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Abstract 

 

Apoptotic cell clearance (efferocytosis) is the essential biological process by 

which dead cells, called apoptotic cells (AC), are engulfed and recycled by living cells 

called phagocytes.  This process is regulated by many receptors that differentiate between 

apoptotic and viable cells by recognizing molecules expressed on apoptotic cells, 

particularly a phospholipid called phosphatidylserine (PS).  Binding of recognition 

receptors to PS leads to intracellular signaling, culminating in engulfment of the bound 

AC.   Little is known about how this process is negatively regulated; most variation in 

engulfment capacity has been explained by the differing repertoires of AC recognition 

receptors on different phagocytes.   

In these chapters we describe two negative regulators of AC clearance: SIRPα 

and miR-34a.  Both are highly expressed on the resident phagocyte of the alveolar space, 

the alveolar macrophage (AMø).  Both contribute to a low AMø engulfment capacity.  

First, we show that expression of signal regulatory protein alpha (SIRPα), a previously 

described inhibitory receptor, is downregulated by treatment of AMø with 

glucocorticoids, leading to increased efferocytosis.  Second, we show that this 

glucocorticoid-augmented efferocytosis (GCAE) increases the susceptibility of mice to 

bacterial pneumonia.  Third, we show miR-34a is a master-regulator of AC clearance in 

Mø.  We identify three target genes through which miR-34a can enhance AC uptake: Axl, 
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Sirtuin1 (SIRT1) and GTP-ase regulator associated with focal adhesion kinase-1 

(GRAF1).  Finally, we show that expression of miR-34a alone increases Mø bacterial 

killing.  Collectively, these data suggest that limited AC uptake - rather than something to 

be "corrected" - is an important component of the AMø identity and is integral to 

maintaining appropriate responses to potential lung pathogens. 
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Chapter 1 

Introduction 

 

Biological Context of Apoptotic Cell Clearance 

As multicellular organisms develop and grow, a single cell divides and 

differentiates to the myriad distinct cell types that make up the organs and tissues of the 

adult body.  This process of growth also requires death.   Significant programmed death 

occurs during embryogenesis (1, 2), but also continues throughout adult life, during 

which billions of cells die daily during normal cellular turnover in a healthy human.  This 

huge burden of dead cells is a critical issue with which all multicellular organisms have 

evolved to contend through the highly conserved process of apoptotic cell (AC) 

clearance, also called AC engulfment or efferocytosis (3-6).   

There are multiple types of cell death (7) including necrosis and pyroptosis, but 

the most common is termed apoptosis and refers to a ‘programmed’ cell death, such as 

occurs during breast tissue involution (8), CD8+ T cell clonal contraction following the 

resolution of infection (9), and the constant turnover of epidermal and epithelial tissues to 

maintain barrier integrity (10).  Although apoptosis has been described as a ‘quiet’ death, 

uptake of AC has a dramatic impact on immunity.  AC clearance is essential in 

maintaining self-tolerance, as well as impacting antimicrobial capacity and tissue repair 

(11-14). 
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Since the discovery of the first apoptotic cell recognition receptors in the early 

1990s (15, 16), numerous components of this pathway have been identified, many of 

which are highly conserved through the worm, fly, mouse and human (17-19).  

Disrupting AC clearance can cause sterility (20, 21) and autoimmunity (22-25) in mice, 

demonstrating the great biological import of this pathway throughout higher eukaryotes.  

Both professional (i.e. macrophages) and non-professional phagocytes (i.e. epithelial 

cells) engulf AC (6), although the avidity of efferocytosis varies widely between cell 

types.  Contrasting phagocytes with high and low rates of AC engulfment has been an 

important tool for identifying the myriad molecules involved in AC clearance, an 

approach also used throughout this thesis. 

 

Mechanisms of AC clearance 

The mechanism of AC clearance can be divided into four major steps: 

chemotaxis, recognition, engulfment, and degradation.  Individual cell types complete 

these four steps using varied repertoires of molecules; the molecules expressed and used 

by each phagocyte contribute to differences in engulfment capacity.  Although a plethora 

of molecules have been identified, the complex interactions that regulate this essential 

pathway or the selective pressures that restrict efficient AC uptake to specific cell 

populations are not fully understood.  Additionally, many of the AC clearance 

components described in the following sections have only been identified as important in 

a single cell type; their expression in and relevance for uptake by other phagocytes is not 

fully characterized. 
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Chemotaxis.  Phagocytes can express a number of cell surface receptors that recognize 

various molecules secreted by AC, allowing for directed movement of the phagocyte 

towards AC (Fig. 1.1) (6, 26).  Three receptors are of particular interest: G2A, P2Y7 and 

CX3CR1, which respectively recognize oxidized phospholipids (27), ATP/UTP(28-30) 

and CX3CL1 (31) released by AC.  AC also release general myeloid cell 

chemoattractants including the chemokines CCL2 (MCP-1) and CXCL8 (IL-8) (32) that 

assist in recruiting phagocytes.  As the phagocyte must encounter the AC in order to 

engulf, enhancing this encounter through directed chemotaxis is an important mechanism 

by which AC clearance can be regulated. 

 

Recognition.  Phagocytes use a variety of receptors to differentiate live cells, which send 

negative signals that inhibit engulfment, from AC, which send positive signals triggering 

engulfment (Fig. 1.2) (5, 6, 33).  A plethora of AC recognition receptors have been 

described.  Some, such as integrins and TIM-4, are important for both binding and 

engulfing AC (15, 34, 35).  Others, like Tyro3, Axl and Mertk (collectively called the 

TAM receptors) are only involved in engulfment after the AC has been “tethered”(11, 22, 

35).  Deletion of TAM receptors does not alter phagocyte binding to AC, although it 

significantly inhibits AC engulfment.   

AC are primarily recognized via externalized phosphatidylserine (PS) (36, 37), 

although other molecules including pentraxin3 (38), calreticulin (39), and oxidized 

membrane lipids (40) can signal for engulfment.  In viable cells, PS remains within the 

inner leaflet of the plasma membrane; during apoptosis, caspase-activated scramblases 

cause PS exposure on the outer leaflet (41-44).  PS is recognized directly by receptors 
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including BAI-1 (45, 46), stabilin-1 (47), and TIM-4 (25, 48, 49).  PS is recognized 

indirectly through bridge molecules including MFG-E8, Gas6, and ProteinS (23, 50-55).  

These serum proteins act as opsonins, binding to PS on AC and allowing recognition by 

αvβ3/5 integrins and TAM receptors, triggering engulfment.  The complement 

components C1q and iC3b, thrombospondin, surfactant proteins SP-A and SP-D, and 

mannose-binding lectin also bind AC and enhance subsequent engulfment (56-62). 

In contrast to this vast and diverse collection of recognition receptors, only a 

small number of inhibitory receptors have been described (63).  SIRPα is an inhibitory 

receptor.  SIRPα can bind to CD47 expressed on viable cells or to secreted surfactant 

proteins (SP-), the lung collectins SP-A and SP-D.  In the latter case, this binding causes 

SHP-1 signaling that inhibits Rac1 activation and AC engulfment (64, 65).  CD300a 

similarly transmits inhibitory signals via its immunoreceptor tyrosine-based inhibitory 

motif (ITIM) domain upon binding to certain membrane lipids (66).  Homophilic binding 

of CD31 expressed on AC to CD31 expressed on viable cells promotes subsequent 

detachment, preventing engulfment (67).  Sufficient positive signals in the absence of 

inhibitory signals elicit the intracellular signaling that initiates engulfment. 

 

Engulfment.  There is some disagreement within the literature as to whether AC uptake 

occurs via phagocytosis or macropinocytosis, due to conflicting results of experiments 

examining the simultaneous uptake of AC and lucifer yellow, an accepted indicator of 

pinocytosis (39, 68).  Regardless, engulfment requires actin mobilization by Rac1 (69-73) 

and is inhibited by RhoA (74).  Other Rho family kinases and proteins that regulate Rho 

kinase activity may also be involved (75-77).  PI3K signaling occurs downstream of AC 
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recognition, producing phosphatidylinositol (PtdIns) (3,4,5)P3 that contributes to Rac1 

activation (78).  The molecule phosphatase and tensin homolog (PTEN) can 

dephosphorylate PtdIns(3,4,5)P3 and thus inhibit Rac1 activation (78).  Work in C. 

elegans identified two recognition pathways that culminated in Rac activation via distinct 

intracellular mediators: one via homologs of mammalian CrkII/ELMO/DOCK180 and 

another through the homolog of mammalian GULP (79).  Both of these pathways are 

activated in mammalian cells following AC recognition (20, 72, 80-83).  AC recognition 

has been shown to activate Src and Syk family kinase signaling, but not Abl (84), 

downstream of Draper (homolog of mammalian MEGF-10 and C. elegans CED-1) (85, 

86).  MEGF-10/CED-1 has been shown to interact with the heavy-chain of Clathrin and 

AP2 during engulfment by phagocytes of human and worms (87, 88).  AC engulfment 

machinery involves contributions from a variety of cytoskeletal regulators and shares 

many components with other types of uptake including endocytosis and Fc-mediated 

phagocytosis. 

 

Degradation.  Following engulfment, the AC must be dealt with as a physical and 

metabolic burden.  At the completion of engulfment, the AC is contained within a 

phagosome which acidifies and matures (89), degrading the engulfed cargo.  Phagosome 

maturation has been shown to require many of the same proteins as autophagy including 

LC3 and beclin-1 (90-92).  The degrading AC is broken down into lipids and proteins 

that activate still more signaling pathways including AMP-activated protein kinase 

(AMPK) (93), PPARδ (94), PPARγ (24, 95), RXRα (24), and LXRα (96).  Signaling 

through these pathways alters cellular metabolism to process the additional metabolic 
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burden of the AC (93).  This signaling also upregulates components of AC engulfment 

machinery including Mertk (96) and MFG-E8 (94), enhancing the efficiency of further 

AC uptake.  The entire process of AC clearance, from chemotaxis to degradation, is 

complex and interconnected. 

 

Effects of AC clearance of the Phagocyte 

In addition to the major metabolic changes wrought during the process of AC 

clearance, AC clearance significantly impacts immunity (12, 13).  Most literature 

describes the tolerogenic capacity of efferocytosis.  AC clearance has been shown to 

induce expression of suppressor of cytokine signaling 1 and 3 (SOCS1 and SOCS3) (97-

99), Twist (100), and to prompt secretion of TGF-β (101-104), IL-10 (105, 106), platelet-

activating factor (PAF) (107), and prostaglandin-E2 (PGE2) (108).  Simply binding to 

AC can induce an anti-inflammatory response; antibody or Gas6 binding to TAM 

receptors is sufficient to induce SOCS1 and SOCS3 expression (109).  Collectively, 

upregulation of these genes following AC clearance affects the engulfing phagocyte and 

the surrounding environment, facilitating suppression of the toll-like receptor (TLR) 

response, inhibition of cytokine signaling, induction of suppressive cells such as Tregs, 

and the initiation of tissue repair (11, 110).  Murine models have shown that defective 

AC clearance leads to protracted inflammation (111, 112). 

Uncleared AC can become necrotic, lose membrane integrity, and release their 

intracellular contents including inflammatory damage-associated molecular pattern 

molecules (DAMPs) such as DNA, histones, and HMGB1 (113-116).  In addition to 

augmenting acute inflammation, the debris from necrotic cells can be cross-presented, 
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leading to activation of auto-reactive T cells and production of auto-antibodies (117).  

Over time, defective AC clearance leads to lupus-like autoimmunity in multiple murine 

models (23-25, 94, 96, 118, 119).  Mutations in the C1q gene, a component of the 

complement pathway that acts as an opsonin for AC, are associated with development of 

lupus in humans (120).  Importantly, engulfment of AC rather than necrotic cells is able 

to produce the opposite response and induce “cross-tolerance” of self-antigens (12).  

Thus, the tolerogenic, anti-inflammatory potential of AC clearance is important in wound 

healing, resolution of inflammation, and maintaining self-tolerance. 

However, there are exceptions to this rule and numerous contexts in which 

clearance of AC is immunogenic.  These contexts can be beneficial, such as in the cross-

presentation of tumor antigens from apoptotic tumor cells, inducing an anti-tumor 

response (121).  How phagocytes choose to treat an AC as immunogenic rather than 

tolerogenic is not fully understood (13).  The identity and activation state of the AC at the 

time of apoptosis can bias towards immunogenic responses (122).  The additional 

presence of bacteria can result in immunogenic responses and contribute to the 

development of Th17 cells (123).  Importantly, the identity of the phagocyte that is 

engulfing can also lead to an immunogenic response; AC clearance by inflammatory 

monocytes rather than resident peritoneal macrophages (PMø) in mice leads to cross-

presentation of self-antigens and the development of autoimmunity (124).  Directed AC 

clearance to certain phagocyte subsets may be important in preventing cross-presentation.  

This complex, context-dependent response to AC means that it is difficult to predict the 

impact of death on the immune system.  Whether the particular response is immunogenic 

or tolerogenic, AC clearance is a vital event with notable impact on immunity. 
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The importance of AC clearance for lung health 

The Curtis lab has a particular interest in AC clearance within the lung (125).  

Curiously, although AC clearance is an essential biological process, alveolar 

macrophages (AMø), the predominant leukocyte found within the alveolar space (126), 

have a low capacity for efferocytosis (127).  Several factors contribute to the diminished 

capacity for AC uptake by AMø including reduced AC binding (128), low expression of 

PKCβII (129), and inhibition of Rac1 activity by lung surfactant proteins SP-A and SP-D 

signaling via SIRPα (64, 65).  Other phagocytes contribute to AC clearance within the 

lung during inflammation including recruited monocytes and neutrophils (130-132). 

Additionally, although AMø are the predominant leukocyte of the alveolar space, 

epithelial cells significantly outnumber AMø (133).  Recent work has shown that 

epithelial cells are the important effectors of AC clearance during a model of allergic 

inflammation (134).  Interestingly, alveolar epithelial type II cells are the source of the 

SP-A and SP-D that can both suppress efferocytosis by AMø through SIRPα signaling 

and opsonize AC, enhancing engulfment (135).  Further work is needed to clarify the 

proportion of AC uptake performed by these diverse phagocyte subsets within the lung. 

AMø from individuals with several chronic lung diseases, including chronic 

obstructive pulmonary disease (COPD) (136-138), asthma (139, 140), and cystic fibrosis 

(CF) (141), have decreased capacity for AC uptake relative to AMø from healthy 

subjects.  These diseases are also characterized by an associated increase in uningested 

AC within the lung (142-144).  It is likely that failed AC clearance exacerbates 

inflammation in chronic lung diseases; uncleared AC release numerous DAMPs that 
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drive local and systemic inflammation (113-115).  Enhancing clearance has been shown 

to successfully decrease inflammation in multiple murine models of lung damage through 

reducing DAMP release and increasing phagocyte secretion of anti-inflammatory 

mediators such as TGF-β (103, 145-149).  Conversely, inhibiting efferocytosis worsens 

inflammation (111, 112, 150, 151). 

The disease-specific factors that may contribute to diminished efferocytosis in 

chronic lung disease are complex (Fig. 1.3).  Surface expression of AC recognition 

receptors on AMø is decreased in CF and COPD (137, 151, 152).  TNFα signaling, 

which is enhanced during inflammatory lung diseases (153-155), has been shown to 

suppress AC uptake (111, 156).  Oxidant stress, also enhanced in inflammatory lung 

disease (157-161), has been shown to inhibit AC uptake through activation of RhoA 

(162).  Further work is required to understand how these factors contribute to the 

increased burden of uncleared AC in lung disease and how that burden contributes to 

protracted inflammation. 

In addition to effects on chronic lung disease, AC clearance within the lung 

modulates pathogen response and can both enhance and inhibit bacterial killing.  

Engulfment of AC leads to the secretion of PGE2 and inhibition of subsequent bacterial 

killing (108).  Instilling AC in the lung prior to infection worsens bacterial clearance and 

lung inflammation (108).  However, clearance of AC that have undergone phagocytosis-

induced cell death after engulfing bacteria contributes to effective clearance of numerous 

lung pathogens and to lung repair following infection (163-165).  Instilling AC in the 

lung following infection improves bacterial clearance and decreases lung inflammation 
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(147), further evidence that the context of AC clearance determines the subsequent 

immune effects. 

 

The possibility of therapeutic enhancement of AC clearance 

The observations that uncleared AC can drive inflammation and that defective AC 

clearance occurs in human disease have led to speculation that enhancing AC clearance 

could have therapeutic use (133, 166, 167).  Methods proposed include the use of 

pharmacologic agents to increase the engulfment potential of phagocytes, the addition of 

exogenous AC opsonins and, for the resolution of acute inflammation, increasing the 

availability of AC. 

AC clearance can be augmented through phagocyte exposure to glucocorticoids 

(GC) (65, 168, 169), azithromycin (136, 137), statins (170), and antioxidants such as 

poractant alfa (171).  GC, statins, and antioxidants culminate in increased Rac1 activity.  

GC increase Mertk expression and Rac activation (168, 172).  In Chapter 2 we describe 

an additional mechanism by which GC enhance AC uptake by AMø: downregulation of 

SIRPα.  Statins inhibit prenylation of Rho family kinases with a disproportionate effect 

on RhoA, thus preventing RhoA inhibition of Rac1 through altering subcellular 

localization (173-175).  Antioxidants also act on RhoA, inhibiting its function and thus 

promoting Rac1 activity (162, 176-178).  The mechanism by which azithromycin 

enhances AC clearance is less clear but may involve upregulation of mannose receptor 

(137).  Interestingly, GC and azithromycin are commonly prescribed to patients with the 

chronic inflammatory disease COPD (133).  It is unclear how their effect on enhancing 

AC engulfment may impact their efficacy in relieving the symptoms of COPD. 
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The availability of AC can be increased through inducing apoptosis in vivo or 

administering exogenous AC; both mechanisms have shown positive effects in murine 

models of acute inflammation. Enhancing apoptosis of neutrophils during respiratory 

infection can accelerate resolution as apoptotic neutrophils are engulfed (147).  Direct 

instillation of AC into the peritoneum or lung during inflammation also promotes 

resolution via induction of TGF-β and hepatocyte growth factor following AC uptake 

(103, 148).  Direct administration of exogenous AC opsonins has also been shown to 

beneficially accelerate resolution of inflammation in mice (145).   

Although these murine results are promising, the current understanding of how 

AC impact immunity is a significant limitation in implementing the therapeutic 

enhancement of AC clearance.  The response to AC is complex and the assumption that 

increased AC clearance contributes to the resolution of inflammation may be an 

oversimplification (Fig. 1.4) (12).  Based on findings in the spleen, broadly enhancing 

AC engulfment could potentially cause a breakdown of directed AC clearance and lead to 

cross presentation of self antigens (124).  In addition to the target effects on inflammation 

and tissue repair, AC clearance also leads to suppressed TLR response and bacterial 

killing.  In a murine model this has been shown to increase susceptibility to infection 

(108). In Chapter 3 we ask how enhancing AC clearance using GC will impact 

susceptibility to bacterial pneumonia.   

The published understanding of AC clearance has deepened in the past decades; 

researchers have identified AC recognition receptors, mapped the intracellular signaling 

during engulfment and identified and numerous effects of AC on immunity.  However, 

much remains unknown and we continue to identify new components, new shared 
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pathways, and new complexity in AC clearance.  Work presented in chapters 2 and 3 

demonstrates a novel mechanism of GC-augmented efferocytosis and a negative 

consequence of pharmacologically enhanced AC clearance on immunity: enhanced 

susceptibility to bacterial infection.  Chapter 4 identifies a novel master-regulator of AC 

clearance that is highly expressed in AMø and which acts on both known and novel 

components of the engulfment machinery.  Together these studies increase understanding 

of the mechanisms and immune effects of AC clearance, unraveling more of the complex 

regulation that controls this essential biologic process. 
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Figure 1.1 Chemotaxis during AC clearance.  Release of CX3CL1, ATP, UTP, 
lysophosphatidylcholine (LPC), IL-8, and MCP-1 by apoptotic corpses causes directed 
movement of phagocytes by signaling through CX3CR1, P2XY, G2A, IL-8R, and 
CCR2/4. 
 
