
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the ligand drop wise into a solution of the dendrimer scaffold. By employing hydrophobic 

ligands, favorable interaction with a reverse phase, hydrophobic stationary phase column 

is exploited so that column retention is determined by the precise ligand-to-dendrimer 

ratio (Figure 1.3). Scaling these methods to the semi-preparative scale allows for 

generation of up to 30 milligrams of product with a single, precise ligand-to-dendrimer 

ratio. Extending this approach from click ligands to biologically interesting molecules 

will provide a route to precise drug/targets/dye-to-dendrimer ratio materials. 

 

Future Directions 

In the pursuit of more active multivalent polymer conjugates, there are many directions 

that must be pursued. First, it is important to acknowledge the heterogeneity present in a 

ligand-scaffold conjugate and the impacts of this heterogeneity on the desired application. 

Then, the best way to minimize or eliminate the impacts of sample heterogeneity can be 

determined. Systematic variation of ligand density has proven to be a facile route to 

improved conjugate activity. Continued studies such as those by Choi et al. lead to 

samples that, while still heterogeneous, limit the population of inactive species. Such 

high average samples, when not plagued with undesired properties such as insolubility or 

nonspecific cytotoxicity, may be the easiest and/or fastest method to bring a conjugate to 

clinical scales. Achieving precise ratio ligand/polymer control of these widely employed 

multivalent conjugates, such as the work by Banaszak Holl et al., must also continue as 

the best way to distinguish mechanisms of activity and identification of active 

components within a sample, although this approach may not be scalable. For other 

applications, a more structured approach to maximize specific multivalent effects is best 

for achieving the desired interaction. If target chelation is not a desired outcome (for 

example, in the PAMAM-folic acid case when even 1 ligand is sufficient to achieve the 

desired behavior), it is best to pursuit conjugate techniques such as ligand clustering to 

maximize local concentration effects.  Employing flexible scaffolds might also minimize 

the need for precise control over ligand spatial distributions. If the exact geometry is 

known, effort might be best spent in optimization of the scaffold choice for precise 

control ligand placement to minimize entropic penalties of bringing multiple ligands into 
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the desired geometry. It is easy to neglect the contribution of effective concentration 

effects in favor of achieving architectures that exhibit chelate binding in such systems; 

however the works highlighted here indicate that that these effects are far from 

negligible. Although much work revolving around clustering has been with glycoclusters, 

it is not unreasonable to believe such effects may translate to other ligands of biological 

interest. An interesting area to pursue would be to combine a precisely tailored geometry, 

such as seen with the square planar complexes of Vidal et al.,[69] with pre-clustered 

ligands on a dendron to high local concentrations and precise localization of cluster 

geometry. Recent work by Baker et al. have shown the promise of heterobifunctional 

ligand clustering on random, flexible architectures.[63] As such, applying ligand 

clustering via click reaction to either distributed or precise conjugates on flexible 

scaffolds like PAMAM may provide new optimization of multivalent behavior. 

In summary, multivalent, multifunctional polymeric conjugates are highly attractive for 

the targeted delivery of drugs and imaging agents. However, common approaches to the 

synthesis of conjugates involve many steps and can lead to complex mixtures of products. 

The presence of these product distributions, while intellectually obvious, is hard to 

visualize by most chemical and biological techniques employed to evaluate the samples. 

As such, progress toward understanding the impact of such heterogeneous distributions 

on the activity of the conjugates is slow. However, recent work in systematically 

modifying the distributions of ligands present and crafting of precise multivalent 

architectures has allowed for better elucidation of multivalent behavior.  
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Chapter 2  

Structural Defects in G5 PAMAM Dendrimer 

This chapter was previously published as “Quantitative analysis of generation and 

branch defects in G5 poly(amidoamine) dendrimer” Polymer (2013), 54, 4126. The 

corresponding supporting information can be found in Appendix A. 

 

Introduction.  

Poly(amidoamine) (PAMAM) dendrimers are a class of polymers characterized by 

dendritic structure and low polydispersity. [1-3] Additionally, water solubility, low 

cytotoxicity when acetyl capped, and readily conjugated surface groups have contributed 

to make PAMAM dendrimers particularly interesting for biological applications.[4] 

Generation 5 (G5) PAMAM dendrimer has been of specific interest because it is able to 

move through biological tissue, due to its 5 nm diameter.  This allows the dendrimer to 

cross cell membranes thereby increasing blood circulation times of conjugated or 

entrapped drugs (for example, from 2 to 6 hours)[5] and avoiding rapid clearance by liver 

and spleen.[6, 7] On the other hand, the G5 material is also large enough to conjugate up 

to at least 14 hydrophobic drugs, targeting molecules, and/or dyes while retaining water 

solubility.[8] Consequently, G5 PAMAM has been extensively studied[8, 9] as a platform 

for multivalent
 

conjugates[10-12] combining specific cell targeting,[13-15] drug 

delivery,[16-19] RNA,[20] and gene delivery,[21-23] and/or imaging agents,[24-29] with 

over 900 publications to date. 

Although PAMAM dendrimers can have polydispersity indices as low as 1.01, they are 

known to have generational defects (trailing generations and oligomers) and branching 

defects (missing arms and intramolecular loops).[30, 31] Generational defects lead to 

substantial portions of the sample population with significantly lower and higher 

molecular weights and diameters.  For example, a G5 sample containing trailing 
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generations and oligomers could in principle contain particles with molecular weights 

ranging from about 1400 Da (G1) to 114,000 Da (G5 tetramer), leading to significantly 

different biodistributions of differently sized materials.[7] Additionally, host-guest 

behavior depends on internal void volume of the dendrimer, which is greatly reduced for 

the lower generations present as trailing defects in a sample.[6]  

The structure of PAMAMs has been explored by a variety of experimental and theoretical 

methods. Theoretical studies using atomistic,[32-37] coarse grain,[34, 38] and explicit 

solvent molecular dynamics,[33, 36] have been carried out to address the size, shape, and 

interior volumes of dendrimers in response to different pH and solvent environments. 

These measurements have been compared to experimental methods such as small angle 

neutron scattering[39-41] and X-ray diffraction[39] with generally good agreement. Mass 

characterization techniques, such as electrospray ionization mass spectrometry (ESI-

MS),[31] matrix assisted laser desorption ionization time-of-flight mass spectrometry 

(MALDI-TOF-MS),[30] centrifugation,[8, 9] and size exclusion chromatography,[8, 

9]  have detected the presence of defects in the dendrimers. Capillary electrophoreses 

exclusion chromatography[42] has been frequently used to explore sample 

uniformity.[43, 44] For example, Lopp et al. employed capillary zone electrophoresis to 

characterize homogeneity for G0 to G4 PAMAM.[45] They observed differences in 

electrophoretic mobilities leading to fast migrating trailing generations, and slowly 

migrating impurities that were attributed to lower charges due to missing or looped arms, 

and high weight oligomers; however, this technique cannot explicitly distinguish between 

these structures, and no further complementary characterization was performed. Lee et al. 

used field flow fractionation to do size dependent separation of G4-G9 at various pH 

conditions.[42] They observed the presence of high (dimers) and low (trailing and 

skeletal defects) molecular weights via changes in sample mobility, in all generations and 

conditions, but did not employ further techniques to study the materials. Baker et al. 

utilized ion-pair reverse phase High Performance Liquid Chromatography (RP-HPLC) to 

analyze G1-G9.[46, 47] This work hypothesized that RP-HPLC can separate dendrimer 

as a function of density of paired primary amine/trifluoroacetate surface groups. Defects 

leading to missing end groups changed retention, readily apparent for lower generations, 

and dimeric species having more surface groups were retained longer. The authors 
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speculated that this work could be scalable to preparative work for the isolation of large 

amounts of relatively pure materials. 

Recent work has demonstrated the ability to isolate dendrimers with precise numbers of 

click-functional ligands from a stochastically synthesized distribution utilizing RP-

HPLC.[48, 49] Presently, however, the purity of these isolated materials is limited by the 

presence of high weight oligomers that co-elute with the monomer conjugates. These 

materials contain fewer than ideal numbers of ligands but contribute significantly to the 

sample mass due to their high molecular weights. Low weight, trailing impurities are 

often eliminated by size exclusion techniques,[48] but removal of dimer and larger 

structures has to date not been on a preparative scale. Isolation of generationally pure 

dendrimer monomer materials will allow for preparation of conjugates with a narrow size 

distribution and precise numbers of functional ligand with enhanced purity and yield.  

Here we report the isolation and characterization of major generational defects in the 

commercial samples of G5 PAMAM dendrimer typically employed for scientific studies 

and applied uses of these materials. We employed semi-preparative scale RP-HPLC on a 

representative sample of commercial G5 PAMAM to isolate major generational 

components in quantities of hundreds of milligrams. Isolated components were

characterized by mass spectrometry, size exclusion chromatography (SEC), and 
1
H NMR 

spectroscopy. The NMR spectra were found to be highly pH sensitive, so these 

experiments were performed at a series of pH values using a pH 3, 5, 7, and 9 buffers for 

as-received samples, and pH 9 buffer for fractionated samples. The rp-HPLC separation 

procedure described herein has proven robust and been used to obtain gram quantities of 

generationally purified PAMAM dendrimer that is suitable for synthesizing conjugates 

with precisely defined numbers of ligands per polymer particle. 

 

Experimental Section.  

Biomedical grade G5 PAMAM dendrimer was purchased from Dendritech Inc. and used 

as received.  All other chemicals were purchased from Sigma Aldrich, Fisher Scientific, 
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or VWR and used as received.  Size exclusion chromatography and potentiometric 

titration were carried out as previously reported.[48] 

Isolation of Generational Components of G5 PAMAM dendrimer. Isolation of dendrimer 

components was achieved using a Agilent Zorbax 300SB-C18 Prep Column (21.2 x 150 

mm, 5 µm particles) with a Waters 600 Controller, Waters 2707 Autosampler, and 

Waters 2998 Photodiode Array running Empower 2 Software, additionally equipped with 

a Waters Fraction Collector III. The weak solvent (Solvent A) was HPLC Grade Water 

with 0.1% TFA, and the strong solvent (Solvent B) was HPLC Grade Acetonitrile with 

0.1% TFA. The gradient employed was as follows: Flow rate of 12 mL per minute, 2.1 

minute isocratic load step at 95% A and 5% B, 4.9 minute gradient curve 6 to 80% A and 

20% B, 6.5 minute gradient curve 6 to 74% A and 26 % B, followed by a 3.5 minute 

wash of 1% A and 99% B before returning to starting conditions. Eighty, two second 

fractions were collected starting at 9 min into the procedure. Multiple, consecutive, 0.2 

µm syringe filtered, 710 µL injections at a concentration of 18 mg/mL dialyzed G5 

dendrimer dissolved in solvent A were performed with a 5 minute equilibration step in 

between. Chromatograms detected at 210 nm and fractions were then analyzed using 

Origin Pro 8.1 software, which was used to select fractions to combine for each sample. 

A small sample was taken from the combined fractions and analyzed using a Waters 

Acquity Ultra Performance LC with a scaled gradient method calculated using the 

Water’s Analytical to Prep Gradient Calculator on an Agilent 2.1 x 100 mm column with 

all included chromatograms detected at 210 nm. The combined fractions were exposed to 

a nitrogen stream to remove acetonitrile and lyophilized. Dried samples were then re-

dissolved in PBS buffer pH 7.4 and purified using GE Healthcare PD-10 Columns using 

the manufacturer’s gravimetric protocols using DI water as the buffer, and lyophilized 

prior to subsequent analyses. 

Mass Spectrometry. Matrix-assisted Laser-Desorption Time-of-Flight Mass Spectrometry 

(MALDI-TOF-MS) was performed using a Micromass TofSpec-2E running MassLynx 

Version 4.0 software. Dendrimer samples were prepared by dissolving in DI water at 

concentration 10 mg/mL, then serial diluting with methanol 1:1, then 1:4. The samples 

were then mixed 1:1 with the matrix dihydroxybenzoic acid (concentration of 10 mg/mL 



37 

 

Figure 2.1. UPLC chromatogram  at 210 nm of as received G5 dendrimer indicates the presence of 

trailing generation impurities as well as oligomerized defects. 

in 1:1 water/acetonitrile) and spotted on to a MALDI plate. Samples were calibrated 

using bovine serum albumin with a matrix of sinapic acid. At least 150 laser shots were 

compiled for each spectrum. The spectra were smoothed using the MassLynx Software 

settings of Smooth window (channels) equals 12, and Number of smooths equals 12. No 

baseline subtraction or peak centering was performed. 

NMR spectroscopy. NMR experiments were performed on Varian VNMRS 500 and 

Varian MR400 instruments. 
1
H-NMR spectra were obtained used 10 second pre-

acquisition delays and a total of 64 scans. All sample solutions were set to a dendrimer 

concentration of 5 mg/mL. Buffered NMR solutions were prepared using deuterium 

oxide, deuterium chloride, sodium deuteroxide, potassium hydrogen phthalate (pH 3 and 

5), potassium dihydrogen phosphate (pH 7), and disodium hydrogen phosphate (pH 9). 

Internal standard NMRs were taken by spiking 1,4-dioxane, chosen for its miscibility 

with water, non-interfering shifts, and pH independence, into deuterium oxide or buffered 

solution at a concentration of 36.1 µM. 
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Results and Discussion.  

Biomedical grade G5 PAMAM dendrimer contains substantial amounts of trailing and 

oligomer (dimer, trimer, etc.) type defects as visualized by UPLC in Figure 2.1, the 

relative amounts of which have previously been reported to vary from batch to batch or 

source to source.[48] Previous reports[46, 47] indicate that RP-HPLC of amine-

terminated PAMAM dendrimers operates via ion-pairing of terminal amines with 

trifluoroacetate. By this principle, retention on the column has a positive correlation with 

number of primary amine-terminated arms on the dendrimer species. The largest peak, 

eluting at 8.5 minutes, has been identified as the full molecular weight distribution of G5 

species and contains, even in a sample such as this with a PDI of 1.090, only about 64% 

of the sample, as determined by peak fitting. The smaller peaks eluting prior to the G5 

peak indicate the presence of all possible trailing generations, comprising about 14% of 

the sample by weight  (see supporting information for determination of extinction 

coefficients for all species). Two broad peaks that exhibit higher retention on the reverse-

phase column are identified as the G5 dimer and trimer making up 14% and 8% of the 

sample by weight, respectively, with trace amounts of tetramer also present. Analysis of 

the extinction coefficients in mg/mL of each species at 210 nm (see supporting 

information) indicated a decrease as a function of degree of oligomerization leading to a 

systematic underestimation of the mass fraction of these species if a constant extinction 

coefficient is assumed.  The high percentage of oligomeric defects for G5 leads us to 

conclude that there are likely species such as G4-G4 dimers and G3-G3-G3 trimers 

coeluting with the G5 dendrimers, as these structures would have similar molecular 

weights and primary amine-terminated arms, and cannot be separated by the principles of 

ion-paired RP-HPLC. By these estimates, a commercial sample contains approximately 

30% more particles than calculated using the ideal molecular weight, with only about 

50% of the total number of particles being G5 sized.  
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Semi-preparative HPLC (Figure 2.2) was 

used to collect eluting dendrimer 

components in 3 second fractions 

(vertical white bars). The major species 

were identified and combined (wide 

colored bars T, I-IV). The combined 

fractions represent remaining trailing 

generation (red bar, T), the full range of 

G5 branching defects (green bar, I), G5-

G5 dimer (purple bar, II), trimer (blue 

bar III), and tetramer (orange bar, IV). 

Single, 3 second fractions were also 

collected as indicated by the gray scale 

vertical bars (i-iv). Figure 2.3 a shows subsequent re-injection of the combined fractions, 

T-V, as eluted onto an equivalent UPLC system, while Figure 2.4 a shows re-injection of 

single fractions, i-iv. The single fractions taken from throughout the G5 peak do not re-

center upon injection, indicating that different types and degrees of structural defects 

contribute to the breadth of the G5 peak and that the peak width is primarily controlled by 

polymer defects, as isolation and reinjection of 3 second fractions i-iv result in diffusional 

peak widths of about 75% of the peak-width-at-half-height of the as-received peak, and 

Figure 2.3. Characterization of fractions T,I-IV. (a) UPLC chromatograms at 210 nm of generational 

fractions T,I-IV. (b) Cumulative data plot of contributing molecular weights from GPC analysis of 

fractions T,I-IV. 

Figure 2.2. Fractions (white bars) collected from 

semi-preparative HPLC (210 nm) of dialysis purified 

G5 and combined into generational (colored bars, 

T,I-V) and single fraction (gray scale bars, i-iv) sets.  
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do not re-center. Structures with more 

branch defects, or defects that 

occurred earlier in the synthetic 

process, will contain significantly 

fewer surface amines and have shorter 

retention time. The G5 dimer, trimer, 

and tetramer fractions also do not re-

center to the main peak, indicating a 

significant difference in surface amine 

presence. The isolated trailing 

generation is still contaminated with a 

significant portion of G5, and a small 

amount of G5 peak can be seen in the 

dimer fraction, which was confirmed 

in further experiments. 

After desalting, the trailing generation, 

branch defective G5, dimer, trimer, 

and tetramer fractions obtained by RP-

HPLC were analyzed by size-

exclusion chromatography and 

compared to as-received G5 PAMAM. 

The ideal molecular weight of G5 

PAMAM is 28,826. The as-received 

mixture of material has a Mn very 

similar to this value, but the PDI of 

1.090 is consistent with the 

observation that this Mn is a 

contribution of G5, low weight (trailing), and high weight (oligomer) impurities. 

Fractions T,1-III all showed reduced PDIs (Table A1), indicating improved sample 

homogeneity.  Fraction II (dimer) has a Mn which is slightly less than twice that of an 

ideal G5 dendrimer, and fraction III (trimer) just under three times the Mn of fraction I, in 

Figure 2.4. Characterization of fractions i-iv. (a) 

UPLC chromatograms at 210 nm  of fractions i-iv do 

not re-center about the main G5 peak. (b) Cumulative 

data plot of GPC molar masses for fractions i-iv. (c) 

MALDI-TOF-MS spectra of fractions i-iv. 
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good agreement with the identification of these structures. Fraction IV shows the largest 

weight and PDI, and is most likely comprised of a mixture of trimer, tetramer, and higher 

oligomers. Figure 2.3 b is a cumulative data plot that visualizes the percent contribution 

of Mn to each fraction. The near vertical line in the cumulative molar mass plot for 

fraction I is indicative of very homogeneous material. Fraction II has a very similar 

shape, but is shifted to roughly twice the molecular weight. By fraction III, the average 

Mn has roughly tripled and the cumulative curve is much shallower. This is consistent 

with increased polydispersity due to the formation of trimer from G5 monomers with 

different degrees of branching defects, leading to a larger range of contributing materials. 

About 20% of fraction IV falls into the trimer range, while about 50% falls into a range 

approximately 4 times the mass of a G5 monomer, and species with even higher 

molecular weights are detected. 

Molecular weights were also measured by MALDI-TOF-MS for the five generational 

fraction sets (Table A1) and were in good agreement with GPC data. The higher-than-

ideal weights observed is most likely attributed to presence of various salts, as the peaks 

are all slightly shifted to high weights when compared to the as received material prior to 

trifluoroacetate and phosphate buffer exposure. The presence of phosphate and TFA salts 

can be observed via NMR (Figure A1). Removal of these two salts to less than one 

equivalent per dendrimer can be achieved using less than 20 mg of dendrimer loaded per 

PD-10 column; however they are most likely exchanged for chlorides and other salts that 

cannot be probed by NMR. The commercial material had MALDI peaks at 13kDa, 

26kDa, 52kDa, 79kDa, and 105kDa, corresponding to those observed in each individual 

fraction’s (T, I-IV) spectra. Fraction T has a distinct peak at 7kDa, either a strong [M]
2+

 

signal or G3 sized particles, not seen in the other spectra, which are dominated by matrix 

signal at that M/Z ratio. The spectra for the fraction I contains peaks that correspond to 

[M]
+
, [M]

2+
, and [M-M]

+
 peaks (Figure 2.5). Fraction II, dimer, has a peak that could 

correspond to either G5 or a doubly ionized dimer, however fraction III, trimer, has a 

peak at the dimer weight which cannot be explained by ionization alone. Fraction IV, 

tetramer, has a peak at an M/Z ratio around 110,000 which is not present in the dimer or 

monomer samples, although this peak is not the most intense peak in the sample. This 

could be caused by the ionization process favoring much smaller species. Figure 2.4 b-c 
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shows a distinct increase in molecular weight as a function of HPLC retention for the 

fractions i-iv, further confirming that the width of the main G5 peak in the HPLC 

chromatograms is caused by the molecular weight distribution due to branching defects, 

with the least defected material containing the highest number of primary 

amine/trifluoroacetate pairs, and being most retained on the hydrophobic column. The 

presence of a peak in all samples corresponding to the monomer mass arises from 

multiple ionization of single particles (e.g. double charged dimer [M-M]
2+

 has the same 

M/Z as singly charged monomer[M]
+
).  PAMAM dendrimers roughly double in 

molecular weight and number of atoms when they dimerize, making quantitative 

comparisons of the number of hydrogens contributing to each NMR shift challenging. It 

was observed that acidic pH caused by HPLC conditions caused upfield shifts of proton 

peaks, peak broadening, and loss of fine structure in 
1
H-NMR due to swelling and solvent 

penetration when primary amines are protonated (Figure A2). To account for this, 

subsequent spectra were obtained using buffered solvents. To analyze the relative number 

of each type of hydrogen in the purified fractions, an internal standard (1,4-dioxane) was 

used (see supporting Figure A3). Trailing generations (T), G5 monomer (I), dimer (II), 

trimer (III), and tetramer (IV) fractions have similar spectra at the identical mass 

Figure 2.5. MALDI-TOF-MS spectra of fractions T, I-IV. 



43 

 

concentration and similar pH. However, the absolute values of all observed peaks 

changed for each fraction. On average, fraction T peaks integrated to 59% of fraction I, 

while II and III integrated to 177% and 215% of the values of fraction I respectively 

(absolute integration values, see Table A2). These substantial changes in integration 

values will impact the calculation of dendrimer-conjugate ratios by NMR if not 

accounted for in the analysis. Solubility of the trimer and tetramer fractions was normal 

for low pH (highly charged), slightly reduced for neutral pH (charged), and significantly 

reduced for more basic conditions (no charge). Broadening seen in the NMR spectra 

could be related to decreased solubility of the samples. All spectra lost some fine 

structure compared to the as received material, which was never exposed to TFA or 

buffer. 

