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ABSTRACT 

 
 

The trillions of bacteria that inhabit the gastrointestinal tract, known collectively as the 

gut microbiome, are essential for both health and the normal functioning of the intestine.  

A growing literature now suggests that disruptive changes to this community are 

strongly associated with the development of colorectal cancer.  However, it is unclear 

whether these disruptive changes directly contribute to disease or if they are just a 

consequence of colorectal cancer (CRC).  Furthermore, the gut microbiome has not 

been explored as a potential non-invasive screen for CRC.  Our hypothesis is that 

abnormalities in the gut microbiome can be utilized as a biomarker for detection of CRC 

at its earliest stages.  Additionally, we postulate that these changes potentiate tumor 

development in the colon.  To test these hypotheses, we first characterized the gut 

microbiome associated with human patients from three clinical groups representing 

three essential stages in CRC development: healthy, adenoma, and carcinoma.  We 

demonstrated that a specific set of bacterial populations are associated with adenomas 

and carcinomas.  The abundance of these bacterial populations was used to improve 

our ability to differentiate between healthy and diseased subjects and presents a viable 

screening tool for the earliest stages of CRC development.  Next, we demonstrated 

using a mouse model of inflammation-driven colon cancer that there are dramatic, 

continual alterations in the gut microbiome during the development of tumors.  By 
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colonizing germ-free mice with the gut microbiome from tumor-bearing mice, we 

determined that these changes are directly responsible for increased tumor 

development.  Using an antibiotic cocktail, we were able to demonstrate that 

manipulation of this microbial community can dramatically reduce tumor burden in mice.  

By varying the composition of this antibiotic cocktail we generated a broad spectrum of 

microbial communities with varying carcinogenic capacities. This method of 

manipulating the gut microbiome allowed us to identify potentially protective and 

carcinogenic bacterial populations for further mechanistic studies.  Our results 

demonstrate that changes to the gut microbiome can serve as an effective non-invasive 

screen for the early detection of colorectal cancer and that interventions that target 

these changes may be an effective strategy for preventing the development of 

colorectal cancer. 
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Chapter I 
 

Introduction 
 
 

Prevalence of Colorectal Cancer 

Colorectal cancer (CRC) is the third most commonly diagnosed malignancy 

worldwide, accounting for over a half million deaths annually [Siegel et al., 2007; Parkin 

et al., 2005]. The lifetime risk of developing CRC is about 1 in 20 for both men and 

women, however incidence and mortality rates are about 40% higher in men [American 

Cancer Society, 2011; Fearon et al., 2011].  Risk can be become substantially higher 

depending on various genetic and environmental factors, which I will discuss in the 

following sections.  It is estimated that the annual economic burden for CRC care in the 

United States (US) is approximately $14 billion.  This number is expected to continue to 

rise as average life expectancy increases and the pool of at risk population grows 

[Mariotto et al., 2011].  In this chapter, I will summarize what is known about the 

development and progression of CRC, and I will discuss current recommended 

screening procedures and their limitations.  I will also introduce the potential role for a 

largely understudied variable in CRC, the gut microbiome, and discuss its potential as a 

novel CRC screen. 
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Figure 1.1.  The adenoma-carcinoma progression.  Modified from Fearon et al., 
2011.  The weight of the arrows corresponds to the rate by which a step occurs. 
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The Adenoma-Carcinoma Sequence 

 CRC development is a multistep process by which healthy epithelium develops 

into pre-cancerous polyps, which in turn progress into malignant carcinomas overtime 

(Figure 1.1).  Over 95% of CRCs are adenocarcinomas that developed from glandular 

tissue in the colon [Stewart et al., 2006].  The large majority of these cancers arise from 

adenomatous polyps, which are thought to be the main precursor legion in CRC.  

Adenomas are highly prevalent legions, with over one-third of people eventually 

developing an adenoma in their lifetime; however, only 10% of adenomas will progress 

to CRC in a 10-year period [Levine et al., 2006].  An early and potentially rate limiting 

step to the development of an adenomas is thought to be an inactivating mutation to the 

adenomatous polyposis coli (APC) gene [Fearon et al., 2011].  This APC gene is an 

important tumor suppressor gene that regulates epithelial cell proliferation through the 

Wnt pathway [Goss et al., 2000].  It is estimated that 80% of sporadic adenomas have a 

somatic mutation in the APC gene and this mutation can be seen at the earliest stages 

of adenoma growth.  Although it is thought to be a gatekeeper mutation in tumor 

development, this mutation is not sufficient for the progression to CRC; accumulation of 

additional mutations is necessary.  Currently, our understanding of the genetic and 

environmental factors that promote mutations in tumor suppressor genes at each step in 

this progression is limited.  Further work is needed to clarify the role of genetic, 

immunological, and environmental factors in this process. 

 

Colorectal Cancer Screening and Surveillance 
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The survival rate for CRC is over 90% if diagnosis occurs while the cancer is still 

localized; however, survival drops dramatically when a cancer grows through the 

intestinal wall and becomes metastatic [Hayat et al., 2007; Ries et al., 2007].  This 

highlights the importance of detecting and diagnosing CRC at its earliest stages.  With 

advancements in screening and surveillance of CRC, incidence rates have been in 

steady decline since the 1980s [Epsey et al., 2007].  Direct inspection of the mucosa by 

colonoscopy is currently one of the most accurate and preferred methods for prevention 

of CRC in the US.  Colonoscopies have a number of advantages, including the ability to 

examine the entire colon, remove polyps, and diagnose CRC with high sensitivity 

[American Cancer Society, 2011].  It is recommended that people with a history of CRC 

or those over the age of 50 receive colonoscopies every 10 years [Sonnenberg et al., 

2000; Levin et al., 2008].  These examinations have led to a dramatic decrease in CRC 

mortality and it has been estimated that colonoscopy screening has the potential to 

completely prevent 65% of CRC cases [Brenner et al., 2007].  However, colonoscopy 

has a substantial risk of complications, requires significant preparation, and is invasive 

for the patient.  Surveys have estimated that more than 30% of adults do not receive 

age and risk appropriate screenings, and over 50% of adults prefer other screening 

methods [Benson et al., 2007; Leard et al., 1997; Ling et al., 2001].  Furthermore, the 

healthcare costs of screening by colonoscopy are estimated in some studies to be over 

$2.7 billion in the US [Fisher et al., 2006].  Thus, there is a clear need for the 

development of non-invasive screening methods to prioritize individuals for further 

evaluation by colonoscopy. 
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Non-invasive Screening of Colorectal Cancer 

One of the most commonly utilized non-invasive screens for CRC is the guaiac 

fecal occult blood test (gFOBT), which detects blood in an individual’s feces [Allison et 

al., 1996].  Occult blood in the stool can indicate the presence of advanced adenomas 

and carcinomas in the colon, although some non-related disorders or dietary factors 

may result in a false positive test.  Because of the potential for false positive tests, the 

sensitivity for gFOBT can be as low as 9-12%, rendering it a non-feasible option for 

screening.  However, with repeated testing, typically up to 3 fecal samples and 6 

repeated tests, the sensitivity can be significantly improved [Lieberman et al., 2001; 

Levin et al., 2008].  Despite these limitations, gFOBT has shown to reduce CRC 

mortality up to 30%.  CRC mortality rates could drop even further upon development of 

a more sensitive non-invasive screening method.  Clearly, there is a need for novel 

biomarkers of CRC that could be used for screening. 

 

Heredity and Family History in Colorectal Cancer 

About 20-30% of CRC cases are estimated to have a significant hereditary 

component [Taylor et al., 2010].  Individuals with a first degree relative who has had 

CRC are at least two times as likely to develop CRC; moreover that risk increases if that 

family member developed cancer at an early age [Butterworth et al., 2006].  Two well-

defined inherited syndromes that greatly increase the risk of CRC are familial 

adenomatous polyposis (FAP) and hereditary nonpolyposis colorectal cancer (HNPCC).  

Patients with FAP have a germline inactivating mutation in the APC gene, which results 

in the development of hundreds of colonic polyps at an early age and inevitably leads to 
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CRC [Galiatsatos, et al., 2006].  Individuals with HNPCC, also known as Lynch 

syndrome, do not develop polyps at an early age; however, polyps that do appear tend 

to become malignant at a higher rate and in a short period of time [Dove-Edwin et al., 

2006].  The majority of patients with FAP, and some with HNPCC, require prophylactic 

removal of the colon relatively early in life to prevent the inevitable onset of CRC.  

Together, FAP and HNPCC only make up about 5% of all CRC cases [Fearon et al., 

2011], but these syndromes have allowed researchers to uncover many of the 

mechanisms of tumor development and progress in the colon. 

 

Risk Factors for Colorectal Cancer 

 Approximately 70% of CRC cases develop sporadically and have no known 

causative agents.  Epidemiological studies have identified several potential risk factors 

for CRC, including age and chronic inflammation of the gastrointestinal tract.  CRC risk 

rises substantially with age, and there is a sharp increase in incidence at the age of 50.  

In fact, over 90% of CRC cases occur in people over 50 [Benson et al., 2007].  This is a 

clear problem because as the average life expectancy continues to rise, the pool of 

individuals at an increased risk of CRC also grows.  Additionally, patients with chronic 

inflammatory diseases, such as inflammatory bowel disease, are at an increased risk.  

In the case of ulcerative colitis, the risk for CRC increases 1% per year after the first 

decade [Chambers et al., 2005; Ullman et al., 2011; Eaden et al., 2000].  The potential 

mechanisms by which this chronic inflammation may drive tumorigenesis will be 

discussed later in this chapter.   
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Risk Factors for Colorectal Cancer 

Age 
• 50 years and older 

Previous cases of colorectal cancer 

Family History colorectal cancer 

Inheritable Syndromes 
• Familial adenomatous polyposis 
• Hereditary nonpolyposis colorectal cancer 

Environmental factors 
• Diet high in red meat 
• Diet high in fat 
• Diet low in fiber 
• Obesity (BMI) 
• Physical inactivity 
• Smoking 
• Alcohol 

Chronic inflammation of Gastrointestinal tract 
• Inflammatory bowel disease 

§ Crohn’s disease 
§ Ulcerative colitis 

 

Table 1.1 Risk factors for colorectal cancer.  Summary of the known risk factors for 
CRC.  Detail into each factor is presented in chapter I.  
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In addition to age and inflammation, several behavioral and environmental risk 

factors have been identified for CRC including obesity, physical inactivity, alcohol 

consumption, and diet (Table 1.1).  One recent study suggested that individuals with a 

lifetime average of 2-4 alcoholic drinks per day have a 20% higher risk of CRC.  Diet, 

which is closely linked to obesity, has been associated with CRC incidence in a number 

of studies.  It has been shown that diets high in red and processed meat, or high in fat 

are linked to an increased risk of CRC [Butler et al., 2003].  It has been known for 

sometime now that high fat diets play a role in CRC.  Rodents fed a high fat diet 

develop significantly more tumors in experimental mouse models of CRC [Wasan et al., 

1997].  High fiber diets, on the other hand, have been suggested to decrease risk [Aune 

et al., 2011], although this effect is still debated.  Support for a significant role of dietary 

factors in the etiology of CRC can also be seen in epidemiology studies.  US-born 

Japanese men experience a rate of CRC that is double than the observed rate in native 

Japanese men [Flood et al., 2000].  This phenomenon is also seen in African 

Americans, who have a dramatic increase in CRC incidence compared to native 

Africans [O’Keefe et al., 2007].  The factor that is contributing to the disparity in CRC 

incidence is likely diet, which varies greatly in each of these cases.  The mechanisms by 

which these environmental factors, such as diet, affect the development of CRC has 

largely remained unknown.  However, a recent appreciation for the complex community 

of microorganisms that inhabit the gastrointestinal tract has began to shed light on this 

phenomenon. 

 

The Gut Microbiome 
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The human gastrointestinal tract is home to trillions of microorganisms, which 

outnumber human cells by 10-fold [Backhed et al., 2005].  Taken together, these 

microbes harbor over 100 times as many genes as their human host [Gill et al., 2006].  

This has lead researchers to suggest that the gut microbiome is essentially a microbial 

organ within the host and moreover has lead some to consider the host and its 

microbes as a super-organism.  The gut microbiome is an incredibly diverse community 

of microorganisms with a complex ecology that we are just beginning to understand.  

This community consists of bacteria, viruses, phage, and eukaryotes, which all interact 

with each other and the host [Guarner et al., 2003; Backhed et al., 2005].  In my thesis I 

will only be focusing on the bacterial component of the gut microbiome, which makes up 

the majority of the microbes present; however, consideration for the other members of 

the community is essential for a complete understanding of the underlying mechanisms 

of tumorigenesis.  Symbiotic members of gut microbiome are often termed commensal, 

meaning they benefit from the relationship without affecting the host, but in reality this 

relationship is more mutualistic.  This is supported by a wealth of literature that has 

determined that an intact microbial community is essential for development and health 

of the host [Alonso et al., 2013; Backhed et al., 2005].  The vast diversity in genetic 

potential harbored by the gut microbiome provides for a large arsenal of metabolic 

enzymes that aid the host in digestion, energy harvest, and vitamin synthesis.  These 

microorganisms supply most of the vitamin K and water-soluble B vitamins needed by 

the host [Guzman et al., 2013].  Beyond digestion, the gut microbiome has a much more 

direct affect on the host.  Extensive research has shown that the gut microbiome is 

needed for the proper development and maturation of the immune system.  Germ-free 
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mice, which are completely devoid of any microbes, have a dramatically 

underdeveloped immune system and mucosal barrier [Mazmanian et al., 2005; 

Tlaskalova-Hogenova et al., 2011].  Another important feature of the gut microbiome is 

its ability to confer colonization resistance, which is a natural barrier that is capable of 

preventing the establishment of pathogenic bacteria [Vollaard et al., 1994].  

Perturbations to the community can leave the host susceptible to colonization by enteric 

pathogens like Clostridium difficile, highlighting the importance of a healthy microbial 

community [Reeves et al., 2011; Theriot et al., 2014].  

 

Dysbiosis and Colorectal Cancer 

 Although the gut microbiome is important for maintaining health in the host, it has 

also been associated with various diseases, including inflammatory bowel disease and 

obesity.  In each of these diseases a phenomenon, termed dysbiosis, is observed in the 

gut microbiome.  Dysbiosis is defined as an abnormal community structure or 

composition of the gut microbiome.  Several recent studies have shown that this 

phenomenon can be observed in the feces of individuals with CRC relative to healthy 

controls [Chen et al., 2013; Chen et al., 2012; Kostic et al., 2012; Geng et al., 2013; 

Shen et al., 2013; Sobhani et al., 2011; Wang et al., 2012; Ahn et al., 2013].  

Interestingly, each of these groups obtained conflicting results regarding the 

composition and structure of the CRC-associated community.  CRC-associated 

dysbiosis is not limited to feces, as demonstrated by two groups who recently reported 

an enrichment of Fusobacterium nucleatum on the surface of colonic tumors relative to 

adjacent healthy tissue.  Furthermore, it was shown that sequences from 
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Fusobacterium spp. could be detected in the feces of patients with CRC [Ahn et al., 

2013; Kostic et al., 2013].  These data clearly show a link between the structure and 

composition of the gut microbiome, and CRC; however, it remains unclear whether 

abnormalities in the gut microbiome directly affect colon tumorigenesis or if they are 

simply an unrelated consequence.  Regardless, it is tempting to speculate on the 

potential of using these abnormal changes in the gut microbiome as a way to determine 

if a person has CRC or is at an increased risk.  

 

Diet, The Gut Microbiome, and CRC 

Beyond dysbiosis, there are several clear links between the gut microbiome and 

CRC.  The gut microbiome is directly associated with several important risk factors for 

CRC, including diet.  Diet has been shown to be an important mediator of microbial 

community structure and composition, and certain dietary components have an 

important role in the function of the gut microbiome [David et al., 2013].  A significant 

portion of the human diet consists of carbohydrates, such as starches, cellulose, 

hemicellulose, and pectins, which are non-digestible by the host.  When these non-

digestible carbohydrates reach the colon, resident microbes ferment them and produce 

short chain fatty acids (SCFAs).  SCFAs serve an important role in colonic health and 

provide important nutrients for colonocytes and other epithelial cells [Koropatkin et al., 

2012].  Evidence suggests that SCFAs, specifically butyrate, also affect various 

physiological functions that are directly associated with cancer, including cell 

proliferation, angiogenesis, and apoptosis [Ruemmele et al., 2003; Segain et al., 2000; 

Hague et al., 1995].  In cell culture, butyrate has been shown to reduce proliferation and 
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induce apoptosis of tumor cells.  Several studies have shown that diets high in fiber and 

carbohydrates can increase beneficial bacterial taxa that produce butyrate [Hague et al., 

1995; Ruemmele et al., 2003].  Furthermore, butyrate has been shown to be 

significantly decreases in the colon of subjects with CRC [Wang et al., 2012; Chen et 

al., 2013].  Conversely, it has been shown that diets high in fat and low in fiber shift the 

structure of the gut microbiome in a potentially detrimental way [Peters et al., 1992].  

These diets likely lead to a dramatic decrease in SCFA production and subsequently 

decrease epithelial health and mucin production [Willemsen et al., 2003; Hatayama et 

al., 2007].  It is also known that diets can contain various levels of toxic, carcinogenic, or 

mutagenic compounds.  Members of the gut microbiome have the potential to both 

activate and detoxify these compounds. The composition and functional potential of the 

community could largely affect the metabolism of these chemicals and the subsequent 

affect on the host [Rowland, 1988].  Taken together this evidence leads us to the 

hypothesis that manipulation of the gut microbiome with diet could help in prevention 

and treatment of cancer.   

 

Inflammation, the Gut Microbiome, and CRC 

Another important link between the gut microbiome and CRC is inflammation.  

We have known for sometime now that chronic inflammation is directly linked to many 

cancers.  In the gastrointestinal tract, the main driver of this inflammation is the resident 

microbes, their gene products, and the metabolites they produce.  Gut microbes are 

recognized by a repertoire of pattern recognition receptors (PRRs) that are specific for 

conserved microbial patterns, such as components of the bacterial cell wall or nucleic 
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acids.  Two important PRRs are Nod-like receptors (NLRs) and Toll-like receptors 

(TLRs), which initiate signaling cascades upon activation by microbial signals [Abreu et 

al., 2005].  These signal cascades activate various transcriptional regulators, including 

nuclear factor of kappa B (NFκB), which modulates inflammation, cell proliferation, and 

apoptosis [Rakoff-Nahoium et al., 2008].  The importance of PRRs and NFκB in CRC 

has been extensively studied in various mouse models of tumorigenesis.  Mice deficient 

in TLR4, which recognizes lipopolysaccharide (LPS), show a marked decrease in colon 

tumorigenesis [Fukata et al., 2007].  Furthermore, myeloid differentiation factor 88 

(MyD88) deficient mice, which is the main adaptor protein for signaling through the 

majority of TLRs, show a diminished development of colorectal cancer [Uronis et al., 

2009].  When NFκB is deactivated in IκB kinane (IKK) deficient mice, there is also a 

dramatic decrease in CRC [Greten et al., 2004].  Together these experiments clearly 

demonstrate that signaling through PRRs directly modulates tumorigenesis in the colon.  