 
 

 
Figure 1.2 Receptors involved in AC recognition.  AC are recognized indirectly through 
bridge molecules and opsonins MFG-E8, iC1q, Gas6 and Protein S binding to C1qR, 
αvβ3 integrins, Axl, Tryo3 and Mertk.  AC are recognized directly through TIM-4, 
Stabilin-1, and BAI-1 recognition of exposed phosphatidylserine (PS).  AC engulfment 
can be inhibited by signaling through SIRPα, CD31 and CD300a. 
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Figure 1.3 Interplay between lung disease and decreased AC clearance.  A, Processes 
increasing AC accumulation in inflammatory lung diseases. Although the basal 
efferocytic capacity of resident AMø is low, oxidant stress and proteolytic events during 
inflammation can further reduce concentrations of efferocytic opsonins and cleave 
efferocytic receptors, leading to greater apoptotic cell accumulation. Uncleared apoptotic 
cells undergo secondary necrosis, which can expose autoantigens. Uningested apoptotic 
cells can also stimulate NKT cells to activate DCs, driving maturation of T cells, which 
can be pro-inflammatory or even autoreactive. The resulting release of inflammatory 
cytokines can both increase DC activation and further decrease efferocytosis. B, 
Feedback loops resulting from decreased efferocytosis. Oxidant stress, inflammatory 
cytokines, and autoimmunity can all amplify alveolar destruction, a potential source of 
ACs. Alveolar destruction itself amplifies inflammatory cytokine release and oxidant 
stress. Decreased efferocytic opsonins and increased inflammatory cytokines enhance 
leukocyte recruitment. Evidence linking a specific disease to any of these factors or 
consequences is noted with colored circles. AC - apoptotic cell; ALI - acute lung injury; 
AMø - alveolar macrophage; CF - cystic fibrosis; DC - dendritic cell; NKT - natural 
killer T; TNF - tumor necrosis factor. (Illustration by Haderer & Muller Biomedical Art, 
LLC.)  Reproduced from McCubbrey and Curtis 2013. 
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Figure 1.4 Theoretical positive and negative effects of therapeutic enhancement of AC 
clearance.  (Illustration by Haderer & Muller Biomedical Art, LLC.)  Reproduced from 
McCubbrey and Curtis 2013. 
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Chapter 2 

Glucocorticoids relieve collectin-driven suppression of apoptotic cell uptake  

in murine alveolar macrophages through downregulation of SIRPα1 

 

Abstract 

Apoptotic cell (AC) clearance or efferocytosis can be impacted by common 

pharmacological therapies including glucocorticoids (GC), macrolides, and statins.  Here 

we provide evidence that AC engulfment by alveolar macrophages (AMø) but not their 

peritoneal counterparts (PMø) is uniquely and rapidly increased by GC.  Although 

previous studies of GC treatment during human blood monocyte or murine bone marrow-

derived macrophage differentiation have identified a mechanism involving increased 

translation of Mertk, we find that no new protein translation is required for the rapid 

effect of the GC fluticasone on AMø efferocytosis.  Fluticasone rapidly suppresses AMø 

and PMø expression of signal regulatory protein alpha (SIRPα) mRNA and surface 

protein.  Lung collectins, which do not normally circulate in the peritoneum, have been 

shown to inhibit AMø AC uptake by signaling through SIRPα.  Following in vitro 

treatment of PMø with the lung collectin surfactant protein D (SP-D), AC uptake by PMø 

is inhibited.  Although untreated PMø lack this capacity, PMø pre-treated with SP-D 
                                                
1 Excerpts of this chapter taken from: 
McCubbrey, A. L., J. Sonstein, T. M. Ames, C. M. Freeman, and J. L. Curtis. 2012. 
Glucocorticoids relieve collectin-driven suppression of apoptotic cell uptake in murine 
alveolar macrophages through downregulation of SIRPalpha. Journal of Immunology 
189: 112-119. 
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rapidly increase their capacity for AC clearance in response to fluticasone.  In summary, 

the potent GC fluticasone increased AC uptake by murine AMø or PMø pre-treated with 

SP-D in a rapid, dose-dependent fashion through downregulation of SIRPα.  These 

findings emphasize the importance of the unique lung environment and thus, more 

globally, of studying the effects of GC on primary AMø to fully understand the impact 

inhaled corticosteroid (ICS) treatment has on lung health. 

 

Introduction 

Apoptotic cell (AC) uptake by phagocytes, also termed efferocytosis (3), is an 

essential process that promotes the resolution of injury and inflammation, facilitating 

tissue repair in the lung and throughout the body (13, 14, 179).  Impaired AC uptake has 

been found in phagocytes from human subjects with cystic fibrosis, asthma, and COPD 

(138, 139, 141, 151).  Because defective AC clearance clearly contributes to 

autoimmunity in murine models (119, 180), and because there is growing evidence that 

human emphysema may have an autoimmune component (181, 182), potential therapies 

designed to bolster AC clearance in the lung have been proposed (133).  This issue is of 

considerable importance, as COPD is now the third leading cause of death in the United 

States, and has been projected by the World Health Organization to become the leading 

worldwide cause of death by mid 21st century (183). 

In seeming contradiction to the importance of AC clearance, the resident lung 

phagocyte, alveolar macrophages (AMø), bind and engulf AC less avidly than do other 

professional phagocytes (184-186).  Reduced efferocytosis by AMø results in part from 

very restricted adhesion pathway usage (186, 187) and markedly decreased expression of 
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PKCβII (186, 187).  Importantly, however, the normal lung environment actively 

suppresses the ability of AMø to ingest AC, due to the inhibitory action of specific 

surfactant proteins, the lung collectins SP-A and SP-D, through their interaction with 

SIRPα (64).  After AMø removal from the lung environment, this effect gradually 

decreases in vitro over days.   

It is unclear whether increasing the ability of AMø to ingest AC would have 

beneficial heath affects. Inefficient AC clearance leads to autoimmunity in numerous 

murine models (24, 25, 96, 119).  However, efficient AC clearance performed by 

improper phagocytes can also trigger the development of autoimmunity (124); clearance 

must be restricted to certain immune subsets to balance the tolerogenic and immunogenic 

response, although the identity of these subsets is poorly understood.  A better 

understanding of the unique mechanisms and immune consequences of AMø interaction 

with AC is essential to guide the development of any future therapies involving altered 

AC clearance.  

Problematically, several common pharmacological treatments used to relieve the 

symptoms of COPD have been shown to increase AC uptake with no understanding of 

the potential negative or positive consequences that altering AC uptake has on treatment 

effectiveness (136, 137, 169, 170, 175).  Of particular import, GC have been shown to 

increase in vitro AC uptake by human blood-derived monocytes, macrophage cell lines, 

and, in a single report, human AMø (139, 169).  The mechanism by which this occurs has 

only been described in human blood-derived monocytes, in which this increase is 

dependent on Mertk, increased Rac1 phosphorylation and altered surface sialylation (168, 

172, 188).  It is unclear whether GC act via these mechanisms in other cell types such as 
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AMø.  Defining whether and how GC and other agents increase AC uptake by murine 

AMø is an essential step to develop murine models aimed to increase our understanding 

of how pharmacological manipulation of efferocytosis in the lung would affect lung 

health. 

In this study, we report that the potent GC fluticasone increased AC uptake by 

murine AMø in a rapid, dose-dependent fashion through downregulation of SIRPα.  Our 

data show a novel facet of GC action: a rapid decrease in the sensitivity of murine AMø 

to the collectin-rich, inhibitory environment of the lung, thus lifting tonic inhibition and 

increasing AC uptake. 

 

Results 

Potent GC rapidly increase murine AMø uptake and binding of AC.  To study the effect 

of GC used clinically as inhaled corticosteroids (ICS) on AC uptake by murine AMø, we 

first performed in vitro phagocytosis assays following treatment with the potent GC 

fluticasone (Fig. 2.1A-C).  Pre-treatment with fluticasone significantly increased the 

ability of murine AMø to ingest AC after only 3 h, with peak effect by 6 h (Figs. 2.1D, 

2.1E).  The magnitude of the effect was dose-responsive, increasing with higher doses of 

fluticasone; statistically significant increases were measured at and above 2 nM (Fig. 

2.1F, 2.1G).  Fluticasone treatment also increased AMø uptake of UV-killed thymocytes 

(Fig. 2.2A, 2.2B), implying that the effect did not depend on the method used to induce 

apoptosis.  This pro-clearance effect was not restricted to fluticasone, as increased AMø 

AC uptake could also be seen following treatment with budesonide, another potent GC 

used clinically (Fig. 2.2C, 2.2D).  In contrast, AC uptake by resident murine PMø did not 
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increase within 6 h of fluticasone treatment (Fig. 2.3A, 2.3B).  Additionally, fluticasone 

did not increase Fc-mediated clearance of IgG-opsonized Sheep red blood cells (SRBC) 

(Fig. 2.3C, 2.3D) by murine AMø.  

To study the effect of GC on murine AMø binding of AC, we next performed 

adhesion assays (Fig. 2.4A).  Similar to the effect on AC engulfment, 4 h treatment with 

fluticasone significantly increased the ability of murine AMø to bind AC, with the effect 

peaking by 6 h (Fig. 2.4B, 2.4C).  The magnitude of the effect was also dose-responsive; 

statistically significant increases were measured at doses above 200 pM (Fig. 2.4D, 

2.4E).  To determine if fluticasone initiated novel adhesion pathways, we pre-treated 

AMø with mAbs to block CD11c and CD18, which we have previously shown mediate 

the majority of adhesion of AC to murine AMø (186).  Blocking either integrin subunit 

reduced AMø binding to AC, regardless of treatment with fluticasone (Fig. 2.4F).  In 

contrast, similar to the lack of effect on engulfment, fluticasone treatment did not 

increase PMø binding to AC (Fig. 2.4G). 

Thus, GC pretreatment is associated with rapidly increased AC binding and 

engulfment that is specific to AMø and not observed in a resting, fully-differentiated 

tissue Mø from another mucosal surface.  Further, the ability to increase AC uptake 

appears to be a class effect of potent GC, which, however, does not alter phagocytosis by 

murine AMø of other types of particles. 

 

Fluticasone initiates reprogramming towards a pro-clearance phenotype and increases 

AC uptake without a requirement for new protein synthesis.  GC alter expression of large 

numbers of target genes, for the most part via glucocorticoid receptor- α (GRα), a 
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member of the ligand-regulated family of nuclear receptors (189), but also by 

incompletely understood translation-independent mechanisms (190, 191).  Blocking GRα 

using RU-486 completely inhibited the effect of fluticasone on AC uptake, indicating that 

fluticasone acts on efferocytosis through canonical GRα binding (Fig. 2.5A, 2.5B).  To 

begin to define how fluticasone upregulates murine AMø uptake of AC, we assessed the 

expression of several genes known to be involved in AC clearance, including Mertk and 

Axl, members of the TAM family of receptor tyrosine kinases (192), CD91/LRP (193) 

and the negative regulator SIRPα (64).  We also examined mRNA expression of the 

nuclear receptor PPARδ, a positive regulator of the expression of opsonins involved in 

bridging AC and of Mø surface receptors including Mertk (94).  Within 3 h of fluticasone 

treatment, Mertk mRNA significantly increased, whereas SIRPα transcripts significantly 

decreased (Fig. 2.5C).  These changes are consistent with a GC-driven induction of a 

pro-clearance AMø phenotype, as previously described for human monocytes (194).  

Transcripts for Axl, LRP and PPARδ did not change during this period of fluticasone 

treatment. 

The rapid kinetics of increased AC uptake in murine AMø led us to postulate that 

the rapid effect of fluticasone may be mediated through transrepression of SIRPα rather 

than induction of Mertk.  To test that possibility, we blocked new protein synthesis using 

cycloheximide.  Treatment of AMø with cycloheximide prior to an additional 5 h 

fluticasone treatment did not abrogate the increase in AC uptake (Fig. 2.5D).  Thus, 

although Mertk and likely other AC recognition molecules were significantly increased 

by fluticasone treatment, translation-dependent increases in Mertk or any other protein 

were not required for the rapid (< 5 h) effect of fluticasone.  However, treatment of AMø 
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with cycloheximide prior to an additional 23 h fluticasone treatment partially blocked the 

increase in AC uptake (Fig. 2.5E).  This result indicates that both translation-dependent 

and independent mechanisms are involved in the delayed effect of fluticasone on AC 

engulfment.  Following 24 h fluticasone treatment, surface expression of Mertk was 

upregulated, while Axl expression was unchanged (Fig. 2.5F).  It is likely that Mertk is 

the cyclohexamide-inhibitable protein required for the optimal delayed effect of 

fluticasone on AMø, in agreement with the Mertk requirement previously demonstrated 

in studies of blood monocyte-derived macrophage differentiation (172), but Mertk 

induction is not necessary for the rapid effect of fluticasone on AMø.  

 

Fluticasone decreases protein expression of SIRPα.  To test the significance of the 

observed fluticasone-induced gene repression of SIRPα (Fig. 2.5C), we examined protein 

expression of SIRPα.  Using flow cytometry, we found that surface expression of SIRPα 

was decreased within 6 h of fluticasone treatment, with statistical significance reached by 

24 h (Fig. 2.6A, 2.6B).  

We also tested the involvement of several pathways that have been implicated in 

AC uptake by other types of tissue Mø, using pharmacological inhibitors or blocking 

mAbs.  Neither fluticasone-treated AMø, nor as we have previously described (185), 

untreated murine AMø require CD36, αv integrin or autocrine prostanoid signaling for 

AC uptake (Fig. 2.6C-H).  These results complement those in which we blocked CD11c 

and CD18 (Fig. 2.4F) in indicating that GC-augmented AC uptake does not require 

engagement of new adhesion pathways but instead appears to result from increased 

efficiency of the same pathways used in the resting state.  
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Azithromycin but not simvastatin has additive effects on GC-augmented efferocytosis.  In 

addition to GC, AC uptake is known to be increased by other commonly prescribed 

pharmaceuticals including statins and macrolides (136, 137, 175).  To study interactions 

between these medications, we treated murine AMø with combinations of fluticasone, 

simvastatin and azithromycin, and then assessed the effect on AC engulfment.  Treatment 

with simvastatin or fluticasone alone each increased AC uptake, but the combination had 

no additive effect (Fig. 2.7A, 2.7B).  By contrast, treatment of AMø with azithromycin 

and fluticasone was additive, resulting in near doubling of uptake capacity over either 

treatment alone (Fig. 2.7C, 2.7D).   

 

Simvastatin affects AC uptake via the SIRPα pathway and mechanisms that require new 

protein translation.  The lack of additive effect between simvastatin and fluticasone 

suggested that these agents likely affect AC uptake through the same molecular pathway.  

This possibility is supported by previous evidence that statin treatment decreases 

localization to the plasma membrane of RhoA, a downstream effector of SIRPα 

signaling; because RhoA antagonizes the essential action of Rac1 on AC uptake, the net 

effect is increased efferocytosis (24, 170).  We used flow cytometry to test whether either 

simvastatin or azithromycin also affected SIRPα surface expression.  Azithromycin did 

not change SIRPα expression compared to untreated AMø, but simvastatin significantly 

decreased SIRPα surface expression after 24 h (Fig. 2.8A, 2.8B).  However, in contrast 

to fluticasone, simvastatin did not change SIRPα mRNA levels (data not shown).   
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To further differentiate possible mechanisms of action, we next blocked induction 

of new protein synthesis by these two agents.  Treatment of murine AMø with 

cycloheximide prior to 24 h of treatment with simvastatin or azithromycin blocked the 

ability of either agent to increase AC uptake over that of untreated AMø (Fig. 2.8C).  

These results indicate that, unlike fluticasone, both simvastatin and azithromycin do 

require new protein synthesis to increase AC uptake in AMø.  Thus, while simvastatin 

and fluticasone both culminate in lowered SIRPα expression and inhibition of RhoA, 

their upstream signaling differs. 

 

SP-D treatment inhibits AC uptake by PMø, which is reversed with fluticasone treatment.  

The inhibitory effect of SIRPα on AC uptake by murine AMø is tonically maintained by 

constant exposure in the alveolar space to high concentrations of the lung collectins SP-A 

and SP-D (64).  By contrast, although PMø express surface SIRPα (195), they receive 

limited exposure to lung collectins.  These considerations led us to hypothesize that the 

absence of GC-augmented AC uptake by PMø (Fig. 2.3A, 2.3B) might reflect limited 

activation of SIRPα in the peritoneal cavity.  To test this possibility, we first used flow 

cytometry to test whether SIRPα expression on PMø was altered by fluticasone treatment 

in vitro.  Similar to AMø, 24 h of fluticasone treatment significantly decreased PMø 

expression of SIRPα surface protein, whether expressed as percentage positive relative to 

isotype control or mean fluorescence index (MFI) (Fig. 2.9A-C).  Next, by pre-

incubating PMø with the SIRPα ligand SP-D, we investigated whether activation of 

SIRPα could repress AC uptake by murine PMø.  SP-D significantly inhibited AC uptake 

within 4 h (Fig. 2.9D).  Finally, we tested whether fluticasone treatment could rescue 
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decreased PMø AC uptake following SP-D treatment.  Although treatment with SP-D 

alone significantly inhibited AC uptake, subsequent incubation with fluticasone for 5 h 

completely reversed this inhibition (Fig. 2.9D).  These results provide a proof-of-concept 

that the rapid effect of GC on AC uptake by tissue Mø is mediated by release of collectin-

induced repression acting via surface SIRPα expression  (Fig. 2.10), and does not depend 

on GC-modification of other features of the AMø phenotype.  

 

Discussion 

The results of this study identify downregulation on AMø of the inhibitory 

receptor SIRPα, which releases them from tonic inhibition by lung collectins, as a novel 

mechanism by which clinically-relevant potent GC rapidly increase AMø uptake of AC.  

Using primary murine AMø, we found that treatment with fluticasone or budesonide 

increased both binding and uptake of AC within 3 h, without apparent induction of novel 

adhesive pathways.  The effect did not require new protein synthesis, although its 

magnitude continued to increase through 6 h in association with significantly increased 

Mertk and decreased SIRPα expression.  Reduced SIRPα surface expression would be 

fully anticipated to prevent SIRPα signaling via binding of SP-A and SP-D and thus 

prevent the subsequent downstream activation of RhoA and hence Rho Kinase to inhibit 

Rac (64), on which AC ingestion depends crucially (74, 196).  Although fluticasone 

treatment of resting murine PMø did not show the same rapid effect on AC uptake, brief 

pre-treatment of PMø with SP-D induced a significant reduction in their AC uptake that 

was rapidly reversed by fluticasone treatment.  These findings emphasize the importance 
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of the unique lung environment and thus, more globally, of studying primary phagocytes 

isolated from sites of interest in attempting to understand host defense of specific organs.  

By defining a rapid, translation-independent effect on fully differentiated tissue 

Mø, these results extend previously described mechanisms of GC actions during Mø 

differentiation from precursors (168, 169, 172, 188, 197, 198).  In contrast to the early 

SIRPα–dependent mechanism we show in mature AMø, results in those studies required 

new protein synthesis and more prolonged treatment, maximal when GC was added 3-5 

days earlier.  Thus, these studies were informative of the effects of systemic steroid 

treatments on Mø precursors, but not directly relevant to the question about how ICS 

might impact functions of resident AMø.  Similarly, two groups have used microarray 

technology to define the effects of GC on gene regulation during in vitro differentiation 

of human monocytes (194, 199).  They found alterations in a range of molecules 

plausibly involved in AC clearance, including integrins, scavenger receptors, receptor 

tyrosine kinases, bridging molecules, molecules associated with engulfment, nuclear 

receptors, and members of the interferon regulatory family genes.  Our finding of 

upregulation of Mertk transcripts and surface protein expression is compatible with the 

initiation by GC of such a more prolonged multi-gene program in AMø, but the full range 

of such more delayed effects will require further study.   

Our findings agree with and follow directly from recent publications that 

identified the importance of the alveolar environment to maintain a carefully regulated 

AMø phenotype (64, 126), particularly in terms of AC uptake.  We believe that this line 

of investigation highlights the ability for elegant control of AMø function by altered 

expression of key receptors rather than by disruption of this fragile environment.  SP-A 
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and SP-D serve at least three immunomodulatory functions in the alveolar space: 

modulating basal AMø signaling in the absence of AC; binding directly to AC to increase 

their uptake; and acting as opsonins of multiple lung pathogens (200).  Maintaining the 

surface tension of alveoli for optimum gas exchange is not considered the primary role of 

SP-A or SP-D, as it is for SP-B and surfactant lipids (201).   Breathing by SP-A-/- mice is 

completely normal (202), although SP-D-/- mice show an accumulation of surfactant 

lipid in the lung (203), which can lead to chronic low-grade pulmonary inflammation and 

fibrosis (204).  Transgenic mice deficient in SP-A or SP-D have increased susceptibility 

to multiple viral, bacterial and fungal infections (reviewed in (205)).  We speculate that 

regulating SP-A and SP-D signaling by altering SIRPα expression on AMø, rather than 

directly by modulation of lung collectin levels, permits the continuation of important 

SIRPα-independent signaling and particularly opsonic functions of the lung collectins.   

Recent work has demonstrated that lung epithelial cells perform the essential 

majority of AC engulfment (134); the burden of clearance required to maintain tolerance 

is not upon the AMø.  Interestingly, type II alveolar epithelial cells provide the main 

source of pulmonary surfactants (135) that signal through SIRPα on AMø and suppress 

AC clearance.  Epithelial cells themselves do not appear to express significant SIRPα, 

implying that their rate of AC clearance would be unsusceptible to suppressive surfactant 

signaling (206). 

A fascinating parallel in the peritoneal cavity demonstrates how such directed AC 

uptake may have substantial immune import.  During sterile inflammation, PMø are 

significantly outnumbered by inflammatory monocytes, yet remain the primary 

phagocyte involved in AC clearance (124).  This disparity depends on the production of 
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oxidized lipid products by 12/15-lipoxegenase (12/15-LO) that act as negative regulators 

of AC uptake by inflammatory monocytes.  In 12/15-LO deficient mice, both PMø and 

inflammatory monocytes readily engulf AC.  Interestingly, in a model of induced lupus, 

12/15-LO deficient mice fare significantly worse than their competent counterparts; AC 

clearance by their inflammatory monocytes leads to cross-presentation of AC-derived 

autoantigens and a break in self-tolerance (124).  The division of AC clearance within the 

lung may be similarly restricted to maintain the essential balance between tolerance and 

immunogenicity, although there is no evidence to date that this division involves 

differential expression of 12/15 LO. 

There is significant evidence that AC clearance is essential in maintaining self-

tolerance.  The development of lupus-like autoimmunity in mice lacking efferocytic 

genes including C1q (207), MFG-E8 (23), αv integrins (208, 209) and the TAM receptors 

(22, 119, 210, 211) demonstrate that a failure to clear AC will result in autoimmunity as 

excess necrotic material leads to the prevalence of autoantigens and subsequent 

development of autoantibodies.  Additionally, uptake of AC activates multiple anti-

inflammatory pathways within phagocytes, notably through upregulation of SOCS1 and 

SOCS3 and subsequent inhibition of Jak-STAT signaling (97).   AC clearance often leads 

to the release of anti-inflammatory mediators such as IL-10 and TGF-β that are important 

in the resolution of inflammation and tissue repair (107, 212).   

In complement to this large literature on the tolerogenic effects of AC clearance, 

there is significant evidence that AC clearance can be immunogenic, for good or ill: 

clearance of normally anti-inflammatory AC by inflammatory monocytes leads to 

autoimmunity in 12/15-LO deficient mice (124), while clearance of apoptotic tumor cells 
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can lead to effective anti-tumor responses (213).  It is important to recognize that directed 

AC uptake is likely context dependent. In a model of sterile inflammation, similar to what 

was observed in the peritoneum (124), clearance by inflammatory monocytes is 

negligible within the lung and peritoneum (130).  In contrast, in mice treated with 

intratracheal lipopolysaccharide (LPS) to induce non-sterile inflammation, inflammatory 

monocytes develop increased AC clearance (64).  During an infection, this switch could 

assist with cross-presentation of intracellular pathogens, leading to a more effective 

adaptive immune response.  It is unclear whether the increase in clearance is induced by 

LPS-induced changes on the monocyte, the AC, the lung environment, or a combination 

of these factors, but it is interesting to speculate how the dynamic regulation of negative 

environmental inhibitors such as SIRPα in the lung or 12/15-LO in the peritoneum could 

function as an important rheostat to control the appropriate immunogenic or tolerogenic 

response to AC.   