The structural variation of dimer has been further quantified by potentiometric titration. 

A molecularly perfect G5 PAMAM has 128 primary amines, but titration of the as-

received batch used in this paper revealed on average 112 due to a combination of branch 

and generational defects. Fraction I, RP-HPLC-purified monomer, was titrated to have 93 

primary amines per dendrimer (see supporting information).  This indicates the presence 

a substantially larger amount of defects in G5 dendrimer than commonly believed to be 

present based on analyses of mixtures such as that indicated in Figure 2.1 (~110) or as 

compared to the theoretical perfect molecular structure (128).  The number of primary 

amines detected on the RP-HPLC purified material decreases due to the removal of high 

amine-containing dimer, trimer, and tetramer defects, which comprised 22% of the as-

received sample, and is 35 surface groups less than ideal due to branch defects. Likely 

many combinations contribute to the measured average; for example one CAP2 defect 

(vide infra) at G2, or two end caps at G3, or three at G4, would all give an average of 112 

amines per dendrimer. If a new branch defect is formed at every step from G2 to G5, the 

final product would have 98 primary amines. The measured value of 93 amines per 

dendrimer would be obtained if 2.2 capping events occurred during the formation of G2, 

4.4 at the formation of G3, 8.6 at G4, or 17.5 at G5. The purple dimer fraction (II) was 

titrated to have 180 primary amines per dendrimer, about 6 primary amines short of an 

exact dimer of the defected G5; however, this number is in good agreement with the 

scenario of dimerizing two G3 dendrimers with the average of 4.4 cap defects (resulting 
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in 178 primary amines) or dimerizing the G4 with an average of 8.6 branch defects (182 

amines). This data suggests that dimerization events commonly occur at later synthetic 

steps. 

It has been speculated in the literature that the width of dendrimer peaks from flow-based 

separations is due to molecular weight distributions caused by structural defects,
17, 23

 

however to date no molecular weight measurements have been coupled to these 

techniques. Single, three second fractions were isolated from across the monomer and 

dimer HPLC peaks (Figure 2.4a) and studied by MALDI-TOF-MS (Figure 2.4c). 

MALDI-TOF-MS of these fractions indicate a trend of increasing molecular weight with 

increasing retention time on the hydrophobic C18 column. As all known branching 

defects lead to both decreases in molecular weight and total number of primary amines, it 

can be inferred from this data that dendrimer eluting early in the chromatogram contains 

the most defects, and that a theoretically perfect G5 containing 128 primary amines 

would elute later, on the far right side of the G5 peak.  

Using the GPC and titration data from the G5 monomer sample, we have generated 

simple computational models for two specific defects types that represent limiting cases 

for arm growth defects.[14] The CAP2 model uses an endcapping event that blocks two 

primary amines and does not allow further reaction. To fit the titration data of 93 primary 

amines an error rate of 7.6% was used. This means that at each point of growth in each 

step there is a 7.6% chance of a CAP2 defect. Similarly, a MA2 defect refers to a single 

primary amine not branching to the next full generation.  This leads to an arm that is a 

generation behind the current, but unlike the CAP2 model still able to undergo further 

reaction.  To fit the titration data, an error rate of 15% was used to reproduce the average 

number of primary amines of 93.  Histograms of the simulation results of the primary 

amine number are shown in Figures 2.6 and 2.7, overlaid with the UPLC of fraction I. 

The x-axis of the simulation and RP-HPLC data were aligned by comparing the 

experimental molecular weights obtained from fractions i and iv (the leading and trailing 

edges of fraction I) to the molecular weights predicted by the defect schematics, 

approximate 21kDa and 28kDa.  
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Both types of defect models indicate that perfect G5 with 128 primary amines represents 

less than 0.006% of the total population. The histograms of primary amines of 

dendrimers generated by these models can be overlaid onto the UPLC chromatogram of 

G5 monomer fraction I with relatively good agreement; however when considering the 

predicted masses of the CAP2 and MA2 leading edge and trailing edge structures, the 

MA2 limiting case model compares better to the experimental data.  Despite the apparent 

good agreement of the MA2 model, a mixture of defects, including the CAP2 model that 

has been confirmed experimentally for G1 and G2 material, is expected to be present.
13

   

Schematic CAP2 structures are portrayed in Figure 2.6, which demonstrates the 

fundamental changes in overall shape and internal space in even the most common 

species as compared to the perfect G5. The schematic MA2 type defects, illustrated in 

Figure 2.7, occur almost exclusively on unique branches and not on the same branch 

twice, leading to structures containing both G4 and G5 shells. Some of the more defected 

structures have defects occurring twice on the same arm, leading to the presence of G3 

shells, which are much closer to the dendrimer core. Figure 2.7 indicates that the more 

Figure 2.6. CAP2 model histogram (blue bars) overlayed with fraction I UPLC chromatogram at 210 

nm. Below, from left to right, the most common structures resulting for various numbers of primary 

amines and their corresponding molecular weights. 
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Figure 2.7. MA2 model histogram (blue bars) overlayed with fraction I UPLC chromatogram at 210 nm. 

Below, from left to right, the most common structures for various numbers of primary amines and their 

molecular weights. Core groups are black, shell groups colored. Blue she indicate G5 level amines, red 

have one defect (G4 shell), and purple have 2 defects on the same branch (G3). 

defected structures have roughly equivalent contributions of G4 and G5 like size and 

surface groups if only MA2 defects are considered. By assuming that dendrimer mass 

directly correlates with the number of primary amines present, which is generally 

supported by our UPLC, GPC, and titration data, the PDI of the samples generated by 

both the CAP2 and MA2 models is calculated to be 1.01, which is in good agreement 

with the fraction I value of 1.019. 

This agreement between this model and experimental data concludes that the observed 

polydispersity in generationally pure G5 PAMAM can be explained by experimental 

defect rates of 7-15%. By these estimations, approximately one in four G5 dendrimers 

have less than 85 primary amines, while three in four particles has less than 100. The 

entire molecular weight distribution of commercially available G5 dendrimer consists of 

combinations of these two defect types, as well as defects other known defects such as a 
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Figure 2.8: UPLC at 210 nm.   (a) as-received acetylated G5 PAMAM (G5-Ac, red trace) contains 

high weight impurities with no ligand that co-elute with G5 monomers containing one ligand (G5-

L
1
, green trace) in a conjugated sample (black trace).  (b) Conjugation to an HPLC purified G5 

monomer sample (red trace) has narrowed peak width and improved peak resolution compared to 

the as-received conjugation (black trace). 

half reacted primary amine leading to one missing primary amine as opposed to two, and 

the trailing and oligomer generational defects. HPLC provides a powerful tool to both 

observe and isolate these defect structures to allow for analyses of structure, chemical 

behavior, and eventually biological behavior.  

Previous work from the group[50, 51] has demonstrated the ability to employ rp-HPLC to 

obtain G5 PAMAM samples conjugated to precise numbers of functional ligands from 

stochastic distributions. However, as Figure 2.8a demonstrates, dimeric and trimeric 

contaminants in as-received dendrimer co-elute with the G5 monomer that is bound to 

one ligand. Similarly, G5 dimer with one ligand co-elutes with the monomer conjugated 

to two ligands, etc. The resulting nominally “monomer” products will thus contain 

substantial amount of dimer impurities that also contain n-1 of the desired n number of 

ligands per polymer particle. The work presented here done on a preparative scale can be 

used to obtain gram quantities of generationally pure starting material. This allows for 

synthesis of dimer-free conjugates and subsequently, generationally pure G5 samples 

with precise numbers of functional ligands. Removal of trailing and generational 

impurities from conjugated materials also enhances the effective resolution of the rp-

HPLC separation (Figure 2.8b). This results in samples with improved ligand number 

homogeneity, higher purity, and increases overall sample recovery. 
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Conclusions 

The narrow size range, aqueous solubility, and functionalizable surface of G5 PAMAM 

dendrimer give it great promise for future biomedical applications. However, structural 

imperfections create sub-populations within the sample that have different chemical and 

biological characteristics. A significant portion of commercial material contains species 

with up to threefold higher molecular weights, reduced solubility, and different chemical 

behavior. This will impact the drug loading capacity, accuracy of loading measurements, 

and likely the biodistribution of dendrimer based drug delivery systems. The G5 sized 

dendrimers present in the as-received material also contained an average of 93 primary 

amines, approximately 23% defected, compared to previous estimates of 110, 14% 

defected, indicating that branching type defects are twice as prevalent as previously 

proposed. We have successfully employed rp-HPLC to not only produce higher purity G5 

dendrimer, but to isolate dimer and trimer samples for study. These samples have been 

thoroughly characterized by molecular weight and NMR techniques.  These new 

purification protocols are of central importance for obtaining materials that can be used to 

generate polymer with precisely defined numbers of ligands. This methodology can be 

used to isolate gram-scale quantities of generationally purified, well characterized G5 

PAMAM dendrimer, and potentially can be extended to include other generations of 

PAMAM. 
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Chapter 3 

PAMAM Dendrimers for Quantized Megamers 

This chapter was previously published as “PAMAM dendrimers as quantized building 

blocks for novel nanostructures” Soft Matter (2013), 9, 11188. The corresponding 

supporting information can be found in Appendix B. 

Introduction.  

The need to address biological challenges across multiple hierarchical levels ranging 

from molecules to cells to tissue has increased the demand for synthetic strategies 

leading to well-defined structures on a nanometer to micron scale. Achieving such 

size ranges with classic synthetic strategies remains challenging. Tomalia proposed 

the utilization of dendrimers as quantized building blocks, termed “soft super atoms”, 

combined with controlled assembly to substantially expand the range of size scales 

available for soft synthetic materials with controlled morphology and other physical 

properties.[1-4] Glotzer and Solomon have discussed an analogous proposal for the 

use of  nanocrystals and colloidal particles as “hard super atoms”.[5]  To function as 

super atoms, it is necessary to have control over size, shape, and surface chemistry 

(i.e. reactivity) to create materials with nano-periodic trends independent of variations 

in the monomeric material. The assembly of synthetic nanomaterials or super atoms 

generates larger nano to microscale structures that fall into the following classes:  I) 

Extended Nanostructures, which extend infinitely in one, two or three dimensions, a 

class that includes fibers, sheets, and lattices  II) Stochastic Nanoclusters and III) 

Precise Nanoclusters (Figure 3.1).  Extended Nanostructures have precise control of 

local architecture in one, two, or three dimensions and stochastic sizes. Stochastic 

Nanoclusters have control of particle size with heterogeneity in terms of numbers of 

super atoms per particle. Precise Nanoclusters have monodisperse assemblies of super 

atoms, allowing for a digital control of nanocluster size and properties.  Substantial 
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progress has been made in the assembly of hard super atoms for all three classes 

employing  rigid polymers,[6, 7] gold,[8-13] and other particles.[14]  Substantial 

efforts have also been made in the area of soft super atoms, despite the challenges 

associated with polydispersity of polymeric building blocks.  It is the use of polymers 

as soft super atoms, which offer tunable surface qualities such as charge and 

conjugation chemistry that can enhance solubility, biological compatibility, and allow 

for modification with drugs, dyes, and targeting agents of interest,[15] that are the 

focus of this report. 

The dendritic polymer architecture has the potential to provide a well-defined and 

highly functionalizable structure for utilization as a soft super atom, building block.  

Assemblies utilizing dendrimers as the monomer units result in larger polymer-like 

structures or megamers.[16, 17]  Work in this field has been pioneered by 

Tomalia[18-21] with the “tecto-dendrimer” strategy of self-assembling shell 

dendrimers around a core dendrimer followed by covalent cross-linking. This class of 

nanostructures utilizes steric hindrance to saturate the core dendrimer with various 

sized (i.e. generation) shell dendrimers to create megamers resulting in precise 

Figure 3.1. Controlled super atom-based nanostructures can be classified as:  I) Extended 

Nanostructures including in one to three dimensions (for example: fibers, sheets, and lattices)  II) 

Stochastic Nanoclusters and III) Precise Nanoclusters. 
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nanostructures. Surface modification, with reactions such as acetylation, allows for 

fewer shell dendrimers to saturate the surface to give modular control of the resulting 

structures, but relying on stochastic reactions leads to a loss of precisely controlled 

structures.[22] Tecto-dendrimer assembly allows for building large megamers without 

encountering limiting generation effects[23] such as loss of flexibility, low solubility, 

and increased polydispersity of monomeric dendrimers of similar size ranges.[18]  

The self-assembly approach has been shown to yield structures of Class II with a 

fairly narrow mass and size range but does not allow systematic, modular variation of 

the number of components. 

An alternative approach has been to use cross-linkers to assemble groups of small 

dendrimers or dendrons into hierarchical structures. Such techniques have been 

successfully employed to synthesize extended supramolecular structures such as Class 

I porous networks[17, 24, 25], one dimensional structures[26], and two and three 

dimension structures (exemplified by Percec et al.).[27, 28]  There are also examples 

of the assembly of dendrimers into  Class II supramolecular nanoparticles with 

modular size control via crosslinking with linear polymers.[29]   

Class III precise, three-dimensional architectures have been synthesized using 

chemistries to specifically link controlled numbers of dendrons together through the 

focal point[30] or through single ligands on two dendrimers.[31, 32] The former 

approach, while resulting in precise nanoclusters, is limited by control over 

functionality of both the linking system and the dendron. To date, only small (4,000 to 

30,000 Da) precise dendron-based dumbbell nanostructures have been assembled.[30, 

33] A particularly interesting example by Liu et al. assembled dendrons around a 

streptavidin to form tetramer-like clusters, an approach limited by the number of 

binding sites on the protein linker system.[34] Table 3.1 gives a summary of the 

synthesis strategy and characterization of previous soft super atom Class II and III 

materials. 

Table 3.1. Summary of soft superatom synthetic approaches and characterization. 
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Poly(amidoamine) (PAMAM) dendrimers are of particular interest for 

implementation as soft super atoms due to their advantageous properties such as 

aqueous solubility, biocompatibility, and functionalizable surface groups. The 

dendrimers implemented in this work are fifth generation synthesized divergently 

from an ethylenediamine core.[35] In this work, the positively charged primary amine 

surface has been neutralized via acetylation, which decreases the cytotoxicity of the 

material and increases resolution of the species in the reverse-phase high performance 

liquid chromatography (rp-

HPLC) methods employed. 

Although previous studies 

indicated the potential of 

dendrimers to serve as soft 

super atoms, synthetic by-

products in PAMAM 

dendrimer lead to trailing 

generation and oligomeric 

impurities ranging from 1.4 to 

115 kDa (Figure 3.2).  The 

presence of these impurity 

species represent an important 

Figure 3.2. The monomer G5 PAMAM material used for this 

study is indicated by the 26 – 30 kDa fraction within the 

dashed red lines.  Isolation of monomer G5 reduces size range 

of PAMAM building blocks by over an order of magnitude. 

Table 3.1. Summary of soft superatom synthetic approaches and characterization. 
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limitation on the degree of homogeneity one can hope to achieve for the self-

assembled or linked megamer products and represent an important difference between 

this class of super atoms and the actual atoms they are meant to mimic. 

 Recent work by van Dongen, Banaszak Holl et. al has enabled the isolation of 

monomeric PAMAM dendrimer for use as a soft super atom.[36] Here, we implement 

a method to synthesize assemblies of monomeric dendrimers via click chemistry.  Our 

approach differs from previous strategies in the following ways:  1) our soft super 

atom, G5 PAMAM, does not contain the trailing generations, dimer, and trimer that 

typically remain in G5 and higher generation PAMAM preparations[36, 37]  2) we 

assemble dendrimers containing defined numbers of ligands per dendrimer particle, 3) 

a digital set of precise, flexible structures has been generated ranging from 30 to 150 

kDa using ~30 kDa units.  This strategy differs from previous approaches that relied 

on self-assembly determined by dendrimer size or employed dendrimers containing a 

stochastic distribution of ligands per dendrimer or polymer particle. 

 

Materials. All chemicals and materials were purchased from Sigma Aldrich or 

Fischer Scientific and used as received unless otherwise specified. Monomer G5 

PAMAM dendrimer was purchased from Dendritech and purified as previously 

reported to remove trailing and oligomer impurities.[36] Click-Easy™ MFCO-N-

hydroxysuccinimide was purchased from Berry & Associates Synthetic Medicinal 

Chemistry. 3-(4-(2-azidoethoxy)phenyl)propanoic acid (azide ligand) was prepared as 

described previously.[38] 

Preparation of G5-Ac-MFCO4.0(avg) and G5-Ac-Azide4.0(avg) conjugates.  Conjugates 

were prepared using monomer G5, and azide ligand or Click-Easy™ MFCO-N-

hydroxysuccinimide. Amine-terminated G5 (319.6 mg for azide conjugate, 299.5 mg 

for MFCO conjugate) was dissolved to give a 0.16 uM solution in deionized water 

(DI). The azide ligand (10 mg) was pre-activated in a solution at 22 mM in 

acetonitrile (2.5 mL) with 58 mM 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide 

(24.1 mg) and 60 mM N-hydroxysuccinimide (14.4 mg). Click-Easy™ MFCO-N-
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hydroxysuccinimide (9.3 mg) was not pre-activated and was prepared by dissolving to 

10.5 uM in acetonitrile (2.3 mL). Four molar equivalents of the ligand solution was 

added dropwise via syringe pump to the dendrimer solutions. The solutions were 

stirred overnight. The products were purified using Amicon Ultra Centrifugal units, 

10kDa cutoff membranes, 2 PBS washes and 4 DI washes. A white solid was isolated 

via lyophillization for each conjugate (204.7 mg for azide conjugate, 231.1 mg for 

MFCO conjugate). The materials were then fully acetylated by re-dissolving in 

anhydrous methanol (0.19 uM, 30 mL) and adding 450 equiv of triethylamine and 360 

equiv of acetic anhydride, stirring for 4 hours, the methanol was then removed and the 

sample redissolved in water, purified by the same centrifugation protocols previously 

described, and isolated by lyophillization. G5-Ac-MFCO4.0(avg) and G5-Ac-

Azide4.0(avg) were characterized by rp-UPLC and 
1
H-NMR (see supporting 

information). 

Isolation of conjugates containing precisely defined ratios of G5-Ac-MFCOn (n = 1 – 

4) and G5-Ac-Aziden (n = 1 – 4).  Dendrimers containing precise ratios of MFCO or 

azide ligands per particle were isolated via rp-HPLC. Multiple injections of G5-Ac-

MFCO4.0(avg)  or G5-Ac-Azide4.0(avg) were performed on a C18 column using a 

water/acetonitrile gradient with 0.1% TFA. Fractions were collected as the material 

eluted and combined to obtain samples with ratios of n = 0, 1, 2, 3, and 4 MFCO or 

azide ligands, and a final sample that contained dendrimer with 4 or more click 

ligands. Products were purified using PD-10 desalting protocols as specified in the 

instruction manual, with DI used as the equilibration buffer and samples initially 

dissolved in 10xPBS, then lyophilized to dry. Samples were characterized by rp-

UPLC and 
1
H-NMR. Curve fitting of UPLCs using Igor Pro was performed to provide 

yield, purity, and rp-HPLC number of MFCO averages (see supporting information). 

Synthesis of megamer samples. n (n = 1 - 4) equivalents of G5-Ac-Azide1was 

dissolved to give a 300 µM solution in dimethylsulfoxide. To this, 1 equivalent of G5-

Ac-MFCOn (n = 1 - 4) was added. For example, to prepare the tetramer sample (n = 

3), 2.7 mg of G5-Ac-Azide1 was dissolved in 273 µL of DMSO, then 0.9 mg of G5-
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Ac-MFCO3 was added. Solutions were protected from light and agitated for 48 hours.  

The samples were lyophilized to give white solids. 

 

Methods.  

High Performance Liquid Chromatography. Isolation of G5-Ac-MFCOn (n = 1 – 4) 

and G5-Ac-Aziden  (n = 1 – 4) fractions was achieved using a Phenomenex Jupiter 

300Ȧ C18 Prep Column (21.2 x 150 mm, 5 µm particles) equipped with a Waters 600 

Controller, Waters 2707 Autosampler, and Waters 2998 Photodiode Array running 

Empower 2 Software, additionally equipped with a Waters Fraction Collector III. The 

weak solvent (Solvent A) was HPLC Grade Water with 0.1% TFA, and the strong 

solvent (Solvent B) was HPLC Grade Acetonitrile with 0.1% TFA. The gradient 

employed was as follows: 2.1 min load step at 95%A/5%B, 3.9 min gradient to 

80%A/20%B, 15 min gradient to 65%A/35%B, 5 min gradient to 55%A/45%B, 

followed by 3 min was at 20%A/80%B, then equilibrating at starting conditions for 5 

min before next injection. G5-Ac-MFCO4.0(avg) or G5-Ac-Azide4.0(avg) was dissolved to 

20 mg/mL concentration and 910 uL injections were used. Five second fractions were 

collected starting at 9 min 30 sec into each run for a total of 120 fractions. rp-UPLCs 

were performed with a scaled method using an Agilent 2.1 x 100 mm column. 

LC Peak Fitting. rp-UPLC chromatograms were fit with Gaussian peaks using Igor 

Pro Version 6.0.3.1 software. Peak widths within a chromatogram were kept constant.  

Nuclear Magnetic Resonance Spectroscopy. NMR experiments were performed on 

Varian VNMRS 500. 
1
H-NMR spectra were obtained used 10 second pre-acquisition 

delays and a total of 64 scans. All sample solutions were set to an approximate 

dendrimer concentration of 5 mg/mL in deuterium oxide.  

Gel Permeation Chromatography. Gel permeation chromatography experiments were 

performed on an Alliance Waters 2695 separation module equipped with a 2487 dual 

wavelength UV absorbance detector (Waters Corporation), a Wyatt HELEOS Multi 

Angle Laser Light Scattering (MALLS) detector, and an Optilab rEX differential 
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refractometer. Columns employed were TosoHaas TSK-Gel Guard PHW 06762 (75 

mm × 7.5 mm, 12 mm), G 2000 PW 05761 (300 mm × 7.5 mm, 10 mm), G 3000 PW 

05762 (300 mm × 7.5 mm, 10 mm), and G 4000 PW (300 mm × 7.5 mm, 1 mm). 

