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The Road Not Taken 
 

Two roads diverged in a yellow wood, 

And sorry I could not travel both 

And be one traveler, long I stood 

And looked down one as far as I could 

To where it bent in the undergrowth; 

 

Then took the other, as just as fair, 

And having perhaps the better claim 

Because it was grassy and wanted wear, 

Though as for that the passing there 

Had worn them really about the same, 

 

And both that morning equally lay 

In leaves no step had trodden black. 

Oh, I marked the first for another day! 

Yet knowing how way leads on to way 

I doubted if I should ever come back. 

 

I shall be telling this with a sigh 

Somewhere ages and ages hence: 

Two roads diverged in a wood, and I, 

I took the one less traveled by, 

And that has made all the difference. 

 

 

- Robert Frost 
 

 

 

 

 

If you can't fly, then run. 

If you can't run, then walk. 

If you can't walk, then crawl. 

But whatever you do, you have to keep moving forward. 

 

 

- Dr. Martin Luther King, Jr. 
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ABSTRACT 

 

The physical and computational modeling of distributed fluid flow to vascular beds 

remains a challenging issue. The computational resources required, and the complexity of 

capillary networks makes modeling infeasible. The resolution limits of manufacturing 

techniques make physical models difficult to fabricate and manipulate under 

experimental conditions. As such, an in vitro polymer construct was developed with 

structural properties of small arteries and the bulk flow characteristics of capillary beds. 

Rapid prototyping and scaffolding techniques were used to fabricate vascular trees 

amendable to scaffold compartments. Several scaffold architectures were evaluated to 

achieve target fluid flow characteristics for implementation in a dynamic contrast-

enhanced computed tomography (DCE-CT) imaging phantom and endothelial cell 

bioreactor, respectively. Experimental flow measurements were compared to 

measurements from computational simulations. In addition, the flow-induced shear stress 

across the construct was modeled to identify the optimal settings within the bioreactor. In 

addition, the cytocompatibility of the polymer construct was optimized. 

Vascular trees were reliably fabricated to achieve arteriole-like flow. Rapid prototyped 

polycaprolactone (PCL) scaffolds produced distinct differential flow ranges, marked by a 

decrease in flow rate across the network. The construct served as a viable dynamic flow 

phantom capable of generating signals typical of organs imaged with DCE-CT. 

Furthermore, simulations of the construct as a bioreactor provided guidance on the 

boundary conditions required for stimulatory shear stress within the scaffolds. Under 

static conditions, endothelial cells were cultured on PCL scaffolds modified with extra-

cellular matrix mimicking biological and chemical agents. All surface modifications 

exhibited similar cell proliferation and function. However, the Arg-Gly-Asp (RGD) 

surface-modified constructs exhibited an optimal spatial distribution for future 

endothelial cell bioreactor investigations.  
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This work demonstrates a method for modeling and physically simulating a bifurcating 

vascular tree adjoined to scaffold compartments with tunable flow, for application to 

perfusion imaging and in vitro tissue engineering (tissue and tumors).   
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CHAPTER 1  

 

 

Introduction 

 

1.1  PROBLEM STATEMENT 

With over 20 invasive sites, including vital organs such at the lungs, brain, and liver, 

cancer causes the greatest mortalities worldwide [1-2]. Over the last three decades, there 

has been increased research focus on prevention, detection, treatment and control of 

cancer [3-6]. The impact of molecular cancer biology discoveries is evident by the 

increase in 5-year patient survival rates, rising from by 51.4 to 68.5 percent [7-8]. The 

greatest increase in survival rates are seen in patients with cancer of the blood (and 

components), bone marrow, tongue, colorectal, kidney and renal system, tonsil and 

oropharynx, and Non-Hodgkin lymphoma [7-8]. However, there has been less of a 

marked increase (in the lungs and brain) and in some cases decreased survival rates (in 

the liver, pancreas, larynx and uterus) and increased incidents (i.e. childhood cancer, 

esophagus, kidney and melanoma of the skin) for some disease sites [7-8]. The impact of 

cancer prevention, detection and treatment can be improved with new and more effective 

approaches. The next stage of treatment therapies is currently evolving through molecular 

targeted therapy and applications of biomarkers, nanomedicine and various forms of 

“personalized” medicine and in vitro three-dimensional models [9-14]. 

Within the perfusion imaging and tissue engineering, the adoption of biomarkers and in 

vitro three-dimensional models incorporating seeded cells and fluid is under 

consideration to maximize the effectiveness of existing therapies and research platforms. 

Despite promising advancements in three-dimensional tissue engineering, the need for in 

vitro culture models remains a prevalent issue limiting the effectiveness of large 

engineered constructs in the promotion of tissue in-growth. Review papers addressing 
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topics such as drug discovery, delivery and drug-induced resistance acknowledge the 

need for culture models more complex than the typical two-dimensional in vitro systems 

[23]. A dynamic endothelial cell bioreactor can provide a platform for studying 

angiogenesis on clinically relevant scaffold dimensions and future co-cultures with 

normal cells or cancer cells for the generation of in vitro solid tissue or tumors, 

respectively. 

Within radiation therapy treatment assessment, there is significant variability in perfusion 

imaging protocols used to acquire, post-process and extract perfusion metrics from image 

datasets [17-19]. The validation of perfusion metrics via a dynamic phantom will allow 

clinicians to make better generalizations of imaging biomarkers and facilitate longitudinal 

multicenter clinical trials [20-22]. Thus, the need for in vitro fluid bioreactors in tissue 

engineering and in vitro dynamic flow phantoms in radiation oncology, converge on the 

need to create three-dimensional branching networks supporting distributed fluid flow. 

The size scale and vast amount of parallel networking of capillary, however, makes the 

creation of exact in vitro anatomic flow networks (i.e. artery, arterioles, capillaries, 

venules and veins), both computationally and physically infeasible, due to the 

computational complexity and extensive multiscale fabrication that is required [15-6]. 

The complexity of modeling microcirculation (defined as venule, arteriole, capillary sized 

vessels, 8-300 μm) has the challenge of appropriately representing anatomical 

architecture and biofluid-mechanical forces (i.e. flow rate and pressure drops). For 

noninvasive imaging procedures, a typical 1-mm voxel resolution is two orders of 

magnitude larger than a capillary. The following thesis addresses the challenges in 

creating computational and physical models of anatomical and hemodynamic 

microcirculatory properties by developing an integrated branching network/modular 

scaffold polymer construct for application to perfusion imaging and tissue engineering. 
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1.1.1    Background 

1.1.1.1   Quality Assurance (QA) of Perfusion Imaging 

Perfusion imaging is currently under investigation as an imaging biomarker indicative of 

tumor aggressiveness, and tissue response to treatments, such as focal irradiation [24-27]. 

Dynamic Contrast Enhanced - Computed Tomography (DCE-CT) imaging is one method 

of perfusion imaging; it involves the acquisition of a time series of single-slice images 

after the injection of a contrast agent into a patient. The presence of agent allows for the 

temporal and spatial localization of blood perfusion in the volume of interest (VOI). The 

acquired images are analyzed to extract perfusion (regional blood supply to tissue) 

metrics such as blood flow and volume (Fig. 1.1). [27-34]. 

 

Figure 1.1 Dynamic Contrast-Enhanced images. Color-coded perfusion maps overlaid on 
corresponding CT images to denote spatial variation in perfusion. The black contour outlines the 
tumor region, while the white contours outline regions of interest to be quantified using post-
processing techniques [35].  

 

There is significant variability in the DCE and other imaging protocols used to acquire 

image datasets and in the post-processing algorithms used to process image data to 

extract perfusion metrics. The quantification of perfusion from image analysis is a subject 

of concern, as there is significant variability in DCE acquisition, processing and 

quantitative metric extraction due to inherent scanner/modality variability, variation in 

acquisition protocols, spatial and temporal resolution, signal-to-noise ratio, acquisition 

delays and post-processing methods. Studies have considered (i) the quantification and 

minimization of measurement variability [29,31], (ii) the discriminatory power of 

extracted values [34], and (iii) the accuracy of measurements in comparison to “gold 



4 

 

standard” methods (radio-labeled microspheres, O15-water Positron Emission 

Tomography scans) [27, 32-33], and test-retest and reproducibility cases [32]. 

Unfortunately, these studies evaluated different DCE metrics, in various tissue locations, 

in human and animal experiments. This lack of standardization prevents comparisons 

among studies using the same or different modalities, as the variability in sensitivity of 

metrics such as blood flow volume has not been quantified. These measures of 

comparison and reproducibility are useful, but do not provide a repeatable in vitro 

method that is easy to implement across institutions, such as with physical, imaging 

phantoms. These phantoms provide controllable architectures and fluid environments, 

across which changes in fluid flow can be assessed under typical, clinical imaging 

protocols and systems. 

 

1.1.1.2  Angiogenesis in Engineered Tissue 

Under healthy conditions, angiogenesis is marked by the following stages: endothelial 

cell (EC) migration and differentiation, tubule formation, and vascular network 

maturation, remodeling, and regression.  [36-37]. This physical phenomenon, called 

angiogenesis, is the process by which new capillary blood vessels are grown, either as 

offshoots or as splits from existing vessels [38] (see Fig. 1.2).  Angiogenesis is critical 

step to the sustainment of healthy regenerating tissue and newly implanted tissues, in 

addition to several diseases, such as cancer [37-38]. Tumor angiogenesis is marked by 

initiation and network formation, but lacks the organization and maturation of vessels 

characteristic of normal vascular networks [39]. But, for both those interested in tissue 

regeneration (i.e. bone and cardiovascular) and cancer pathology, re-creating a favorable 

environment for EC proliferation is key to three-dimensional tissue models. However, 

overcoming the mass transfer limitations in three-dimensional engineered tissues, greater 

than 2-mm thick, remains a prevalent and challenging issue [40]. 
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Figure 1.2 Process of angiogenesis [41]. 

 

Currently, successful tissue replacement therapies are limited to avascular tissues such as 

the epidermis of skin and nasal septae cartilage [42], or thin tissues (less than 2 mm) such 

as adipose tissue [43] and smooth muscle [44]. These autologous grafted tissues are 

supplied oxygen by diffusion. However, oxygen absorption is a limiting factor in cell 

viability [45], with necrosis normally occurring when oxygen must diffuse over a 

distance greater than 40-150 μm [42, 46]. Complete oxygen depletion, and resultantly 

necrosis, occurs within 24 hours of engineered tissue implantation causing donor site 

morbidity, due to inadequate prevascularization and a slow rate of angiogenesis (upwards 

of 6 days) [42]. Larger, more complex, engineered tissue requires adequate 

vascularization to sustain cell viabilityError! Bookmark not defined.. Successful 

ascularization of large tissue involves a distributed flow of blood, via capillary networks, 

to regions of tissue, enabling a high rate of nutrient absorption and waste clearance 

between the cell and capillary [40].  

 

1.2  RESEARCH OBJECTIVES 

This research study investigates the physical and computational modeling of distributed 

flow within an in vitro vascular network system, through the adoption of rapid 
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prototyping (RP) and tissue scaffolding techniques. 

 

1.2.1  Aim One 

Hypothesis: A computer-generated, rapid prototyped bifurcating vascular network can 

model physiologically realistic flow rates. 

Aim 1: To design the architecture and evaluate the flow through vascular trees to achieve 

bulk flow properties (in terms of drop in flow rate and/or velocity) characteristic of an in 

vivo blood supply. To investigate the potential of scaffolds with random and well-

organized pore structures to generate distinct differential flow ranges. 

1.2.1.1  Aim One Rationale 

While not yet translated to complex physical forms, digital models of vascular structures 

have been developed (Fig. 1.3). Karch et al. proposed an optimization algorithm for 

generating 3-D coronary vascular trees based on idealized growth principles [47-48]. 

Similarly, Kretowski et al. presented a more general approach to the modeling of 3-D 

renal and hepatic arterial trees [49-50]. These algorithms are based on the early works of 

Murray and Zamir that explored arterial tree morphometry, bifurcation laws (for radii and 

flow) and work minimization (in terms of blood volume) [51-52]. Computational studies 

on hemodynamic performance and CT dataset comparisons between real and simulated 

networks indicate that even with an intrinsic anatomic variability in computer generated 

trees, these networks behave very similar to in vivo vasculature [53-55].  

 

Figure 1.3 Simulated hepatic vascular network based on optimization algorithm [55]. (Left) Hepatic 
artery. (Right) Hepatic vein. 
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Table  A.1 (see Appendix A) summarizes the potential of rapid prototyping to create 

physical models from digital drawings. Since its advent into the medical arena, in the 

early 1990s, RP technologies utilizing techniques such as SLS have been used to recreate 

human anatomy from image (MRI and CT) data [56-57]. Clinicians then use these 

patient-specific physical models as a visualization tool to more accurately plan treatment, 

practice and teach surgical procedures and formulate diagnoses [58-63]. As well, 

researchers have used RP to fabricate patient-specific models to study disease states, 

anatomical pathologies and the efficacy of medical devices [64-66].  

There have been hemodynamic studies of airway passages modeled as hollowed 

cylindrical tubes; these have been limited to cylindrical tubes with an inner diameter (i.d.) 

of 1-5 cm [67-69]
Error! Bookmark not defined.

. Janssens et al. modeled the nose-throat (i.d. of 

.2-3 cm) passageway in infants to better understand and quantify aerosol deposition in the 

lungs [67]. Clickenbeard et al. used SLS to build tracheobronchial hollow airway models 

for inhaled aerosol drug studies [69]. Within this model, most airways had an i.d. of 1-2 

mm; some airways were slightly smaller than 1 mm. The papers reported clinically 

relevant results based on their models.  

Studies that have attempted to model microcirculation have been unable to fabricate 

designs on the order of 5-100 microns due to RP resolution limits. As a result, dialysis 

cartridges with parallel fibers (i.d. of 200 µm) or polydimethylsiloxane (PDMS) derived 

microchannels (i.d. of 900 µm) have been used to mimic capillary networks [70-72]. 

Some studies have utilized microfabrication techniques. Wang and Hsu used BioMEMS 

technology to fabricate bifurcating vessels with an i.d. of 6 µm, to study velocity profiles 

acting up ECs cultured on the scaffold [73]. Wang et al. studied the use of RP to create 

scaffolds of hepatocytes that could be plated with bioartificial cells [74], to ultimately 

grow an artificial liver. Similarly, Lee et al. modeled an artificial liver sinusoidal for 

hepatocyte culturing using softlithography and replicate molding with PDMS) [75]. 

Yamada et al. recently reported a new technique for microfabricating structures as fine as 

45 µm. However, no such systems are being commercial developed yet [76]. 
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1.2.1.2  Aim One Proposed Solution 

The proposed work uses porous scaffolds with pore sizes less than 1 mm to produce 

variable flow resistances that result in differential flow through the scaffold. Civil 

engineers have taken the approach of modeling the porous media as organized cylindrical 

structures, whereby the porosity and intrinsic permeability can be directly estimated using 

Darcy’s Law [77]. Subsequently, analytical expressions derived from the Navier-Stokes 

law are used to define flow properties [78-79]. In the past few years, tissue engineers 

have adopted this theoretical framework and CFD to evaluate scaffold intrinsic 

permeability and resulting flow characteristics within bioreactor, drug delivery and tissue 

regeneration studies [80-81]. Existing models of fluid flow through scaffolds have been 

limited to stand-alone scaffolds that are not adjoined to feeder networks. 

 

1.2.2  Aim Two 

Hypothesis 2: A physical, dynamic flow phantom with anatomical features and bulk flow 

characteristic of imaged tissue can provide a framework for the quality assurance of 

DCE-CT. 

Aim 2: To prototype a distributed flow phantom that models vessel branching and signals 

visible with DCE-CT.  

1.2.2.1  Aim Two Rationale 

Generally, physicists perform calibration and QA testing on imaging systems using static 

phantoms. Phantoms provide a controlled set-up for delineating deviations from a desired 

output. By simulating an idealized (in terms of branching and symmetry) in vivo vascular 

anatomy, the phantom will model characteristics (vessel bifurcations and diameter size) 

that affect flow rate [82].. The polymer vascular network and scaffold components are 

used to achieve i) a CT-compatible phantom with features less than the resolution 

(approximately less than 1 - 2 mm) of clinical CT, ii) typical contrast-enhancement 

curves and iii) distinct differential flow ranges through the integration of branching 
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networks with porous scaffold compartments. The prototype phantom provides a 

construct for comparing DCE imaging-measured flow rates to experimental and/or 

computational-based measurements. 

Some of the previously implemented flow phantoms have simplified the vascular tree 

geometry by only using single channel, cylindrical tubes [83], or parallel fibers from 

commercial dialysis cartridges [71]. On the opposite end, more complex fresh organ-

based flow phantoms demonstrated a short lifetime [84], while preserved organs were 

sensitive to handling and fixation [85]. Recently, Driscoll et al. developed a re-usable 

dynamic phantom with an internal coiled structure that allowed for variable inputs to 

reproduce imaging data with time-attenuation curves similar to patient-derived data [86]. 

The phantom does not evaluate flow within a piping system that is below the resolution 

of the CT system, as characteristic of in vivo imaging of arterioles, venules and 

capillaries. Instead, the phantom evaluates the bulk flow rates over a VOI encompassing 

large, arterial-sized tubes.. Fig. 1.4 illustrates the most complex dynamic phantoms 

presented in the literature. 

 

Figure 1.4 (a) Porcine ex vivo liver phantom [85]. (b) Phantom fabricated using fused deposition 
model [86]. (c) Single-slice image collected during DCE scan with labeled vasculature [85]. (d) Single 
axial slice image collected during DCE scan with labeled phantom implanted into a larger phantom 
structure [86]. 
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1.2.2.2  Aim Two Proposed Solution 

The proposed quality assurance phantom seeks to establish a reliable and reproducible 

method to compare flow measurements acquired via DCE-CT imaging.  As well, through 

the adoption of RP and scaffolding techniques, bulk perfusion characteristics of flow 

greater than and below the resolution of the typical CT scanner is evaluated for a given 

input boundary conditions within a physiological flow range.. By altering the porosity 

and tortuosity of scaffolds within a vascular phantom, we can estimate the flow rates 

within a closed-system vascular phantom, and fine tune scaffold characteristics to achieve 

high and low differential flow changes. 

 

1.2.3  Aim Three 

Hypothesis 3:  A biocompatible vascular tree adjoined to large porous scaffolds can be 

optimized to support EC attachment and proliferation. 

Aim 3: To optimize the attachment and proliferation conditions of endothelial cells 

seeded on large scaffolds within an in vitro endothelial cell bioreactor.  

 

1.2.3.1  Aim Three Rationale 

Reconstructive surgeries often require the implantation of new tissue into an avascular 

region, where an adequate nutrient supply cannot be sustained solely by diffusion, but 

instead requires an alternate source of perfusion. There are several techniques actively 

studied that seek to expedite the angiogenesis process [87-89] through (1) the 

implantation of prevascularized engineered or avascular tissue [90-93] that can be pre-

seeded with ECs and controlled-release angiogenic factors [94-97]
 
and (2) in vitro 

endothelialized vessels grown on microdevices [98-103], microfluidic devices [104], 

bioreactors [105-106],
 
or capillary channel fibers or microtubes [1-07-108]. In vitro flow 

perfusion bioreactor studies report that a continuous controlled flow of medium provides 

mechanical stimulation and increased mass transport to support cell proliferation and 

differentiation across porous scaffolds for bone regeneration and angiogenesis [109-112]. 
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These successes have been shown for scaffolds 6-8 mm in diameter and 2-3 mm in 

height. Recently promulgated works by Koch et al. and Arano et al. have demonstrated 

perfusion for larger (6-12 mm diameter and 10-12 mm height) scaffolds [113-114].  

In the area of prevascularized engineered tissue, the arteriovenous loop (AVL) has 

successfully utilized intrinsic vascularization to support new tissue growth within a loop 

construct. Mian et al. and Polykandriotis et al. showed that via angiogenic sprouting, an 

arteriovenous loop (AVL) supported new tissue growth within a loop construct: a femoral 

artery anastomosed to a vein graft and femoral vein [115]. Their AVL studies showed 

that pre-vascularization of scaffolds resulted in increased vessel in-growth towards the 

core of the avascular tissue and subsequently an increased wall shear rate within the loop 

construct. The AVL studies demonstrated that intrinsic prevascularization of scaffolds 

resulted in an increase in perfusion volume, and subsequently an increase in wall shear 

rate and angiogenesis with engineered constructs. However, AVLs did not provide 

distributed flow to a tissue; instead, perfusion is concentrated around the outer boundaries 

of a tissue region. Using an in vivo approach, Laschke et al. implanted a three-

dimensional poly-lactic-glycolic (PLGA) scaffold into a host mouse for 20 days to 

generate microvascular in-growth into the construct [116]. The scaffold was then 

removed and placed into a recipient mouse.  A significant increase in blood perfusion and 

wall shear stress was observed over the 14 day study, with reperfusion of the implant 

occurring within 3-6 days. An AVL study by Hofer et al. reported a 23% increase in 

volume density and the appearance of arterioles within 10 days, along with the 

appearance of venules after 14-21 days [117].  

 

1.2.3.2  Aim Three Proposed Solution 

In the aforementioned studies, it has been shown that 1) thick scaffolds can be adequately 

supplied nutrients/oxygen within a perfusion bioreactor, 2) constructs anastomosed to 

existing vasculature can successfully shunt flow towards a construct, and 3) pre-

vascularized constructs promote angiogenesis faster once implanted into a host. The 

limitations of these existing methods include: the poor nutrient supply to the core of 

implantable constructs or the inability to implant successful in vitro bioreactor setups. 
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These studies support aim three’s approach to a bioreactor design, which seeks to 

promote EC growth into tubules, within an implantable vascular network that offers 

distributed flow across scaffolds, for future in vitro or in vivo applications. A successful 

angiogenesis bioreactor system maintains EC viability and proliferation on scaffolds that 

are embedded within the vascular network construct. As such, the flow conditions, 

cytocompatibility and distribution of ECs cultured in the bioreactor must be optimized, as 

the first step in the development of a viable angiogenesis bioreactor. 

 

1.3  OVERVIEW OF DISSERTATION 

Fig. 1.5 provides a schematic outline of the objectives for Chapters 2 through 6. Chapter 

2 provides a review of the anatomical and bulk flow characteristics of human 

microvascular system that drove the design of the phantom and bioreactor. The 

computer-generated design for the phantom and bioreactor is described, along with the 

scaffolding techniques that allowed for control over flow characteristics within the 

dynamic systems. Chapter 3 reveals the final design of the dynamic imaging phantom 

system. The reliability and spatial resolution of the fabrication method used to generate 

the vascular tree and the investigated scaffold (types: solvent casted/salt leached, inverted 

colloidal crystal and SLS) components are characterized. The intrinsic permeability and 

differential flow ranges achieved by the different scaffold architectures are compared. 

Finally, the utility of the phantom was demonstrated through a DCE-imaging study, 

wherein time-contrast attenuation curves were acquired and examined. Chapter 4 

deconstructs the dynamic imaging system in order to perform computational fluid 

modeling on each component. The mixing of fluids and the uniformity of flow across the 

system was evaluated. Differential flow measurements from a porous jump and porous 

geometry model were compared to experimental differential flow measurements in 

Chapter 3, in order to confirm the flow changes within within the phantom. The scaffolds 

incorporated into the phantom described in Chapter 3 are widely used as bone scaffolds 

for tissue engineering. As such, the phantom design was transformed into an in vitro, 

perfusion bioreactor in Chapters 5 and 6. In Chapter 5, the flow-induced shear stress 

distribution across the scaffold housed within the cell bioreactor design was evaluated for 
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two scaffold geometries (spherical and orthogonal pores) that have been demonstrated to 

successfully grow bone (chosen to facilitate future work that may co-culture osteoblasts, 

then implant in subcutaneous mouse model). The scaffold geometry and the associated 

inlet velocity that produced the tightest range of shear stress within the physiological 

range required for EC stimulation was used in the in vitro dynamic study. Chapter 6 

explores whether a surface modified-SLS PCL scaffold (addition of vascular endothelial 

growth factor, sodium hydroxide hydrolysis or extracellular matrix adhesion protein) can 

enhance EC attachment, proliferation and function under static conditions. Based on the 

identified optimal surface modification, Chapter 6 then presents a preliminary study on 

the proliferation and cell function of macrovascular ECs under in vitro dynamic 

bioreactor conditions on SLS PCL scaffolds. Based on the limitations of visualizing 

angiogenesis within the designed bioreactor, Chapter 7 reviewed the existing imaging 

techniques available for monitoring angiogenesis, and more specifically tubulation, 

within three-dimensional cell culture constructs (scaffolds, microfluidic devices and 

bioreactors). Finally, Chapter 8 provides the conclusions from this thesis and describes 

future studies that may improve the design and/or effectiveness of the phantom and 

bioreactor.  
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Figure 1.5 Flow diagram of dissertation goals. 

 

1.4  REFERENCES 

[1] Howlader, N., Noone, A.M., Krapcho, M., Neyman, N., Aminou, R., Waldron, W., 

Altekruse, S.F., Kosary, C.L., Ruhl, J., Tatalovich, Z., Cho, H., Mariotto, A., Eisner, 

M.P., Lewis, D.R., Chen, H.S., Feuer, E.J., Cronin, K.A., Edwards, B.K. (eds). SEER 

Cancer Statistics Review, 1975-2008, National Cancer Institute. Bethesda, MD, based 

on November 2010 SEER data submission, posted to the SEER Web site, 2011 

accessed at http://seer.cancer.gov/csr/1975_2008/ on October 14, 2011. 

[2] Jemal, A., Bray, F., Center, M.M., Ferlay, J., Ward, E., and Forman, D.. Global 

cancer statistics. CA: A Cancer Journal for Clinicians. 61, 69, 2011. 

[3] Smith, R.A., Cokkinides, V., von Eschenbach, A.C., Levin, B., Cohen, C., Runowicz, 

C.D., Sener, S., Saslow, D., and Eyre, H.J.. American Cancer Society Guidelines for 

the Early Detection of Cancer. CA: A Cancer Journal for Clinicians. 52, 8, 2002. 

[4] Aggarwal, B.B., Shishodia, S.. Molecular Targets of Dietary Agents for Prevention 

and Therapy of Cancer. Biochemical Pharmacology. 71, 1397, 2006. 



15 

 

[5] Schilsky, R.L.. Personalized medicine in oncology: the future is now. Nat. Rev. Drug 

Discov. 9, 363, 2010. 

[6] Weir, H.K., ThunS, M.J., Hankey, B.F., Ries, L.A.G., Howe, H.L., Wingo, P.A., 

Jemal, A., Ward, E., Anderson, R.N., and Edwards, B.K.. Annual Report to the 

Nation on the Status of Cancer, 1975–2000, Featuring the Uses of Surveillance Data 

for Cancer Prevention and Control. Journal of the National Cancer Institute. 95, 1276, 

2003.777 

[7] U.S. Cancer Statistics Working Group. United States Cancer Statistics: 2002 

Incidence and Mortality. Atlanta: U.S. Department of Health and Human Services, 

Centers for Disease Control and Prevention and National Cancer Institute; 2005. 

[8] Siegel, R., Ward, E., Brawley, O., and Jemal, A.. Cancer statistics, 2011. CA: A 

Cancer Journal for Clinicians. 61, 212, 2011. 

[9] Collins, I., and Workman, P.. New Approaches to Molecular Cancer Therapeutics. 

Nat. Chem. Biol. 2, 689, 2006. 

[10] Gibbs, J.B.. Mechanism-Based Target Identification and Drug Discovery in Cancer 

Research. Science. 287, 1969, 2000. 

[11] Cao, Y., Tsien, C.I., Sundgren, P.C., Nagesh, V., Normolle, D., Buchtel, H., Junck, 

L., and Lawrence, T.S.. Dynamic Contrast-Enhanced Magnetic Resonance Imaging 

As a Biomarker for Prediction of Radiation-Induced Neurocognitive Dysfunction. 

Clinical Cancer Research. 15, 1747, 2009. 

[12] Murdoch, D., and Sager, J.. Will Targeted Therapy Hold its Promise? An evidence-

based review. Current Opinion in Oncology. 20, 2008. 