It is also interesting to consider how the low rate of efferocytosis in AMø may be 

of evolutionary value.  AMø antigen presenting capacity is suppressed by the alveolar 

environment (126, 214).  However, once removed from these external signals, as could 

perhaps occur within a draining lymph node, AMø present antigen with high efficiency 

(126); the sorted clearance that occurs within the alveolar space may be important in 

preventing cross-presentation of autoantigens.  Additionally, it is plausible that 

preventing AC-induced SOCS1, SOCS3, and TGF-β expression may maintain AMø as 

sentinel immune responders.  The in vivo potential of such AC-induced suppression to 

negatively impact host defense has been shown in a murine model, in which 

intrapulmonary administration of large numbers of AC reduced phagocytosis and killing 



 

 30 

of Streptococcus pneumoniae and impaired leukocyte recruitment through PGE2-EP2-

dependent signaling (108).  If restricting AC clearance in AMø is important in 

maintaining the tolerogenic and immunogenic balance of the lung environment, GC 

enhancement of AC clearance may be disrupting an important regulatory mechanism that 

has evolved in AMø. 

Increased AC uptake has been shown in various phagocytes in vitro using a 

number of pharmacological agents including GC, statins and macrolides.  To our 

knowledge, this is the first report describing how simultaneous treatment with these 

drugs, commonly prescribed to individuals with respiratory disease, affects AC uptake in 

any cell type.  The lack of additive effect between simvastatin and fluticasone is 

congruent with a shared mechanism of action: inhibition of RhoA leading to increased 

Rac activity.  Of more interest is the additive effect of azithromycin and fluticasone on 

AC uptake, especially given the recent demonstration that azithromycin reduces the 

frequency of acute exacerbations of COPD (215).  The mechanism for the positive effect 

of azithromycin on AC uptake remains undefined and will require considerable extra 

investigation; our results imply that azithromycin does not act on RhoA.  Decreased AC 

uptake has been found in AMø from individuals with COPD (138) and asthma (139) 

when compared with healthy controls, which has prompted speculation that poor AC 

clearance may be contributing to various forms of inflammatory lung diseases.  Our work 

does not address this hypothesis, but does identify a novel additive interaction between 

fluticasone and azithromycin that produces a robust increase in AC uptake and may be 

useful in future therapy. 
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The finding that SP-D can activate the pre-existing high levels of SIRPα on PMø 

merits discussion in relationship to acute lung injury, in which plasma concentrations of 

SP-A and SP-D increase significantly and correlate with clinical outcomes (216-218).  

Sepsis, the most common antecedent of acute lung injury, is associated both with massive 

apoptosis of circulating lymphocytes and with a delayed immunocompromised state.  

Results in murine models suggest that the first of these observations may explain the 

second, via the immunosuppressive effect of AC uptake on innate immunity (219, 220).  

Although our results strongly imply that SIRPα signaling is not active in resident PMø 

harvested from untreated mice, they do suggest that increased circulating levels of lung 

collectins could contribute to reduced efferocytosis through the body during acute lung 

injury.  Moreover, signaling via SIRPα also suppresses Mø phagocytosis mediated by 

FcγR and complement receptors (221, 222).  Thus, the possibility should be investigated 

that circulating SP-A and SP-D are not only biomarkers of severity during acute lung 

injury, but might also contribute to systemic immunosuppression that leads to the 

frequent superinfections that characterize this condition.  

Defining how GC affect AMø is particularly important as a result of the 

widespread prescription of ICS for the treatment of lung disease.  Multiple clinical trials 

have noted that receiving ICS is associated with increased hospitalization of COPD 

patients with pneumonia, compared to COPD patients receiving non-steroidal treatment, 

suggesting ICS treatment results in increased susceptibility to infection (223-233).  In 

contrast, mice pre-treated with fluticasone had significantly reduced lung bacterial 

burdens 24 and 48 h after Streptococcus pneumoniae infection, suggesting that 

fluticasone is protective and increases bacterial clearance (234).  Our findings in murine 
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AMø and previous findings in human AMø strongly suggest that GC treatment, by 

increasing AC uptake, will enhance the effects of AC on AMø including decreased TLR 

response and decreased bacterial killing.  It would be interesting to test whether increased 

immunosuppression from AC within the lung may explain these opposing results 

between COPD patients and model systems regarding ICS use and pneumonia infection, 

particularly for emphysema patients where lung destruction generates large numbers of 

AC.  Our finding that murine AMø efferocytosis is increased following GC, azithromycin 

or simvastatin treatment demonstrates that mice provide an appropriate model system 

with which to predict consequences of pharmacologically-augmented AC clearance on 

human lung disease. 

In summary, to our knowledge, our study demonstrates for the first time that GC, 

azithromycin, and simvastatin increase AC uptake by murine AMø.  We provide 

evidence that the rapid increase trigged by GC is caused by disruption of collectin-SIRPα 

signaling through downregulation of SIRPα transcript and surface protein, a novel GC 

mechanism.  Finally, we demonstrate that regulation of AC uptake by SIRPα is not 

restricted to AMø and can be activated in PMø following exposure to SP-D.   
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Figure 2.1.  Fluticasone rapidly increases uptake of AC by murine AMø.  Adherence-
purified AMø from normal C57 BL/6 mice were treated in chamber slides with (A) 
control media or (B) 2µM fluticasone for 6 h, then AC were added at a 10:1 ratio for 2 h.  
Slides were washed and stained using H&E and representative photographs were taken at 
100X magnification under oil.  Arrows denote ingested AC.  C. Graphic timeline of a 
phagocytosis assay.  D, E. Kinetics of GC-augmented AC uptake.  F, G.  Dose-response 
of GC-augmented AC uptake.  Data are mean ± SE of 5-8 mice assayed individually in at 
least two independent experiments per condition.  **, statistically significant, p<0.01 by 
One-Way ANOVA with Bonferroni post-hoc testing. 
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Figure 2.2.  The effect of glucocorticoids on AC uptake by AMø is independent of the 
method by which target cell apoptosis is induced and independent of the type of 
glucocorticoid used.  A, B.  Adherence-purified AMø from normal C57 BL/6 mice were 
treated in chamber slides with 0.0002nM-2µM fluticasone for 6 h, then UV-killed AC 
were added at a 10:1 ratio for 2 h.  Slides were washed and stained using H&E, then 
ingested AC were counted at 100X magnification under oil.  C, D.  Adherence-purified 
AMø from normal C57 BL/6 mice were treated in chamber slides with control media or 
2µM budesonide for 6 h, then AC were added at a 10:1 ratio for 2 h. Slides were washed 
and stained using H&E, then ingested AC were counted at 100X magnification under oil.  
SE of at least six mice assayed individually in at least two independent experiments per 
condition.  *, statistically significant, p<0.05 and **, statistically significant, p<0.01 by 
One-Way ANOVA with Bonferroni post-hoc testing. 
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Figure 2.3.  Fluticasone does not rapidly increase AC uptake by PMø or Fc-mediated 
uptake by AMø.  A, B. Paired AC uptake by resident AMø and PMø.  Adherence-
purified paired AMø and PMø from normal C57 BL/6 mice were treated in chamber 
slides with control media or 2nM fluticasone for 6 h, then AC were added at a 10:1 ratio 
for 2 h.  Slides were washed and stained using H&E, then ingested AC were counted at 
100X magnification under oil.  C, D. Opsonized SRBC uptake by AMø.  Adherence-
purified AMø from normal C57 BL/6 mice were treated in chamber slides with control 
media or 2µM fluticasone for 6 h, then opsonized SRBC targets were added at a 10:1 
ratio for 2 h.  Slides were washed and stained using H&E, then ingested SRBC were 
counted at 100X magnification under oil.  Data are mean ± SE of 4-8 mice assayed 
individually in two-three independent experiments per condition.  *, statistically 
significant, p<0.05 by One-Way ANOVA with Bonferroni post-hoc testing. 
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Figure 2.4.  Fluticasone rapidly increases binding of AC by murine AMø.  Adherence-
purified AMø from normal C57 BL/6 mice were treated in chamber slides with 
fluticasone (2 nM unless indicated) for 0-6 h, then AC were added at a 100:1 ratio for 20 
min.  Slides were washed and stained using H&E, then surface bound AC were counted 
at 100X magnification under oil.  A. Graphic timeline of a binding assay.  B, C. Kinetics 
of GC-augmented AC binding.  D, E. Dose-response of GC-augmented AC binding.  F. 
AMø were pre-treated with blocking antibodies to CD11c, CD18, or isotype control at 5 
µg/mL for 30 min followed by treatment with 2 nM fluticasone for 6 h prior to binding 
assay.  G.  Adherence-purified PMø from normal C57 BL/6 mice were treated in chamber 
slides with control media or 2nM fluticasone for 6 h, then AC were added at a 100:1 ratio 
for 20 min.  Slides were washed and stained using H&E, then surface bound AC were 
counted at 100X magnification under oil. Data are mean ± SE of 5-8 mice assayed 
individually in at least two independent experiments per condition.  **, statistically 
significant, p<0.01 by One-Way ANOVA with Bonferroni post-hoc testing. 
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Figure 2.5.  Fluticasone signals through the canonical GRα receptor to rapidly 
downregulate SIRPα and upregulate Mertk expression, increasing AMø efferocytosis 
without a requirement for new protein synthesis.  A, B.  Murine AMø were pre-treated 
with 5 µM RU-486 for 1 h followed by 2 µM fluticasone for 5 h, then AC were added at 
a 10:1 ratio for 2 h.  Slides were washed and stained using H&E, then ingested AC were 
counted at 100X magnification under oil.  C. Murine AMø were treated with 2 nM 
fluticasone for 0, 1, 3 or 6 h.  RNA was collected at each time point and analyzed by real-
time RT-PCR with GAPDH as the housekeeping gene; results are displayed as fold 
increase from untreated.  D, E. Murine AMø were pre-treated with 5 µM cycloheximide 
(CHX) for 1 h followed by 2 µM fluticasone for 5 h (D) or 2 µM fluticasone for 23 h (E), 
then AC were added at a 10:1 ratio for 2 h.  Slides were washed and stained using H&E, 
then ingested AC were counted at 100X magnification under oil.  Data are presented as 
the mean ± SE of 5-7 individual mice from at least two independent experiments per 
condition.  **, statistically significant, p<0.01 by One-Way ANOVA with Bonferroni 
post-hoc testing.  F. Murine AMø treated with 2µM fluticasone for 24 h, then analyzed 
by flow cytometry for surface expression of Axl and Mertk.  Representative dot plots.  
Cells shown are gated CD45+CD11c+. 
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Figure 2.6.  Fluticasone rapidly downregulates surface SIRPα and increases 
efferocytosis independent of CD36, αV integrin or autocrine prostanoid signaling.  A, B. 
Surface SIRPα protein.  Murine AMø treated with 2µM fluticasone for 6 or 24 h, then 
analyzed by flow cytometry for surface expression of SIRPα.  Cells shown are gated 
CD45+CD19-TCR-.  A. Representative dot plot.  B. Average percent of CD11c+SIRPα- 
cells within gated CD11c+ population.  C, D. CD36 Signaling.  Adherence-purified AMø 
from normal C57 BL/6 mice were treated with 2 nM fluticasone for 5.5 h, followed by 2 
µg/mL blocking antibody against CD36 or control Ig for 30 min, then AC were added at 
a 10:1 ratio for 2 h.  E, F. αV integrin signaling.  Adherence-purified AMø from normal 
C57 BL/6 mice were treated with 2 nM fluticasone for 5.5 h, followed by 100 µM 
blocking peptide RGD or control peptide RGE for 30 min, then AC were added at a 10:1 
ratio for 2 h.  G, H. Autocrine prostanoid production.  Adherence-purified AMø from 
normal C57 BL/6 mice were treated with 5 µM indomethacin for 30 min followed by 2 
nM fluticasone for 5.5 h, then AC were added at a 10:1 ratio for 2 h.  Following each of 
these types of treatments, slides were washed and stained using H&E, then ingested AC 
were counted at 100X magnification under oil.  Data are mean ± SE of 5-7 individual 
mice assayed individually in at least two independent experiments per condition. *, 
statistically significant, p<0.01 by One-Way ANOVA with Bonferroni post-hoc testing. 
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Figure 2.7.  Azithromycin but not simvastatin has additive effects on efferocytosis by 
murine AMø.  (A-D)  Effect of multi-agent treatment on efferocytosis.  Murine AMø 
were treated with Murine AMø were treated with 10 µM simvastatin, 500 ng/mL 
azithromycin, or media alone.  After 18 h, 2 µM fluticasone was added for a further 6 h, 
then AC were added at a 10:1 ratio for 2 h.  Slides were washed and stained using H&E, 
then ingested AC were counted at 100X magnification under oil.  A, B. Simvastatin and 
Fluticasone.  C, D. Azithromycin and Fluticasone.  Data are presented as the mean ± SE 
of 7 individual mice from three independent experiments per condition.  **, statistically 
significant, p<0.01 by One-Way ANOVA with Bonferroni post-hoc testing. 
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Figure 2.8.  Simvastatin downregulates SIRPα expression while azithromycin does not.  
A, B. Surface SIRPα protein.  Murine AMø treated with 10 µM Simvastatin or 500 
ng/mL Azithromycin for 24 h, then analyzed by flow cytometry for surface expression of 
SIRPα.  Cells shown are gated CD45+CD19-TCR-.  A. Representative dot plot.  B. 
Average percent of CD11c+SIRPα- cells within gated CD11c+ population.  C. Murine 
AMø were pre-treated with 5 µM cycloheximide for 1 h followed by 10 µM Simvastatin 
or 500 ng/mL Azithromycin for 24 h, then AC were added at a 10:1 ratio for 2 h.  Slides 
were washed and stained using H&E, then ingested AC were counted at 100X 
magnification under oil.  Data are mean ± SE of 5-7 individual mice assayed individually 
in at least two independent experiments per condition.  *, statistically significant, p<0.05 
by One-Way ANOVA with Bonferroni post-hoc testing. 



 

 42 

 

Figure 2.9.  SP-D activates SIRPα pathway in PMø and makes PMø sensitive to 
fluticasone-driven increase in AC clearance. (A-C) Surface SIRPα protein.  Murine PMø 
treated with 2µM fluticasone for 6 or 24 h, then analyzed by flow cytometry for surface 
expression of SIRPα.  Cells shown are gated CD45+CD19-TCR-.  A. Representative dot 
plot.  B. Average percent of CD11b+SIRPα- cells within gated CD11b+ population. C, 
Average MFI of SIRPα on gated CD11b+ cells. D, Fluticasone rescues SP-D inhibition of 
AC uptake. Murine PMø were treated with 25µg/mL SP-D for 4 h, followed by control 
media or 2 µM fluticasone for 5 h, then AC were added at a 10:1 ratio for 2 h.  Slides 
were washed and stained using H&E, then ingested AC were counted at 100X 
magnification under oil.  Data are mean ± SE of 5-8 mice assayed individually in at least 
two independent experiments per condition.  **, statistically significant, p<0.01 by One-
Way ANOVA with Bonferroni post-hoc testing. 
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Figure 2.10.  Model of GC regulation of SIRPα-mediated control of murine AMø 
efferocytosis.  A. In untreated AMø, which express high amounts of SIRPα, lung 
collectins SP-D and SP-A (not shown) signal constitutively through SIRPα, activating 
SHP-1 and leading to downstream activation of RhoA.  By inhibiting Rac-dependent 
mobilization of actin, the lung collectins tonically impede efficient uptake of AC by 
AMø, even though SP-A and SP-D can also bind AC.  B. Treatment with fluticasone 
(triangles) reduces SIRPα surface expression, in part via transrepression of SIRPα by 
ligand-occupied GR homodimers (brackets).  The consequent decreased activation of 
SHP-1 relieves inhibition of Rac, permitting efficient AC uptake.  Based on data in the 
current study, plus previously published data (64, 74, 126, 196). 
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Chapter 3 

Exposure to glucocorticoids and apoptotic cells prior to inflammatory  

stimulation inhibits AMø TLR signaling and bacterial killing 

with potential implications for ICS use in COPD patients 

 

Abstract 

Numerous studies have found that use of inhaled corticosteroids (ICS) by patients 

with COPD significantly increases their risk of developing pneumonia.  The mechanism 

by which this increase occurs is not understood; murine models have not shown any 

consistent effect of glucocorticoid (GC) treatment on susceptibility to bacterial infection.  

Apoptosis is increased in the lungs of COPD patients and AC uptake has been shown to 

inhibit bacterial killing by murine AMø, increasing the severity of respiratory bacterial 

infection.  We have previously shown that GC increase apoptotic cell (AC) uptake by 

murine alveolar macrophages (AMø).  Here we provide evidence that GC-enhanced AC 

engulfment (GCAE) inhibits AMø TLR-stimulated response, decreases the expression of 

miRNA involved in regulating cytokine and TLR signaling, and decreases the capacity of 

AMø to kill bacteria in vitro and in vivo beyond any affect GC alone or AC alone have 

on these pathways.  These findings suggest that individuals with high levels of AC within 

the lung, such as COPD patients, may respond uniquely to ICS: as ICS enhances uptake 

of AC by AMø, AMø lose important sentinel immune capabilities such as TLR response 

and bacterial killing, resulting in increased susceptibility to respiratory infection.  This 
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may be one mechanism by which COPD patients on ICS become more susceptible to 

pneumonia. 

 

Introduction 

COPD is a respiratory disorder characterized by progressive airflow obstruction 

that is not fully reversible.  Smoking, or exposure to other types of noxious particulate 

such as indoor biofuels, are significant risk-factors in the development of COPD (235, 

236).  When susceptible individuals receive sufficient lung insult, pathophysiologic 

changes occur, particularly of the distal airways (237, 238), which result in airway 

obstruction.  COPD is the only leading cause of death with a rising incidence rate; WHO 

predicts COPD, currently the fourth leading cause of death, will be the third leading 

cause of death within twenty years (239). 

COPD includes both emphysema and chronic bronchitis; individuals may 

simultaneously present with both conditions.  In emphysema, peripheral bronchioles are 

damaged or destroyed leading to enlarged air spaces with reduced surface area and 

reduced efficiency of gas exchange (238, 240).  There is speculation that this destruction 

may have an autoimmune component, as auto-antibodies against extracellular matrix 

proteins have been detected in COPD patients (181, 241).  Importantly, studies have 

found evidence of increased apoptosis in the lungs of COPD patients, particularly those 

with emphysema (142, 242).  The ability to engulf such apoptotic cells (AC) is decreased 

in alveolar macrophages (AMø) isolated from COPD patients (125, 138).  Because 

defective AC clearance has been strongly linked to increased inflammation and the 
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development of autoimmunity (243), the use of therapies designed to bolster AC 

clearance in the lung has been proposed (133, 166). 

Although COPD is not fully reversible, numerous treatments exist that 

temporarily relieve inflammation, decrease obstruction and diminish the rate of 

exacerbations (244).  Among the most commonly prescribed are inhaled corticosteroids 

(ICS) such as fluticasone and budesonide.  These GC reduce the rate of COPD 

exacerbations in individuals with severe disease (245), likely through a combination of 

inhibiting NF-kB signaling and inducing anti-inflammatory genes (246).  However, 

COPD patients are already at increased risk for developing pneumonia (247) and use of 

ICS by these individuals is associated with a further 1.3 to 1.8-fold increase in the risk of 

developing pneumonia severe enough to require hospitalization (248). 

Over twenty years ago, observational evidence was published suggesting a link 

between GC use in COPD patients and the development of non-resolving pneumonia 

(249).  Within the last decade, numerous clinical trials have confirmed that use of ICS, 

particularly fluticasone, increases the risk of pneumonia in COPD patients (223-233).  

The mechanisms by which this occurs remain unclear.  Fluticasone treatment has been 

shown to decrease platelet-activating factory receptor (PAFR) expression on human and 

murine bronchial epithelial cells, decreasing invasion by Haemophilus influenzae and 

Streptococcus pneumoniae and decreasing bacterial burden in a mouse model of S. 

pneumoniae (234).  Fluticasone treatment also reduced lung Mycoplasma pneumoniae 

bacterial burden and lung inflammation (250).  Thus, we have speculated that some 

disease-specific factor alter the response of COPD patients to GC and this factor accounts 

for the unexpected affect of ICS use on pneumonia in COPD patients. 
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AC uptake can induce a potent anti-inflammatory response including secretion of 

IL-10, TGF-β, PGE2, and inhibition of subsequent TLR and cytokine signaling in the 

phagocyte (107, 212).  AMø capacity for bacterial killing in vitro is inhibited following 

AC uptake (108).  Further, the presence of AC within the lung increases the lung colony-

forming units (CFU) and dissemination of S. pneumoniae in a murine model (108).  We 

and others have shown that GC such as fluticasone significantly increase AC uptake by 

AMø (125, 139); we speculated that the increased burden of AC found in COPD patients 

(142, 242) could contribute to an increased risk of bacterial infection, particularly when 

AC uptake was increased by ICS use. 

In this study, we asked whether the additional presence of AC would alter the 

effect of fluticasone on S. pneumoniae infection in a murine model and using human 

AMø in vitro.  Our preliminary findings show that the combination of GC and AC 

suppresses TLR responsiveness, lowers expression of miRNA involved in regulating 

cytokine and TLR signaling, and decreases the capacity of AMø to kill bacteria in vitro 

and in vivo beyond any affect GC or AC have on these pathways alone. 

Throughout this chapter we will refer to the combined treatment of GC followed 

by AC as GlucoCorticoid-Augmented Efferocytosis (GCAE).  Based on the data 

presented and previously published work regarding GC, we hypothesize that the ability of 

GC to augment efferocytosis is the salient mechanism by which the combination of GC 

and AC impacts bacterial clearance.  Caveats of this interpretation and experiments that 

could further clarify the specific role of augmented efferocytosis will be discussed below.  