Column temperature was maintained at 25 ± 0.1 °C with a Waters temperature control 

module. The isocratic mobile phase was 0.1 M citric acid and 0.025 wt % sodium 

azide, pH 2.74, at a flow rate of 1 mL/min. The sample concentration was 10 mg/5 

mL with an injection volume of 100 μL. This was used to calculate the weight 

average molecular weight, Mw, and the number average molecular weight, Mn, with 

Astra 5.3.2 software. Values for dn/dc were kept at a constant of 0.215. 

 

Mass Spectrometry. Matrix-assisted Laser-Desorption Time-of-Flight Mass 

Spectrometry (MALDI-TOF-MS) was performed using a MALDI Micro MX running 

MassLynx Version 4.0 software. Dendrimer samples were prepared by dissolving in 

DI water at concentration 10 mg/mL, then serial diluting with methanol 1:1, then 1:4. 

The samples were then mixed 1:1 with the matrix dihydroxybenzoic acid 

(concentration of 10 mg/mL in 1:1 water/acetonitrile) and spotted on to a MALDI 

plate. Samples were calibrated using bovine serum albumin with a matrix of sinapic 

acid. At least 150 laser shots were compiled for each spectrum. The spectra were 

smoothed using the MassLynx Software settings of Smooth window (channels) equals 

12, and Number of smooths equals 12. No baseline subtraction or peak centering was 

performed. 

 

Results and Discussion.  

PAMAM dendrimers have been extensively studied as nanoscale biomedical devices 

due to their low polydispersity, multiple sites for chemical modification, flexibility, 

water solubility at high generations, and biocompatibility.[15, 39, 40] Recent work 

has employed rp-HPLC to remove both generational and oligomer (primarily dimer 

and trimer) impurities from generation 5 (G5) PAMAM to obtain samples of G5 

monomer with a PDI under 1.02 (Figure 2).[36] The mass dispersity of the building 

block materials has been reduced from greater than 100 kDa to less than 3 kDa.  In 
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order to assemble these 

monomeric units into controlled 

megamer units, we have 

employed our methods for 

attaching precise numbers of 

click conjugation functional 

groups per dendrimer 

particle.[38, 41, 42] This synthetic strategy generates materials with precise 

ligand/particle ratios in a manner that is independent of the mass dispersity of the soft 

super atom scaffold, thus decoupling mass dispersity and particle assembly. Although 

work in the tecto-dendrimer field has been successful in generating highly 

homogenous assemblies of dendrimers, the size of these clusters is pre-determined by 

the size of the core and shell dendrimers and cannot be modularly controlled.   For 

example, assembly of G5 PAMAM around a core G7 PAMAM yielded primarily 

G7(G5)12, with incompletely packed shells containing 9 to 11 G5 per G7 also 

observed.[20] The self-assembly process does not allow for the generation of a 

controlled set of samples to stoichiometry G7(G5)n were n is digitally varied.  In 

addition, dispersity in numbers of G5 packing around G7 may arise from the 

molecular weight distribution present in both the G5 and G7 samples including 

trailing generations and oligomers. 

 The synthetic strategy for the click conjugates and megamers is outlined in Scheme 

3.1. First, a stochastic conjugation via a peptide bond to an azide or ring-strained 

cyclooctyne click ligand is followed by acetylation of all remaining primary amine 

groups (Scheme 3.1).  These materials are designated G5-Ac-MFCOn(avg) and G5-Ac-

Aziden(avg).   In order to optimize the amount of material for isolation of dendrimer 

containing 1-4 click linkers, an initial stochastic average of 3-4 ligands/particle was 

typically employed.  Isolation of dendrimer samples containing precise click-

ligand/dendrimer ratios, as opposed to an average ratio made of up a Poisson 

distribution, was achieved using semi-preparative scale rp-HPLC (Figure 3.3 a) 

following previously published protocols.[38, 41] The dendrimers are retained on the 

Scheme 3.1. Synthesis of acetylated stochastic ligand-

dendrimer conjugates. 
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hydrophobic C18 

column as a function 

of the number (n) of 

hydrophobic ligands 

conjugated to the 

dendrimer surface. 

This model is 

supported by the 

increased resolution of 

the MFCO conjugate, 

which contains the 

hydrophobic cyclooctyne entity and a 5 carbon linker, as compared to the azide 

conjugate.  The successful application of this isolation process to the commercially 

available MFCO ligand demonstrates a broader versatility for this separation process. 

rp-UPLC was employed to confirm that successful separation was achieved (Figures 

3.3 b, B1). The initial stochastic distribution of click ligand on the dendrimer can be 

visualized[43] and subsequently separated via rp-HPLC due to increased retention 

time with the increasing numbers of hydrophobic ligands available for interaction 

with the hydrophobic C18 stationary phase.[38, 41, 42] These materials are 

designated G5-Ac-MFCOn (n = 1 – 4) and G5-Ac-Aziden (n = 1 – 4).  
1
H NMR also 

confirmed that the desired click-ligand/dendrimer ratios had been achieved (Figures 

B2, B3; Tables B1, B2).  In assessing the purity of each isolated fraction containing 

the precisely defined ligand/particle ratio (n ligands per dendrimer), rp-UPLC 

provides the most direct measure.  The separation is based on the number of 

hydrophobic ligands per particle and excellent separation is achieved.  The G5 

PAMAM dendrimers are flexible enough to effectively display the ligands to the 

hydrophobic C18 support regardless of their relative conjugation point on the 

PAMAM scaffold.  The assessment of the ligand/particle ratio by 
1
H NMR requires a 

number of key assumptions and relies on average polymer properties at key points of 

the analysis.  The NMR-based ratio is determined by comparing the integration of the 

ligand protons to the integration of the terminal –NHC(O)CH3 groups on the 

Figure 3.3. (a) Semi-prep rp-HPLC isolation of precisely defined G5-

MFCOn species, colored bars represent combined fractions. (b) UPLC 

of combined fractions demonstrates that each sample now contains a 

single particular ligand/dendrimer ratio.  
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dendrimer. This analysis suffers 

from comparing a small value 

(the ligand) to a large value 

(acetamide group) and from 

having to employ an average 

number of these groups for G5 

PAMAM of 93, although this 

number varies from ~70 to 116 for each particle.  For these reasons, we believe the rp-

UPLC measurement provides the better quantitative analysis of ligand/particle ratio.   

Peak fitting of rp-UPLC also allows for an estimation of the relative amount of each 

ligand/particle ratio in the initial averaged sample and in turn for an estimation of 

percent recovery of the precise product from the stochastic mixture (supporting 

information). The recovery of the components utilized in this work (G5-Ac-MFCOn n 

=1 – 4 and G5-Ac-Azide1) range from 43% to 77%. These represent the yield of the 

final clicked megamer products as well since complete recovery of samples is 

possible without further purification. 

Through combination of precise ratio ligand-to-dendrimer G5 monomers containing n 

= 1 azide ligand and n = 1 - 4 cyclooctyne ligands, we have synthesized a digital set 

of modular and precise megamer nanostructures (Scheme 3.2, Figures 3.4 and 3.5).  

Figure 3.4.  (a-d) UPLC chromatograms at 210 nm of dimer (a, orange), trimer (b, green), tetramer (c, 

blue), and pentamer (d, purple) products with the starting materials, G5-Ac-Azide1 (cyan) and 

corresponding G5-Ac-MFCOn ( n= 1 - 4) (pink). The symbol “#” indicates peaks that have been assigned 

as incompletely clicked products and “*” indicates unreacted G5-Ac-Azide1 in the product. 

Scheme 3.2. Click reaction for synthesis of megamers from 

precisely defined dendrimer conjugates. 



63 
 

G5 dimers, trimers, tetramers (one core with three shell dendrimers), and pentamers 

(one core with four shell dendrimers)  have been synthesized from a click reaction 

between G5 with 1 azide ligand to G5 conjugated to 1, 2, 3, and 4 monofluorinated 

cyclooctyne (MFCO) ligands, respectively. Briefly, G5-Ac-Azide1 was added in 

equimolar, two-fold, three-fold, or four-fold equivalents to 1-2 mg G5-Ac-MFCOn (n 

= 1 - 4), respectively and mixed for 48 hours.  The product peaks illustrated in Figure 

3.4 (orange for dimer, green for trimer, blue for tetramer, purple for pentamer, color 

designations that will be kept for the remainder of this article) are shifted to the left 

with respect to the G5-Ac-Azide1 starting material (yellow) and G5-Ac-MFCOn (n = 1 

- 4) starting material (pink), indicating less interaction with the hydrophobic column 

after formation of the click linkage.  Solid samples were isolated for G5-(G5)n (n = 1 - 

4) megamers by lyophillization. For n = 1 and 2, each reactant peak was entirely 

consumed.  For n = 3 and 4, smaller peaks (*) are present in addition to the desired 

product peak that are most likely unreacted G5-Azide1 although partially reacted G5-

Ac-MFCO4-n-(G5-Ac-Aziden) cannot be ruled out.  Small peaks for partially reacted 

G5-G5m-MFCOn-m species also appear for the trimer, tetramer, and pentamer samples 

(#), which may result from cyclooctyne ligands becoming sterically blocked by 

previously clicked dendrimers on the particle or by small errors in the stoichiometry 

Figure 3.5. Scale cartoons of monomer and megamer structures generated using the COMPASS 

force-field in Materials Studio.  The top row illustrates megamers separated by the largest distance 

allowed by the linker system (~4 nm). The bottom row depicts structures in which the dendrimers 

units are at a van der Waals separation distance. 
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of addition.  Other possible assignments for the * and # peaks include regioisomers of 

the location of the clicked dendrimers on the central dendrimer surface as well as 

structural isomers resulting from the two possible click isomers.  We do not favor 

these last two hypotheses since we do not anticipate this large of a shift (click 

regioisomers) and believe a broad distribution of products (resulting from surface 

regioisomers) is unlikely to result in the discrete peaks observed.  Possible side 

products resulting from incomplete reaction and the regiochemistry of the click 

reaction are schematically depicted in Figure B4.  The purity of the isolated materials 

as illustrated in Figure 3.4 can be compared to anticipated distribution of products if 

stochastic averages of G5-Ac-Azide1 and G5-Ac-MFCOn (n = 1 - 4) had been 

employed.  Combining the stochastically prepared materials for cycloalkyne navg 1 – 4 

and azide navg = 1 would yield mixtures containing roughly 16, 24, 28, and 36 primary 

products.[41, 42]  

In order to help visualize the structures, scale models are illustrated in Figure 3.5.  

The top row, with dendrimer units spaced apart, emphasizes the connectivity, 

although it is important to note that for all megamer samples the dendrimers on the 

periphery are bound to a distribution of the flexible surface arm locations.  The 

bottom row, with dendrimer units in van der Waals contact, is likely the more realistic 

view of megamer structure in aqueous solvent based on previous computational 

work.[44]  

MALDI-TOF-MS (Figure 3.6) was consistent with the rp-UPLC structure 

assignments. A mass increase of approximately 30 kDa, corresponding to expected 

molecular weight change from the monomer (red), to the dimer (orange), trimer 

(green), tetramer (blue), and pentamer (purple) is observed. In the pentamer, the [M5]
+
 

peak can be readily seen at approximately 150 kDa, which is not present in the 

monomer sample. Additionally, a distinct 75 kDa peak corresponds to [M5]
2+

.  

Similarly, the [M3]
+
 peak is present for the trimer at 90 kDa with a [M3]

2+
 peak 

evident at 45 kDa.  A peak for the parent ion of [M4]
+ 

appears at 120 kDa along with a 

peak at the expected mass of 60 kDa for [M4]
2+

; however, in this case an interfering 

peak precludes an unambiguous assignment for the doubly ionized species.  Similarly, 
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a peak is apparent at 60 kDa 

for dimer [M2]
+
 although the 

monomer also gives some 

signal at this position, albeit at 

a substantially reduced 

intensity.  These data are 

consistent with the formation 

of the controlled ratio 

materials; however, similar to 

the NMR analysis it is 

complicated by the dispersity 

of the monomer G5 scaffold, 

which has mass distribution 

ranging from roughly 22,000 to 

27,000 kDa.[36]  

The samples were further 

Figure 3.7. (a) Cumulative data function of Mn from GPC results. (b) Cumulative data function of each n-

mer divided by n. 

Figure 3.6. Normalized MALDI-TOF-MS spectra of commercial 

G5 PAMAM (black), G5 monomer (red), dimer (orange), trimer 

(green), tetramer (blue), and pentamer (purple). The [M5]
+
 peak 

has been magnified by 10 for ease of visualization. 
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characterized by gel permeation chromatography (GPC). The cumulative data 

function shows steps of approximately 30 kDa, corresponding molecular weight of the 

acetylated G5 monomer (Figure 3.7a). Increased heterogeneity, as demonstrated by 

deviation of the megamer slopes from vertical, arising from additive branching-type 

structural defects that are still present in the G5 monomer starting material, is both 

expected and observed as number of monomer units increases from 1 (red, monomer) 

to 5 (purple, pentamer).  

This can be further demonstrated by dividing each megamer structure by the number 

of monomer units it contains (e.g. dimer by 2, trimer by 3, see Figure 7b) where the 

resulting plots have similar slopes.  In this instance, the presence of the mass 

dispersity actually provides additional support for the assigned structures.  Steps in 

the larger megamers are also seen, corresponding to small amounts of incompletely 

reacted materials still present in the sample. Table 3.2 summarizes the GPC molecular 

weight results. The average molecular weight changes in multiples of the monomer 

mass. The less-than-ideal ratio for the pentamer is consistent the presence of 

unreacted partial click reaction as observed by UPLC. 

The removal of oligomeric defects that constituted over 20% by mass of commercial 

PAMAM material has enabled the synthesis of these megamer structures with low 

polydispersity. As demonstrated in previous work from this group[36], the rp-HPLC 

methods employed here to isolate dendrimers as a function of number of hydrophobic 

ligands also separate oligomer defects within the G5 PAMAM. As a result, oligomers 

conjugated to n-1 ligands co-elute with monomers conjugated to n ligands (for 

example, Dimeric G5-MFCO1 co-elutes with Monomeric-MFCO2). Such impurities in 

Species Mn Mw PDI Mn (megamer)/Mn (monomer) 

Monomer 29,790 31,333 1.052 1.0 

Dimer 57,340 59,340 1.017 1.9 

Trimer 79,230 81,560 1.029 2.7 

Tetramer 116,700 120,700 1.035 3.9 

Pentamer 131,500 139,800 1.063 4.4 

Table 3.2. Quantitative summary of GPC results. 
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the starting material would create side products in megamer assembly with molecular 

weights double the theoretical value and greatly increase the polydispersity.  The 

successful removal of the oligomeric side products reduces the high molecular weight 

impurities as measured by GPC in Figure 3.7 a. 

 

Conclusions.  

This work, demonstrating the use of PAMAM dendrimers containing precisely 

defined ligand/particle ratios as building blocks for generating controlled 

nanostructures in the 30 to 150 kDa size range, advances the use of dendrimers as 

quantized building blocks for homogenous megamers the size of large proteins and 

multi protein constructs. The HPLC isolation platform has proven to be efficient and 

versatile,[38, 41] with similar preparation and isolation procedures for at least 4 

complimentary click ligands to date allowing for diverse chemistries to be utilized 

with high (30%-80%) recovery of precise ligand/particle materials from the stochastic 

mixture. The one-pot self-assembly creates stable, covalently bound megamers that 

are soluble in water and organic solvents methanol and dimethylsulfoxide, making 

them promising candidates for both biological environments and functionalization.  
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Chapter 4 

Avidity of Dendrimer-Folic Acid Conjugates with Controlled Valency 

 

Introduction.  

Folic acid (FA) targeting has been extensively studied for improving the therapeutic 

index of drugs.[1-5] Although the structure of this interaction has only recently been fully 

elucidated,[6] substantial progress has still been made over the last 20 years in FA 

targeting with four drug conjugates advancing to clinical trials. Targeting of a drug or 

drug conjugate exploits the interaction of this vitamin with a high affinity (Kd ~ 0.1 

nM)[2] folate receptor, which is overexpressed in many cancer cells. This receptor is also 

found in healthy epithelial cells; however, these are generally inaccessible to FA bearing 

conjugates in the blood,[2] making it an ideal target to exploit cytotoxic effects of drugs 

while minimizing the concern of collateral damage in healthy tissues. In addition to cell 

surface targeting, FA conjugation provides a selective uptake pathway for the conjugated 

drug via folate receptor mediated endocytosis and release of the FA/conjugate from the 

receptor and endosome.[7, 8] Many drug delivery designs have been employed to take 

advantage of this highly specific interaction to target small molecule chemotherapeutics 

such as doxorubicin,[9] methotrexate,[10] protein toxins,[11] imaging agents,[12, 13] and 

immunotherapeutics[14] both in vitro and in vivo by exploiting carrier mechanisms 

including liposomes,[15] inorganic nanoparticles,[12] and organic polymers.[16-18] 

Multivalent conjugates of ligands to nanomaterials are often employed, purposefully to 

increase the avidity and/or specificity of an interaction, or accidently as a result of 

stochastic synthetic approaches. The enthalpic and entropic mechanisms through which 

multivalency increases the interaction of a ligand and its target have been extensively 

studied from a theoretical viewpoint.[19-23] Briefly, there are two main multivalent 

effects that may contribute to the system studied here; those dependent on the increased 

effective or local concentration, and those due to multiple binding events occurring for a 
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single conjugate.[24] The term effective concentration describes the localization of many 

ligands in a nanoscale volume by a carrier (scaffold or vector), resulting in a local 

concentration of ligands much higher than a solution containing an equivalent amount of 

free ligands. Higher local concentrations can result in higher affinities, and an increased 

chance of re-binding upon dissociation of the initial interaction (“statistical re-binding”). 

The binding of one ligand to a 

target brings the other ligands on 

that vector into closer proximity to 

the target (and the surface if the 

target is immobilized), increasing 

the chances of additional binding 

events.[25, 26] These binding 

events can be of three types; (1) 

Interaction with a nonequivalent 

site on the same receptor, (2) 

Interaction with an equivalent site 

on a oligomeric receptor , or (3) 

Interaction with a site on a second 

receptor (also known as receptor 

clustering). These multivalent 

classifications have been discussed and reviewed elsewhere by Kiessling, [27, 28] 

Whitesides,[24] and Cloninger.[25]  

Although multivalent conjugates of many dyes, drugs, and targeting ligands (including 

FA) have been developed, the actual impact of the specific number of ligands on 

improvements in avidity and/or biological activity has been difficult to analyze due to the 

heterogeneous mixtures generated by statistically random conjugation chemistries 

employed in their synthesis.[29] For example, a stochastic conjugation of 3 equivalents of 

FA to a scaffold with multiple functionalizable sites (≥30) results in a sample with a 

mean of ~3 FA per scaffold, but also a distribution of unique conjugates with FA-to-

scaffold ratios ranging from 0 to ~11 FA molecules per scaffold (Figure 4.1). Previous 

efforts to quantify multivalent binding constants have employed surface plasmon 

Figure 4.1. Distribution of conjugates resulting from a 

stochastic conjugation of 3 equivalents of FA to 1 equivalent 

of scaffold. 
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resonance (SPR) to measure increases in binding between materials containing different 

average numbers of ligands (folic acid[30] and methotrexate[31-33]) and folate binding 

protein (FBP) modified surfaces.  Although these studies have reported a general trend of 

greater avidity with increased valency, the utilization of averaged materials did not allow 

for precise understanding of the mechanisms involved in multivalent binding, or 

elucidation of the relative activity of the various components in the sample. For example, 

does the entire population illustrated in Figure 4.1 with 2 or more conjugated FA (80% of 

the population) enable equivalent receptor clustering in a cell? Or does a higher valency, 

and consequently higher effective concentration, such as 5-11 FA-per-scaffold (18% of 

the population) contribute all of the observed activity? 

Poly(amidoamine) (PAMAM) dendrimer is an extensively studied vector for the 

multivalent, targeted delivery of drugs, genes, and imaging agents.[34, 35] The dendritic 

architecture has many advantages for biomedical applications, including very low 

polydispersity, internal core space available for the entrapment of drugs, and multiple 

branches providing terminal groups for functionalization.[36] PAMAM dendrimer is 

particularly suited for such applications due to its protein-like architecture, low 

immunogenicity, ability to solubilize hydrophobic small molecules, and easily 

functionalized primary amine terminal surface groups.[37-39] The size of generation 5 

(G5) PAMAM (5 nm) is also ideal for vascular delivery and excretion due to kidney 

filtration.[40] Recent advancements[41] have enabled the isolation of monomeric G5 

PAMAM dendrimers from oligomeric (dimer, trimer, etc.) and trailing generation defects 

(G1 – G4), narrowing the experimentally realized size distribution of this vector from 1 

kDa-115 kDa to 25 kDa to 29 kDa. Possible convolution of results by large mass 

differences and vector-accessible surface area is eliminated by removing both trailing 

generations and oligomers from the G5 PAMAM monomer material.  

In 2007, Banaszak Holl et. al. employed SPR to examine the increased avidity to FBP 

and cellular uptake of G5 PAMAM-FA conjugates as a function of average number of 

attached FAs (Figure 4.2).[30] The dissociation constant (kd) was observed to 

exponentially decrease as the average valency of FA increased; however, this calculation 

assumed that given a long enough experiment all bound materials would dissociate from 
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the surface and that the experimental sensogram would return to the level of signal 

present prior to G5-FAn(avg) exposure. The nonlinear behavior in kd was attributed to a 

saturation of FA-FBP binding events limited by the immobilized protein density on the 

SPR flow cell surface and not to the valency of FA (Figure 4.2a). Interestingly, the same 

trend in signal saturation as a function of FA valency was observed for mean 

fluorescence as measured by flow cytometry when equivalent conjugates labeled with a 

dye were evaluated for binding to folic acid receptor upregulated KB cells. This 

observation was interpreted as an indication that the dendrimer conjugates do not trigger 

receptor clustering on the cell surface, which would allow for higher affinities as more 

proteins became available.  