[13] Kawasaki, E.S., and Player, A.. Nanotechnology, Nanomedicine, and the 

Development of New, Effective Therapies for Cancer. Nanomedicine: 

Nanotechnology, Biology and Medicine. 1, 101, 2005. 

[14] Miller, J.C., Pien, H.H., Sahani, D., Sorensen, A.G., Thrall, J.H.. Imaging 

Angiogenesis: Applications and Potential for Drug Development. Journal of the 

National Cancer Institute. 97, 172, 2005. 

[15] Grinberg, L., Anor, T., Madsen, J.R., Yakhot, A., Karniadakis, G.E.. Large-scale 

Simulation of the Human Arterial Tree. Clinical and Experimental Pharmacology 

and Physiology. 36(2): 194-205, 2008. 



16 

 

[16] Demongeot, J., Bezy-Wendling, J., Mattes, J., Haigron, P., Glade, N., and Coatrieux, 

J.L.. Multiscale Modeling and Imaging: the Challenges of biocomplexity. 

Proceedings of the IEEE. 91, 1723, 2003. 

[17] Padhani, A.. Dynamic Contrast-Enhanced MRI in Clinical Oncology: Current Status 

and Future Directions. JMRI. 16: 407-422, 2002. 

[18] Sheiman, R. G., Sitek, A.. CT Perfusion Imaging: Know Its Assumption and 

Limitations. Radiology. 246(2): 649-650, 2008. 

[19] Lopata, R. G., Backes, W. H., van den Bosch, P. P., van Riel, N. A.. On the 

Identifiability of Pharmacokinetic Parameters in Dynamic Contrast-Enhanced 

Imaging. Magn. Reson. Med. 58(2):425-9, 2007. 

[20] Quantitative Imaging Biomarkers Alliance. 10 July 2009. http://qibawiki.rsna.org 

[21] Pandharipande, P., Krinsky, G., Rusinek, H., Lee, V.S..  Perfusion Imaging of the 

Liver: Current Challenges and Future Goals. RSNA 234: 661-673, 2005. 

[22] Boone, J.. Abstract: AAPM Initiatives in Quantitative Imaging. Medical Physics. 

36(6): 2724, 2009. 

[23] Hutmacher, D.W., Horch, R.E., Loessner, D., Rizzi, S., Sieh, S., Reichert, J.C., 

Clements, J.A., Beier, J.P., Arkudas, A., Bleiziffer, O., and Kneser, U.. Translating 

Tissue Engineering Technology Platforms into Cancer Research. Journal of Cellular 

and Molecular Medicine. 13, 1417, 2009. 

[24] Giesel, F.L., Choyke, P.L., Mehndiratta, A., Zechmann, C.M., von Tengg-Kobligk, 

H., Kayser, K., Bischoff, H., Hintze, C., Delorme, S., Weber, M.A., Essig, M., 

Kauczor, H., and Knopp, M.V.. Pharmacokinetic Analysis of Malignant Pleural 

Mesothelioma—Initial Results of Tumor Microcirculation and its Correlation to 

Microvessel Density (CD-34). Academic Radiology 15, 563, 2008. 

[25] Rosen, M.A., Schnall, M.D.. Dynamic Contrast-Enhanced Magnetic Resonance 

Imaging for Assessing Tumor Vascularity and Vascular Effects of Targeted 

Therapies in Renal Cell Carcinoma. Clin Cancer Res. 13(2): 770s-774s, 2007. 

[26] Van Beers, B.E., Leconte, I., Materne, R., Smith, A.M., Jamart, J., Horsmans, Y.. 

Hepatic Perfusion Parameters in Chronic Liver Disease: Dynamic CT 

Measurements Correlated with Disease Severity. AJR. 667-673, 2001. 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Materne%20R%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Smith%20AM%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Jamart%20J%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Horsmans%20Y%22%5BAuthor%5D


17 

 

[27] Cenic, A., Nabavi, D..G.. A CT Method to Measure Hemodynamics in Brain 

Tumors: Validation and Application of Cerebral Blood Flow Maps. Am. Journal 

Nueroradiol. 21: 462-470, 2000. 

[28] Padhani, A.. Dynamic Contrast-Enhanced MRI Studies in Oncology with an 

Emphasis on Quantification, Validation and Human Studies. Clinical Radiology. 56: 

607-620, 2001. 

[29] Sanelli, P., Nicola, G, Tsiouris, A.J., Ougorets, I., Knight, C., Frommer, B., 

Veronelli, S., Zimmerman, R.D.. Reproducibility of Postprocessing of Quantitative 

CT Perfusion Maps. AJR. 188: 213-218, 2007. 

[30] Fiorella, D., Heiserman, J., Prenger, E., Partovi, S.. Assessment of the 

Reproducibility of Postprocessing Dynamic CT Perfusion Data. Am. J. Neuroradiol. 

25: 97-107, 2004. 

[31] Goh V, Halligan S, Taylor SA, Burling D, Bassett P, Bartram CI. Differentiation 

between diverticulitis and colorectal cancer, quantitative CT perfusion 

measurements versus morphologic criteria- initial experience. Radiology. 

2007;242(2):456-462. 

[32] Biederer J, Heller M. Artificial thorax for MR imaging studies in porcine heart-lung 

preparations. Radiology. 226:250-255, 2003. 

[33] Purdie, T.G., Henderson, E, Lee, T.Y.. Functional CT Imaging of Angiogenesis in 

Rabbit VX2 Soft-tissue Tumour. Phy Med Biol. 46: 3161-3175, 2001. 

[34] Gillard, J.H., Minhas, P.S., Hayball, M.P., Bearcroft, P.W., Antoun, N.M., Freer, 

C.E., Mathews, J.C., Miles, K.A., Pickard, J.D.. Assessment of Quantitative 

Computed Tomographic Cerebral Perfusion Imaging with H2(15)O Positron 

Emission Tomography. Neurol Res. 22: 457-464, 2000. 

[35] Cao, Y., Alspaugh, J., Shen, Z., Balter, J.M., Lawrence, T.S., Ten Haken, R.K.. A 

Practical Approach for Quantitative Estimates of Voxel-by-Voxel Liver Perfusion 

using DCE Imaging and a Compartmental Model. Medical Physics. 33(8): 3057-

3062, 2006. 

[36] Nussenbaum, F. and Herman, I.M.. Tumor Angiogenesis: Insights and Innovations. 

Journal of Oncology. 132641, 2010. 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Tsiouris%20AJ%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Ougorets%20I%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Knight%20C%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Frommer%20B%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Veronelli%20S%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Zimmerman%20RD%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Prenger%20E%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Partovi%20S%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Minhas%20PS%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Hayball%20MP%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Bearcroft%20PW%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Antoun%20NM%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Freer%20CE%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Freer%20CE%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Mathews%20JC%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Miles%20KA%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Pickard%20JD%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Alspaugh%20J%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Shen%20Z%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Balter%20JM%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Lawrence%20TS%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Ten%20Haken%20RK%22%5BAuthor%5D


18 

 

[37] Otrock, Z. K., Mahfouz, R. A. , Makarem, J.A., Shamseddine, A.I.. Understanding 

the Biology of Angiogenesis: Review of the Most Important Molecular 

Mechanisms. Blood Cells, Molecules & Diseases. 39(2): 212-220, 2007. 

[38] Risau, W. (1997). Mechanisms of Angiogenesis. Nature. 386: 671-674. 

[39] Payne, S.J, Jones, L. Influence of the Tumor Microenvironment on Angiogenesis. 

Future Oncology. 7(3): 395-408, 2011. 

[40] Novosel, E. C., Kleinhans, C., Kluger, P.J.. Vascularization is the Key Challenge in 

Tissue Engineering. Advanced Drug Delivery Teviews 63(4-5): 300-311, 2011. 

[41] Understanding Angiogenesis. 2011. The Angiogenesis Foundation. 30 October 

2011. http://www.angio.org/understanding/process.php 

[42] Griffith, C., Miller, C., Miller, C., Sainson, R.C., Calvert, J.W., Jeon, N.L., Hughes, 

C.C., George, S.C.. Diffusion Limits of an in Vitro Thick Prevascularized Tissue. 

Tissue Engineering. 11(1/2): 257-266, 2005. 

[43] Patrick, C.W., Chauvin, P.B., Hobley, J., Reece, G.P.. Preadipocyte Seeded PLGA 

Scaffolds for Adipose Tissue Engineering. Tissue Engineering. 5: 139, 1999. 

[44] Kim, B. S., Putnam, A. J., Kulik, T.J., Mooney, D.J.. Optimizing Seeding and 

Culture Mmethods to Engineer Smooth Muscle Tissue on Biodegradable Polymer 

Matrices. Biotechnol. Bioeng. 57 : 46, 1998. 

[45] Kaully T, Kaufman-Francis, K., Lesman A, Levenberg S.. Vascularization-The 

Conduit to Viable Engineered Tissues. Tissue Engineering: Part B. 15(2): 159-169, 

2009. 

[46] Jain, R.K., Au, P., Tam, J., Duda, D.G., Fukumura, D.. Engineering Vascularized 

Tissue. Nat. Biotechnol. 23: 821-823, 2005. 

[47] Karch, R., Neumann, F., Neumann, M., Schreiner, W.. A three dimensional model 

for arterial tree representation, generated by constrained constructive optimization. 

Computers in Biology and Medicine. 29: 19-38, 1999. 

[48] Schreiner, W., Buxbaum, P. F.. Computer - Optimization of Vascular Trees. IEEE 

Transactions on Biomedical Engineering. 40(5): 482-491, 1993 

[49] Kretowski, M., Rolland, Y., Bézy-Wendling, J., Coatrieux, J.L.. Fast algorithm for 

three dimensional vascular tree modeling. Computer Methods and Programs in 

Biomedicine. 70:129-136, 2003. 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Miller%20C%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Sainson%20RC%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Calvert%20JW%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Jeon%20NL%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Hughes%20CC%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Hughes%20CC%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22George%20SC%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Chauvin%20PB%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Hobley%20J%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Reece%20GP%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Kaufman-Francis%20K%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22B%C3%A9zy-Wendling%20J%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Coatrieux%20JL%22%5BAuthor%5D


19 

 

[50] Kretowski, M., Rolland, Y., Bézy-Wendling, J., Coatrieux, J.L.. Physiologically 

Based Modeling of Three Dimensional Vascular Networks and CT Scan 

Angiography. IEEE Transactions on Medical Imaging. 22(2): 248-257, 2003. 

[51] Zamir, M.. Optimality principles in arterial branching. J. Theor. Biol. 62, 227-251, 

1976. 

[52] Murray, C. D.. The physiological principle of minimum work I. Proc. Nat. Acad. 

Sci. 12: 204-214, 1926a. 

[53] Schreiner, W.,Neumann, F., Neumann, M., End, A., Roedler, S.M.. Anatomical 

variability and functional ability of vascular trees modeled by constrained 

constructive optimization. J. Theor. Biol. 187, 147-158 ,1997. 

[54] Bezy-Wendling, J., Kretowski, M.. Physiological modeling of tumor-affected renal 

circulation. Computer Methods and Programs in Biomedicine. 91, 1-12, 2008. 

[55] Rolland, Y., Bezy-Wendling, J., Duvauferrier, R. Bruno, A.. Modeling of the 

parenchymous vascularization and perfusion. Invest. Radiol. 34, 171-175, 1999. 

[56] Binder, T. M., Moertl, D., Mundigler, G., Rehak, G., Franke, M., Delle-Karth, G., 

Mohl, W., Baumgartner, H., Maurer, G.. Stereolithography Biomodeling to Create 

Tangible Hard Copies of Cardiac Structures from Echocardriographic Data: In Vitro 

and In Vivo Validation. Journal of American College of Cardiology. 35(1): 230-7, 

1999. 

[57] Markert, M., Weber, S.. A Beating Heart Model 3D Printed from Specific Patient 

Data. 29th Annual International Conference of the IEE EMBS Cite Internationale. 

2007. 

[58] Guo, Z., Fenster, A.. Three-Dimensional Power Doppler Imaging: a Phantom Study 

to Quantify Vessel Stenosis. Ultrasound in Med. & Biol. 22(8): 1059-1069, 1996. 

[59] Alfano, B., Prinster, A., Quarantelli, M.. STEPBRAIN: a Stereolithographed 

Phantom of the Brain for Nuclear Medicine, Computed Tomography and Magnetic 

Resonance Imaging. Napoli, Italy, Biostructure & Bioimaging Institute, National 

Council of Research: 1-17, 2002. 

[60] Park, M., Zimmerman, R.E., Taberner, A., Kaye, M.W., Moore, S.C.. Design an 

Fabrication of Phantoms Using Stereolithography for Small-Animal Imaging 

Systems. Academy of Molecular Imaging. 10(5):231-6, 2008. 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22B%C3%A9zy-Wendling%20J%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Coatrieux%20JL%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Mundigler%20G%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Rehak%20G%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Franke%20M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Delle-Karth%20G%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Mohl%20W%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Baumgartner%20H%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Maurer%20G%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Taberner%20A%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Kaye%20MW%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Moore%20SC%22%5BAuthor%5D


20 

 

[61] Sun, S.P., Wu, C.J.. Using the Full Scale 3D Solid Anthropometric Model in 

Radiation Oncology Positioning and Verification. Conf. Proc. IEEE Eng. Med. Biol. 

Soc. 5: 3432-5, 2004. 

[62] Di Giacomo, G.A., Cury, P.R., de Araujo, N.S., Sendyk, W.R., Sendyk, C.L.. 

Clinical Application of Stereolithographic Surgical Guides for Implant Placement: 

Preliminary Results. J. Periodontol. 76(4): 503-7, 2005. 

[63] O'Flynn, P.M., Roche, T.R. , Phandit, A.S.. Generating an Ex Vivo Vascular Model. 

American Society of Artificial Internal Organs. 51(4):426-33, 2005. 

[64] Faber, J., Berto, P.M., Quaresma, M.. Rapid Prototyping as a Tool for Diagnosis and 

Treatment Planning for Maxillary Canine Impaction. Am J Orthod Dentofacial 

Orthop. 129(4): 583-9, 2006. 

[65] Gilon, D., Cape, E. G., Handschumacher, M.D., Song, J.K., Solheim, J., VanAuker, 

M., King, M.E., Levine, R.A.. Effect of Three-Dimensional Valve Shape on the 

Hemodynamics of Aortic Stenosis: Three-dimensional Echocardiographic. J. Am. 

Coll. Cardiol. 40 (8):1479-86, 2002. 

[66] Schievano, S., Migliavacca, F.. Percutaneous Pulmonary Valve Implantation Based 

on Rapid Prototyping of Right Ventricular Outflow Tract and Pulmonary Trunk 

from MR Data. Radiology. 242(2): 490-7, 2007. 

[67] Janssens, H., de Jongste, J.C., Fokkens, W.J., Robben, S.G., Wouters, K., Tiddens, 

H.A.. The Sophia: Anatomical Infant Nose-Throat (Saint) Model: A Valuable Tool 

to Study Aerosol Deposition in Infants. Journal of Aerosol Medicine. 14(4): 433-

441, 2001. 

[68] Vial, L., Perchet, D, Fodil, R, Caillibotte, G., Fetita, C., Prêteux, F., Beigelman-

Aubry, C., Grenier, P., Thiriet, M., Isabey, D., Sbirlea-Apiou, G.. Airflow Modeling 

of Steady Inspiration in Two Realistic Proximal Airway Trees Reconstructed from 

Human Thoracic Tomodensitometric Images. Computer Methods in Biomechanics 

and Biomedical Engineering. 8(4): 267-77, 2005. 

[69] Clinkenbeard, R.E., Johnson, D.L., Parthasarathy, R., Altan, M.C., Tan, K.H., Park, 

S.M., Crawford, R.H.. Replication of Human Tracheobronchial Hollow Airway 

Models Using a Selective Laser Sintering Rapid Prototyping Technique. American 

Industrial Hygiene Association. 63: 141-150, 2002. 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Handschumacher%20MD%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Song%20JK%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Solheim%20J%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22VanAuker%20M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22VanAuker%20M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22King%20ME%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Levine%20RA%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22de%20Jongste%20JC%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Fokkens%20WJ%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Robben%20SG%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Wouters%20K%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Tiddens%20HA%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Tiddens%20HA%22%5BAuthor%5D
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A%28Caillibotte%2C+Georges%29
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A%28Fetita%2C+Catalin%29
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A%28Pr%C3%AAteux%2C+Fran%C3%A7oise%29
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A%28Beigelman%5C-Aubry%2C+Catherine%29
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A%28Beigelman%5C-Aubry%2C+Catherine%29
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A%28Grenier%2C+Philippe%29
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A%28Thiriet%2C+Marc%29
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A%28Isabey%2C+Daniel%29
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A%28Sbirlea%5C-Apiou%2C+Gabriela%29
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Parthasarathy%20R%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Altan%20MC%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Tan%20KH%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Park%20SM%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Park%20SM%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Crawford%20RH%22%5BAuthor%5D


21 

 

[70] Veltmann, C., Lohmaier, S., Schlosser, T., Shai, S., Ehlgen, A., Pohl, C., Becher, H., 

Tiemann, K.. On the Design of a Capillary Flow Phantom for the Evaluation of 

Ultrasound Contrast Agents at Very Low Flow Velocities. Ultrasound in Med. and 

Biol. 28(5): 625-634, 2002. 

[71] Hindle, A.J., Perkins, A.C.. A Perfusion Phantom for the Evaluation of Ultrasound 

Contrast Agents. Ultrasound in Med. & Biol. 20(3): 309-314,1994. 

[72] Raguin, L.G., Honecker, S.L., Georgiadis, J.G.. MRI Velocimetry in Microchannel 

Networks. Microtechnology in Medicine and Biology, 2005. 3rd IEEE/EMBS 

Special Topic: 319- 322, 2005. 

[73] Wang, G.J., Hsu, Y.. Structure Optimization of Microvascular Scaffolds. Biomed. 

Microdevices. 10: 51-58, 2005. 

[74] Wang, X., Yongnian, Y., Zhang, R.. Rapid Prototyping as a Tool for Manufacturing 

Bioartificial Livers. Trends in Biotechnology. 25(11): 505-513, 2007. 

[75] Lee, P. J., Hung, P.J ,M Lee, L. P. (2007). An Artificial Liver Sinusoid with a 

Microfluidic Endothelial-like Barrier for Primary Hepatocyte Culture. 

Biotechnology and Bioengineering 97(5): 1340-1346. 

[76] Yamada, A., Niikura, F., Ikuta, K.. A Three-Dimensional Microfabrication System 

for Biodegradable Polymers with High Resolution and Biocompatibility. J. 

Micromech. Microeng. 18: 1-9, 2008. 

[77] Muskat, M.. The Flow of Fluids Through Porous Media. Journal of Applied Physics. 

8(4), 274 – 282, 1937. 

[78] Cantini, M., Fiore, G. B., Redaelli, A., Soncini, M.. Numerical Fluid-Dynamic 

Optimization of Microchannel-Provided Porous Scaffolds for the Co-culture of 

Adherent and Non-Adherent Cells. Tissue Engineering. 15(3): 615-623,2 009. 

[79] Lopez, X. Valvatne, P. H., Blunt, M. J.. Predictive network modeling of single-phase 

non-Newtonian flow in porous media. Colloid and Interface Science. 264: 256-65, 

2003. 

[80] Meuwly, F., Ruffieux, P. A., Kadouri, A. von Stockar, U.. Packed-bed Bioreactors 

for Mammalian Cell Culture: Bioprocess and Biomedical Applications. 

Biotechnology Advances. 25(1): 45-56, 2007. 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Schlosser%20T%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Shai%20S%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Ehlgen%20A%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Pohl%20C%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Becher%20H%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Tiemann%20K%22%5BAuthor%5D
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4915369


22 

 

[81] Nam, J., Starly, B., Sun, W.. Computer Aided Tissue Engineering for Modeling and 

Design of Novel Tissue Scaffolds. Computer Aided Design and Application. 633-

40, 2004. 

[82] Chien, S., Usami, S., Taylor, H.M., Lundberg, J.L., Gregerson, M.I., Effects of 

Hematocrit and Plasma Proteins on Human Blood Rheology at Low Shear Rates. J. 

Appl. Physiol. 21, 81-87, 1965. 

[83] Canstein, C., Cachot, P., Faust, A., Stalder, A. F., Bock, J., Frydrychowicz, A., 

Küffer, J., Hennig, J., Markl, M.. 3D MR Flow Analysis in Realistic Rapid- 

Prototyping Model Systems of the Thoracic Aorta: Comparison with In Vivo Data 

and Computational Fluid Dynamics in Identical Vessel Geometries. Magnetic 

Resonance in Medicine. 59: 535-546, 2008. 

[84] Haberland, U., Cordes, J., Lell, M., Abolmaali, N., Klotz, E.. A Biological Phantom 

for Contrast-Media-Based Perfusion Studies with CT. Invest. Radiol. 44 (10):676-

82, 2009. 

[85] Thompson, S.M., Ramirez-Giraldo, J.C., Knudsen, B., Grande, J.P., Christner, J.A., 

Xu, M., Woodrum, D.A., McCollough, C.H., Callstrom, M.R.. Porcine Ex Vivo 

Liver Phantom for Dynamic Contrast-Enhanced Computed Tomography: 

Development and Initial Results. Invest. Radiol. 46(9):586-93, 2011. 

[86] Driscoll, B., Keller, H., Coolens, C.. Development of a Dynamic Flow Imaging 

Phantom for Dynamic Contrast-Enhanced CT. Medical Physics. 38 (8):4866-4880, 

2011. 

[87] Griffith, L., Naughton, G.. Tissue Engineering – Current Challenges and Expanding 

Opportunities. Tissue Engineering. 295: 1009- 1015, 2002. 

[88] Lokmic, Z. M., Mitchell, G. M.. Engineering the Microcirculation. Tissue 

Engineering: Part B. 14(1): 87-97, 2008. 

[89] Laschke, M., Harder, Y., Amon, M., Martin, I., Farhadi, J., Ring, A., Torio-Padron, 

N., Schramm, R., Rücker, M., Junker, D., Häufel, J.M., Carvalho, C., Heberer, M., 

Germann, G., Vollmar, B., Menger, M.D.. Angiogenesis in Tissue Engineering: 

Breathing Life into Constructed Tissue Substitutes. Tissue Engineering 12(8): 2093-

2104, 2006. 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Cordes%20J%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Lell%20M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Abolmaali%20N%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Amon%20M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Martin%20I%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Farhadi%20J%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Ring%20A%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Torio-Padron%20N%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Torio-Padron%20N%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Schramm%20R%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22R%C3%BCcker%20M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Junker%20D%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22H%C3%A4ufel%20JM%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Carvalho%20C%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Heberer%20M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Germann%20G%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Vollmar%20B%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Menger%20MD%22%5BAuthor%5D


23 

 

[90] Polykandriotis, E., Arkudas, A., Beier, J.P., Hess, A., Greil, P., Papadopoulos, T., 

Kopp, J., Bach, A.D., Horch, R.E., Kneser, U.. Instrinsic Axial Vascularization of 

an Osteoconductive Bone Matrix by means of an Arteriovenous Vascular Bundle. 

Plastic and Reconstructive Surgery. 120: 855—868, 2007.  

[91] Mian, R., Knight, K. , Penington, A.J., Hurley, J.V., Messina, A., Romeo, R., 

Morrison, W.A.. Stimulating Effect of an Arteriovenous Shunt on the In Vivo 

Growth of Isografted Fibroblasts: a Preliminary Report. Tissue Engineering 7(1): 

73-80, 2001. 

[92] Erol, O., Spira, M.. New Capillary Bed Formation with a Surgically Constructed 

Arteriovenous Fistula. Plastic and Reconstructive Surgery. 66(1): 109-115, 1979. 

[93] Beier, J. P., Horch, R.E., Arkudas, A., Polykandriotis, E., Bleiziffer, O., Adamek, E., 

Hess, A., Kneser, U.. De Novo Generation of Axially Vascularized Tissue in a 

Large Animal Model. Microsurgery. 29(1): 42-51, 2008. 

[94] Kedem, A., Perets, A., Gamlieli-Bonshtein, I., Dvir-Ginzberg, M., Mizrahi, S., 

Cohen, S.. Vascular Endothelial Growth Factor-Releasing Scaffolds Enhance 

Vascularization and Engraftment of Hepatocytes Transplanted on Liver Lobes. 

Tissue Engineering. 11(5/6): 715-722, 2005. 

[95] Elcin, Y.M., Dixit, V., Gitnick, G.. Extensive In Vivo Angiogenesis Following 

Controlled Release of Human Vascular Endothelial Cell Growth Factor: 

Implications for Tissue Engineering and Wound Healing. International Society for 

Artificial Organs. 25(7): 558-565, 2001. 

[96] Hegen, A., Blois, A., Tiron, C.E., Hellesøy, M., Micklem, D.R., Nör, J.E., Akslen, 

L.A., Lorens, J.B.. Efficient In Vivo Vascularization of Tissue-Engineering 

Scaffolds. Journal of tissue engineering and regenerative medicine. 5(4): e52-62, 

2011. 

[97] Davies, N., Dobner, S., Bezuidenhout, D., Schmidt, C., Beck, M., Zisch, A.H., Zilla, 

P.. The Dosage Dependence of VEGF Stimulation on Scaffold Neovascularisation. 

Biomaterials. 29, 3531, 2008. 

[98] Borenstein, J., Weinberg, E., Orrick, B.K., Sundback, C., Kaazempur-Mofrad, M.R., 

Vacanti J.P.. Microfabrication of Three-Dimensional Engineered Scaffolds.  Tissue 

Engineering. 13(8) 1837-1844, 2007. 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Beier%20JP%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Hess%20A%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Greil%20P%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Papadopoulos%20T%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Kopp%20J%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Bach%20AD%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Horch%20RE%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Kneser%20U%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Penington%20AJ%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Hurley%20JV%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Messina%20A%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Romeo%20R%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Morrison%20WA%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Arkudas%20A%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Polykandriotis%20E%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Bleiziffer%20O%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Adamek%20E%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Hess%20A%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Kneser%20U%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Gamlieli-Bonshtein%20I%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Dvir-Ginzberg%20M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Mizrahi%20S%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Cohen%20S%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Tiron%20CE%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Helles%C3%B8y%20M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Micklem%20DR%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22N%C3%B6r%20JE%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Akslen%20LA%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Akslen%20LA%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Lorens%20JB%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Orrick%20BK%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Sundback%20C%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Kaazempur-Mofrad%20MR%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Vacanti%20JP%22%5BAuthor%5D


24 

 

[99] Shin, M., Matsuda, K., Ishii, O., Terai, H., Kaazempur-Mofrad, M., Borenstein, J., 

Detmar, M., Vacanti, J.P.. Endotheliazed Networks with a Vascular Geometry in 

Microfabricated Poly (dimethyl siloxane). Biomedical Microdevices. 6(4): 269-278, 

2004. 

[100] Kaihara, S., Borenstein, J., Koka, R., Lalan, S., Ochoa, E.R., Ravens, M., Pien, H., 

Cunningham, B., Vacanti, J.P.. Silicon Micromachining to Tissue Engineer 

Branched Vascular Channels for Liver Fabrication. Tissue Engineering. 6(2): 105-

17, 2000. 

[101] Fidkowski, C., Kaazempur-Mofrad, M.R.. Endotheliazed Microvasculature Based 

on Biodegradable Elastomer. Tissue Engineering. 11(1/2): 302-9, 2005. 

[102] Shin, M., Matsuda, K., Ishii, O., Terai, H., Kaazempur-Mofrad, M., Borenstein, J., 

Detmar, M., Vacanti, J.P.. Endotheliazed Networks with a Vascular Geometry in 

Microfabricated Poly (dimethyl siloxane). Biomedical Microdevices. 6(4): 269-

278, 2004. 

[103] Kaihara, S., Borenstein, J., Koka, R., Lalan, S., Ochoa, E.R., Ravens, M., Pien, H., 

Cunningham, B., Vacanti, J.P.. Silicon Micromachining to Tissue Engineer 

Branched Vascular Channels for Liver Fabrication. Tissue Engineering. 6(2): 105-

17, 2000. 