Importantly, our data that what we term GCAE suppresses bacterial killing supports our 

hypothesis that the increased burden of AC found in COPD patients (142, 242) 
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contributes to enhanced susceptibility of COPD patients to pneumonia when prescribed 

ICS (223-233), regardless of whether augmented efferocytosis is the mechanism by 

which this occurs.  We hope that future work will study whether the presence of AC (i.e. 

emphysema) could be used as an exclusion criterion for prescribing ICS to COPD 

patients. 

 

Results 

Fluticasone increases uptake of apoptotic cells by, and expression of apoptotic cell 

recognition receptors on, human AMø.  To understand the effects of inhaled 

corticosteroids on human AMø, we isolated AMø from consented research bronchoscopy 

subjects who were not taking ICS and performed in vitro phagocytosis assays following 

treatment with fluticasone, a potent GC we used at clinically-relevant doses.  Pre-

treatment with fluticasone significantly increased AC uptake by human AMø (Fig. 3.1A), 

as we had observed in murine AMø (65).  Also similar to murine AMø (Fig. 2.5F), 

fluticasone treatment led to increased expression of Mertk on human AMø (Fig 3.1B, 

3.1C).  Unlike what had been observed in murine AMø (Fig. 2.5F), fluticasone treatment 

led to a concordant increase in Axl expression (Fig 3.1D, 3.1E).  Although this last 

finding indicates that the mechanisms by which fluticasone acts to increase AC uptake 

differ slightly between murine and human AMø, AC uptake is significantly enhanced by 

GC treatment in both species. 

 

Co-exposure to GC and AC suppresses LPS response in murine and human AMø.  To 

understand the immune consequences of GC treatment followed by AC exposure 
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(GCAE), we pre-treated AMø with fluticasone, AC, or fluticasone followed by AC, then 

stimulated AMø with the TLR4 ligand LPS.  Following co-exposure of murine AMø to 

GC and AC, secretion of TNFα, IL-6 and IL-12 was decreased in co-treated AMø 

compared to those pre-treated with GC alone, AC alone or AMø that did not receive any 

pre-treatment (Fig. 3.2A-C).  This decrease reached statistical significance for TNFα 

(Fig. 3.2A).  TNFα was also decreased following co-exposure of human AMø to GC and 

AC (Fig. 3.2D).  The same decrease in TLR response by co-exposure to GC and AC was 

seen in human AMø stimulated with the TLR3 ligand PolyI:C and the TLR1/2 ligand 

Pam3Csk4 (data not shown). 

 

Fluticasone pre-treatment alters SOCS1 but not SOCS3 expression in AMø following AC 

exposure.  SOCS1 and SOCS3 are both induced by AC clearance and contribute to the 

immunosuppressive capacity of AC through inhibiting STAT signaling (97).  We 

examined expression of SOCS1 and SOCS3 following AC exposure to test whether 

fluticasone affected this pathway.  Using RT-PCR we found that, as previously 

published, exposure to AC induced SOCS1 and SOCS3 expression, however the kinetics 

of SOCS1 induction were altered by pre-treatment with fluticasone (Fig. 3.3A, 3.3B).  

SOCS1 expression increased more rapidly in response to AC in AMø pre-treated with 

fluticasone (Fig. 3.3A).  However, by 3 h after AC induction SOCS1 expression was 

lower in AMø pre-treated with fluticasone than in AMø exposed to AC alone, similar to 

levels of SOCS1 in untreated AMø.  The rate and amplitude of SOCS3 induction 

following AC exposure was not altered by pre-treatment by fluticasone. 
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miR29c and let-7i are decreased following fluticasone and AC exposure while target 

genes SOCS1 and A20 are increased.  To address whether GCAE is a unique 

immunosuppressive state or the additive suppression of GC and AC exposure we tested 

for the presence of regulatory factors whose expression was only altered in GCAE, not by 

GC or AC exposure alone.  We performed a PCR miRNA-array on human samples, 

comparing RNA from untreated human AMø to RNA from AMø treated with fluticasone 

alone, AC alone, or fluticasone and AC.  We identified miRNA uniquely altered in 

human AMø following GCAE (Table I).  Of interest, two of these miRNA are known to 

target molecules that inhibit inflammatory signaling: both miR-29c and let-7i negatively 

regulate tumor necrosis factor alpha-induced protein 3 (TNFAIP3/A20) (251) while let-7i 

negatively regulates SOCS1 (252).  Using quantitative real-time RT-PCR we confirmed 

that let-7i and miR-29c were decreased in human AMø following GCAE (Fig. 3.4A, 

3.4B).  mRNA expression of both miRNA target genes, A20 and SOCS1, was increased 

following GCAE (Fig. 3.4C, 3.4D). We performed a parallel experiment using murine 

AMø, comparing RNA from untreated AMø to RNA from AMø treated with fluticasone 

alone, AC alone, or fluticasone and AC.  The let-7i, miR-29c and their target genes do 

not appear to be identically regulated by GCAE in murine and human AMø.  miR-29c 

was decreased in murine AMø following GCAE, however, there was no significant 

decrease in let-7i (Fig. 3.4E, 3.4F).  mRNA expression of the let-7i target SOCS1 was 

increased post-GCAE, but we found no increase in the miR-29c target A20 (Fig. 3.4G, 

3.4H). 
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Fluticasone and AC exposure inhibits AMø killing of Streptococcus pneumoniae.  To 

establish a murine model by which to test the clinical import of GCAE, we first 

administered a physiological dose of fluticasone via intranasal inoculation to observe 

whether this altered murine AMø AC uptake and TLR response.  AMø from mice treated 

with in vivo fluticasone showed an increase in AC uptake in vitro (Fig. 3.5A), as had 

been observed following in vitro fluticasone treatment.  Importantly, an increase 

following in vivo fluticasone treatment was also observed for in vivo AC uptake, where 

apoptosis was induced in target cells in vitro and apoptotic target cells were then 

administered intranasally following intranasal fluticasone inoculation (Fig. 3.5B).  

Additionally, AMø from mice treated with in vivo fluticasone showed a decrease in their 

in vitro LPS response (Fig. 3.5C).  This finding indicated that the physiological dose of 

in vivo fluticasone and in vivo inoculation of AC would lead to in vivo GCAE. 

We proceeded to induce GCAE in vivo and compared the response to S. 

pneumoniae infection (253) between four treatment groups: 1) mice receiving PBS 

control, 2) mice receiving fluticasone alone, 3) mice receiving AC alone, and 4) mice 

receiving fluticasone followed by AC.  However, when mice were pre-treated with 

fluticasone and AC beginning 6 h prior to infection with S. pneumoniae, no subsequent 

difference in bacterial CFU was observed in the isolated lung tissue from any group (Fig. 

3.6A).  There was also no change in CFU after 48 h and no change in bacterial 

dissemination as measured by splenic CFU at 24 and 48 h following this acute induction 

of GCAE (data not shown).  However, a significant increase in bacterial burden was 

observed in the lung tissue of infected mice given a longer pre-treatment of fluticasone 

and AC.  When mice received a chronic pre-treatment of fluticasone and AC beginning 
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24 h prior to infection, lung tissue isolated from mice co-treated with fluticasone and AC 

had the highest bacterial CFU 24 h after S. pneumoniae infection (Fig. 3.6B).  To test 

whether bacterial killing by AMø was inhibited by GCAE and could contribute to this in 

vivo increase in bacterial burden, we performed an in vitro bacterial killing assay (Fig. 

3.6C).  Following pre-treatment with fluticasone and AC, murine AMø displayed a 

decreased ability to kill S. pneumonia (Fig. 3.6D, 3.6E).  Collectively, this work provides 

preliminary data to support our hypothesis that GCAE inhibits important sentinel immune 

capabilities in AMø such as TLR response and bacterial killing, resulting in increased 

susceptibility to respiratory infection. 

 

Discussion 

The results of this study demonstrate how the combination of GC and AC alters 

AMø antimicrobial capacity through downregulating TLR response, decreasing 

expression of miRNA that indirectly regulate TLR-dependent cytokine production, and 

lowering the capacity of AMø to kill bacteria in vitro and in vivo.  Using primary human 

AMø, we demonstrate that fluticasone enhances AC clearance, as we have previously 

shown in murine AMø (65).  Using primary human and murine AMø we demonstrate that 

the combination of GC and AC inhibits cytokine production following LPS stimulation, 

beyond the inhibition caused by either GC or AC alone.  We identify two miRNA 

uniquely decreased by the combination of GC and AC, let-7i and miR-29c, respectively 

involved in the regulation of SOCS1 (252) and A20 (251).  Loss of these miRNA in 

human AMø correlates with increased expression of these negative regulators of TLR and 

cytokine signaling.  Further, we establish a murine model to study the effects of GC and 
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AC on S. pneumoniae infection and provide preliminary data that this co-treatment 

decreases bacterial killing by AMø, increasing susceptibility to infection.  These results 

suggest that increased AC may be a mechanism by which COPD patients on ICS develop 

increased susceptibility to pneumonia. 

We continue to theorize that augmenting AC clearance by AMø prevents critical 

initial bactericidal capacity, resulting in lingering bacterial burden instead of resolution. 

Published work studying the effect of AC alone on in vivo S. pneumoniae infection 

demonstrates that the presence of AC leads to diminished clearance of bacteria (108).  

AMø perform essential bactericidal functions in initial S. pneumoniae infection (254-

259).  Bacterial killing by AMø is suppressed by the PGE2 produced following 

efferocytosis (108).  In contrast to this inhibitory effect of AC, GC enhance bacterial 

killing (260), potentially through inhibiting PGE2 synthesis (261, 262).  These data do 

not support the idea that diminished killing following treatment of GC and AC is 

explained by cumulative but separate effects of GC and AC on bacterial killing.  We feel 

this data strongly suggest that the combination of GC and AC regulate bacterial killing by 

upregulating the inhibitory influence of AC through augmented efferocytosis: GCAE. 

However, although we clearly document an effect of GC on AC uptake in vitro 

and in vivo, we lack data to prove that enhanced efferocytosis rather than unknown 

additive immunomodulatory effects of the GC and AC is responsible for this defective 

bacterial killing.  There are experiments that can be performed to partially answer this 

concerns.  We can treat AMø with AC before GC where there will be no enhancement of 

efferocytosis and compare this to our usual treatment of GC before AC where 

efferocytosis is enhanced.  If comparable bacterial killing is measured in both groups this 
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would be strong evidence against our conclusion that the enhanced efferocytosis is key to 

the decreased bacterial killing.  In contrast, better bacterial killing in the group treated 

with AC before GC would suggest that the enhanced efferocytosis (GCAE) is required 

for the decreased bacterial killing we observed in vitro and in vivo.  Additionally, we 

could perform experiments where we attempt to normalize uptake, restricting the number 

of AC targets available following GC treatment to prevent enhanced uptake and 

comparing this to AMø pre-treated with AC alone.  Diminished killing by AMø pre-

treated with GC and restricted target AC would suggest that enhanced efferocytosis is not 

required.  Such experiments will clarify the mechanism by which GC and AC inhibit 

bacterial killing, although our inability to conclusively demonstrate a role for augmented 

efferocytosis in our model does not diminish from the clinical implication that the 

presence of AC could increase susceptibility to bacterial pneumonia for COPD patients 

on ICS. 

Our finding that in vitro GC treatment increases AC uptake by human AMø 

agrees with a previous report in asthmatics (139).  We extend that study by demonstrating 

that GC exposure upregulates protein expression of the important AC recognition 

receptors, Axl and Mertk.  This finding agrees with a study on human blood-derived 

monocytes that found an increase in mRNA expression of Axl and Mertk (199), but 

contrasts with our murine work showing that at the mRNA and protein level only Mertk 

is upregulated following GC treatment (Fig. 2.5F) (65).  The import of this species 

difference is uncertain.  Along with the less-studied Tyro3, Axl and Mertk belong to a 

family of structurally-related receptor tyrosine kinases (TAM family).  Members of the 

TAM family of AC recognition receptors recognize phosphatidylserine (PS) expressed on 
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AC through bridge molecules including Gas6 and Protein S (263).  Expression of TAM 

receptors varies on phagocytes (109, 264), although AMø express mRNA for all three 

receptors (unpublished data from Curtis lab).  Mice lacking TAM receptors have a 

diminished capacity for AC clearance and a predisposition for autoimmunity (119, 265).  

Work in mice has shown that Axl is important for the resolution of inflammation: 

upregulation of Axl by inflammatory stimuli such as LPS is required for subsequent 

expression of SOCS1 and SOCS3 that complete a negative feedback loop to suppress 

cytokine signaling (97, 266).  Mice lacking Axl or cells treated with blocking antibodies 

to Mertk show an exaggerated inflammatory response in addition to an increase in 

autoimmunity (99, 267).  Knockout mice lacking multiple TAMs have stronger 

autoimmune phenotypes than single knockouts (11).  The TAM receptors activate shared 

pathways but function in a non-redundant manner. 

By upregulating both Axl and Mertk in human AMø, GC may more greatly 

enhance AC clearance by human AMø than murine AMø.  This hypothesis is supported 

by our data showing that fluticasone alone led to a much stronger increase in AC uptake 

by human AMø (~6-fold above untreated) than murine AMø (~3-fold above untreated) 

(Fig 2.1B, 3.1A).  Hence, GCAE and its consequences may be greater in human AMø, 

although further experiments will be needed to prove that conjecture. 

In our study of the immune consequences of GCAE, we describe how AMø 

response to pathogens is altered in an environment where those AMø are pre-stimulated 

with GC and AC.  We find that GCAE suppresses TLR response and bacterial killing by 

AMø.  These changes coincide with increases in SOCS1 not seen in AMø treated with 

either GC or AC alone, consistent with a phenotype of immunosuppression.  Importantly, 
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while this is true after only 1-2 h of AC exposure, by 3 h, AC exposure alone induces 

SOCS1 expression; GCAE only alters the kinetics of SOCS1 induction (Fig. 3.3A, Fig. 

3.4D, 3.4H).  SOCS1 and the related SOCS3 suppress STAT signaling downstream of 

cytokine receptors by binding to and inhibiting JAK activity (268).  SOCS1/3 also 

suppress NFκB activity by decreasing p65 stability (269). 

Expression of SOCS1 and SOCS3 is rapidly induced following Axl/Mertk 

recognition of AC.  There is no change in the SOCS3 expression induced by AC alone 

following GCAE, suggesting that accelerated SOCS1 expression is not caused by 

alterations in this shared Axl/Mertk and STAT signaling.  If changes caused by GCAE 

were simply a reflection of augmented AC clearance leading to an accelerated anti-

inflammatory response to AC, we would expect both SOCS1 and SOCS3 to be increased.  

The lack of SOCS3 induction in GCAE supports our hypothesis that GCAE is a unique 

anti-inflammatory state beyond the independent effects of GC and AC.   

The identification of several specific miRNAs decreased only by GCAE (Table I) 

further supports an interpretation of combinatorial rather than additive 

immunosuppression. Our finding that decreased let-7i expression coincided with 

increased SOCS1 agrees with the report that let-7i suppresses SOCS1 expression in DC 

(252).  By contrast, let-7i is not known or predicted to target SOCS3, consistent with the 

lack of increased SOCS3 expression we found.  Thus, let-7i is an attractive mechanism to 

explain the altered kinetics of SOCS1 but not SOCS3 by GCAE.  This finding suggests 

that the observed differential kinetics of these two closely related immunoregulators are 

due to regulatory factors unique to GCAE.   
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GCAE also causes a unique upregulation of A20 not seen following either GC or 

AC alone.  Increased A20 expression provides a direct mechanism by which GCAE could 

suppress TLR signaling; A20 is a ubiquitin editing protein that inhibits NFkB signaling 

by disassembling ubiquitination of TRAF6, preventing IKK complex activation and 

limiting signing through TLRs and other activators of NF-kB (270-272).  GCAE-induced 

A20 in AMø could result in dampened TLR signaling, consistent with the diminished 

TLR response we observed following GCAE (Fig. 3.2).  Coinciding with upregulation of 

A20, GCAE leads to decreased expression of miR-29c, which has been previously shown 

to inhibit A20 in B cells (251).   

As with SOCS1/let-7i, the unique induction of A20 and repression of miR-29c 

following GCAE but not GC or AC exposure alone argues for a synergistic rather than 

additive relationship of GC and AC.  However, further kinetics are necessary to confirm 

that longer exposure to AC alone does not induce A20.  Interestingly, although there is no 

published record of AC exposure affecting A20 expression, A20 is necessary for AC-

induced suppression of the TLR response via inhibition of IKK activity in murine BMDC 

(273), which suggests that either A20 expression or activity (274) is induced following 

AC exposure.  Additionally, signaling through CD44, an AC recognition receptor (275, 

276), induces A20 expression (277, 278).  Kinetic studies are needed to clarify whether 

AC alone can induce A20 expression or alter its activity.  Further experiments are also 

required to measure protein levels of both A20 and SOCS1, to confirm the changes we 

observed at a message level. 

Interestingly, absence of A20 in vivo achieved by gene-targeting leads to a 

breakdown of directed AC uptake by splenic DC, cross-presentation of self-antigens, and 
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the development of spontaneous autoimmunity (273).  Collectively, these data suggest 

that A20 promotes a tolerogenic response to AC-exposure.  Verifying that increased 

expression of A20 in the engulfing phagocyte leads to tolerance, while beyond the scope 

of the current study, would have important implications for GCAE as a therapy in 

autoimmune disease.  GC have modest benefit for treatment of COPD (248), but are an 

effective treatment for lupus (279).  We speculate that the effectiveness of GC in 

controlling lupus is enhanced by GCAE; understanding this mechanism could lead to 

more targeted use of GC in these patients.  We expect GCAE would partially reverse the 

disease-related defect in efferocytosis and, due to enhanced expression of A20 in the 

engulfing phagocytes, this increased AC clearance would be tolerogenic.  Our data shows 

that GCAE can contribute to an increased susceptibility to bacterial infection, but it 

would be interesting to test whether the tolerogenic benefit outweighs the infectious cost 

in the context of autoimmune disease. 

There is no evidence that changes in A20 or SOCS1 contribute to diminished 

bacterial killing following GCAE; diminished killing in GCAE likely occurs through 

amplification of the same mechanisms by which un-enhanced efferocytosis inhibits 

bacterial killing.  Intracellular killing by AMø first requires bacterial phagocytosis.  

Uptake of S. pneumoniae is augmented by opsonization (280), which allows for Fc, 

scavenger, and complement receptor-mediated recognition and engulfment.  In particular, 

scavenger receptor A (SR-A) (281, 282) and macrophage receptor with collagenous 

structure (MARCO) (283, 284) assist in recognition and engulfment of S. pneumoniae by 

AMø.  Intracellular killing of S. pneumoniae occurs in the lysosome and involves 

indicible nitric oxide synthase (iNOS) generation of nitric oxide (NO) (280, 285-290).  S. 
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pneumoniae killing by AMø occurs through another mechanism as well: phagocytosis-

induced cell death.  Phagocytosis of S. pneumoniae induce NO-dependent apoptosis in 

AMø; apoptotic AMø are engulfed and the bacteria are killed in a “double-walled” 

fashion (291-294).  Altering prostaglandin signaling through EP2 or EP3 deletion 

increases generation of NO and improves bacterial phagocytosis and killing by AMø 

(288, 289).  AC suppress bacterial killing through inducing the secretion of PGE2 which 

then signals through EP2 (108); we hypothesize that GCAE amplifies this pathway, 

leading to increased production of PGE2 and suppression of NO in the presence of AC, 

preventing both intracellular killing and killing via phagocytosis-induced cell death. 

Multiple studies have attempted to understand why COPD patients on ICS have 

an increased risk of pneumonia with no conclusive results (233).  Using murine models 

or in vitro treatments of human cells, some publications find that GC are protective (234, 

250), while others find that GC increase the severity of infection (295, 296) or have no 

effect (297).  Each study utilized a unique course of GC treatment and a different 

bacterial pathogen.  Our preliminary results find no significant effect of GC on the 

severity of infection although a trend towards increased severity.  Further, our results 

comparing a brief (Fig. 3.6A) GC pre-treatment to a more chronic (Fig. 3.6B) GC pre-

treatment suggests that the length of pre-treatment has a significant impact on the study 

outcome, which may explain the aforementioned conflicting data.  While a brief 

GC/AC/GCAE led to significant changes in vitro, brief GC/AC/GCAE pre-treatment 

showed no effect on S. pneumoniae CFU compared to mice pre-treated with a saline 

control (Fig. 3.6B).  However, the more chronic pre-treatment showed a statistically 

significant increase in bacterial CFU in mice after GCAE and a trend towards increased 
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bacterial CFU in mice pre-treated with GC or AC alone (Fig. 3.6C).   The more chronic 

GCAE treatment also decreased AMø S. pneumoniae killing in vitro.  These data 

demonstrate an inhibitory effect of GCAE on bacterial clearance and motivates further 

study of the connection between GCAE and susceptibility to bacterial infection.  It will 

be important to study whether GCAE results in increased dissemination and mortality; 

there is some suggestion that increased risk for community-acquired pneumonia with ICS 

used is balanced by reduced mortality, however this early conclusion has since been 

contested (223-226). 

Our data also suggest that the use of a chronic GCAE model is the most likely to 

provide significant results, as acute GC/AC/GCAE studies of bacterial susceptibility 

following GCAE with chronic GC exposure (>1 week) are likely to be more relevant to 

COPD patients receiving ICS.  We speculate that chronic GCAE will further augment the 

defect in bacterial clearance observed in our 24 h treatment, although it is unclear how 

this could be impacted by induction of GC resistance with long-term ICS use.  GC 

resistance in COPD is believed to occur primarily because of decreased GR association 

with NF-kB due to decreased histone deacetylase C2 (HDAC2) (231, 298); it is unknown 

whether GC regulation of Mertk or SIRPα expression requires the GR-NFkB complex. 

GC are just one of many pharmacologic agents that enhance uptake of AC and it 

is unclear whether pre-treatment with other agents will result in similar 

immunosuppression and susceptibility to infection.  Statins, which also increase AC 

uptake by AMø, have been observed to increase positive outcomes in pneumonia in mice 

and humans (297, 299).  Further work will need to investigate how statin-enhanced AC 

uptake or azithromycin-enhanced AC uptake effect TLR response and bacterial killing in 
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the lung.  Statins and azithromycin are common medications used by patients with COPD 

and neither has been connected to an increased risk of bacterial infection.   