Subsequent analyses of this data set have employed different assumptions in the analysis 

of the data. These interpretations have resulted in two alternate mechanisms for 

explaining the changes in binding as a function of average valency.  In 2010, Sander et al. 

proposed that the binding of the conjugates occurs via two distinct interactions.[42] This 

Figure 4.2. Proposed models for enhanced G5-FA binding to FBP. (a) Multivalent binding increases 

avidity with increasing valency. (b) Any multivalent binding (2 or more interactions) is irreversible and 

monovalent binding is reversible. (c) FA "keys" the initial interaction between conjugate and FBP, which 

is followed by strong nonspecific interaction between the dendrimer and protein. 
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mechanism acknowledges the broad distribution of ligand-to-dendrimer ratios present in 

stochastically synthesized materials, including dendrimers that have zero FA, one FA, or 

two or more FA.  It was proposed that (1) monovalent interaction between G5-FA1 and 

on FBP attributes to the binding that is reversible on the time scale of the experiment and 

(2) multivalent binding between G5-FA≥2 to two or more FBPs is permanent on the SPR 

experimental timescale (Figure 4.2 b). The authors argue that the increased avidity 

attributed to valency increase by Banaszak Holl et al.[30] is actually a result of decreased 

amounts of zero-functional and mono-functional conjugates in the stochastic average 

material.  This mechanism still proposes that FA-based multivalent binding is important.  

Indeed, it ascribes the binding constant for G5-FA≥2 as large enough to prevent any 

measurable dissociation over the timescale of the experiment.  The original flow 

cytometry data can be similarly interpreted; receptor clustering is achieved by bivalent 

conjugates and further increasing of valency has no measureable effect on the cell. A 

very different mechanism based on kinetic limitations of cooperativity to explain the 

plateau of high avidity of the conjugate species was proposed by Licata and Tkachenko in 

2008.[43] This study concludes that the increased avidity proposed for the G5-FAn(avg) 

conjugates[30] is higher than can be attributed to cumulative effects of multivalent 

binding and that kinetic limitations actually prevent the type of multivalent interactions 

proposed in Figures 2a and 2b. They propose that the enhanced interaction observed by 

SPR is a result of non-specific surface (van der Waals) interactions between the polymer 

vector and protein/surface that are enabled by the initial key-lock binding between FA 

and FBP (Figure 4.2c).  

The broad distribution of folic acid-to-dendrimer ratios present in each sample, including 

both monovalent and multivalent conjugates in the low averaged materials, prevented a 

clear experimental elucidation between the three mechanisms. In particular, a conjugate 

with precise ratio of 1 FA-per-dendrimer (G5-FA1) was lacking to determine if the 

observed increase in avidity was a product of multivalent binding between the conjugate 

and SPR surface (Banaszak Holl and Sander mechanisms)[30, 42] or a single FA-FBP 

lock-and-key combined with non-specific polymer/surface interaction (Licata and 

Tkachenko mechanism).[43] 
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In order to address these materials-based challenges to understanding multivalency, we 

have developed click chemistry and reverse-phase High Performance Liquid 

Chromatography (rp-HPLC) methods to isolate dendrimers conjugated to precise 

numbers of ligands (ie G5-Ln n = 1-5 where n is not a mean value).[29, 44, 45]  These 

methodologies, which have been previously demonstrated to be successful for azide[29, 

44, 46] and fluorinated, ring-strain-promoted click ligands,[46] are now extended to a 

second ring strain promoted ligand (cyclooct-1-yn-3-glycolic acid (COG)), which has 

been used in previous G5-FAn(avg) SPR studies.[32] In principle, isolating the precise ratio 

samples G5-FAn, n = 1, 2, 3, etc., would allow SPR experiments where the multivalent 

binding effect are decoupled from the heterogeneity of stochastic samples (G5-FAn(avg)). 

In order to generate non-stochastic FA-dendrimer ratios, dendrimer samples conjugated 

to 1, 2, 3, or 4 ring-strain promoted click ligands were isolated by semi-preparative scale 

rp-HPLC. This isolation was followed by a click reaction with a -azide-Lys-Asp-FA 

derivative (-azide-FA). The resulting samples include a G5-PAMAM dendrimer with a 

FA-to-dendrimer ratio of 0.96 that contains no multivalent G5-FA≥2 species.  This 

conjugation provides the key G5-FA1 sample needed to differentiate the three 

mechanistic hypotheses proposed to date.  The remainder of the click reactions did not 

proceed with 100% efficiency, but still yielded samples that contained a well defined 

high-n cutoff and had a narrower-than-stochastic distribution of FA-to-dendrimer ratios. 

The binding kinetics of these conjugates were analyzed by SPR on both high and low 

protein density surfaces. The results indicate that at either surface FBP density, the total 

folic acid concentration present is the dominant factor leading to increased amount of 

bound material with increased valency. A small deviation from the overall binding trend 

was observed for the monovalent G5-FA1 sample.  In this case, the lower amount of 

binding as compared to the G5-FA≥2 species was attributed the difference in local 

effective concentration.  In other words, a small multivalent effect is observed for G5-

FA≥2 material because of increased statistical rebinding as compared to G5-FA1. Most 

importantly, the G5-FA1 sample exhibited the same irreversible binding to the FBP 

surface, on the SPR timescale, as the G5-FA≥2 samples.  This observation conclusively 

rules out the earlier mechanistic hypotheses by Banaszak Holl et al.[30] and by Sander et 
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al.[42] and provides strong experimental support for the key-lock/non-specific binding 

mechanism proposed by Licata and Tkachenko.[43] 

 

Experimental Section 

Materials. All chemicals and materials were purchased from Sigma Aldrich or Fischer 

Scientific and used as received unless otherwise specified. G5 PAMAM dendrimer was 

purchased from Dendritech and purified as previously reported to remove trailing 

generation and G5 oligomer impurities.[41] Cyclooct-1-yn-3-glycolic acid (COG) was 

synthesized from a modified literature preparation (see Supporting Information).[47]  

Preparation of G5-Ac-COG4.0(avg) conjugates. Conjugates were prepared from G5 

dendrimer and COG via amide coupling. In brief, amine-terminated G5 was dissolved to 

0.16 uM in DI. COG was activated by dissolving to 10.5 uM in acetonitrile with 2.65 

equiv of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide) (EDC) and 2.78 equiv of N-

hydroxysuccinimide (NHS) and stirring for 2 hours. The activated COG was added drop-

wise via syringe pump to the dendrimer solution and allowed to stir overnight. The 

product was purified using Amicon Ultra Centrifugal units, 10kDa cutoff membranes, 

with 2 phosphate buffered saline (PBS) washes and 4 deionized water (DI) washes. 

Product was isolated via lyophillization. The material was then fully acetylated 

(converting 100% of the remaining primary amines to acetyl groups, henceforth 

designated “Ac”) by re-dissolving in anhydrous methanol (0.19 µM) and adding 450 

equiv of triethylamine and 360 equiv of acetic anhydride, stirring for 4 hours, purified by 

centrifugation and isolated by lyophillization. G5-Ac-COG4.0(avg) was characterized by rp-

UPLC. 

Isolation of precisely defined G5-Ac-COGx conjugates. Dendrimers with precise ratios of 

COG ligands per dendrimer were isolated via rp-HPLC according to literature 

procedures.[46] Briefly, multiple injections of the averaged material were performed with 

a C18 column on a water/acetonitrile gradient with 0.1% TFA. Fractions were collected 

as the material eluted and combined to obtain samples with precisely x = 0 - 4 COG 

ligands per dendrimer. Products were purified using PD-10 desalting protocols, with DI 
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as the equilibration buffer and samples dissolved in 10xPBS, then lyophilized to dry. 

Samples were characterized by rp-UPLC and 
1
H-NMR spectroscopy. Curve fitting of 

chromatograms by Igor Pro was performed to assess purity of precise ratio materials and 

to determine the average number of COG ligands of stochastic materials (Table S1). 

Synthesis of -azide-Lys-Asp-Folic Acid (-azide-FA). FA-Azide derivative was obtained 

from collaborators at Purdue University. 

Synthesis of G5-Ac-FAn conjugates. Dendrimers with well-characterized numbers of 

covalently bound folic acids were synthesized via click reaction of G5-Ac-COGx 

conjugates and -azide-FA. Briefly, dendrimer conjugates were dissolved in methanol to 

40 mM with respect to COG, and a 10 fold excess of -azide-FA (40 mM in DMSO) was 

added. Solutions were agitated for 24 hours, then an additional 5 volume equivalents of 

DMSO was added to fully dissolve the dendrimer. Solutions were agitated for an 

additional 24 hours, then diluted to 2.5 mL with DI and purified using PD-10 desalting 

columns, gravity protocols, followed by 16 rounds of dialysis against DI. The samples 

were then further purified by repeating the PD-10 desalting column using 10X PBS to 

dilute the sample, followed by 2 rounds of dialysis against 1X PBS and 4 rounds against 

DI. Recovered samples were characterized by 
1
H-NMR spectroscopy and rp-UPLC. 

Curve fitting of chromatograms provided yield, purity, and FA average and distribution 

species for G5-FAn materials. 

 

Methods. 

High Performance Liquid Chromatography. Isolation of G5-Ac-COGx was achieved 

using a Waters 600 Controller, Waters 2707 Autosampler, and Waters 2998 Photodiode 

Array running Empower 2 Software, additionally equipped with a Waters Fraction 

Collector III on a Phenomenex Jupiter 300Ȧ C18 Prep Column (21.2 x 150 mm, 5 µm 

particles). The weak solvent (Solvent A) was HPLC Grade Water with 0.1% TFA, and 

the strong solvent (Solvent B) was HPLC Grade Acetonitrile with 0.1% TFA. The 

gradient employed at 16 mL/min was as follows: 2.1 min load step at 95%A/5%B, 3.9 

min gradient to 80%A/20%B, 15 min gradient to 65%A/35%B, 5 min gradient to 
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55%A/45%B, followed by 3 min was at 20%A/80%B, then equilibrating at starting 

conditions for 5 min before next injection. Averaged conjugate was dissolved to 20 

mg/mL concentration and 910uL injections were used. Five second fractions were 

collected starting at 9 min 30 sec into each run for a total of 120 fractions. Analytical 

chromatograms were collected on a Waters Acquity UPLC equipped with a scaled 

method using an Phenomenex Jupiter 4.6 x 100 mm column. 

LC Peak Fitting. Chromatograms were fit with Gaussian peaks using Igor Pro Version 

6.0.3.1 software. Peak widths from chromatogram to chromatogram were kept constant. 

Nuclear Magnetic Resonance Spectroscopy. NMR spectroscopy experiments were 

performed on a Varian MR400 instrument. 
1
H NMR spectra were obtained used 10 

second pre-acquisition delays and a total of 64 scans. All sample solutions were set to a 

dendrimer concentration of 1-5 mg/mL in deuterium oxide. 

Surface Plasmon Resonance Spectroscopy. SPR experiments were conducted in a 

Biacore® X instrument (Pharmacia Biosensor AB). Two immobilized folate binding 

protein (FBP) chips were prepared following the instrument prompted protocols, using a 

solution of 0.2 M EDC and 0.05 M NHS as an activating solution, an immobilization 

solution of FBP at 1mg/mL for the “low density” chip and 1.5 mg/mL for the “high 

density” chip, with ethanolamine as the deactivation solution. Flow cell two was 

employed as a control cell by activating and deactivating the surface without the addition 

of protein. The chips were characterized using free FA solutions and checked for non-

specific binding with a control of G5-Ac containing no COG or FA. Immobilization and 

free FA chromatograms can be found in the Supporting Information. The “high density” 

chip contains roughly double the amount of immobilized FBP according to total change 

in response units. Conjugate samples were dissolved in fresh HBS-EP buffer at 100 µM 

and serially diluted to 20, 10, 5, 2.5, and 1.25 µM in HBS-EP buffer from Fischer 

Scientific. Runs were multichannel, FC1-FC2, at 10 µL/min. The system was allowed to 

equilibrate at the beginning of each run for no less than 300 seconds, followed by a 2 

minute, 30 µL (50-5-5-5 bubble method) injection. The system was monitored for no less 

than 500 seconds post-injection. Between each run, the chip was washed with a 5 µL 
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injection of pH 1.5 buffer to remove bound materials followed by an instrument prime 

step. 

 

Results. 

Preparation of G5-Ac-COG4.0(avg) 

conjugates (Figure 4.3a). 41.2 

mg of G5-Ac-COG conjugate 

was prepared with an average of 

4.0 COGs per dendrimer as 

calculated by rp-UPLC peak 

fitting (overall yield 39%). All 

samples were characterized by 

1
H-NMR spectroscopy and rp-

UPLC. 

Isolation of G5-Ac-COGx 

conjugates with precise COG-to-

dendrimer ratios (Figure 4.3b-c). 

Dendrimer samples with x = 0-4 

were isolated in quantities 

ranging from 1 to 8 mg. All samples were characterized by 
1
H-NMR spectroscopy 

(Figure C1) and rp-UPLC (Table C1). 

Synthesis of G5-Ac-FAn conjugates (Figure 4.3d). One equivalent of G5-Ac-COGx  and 

10*x (x = 1 - 4) equivalents of -azide-FA were dissolved to give a dendrimer 

concentration of 10 mg/mL in DMSO. Reactions were shaken for 48 hours with 

occasional vortexing. Samples were then desalted according to the manufacturer’s gravity 

protocol with PD-10 desalting columns (equilibration buffer as DI, sample dissolved in 

10xPBS), and then dialyzed against DI using 10,000 Da cutoff membranes (16 media 

changes). Large amounts of unreacted -azide-FA remained after initial purification as 

detected by rp-UPLC. Two additional rounds of dialysis against 1xPBS buffer followed 

Figure 4.3. (a) Synthesis of PAMAM-COG conjugate. (b) 

Semi-prep rp-HPLC isolation of PAMAM with 1, 2, 3, 4, or 5 

COGs. (c) Isolated samples elute from rp-UPLC as a function 

of ligand-to-dendrimer ratio. (d) Scheme of G5-COG click 

reaction of -azide-FA. 
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by 4 rounds against DI removed all visible traces of unreacted -azide-FA as assessed by 

rp-UPLC. Samples were characterized by rp-UPLC (Figure C2) and 
1
H-NMR 

spectroscopy (Figure C3). The n=1 click reaction had an efficiency of 96%, while all 

other efficiencies ranged from 54-64% with mass recoveries over 95%. A detailed 

analysis of each sample’s fractional composition is summarized in Table 4.1. 

Surface Plasmon Resonance Spectroscopy. Sensograms for G5-Ac-FAn (n = 0, 1.0, 1.2, 

1.0, 2.7) were collected for both 

the low (Figure 4.4) and high 

(Figure 4.5) density chips. The 

unfunctionalized, neutral 

conjugate (n = 0) showed no 

specific binding at either chip 

density across all concentrations 

tested. All G5-FA conjugates 

showed specific binding to the 

FBP immobilized flow cell 1, 

which increased in an FA 

concentration dependent manner. 

After injection completion, all FA 

conjugated samples had a release 

profile. The association and 

Figure 4.4. SPR sensograms of conjugates a) (n=1.0, red; 

n=1.2, orange; n=1.9, green; n=2.7, blue) and controls (n=0, 

grey; free FA, purple) on lower density chip. The color 

gradient represents concentration from low (light) to high 

(dark). Free FA samples were run at milimolar as opposed to 

micromolar concentrations to obtain adequate signal. 

Table 4.1. Quantitative analysis of click products. 
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dissociation phases were fit with various models for evaluation of ka, kd, and Kd. 

 

Discussion. 

rp-HPLC has shown to be an 

effective tool for isolating 

dendrimers with precise 

numbers of clickable 

ligands.[44, 45] To date, four 

unique click ligands have been 

employed using the same 

gradient, with functional groups 

of azide,[46] alkyne, a 

fluorinated ring strain promoted 

ligand,[46] and the cyclooctyne 

ligand presented here for the 

first time. The robust 

methodology developed has proven effective for isolating various species containing 

single ligand/dendrimer ratios from heterogeneous, averaged samples containing 10 or 

more species. Due to the flexible nature of the PAMAM dendrimer and transient 

interaction of the ligand with the hydrophobic column, this technique has proven to be 

non-specific to the relative location of the multiple ligands conjugated to the same 

sample, i.e. all dendrimer conjugated to three ligands co-elutes, simplifying the 

separation process. Isolation of the G5-Ac-COGx conjugates utilized in this paper reflect 

the success of prior studies with other click ligands. All isolated samples of G5-Ac-COGx 

had single species purities over 95%. In the averaged sample, the most common species 

was dendrimer conjugated to 2 COG ligands, and this precise ratio comprised only 16% 

of the sample. However, the isolated sample labeled G5-Ac-COG2 contained only G5 

conjugated to 2 ligands as measured by rp-UPLC, with no detectable presence of 

dendrimer conjugated to 0, 1, 3, or other numbers of ligands. 

Figure 4.5. SPR sensograms of conjugates (n=1.0, red; n=1.2, 

orange; n=1.9, green; n=2.7, blue) and controls (n=0, grey; 

free FA, purple) on higher density chip. The color gradient 

represents concentration from low (light) to high (dark). 
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Here, we present the first application of the G5 PAMAM precise ligand-to-dendrimer 

ratio materials to a multivalent targeting system. Folate binding protein, employed as a 

model for the folic acid receptor overexpressed in various cancer cell lines, and the 

interaction of this target with folic acid has been a highly studied system for both cancer 

cell targeting of chemotherapeutics and for the more basic understanding of multivalent 

nanoparticle interactions. To understand how multivalency affects nanoparticle-ligand 

conjugates behavior in biological systems, it is vital to compare monovalent particles to 

those with 2 or more targeting ligands. However, stochastically synthesized conjugates 

contain a distribution of ligands per particle, making it difficult to distinguish the 

behaviors of the individual populations. The controlled ligand/dendrimer ratio conjugates 

allowed for the synthesis of functional G5-FAn materials with well-defined sub-

populations, including a conjugate with a FA-to-dendrimer ratio of 1, with no higher 

valencies present. These materials, when studied by SPR, allowed comparison of the 

binding strength and potential for multivalent interaction of conjugates containing no 

more than 1, 2, 3, or 4 FA ligands (Table 4.1).  

Reaction of the conjugates with precise ligand-to-dendrimer ratios with complimentary 

click functionalized FA allows for the generation of dendrimers with well-defined 

numbers of covalently conjugated FAs via orthogonal click chemistry between the ring-

strained cyclooctyne on the dendrimer and an azido group on the modified FA. The 

reaction between G5-Ac-COG1 and -azide-FA yielded a product that has 96% conjugate 

with a FA-to-dendrimer ratio of precisely 1 and 4% of a conjugate with no FA. Because 

the original sample had no dendrimer conjugated to 2 or more COG ligands, the resulting 

product has no material with the ability to undergo multivalent binding. The lack of 

multivalent products allows us to test both the Licata and Tkachenko key-lock/non-

specific binding interaction mechanism (Figure 4.2c),[43] which attributes the 

irreversible binding to dendrimer-protein van der Waals interactions and not multivalent 

FA binding, and the Sander mechanism[42] that assumes monovalent behavior will 

significantly differ from bivalent and higher behavior. This critical piece of data would 

also have prevented the (incorrect) assessment by Banaszak Holl et al. that avidity 

increase is an exclusive function of conjugate valency.[30] 
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The remaining click reactions with the higher COG valent material went to about 60% 

completion despite a ten-fold excess of the -azide-FA. This result has been duplicated 

for G5-COGx conjugates with this -azide-FA and other small molecules (unpublished 

data) within the lab, where reaction times greater than 48 hours were tested. Similar 

reaction conditions employed in the literature between a G5-Ac-COG~20(avg) conjugate 

and a -azide-modified methotrexate yielded 100% reaction efficiency, however in this 

case the limiting reagent was the small molecule.[47] This observation suggests that 

limiting the number of COG ligands on the dendrimer may limit accessibility for click 

reaction,   perhaps via folding of hydrophobic ligands into the dendrimer core. The 

interior cavity of G5 PAMAM is limited, therefore with a high number (i.e. 20) of 

conjugated COG ligands, the dendrimer cannot internalize all the ligands at once, so at 

any given time COG ligands are available conjugation. However, at lower numbers of 

COG ligands (i.e. 1 – 4 as described here) there is likely enough void volume in the 

dendrimer to hold all COG ligands at once, therefore preventing click reaction with 

solution species. Additionally, utilization of click chemistry with -azide-FA eliminates 

the less active -FA that is bound through the -carboxylic acid.  Both structural isomers 

of the click reaction are likely present, although this fact would not be expected to have 

great effect on binding to the FBP. The presence of both isomers may contribute to peak 

broadening of the products in rp-UPLC (See Figure C2). rp-UPLC also provides a useful 

tool for monitoring the click reaction, as the reaction of the hydrophobic ligand leads to a 

decrease in retention of the dendrimer conjugate on the C18 column. This technique 

provides a more accurate measurement of FA-to-dendrimer ratio of the product than 

techniques such as NMR, which only provides an average number and provides no detail 

about the individual ligand-to-dendrimer ratios that are present within a sample. For this 

measurement the NMR spectroscopy based averages suffer from low signal for the 

conjugated species as compared to the polymer scaffold, and from the polydispersity of 

the scaffold employed (see Supporting Information).  