[104] Chung, S., R. Sudo, Vickerman, V., Zervantonakis, I.K., Kamm, R.D.. Microfluidic 

Platforms for Studies of Angiogenesis, Cell Migration, and Cell-Cell Interactions. 

Sixth International Bio-Fluid Mechanics Symposium and Workshop March 28-30, 

2008 Pasadena, California. Annals of Biomedical Engineering. 38(3): 1164-1177, 

2010. 

[105] Lee, E. J., Niklason, L.E.. A Novel Flow Bioreactor for In Vitro 

Microvascularization. Tissue engineering. Part C. 16(5): 1191-1200, 2010. 

[106] Williams, C., Wick, T.M.. Perfusion Bioreactor for Small Diameter Tissue-

Engineered Arteries. Tissue engineering. 10(5/6): 930-941, 2004. 

[107] Lu, Q., Sunuibescu, A., Vyavahare, N.. Novel Capillary Channel Fiber Scaffolds 

for Guided Tissue Engineering. Acta Biomaterialia. 1(6): 607-14, 2005. 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Ishii%20O%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Terai%20H%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Kaazempur-Mofrad%20M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Borenstein%20J%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Detmar%20M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Vacanti%20JP%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Koka%20R%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Lalan%20S%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Ochoa%20ER%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Ravens%20M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Pien%20H%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Cunningham%20B%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Vacanti%20JP%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Ishii%20O%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Terai%20H%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Kaazempur-Mofrad%20M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Borenstein%20J%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Detmar%20M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Vacanti%20JP%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Koka%20R%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Lalan%20S%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Ochoa%20ER%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Ravens%20M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Pien%20H%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Cunningham%20B%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Vacanti%20JP%22%5BAuthor%5D


25 

 

[108] Lovett, M., Cannizzaro, C., Daheron, L., Messmer, B., Vunjak-Novakovic, G., 

Kaplan, D.L.. Silk Fibroin Microtubes for Blood Vessel Engineering. 

Biomaterials. 28: 5271-5279, 2007. 

[109] Martin, I., D. Wendt, Heberer, M.. The Role of Bioreactors in Tissue Engineering. 

Trends in Biotechnology 22(2): 80-86, 2004. 

[110] Barron, V., E. Lyons, Stenson-Cox, C., McHugh, P.E., Pandit, A.. Bioreactors for 

Cardiovascular Cell and Tissue Growth: a review. Annals of biomedical 

engineering. 31(9): 1017-1030, 2003. 

[111] Bilodeau, K., Mantovani, D.. Bioreactors for Tissue Engineering: Focus on 

Mechanical Constraints. A Comparative Review. Tissue Engineering. 12(8): 2367-

2383, 2006. 

[112] Konstantinov, S. M., Mindova, M. M., Gospodinov, P.T., Genova, P.I.. Three-

Dimensional Bioreactor Cultures: a Useful Dynamic Model for the Study of 

Cellular Interactions. Annals of the New York Academy of Sciences. 1030: 103-

115, 2004. 

[113] Koch, M.A., Vrij, E.J., Engel, E., Planell, J.A., and Lacroix, D.. Perfusion Cell 

Seeding on Large Porous PLA/Calcium Phosphate Composite Scaffolds in a 

Perfusion Bioreactor System under Varying Perfusion Parameters. Journal of 

Biomedical Materials Research: Part A. 95A, 1011, 2010. 

[114] Arano, T., Sato, T., Matsuzaka, K., Ikada, Y., Yoshinari, M.. Osteoblastic Cell 

Proliferation with Uniform Distribution in a Large Scaffold Using Radial-Flow 

Bioreactor. Tissue Engineering Part C: Methods. 16, 1387, 2010. 

[115] Mian, R., Knight, K. , Penington, A.J., Hurley, J.V., Messina, A., Romeo, R., 

Morrison, W.A.. Stimulating Effect of an Arteriovenous Shunt on the In Vivo 

Growth of Isografted Fibroblasts: a Preliminary Report. Tissue Engineering 7(1): 

73-80, 2001. 

[116] Laschke, M.W., Rücker, M., Jensen, G., Carvalho, C., Mülhaupt, R., Gellrich, 

N.C., Menger, M.D.. Improvement of Vascularization of PLGA Scaffolds by 

Inosculation of In Situ-preformed Functional Blood Vessels with the Host 

Microvasculature. Annals of Surgery. 248(6): 939–948, 2008. 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Daheron%20L%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Messmer%20B%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Vunjak-Novakovic%20G%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Kaplan%20DL%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Genova%20PI%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Penington%20AJ%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Hurley%20JV%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Messina%20A%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Romeo%20R%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Morrison%20WA%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22R%C3%BCcker%20M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Jensen%20G%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Carvalho%20C%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22M%C3%BClhaupt%20R%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Gellrich%20NC%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Gellrich%20NC%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Menger%20MD%22%5BAuthor%5D


26 

 

[117] Hofer, S., Knight, K., Cooper-White, J.J., O'Connor, A.J., Perera, J.M., Romeo-

Meeuw, R., Penington, A.J., Knight, K.R., Morrison, W.A., Messina, A.. 

Increasing the Volume of Vascularized Tissue Formation in Engineered 

Constructs: an Experimental Study in rats. Plast. Reconstr. Surg. 111: 1186, 2003. 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Cooper-White%20JJ%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22O%27Connor%20AJ%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Perera%20JM%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Romeo-Meeuw%20R%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Romeo-Meeuw%20R%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Penington%20AJ%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Knight%20KR%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Morrison%20WA%22%5BAuthor%5D


27 

 

CHAPTER 2  
 

 

Engineering an In Vitro Distributed Flow System  

 

2.1 INTRODUCTION 

This chapter investigates the design and fabrication of a polymer construct that distributes 

fluid flow across a volume via a vascular tree structure. Bifurcation laws and 

optimization rules are adopted in the design of computer generated vascular trees. Rapid 

prototyping techniques available for fabricating small hollow cylinders are assessed. The 

potential of polymer porous constructs (scaffolds) with random and well-organized pore 

structures to model disparate changes in flow rates is discussed.  

 

2.2  BACKGROUND 

2.2.1  Structure and Bio-fluid Mechanics of Blood and Blood Vessels 

The human vascular system circulates blood through the body at an average rate of 5 

L/min [1]. Blood pumped out of the heart through arteries supplies organs with 

oxygenated blood and nutrients in exchange for cellular waste. Arteries branch into 

arterioles, which connect to capillaries, which facilitates active and passive transport of 

substances between blood and local cells (see Fig. 2.1) [1]. 
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Figure 2.1 (a) Schematic illustrates the structural complexity of blood vessel networks from 
artery/vein down to capillaries [2]. (b) Overview of circulatory physiology, in terms of vessel, 
diameter, pressure, cross-sectional area and velocity [3]. (Headings shown in the graph on the top left 
apply to all four plots: elastic arteries, muscular arteries, arterioles, capillaries, venules, veins, vena 
cava.) 

 

The anatomical architecture of the circulatory system shunts fluid from a single source 

through a sequence of serial and parallel vessels whose geometry and composition dictate 

hemodynamic properties. Each vessel type has a diameter size, wall thickness and 

composition that uniquely complement its function in the circulatory system [1]. Based 

on values presented by Boron and Boulpaep [1] and Feher [7], Table 2.1 quantifies a 

subset of the structural and fluid mechanical properties that characterize blood vessels: 

(a)

(b)
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wall shear stress (WSS, dyne/cm
2
), pressure drops (∆p, mm Hg) and flow velocity (axial 

and secondary, v, cm/s). Blood flow produces mechanical forces on endothelial cell 

(ECs) lining the surface of blood vessels. WSS (dyne/cm
2
) acts tangentially on the 

surface of ECs. Under physiological conditions, shear stress values within the 1-20 

dyne/cm
2
 range support EC growth and activity [4-6]. 

 

Table 2.1 Summary of average/range in vivo values that define blood vessel structures and 
mechanics, which influence physiological function [1,7]. 

 small 
artery 

arteriole capillary venule small 
vein 

inner diameter [mm] 2-4 0.03 0.006 0.02 5 

wall thickness [mm] 1 - 2 0.02 0.001 0.002 0.5 - 1.5 

cross sectional area [mm2] 0.79 7.1 x 10
-5

 2.8 x 10
-5

 7.1 x 10
-5

 0.79 

aggregate flow [ml/s] 83 

single flow [ml/s] 0.01 4 x 10
-6

 8 x 10
-9

 2.1 x 10
-6

 1 x 10
-2

 

velocity [m/s] 1.3 x 10
-3

 6 x 10
-3

 3 x 10
-4

 1 x 10
-3

 2.6 x 10
-4

 

pressure [mm Hg] 95 60 15 - 35 7-15 15 

shear rate [1/s] > 100 < 100 > 100 

 

The blood that circulates through these vessels is characterized as a heterogeneous 

solution composed of plasma, red blood cells (RBC) and white blood cells. It is 

considered a Newtonian fluid under the following conditions [8-11]: 

 shear rates greater than 100/s;  

 hematocrit levels greater than 20% (adult normal range lies between 37-50%); 

 vessel diameters greater than 800 µm. 

 

Outside of these conditions, blood behaves as a non-Newtonian fluid due to shear-

dependent changes in viscosity that occur as RBCs assemble along the center axes of 

small blood vessels in vessels of decreasing diameter size (known as the Fahraeus-
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Lindqvist effect) (see Fig. 2.2) [12].  This phenomenon is especially evident in 

capillaries, as the inner diameters (i.d.) of these vessels are approximately the same 

diameter as RBCs. The decreasing viscosity associated with decreased hematocrit levels 

in small vessels is characterized as a shear thinning, non-Newtonian fluid. 

 

Figure 2.2 Plot of the dynamic viscosity of blood and plasma across shear rates illustrates the 
assembly of RBCs. Plasma (devoid of RBC) is Newtonian [13]. 

 

2.3 METHODOLOGY 

2.3.1 Computer Generated Vascular Trees 

In vivo observations and formulated principles on vascular branching serve as the basis 

for the implemented three-dimensional vascular network algorithm [14-16]. Two 

investigating groups pioneered the digital modeling of coronary, renal and/or hepatic 

arterial trees (i.d. > 1 mm) [14,16]. Karch et al. and Kretowski et al. presented algorithms 

for generating vascular trees (arterial, renal and hepatic) based on idealized growth 

principles [14-18]. Both algorithms optimized the structural and hemodynamic properties 

of vascular trees based on the following: 

- Each branch is a rigid, hollow, symmetrical cylinder, with some wall thickness; 

- All parent branches give rise to two offspring branches; 
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- Each branch is contained within a pre-defined volume; 

- Branching is randomized, with each coordinate within the given volume equally 

likely to be chosen; 

- The bifurcation rule (Murray’s Law), where r is the radius of the vessel and r > 0 

[19]: 

        
                  

                   
  Equation 2.1 

 

- If a new branch lies within n millimeters of an existing branch, then the new 

branch is destroyed; where the value of n is pre-defined— no branches may 

intersect; 

- Blood is considered an incompressible homogenous Newtonian fluid exhibiting 

laminar flow and governed by Poiseuille’s law [20]:  

           
    

 ,  Equation 2.2 

where ΔP is the pressure drop across the cylinder, Q is the volumetric flow rate , l 

is the  length of cylinder and μ is the fluid’s dynamic viscosity; 

- The law of matter preservation [16]: 

                                          Equation 2.3 

- The pressure drop along a path from root to a terminal branch is the same for all 

terminals. 

 

In this thesis, these conditions are limited to a single-plane with pre-defined architecture 

for initial testing and adaptation to the development of an imaging phantom and cell 

bioreactor. Fig. 2.3 diagrams the implementation of the pre-defined vascular networks in 

the generated C++ program.  
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Figure 2.3 Flow chart of implementation for pre-defined vascular trees with and without scaffold 
compartments. 

 

The implemented vascular tree algorithm stored the spatial geometry of the generated 

networks in a binary image file. The algorithm imposed the following structural 

conditions: (i) branches were hollow cylinders, with specified wall thickness and i.d., (ii) 

branches were bounded within a pre-defined volume, (iii) branches birfucated and (iv) 

branches did not intersect. The cylindrical geometry of each vessel was outlined about its 

center axis (Fig. 2.4). In Fig. 2.4, the orthonormal vectors, P3 and P4, on the plane 

orthogonal to line segment (P2P1) created by the two known points, the start and end 

positions, define the axis of orientation for the cylinder to be generated. 
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Figure 2.4 (a) Illustrates cylinder defined by line segment, P2P1 and radius, r. (b) The cross product 
of two known points P1 and P2 is the normal vector to P3P1. 

 

Assuming X to be a point in the space, not on P2P1, that satisfies (inner radius) < XP1 < 

(outer radius) of the desired vessel, the cylinder was filled based on the following 

properties and using Equations 2.4. Discrete points, XP1, from the inner radius to outer 

radius were stepped through along the distance of the line segment P2P1. 

 

1 2 1 3 2 1

3 1 2 1 4 2 1 3 1

XP P P P P P

P P P P P P P P P

  

   
  

x 1x 3x 4x

y 1y 3y 4y

z 1z 3z 4z

R  = P + rP cos  + rP sin

R  = P + rP cos  + rP sin

R  = P + r P cos  + rP sin

 

 

 

    , for  0 2    Equations 2.4 

 

The pre-defined architecture was implemented, whereby vascular networks bifurcated 

symmetrically along a single axis with each vessel having a programmed inner diameter 

and length (with left and right offspring congruent, forming a 90° angle). Based on the 

number of bifurcations desired, the radii size is computed using the bifurcation rule 

(Equation 2.1). 

A three-dimensional binary image represented the geometry of the vascular tree: the 

lumen and wall with ones and zeros, respectively. Using a data visualization environment 

r

P1 P2 P1

P3

P2

P4

(a) (b)
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(IDL, ITT Visual Information Solutions, White Plains, New York, USA), a triangulated 

surface mesh that outlined the geometry of the vascular network was generated from the 

three-dimensional binary image file. A surface mesh rendering of a vascular branching 

element is shown in Fig. 2.5. Fig. 2.6a shows CAD representations of the mirrored 

vascular networks. The initial vessel-generating branching algorithm created surface 

inconsistencies that produced small holes in the bifurcation region during the STL 

generation step. The blue areas in Fig. 2.6a delineate regions where holes occurred. These 

holes were “patched” using rapid prototyping software (Magics, Materialise Belgium) 

Fig. 2.6b.  

 

Figure 2.5 CAD of three-dimensional triangulated surface mesh for a first order bifurcating tree. 

 

  

Figure 2.6 (a) CAD of branching network with holes (blue area; black circles) in the mesh surface at 
the bifurcation regions. (b) The CAD geometry fixed by the ‘patch hole’ feature in rapid prototyping 
software. 
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2.3.1.1 Rapid Prototyping Implementation and Considerations 

Physical renderings of the designed vascular tree were achieved using rapid prototyping. 

Table 2.2 provides a summary of advantages and disadvantages of available rapid 

prototyping systems. The rapid prototyping techniques involved an automated layer-by-

layer process of fusing raw materials (typically metal or polymer) into a CAD-defined 

three-dimensional shape.  
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Table 2.2 Summary of RP methods employed in tissue engineering [21]. 

 

 

 

In this thesis, FDM and SLS were explored. Both systems used biocompatible polymers 

that offered a direct RP method with a reasonable accuracy (250-500 microns) that did 
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not require internal supporting structures. The SLS system (EOS FORMIGA P100 SLS, 

EOS GmbH, Munich, Germany) deposited polymer particles across a layer on the bed of 

the system, and then selectively fused the particles using a high power laser to produce a 

three-dimensional object. Each layer was outlined by cross-sections of a three-

dimensional image file. Layering was repeated, with each successive layer resting on top 

of the previous layer (see Fig. 2.7) [22]. The system used a 0.08 mm layer thickness 

during the build process. The FDM system created three-dimensional objects in a similar 

layering manner to SLS, however small thermoplastic beads were deposited specifically 

in locations outlined by CAD cross-sections, instead of being etched onto a powdered bed 

(see Fig. 2.8) [23]. The FDM system (Dimension Elite Printer, Stratasys Inc., Eden 

Prairie, Minnesota, USA) used a 0.178 mm layer thickness during the build process. 

FDM used ABSplus
TM

, while SLS used a powdered thermoplastic mixture of 

polycaprolactone (PCL) and hydroxyapatite (HA) (CAPA 6501, Solvay Caprolactones, 

Warrington, Cherise, UK) (HA, Plasma Biotal Ltd., UK). 

The final product of rapid prototyping systems was subject to the variances in a given 

system’s humidity level, beam accuracy, bed temperature, laser age and reliability of its 

mechanical parts [24]. As well, the molecular mass, viscosity and thermal conductivity of 

the raw material may have introduced variance [25]. 
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Figure 2.7 Schematic of SLS system [26]. 

 

 

Figure 2.8 Schematic of FDM system [27]. 
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2.3.2  Controllable Scaffold Architecture 

The literature suggests that in the assessment of bulk properties, such as intrinsic 

permeability and volumetric flow, a simplified porous media model is computationally 

feasible and may be representative of flow resistance at the capillary level [28-29]. This 

thesis proposes the use of porous scaffolds with pore sizes less than 2 mm to produce 

controllable variable flow resistances that result in differential flow through the scaffold. 

In tissue engineering, a scaffold’s pore size, porosity and interconnectivity directly affect 

its ability to maintain an adequate exchange of oxygen to support cells viability and 

proliferation [30-31]. As such, there are a multitude of scaffold fabrication techniques 

offering various methods and materials to control scaffold architecture: electrospinning, 

particle leaching - solvent casting, inverted colloidal crystal (ICC) formation, RP, etc. 

Particle leaching - solvent casting offers a less structured [32], random arrangement of 

pores within a scaffold, while rapid prototyping and ICC provide more structured pore 

lattices [33]. Each method offers a range of pore sizes and scalable dimension (height and 

radius).  

In practice, in vivo capillary networks and/or their pore networks are too complex to 

individually measure or mathematically represent. Consequently, this thesis offers a 

simplified representation of these pore networks. SLS and ICC scaffolding techniques 

consider pores to be equivalent to a collection of vertical and horizontal straight tubes, 

wherein the radii of those tubes are varied to increase and decrease the level of tortuosity. 

The orthogonal intersection of these tubes produces a complex network that creates a 

tortuous flow path for perfusing fluids. The random organization of pores within the 

SL/SC technique offers greater, but unpredictable tortuosity. Each scaffolding technique 

employed in this thesis offers a distinct range of porogen diameter sizes that can be used 

to influence the tortuosity of the final scaffold construct. The increased tortuosity is 

expected to increase the pressure drop, and as a result decrease the volumetric flow rate 

across the scaffold [34-36]. A limitation of this model is that the pore sizes across the 

length of the scaffold do not vary in diameter or length, as capillaries in vivo. 
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2.3.2.1  Scaffold Design and Fabrication 

To control the flow characteristics of interest in Aim 2 and 3, several PCL scaffold 

fabrication techniques were explored. Three techniques that produced three distinct 

geometries were identified: inverted colloidal crystal (ICC) (Fig. 2.9), solvent-casted / 

salt-leached (Fig. 2.10) and SLS (Fig. 2.11). The SC/SL technique involved the use of 

salt crystals (less than 1 mm) as porogens to produce sponge-like scaffolds with a random 

distribution of crystals [39]. The ICC technique offered a highly structured scaffold, in 

which microspheres (5 - 300 microns) self-assembled into tightly packed hexagonal 

crystal lattices to form scaffolds [33]. CAD drawings of porous cylindrical scaffolds with 

three-dimensional spherical, orthogonal and hexagonal periodic porous architectures 

were designed. The scaffold geometry consisted of a unit cell (1.5 - 2.22 mm) that 

repeated every 2 mm to fill a desired scaffold height and diameter. The ICC and SLS 

methods facilitated computational modeling of the scaffold.  

 

 

Figure 2.9 ICC fabrication. (a) Unit cell of spherical lattice representative of ICC scaffold geometry, 
where the dark grey spheres are representative of glass microspheres. (b) Schematic of the ICC 
scaffold fabrication process. 

 

(a) (b)
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Figure 2.10 SC/SL fabrication. Example of uneven salt crystals (gray) molded within a cylindrical 
mold to produce a porous random structure. 

  

Figure 2.11 SLS fabrication. (a) Top and (b) isometric view of CAD of SLS scaffold. The spherical 
pore size is altered to generated scaffolds of exhibiting variable intrinsic permeability. 

 

2.3.3   Fabrication of a Polymer Construct 

2.3.3.1   Vascular Tree Fabrication 

Fig. 2.12a shows the CAD of a second-order prototype network. Fig. 2.12b and Fig. 

2.12c show pictures of networks that were fabricated by two rapid prototyping methods, 

FDM and SLS, respectively. The networks had a wall thickness of 0.6 mm and inner 

diameters that decreased from 1.4 mm down to 0.9 mm, based on Equation 2.1. Fig. 

2.15d-e shows a more complex fourth-order bifurcation structure manufactured using 

SLS. The network had a wall thickness of 0.6 mm and inner diameter that decreased from 

2.2 mm down to 0.9 mm, based on Equation 2.1. These diameters reported for Fig 2.12 

are the prescribed diameters set within the C++ algorithm.  

Salt 
leaching

Solvent 
casting

salt crystal

PCL dissolve salt

Final scaffold

(a) (b)
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Figure 2.12 (a) CAD of second-order vascular network. Photograph of second-order vascular 
network fabricated using (b) FDM and (c) SLS. Inner diameters: a = 1.4. mm, b = 1.2 mm, c = 1.0 
mm, d = 0.9 mm (prescribed measurements). Dimensions: 5.5 cm x 2.2 cm x 0.7 cm. The frame seen 
in in b is external to the vessels and is used for resting the network slightly above table surfaces. (d) 
CAD of fourth order vascular. (e) Photograph of fabricated fourth order vascular network shown in 
d. Inner diameters: a = 2.2 mm, b = 2.0 mm, c = 1.58 mm, d = 1.25 mm, e = 1.0 mm, f = 0.79 mm 
(prescribed measurements). Wall thickness = 0.6 mm Dimensions: 8.5 cm x 4.5 cm x 0.7 cm. 

 

2.3.3.2   Scaffold Compartment 

Section 2.3.1 details the design of a vascular tree. FDM and SLS fabrications successfully 

generated vascular trees with inner diameters between 0.9 - 1.4 mm. Since FDM did not 

present any apparent advantages in the development of our vascular network, an in-house 

SLS was used for all future fabrications. The final design was fabricated using SLS to 

generate a fourth-order vascular tree with an inlet inner diameter of 2.2 mm and an outlet 

diameter of 0.90 mm (diameter prescribed to algorithm). As discussed in section 2.3.2, 

the addition of porous scaffold compartments was proposed to control bulk differential 

(a) (b)

(c)

(d) (e)
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flow across the construct. Therefore, the final vascular network design incorporated a 

compartment for scaffolds at the midpoint of the mirrored vascular network design (Fig. 

2.13). The vascular tree discussed in Section 2.2.1 was modified at the outlet of the 

network to connect to a cylindrical opening that led to scaffold compartments (Fig. 2.13a-

b). The construct consisted of an “arterial” branching network adjoined to modular 

scaffolds that collect at a “venous” end. A scaffold compartment was centered between 

the vascular trees. The cylindrical holder shown in Fig. 2.13c was 11 mm in diameter and 

10 mm in length (13.7 mm outer diameter). It was designed to contain porous scaffolds 

and provide a tight, non-leaky fit. Shallow threading and tapering at the ends of the 

holder allowed for a snap fit into the networks. Through the adoption of rapid prototyping 

and scaffolding techniques the final assembled distributed flow system was fabricated 

(Fig. 2.13d) for in vitro experimental studies detailed in Chapters 3 and 6.  
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(d) 

Figure 2.13 (a) Side view and (b) top view of CAD of vascular network with compartments. (c) 
Isometric view of CAD of scaffold compartment holder, which joined the mirrored ends of vascular 
network. (d) Top view image of a closed vascular network construct enclosing four porous scaffolds: 
feeding vascular network, 16 outlets feed four compartments, four porous scaffolds enclosed in 
compartments by a compartment holder, collecting vascular network. 

  

(a) (b)

(c)
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CHAPTER 3  
 

 

Development of a Dynamic Flow Phantom for Quantitative Assessment of Flow with 

Dynamic Contrast Enhanced – Computed Tomography Imaging 

 

 

Abstract 

Purpose: To use rapid prototyping (RP) and scaffolding techniques to develop a physical, 

dynamic flow phantom with controlled vascular-like structural and flow properties, 

which when imaged by Dynamic Contrast Enhanced-Computed Tomography (DCE-CT) 

generates time-contrast enhancement curves typical of organs imaged by DCE-CT. 

Methods: The dynamic flow phantom consisted of a vascular network adjoined to porous 

scaffold compartments. This work investigated RP as a method to manufacture high-

order computer generate vascular trees that anatomically modeled in vivo arterial and 

venous vasculature. Selective laser sintered (SLS) vascular trees were connected to 

modular scaffold compartments, which were fabricated using solvent-casted/salt-leached 

(SL/SC), Inverted Colloidal Crystal (ICC) and SLS approaches. The different methods 

used variable porous architectures to generate controllable fluid flow characteristics. The 

realizable range of differential flows possible across the porous compartment was 

examined. DCE-CT imaging was performed on the phantom to demonstrate the imaging 

compatibility. From the imaging data, time-contrast enhancement curves were generated 

and velocities of phantom features were measured to demonstrate the application of the 

phantom to detailed DCE post-processing.  

Results:  Computer generated three-dimensional bifurcating cylindrical branches with an 

inner diameter ranging from 2.2 mm down to 770 microns were reproducibly fabricated 

with a polymer material to generate an arterial-like bifurcating vascular tree. Significantly 

different differential flows, from -22% to -90% were achievable using the SLS and 
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SC/SL manufacturing processes. DCE imaging and analysis of a phantom with SLS 

scaffolds embedded generated curves characteristic of in vivo DCE-CT imaging. Further 

post-processing calculated flow rates within the vascular tree and differential flows 

across the scaffold compartment which were similar to the theoretical and experimentally 

measurements, respectively.  

Conclusions: The fabricated vascular trees and porous compartments were patent at sub-

voxel sizes and exhibited various flow rates, showing that RP can successfully generate a 

DCE-compatible phantom with tunable differential flows for DCE imaging and analysis. 

The results of this chapter will provide a method for developing and using a dynamic 

phantom that can be further studied to evaluate the sensitivity of the device and to 

validate DCE-CT measurements in the future. 

 

3.1  INTRODUCTION 

Various estimates of perfusion are currently under investigation as potential biomarkers 

to aid in the prognosis, assessment, and individualization of cancer therapy. Perfusion 

measurements acquired from dynamic contrast-enhanced (DCE) imaging provide a 

quantitative metric for assessing tumor aggressiveness, tumor response to therapy, and 

more recently normal tissue damage following treatment such as focal irradiation [1-3]. 

While quantitative imaging is potentially a very powerful tool to stage and monitor 

treatment, the actual quantification of perfusion from image analysis is a subject of 

concern, as there is significant variability in DCE acquisition, processing and quantitative 

metric extraction [1-2,4-8]. The validation of DCE-derived parameters is limited. 

Existing methods of providing validation for DCE imaging and analyses are limited to 

simulated data, which does not account for variances in image acquisition. Similarly, 

implemented static phantoms neglect the dynamic effects inherent during patient scans 

and dynamic tools incorporate features that are well above the anatomical resolution of 

tissue parenchyma. 