The mechanisms by which NFκB-mediated inflammation can promote tumorigenesis 

include the production of pro-tumorigenic cytokines and chemokines like tumor necrosis 

factor alpha (TNF- α), interleukin 1 beta (IL-1β), IL-8, and IL-6 [Karin et al., 2005].  

These inflammatory cytokines are produced by lamina propria myeloid cells and 

stimulate growth and survival of malignant cells in the gastrointestinal tract [Grivennikov 

et al., 2009].  Chemokine production leads to the recruitment of immune cells, such as 

neutrophils, to the tumor microenvironment [Fridlender et al., 2012].  It is thought that 

infiltration by neutrophils can increase carcinogenesis and initiate accumulation of 

mutations through the production of reactive oxygen species (ROS).  In addition to the 

production of cytokines and the recruitment of immune cells, NFκB can also promote 
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tumorigenesis through its ability to suppress the apoptosis of pre-cancerous progenitor 

cells [Karin et al., 2005].  In summary, recognition of the gut microbiome by the host and 

subsequent inflammatory responses can directly promote tumorigenesis. However it 

remains largely unknown how the composition, structure, and function of the gut 

microbiome affect these mechanisms. 

 

Bacteria Associated with CRC 

The microbial influence on CRC is highlighted by several studies that have 

shown that mice raised in germ-free conditions develop significantly less tumors in 

various models of CRC [Dove et al., 1997; Uronis et al., 2009].  Recently, several 

specific members of the gut microbiome have become of particular interest in CRC 

(Table 1.2).  One of the most intriguing of these microbes is Fusobacterium nucleatum, 

which was described previously in this chapter as being enriched on the surface of 

tumors.  F. nucleatum is not a typical member of the gut microbiome; it is only seen in 

about 6% of healthy individuals (Unpublished data from Schloss laboratory).  However, 

it is a normal commensal of the mouth [Signat et al., 2011].  A recent study determined 

that when fed to mice, this pathogen promotes tumorigenesis by recruiting myeloid cells 

to the tumor and generating a proinflammatory microenvironment [Kostic et al., 2013].  It 

still remains to be determined whether the F. nucleatum in the colon is the same as that 

in the mouth.   

Several more common commensal bacteria have also been linked to CRC.  A 

recent study demonstrated that colonic inflammation in the IL-10-deficient mouse 

impacts the composition of the gut microbiome, leading to an enrichment of tumor 
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promoting Escherichia coli strains [Arthur et al., 2012].  These strains have a polyketide 

synthase (pks) genotoxic island that increases the rate by which tumors progress.  

Similarly, human commensals belonging to the genus Bacteroides, specifically 

enterotoxigenic B. fragilis (ETBF), have been associated with inflammation and CRC 

[Wu et al., 2009; Sears et al., 2008].  ETBF has been shown to strongly induce colonic 

tumors in mice through secretion of a metalloprotease toxin and certain strains are 

thought to contribute to CRC risk in humans.  Finally, it has been known that 

Streptococcus bovis has been linked to CRC since as early as the 1950’s [Galdy et al., 

2012].  Survey studies have reported a strong correlation between this bacterial species 

and CRC.  It is clear that several microbes have a direct affect in the development and 

progression of CRC; however, survey studies rarely show the same bacterial profile 

between subjects with CRC.  Furthermore, only a small percent of subjects have 

detectable levels of populations like E. coli and ETBF.  This strongly suggests that there 

may be multiple underlying mechanisms by which the microbiome is involved in CRC 

and that CRC is likely a polymicrobial disease. 
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Bacteria Associated with Colorectal Cancer 

Bacteria Link to colorectal cancer 

Fusobacterium nucleatum 
Enriched on tumors and increases 
tumorigenesis in APC min mouse 
model. 

Bacteroides fragilis 

Enterotoxigenic B. fragilis has 
metalloprotease toxin linked to cancer.  
Increases tumorigenesis in APC min 
mouse. 

Escherichia coli 
Strans with polyketide synthase 
genotoxic island increase rate of tumors 
progression in Il-10 deficient mice.  

Streptococcus bovis Linked to colorectal cancer in survey-
based studies of stool. 

Helicobacter hepaticus Increases tumorigenesis in APC min 
mice 

Helicobacterer pylori Causative agent of ulcers, which 
increase risk of colorectal cancer 

Citrobacter rodentium Increases tumorigenesis in mouse 
models of colorectal cancer 

 

Table 1.2. Bacteria associated with colorectal cancer.  Bacteria that have been 
associated with CRC are highlighted along with a description of their suggested 
involvement. 
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Microbial Ecology in the Gut Microbiome 

The limitation of studies that have looked at the role of individual microbes in 

CRC is that they ignore the fact that the gut microbiome is a diverse and complex 

community of microorganisms.  This community has a complex ecology with a wide 

array of microbe-microbe interactions [Konopka et al., 2009].  Interactions that occur 

include complex signaling, competition for resources and space, metabolic interactions, 

and structural interactions (i.e. biofilms) [Konopka et al., 2009].  The importance of this 

ecology in relation to disease can be highlighted by the syntrophic interaction between 

Archaea in periodontal disease [Lepp et al., 2004].  In this system methanogenic 

Archaea acted as a hydrogen sink to allow for the proliferation of pathogenic bacteria to 

a level that would not be possible in the absence of this syntrophy.  In CRC, bacteria 

like Fusobacterium spp. or E. coli are likely heavily influenced by the bacterial 

community surrounding them.  Their pathogenicity may rely solely on interactions with 

other microbes, and thus studying them out of this context may be misleading.  In the 

subsequent chapters of my thesis, I will emphasize the importance of the entire 

community and the complex ecology when characterizing the role of the gut microbiome 

in CRC.  This is not to downplay the importance of understanding the mechanisms by 

which individual microbes affect CRC, but we need to understand how the community 

as a whole affects CRC before we begin to ask more mechanistic questions.  

 

Summary and Chapter Outline 

 Colorectal cancer (CRC) is one of the deadliest malignancies worldwide, 

affecting millions of people each year.  Significant risk factors for CRC, including diet 
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and chronic inflammation, are intimately linked with the gut microbiome.  Furthermore, 

the gut microbiome promotes various physiological functions that are closely associated 

with cancer, including cell proliferation, angiogenesis, and apoptosis.  Several recent 

survey-based studies have reported the people with CRC have a dysbiotic gut 

microbiome.  However, it is unclear how these changes develop over time and whether 

they directly affect tumorigenesis or if they are an unrelated consequence of CRC 

development.  Therefore the primary goal of this thesis research is to understand the 

role of the gut microbiome in CRC.  We hypothesize that the composition, structure, and 

functional capacity of the gut microbiome all directly affect tumor development in the 

colon.  Additionally, we believe that understanding how dysbiosis develops over time 

will allow us to develop novel methods for using the gut microbiome as a biomarker for 

CRC. 

In chapter II, we collected samples from human subjects that represented three 

clinical groups: healthy, adenoma, and carcinoma.  We investigated the potential of 

using the gut microbiome as a biomarker for CRC by identifying significantly enriched 

bacterial populations in each group.  We demonstrated that incorporation of microbial 

biomarkers into logit models, generated using common risk factors for CRC, and 

significantly improved our ability to predict the presence of both pre-cancerous 

adenomas and carcinomas.   

In chapter III, we characterized the gut microbiome in a mouse model of CRC 

and determined that mice develop dysbiosis that mirrors that seen in humans.  Using 

machine-learning algorithms, we were able to accurately predict the presence of tumors 

in the colon based solely on the structure of the gut microbiome.  Using germ-free mice 
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we demonstrated for the first time that tumor-associated changes in the gut microbiome 

increase tumorigenesis in the colon.  Additionally, manipulation of this community with 

antibiotics dramatically reduced tumor incidence in mice.   

To further explore the effect of community structure on tumorigenesis, we treated 

mice with a wide array of different antibiotic treatments.  In chapter IV, we identify 

several potentially carcinogenic and protective bacterial populations in the gut 

microbiome.  We also show that changes in community structure and diversity have a 

dramatic affect on tumor incidence in the colon.  Using antibiotics as an intervention, we 

demonstrate that modulation of the gut microbiome at the first signs of dysbiosis can 

reduce tumorigenesis.  This strongly suggests that targeting of the gut microbiome for 

therapeutic purposes may be an effective strategy for CRC prevention.  Chapter V 

includes a summary of the results, future areas of study, and conclusions including a 

proposed model overview. 
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CHAPTER II 
 

The Human Gut Microbiome as a Screening Tool for Colorectal Cancer 
 

 
Abstract 

Recent studies have suggested that the gut microbiome may be an important 

factor in the development of colorectal cancer (CRC).  Abnormalities in the gut 

microbiome have been reported in patients with CRC; however, this microbial 

community has not been explored as a potential screen for early stage disease.  We 

characterized the gut microbiome in patients from three clinical groups representing the 

stages of CRC development: health, adenoma, and carcinoma.  Analysis of the gut 

microbiome from stool samples revealed both an enrichment and depletion of several 

bacterial populations associated with adenomas and carcinomas.  Combined with 

known clinical risk factors of CRC (e.g. BMI, age, race), data from the gut microbiome 

significantly improved the ability to differentiate between healthy, adenoma, and 

carcinoma clinical groups relative to risk factors alone.  Using Bayesian methods, we 

determined that using gut microbiome data as a screening tool improved the pre-test to 

post-test probability of adenoma over 50-fold.  For example, the pre-test probability in a 

65 year-old was 0.17% and, after using the microbiome data, this increased to 10.67% 

(1 in 9 chance of having an adenoma).  Taken together the results of our study 

demonstrate the feasibility of using the composition of the gut microbiome to detect the 
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presence of precancerous and cancerous lesions.  Furthermore, these results support 

the need for more cross sectional studies with diverse populations and linkage to other 

stool markers, dietary data, and personal health information. 

 

 

Introduction 

Worldwide, colorectal cancer (CRC) is the third most commonly diagnosed 

malignancy and accounts for over a half million deaths annually [Parkin et al., 2005].  

Development of CRC is a stepwise process by which localized precancerous 

adenomatous polyps (adenomas) develop in the colon and progress into invasive and 

metastatic cancerous tumors (carcinomas) overtime [Fearon, 2011; Jass, 2007].  

Development of carcinomas is largely preventable if adenomas are detected and 

removed [Levin et al., 2008], with a CRC survival rate exceeding 90% if the diagnosis 

occurs while the disease is still localized. However, there is a dramatic decline in 

survival following invasion and metastasis [SEER program, 2013].  Thus, early detection 

at the adenoma stage of this disease has been critical for successful treatment and 

survival. 

From 1975 to 2010, death rates from colorectal cancer have steadily decreased 

in the United States, with a 2.8% average annual decline [SEER program, 2013].  

Screening with high sensitivity fecal occult blood testing (FOBT), sigmoidoscopy, and 

colonoscopy has improved survival rates and is recommended for adults 50 to 75 years 

of age [Whitlock et al., 2008].  In particular, colonoscopies allow for full examination of 

the bowel with the opportunity for same-session colonic biopsies and removal of polyps.  
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However, over 30% of adults in the US do not receive age and risk-appropriate 

screenings and surveys indicate that 50-60% of adults prefer non-invasive screening 

methods [Benson, 2007; Learn et al., 1997; Ling et al., 2001].  Lack of compliance with 

these recommendations may be due in part to the intrusiveness and uncomfortable 

nature of the colonoscopy procedure.  Furthermore, the healthcare costs of screening 

for CRC by colonoscopy are considerable, ranging from $800 to $3160 per procedure in 

2012 which was undergone by more than 48 million 50-75 year-old Americans [Joseph 

et al., 2012; Howden and Meyer, 2012].  Therefore, there is a need to develop cost-

effective non-invasive screening methods to prioritize individuals for further evaluation 

by colonoscopy.  One of the most commonly used non-invasive screening procedures is 

the guaiac fecal occult blood test (gFOBT), which detects blood in an individual’s feces 

[Allison et al., 1996].  Occult blood in stool can indicate the presence of advanced 

adenomas and carcinomas in the colon, but can also indicate a wide variety of other 

disorders and factors that may lead to false positive tests [Young et al., 2002]. Although 

the specificity of the method ranges from 87-98% [Allison et al., 1996], the sensitivity 

can be as low as 9-12% [Collings et al., 2005; Imperiale et al., 2004].  With repeated 

testing using multiple stool samples and regular screening intervals, sensitivity can be 

dramatically improved [Lieberman et al., 2001; Levin et al., 2008].  Despite these 

limitations, gFOBT has been shown to reduce mortality from CRC by 15 to 33%, 

highlighting the effectiveness of non-invasive screening measures [Hardcastle et al., 

1996; Kronborg et al., 1996; Mandel et al., 1999; Mandel et al., 2000].   

Approximately 70% of CRC cases develop spontaneously and are of unknown 

etiology [Fearon, 2011].  Factors associated with increased risk of CRC include diet, 



	  

 30	  

alcohol, and chronic inflammation of the gastrointestinal tract [Chambers et al., 2005; 

Huxley et al., 2009; Larsson et al., 2005; Slattery, 2000].  Recently, there has been 

increasing appreciation for a largely understudied variable in CRC, the gut microbiome.  

This collection of symbiotic microorganisms inhabits the gastrointestinal tract and is 

associated with diseases such as obesity and inflammatory bowel disease [Turnbaugh 

et al., 2006; Manichanh et al., 2006].  In animal studies, evidence suggests that through 

interaction with the immune system, production of cancer-associated metabolites, and 

the release of genotoxic virulence factors, bacteria can directly contribute to the 

development of CRC [Zackular et al., 2013; Arthur et al., 2012; Couturier-Maillard et al., 

2013; Kostic et al., 2013].   Furthermore, in human studies, patients with CRC have an 

abnormal gut microbiome structure when compared to healthy patients [Chen et al., 

2013; Kostic et al., 2012; Geng et al., 2013; Shen et al., 2010; Sobhani et al, 2011; 

Wang et al., 2012; Ahn et al., 2013].  Taken together, this suggests that the gut 

microbiome might be a candidate biomarker for early detection of CRC. 

We hypothesized that using novel microbiome biomarkers of CRC in concert with 

known clinical risk factors could improve the ability to identify candidates for 

colonoscopy.  We compared the microbiome of healthy individuals, persons with 

adenomas, and patients with colorectal carcinomas.  We sequenced the V4 region of 

the 16S rRNA gene from the feces of each individual using the Illumina MiSeq 

sequencing platform.  The resulting data were used to test our hypothesis that the 

incorporation of microbiome data would significantly improve the ability to distinguish 

among the three types of individuals, beyond clinical (demographic) data and FOBT 
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results.  This analysis demonstrates that the microbiome provides a powerful source of 

biomarkers for identifying individuals harboring adenomas and carcinomas. 

 

 

 

 

 
 
Table 2.1. Characteristics of subjects in each clinical group.  Breakdown of clinical 
data from each of the clinical groups.  Body mass index (BMI) was calculated based on 
height and weight (kg/m2). 

 Healthy Adenoma Cancer P-value 
Age, years (mean, SD) 55.3 (9.2) 61.3 (11.1) 59.4 (11.0) 0.080 
     
Gender (n, %):  Men 11 (37%) 18 (60%) 21 (70%)  
                         Women 19 (63%) 12 (40%) 9 (30%) 0.029 
     
Race/Ethnicity: Non-Hispanic white 21 (70%) 27 (90%) 28 (93%)  
                         Other 9 (30%) 3 (10%) 2 (7%) 0.026 
     
Body mass index (mean, SD) 26.6 (5.2) 27.4 (4.4) 30.7 (7.2) 0.022 
     
Current medication use (n, %) 23 (77%) 21 (70%) 26 (87%) 0.295 
     
Positive FOBT (n, %) 0 (0%) 4 (13%) 22 (73%) 0.001 
 1 
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Results 

Selection of Subjects 

Colonoscopies were performed and fecal samples were collected from subjects 

in 4 locations: Toronto (Ontario, Canada), Boston (Massachusetts, USA), Houston 

(Texas, USA), and Ann Arbor (Michigan, USA).  All participants collected a whole 

evacuated stool after following the usual dietary and medication restrictions for 24 

hours.  Following endoscopic examination, patients without colonic abnormalities were 

designated as healthy (n=30). Examinations that revealed the presence of lesions 

resulted in a biopsy and subsequence diagnosis of adenoma (n=30) or carcinoma 

(n=30).  For each patient, clinical data were collected including demographic information 

and the results of the gFOBT (Table 2.1).  There were no significant differences in age 

or current medication use among the three patient groups.  However, among our 

samples, men, whites, and those with greater BMI were more likely to have colorectal 

cancer (Table 1).   