In summary, our data support the hypothesis that the increased exposure of AMø 

to intra-alveolar AC explains the association of therapeutic ICS use with increased 

incidence of community-acquired pneumonia in patients with COPD.  This idea merits 

further investigation using our established murine model to better understand the 

mechanisms by which GCAE alter the anti-microbial response.  Our study specifically 

suggests that COPD patients diagnosed with emphysema and prescribed ICS may be at 

the highest risk for bacterial pneumonia and subsequent hospitalization due to the 

increased presence of disease-associated AC.  Avid engulfment of AC by AMø exposed 

to GC would lead to decreased TLR response, decreased bacterial killing, ineffective 

recruitment of monocytes and neutrophils, and hence increased hospitalizations for 

pneumonia in this population.  No clinical trials of ICS have separated patients with 

emphysema from the larger COPD population.  Our study motivates improved design of 

future trials to compare pneumonia risk between these two groups and potentially 

redefine appropriate interventions for individuals with emphysema to exclude the 

prescription of ICS.  Further, it underscores that any use of therapeutic enhancement of 

AC uptake to inhibit inflammation and autoimmunity will first require a deeper 

understanding of the immune effects of enhanced AC clearance.   
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Figure 3.1.  Fluticasone increases uptake of AC by human AMø and their expression of 
Mertk and Axl.  Adherence-purified AMø from human bronchoalveolar lavage were 
treated with control media or 2 µM fluticasone for 24 h.  A.  AC uptake by human AMø 
following fluticasone treatment.  In chamber slides, AC were added at a 10:1 ratio for 2 
h, then slides were washed and stained using H&E and ingested AC were counted at 
100X magnification under oil.   B.  Western blot of Mertk in human AMø following 
fluticasone treatment.  C. Western blot of Axl in human AMø following fluticasone 
treatment.  D.  Immunohistochemistry of Mertk in human AMø. E.  Immuno-
histochemistry of Axl in human AMø.  Data are mean ± SE or representative data of 
AMø from two human subjects.  Both humans were current smokers.  All experiments 
shown were performed by Dr. Jill C. Todt. 
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Figure 3.2.  AMø LPS response is more greatly inhibited by GCAE than by AC or 
fluticasone alone.  A-C.  Adherence-purified murine AMø from normal C57BL/6 mice 
were treated with 2 µM fluticasone for 3 h (Flu), 10:1 AC for 2 h (AC) or 2 µM 
fluticasone for 3 h following by 10:1 AC for 2 h (Flu + AC), then stimulated with 1 
ng/mL LPS.  Supernatants were collected after 24 h and secreted TNFα (A), IL-6 (B) and 
IL-12 (C) were quantified by Luminex.  D.  Adherence-purified human AMø from 
human bronchoalveolar lavage were treated with 2 µM fluticasone for 3 h (Flu), 10:1 AC 
for 2 h (AC) or 2µM fluticasone for 3 h following by 10:1 AC for 2 h (Flu + AC), then 
stimulated with 1 ng/mL LPS.  Supernatants were collected after 24 h and secreted TNFα 
was quantified by Luminex.  Data are mean ± SE of four mice from two independent 
experiments or mean ± SE of AMø from two human subjects.  Both humans were current 
smokers.  *, statistically significant, p<0.05 by One-Way ANOVA with Bonferroni post-
hoc testing.  Panel D is data from experiments performed by Dr. Jill C. Todt. 
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Figure 3.3.  Kinetics of SOCS1, but not SOCS3, induction following AC exposure are 
altered by fluticasone pretreatment.  Adherence-purified AMø from normal C57BL/6 
mice were exposed to AC at ratio of 10 AC per AMø for 0-3 h following pretreatment 
with control media or 2 µM fluticasone for 6 h.  Expression of SOCS1 (A) and SOCS3 
(B) mRNA was measured by RT-PCR.  Data are mean ± SE of three mice.  No 
statistically significant differences by Two-Way ANOVA with Bonferroni post-hoc 
testing. 
 
 
 
 
 
Table 3.1  Results of miRNA PCRArray screen of human AMø RNA after GCAE.  
Adherence-purified AMø from three healthy nonsmokers were treated with control 
media, fluticasone, AC, or fluticasone followed by AC.  Changes in miRNA expression 
relative to control Mø were calculated for the three treatment groups.  Six miRNA 
uniquely downregulated by GCAE were identified.  PCRArray was performed by Sean 
Crudgington. 
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Figure 3.4.  GCAE suppresses expression of let-7i and miR-29c and induces expression 
of respective target genes, SOCS1 and A20.  A-D.  Adherence-purified AMø from human 
bronchoalveolar lavage were treated with 2µM fluticasone for 3 h (Flu), 10:1 AC for 2 h 
(AC) or 2µM fluticasone for 3 h following by 10:1 AC for 2 h (Flu + AC).  Expression of 
miR-29c (A), let-7i (B), A20 (C), and SOCS1 (D) was measured by RT-PCR.  Data are 
mean ± SE of AMø from two human subjects.  Both humans were current smokers.  E-H.  
Adherence-purified AMø from normal C57BL/6 mice were treated with 2µM fluticasone 
for 3 h (Flu), 10:1 AC for 2 h (AC) or 2µM fluticasone for 3 h following by 10:1 AC for 
2 h (Flu + AC).  Expression of miR-29c (E), let-7i (F) A20 (G), and SOCS1 (H) was 
measured by RT-PCR.  Data are mean ± SE of three mice from one experiment.  No 
significant differences by One-Way ANOVA with Bonferroni post-hoc testing.  PCR of 
human samples (A-D) was performed by Valerie Stolberg. 
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Figure 3.5.  Intranasal administration of fluticasone affects in vitro and in vivo AMø 
responses.  A.  In vitro AC uptake following in vivo fluticasone treatment.  AMø were 
adhesion-purified from bronchoalveolar lavage of normal C57BL/6 mice 6 h after 
intranasal treatment with 100ng-10µg fluticasone in 50µL PBS.  AC were added at a 10:1 
ratio for 2 h, then slides were washed and stained using H&E and ingested AC were 
counted at 100X magnification under oil.  B.  Representative cytospins showing in vivo 
AC uptake following in vivo fluticasone treatment.  C57BL/6 mice were intranasally 
administered 1µg fluticasone in 50µL PBS, then after 6 h 10^7 AC were administered 
intranasally in 50µL PBS.  Bronchoalveolar lavage was collected after 1 h, cytospins 
were stained using H&E and ingested AC were counted at 100X magnification under oil.  
C.  Inhibition of in vitro LPS response following in vivo fluticasone treatment.   AMø 
were adhesion-purified from bronchalveolar lavage of normal C57BL/6 mice 6 h after 
intranasal treatment with 1µg fluticasone in 50µL PBS, then stimulated with 1ng/mL 
LPS.  Supernatants were collected after 24 h and secreted TNFα was quantified by 
Luminex.   Data are mean ± SE of at least two mice. 
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Figure 3.6.  GCAE decreases bacterial killing of Streptococcus pneumoniae in vitro and 
in vivo.  A.  Graphic timeline of a bacterial killing assay.  B,C.  Bacterial killing of S. 
pneumoniae by murine AMø following GCAE.  Adherence-purified AMø from normal 
C57BL/6 mice were treated with control media or 2µM fluticasone for 4 h followed by 
10:1 AC for a further 18 h (Flu + AC) prior to exposure to 16x10^6 CFU S. pneumoniae.  
D.  In vivo killing of S. pneumoniae following brief GCAE.  C57BL/6 were pretreated 
with intranasal inoculations of saline alone, 1µg fluticasone at -6 h (Flu), 10^7 AC at -2 h 
(AC) or 1µg fluticasone at -6 h followed by 10^7 AC at -2 h (Flu + AC) in 50µL of PBS, 
then infected intratracheally with 50,000 CFU of S. pneumoniae.  Lung homogenates 
were collected after 24 h and bacterial burden was quantified as CFU.  E.  In vivo killing 
of S. pneumoniae following chronic GCAE as measured by changes in whole lung CFU.  
C57BL/6 were pretreated with intranasal inoculations of saline alone, 1µg fluticasone at -
24 and -6 h (Flu), 10^7 AC at -18 and -2 h (AC) or 1µg fluticasone at -24 and -6 h 
followed by 10^7 AC at -18 and -2 h (Flu + AC) in 50µL of PBS, then infected 
intratracheally with 50,000 CFU of S. pneumoniae.  Lung homogenates were collected 
after 24 h and bacterial burden was quantified as CFU.  Data are mean ± SE of at least 
three mice.  *, statistically significant, p<0.05 by One-Way ANOVA with Bonferroni 
post-hoc testing.  Valerie Stolberg and Dr. Christine M. Freeman performed the in vitro 
bacterial killing assay (B, C) and collaborated on the in vivo experiment shown in panel 
E. 
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Chapter 4 

MiR-34a is a master-regulator of apoptotic cell clearance in macrophages2 

 

Abstract 

MicroRNA, small regulatory RNA that inhibit translation of target genes, have 

been implicated in the control of myriad biological pathways, however, the role of 

miRNA in regulating apoptotic cell (AC) engulfment is largely unknown.  Here we 

provide evidence that the microRNA miR-34a is a negative regulator of AC engulfment, 

acting through repression of multiple target engulfment genes.  In alveolar macrophages 

(AMø), microglia (glia), bone marrow-derived macrophages (BMDMø) and peritoneal 

macrophages (PMø), transiently induced reduction or overexpression of miR-34a 

expression increased or decreased efferocytosis, respectively.  By crossing miR-34a-flox 

mice with LysM cre mice we generated mice that were miR-34a haploinsufficient in the 

myeloid lineage (miR-34a+/-).  AC uptake by AMø from miR-34a+/- mice was increased 

compared to wild-type (WT) mice.  We demonstrate that miR-34a targets at least three 

components of AC engulfment machinery: Axl, SIRT1, and GRAF1 (ArhGAP26).  Both 

SIRT1 and GRAF1 are novel components of the AC uptake pathway.  We further show 

that miR-34a does not solely depend on altered expression of Axl to modulate AC 

                                                
2 Taken from: 
McCubbrey AL, Nelson JD, Blakeley P, Freeman CM, Crudgington S, Stolberg V, 
Curtis, JL. MiR34a is a master regulator of apoptotic cell clearance in macrophages.  In 
preparation. 
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engulfment.   These results imply that miR-34a alters AC clearance through the combined 

effects of multiple target engulfment genes including Axl, SIRT1 and GRAF1.  Finally, 

we show that miR-34a augments the capacity for bacterial killing. The dual role of miR-

34a in inhibiting AC uptake and enhancing bacterial killing suggests that miR-34a may 

act as a master-regulator of the balance between AC clearance and Mø antimicrobial 

function. 

 

Introduction 

MicroRNA (miRNA) are short, regulatory RNA that bind to target mRNA and 

inhibit translation by triggering mRNA degradation or blocking proper ribosome 

association (300-302).  MiRNA are processed from pri-miRNA down to a final 21-25 

nucleotide length by Drosha/DGCR8 and Dicer, then interact with Ago2 in a RISC 

complex to bind target mRNA (303, 304).  Generally, a seed sequence of 5-8 nucleotides 

within the 5’ region of the miRNA binds a complementary region within the 3’-UTR of 

target mRNA, although binding within the 5’-UTR, promoter, or open reading frame has 

also been described (305, 306).  Numerous miRNA have been implicated in the 

regulation of important Mø functions; miR-145, miR-146a, and miR-155 have all been 

shown to inhibit TLR signaling (307-312); miR-144 and miR-33a to regulate cholesterol 

efflux (313, 314); and let-7c and miR-125a to influence M1/M2 polarization (315-317).  

How miRNA may regulate AC clearance, another important macrophage function, 

remains largely unknown.  A single miRNA, miR-21, has been described to regulate AC 

uptake positively in human blood-derived monocytes (318), likely through targeting 

Phosphatase and tensin homolog (PTEN).   
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While the known positive regulators of AC uptake are numerous, much less is 

known regarding the negative regulation of AC engulfment.  SIRPα (63, 64) and CD300a 

(66) have been described as inhibitory engulfment receptors.  PTEN (78), MTM-1 (319) 

RhoA/ROCK1 (74, 162) have been described to negatively regulate downstream 

engulfment signaling.  No miRNA have previously been identified that negatively 

regulate AC uptake.  Here we describe miR-34a as a negative regulator of AC uptake that 

targets multiple components of engulfment machinery in resident tissue macrophages. 

miR-34a is a target of p53 that is well-described as a negative regulator of many 

types of cancer, mediating its anti-tumor effects through targeting pathways controlling 

cell cycle (320, 321), glycolysis (322, 323), invasion (324-328), and cell death (329, 

330).  The positive effect of miR-34a on cell death has been shown to have negative 

consequences as well; tissue death and scarring is enhanced following ischemia when 

cardiac myocytes express miR-34a (331, 332).  Additionally, miR-34a can inhibit the 

differentiation of B cells (333, 334) and is required for differentiation of dendritic cells 

(335) and neurons (336, 337).  Interestingly, increased levels of miR-34a have been 

observed in the liver during aging (338, 339) and obesity (340, 341), and the lung tissue 

of patients with COPD (342).  These three diseases are associated with decreased AC 

clearance (138, 343-346).   

In this study, we asked whether miR-34a could directly inhibit AC engulfment 

and the mechanisms by which this could occur.  We demonstrate that miR-34a is a 

master-regulator of AC engulfment, inhibiting AC uptake through targeting multiple 

genes within the engulfment pathway.  Interestingly, the AC recognition receptor Axl is 

also an oncogene and direct target of miR-34a (326, 347).  We confirm that miR-34a 
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inhibits Mø expression of Axl, a known AC recognition receptor.  Further, we provide 

evidence that two miR-34a target genes, a protein deacetylase named SIRT1 and a Rho-

family GTPase activating protein (RhoGAP) named GRAF1, are novel components of 

AC engulfment machinery.  Of interest, miR-34a expression is particularly high in 

alveolar macrophages (AMø). Finally, we document a positive role for miR-34a in killing 

engulfed bacteria, which suggests that AMø function may be biased towards bacterial 

killing and away from AC clearance. 

 

Results 

Knockdown or overexpression of miR-34a respectively increases and decreases AC 

uptake in murine and human Mø.  We observed a clear inverse relationship between AC 

uptake, expressed as phagocytic index, and miR-34a expression, as measured by 

quantitative real-time RT-PCR in murine AMø, glia, BMDMø and PMø (Fig. 4.1A). To 

understand whether this relationship was correlative or causative, we transiently 

transfected primary Mø to knockdown or over-express miR-34a using the lipofectamine-

based RNAiMAX system.  Transfection of a specific miR-34a antagomir led to 

significant knockdown of miR-34a expression as measured by quantitative real-time RT-

PCR (Fig. 4.1B).  We measured uptake of FITC-labeled miR-34a and control constructs 

using flow cytometry and confirmed transfection occurred in >90% of cells (Fig. 4.1C).  

Although miR-34a has been shown to regulate apoptosis, we observed no changes in cell 

viability following overexpression in PMø (Fig. 4.1D). AC uptake in vitro was increased 

by knockdown of miR-34a in murine AMø (Fig. 4.2A, 4.2B), murine microglia and 

murine BMDMø (Fig. 4.2C, 4.2D).  Conversely, overexpression of miR-34a in PMø 
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inhibited AC uptake (Fig. 4.2E).  Collectively, miR-34a negatively regulated AC uptake 

in all four macrophage types tested.  Knockdown of miR-34a in human AMø also 

increased AC uptake, indicating this regulation is not species specific (Fig. 4.2F).   

 

MiR-34a+/- AMø have increased AC uptake.  To confirm the results of our transient 

transfection experiments, we crossed miR-34a flox+/+ mice with LysM cre mice.  This 

breeding generates mice where miR-34a expression is deleted in LysM-expressing cells 

(i.e. myeloid cells including Mø).  We have not yet produced sufficient numbers of miR-

34a flox+/+ LysM cre mice to study miR-34a-/- Mø.  However, we were able to study the 

heterozygous miR-34a flox+/- LysM cre mice (miR-34a+/-), whose myeloid cells have 

only one copy of miR-34a.  miR-34a expression was halved in AMø from miR-34a+/- 

mice; no further decrease in the already low miR-34a expression of PMø was observed 

(Fig. 4.3A).  Interestingly, miR-34a+/- mice showed a slight though non-significant 

increase in weight and a more pronounced increase in visceral white adipose tissue 

(WAT) size (Fig. 4.3B, 4.3C).  Because LsyM cre-targeting should not impact adipose 

cells of our miR-34a+/- mice, these results imply that miR-34a-directed gene expression 

changes within myeloid cells must be sufficient to affect WAT growth.  Aside from 

increased WAT size in miR-34a+/- mice, we observed no differences between WT and 

miR-34a+/- mice.  WT and miR-34a+/- mice showed similar splenic composition of 

immune cells as quantified by flow cytometry (Fig. 4.3D) and similar histology of 

immune organs (Fig. 4.3E-H).   

 Exactly as predicted by our transfection experiments in primary AMø, in vitro AC 

uptake by isolated miR-34a+/- AMø and differentiated BMDMø was significantly 
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increased compared to WT AMø and BMDMø (Fig. 4.4A, 4.4B).  As expected, there was 

no change in AC uptake by PMø (Fig. 4.4C). 

 

MiR-34a does not regulate Fc-mediated uptake.  To test specificity, we measured Fc-

mediated uptake of opsonized particles following miR-34a knockdown or 

overexpression.  Following knockdown of miR-34a in AMø there was no change in 

uptake of Ig-opsonized sheep red blood cells (SRBC) (Fig. 4.5A, 4.5B).  Similarly, 

following overexpression of miR-34a in PMø there was no change in uptake of opsonized 

SRBC (Fig. 4.5C) or opsonized heat-killed S. aureus (Fig. 4.5D).  Global engulfment is 

not affected by miR-34a; AC engulfment is specifically altered. 

  

MiR-34a targets Axl, but that effect of miR-34a is not required to limit AC uptake.  

Previous studies have identified the receptor tyrosine kinase Axl, a receptor for AC 

ingestion, as a direct target of miR-34a (323, 326, 347).  To test whether miR-34a 

regulated Axl expression in macrophages, we used flow cytometry to measure surface 

expression of Axl following miR-34a knockdown.  Following knockdown of miR-34a in 

AMø, MFI of Axl nearly doubled (Fig. 4.6A).  We also observed slight but significant 

increase in MFI of Mertk (a kinase in the same family as Axl, and also an AC receptor) 

and CD80 but not of TIM-4 or CD206 (Fig. 4.6A). As expected, we also found an 

increase in Axl expression by flow cytometry of miR-34a+/- BMDMø compared to WT 

BMDMø (Fig. 4.6B, 4.6C).  

 To test whether Axl was required for the effect of miR-34a on AC uptake, we 

obtained bone marrow from Axl-/- mice (generously provided by the Lemke Laboratory, 
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Scripps Institute).  Differentation using GM-CSF induced Axl expression in WT 

BMDMø but not in Axl-/- BMDMø (Fig. 4.7A).   AC uptake was increased by 

knockdown of miR-34a in Axl-/- BMDMø (Fig. 4.7B), as had been observed in WT 

BMDMø (Fig 4.2D).  This result indicated that miR-34a reduction of efferocytosis does 

not require inhibition of Axl expression, and thus must involve other pathways.   

  

The miR-34a target SIRT1 positively regulates AC uptake but not Fc-mediated uptake.  

Previous studies have identified SIRT1 as a direct target of miR-34a (348-350), although 

SIRT1 has not been connected to AC clearance.  SIRT1 expression was increased in 

miR-34a+/- AMø (Fig 4.8A).  To test whether SIRT1 could have a heretofore unknown 

function in regulating AC clearance, we treated WT macrophages with SIRT1 agonists 

and antagonists, then measured the effect on efferocytosis.  Treatment of PMø with the 

SIRT1 antagonists Sirtinol or EX-527 inhibited AC uptake (Fig. 4.8B-D).  Treatment of 

AMø with the agonist Resveratrol increased AC uptake (Fig. 4.8E).  Treatment of PMø 

with Sirtinol did not alter Fc-mediated uptake of opsonized SRBC (Fig. 4.8F, 4.8G).  

SIRT1 acetylates and thus activates LXRα (351), which is upstream of the AC 

engulfment receptor Mertk (96).   We asked whether inhibition of SIRT1 would reduce 

Mertk expression.  Surface expression of Mertk on PMø, as measured by flow cytometry, 

showed a dose-dependent decrease following Sirtinol treatment (Fig. 4.8H).  Positive 

regulation of the LXRα/Mertk axis may be one mechanism by which SIRT1 positively 

regulates AC engulfment. 
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GRAF1 is increased in miR-34a+/- Mø and positively regulates AC and not Fc-mediated 

uptake.  We identified GRAF1 as a potential direct target of miR-34a using in silico 

screening (Fig. 4.9A).  The predicted miR-34a binding site within the 3’-UTR is highly 

conserved among eukaryotes; TargetScan 6.2 calculated a PCT of 0.9, indicating a high 

probability that this site within the GRAF1 3’-UTR is conserved due to selective 

maintenance of miRNA targeting (352).  Selective maintenance suggests that a miR-

34a/GRAF1 interaction has functional import.  To test whether GRAF1 could regulate 

AC uptake, we transiently knocked down GRAF1 expression in PMø using siRNA.  

Knockdown of GRAF1 in PMø inhibited AC uptake (Fig. 4.9B, 4.9C) but not Fc-

mediated uptake of opsonized SRBC (Fig. 4.9D).  Although we have not confirmed 

whether miR-34a directly binds to its predicted site within the GRAF1 3’-UTR, we 

showed that GRAF1 expression is increased in miR-34a+/- AMø, indicating it is at least 

an indirect target of miR-34a (Fig. 4.9E).   

  

miR-34a enhances Mø killing of Streptococcus pneumoniae.  We were interested in 

whether miR-34a might regulate other macrophage functions.  Pervious work has shown 

that miR-34a can inhibit the macrophage TLR response (353).  To test whether miR-34a 

could affect bacterial killing by Mø we measured the ability of PMø to kill S. pneumoniae 

following overexpression of miR-34a.  Overexpression of miR-34a increased bacterial 

killing by PMø (Fig. 4.10A). 