Figure 4.6a compares the monovalent sample, G5-Ac-FA1.0, to the Poisson distribution 

expected for a stochastically synthesized G5-FA conjugate with an average ratio of 1. By 

way of comparison, G5-Ac-FA1.0 has only 4% unfunctionalized material compared to 
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37% in the stochastic material. More importantly, 26% of the stochastic material has two 

or more FA covalently attached, meaning this material is not truly representative of 

monovalent behavior. The G5-Ac-FA1.0 material may only undergo a single, monovalent 

specific interaction with a single FBP.  Although the higher FA conjugates are not 

monodisperse, their heterogeneity has been significantly reduced as compared to an 

equivalent average stochastic conjugation. rp-UPLC has also revealed the relative amount 

of each ratio present in the samples (Figure 4.6 b–d), allowing for a much better 

Figure 4.6. Comparison of distributions in click reaction products vs. theoretical stochastically 

conjugated products (purple bars) of the same average for ratios of (a) 1.0 (red bars) (b) 1.2 (orange 

bars) (c) 1.9 (green bars) and (d) 2.7 (blue bars). 
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understanding of the contribution of each “n” valency species in the sample to the 

binding as a whole. For example, the product of the G5-Ac-COG3 click reaction (G5-Ac-

FA1.9) has an average of ~2 FAs per dendrimer, but UPLC reveals that 23% of the 

material has three FAs attached, while 49% has two FAs, 24% is monovalent, and only 

4% of the material has zero FA. The presence of dendrimer conjugated to more than 3 FA 

is not possible as the starting material contained no dendrimer conjugated to 4 or more 

COG. The equivalent stochastic average of n = 1.9 has significant concentrations of 10 

unique FA-to-dendrimer ratios (ranging from 0 to ~9), and ~15% of the sample has zero 

FA. The decreased sample 

complexity and improved 

characterization for the samples 

summarized in Table 4.1 allow 

for more accurate interpretation 

of subsequent SPR results.  

As illustrated in Figures 4.4 and 

4.5, G5-Ac-FA0 shows no 

binding to either of the FBP 

immobilized chips at the 

concentrations tested. However, 

G5-FAn=1.0-2.7 have a binding 

curve that saturates at higher 

concentration. The total signal during binding phase (0 – 200 sec) (Figure 4.7) increases 

as a function of polymer concentration, FA valency (n), and density of protein 

immobilization.  

At 200 sec, injection is complete and the dissociation phase begins (Figures 4.4 and 4.5). 

Several noteworthy observations can be made. First, at free FA concentrations ~100 fold 

higher than the equivalent conjugated FA conditions, free FA returns to baseline in the 

low density chip and nearly to baseline in the high density chip. This observation is 

consistent with the expected, reversible binding of FA to FBP. G5-Ac-FA0 also returns to 

baseline, indicating no permanent interaction with the surface on the timescale of the 

Figure 4.7. Definition of fitting parameters. 
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experiment. Most significantly, monovalent G5-Ac-FA1.0 has a significantly reduced 

dissociation rate as compared to FA (Figures 4.4 c and 4.5 c). In addition, G5-Ac-FA1.0 

does not return to baseline during the time scale of the experiment (500 sec) at any 

concentration for either FBP surface density. The dissociation level off substantially 

above the initial baseline, indicating a portion of the material remains bound to the 

surface. This observation is true even though the highest relative FA concentration tested 

for G5-Ac-FA1.0 (10 µM) is 25 times lower than the lowest FA concentration (0.25 mM).  

The permanent binding on the time scale of the SPR experiment has previously been 

attributed to multivalent binding between the conjugate and receptor,[30, 42] however 

that cannot be the case for this purely monovalent conjugate. This data strongly supports 

the key-lock/non-specific binding mechanism proposed by Licata and Tkachenko[43] in 

which only one FA to FBP interaction is necessary to initiate the stronger interaction 

between the dendrimer and FBP, which itself is a result of the summation of many weak 

van der Waals interactions. This result contradicts the mechanism proposed by Sander et 

al.[42] that attributed all observed reversible binding to the G5-Ac-FA1 species. 

More generalized observations can be made for the higher average conjugates. All G5Ac-

FAn=1.0-2.7 have dissociation 

sensorgrams similar to those 

previously reported results on 

both the high and low density 

chips.[30] All samples appear to 

have a portion of material that is 

permanently bound to the FBP 

surface on the timescale of this 

experiment (Figures 4.4 and 4.5). 

The saturation value (y
o
 in Figure 

4.7) changes as function of FBP 

surface density (Figure 4.8). On 

the low-density chip, the 

maximum signal from Figure 4.8. Saturation of permanent bound material (y
o
) as a 

function of FA concentration. 
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permanently bound material is 14 ± 2 response units, which is achieved at a total FA 

solution concentration of ~10 µM. On the high-density surface, the response unit values 

saturate at 46 ± 4 at ~10 µM.  The only exception is G5-Ac-FA1.0 for which 10 µM is the 

highest concentration tested.  For both low and high FBP density, this conjugate did not 

reach the saturation value by 10 µM. 

 This surface density-dependent saturation of signal is indicative of a limiting number of 

FBP binding sites available for binding to the conjugates. Figure 8 also suggests that the 

total amount of permanently bound material is determined primarily by (i) total FA 

concentration in solution and (ii) surface FBP density. All differences in the permanently 

bound fraction for the multivalent (n = 1.2 – 2.7; orange, green, and blue) samples can be 

attributed to the difference in FA concentration of these samples, which completely 

saturates when total FA concentration is ~10 µM. The monovalent material (G5-Ac-

FA1.0, red) appears to have slightly lower binding compared to the multivalent samples 

based on total FA concentration. This occurrence may result from the enhanced effective 

concentration in the multivalent samples due to dendritic architecture forcing the multiple 

FAs into a ~5 diameter spherical area. This effect is small, and there appears to be no 

additional effect when valency is increased above n = 2.  

Qualitative observations (i.e. permanent binding fraction in the G5-Ac-FA1.0 sample and 

nonzero y
o
) indicate that this data will not adhere to the simple single phase Langmuir 

isotherm. To demonstrate this observation quantitatively, the data was fit with several 

models. In a single event binding between conjugate species A (here, G5-FAn=1.0-2.7) and 

species B (here, FBP immobilized on the SPR chip): 

               Equation 1 

The response difference (R) from SPR in the association phase at a given time (t) can be 

written as: 

 ( )  
       

      
(   ) (      )   Equation 2 

where ka is the association rate constant, kd the dissociation rate constant, and C is the 

conjugate concentration (in µM).[48] Assuming a single association event leads to a 
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single dissociation event, and acknowledging that the monovalent interaction between FA 

and FBP is reversible, the dissociation can be modeled by an exponential decay: 

 ( )                   Equation 3 

where A relates to the initial condition and y
’
 is equal to zero, because the species is 

expected to completely dissociate. Initially the dissociation phase was fit with equation 3 

to obtain kd.  This value for kd  is then employed when fitting the association phase with 

equation 2 to obtain ka.  

Alternatively, two event association models allow for both permanently bound and 

transiently bound fractions. A two phase association in SPR can be modeled as: 

 ( )  
        

        
(   ) (        )  

        

        
(   ) (        )  Equation 4 

Equation 4 can be simplified according to several models. If the assumption is made that 

there are two binding events; a “permanent” binding (the fraction of response is equal y
o
 

and kd1 = 0) and a transient binding (the fraction responsible for the remainder of R(t)); 

and all observed dissociation is from transient bound material, then the dissociation phase 

can be fit with: 

 ( )                    Equation 5 

and Equation 4 becomes: 

 ( )    (   ) (    )  
    (       )

        
(   ) (        )   Equation 6 

If one assumes that all transient binding is attributed to nonspecific interactions between 

remaining unfunctionalized (n = 0) dendrimer and the protein, the binding phase can be 

modeled with: 

 ( )    (   ) (   (     )  
      (       )

        
(   ) (          )  Equation 7 

where n0 is the percentage of the sample that corresponds to G5-Ac-FA0. Conversely, if 

one assumes that both unfunctionalized and monovalent interactions are transient, than n0 
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is the equal to the sum of the percentages of G5-Ac-FA0 and G5-Ac-FA1.0. Binding 

phases were fit with Equation 7 with both assumptions. The fit for the G5-Ac-FA1.0 

samples was poor with the second assumption, as expected, since this model would 

assume no permanent bound material, even though these samples clearly do not 

completely dissociate. A quantitative summary of the four fitting models is found in 

Tables 4.2 and 4.3, where Kd is defined as: 

   
  

  
    

   

       
        Equation 8 
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Avg 60 5.2 0.31 
St Dev   3.0 0.20 

High 

Density 
Avg 20 6.0 0.12 
St Dev   3.2 0.53 

Low density 
Avg 100 4.6 0.47 
St Dev   2.7 0.12 

Table 4.2. Quantitative summary of single phase assoc. fit. 
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Avg 190 6.8 42 9.1 
St Dev   3.4 50 6.5 

High Density 
Avg 210 6.5 2.2 6.1 
St Dev   3.2 3.0 0.9 

Low 
Density 

Avg 180 7.1 66 13.0 
St Dev   3.6 61 8.4 

T
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n
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Avg 300 7.5 23 9.1 
St Dev   6.4 36 6.5 

High Density 
Avg 570 5.9 17 13.0 
St Dev   3.4 17 8.1 

Low 
Density 

Avg 230 6.4 20 6.1 
St Dev   5.2 45 0.9 

Table 4.3. Quantitative summary of two phase assoc. fits. 

As indicated in Tables 4.2 and 4.3, the measured ka and kd values vary from sample to 

sample, but values are on the same order of magnitude for each run and fit value. 

Although the absolute values vary from injection to injection, the individual fits of the 

data are much more consistent. Figure 4.9 gives some exemplar data (solid lines) and 

corresponding fits (dotted lines). The full set of data can be found in the supporting 

information (Figures C6 and C7). 

Several qualitative observations can be made. Firstly, as expected, a single phase model 

that assumes complete dissociation of the complex is a poor fit for the dissociation phase 

of all samples (dotted green lines). The single phase association appears to have a good 

fit with the experimental data, however as this equation is dependent on the single phase 
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dissociation constant, the overall mechanism is still invalid. Secondly, because the two 

event model where no = 0, 1 (dotted orange lines) is equivalent to a single event model 

for the monovalent case, this model results in a poor fit for all the G5-Ac-FA1.0 data. For 

some data (Figure 4.9d,e) all models fit the data approximately the same, while in other 

cases particular models clearly fit the data better (Figure 4.9c, purple dotted line) or 

worse (Figure 9f, orange dotted line) than others.  To assess which mathematical model 

provide the best global fit to the data, the average residual (difference between calculated 

and actual data) was taken for both the association phase and dissociation phase for each 

model at each valency and concentration tested (Table C2). The two phase dissociation 

model (Equation 5) had a ten-fold better fit for all samples when compared to the single 

(total) dissociation model (Equation 2). For the low density chip, the basic two phase 

association model (Equation 6) had the lowest average residual for all valencies tested 

with an average residual across all valencies of 0.44 response units. By comparison, the 

next best model (single phase, equation 3) had an average residual across all valencies of 

0.95 units. However, the poor fit of the corresponding dissociation phase data for 

Equation 3 renders this model invalid. The high density chip had slightly higher residuals 

Figure 4.9. Examples of modeled data (dotted lines) compared to experimental data (solid lines). 
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for the association phase, with the lowest average across all valencies being the single 

phase (Equation 3) at 1.84 response units. As this mechanism is still ruled out due to poor 

agreement with the dissociation phase, it is important to note that the simple two phase 

model (Equation 6) had the next best fit with an average residual of 2.39 response units. 

The alternative two phase model (Equation 7) had the poorest agreement with 

experimental data for n0 = 0 for both chip densities, and the second poorest agreement 

when n0 = 0, 1. From this analysis, two main conclusions can be drawn: (1) There are at 

least two types (or steps) of association for G5-FAn to the immobilized FBP, which leads 

to (2) the presence of both a transiently and permanently bound material for all G5-FAn, 

including monovalent material. 

The initial model proposed by Banaszak Holl et al.[30] (Figure 4.2a) is mathematically 

equivalent to Equations 2 and 3, where Kd is expected to change with average number of 

FAs per conjugate sample. Clearly, in the original analysis of SPR data by Banaszak Holl 

et al., (Figure 2a) the assumption that all bound material would eventually dissociate (i.e. 

y’ = 0) from the surface was erroneous.  The model proposed by Sander et al.[42] (Figure 

4.2b) correctly noted that a fraction of the material remained bound to the surface for the 

length of the experiment (essentially permanently); however, the additional assumption 

that G5-FA1 was entirely responsible for the observed dissociation in stochastic mixtures 

of G5-FAn was incorrect. This model is clearly contradicted by the G5-Ac-FA1.0 results, 

which are poorly fit by Equation 2, and which clearly show enhanced binding to the FBP 

over free FA. When the other samples were fit with Equations 7, allowing for n = 0 or n = 

0 and 1 to reversibly bind and n ≥ 3 to irreversibly bind, poor association phase fits were 

observed (especially at lower FBP densities). The third theory, put forth by Licata and 

Tkachenko,[43] proposed that an initial binding event between conjugate and FBP is 

keyed by FA, then the binding strength becomes dominated by van der Waals forces 

between the ~30 kDa polymer and ~40 kDa protein (Figure 4.2c). These summed weak 

interactions are responsible for the increased avidity for the conjugates, which the authors 

hypothesized are too great to be attributed to the comparatively weak (Kd ~ 0.1 nM)  

FA/FBP interaction. Mathematically, this model would not show a dependence of Kd on 

degree of FA valency and is best represented by Equation 6, which allows all conjugates 

to undergo both transient and permanent binding events. The increased avidity for the 
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G5-Ac-FA1.0 conjugate as compared to free FA on both the low and high surface density 

chips, which is not further improved even with the G5-Ac-FA2.7 conjugate, best agrees 

with this model qualitatively and quantitatively. 

Therefore, we propose that the binding between G5-Ac-FAn conjugates and immobilized 

FBP can be explained by a two-fold mechanism. First, G5-Ac-FAn binds to a FBP 

immobilized on the chip surface. This interaction has an association constant (ka2) of ~14 

nM
-1

 s
-1

. Because the initial binding is dependent on the concentration of FA, there is an 

apparent enhancement of avidity due to an increased total concentration of FA when 

multiple copies of the ligand are attached to the same dendrimer. This effective 

concentration may also lead to an increased chance of rebinding, as the FA/FBP 

dissociation constant (kd2) of ~9 s
-1

 allows for dissociation of the conjugate from the 

surface on the SPR experimental timescale. Therefore, although strong binding is 

observed for all samples, the G5-Ac-FA1.0 binds slightly less total material at the same 

relative FA concentration as compared to higher valency samples. In the second step, the 

acetylated dendrimer arms, which are brought close to the protein surface by the initial 

FA-FBP key-lock interaction, interact via van der Waals forces with the protein and/or 

dextran surface of the SPR chip.  The interaction may be further energetically driven by 

desolvation of both the protein and dendrimer surfaces.  Because these interactions are 

short ranged, it is only observed when are there are both conjugated FA and immobilized 

FBP available (i.e. it is not observed for G5-Ac-FA0 control or on the unfunctionalized 

Flow Cell 2.  Although van der Waals interactions are weak, the sum of many 

interactions available between the two ~5 nm entities, and the associated desolvation, 

creates a force that is irreversible over timescale of these SPR experiments. 

 

Conclusions 

In summary, we have synthesized a monovalent G5-Ac-FA1.0 conjugate that allows for 

the distinction between three previously proposed mechanisms for the high avidity 

interaction with FBP. We have also synthesized multivalent G5-FA conjugates with 

narrow FA-to-dendrimer ratio distributions to examine the kinetics of interaction between 

dendrimer-conjugated FA and FBP. The removal of trailing generation and oligomers in 
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the PAMAM dendrimer starting material enabled the decoupling of mass and polymer 

surface area effects from FA valency. rp-HPLC enabled the isolation of dendrimers 

containing precise ratios (1, 2, 3, and 4) of a copper-free, ring strain promoted click 

ligands to a dendrimer scaffold. A -azide-FA was clicked to these precise ratio 

conjugates to synthesize FA functionalized dendrimers with narrow, well defined 

distributions of FA with average ratios of up to 2.7 FAs-per-dendrimer. Importantly, the 

monovalent conjugate G5-Ac-FA1.0 was synthesized with no portion of the sample having 

more than 1 conjugated FA, allowing for the distinction of polymer contributions (i.e. 

solubility and van der Waals interactions with the surface) from multivalent contributions 

(i.e. effective concentration and chelate binding) to the increased binding of dendrimer 

conjugates to FBP surfaces.. SPR studies revealed that G5-Ac-FA1 experiences the 

enhanced avidity over free FA that has previously been attributed to multivalent FA 

binding. Through examination of four quantitative models, it was concluded that the 

mechanism of interaction between G5-Ac-FAn and surface immobilized FBP is two-fold: 

an initial, reversible, FA concentration dependent key-lock interaction between the 

conjugate and protein, followed by irreversible interaction between the dendrimer and 

protein surfaces.  The confirmation that these samples exhibit permanent binding on the 

time scale of the FA experiment disproves, even for a monovalent sample, the original 

Banaszak Holl et al.[30]  These findings also provide evidence against the model 

proposed by Sander et al.,[42] which attributed the increase in avidity to dendrimer 

species with 2 or more conjugated FA and assigned all dissociated material as G5-Ac-

FA1. However, the model proposed by Licata et al.[43] explains the original data[30] and 

agrees well with these new findings.  

The interaction of G5-Ac-FITC-FAn with folic acid receptor upregulated KB cells, 

reported along with the original SPR experiments,[30] exhibited the same saturation 

behavior. Based on the data and mechanistic interpretation presented here and in the work 

of Licata and Tkachenko,[43] the observed enhancement of residence on the KB cell 

surface as a function of n could result from a combination of overall increase FA 

concentration and increased rebinding with increasing n.  Alternatively, it is possible that 

conjugate-initiated receptor clustering occurs on the cell membrane.  An event that is 

impossible for the FBP immobilized to a dextran model system.  Experiments to 
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synthesize fluorescent materials containing precise ratios of FA targeting ligand for cell 

culture and in vivo experiments are in progress. 
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Chapter 5 

Methotrexate/PAMAM Conjugates: A Comparison of Key, Scaffold, and Linkers 

 

Introduction  

Multivalent drug-polymer conjugates, in which multiple copies of a drug are covalently 

attached to a polymeric scaffold either directly or through linker chemistry, are a highly 

studied pathway to improve therapeutic index. Particularly, conjugation of the 

chemotherapeutic methotrexate (MTX) to a poly(amidoamine) (PAMAM) dendrimer has 

been extensively studied, with over 100 related publications since their first introduction 

in 2002.[1] The clinical potential of dendrimer conjugated MTX has been shown in many 

biological studies, which indicate favorable activity compared to free MTX.[2-4] 

However, to date, the ability to produce large-scale quantities of such materials while 

retaining desirable activities has been elusive.[5] Several variations to the system have 

been attempted to examine the impact on activity, including conjugation of targeting 

agents,[6] employment of various linker systems,[6, 7] and perturbation of valency.[8] In 

a recent study by Silpe, Choi et al., dendrimers conjugated to an average of 10 MTX 

exhibited stronger binding to surface immobilized folate binding protein (FBP) and more 

cytotoxicity to folic acid receptors (FAR) on KB cells than those with an average of 5  

MTX.[8] However, there are often disadvantages to employing high valent systems, such 

as loss of solubility of the conjugate or loss of targeting specificity.[9] Systems 

containing an average number of ligands also contain a wide range of ligand-to-vector 

ratios present within a sample,[10-12] complicating identification or in-depth mechanistic 

study of the active components. Although work to date has made progress in improving 

sample reproducibility and activity, full mechanistic understanding is not yet achieved. 

 

MTX is a structural derivative and competitive inhibitor of folic acid (FA), therefore 

multivalent MTX conjugates may have a similar mechanism of increased binding and 

uptake as the related multivalent FA system. A study from 2007 by Hong, Banaszak Holl 
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et al.[13] reported increasing avidity for stochastic average conjugates of FA to PAMAM 

dendrimer as a function of increasing valency. The authors attributed this effect to the 

multivalent effect of increasing clusters of folic acid-folate binding interactions (for 

example, 3 interactions having a stronger affinity than 2 interactions, which is stronger 

than a single interaction).  For thorough descriptions of this type of  ligand-based 

multivalent binding mechanism see reviews by Whitesides[14], Cloninger,[15] and 

Kiessling[16]).  Since the original report of the FA-PAMAM conjugate multivalency in 

2007, two alternate mechanisms to explain the data have been proposed. Waddell, Sander 

et al.[12] proposed that two types of interactions dominate the system: weak monovalent 

interactions and strong bivalent interactions. The apparent difference in observed avidity 

was attributed to different amounts of unfunctionalized and monovalent material in the 

stochastic distributions. Licata and Tkachenko,[17] proposed that the increased avidity 

reported was too large to be the sum of the relatively low affinity folic acid-protein 

interactions, and instead was due to van der Waals type interactions between the polymer 

vector and protein surface. In this mechanism, folic acid keys the initial binding between 

the conjugate and protein, bringing the polymer close enough to the protein surface for 

the van der Waals interactions to occur.  

The original data, obtained using material containing consisting stochastic averages of 

FA per dendrimer, cannot distinguish between these three mechanisms. However, recent 

work by van Dongen, Banaszak Holl et al.[18] has enabled a closer examination of the 

PAMAM-FA multivalent system. In this work, a conjugate with exactly one FA per 

generation 5 (G5) PAMAM dendrimer was prepared. This sample was unique in that it 

provided a means to distinguish between avidity increases due to the polymer itself 

interacting with the protein (possible in a monovalent conjugate) and avidity increases 

due to multivalent FA binding (not possible in a monovalent system).   The monovalent 

folic acid-dendrimer conjugate had similar avidity increases as the multivalent 

conjugates, strongly supporting the “lock and key” theory by Licata and Tkachenko, 

wherein FA serves is a strong key to unlock the nonspecific (van der Waals) 

polymer/protein interactions.[17] However, there are still many aspects of this system 

that should be more thoroughly studied. For example, MTX is a “weak key” as compared 

to FA. Can the weaker MTX key still initiate the van der Waals interactions? How does 
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vector size influence binding avidity in this lock-and-key system?  And finally, as 

proposed by Licata and Tkachenko, what is the impact of tuning key strength by varying 

the linker used in conjugating the key to the polymer? 