Comparison of healthy and adenoma clinical groups 

We utilized logit regression models to differentiate between patients in the 

healthy and adenoma clinical groups.  Preliminary models were generated using age, 

gender, race/ethnicity, BMI, and medication use as independent variables.  For these 

subjects, both age and race were significantly associated with the presence of 

adenomas (AUC=0.713; 95% CI: 0.580-0.845; p=0.009).  There were also differences in 

the gut microbiome between individuals with and without adenomas. Relative to healthy 

subjects, subjects with adenomas had higher relative abundances of operational 

taxonomic units (OTUs) affiliated with the Ruminococcaceae (OTUs 21 and 60) and 
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Porphyromonadaceae (OTUs 1901 and 1903); they had lower relative abundances of 

OTUs affiliated with the Bacteroides (OTUs 1889 and 1913), Lachnospiraceae (OTU 

36), Clostridiales (OTU 38), and Clostridium (OTUs 20, 97, 99) (Figure 2.1).  The model 

that yielded the greatest differentiation between adenoma and healthy groups included 

age, race, and 5 OTUs (OTUs 38, 99, 136, 1889, 1913) (Figure 2.2A).  The addition of 

these 5 OTUs significantly improved the predictive ability of the model beyond that of 

age and race only (AUC=0.896; 95% CI: 0.816-0.976; p=0.002) (Figure 2.2B).  These 

results demonstrate that differences in the gut microbiome could be detected at pre-

cancerous stages of CRC development and this signal may improve our ability to 

predict the presence of colonic adenomas. 
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Figure 2.1. Microbial biomarkers for healthy and adenoma clinical groups. OTUs 
that were differentially abundant in healthy and adenoma clinical groups.  LDA scores 
for significant OTUs are shown.  OTU number and Taxonomic group based on RDP 
classification are represented.   
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Figure 2.2.  Microbiome improves accuracy of predictive models for healthy and 
adenoma. A. Relative abundance of differentially abundant OTUs for all healthy (n=30; 
grey) and adenoma (n=30; black) subjects. Vertical black line represents mean.  B. 
ROC curves for microbial biomarkers alone, clinical data alone, and microbial 
biomarkers with clinical data. The straight line represents the null model.  
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Comparison of healthy and carcinoma clinical groups 

Next, we generated logit models using clinical and microbiome data to 

differentiate between patients in the healthy and carcinoma groups.  Age, race, and BMI 

were predictive of carcinomas (AUC=0.798; 95% CI: 0.686-0.910; p<0.001).  We 

observed that relative to healthy subjects, subjects with carcinomas had higher 

abundances of OTUs associated with Fusobacterium (OTU 2458), Porphyromonas 

(OTU 1905), and Enterobacteriaceae (OTU 2479); they had lower relative abundances 

of OTUs affiliated with the Bacteroides (OTU 1889), Lachnospiraceae (OTUs 23, 30, 

253, 136), and Clostridiales (OTU 42) (Figure 2.3).  To test the hypothesis that the gut 

microbiome could improve our ability to predict the presence of carcinomas, we added 

these OTUs to the logit model we generated based on the subjects’ age, race, and BMI 

(Figure 2.4B).  The model with the greatest discriminatory ability included age, race, 

BMI and 6 OTUs (OTUs 136, 1901, 1905, 1913, 2479, 2458; Figure 2.4A).  This model 

significantly improved the ability to distinguish between healthy and carcinoma 

compared to the model containing age, race and BMI only (AUC=0.922; 95% CI: 0.858-

0.986; p=0.012; (Figure 2.4B).  These results suggest that the relative abundance of six 

bacterial populations differentiate healthy gut tissue from the presence of cancerous 

lesions in the colon. 
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Figure 2.3. Microbial biomarkers for healthy and carcinoma clinical groups. OTUs 
that were differentially abundant in healthy and carcinoma clinical groups.  LDA scores 
for significant OTUs are shown.  OTU number and Taxonomic group based on RDP 
classification are represented.   
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Figure 2.4  Microbiome improves accuracy of predictive models for healthy and 
carcinoma. A. Relative abundance of differentially abundant OTUs for all healthy 
(n=30; grey) and carcinoma (n=30; black) subjects.  Vertical black line represents mean. 
B. ROC curves for microbial biomarkers alone, clinical data alone, and microbial 
biomarkers with clinical data. The straight line represents the null model.  
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Comparison of healthy individuals to those with colonic lesions  

Next, we explored the ability of the gut microbiome to differentiate between 

healthy subjects and those with either adenoma or carcinomas.   Thus, we combined 

the clinical and microbiome data from adenoma and carcinoma subjects to create a 

combined colonic lesion group.  We then generated a logit model to differentiate 

between healthy subjects and the colonic lesion group.  Clinical variables that were 

predictive of colonic lesion were age, gender, and race (AUC=0.754; 95% CI: 0.648-

0.859) (Figure 2.6).  To test the hypothesis that the gut microbiome could improve our 

ability to predict the presence of colonic lesions regardless of stage, we added 6 OTUs 

(OTU 136, 253, 1889, 1897, 1913, 2891) (Figure 2.5) to this logit model.  Age, gender, 

race, and these 6 OTUs significantly improved the ability to distinguish between the 

healthy and colonic lesion combined groups (AUC=0.936; 95% CI: 0.887-0.985; 

p<0.0001) (Figure 2.6).  These results demonstrate that the gut microbiome can 

improve the ability to discriminate between healthy subjects and colonic lesions 

independent of stage. 
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Figure 2.5. Microbial biomarkers for healthy and colonic lesion clinical groups. 
OTUs that were differentially abundant in adenoma and carcinoma clinical groups.  LDA 
scores for significant OTUs are shown.  OTU number and Taxonomic group based on 
RDP classification are represented.  
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Figure 2.6. Microbiome improves accuracy of predictive models for healthy and 
colonic lesions. A. Relative abundance of differentially abundant OTUs for healthy 
(n=30; grey) subjects and those with lesions (n=60; black). Vertical black line represents 
mean. B. ROC curves for microbial biomarkers alone, clinical data alone, and microbial 
biomarkers with clinical data. The straight line represents the null model.    

Relative Abundance (%)

!

!
!

!!
!! !

!

!

!!

!!

!

!
!

!

!
!

!! !
!

!
!!

!!

!
!

!

!
!

!

!

!

!!
!

!
!!

! !!! !

!
!

!
!!

! !!

!!

!! !
! !

!
!

!

!
! !
!
! !
! !!
!

!

!
!!

!

!
!

!!

!

!

!

!! !
!

!
!

!
!!
!

!
!

!!

!
! !!

!

!

! !

!

!

!! !

!

!!

!!!
! !! !

!
!

!
!

!
!

!
!

!
!

!
!

!

! !

!
!!!

!
!

! !
!
!
!
!
!

!

!
!
!

!

!!
!
!!
!! !
!

!

!
!

! !!

!

!

!!

!!

!
!

!

!

!

! !

!

!
!

!! !
!
!

!
!

!

!

!!

!

!
!!

!

!
!! !

!!
!!!

!!

!
!! !!

!!
!

!
!
!

!
!

!

!
!

!

!

!
!

!

!
!!

!

!

!
!

!

!! !
!

!
!

!
!

!
!!

!
! !

!

!
!

!
!
!!

!!!!
!

!

!

!
!

!!
!

!

!!

!
!!!

!!
!!

!

!

!!
!

!

!

!
!

!
! !

!! !
!

!
!

! !

!

!
!

!!
! !

!

!
!

!

!

!

!
!
! !!!

!

!!
!

!

!!!
!
!
!
!

!!
! !!!! !

Porphyromonadaceae
(OTU 1897; LDA=2.77; p=0.041)

Clostridium XVIII
(OTU 2891; LDA=2.79; p=0.022)

Lachnospiraceae
(OTU 253; LDA=3.23; p=0.012)

Lachnospiraceae
(OTU 136; LDA=2.89; p<0.001)

Bacteroides
(OTU 1913; LDA=3.00; p<0.001)

Bacteroides
(OTU 1889; LDA=3.68; p<0.001)

0 0.01 0.1 1 10

!

!

Healthy
Colonic Lesion

A

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

hy AUC v
Age, gender, & r

Microbiome, age, gender, & r

B

Relative Abundance (%)

!

!
!

!!
!! !

!

!

!!

!!

!

!
!

!

!
!

!! !
!

!
!!

!!

!
!

!

!
!

!

!

!

!!
!

!
!!

! !!! !

!
!

!
!!

! !!

!!

!! !
! !

!
!

!

!
! !
!
! !
! !!
!

!

!
!!

!

!
!

!!

!

!

!

!! !
!

!
!

!
!!
!

!
!

!!

!
! !!

!

!

! !

!

!

!! !

!

!!

!!!
! !! !

!
!

!
!

!
!

!
!

!
!

!
!

!

! !

!
!!!

!
!

! !
!
!
!
!
!

!

!
!
!

!

!!
!
!!
!! !
!

!

!
!

! !!

!

!

!!

!!

!
!

!

!

!

! !

!

!
!

!! !
!
!

!
!

!

!

!!

!

!
!!

!

!
!! !

!!
!!!

!!

!
!! !!

!!
!

!
!
!

!
!

!

!
!

!

!

!
!

!

!
!!

!

!

!
!

!

!! !
!

!
!

!
!

!
!!

!
! !

!

!
!

!
!
!!

!!!!
!

!

!

!
!

!!
!

!

!!

!
!!!

!!
!!

!

!

!!
!

!

!

!
!

!
! !

!! !
!

!
!

! !

!

!
!

!!
! !

!

!
!

!

!

!

!
!
! !!!

!

!!
!

!

!!!
!
!
!
!

!!
! !!!! !

Porphyromonadaceae
(OTU 1897; LDA=2.77; p=0.041)

Clostridium XVIII
(OTU 2891; LDA=2.79; p=0.022)

Lachnospiraceae
(OTU 253; LDA=3.23; p=0.012)

Lachnospiraceae
(OTU 136; LDA=2.89; p<0.001)

Bacteroides
(OTU 1913; LDA=3.00; p<0.001)

Bacteroides
(OTU 1889; LDA=3.68; p<0.001)

0 0.01 0.1 1 10

!

!

Healthy
Colonic Lesion

A

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

hy AUC v
Age, gender, & r

Microbiome, age, gender, & r

B



	  

 42	  

Comparison of adenoma and carcinoma clinical groups 

Finally, we generated logit models using clinical and microbiome data to 

differentiate between patients in the adenoma and carcinoma groups.  A patient’s BMI 

was the only clinical variable that discriminated between the adenoma and carcinoma 

clinical groups (AUC=0.658; 95% CI: 0.518-0.799; p=0.023).  When examining 

populations within the gut microbiome, relative to subjects with adenomas, those with 

carcinomas harbored higher relative abundances of OTUs that affiliated with the 

Fusobacterium (OTU 2458), Bacteroides (OTU 1882), Phascolarctobacterium (OTU 

2395), and Porphyromonas  (OTU 1905).  In contrast, OTUs affiliated with Blautia (OTU 

9), and Lachnospiraceae (OTU 12 and 23) were more abundant in subjects with 

adenomas (Figure 2.7).  Next, we constructed a logit model to differentiate between the 

adenoma and carcinoma clinical groups using BMI with microbiome data.  The model 

that provided the greatest differentiation between carcinoma and adenoma included 

BMI and 4 OTUs (OTUs 1905, 2395, 2458, 3235; Figure 2.8A).  This model provided 

significantly greater discrimination than BMI alone (AUC=0.963; 95% CI: 0.921-1.00; 

(p<0.001; Figure 2.8B).  Examination of the relative abundance of OTUs associated with 

the Fusobacterium genera revealed no significant associations between Fusobacterium 

and the stage or location of carcinomas.  Together, these results demonstrated that the 

gut microbiome could be used to differentiate between the presence of precancerous 

and cancerous lesions in the colon. 
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Figure 2.7. Microbial biomarkers for adenoma and carcinoma clinical groups. 
OTUs that were differentially abundant in adenoma and carcinoma clinical groups.  LDA 
scores for significant OTUs are shown.  OTU number and Taxonomic group based on 
RDP classification are represented.   
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Figure 2.8. Microbiome improves accuracy of predictive models for adenoma and 
carcinoma. A. Relative abundance of differentially abundant OTUs for adenoma (n=30; 
grey) and carcinoma (n=30; black) subjects.  Vertical black line represents mean.  B. 
ROC curves for microbial biomarkers alone, clinical data alone, FOBT alone, microbial 
biomarkers with clinical data, and microbial biomarkers with FOBT and clinical data.  
For each comparison, the straight line represents the null model.  
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Complementing gFOBT test with microbiome-based models 

Because gFOBT is the most common, non-invasive screening tool for CRC, we 

evaluated whether the microbiome-based models could be improved by including 

gFOBT results.  The gFOBT test had 100% specificity in our study when comparing 

healthy individuals to those with colonic lesions.  That is, patients without colonic lesions 

tested negative on the gFOBT.  In an analysis comparing adenoma and carcinoma 

groups, the odds ratio for gFOBT was 3.76 (95% CI 1.04-13.65) when entered as a 

single explanatory variable, with AUC=0.617.  In contrast, the microbiome data alone 

yielded an AUC of 0.952.  The model combining BMI, gFOBT, and the microbiome data 

(OTUs 1905, 2395, 2458, 3235) provided excellent discriminatory ability (AUC=0.969; 

95% CI: 0.935-1.000; Figure 2.8B). These results demonstrate that the gut microbiome 

dramatically outperforms gFOBT in discriminating between adenoma and carcinoma 

clinical groups in our sample of subjects. 

Application of Microbiome Results to Population Data 

To further test the capacity of the gut microbiome as a CRC screening candidate, 

we extracted data from Surveillance, Epidemiology and End Results (SEER) for age-

specific incidence rates of CRC in the United States. Since likely candidates for CRC 

screening would target identification of early stage disease (adenoma), we designed a 

preliminary screening test based on the 5 OTUs (OTUs 38, 99, 136, 1889, 1913), which 

were enriched in healthy subjects compared to patients with adenomas.  Persons who 

had any detectable levels (Relative abundance > 0) of these 5 OTUs were more likely to 

have healthy colons and constituted a negative test.  Using a Bayesian model, we 

calculated the positive likelihood ratio for this preliminary screening test and applied it to 
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population probabilities of CRC for each age group (Table 2.2).  The likelihood ratio of 

this test was 71 (95% CI: 64.78, 77.22) (sensitivity=23.3% [7/30], specificity=100% 

[30/30]).  As can be seen in Table 2.2, individuals who are 65 years of age had a pre-

test probability of CRC of 0.17% based on nationwide SEER data.  When we applied 

the OTU test to this age group, the probability of adenoma was 10.67% after knowing 

the microbiome data (1 in 9 chance of having an adenoma).  For people 50 years of 

age, the results suggest a one in 26 chance of having an adenoma with a positive OTU 

test, and for adults 80 years of age; a positive OTU test yielded a 1 in 5 chance of 

having an adenoma. Together, these results demonstrate that our preliminary screen 

dramatically improves the ability to predict the presence of an adenoma. 

For comparison purposes, we assessed the pre-to-post-test probabilities of 

detecting adenoma based on the gFOBT results in this sample.  The likelihood ratio of a 

positive gFOBT was 41 (95% CI: 34.75 - 47.25), which was lower than the likelihood 

ratio of a positive microbiome test (i.e., LR+=71).  For a person who is 65 years of age 

with a positive gFOBT, the post-test probability of adenoma was 6.46%, indicating a 1 in 

15 chance of having an adenoma.  This contrasts with the 10.67% probability of 

adenoma (1 in 9 chance) using a positive microbiome test in the same 65-year 

old.  While both tests had good specificity in this sample, the sensitivity of the 

microbiome test was greater than the sensitivity of the gFOBT.  
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* Based on Surveillance, Epidemiology and End Results data, Years 2000-2010. 	  
** Using Likelihood Ratio of a positive test = 71.   	  

 

Table 2.2. Post-test probability of microbiome-based adenoma screen.  The 
probability of having an adenoma is listed for each age group prior to and after the 
incorporation of the results of a preliminary screen test based on microbiome relative 
abundance data.  Adenoma test based on 5 OTUs (OTUs 38, 99, 136, 1889, 1913). 

Age At 
Diagnosis 

(years) 

Incidence 
Rate (per 
100,000 
people)* 

Pre-Test 
Probability 

Pre-Test 
Odds 

Post-Test 
Odds** 

Post-Test 
Probability 

95% Confidence 
Interval for Post-
Test Probability 

35-39 8.20 0.0001 0.0001 0.0058 0.0058 0.005-0.006 

40-44 15.78 0.0002 0.0002 0.0112 0.0111 0.010-0.012 

45-49 29.11 0.0003 0.0003 0.0207 0.0203 0.019-0.023 

50-54 55.81 0.0006 0.0006 0.0396 0.0381 0.036-0.043 

55-59 76.99 0.0008 0.0008 0.0547 0.0519 0.045-0.060 
60-64 112.05 0.0011 0.0011 0.0796 0.0738 0.073-0.087 

65-69 168.04 0.0017 0.0017 0.1195 0.1067 0.109-0.130 

70-74 223.40 0.0022 0.0022 0.1590 0.1372 0.145-0.173 

75-79 283.25 0.0028 0.0028 0.2017 0.1678 0.184-0.219 

80-84 337.10 0.0034 0.0034 0.2401 0.1936 0.219-0.261 

85+ 376.39 0.0038 0.0038 0.2682 0.2115 0.245-0.292 

 1 
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Discussion 

Our results suggest that relative abundance data from the human gut microbiome 

differentiates individuals with healthy colons from those with adenomas and 

carcinomas.  Most importantly, there was a significant difference in the gut microbiome 

of people with colonic adenomas compared to those with healthy colons.  This has 

considerable importance in secondary prevention because screening for early stage 

colorectal cancer hinges on the ability to detect early pathologic changes.  In this 

regard, we found that failure to detect at least 1 of the 5 OTUs served as a signal of the 

presence of adenoma.  The probability of having an adenoma rose over 50-fold with this 

added information regarding microbiome.  Taken with the existing literature regarding 

the importance of the gut microbiome in health and disease, our study further suggests 

that the microbiome may play a crucial role in the etiology of colorectal cancer. 

A strength of our study design was that we collected samples from three clinical 

groups that represented the multistage progression in CRC (healthy, adenoma, and 

carcinoma).  This allowed us to identify a panel of bacterial populations that could 

indicate both the progression from healthy tissue to adenoma and the progression from 

adenoma to carcinoma.  Interestingly, when we looked at each patient, we rarely 

observed significant enrichment of every bacterial population among the OTUs 

incorporated in the logit models.  For example, 11 of the 30 carcinoma patients had no 

detectable levels of Fusobacterium.  However using the relative abundance data for the 

remaining panel of microbial biomarkers, such as Porphyromonas, Bacteroides, and 

Enterobacteriaceae, we were able to accurately classify these subjects.  This strongly 
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suggests that there may be multiple underlying mechanisms by which the microbiome is 

involved in CRC and that CRC is likely a polymicrobial disease. 

Our findings are supported by previous evidence.  Three research groups 

reported that Fusobacterium spp. were enriched on the surface of tumors compared to 

adjacent healthy tissue [Kostic et al., 2012; Castellarin et al., 2012; Rubinstein et al., 

2013].  Building upon these clinical studies, animal and tissue culture-based studies 

have provided evidence that Fusobacterium may contribute to tumor multiplicity through 

the recruitment of immune cells to tumors [Kostic et al., 2013; Rubinstein et al., 2013].  

These mechanistic studies agree with our findings that Fusobacterium may be a marker 

for the presence of tumors.  In addition, enterotoxigenic Bacteroides fragilis (ETBF), a 

pathogenic variant of a common commensal, has been shown to directly influence the 

development of CRC in murine genetic models through the production of a 

metalloprotease toxin [Sears et al., 2008].  In our samples, subjects with carcinomas 

showed an increase in the relative abundance of one Bacteroides population (OTU 

1882) compared to subjects with adenomas. However, PCR-based screens for the toxin 

producing genes did not reveal the presence of ETBF.  Additionally, we observed a 

significant decrease in the relative abundance of Bacteroides populations (OTUs 1889, 

1913) associated with the advancement of tumorigenesis. Finally, a polyketide 

synthetase operon from E. coli, was shown to influence the progression of tumors using 

a murine model of inflammation-derived tumorigenesis [Arthur et al., 2012, Swidsinski et 

al., 1998].  Although we did see an enrichment for non-E. coli Enterobacteriaceae in the 

carcinoma subjects relative to the healthy subjects, we were unable to detect significant 

differences in the relative abundance of E. coli across the three clinical groups.  
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It is tempting to speculate on the enrichment of Fusobacterium and 

Porphyromonas spp. in subjects with CRC.  Both of these bacterial taxa are common 

commensals of the mouth and a wealth of literature has linked them to chronic 

inflammation and periodontal disease [Signat et al., 2011; Deshpande et al., 1999; 

Darveau and Tanner, 1997; Han et al., 2000].  The mouth is a reservoir for these 

pathogens, allowing for colonization of the gastrointestinal tract under abnormal 

environmental conditions.  During colorectal carcinogenesis, dramatic physiological 

changes occur in the microenvironment of colonic lesions [Peddareddigari et al., 2010].  

Tumor-associated fluxes in nutrients and shifts in inflammatory mediators may favor 

colonization by opportunistic pathogens such as Fusobacterium and Porphyromonas.  

As demonstrated by Kostic and colleagues, colonization by such pathogens can support 

the development and progression of CRC [Kostic et al., 2013,Rubinstein et al., 2013].  

We were unable to detect a significant association between either population and 

carcinoma severity or location.  Additional studies are needed to examine how and at 

what stage these bacterial populations are affecting the development of CRC and how 

they may be linked to the oral microbiome and related to oral disease.   