Organ-based perfusion phantoms employing fresh organs have a short lifetime, while 

preserved organs may be sensitive to handling and fixation [15-16]. Several previously 

implemented re-useable three-dimensional flow phantoms have oversimplified the 

vascular tree geometry by using non-leaky cylindrical tubes [17] or parallel fibers from 
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commercial dialysis cartridges [18]. Recently, Chiribiri et al. [19] and Driscoll et al. [20] 

and presented re-usable phantom models that aim to produce a gold standard for 

measuring flow using computed tomography (CT) and magnetic resonance imaging 

(MRI), respectively (see Fig. 3.1-3.2). Driscoll et al. [20] developed a rapid prototyped 

phantom comprised of coiled plastic tubing (6.35 mm diameter) wound about a shell 

(Fig. 3.1) to reproduce target arterial input functions using DCE-CT. The phantom 

produced time-attenuation curves (TACs) with tunable peaks and shapes based on the 

preset arterial input function (AIF), which consisted of blood mimicking fluid (2:3 

glycerol-water, 2.5 - 5 ml/s) and iodinated contrast agent (0.27 - 1.5 ml/s). Their system 

was successful in closely matching the shape (in terms of duration and residual 

enhancement) and peak (in terms of enhancement) of a typical AIF. The phantom and 

system limitations, which may have introduced error in the final TACS included: 

 Heterogeneous mixing of contrast agent and blood mimicking fluid 

 Unrealistic physiologically realistic capillary exchange 

 Enclosing phantom shells that do not represent physiological situations  

 

Figure 3.1 DCE CT flow phantom. qinject, contrast agent input flow; qpump, blood mimicking fluid 
input flow; qin, total input flow ; qtube, output flow ; qcyl , second output flow ; qtotal, total output flow 
[20]. 
 

Chiribiri et al. [19] created a physical four chamber heart phantom composed of two 4-

cm cylinders containing 124 3-mm pipes (Fig. 3.2)  to simulate dynamic first pass 

myocardial perfusion (1-10 ml/ml/min) using MRI. The system was perfused with tap 

water and a gadolinium contrast agent. However, the goal of their reported completed 

system was not to validate measurements, but instead to provide proof of concept in 

(a) (b)
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creating tunable AIFs and to extract those curves using signal deconvolution. The 

phantom and system limitations, which may have introduced error in the final AIFs 

included: 

 Unrealistic physiologically realistic capillary exchange, unlike animal and human models 

 Poor bolus dispersion 

 Single compartment of distribution 

 Lack of diffusion of contrast agent into interstitial space 

 

Although these two phantoms present more reliable, reusable set-ups for validation 

studies, both designs based estimations on unrealistic representations of physiological 

capillary exchange that were above the resolution of the typical CT scanner. 

 

 
Figure 3.2 Myocardial MR perfusion phantom. RA, right atrium; RV, right ventricle; LA, left 
atrium; LV, left ventricle. Simulated heart rate of 60 beats per minute and cardiac output of 4 L/min. 
[19]. 

 

As such, a flow phantom was designed to increase model complexity over existing flow 

phantoms through the adoption of porous compartments that offered tunable flow 

resistance to mimic bulk flow rates (across capillary beds) similar to that discernible in 

(a) (b)

(c)



53 

 

organs scanned by volumetric imaging systems. The flow phantom consisted of porous 

scaffold compartments centered between an “arterial” and “venous” vascular tree 

network (Fig. 3.3). The selective laser sintering (SLS) RP process was used to determine 

the reliability of manufacturing highly branched vascular trees and porous compartments 

mimicking differential flow ranges was determined. The advantages of the proposed 

design are its anatomical “arterial” vascular tree design and the influence of structure on 

fluid flow across the vascular tree and the porous scaffold compartments. 

The design and assembly of the branching network is described in this study. Two 

scaffold fabrication methods were investigated to produce porous compartments with 

distinct differential flow ranges, for placement within a dynamic DCE vascular phantom 

that covers a range of differential flows. An experimental approach to characterize the 

hydraulic permeability and differential flow across the porous compartments was used. 

Tests of the prototyped phantom included an evaluation of lumenal occlusion to 

determine the feature (cylindrical lumens) resolution limit, an assessment of the accuracy 

of SLS fabrication and precision of inner diameter measurements to evaluate 

reproducibility. 

Experimental analysis of flow through the phantom system, in terms of “arterial” input 

flow and differential flow across the compartments is performed in this chapter. DCE 

imaging is performed to demonstrate the practical application of the phantom system in 

the acquisition of signals, and to confirm compatibility of the phantom to CT. 

Furthermore, a DCE analysis is performed as an example of the level of detailed analysis 

that can be performed on the phantom in order to compare imaging-extracted velocity or 

volumetric flow metrics to experimental and computational (detailed in chapter 4) 

measurements. 

 

3.2  METHODS AND MATERIALS 

3.2.1 Design of vascular phantom 

The phantom (Fig. 3.3) consisted of an “arterial” branching network adjoined to modular 

scaffold compartments that collect at a “venous” branching network. The design was 

fabricated with a Luer-lock fitting (International Standards, ISO 594) at the inlet and 

outlet of the vascular tree. The inlet connected to an inlet inner diameter of 2.2 mm, 
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which bifurcated over four levels to an outlet diameter of 0.79 mm. The design 

incorporates multiple porous scaffolds at the midpoint of the mirrored vascular network 

design (Fig. 3.3a). Each compartment houses an 11 mm x 5.5 mm (height x radius) 

porous cylindrical scaffold.  The compartment encloses 2 mm of space before and after 

the outlets and inlets of the vascular network, respectively. The two mirrored vascular 

trees were adjoined by multiple compartment holders, each of which tightly bounds a 

scaffold, such that fluid passed through the porous scaffolds (Fig. 3.3b). Four scaffolds 

were enclosed within the system, each housed in a different holder. Shallow threading 

and tapering at both ends (0.5 mm length) of the holder allowed for a snap fit into the 

networks. Four outlet vessels from the vascular network serve as fluid entry ports into the 

hollow compartments, which house the scaffolds (Fig. 3.3c).  

 

 

Figure 3.3 (a) Image of top view of (Top) vascular phantom: “arterial” vascular network has 16 
outlets that are connected to four compartments, which are adjoined to a “venous” tree via a 
compartment holder that housed four porous scaffolds; (Bottom) Image of top of opened 
compartments that show the modularity of the phantom design (sectioned at first third bifurcation). 
(b) CAD of fluid domain enclosed within vascular network construct. (c) Front view of the CAD of 
the vascular network illustrates the four outlets (0.79 mm inner diameter) which lead to the 

compartments. 

 

(a)

(b) (c)
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3.2.2  Computerized vascular tree design and manufacturing 

In vivo observations and formulated principles on vascular branching served as the basis 

for the implemented three-dimensional vascular network algorithm [21-23]. The 

algorithm generated three-dimensional binary image files which represented the 

geometry of the vascular networks. Manipulation of these binary files produced 

triangulated surface meshes that were saved to a stereolithography (STL) file format (3D 

Systems, Rock Hill, South Carolina, USA), then imported to the SLS system for 

fabrication. The computer aided design (CAD) of vascular trees scalable to large volumes 

that corresponded to internal organs offered control over geometric properties (i.e. inner 

diameter, length, number of branches, bifurcation order) that dictated regional blood flow 

properties. The implemented vascular tree algorithm generated a binary image file to 

store the spatial geometry of the generated networks. Generated vascular trees enforce 

bifurcations and the following structural conditions: (i) branches were modeled as hollow 

cylinders, with specified wall thickness and inner diameter, (ii) branches were bounded 

within a pre-defined volume and (iii) branches did not intersect. The cylindrical geometry 

of each vessel was outlined about its center axis. The starting point for each offspring’s 

center axis initiated from the last point along the center axis of its parent vessel.  The 

geometry was initially represented as a three-dimensional binary image, whereby ‘1’ 

represents wall and ‘0’ lumenal space. Branches bifurcated at angles between 30-50 

degrees and the prescribed inner radius (r) dimension of each offspring vessel after a 

bifurcation decreased based on Murray’s branching law (Equation 3.1) [24].  

 

3
,

3
,
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rparentr 
, 

Equation 3.1 

 

In the overlapped areas of the saddle region of the bifurcation, where vessel walls of one 

offspring protruded into the lumenal space of the second offspring, the algorithm 

converted the protruded wall into lumenal space (‘1’‘0’) to create a sharp bifurcation 

region (Fig. 3.4a).  

For this preliminary study, a pre-defined architecture was implemented, whereby vascular 

networks bifurcated symmetrically along a single axis with each vessel assigned an inner 

diameter and length (with left and right offspring congruent and perpendicular).  
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Figure 3.4 (a) Schematic of vessels’ geometry at bifurcation points and (b) coronal view of network 
with smoothed bifurcation regions. The solid wall is shown in yellow and the lumenal space is 
highlighted gray. 

 

The surface renderings of the computer-generated networks served as input to the SLS 

RP method. An STL generator was developed in a data visualization environment (IDL, 

ITT Visual Information Solutions, White Plains, New York, USA) to convert the binary 

image file into a surface mesh (referred to as STL or CAD) that was then manipulated 

with a commercial software tool (Magics X, Materialise, Belgium) to fix inconsistencies 

(i.e. inverted normals, intersecting triangles, bad edges, etc.) in the generated mesh. The 

fixed files were then loaded on to an SLS system (EOS FORMIGA P100, EOS GmbH, 

Munich, Germany). The vascular network and scaffolds were fabricated using a 

powdered thermoplastic mixture of polycaprolactone (PCL) and hydroxyapatite (HA). 

The SLS system deposited plastic particles across a layer on the bed of the system, then 

selectively fused the particles using a high power laser to produce a three-dimensional 

object. The system used a 0.08 mm layer thickness during the build process. The SLS 

fabrication was conducted by preheating the powder to 49.5°C, then scanning the laser 

(450 mm focused beam diameter) at 4.5W power and 1.257 m/s scan speed. Based on 

previous in-house testing, a resolution of about 600 microns was achieved on the SLS 

(a) (b)
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system, for the given system parameters: the humidity level, beam accuracy, laser age, 

properties of the PCL powder and reliability of the mechanical parts for our system.  

 

3.2.3  Solvent-Casted/Salt-Leached (SC/SL) PCL scaffolds 

Solvent-Casted / Salt-Leached (SC/SL) PCL scaffolds were fabricated based on 

modifications to a protocol developed by Kemppainen et al. [25]. For the SC/SL 

technique, sea salt (sodium chloride, Essentials by Catalina, CA, USA) was used as the 

porogen. Salt crystals were separated by brass sieves (USA standard test sieve: Fisher 

Scientific Inc., CA, USA) with a nominal sieve opening of 106, 180, 300, 600, and 700 

micron. The salt crystals were sieved to six ranges: <106, 106-180, 180-300, 300-600 and 

700-1000 μm, then hydrated with 4% (w/v) deionized water before being casted into 

Teflon (McMaster-Carr, CA, USA) molds. Salt crystals of various diameters were used to 

create spongy scaffolds of different levels of porosity to vary the interconnectivity of 

formed channels, without compromising penetrability caused by ill-formed pore walls. 

The crystals were packed into cylindrical molds with roughly 11 mm diameter and 13 

mm height. 15% (w/v) PCL/chloroform (Polysciences, Inc., PA, USA) (Fisher Scientific 

Inc., CA, USA) was infused into the salt crystal lattice within the mold. The crystal 

lattice were saturated with PCL/chloroform, and then placed under vacuum for 4 hours. 

Thereafter, the scaffolds were dried for 24 hours, for maximum chloroform evaporation. 

The scaffolds underwent repeated saturation within 70% ethanol alcohol and water to 

remove the salt porogens and entrapped air. The top and bottom ends of the scaffold were 

cut to achieve an 11mm scaffold height. Fig 3.5a. illustrates two fabricated SL/SC 

scaffolds. 

 

3.2.4  SLS PCL scaffolds 

To prepare SLS-fabricated PCL scaffolds, porous cylindrical scaffolds with three-

dimensional orthogonal periodic porous architectures were designed using custom written 

programs in a data visualization environment (IDL, ITT Visual Information Solutions, 

White Plains, New York, USA), and then exported as STL files. The scaffold geometry 

consisted of a cubical unit cell enclosed in a sphere with a 2.15 mm or 2.2 mm diameter 

(resolution ± 0.5 mm) (Fig. 3.5b). The unit cell was repeated every 2 mm to fill a 
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cylindrical construct with an 11 mm height and diameter. The generated STL files for the 

respective scaffolds were loaded onto the SLS system for fabrication as detailed in 

section II.A.1. Upon completion of SLS fabrication, the parts were flushed with 

compressed air to remove unsintered PCL powder from the scaffold’s interstices. Fig. 

3.5b illustrates fabricated SLS scaffolds. 

 

 

Figure 3.5 Picture of cylindrical (a) 300-600 and 700-1000 micron SC/SL scaffolds and (b) high (2.2 
mm pore size) and low (2.15 mm pore size) permeability SLS scaffolds. 

 

3.2.5  Inverted Colloidal Crystal (ICC) PCL scaffolds 

The following method to create ICC PCL scaffolds was a modification of a protocol 

developed by the Kotov et al., wherein microspheres are allowed to self-assemble into a 

tightly hexagonally packed crystal lattice (see Fig. 2.11a. Soda lime glass beads 

(Polysciences, Inc., PA, USA) of 30-50 μm and 105-150 μm diameter were used as the 

porogen in the ICC technique[26-27]. Pipettes were secured at the perforated centers of 

the vials’ caps. 9g of microspheres (per scaffold) were added to ethylene glycol (Fischer 

Scientific Inc., CA, USA), then added to a disposable pipette. Each ICC scaffold was cast 

in a borosilicate shell vial (Fisher Scientific Inc., CA, USA) with a 19 mm diameter. The 

vial sat within an ethanol alcohol-filled ultrasonic bath. Each vial was filled halfway with 

(a) (b)
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ethylene glycol. Every 20 minutes, five drops of microsphere solution was released from 

the pipette into the shell vial. The microspheres settled at the bottom of the vial. Drops 

were continually added until the desired scaffold volume was reached (see Fig. 2.11b). 

Thereafter, the microspheres were left under sonication for an addition hour. The vials 

were removed from the sonicator and the contents dried for 24 hours at 80˚C to evaporate 

the ethylene glycol. The vials were heated to 655˚C to anneal the glass microspheres. The 

solidified ICC was removed from the vial and placed into Teflon mold (19.5 mm 

diameter and 13.2 mm height). 15% (w/v) molten PCL/chloroform was infused into the 

ICC by centrifugation for 60 minutes at 5800 rpm. The PCL saturated scaffolds were then 

placed under vacuum for 24 hours at room temperature. To dissolve the glass porogens, 

the scaffolds were dissolved in a 5% hydrofluoric acid (Fisher Scientific Inc., CA, USA), 

1.0N hydrochloric acid (Fisher Scientific Inc., CA, USA) and then a phosphate buffered 

saline (Fisher Scientific Inc., CA, USA) solution. None of the solvents sued underwent 

further purification.  

 

3.3  CHARACTERIZATION OF PHANTOM COMPONENTS 

3.3.1  Resolution, accuracy and precision of vascular network fabrication 

Fabrication of several test blocks (Fig. 3.6a-3.6b) which contained individual cylindrical 

vessels allowed for the evaluation of the fidelity of inner diameter dimensions and the 

determination of the SLS resolution limit. The CAD of the first test block contained six 

vessels with decreasing inner diameter (4.0 mm, 2.0 mm, 1.5 mm, 1.2 mm, 1.0 mm, 0.9 

mm) repeated over three rows with a constant wall thickness of 0.6 mm. A second block 

contained vessels with a 0.6 mm wall thickness and smaller inner diameters (0.90 mm, 

0.85 mm, 0.80 mm, 0.70 mm, 0.65 mm, 0.60 mm).  To determine the resolution limit of 

the fabricated prototypes, compressed air and water were flushed through the lumens of 

the vessels contained in each test block. For vessels that showed patency, manual caliper 

measurements (accuracy: ± 0.005 mm) were acquired for the inner diameter of fabricated 

vessels and were compared to CAD inner diameter measurements acquired by a diameter 

measurement tool (accuracy: ± 0.0005 mm) in commercial visualization software 

(Solidview, Solid Concepts, Inc., California, USA). Statistical analyses for four 

independent fabrications of the first block are reported as means ± standard deviation 
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(stdev) and percent deviation. A two-tail Student’s t-test assuming unequal variance was 

used to compare the measured dimensions to the inner diameter design specifications 

prescribed in the vascular algorithm, to the CAD and fabricated vessels. Significance was 

set at P -values< 0.05. 

 

 

Figure 3.6 CAD of test block. (a) top-front-right view and (b) side view. The frame holds the vesssels 

together as a block and does not protrude into the vessels. 

 

 

 

Figure 3.7 Photograph of SLS-fabricated mirrored vascular network (two-level bifurcation). Inner 
diameters: inlet  = 1.4. mm, first level birfucation = 1.2 mm, second level bifurcation = 1.0 mm, 
midpoint of vascular network = 0.9 mm (prescribed measurements). Dimensions: 5.5 cm x 2.2 cm x 
0.7 cm. 

 

3.3.2  Scaffold characterization: porosity measurement 

The reproducibility of the scaffolds fabricated using the respective scaffold techniques 

were evaluated in terms of the consistency of properties (integrity and porosity) in 

fabricated architectures. Porosity was defined as the volume of void space over the total 

scaffold volume within a given PCL scaffold. The density-based approach (Archimedes’ 

principle) represented in Equation 3.2 was used to estimate the porosities of the SC/SL 

scaffolds:  

 

(a) (b)
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        ( )  
(     )  

(     )       
      Equation 3.2 

 

whereby m1 = saturated weight of scaffold, m2 = dry weight of scaffold, d1 = density of 

PCL and d2 = density of absolute ethanol. The scaffold was dried for 24 hours then 

measured to determine m2. The dried scaffolds were then submerged in absolute ethanol 

for 24 hours then weighed to determine m1. The salt crystal porogens were assumed to be 

completely dissolved out of the scaffold. For SLS PCL scaffolds, the porosity was 

estimated from volume measurements calculated in commercial visualization software 

(Magics, Materialise, Belgium). The porosity was defined as the volume of scaffold 

divided by the volume of an 11 mm x 11 mm solid cylinder. 

 

3.3.3  Scaffold characterization: experimental measurement of hydraulic 

permeability and differential flow 

For a sample size of six, the height and diameter of each fabricated scaffold was 

recorded. Before testing, the scaffolds were preconditioned to an aqueous environment 

for twelve hours. The volumetric flow rate through each scaffold was measured using an 

in-house flow meter, given a constant hydraulic head [25]. The volumetric input to the 

system was controlled by a pump that dispensed a simulated blood fluid (SBF) at flow 

ranges between 18-25 ml/s. The SBF (65% glycerine, 35% water, 0.0075% Xanthan 

gum) exhibited blood-like shear thinning behavior. The scaffolds were placed inside the 

flow chamber sealed off at the perimeter by a rubber tube to force fluid through scaffold, 

and not around it (Fig. 3.8). The mass of SBF that penetrated the scaffold over a given 

length of time was measured by a scale, which sent the data to a commercial data 

acquisition tool (LabView, National Instruments, TX, USA). The mass flow was 

collected over a time period long enough to acquire stable flow. The hydraulic 

permeability ( ̂, m
4
/N·s) was calculated for each scaffold using equation 3.3, a derivation 

of the Bernouilli equation and Darcy’s law [28]: 

 

 ̂  
  

   
 

     

(
  

  
⁄ )  

 ,  Equation 3.3 
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where   = height of scaffold (m), r = radius of the chamber’s outlet (m), A=cross-

sectional area of medium (m
2
), Ms= mass flow rate through chamber with the scaffold 

(kg/s) and M0 = mass flow rate through chamber without the scaffold (kg/s). Ms and M0 

capture the bulk (mass) flow rate changes across the compartment with and without a 

scaffold present. 

 

Figure 3.8 Schematic of experimental set-up used to estimate hydraulic permeability and differential 
flow. Scaffold was enclosed in a rubber tube fitted to an acrylic chamber. 

 

The differential flow (%) was calculated as the percent change in bulk flow rate across 

the compartment with and without the embedded porous scaffold, using equation 3.4.  

 

                  ( )  
     

  
     Equation 3.4 

 

The statistical significances of differences in hydraulic permeability and differential flow 

were determined by two-tail Student’s t-tests assuming for unequal variance. Significance 

was set at P -values< 0.05. Based on the results of these metrics, the designs with the two 

most disparate differential flows were utilized in DCE imaging studies. 
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3.4  DYNAMIC CONTRAST-ENHANCED CT IMAGING 

3.4.1  Vascular flow phantom system and assembly 

Prior to assembly, each scaffold and vascular network was soaked in acetic acid (≥99.7 

w/w %, Certified ACS, Fisher Scientific) to reduce contrast agent uptake (see Appendix 

2.A). The assembled fourth-order PCL constructs was filled with SBF to reduce the 

number of air bubbles present in the system. The constructs were left in SBF for one 

hour. The filled PCL constructs were pulled under a vacuum prior to assembly in the 

system. The prepared PCL vascular construct was placed into the phantom system (Fig. 

3.9). The PCL construct was embedded in a tissue-mimicking equivalent prepared from a 

0.85% iodinated contrast agent (Isovue 300, Iopamidol Injection 61%, Bracco 

Diagnostics, Princeton, NJ, USA) aqueous solution, which was contained in an acrylic 

bounding box. The bounding box (12 in. x 6 in. x 6 in.) consisted of inlets and outlets 

attached to Luer Lock connections of tubing to the vascular network and external tubing. 

The inlet and outlet of the vascular network incorporated Luer Locks for easy connection 

to the dynamic system. Three-sixteenth-inch clear plastic tubing was used for all 

connections, except for the injector, which used One-eighth-inch clear plastic tubing. The 

inlet of the phantom was supplied SBF and contrast agent through a T-shaped stopcock. 

An inline mixer was positioned downstream of the stopcock. The tubing then connected 

to the inlet of the bounding box, which was adjoined to the vascular phantom. Fluid that 

passed through the phantom exited the through the outlet portal of on the bounding box, 

which released fluid in a reservoir (waste). Once set-up on the CT bed, all tubing that 

preceded the inlet of the vascular network was filled with SBF, in order to flush air out of 

the system. SBF from a reservoir circulated through the phantom using a peristaltic pump 

(MasterFlex® L/S® Easy-Load® II, Cole Palmer, Vernon Hills, IL, USA) (a pulse 

dampener was used to smooth flow pulsations and maintain a constant flow). 
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Figure 3.9 Schematic representation of the single input single-compartment flow phantom within the 
closed flow system. 

 

3.4.2  DCE-CT image acquisition  

Initial flow phantom experiments were performed for two vascular phantoms with SLS 

scaffolds loaded into their compartments. Fig. 3.10 shows the experimental set up of the 

vascular phantom, pump and reservoirs on the CT bed. Using a radiotherapy CT scanner 

(Brilliance, Philips, Cleveland, Ohio, USA), cine CT data for the phantom were collected 

every second for 50 seconds at a resolution of approximately 1 mm x 1 mm x 1 mm. The 

DCE-CT scans were taken at 120kV and 200 mA with a gantry rotation time of 0.5 s 

using 3 mm slice thickness and a cycle time of 1 per second. Starting at t = 0 s, a bolus of 

iodinated contrast agent (Isovue 300, Iopamidol Injection 61%, Bracco Diagnostics, 

Princeton, NJ, USA) circulated through the fourth-order prototype phantom housing the 

lower (hydraulic) permeability SLS scaffolds. Then, SBF was flushed through the 

system. SBF was allowed to circulate through the system for about one minute before 

DCE-image data collection began. The SBF continuously circulated at a rate of 0.833 

cc/s, while 4 cc of contrast agent entered the system at rate of 2 cc/s for the first bolus. 

The bolus was flushed with 15 cc of SBF at a rate of 1 cc/s. The experiment was repeated 

for with the fourth-order prototype phantom housing the higher permeability SLS 

scaffolds.  

CT axial image slices were generated. The Hounsfield unit of the PCL and contrast 

enhanced-liquid enclosed in the phantom box was evaluated using the CT image data. 

Time-contrast enhancement curves were generated from the experiment (over 20 seconds 

of sampling time) using an in-house functional image analysis software package [29].  
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Figure 3.10 (Top) Picture of vascular flow phantom positioned on CT bed connected to a closed 
system, which pumps SBF and contrast agent. (Bottom) View of vascular phantom surrounded by an 
acrylic box filled with an aqueous tissue equivalent solution (in terms of intensity). (Blue arrow 
indicates the direction of fluid flow). 

 

3.4.3  DCE-CT image analysis 

Six tubes filled with iodinated contrast agent (Isovue 300, Iopamidol Injection 61%, 

Bracco Diagnostics, Princeton, NJ, USA) at the concentrations of 0, 5, 10, 30, 50 and 70 

mgI/ml were CT scanned (Brilliance, Philips, Cleveland, Ohio, USA) at 227 mA, 120 

kVp and 3 mm slice thickness. The enhancement was averaged over a uniform three-

dimensional region of interest manually segmented within each tube. A contrast 

calibration curve was generated from the collected static image data. Based on this linear 

relationship, time-contrast enhancement curves extracted from the DCE experiments 

were scaled to generate time-contrast concentration curves. A single channel 

pharmacokinetic model [31] represented in Fig. 3.11a was implemented to extract the 
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velocity from the DCE data. An exponential decay function can be used to describe the 

flow of contrast agent through the lumen (Eq. 3.5-3.6):  

       ( )         
 (   ( )⁄ )

   Equation 3.5 

 ( )   
    

  (
       ( ) 

      
⁄ )

,  Equation 3.6 

where C(x) = concentration of contrast agent (mgI/ml), x = position of contrast agent in 

vessel relative to the inlet VOI selected in the first level of bifurcation (m); 0 < x < 1 , 

and L = length of tube (m). The volumetric flow rate across each level of bifurcation 

remains constant (Eq. 2.3). The cross-sectional area increases as the diameter decreases, 

across the levels of bifurcation. The in vitro phantom does not capture vascular 

constriction or dilation that inherently incurs in small arteries and arterials, in vivo. The 

constant volumetric flow rate coupled with the increasing cross-sectional area results in 

proportionate changes in velocity, across the levels of bifurcation. The velocity decreases 

along the increasing level of bifurcation: velocity is a function of x, v(x). At each level of 

bifurcation, the offspring vessel was considered to be a single large channel (Fig. 3.11a) 

as shown in Fig. 3.11b. The output concentration, Cvessel of a parent vessel serves as the 

input concentration, Cinput, for the next level of bifurcation. 

  



67 

 

 

 

(a) 

 

(b) 
Figure 3.11 (a) A single channel pharmacokinetic model, wherein a differential element of the model 

balances the flow going in and out of the element. Exponential decay occurs across the vessel 

represented by the cylindrical channel. (b) Vascular network modeled by single channel, where the 

cross-section area increases as x increases. Cinput = input contrast agent concentration; Coutput = output 

contrast agent concentration; r = radius of channel; d = diameter of channel; x = fraction of channel 

length; L = length of channel / selected volume of interest; Qin = volumetric flow of fluid into the 

differential element; Qout. = volumetric flow of fluid out of the differential element. 

 

The Peclet number (Pe) indicates whether convection (Pe >>1) or diffusion (Pe << 1) is 

the dominant mode of mass transport within a vessel. The unitless number is calculated 

using Eq. 3.7 

    
  

    
,   Equation 3.7 
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where Q is the volumetric flow rate, l is the length of the vessel and D is the diffusion 

coefficient. A diffusion study is required to determine the diffusion coefficient of the 

iodinated contrast agent within the simulated blood fluid as it travels through the vessel 

lumen. Given the high speed of the fluid within the lumen of the prototyped phantom, 

convective flow is assumed, whereby mixing is caused by variations in the convective 

velocities field. Convection is dominant at the center of the vessel (well mixed), whereas 

at the vessel walls it approaches zero to produce a parabolic velocity profile (largely 

unmixed). Therefore Eq. 3.8 can be used to described the relationship between velocity 

and volumetric flow rate,  

     
       

 
,   Equation 3.8 

where     = average fluid velocity and A = cross-sectional area (m
2
). 

 

Considering Eq. 3.6 and Eq. 3.8,   
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   Equation 3.9 

where      = the length of the outlined volume of interest. 

 

For bifurcation level 3 (see Fig. 3.24), 
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  Equation 3.10 

 

For bifurcation level 4 (see Fig. 3.24), 
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The velocities computed in the third and fourth level of bifurcation assume each vessel to 

be a hollow cylindrical channel through which the fluid flows. In the case below, the 

fluid travels a tortuous path through the scaffold. As such, the velocity is superficial. The 

length is the distance of the straight line from the input to output of the compartment. 