 

Discussion 
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 The results of this study identify miR-34a as a negative regulator of Mø AC 

clearance through targeting multiple components of engulfment machinery: Axl, SIRT1 

and GRAF1.  Using primary murine and human AMø as well as culture-differentiated 

murine glia and BMDMø, we show that transient or genetic knockdown of miR-34a 

enhances AC uptake.  Conversely, transient overexpression of miR-34a in primary 

murine PMø inhibits AC uptake.  We demonstrate that SIRT1 and GRAF1 are novel 

components of engulfment machinery; pharmacologic inhibition of SIRT1 in PMø and 

transfecting PMø with siRNA against GRAF1 both decrease AC uptake.  We 

demonstrate that SIRT1, GRAF1, and Axl are all inhibited by miR-34a in macrophages.    

Finally, we show that in addition to its role as a negative-regulator of AC clearance in 

Mø, miR-34a also enhances bacterial killing.  We hypothesize that miR-34a may act as a 

master-regulator of Mø function. 

Although small in size, miRNA have the ability to regulate the expression of 

hundreds to thousands of genes (300, 302, 306, 354).  Each miRNA has numerous direct 

targets, many of which themselves influence transcription of other genes, meaning that 

each miRNA influences the expression of additional, indirect targets.  MicroArray and 

pSILAC analysis of miR-34a targets in kidney cells identified at least 228 genes as direct 

or indirect targets of miR-34a (323).  KEGG pathway analysis found that many miR-34a 

targets were regulators of DNA replication, cell cycle, apoptosis and metabolism (323).  

Our data identify a new group of known and novel targets of miR-34a that we 

demonstrate are grouped by their common involvement in AC engulfment and explain 

how miR-34a negatively regulates efferocytosis. 
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Our results complement a recent publication identifying miR-21 as a positive 

regulator of AC engulfment in human blood monocyte-derived macrophages that is 

upregulated in these cells following AC exposure (318).  miR-21 directly targets PTEN 

(355, 356) which is known to regulate both NF-kB signaling (357) and AC engulfment 

(78).  It is unclear whether miR-21 may target additional engulfment genes.  Of interest, 

an inverse relationship between miR-34a and miR-21 expression has been previously 

described in the cancer literature.  miR-34a functions as a tumor-suppressor while miR-

21 is tumorigenic (358-361).   Additionally, an inverse relationship between miR-34a and 

miR-21 expression has been observed following LPS (353, 362), TGF-β (363, 364), and 

hypoxia (365, 366).  There is some evidence that miR-34a may negatively regulate miR-

21 expression through CD24 and Src (367).  Although further experiments are necessary, 

we speculate that miR-21/PTEN is yet another target through which miR-34a may 

negatively regulate AC uptake. 

Our finding that reduced Axl expression is not required for the inhibitory effect of 

miR-34a of AC uptake supports our assertion that miR-34a acts as a master-regulator of 

AC clearance, altering the program of AC engulfment, cumulatively inhibiting 

efferocytosis by small changes to multiple components of engulfment machinery.  

Interestingly, our lab has observed that basal Axl expression is normally very high in 

AMø and less high in PMø (unpublished data).  The lack of correlation between Axl 

expression and miR-34a levels or engulfment in AMø and PMø further supports our 

finding that Axl alone does not determine engulfment capacity and is not the only 

mechanism by which miR-34a regulates AC uptake. 
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Although our data show that the effect of miR-34a on AC clearance is conserved 

in both mice and humans, it is unclear whether miR-34a will affect AC uptake in simpler 

organisms.  Evolutionarily, miR-34a arose from an ancestral miR family (368) and is 

found as a single miR-34 transcript in C. elegans and D. melanogaster.  miR-34 has 

subsequently diversified in both mice and humans into miR-34a-c.  While both worm and 

fly encode SIRT1 homologs (369, 370), and GRAF1 homologs (NCBI database search), 

neither encode Axl homologs (11).  It would be interesting to test whether miR-34a 

retains its function as a negative regulator of AC clearance in C. elegans and D. 

melanogaster.  Such a result would further support our finding that miR-34a-mediated 

repression of AC clearance does not require Axl.  It would also be interesting to test 

whether miR-34b or miR-34c could also regulate AC uptake; related miRNA have 

similar seed sequences and thus overlapping target pathways (360, 371).  MiR-34c, like 

miR-34a, has recently been shown to repress SIRT1 (372).  MiR-34b/c are highly 

expressed in the lung (360), although we have not examined specific expression by AMø 

or how that may compare to PMø. 

Our finding that the miR-34a target SIRT1 positively regulates AC uptake 

extends the previous observation that SIRT1-/- mice develop a lupus-like autoimmunity 

(373) and have increased numbers of apoptotic germ cells in the testes (374-376).  As 

defective efferocytosis is known to manifest in vivo with autoimmunity and an increase 

in uncleared AC (20, 119, 377), we hypothesize that defective AC clearance in SIRT1-/- 

mice may contribute to both of these previously described phenotypes. 

The mechanism through which SIRT1 acts on AC uptake remains unclear.  SIRT1 

functions as a protein deacetylase of nuclear and cytoplasmic proteins (378).  Many 
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targets of SIRT1 have been identified, although how acetylation changes their function is 

often unknown.  LXRα functional activity is augmented following acetylation by SIRT1 

(351).  LXRα is known to regulate both basal AC engulfment and the ability to enhance 

secondary engulfment following initial AC exposure (96).  In particular, the enhanced 

secondary engulfment has been shown to involve LXRα-dependent upregulation of 

Mertk in response to AC (96).  We observed a small but significant increase in Mertk 

expression following miR-34a knockdown in AMø (Fig. 4.6A), although there is no 

evidence that Mertk is a direct target of miR-34a.  We also observed a decrease in Mertk 

expression following SIRT1 inhibition in PMø (Fig. 4.8H).  We theorize that SIRT1, 

through acetylation of LXRα, enhances expression of Mertk, and thus miR-34a can 

decrease expression of Mertk through inhibiting SIRT1 translation.  Preliminary 

experiments to test this hypothesis could involve examining the nuclear translocation of 

LXRα (379, 380), testing for increased basal nuclear localization or increased 

translocation in response to AC within cells with decreased miR-34a expression.  This 

would indicate increased LXRα activity. 

Early studies in C. elegans described a role for SIRT1 in promoting autophagy, 

which shares some machinery with AC uptake, particularly during AC degradation (90, 

92, 381, 382).  Although our phagocytosis assays are biased towards measuring changes 

in engulfment and not necessarily degradation, accelerating degradation could impact 

subsequent engulfment and this possibility deserves further thought.  A more intriguing 

possibility for SIRT1 is that it acts on AC clearance by altering other components of cell 

metabolism.  Altering metabolism through Ucp2 and AMPK within the phagocyte has 

been shown to affect AC uptake (93, 383).  Of particular interest is the connection 
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between AMPK and AC uptake; there is substantial evidence of crosstalk between 

AMPK and SIRT (384-389).  Resveratrol, a SIRT1 agonist that we demonstrate can 

enhance AC uptake by AMø (Fig. 4.8E), has been shown to activate AMPK through a 

SIRT1-dependent mechanism (389, 390).  AC engulfment triggers AMPK activation and 

blocking AMPK abrogates AC uptake: efferocytosis both regulates and is regulated by 

AMPK signaling (93).  It is possible that SIRT1 is required for this activation of AMPK 

following AC uptake.  We speculate that SIRT1 regulates AC uptake both through 

activation of AMPK and activation of LXRα, although further experiments are required 

to test this hypothesis. 

The ability to decrease mitochondrial membrane potential has been connected to 

the ability of both AMPK and Ucp2 to increase AC uptake; in both cases, pharmacologic 

decrease of mitochondrial membrane potential alone was sufficient to increase AC uptake 

(93, 383).  Unexpectedly, there is evidence of the inverse relationship with miR-34a and 

SIRT1: miR-34a inhibits mitochondria membrane potential in Y79 retinoblastoma cells 

(391) but we show that it inhibits AC uptake by Mø (Fig. 4.2).  Both SIRT1 and 

Resveratrol are known to increase mitochondrial membrane potential in C2C12 myoblast 

cells (389), but we show they also increase AC uptake by Mø (Fig. 4.8).  We have not 

directly examined mitochondrial membrane potential in our macrophages following 

manipulation of miR-34a and SIRT1.  There may be cell-specific differences; previous 

studies of AMPK and Ucp2 have only measured mitochondrial membrane potential in 

elicited PMø and a variety of tumor cell lines which are likely metabolically distinct from 

many resident tissue macrophages.  This will be an important issue to clarify. 
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MiR-34a alters metabolism through SIRT1-dependent and -independent 

mechanisms.  LDHA, required for the production of lactate, is a direct target of miR-34a 

(323).  MiR-34a has been shown to inhibit glycolysis through repression of additional 

glycolytic enzymes (322).  Early work showed that AMø possess a highly oxidative 

metabolism when compared to the more glycolytic metabolism of PMø (392).  Although 

the full import of macrophage metabolism is unknown, recent work has demonstrated 

that M1/M2 polarization involves a switch between glycolysis and oxidative 

phosphorylation (393-396).  As miR-34a expression inhibits glycolysis, this suggests that 

miR-34a may inhibit M1 polarization and favor a more M2-like phenotype.  Additionally, 

previous work has shown that miR-34a expression is induced by TGF-β (364) and 

decreased by LPS (353), classic M2 and M1 polarizers, respectively.  However, it is 

unclear how applicable the phenotypes of M1 and M2 polarization are to resident tissue 

Mø.  Most importantly, M2-like cells have been shown to have improved AC clearance 

(397-399), the inverse effect that miR-34a expression has on AC clearance.  When we 

looked at M1/M2 markers (400, 401), we found no decrease in expression of the M2 

marker CD206 following miR-34a knockdown in AMø, although we did see a slight 

increase in the M1 marker CD80 expression (Fig. 6A).  Thus, although there are certain 

similarities, our data are not fully consistent with describing AMø as M1 or M2-like cells 

or describing miR-34a as driving an M1 or M2-like phenotype in resident tissue Mø.   

It is also important to recognize that the alveolar environment may contribute to a 

unique metabolism for AMø.  The alveolar space is actively maintained as very glucose-

poor (402-404), potentially to provide an inhospitable environment for survival of inhaled 

pathogens.  AMø do not express GLUT1 (405), the primary glucose transport protein; 
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even with increased availability of glucose AMø may not be able to effectively perform 

glycolysis.  Thus, the bias of AMø away from a glycolytic metabolism, potentially 

through mechanisms involving miR-34a, is unsurprising.  Studying how resident tissue 

Mø metabolism regulates their function, including AC uptake, will be a rich and 

important field for inquiry.  Our current understanding of resident Mø is limited by the 

extensive use of monocyte-derived Mø populations to study Mø biology. 

In addition to a novel role for SIRT1 in AC uptake, we describe a novel role for 

GRAF1. both in AC uptake and as a target of miR-34a.  GRAF1 is a Rho-family GTPase-

activating protein that assists in deactivation of Rho kinase family members (406).  Most 

publications have found that GRAF1 preferentially regulates cdc42 and RhoA (407-409), 

although there is some suggestion that it is truly specific for RhoA (410).  Through 

regulating the activity of Rho-family kinases, GRAF1 alters cell spreading, motility, 

adhesion, chemotaxis and clathrin-independent endocytosis (409, 411).  Of interest, cells 

deficient in GRAF1 (409) or SIRT1 (412) and those over-expressing miR-34a (413) all 

show similar defects in chemotaxis following a confluent culture scratch model of wound 

healing.  GRAF1 knockout cells (409, 410) and miR-34a overexpressing (328) cells show 

particularly similar cytoskeletal limitations, both lacking stable filopodia formation and 

exhibiting increased adhesion to tissue culture dishes.  MiR-34a has been shown to alter 

cytoskeletal motility through indirect effects on the activity of RhoA and Rac1 (328, 

413).  It is interesting that GRAF1 has been shown to regulate endocytosis, as there is 

debate as to whether AC engulfment occurs through endocytosis, macropinocytosis, or 

true phagocytosis.  Components of Clathrin and AP2 are required for efficient AC uptake 

(88), suggesting a connection with Clathrin-dependent endocytosis.  However, there are 
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conflicting reports of finding lucifer yellow in phagosomes with AC (68, 414), which 

would indicate a mechanistic connection with macropinocytosis.  Although we find no 

effect of miR-34a on Fc-mediated uptake of opsonized sheep red blood cells (SRBC) or 

Ig-opsonized Staphylococcus aureus, chemotaxis towards numerous factors such as AC-

released ATP, UTP, and CX3CL1 (29, 31) may be inhibited by miR-34a through 

decreased expression of target protein GRAF1.  Such a change would further contribute 

to the restriction of AC clearance caused by miR-34a expression.  There may be 

alterations in endocytosis and macropinocytosis that would alter the uptake of various 

particles through non-Fc-mediated pathways.  In future studies it will be important to 

understand how other types of engulfment and cytoskeletal movement may be regulated 

by miR-34a and GRAF1; we have only described the effect of miR-34a and GRAF1 on 

AC and Fc-mediated uptake. 

Unexpectedly, miR-34a+/- mice showed an increase in white adipose tissue 

(WAT).  As miR-34a was only deleted conditionally in LysM expressing cells and WAT 

does not express LysM (415), this observation is even more surprising.  SIRT1 is known 

to regulate adiposity, but in the reverse direction: increasing SIRT1 expression through 

knockdown of miR-146a induces hypertrophy of WAT (416).  Additionally, SIRT1 

overexpression prevents infiltration of adipose tissue macrophages during high fat diet 

(417).  These phenotypes, however, are due to SIRT1 expression in adipocytes.  The 

phenotype we observe in our miR-34a+/- mice is due to an effect of decreased miR-34a 

on myeloid cells.  This data is preliminary and, importantly, non-littermate C57BL/6 

mice were used as WT controls in our experiments.  Further study will be required to 
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confirm that the effect we saw on WAT adiposity was in fact due to miR-34a+/- 

expression in myeloid cells and not confounding factors. 

In addition to the novel role of miR-34a in negatively regulating AC uptake, we 

find that miR-34a enhances bacterial killing of S. pneumoniae.  The mechanism by which 

this occurs is unclear.  Chondrocytes lacking miR-34a are unable to induce iNOS 

expression (418) suggesting miR-34a may positively regulate iNOS expression.  iNOS 

and NO have a known role in S. pneumoniae killing (280, 285-290).  MiR-34a favors an 

oxidative over a glycolytic metabolism (322, 323), which could enhance ROS production 

for bacterial killing through iNOS-dependent or independent mechanisms.  An alternate 

possibility is that the observed increase in bacterial killing with increased miR-34a is due 

to increased apoptosis of Mø.  Successful killing of S. pneumoniae (291-294) and other 

select bacteria (164, 259, 419-421) can involve phagocytosis-induced apoptosis of Mø.  

Apoptotic Mø containing bacteria are engulfed and degraded by other phagocytes 

through AC clearance (422).  MiR-34a has been well-documented to increase 

susceptibility to apoptosis in certain cell types (320, 330, 332, 348, 360, 391), however, 

the ability of miR-34a to regulate apoptosis specifically in Mø has not been studied.  We 

did not observe increased apoptosis in PMø following over-expression of miR-34a alone 

(Fig. 4.1D), however, we have not tested the possibility that miR-34a over-expressing 

cells are more sensitive to phagocytosis-induced apoptosis, thus augmenting S. 

pneumoniae killing.  Further work is required to detail the mechanisms by which miR-

34a enhances Mø bacterial killing. 

Adaptations to prevent bacterial infection are likely of extreme import within the 

alveolar space as the average adult human breathes >5 liters of air every minute, inhaling 
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airborne pathogens and aspirating oral bacteria in the process.  As AMø are the 

predominant leukocyte of the alveolar space (423) they provide the first line of defense 

against pathogens.  We hypothesize that AMø ability to kill bacteria is of greater survival 

value than AC clearance and, since AC clearance itself inhibits bacterial killing, actively 

suppressing AC clearance through miR-34a would further protect against respiratory 

infection. 

Collectively our data demonstrate a novel role for miR-34a as a master-regulator 

of AC clearance in Mø.  MiR-34a targets Axl, SIRT1 and GRAF1 to inhibit AC 

clearance in all four Mø studied.  Further, miR-34a augments the capacity of Mø for 

bacterial killing.  Future work may identify additional miR-34a targets that contribute to a 

cumulative repression of AC engulfment and may deepen our understanding of how miR-

34a might act, beyond a master-regulator of AC uptake, as a master-regulator of the 

balance between efferocytosis and Mø antimicrobial function. 
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Figure 4.1.  miR-34a expression inversely correlates with AC uptake and can be 
manipulated by transient transfection in primary macrophages.  A.  Relationship between 
phagocytic index (open bars) and miR-34a expression (black bars) in select Mø cell 
types.  Quantitative real-time RT-PCR was performed on RNA from AMø, glia, BMDMø 
and PMø, shown as arbitrary units miR-34a relative to the control nucleic acid sno-142, 
contrasted with apoptotic cell uptake of each cell type, quantified by in vitro phagocytosis 
assays.  B, C.  Successful transfection of miR-34a in primary murine AMø.  Murine AMø 
were transfected using RNAiMAX lipofectamine with either no construct (-), control 
scramble construct (scramble), or miR-34a antagomir (miR-34a).  At 24 h after 
transfection, (B) MiR-34a levels were measured by quantitative real-time RT-PCR shown 
as arbitrary units miR-34a/sno-142 and (C) efficiency of transfection was quantified by 
flow cytometry tracking FITC-positivity of either control (scrambled) construct or miR-
34a antagomir, gated on CD45+ cells.  Shown as representative histograms.  D.  MiR-34a 
overexpression does not induce apoptosis in PMø.  Murine PMø were transfected using 
RNAiMAX lipofectamine containing no construct (untransfected), control scramble 
construct (control), or miR-34a mimic (miR-34a).  At 48 h after transfection, we 
quantified apoptosis in these three groups by flow cytometry of Annexin-PI staining.  
Shown as representative dot plots.  Data are mean ± SE of 4-7 mice assayed individually 
in at least two independent experiments per condition.  *, statistically significant, p<0.05 
and **, statistically significant, p<0.01 by One-Way ANOVA with Bonferroni post-hoc 
testing. 



 

 89 

 

 

Figure 4.2.  MiR-34a negatively regulates AC uptake.  Mø were plated in chamber slides 
and transfected using RNAiMAX lipofectamine containing no construct   (-), control 
scramble construct (scramble), or miR-34a antagomir/mimic (miR-34a).  24 h after 
transfection with antagomir or 48 h after transfection with mimic, 10:1 AC were added 
for 1.5 h.  Slides were washed and stained using H&E, then ingested AC were counted at 
100X magnification under oil.  A,B.  AC uptake following knockdown of miR-34a in 
murine AMø.  A.  Quantification.  B. Representative photos of AC engulfment.  C-F. AC 
uptake following manipulation of miR-34a in various Mø: C, knockdown in murine 
microglia.  D. knockdown in murine BMDMø.  E.   overexpression in murine PMø.  F. 
knockdown in human AMø.  Data are mean ± SE of 3-7 mice assayed individually in at 
least two independent experiments per condition.  *, statistically significant, p<0.05 and 
**, statistically significant, p<0.01 by One-Way ANOVA with Bonferroni post-hoc 
testing. 
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Figure 4.3.  Phenotype of MiR-34a+/- mice.  MiR-34aflox mice were crossed with 
LysMcre mice to develop miR-34aflox+/-LysMcre mice (miR-34a+/-).  A.  MiR-34a 
expression was decreased in AMø but not PMø from miR-34a+/- mice.  MiR-34a levels 
were quantified by RT-PCR shown as arbitrary units miR-34a/sno-142.  B.  WT and 
MiR-34a+/- weights at 16w.  C.  Histology of white adipose tissue from WT and miR-
34a+/- mice, stained with H&E, shown at 20X.  D.  Flow cytometry to quantify relative 
immune compartments within murine spleen.  Populations shown were gated CD45+.  
Histology of organs from WT and miR-34a+/- mice, stained with H&E, shown at 4X.  E-
H.  Histology of (E) spleen, (F) brain, (G) thymus, and (H) liver.  Data are mean ± SE of 
6 mice of each genotype assayed individually in two independent experiments.  **, 
statistically significant, p<0.01 by One-Way ANOVA with Bonferroni post-hoc testing. 
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Figure 4.4.  Alveolar macrophages and Bone Marrow-Derived Macrophages from miR-
34a+/- mice have increased AC uptake.  Mø were plated in chamber slides and 10:1 AC 
were added for 1.5 h.  Slides were washed and stained using H&E, then ingested AC 
were counted at 100X magnification under oil.  A.  AC uptake by WT and miR-34a+/- 
AMø, BMDMø and PMø.  B.  Representative photos of AC engulfment by AMø.  Data 
are mean ± SE of 3 mice of each genotype.  *, statistically significant, p<0.05 and **, 
statistically significant, p<0.01 by One-Way ANOVA with Bonferroni post-hoc testing. 
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Figure 4.5.  MiR-34a does not regulate Fc-mediated uptake.  Mø were plated in chamber 
slides and transfected using RNAiMAX lipofectamine containing no construct (-), control 
scramble construct (scramble), or miR-34a antagomir/mimic (miR-34a).  24 h after 
transfection with antagomir or 48 h after transfection with mimic, opsonized targets were 
added.  A-C.  Ig-opsonized-sheep red blood cell (SRBC) uptake.  10:1 opsonized-SRBC 
were added for 1 h.  Slides were washed and stained using H&E, then ingested SRBC 
were counted at 100X magnification under oil.  A. Opsonized SRBC uptake by murine 
AMø.  B. Representative photos of opsonized SRBC uptake by murine AMø.  C. 
Opsonized SRBC uptake by murine PMø.  D.  Opsonized heat-killed Staphylococcus 
aureus uptake by murine PMø.  Opsonized pHrodo-labeled S. aureus was added for 1h.  
Mø were harvested and internalized S. aureus was detected by flow cytometry.  Data are 
mean ± SE of 3-6 mice assayed individually in two independent experiments.  
Significance was calculated by One-Way ANOVA with Bonferroni post-hoc testing. 
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Figure 4.6.  MiR-34a inhibits expression of target gene Axl and to a small extent, Mertk 
and CD80.  A.  AMø were transfected using RNAiMAX lipofectamine containing no 
construct (untreated), control scramble construct (control oligo), or miR-34a antagomir 
(miR-34a KD).  24 h after transfection, AMø were collected and stained for flow 
cytometry.  Cells were gated on CD45+CD11c+ cells.  Surface expression is shown as 
fold change above MFI of untreated.  B,C.  Surface Axl expression of BMDMø from WT 
and miR-34a+/- mice was measured by flow cytometry.  Cells were gated on 
CD45+CD11c+ cells.  B.  Quantified change in Axl MFI.  C.  Representative histogram 
of Axl.  Data are mean ± SE of 3-6 mice assayed individually in one-two independent 
experiments.  *, statistically significant, p<0.05 and **, statistically significant, p<0.01 
by One-Way ANOVA with Bonferroni post-hoc testing. 