As highlighted above, there is a clear association with the enrichment of 

pathogenic bacterial populations and colon tumorigenesis; however, in the present 

study we emphasize that the depletion of potentially protective bacteria likely plays a 

similar role CRC pathology.  We identified several bacterial populations that were 

significantly depleted in CRC.  Individuals with both adenomas and carcinomas showed 

a dramatic loss in OTUs associated with the genera Clostridium and Bacteroides, and 

the family Lachnospiraceae [Atarashi et al., 2011; Smith et al., 2013; Round et al., 
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2010].  Each of these bacterial taxa are well known producers of short chain fatty acids 

(SCFAs) in the colon.  SCFAs are important microbial metabolites that supply nutrients 

to colonocytes and help maintain epithelial health and homeostasis.  Specifically the 

SCFA, butyrate, has been shown to have substantial anti-tumorigenenic properties 

including the ability to inhibit tumor cell proliferation, initiate apoptosis in tumor cells 

[Hague et al., 1995; Ruemmele et al., 2003], and mediate T-regulatory cell homeostasis 

[Smith et al., 2013].  Loss of these important bacterial populations in concert with an 

enrichment of pathogenic populations likely plays a synergistic role in potentiating 

tumorigenesis.  

Although our results are important, there are limitations to the investigation.  A 

larger, more diverse sample of individuals is needed to augment and validate our 

findings.  Furthermore, although our study clearly demonstrates the viability of using the 

gut microbiome as a biomarker for CRC, we cannot assess the bacterial populations’ 

role in causation or the mechanisms by which these populations affect the development 

and progression of CRC.  Regardless, the feasibility, lack of invasive procedures, ability 

to be complement existing screening methods (e.g. gFOBT), and the strength of signal 

seen in this study support the further investigation and application of microbial 

biomarkers from stool as a method for CRC screening. 
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Material and Methods 

Study design and sample collection 

As part of the National Cancer Institute-funded Early Detection Research 

Network (EDRN), the Great Lakes-New England Clinical Epidemiological Center (GLNE 

CEC) created a biorepository that included whole evacuated stool for studies on 

potential molecular markers for the detection of colonic precancerous and cancerous 

conditions and cancer risk assessment.  Eligible patients were 18 years of age or older, 

able to tolerate 58 ml of blood removal at two time points, willing to complete an gFOBT 

kit, able to provide informed consent, and had colonoscopy and histologically confirmed 

colonic disease status.  Patients were excluded if known HIV or chronic viral hepatitis, 

known HNPCC or FAP, inflammatory bowel disease, any surgery, radiation or 

chemotherapy for their current colorectal cancer or colonic adenoma. Colonic disease 

status was defined as normal (no personal or family history of colon cancer, adenomas), 

colonic adenoma (colonoscopic and histologically confirmed adenoma), and colorectal 

adenocarcinoma (colonoscopic and histologically confirmed colorectal 

adenocarcinoma). 

All participants collected a whole evacuated stool in a hat with no preservatives.  

Immediately after collection, the patient prepared a gFOBT six-panel kit (Sensa 

Hemocult II, Beckman-Coulter, Palo Alto, CA) from different areas of the stool.  The 

whole stool was then packaged and shipped to the processing center along with the 

gFOBT.  The gFOBT was processed and interpreted as soon as it arrived at the 

processing center.  If any of the six wells were positive, the kit was recorded as positive 

for the participant.  The whole stool was homogenized and aliquoted into equal volumes 
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and stored at -800C.  All participants had intact colonic lesions at time of stool collection.  

Study participants provided their stool sample between one and four weeks after their 

colonoscopy preparation.  We were provided with 90 stool samples and linked data 

randomly chosen from disease groups of healthy (n=30), colonic adenoma (n=30), and 

colonic adenocarcinoma (n=30).   

 

DNA extraction and 16S rRNA gene sequencing 

Microbial genomic DNA was extracted using the PowerSoil-htp 96 Well Soil DNA 

isolation kit (Mo Bio Laboratories) using an EPMotion 5075 pipetting system.  The V4 

region of the 16S rRNA gene from each sample was amplified and sequenced using the 

Illumina MiSeq Personal Sequencing platform as described elsewhere [Kozich et al., 

2013].  Sequences were curated as described previously using the mothur software 

package [Schloss et al., 2009].  Briefly, we reduced sequencing and PCR errors, 

aligned the resulting sequences to the SILVA 16S rRNA sequence database [Pruesse 

et al., 2007], and removed any chimeric sequences flagged by UCHIME [Edgar et al., 

2011].  After curation, we obtained between 25,953 and 404,696 sequences per sample 

(median=95464), with a median length of 253 bp.  To limit effects of uneven sampling, 

we rarefied the dataset to 25,958 sequences per sample.  Parallel sequencing of a 

mock community revealed an error rate of 0.03%.  All fastq files and the MIMARKS 

spreadsheet are available at http://www.mothur.org/MicrobiomeBiomarkerCRC. 

 

Gut Microbiome Biomarker Discovery Analysis 
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Sequences were clustered into OTUs at a 97% similarity cutoff and the relative 

abundance was calculated for OTUs in each sample.  All sequences were classified 

using a naïve Bayesian classifier trained against the RDP training set version 9 

(http://sourceforge.net/projects/rdp-classifier/) and OTUs were assigned a classification 

based on which taxonomy had the majority consensus of sequences within a given OTU 

[Wang et al., 2007].  Differentially abundant OTUs were selected using the biomarker 

discovery algorithm, LEfSe (Linear discriminant analysis Effect Size) for each pairwise 

comparison of clinical groups [Segata et al., 2011] (Healthy vs. Adenoma, Healthy vs. 

Carcinoma, Adenoma vs. Carcinoma, Healthy vs. Colonic lesion) using a maximum P-

value of 0.05 and a minimum linear discriminant analysis (LDA) score of 2.0. 

 

Data Analyses 

Analyses of patient-level characteristics across the three clinical groups utilized 

Pearson chi-square test for categorical data and one-way ANOVA for continuous 

variables.  Clinical variables evaluated were age, gender, race/ethnicity, body mass 

index (BMI, kg/m2), and current medications.  One missing value for BMI was imputed. 

Logit models were generated using both clinical and microbiome data as independent 

variables to contrast differences across disease groups (i.e., healthy versus adenomas; 

healthy versus cancer; adenomas versus cancer).  OTUs demonstrating the highest 

LDAs and smallest p-values were entered into a logit model and their ability to 

discriminate group classification was evaluated using area under the receiver operator 

characteristic (ROC) curve.  We used a maximum of 6 OTUs for each model to avoid 

potentially over-fitting the model.  Differences between nested models were compared 



	  

 55	  

using the test for the equality of ROC areas [Delong et al., 1988].  Data were available 

on gFOBT status and therefore, this was entered as an independent variable when 

comparing adenoma versus carcinoma.  We tested using an experiment wide error rate 

(i.e. α) of 0.05 and performed 2-tailed tests.  Analyses were conducted in Stata/MP 

13.1. 

We utilized Bayesian methods to estimate the probability of adenoma based on 

relative abundance data taken from the gut microbiome [Linnet, 1988].  We utilized data 

from the 5 OTUs found to differentiate adenoma from healthy colons as the basis of a 

preliminary screening test. Sensitivity, specificity and positive likelihood ratios were 

calculated based on our study results, with failure to detect any appreciable level of any 

of these 5 OTUs (0 relative abundance) indicating possible pathology (i.e., positive test).  

Since the false positive rate of this test was 0%, we applied a continuity correction of 0.1 

to each cell and calculated the likelihood ratio of a positive test and the 95% confidence 

intervals using standard methods [Simel et al., 1991].  The likelihood ratio was then 

applied to the pre-test probability of CRC based on national Surveillance, Epidemiology 

and End Results (SEER) data, years 2000-2010. 
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CHAPTER III 
 
 

The Gut Microbiome Modulates Colon Tumorigenesis 
 

 

Abstract 

Recent studies have shown that individuals with colorectal cancer have an 

altered gut microbiome when compared to healthy controls.  It remains unclear whether 

these differences are a response to tumorigenesis or actively drive tumorigenesis.  To 

determine the role of the gut microbiome in the development of colorectal cancer, we 

characterized the gut microbiome in a murine model of inflammation-associated 

colorectal cancer that mirrors what is seen in humans.  We followed the development of 

an abnormal microbial community structure associated with inflammation and 

tumorigenesis in the colon.  Tumor-bearing mice showed enrichment in operational 

taxonomic units (OTUs) affiliated with members of the Bacteroides, Odoribacter, and 

Turicibacter genera, and decreases in OTUs affiliated with members of the 

Prevotellaceae and Porphyromonadaceae families. Colonization of germ-free mice with 

microbiota from tumor-bearing mice significantly increased tumorigenesis in the colon 

compared to animals colonized with a healthy gut microbiome from untreated mice.  

Furthermore, at the end of the model, germ-free mice colonized with microbiota from 

tumor-bearing mice harbored a higher relative abundance of populations associated 



	  

 63	  

with tumor formation in conventional animals.  Manipulation of the gut microbiome with 

antibiotics resulted in a dramatic decrease in both the number and size of tumors.  Our 

results demonstrate that changes in the gut microbiome associated with inflammation 

and tumorigenesis directly contribute to tumorigenesis and suggest that interventions 

affecting the composition of the microbiome may contribute to a strategy to prevent the 

development or progression of colon cancer. 

 

 
Introduction 

Colorectal cancer (CRC) is one of the most commonly diagnosed malignancies 

worldwide, resulting in over a half million deaths annually [Parking et al., 2005].  

Significant risk factors for CRC include diets rich in red and processed meat, alcohol 

consumption, and chronic inflammation of the gastrointestinal tract [Chambers et al., 

2005; Huxley et al., 2009; Larsson et al., 2005; Slattery, 2000]. Each of these factors is 

closely associated with changes in composition and function of the complex community 

of microorganisms that inhabits our gastrointestinal tract.  This community, known as 

the gut microbiome, promotes various physiological functions that are associated with 

cancer, including cell proliferation, angiogenesis, and apoptosis [Cheesman et al., 2011; 

Dolara et al., 2002; Stappenbeck et al., 2002; Rakoff-Nahoum et al., 2007].  Therefore, 

we hypothesized that the composition, structure, and functional capacity of the gut 

microbiome all directly affect tumor development in the colon.   

Several recent studies have addressed this hypothesis by characterizing the 

composition of the gut microbiome associated with patients with CRC [Chen et al., 

2013; Chen et al., 2012; Kostic et al., 2012; Geng et al., 2013; Shen et al., 2010; 
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Sobhani et al., 2011; Wang et al., 2012].  Using culture-independent approaches, each 

of these studies observed a significant shift in the composition of the gut microbiome in 

patients with CRC when compared to healthy controls.   This phenomenon referred to 

as dysbiosis, can be observed in both the luminal microbiome from feces and the 

mucosal-associated microbiome from tumor biopsies.  Interestingly, each of these 

studies obtained conflicting results regarding the composition and structure of the CRC-

associated microbial community.  Furthermore, there are no bacterial populations that 

have been consistently identified across each study that can be attributed to the 

development or presence of CRC.  These data clearly show an association between 

abnormalities in the gut microbiome and CRC; however, the conflicting results point out 

the need for a mechanistic understanding of the role of the gut microbiome in this 

process. 

The combination of factors that could lead to dysbiosis is complex and not well 

understood.  In addition, the effect of the development of this abnormal community on 

colon tumorigenesis remains unclear.  Recent evidence suggests that certain strains of 

Bacteroides fragilis and E. coli can directly affect tumor development in the colon 

through the production of virulence factors (e.g. toxins, gene products) [Arthur et al., 

2012; Wu et al., 2009].  Furthermore, bacterial populations that produce the short chain 

fatty acid, butyrate, have anti-tumor effects in the colon by promoting apoptosis of 

colonic cancer cells [Hague et al., 1995; Ruemmele et al., 2003].  We reason that 

dysbiosis of the gut microbiome leads to both enrichment of cancer-promoting bacterial 

populations and loss of protective populations.  Thus, understanding the changes in the 
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gut microbiome on a community-wide scale will be essential for understanding colon 

tumor development. 

The gut microbiome is also likely to contribute to CRC through the initiation of 

inflammation.  The link between inflammation and cancer is well established, and 

patients with inflammatory bowel diseases, such as ulcerative colitis, are at a greater 

risk of developing CRC in their lifetime. In the case of ulcerative colitis, the risk for 

cancer is related to both duration and severity of inflammation with an increasing rate of 

0.5-1% per year after the first decade [Chambers et al., 2005; Ullman et al., 2011; 

Eaden et al., 2000].  Chronic inflammation of the colon leads to the production of 

various inflammatory cytokines and reactive oxygen species that work in concert to 

generate a tumor microenvironment that promotes carcinogenesis [Ullman et al., 2011; 

Arthur et al., 2013; Lin et al., 2007].  It has been suggested that this process is 

microbially driven, but it is unclear how the no rmally beneficial gut microbiome 

becomes inflammatory. 

To determine the role of the gut microbiome in inflammation and colon 

tumorigenesis, we used a well-established model of colitis-associated CRC that 

recapitulates the progression from chronic inflammation to dysplasia and 

adenocarcinoma in humans [De Robertis et al., 2011]. We characterized the dynamics 

of the gut microbiome in this model and demonstrated that community-wide changes 

promote tumorigenesis in the colon.  Our data support a model in which epithelial cell 

mutation and inflammatory perturbations to the gut microbiome lead to the development 

of an abnormal microbial community with enhanced tumor-promoting activity. 
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Results 

Inflammation-associated colon tumorigenesis.   

We were able to replicate an inflammation-based murine model of tumorigenesis 

in specific pathogen free (SPF) C57BL/6 mice (n=22) using an intraperitoneal injection 

of the chemical carcinogen azoxymethane (AOM) followed by three subsequent rounds 

of water-administered 2% dextran sodium sulfate (DSS) treatment [Tanaka et al., 2003; 

Chen et al., 2008] (Figure 3.1).  The mice showed a consistent pattern of weight loss 

following each round of DSS treatment, with the most pronounced change occurring 

after the first round of DSS (Figure 3.2).  We did not observe macroscopic tumors 

following the first round of DSS administration; however, we did observe increased 

infiltration by immune cells, significant epithelial damage, and submucosal edema 

(Figure 3.2).  In addition, we observed a significant increase in the pro-inflammatory 

mediators macrophage inflammatory protein 2 (MIP-2), interferon gamma (IFN-γ), tumor 

necrosis factor alpha (TNF-α), interleukin 6 (IL-6), and IL-1β (Figure 3.2).  Macroscopic 

tumors and epithelial hyperplasia were apparent following the second round of DSS 

(Figure 3.1B, Figure 3.2).  At the end of the model, the cohort had a median of 14.5 

tumors per mouse (n=12), the majority of which were greater than 1 mm in diameter and 

located in the distal colon and rectum (Figure 3.2).   These results demonstrate that our 

cohort of AOM/DSS treated mice developed a substantial number of colonic tumors with 

complete penetrance that could be detected as early as 7 weeks after AOM injection. 

To determine whether tumor incidence and penetrance was dependent on the 

gut microbiome, we treated mice (n=9) with an antibiotic cocktail of metronidazole, 

vancomycin, and streptomycin ad libitum for 2 weeks prior to AOM and then throughout 
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the model, including the days of AOM injection and throughout the DSS treatment and 

recovery periods.   Antibiotic-treated mice had significantly fewer tumors in the colon 

relative to the untreated mice (Fisher exact test: p<0.001; Fig. 3.1B).  Tumors that were 

present in antibiotic-treated mice were also significantly smaller than those observed in 

untreated mice (Student’s t-test: p=0.002; Fig. 3.1C, Figure 3.8).  These results suggest 

that specific populations within the microbiome were essential for tumorigenesis.  To 

determine whether the relative change in bacterial density following antibiotic treatment 

was due to a change in bacterial load, we performed qPCR on the 16S rRNA gene from 

stool samples of antibiotic-treated mice. The number of 16S rRNA gene copies per mg 

of feces was not significantly different from untreated stool samples (p=0.21, Figure 

3.6).  Combined, these results indicate that changes to the structure of the community 

rather than total bacterial numbers affected tumorigenesis. 
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Figure 3.1.  Development of a dysbiotic gut microbiome during colon 
tumorigenesis.  Microbiome analysis was performed on fecal samples from 10 
representative mice and color coded as indicated in Figure 3.1A.  A. Inverse Simpson’s 
diversity index.  B.  Observed community richness estimate.  Statistical analysis was 
performed using repeated measured paired group analysis of variance. C. NMDS 
ordination based on θyc distances for all 10 mice during the AOM/DSS model.  (AMOVA; 
P < 0.01) D.  Average θYC distance within (black) and between (grey) phase of the 
model.  Statistical analysis was performed using Wilcoxon test.  *, P < 0.01.  Error bars  
represent +/- SEM.  
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Figure 3.2. Colonic inflammation during tumorigenesis. A. Relative cytokine 
expression levels in colon. Statistical analysis was performed using a two-tailed 
Student’s t-test.  *, P < 0.01.  B.  Representative H&E stained histological sections from 
colon of mice during AOM/DSS tumor induction protocol.   Single arrows indicate 
mucosal ulceration, double arrows indicate submucosa edema, and dashed arrows 
indicate adenoma.  Error bars represent SD.  
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Significant shifts in the microbiome are associated with colon tumorigenesis.  To 

further test the hypothesis that specific changes in the microbial community structure 

were associated with inflammation and tumorigenesis, we examined the dynamics of 

the gut microbiome throughout the model using stool samples from a subset of the 

original cohort of conventional mice treated with AOM/DSS in Figure 3.1 (n=10).  We 

used the fecal samples taken prior to AOM injection as a baseline control for each 

mouse and then took samples following each subsequent round of DSS administration 

(Figure 3.1A).  Mice showed a significant decrease in microbial diversity in the gut 

microbiome following the first round of DSS administration through tumor development 

(P<0.001; Figure 3.3A and 3.3B).  Ordination of the distances between fecal samples 

showed that at the time of euthanization, tumor-bearing mice developed a significantly 

altered microbiome that clustered separately from that in baseline samples taken prior 

to the first round of DSS (Figure 3.3C).  Further examination of fecal samples collected 

at various time points during the AOM/DSS tumor induction protocol revealed that 

significant alterations in the microbiome could be observed as early as the first round of 

DSS administration in 7 of the 10 mice.  Each round of DSS treatment resulted in a 

significant change in the structure of the microbiome (Figure 3.3D).   Fecal samples 

taken from tumor-bearing mice after the third round of DSS until the time of 

euthanization also clustered separately from earlier samples.  The distances between 

clusters were significantly higher than the distance within clusters (Figure 3.3D). These 

clusters were observed using OTU and phylogenetic-based metrics of β-diversity (i.e. 

ΘYC and unweighted or weighted UniFrac) and could be distinguished from one another 

using the Random Forest machine learning algorithm (Accuracy for each group: 
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Baseline: 100%, DSS round 1: 72.4%, DSS round 2: 71.9%, DSS round 3: 80.6%).  

These results highlighted the association between a dramatically altered microbiome 

structure and the presence of tumors.  

To determine the effect of inflammation on the microbial community independent 

of tumorigenesis, we treated mice with three rounds of DSS without the AOM injection 

(n=5). Mice treated with DSS in the absence of AOM did not develop colonic tumors. 

There was an initial community shift following the first round of DSS, but the subsequent 

stepwise shifts that occurred in AOM/DSS-treated mice were not observed in mice 

treated with DSS only (Figure 3.7).  Furthermore, we did not observe the sustained drop 

in microbial diversity that was observed in AOM/DSS-treated animals (Figure 3.7).  