 

PAMAM dendrimers are often employed as multivalent vectors due to their low 

immunogenicity, ability to solubilize hydrophobic molecules, and the presence of 

multiple primary amines available for multivalent modifications.[19-21] They are also 

highly flexible vectors,[22] which allow them to deform and possibly reach multiple 

surface-immobilized receptors at time.[23] The size and number of functional groups of 

dendrimers increases with increasing generation, and consequently the amount of surface 

area that they can reach goes up as well.[24] Therefore, generation number gives a 

mechanism to control vector size. Unlike many polymer architectures, dendrimers have a 

narrow mass range which also makes them more ideal as vectors. However, recent work 

by van Dongen, Banaszak Holl et al. indicates that the presence of oligomers in G5 

PAMAM dendrimer creates subpopulations within a sample that are two, three, or four 

times larger than the expected weight of the monomer.[25] These larger vectors may 

impact the chemical and biological behavior of resulting conjugates as they can 

potentially cover twice as much surface area. Recent results quantifying the amount of 

dimer (D), trimers and even tetramer present in G5 PAMAM dendrimer are particularly 

interesting in light of the Licata and Tkachenko models as the presence of the oligomers 

substantially changes the total magnitude of non-specific van der Waals interactions that 

are possible per particle.  In the process of developing the rp-HPLC-based 

characterization of oligomers, the methods to separate and isolate the monomer G5 from 

the other oligomers were also elucidated.  This accomplishment allowed a direct test of 

the role that varying the ratio of non-specific interactions to key-locks would play in 

surface adsorption.   

  

In this work, we examine the individual and combined impacts of vector size variation, 

linker chemistry, and dendrimer valency by synthesizing monomeric (~30,000 MW) and 

dimeric (~60,000 MW) G5 conjugates with well-defined numbers of MTX attached to 

the dendrimer through two linker systems. Recent protocols developed to isolate precise 
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ratio ligand-to-dendrimer conjugates from stochastic distributions[26, 27] were employed 

to create conjugates with narrow, well-defined populations. We employ both chemical 

and biological assays to measure the impact of these parameters on sample activity. 

Several new conclusions can thus be drawn. (1) We have found that dimeric material 

present in commercial PAMAM dendrimer, and consequently conjugates synthesized 

from this material, contributes significantly to observed chemical and biological 

activities. Conjugates to MTX of dimer isolated from commercial PAMAM exhibit 

binding via surface plasmon resonance, in particular binding that is irreversible on the 

timescale of the experiment, similar to that observed in previous studies[8] employing 

commercial PAMAM. Additionally, multivalent conjugates of monomeric dendrimer to 

methotrexate did not exhibit a change avidity derived from multiple MTX binding events, 

presumably because the MTX is a “weak key” and cannot initiate the polymer/protein 

interactions at the same valencies as the “strong key”, folic acid. (2) A longer and more 

flexible linker system is also shown to negatively impact the conjugate’s ability to bind to 

FBP when compared to a shorter, less hydrophobic linker. This observation is attributed 

to increased hydrophobicity which could have several effects including reducing the 

overall enthalpy of the interaction and increasing the time that the linker, and 

consequently the attached MTX, spends in the interior regions of dendrimer. (3) We 

observe increased avidity over free MTX only at minimum valencies of n = 3 in dimer 

systems. This sample has an average composition, so it may still require more than three 

MTX-per-conjugate to trigger this behavior. Monomer systems were only tested to a 

valency of 3, which was not able to trigger higher avidity. 

 

Experimental Section 

Materials. All chemicals and materials were purchased from Sigma Aldrich or Fischer 

Scientific and used as received unless otherwise specified. G5 PAMAM dendrimer was 

purchased from Dendritech and purified into monomer (G5) and dimer (D) samples as 

previously described.[25] Click-Easy™ MFCO-N-hydroxysuccinimide was purchased 

from Berry & Associates Synthetic Medicinal Chemistry. -azido-MTX was synthesized 

as described previously.[7] Cyclooct-1-yn-3-glycolic acid (COG) was synthesized as 

previously reported (see Appendix C). 
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Preparation of G5-Ac-COG4.7(avg) conjugate.  Conjugates were prepared using G5 via 

EDC-NHS coupling. In brief, 240.4 mg of amine-terminated monomer G5 was dissolved 

to 0.16 µM in DI. 12.0 mg of COG ligand was activated by dissolving to 10.5 µM in 

acetonitrile with 2.65 equiv of EDC and 2.78 equiv of N-hydroxysuccinimide and stirring 

for 2 hours. The activated COG solution was added dropwise via syringe pump to the 

dendrimer solution and allowed to stir overnight. The product was purified using Amicon 

Ultra Centrifugal units, 10kDa cutoff membranes, 2 PBS washes and 4 DI washes. 170.6 

mg of white solid was isolated via lyophillization. The material was then fully acetylated 

(100% of remaining primary amines converted to acetyl groups, henceforth termed “Ac”) 

by re-dissolving in anhydrous methanol (0.19 µM) and adding 450 equiv of triethylamine 

and 360 equiv of acetic anhydride, stirring for 4 hours, purified by centrifugation and 

isolated by lyophillization. G5-Ac-COG4.7(avg) was characterized by rp-UPLC. 

Preparation of G5-Ac-MFCO2.0(avg) conjugate. Conjugates were prepared using G5 and 

Click-Easy™ MFCO-N-hydroxysuccinimide. In brief, amine-terminated G5 was 

dissolved to 0.16 µM in DI. Click-Easy™ MFCO-N-hydroxysuccinimide was activated 

by dissolving to 10.5 µM in acetonitrile and added dropwise via syringe pump to the 

dendrimer solution. The solution was stirred overnight. The product was purified using 

Amicon Ultra Centrifugal units, 10kDa cutoff membranes, 2 PBS washes and 4 DI 

washes. Product was isolated via lyophillization. The material was then fully acetylated 

by re-dissolving in anhydrous methanol (0.19 µM) and adding 450 equiv of triethylamine 

and 360 equiv of acetic anhydride, stirring for 4 hours, purified by centrifugation and 

isolated by lyophillization. G5-Ac-MFCO2.0(avg) was characterized by rp-UPLC. 

Preparation of D-Ac-COG4.8(avg) conjugate. Conjugates were prepared using EDC/NHS 

coupling to isolated G5 dimer according to the same procedures outlined for the 

monomer utilizing 100.8 mg of dimer and 5 equiv of CO ligand. D-Ac-COG4.8(avg) was 

characterized by rp-UPLC. 

Preparation of D-Ac-MFCO6.2(avg) conjugate. Conjugates were prepared using Click-

Easy™ MFCO-N-hydroxysuccinimide to isolated G5 dimer according to the same 

procedures outlined for the monomer utilizing 115.5 mg of dimer and 6.4 equiv of MFCO 

ligand. D-Ac-MFCO6.2(avg) was characterized by rp-UPLC. 
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Isolation of precisely defined G5-Ac-COGx, G5-Ac-MFCOx , D-Ac-COGx and  D-Ac-

MFCOx conjugates (x = 0-3, 3+, or 4+) (Figure 1). Dendrimers with precise ratio COG 

or MFCO ligands per dendrimer were isolated via reverse-phase HPLC according to 

modified literature procedures.[11] Briefly, multiple injections of the averaged material 

were performed with a C18 column on a water/acetonitrile gradient with 0.1% TFA. 

Fractions were collected as the material eluted and combined to obtain monomer samples 

with precisely x = 0-5 COG ligands, or x = 0-4, 5+ MFCOs, and dimer samples with x = 

0-2, 3+ COGs. Products were purified using PD-10 desalting protocols, with DI as the 

equilibration buffer and samples dissolved in 10xPBS, and then lyophilized to dry. 

Samples were characterized by UPLC. Curve fitting of UPLCs by Igor Pro was 

performed to provide yield, purity, and HPLC number of MFCO averages. 

 

Synthesis of G5-Ac-(COG-MTX)n G5-Ac-(MFCO-MTX)n, D-Ac-(COG-MTX)n, D-Ac-

(COG-MYX)4.0(avg) and G5-Ac-(MFCO-MTX)4.0(avg)  conjugates. Dendrimers with defined 

numbers of covalently bound methotrexates were synthesized via click reaction of precise 

ratio G5-Ac-COG/MFCOn or D-Ac-COG/MFCOn conjugates and γ-azido-MTX. Briefly, 

dendrimer conjugates were dissolved in DMSO to 40 mM with respect to the click 

ligand, and a 10 fold excess of γ-azido-MTX (40 mM in DMSO) was added. Solutions 

were agitated for 48 hours, then diluted to 2.5 mL with 10xPBS and purified using PD-10 

desalting columns, gravity protocols. Further purification was performed via 10kDa cut-

off dialysis against DI with 16 media changes. Dried samples were characterized by 
1
H-

NMR spectroscopy and UPLC (see Supporting Information). Curve fitting of UPLCs 

provided yield, purity, and HPLC MTX averages. 

 

Methods. 

High Performance Liquid Chromatography. Isolation of precise conjugates was achieved 

using a Waters 600 Controller, Waters 2707 Autosampler, and Waters 2998 Photodiode 

Array running Empower 2 Software, additionally equipped with a Waters Fraction 

Collector III on a Phenomenex Jupiter 300Ȧ C18 Prep Column (21.2 x 150 mm, 5 µm 

particles). The weak solvent (Solvent A) was HPLC Grade Water with 0.1% TFA, and 

the strong solvent (Solvent B) was HPLC Grade Acetonitrile with 0.1% TFA. The 
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gradient employed at 16 mL/min was as follows: 2.1 min load step at 95%A/5%B, 3.9 

min gradient to 80%A/20%B, 15 min gradient to 65%A/35%B, 5 min gradient to 

55%A/45%B, followed by 3 min was at 20%A/80%B, then equilibrating at starting 

conditions for 5 min before next injection. Averaged conjugate was dissolved to 20 

mg/mL concentration and 910uL injections were used. Five second fractions were 

collected starting at 9 min 30 sec into each run for a total of 120 fractions. Analytical 

chromatograms were collected on a Waters Acquity UPLC equipped with a scaled 

method using a Phenomenex Jupiter 4.6 x 100 mm column. 

.LC Peak Fitting. UPLC chromatograms were fit with Gaussian peaks using Igor Pro 

Version 6.0.3.1 software. Peak widths within a chromatogram were kept constant.  

Nuclear Magnetic Resonance Spectroscopy. NMR experiments were performed on 

Varian VNMRS 500 and Varian MR400 instruments. 
1
H-NMR spectra were obtained 

used 10 second pre-acquisition delays and a total of 64 scans. All sample solutions were 

set to a dendrimer concentration of 5 mg/mL in deuterium oxide.  

Dihydrofolate Reductase Assay. Dihydrofolate Reductase Activity Assay was purchased 

from Sigma Aldrich and employed according to the manufacturer’s directives.   

Isothermal Titration Calorimetry. G5-Ac-(MFCO-MTX)4.0(avg) (70, 200, 400 µM with 

respect to MTX), G5-Ac-(MFCO-MTX)4+ (313.3 µM with respect to MTX), free MTX 

(200 µM)   and FBP (4 µM) solutions were prepared in PBS buffer and then degassed for 

25 minutes.  Before loading, the syringe and cell were each rinsed with degassed PBS 

buffer 3 times. The reference cell of the ITC was refilled with degassed, nano-pure water 

every two days.  After flushing the sample cell with buffer, the project syringe with 

buffer the syringe was filled with the MTX solution and the sample cell was filled with 

the FBP solution. Using ITCRun software the parameters of the ITC were set (Stir Rate: 

250 rpm, Injection Interval: 1000 s, Injection Volume: 12 µL, Injections: 20, 

Temperature: 25°C) and the instrument to allowed auto equilibrate before starting the 

titrations.  Controls were performed by injecting PBS buffer into the same concentration 

of FBP solution as used in the experiments with MTX.  These control runs were then be 

subtracted from the experimental runs to account for heat from mixing or dilution.  After 

the control was subtracted from the experimental run, the data was analyzed using 

NanoAnalyze software.  The new points were then graphed and fit to a binding curve 
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(independent model) which then gave the thermodynamic parameters of the binding 

interaction. 

Surface Plasmon Resonance. SPR experiments were conducted in a Biacore® X 

instrument (Pharmacia Biosensor AB). An immobilized folate binding protein (FBP) chip 

was prepared following the instrument prompted protocols, using a solution of 0.2M 

EDC and 0.05M NHS as an activating solution, 1mg/mL FBP solution as the 

immobilization solution, and ethanolamine as the deactivation solution. The chip was 

characterized using free FA and methotrexate solutions ranging from 0.1 to 2mM. 

Conjugate samples were dissolved in fresh HBS-EP buffer (Fischer Scientific) at 60uM 

and serially diluted to 10, 5, 2.5, and 1.25 µM in buffer. Runs were multichannel, (FC1-

FC2) at 10 mL/min. The system was allowed to equilibrate at the beginning of each run 

for no less than 300 seconds, followed by a 2 minute, 30 µL (50-5-5-5 via bubble 

method) injection. The system was monitored for no less than 500 seconds per injection. 

Between each run, the chip was washed with a 5 µL injection of pH 1.5 buffer to remove 

bound materials followed by a prime step prior to the next injection. 

KB FAR+ Cytotoxicity. KB cells overexpressing folic acid receptors were plated at 

10,000 cells/well in 96-well plates for incubation overnight at 37°C. Treatment (free 

MTX and monomer conjugates) was done in triplicate for 48 hours in complete media 

without folic acid (dialyzed serum used), after which XTT assays were performed.  

 

Results. 

Preparation of average 

dendrimer/ligand conjugates 

(Scheme 5.1). All conjugates 

prepared were white solids. 

Overall reaction yields 

ranged from 37-43%. Peak 

fitting of the UPLC 

chromatograms was 

employed to determine the 

average ligand-to-

Scheme 5.1. Conjugation of (a) monomer to COG and (b) dimer to 

COG via EDC/NHS coupling, and  (c) monomer to MFCO, and (d) 

dimer to MFCO by direct. Conjugations followed by full 

neutralizing of the dendrimer surface with acetic anhydride. 
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dendrimer ratio.  

Isolation of dendrimer conjugates 

contain precise ratios of COG 

and MFCO click ligands (Figure 

5.1). The quantitative results of 

the three isolations are 

summarized in Table 1. The 

purities of the target valency of 

the isolated, precise ratio ligand-

to-particle conjugates range from 

90-100%. Samples containing a 

high average number of MFCO 

ligands, G5-Ac-MFCOx, D-Ac-

MFCOx, and D-Ac-COGx, 

conjugates were obtained with 

averages of 6.6, 5.3, and 6.2 

ligands-per-particle respectively. 

Importantly, these samples 

contain no unfunctionalized (x = 

0) or monofunctional (x = 1) 

materials, making them good 

controls for the observation of 

multivalent (e.g. chelation) effects. A summary of the isolations can be found in Table 

5.1. 

Synthesis of dendrimer/MTX conjugates (Scheme 5.2). Click reactions efficiencies ranged 

from 46-100% with mass recoveries over 95%. A detailed analysis of each sample’s 

fractional composition is summarized in Table 5.2. 

Dihydrofolate Reductase Assay (Figure 5.2). Results are summarized in Figure 2. The 

negative control (FA with no inhibitor) showed a change in absorbance at 235 nm of 

0.04-0.05 units. G5-Ac (isolated from G5-Ac-COGn(avg) sample) served as additional 

negative control and had similar results to the uninhibited sample. The positive control 

 Figure 5.1. (left) rp-HPLC traces and fractions collected from 

average conjugations of (a) G5-Ac-COGx (b) D-Ac-COGx (c) 

G5-Ac-MFCOx and (d) D-Ac-MFCOx (right) rp-UPLC traces 

of average conjugation (black) and each collected fraction. 
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(FA inhibited by free MTX) 

showed complete inhibition of 

enzyme activity at all three 

concentrations of MTX (1nM, 10 

nM, 100 nM) tested. G5-Ac-

(COG-MTX)n samples did not 

effectively inhibit at a dendrimer 

concentration of 1 nM, only 

partially inhibited the protein 

activity at 10nM, and fully 

inhibited the activity at 100 nM. 

D-Ac-(COG-MTX)1 partially 

inhibited the protein activity (20-

40%) at all three concentrations, 

while D-Ac-(COG-MTX)3+ 

partially inhibited (~60%) the 

activity at 1 nM and 10 nM, and had complete inhibition of the protein at  100 nM. 

 

Isothermal Titration Calorimetry (Figure D1). The free MTX control showed the 

Scheme 5.2. Click of precisely defined G5-Ac-COGx, G5-Ac-MFCOx, D-Ac-COGx, and D-Ac-

MFCOx conjugates to -azido-MTX. 

Table 5.1. Summary of isolated, precisely defined conjugates. 
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expected exothermic binding behavior to FBP. The stochastically conjugated monomer 

G5-(MFCO-MTX) sample (Figure D1a) displayed endothermic binding, demonstrating a 

thermodynamic cost for binding to the substrate. The high average G5-Ac-(MFCO-

MTX)4.4 sample showed no interaction (neither endothermic nor exothermic) with the 

FBP substrate via this technique. 

 

Surface Plasmon Resonance (Figure 5.3). G5-Ac-(COG-MTX)n (n = 0.9, 1.9, 2.9) 

samples all indicated only weak, reversible binding at all concentrations tested. D-Ac-

(COG-MTX)n  (n = 1.1, 2.0) samples were also dominated by reversible binding, however 

D-Ac-(COG-MTX)6.0 had a fraction that did not completely dissociate on the timescale of 

this study. There was a corresponding, but smaller, amount of slow dissociating material 

in flow cell 2 for this material (See Figure D2). G5-Ac-(MFCO-MTX)n samples all had 

an undesired interaction with the surface in the control flow cell 2, rendering these 

samples unusable by this technique (Figure D3). 

KB FAR+ Cytotoxicity. G5-Ac-(CO-MTX)n samples were not cytotoxic. All observed 

cytotoxicity in initial studies was attributed to 3-8% free MTX in the samples as 

determined by rp-UPLC (see Figure D4). G5-Ac-(MFCO-MTX)n samples had no 

cytotoxicity (Figure D5). 

Table 5.2. Quantitative summary of click products. 
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Discussion 

PAMAM dendrimer is an 

extensively studied vector for the 

multivalent delivery of 

hydrophobic drugs.[2, 4, 28-30] 

Specifically, the conjugation of 

methotrexate to G5 PAMAM has 

been examined thoroughly for 

many years.[1, 30-32] Although 

early studies showed that this 

system has great promise for in 

vivo applications,[30] challenges 

in scalability and reproducibility 

of the results have prevented 

clinical advancements. In 

Figure 5.3. SPR results of all click products. Color gradients represent least concentrated (light) to 

most concentrated (dark) injections. (a) G5-Ac (b) G5-Ac-(COG-MTX)0.9 (c) G5-Ac-(COG-MTX)1.9 

(d) G5-Ac-(COG-MTX)2.9 (e) D-Ac (f) D-Ac-(COG-MTX)1.1  (g) D-Ac-(COG-MTX)2.0  (h) D-Ac-

(COG-MTX)6.0   

Figure 5.2. DHFR inhibition assay results for (a) G5-COG-

MTX conjugates and (b) D-COG-MTX conjugates. Colors are 

consistent with Figure 1. All assays were performed at 3 

concentrations  for  free MTX or conjugate (1 nM, 10 nM, and 

100 nM) which are displayed from left to right respectively. 
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addition, detailed scientific understanding of these systems has been hampered by the 

presence of trailing generations (G1-G4) and oligomers in the dendrimer employed for 

synthetic and biological studies.  Recently developed methods of isolating PAMAM 

materials as a function of dendrimer size[25] and conjugate valency[10, 11, 27] have 

created a unique opportunity to analyze biological activity of multivalent conjugates and 

substantially improve valency control and characterization of multivalent conjugates. 

Here, we present the first comparison of PAMAM monomer and dimer conjugate by 

measuring binding characteristics (SPR and ITC) and biological activities (DHFR assay 

and cytotoxicity).  These experiments probe the effect of vector size both as a design 

principle for its own sake and to attribute chemical/biological behaviors to both species, 

which are present in previous materials.  In addition to valency, the influence of linker 

length/flexibility/hydrophobicity for the system has also been explored. 

Previous studies have indicated that commercially available G5 PAMAM conjugated to 

the CO ligand then clicked to either 5 or 10 -azido-MTX demonstrated multivalency by 

SPR, cellular uptake, and cytotoxicity.[8] This material contained both monomer and 

dimer materials, convoluting the analyses of the SPR (a mass-sensitive technique). The 

samples studied were also stochastically conjugated, with the #MTX = 5 and #MTX = 10 

containing approximately 15 and 22 ligand-to-particle combinations respectively. While 

this study showed an increase in binding avidity, uptake, and cytotoxicity when #MTX 

increased, the complicated mixture of vector size and ligand-to-particle ratios makes an 

exact mechanistic assignment difficult. The methods employed here allow for the de-

convolution of both factors from vector size (i.e. increased molecular weight, increased 

reachable surface area do to a larger radius, and decreased solubility) and valency. 

Briefly, G5 PAMAM dendrimer monomer (G5) and dimer (D) were isolated from 

commercially available material as outlined previously.[25] Stochastic conjugations to 

fluorinated (MFCO) and non-fluorinated (COG) ring strain promoted click chemistry 

ligands were performed via amide coupling for both vectors. The resulting materials 

contained averaged numbers of conjugated ligands, with ~14 different ligand-to-

dendrimer ratios in each sample (ranging from 0 to 13 covalently attached ligands). These 

stochastic mixtures were then isolated by rp-HPLC following previously reported 

protocols.[27] The HPLC methods described here have proven versatile, being 
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successfully employed to isolate monomer and dimer PAMAM conjugates to 3 published 

ligands to date. The presumed mechanism allowing this isolation protocol is a favorable 

interaction between the conjugated, hydrophobic ligand and the reverse phase column. 

The MFCO ligand, which contains a longer carbon chain in addition to the fluorine on the 

cyclooctyne, has significantly higher resolution than the shorter COG ligand. This fact is 

visualized by comparing Figure 5.1a and c, where G5-Ac-MFCO2.0(avg) has baseline 

resolution between n = 0 and 1, and n = 1 and 2 samples (Figure 5.1 c) whereas G5-Ac-

COG4.7(avg) has peak overlap for all peaks, even n = 0 and n = 1 (Figure 5.1 a). The 

difference between the x = 1 and x = 2 peak centers is 0.64 min for the G5-Ac-COG 

conjugates compared to 1.02 for the MFCO conjugates. The improved resolution likely 

results from the greater hydrophobicity of the longer chain resulting in greater interaction 

with the C18 stationary phase, leading to increased retention as a function of number of 

ligands. The increased resolution is repeated in the dimer conjugates; however the 

resolution of both dimer species is less than their corresponding monomer. As the time 

difference in peak centers for x = 1, 2 is nearly identical between the monomer and dimer 

for both ligands (0.59 and 1.04 for dimer conjugated to COG and MFCO, respectively), 

the reduced resolution is the result of the increased peak width of the dimer species (this 

broadening is the result of a broader distribution of branching defects[25]). Better HPLC 

resolution allows for the isolation of higher precise numbers, increased yield of all 

conjugates, and increased purity of resulting samples.  