This superficial velocity is a function of the true travel time acquired from acquired DCE-

CT image data. 

Before or after the scaffold compartment (see Fig. 3.24), 

    
              

 

  (
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  (      ))   (       (  ))
  Equation 3.12 

Q was used to compute the different flow.  

 

Volumes of interest (VOI) were contoured at the inlet of the flow phantom, the outlet of 

the flow phantom, the third level of bifurcation, the fourth level of bifurcation, the entry 

of the scaffold compartment and across the entire compartment, in order to generate time-

contrast enhancement curves. The average intensity of the first four time steps (baseline) 

was subtracted from all phases in the respective time-contrast enhancement curve, as 

described in Eq. 3.13. 

                (           ) Equation 3.13 

                  (           )                          (          ) 

 

Partial volume correction was performed using Eq. 3.14 

                              Equation 3.14 

 (  
                       

             
)                        

                       

             
          , 

where HU = Hounsfield units, and the estimated vessel volume is calculated from the 

caliper-measured diameter and the length of the selected volume of interest. The volume 

of the VOI is computed by the in-house functional image analysis software package [29].  
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The effect of the selected VOI volume on the acquired time-contrast enhancement curve 

was assessed. Four VOI volumes were considered: 25% of full volume, 50%, of full 

volume, 75% of full volume and full volume, for an arbitrarily selected initial VOI 

volume dimension. After baseline removal and partial volume correction, time-contrast 

enhancement curves were generated. The velocities were computed, along with the 

differential flow across the high and low permeability compartment. To assess whether 

there was leakage at the connections that adjoin the compartments to the vascular trees, 

the area under each time-contrast enhancement curve (AUC) was calculated. In MatLab, 

a trapezoidal numerical integration (trapz) was implemented to approximate the integral 

of the scattered data points. The trapz function computed the integral from 0 to 19 

seconds, with unit spacing. In addition, two VOIs were selected at the inlet of the 

vascular tree. Using Eqn. 3.12, where the VOIs represented Cvessel and Cinput, the velocity 

at the inlet of the vascular tree was DCE-measured at the time of peak bolus. The 

measured value was compared to computationally and experimentally measured values. 

The level of analysis achievable using the flow phantom, given the vascular-like 

architecture was demonstrated through analysis of DCE experimental setup enclosing 

high permeability scaffolds. Similar analysis may be performed on a flow phantom 

enclosing lower permeability scaffolds. 

 

A two-tail Student’s t-test assuming unequal variance was used to compare the 

experimentally measured differential flow to that calculated from post-processing DCE 

images. The t-test was also used to compare the computed inlet and outlet AUC for a low 

permeability and high permeability compartment. Significance was set at P-values < 0.05 

or P-values < 0.01.  

 

3.4.4 Measurement of Experimental and Theoretical Boundary Conditions 

The “arterial” input velocity to the flow phantom was measured experimentally, 

independent of the DCE-CT imaging experiment. The contrast agent and SBF were 

loaded into reservoirs which connected two pumps. Each pump was set to the dispense 

fluid at the same rate as in the DCE image acquisition. The experimental flow rate was 

measured using an in-house flow meter system. After an initial 8-9 seconds (delay 
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incorporated to account for travel time of mixed fluid to travel from T-junction to the 

outlet of the system), the mass flow rate was measured over 14 seconds. The 

measurement was repeated three times. The velocity was calculated as the average mass 

flow rate, divided by the density of the mixed fluid and the cross-sectional area of the 

outlet.  

 

The theoretical velocity (Eq. 3.17) at the various levels of bifurcation were calculated 

based on the conservation of mass for identify offspring vessels provided in Eq. 3.16 and 

Eq. 3.8. 

                          Equation 3.16 

                        

           
                    

          
  Equation 3.17 

The experimental inlet velocity was compared to a computational fluid dynamics (CFD)-

based measurement. The details of CFD are described later on in Chapter 4. The 

experimental and CFD measurements were compared to image-extracted velocity 

measurements acquired from the DCE-data. 

 

3.5  RESULTS 

3.5.1 Accuracy and precision of SLS fabrications 

The SLS fabrication process builds vessels with an inner diameter accuracy of 130 - 310 

microns (Table 3.1). For the larger test block (in which all vessels showed patency) t-tests 

were performed on the measurements collected (Table 3.1) to compare inner diameter 

measurements for the CAD and fabricated test blocks against diameters prescribed in the 

vascular algorithm (pre-STL generation). Results indicate that there was no significant 

difference (P-values > 0.05) in the inner diameter measurements between the CAD and 

the fabricated prototypes. However, there was a significant difference (P-values < 0.05) 

between the prescribed inner diameters of vessels and their fabricated (except for 2.0 and 

1.2 mm) and CAD representations. The measured difference between the CAD and 

prescribed inner diameter increased as the prescribed inner diameter size decreased. 

Henceforth, the reported inner diameter measurements are corrected values based on the 

observed diameter-dependent error. 
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Table 3.1 Inner diameter data for test block. Statistical summary and analysis of inner diameter 
measurements collected for vessels with a wall thickness of 0.6 mm. 

Prescribed   

 [mm] 

 CAD (n=12) 

[mm] 

 Fabricated (n=12) 

[mm] 

  mean ± stdev  % deviation*  mean ± stdev  % deviation† 

0.9  0.750 ± 0.013  -16.6  0.77 ± 0.11  -14.4 

1.0  0.862 ± 0.008  -13.8  0.84 ± 0.15   -15.8 

1.2  1.086 ± 0.027  -9.51  1.17 ± 0.06   -2.64 

1.5  1.385 ± 0.041  -7.66  1.44 ± 0.07  -4.33 

2.0  1.930 ± 0.018  -3.48  1.97 ± 0.10  -1.29 

4.0  3.983 ± 0.023  -0.42  3.90 ± 0.12   -2.40 

n = sample size 

* % deviation = (CAD measurement of inner diameter – prescribed inner diameter) / prescribed 

inner diameter x 100 

† % deviation = (physical measurement of inner diameter – prescribed inner diameter) / 

prescribed inner diameter x 100 

 

3.5.2  Limiting resolution for SLS fabrications 

The minimum, reproducible inner diameter dimension was determined through an 

iterative fabrication process that generated straight hollowed cylindrical vessels. Physical 

(digital caliper) measurements demonstrate a reproducible construction of vessels with an 

inner diameter and wall thickness as small as 770 ±110 microns (Table 3.1) and 600 

microns, respectively. For the two test blocks generated, all vessels with prescribed 

diameters greater than or equal to 900 microns (prescribed inner diameter in algorithm) 

showed patency after an air and water flush; vessels smaller than 900 microns diameter 

were occluded by fused PCL powder. All subsequent prototype phantoms built on the 

SLS system consisted of vessels with inner diameters greater than this resolution limit. 

 

3.5.3  SC/SL, SLS and ICC scaffold porosity 

Fig. 3.11 depicts the variability in porosity for the various porogen ranges used to 

fabricate SC/SL scaffolds. Three of the six ranges of examined SC/SL scaffolds produced 
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consistent porosity between 89-93 ± 1-5%. Scaffolds with porogen sizes less than 106 

microns, 106 – 180 microns and 180-300 microns experienced larger standard deviations 

in porosity 79% ± 14%, 84% ± 9%, 81% ± 13% respectively. Since only the 300-600 

micron and 700-1000 micron scaffolds were reliably fabricated with consistent porosity, 

future permeability studies only utilized theses scaffolds. The porosity of the 2.2 mm and 

2.15 mm pore design fabricated on the SLS were 68% and 58%, respectively.  

 

Figure 3.12 A box plot of the porosity for the fabricated SC/SL PCL scaffolds. 

 

Manufactured ICC scaffolds were sponge-like, with the core of the scaffold that still 

enclosed remnant beads, which were not dissolved by the hydrochloric acid. The ICC 

scaffolds were easily malleable and deformed to the touch. In application, the integrity of 

the scaffold was compromised upon placement in the scaffold compartment. As such, the 

architectural and flow characteristics of the scaffold were not evaluated. 

 

3.5.4 Scaffold hydraulic permeability and differential flow 

Hydraulic permeability and differential flow results are reported as mean ± standard 

deviation in Fig. 3.12. The experimentally measured hydraulic permeability values for the 

SLS scaffolds were 7.5 x 10
-6

 ± 4.2 x 10
-6

 m
4
/N·s and 6.3 x 10

-7
 ± 4.0 x 10

-8 
m

4
/N·s for 

the 2.2 mm and 2.15 mm pore design, respectively. The hydraulic permeability of the 

SC/SL scaffolds were 4.7 x 10
-7

 ± 1.2 x 10
-7

 m
4
/N·s and 9.1 x 10

-9
 ± 5.7 x 10

-9
 m

4
/N·s for 
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the 700 - 1000 micron and 300 - 600 micron porogen fabrications, respectively. Fig 3.12a 

depicts the hydraulic permeability range for both groups. Differences in permeabilities 

were statistically significant (P-values< 0.05) between all groups, except for the low 

permeability SLS scaffold and high permeability SC/SL scaffold. Fig. 3.12b illustrates 

the range of differential flow achievable with the two investigated techniques. SLS 

scaffolds exhibited a -22 ± 3% and -81 ± 6% differential flow, for high and low 

permeability scaffolds, respectively. SC/SL scaffolds showed a differential flow of -82 ± 

4%, and -90 ± 4% for scaffolds with 700 - 1000 micron and 300 - 600 micron particle 

size ranges, respectively. Differences in differential flow were statistically significant (P-

values< 0.05) between all groups, except the low permeability SLS scaffold and high 

permeability SC/SL scaffold. The SC/SL scaffolds and the 2.15 mm SLS performed 

similarly in terms of differential flow, although their estimated hydraulic permeability 

were statistically different.  
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Figure 3.13 (a) Permeability and (b) differential flow for SLS (2.15 mm and 2.2 mm) and SC/SL (300-
600 µm and 700-1000 µm) scaffolds. The differential flow and permeability for all groups was 
statistically significant, except SLS (2.15 mm compared to SC/SL (700-1000 µm). The significance 
bar above the respective bars, along with ‘*’ indicate that the two groups are significantly different 
from one another (p-value < 0.05). 

 

The preliminary DCE-CT experiments discussed in the remainder of this paper were 

conducted using SLS scaffolds, since they were easily reproducible and exhibited low 

variability in their porous architecture. 

 

3.5.5  DCE imaging 

The CT attenuation values of the PCL/HA plastic mixture and phantom background were 

at -150 Hounsfield units and 55 Hounsfield units, respectively. Fig. 3.14 shows an axial 

(a)

(b)
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slice of the phantom within the tissue-mimicking bounding box over the time course of a 

DCE experiment. Air pockets were evident within each of the compartments and 

persisted through the duration of the experiments.  

 

 

Figure 3.14 Representative baseline axial image of a single slice of the phantom submerged with 
tissue-mimicking liquid volume. The highlighted regions of interest outline the location of the inlet 
(red) and scaffold compartments (blue). 

 

3.5.5.1  Concentration calibration 

Assuming uniform mixing between SBF and CA, the signal intensity of the SBF over a 

VOI was converted to a CA concentration based on a contrast calibration curve that was 

generated for 0 – 70 mg of iodinated contrast agent per ml.  
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Figure 3.15 Contrast calibration curve generated from six vessels filled with varied concentrations of 
iodinated contrast agent. Linear fit between enhancement and contrast agent concentration. 

 

3.5.5.2 Volume of Interest Selection 

The mean intensity was measured over the given time course, for a volume of interest at 

the inlet and outlet of the enclosed within the phantom. These time-enhancement curves 

were generated from the acquired DCE-CT data for the high and low permeability 

compartments. The effect of VOI volume on enhancement is shown in Fig. 3.16.  Fig. 

3.16a illustrates four of the six contours examined at the inlet. In Fig 3.16b and Fig 3.16c, 

as the volume increases, the enhancement decreases along both the inlet and outlet. 

Subsequent VOIs use volumes on the order of the 30% sub-volume.  

 

 

(a) 
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(b) 

 

 

(c) 
Figure 3.16 (a) Single axial image of phantom with four volumes of interest (VOIs) selected. Four 

VOI volumes delineated by the contours over the inlet of the phantom. The 10% and 20% volume 

are not visible in this image. Representative time-contrast enhancement curves generated from the 

VOIs shown in (a) and at the outlet of a high permeability compartment: (b) with VOIS at inlet and 

(b) outlet. Maximum VOI volume = 500 mm3. 

 

3.5.5.3  DCE phantom time-contrast enhancement curve analysis 

Fig. 3.17a and 3.18 outline the contours used to generate time-contrast enhancement 

curves. The three VOI locations selected along the inlet and outlet showed consistent 

enhancement results for all generated curves (A, B, C), except for at the inlet of the low 

permeability compartment. Fig. 3.19a and Fig. 3.19b illustrate input functions for the 
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high and low permeability compartments, respectively. Fig. 3.20a and Fig. 3.20b 

illustrate output functions for the high and low permeability compartments, respectively. 

Fig. 3.21 shows both “arterial” and output time-contrast enhancement curves on a single 

plot. In Fig. 3.21a, the output function is flatter and has a lower enhancement than the 

“arterial” input functions. However, in Fig 3.21b, the “arterial” functions show large 

variability in enhancement that was not alleviated by partial volume corrections or the 

alteration of the VOI volume. Fig 3.17b illustrates the artifact present in the DCE data 

that may have altered the input signals. For both the low and high permeability 

compartments, the input function arrives first at 4-5 seconds, followed by the output 

curve at 6-8 seconds. 

 

Across both phantoms (low and high permeability compartment), at t = 0 seconds, a 

bolus of contrast agent was injected into a plastic tubing connected to the vascular 

network. The curves demonstrate a sharp increase (t = 5 - 7s) in signal intensity across 

the phantom as iodine entered the network and reached the compartments, followed by a 

more gradual decrease as the bolus cleared and SBF entered the network (t = 8 - 19s). 

The intensity peaked at t = 8 seconds.  
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(a) 

 

(b) 
Figure 3.17 (a) Representative axial slice of DCE-CT scan of low permeability scaffold within 

phantom. Three volumes of interest selected at the input (“arterial”) and output (“venous”) of the 

phantom. t = 8 seconds. (b) Artifact (red arrow) shown in representative axial slice of DCE-CT scan 

of low permeability scaffold within phantom. Three volumes of interest selected at the input 

(“arterial”) and output (“venous”) of the phantom. Blue (A); Red( B); Green (C); from left to right. t 

= 8 seconds. 

 

 

Figure 3.18 Representative axial slice of DCE-CT scan of high permeability scaffold within phantom. 

Three volumes of interest selected at the input (“arterial”) and output (“venous”) of the phantom. 

Blue (A); Red( B); Green (C); from left to right. t = 6 seconds. 
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(a) 

 

 

(b) 
Figure 3.19 Time contrast attenuation curves. Volumes of interest at inlet of phantom enclosing (a) 
high permeability scaffold and (b) low permeability. Baseline removal and partial volume correction 
performed. Representative axial slice view shown. SBF inlet flow = 1.4 g/s; CA inlet flow = 2.8 g/s. 
Inlet-A (blue); Inlet-B (red); Inlet-C (yellow); Outlet-A (blue); Outlet-B (red); Outlet-C (yellow). 
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(a) 

 

 

(b) 
Figure 3.20 Time contrast attenuation curves. Volumes of interest at outlet of phantom enclosing (a) 
high permeability scaffold and (b) low permeability. Baseline removal and partial volume correction 
performed. Representative axial slice view shown. SBF inlet flow = 1.4 g/s; CA inlet flow = 2.8 g/s. 
Inlet-A (blue); Inlet-B (red); Inlet-C (yellow); Outlet-A (blue); Outlet-B (red); Outlet-C (yellow). 
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(a) 

 

 
(b) 

Figure 3.21 Phantom enclosing (a) high permeability scaffold and (b) low permeability shown in 
single-slice view of VOIs used to generate time contrast attenuation curves at the vessel input and 
output. (Combined plots of Figure 3.19 and 3.20.) Baseline removal and partial volume correction 
performed. SBF inlet flow = 1.4 g/s; CA inlet flow = 2.8 g/s. Color coded volumes of interest 
correspond to Figures 1 and 2. Inlet-A (blue); Inlet-B (red); Inlet-C (yellow); Outlet-A (blue); Outlet-
B (red); Outlet-C (yellow). 
 

3.5.5.4  Evaluation of phantom leakage 

Figure 3.22 compares the AUC for the inlet (input function) and outlet (output function) time-contrast 

enhancement curves. For the high permeability scaffold, the input function AUC was 1.3 x 10
3 

± 110 and 

the outlet function AUC was 1.5 x 10
3 

± 79. For the low permeability scaffold, the input function AUC was 

1.6 x 10
3 

± 290 and the outlet function AUC was 2.3 x 10
3 

± 230. Within each compartment, the AUC of 

the output function was slightly higher. There was no statistical difference between the AUC for the input 

and output function time-contrast enhancement curves shown in Fig. 3.21.  
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Figure 3.22 Area under the curve measurements for time-contrast attenuation curves in Fig. 3.21 

approximated using trapezoidal integration. Calculation performed after baseline subtraction and 

partial volume correction. For the high and low permeability scaffold compartment, there was an 

increase in area of 13% and 39%, respectively. No statistical difference in area under the curve for 

either scaffold type (Two-tailed student’s t-test with significance less than 0.01). 

 

3.5.5.5  Measurement of velocity and differential flow 

Fig. 3.23 outlines the VOIs used to calculate the velocities summarized in Table 3.2 and 

Table 3.3. Table 3.2 summarizes the experimentally, computationally and imaging-

derived velocities at the inlet of the phantom. The experimental and computational 

measurements are similar, while there is a marked decrease in that measured in the 

image. The DCE-measured velocity was computed using Eq. 3.12 at t = 9 seconds where 

Cinput was measured over the blue VOI in Fig 3.17a and Cvessel was measured over the red 

VOI in Fig. 3.17a. Cinput and Cvessel were calculated directly from the contrast calibration 

curve shown in Fig. 3.15. The final DCE-imaging derived velocity estimated distal to the 

T-junction and mixer, prior to the inlet of the vascular tree was 0.61 m/s. In Table 3.3, the 

velocity at the third and fourth level of bifurcation are lower than the theoretical values. 

Table 3.3 summarizes the theoretical (based on Eq. 3.17) “arterial” values and DCE-

imaging extracted measurements for both the “arterial” and “venous” vascular trees. 

Level 3 and 4 were arbitrarily used to demonstrate post-analysis; the same techniques can 

be used to compute the velocity at bifurcation level 1 and 2. The ‘before scaffold’ and 

‘entire scaffold compartment’ values shown in Table 3.2 and Eq. 3.4 (volumetric flow 

used instead of mass flow rate, before the scaffold and across the whole scaffold 

compartment) were used to calculate the differential flow across the low and high 

permeability scaffold. In both cases, compared to the experimental values, the DCE-
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imaging derived measurements underestimated the differential flow, by 12% and 32% for 

the low and high permeability scaffolds, respectively (Fig. 3.24). The high permeability 

compartment DCE-extracted measurement was -29% and for the low permeability 

compartment it was -91%. 

 

 

(a) 

 

 

(b) 
Figure 3.23 (a) Volumes of interest selected at each level of bifurcation and over the scaffold 

compartment (11 mm). (b) Volume of interest delineates space before scaffold within the 

compartment (2 mm). Axial slice from DCE-CT scan of phantom. t = 8 seconds. Bifurcation level 3 –

blue ; bifurcation level 4 – green; entire scaffold compartment - red; region before scaffold- yellow. 
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Table 3.2. Mass flow measurement acquired distal to T-junction and mixer, prior to the inlet of the 
vascular tree. SBF inlet flow = 1.4 g/s; CA inlet flow = 2.8 g/s. 
 SBF (no bolus) [g/s]  

(Velocity [m/s]) 
SBF with bolus [g/s]  
(Velocity [m/s]) 

Experimental 2.1 ± 0.2 (0.51 ± 0.02) 3.5 ± 0.1 (0.85 ± 0.01) 

Computational 2.4 (0.58) 3.6 (0.88) 

DCE-imaging N/A 0.61 m/s 
Note:  

 Conversion from g/s assumes there is negligible density change to the SBF with the addition of 

contrast agent. 

 Phantom inlet diameter = 2.2 mm. Constant viscosity of fluid assumed to be 1080 kg/m
3
 

 

Table 3.3 DCE-measured estimated velocities across a high permeability scaffold compartment. 

DCE-extracted measurements were calculated using Eq. 3.10-3.12 and theoretical values were 

calculated using Eq. 3.16-3.17. 

 

 

 

Figure 3.24 Comparison of differential flow measured by experimental methods and from imaging-

extracted metrics. 

 

Measured Theoretical

"Arterial" Bifurcation Level 3 0.007 0.007

"Arterial" Bifurcation Level 4 0.004 0.001

"Venous" Bifurcation Level 3 0.02

"Venous" Bifurcation Level 4 0.01

Before Scaffold 0.28

Entire scaffold compartment 0.20

Velocity (m/s)



87 

 

3.6  DISCUSSION 

The predictive value of metrics extracted from quantitative DCE imaging is well-

documented in clinical research studies across various organs and modalities. However, 

the lack of a validation phantom and/or standardization across studies limits the practical, 

clinical relevance of protocol/system sensitive results, and comparisons of derived 

metrics such as blood flow rate. Thus, the development of a physical dynamic flow 

phantom that mimics the behavior of time-contrast enhancement curves seen on in vivo 

imaging is multi-center use of DCE-derived metrics. Image-extracted metrics from the 

first-pass bolus kinetic curves provide results dependent on the different biological 

effects in the scanned organ. The hemodynamic changes in blood flow are dependent on 

vessel bifurcations, vessel compliance, vascular network tortuosity and the volume of 

available luminal space [33]. In addition, disease-induced pathologies can alter flow 

and/or the anatomy of vasculature, in cases of occlusion or hyper-vascularization [3]. The 

tunable architecture of the proposed vascular phantom provides the flexibility to model 

both normal and pathological conditions present in variable levels of flow. The change or 

drop in flow rate is measured using the metric, differential flow. A reasonable phantom 

design representative of “arterial” input will house compartments with scaffolds that 

exhibit differential flows that cover disparate ranges of flow resistance. 

While computer generated vascular trees are based on idealized conditions and 

theoretical principles, they have been shown to reasonably reproduce in vivo 

hemodynamic conditions [34-35]. The vascular networks are a key component to the 

flow phantom, as they are representative of the small artery structures that distribute 

blood to smaller microcirculatory-like compartments (Fig. 3.5). The vessels were 

fabricated with an inner diameter precision of 220 microns. The computed dimensional 

accuracy was within reasonable limits since the resolution of clinical CT scanners was 1 

mm, roughly 5 times larger than the calculated error (Table 3.1). Results indicate that 

there was a significant difference (p-values < 0.05) in the prescribed inner diameters of 

vessels and their CAD representations. As the prescribed inner diameter decreased, the 

fabricated inner diameter decreased. Statistical analysis showed a significant mean 

difference between prescribed inner diameters and generated CAD inner diameters, 

indicating a bias between planned and modeled inner diameters using the current 
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algorithms. The shrinkage may be caused by computational rounding and mesh 

smoothing during tree generation. A calibrated correction based on these measurements 

was subsequently applied to correct for this diameter-dependent systematic variation in 

the CAD phase of construction. During the iterative process of building test blocks, it was 

observed that thicker walls caused the lumens of vessels with inner diameters smaller 

than 1mm to completely fuse during the build process. The minimum measured 

(physical) inner diameter size of 620 microns was achievable, however repeated builds 

showed that only a minimum inner diameter of 770 microns was repeatable. The study 

demonstrates that a bifurcating vascular network can be reliably fabricated using SLS, 

but at a minimum resolution greater than that of a capillaries. The apparent limitation of 

the chosen polymer using the SLS fabrication technique is that it produces rigid walls, 

when in fact in vivo vasculature has some elasticity that causes wall motion in response to 

the pulsatile nature of arterial blood flow and compliant nature of the venous system. 

Using SLS or another RP method, an elastomeric material may offer physiological vessel 

wall motion.   

The literature suggests that in the assessment of bulk properties, such as permeability and 

volumetric flow, a simplified porous media may be representative of perfusion at the 

capillary level [36]. A multitude of scaffold fabrication techniques offer control over 

scaffold architecture: pore size, porosity and interconnectivity. SLS and SC/SL scaffolds 

were successfully fabricated with distinct architectural characteristics. SC/SL created a 

less structured, random arrangement of pores within a scaffold, while RP provided a 

more structured pore lattice. The generated SLS scaffolds possess throat sizes that were 

roughly 60% smaller than the pore diameter. SLS scaffolds had 100% interconnectivity 

between pores, and a porosity of 68% for larger pore design and 58% for the smaller pore 

design. SC/SL scaffolds were less interconnected since, during the fabrication process, 

some salt crystals became completely entrapped in molten PCL and did not dissolve out 

of the scaffold structure. SC/SL scaffolds with pore diameters between 300 to 1000 

microns were highly repeatable and achieved a porosity greater than 89% with less than 

5% variability.  

The fluid flow properties, in terms of permeability and differential flow of the porous 

scaffolds were evaluated using a SBF. The permeability of each scaffold described the 
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ease of flow of a fluid through a porous medium under a hydraulic gradient. There was an 

inverse relationship between permeability and differential flow, as lower permeability 

scaffolds exhibited a greater differential flow. The differential flow of the both SC/SL 

scaffolds and the 2.15 mm SLS scaffold exhibited a high differential flow, while the high 

permeability (2.2 mm pore design) SLS scaffold met the low end of the differential flow 

range.  

Based on experimentally measured hydraulic permeability values in the literature, other 

scaffold techniques and design parameters can be selected to achieve a hydraulic 

permeability that can expand the range and/or increase the resolution of the achievable 

differential flow shown in Fig. 3.12. Computational studies using a homogenization 

algorithm [37] estimated that a 100-300 micron porogens could achieve intrinsic 

permeabilities on the order of 10
-12

 - 10
-13

 m
2
. The computational estimated hydraulic 

permeability values suggested that a low permeability scaffold could be achieved, under 

more structured, reliable (in terms of porogen size and porosity variability) conditions. 

However, the ICC scaffolds fabricated with porogens between 30 - 150 microns had poor 

integrity and therefore it was tested. The high differential flow achieved by the SLS (2.15 

mm) and SC/SL scaffolds, abrogated the need for a scaffold with lower permeability, at 

the level of ICC scaffolds  

DCE imaging demonstrated that tissue equivalent CT signal values were within a 

reasonable operating range for simulating tissue attenuation effects. For a fourth order 

vascular phantom, the DCE-CT data demonstrated a bolus entrance and clearance form 

with desired behavior (Fig. 3.21). While most DCE analysis will be at a reduced spatial 

resolution, the phantom successfully generated time-contrasts enhancements curves at the 

spatial resolution of the acquired images, as shown in Fig. 3.21. The DCE analysis 

demonstrated the ability of end-users to post-process the phantom data for comparison to 

theoretical, computational and experimental measurements. The difference in AUCs 

between the input and outputs curves for the high and low permeability compartments 

suggest that the phantom was not leaky (Fig. 3.22). DCE-extracted measurements of 

velocity and differential flow (Table 3.2 and 3.3) corresponded closely with experimental 

measurements (Fig. 3.25). It is expected that DCE-measured bifurcation values were less 

than the theoretical measurements, due to frictional forces present. However, within 
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larger channels, such as at the inlet, measurements closer to the experimental and 

computational values were expected. 

Ongoing studies seek to provide a quality assurance tool to assess the reliability and 

reproducibility of regional blood flow estimates extracted during DCE imaging analysis. 