These results suggest that inflammation alone is insufficient to cause microbial 

community changes.  Rather, the synergistic effects of the AOM/DSS model are 

necessary for the development of the altered microbiome structure and tumorigenesis. 

We next identified which operational taxonomic units (OTUs) were responsible for the 

dramatic shifts to the microbial community structure during inflammation and 

tumorigenesis (Figure 3.4).  Consistent with our communitywide β-diversity analyses, 

we observed changes in 37 bacterial populations (after excluding OTUs representing < 

0.5% of the community) during the time course of the model relative to baseline 

samples prior to treatment.  Fecal samples taken after the first round of DSS were 

enriched in the relative abundance of OTUs affiliated with members of the genus 

Bacteroides (OTUs 1 and 13).  We also observed significant decrease in the relative 

abundance of OTUs associated with members of the genus Prevotella and unclassified 

genera within the family Porphyromonadaceae.  Following the second round of DSS, we 
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observed a further loss of the same Prevotella (OTUs 4 and 5) and 

Porphyromonadaceae (OTUs 7, 12, 15, 22, 31, and 48) and the continued enrichment 

of Bacteroides (OTUs 1 and 13).  Samples taken from mice following the third round of 

DSS showed significant differences compared to those taken following the first round of 

DSS and healthy baseline mice (Figure 3.4; all P<0.001 by AMOVA).  Tumor-bearing 

mice showed enrichment in OTUs affiliated with Bacteroides (OTUs 1), Odoribacter 

(OTU 3), and Turicibacter (OTU 20).  Additionally, in tumor-bearing mice we detected a 

marked bloom of a member of the Erysipelotrichaceae family (OTU 26), which was 

undetectable in all of the mice prior to the second round of DSS when tumors are not 

evident.  Simultaneous with the blooming of several bacterial populations, there was a 

significant decrease in the relative abundance of OTUs associated with members of the 

genus Prevotella (OTUs 4 and 5) and the family Porphyromonadaceae (OTUs 7, 12, 15, 

22, 31, and 48). An OTU associated with the Bacteroides genus (OTU 13), which 

bloomed during the onset of inflammation, significantly decreased following the third 

round of DSS.  Mice that were treated with DSS in the absence of AOM, showed no 

significant changes in specific bacterial populations when compared to untreated mice. 

These results strongly suggest that both inflammation and tumorigenesis promote gut 

microbiome dysbiosis, as highlighted by major shifts in bacterial populations from a wide 

range of taxonomic groups. 
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Figure 3.3.  Development of a dysbiotic gut microbiome during colon 
tumorigenesis.  Microbiome analysis was performed on fecal samples from 10 
representative mice and color coded as indicated in Figure 1A.  A. Inverse Simpson’s 
diversity index.  B.  Observed community richness estimate.  Statistical analysis was 
performed using repeated measured paired group analysis of variance. C. NMDS 
ordination based on θyc distances for all 10 mice during the AOM/DSS model.  (AMOVA; 
P < 0.01) D.  Average θYC distance within (black) and between (grey) phase of the 
model.  Statistical analysis was performed using Wilcoxon test.  *, P < 0.01.  Error bars 
represent +/- SEM. 
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Figure 3.4. Change in relative abundance for OTUs that are significantly different 
from the time of AOM administration. Heatmap shows change in OTU abundance 
relative to samples taken at baseline time points.  Average OTU abundance between 
mice for each OTU was calculated for each time point.  Timeline is colored into the 
following groups:  Baseline samples (prior to AOM): black, following the first round of 
DSS: blue, following the second round of DSS: green, Following the third round of DSS: 
red.  OTU number and Taxonomic group based on RDP classification are represented 
for each row and each OTU is colored based on phylum (Firmicutes: blue, 
Bacteroidetes: red, Tenericutes: black).  Repeated measures paired group analysis of 
variance was used to identify significantly altered OTUs.    
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We hypothesized that the variability in tumor burden among AOM/DSS-treated 

mice was associated with variability in the gut microbiome between mice (coefficient of 

variation for tumor burden=37.9; Figure 3.1C).  We identified an OTU related to an 

unclassified genus within the family Porphyromonadaceae (OTU 12) that was negatively 

correlated with tumor burden (Spearman correlation=-0.73, p-value<0.05).  The relative 

abundance of this bacterial population decreased with each round of DSS and this drop 

in abundance was more pronounced in mice with higher tumor burden.  These results 

suggest that alterations in the relative abundance of specific bacterial populations were 

associated not only with the incidence of tumors, but also their prevalence. 

 

Tumor-associated alterations in the microbiome increase tumorigenesis in germ-

free mice.   

To determine whether the community-wide microbiome changes directly 

contributed to tumor incidence in the colon, we colonized germ-free mice with either the 

healthy microbiome of untreated mice or the microbiome of tumor-bearing mice from 

Figure 3.1 following administration of the AOM/DSS model.  To ensure that mice were 

repeatedly inoculated and stably colonized, we transferred fresh feces and bedding to 

two groups of germ-free mice (n=10/group).  One group was housed with the bedding 

from healthy, untreated SPF mice, and a second group was housed with bedding from 

tumor-bearing AOM/DSS treated mice.  To minimize litter effects, each group was 

comprised of two cages of 5 mice collected from separate litters that were randomly 

assigned to each of the cages.  Following a three-week colonization period, mice were 

treated with AOM/DSS under germ-free conditions, as described above (Figure 3.1).  All 
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bacterial phyla and 90% (62 of 69) of genus-level taxa detected in donor samples were 

detected within the recipient germ-free mice (Table 3.2), which is higher than has been 

previously reported [Turnbaugh et al., 2009; Smith et al., 2013].  Furthermore, 81% of 

the sequences we obtained from the donor mice belonged to OTUs that were found in 

the recipient germ-free mice.  Following AOM/DSS treatment, mice colonized with the 

microbiome of tumor-bearing mice had a 2-fold increase in tumor burden (p=0.002) 

relative to mice colonized with a healthy microbiome (Figure 3.5).  Additionally, tumors 

from these mice were significantly larger than those observed in recipients of a healthy 

microbiome (p=0.002; 3.8).  Similar to our results with SPF mice, germ-free mice 

colonized with the community of tumor-bearing mice had a significantly less diverse gut 

microbiome (P<0.001).  Using community wide β-diversity analyses we determined that 

following a three-week colonization period with these two treatments of bedding resulted 

in two distinct microbial community structures (AMOVA; p<0.001; Figure 3.5C).  Germ-

free mice colonized with the microbiome of tumor-bearing mice showed significant 

enrichment in the relative abundance of OTUs affiliated with the genera Bacteroides 

(OTU 1) and the family Erysipelotrichaceae (OTU 26).  Additionally, these germ-free 

mice had significantly fewer Porphyromonadaceae (OTU 12) when compared to germ-

free mice colonized with bedding from healthy mice. Finally, germ-free mice colonized 

with a healthy microbiome successfully recapitulated the community dynamics seen in 

conventional mice during tumorigenesis. We observed significant changes in 34 OTUs 

following the AOM/DSS model.  Similar to tumor-bearing conventional mice, germfree 

tumor-bearing mice showed enrichment in OTUs affiliated with members of the 

Bacteroides (OTUs 1), Odoribacter (OTU 3), Turicibacter (OTU 20), and a bloom in 
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Erysipelotrichaceae (OTU 26), following AOM/DSS administration. There was also 

significant decrease in the relative abundance of OTUs associated with members of the 

genus Prevotella (OTUs 4 and 5) and the family Porphyromonadaceae (OTUs 6, 7, and 

12).  These results demonstrate that alterations to the gut microbiome that were 

associated with chronic inflammation and tumorigenesis in SPF mice were transmitted 

to germfree mice and can exacerbate colon tumorigenesis. 
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Figure 3.5.  Tumor-associated gut microbiome alterations exacerbate 
tumorigenesis in germ-free mice.   A.  Number of tumors observed at the end of the 
model when germ-free mice were colonized using bedding from healthy mice (Healthy 
community) and mice with tumors (Dysbiotic community).  Tumors counts were taken 
following AOM/DSS treatment.  B.  Representative images of tumors in the distal colon 
of mice colonized with a healthy microbiome (n=10) or the microbiome of tumor-bearing 
mice  (n = 9). C. NMDS ordination based on θyc distances for all 19 mice following a 
three-week colonization period with a healthy microbiome (Healthy community) or the 
microbiome of tumor-bearing mice (Dysbiotic community).  Error bars represent +/- 
SEM. 
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Discussion 

In the present study we established a causal role for the gut microbiome in 

exacerbating tumor formation in an inflammation-based model of tumorigenesis.  

Manipulation of the microbiome using antibiotics reduced tumor formation, which 

highlighted the importance of bacterial driven factors in tumorigenesis.  We 

demonstrated dynamic changes in the microbial community structure associated with 

dysbiosis, which occurs prior to the first signs of macroscopic tumor formation.  We 

established the synergistic affect of AOM- and DSS-induced inflammation and 

tumorigenesis in driving microbial community changes that occur in a stepwise fashion.  

Finally, transfer of microbiota from tumor-bearing mice into germfree mice significantly 

increased the number and size of tumors compared to that in germ-free mice inoculated 

with healthy microbiota.  Our experiments also demonstrated dramatic shifts in the 

relative abundance of bacterial populations, including those related to the genus 

Bacteroides, which were associated with increased tumorigenesis. 

Several recent studies have compared the gut microbiome of patients with CRC 

to healthy controls [Chen et al., 2013; Chen et al., 2012; Kostic et al., 2012; Geng et al., 

2013; Shen et al., 2010; Sobhani et al., 2011; Wang et al., 2012].  These studies have 

consistently demonstrated significant differences in the microbial community structure of 

patients with CRC, but each study has disagreed in terms of the specific gut microbiome 

composition and profile associated with CRC.  The inability to identify a consensus 

community profile or etiological agent is likely due to the large variation in the structure 

of the microbiome across individuals and the improbability of there being one 

community profile or bacterial population that is associated with all CRCs.  We were 
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able to reduce the inter-individual variation and the diversity of cancer types using a 

murine model of inflammation-induced CRC.  Unlike the human cross-sectional studies, 

we demonstrated dynamic changes in the microbiome during the development of 

inflammation and tumorigenesis and that these changes directly cause disease. 

Based on this study, the gut microbiome complements the activity of AOM and 

DSS to cause tumorigenesis, but the underlying mechanisms driving microbial-mediated 

tumorigenesis observed remain to be elucidated.  Although a number of bacterial 

populations have altered relative abundances throughout the model, it is as yet unclear 

whether there is an increase in bacterial populations that induce inflammation or a loss 

of populations that produce anti-inflammatory signals and help maintain immune 

homeostasis in the gut.  Regardless, an increasingly inflammatory environment would 

generate a self-reinforcing pathogenic cascade between the gut microbiome and the 

host, fostering the development of cancer through the development of, for example, 

genotoxic reactive oxygen species and pro-tumor inflammatory mediators (e.g. TNF-a, 

IL-6, IL-1β, IL-23).  In addition to the role of the gut microbiome in inflammation, 

changes mediated by chronic inflammation and tumorigenesis could lead to the 

enrichment of bacterial populations [Couturier-Maillard et al., 2013] that have a direct 

role in tumor development through the production metabolites, antigens, virulence 

factors and other potential tumor-promoting gene products.  A recent study by Arthur et 

al. [Arthur et al., 2012] demonstrated that colonic inflammation in the IL-10-deficient 

mouse impacts the composition of the gut microbiome, leading to an enrichment of 

tumor-promoting E. coli strains.  Although we did not detect any significant changes in 

populations related to the genus Escherichia, it is likely that the microbial community 
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alterations we observed in our tumor model are enriched with populations that fill a 

similar role.  Specifically, marked increases in Bacteroides sp. in our study may 

contribute to tumorigenesis.  Human commensals belonging to the genus Bacteroides, 

specifically enterotoxigenic B. fragilis (ETBF), have been associated with inflammation 

and CRC [Wu et al., 2009; Sears et al., 2008].  ETBF has been shown to strongly 

induce colonic tumors in multiple intestinal neoplasia mice through secretion of a 

metalloprotease toxin and certain strains are thought to contribute to CRC risk in 

humans.  We did not detect ETBF in the murine gut microbiome (data not shown), but it 

is possible that similar processes are occurring during tumorigenesis in mice.   

Chronic inflammation and tumorigenesis are also likely to lead to the loss of members of 

the gut microbiome that are important for maintaining epithelial health and immune 

homeostasis.  In this study, we observed a dramatic decrease in OTUs from 

unclassified genera within the family Porphyromonadaceae.  We hypothesize that these 

bacterial populations serve a protective role and are important mediators of gut health in 

the murine gut microbiome.  One mechanism of protection could be through the 

fermentation of complex carbohydrates (e.g. fiber) into short chain fatty acids (SCFA) 

such as butyrate.  Butyrate reduces inflammation [Segain et al., 2000] and inhibits 

growth and induces apoptosis in cancer cells [Hague et al., 1995; Ruemmele et al., 

2003].  Therefore, loss of butyrate-producing populations in the gut could increase both 

inflammation and tumorigenesis. This is supported by extensive epidemiological data 

that demonstrates a link between diets high in fiber and decreased CRC risk [Aune et 

al., 2011].  Furthermore, recent studies have shown that both individuals who consume 

low fiber diets or are diagnosed with CRC have a lower level of SCFAs in their feces 
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[O’Keefe et al., 2009].   It is also possible that members of the family 

Porphyromonadaceae are important mediators of anti-inflammatory signals in the gut.  

A loss of such anti-inflammatory populations would lead to a dramatic intensification of 

inflammation in the gut during DSS induced colitis and a marked increase in tumor-

promoting signals. 

It is important to note that the gut microbiome is an extremely complex and 

diverse community and therefore, it is unlikely that a single bacterial population is 

responsible for driving tumorigenesis or that one CRC-associated microbiome can be 

found in all CRC patients.  Rather, as our data suggest, a community-wide effect 

involving the gain and loss of bacterial populations and general metabolic functions 

likely plays a critical role in CRC development.  As we demonstrated in this study, 

changes in the entire gut microbiome can dramatically alter tumor burden, and 

identifying the mechanisms behind this phenomenon will be critical for addressing how 

the microbiome can be altered therapeutically to reduce colon tumorigenesis. 
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Figure 3.6. 16S rRNA quantitative qPCR. Relative fold decrease in 16S rRNA copy 
number during antibiotic treatment compared to baseline untreated samples.  All time 
points showed no significant decrease compared to baseline untreated samples (p = 
0.21).  Error bars represent SEM. 
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Figure 3.7. Microbiome alterations associated with DSS induced inflammation.  A. 
Inverse Simpson’s diversity index.  B.  Average θYC distance between phase of the 
model.  Error bars represent SEM. 
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Figure 3.8. Tumor size for antibiotic treated and germ-free mice. Measurement of 
the largest dimension of each tumor (mm) was performed using calipers for each mouse 
following AOM/DSS administration.  (A) Antibiotic-treated mice (n=10) versus 
conventional mice (n=12). P = 0.002.  (B) Gerfree mice colonized with a healthy 
community (n=10) versus a dysbiotic community (n=10).  P = 0.0019.  Statistical 
analysis of tumor count data was performed using Fisher’s exact test. 
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OTU# Taxonomy (level) Baseline DSS 
Round 1 

DSS 
Round 2 

DSS 
Round 3 

1 Bacteroides (genus) 3.99* 8.32 9.97 11.35 
3 Odoribacter (genus) 1.42 2.02 3.06 5.98* 
4 Prevotellaceae(family) 5.48* 3.07 2.67 3.18 
5 Prevotella (genus) 5.03 6.01 1.76* 2.44* 
6 Porphyromonadaceae (family) 4.99* 2.19 2.01 4.52 

7 Porphyromonadaceae (family) 4.15 3.06 2.61 2.6 

9 Bacteroidetes (phylum) 6.2 2.05* 4.09 1.71 
12 Porphyromonadaceae (family) 3.56 2.08 1.52 1.05 

13 Bacteroides (genus) 0.07 2.84 6.39 1.01 
14 Lactobacillus (genus) 0.98 1.69 2.2 2.89 
15 Porphyromonadaceae (family) 2.51 0.98 1.77 2.14 

18 Clostridiales (order) 1.39 1.78 0.58 0.82 
20 Turicibacter (genus) 0.16 1.57 1.69 1.54 
22 Porphyromonadaceae (family) 0.99 1.23 0.42 0.69* 

23 Alistipes (genus) 0.51 1.31 0.71 0.55* 
26 Erysipelotrichaceae (family) 0 0 0.69* 2.03* 
27 Anaeroplasma (genus) 1.51 2.31 0.21* 0.44* 
35 Clostridium (genus) 0* 0.8 1.06 1.39 
36 Bacteria (kingdom) 0 0.06 0.54 1.16* 
42 Lachnospiraceae (family) 0.71 0.91 0.08* 0.22 
48 Porphyromonadaceae (family) 1.58 0.36 0.14 0.36 

49 Bacteria (kingdom) 0.92 0.31 0.19 0.08 
51 Lactobacillus (genus) 0.72 0.47 0.5 0.22 
56 Porphyromonadaceae (family) 0.7 0.46 0.27 0.41 

59 Bacteroidales (order) 0.35 0.09 0.21 0.14 
62 Alphaproteobacteria (order) 0.42* 0.12 0.05 0.09 
66 Porphyromonadaceae (family) 0.67 0.49 0.17* 0.32 

69 Barnesiella (genus) 0.52* 0.12 0.41* 0.14 
70 Clostridiales (order) 0.39 0.72 0.24 0.08 
72 Porphyromonadaceae (family) 0.15 0.09 0.62* 0.28* 

81 Lachnospiraceae (family) 0.43 0.15 0.16 0.11 
85 Clostridium (genus) 0.02 0.16 0.48 0 
86 Bacteroidales (order) 0.65* 0.07 0.16 0.12 
87 Porphyromonadaceae (family) 0.31 0.25 0.13 0.12 

94 Porphyromonadaceae (family) 0.41 0.5 0.18 0.11* 

98 Bacteria (kingdom) 0.35* 0.12 0.07 0.09 

Table 3.1. Average relative abundance of significantly altered OTUs during 
AOM/DSS tumor induction.  OTUs included in table are significantly altered from 
baseline over time.  Significance was determined using repeated measure paired 
treatment analysis of variance and correcting for multiple comparisons using an 
experiment-wise error rate of 0.01.  Taxonomic group based on RDP classification is 
represented for each OTU.  * indicates significant alterations from DSS round 1. 
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OTU # Taxonomy (level) Baseline DSS 
Round 3 

1 Bacteroides (genus) 1.2 7.75 
3 Odoribacter (genus) 1.87 11.23 
4 Prevotellaceae(family) 3.9 2.08 
6 Porphyromonadaceae (family) 1.66 0.45 

7 Porphyromonadaceae (family) 2.83 1.49 

9 Bacteroidetes (phylum) 0.16 2.53 
11 Erysipelotrichaceae (family) 3.7 0.2 

18 Clostridiales (order) 3.18 0.93 
20 Turicibacter (genus) 0 2.04 
21 Ruminococcus (genus) 2.46 0.21 
22 Porphyromonadaceae (family) 2.16 0.48 

26 Erysipelotrichaceae (family) 0 4.18 

28 Bacteroidales (order) 4.1 0.16 
30 Porphyromonadaceae (family) 2.97 1.42 

32 Akkermansia (genus) 1.05 0.2 
39 Odoribacter (genus) 0.75 1.83 
40 Clostridiaceae (family) 0.01 1.33 
41 Bacteroidetes (phylum) 0.32 5.65 
42 Lachnospiraceae (family) 3.33 0.11 
45 Porphyromonadaceae (family) 1.72 0.6 

47 Porphyromonadaceae (family) 0.51 0.1 

49 Bacteria (kingdom) 1.69 0.43 
53 Clostridiales (order) 0.46 0.1 
62 Alphaproteobacteria (class) 1.26 0.08 

67 Porphyromonadaceae (family) 0.07 0.57 

69 Barnesiella (genus) 0.57 0.13 
81 Lachnospiraceae (family) 0.5 0.07 
90 Bacteria (kingdom) 0.87 0.14 
96 Clostridiales (order) 0.86 0.05 
99 Lachnospiraceae (family) 0.97 0.15 

 

Table 3.2. Average relative abundance of OTUs for baseline and DSS round 3 in 
germ-free mice conventionalized with healthy microbiota. OTUs included in table 
are significantly altered from baseline over time in mice conventionalized with bedding 
from healthy mice.  Significance was determined using repeated measure paired 
treatment analysis of variance and correcting for multiple comparisons using an 
experiment-wise error rate of 0.01.  Taxonomic group based on RDP classification is 
represented for each OTU.   
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Materials & Methods 

Animals and animal care.  