The conjugate samples, containing G5 monomer or dimer conjugated to precise numbers 

(x = 0 – 3) or high average (3+ or 4+)  numbers of either ligand, were then “clicked” to -

azido-MTX. Click efficiencies were approximately equal for monomer and dimer 

conjugates. As expected, the fluorinated MFCO ligand had higher click efficiencies under 

similar conditions to the non-fluorinated COG. While not all reactions went to 100% 

completion, the MFCO conjugates resulted in fewer conjugate species than the 

corresponding COG conjugates (Table 5.2). For example, the click reaction of monomer 

with 3 MFCO ligands went to 89% completion with 62% of the product containing 3 

clicked MTX by UPLC. By way of contrast, the reaction employing 3 COG ligands had 

63% click efficiency with only 13% of the product containing 3 conjugated MTX.  

To test if the clicked dendrimer-MTX products retained the anti-folate activity of free 
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MTX, DHFR inhibition assays 

were performed. Both the 

monomer and dimer COG-MTX 

conjugates showed activity 

(Figure 5.2). As such, it can be 

concluded that conjugation of 

MTX to the dendrimer through 

the COG linker does not 

completely extinguish its 

inhibition activity against DHFR. 

A few additional important 

observations can be made. Firstly, 

both vector types required 

approximately 100 times the 

equivalent solution MTX 

concentration to reach similar 

inhibition levels as free MTX. 

Therefore, the inhibition activity 

of MTX is substantially reduced 

by conjugation through this linker. 

Secondly, for the monomer 

samples, there is no apparent 

relationship between the 

conjugate valency (n = 1 – 3) and 

inhibition ability within the 

detection limits of the experiment 

(Figure 5.4a). Figure 5.4b 

illustrates that total solution MTX concentration the inhibition capabilities of the 

conjugates, with full inhibition starting around 100 nM effective MTX concentration 

(compared to free MTX, which fully inhibited the assay at 1 nM).  Inhibition assays for 

the MFCO conjugates are still ongoing (shortage of assay kit). 

Figure 5.4. Inhibition assay results of G5-Ac-(COG-MTX)n 

compared by (a) valency and (b) relative MTX concentration. 
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The ability of the G5-MFCO-MTX conjugates to bind to FBP was measured using ITC. 

ITC measures the thermodynamics of binding between a ligand (i.e. free or conjugated 

MTX) and receptor (i.e. FBP) in solution. In a simplistic experiment, a favorable 

interaction between a ligand and receptor will give a net increase in heat, indication that 

the reaction is exothermic. This observation is the case for free MTX binding to FBP. For 

the case of the stochastically conjugated G5-Ac-(MFCO-MTX)4.0(avg), which has an 

average of 4.0 MTX but contains dendrimers clicked to 0 to ~13 MTX, the heat of 

binding was endothermic. This observation indicates that binding between the conjugate 

and protein can occur, but there is an energetic cost. By contrast, there was no observable 

binding between the isolated high average G5-Ac-(MFCO-MTX)4.4 sample, which 

contains only dendrimer clicked to 3 or more MTX. On interpretation of these results 

would be that the flexibility and hydrophobicity of the MFCO linker cause it to fold into 

the interior regions of the G5 dendrimer, and consequently the enthalpic penalty to 

hydrate the ligand and allow for MTX/protein interaction is significantly higher which 

negatively impacts the enthalpy of binding. Because the lower average sample shows 

some interaction with the protein, it is possible that there is cooperativity within the 

MFCO linkers that further block the MTX from interacting with the protein in the higher 

average sample. An alternative explanation of this data would be that the rp-HPLC 

isolation protocols cause a fundamental change to the dendrimer (i.e. protonation of 

internal amines by trifluoroacetic acid in the HPLC eluent causing a conformational 

change in the three dimensional dendrimer structure) which blocks the protein interaction 

and/or decreases the time the clicked MTX is outside of the dendrimer interior.  This 

theory would explain the difference between the “high averaged” conjugate (which 

displayed no binding) and the stochastic average G5-Ac-(COG-MTX)avg~4 conjugate 

(which displayed endothermic binding). 

SPR experiments allow for the extraction of kinetic information about the binding 

between a ligand (i.e. free or conjugated MTX) in solution flowing over a surface of 

immobilized receptors (i.e. FBP on a dextran surface). A second chip surface is employed 

as a control, which does not contain the protein, allowing for the subtraction of non-

specific interactions of the conjugate and the surface. Both vectors and linker systems 

were evaluated by SPR. As indicated by Figure D3, both monomer and dimer samples 
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conjugated to MTX through the MFCO linker have a negative overall subtracted signal in 

injection/association phase which would indicate “negative” binding, an impossibility. 

Closer examination of the individual flow cell data reveals that while both flow cells have 

positive signal in the injection phase, the signal in the unmodified cell is higher than that 

in the FBP immobilized cell (FC1). This obsevation indicates that the conjugates have 

more interaction with the dextran surface that does not contain any FBP (FC2). 

Theoretically, this non-specific interaction should be equivalent in both flow cells. 

However, because the chip employed had a very high percentage of surface coverage 

with FBP, there is less dextran available in FC1 for nonspecific interaction. While this 

non-specific interaction prevents analysis of the MFCO linker data, it can be qualitatively 

observed that the dimer high average sample, D-Ac-(MFCO-MTX)4.4 (Figure D3h), 

appears to have enough specific interaction with FBP on FC1 to overcome the 

contribution of the non-specific interaction and be observed in the association phase. The 

dissociation phase of this data also has a standard shape; however without a solid 

understanding of the non-specific interactions, quantitative fits of this data are not sound. 

Both the monomer and dimer sample sets clicked to the MTX through the COG linker 

bound to the FBP with minimal nonspecific interaction with FC2. The control samples 

(fully acetylated monomer and dimer with no MTX) have similar binding to both chips, 

which when subtracted give relatively flat chromatograms (Figure 5.3a and e). In 

contrast, all three tested valencies for the monomer show both a dendrimer and total 

solution MTX concentration dependent binding with the FBP surface. Figure 5.5 reveals 

two interesting conclusions. Firstly, the monomer data shows enhanced binding during 

the association phase as valency increases (Figure 5.5a). However, this trend is readily 

explained by the increased total concentration of MTX as valency increases (Figure 

5.5b). There is no multivalency effect for increasing the MTX valency on the G5 

monomer. The dimer data shows a slightly different trend. Solution concentration of 

MTX does not explain the trend of binding in the association phase (Figure 5.5d) and 

dimer more a greater average number of MTX ligands actually show less surface binding 

for a given total concentration of MTX. However, there does appear to be a dependence 

on signal during association strictly on dendrimer concentration (Figure 5.5c). This 

observation suggests that what is primarily being observed during association is a 
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nonspecific mass effect. The interaction still must be “keyed” by conjugated MTX, as 

there is negligible accumulation observed in the D-Ac sample (Figure 5.3e), however the 

non-specific van der Waals binding quickly dominates any MTX effects. 

For all injections, the signal initially rises sharply at the beginning of the injection and 

quickly reaches equilibrium between association and dissociation. This behavior is 

indicative of a fast-on, fast-off relationship. At the end of the injection, all 

chromatograms quickly return to baseline, confirming the fast dissociation of all bound 

Figure 5.5. Saturation of SPR signal during the binding phase as a function of (a) conjugate 

concentration for monomer samples, (b) solution MTX concentration for monomer samples (c) 

conjugate concentration for dimer samples, and (d) solution MTX concentration for dimer samples. 
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species. This observation suggests that even the divalent (66%) and trivalent species 

(13%) in the G5-Ac-(COG-MTX)2.9 experience only monovalent binding to the FBP 

surface. 

By comparison, a recent similar study by van Dongen, Banaszak Holl et al.[18] observed 

greatly increased avidity via SPR for monomeric G5-Ac-(COG-FA)n (n = 0, 1, 1.2, 1.9, 

2.7) conjugates, with a significant portion of bound material not dissociating over the 

timescale of the experiment. Because this observation held true for even a purely 

monovalent (folic acid-to-dendrimer ratio of 1) sample, it was concluded that the 

observation of increased avidity was due to the sum of weak van der Waals interactions 

between the dendrimer and protein surface. It was also determined that this interaction 

must be initiated by an interaction between a single conjugated FA and the FBP on the 

SPR chip surface. MTX, as a structurally modified competitive inhibitor of FA, may 

undergo a similar interaction with the FBP. However, although the experiments here were 

performed on surfaces with both higher protein densities and higher conjugate 

concentrations, a similar avidity increase was not observed at even the highest valency 

tested for the monomer(3).  For the MTX case, there are indications of multivalency for 

the high averaged sample, however, when comparing the overall shape of the G5-FA and 

D-MTX sensograms (Figure 5.6) it becomes clear that there are some fundamental 

differences. For the G5-FA samples, nearly all materials that bound (to a chip density 

dependent saturation point) remained 

permanently attached to the surface. By contrast, 

a large percentage of the D-MTX material 

quickly dissociates after the conjugate flow has 

stopped. 

The D-Ac-(COG-MTX)n conjugates show a 

dendrimer concentration, not MTX concentration, 

dependent association to the protein surface 

(Figure 5.5c). The absolute signal, when 

compared to that of the monomer/MTX 

conjugates, is approximately 10x higher in the 

dimer species at equivalent molar concentrations. 
Figure 5.6. Comparison of the SPR 

sensograms of a D-Ac-(COG-MTX) sample 

to two different G5-Ac-(COG-FA) samples, 

with total signal normalized. 
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A 2 fold increase may be expected by this technique due to doubling in mass. This 

increase leads to a qualitative assumption that more binding occurs for equivalent total 

solution MTX concentrations in dimer samples than monomer samples.  This five-fold 

increase over the “expected” signal in the association signal is likely the larger mass and 

radius of the dimer and  its lower solubility[25] increasing the nonspecific interaction 

between the dendrimer/FBP. A chelate-type binding can be ruled out as the primary cause 

of exceptionally high signal in the association phase as it is seen in the monovalent D-Ac-

MTX1.1 sample. When examining the dissociation phase, the primarily monovalent (n = 

1.1) and divalent (n = 2.0) dimer-MTX conjugates completely and quickly dissociate at 

the lowest three concentrations (5 µM, 25 µM, 40 µM), indicating a dominance of weak, 

monovalent binding for these species. However, the high average sample at all 

concentrations and divalent sample, at the highest concentrations of the mono and 

bivalent samples, are distinguished by dissociation phases that do not return to the 

original baseline over the time course of the SPR experiment. This behavior indicates a 

much stronger interaction between the conjugate and protein surface, indicating a 

separate mechanism of binding. There are several possible explanations for this 

observation. (1) As there is some nonselective binding at all concentrations for the high 

average sample in FC2, the permanently bound fraction may be due to reduced solubility 

due to the relatively high amount of conjugated MTX. However, this explanation does 

not adequately explain why there is significantly more permanent binding in the FC1, or 

why the total amount of permanent bound material is constant and not concentration 

dependent. Also, the 60 µM injections for mono and bivalent dimer do not have any 

permanent nonselective binding in FC2 but do not completely return to baseline in FC1. 

This observation suggests that while there is some nonselective interaction occurring in 

the high averaged sample, there is still significantly more interaction with the FBP 

immobilized surface. (2) Because the dimer vector is twice as large as the monomer 

vector, it can access roughly 4 times the surface area on the SPR chip. This additional 

surface accessibility may enable chelate-type binding (or multiple weak key interactions 

in the terms of Licata and Tkachenko)[17] of a single conjugate and multiple FBP 

receptors. This type of binding should be achievable for bivalent and higher conjugates 

but not the monovalent conjugate. Instead, the monovalent conjugate behaves identically 
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to the bivalent conjugate, with a small fraction of permanently bound material achieved at 

the highest concentration. (3) The solution MTX concentration in the high average 

sample and highest concentrations in the mono and bivalent samples is finally high 

enough to trigger a lock-and-key mechanism as observed in the folic acid system. The 

relative weakness of the MTX binding is overcome only when the vector is much larger 

(which decreases the solubility/entropy of the vector and increases the total van der 

Waals interactions) and the relative MTX concentration higher (which is achieved by the 

high averaged sample by high local concentrations at lower relative concentrations). In 

the related FA study, any material bound by the lock-and-key mechanism was 

permanently bound. In this case, a significant amount of the bound material still 

dissociates. Thus, the mechanism cannot be identical for MTX and FA. At this point, no 

single proposed mechanism is sufficient to explain all the MTX/dimer data. It is possible 

that the binding seen at the highest concentrations (60 µM) of all dimer valencies is the 

beginning of a MTX-keyed nonspecific interaction, and that the binding at lower 

concentrations of the high valency system is due to multiple MTX/FBP interactions for a 

single conjugate. Further work would need to be done to test this theory, including testing 

higher concentrations of the mono and bivalent systems, and lowering the FBP density to 

eliminate the possibility of multiple interactions in the high valent system. 

Previous SPR studies on dendrimer-COG-MTX conjugates containing mixtures of dimer 

and monomer indicated both monovalent and multivalent binding occurred for stochastic 

valencies of n = 5 and n = 10.[8] The present work indicates that the mechanism for the 

multivalent portion of this binding is the presence of dimers conjugated to 3 or more 

MTX. Considering that the original dendrimer material contained ~14% dimer[25] and 

assuming a Poisson distribution, the “multivalent” portion of the n = 5 and 10 samples 

would be 13% and 14%, respectively. It is possible, therefore, that observed permanent 

binding portion in the previous work is contributed exclusively by high valency dimer 

materials. This work does not examine monomers conjugated to 4 or more MTX, so the 

potential activity of those conjugates cannot be commented on.  

Free MTX is cytotoxic to KB FAR+ cells (Figure D5). Previous work[8] has indicated 

that MTX bound to a commercial G5 dendrimer (containing monomer and dimer 

impurities) through the CO linker discussed here is also cytotoxic. However, the present 



  

120 
 

work indicates that both vector-MTX conjugates are non-toxic to KB FAR+ when bound 

through the longer, MFCO linker. This observation further confirms, in addition to the 

ITC and SPR results, that this linker is not ideal for this specific system, although it gives 

higher yields in both HPLC isolation and click reaction protocols. Monomer-CO-MTX 

conjugates initially showed similar cytotoxicity profiles as previous results (data not 

shown), however this toxicity was later attributed to a small amount (<5%) of unbound 

MTX remaining in the sample (See Figure D2). Studies to determine if the dimer sample 

is cytotoxic are still ongoing. 

 

Conclusions 

New chromatographic methods have enabled the examination of vector molecular weight 

effects (monomer vs. dimer), linker system effects (COG vs. MFCO), and valency effects 

on the highly studied drug delivery system of PAMAM dendrimer conjugated to 

methotrexate. The combined experimental data from DHFR inhibition, ITC, SPR, and in 

vitro experiments allow for several major conclusions to be drawn. Firstly, the presence 

of G5 PAMAM dimers, which contribute to 14% or more of a commercial dendrimer 

sample, contribute significantly to observed activities. They are often overlooked in data 

interpretation, but in mass sensitive techniques such as SPR they actually contribute 

larger signal per particle. They also can reach a larger surface area due to their larger size, 

which can potentially create new activity mechanisms. In this system, dimer appears to 

be responsible for signal previously attributed to pure valency effects via SPR. When 

comparing this data to the mechanism of increased avidity for similar PAMAM-folic acid 

conjugate, it was determined that the MTX/FBP interaction is not strong enough to “key” 

the nonspecific interaction between the polymer and protein until the solution MTX 

concentration is significantly higher, or the dendrimer scaffold is much larger. Further, 

the observed binding is not nearly as strong for MTX as for FA, further distancing the 

two mechanisms. Alternatively, the possibility of a multiple MTX-FBP bridges for the 

high valency dimer cannot be eliminated as it was for the FA system. This idea was first 

described by Licata and Tkachenko,[17] who proposed that weakening the FA bond may 

slow the formation of the nonspecific interactions between dendrimer and protein to 

allow the formation of bridges, and MTX is essentially a weaker-binding derivative of 



  

121 
 

FA.  

Secondly; some specific observations for the influence of linkers can be made. Linkers 

can affect both chemical and biological activity. Here, a more hydrophobic linker with 

fluorine modification (MFCO) had more favorable chemical behavior leading to higher 

product yields compared to the original linker (COG). However, this system proved to be 

inactive biologically by three separate techniques. The flexibility of the PAMAM vector 

may limit the importance of the decreased rigidity of this linker and contribute to 

unfavorable thermodynamic costs for binding (i.e. interaction of the hydrophobic linker 

with the aqueous environment). Careful examination of linker effects must be undertaken 

specific to the desired application. Finally, conjugate valency has been examined. Here, 

solution based techniques (inhibition assay) showed little dependence on valency outside 

of effective concentration. However, in a surface based application (SPR), higher valency 

created a new binding mechanism through the chelate effect. Careful consideration of 

vector size and purity, linker chemistry, and conjugate valency are critical for creating 

biologically successful polymeric drug delivery systems. 
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Chapter 6 

Conclusions and Future Directions 

This dissertation examines the impacts of polymer scaffold and conjugation chemistry 

heterogeneity on the design, synthesis, characterization, and application of multivalent 

polymer conjugates for drug delivery. Several platform design factors were 

systematically studied, including vector size and homogeneity, valency, and linker 

chemistry. Methods to isolate precise ligand-to-vector ratios were expanded to include 

new linker ligand, to generate novel nanostructures, and synthesize well defined 

dendrimer-drug conjugates for mechanistic study. The ability to produce polymer 

conjugates of low mass dispersity and high ligand-to-scaffold ratio purities makes this 

system an ideal candidate for both mechanistic studies and as a future clinical candidate. 

One of the first design principles that must be considered in developing a multivalent 

drug delivery platform with any hope for FDA approval and clinical application is the 

ability to reproduce the material at large scales without loss of activity. To accomplish 

this goal, the scaffold to which drugs, targeting entities, or imaging agents are conjugated 

must be carefully selected. The dendrimer architecture has potential due to its low 

polydispersity/narrow mass range compared to branched or linear polymers. However, 

the work in Chapter 2 shows that the polydispersity of PAMAM dendrimer is often 

overlooked. Importantly, the conclusions of Chapter 5 suggest that oligomer defects, 

which compose ~30% of the commercial material, can have an impact on both 

characterization and observed activity of conjugates containing the oligomeric mixtures. 

Chapter 2 introduces methodology to isolate the monomeric scaffold of interest, reducing 

the mass range by several orders of magnitude. This advancement allows for subsequent 

synthesis of multivalent conjugates that employ dendrimer scaffolds with very narrow 

size ranges, allowing the decoupling of mass effects (i.e. solubility, biodistribution, 

surface area, etc.) from multivalent effects. Consequently, the studies in Chapter 5 

comparing the activities of multivalent monomer-MTX and dimer-MTX conjugates 

conclude that the increased mass and surface area of dimer present in commercial 
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dendrimer significantly impacts the observed binding of the subsequent conjugate. 

Further in vitro and eventually in vivo work is necessary to provide insight to larger 

impacts of high weight materials in present and future dendrimer conjugates. 

Alternatively, the megamers introduced in Chapter 3 may provide a synthetic strategy to 

achieve vectors of the desired size (i.e. synthetic dimers instead of isolated dimer 

fractions) whilst retaining the properties, such as solubility and ease of synthesis, of the 

lower generation. Continued investigation of these synthetic megamers may provide a 

route to modular, bifunctional nanostructures with precise valency. Such advancements 

would require synthesis and isolation of precise ratio ligand-to-dendrimer conjugates with 

primary amine surfaces remaining for functionality. This work is currently ongoing in the 

Banaszak Holl group.  

As highlighted in Chapter 1, the presence of a distribution of ligand-to-vector ratios can 

also impede the advancement of a drug delivery platform. These distributions are difficult 

to characterize by commonly employed techniques, therefore they can go unnoticed. 

However, different distributions in ligand-to-vector ratios lead to the presence of 

significantly different populations in samples that appear identical by many 

characterization techniques. Problems with sample reproducibility is likely to become 

more prevalent as a platform is scaled from the research laboratory to the clinic, as mass 

transport and controlling reaction conditions becomes more challenging. The isolation of 

conjugates with precise click ligand-to-dendrimer ratios, first introduced by Mullen, 

Banaszak Holl et al. and further developed in the work featured in Chapters 3-5 of this 

dissertation, provides one synthetic strategy to overcome such challenges. While the 

synthesis of precise ratios of biologically active entities, such as folic acid or 

methotrexate, has not yet been successful, the narrow and well-defined distributions 

resulting from the reaction of precise conjugates to modified drugs is a major step 

forward. One of the most significant advances in the work presented here, however, is the 

synthesis of dendrimer-drug conjugates with valencies of precisely one drug per 

dendrimer. This accomplishment has allowed us to distinguish between mechanisms of 

binding due to polymer interactions and multivalent drug interactions. For both cases 

examined here, it has been determined that increased avidity (as measured by SPR) of 

multivalent dendrimer conjugates, which has been previously attributed to a multivalent 
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FA or MTX binding effect, are due to a keyed summation of weak van der Waals forces 

between the dendrimer scaffold and protein surface. While the interaction between the 

polymer and protein itself is nonspecific, the relatively stronger and specific initial 

interaction between the conjugated FA or MTX and surface-immobilized protein is 

necessary to initiate the observed binding. This fact is further emphasized because 

dendrimers with no folic acid do not have significant binding to the FBP. FA is a “strong 

key” for this system, and is able to initiate high avidity binding for a monovalent 

dendrimer conjugate at the lowest concentrations studied in Chapter 4. It is clear that  the 

mechanism of free folic acid binding to the FBP is different, as this interaction quickly 

and completely dissociates even at much higher solution concentrations. These results 

have allowed for direct experimental evidence favoring a FA-keyed mechanism that was 

one of three proposed mechanisms in the literature to explain the observation of high 

avidity in folic acid-dendrimer systems. Thirty-six experimental measurements at various 

valencies and concentrations have also allowed for the development of a kinetic model 

for this system which involves two binding populations; a dissociating population and a 

permanently bound population. The SPR studies with methotrexate provide a “weak key” 

analogue to this study. The much weaker interaction between methotrexate and the FBP 

was shown to not be able to initiate this strong binding mechanism until much higher 

relative concentrations. The lock-and-key mechanism, which has not received much 

attention in the literature, has proven to be consistent with the results of these two cases. 