While immediately designed for CT, the phantom may be modified to meet the design 

requirements and output characteristics of MRI, single-photon emission computed 

tomography (SPECT) and/or positron emission tomography (PET) for dynamic imaging 

validation. The sensitivity of image-extracted metrics to parameters such as the volume 

of the selected volume of interest that are susceptible to partial volume averaging and 

noise must be examined in future studies in order to provide a robust validation tool. The 

sensitivity of these metrics may also be examined under a physiological pulsatile fluid 

flow. Along with these future adjustments, the next generation of the phantom would 

minimize the occurrence of air pockets in the compartment, so as to reduce the 

opportunity for signal distortion and the inaccurate calculation of differential flow. The 

phantom system should be tightly sealed at junctions prior to the inlet of the phantom to 

ensure that air is not introduced to the system. After the phantom is pulled under a 

vacuum, it should be transported to the CT scan in a vacuum sealed container, until it is 

ready for connection to the overall flow system. Future studies should consider lower 

SBF rates for which the CA speed can be match so as to generate more accurate estimates 

of velocity. In this study, the velocity was assumed to be the maximum velocity achieved, 

since there was an increase, followed by a decrease in the speed of the injected bolus. In 

addition, during post-processing, the contour of the VOIs on which partial volume 

correction is performed may introduce error into the final calculated velocities. As well, 

the accuracy of VOI volume measurements made by the in-house software analysis tool 

should be determined, as they directly affect the partial volume correction factor. 

To further mimic peak intensity values seen in vivo, the average peak can be adjusted 

through dilutions of the contrast agent. Future studies should also determine the desired 

differential flows and/or velocities that would capture the low and high flow rates seen in 

vivo. Previous studies have been cited as evaluating unrealistic capillaries exchanged 

within their phantoms. Although the developed phantom does not solve this modeling 

challenge, the tortuous nature of scaffolds with their pore diameters which fall below the 
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resolution of typical CT, increases the complexity of exchange within the single channel 

model.  

Overall¸ these vascular networks provide a structure from which a more complex system 

can be design from and coupled with a multitude of scaffold techniques. The stated 

limitations of RP establish the extents to which this technique can be used in the 

development of a vascular phantom. Based on the design, future generations of the device 

can be scaled up to build systems larger volumes (greater than the 4ml shown here) for 

analysis of larger regions of interest. 

 

3.7  CONCLUSION 

The proposed SLS, rapid prototyping technique offers a consistent, reliable method to 

fabricate bifurcating vascular networks to a minimum resolution less than 1 mm. Porous 

compartments that exhibited a distinct range of differential flow were realized. Time-

contrast enhancement curves generated from DCE-CT illustrated the utility of the 

dynamic flow phantom. The DCE-CT signals exhibited desired behavior for an “arterial” 

input function and delayed compartment curve. Further improvements to the dynamic 

flow phantom are necessary for a more comprehensive evaluation of its extractable 

metrics and its sensitivity to post-processing parameters. 
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CHAPTER 4  
 

A Computational Fluid Dynamics (CFD)-Based Approach to Assessing Flow in a 

Dynamic Flow Phantom for Dynamic Contrast Enhanced (DCE) Imaging 

 

 

Abstract 

Purpose:  The complexity of recent dynamic imaging phantoms has increased, such that 

they grossly model anatomical and/or hemodynamic changes representative of in vivo 

perfusion. This study sought to establish the range of differential flow achievable within a 

dynamic imaging phantom, as measured by computational fluid dynamics (CFD).  

Methods: Transient flow of a simulated blood fluid (SBF) was analyzed within a CFD 

representation of a physical flow phantom. The mixing of injected contrast agent with 

SBF was qualitatively and quantitatively evaluated. Using CFD modeling techniques, the 

differential flow across permeable compartments was evaluated using a porous geometry 

and porous jump model. A correlation was generated to create a predictive model, which 

could be used to determine the achievable differential flows across the porous scaffold 

architecture given a known intrinsic permeability. Quantitative comparisons were made 

between the experimentally and computationally measured bulk flow changes within the 

phantom system.  

Results: The performed simulations demonstrated the importance of an inline mixer that 

produced an increase in fluid homogeneity within the phantom system. The CFD 

simulations closely matched experimental differential flow results and provided a 

prediction model to determine the intrinsic permeability of porous media needed to 

increase the resolution of differential flow changes achievable within the system. 

Simulation results were within the error margins of reported experimental results for high 

(-73% to -77%) and low (-21% to -25%) differential flows for the low and high 

permeability scaffold compartment models, respectively.. 
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Conclusions: CFD can be used to assess changes in bulk flow across scaffold 

compartments with controlled architecture that exhibit disparate differential flow changes 

within a physical, dynamic imaging phantom.  

 

4.1  INTRODUCTION  

Dynamic contrast enhanced (DCE) imaging is currently under investigation as an 

imaging biomarker indicative of tumor aggressiveness, and tissue response to treatments, 

such as focal irradiation [1-4]. The imaging technique involves the acquisition of a time 

series of single slice images after the injection of a contrast agent (CA) into a patient. The 

presence of CA allows for the temporal and spatial localization of blood in the volume of 

interest (VOI). Each voxel within the VOI of the acquired image series is analyzed to 

extract bulk properties of tissue perfusion (regional blood supply to tissue). The perfusion 

estimates provide metrics that can be used to directly track and potentially predict disease 

progression [5-7]. Across imaging systems and institutions, the implementation of a 

physical, dynamic phantom capable of validating DCE-extracted measurements can 

support imaging biomarker-based clinical decisions [8-9]. Unfortunately, DCE imaging 

validation studies have evaluated various blood flow metrics, in different tissue types, 

both in human and animal experiments, thus making comparisons difficult [9-16]. 

Using the analysis of time-contrast concentration curves generated from dynamic flow 

phantoms, comparisons can be made on the reliability of various post-processing DCE 

imaging algorithms across systems. Recently, Driscoll et al. [17] presented a re-usable 

phantom to measure flow using DCE- Computed Tomography (CT). The DCE-

Computed Tomography (CT) single compartment phantom developed by Driscoll et al 

[17] generated time-attenuation curves (TACs) with tunable peaks and shapes based on 

arterial input functions (AIF) generated from the flow of blood mimicking fluid (2:3 

glycerol-water, 2.5 - 5 ml/s) and iodinated CA (0.27 - 1.5 ml/s). The system was 

successful in closely matching the shape (in terms of duration and residual enhancement) 

and peak (in terms of enhancement) of a typical AIF. Driscoll et al. cited that the possible 

non-uniform dispersion of CA and heterogeneous mixing of SBF may have caused 

variability in experimental results across the phantom, in terms of the CA retention half-

life and the peak intensity and shape of generated curves over repeated experiments.  
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Thomas et al. developed a phantom with anatomically relevant features that achieved 

bulk flow characteristics below the resolution of a standard clinical CT scanner [18]. The 

vascular phantom consisted of a vascular tree (diameter of small arteries) that perfused 

four porous compartments and then mirrored a vascular tree on the venous (diameter of 

small veins) end of the system. Reported experimental measurements of flow across the 

porous compartments created differential flow (DF) rates that exhibited variable flow 

resistances.  The current study applied CFD to investigate the DF range achievable with 

the branching network phantom we previously developed, as well as to compare these 

CFD models with experimental DCE imaging data. The uniformity of flow across the 

system was qualitatively and quantitatively assessed for system with and without a fluid 

mixer distal to the inlet of the vascular phantom. CFD simulations were performed to 

determine the degree of mixing between the SBF and injected iodinated CA. The results 

provide comparative range of DF values that can be used to evaluate the sensitivity of the 

device to post-processing techniques used in DCE-CT. 

 

4.2  METHODOLOGY 

Each cylindrical compartment houses an 11 mm high x 11 mm diameter porous scaffold 

with 0.5 mm of space before and after the inlets and outlets of the attached vascular tree. 

The two mirrored trees are adjoined by a threaded compartment holder (11 mm inner 

diameter) which tightly bounds the scaffold, such that water only passes through the 

permeable scaffold. The fourth-level of bifurcation in the vascular tree that directly 

perfuse the compartment are 2 mm in length and 0.79 mm in diameter. Four vascular tree 

outlets and inlets are adjoined to the compartment (shown in Fig. 4.1a). The vascular 

phantom incorporates a porous scaffold at the midpoint of the mirrored vascular tree 

design. The vascular phantom is roughly 12.6 cm long and 5.6 cm in width. Fig. 4.1b-c 

illustrates the setup of the modeled dynamic phantom. SBF circulated through the system 

at a pump rate of 50 ml/min. 4cc of CA was injected into the system at rate of 2 cc/s by a 

standard power injector controlled by the CT scanner. The CA inlet tubing was flushed 

with 15 cc of SBF at 1cc/s before and after the injection of the bolus. Imaging 

experiments were conducted at room temperature (20-25˚C). 
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Figure 4.1 (a) Vascular phantom: “arterial” vascular tree adjoined to four scaffold compartments 

that connect at their outlet to a “venous” vascular tree. (b) Schematic representation of the 

assembled single-input single-compartment flow phantom within the closed flow system. (c) Vascular 

phantom submerged in contrast-enhanced liquid in a bounding acrylic box. Vascular flow phantom 

adjoined to a closed system via luer lock connectors. Setup is positioned on a CT bed. The red box 

delineates the scaffold compartment built into the phantom (‘G’). 

 

4.2.1  Formulation of the CFD Model 

The phantom system was evaluated piecewise: vascular tree, scaffold compartment and 

stopcock (Fig. 4.1).  A CFD model was created for the three components. The generated 

A – SBF reservoir
B – peristaltic pump
C – pulse dampener 
D – contrast injector
E – stopcock
F – mixer
G – phantom (vascular network, scaffold compartment)
H – waste reservoir

(b)

(c)

(a)

vascular tree
scaffold compartment

scaffold holder

inlet outlet
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CFD model used physiologically relevant boundary conditions to simulate experimental 

and imaging conditions.  

 

4.2.1.1  Fluid Junction Model 

Iodinated CA (iopamidol, Isovue-300, Bristol-Myers Squibb, Princeton, NJ) and 

simulated blood fluid (SBF) combined at the three-way stopcock junction in the phantom 

system. SBF was pumped through three-sixteenth-inch (inner diameter) plastic tubing 

and CA was injected into the system through one-eighth-inch (inner diameter) plastic 

tubing. The respective tubes were fixed to a standard T-shaped medical stopcock via luer 

lock connectors. A 1.45-inch-inline static mixer was positioned downstream (one inch) of 

the stopcock. The inline mixer was designed in a computer-aided design (CAD) software 

program (SolidWorks, Waltham, MA) with five to six helical-like elements that created 

turbulence in order to enhance fluid mixing. Fig 4.2. illustrates the design of the stopcock 

connected to the mixer. 
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Figure 4.2 CAD of T-junction that funnels CA and SBF into a single entry pathway towards vascular 

phantom. CAD of the inverse of the T-junction with inline fluid mixer positioned downstream of the 

T-junction outlet. (b) Single unit of the helical mixer (complete mixer composed of 6 repeating units). 

 

4.2.1.2  Vascular Tree Model 

The vascular tree component of the phantom was composed of rigid, hollow, symmetrical 

cylinders with a 0.6 mm wall thickness. Each parent branch gave rise to two offspring 

branches. The vascular tree was designed to adhere to the following principles: (1) 

Murray’s law (bifurcation rule) given in Eq. 4.1, where r is the radius of the vessel and r 

> 0 [19]; (2) the conservation of mass provided in Eq. 4.2, where Q is the volumetric flow 

rate; and (3) Poiseuille’s law in Eq. 4.3 [20], which considers blood to be an 

incompressible homogenous Newtonian fluid exhibiting laminar flow within small 

(b)

helical mixer 
embedded

outlet

contrast agent 
inlet

3-way 
stopcock

simulated blood 
fluid inlet

tubing

(a)
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arteries and veins. In Eq. 4.3, ΔP is the pressure drop across the cylinder, l is the length of 

cylinder and μ is the fluid’s dynamic viscosity; 

       
                  

                   
  Equation 4.1 

                                         Equation 4.2 

           
    

 ,  Equation 4.3 

 

Selective laser sintering was used to generate the designed vascular tree. The rapid 

prototyping method accepts stereolithography (STL) files, which store a triangulated 

surface mesh rendering of the designed part. The STL file was reverse engineered using a 

meshing software tool (3-matic™, Materialise, Belgium) to generate Initial Graphics 

Exchange Specification (IGES) files for CFD simulations (Fig. 4.3). The surface mesh of 

the tree was coarsened to balance the geometry accuracy and the amount of 

computational resources needed to reverse engineer the component. The surface mesh 

was modified to rectify bad edges, holes, shells, inverted normal, and intersecting and 

overlapping triangles.  

 

Figure 4.3 Side view of CAD of fluid domain enclosed within vascular tree. Tree decreases in 

diameter over four levels of bifurcation, from one 2.2 mm inlet to sixteen 0.79 mm outlets that 

perfused 4 cylindrical compartments. Vertical black lines indicate cross-sectional planes where the 

mass flow was evaluated. 
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4.2.1.3  Modeling of Scaffold Compartment 

A CAD model of a single compartment within the imaging phantom (Fig. 4.4) was 

designed in SolidWorks (Waltham, MA), then meshed and analyzed in a CFD simulation 

platform (ANSYS Workbench and Fluent, Canonsburg, PA). Two compartment models 

were evaluated through CFD simulations. The first model recreated the geometry of a 

single spherical pore scaffold within the compartment space of a vascular tree (Fig. 4.4) 

in order to the fluid behavior of the porous scaffolds. The inlet and outlet geometry of the 

vascular tree, along with that of the scaffold were replicated in Solidworks. Two porous 

compartments were generated to represent two distinct permeability values that were 

previously experimentally evaluated with DCE CT imaging. A 2.15 mm and 2.2 mm 

spherical pore diameter was repeated every 2 mm to fill a cylindrical porous zone within 

the compartment to generate a low (6.3 x 10
-7

 m
2
) and high (7.5 x 10

-6
 m

2
) relative 

intrinsic permeability scaffold, respectively (as discussed in Chapter 2 [18]). The porous 

zone was 11 mm in height and diameter. The four inlets had a diameter of 0.79 mm and 

length of 2 mm. 

 

 

Figure 4.4 Side view of CAD of (a) a scaffold enclosed in a single compartment in bioreactor and (b) 

the inverse geometry of (a) representing the fluid volume in Fluent. Representative volume (11 mm 

height and diameter) shown for spherical pore geometry. (c) Side view of CAD of the porous jump 

model representing the fluid volume within a single compartment (11 mm diameter) of the imaging 

phantom. 

(a) (b) (c)
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In the second model, a porous jump interface provided a two-dimensional simplification 

of the prior model. The porous jump interface was defined as the face at the center of the 

compartment, midway between the inlets and outlets (Fig. 4.4c). The four inlets had a 

diameter of 0.79 mm and length of 2 mm. 

This simplified porous model solved the porous jump Eq. 4.4 (Darcy-Forchheimer 

equation) to determine the resistance to be added to the flow through the volume, based 

on the boundary conditions set for the face (intrinsic) permeability (m
2
) ( ), medium 

thickness (meters) (  ) and pressure jump coefficient (  ).  

 

    (
 

 
    

 

 
   )    , Equation 4.4 

 

where   is the viscosity,   is the velocity normal to the porous face,   is the density and 

   is the pressure drop. The pressure jump coefficient was set to zero (negligible) since 

in the case of laminar flow through a porous media, the pressure drop is proportional to 

velocity. Based on the dimensions of the scaffold, the medium thickness was set to 0.011 

meters. The simplified model evaluated the DF values achievable over a range of intrinsic 

permeability values. The selected intrinsic permeability values represented the range of 

low to high permeability values realizable in physical fabrications of the porous 

compartments. The intrinsic permeability (ki) was calculated as the product of the 

measured hydraulic permeability and the estimated constant viscosity of the fluid.  

 

4.2.1.4  Biofluid Characterization 

 

Simulations were performed using the viscosity of a non-Newtonian mixture of 35% 

water, 65% glycerin and 0.0075% Xanthan gum (by weight) [21]. The dynamic viscosity 

of five SBFs was acquired using a rheometer (AR1000 Rheometer, TA Instruments, New 

Castle, DE) at 25˚C for shear rates ranging between 0.02 to 1500 s
-1

. The viscosity 
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measurements were used to model the non-Newtonian SBF as a Carreau fluid. The shear 

rate dependence of viscosity was described by the Carreau-Yasuda Eq. 4.5 [22], where a 

= dimensionless constant, μ = apparent dynamic viscosity,  μ∞ = infinite shear rate 

viscosity, μ0 = zero shear rate viscosity, λ = time constant,  = shear rate and n = power 

index:  

 Equation 4.5 

 

A non-linear least-squares curve fitting was used to fit the experimental SBF viscosity 

data to the Carreau model, using Microsoft Excel Solver. The solver minimized the sum 

of the squares of the deviations between the actual viscosity data and the predicted values 

of viscosity. The model parameters served as input to the CFD model along with the 

manufacturer reported viscosity and density values for the CA, which were 4.7 cP and 

1.369 g/ml at 37ºC, respectively. 

 

4.2.1.5  Meshing and Boundary Conditions  

Each model was meshed with tetrahedral elements using a patch conforming method. 

Inflation layers were added to the inlet, fluid volume (porous area and static mixer) and 

outlet boundaries. For each inlet, a mass flow rate (kg/s) was set along the primary 

direction of flow, y-direction relative to the orientation of model in the CFD software 

(Fluent, Waltham, MA). An in-house flow meter system was used to measure the flow 

rate of SBF at the outlet of the tubing that connected to the stopcock. The mass flow rate 

at the inlet boundary of the simulation was set to 0.0014 ± 0.0001 kg/s based on the 

acquired flow meter measurement. The mass flow of the CA was set to 0.0028 kg/s. For 

SBF flushes through the CA inlet, the mass flow was set to 0.0014 kg/s. Each outlet was 

set to a pressure outlet (1 atm) boundary condition. The outflow boundary condition 

assumes a zero normal gradient for all flow variables except pressure. Since, each porous 

compartment was close to identical and due to the symmetry of the over vascular 

phantom design, the no pressure variations between outlets was assumed. No-slip on all 

internal boundaries and solid walls were imposed. For the vascular tree and porous 

𝛾  



106 

 

compartments, mesh independence tests were performed to ensure that the number of 

meshing elements reduced the sensitivity to less than 5% (Appendix D.1).   

The fluid entering the network and compartment were modeled as incompressible, 

isothermal and laminar (see Table 4.1). Laminar flow at the inlets was confirmed by 

computation of the Reynolds number, Re, which for values less than 2300 indicate 

laminar flow. The Reynolds number was calculated using the following Eq. 4.6, where   

is the SBF density (kg/m
3
), Q is the volumetric flow rate (m

3
/s),    is the hydraulic 

diameter (m) and   is the dynamic viscosity (Pa·s) of the SBF [23]: 

 

 e= 
  Dh

μA
 Equation 4.6 

 

Table 4.1 Flow conditions required to satisfy laminar flow within the phantom, based on a 50 ml/min 

SBF pump flow rate at the inlet of the system. 

Component Inlet Diameter (mm) Reynolds Number 

Stopcock – SBF inlet 3.2 153 

Stopcock – CA inlet  3.0 55 (126*) 

“Arterial” Vascular Tree 2.20 395 - 576 

Compartment 0.79 102 

* SBF flush precedes and follows CA injection through the CA inlet. 

 

4.2.2  CFD Flow Simulations 

Simulations were carried out with a two-phase mixture model (for stopcock and porous 

compartment) and single-phase model (for vascular tree and porous jump compartment 

model) in commercial CFD packages (version 14.0, ANSYS Fluent). The vascular tree 

and porous compartment were assumed to be rigid solid objects, receiving constant, non-

pulsatile flow. The governing equations were conservation of momentum and continuity 

(incompressible flow): 
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 (
  ⃑⃑ 

  
  ⃑    ⃑ )              (momentum) Equation 4.7 

   ⃑    (continuity),  Equation 4.8 

 

where   is the fluid density (kg/m
3
),   is the fluid velocity vector,   is the pressure (Pa), 

  is acceleration due to gravity (m/s
2
) [24] and   is the rate dependent dynamic viscosity 

defined by the Carreau model (Eq. 4.5). A pressure-based solver, and laminar flow 

model, under the assumption of shear-dependent viscosity and constant density was used. 

In Fluent, the velocity-pressure corrections were calculated using the SIMPLEC (Semi-

Implicit Method for Pressure Linked Equations - Consistent) algorithm [25]. A least 

squares cell based gradient algorithm and standard pressure algorithm were used in for 

spatial discretization. To reduce numerical diffusion, a second order upwind was 

performed. The tolerance of (spatial) convergence for the continuity, x-velocity and y-

velocity were set to 1 x 10
-3 

for the porous jump model and 1 x 10
-6 

for all models. A 

±5% sensitivity level was acceptable for the spatial mesh independence (Appendix D.1). 

In the in commercial CFD code, a two-phase, liquid-liquid, mixture model for miscible 

fluids was implemented under a transient flow field. The transient model was based on an 

Euler-Euler approach (Volume of Fluid model), wherein the model assumes the separated 

heterogeneous flow and solves momentum equations for the mixture. The segregated 

solver was used to solve the governing equations. The second-order upwind scheme was 

used as the discretization scheme in the governing equations. The SIMPLE (Semi-

Implicit Method for Pressure Linked Equations) algorithm [26] was used to resolve the 

velocity-pressure coupling used for the transient calculations for the under-relaxation 

factor of 1 (momentum and pressure combined). A second order upwind method was 

applied to the transient simulations. A time step was set to 1. The tolerances of (temporal) 

convergence for the continuity, x-velocity and y-velocity were set to 1 x 10
-3

.  Appendix 

D.1 provides the user defined functions used to set the boundary conditions during the 

transient analysis. 
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4.2.3  Assessment of Changes in Bulk Flow within the Phantom 

A simulation study was performed on the efficiency of passive mixing of CA and SBF 

downstream of the T-junction. Streamline data was collected for two-phase flow 

introduced through the two inlets of the system. The distributions of CA and SBF before 

and after the static mixer were assessed to determine the overall mixer performance. The 

input mass flow to the vascular tree was set to the value of outlet mass flow rate from the 

T-junction. The mass flow rate at the outlets, after the fourth-level of bifurcation were 

measured and used as the inlet mass flow rate in compartment simulations. In addition, 

the uniformity of flow across the scaffold compartments was evaluated, as these changes 

affect intensity values analyzed during image post-processing. Flow parallel (profile near 

center, and right and left offset from center) and perpendicular (top, middle and bottom 

profile) to the direction of flow across the porous compartment was qualitatively assessed 

via visual inspection to identify hot spots (velocities more than two standard deviations 

greater than the average velocity across the 6 planes) and dead zones (velocities more 

than two standard deviations less than the average velocity across the 6 planes) within the 

compartment. The mass flow rate across the network was measured to determine the DF 

across the scaffold (see Fig. 4.2) and to compare flow rates against theoretical flow rates 

predicted by Eq. 4.2. Two planes were drawn perpendicular to the direction of flow in the 

porous and scaffold geometry models. For the porous geometry model, the top and 

bottom planes were slightly offset inward of the boundary edges (perpendicular to the 

direction of flow) of the porous scaffold within the compartment. For the porous jump 

model, the top and bottom planes were slightly offset outward of the jump interface (Fig. 

4.4c) (perpendicular to the direction of flow). The mass flow rate was calculated across 

the plane to attain CFD-based DF values. The DF (%) across the scaffold compartment 

was calculated by the following Eq. 4.9 

 

   
       

   
    ,  Equation 4.9  
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where MFi is the mass flow rate across plane 1 (g/s) and MFf was the mass flow rate 

across plane 2 (g/s). 

The CFD-calculated DF values were compared to the experimentally measured values for 

spherical pore scaffolds previously reported [18]. The DF values calculated from the 

scaffold geometry models were compared to values from the porous jump model for SBF, 

to assess the closeness of the models’ results. Based on simulations with the mixture of 

SBF and CA as the fluid, the DF values were calculated and compared to DF values 

calculated for SBF only, in order to determine the influence of CA. 

  

4.2.3.1 Accuracy of Experimental Hydraulic Permeability Measurement 

To evaluate the accuracy of the experimentally measured hydraulic permeability values, a 

benchmark comparison of the permeability output provided by the custom-designed flow 

meter was performed against another system previously published on by Sanz-Herrera et 

al. [27]. Sanz-Herrera et al. reported permeability values for Sponceram® carriers 

(Zellwerk, Oberkraemer, Germany) based on their in-house, Darcy-based permeability 

chamber (listed in Table 4.3). Their experimental permeability values were confirmed by 

homogenization theory-based numerical results. Three Sponceram® (30-

90)/Hydroxyapatite (HA) discs were acquired from Zellwerk. The discs were porous, 

zirconium dioxide based ceramic scaffolds. The height and diameter of each disc was 

measured to estimate the average dimensions of the samples. Micro-CT scans of each 

scaffold were acquired and processed using MicroView to calculate each specimen’s 

porosity. An average porosity was calculated for each scaffold type. The hydraulic 

permeability of the each scaffold was measured by water perfusion within the flow meter 

system [28]. To position the discs in the chamber, plastic tubes were custom-made (Objet 

Connex 500 using Accura® 60 plastic) to tightly fit the scaffold diameters. Each disc was 

run five times through the permeability chamber. Statistical values of the intrinsic 

permeability in terms of the mean value and standard deviation were calculated.  
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4.2.3.2  Statistical Analysis 

A two-tail one-sample t-test was performed to determine whether there was a significant 

difference between the expected and observed DF values. The expected values were 

those computationally derived. The representative DCE imaging data served as the 

observed value. Statistical significance was defined as a P-value of less than 0.05. 

 

4.3  RESULTS 

The SBF rheology exhibited non-Newtonian, shear thinning characteristics. The shear 

stress increased and viscosity decreases, with increasing shear rate. The fitted data was 

compared to widely-accepted blood viscosity curves (Fig. 4.5a). The Carreau model 

coefficients, which provided the best fit were n = 0.23, a = 2, µ0 = 0.076 kg/m·s, µ∞ = 

0.004 kg/m·s and λ = 22.06 seconds. The SBF viscosity was Newtonian for shear rate 

values greater than 100 s
-1 

(Fig. 4.5b). For large shear rates values the dynamic viscosity 

was 3.64 x 10
-3

 ± 3.0 x 10
-3

 kg/m·s. The fluid density was 1080 ± 10 kg/m
3
.  
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Figure 4.5 (a) The SBF mixture was fitted by nonlinear least squares to Carreau model and 

compared to published findings for a similar SBF [29] and human blood fluid [30]. (b) Log-log scale 

plot of the SBF flow behavior for shear rates greater than 100 s-1 illustrate an approximately 

constant viscosity. 

 

Fig. 4.6 illustrates the path of the fluids through the stopcock then mixer 1 second after 

the bolus enters the system. The yellow and blue streamlines in Fig. 4.6 are intertwined 

proximal to the outlet. The discharge mass flow rate from the T-junction/mixer increased 

from 0.00248 kg/s to 0.00362 kg/s, with the addition of the bolus into system. As the 

fluid entered the “arterial” vascular tree the mass flow rate decreased after each level of 

bifurcation, closely matching theoretical estimations that were based on the conservation 

of mass (Eq. 4.2). At all levels of bifurcation the standard deviation for the mass flow rate 

(b)

(a)

100 1000

0.10

0.01

0.10

1

0.01 0.1 1 10 1000100

0.01



112 

 

across offspring vessels within the same level is approximately ±0.01 g/s. The percent 

difference in mass flow across all bifurcations is less than 3%.  

 

 

Figure 4.6 (a) Flow conditions within the T-junction/mixer model, where the mass flow rate from the 

contrast injector is 0.00273 kg/s for CA and fluid from the peristaltic pump delivers a continuous 

stream SBF at 0.0014 kg/s. The blue and yellow streamlines show velocity trajectories for the SBF 

and CA, respectively.  (b) Zoomed in view of the streamlines within the mixer. (Black wireframe 

outlines geometry.) 

 

 

 

 

Table 4.2 Decrease in the average mass flow across the levels of bifurcation. The computational 

values closely match the expected theoretical values. 