Studies were conducted on adult (8 to 12 week old) age-matched male C57BL/6 

mice that were bred and maintained under SPF or germ-free conditions as specified 

above.  Mice were co-housed in groups of five.  Both SPF and germfree mice were fed 

the same autoclaved chow diet.  All animal experiments were approved by the 

University Committee on Use and Care of Animals at the University of Michigan. 

 

Inflammation-induced colon tumorigenesis.   

Eight to 12-week-old mice received a single intraperitoneal (i.p.) injection of 

azoxymethane (10 mg/kg).  Water containing 2% DSS was administered to mice 

beginning on day 5 for 5 days followed by 16 days of water.  This was repeated twice 

for a total of 3 rounds of DSS [Tanaka et al., 2003; Chen et al., 2008].  Mice were 

euthanized on days 14, 24, 38, and 45 for intermediate time point analysis.  The 

remaining mice were euthanized 3 weeks after the third round of DSS administration for 

tumor counting.  

 

Histological analysis.   

At necropsy, all colons were harvested, flushed of luminal contents, and cut open 

longitudinally to count and measure tumors.  The largest dimension of each tumor was 

measured with calipers.  Tumors were categorized based on size (<1mm, 1-2mm, 

>2mm).  Colons were then jellyrolled, fixed in Carnoy’s solution, and embedded in 
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paraffin.  Five-micrometer sections were used for H&E staining and slides were 

analyzed under 100X  magnification. 

 

RNA isolation and cytokine analysis.   

Distal colon tissue was homogenized and total RNA isolated using the 

Nucleospin RNA kit (Macherey-Nagel) cDNA was synthesized using iScript (Bio-Rad) 

and the cDNA was then used for quantitative qPCR using SYBR Green Expression 

Assay (Applied Biosystems).  

 

Antibiotic treatment.   

Mice were treated with an antibiotic cocktail of metronidazole (0.75 g/L), 

vancomycin (0.5 g/L), and streptomycin (2 g/L) in their drinking water for 2 weeks prior 

to and throughout the duration of AOM/DSS administration.  

 

Germ-free colonization.   

Eight-week-old C57BL/6 germ-free male mice were used.  Fresh feces and 

bedding were collected from untreated and AOM/DSS-treated tumor-bearing mice and 

immediately transferred to cages of germ-free mice two weeks prior to AOM injection to 

allow stable colonization.  Germfree mice were divided into two treatment groups, one 

group receiving bedding from untreated, healthy, the other group receiving bedding from 

AOM/DSS-treated tumor-bearing mice.  To ensure that there were no cage effects, 

each treatment group was comprised of two cages of mice.  The mice were obtained 

from separate litters and randomly assigned to the four cages.  Mice were given three 
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weeks following colonization with feces and then treated with AOM/DSS to induce 

tumors as described above.  Three weeks after the last round of DSS, mice were 

euthanized and colons were harvested as described above. 

 

DNA extraction.   

Fecal samples were collected daily from the mice throughout the AOM/DSS 

protocol and immediately frozen for storage at -20°C.  We selected 12 fecal samples 

distributed over the 73-day timeline of the AOM/DSS model for 10 representative mice 

taken from five replicate cages. Microbial genomic DNA was extracted using the 

PowerSoil-htp 96 Well Soil DNA Isolation Kit (MO BIO laboratories) using an EpMotion 

5075. 

 

16S rRNA gene sequencing and curation.   

The V35 region of the 16S rRNA gene from each sample was amplified and 

sequenced using the 454 Titanium sequencing platform at the Baylor College of 

Medicine Human Genome Sequencing Center as described elsewhere 

(http://www.mothur.org/wiki/454_SOP).  We curated our sequences as described 

previously using the mothur software package [Schloss et al., 2012; Schloss et al., 

2009; Schloss et al., 2011].  Briefly, we denoised sequences using the PyroNoise 

algorithm after trimming each flowgram to 450 flows [Quince et al., 2009], aligned the 

resulting sequences to a reference alignment derived from the SILVA 16S rRNA 

sequence database [Pruesse et al., 2007], and removed sequences that were flagged 

as possible chimeras by UCHIME [Edgar et al., 2011] or that did not align to the V35 
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region.  After curating the sequence data, we obtained between 6 and 10,742 

sequences (median = 5681) with a median length of 253 bp.  To minimize biased effects 

of uneven sampling, we rarefied to 1,800 sequences per sample.  Seven samples either 

did not pass through sequence curation or had less than 1,800 sequences and were 

therefore not used for further analysis.  Parallel sequencing of a mock community 

allowed us to measure a median error rate of 0.06%. 

 

Analysis of the microbiome.   

Sequences were clustered into OTUs based on a 3% distance cutoff using the 

average neighbor algorithm.  All sequences were classified using the RDP training set 

version 9 (http://sourceforge.net/projects/rdp-classifier/) and OTUs were assigned a 

classification based on which taxonomy had the majority consensus of sequences 

within a given OTU using a naïve Bayesian classifier [Wang et al., 2007].  Microbial 

diversity was calculated using inverse Simpson index [Magurran, 1988] and the 

observed number of OTUs.   To calculate β-diversity, we used the θYC distance metric 

with OTU frequency data [Yue et al., 2005] and we calculated UniFrac statistics 

[Lozupone et al., 2005] using neighbor joining phylogenetic trees generated using the 

non-heuristic neighbor joining algorithm implemented in Clearcut [Shenaman et al., 

2006].  Analysis of molecular variance (AMOVA) was performed to determine 

significance between the community structures of different groups of samples based on 

θYC and UniFrac distance matrices [Martin, 2002].  To identify OTUs important for 

driving differences between groups (baseline, after DSS round 1, after DSS round 2, 

and after DSS round 3), we used a repeated measure paired treatment analysis of 
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variance for each OTU and corrected for multiple comparisons using an experiment-

wise error rate of 0.01 [Benjamini et al., 1995].  Additionally, we identified features 

(OTUs) important for each group using the machine learning algorithm random forest as 

implemented in R (http://CRAN.R-project.org) [Liaw et al., 2002].  The abundance-

based Jaccard dissimilarity index indicates the fraction of all sequences that affiliate 

with OTUs that are shared between two communities and was used to calculate the 

fraction of OTUs that were shared between donor samples and germ-free recipient 

samples [Chao et al., 2006].  All sff files and the MIMARKS spreadsheet are available at 

http://www.mothur.org/aomdss_dynamics/. 

 

16S rRNA quantitative PCR (qPCR) analysis.   

Relative bacterial loads in stool samples were quantified by qPCR analysis of 

bacterial genomic DNA using KAPA SYBR-fast Master Mix (KAPA biosciences) and 

universal 16S rRNA gene primers (F: ACTCCTACGGGAGGCAGCAGT. R: 

ATTACCGCGGCTGCTGGC.) [Vaishnava et al., 2011].  Samples were normalized to 

fecal mass and relative fold change was determined using untreated stool samples for 

each replicate mouse (n=5).  Note that qPCR measures relative fold change of 16S 

gene copy number, not actual bacterial numbers. 
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Chapter IV 

 

Manipulation of the Gut Microbiome Reveals Role for Microbial Community 

Structure in Colon Tumorigenesis  

 

 

Introduction 

The mammalian gastrointestinal tract is home to a complex and dynamic 

community of microorganisms, termed the gut microbiome, which is essential for the 

health of the host [Backhed et al., 2005].  Over the last several years it has been well 

document that abnormalities in this community are associated with colorectal cancer in 

humans and mice [Chen et al., 2013; Chen, et al., 2012; Kostic et al., 2012; Geng et al., 

2013; Shen et al., 2013; Sobhani et al., 2011; Wang et al., 2012; Ahn et al., 2013].  We 

have previously demonstrated that in a mouse model, CRC-associated changes in the 

gut microbiome directly potentiate colon tumorigenesis [Zackular et al., 2013].  A critical 

question that remains unanswered is what factors and ecological principles mediate the 

gut microbiome’s influence on this process [Fearon, 2011].   

One strategy that has been used to answer this question is through the 

examination of individual bacteria populations within the gut microbiome.  It has been 
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demonstrated that several common commensal bacteria have the capability to directly 

influence the process of tumor development and progression in the colon.  The 

mechanisms by which bacteria potentiate these processes range from the production of 

carcinogenic toxins [Arthur et al., 2012; Sears et al., 2008] to direct manipulation of the 

inflammatory status in a tumors microenvironment [Kostic et al., 2013; Rubinstein et al., 

2014].  Furthermore, some bacterial populations have been hypothesized be protective 

against CRC [Louis and Flint, 2009; Arthur et al., 2011; Appleyard et al., 2011].  This 

may be mediated through metabolite production, induction of immunotolerance, or an 

ability to outcompete pathogenic bacteria  [Zhu et al., 2011].  

Although there have been several associations between members of the gut 

microbiome and colorectal cancer, there is likely to be many bacteria that can modulate 

tumorigenesis in the colon.  This is supported by studies that have identified 

abnormalities in the microbial communities associated with CRC in humans [Chen et al., 

2013; Chen, et al., 2012; Kostic et al., 2012; Geng et al., 2013; Shen et al., 2013; 

Sobhani et al., 2011; Wang et al., 2012; Ahn et al., 2013].  Each of these studies 

reported abnormal shifts in the gut microbiome, termed dysbiosis; however, there were 

no CRC-associated bacterial populations that were consistently identified across all 

studies.  This could be due to the fact that there is significant functional redundancy 

within the gut microbiome and different bacterial populations may fill similar roles in 

tumorigenesis [Lepage et al., 2011; Turnbaugh et al., 2009; Qin et al., 2010].  We 

hypothesize that multiple bacteria in the gut microbiome have the potential to play 

antagonistic or protective roles in tumorigenesis; thus, the gut microbiome’s influence 

on CRC is likely polymicrobial.  
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Within host-associated microbial communities there are complex interactions 

between individual bacterial populations that have an important effect on host health 

[Levy and Bordenstein, 2013, Marino et al., 2013, Lepp et al., 2004].  The number of 

diseases that are associated with abnormalities in the gut microbiome highlights the 

importance of these ecological interactions [Turnbaugh et al. 2006; Tamboli et al.; 2004, 

Saulnier et al., 2011].  Deciphering how changes in community composition and 

structure disturb these interactions, and subsequently modulate tumorigenesis, is an 

essential step in understanding the etiology of CRC.  In our previous study, treatment 

with antibiotics dramatically decreased tumorigenesis without a significant decrease in 

overall bacterial burden in the colon.  Our results suggest that microbial community 

structure may play an important role in both down modulating and enhancing 

tumorigenesis.  However, it remains unclear if manipulation of the community structure 

directly determines the carcinogenicity of the gut microbiome. 

Previously, we found that when mice received metronidazole, streptomycin, and 

vancomycin in their drinking water and were then treated to induce inflammation-

associated CRC, there was a significant decrease in tumorigenesis [Zackular et al, 

2013].  Here we explored this result further by altering the composition of this antibiotic 

cocktail to test the hypothesis that the gut microbiome structure mediates tumor 

multiplicity and severity.  Furthermore, we sequenced the V4 region of the 16S rRNA 

gene from treated mice in each group and determined that each treatment generated 

non-overlapping microbial community structures with varying levels of carcinogenicity.  

Using antibiotics to intervene following the first signs of dysbiosis, we demonstrated the 

feasibility of targeting the gut microbiome as a therapeutic for CRC.  Our analysis 
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supports a model by which individual bacterial populations play an important role in 

CRC, but the ecological interactions and community structure of the gut microbiome 

mediate the capacity to modulate tumorigenesis. 

 

Results 

Antibiotic perturbation of the gut microbiome modulates tumorigenicity. 

To test the hypothesis that gut microbiome structure mediates tumorigenesis, we 

administered an assortment of antibiotic treatments to specific-pathogen-free (SPF) 

C57BL/6 mice and treated them with the azoxymethane (AOM) and DSS inflammation-

based model of CRC [Zackular et al., 2013] (Figure 4.1A).  We treated mice with all 

possible combinations of metronidazole, streptomycin, and vancomycin to create eight 

treatment groups: no antibiotics, all antibiotics (metronidazole, streptomycin, and 

vancomycin), Δmetronidazole (streptomycin and vancomycin), Δstreptomycin 

(metronidazole and vancomycin), Δvancomycin (metronidazole and streptomycin), 

metronidazole only, streptomycin only, and vancomycin only.  Each treatment group 

showed a significant decrease in tumor multiplicity compared to mice that did not 

receive antibiotics; however, all of the antibiotic treatments resulted in varying levels of 

tumorigenesis (Figure 4.1A). These results demonstrate that distinctive antibiotic 

treatments yield a differential capacity for colon tumorigenesis.  
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Figure 4.1.  Antibiotic perturbation of the gut microbiome modulates 
tumorigenicity. A. Mice were injected with azoxymethane (AOM) on day 1 followed by 
3 subsequent rounds of water administered 2% DSS.  Colons were harvested 73 days 
after AOM and tumors grossly counted.  Black wedges indicate fecal samples used for 
gut microbiome analysis.  Antibiotic perturbation was started 2 week prior to AOM 
injection and continued throughout the model.  B.  Mice were treated with all possible 
combinations of metronidazole, streptomycin, and vancomycin to create eight treatment 
groups.  Tumors were enumerated at the end of the model.  C. Representative images 
of tumors in the distal colon of mice from each treatment group.   
  

A. 

B. 

C. 

All Antibiotics 

No antibiotics 

Metronidazole 

Streptomycin 

Vancomycin 

!Metronidazole 

!Vancomycin 

!Streptomycin 

No an
tib

iotic
s

Van
co

m
yc

in

! 
Metr

onidaz
ole

Stre
pto

m
yc

in

Metr
onidaz

ole

! 
Stre

pto
m

yc
in

All A
ntib

iotic
s

! 
Van

co
m

yc
in

0

5

10

15

20

25

N
o.

 o
f t

um
or

s
AOM 

DSS DSS DSS 

0 7 56 42 49 63 35 14 21 28 70 -7 

Antibiotic perturbation 

Intervention #1 

Intervention #2 

AOM 

DSS DSS DSS 

0 7 56 42 49 63 35 14 21 28 70 -7 



	  

 103	  

Marked structural changes associated with each antibiotic treatment could be 

observed at the phylum level (Figure 4.2C). Untreated control mice were are dominated 

by the phlya Bacteroidetes (65±5.7%), Firmicutes (24±4.6%), and Proteobacteria 

(3±1.1%) (Figure 4.2A).  The mice that received the full antibiotic cocktail primarily 

harbored Firmicutes (92±3%), particularly from the family Lactobacillaceae.  In contrast, 

the mice that received only metronidazole had similar levels of Bacteroidetes (74±4%) 

and Firmicutes (7±1%) as control mice, but there was a significant bloom in 

Proteobacteria (9±0.08%).   The Δmetronidazole and Δstreptomycin treatments led to 

the dominance of Proteobacteria (66±5% and 75±5%, respectively). The Δvancomycin 

treated mice harbored Firmicutes (48±8%) and Proteobacteria (48±12%).  The mice that 

received only vancomycin were composed of bacterial populations belonging to the 

phyla Firmicutes (12±3%), Proteobacteria (38±2%), Tenericutes (18±6%), and 

Verrucomicrobia (27±12%).  These results demonstrate that antibiotic treatments 

perturbed the structure of the microbial community, leading to 7 distinct communities 

that were associated with varying levels of tumorigenesis.  

To examine the role of the microbial community in this variation in tumorigenesis, 

we first considered the diversity of the gut microbiome using fecal samples taken at the 

end the model (Figure 4.1A).  Each antibiotic treatment resulted in a significant 

decrease in the microbial diversity compared to mice that did not receive antibiotics.  

Mice treated with streptomycin or metronidazole alone showed intermediate levels of 

diversity that were significantly higher than the remaining treatments (Figure 4.2A).  

However, there was no direct correlation between changes in diversity and 

tumorigenicity of the microbial community.  To determine if there was an association 
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with a decrease in bacterial burden in the colon and tumorigenesis, we next looked at 

overall bacterial numbers in the feces.  Using qPCR of the 16S rRNA gene we 

determined that there was not a significant decrease in overall bacterial numbers 

following treatment.  These results indicate that the mere bacterial load or diversity of 

the community was insufficient to explain the differences in tumor burden. 

Next, we characterized the differences in the structures of the communities by 

calculating the distance between samples using a metric that incorporates the OTU 

membership and relative abundance (i.e. θYC) [Yue and Clayton, 2005].  Each antibiotic 

treatment group harbored a significantly altered microbiome at the end point of the 

model compared to untreated animals (Figure 4.2B).   Furthermore, each treatment 

resulted in a significantly different community structure, as each treatment group 

clustered separately from one another (Figure 4.2B).  Similar results were observed 

when we used phylogenetic-based metrics of β-diversity (i.e. θYC and weighted and 

unweighted UniFrac).  These results indicate that highly disparate community structures 

can come from mice that harbor similar numbers of tumors. 
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Figure 4.2.  Antibiotic perturbation drives changes in microbial community 
structure.  Microbiome analysis was performed on fecal samples from each mouse on 
days indicated in Figure 1A.  A. Inverse Simpson’s diversity index of fecal samples 
taken at the endpoint of the model. B. NMDS ordination based on θyc distances for all 
mice following the third DSS administration.  (AMOVA; P < 0.01; Stress = 0.175). C.  
Phylum level relative abundance for each treatment group.  Relative abundance 
represents the average structure of each treatment group at the endpoint of the model.  
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Identification of tumor modulating bacterial populations in the gut microbiome 

The clear differences in community structure and composition coupled with the 

disparate levels of tumorigenesis provided us with an opportunity to identify potentially 

protective or tumor-promoting bacterial populations.  To identify these tumor-modulating 

OTUs, we partitioned the treatment groups into high tumor incidence (Δmetronidazole, 

streptomycin only, and vancomycin only; median number of tumors=5.5) and low tumor 

incidence (All antibiotics and Δvancomycin, Δstreptomycin and metronidazole only 

median number of tumors=2.0).  We then used LEfSe to identify differentially abundant 

bacterial populations that were associated with an increased or decreased tumor 

burden in mice (Figure 4.3).  We observed that four OTUs were significantly enriched 

among treatment groups with a higher tumor burden (Figure 4.3).  Among the mice in 

the treatments with a low tumor burden there were 12 OTUs that were significantly 

enriched (Figure 4.3).  Using Spearman correlation analysis we confirmed that these 

bacterial populations were highly correlated with an increased or decreased tumor 

burden in mice.  These results indicate that there are populations that are associated 

with promoting or protecting against tumorigenesis. 