It therefore should be considered for possibly playing a role in other polymer conjugates. 

Further exploration of monovalent dendrimer conjugates must therefore be done. For 

example, multivalent dendrimer-vancomycin conjugates have shown significantly 

enhanced binding to surfaces that mimic both vancomycin susceptible cell surfaces 

(“strong key”) and vancomycin resistant cell surfaces (“weak key”). A monovalent 

conjugate is necessary to determine whether this binding is due to multivalent binding of 

the conjugate to the surfaces or a vancomycin keyed interaction of the dendrimer with the 

surface. The work presented in Chapters 4 and 5 demonstrate the importance of obtaining 

non-stochastic average conjugates for the determination of active populations in 

multivalent systems. Methodology of obtaining and applying such samples has been 

successfully demonstrated. Further studies of current and future multivalent systems will 
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add to the greater understanding, development, and improvement of polymer-based drug 

delivery systems. 

Linker chemistry between a vector and drug can have a beneficial impact on the activity 

of the system, providing flexibility and longer range to allow for multivalent interaction 

with a surface immobilized target. However, there can also be thermodynamic penalties 

associated with longer linkers. These tradeoffs have been the subject of many theoretical 

and experimental studies to date with no encompassing conclusions. Hence, it is 

important to consider the needs of the specific scaffold and target in question when 

designing a multivalent conjugate. For example, a rigid scaffold (such as a “hard” 

nanoparticle) may need a more flexible linker to provide the conjugated drug the 

necessary sampling space for binding to a target. An inherently flexible scaffold (like a 

PAMAM dendrimer) may not need this additional added flexibility to achieve binding. In 

the system examined in this dissertation, the linker chemistry has another important role: 

providing the mechanism by which precise ligand-to-dendrimer conjugates can be 

isolated. Hydrophobic interactions between the linker and stationary phase via HPLC 

causes an increased retention time as a function of valency. One of the strengths of this 

system is it’s robustness, with eight ligands successfully employed in separations to date 

(the two ring-strain promoted click ligands and azide ligand described in Chapters 3-5, 

plus the alkyne ligand in previous literature work, two hydrophobic dyes, and two 

additional click ligands (alkene and thiol) which have not yet been published in peer-

reviewed literature). This versatility provides a good platform for further modification 

bioactive molecules. Further functionalities should continue to be tested, such as primary 

amine terminated ligands for peptide coupling, and charged ligands for studies of 

controlled numbers of charges on a nanoparticle surface for cell membrane interaction. 

More hydrophobic linkers have a greater interaction with the reverse-phase column 

employed here, therefore longer carbon chains and ring structures provide better peak 

separation. This property provides a handle by which the yields and purities of isolations 

may be manipulated. For example, the mono-fluorinated cyclooctyne structure used in 

Chapters 3 and 6 provides the best peak resolution of any system studied to date, possibly 

due to the 5 methylene chain compared to 1 methylene of the shorter cyclooctyne ligand. 

Another benefit of this particular ligand is that fluorine modification significantly 
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improves the subsequent click reaction efficiencies. As such, this ligand seemed the most 

promising for drug delivery applications. However, subsequent testing revealed that the 

conjugates utilizing this linker are inactive. It may be that the very property that improves 

the conjugate’s HPLC resolution (hydrophobicity) causes its inactivity. Hydration of the 

longer carbon chain may be so thermodynamically unfavorable that the ligand, and 

consequently clicked drug, spends most of the time folded into the interior space of the 

dendrimer, which in return means the clicked entity (MTX) is less available for 

interaction with solution and surface targets (FBP on a SPR chip surface). Therefore, 

future studies should target ring-strain ligands that contain the fluorine modification but 

with a shorter methylene chain. This work as a whole demonstrates the necessity of 

carefully selecting the proper linking chemistry for the particular system in question. 

This dissertation has highlighted some of the remaining challenges in creating successful 

multivalent conjugates for biomedical applications. In particular, PAMAM dendrimers 

were discussed as a potential scaffold due to their favorable chemical and biological 

properties, and methodology to produces gram-scale quantities of low mass range G5 

dendrimers has been introduced. The low mass range and hydrophilic nature of 

dendrimers has also allowed for the development of dendrimer conjugates with precise 

ligand-to-dendrimer ratios, allowing for the generation of drug-functionalized conjugates 

with well-defined valency. This accomplishment allows for the determination of active 

populations (i.e. stronger binding) within a stochastic mixture. Future directions for this 

system should focus on developing linker chemistries with optimized properties for 

isolation and click reaction. Further mechanistic and biological testing of drug conjugates 

should also occur, including the FA and MTX systems studied here additionally 

conjugated to precise numbers of dye and other systems such as the vancomycin 

conjugates previously mentioned. Additionally, future studies employing lower 

generations of dendrimer (for example, G3 with a molecular mass approximately one 

quarter of the G5 monomer) with the “strong key” folic acid would allow for a 

quantitative assessment of the contributions of polymer mass to the nonspecific 

interactions allowing for increased avidity in the FA/FBP system. 
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Appendix A 

 

Supplementary Information for Chapter 2 

 

Size Exclusion Chromatography. Size exclusion experiments were performed by gel 

permeation chromatography on an Alliance Waters 2695 separation module equipped 

with a 2487 dual wavelength UV absorbance detector (Waters Corporation), a Wyatt 

HELEOS Multi Angle Laser Light Scattering (MALLS) detector, and an Optilab rEX 

differential refractometer. Columns employed were TosoHaas TSK-Gel Guard PHW 

06762 (75 mm × 7.5 mm, 12 mm), G 2000 PW 05761 (300 mm × 7.5 mm, 10 mm), G 

3000 PW 05762 (300 mm × 7.5 mm, 10 mm), and G 4000 PW (300 mm × 7.5 mm, 17 

mm). Column temperature was maintained at 25 ± 0.1 °C with a Waters temperature 

control module. The isocratic mobile phase was 0.1 M citric acid and 0.025 wt % sodium 

azide, pH 2.74, at a flow rate of 1 mL/min. The sample concentration was 10 mg/5 mL 

with an injection volume of 100 µL. This was used to calculate the weight average 

molecular weight, Mw, and the number average molecular weight, Mn, with Astra 5.3.2 

software. 

 

Potentiometric Titration. Potentiometric titration was carried out using a Mettler 

Toledo DL55 Titrator equipped with a Mettler Toledo DG-111-SC pH probe and custom 

software. A known mass of sample was dissolved in 20 mL of 0.1 M NaCl solution and 

the pH was adjusted to 2-2.5 with 0.1 M HCl. The solution was then autotitrated with 

volumetric standardized 0.1 M NaOH with 0.02 mL injections until pH 12 was reached. 

The results were analyzed using GPC Mn to give the average number of primary amines 

per dendrimer in a sample.  

 

Determination of Extinction Coefficients. Solutions were diluted in DI water to 0.1-

0.25 mg/mL. Measurements were taken on a Shimazdzu UV-1601. Each measurement 
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was done in triplicate representing a separate isolation batch to determine standard 

deviation.  

 

 

 

Figure A1. Known amounts of TFA spiked into dendrimer samples (blue diamonds) 

have a linear relationship with 
19

F NMR peak intensity. Effective TFA removal depends 

on the G5 mass. loading of the PD-10 columns, as seen by colored stars: 5 mg (red), 10 

mg (green), 40 mg (purple), and 100 mg (orange).  
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 Figure A3. 
1
H NMR spectra of fractions T and I-IV.  

 

 

 

 

 

Figure A2. Change in NMR spectra of as-received G5 PAMAM as a function pH. 
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Table A1.  Summary of mass analyses on fractions T and I-IV. 

 

ppm T I II III IV** 

3.5 88 153 278 317 264 

3.3 108 177 331 405 404 

3.1 93 152 218 321 293 

2.9 182 312 578 711 691 

2.7 101 171 316 331 369 

2.5 185 314 570 694 638 

 

Table A2.  Integration values for 
1
H NMR of fractions T and I-IV relative to an internal 

dioxane spike. *Fraction IV had low solubility in experimental conditions. 

 
 

 

 

 

  MALDI-TOF-MS 

peaks 
GPC 

Sample Mn Mw PDI 

As received G5 

 

13,700 28,270 30,820 1.090 

26,400 

52,400 

79,100 

T 

(Trailing Generations) 

Fractions 23-30 

7,100 19,980 21680 1.085 

14,500 

27,400 

I 

(Monomer) 

Fractions 38-52 

14,000 27,100 27,160 1.019 

28,500 

58,100 

II 

(Dimer) 

Fractions 59-63 

27,600 51,740 53,380 1.032 

53,800 

III 

(Trimer) 

Fractions 69-71 

29,000    

42,000 72,160 75,860 1.051 

58,500    

84,200    

IV 

(Tetramer) 

Fractions 75-78 

 

 

28,800 88,710 

 

 

101,100 

 

 

1.151 

 

 
43,700 

56,700 

84,500 

110,100 
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 MALDI-TOF-MS GPC 

Fraction Peak Max (Da) Mn Mw PDI 

As-received G5 26,400 28,270 30,820 1.090 

i (F38) 21,000 21,060 21,200 1.007 

ii (F42) 27,200 25,940 26,210 1.024 

iii (F47) 29,600 28,560 28,860 1.010 

iv (F52) 29,800 31,160 31,500 1.045 

 

Table A3. Summary of mass analysis of fractions i-iv. 

 

  

 
 

Figure A4. Titration of 57.8 mg of fraction I. 
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Figure A5. Titration of 21.7mg of fraction II. 

 

 
 

Figure A6. Calibration curves used to determine extinction coefficients of fractions T 

and I-IV at 210 nm. 
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Sample Extinction Coefficient [(mg/mL)
-1

] Extinction Coefficient [M
-1

] 

T 9.5(+/-2.0) 1.7(+/-0.6)E+05 

I 10.0(+/-0.3) 2.7(+/-0.1)E+05 

II 9.8(+/-0.9) 4.9(+/-0.4)E+05 

III 7.5(+/-1.0) 5.3(+/-0.6)E+05 

IV 2.3(+/-0.7) 2.1(+/-0.7)E+05 

 

 

Table A4. Extinction coefficients of samples at 210 nm. Mn from GPC was used in the 

molarity calculation. 
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Appendix B 

Supplementary Information for Chapter 3 

 

 

 

 

 

Figure B1. (left) Semi-prep HPLC isolation of precisely defined G5-Aziden species, colored bars represent 

combined fractions (right) Subsequent reinjection into a UPLC shows peaks do not recenter, analogous to 

the MFCO conjugate separation, indicating that each sample now contains a single, particular 

ligand/particle ratio. 
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Figure B2. NMRs of G5-MFCOn. Ratio between acetylated peak at 1.9 (3 protons per each of 93 primary amines 

as determined by potentiometric titration) compared to 5 protons between 1.5 and 1.3 on MFCO ligand. 

n avg (by NMR) avg (by UPLC) % Purity (UPLC) % Recovered 

0 0.0 0.0 >95% 47% 

1 1.0 1.0 >95% 58% 

2 2.0 2.0 >95% 77% 

3 2.8 3.0 >95% 46% 

4 3.4 4.0 >95% 43% 

Table B1. Quantitative summary of G5-MFCOn HPLC separation. 
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Figure B3. NMRs of G5-Aziden. Ratio between acetylaed peak at 1.9 and the aromatic peaks of the azide ligand. 

 

 

n avg (by NMR) avg (by UPLC) % Purity (UPLC) % Recovered 

0 0.0 0.0 >95% 59% 

1 1.0 1.0 >95% 70% 

2 2.0 2.0 >95% 41% 

3 2.5 3.0 >95% 38% 

4 3.5 4.0 >95% 33% 
Table B2. Quantitative summary of G5-Aziden HPLC separation. 
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Figure B4. Possible side products of click reaction. 
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Appendix C 

Supporting Information for Chapter 4 

 

Figure C1. 
1
H-NMR of G5-Ac-COG4.0(avg) in D2O. The peak at 1.97 ppm is the acetyl peak for the 

dendrimer arm, equal to 93*3-x (93 is the number of arms on G5 monomer, 3 protons per acetyl group, and 

x being number of arms functionalized with COG). The multiplet at 4 ppm should integrate to 5 protons per 

COG on a dendrimer, giving an NMR average for this conjugate of 1.4. 

 

Figure C2. 
1
H- NMR of isolated G5-COGx (x=0, black; x =1, red; x = 2, orange; x = 3, green; x = 4, blue) 

in D2O. 
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Table C1. G5-Ac-COGx Isolation Results 

1H-NMR values are skewed, especially at higher valencies, because they assume that each 

dendrimer in the population has the same number of primary amines. However, branching 

defects have been shown to contribute to the peak width observed in rp-HPLC. Additionally, all 

work to date shows that the “more perfect” dendrimer (i.e. with more arms and less defects) is 

better retained on the column. Therefore, at higher valencies, when a more narrow set of 

fractions is collected to maintain high sample purity, the number of end groups per dendrimer is 

decreased by an undetermined amount. 

 

Figure C3. UPLC of starting materials (dotted lines), and click products at 285 nm (yellow lines) and 210 

nm for (a) n=1, red (b) b) n=2, orange (c) n=3, green (d) n=4, blue. 
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Figure C4. NMR of click products in D2O for n=1.0 (red), 1.2 (orange), 1.9 (green), 2.7 (blue) from bottom 

to top. The peak at 8.6 ppm should integrate to 1 proton per MTX on the dendrimer, and the peaks at 7.7 

and 6.8 ppm as 2 protons per MTX. 
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Figure C5. Individual flow cell chromatograms for low density chip. (a) n = 0, FC1 (b) n = 0, FC2 (c) n = 

1.0, FC1 (d) n = 1.0, FC2 (e) n = 1.2, FC1 (f) n = 1.2, FC2 (g) n = 1.9, FC1 (h) n = 1.9, FC2 (i) n = 2.7, 

FC1 and (j) n = 2.7, FC2. 
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Figure C6. Individual flow cell chromatograms for high density chip. (a) n = 0, FC1 (b) n = 0, FC2 (c) n = 

1.0, FC1 (d) n = 1.0, FC2 (e) n = 1.2, FC1 (f) n = 1.2, FC2 (g) n = 1.9, FC1 (h) n = 1.9, FC2 (i) n = 2.7, 

FC1 and (j) n = 2.7, FC2. 
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Figure C7. SPR chromatograms (solid lines) on the low density chip overlaid with the four proposed fits 

(dotted lines). (a) n = 1.0, 1.25 µM (b) n = 1.0, 2.5µM (c) n = 1.0, 5 µM (d) n = 1.0, 10 µM (e) n = 1.0, 20 

µM (f) n = 1.2, 1.25 µM (g) n = 1.2, 2.5µM (h) n = 1.2, 5 µM (i) n = 1.2, 10 µM (j) n = 1.2, 20 µM (k) n = 

1.9, 1.25 µM (l) n = 1.9, 2.5µM (m) n = 1.9, 5 µM (n) n = 1.9, 10 µM (o) n = 1.9, 20 µM (p) n = 2.7, 1.25 

µM (q) n = 2.7, 2.5µM (r) n = 2.7, 5 µM (s) n = 2.7, 10 µM (t) n = 2.7, 20 µM 
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Figure C8. SPR chromatograms (solid lines) on the high density chip overlaid with the four proposed fits 

(dotted lines). (a) n = 1.0, 1.25 µM (b) n = 1.0, 2.5µM (c) n = 1.0, 5 µM (d) n = 1.0, 10 µM (e) n = 1.2, 1.25 

µM (f) n = 1.2, 2.5µM (g) n = 1.2, 5 µM (h) n = 1.2, 10 µM (i) n = 1.9, 1.25 µM (j) n = 1.9, 2.5µM (k) n = 

1.9, 5 µM (l) n = 1.9, 10 µM (m) n = 2.7, 1.25 µM (n) n = 2.7, 2.5µM (o) n = 2.7, 5 µM (p) n = 2.7, 10 µM.  
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Table C2. Average residuals for each fit parameter for both chip densities. 
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Figure C9. Sensograms generated during chip immobilizations. (a) Low density chip, FC1 (protein RUs: 

10,000) (b) Low density, FC2 (c) High density, FC1 (protein RUs: 20,000) (d) High density, FC2 
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Synthesis of COG Ligand 

Synthesis of 8,8-dibromobicyclo[5.0.1]octane (S1). In an oven dried flask under nitrogen, 

cycloheptene (4.43mL, 38mmol, 1.0equiv.), potassium tert-butoxide (8.52g, 76mmol, 

2.0equiv.), and anhydrous hexanes (9mL) was added together. Mixture was stirred and 

cooled to -10C in an ice/acetone bath. Once to temperature, bromoform (4.9mL, 

57mmol, 1.5 equiv.)was added dropwise. Once the mixture appears as a milky brown 

color, it was brought to room temperature (25C) and stir overnight.  Water (50mL) was 

added and the mixture was acidified with concentrated hydrochloric acid. Extract with 

ethyl acetate (3x20mL) and wash with water (3x20mL). Mixture was dried with MgSO4, 

filter, and solvent was removed under reduced pressure. No further purification necessary 

to produce a brown oil in 94% yield. 

 

 

 

Scheme C1. Synthesis of Methyl-2-bromocyclooct-1-en-3-glycolate. 

Synthesis of Methyl-2-bromocyclooct-1-en-3-glycolate (S2): In an oven dried flask 

under nitrogen, anhydrous toluene (5.0mL), S1 (2.50g, 9mmol, 1.0equiv.), and methyl 

glycolate (6.35mL, 84mmol, 9equiv.) were added. Mixture was stirred at room 

temperature (25C) and flask was covered with aluminum foil. Silver perchlorate (3.85g, 

19mmol, 2 equiv.) was added to reaction flask and stirred for 90minutes. Silver salts 

filtered out and washed with ethyl acetate. Remove solvent under reduced pressure and 

immediately chromatograph using 2-15% ethyl acetate:cyclohexanes to produce a yellow 

oil in 62% yield. 

 

 

 

Scheme C2. Synthesis of cyclooct-1-yn-3-glycolic acid 
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Synthesis of cyclooct-1-yn-3-glycolic acid (S3): In an oven dried round bottom flask 

under nitrogen, Suspension of sodium methoxide (0.0278g, 0.5mmol, 0.5 equiv.) in 

DMSO (5mL) was made and S2 (0.2866g, 1mmol, 1.0equiv.) and DMSO (1mL) was 

addded. Stir at room temperature for 15 minutes. Additional sodium methoxide (0.0835g, 

1.5mmol, 1.5 equiv.) and DMSO (0.5mL) was added and mixture stirred until reaction 

was completed (determined by TLC). Water was added (0.3mL) and solution stirred for 

one hour. Reaction was acidified with 1.0M HCl solution. Extract with ethyl acetate 

(2x25mL). Organic Layer was dried over MgSO4, filtered, and removed solvent in vacuo. 

Chromatograph using 0-8% MeOH:Dichloromethane to obtain product as a yellow oil in 

38% yield. 
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Supplementary Information for Chapter 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D1. ITC results for (a) stochastic average G5-Ac-

(MFCO-MTX) and (b) high average G5-Ac-(MFCO-MTX) 

showing endothermic and nonbinding behavior, respectively. 
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Figure D2.  Individual flow cell data for dendrimer CO-MTX conjugates. (a) G5-Ac-(COG-MTX)0.9 

FC1 (b) G5-Ac-(COG-MTX)0.9 FC2 (c) G5-Ac-(COG-MTX)1.9 FC1 (d) G5-Ac-(COG-MTX)1.9 FC2 

(e) G5-Ac-(COG-MTX)2.9 FC1 (f) G5-Ac-(COG-MTX)2.9 FC2 (g) D-Ac-(COG-MTX)1.1  FC1 (h) D-

Ac-(COG-MTX)1.1   FC2 (i) D-Ac-(COG-MTX)2.0  FC1 (j) D-Ac-(COG-MTX)2.0   FC2 (k) D-Ac-

(COG-MTX)6.0  FC1 (l) D-Ac-(COG-MTX)6.0   FC2 
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Figure D3. SPR sensograms for dendrimer-MFCO-MTX conjugates show negative binding phases, 

corresponding to high nonselective binding in FC2. 

  

Figure D4. Free MTX is detected by absorbance at 285 nm (orange lines) but less so at 210 nm (purple 

lines) in G5-Ac-(COG-MTX)n samples. (a) G5-Ac-(COG-MTX)0.9 (b) G5-Ac-(COG-MTX)0.9 (c) G5-

Ac-(COG-MTX)2.9 
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Figure D5. Cytotoxicity of (a and b) monomer (n = 1.0, red; n = 1.7, orange; n = 2.7, green; n = 4.4, 

blue) and (c) dimer (n = 1.1, red; n = 2.1, orange; n = 4.4, green) MFCO-MTX conjugates. 
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Figure D6. Comparison of UPLC chromatograms (210 nm) of click reaction starting materials 

(dotted lines) and click products (solid lines). 
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Figure D7. 
1
H-NMR of G5-(COG-MTX)n, for n=0.9 (red), 1.9 (orange), and 2.9 (green). 

Figure D8. 
1
H-NMR of D-(COG-MTX)n, n=1.1 (red), 2.0 (orange), and 6.0 (green). 
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Figure D9. 
1
H-NMR of G5-(MFCO-MTX)n, n=1.0 (red), 1.7 (orange), 2.7 (green) and 4.4 (blue). 

Figure D10. 
1
H-NMR of D-(MFCO-MTX)n, n=1.1 (red), 2.1 (orange), and 4.4 (green). 