Bifurcation Theoretical Mass Flow CFD-measured Mass Difference 
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Level (g/s) Flow (g/s) (%) 

0 3.62 3.59 -0.7 

1 1.81 1.79 -0.9 

2 0.91 0.89 -2 

3 0.45 0.44 -3 

4 0.23 0.23 0.003 

 

Using the porous jump model, the DF was estimated for the intrinsic permeability values 

between 3.3 x 10
-7

 m
2
 and 1 x 10

-9
 m

2
. Lower intrinsic permeabilities produced increased 

resistance that resulted in a larger pressure drop across the compartment. Fig. 4.9 shows 

the DF measured across the porous jump, dependent on the applied intrinsic permeability.  

 

 

Figure 4.7 Porous Jump Model. Calculated DF based on the prescribed intrinsic permeability into 

the porous jump model.  

 

The measured average porosity, calculated experimental hydraulic permeability and 

estimated intrinsic permeability of the Sponceram® (30-90)/HA scaffolds are represented 

in Table 4.3. The measured intrinsic permeability was roughly one order smaller than that 
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of the published value. Based on these results and those reported Appendix D.2, a 

correction factor (roughly three times the original value) was applied to the experimental 

intrinsic permeability. An exponential curve was fitted to the data in Fig. 4.7 (DF = -0.9e
-

2E+07k
, where k = intrinsic permeability). The low intrinsic permeability value increased 

from 2.29 x 10
-9

 m
2
 (hydraulic permeability = 6.3 x 10

-6 
N/m·s) to 6.19 x 10

-9
 m

2 
and the 

high intrinsic permeability value increased from 2.73 x 10
-8

 m
2
 (hydraulic permeability = 

7.5 x 10
-6 

N/m·s) to 7.37 x 10
-8 

m
2
. The porous jump-derived DFs for the low and high 

permeability compartments were -89% and -54%, respectively. Based on the porous jump 

model, the corrected intrinsic permeability generated DFs of -82% and -21%, for the low 

and high permeability scaffolds, respectively. 

 

Table 4.3 The benchmark experimentally measured permeability values (mean value ± standard 

deviation) for Sponceram®(30-90)/HA scaffolds [27] are compared to in-house experimental 

measurements. 

 In-house (n=3) Published  (n=5) 

Porosity (%)       78.8 ± 1.2 79.81 ± 2.18 

Experimental Permeability  (m
4
/N·s) 1.7 x 10

-6 
± 6.0 x 10

-7
 ― 

Intrinsic Permeability (m
2
)  1.7 x 10

-9 
± 5.7 x 10

-10
 1.79 x 10

-8
 ± 4.09 x 10

-9
 

 

The computational estimations of the DF across the low and high permeability 

compartments from the porous geometry model were -77% and -21%, respectively. Fig. 

4.8 compares the experimental results from Chapter 3 to the porous geometry simulation 

measurements. The porous geometry and porous jump-corrected DF measurements were 

not significantly different from the experimental measurements (p > 0.05).  The porous 

jump-corrected DF was slightly greater than the porous geometry DF for the high 

permeability scaffold, but fell within the range of experimental measured values.  
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Figure 4.8 Comparison of measured DF between experimental and computational (porous geometry). 

There was no statistical difference (p > 0.05) between the simulation and experiment measurements. 

 

For the high permeability compartment, the average velocity was 0.067 m/s ± 0.033 m/s, 

with hot zones occurring for velocities greater than 0.098 m/s and dead zones for 

velocities less than 0.035 m/s. The contour maps in Fig. 4.9a illustrate the range of 

velocities across the high permeability compartment for the transverse and longitudinal 

planes. Fig 4.9b shows the velocity contour maps for the low permeability compartment. 

In the low permeability compartment, the average velocity was 0.015 m/s ± 0.007 m/s, 

with hot zones occurring for velocities greater than 0.022 m/s and dead zones for 

velocities less than 0.008 m/s. In Fig. 4.9a-b, the maximum velocity was set to the 

represent hot zones and the minimum velocity to dead zones. The four-inlet designed 

fully perfused both compartments. Zero velocities only occurred at the walls of the 

design. For the high permeability compartment, along the transverse and longitudinal 

planes the center of the pore (cylindrical core) received the greatest velocities. While for 

the low permeability compartment, a larger fraction of the pore was perfused at a high 

velocity along the transverse plane. Along the longitudinal planes, the lowest velocities 

were experience at the middle of the compartment. For both compartments, non-spherical 

pores (quarter or half of a pore) at the edges of the cylindrical compartment received the 

little to no fluid infiltration. 
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Figure 4.9 Contour map illustrates velocity profile across (a) high permeability and (b) low 

permeability compartment along the longitudinal (top row, from left to right: left offset, near center 

and right offset) and transverse planes (bottom row, from left to right: top, middle and bottom). 

 

(a)

(b)
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4.4  DISCUSSION 

The implementation of the proposed dynamic flow phantom into routine quality 

assurance of clinical CT systems can provide hemodynamic behavior across bifurcating, 

arterial-like, vessel structures with differential flow across scaffold compartments. 

Experimental and computational characterization of the physical system is important to 

realize the benefits of a physical, dynamic quality assurance tool in the clinic or as a 

research tool. CFD uses numerical methods to solve fluid mechanics equations and 

analyze fluid flow through a construct. This paper used the CFD software FLUENT to 

assess flow conditions of the bifurcating tree and porous media flow within the phantom 

system illustrated in Fig. 4.1. The system was evaluated piecewise — T-junction/mixer, 

“arterial” vascular tree and porous compartment — in order to customize the mesh for 

each complex geometry and to reduce the computational cost of the simulations. The 

mesh quality was optimized to maintain the contours of the original volume geometry, to 

have sufficient element quality (specifically, in terms of skewness) and to balance the 

number and size of elements in order to be computational feasible (balancing accuracy 

and convergence). Appendix D.1 provides the mesh independence data for each model. 

CFD is often used to examine wall shear stress, pressure and velocity profiles within 

arteries and porous media [31-36]. Computational evaluation of the physical phantom 

investigated in Chapter 3 [18] can support the previously reported experimental data, as 

well as address phantom design or setup concerns, such as signal enhancement variations 

caused by inadequate mixing/dispersion of the bolus. As such, both the fluid and 

geometry of the phantom were modeled. The aggregation of red blood cells along the 

center axes of small blood vessels in vessels of decreasing diameter (less than 800 μm) 

cause blood to exhibit non-Newtonian behavior due to the shear-dependent (less than 

100/s) changes in viscosity [37-41]. The SBF composed of 65% glycerine and 0.0075% 

Xanthan gum at 25˚C achieved the viscous properties of human blood and demonstrated 

shear-thinning, non-Newtonian behavior that was fit to the Carreau model (Fig. 4.5). The 

determination of an appropriate SBF at 25˚C eliminated the need for temperature 

regulation of the phantom device, beyond the controls of the imaging room. The warmed 

CA that was introduced to the system had a density and viscosity similar to that of human 

blood. In vivo, the iso-osmolality of CA compared to plasma reduces the potential for the 



118 

 

increased disaggregation of red blood cells with increasing concentration of contrast 

medium [42-43]. Thus, the resultant viscosity of the combined solution is assumed to not 

be affected by mixing in CA. As such, models downstream of the contrast injection 

assume the viscosity and density of the SBF.  

It was important integrate a mixer into flow phantoms in order to provide adequate 

mixing, similar to the diffusion that occurs in vivo, downstream of the CA injection site. 

Non-homogenous mixing can lead to variability in the extracted flow rates. Table 4.1 

demonstrates that the CA and SBF flow conditions entering the stopcock/mixer (shown in 

Fig. 4.2) were laminar. Fig. 4.6 illustrates that the CA and SBF fluid layers were stratified 

prior to entry into the helical mixer. The stream path after the mixer demonstrated 

increased mixing of the fluids, with a reduced layering effect.  

DCE post-processing techniques delineate the high intensity voxels within VOIs located 

in the input arterial structure (aorta or major artery) and parenchyma of interest, in order 

to extract signals used to estimate blood flow rates. As such, the flow in the “arterial” 

vascular tree (Fig. 4.3) and discharge flow within the porous compartments (Fig. 4.4a-b) 

were qualitatively and quantitatively evaluated. Given the maximum output flow rate 

from the mixer, simulations of the vascular tree (Fig. 4.3) demonstrated that the flow rate 

decreased across the bifurcation levels (Table 4.2), as expected, closely matching 

theoretical predictions (less than 2% difference). A uniform distribution of fluid entered 

the porous compartments. The velocities exhibited at the inlet (1.5 x 10
-3 

m/s) and outlet 

(3 x 10
-4 

m/s) of the vascular tree fall in the range found in vivo, within small human 

arteries and arterioles, respectively [44].  

The flow resistance experienced within the compartment was characterized using the 

intrinsic permeability of the porous scaffold. A porous jump model (Fig. 4.4c) was used 

to simulate flow at intrinsic permeability within a reasonable range attainable using 

scaffolds (i.e. selective laser sintering and solvent casting/salt leaching). Fig. 4.7 shows 

the exponential relationship between measured DF and prescribed intrinsic permeability. 

Compared to the published permeability values for Sponceram® scaffolds, the designed 

in-house permeability measurement system was determined to underestimate the 

permeability of measured samples (Table 4.3). Based on the observed underestimation of 
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permeability by the in-house permeability setup, additional studies carried out to 

understand the influence of the Reynolds number and fluid viscosity on the measured 

hydraulic permeability for different scaffold geometries (see Appendix D.2). A correction 

factor was applied to the intrinsic permeabilities to estimate the DF. 

The results of the computational simulations, demonstrated that flow rate in the porous 

compartments decreased as the SBF moved across the scaffold compartments. These 

changes in DF mimicked the decrease in blood flow associated with the pressure drop 

exhibited in vivo as blood flows from arterioles down to capillaries. For the low 

permeability compartment, the DF was less than that of the high permeability 

compartment, likely due to the increased tortuosity in the pore architecture. Fig. 4.8 

showed that the simulation measurements for the porous geometry and porous jump-

geometry closely matched (± 5%), for the estimated correction factor (given the 

viscosity-dependent variability of the experimentally measured hydraulic permeability). 

The experimental results were not significantly different from the either of CFD models.  

By visual inspection, the flow across both compartments’ transverse planes was 

determined to be uniform based on the symmetry of the contour shown in Fig. 4.9a-b. 

Similarly, the flow across the longitudinal plane of the high permeability compartment 

was uniform, with the greatest flow rates occurring at the center of the spherical pore. 

However, for low permeability scaffolds, the longitudinal planes showed non-uniform 

flows, where the highest flow rates were experienced closer to the edges of the 

compartment.  

An improvement to the physical phantom and simulations would give the SBF a 

physiological flow waveform. As well, the simulation assumed that the vessel walls were 

motionless, due to the rigidity of the polymer used to manufacture the physical phantom. 

However, small arteries are elastic and small veins are highly compliant, with the visco-

elastic properties of their walls modulated by oscillatory flow. Future generations of the 

system and an associated CFD model would incorporate a dynamic motion model. Along 

with these additions, a coefficient of friction can also be incorporated to account for the 

fluid’s interaction with the polymer construct and tubing. This realistic frictional force 

model would dampen the fluid behavior and increase the complexity of the CFD model 
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along with the accuracy of results. The porous jump model provides a prediction tool to 

identify other scaffolding techniques or spherical pore geometries that can generate 

porous media within the range of -5% to -95%, in order to represent low and high 

differential flows within the system. 

 

4.5  CONCLUSION 

New dynamic imaging phantoms seek to maximize the benefits of rapid prototyping 

techniques to manufacture a validation tool that closely mimics the anatomical features 

and hemodynamic properties characteristics of distributed blood flow at the organ-level. 

This chapter demonstrates the use of CFD and experimental data to confirm flow 

characteristics (rate or differential flow) within a flow phantom that enclosed either low 

or high permeability compartments. Velocity flow rates from the artery-level down to 

arteriole-level were mimicked within the dynamic phantom. These results indicate that 

CFD can be reliably used to design phantoms to better mimic a range of DFs, for further 

development and testing of dynamic phantom for quality assurance for DCE imaging. 
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CHAPTER 5  
 

 

Comparative Computational Fluid Dynamics Study of Flow-Induced Shear Stress 

on Bone Scaffold Designs for a Perfusion Angiogenesis Bioreactor 

 

Abstract  

Pore geometries for bone scaffolds are optimized to enhance bone tissue in-growth into 

the scaffold. In this study, the distribution of flow-induced shear stress across large 

spherical and orthogonal cylindrical pore scaffolds (67 - 68% porosity) was examined 

using a computational fluid dynamics model. The scaffolds were embedded within a 

vascular-like perfusion angiogenesis bioreactor to identify the range of inlet velocities 

that achieved a stimulatory shear stress range between 1 to 10 dynes/cm
2
. The results of 

the simulations demonstrate a tradeoff between shear stresses within the target range and 

at the extremes (less than1 dynes/cm
2
 and greater than 10 dynes/cm

2
), in order to achieve 

flow within the confines of a laminar flow regime. The spherical geometry exhibit greater 

uniformity of shear stress across the scaffold and realized more than 50% of the large 

scaffold surface experiencing shear stresses within the desired range. These findings will 

aid in the development of thick scaffolds for perfusion angiogenesis bioreactors and the 

determination of optimal bioreactor operating conditions to be used in future in vitro 

angiogenesis co-culture or pre-vascularization implantation studies.  

 

5.1  INTRODUCTION 

Angiogenesis is critical for tissue viability [1-2] To date, clinically successful tissue 

replacement therapies have been limited to avascular tissues (the epidermis of skin and 

nasal septae cartilage [3]) and thin tissues less than 2 mm thick (adipose tissue [4] and 

smooth muscle [5]). Oxygen diffusion is a limiting factor to cell viability within tissues 
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greater than 2 mm thick, with necrosis normally occurring when oxygen must diffuse 

over a distance greater than 100 μm [3,6]. Oxygen depletion can occur within hours of 

implantation, due to inadequate pre-vascularization of the implant and a slow rate of 

angiogenesisv [7]. Several pre-vascularization strategies have been investigated to 

expedite angiogenesis [8-20]. Among them, perfusion angiogenesis bioreactors offer a 

continuous controllable dynamic in vitro environment for supporting endothelial cell 

proliferation and differentiation across engineered porous scaffolds under optimized 

growth conditions [17, 21-24].  Table E.1 in Appendix E summarizes recently reported 

studies of angiogenesis within perfusion bioreactors. The optimization of bioreactor 

parameters is a critical step in the promotion of physiological phenomena (i.e. 

osteogenesis [25-28], chondrogenesis [29-30] and angiogenesis) that are influenced by 

varied levels fluid-imposed shear stress (SS). 
 

Co-culture studies of endothelial cells (or their progenitors) with osteoblasts or 

mesenchymal stem cells have illustrated the potential of the in vitro three-dimensional 

pre-vascularization strategy, as a tool for accelerating vessel in-growth and enhancing 

osteogenic differentiation during implantation [31-33]. There have been extensive 

reviews on the design and viability of bone tissue engineering bioreactors [34-36]. 

Previous analytical and computational studies have demonstrated that the distribution of 

shear stress (ss) imposed by the flow rate across engineered constructs is dependent on 

pore geometry (random versus well-defined), pore diameter, anisotropy, permeability, 

diffusivity and porosity [37-43]. As such, the goal of the study was to quantitatively 

evaluate the local ss distribution within two distinct engineered constructs with 

commonly adopted controlled pore geometries (spherical and orthogonal) in bone tissue 

engineering [44-47]. Williams et al.[44] and Mitsak et al.[46] demonstrated that bone in-

growth representative of trabecular bone was evident within 4 weeks of subcutaneous 

implantation for the examined orthogonal and spherical pore geometries seeded with 

bone morphogenetic protein-7 (BMP-7) transduced human gingival fibroblasts, 

respectively.  

Mechanical stress is a modulator of cell physiology and morphology [48-50]. The 

literature demonstrates the role of mechanical stimulus, specifically fluid-imposed SS, 
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imposed by variable flow rates on EC proliferation and function during angiogenesis, 

both in two-dimensional and three-dimensional in vitro studies [22, 51]. Both high and 

low ss have implications on EC viability, elongation and alignment [52]. SS values below 

1 dyne/cm
2
 exhibit negligible shear force, comparable to static environments, while high 

values ranging from 1 to 15 dyne/cm
2
 have been reported to stimulate EC realignment 

along the direction of flow and EC proliferation on biocompatible substrates in vitro [53-

54]. SS from laminar flow above 20 dynes/cm
2 

and turbulent flow have been shown to 

alter cell morphology, as well detach cells from the construct [55]. Table E.2 in Appendix 

E summarizes the effects of ss on ECs and delineates ss levels that have been shown to 

promote EC growth and/or function.  

Existing angiogenesis perfusion bioreactors have primarily supported EC growth on thin 

hydrogels (1 - 5 mm; collagen or fibrin) (Appendix Table E.1). Predictive ss studies of 

natural scaffolds or scaffolds with random architectures are limited by the inherent 

variability of these constructs. Lesman et al. presented computational results on the flow-

induced shear rates on vascular cells seeded on porous sponges with 200-600 micron pore 

diameters [37]. Their computational fluid dynamic (CFD) model assumed a 500 micron 

diameter across the sponge scaffold for a given thickness of 1.2 mm. The transition to 

thick scaffolds for larger defect sites requires the consideration of uniform perfusion in 

order to avoid necrosis at the core of the scaffold. Koch et al. and Arano et al. have 

presented bioreactor studies that employed larger scaffolds for thick tissue generation 

[56-57]. Koch et al. demonstrated osteoblast proliferation on large engineered Poly-

95L/5DL-lactic acid (PLA)-calcium composite scaffolds (6 - 12 mm diameter) in a 

perfusion bioreactor and Arano et al. examined the efficiency of perfusion seeding for 

osteoblast-like cells onto 10 - 12 mm-thick scaffolds in a radial-flow bioreactor. There 

have been no similar studies published for ECs cultured on well-organized large 

scaffolds. 

In this study, a CFD model is used to estimate the local ss imposed on the walls of a large 

cylindrical scaffold embedded in a recently developed implantable vascular-like 

angiogenesis bioreactor (discussed in Chapter 6 [58]). For each geometry, the input flow 

rate was varied to determine which architecture and velocity at the inlet produces the 
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most uniform distribution of the imposed ss across the large scaffold, within a range of 1-

10 dynes/cm
2
 for a physiologically relevant input flow rate. 

 

5.2  MATERIALS AND METHODS 

5.2.1 Design of Perfusion Bioreactor System 

The analyzed closed-loop bioreactor system consisted of a pump that circulated EC 

culture media through a vessel-like network, which perfused adjoined EC-seeded 

scaffolds. The “venous” end of the vessel-like network shunted media towards a reservoir 

for re-circulation. Fig. 5.1a illustrates the implantable component of the bioreactor, which 

housed the scaffolds. The cylindrical scaffolds (11mm x 11 mm) were located at the 

center of the vascular construct, enclosed in a cylindrical holder 11 mm in diameter and 

10 mm in length. Within the compartment, a 500 micron guidance inlet was positioned 

before and after the scaffold. A holder tightly secured the scaffolds, in order to ensure 

perfusion through the scaffolds. Each compartment enclosed a single scaffold perfused 

with media by four 0.79 mm outlets from the preceding vascular tree. The outlets were 

aligned in parallel at the center of the compartment. Fig. 5.1b depicts the bioreactor set-

up. Flow from a peristaltic pump is dampened to produce constant flow prior to passing 

through a flowmeter, which monitored the dispensed flow rate entering the vascular 

construct (see Fig. 5.1b). The inlet and outlet diameter of the vascular construct had a 2.2 

mm diameter attached to Luer Lock connections.  
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Figure 5.1 (a) Vascular PCL construct which fed four porous scaffolds (12.0 cm length x 5.6 cm 
width). (b) Schematic diagram of bioreactor containing vascular network construct seeded with 
endothelial cells. 

 

5.2.2  PCL Scaffolds: Architecture and Fabrication  

Three-dimensional cylindrical scaffolds with periodic porous architectures were designed 

using Computer Assisted Design (CAD) design software (Solidworks, Waltham, MA, 

USA). The scaffold geometries included (i) a spherical unit cell enclosing a sphere with a 

2.22 mm pore diameter and (ii) an orthogonal lattice with a 1.5 mm pore diameter. Fig. 

(a)

(b)
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5.2. illustrates the CADs for the spherical and orthogonal scaffold geometries. For the 

spherical scaffold designs, the unit cell was repeated every 2 mm to fill a cylindrical 

construct with an 11 mm height and 11 mm diameter. The 0.9 mm cylinders that formed 

the orthogonal lattice were repeated every 1.5 mm to fill a cylindrical construct with an 

11 mm height and 11 mm diameter.  

Triangulated surface renderings of the scaffolds were generated in the CAD software. 

The renderings were used to fabricate the scaffolds on an SLS system (EOS FORMIGA 

P100, EOS GmbH, Munich, Germany) using a mixture of polycaprolactone (PCL) with a 

small percentage of hydroxyapatite (HA). The SLS system was set to 49.5°C, with a 450 

mm focused laser beam diameter at 4.5W power and 1.257 m/s scan speed. The system 

used a 0.08 mm layer thickness. Three fabrications for each pore geometry were 

MicroCT scanned with an isotropic resolution of 15 μm (μCT 100, Scanco Medical AG, 

Bassersdorf, Switzerland). Diameter and porosity measurements for each MicroCT 

dataset were collected in a three-dimensional image analysis tool (MicroView, General 

Electric Healthcare, Waukesha, Wisconsin, USA). Measurements of the pore diameter 

and porosity for the designed scaffolds were collected in (Magics, Materialise, Leuven, 

Belgium) (Fig. 5.2c). Based on a comparison of the designed and fabricated scaffold pore 

and throat diameters, a correction factor was applied to the modeled CAD design 

parameters to realize the actual fabricated (physical) pore and strut diameters. 
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Figure 5.2 (a) Top view of CAD and (b) trimetric cross-sectional view of CAD of bone scaffolds. (c) 
Axial (leftmost) and coronal slices (right) of three-dimensional renderings of spherical and 
orthogonal scaffold from Micro-CT scans. For the spherical geometry, a cross-section of the middle 
of a pore is shown. Red lines indicate measured pore. Scale bar = 1 mm. 

 

5.2.3  Bio-Fluid Characterization 

The endothelial cell culture media was modeled as a homogenous, incompressible fluid. 

The dynamic viscosity of the EC media was acquired using a rheometer (AR1000 

 heometer, TA Instruments, New Castle, DE) at 37˚C for shear rates ranging between 90 

to 1000 s
-1

. The fluid behavior of the EC media was characterized. The average of the 

collected viscosities was calculated. The density was calculated as an average of three 

repeated weighings of a known volume of the EC media on an analytical balance (37˚C). 

The estimated viscosity and density served as input to the CFD simulation. 

 

5.2.4  Formulation of CFD Model and Simulation Conditions 

For each geometry, flow through the scaffold compartment was evaluated for a single 

representative scaffold compartment, since Chapter 4 demonstrated uniform flow through 

the vascular network, which perfuses the four compartments in the system [59]. The 

vessels at the last level of bifurcation in the vascular tree were 2 mm long. Thus, a single 

scaffold compartment connected to four 2-mm-long inlets and outlets was designed in 

(a) (b) (c)

mid-pores ide view

s ide viewtop view

top view

1 mm

1 mm

1 mm

1 mm

1 mm
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CAD design software (Solidworks, Waltham, MA, USA) to represent the bioreactor. The 

generated fluid volume (Fig. 5.3a) was meshed with tetrahedral elements (ANSYS 

Meshing, Lebanon, NH, USA). Mesh independence tests were conducted to improve the 

accuracy of the solution. Mesh refinement was performed until the number of meshing 

elements reduced the sensitivity in the average shear stress to less than 5% (see Appendix 

E.2). Based on the evaluation of the spatial resolution, approximately 3 million elements 

(32 - 650 micron, adaptive proximity and curvature sizing) were used to mesh both 

scaffolds.  

 

 

Figure 5.3 CAD of the inverse geometry of compartment illustrates the fluid volume modeled in 
CFD, with vascular network outlets shunting EC media into the (a) spherical and (c) orthogonal 
scaffold compartment. The transverse planes (red) and longitudinal planes (blue) along which the ss 
was evaluated in the (b) spherical and (d) orthogonal scaffold compartment.  

 

(a) (b)

(c) (d)

Top

Middle

Bottom

top

Middle 1

bottom
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CFD simulations were carried out using the commercial CFD package, Fluent (ANSYS 

Fluent, Lebanon, NH, USA). Each CFD simulation assumed the scaffold to be a rigid 

solid object, receiving constant, non-pulsatile flow. Simulations were solved using a 

steady-state Navier-Stokes equation, pressure-based solver, and laminar flow model, 

under the assumption of constant viscosity, constant density and continuity 

(incompressible flow). The solved Navier-Stokes equations for momentum 5.1 and 

continuity 5.2 were  

 
  

  
              Equation 5.1 

    , Equation 5.2 

where   was the fluid density (kg/m
3
),   was the dynamic viscosity (kg/m·s),   was the 

fluid velocity,   was the pressure (Pa) and   was acceleration due to gravity (m/s
2
) [60]. 

The velocity-pressure coupling was solved using the SIMPLEC (Semi-Implicit Method 

for Pressure Linked Equations - Consistent) algorithm [61] (momentum and pressure 

under-relaxation factors summed to 1). Spatial discretization was achieved with the least 

squares cell based gradient algorithm, standard pressure algorithm and second order 

upwind algorithm for momentum. To reduce numerical diffusion, a second order upwind 

was performed. A no-slip boundary condition was imposed on solid walls. Convergence 

was set to 1 x 10
-6 

and
 
1 x 10

-4
 for continuity and residuals, respectively. 

Each volume was meshed with tetrahedral elements. The mass flow rate (kg/s) at the 

inlets was set along the primary direction of flow, y-direction relative to the orientation of 

model. The outlets were defined as outflow boundaries, which assumed a zero normal 

gradient for all flow variables except pressure. Due to the symmetry of the vascular 

phantom design, there were no pressure variations assumed among the outlets. Inflation 

layers were added to the four inlets and outlets. The fluid entering the network and 

compartment were modeled as isothermal and laminar. Laminar flow at the inlets was 

confirmed by computation of a Reynolds number that was less than 2300 for relevant 

mass flow rates, based on the following equation 5.3 

   
    

  
, Equation 5.3 
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where   was the density of given fluid (kg/m
3
), Q was the volumetric flow rate (m

3
/s),    

was the hydraulic diameter (m) and   was the dynamic viscosity (Pa·s) [62]. For the 

vascular tree and compartment,    was based on the inlet diameters, while for the 

orthogonal geometry,    was set to the pore diameter. For the spherical geometry, the 

throat diameter (smallest pore within geometry), which connected two adjacent spherical 

units, was used to estimate the maximum Re. 

 

5.2.5  Shear Stress Analysis 

The ss across the scaffold was determined along 6-7 planes (3-4 transverse and 3 

longitudinal) located at the middle and peripheral (1.4 mm below/above and left/right of 

edges) of the structures (Fig. 5.3b). The orthogonal scaffold has two transversal middle 

planes located 1.1 mm from the middle of the scaffold. Histograms were generated to 

evaluate the frequency of ss values along each plane. The maximum and average wall ss 

were computed. The median absolute deviation (MAD) was calculated using equation 5.4 

to evaluate the dispersion of induced SS.  

           (|    ̃|),  Equation 5.4 

where    is an indexed ss value and   is the median of the ss values within the given 

plane. Hotspots and dead zones were quantified by the relative frequency of ss values 

greater than 10 dynes/cm
2
 and less than 1 dynes/cm

2
, respectively.  

 

5.3  RESULTS 

Table 5.1 summarizes the scaffold properties for the spherical and orthogonal scaffolds. 

The void space within both designs is roughly the same, at 67 - 68%. Based on the pore 

diameter measurements collected from the μCT (Fig. 5.2c), the CAD designs were 

changed to the actual fabrication diameters. The spherical scaffold CAD designed pore 
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diameter was reduced to 2.13 mm and the orthogonal pore diameter was decreased from 

1.50 mm to 1.46 mm. Table 5.2 provides the measured designed, CAD and fabricated 

pore diameters for both pore geometries.  

 

Table 5.1 Summary of the pore diameter measurements for the designed and fabricated scaffolds: 
spherical and orthogonal geometries. 