Interestingly, when we investigated the relative abundance of these OTUs for 

each treatment group, we observed that the distribution of these OTUs was patchy 

across the treatment groups (Figure 4.4).  For example, among the three groups with 

the most tumors, β-Proteobacteria (OTU 25) was highly abundant among the 

Δmetronidazole group, significantly less abundant in vancomycin only group, and 

completely absent from the streptomycin only group.  In contrast, Mucinispirillum (OTU 

87) was absent in the Δmetronidazole group, but elevated in the other two treatment 
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groups.  This result suggests that there was not a single bacterial population promoting 

tumorigenesis in mice.  Instead it is likely that there are populations of tumor promoting 

bacteria and tumor suppressing bacteria that can interact or serve redundant roles to 

modulate tumor burden. 

 

Microbiome dynamics reveal potential associations between bacterial 

populations that mediate tumorigenesis 

Comparison of the communities in the initial and final fecal samples collected 

from each treatment group indicated that the groups varied in the amount of change 

over the course of the model.  The mice that received streptomycin or vancomycin only 

and the Δstreptomycin mice had significantly less structural change overtime compared 

to control mice (Fig. 4.4A).  Meanwhile, the mice that received the full cocktail 

maintained a constant community structure throughout the model.  Conversely, the 

Δmetronidazole and Δvancomycin mice had the highest level of variation across the 

model (Figure 4.4A).  The amount that the gut microbiome changed was not directly 

correlated with tumor burden (rho = 0.15, p = 0.41).  This result indicated that the 

destabilization of the initial community structure and the resulting host response was not 

associated with tumor burden. 
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Figure 4.3.  Analysis of bacterial populations associated with increased and 
decreased tumorigenesis.  Antibiotic treatment groups were partitioned into two 
groups based on tumor burden: high tumor burden (∆metronidazole, vancomycin only, 
and streptomycin only) and low tumor burden (All antibiotics, ∆streptomycin, 
∆vancomycin, and metronidazole).   LEfSe analysis was performed for stool samples 
from each mouse at the endpoint of the model. Strip charts show relative abundance for 
OTUs with LDA-value greater than 3.5.  Error bars represent +/- standard deviation  
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Figure 4.4. Relative abundance of significantly enriched OTUs for each treatment 
group.  Strip charts show relative abundance of OTUs identified with LEfSe analysis for 
each treatment group separately.  Abundance data is taken from endpoint of the model 
for each mouse.  Error bars represent +/- standard deviation 
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We determined whether the OTU-level changes across the model could reveal 

underlying mechanisms associated with this dramatic difference in tumorigenicity 

between treatment groups.  Thus, we performed repeated-measures paired group 

analysis of variance to identify features from within the microbiome that were 

significantly enriched or depleted overtime for each treatment group.  We used fecal 

samples from day 0 and compared those to samples at the endpoint of the model for 

the Δmetronidazole and Δvancomycin treated groups since these communities showed 

the greatest change over the course of the model (Figure 4.5A).  In both groups there 

was a significant enrichment of an OTU associated with the Enterobacteriaceae (OTU 

3) family.  In the Δmetronidazole-treated mice, this enrichment was associated with the 

simultaneous depletion in the relative abundance of Clostridium (OTUs 31, 34, and 57), 

Streptococcus (OTU 92), and Enterococcus (OTU 27).  However, Δvancomycin-treated 

mice only showed a significant decrease in OTUs associated with Lactobacillus (OTU 

6), while maintaining steady levels in each of the depleted populations observed in 

∆metronidazole treated mice.  We also observed enrichment in the relative abundance 

of Turicibacter (OTU 91) and Bacillales (OTU 225) in ∆vancomycin treated mice.  These 

results support the hypothesis that the balance of tumor promoting and inhibiting 

populations are responsible for the final tumor burden. 
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Figure 4.5.  Gut microbiome dynamics during tumorigenesis for Δmetronidazole 
and Δvancomycin treatments groups.   A.  Average change in the gut microbiome 
community structure over the time course of tumorigenesis.  Distances calculated using 
θyc distances.  B. and C.  Change in relative abundance over the time course of 
tumorigenesis for Δmetronidazole and Δvancomycin treatment groups.  OTUs with 
relative abundances that were significantly different at day 70 compared to day 0 are 
shown.  Repeated-measures paired group analysis of variance was used to identify 
significantly altered OTUs.  Error bars represent +/- standard error. 
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Antibiotic intervention narrows possible mechanisms of microbiome involvement 

in tumorigenesis  

The AOM-DSS model closely mirrors the patterns seen in human CRC.  AOM 

induces DNA damage and the DSS induces inflammation.  To determine whether the 

gut microbiome facilitates tumorigenesis by modulating AOM-induced mutations or 

inflammation, we performed two antibiotic intervention experiments.  We first treated 

mice with the full antibiotic cocktail two weeks prior to the administration of AOM and up 

until the first round of DSS (Figure 4.1A).  We found that these mice had a similar tumor 

burden to untreated mice (Figure 4.6A).  Next, we treated mice before the second round 

of DSS administration with the all antibiotic cocktail (Figure 4.1A).  In this treatment, 

there was a significant decrease in the number of tumors.  Together, these results 

suggest that the gut microbiome’s affect on CRC is independent of AOM 

carcinogenesis.  Furthermore, it shows that targeting the gut microbiome at later stages 

of tumor growth is a viable option for minimizing tumorigenesis and highlights 

microbiome manipulation as a potential therapeutic in CRC.  
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Figure 4.6.  Antibiotic intervention prior to second administration of DSS 
alleviates tumor burden.  Interventions with an antibiotic cocktail of metronidazole, 
vancomycin, and streptomycin were performed as depicted in Figure 1A.  A.  Tumors 
were enumerated at the end point of the model.  Median tumor counts are shown for 
each treatment group.  B.  Representative images of tumors in the distal colon of mice 
from each treatment group.  Statistical analysis was performed using Wilcoxon test.  *, 
P < 0.01 
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Discussion 

In the present study, we established the importance of the microbial community 

structure in mediating the gut microbiome’s capacity for tumorigenesis.  We 

demonstrated that manipulation of the murine gut microbiome with an assortment of 

antibiotic treatments resulted in non-overlapping community structures with a disparate 

level of tumorigenesis.  Enrichment in the relative abundance of several bacterial 

populations was associated with high and low levels of colonic tumors.  We determined 

that out growth of potentially inflammatory members of the gut microbiome only 

mediated increased tumorigenesis when there was a corresponding decrease in 

potentially protective, butyrate producing, bacteria.  By perturbing the community at 

various time points in the AOM/DSS model, we determined that the gut microbiome is 

likely potentiating tumorigenesis independent of AOM-carcinogenesis.  Our experiments 

also demonstrated that targeting the gut microbiome at the first signs of dysbiosis is a 

viable strategy for the amelioration of colon tumorigenesis. 

In recent years, there has been a focus on identifying bacterial populations that 

are etiologic agents of CRC.  Several commensal bacteria, including Fusobacterium 

nucleatum and enterotoxigenic Bacteroides fragilis (ETBF) have been linked to CRC in 

humans [Arthur et al., 2013; Rubinstein et al.; 2013, Sears et al., 2008].  F. nucleatum 

can manipulate the inflammatory environment on in the tumor microenvironment in 

multiple intestinal neoplasia mice and in the studied population has been detected on 

the surface of over 50% of adenomas [Kostic et al., 2012; Kostic et al., 2013].  ETBF 

increases tumor multiplicity in the colon of multiple intestinal neoplasia mice through the 

action of a secreted metalloprotease toxin.  It has been estimated that between 5-35% 
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of people carry ETBF [Housseau and Sears, 2010].  Although there is substantial 

evidence for a role in potentiating tumorigenesis, the fact that each of these bacteria is 

only associated with a fraction of CRCs suggests that there isn’t likely one microbial 

agent that causes cancer.  Rather, the gut microbiome’s role in CRC is likely 

polymicrobial.  The results in the present study support this hypothesis, as we 

demonstrated that non-overlapping community structures could confer similar levels of 

tumorigenesis in mice.  When we examined the relative abundance of bacterial 

populations associated with increased tumor burden, we never observed all three 

treatment groups with high tumor levels (vancomycin only, streptomycin only, and 

∆metronidazole) showing a consistent enrichment.  The same was observed with 

potentially protective populations across all treatment groups that developed 

significantly less tumors (All antibiotics, ∆vancomycin, ∆streptomycin, and 

metronidazole only).  This suggests that various bacteria within the gut microbiome may 

confer the same function and be playing redundant tumor-modulating roles. 

During the time course of tumorigenesis we observed a marked increase in 

members of the Enterobacteriaceae associated with two antibiotic treatment groups 

(∆metranidazole and ∆vancomycin).  Interestingly, one treatment group (∆vancomycin) 

developed significantly less tumors despite a similar increase in this potentially tumor-

modulating bacterial clade.  A recent study by Arthur and colleagues showed that in an 

IL-10-deficient colitis-associated mouse model of CRC; there is an enrichment of 

Enterobacteriaceae associated with inflammation [Arthur et al., 2012].  This leads to an 

expansion of E. coli strains with genotoxic capabilities and a consequential increase in 

tumor multiplicity and invasion.  Furthermore, members of the Enterobacteriaceae have 
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been shown to perpetuate inflammation in several inflammatory diseases, including 

ulcerative colitis, which increase an individual’s risk of developing CRC [Rolhion and 

Darfeuille-Michaud, 2007; Garrett et al., 2007; Rooks et al., 2014].  When we further 

examined the two antibiotic treatment groups, we observed that mice with an increased 

tumor burden had a corresponding decrease in several potentially anti-inflammatory and 

butyrate producing bacterial populations.  These observations support a model by which 

the pathogenicity of individual members of the gut microbiome is mediated by the 

community structure and ecological interactions within the gut microbiome.  We 

hypothesize that inflammatory and carcinogenic commensal bacteria, such as 

Enterobacteriaceae, can only mediate a pathogenic phenotype if the context of the 

community structure is conducive. 

One mechanism by which community structure likely mediates tumorigenicity is 

through shifts in the balance of immunomodulatory metabolites and signals.  During 

health, the gut microbiome is an important mediator of immunotolerance, but when the 

balance of pro- and anti-inflammatory signals is disrupted gut pathologies can arise 

[Kelly et al., 2005].  In our mice, Enterobacteriaceae is likely acting as an inflammatory 

member of the gut microbiome.  We only observed an increase in tumorigenesis when 

there was a corresponding depletion of potentially protective members of the genera 

Clostridium, Enterococcus, and Streptococcus.  Members of the Clostridium are known 

producers of short chain fatty acids (SCFA) in the colon [Louis et al., 2009].  SCFA, 

specifically butyrate, are important nutrients for colonocytes and they also possess anti-

inflammatory and anti-tumor properties [Louis et al., 2009].  Furthermore, Enterococcus 

and Streptococcus species have been linked to down-regulating the inflammatory 
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response in the colon [Wang et al., 2008; Kaci et al, 2011].  It is likely that these 

bacterial populations have the ability to antagonize inflammatory clades (e.g. 

Enterobacteriaceae) and confer protection; however, when perturbation to the microbial 

community structure disrupts this homeostasis, these opportunistic pathogens can 

potentiate tumorigenesis 

In our previous work, we demonstrated that dysbiosis of the gut microbiome 

generates a pro-inflammatory environment which results in a self-reinforcing pathogenic 

cascade between the gut microbiome and the host [Zackular et al., 2013].  In this study 

we demonstrated that antibiotic manipulation of the gut microbiome after the initiation of 

inflammation and tumorigenesis can significantly decreased tumorigenesis in mice.  

This highlights the efficacy of targeting the gut microbiome in CRC.  Additional studies 

are needed to explore the viability of manipulating the gut microbiome in CRC with 

methods such as diet, probiotics, and prebiotics 
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Materials & Methods 

Animals and animal care.  

Studies were conducted using adult (8 to 12 week old) age-matched C57BL/6 

male mice that were maintained under SPF conditions.  Mice were co-housed in groups 

of five and fed the same autoclaved chow diet.  All animal experiments were approved 

by the University Committee on Use and Care of Animals at the University of Michigan. 

 

Inflammation-induced colon tumorigenesis.   

Mice received a single intraperitoneal (i.p.) injection of azoxymethane (10 mg/kg).  

Water containing 2% DSS was administered to mice beginning on day 5 for 5 days 

followed by 16 days of water.  This was repeated twice for a total of 3 rounds of DSS 

[Zackular et al., 2013].  Mice were euthanized 3 weeks after the third round of DSS 

administration for tumor counting.  At necropsy, all colons were harvested, flushed of 

luminal contents, and cut open longitudinally to count and measure tumors.   

 

Antibiotic treatment.   

Mice were treated with all possible combinations of metronidazole (0.75 g/L), 

streptomycin (2 g/L), and vancomycin (0.5 g/L) to create eight treatment groups: no 

antibiotics, all antibiotics (n=5) (metronidazole, streptomycin, and vancomycin), 

Δmetronidazole (n=5) (streptomycin and vancomycin), Δstreptomycin (n=5) 

(metronidazole and vancomycin), Δvancomycin (n=5) (metronidazole and streptomycin), 

metronidazole only, streptomycin only, and vancomycin only (n=3).  Antibiotics were 
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administered in mouse drinking water for 2 weeks prior to and throughout the duration 

of AOM/DSS administration, unless otherwise specified in Figure 4.1A.  Tumors were 

enumerated at the end of the model.  

 

DNA extraction and 16S rRNA gene sequencing 

Fecal samples were collected daily from the mice throughout the AOM/DSS 

protocol and immediately frozen for storage at -20°C.  For each mouse, 8 fecal samples 

distributed over the 73-day timeline of the AOM/DSS model were selected for analysis 

(Figure 4.1A). Microbial genomic DNA was extracted using the PowerSoil-htp 96 Well 

Soil DNA Isolation Kit (MO BIO laboratories) using an EpMotion 5075.  The V4 region of 

the 16S rRNA gene from each sample was amplified and sequenced using the Illumina 

MiSeq Personal Sequencing platform as described elsewhere [Kozich et al., 2013].  

Sequences were curated as described previously using the mothur software package 

[Schloss et al., 2009].  Briefly, we reduced sequencing and PCR errors, aligned the 

resulting sequences to the SILVA 16S rRNA sequence database [Pruesse et al., 2007], 

and removed any chimeric sequences flagged by UCHIME [Edgar, 2011].  Sequences 

had a median length of 253 bp and we rareified to 2,500 sequences per sample to limit 

effects of uneven sampling. 

 

16S rRNA quantitative PCR (qPCR) analysis.   

Relative bacterial loads were quantified by qPCR analysis of bacterial genomic 

DNA using KAPA SYBR-fast Master Mix (KAPA biosciences) and universal 16S rRNA 

gene primers (F: ACTCCTACGGGAGGCAGCAGT. R: ATTACCGCGGCTGCTGGC.) 
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[Vaishnava et al., 2011].  Samples were normalized to fecal mass and relative fold 

change was determined using untreated stool samples for each replicate mouse.  Note 

that qPCR measures relative fold change of 16S gene copy number, not actual bacterial 

numbers.  
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Chapter V 

Discussion 

 

 

Overview 

CRC is one of the most commonly diagnosed malignancies worldwide, affecting 

millions of people each year.  Significant risk factors for CRC such as fatty diets, 

physical inactivity, and chronic inflammation have been associated with altered 

composition, metabolism, and function of the resident gut microbiome.  Furthermore, 

various physiological functions that are associated with cancer, including cell 

proliferation, angiogenesis, and apoptosis, are modulated by the gut microbiome. 

Recent survey based studies have reported an association between dysbiosis of the gut 

microbiome and CRC [Chen et al., 2013; Chen et al., 2012; Kostic et al., 2012; Geng et 

al., 2013; Shen et al., 2013; Sobhani et al., 2011; Wang et al., 2012; Ahn et al., 2013].  

However, these studies have not explored the potential of using the gut microbiome as 

a biomarker for CRC.  Furthermore, it remains unclear if dysbiosis of the gut 

microbiome directly modulates tumorigenesis in the colon or if they are just a 

consequence of physiological changes in the tumor microenvironment.  The research 

presented in this dissertation revealed the potential of the gut microbiome as a non-
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invasive biomarker for CRC development.  In addition, we determined that dysbiosis 

has a causal role in the development of CRC and we further uncovered the factors 

important for gut microbiome mediated modulation of tumorigenesis.  In this chapter, I 

will discuss the overall impact of the findings in this dissertation and elucidate the 

potential mechanisms by which the gut microbiome modulates CRC.  I will then provide 

a proposed model and discuss the future directions of this research.  

 

Dysbiosis of the Gut Microbiome is Predictive of CRC 

 Early detection of CRC is essential for the long-term prognosis of patients.  

Currently, it is estimated that over 30% of adults do not receive risk appropriate 

screenings and over 50% of people prefer non-invasive screening methods [Benson et 

al., 2007; Leard et al., 1997; Ling et al., 2001].  This highlights a clear need for the 

development of novel non-invasive screening methods for the detection of CRC.  It is 

well established that dysbiosis of the gut microbiome is associated with CRC patients, 

but the viability of using the gut microbiome as a potential screen remains unexplored. 

In chapter II, to test the hypothesis that the gut microbiome can be used as a biomarker 

for the early detection of CRC, we acquired stool samples from the early detection 

research network (EDRN), an initiative created to discover biomarkers for cancer.  The 

EDRN has a wealth of stool samples and clinical metadata from patients who have 

been diagnosed with various stages of CRC. In our study, we selected samples from 

patients that were diagnosed with adenomas, carcinomas, and healthy controls.  A 

benefit to this design was that it allowed us to analyze changes in the gut microbiome 

that were associated with each step in the multistage progression of CRC (Figure 1.1).  
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Using microbial biomarker discovery algorithms [Segata et al., 2011], we were able to 

identify several bacterial populations that were differentially abundant between each 

clinical group.  Using the relative abundances of these bacteria, we generated logit 

regression models using both clinical and microbiome data for each subject.  We 

included microbial biomarkers that were both enriched and depleted for each 

comparison.  This is important because we believe that in addition to increases in 

populations, depletion of members of the gut microbiome are equally as important for 

the biology and detection of CRC.  For each comparison we made, we observed a 

significant improvement in our ability to predict the presence of adenomas and 

carcinomas upon inclusion of the microbiome data.  Furthermore, we determined that 

using gut microbiome data as a screening tool improved the pre-test to post-test 

probability of adenoma over 50-fold.  These findings demonstrated, for the first time, 

that the gut microbiome has the capability to serve as an accurate screening tool for 

early detection of CRC.  Our results strongly suggest that consideration must be given 

to the gut microbiome in concert with clinical data and existing non-invasive diagnostics 

to yield the most accurate diagnosis of CRC.   