 



 

 94 

 

Figure 4.7.  Axl downregulation is not required for the effect of miR-34a on AC uptake.  
Bone marrow from Axl-/- and WT mice was differentiated into BMDMø using GMCSF. 
A.  Axl expression in BMDMø measured by flow cytometry, gated on CD45+ cells.  B. 
AC uptake by Axl-/- BMDMø.   BMDMø from Axl-/- mice were plated in chamber 
slides and transfected using RNAiMAX lipofectamine containing no construct (-), control 
scramble construct (scramble), or miR-34a antagomir (miR-34a).  24 h after transfection, 
10:1 AC were added for 1.5 h.  Slides were washed and stained using H&E, then ingested 
AC were counted at 100X magnification under oil. Data are mean ± SE of BMDMø 
isolated from two mice and transfected in duplicate.  **, statistically significant, p<0.01 
by One-Way ANOVA with Bonferroni post-hoc testing. 
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Figure 4.8.  MiR-34a target SIRT1 is a novel regulator of AC uptake.  A.  SIRT1 
expression in WT and miR-34a+/- AMø.  SIRT1 levels were quantified by RT-PCR 
shown as arbitrary units SIRT1/GAPDH.  B-E.  AC uptake by Mø after treatment with 
SIRT1 agonists and antagonist.  Mø were plated in chamber slides and 10:1 AC were 
added for 1.5 h.  Slides were washed and stained using H&E, then ingested AC were 
counted at 100X magnification under oil. B.  AC uptake by PMø after treatment with 
Sirtinol.  C.  Representative AC uptake by PMø after treatment with Sirtinol.  D.  AC 
uptake by PMø after treatment with EX-527.  E.  AC uptake by AMø after treatment with 
Resveratrol.  F,G.  Opsonized Sheep red blood cell (SRBC) uptake by PMø after 
treatment with Sirtinol.  Mø were plated in chamber slides and 10:1 Opsonized-SRBC 
were added for 1 h.  Slides were washed and stained using H&E, then ingested SRBC 
were counted at 100X magnification under oil.  F.  Quantified SRBC uptake.  G.  
Representative SRBC uptake.  H.  Mertk expression on PMø following Sirtinol treatment.  
PMø were treating with increasing doses of Sirtinol for 24 h, then stained for flow 
cytometry.  Mertk MFI is shown for cells gated on CD45+CD11b+.  Data are mean ± SE 
of 5-6 mice assayed individually in two independent experiments.  *, statistically 
significant, p<0.05 and **, statistically significant, p<0.01 by One-Way ANOVA with 
Bonferroni post-hoc testing. 
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Figure 4.9.  MiR-34a target GRAF1 is a novel regulator of AC uptake.  A.  Predicted 
binding site of miR-34a within the 3’-UTR of GRAF1.  Targetscan 6.2 calculates a PCT 
of 0.9 for this interaction, indicating a high probability that this site is conserved due to 
selective maintenance of miRNA targeting.  B,C.  AC uptake by PMø following GRAF1 
knockdown.  PMø were transfected using RNAiMAX lipofectamine containing no 
construct (-), control scramble construct (scramble), or GRAF1 siRNA (GRAF1).  24 h 
after transfection, 10:1 AC were added for 1.5 h.  Slides were washed and stained using 
H&E, then ingested AC were counted at 100X magnification under oil.  C.  Quantified 
AC uptake.  D.  Representative AC uptake.  D.  Opsonized Sheep red blood cell (SRBC) 
uptake by PMø following GRAF1 knockdown.  PMø were transfected using RNAiMAX 
lipofectamine containing no construct (-), control scramble construct (scramble), or 
GRAF1 siRNA (GRAF1).  24 h after transfection, 10:1 opsonized SRBC were added for 
1 h.  Slides were washed and stained using H&E, then ingested SRBC were counted at 
100X magnification under oil.  E.  GRAF1 expression in WT and miR-34a+/- AMø.  
GRAF1 levels quantified by RT-PCR, shown as arbitrary units GRAF1/GAPDH.  Data 
are mean ± SE of 5-6 mice assayed individually in two independent experiments.  *, 
statistically significant, p<0.05 and **, statistically significant, p<0.01 by One-Way 
ANOVA with Bonferroni post-hoc testing. 
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Figure 4.10.  MiR-34a enhances killing of Streptococcus pneumoniae.  PMø were plated 
in duplicate 96-well plates and transfected with RNAiMAX lipofectamine containing no 
construct (untreated), control scramble construct (control oligo), or miR-34a mimic (miR-
34a).  24 h after transfection, live S. pneumoniae was added to each plate for 20 minutes.  
After washing to remove external bacteria, Mø from one plate were lysed and placed at 
4C (T0).  Mø from the second plate were incubated 2 h to allow killing, then lysed 
(T120).  Both plates were returned to the incubator to allow bacterial replication.  
Bacteria was detected by MTT reaction and bacterial killing was calculated by 
determining Dbacteria between T0 and T120 plates.  Cytochalasin D pre-treated wells 
were used as controls.  Data shown is mean ± SE from a single experiment of three 
pooled mice performed with six replicate wells per condition.  *, statistically significant, 
p<0.05 by One-Way ANOVA with Bonferroni post-hoc testing. 
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Chapter 5 

Discussion 

 

Summary 

The data we have presented demonstrate that AMø AC clearance is tightly 

controlled by negative regulation.  Altering this negative regulation impacts immunity.  

In Chapter 2 we show that GC enhance AC clearance by AMø.  In chapter 3, we go on to 

show that this augmented engulfment (GCAE) has a negative impact on immunity, 

decreasing TLR responses and the ability of AMø to kill S. pneumoniae in vitro and in 

vivo.  In Chapter 4 we demonstrate that miR-34a, highly expressed in AMø, is a master-

regulator of AC clearance.  We identify two targets of miR-34a that are novel 

components of efferocytosis: SIRT1 and GRAF1.  Further, independent of a role in 

regulating efferocytosis, miR-34a overexpression enhances killing of S. pneumoniae in 

vitro.  Collectively, this work supports a reconsideration of the physiological roles of 

AMø, in which limited efferocytosis - rather than something to be "corrected" - is an 

important component of the AMø identity and is integral to maintaining appropriate 

responses to potential lung pathogens. 

 

Reflections on therapeutic efferocytosis 

We show that GC are a rapid, effective method to enhance efferocytosis by 

murine AMø and human AMø.  Enhancing AC clearance in murine models has been 
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highly effective at reducing inflammation (103, 145-149), but it remains unclear how 

these results might translate to therapeutic interventions in human inflammatory disease.  

Unintentional enhanced efferocytosis likely occurs in many patients with chronic airways 

diseases as a result of the side effects of widely prescribed medications such as steroids 

(65, 169) and macrolide antibiotics (136, 137).  However, no research has separated the 

direct anti-inflammatory or antimicrobial target effects of these agents from their pro-

efferocytic side effect although it is known that efferocytosis causes significant changes 

to the anti-inflammatory and antimicrobial response (125).  Whether enhanced 

efferocytosis contributes to improved clinical outcomes or unanticipated negative side 

effects following the use of steroids and macrolides is uncertain.  Individuals with 

increased disease-associated cell death would be more susceptible to any positive or 

negative side effects caused by enhancing efferocytosis.  Further study of this issue will 

allow for a better-informed clinical decision when prescribing pharmaceutical agents with 

the ability to enhance AC clearance. 

Of particular concern is the documented potential for enhanced AC clearance to 

increase susceptibility to bacterial infection (108), the focus of Chapter 3.  Our data, 

though preliminary, give credence to the hypothesis that enhanced AC clearance in the 

lungs of COPD patients as a result of ICS use contributes to the observed increase in 

community-acquired pneumonia (223-233): a potentially fatal infection. 

Increased susceptibility to infection is a potential barrier for adapting any method 

of enhanced efferocytosis for human use.  Additional concerns about therapeutic 

targeting of AC clearance stem from the observation that AC can induce both 

immunogenic and tolerogenic responses depending on the environmental context (12).  
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Both the context in which AC are engulfed and the phagocyte which engulfs them impact 

subsequent immunity (12, 13).   

Murine models have been effective at harnessing the anti-inflammatory effects of 

AC clearance to induce a tolerogenic response in the lung to accelerate the resolution of 

various inflammatory insults (103, 145-149). It is a mark in favor of therapeutic 

efferocytosis that it is beneficial in murine models when initiated following the 

inflammatory insult and thus could be used as an intervention for patients already 

experiencing symptoms rather than a preventative measure.  However, significant work is 

required before we can accurately predict the safety of such interventions in humans.  

Important issues to clarify include: identifying which phagocytes engulf administered AC 

and how to target AC to specific phagocytes; clarifying whether administration of AC at 

varying times following infection alters to efficacy of intervention, particularly whether 

intervention that is “too early” or “too late” either increases inflammation or favors 

immunogenic presentation of self-antigens; and testing whether susceptibility to 

secondary infection is increased.  Another issue of interest is how the adaptive immune 

response will be altered.  Cytokines produced following DC clearance of AC can polarize 

naïve T cells towards Th17 (424, 425).  This may be beneficial, as Th17 improve IgA 

response and host defense (426, 427), but may also be detrimental, as Th17 cells enhance 

allergic airway inflammation (428-430).  Thus, while therapeutic efferocytosis remains 

an attractive goal, further work is required to determine the long-term safety of enhancing 

a process that can cause susceptibility to lung infection and induce immunogenic 

responses. 
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Directed clearance: protection from autoimmunity and infection? 

Cross-presentation of self-antigen has the well-described ability to induce 

context-dependent immunogenic and tolerogenic responses (12, 121).  The factors by 

which the immune system compartmentalizes immunogenic versus tolerogenic responses 

to AC are poorly understood.  The concept of directed AC clearance is a recent theory 

that suggests maintaining tolerance requires, in part, restricting the phagocytes involved 

in efferocytosis.  In brief, the idea is that some phagocytes are not "meant" to clear AC; if 

these phagocytes clear AC they will cross-present self-antigen in an immunogenic 

manner and induce autoimmunity (124, 273).  There is strong evidence to support that 

this is true for certain phagocyte populations, particularly in the 12/15-LO-/- mice (124). 

AC are rapidly engulfed in these mice, but this clearance is misdirected.  AC are engulfed 

by inflammatory monocytes rather than resident Mø in the peritoneal space, these 

monocytes cross-present self-antigen and this leads to autoimmunity. 

The concept of directed clearance is interesting for AMø.  The double-layer of 

negative regulation through SIRPα and miR-34a suggests that low AMø AC uptake 

provides an evolutionary advantage.  However, we suggest that the major advantage for 

AMø is an enhanced antimicrobial response rather than diminished auto-reactivity.  

Although preventing autoimmunity is clearly of evolutionary value, there is considerably 

more evolutionary pressure to fight childhood respiratory infections than to prevent 

autoimmunity.  There is documented potential for efferocytosis to block crucial 

phagocyte defensive functions including bacterial killing by AMø (108).  We observed a 

similar inhibition of host-defense by inducing GCAE.  We hypothesize that low basal AC 

clearance in AMø protects the ability of AMø to respond efficiently to pathogens.  
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However, we do not rule out the possibility that low AC clearance in AMø also benefits 

the maintenance of self-tolerance.  Although early publications reported that AMø were 

ineffective antigen presenting cells (214, 431), recent work has shown that AMø can 

efficiently cross-present antigens, although activation of naïve T cells is inhibited while 

AMø are within the lung environment (126, 432).  However, the ability of AMø to 

present antigen to T cells may be irrelevant; AMø constitutively traffic antigen to the B-

cell rich regions of draining lymph nodes rather than the T-cell rich zone (433).  AMø 

may provide trafficked antigen to B-cells within the lymph node (433), a function that 

has been described for other Mø types (434, 435).  Providing self-antigen in this manner 

could initiate an auto-reactive response; inhibiting clearance of AC by AMø may prevent 

subsequent induction of auto-reactivity.   

Our data support the interpretation that directed clearance occurs in the lung 

involving SIRPα/SP-A/SP-D and miR-34a suppression of AC clearance by AMø.  

However, we suggest that directed AC clearance, particularly within the lung, is about 

more than segregating potential auto-antigens.  We hypothesize that directed AC 

clearance protects certain phagocyte subsets from the immunomodulatory activities of 

AC in order to maintain efficient pathogen response and effective host defense. 

 

SIRPα  and MiR-34a: insights into the negative regulation of AC clearance 

SIRPα/SP-A/SP-D and miR-34a are unique among known negative regulators of 

efferocytosis.  Other inhibitory pathways predominantly function to discriminate live 

cells from dead, as in the case of homophilic CD31 binding and SIRPα recognition of 

CD47, and inhibit the engulfment of any bound live cells (63, 67).  The function of 
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CD300a is less clear, as it actually recognizes phosphatidylethanolamine (PE) and PS, 

both of which are expressed on the surface of AC (66).  However, PS can also be 

upregulated on viable cells during activation and differentiation (436-438); it is possible 

that CD300a acts as a safety mechanism to prevent clearance of live cells, similar to 

CD31 and SIRPα/CD47.  The ITIM domain of CD300a may be sufficient to inhibit the 

positive engulfment signals sent by receptors such as TIM-4 and Mertk when only small 

amounts of PS are exposed.  Importantly, CD300a, CD31 and SIRPα/CD47 all inhibit the 

engulfment of a specific bound cell (i.e. a viable cell), and thus their involvement in 

altering AC clearance is in segregating cargo rather than regulating the total capacity of a 

phagocyte for efferocytosis.   

In contrast, SIRPα/SP-A/SP-D and miR-34a reduce basal efferocytosis; they are 

not involved in discrimination of cargo but rather function to regulate the efficiency of 

efferocytosis.  This suggests two important points: 1) AMø, with active SIRPα/SP-A/SP-

D signaling and high miR-34a, have intense negative regulation of efferocytosis and 2) 

both secretion of SP-A/SP-D and altered transcription of SIRPα and miR-34a are 

mechanisms by which efferocytosis can be dynamically regulated during infection and 

inflammation.   

 

Is efferocytic capacity a dynamic state? 

There is growing evidence that recruited Mø are polarized toward one of two 

distinct functional states by their environment: M1 (classic or inflammatory) or M2 

(alternatively activated or pro-resolution) (316, 439-444).  Although we find that resting 

AMø do not fall within the confines of either M1 or M2, the overall concept of dynamic 
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polarization in Mø is interesting.  Other groups have suggested that AMø can be 

polarized by factors including IFN-gamma, IL-4, IL-33, and PGE2 (445-447).  However, 

based on the methods used for purification in these studies of inflamed lungs, "AMø" are 

often a mixture of cells that includes some tissue resident AMø, but is mainly populated 

by recruited Mø (448).  As such, this data is not fully congruent with our work where we 

have studied true AMø from uninflamed lungs. 

It remains unclear whether actual tissue resident AMø were polarized during lung 

inflammation or if the measured changes in M1/M2 markers reflect changes in the 

polarization of recruited monocyte-derived Mø.  Recruited Mø outnumber AMø more 

than three to one during inflammation (64, 448) and recruited Mø phenotype and function 

is undoubtedly important in immunity.  However, AMø are very long-lived cells and at 

the resolution of inflammation when recruited Mø have emigrated or died, the majority of 

AMø remain (448, 449).  Thus, long after recruited Mø polarization becomes irrelevant, 

AMø polarization remains fantastically important in ongoing tissue repair and biasing 

subsequent immune responses.  Understanding how tissue resident AMø may be 

polarized in phenotype and function is of extreme interest. 

Although efferocytosis is not a common outcome measured in studies of Mø 

polarization, there has been a connection made between M2 Mø and a high capacity for 

AC engulfment (397-399).  No evidence to support an M2-efferocytosis connection exists 

within the lung.  In the lung, sterile inflammation through instillation of SRBC resulted in 

recruited Mø that engulfed AC poorly (130).  However, inducing inflammation through 

the administration of LPS, a classic M1 stimuli, led to recruited Mø that could avidly 

engulf AC (64).  Importantly, efferocytosis by resident AMø was also increased (64).  
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This finding suggests that repression of efferocytosis in AMø is dynamic and diminished 

in response to certain types of inflammation.  Most interestingly, miR-34a is 

downregulated by LPS (353).  Based on our data identifying miR-34a as a negative 

regulator of AC clearance, we suggest that downregulation of miR-34a may be one 

mechanism by which LPS can increase AC clearance.  Changes in SP-A/SP-D and 

SIRPα following LPS exposure could also contribute to enhanced AC uptake by AMø. 

SP-A and SP-D are upregulated following LPS (450) and SIRPα expression is decreased 

(451).  Thus, LPS likely downregulates both negative regulators within AMø.  This 

supports the idea that AMø undergo a natural polarization during inflammation that 

involves downregulation of miR-34a and SIRPα to enhance AMø efferocytosis and favor 

the resolution of inflammation and tissue repair.   

Although we suspect that similar regulatory models exist throughout the body, we 

find these data particularly interesting in terms of AMø.  We suggest a model in which 

this shift relates to the waves of apoptosis that occur following lung inflammation as first 

neutrophils, then monocytes, then lymphocytes expand and contract (64, 448, 452-454) 

(Fig. 5.1).  In early waves of cell death, AMø play a minor role in AC clearance (64); we 

hypothesize that over time, as miR-34a and SIRPα are downregulated, the role of AMø 

increases.  As inflammation resolves, the signals that led to downregulation of miR-34a 

and SIRPα wane, miR-34a and SIRPα expression increases, AMø efferocytosis 

decreases, and the system returns to homeostasis.  This would be congruent with other 

AMø functions; AMø are essential first-response cells to inhaled pathogens (455-457) 

and AC clearance too early in inflammation would suppress their ability to recruit 

inflammatory leukocytes and compromise their ability kill bacteria.  However, 
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appropriate initiation of inflammation must be balanced against the deleterious effect of 

prolonged inflammation, particularly within delicate tissues such as the lung where 

inflammation inhibits gas exchange (458-460).  Thus, it is likely advantageous for AMø 

to transiently enhance efferocytosis and assist in returning the alveolar space to 

homeostasis.   

We hypothesize that enhanced AMø efferocytosis peaks following the first wave 

of neutrophil death and clearance.  MiR-34a in hepatocellular carcinoma cells is 

downregulated by TGF-β (364), which would be released by other phagocytes following 

clearance of apoptotic neutrophils.  We are interested in testing whether LPS and TGF-β 

inhibit miR-34a in AMø and other Mø subtypes and understanding whether decreased 

expression of miR-34a is responsible for the increased efferocytosis that has been 

observed following LPS (353) and TGF-β (364). 

 

Future directions for understanding the role of miR-34a in AC clearance 

Our data thoroughly demonstrate the ability of miR-34a to inhibit AC uptake.  

However, we suspect that we have only begun to identify the pathways through which 

miR-34a can impact Mø function.  Even Axl, SIRT1 and GRAF1 – the three genes we 

have identified as downstream miR-34a targets that regulate efferocytosis – may be only 

three of many.  CD44, which is not involved in the uptake of apoptotic thymocytes but 

can recognize apoptotic neutrophils (276), is another miR-34a target (461, 462).  In 

addition, there is evidence that miR-21, the only other miRNA that has been connected to 

AC uptake (318), is regulated by miR-34a (367).  Expression of CD44, miR-21 and the 



 

 107 

miR-21 target PTEN should be measured in our miR-34a knockdown AMø or AMø from 

our miR-34a+/- mice. 

We can also use in vitro and in vivo techniques to test our proposed model of 

dynamic regulation of efferocytosis by miR-34a AMø during inflammation.  We should 

begin by measuring miR-34a expression in AMø after in vitro stimulation with LPS and 

TGF-β to confirm the previously published observation that these stimuli suppress miR-

34a (353, 364).  We can perform supernatant transfer experiments, collecting 

supernatants from Mø exposed to AC and transferring them to untreated AMø; we 

hypothesize these supernatants will suppress miR-34a.  We could track resident AMø in 

vivo following LPS injury by labeling AMø with the florescent lipophilic dye PKH-26 

(130, 463, 464) prior to instillation of LPS, allowing for discrimination of resident and 

recruited phagocytes by flow cytometry.  AMø could then be flow sorted by PKH-26-

positivity at various time points during inflammation and both miR-34a level and 

efferocytic capacity could be assessed.  We would expect AMø to express the lowest 

amount of miR-34a and possess the highest ability for AC uptake following the apoptosis 

of neutrophils and concomitant release of TGF-β by inflammatory recruited Mø in 

response to clearing apoptotic neutrophils. 

 

Future directions for studying the effects of AC clearance on bacterial infection 

Over the course of this work we have developed the hypothesis that the unusually 

low rate of AC clearance by AMø is caused by evolutionary pressure of childhood 

respiratory infections selecting for active inhibition of AC clearance in order to favor 

AMø antimicrobial response.  We theorize that high AC clearance by AMø would 
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prevent key initial bacterial clearance, resulting in lingering bacterial burden instead of 

resolution, supported by data involving intranasal administration of AC prior to S. 

pneumoniae infection (108).  Our in vitro and in vivo studies of GCAE support this 

hypothesis and show that following co-exposure to GC and AC, bacterial killing is 

inhibited.  Our GCAE studies along with other published in vitro assays (108) 

demonstrate that AC clearance inhibits AMø bactericidal capacity, however, it is unclear 

whether AMø are the primary phagocyte responsible for the in vivo defect in bacterial 

clearance.  Importantly, bronchial epithelial cells – not AMø – perform the critical 

majority of AC clearance during allergic inflammation when exogenous AC are added to 

the lung (134).  Deletion of Rac in epithelial cells was used to prevent AC clearance in 

this study.  Such an approach is not conducive for the study of bacterial clearance as Rac 

is required for normal cell motility and phagocytosis of bacteria (465).  Thus, other model 

systems are required to parse the in vivo effects of AC exposure to the different 

phagocyte subsets in terms of bactericidal capacity.  Further, as normal AC clearance by 

AMø is already low, a model where AC clearance is enhanced would be superior to a 

model with further knockdown of efferocytoic function.  Our miR-34a-flox/flox LysMcre 

mice, in which AC clearance by Mø is increased, provide a useful model of enhanced AC 

uptake with which to study the effects of AC clearance on host defense.  

MiR-34a deletion under control of the LysM-cre promotor targets both Mø and 

granulocytes such as neutrophils (466, 467).  There is also deletion in some dendritic cell 

compartments, but not in bronchial epithelial cells or in lymphocyte populations (466, 

467).  It will be important to establish whether miR-34a deletion in neutrophils and 

dendritic cells also enhances AC uptake in these subsets.  This would not in any way 
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detract from the utility of the miR-34a-flox/flox LysMcre mice but would be important in 

interpreting the data as infection causes recruitment of neutrophils to the lung.  Finding 

that efferocytosis by phagocytes other than Mø is regulated by miR-34a would further 

strengthen our finding that miR-34a acts as a master-regulator of AC clearance.  The 

minority alveolar epithelial population of AE2 cells also express LysM (468-470).  It is 

difficult to predict how deletion of miR-34a in these cells may be important; how AE2 

cells may normally contribute to AC clearance and what functions miR-34a may have in 

AE2 cells has not been studied.  If miR-34a affects the production of surfactant by AE2 

cells this could strongly affect both host defense and AC clearance by AMø (57, 62, 64, 

200).  Comparing the surfactant of WT and miR-34a-/- mice will be important before 

beginning in vivo studies. 

It is interesting that over-expression of miR-34a enhances in vitro killing of S. 

pneumoniae without the addition of AC.  Based on this result, we expect that miR-34a+/- 

and miR-34a-/- mice will be more susceptible to bacterial infection than WT mice.  We 

expect that this susceptibility will be exacerbated by the addition of AC prior to infection 

due to enhanced AC uptake by miR-34a+/- and miR-34a-/- AMø suppressing the capacity 

for bacterial killing.  This would support our hypothesis that enhancing AC clearance will 

enhance susceptibility to bacterial infection. 

It is possible that the ability of miR-34a to enhance bacterial killing will obscure 

the importance of enhanced efferocytosis on bacterial killing when miR-34a is deleted.  

However, we hypothesize that bacterial killing by miR-34a+/- and miR-34a-/- mice will 

be inhibited to a greater degree than WT mice by exposure to AC.  If we are unable to 

parse the effects of miR-34a from the effects of enhanced efferocytosis on bacterial 
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killing, finding that miR-34a+/- and miR-34a-/- mice are more susceptible to bacterial 

infection would still provide anecdotal support for our hypothesis that AMø are biased 

away from efferocytic function to preserve host defense.   

In addition to studying the effect of miR-34a-deletion on bacterial clearance, it 

would be interesting to see whether Mø or DC from miR-34a+/- mice have an increased 

ability to cross-present self-antigen and whether miR-34a+/- or miR-34a-/- mice show 

unsorted AC clearance in various tissues and models of inflammation, such as has been 

observed in 12/15-LO (124) and A20 (273) deficient mice.  We hypothesize that miR-

34a+/- mice will be simultaneously more susceptible to AC immunosuppression (due to 

increased AC uptake) and posses a greater ability to induce autoreactive immune 

responses (due to uptake of AC by unusual phagocytes capable of immunogenic cross-

presentation).  Thus, miR-34a+/- mice may provide an interesting model in which to 

study how the regulation of AC clearance, particularly through directed clearance, is a 

balance between autoimmunity and host defense. 

 

Final thoughts 

 AC clearance is an essential biological function that dramatically shapes the 

immune system.  Significant progress in the last twenty-five years has identified dozens 

of proteins involved in efferocytosis, many of which are conserved throughout eukaryotic 

organisms.  However, questions remain, including how AC clearance impacts host 

defense and why engulfment capacity varies so dramatically between phagocyte 

populations such as AMø and PMø, both mechanistically and evolutionarily.  The data 

presented within in thesis provides evidence that negative regulation, particularly by 
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miR-34a but also by SIRPα/SP-A/SP-D in the alveolar space, explains much of the 

varied engulfment capacity of Mø subtypes.  Further, reversing negative regulation 

through pharmacologic or genetic means inhibits host defense against S. pneumonia, 

suggesting that the evolutionary pressure of preventing infection may drive the negative 

regulation of efferocytosis in many phagocytes, particularly AMø.  Both miR-34a and 

SP-A/SP-D improve bacterial phagocytosis and killing independent of their inhibitory 

effect on AC clearance.  Combined with the further inhibitory effect of AC clearance on 

bacterial killing, we hypothesize that AC clearance and bacterial killing, while both 

essential processes for human health, are interconnected and conflicting functions in Mø.  

The necessity of a strong host defense within the alveolar space selects for AMø with an 

avid capacity for bacterial killing at the expense of efficient AC clearance.  How this bias 

may be dynamically regulated in response to infection and inflammation will be an 

important avenue of further study. 
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Figure 5.1  Hypothesis regarding SIRPα and miR-34a-driven regulation of dynamic 
AMø efferocytosis.  In homeostasis, AMø efferocytosis is low and miR-34a expression is 
high.  Upon LPS injury, miR-34a and SIRPα are downregulated in AMø.  
Simultaneously, a wave of recruited neutrophils enters the lung followed by a wave a 
recruited Mø.  As the neutrophils die, their clearance leads to further depression of miR-
34a in AMø by TGF-β signaling.  Due to low miR-34a and SIRPα, AMø transiently 
increase their capacity for AC clearance; this assists with clearance of recruited Mø and 
lymphocytes.  As inflammation resolves, the factors suppressing miR-34a and SIRPα 
abate and their expression returns, shutting off AMø efferocytosis and returning the 
system to homeostasis.   
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Chapter 6 

Methods 

 

Mice.  For all experiments with wild type mice, C57BL/6 mice were purchased from 

Charles River Laboratories.  Mice were housed under specific pathogen-free conditions 

and used for experiments between 8 and 16 weeks of age.  For generation of miR-34a+/- 

mice, miR-34a flox/flox mice on C57BL/6 background (471) (Jackson) were crossed 

with LysM Cre mice (Jackson).  The F1 generation of miR34a+/fl-LysMcre mice was 

genotyped following Jackson protocols and used for all experiments with non-littermate, 

age-matched C57BL/6 mice as wild-type controls. 

Animal care and experimentation were conducted in accordance with U.S. 

Department of Health and Human Services Guide for the Care and Use of Laboratory 

Animals and were approved by the Animal Use Committee at VA Ann Arbor 

Healthsystem. 

 

Medias.  For most experiments, Mø were cultured in LCM: 10% FBS, 1 mM sodium 

pyruvate, 0.5 mM 2-Mercaptoethanol, 1 mM HEPES, 100 u/ml penicillin, 100 u/ml 

streptomycin, 0.292 mg/ml L-Glutamine in RPMI-1640 (GIBCO).  For certain 

experiments, Mø were cultured in AIM-V (GIBCO) without serum.  During transfection, 

reagents were diluted using OptiMEM (Invitrogen).  To differentiate bone marrow-

derived macrophages (BMDMø), bone marrow cells from the femurs of mice were 
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cultured in LCM with 20% FBS: 20% FBS, 1 mM sodium pyruvate, 0.5 mM 2-

Mercaptoethanol, 1 mM HEPES, 100 u/ml penicillin, 100 u/ml streptomycin, 0.292 

mg/ml L-Glutamine in RPMI-1640 (GIBCO).  GMCSF or MCSF was also added during 

bone marrow differentiation at 25 ng/mL.  For microglia isolation and culture, cells were 

cultured in glia media: DMEM +10% FBS +1x L-Glutamine + Pen-strep + OPI 

(1vial/1L).  GMCSF was also added to glia media at 5 ng/mL. 

 

Isolation of primary macrophages.  Alveolar cells were collected by bronchoalveolar 

lavage using 10 mL PBS containing 0.5 mM EDTA (65).  AMø were adhesion purified 

from this population; non-adherent cells were discarded after 1.5 h of culture.  

Unstimulated peritoneal cells were isolated by peritoneal lavage using 7-10 mL PBS 

containing 0.5 mM EDTA, administered in 1-2 mL aliquots.  PMø were adhesion purified 

from this population; non-adherent cells were discarded after 45 min of culture.  All 

culture was performed in a 5% CO2 environment at 37C.   

 

Isolation of bone marrow derived macrophages and microglia.  For BMDMø (472), 

fibulas and tibias were collected from 8-16 week old mice, skin and musculature was 

removed, and bones were disinfected, briefly, with ethanol.  Bone marrow cells were 

collected by flushing bone marrow from bones with 10mL RPMI-1640/mouse using a 21 

gauge needle.  Bone marrow was disaggregated to a single cell suspension using the same 

21 gauge needle and a 70uM strainer.  Bone marrow from one mouse was resuspended in 

125 mL LCM with 20% FBS.  25mL of bone marrow suspension was plated/15cm non-

tissue culture treated petri dish.  GMCSF or MCSF was added at 25 ng/mL.  On day 4, 
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10mL fresh LCM with 20% FBS was added to each plate as well as fresh GMCSF or 

MCSF at 25 ng/mL.  On day 7, non-adherent cells were discarded and adherent cells 

(BMDM) were detached by incubating the dishes in cold PBS at 4C.  BMDM were 

counted and plated in LCM as needed for experiments. 

For microglia (473, 474), brains were collected from newborn pups, minced, 

trypsinized and filtered through a 70uM strainer to achieve a single cell suspension.  

Cells were plated in T150 flasks containing Glia media with 5ng/mL GMCSF.  On day 7, 

media was aspirated to remove non-adherent cells and replaced with fresh Glia media 

with 5ng/mL GMCSF.  On day 10, microglia were detached from adherent cells using 

overnight shaking at 200rpm; supernatants were collected, counted and plated in Glia 

media with 5ng/mL GMCSF as needed for experiments. 

 

In vitro treatments.  Fluticasone propionate, budesonide, azithromycin dihydrate, and 

simvastatin (Sigma) were all rehydrated according to the manufacturers’ instructions and 

used at the concentrations described for each experiment.  Simvastatin was activated 

before use by treatment with NaOH in ethanol (170).  During treatments with these 

chemicals, Mø were cultured in AIM-V (GIBCO) without serum. 

 For certain adhesion assays, we treated AMø with mAb against anti-CD11c (HL3; 

Becton Dickinson Immunocytometry (BD), Mountain View, CA), anti-CD18 (GAME-

46; BD), hamster IgG (eBioscience, San Diego, CA), or rat IgG (BD), all at 5 µg/mL 

final concentration, for 30 min before the addition of AC.  For certain phagocytosis 

assays, AMø were treated with 2 µg/mL anti-CD36 (JC63.1; Cayman, Ann Arbor, MI) or 

mouse IgA (eBioscience) for 30 min before addition of AC.  For other phagocytosis 
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assays, we pre-treated AMø with 5 µM cycloheximide (Sigma) for 1 h, then washed prior 

to the addition of fluticasone, simvastatin or azithromycin.  For some experiments, we 

treated AMø with indomethacin (Sigma) for 30 min, then washed before addition of 

fluticasone.  For other experiments PMø were treated with 20 µM recombinant murine 

SP-D (R&D, Minneapolis, MN) for 4 h, then washed prior to the addition of fluticasone.  

During these treatments, Mø were cultured in LCM.  For other experiments, PMø were 

treated with 10 µM sirtinol (Cayman) or 10 µM EX-527 for 24 h before the addition of 

AC or AMø were treated with 10 µM Resveratrol for 24 h before the addition of AC.  

Following all treatments, Mø were washed with warm media before the addition of AC or 

other targets in LCM. 

 

Transient transfection of primary macrophages.  AMø, PMø, microglia and BMDMø 

were all transiently transfected using Lipofectamine RNAiMAX (Invitrogen) based on 

manufacturer's instructions.  Cells were adhesion purified at least 3 h for AMø and at 

least 6 h for PMø, microglia, and BMDMø.  RNAiMAX and siRNA/antagomir/mimic 

were diluted separately in OptiMEM (Invitrogen).  Diluted RNAiMAX and diluted 

siRNA/antagomir/mimic were then combined at 1:1 with a final concentration of 1 µL 

lipofectamine and 5 pmol siRNA/antagomir/mimic in 50 µL.  The RNAiMAX/construct 

complex was incubated at room temperature for 15 minutes.  RNAiMAX/construct 

complex was added to cells, 50 µL/well in chamber slides, 100 µL/well in 24-well plates.  

At this point cells were incubated for five minutes, then 3x LCM was added to each well 

for a final volume of 200 µL/well in chamber slides and 400 µL/well in 24-well plates.  

Cells were incubated 24-48 h to complete transfection.  Reagents used: miR-34a-5p 
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antagomir and negative control A (Exiqon), miR-34a-5p mimic or mimic negative control 

#1 (Invitrogen), GRAF1 siRNA B and medium GC negative control #2 (Invitrogen). 

 

Preparation of phagocytic targets.  For the production of apoptotic cells, in most 

experiments, we treated single cell suspensions of murine thymocytes with 10 µM 

dexamethasone (Sigma) for 4.5 h to induce apoptosis.  These conditions consistently 

produced 50-60% Annexin+, PI- thymocytes.  In selected experiments, thymocyte 

suspensions were UV-irradiated using a gel box (FOTO/UV 15, Fotodyne, Hartland, WI) 

on high power for 15 min, then were incubated a further 4 h to allow apoptosis to 

progress.  SRBC (Colorado Serum Company, Denver, CO) were opsonized with anti-

SRBC (Sigma) for 1 h (475).  Staphylococcus aureus (Invitrogen) was opsonized with S. 

aureus opsonizing reagent (Invitrogen) or rat serum (Sigma) for 1h at 37C, vortexing 

every 10 minutes.  Following induction of apoptosis or opsonization, apoptotic cells, 

opsonized SRBC, and opsonized bacteria were all washed with PBS. 

 

Chamber slide adhesion and phagocytosis assays.  Mø were plated at 1-2 x 105 cells/well 

in 8-well Permavox chamber slides (Nunc, Thermo Fisher Scientific).  Target apoptotic 

cells or opsonized SRBC were added to Mø at 10:1 or 20:1 ratio for phagocytosis or 

100:1 ratio for adhesion.  Slides were collected by removing gaskets and washing in PBS 

after 20 minutes to remove unbound targets, or after 1-2 h to remove unengulfed targets.  

Slides were dried, then stained with H&E.  To quantify phagocytosis and adhesion at 

least 200 macrophages were counted at 100x magnification. 
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TAMRA and pHrodo phagocytosis assays.  For TAMRA-labeled apoptotic cells, 50 x 106 

Apoptotic thymocytes were labeled with 75µg TAMRA (Invitrogen) in 1 mL PBS and 

1mL LCM for 15 minutes at 37C (45, 383, 476).  Labeled thymocytes were washed two 

times with PBS to remove excess TAMRA.  S. aureus pre-labeled with pHrodo-green 

(Invitrogen) was opsonized as described above in preparation of phagocytic targets.  Mø 

were plated at 3 x 106 cells/well in 24-well plates.  Some Mø were pretreated with 

cytochalasin D (Sigma) for 1 h, prior to addition of targets, as a negative control.  

TAMRA-labeled AC or pHrodo-green labeled S. aureus targets were added to Mø for 1 

h, then wells were washed with cold PBS to remove unengulfed targets.  Mø were 

detached from culture dishes using TrypLE (Invitrogen) for 10 minutes followed by the 

addition of cold Marker Buffer and incubation at 4C for 15 minutes, then pelleted in flow 

tubes.  Cells were either surface stained or run immediately on an LSRII Flow Cytometer. 

 

Antibodies and Flow Cytometry.  Cells were released from culture plates using the 

dissociation enzyme TrypLE (Invitrogen) and stained after Fc-block with a panel of 

fluorochrome-conjugated Abs. The following anti-murine Abs were used (clone; source): 

CD45 (30-F11; BD), TCRb (57-597; BD), CD19 (MCA1439F; AB Serotec), CD11c 

(N418; eBioscience), CD11b (M1/70; eBioscience), SIRPα (P84; BD), Axl (R&D), 

Mertk (R&D), CD80 (16-10A1; BioLegend), CD206 (C068C2; BioLegend), TIM-4 

(RMT4-54; eBiosceince), CD4 (L3T4; eBioscience), CD8 (CD8b.2; Biolegend), Ly6G 

(1A8; BD), Ly6C (AL-21; BD).   

 Experiments were performed on an LSR II flow cytometer (BD Bio- science, San 

Jose, CA), equipped with the following lasers (numbers) and their associated filter sets 
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(letters): (1) 488 nm blue (primary laser), (a) 550 nm long-pass (LP), 530/30 nm short 

band-pass (SBP), (b) 685 nm LP, 695/ 40 nm SBP; (2) 405 nm violet laser, (c) 505 nm 

LP, 530/30 nm band-pass (BP), (d) 450/50 nm PB; (3) 633 nm red HeNe laser, (e) 735 

nm LP, 780/60 nm SBP, (f) 685 nm LP, 710/50 nm SBP, (g) 660/20 nm BP; and (4) 561 

nm yellow-green laser, (h) 735 nm LP, 780/60 SBP, (i) 685 nm LP 710/50 nm SBP, (j) 

635 nm LP, 610/20 nm SBP, (k) 581/15 nm BP. In all experiments, we used isotype-

matched controls and collected a minimum of 10,000 CD45+ viable events per sample. 

Data were collected on an HP XW4300 Workstation (Hewlett-Packard, Palo Alto, CA) 

using FACSDiva software (version 6.1.3; BD Biosciences) with automatic compensation 

and were analyzed using FlowJo software (Tree Star, Ashland, OR) on an Intel iMac 

computer (Apple, Cupertino, CA). 

 

RNA Isolation and RT-PCR.  We isolated total RNA from murine AMø, PMø, BMDM 

and microglia using the RiboPure Kit (Ambion) and removed DNA contamination using 

the TURBO DNA-free kit (Ambion).  cDNA was prepared from total RNA using the 

RETROscript kit (Ambion).  For microRNA amplification, specific cDNA was prepared 

from total RNA using the TaqMan MicroRNA Reverse Transcription kit.  All reagents 

and kits were used according to the manufacturer’s instructions.  For mRNA we 

performed real-time RT-PCR using TaqMan Gene Expression Master Mix with TaqMan 

primer-probe sets from Applied Biosystems for GAPD (4352932), Axl 

(Mm00437221_m1), Mertk (Mm00434920_m1), SIRPalpha (Mm00455928_m1), LRP 

(Mm00464608_m1) and PPARgamma (Mm00803184_m1).  For miRNA we performed 

RT-PCR using TaqMan Gene Expression Master Mix with TaqMan primer-probe sets 
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from Applied Biosystems for RNU6B (001093), sno142 (001231), miR-29c (000587), 

let-7i (002221), miR-34a (000426). 

 

Secreted Cytokine Measurements.  Cells were plated in 24-well plates and stimulated 

with 1ng/mL LPS or 50mg/mL PolyI:C in 300 µL LCM for 24 h.  Cell culture 

supernatants were collected and cytokine profiles were measured by Luminex 

(Invitrogen) as per the manufacturer’s instructions. 

 

Streptococcus pneumoniae growth and CFU calculation.  S. pneumoniae serotype 3, 

ATCC 6303 (American Type Culture Collection, Manassas, VA), was grown in Todd 

Hewitt Broth Media (BD) at 37°C in 5% CO2. Bacteria were washed twice in PBS and 

the concentration of bacteria was obtained by measuring optical density (A600) and 

confirmed by plating serially diluted bacteria on blood agar plates (Fisher). The virulence 

of this organism was maintained by culturing bacteria obtained from the spleens of mice 

rendered bacteremic 24 h after an intratracheal (i.t.) challenge with 106 CFU S. 

pneumoniae (288). 

 

In vitro Streptococcus pneumoniae killing assay.  Macrophages were plated in duplicate 

96-well plates at 40,000 Mø/well.  Following adhesion purification and desired 

treatments, 2x10^6 bacteria were added in 100 µL RPMI-/- and incubated for 20 minutes.  

The plates were washed.  RPMI-/- was added to both plates.  Saponin was additionally 

added to plate T0 to lyse Mø; plate T0 was stored at 4oC and plate T120 was returned to 

37oC.  After 2 h, saponin was added to plate T120 to lyse Mø.  Both plates were 
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incubated a further 2 h to allow bacterial replication.  MTT was then added to wells and 

optical density was measured using a spectrophotometer.  Values were plotted against a 

previously determined standard curve to determine CFU.  ΔCFU between the T0 and 

T120 plates was calculated to determine killing (288, 477). 

 

Intranasal administration of fluticasone and apoptotic cells.  Mice were anesthetized 

with inhaled Isoflorane.  50 µL of PBS alone or containing 0.1-10 µg fluticasone or 10^7 

apoptotic thymocytes was instilled via intranasal administration.  Mice were held at a 45-

degree angle during administration to favor aspirating over swallowing. 

 

In vivo Streptococcus pneumoniae infection.  Mice were anesthetized using Ketamine.  

Fur was cleaned with 70% ethanol and iodine.  A small incision was made in the throat, 

forceps were used to move the vocal chords and access the trachea.  50,000 CFU of live 

S. pneumoniae were injected in a 30 µL volume (288).  The incision site was sealed using 

3M Vetbond surgical glue (3M Animal Care Products).  Mice were kept warm following 

surgery to support post-operative recovery. 

 

Statistical Analysis.  We calculated significance using one-way ANOVA or two-way 

ANOVA with Bonferroni post hoc testing or using Student t test where appropriate using 

GraphPad Prism5 (La Jolla, CA) on an Intel iMac computer. Results were considered 

significant* at p, 0.05 and highly significant** at p, 0.01 
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