 

The Dynamics of Dysbiosis 

 Based on the data from this dissertation and studies performed by several other 

groups, it was clear that shifts in the gut microbiome are associated with CRC.  

However, it still remained unclear whether these changes were driving tumorigenesis or 

if they were just a consequence of this disease.  We could not easily test this in 

humans, so in chapter III, we investigated the role of gut microbiome dysbiosis in a 
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mouse model of CRC.  We used a well characterized model of inflammation associated 

CRC and examined the dynamics of the gut microbiome during tumorigenesis.  Similar 

to what has been observed in humans with CRC, tumor-bearing mice harbored a 

dramatically altered microbial community.  A major caveat to our study in chapter II was 

that we only surveyed each community at one time point.  This cross-sectional design 

did not allow us to assess the changes in a CRC-associated microbiome over the time 

course of CRC development.  We hypothesized that the dynamics of the gut 

microbiome during tumorigenesis would reveal the underlying mechanisms driving the 

development and progression of dysbiosis.  To test this, we sampled each mouse daily, 

which enabled us to see the changes in the microbiome during tumorigenesis.  Results 

from this longitudinal study revealed that there was a stepwise progression in the gut 

microbiome, which ultimately led to what we classified as a tumor-associated dysbiosis.  

We also determined that DSS-induced inflammation alone did not lead to the 

development of tumors and was insufficient for the development of a tumor-associated 

dysbiosis.  In order to develop a tumor-associated dysbiosis, AOM and DSS were both 

needed.  This is important because Arthur and colleagues have suggested that 

inflammation alone is sufficient to generate a tumor-associated dysbiosis [Arthur et al., 

2012].  Our results support a model by which the synergistic effects of inflammation and 

tumorigenesis are necessary for the development of an altered microbiome structure 

and tumorigenesis.  We believe that the physiological changes that occur in the mucosa 

during inflammation and tumor development contribute collectively to dysbiosis. 

 

The Gut Microbiome Modulates Colon Tumorigenesis 
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Dysbiosis of the gut microbiome has been associated with many diseases, including 

obesity, inflammatory bowel disease, and CRC [Turnbaugh et al., 2006; Tamboli et al., 

2004].  Although correlations have been observed between dysbiosis and disease, it is 

unclear if a dysbiotic microbiome induces disease progression, e.g. tumorigenesis.  In 

chapter III, I tested the hypothesis that tumor-associated changes to the gut microbiome 

directly contribute to tumorigenesis.  Germ-free mice were inoculated with microbiota 

from healthy and tumor-bearing mice and were run through the AOM/DSS model.  Mice 

that received a dysbiotic gut microbiome developed significantly more tumors than 

those receiving a healthy microbiota.  For the first time, we revealed a direct causative 

role of tumor-associated changes in the gut microbiome in the development of CRC.  

This new information indicated that the interactions between inflammation, the tumor 

microenvironment, and subsequent changes in the gut microbiome create the 

conditions that result in colon tumors. 

 Studies previous to the work presented in my thesis have focused on the role of 

individual bacterial pathogens on tumor development.  These types of studies largely 

ignore the complexity, dynamics, and ecology of the gut microbiome.  We hypothesized 

that the structure of the microbial community was the essential variable driving 

tumorigenesis in the colon.  To test this we perturbed the gut microbiome with an 

antibiotic cocktail of metronidazole, streptomycin, and vancomycin.  This modulation of 

the gut microbiome resulted in a dramatic decrease in tumor burden in the colons of 

mice.  Importantly, treatment with this cocktail did not result in a significant decrease in 

overall bacterial load.  This strongly supported our hypothesis that the presence of a 

resident microbial community isn’t sufficient for the development of tumors; instead the 
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specific structure of the community is the driving factor.  In chapter IV, we further tested 

this hypothesis by manipulating the structure of the resident gut microbiome in mice and 

measuring subsequent effects on tumorigenesis.  To generate different community 

structures we treated mice with various combinations of the antibiotics that were used in 

chapter III (metronidazole, streptomycin, and vancomycin).  Each antibiotic treatment 

resulted in a significantly different community that had varying capacities to modulate 

tumorigenesis.  Interestingly, although antibiotic treatment groups harbored significantly 

different structures, some groups had similar levels of tumorigenesis.  When we 

examined individual bacterial populations within treatment groups with high or low tumor 

burdens, we never observed the enrichment of an individual population across all 

groups with similar levels of tumors.  Comparison of the gut microbiome dynamics 

within a low and high tumor burden treatment groups, revealed similar enrichment of the 

potentially inflammatory Enterobacteriaceae clade.  However, increased tumorigenicity 

associated with Enterobacteriaceae was only observed when there was a 

corresponding decrease in protective bacterial populations.  The observations made in 

chapter IV, suggest that various bacteria within the gut microbiome confer the same 

function and be playing redundant tumor-modulating roles.  Furthermore, these results 

support a model by which the pathogenicity of individual members of the gut 

microbiome is mediated by the community structure and ecological interactions with 

other members in the gut microbiome.  We hypothesize that inflammatory and 

carcinogenic commensal bacteria, such as Enterobacteriaceae, can only mediate a 

pathogenic phenotype if the context of the community structure is conducive.	  

	  



	  

 131	  

Potential Mechanisms of Gut Microbiome-Mediated Tumorigenesis (CRC) 

 The specific mechanisms by which dysbiosis of the gut microbiome promotes 

tumorigenesis remain largely unclear.  We hypothesized that dysbiosis of the gut 

microbiome likely leads to enrichment in tumor-promoting bacteria and loss of tumor-

repressing bacteria.  One mechanism by which certain bacterial populations drive 

tumorigenesis is through the induction of an inflammatory immune response.  An 

inflammatory environment fosters the development of cancer through the production of 

genotoxic reactive oxygen species and pro-tumor inflammatory mediators, such as 

TNF-α, IL-6, IL-1β, and IL-23.  A recent study by Kostic and colleagues reported such a 

phenomenon with the common mouth commensal, Fusobacterium nucleatum [Kostic et 

al., 2013].  They reported that F. nucleatum was enriched in tumor biopsies from CRC 

patients.  Using a mouse model, they determined that F. nucleatum increases 

tumorigenesis through the recruitment of immune cells and subsequent generation of a 

pro-inflammatory environment.  In our mouse studies we did not observe any 

Fusobacterium, but when we looked at the stool of CRC patients in chapter II, we 

observed significantly higher levels of Fusobacterium OTUs when compared to healthy 

and adenoma patients.  It is likely that the microbial community alterations we observed 

in chapter III and IV are enriched with populations that fill a similar role.   

Another potential mechanism for the development of a pro-inflammatory 

environment in the colon is through the degradation of host-secreted mucin by resident 

microbes.  Mucin is a host glycol-protein that is secreted by goblet cells in the 

gastrointestinal tract and acts as a protective liner between the host epithelium and the 

resident gut microbiome [Hollingsworth et al., 2004].  When this layer of mucin is 
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compromised, microorganisms can invade the host epithelium and cause inflammation.  

Furthermore, it is hypothesized that mucins bind and sequester cytokines, growth 

factors, and other mediators of inflammation [Hollingsworth et al., 2004].  Upon 

degradation of mucin these inflammatory factors may be released and stimulate an 

inflammatory response.  In chapter III and IV, we observed significant enrichment of 

bacterial populations belonging to the Akkermansia and Mucispirillum genera.  These 

bacteria were both enriched during the time course of tumorigenesis and antibiotic 

treated mice with increased tumor burden showed marked out growth of Mucispirillum.  

Members of the Akkermansia and Mucispirillum genera are known mucin-degrading 

bacteria.  We hypothesize that this increase in relative abundance of these bacterial 

populations may result in a thinning of the protective mucin layer.  Disruption of this 

mucin layer has been shown to enhance the ability of opportunistic pathogens to invade 

the mucosa [Ganesh et al., 2013].  We postulate that during tumorigenesis, abnormal 

levels of mucin degradation could subsequently lead to a dramatic increase in invasion 

by gut microbiota, release of mucin-associated inflammatory factors, and a subsequent 

reubust inflammatory response.  Additional studies are needed to identify the role of 

Akkermansia and Mucispirillum spp. in inflammation and tumorigenesis. 

In addition to contributing to inflammation, dysbiotic microbiomes are likely 

enriched in bacteria with a more direct role in tumor development through the 

production of toxins, virulence factors, and other tumor-promoting gene products.  A 

recent study by Arthur and colleagues demonstrated that chronic inflammation in an IL-

10 deficient mouse alters the gut microbiome, leading to an enrichment of tumor-

promoting E. coli [Arthur et al., 2012].  These strains of E. coli harbor a polyketide 
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synthase (pks) genotoxic island, which produces Colibactin, a requirement for increased 

tumor multiplicity and invasion in this model.  In each of my mouse and human studies 

we did not detect any significant changes in the genus Escherichia, but it is likely that 

other bacterial populations are playing a similar role.  Specifically, we observed a 

marked increase in Bacteroides species during tumorigenesis in chapter III.  Following 

the first signs of tumors, this population became enriched to over 10% of the 

community.  Furthermore, there was a correlation between the relative abundance of 

this OTU at the endpoint of the model and an increased tumor burden.  Members of the 

Bacteroides genus, including enterotoxigenic B. fragilis (ETBF), have been associated 

with diarrheal disease, inflammation, and CRC [Sears et al., 2008].  Specifically it is 

estimated that 5-35% of adults carry ETBF, which produces a metalloprotease toxin, B. 

fragilis toxin (BFT).  ETBF has been strongly associated with colonic tumors in multiple-

intestinal-neoplasia mice through the secretion of this toxin, which augments the host 

cell cycle [Wu et al., 2009].  We did not detect ETBF our mice, but it is possible that 

similar processes are occurring during tumorigenesis in our mice.   

We hypothesize that an equally important mechanism driving tumorigenesis in 

the colon is the loss of members of the gut microbiome that are important for 

maintaining epithelial health and immune homeostasis.  Recent evidence suggests that 

anti-inflammatory members of the gut microbiome are an important variable in the 

maintenance of gut homeostasis.  Homeostasis is necessary in order to tolerate the 

large number of potentially pro-inflammatory, TLR stimulating resident bacteria.  

Resident bacteria mediate immunotolerance in several ways, including direct inhibition 

of inflammatory pathways.  A classic example is the anti-inflammatory role of the 
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common human commensal B. thetaiotaomicron in the gut.  Studies have shown that B. 

thetaiotaomicron can antagonize NFκB mediated inflammation by targeting the active 

NFκB subunit, RelA, for transport out of the nucleus [Kelly et al., 2004].  This prevents 

downstream NFκB mediated cytokine and chemokine production.  Presumably, a loss of 

B. thetaiotaomicron, and other NFκB-modulating bacteria would lead to an increase in 

the inflammatory response to resident microbes.  Another immunomodulatory 

mechanism mediated by the gut microbiome is the production of anti-inflammatory 

metabolites, such as butyrate.  Butyrate is a type of short-chain fatty acid (SCFA), which 

are by-products of bacterial fermentation of complex carbohydrates in our diet (e.g. 

fiber).  Butyrate has been shown to reduce inflammation in the gastrointestinal tract 

through several mechanisms.  It can inhibit NFκB signaling through the inhibition of IκBα 

degredation [Segain et al., 2000] and also stimulate T-regulatory cell mediated 

homeostasis in the lamina propria.  In addition to its anti-inflammatory properties, 

butyrate also has more direct effects on tumorigenesis, including inhibition of growth 

and induction of apoptosis in cancer cells [Hague et al., 1995; Ruemmele et al., 2003].  

Therefore, the loss of butyrate-producing populations in the gut microbiome could 

increase both inflammation and tumorigenesis.  In chapter III, we observed a dramatic 

decreased in several OTUs from unclassified genera within the family 

Porphyromonadaceae.  Furthermore, in chapter IV when performing microbial 

biomarker discovery analysis we identified several bacterial populations that were 

significantly depleted in CRC.  Individuals with carcinomas showed a dramatic loss in 

OTUs associated with the genera Clostridium and Bacteroides, and the family 

Lachnospiraceae [Louis et al., 2009; Atarashi et al., 2011; Smith et al., 2013; Round et 



	  

 135	  

al., 2010]. Each of these bacterial taxa are well known producers of SCFA in the colon 

We hypothesize that loss of these important bacterial populations in concert with an 

enrichment of pathogenic populations likely plays a synergistic role in potentiating 

tumorigenesis. 

Based on the findings presented in my thesis and the synthesis of evidence from 

the literature, I have proposed a model for the role of dysbiosis in CRC (Figure 5.1).  In 

summary, shifts in the structure of the gut microbiome lead to an imbalance between 

pro- and anti-inflammatory signals in the gut and a loss of intestinal homeostasis.  In the 

case of tumorigenesis, this leads to an increase in bacterial populations that are 

inflammatory and a loss of populations that produce anti-inflammatory signals.  These 

shifts in the microbial community initiate a strong pro-inflammatory response, which in 

turn results in further perpetuation of dysbiosis.  The synergistic effect of these two 

forces generates a self-reinforcing inflammatory cascade between the gut microbiome 

and the host.  This inflammatory environment fosters the development of cancer 

through the production of genotoxic reactive oxygen species and inflammatory 

mediators, such as TNF-α, IL-6, IL-1β, and IL-23.  A chronic inflammatory environment 

in concert with the tumor development can lead to the enrichment of bacterial 

populations that have a direct role in tumor progression through the production of toxins, 

virulence factors, antigens, and other tumor-promoting gene products. 
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Figure 5.1. Proposed model of gut microbiome mediated modulation of 
tumorigenesis. A. Interaction between the gut microbiome and mucosa during 
intestinal homeostasis.  There is a balance between pro and anti-inflammatory signals 
from the gut microbiome mediating immune tolerance and homeostasis.  B. The gut 
during dysbiosis and tumor development.  There is an increase in pro-inflammatory 
bacteria and a loss of protective bacteria.  This leads to increased toxin production and 
inflammation.  Inflammation creates a pro-tumor environment and further perpetuated 
dysbiosis, generating a pathogenic cycle. 
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The Gut Microbiome as a Therapeutic Target for CRC 

Based on our proposed model, we postulated that the gut microbiome is a viable 

therapeutic target for CRC.  In chapter III we modulated the gut microbiome with a 

cocktail of antibiotics during the time course of tumorigenesis.  The results of this 

experiment provided a proof of principle that direct targeting of the gut microbiome can 

reduce colon tumorigenesis.  To further explore the potential of the gut microbiome as a 

therapeutic target, we explored the effect of targeting the community in a more clinically 

relevant way.  In chapter IV, mice were treated with an antibiotic cocktail 

(metronidazole, streptomycin, and vancomycin) following the first signs of dysbiosis in 

the gut microbiome.  The results of this experiment revealed that modulation of the gut 

microbiome following dysbiosis significantly minimized tumor development in mice.  This 

is an important finding because it demonstrates the concept that the gut microbiome is a 

viable therapeutic intervention in CRC.  In a clinical setting, it is unlikely that broad-

spectrum antibiotics would be recommended as a practical preventative measure for 

CRC.  Instead we suggest that manipulation of the gut microbiome be performed by 

using methods such as prebiotics, probiotics, and changes in diet.  It is known that diets 

high in fiber can lead to an increase in beneficial microbes that produce anti-cancer 

metabolites, such as butyrate.   

In order to identify specific microbes that could be targeted for enrichment or 

probiotic therapies, it is necessary to perform studies that identify protective bacterial 

populations.  Towards this goal, in chapter IV we used various antibiotic therapies to 

generate communities with differing protective and carcinogenic properties.  By focusing 

on the groups that developed the fewest tumors, we identified several potential bacterial 
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populations with potential protective properties.  These bacteria included members of 

the genera Lactobacillus, Enterococcus, and Clostridium, and members of the family 

Porphyromonadaceae.  Lactobacillus spp. have long been used as probiotics because 

of their ability to enhance epithelial barrier function, produce antimicrobial products, and 

elicit an anti-inflammatory response in the gut [Fernandez et al., 2011]. It is possible that 

Lactobacillus spp. may also provide protection in the context of CRC.  Members of the 

Clostridium genus and Porphyromonadaceae family are known producers of butyrate in 

the colon [Louis et al., 2009; Atarshi et al., 2013] and as described earlier, this likely 

provides a strong anti-tumor effect.  It still remains unclear if these populations actively 

provide protection against tumor development.  Furthermore, additional studies are 

needed to identify the mechanisms by which they confer resistance to CRC.  Once 

these questions are answered it will be important to explore their potential as probiotics 

and determine diets that enrich these populations. 

 

Future Directions 

 One of the inherent limitations of the work presented in this thesis is our inability 

to assess the gut microbiome at a functional level.  Using 16S rRNA sequences we are 

only given a broad view of bacterial populations and we can only speculate on the 

functional activity of the community.  In order understand the principal mechanisms 

behind the role of the gut microbiome in CRC; we will need to focus on the specific 

functions being performed by the community.  My hypothesis is that during 

tumorigenesis there are functional changes to the gut microbiome that lead to the 

production of pro-tumor gene products and metabolites.  Furthermore, there is a loss of 
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protective gene products and metabolites.  Two methods that can be used to test this 

hypothesis are transcriptomics and metabolomics.  Transcriptomics is a way to capture 

the mRNA from a bacterial community.  This can allow for a better understanding of 

what genes are being expressed in the gut microbiome during tumorigenesis.  

Metabolomics is a method to measure the concentration of metabolites being produced 

by bacterial communities.  I propose that by analyzing the expression profile and 

metabolite production of the gut microbiome during tumorigenesis, we will be able to 

identify important functions driving tumorigenesis.  

In the work described in this thesis we identified several bacterial populations 

that were associated with an increased or decreased tumor burden.  Outside of this 

correlation and synthesis of previous literature, we were unable to pinpoint specific 

features, gene products, or mechanisms by which these bacterial populations 

modulated tumor development or progression.  In order to begin to answer these 

questions, I propose that we perform targeted culturing of several bacterial populations 

that we identified in this thesis.  Those populations include Bacteroides spp., 

Mucispirillum spp., Porphyromonadaceae spp., Clostridium spp., and Lactobacillus spp., 

among others.  By using 16S rRNA sequences from chapter III and IV, we can perform 

plate wash PCR as described by Stevenson and colleagues [Stevenson et al., 2004].  

This will allow us to identify and target these specific populations.  I next propose that 

we perform gnotobiotic experiments with these bacterial populations.  Using the germ-

free mouse facility at the University of Michigan, we can mono-associate mice with 

these strains and determine there carcinogenicity.  Since it is difficult to determine if 

bacterial populations are protective using a germ-free model, we can also introduce 
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potentially protective isolates, like Lactobacillus, to conventional mice by repeated 

gavage.  I expect that we will be able to isolate the majority of our target bacterial 

populations and determine their tumor modulating ability.  Following these experiments, 

we can begin to perform in vitro assays to identifying the genes involved in modulating 

tumorigenesis using genetic screens and genomics.  Identification of these tumor 

modulating genes and bacteria will give us important insight into the microbial influence 

of tumor development.  Additionally, this will allow us to determine the feasibility of using 

probiotics in CRC. 
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