Pore Design 

 Designed Pore 

Diameter [mm] 
Surface Area [mm2] Porosity [%] 

 

Spherical  2.22  1583 67 

Orthogonal  1.5 1255 68 

 

Table 5.2  Pore diameter measurements for the designed and then fabricated scaffolds. 

  Pore Diameter [mm] 

Pore Design 

 
Designed  

CAD  

(n = 15) 

 Fabricated  

(n = 24) 

Spherical  2.22  2.20 ± 0.004 2.13 ± 0.07 

Orthogonal  1.50  1.50 ± 0.001 1.46 ± 0.14 

 

Using the modified scaffolds, the EC media flow conditions within the bioreactor 

compartment were analyzed. The relationship between the ss and shear rate of the EC 

media at 37°C was indicative of a Newtonian fluid. The media viscosity was 1.16 x 10
-3

 ± 

1.25 x 10
-4

 Pascal-seconds and the density was 957 ± 2 kg/m
3
. Table 5.3 summarizes the 

inlet velocities needed to generate laminar flow within the system. Based on these 

theoretical measurements, compartment inlet velocities less than 0.61 m/s generate 

laminar flow, while higher velocities produce turbulent flow within the system.  
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Table 5.3  Upper limit of the flow conditions required to satisfy laminar flow within the bioreactor, 
for the vascular tree and bone scaffold geometry within each compartment. 

Component Maximum Reynolds Number Inlet Velocity (m/s) 

Vascular Tree 2300 1.27 

Compartment 400 0.61 

Orthogonal Scaffold 867 0.72 

Spherical Scaffold* 594 – 1,726 0.34 – 2.85 

* Reynolds number and velocity through the pore and throat (connection between two 

pores) within the scaffold provided. 

 

Simulations were performed for compartment inlet velocities of 0.11 - 0.86 m/s and 0.32 

- 1.2 m/s for the spherical and orthogonal geometry, respectively. The inlet velocities 

achieved an average ss between 1.9 - 15 dynes/cm
2 

and 0.79 - 18 dynes/cm
2
 for the 

spherical (Fig 5.4a) and orthogonal (Fig 5.4b) geometry, respectively. The minimum ss 

imposed on the scaffolds was negligible at 10
-4 

- 10
-6

 dynes/cm
2
. The ss peaked at 74 - 

1900 dynes/cm
2
 and 310 - 2300 dynes/cm

2
 for the spherical and orthogonal geometry, 

respectively. The plot in Fig. 5.4 illustrates the increased ss imposed on the scaffold for 

higher inlet velocities. For the overlapping inlet velocity range between 0.32 - 0.86 m/s, 

the average ss imposed on the spherical scaffold were higher in comparison to the 

orthogonal scaffold. The MAD of the ss for the spherical and orthogonal scaffold ranged 

from 0.5 - 3.5 dynes/cm
2
 and 0 - 1 dynes/cm

2
, respectively, for the overlapping inlet 

velocities. Overall, for both geometries, the MAD steadily increased for higher inlet 

velocities.  
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Figure 5.4 Linear relationship between the average and maximum ss and the inlet velocity within the 
(a) spherical and (b) orthogonal scaffold compartments. 

 

Fig. 5.5 illustrates the dependence of the distribution of the imposed ss on the inlet 

velocity. Across all inlet velocities, the low (less than 1 dynes/cm
2
) and very high (more 

than 20 dynes/cm
2
) ss imposed on the scaffolds geometries was at least 21% and at most 

15% of their surface areas (SA), respectively. Fig. 5.5a and 5.5c show the ss distribution 

across the spherical and orthogonal scaffold, respectively, for the different flow rates. 

Fig. 5.5b and 5.5d categorizes the imposed ss into low (less than 1 dynes/cm
2
), target (1 - 
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10 dynes/cm
2
) and high (more than 10 dynes/cm

2
) for the spherical and orthogonal 

geometry, respectively. For the spherical scaffold, the percentage of SA that experienced 

the low, target and high ss ranges was 21-91%, 9-64% and 1-15%, respectively. While 

for the orthogonal scaffold, the percentage of SA was 43-84%, 14-45% and 2-12% for the 

low, target and high ss ranges. Particularly, within the overlapping inlet velocity range, 

the percentage of SA that achieved the target ss for the spherical geometry was 35 - 64%, 

which was higher compared to the 14 - 40% that was imposed on the orthogonal 

geometry. 

Fig. 5.6 illustrates the average ss along the transverse and longitudinal planes for both 

geometries. The top planes experienced 4-5 and 2-3 times higher average ss than the 

middle and bottom planes for the spherical (Fig. 5.6a) and orthogonal (Fig. 5.6c) 

geometries, respectively. The average ss imposed on the lower half of the spherical 

scaffold was uniform along the transverse direction (Fig. 5.6a), but for the orthogonal 

geometry (Fig. 5.6c) the middle planes experienced twice as much average SS, in 

comparison to the bottom planes. For overlapping velocities, along the top plane, the 

spherical geometry experienced an average ss 5 times higher than along middle or bottom 

plane, whereas the orthogonal was 2-3 times higher. For both geometries, the average 

imposed ss along left and right planes were approximately equal. As the inlet velocity 

increased, the difference between the average ss along the middle plane and the left and 

right planes decreased for both geometries. For the spherical geometry, the average ss 

along the middle plane was 57 times higher than along the left and right planes at the 

lowest velocity and 4 times higher at the highest velocity (Fig. 5.6b).  For the orthogonal 

geometry, at the lowest and highest inlet velocity, the average ss imposed along the 

middle plane was 28 and 3 times higher than along the left and right planes, respectively 

(Fig. 5.6d). For overlapping velocities, the spherical geometry exhibited a lower 

difference in average ss in the longitudinal direction than the orthogonal geometry. 

Overall, for both geometries, the average ss imposed in the direction of the longitudinal 

planes and transverse direction was uniform, for all inlet velocities. 

For both geometries, across all planes, the imposed ss and its respective MAD increased 

as the inlet velocity increased. For inlet velocities greater than or equal to 0.47 m/s, the 
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spherical geometry achieved a ss between 1 - 10 dynes/cm
2
 along all planes. The 

orthogonal geometry achieved a ss between 1 - 9 dynes/cm
2
 along all planes for velocities 

greater than or equal to 0.67 m/s. Fig. 5.7 shows that distribution of low, target and high 

ss for each inlet velocity across the spherical and orthogonal scaffold. For the spherical 

scaffold, only the top and middle planes experienced high ss (Fig. 5.7a). In the orthogonal 

geometry, the left, right, longitudinal middle 2 and transversal middle planes experience 

high SS. For the orthogonal scaffold, the dominant ss range was low, with a slight 

decrease for inlet velocities greater than or equal to 0.92 m/s (Fig 5.7c-d). However, for 

the spherical geometry, the percentage of SA that experienced 1-10 dynes/cm
2
 was only 

greater than 1 dynes/cm
2
 across the scaffold for the maximum inlet velocity of 0.67 m/s 

(Fig 5.7a-b). Otherwise, the low ss was dominant. Fig. 5.8 illustrates that for both 

geometries, as the inlet velocity increased, the difference in ss across the transverse and 

longitudinal planes decreased. For the spherical geometry, the percentage of SA that 

experienced 1-10 dynes/cm
2
 along the transverse planes was greater than 50% for a 0.86 

m /s inlet velocity and greater than or equal to 0.73 m/s along the longitudinal planes (Fig 

5.8a-b). Collectively, across the whole scaffold, Fig 5.5b shows that 1 - 10 dynes/cm
2 

of 

ss was imposed on more than 50% of the SA for inlet velocities greater than or equal to 

0.54 m/s. However, the orthogonal geometry did not achieve 1 - 10 dynes/cm
2
 over 50% 

of its SA along any of the planes (Fig 5.8c-d). Similarly, the target ss was not achieved 

for 50% or more of the whole orthogonal scaffold (Fig 5.5d). Table 5.4 summarizes the 

benefits and drawbacks between the computational ss results for the spherical and 

orthogonal geometries. Fig. 5.9 illustrates the ss and the velocity distributions across the 

spherical compartment, for an inlet velocity of 0.54 m/s along the transverse and 

longitudinal planes. In Fig. 5.9a and Fig. 5.9d, the highest wall shear stress and 

corresponding fluid velocity were experienced in the middle of the scaffold along the 

direction of flow. Fig. 5.9b and Fig. 5.9d shows that for the edge (top and bottom) 

regions of the scaffold where there were higher fluid velocities, the ss stress imposed on 

the scaffold surface was also high. The ss was moderately uniform across the scaffold, 

with peaks occurring at the throats regions that connect the two adjoined pores.  
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Figure 5.5 Distribution of imposed ss on the (a) spherical and (c) orthogonal scaffold compartment for the given inlet velocities. Summary of the 
imposed ss on the (b) spherical and (d) orthogonal scaffold for low (< 1 dynes/cm2), target (1-10 dynes/cm2) and high < (10 dynes/cm2) SS. 
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Figure 5.6 Average ss along the (first column) transverse and (second column) longitudinal cross-sectional planes of the (a and b) spherical and (c and 
d) orthogonal scaffold, for the given inlet velocities. 
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Figure 5.7  Distribution of ss along the (first column) transverse and (second column) longitudinal planes of the (a-b) spherical and (c-d) orthogonal 
scaffold compartment, for the given inlet velocities. 
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Figure 5.8 Percentage of (a-b) spherical and (c-d) orthogonal scaffold SA that experienced 1-10 dynes/cm2 along the (a,c) transverse and (b,d) 
longitudinal planes, for the given inlet velocities. 
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Table 5.4 Upper limit of the flow conditions required to satisfy laminar flow within the bioreactor, 
for the vascular tree and bone scaffold geometry within each compartment. 

Geometry Benefits Drawbacks 

Spherical 

•  Lower maximum ss 

•  Higher average ss 

•  Target ss imposed over larger % of SA 

•  More than 50% of SA experienced target 

ss for inlet velocities  0.54 m/s 

•  Inlet velocity of 0.47 - 0.86 m/s required to 

achieve target ss (laminar flow regime 

realizable) 

•  Greater ss uniformity in longitudinal 

direction 

•  Average ss below top plane largely 

uniform 

•  Higher variation in average ss  

 

Orthogonal 

•  Smaller variation in average ss along 

transversal direction 

 

•  Inlet velocity of 0.67 - 1.2 m/s 

required to achieve target ss (non-

laminar flow) 

•  Low ss dominant across scaffold 

•  Larger % of SA experienced 

high ss (greatest potential for EC 

detachment) 

Conclusion: For inlet velocities between 0.54 – 0.61 m/s, the spherical geometry provides the 
best balance of the tradeoffs between EC detachment and stimulation. 
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Figure 5.9 Contour maps of ss along (a) longitudinal and (b) transversal cross-sections of the spherical scaffold. The velocity distribution along the (c) 
longitudinal and (d) transversal planes are shown. Left to right, the left, middle and right plane cuts are shown for the longitudinal cuts. Left to right, 
the top, middle and bottom plane cuts are shown for the transversal cuts. Flow was from top to bottom, for a compartment inlet velocity of 0.54 m/s. 
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5.4  DISCUSSION 

To solve the thick tissue challenge, which hinders the translation of bench top tissue 

engineering successes to practical clinical therapy, bioreactors have been employed as a 

pre-vascularization strategy and technique to study in vitro angiogenesis. Dynamic 

bioreactors provide a three-dimensional platform that offers efficient mass transfer and a 

tunable stimulant mechanical environment. The controlled growth of capillary-like 

structures from endothelial cells on a matrix under dynamic in vitro bioreactor conditions 

provides a platform for studying angiogenesis and can also serve as a precursor step to 

efficiently generate pre-vascularized large constructs (greater than 2 - 4 mm) for 

implantation. The presented vascular-like bioreactor allows for an in vitro setup to be 

transferred to an in vivo environment to support bone tissue growth, with or without 

scaling to meet the constraints of the defect site. Existing bioreactors assume that a defect 

site can provide a large inflow of nutrients directly into the scaffold. This vascular-like 

bioreactor provides a structure for the anastomosis of an artery and vein to the structure 

in order to shunt blood towards the thick scaffold upon subcutaneous implantation. 

Tanaka et al. and Asano et al. demonstrated that a vein graft anastomosed to a femoral 

artery and femoral vein supported new vessel in-growth towards the core of the avascular 

tissue [63-64]. Asano et al. suggested that the increased shear stress within the loop 

construct stimulated a pro-angiogenic cell response (expression of growth factors and 

stimulatory proteins) [64]. Using an in vivo approach, Laschke et al. implanted a three-

dimensional poly-lactic-glycolic (PLGA) scaffold into a host mouse for 20 days, then 

removed it and it placed into a recipient mouse [65]. A significant increase in blood 

perfusion and wall ss was observed over the 14 day study, with reperfusion of the implant 

occurring within 3-6 days. 

Optimized pore architectures for bone scaffolds enhance bone tissue in-growth into the 

scaffold, possess mechanical properties characteristic of trabecular bone (i.e. compressive 

strength) and allow for the adequate exchange of cell signaling molecules, nutrients and 

waste (i.e. high interconnectivity and pore diameters greater than 100 microns [66-67]) 

[68-69]. The co-culture of osteogenic and angiogenic lineages can enhance bone 

formation [70]. The scaffold architectures employed in this investigation have already 
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been demonstrated to support in vivo bone growth based on their optimized designs (in 

terms of porosity, permeability or pore size) for smaller dimensions between 3 – 4.5 mm 

in thickness and 5 – 6.4 mm in diameter [44,46]. The spherical and orthogonal scaffolds 

can be reliably fabricated by selective laser sintering (SLS) of the polyester, 

polycaprolactone (PCL), which is a biodegradable polymer commonly used for in vivo 

EC studies [71-73]. The rapid prototyping technique allows for the repetition of pore 

shape and size. The scaffold dimensions were corrected to account for the fabrication 

inconsistencies that typically narrow the pore diameter.  

Based on the performed simulations, spherical scaffolds were determined to achieve more 

uniform ss within the desired EC stimulation range of 1-10 dynes/cm
2
 for inlet velocities 

between 0.47 - 0.86 m/s. Although the ss across the spherical and orthogonal scaffolds 

was evaluated for the inlet velocity range 0.11 - 0.86 m/s and 0.32 - 1.2 m/s in order to 

characterize the system, velocities greater than 0.60 m/s generated turbulent flow regimes 

within the system. Based on the literature, EC viability, morphology, attachment and 

directionality are maintained for ss ranges within 1-10 dynes/cm
2 

under laminar flow 

conditions. The spherical scaffold demonstrated that 52 - 57% of scaffold surface 

experienced a ss between 1 - 10 dynes/cm
2
 for the inlet velocities between 0.54 - 0.60 

m/s, compared to the orthogonal scaffold that only achieved a distribution between 14 - 

31% for inlet velocities between 0.32 - 0.6 m/s (Fig. 5.8). Both low and high ss ranges 

were dominant across the orthogonal scaffold (Fig. 5.7). As such, the spherical scaffold 

was determined to be a better design choice for future in vitro angiogenesis studies, as it 

realized the optimal ss range with moderate uniformity (Fig 5.5). The optimal inlet 

velocity was determined to be the lower limit of the range, 0.54 m/s, to reduce the 

likelihood of falling within the transitional flow region. For this given inlet velocity the 

spherical geometry achieved an average ss of 8.6 ± 1.5 dynes/cm
2
 across the scaffold, 

with a maximum shear stress of 900 dynes/cm
2
 occurring over 7% of the scaffold (Fig. 

5.4 and Fig. 5.5). For both scaffolds, EC detachment was likely for surfaces that 

experienced ss greater than 20-25 dynes/cm
2
, as seen for extracellular matrix and glass 

substrates [74-75]. There is a clear tradeoff between the stimulation of attached scaffolds 

and the detachment of cells, particularly at the top and middle planes (transversal and 

longitudinal). These distribution inconsistencies within the scaffolds can lead to cell wash 
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outs in hot spots (high fluid velocities), cell apoptosis in dead zones (low fluid velocities) 

or non-uniform growth across the scaffold. In vitro cell studies will be required to 

determine the impact of the high ss along these planes. The ss imposed over the 

transverse middle/bottom and left/right planes were approximately the same, with the 

greatest spike in ss occurring along the middle and top planes (Fig 5.6). However, Fig. 

5.9 illustrates that these high ss ranges are primarily at the top and bottom edges along 

the fluid direction. 

The performed study did not account for the surface roughness (underestimation of 

surface area) of the PCL scaffold, as CFD implemented a no-slip boundary condition on 

the model. As such, the acquired results may be an overestimation of the imposed fluid 

velocities and ss on the surface of the scaffold. Nonetheless, the identified inlet velocity 

serves as a useful initial condition for beginning an in vitro bioreactor study. Further 

studies are required to understand the changes in ss distribution as the EC monolayer 

extends with the formation of tubules. These changes will decrease the size of the void 

space within the scaffold. 

Given the constraints of the proposed vascular-like perfusion bioreactor and the limits of 

computational models, the identified boundary conditions for the spherical scaffold are 

predicted to support and stimulated EC proliferation. After the formation of a vascular 

monolayer on the surface of scaffold, the vascular-like bioreactor may be implanted into 

a pig (2.1 - 2.9 mm; 99.4 ± 5.0 ml/min) [76] and anastomosed to a peripheral artery for 

the continuation of a pre-vascularization in vivo study. The inlet flow into the bioreactor 

would impose an average ss of 2.1 ± 0.5 dynes/cm
2
 and 73-78% of the scaffold surface 

would receive less than 1 dyne/cm
2
. Flow-induced ss levels between 0.001 - 0.1 

dynes/cm
2 

have been used in three-dimensional osteogenic studies, while higher levels 

between 0.1 - 10
+
 dynes/cm

2
 have been utilized in two-dimensional studies [35]. 

 

5.5  CONCLUSION 

Orthogonal and spherical scaffold geometries are commonly adopted in tissue 

engineering to promote bone in-growth. The results of this study demonstrated that 
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scaffolds with a well-organized spherical pore (2.22 mm diameter) lattice imposed ss 

within the desired ss range to stimulate EC proliferation. Compared to an orthogonal 

design (1.46 mm), the spherical pore achieved better ss uniformity across the scaffold 

under a laminar flow regime. These results provide guidance on the appropriate inlet 

velocity for an in vitro vascular-like perfusion bioreactor construct. Furthermore, this 

study demonstrates the utility of computational models in understanding the distribution 

of flow for larger scaffolds and within angiogenesis bioreactors, at the start of a culture.  

The presented study can readily be extended to other pore geometries (i.e. hexagonal and 

cubical) in order to assess shear stress across the scaffold and to identify an optimal bone 

scaffold design for future EC co-culture studies. 
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CHAPTER 6  
 

 

The Effect of Polycaprolactone (PCL) Surface-Modifications on Endothelial 

Cell Proliferation, Function and Spatial Distribution In Vitro 

 

6.1  INTRODUCTION 

Several studies have highlighted the biomechanical influence of three-dimensional 

extracellular matrices (and adhering components) and shear stress on the growth of tissue 

and vascularization [1-2]. As an in vitro pre-vascularizations strategy, perfusion 

bioreactors sustain endothelial cell (EC) proliferation and promote tubulation across an 

embedded natural or engineered matrix, thereby imposing fluid shear stress and eliciting 

mechanotransduction. Existing angiogenesis bioreactors incorporate hydrogels (i.e. 

collagen, alginate and fibrin) for guided three-dimensional EC growth and migration [3-

6]. Numerous co-culture studies of endothelial with osteogenic cell lineages have shown 

accelerated vessel in-growth and enhanced osteogenic differentiation post-implantation, 

using this pre-vascularization strategy [7-9]. The next generation of angiogenesis 

bioreactors should support co-cultures with osteogenic or chondrogenic lineages for the 

development of in vitro and/or implantable in vivo bone regeneration models. However, 

promulgated investigations of angiogenesis bioreactors employ hydrogels, which lack the 

mechanical (stiffness and strength) properties characteristic of bone, particularly 

trabecular bone for load-bearing applications [10-11]. These hydrogels are typically less 

than 2 mm thick [12-15]. Larger scaffolds would allow for the generation of thick tissue 

for larger defect sites. Large constructs can be readily fabricated with polymers, such as 

polycaprolactone (PCL) using numerous rapid prototyping techniques, such as selective 

laser sintering (SLS) [16]. The biodegradable polymer, PCL has been well documented in 

its application to benchtop tissue engineering and translational clinical applications [17]. 

The computer-based designs achievable through this fabrication process allow for 
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scaffolds to be scaled up to larger dimensions. Although versatile, in terms of the 

diffusion, permeability and mechanical properties it offers, the hydrophobic surface 

properties of PCL diminish its cytocompatibility. The functionalized groups at the surface 

of PCL are critical to the interaction with cells, in terms of cell attachment and 

proliferation. As such, several surface modification methods have been investigated in 

recent years: protein adhesion, growth factor immobilization, hydrolyzation and the 

incorporation of natural extracellular matrix molecules [18]. Gel-based cell attachment 

methods introduce flow constraints to a bioreactor and can be washed away with 

continual perfusion. Typically, angiogenesis bioreactor studies perform a static pre-

culture on the scaffolds for roughly 2 - 72 hours or until confluence is reached, prior to 

the introduction of the fluid shear stress. Therefore, the attachment and uniform 

proliferation of ECs onto the surface of a large scaffold during the first 3 days is 

important for incorporation into a bioreactor. In the following study, endothelial cell 

response with respect to cell proliferation, cell function and spatial distribution were 

quantitatively assessed for three PCL surface modifications: sodium hydroxide (NaOH) 

hydrolyzation, Arg-Gly-Asp (RGD) conjugation and vascular endothelial growth factor 

(VEGF) immobilization. 

PCL constructs strongly hydrolyzed with NaOH have been shown to increase the surface 

hydrophilicity and surface roughness of the constructs (wettable polymers), thereby 

improving cell interaction[19-20]. In a co-culture study of human bone marrow cells and 

human bone marrow endothelial cells (HBMEC-60), Choong et al. [19] reported 

increased attachment and proliferation of HBMECs-60 for strongly hydrolyzed PCL 

films (5 M NaOH for 48 hours), compared to weakly hydrolyzed (0.1 M NaOH for 48 

hours) or untreated PCL films. Similarly, Serrano et al. [20] demonstrated that the NaOH-

treated  PCL films (2N for 2 hours) resulted in cell proliferation rates comparable to 

cultures on tissue culture polystyrene (TCPS). The untreated films supported EC cell 

viability, but did not promote similar proliferation rates. 

A more commonly adopted surface modification is the attachment of extracellular matrix 

(ECM) components or their derived synthetic peptides. Arg-Gly-Asp (RGD) has been 

cited as a highly effective peptide sequence for improving cell attachment onto polymer 

surfaces through its interaction with the integrin receptors at focal adhesion points to 
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activate signal transduction between the ECM and cell [21-22]. A previous study by 

Zhang et al. [23-24] immobilized RGDC on PCL two-dimensional film surfaces and on 

3D PCL scaffold surfaces via sulfosuccinimidyl-4-(N-maleimidomethyl)cyclohexane-1-

carboxylate (sulfo-SMCC) crosslinking. For both PCL constructs, the adhesion of rat 

bone marrow stromal cell (BMSC) to the polymer was significantly increased and 

initiated  integrin-mediated signal transduction that regulates subsequent increases in cell 

survival and growth [23-24]. Wang et al. enhanced endothelial cell (EC) attachment and 

proliferation on PEGyLated polymers surfaces with the incorporation of N- 

hydroxysuccinimide (NHS) coupled RGD [25].  

VEGF is another common modification, which is either adsorbed or conjugated onto the 

surface of a construct. It is a potent mitogen that stimulates the migration and 

proliferation of ECs [26] and has been cited as an important growth factor acting in the 

initiation of angiogenesis [27]. When immobilized onto a scaffold, VEGF has been 

shown to lengthen and localize cell stimulation, resulting in increased EC proliferation 

[28-37]. Several groups have used VEGF’s affinity for heparin to immobilized the 

growth factor on to polymer surfaces [38-39]. Amino groups are introduced to the PCL 

surfaces by a reaction with 1,6-hexanediamine, wherein one amino group reacts with the 

polymer ester group to form a covalent amide bond [40]. Heparin then binds to the other 

unreacted, free –NH2 groups. Heparin is a naturally occurring polysaccharide composed 

of alternating units of sulphated glucuronic acid and glucosamine derivatives. At 

sufficient low concentrations, heparin can potentiate VEGF binding, while at higher 

concentrations can inhibit VEGF binding [41]. As well, researchers have suggested that 

there is an optimum dose of VEGF to be loaded onto scaffolds, and have noted this 

window as a critical factor in promoting angiogenesis [34,36,38,42]. Based on the 

literature, a constant release concentration of approximately 70 - 100 ng/day produces 

favorable conditions for angiogenesis in vitro (see Appendix F, Table F.1).   

Numerous polymer surface modifications have been investigated to improve EC 

attachment, viability and proliferation within in vitro studies. The goal of this study was 

to optimize the growth conditions for human umbilical vein endothelial cells (HUVECs) 

on polycaprolactone (PCL) two-dimensional discs and three-dimensional scaffolds. To 
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determine the most effective surface modification that elicits the best cell response in 

terms of cell proliferation and function.   

 

6.2  MATERIALS AND METHODS  

6.2.1  PCL Vascular Network and Scaffold Design and Fabrication  

The two-dimensional discs (2.1 mm height and 15 mm diameter) and three-dimensional 

cylindrical scaffolds (11 mm height and 11 mm diameter) were fabricated using the same 

SLS protocol. Sections 2.3.1.1 and 2.3.2.2 detail the SLS fabrication and the scaffold 

design process, respectively. After fabrication, the discs and scaffolds were sonicated for 

2 hours in ethanol to remove excess powder. (Henceforth, the collective of discs and 

scaffolds may be referred to as constructs.)  

 

Figure 6.1 (a) Side view of scaffold. (b) Top view of scaffold. (c) Top view of disc. Surface area for 

each construct is provided. 

 

6.2.2  Heparin Immobilization and VEGF Conjugation 

Amine groups were introduced to the constructs based on a protocol established by Zhu 

et al. [40]. Each construct first underwent aminolysis. Constructs were submerged in a 

10% (w/v) 1,6-hexanediamine solution (Fluka Chemie AG, Buchs, Switzerland) in 

isopropanol (Reagent ACS, Fisher Scientific) for 4-5 hours at 37˚C. The constructs were 

initially pulled under a vacuum for 1 hour to allow for solution penetration. The 

constructs had an NH2 density of approximately 0.21 μmol/cm
2 

[40]. Then, the constructs 

were washed in deionized water for 24 hours and dried at room temperature under 
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vacuum. The constructs were washed in phosphate buffered saline (Gibco, Inc., Grand 

Island, NY) and 2-morpholinoethane sulfonic acid (MES, pH 5.40, Thermo Scientific, 

Waltham, MA). Thereafter, the activated carboxylic acid groups of unfractionated 

sodium heparin (Sigma-Aldrich, St Louis, MO) were immobilized on the constructs (see 

Fig. 5.2) by a chemical crosslinking of amino end-functionalized PCL with 1-ethyl-3-(3-

dimethylaminopropyl) carbodiimide/N-hydroxysulfosuccinimid (EDC/Sulfo-NHS) 

(Thermo Scientific, Waltham, MA) . 0.05 M MES buffer, 10 mg/ml heparin, 4 mg/ml 

EDC and 11 mg/ml Sulfo-NHS were allowed to react for 15 minutes. The reaction was 

quenched by 14 µl/ml 2-mercaptoethanol (Sigma-Aldrich, St Louis, MO). The pH of the 

heparin solution was adjusted to 7.2-7.5 using NaOH. The constructs were immersed in 

the heparin solution for 24 hours at 37˚C. Thereafter the constructs were washed twice in 

deionized water, for twenty minutes each time. The constructs were sterilized in ethanol 

for 24 hours at room temperature. Table 6.1 summarizes the respective heparin 

concentrations loaded onto the scaffolds and discs. 

 

Figure 6.2 Schematic diagram for immobilization of heparin on the surface of PCL construct. 
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6.3  VEGF IMMOBILIZATION 

Table 6.1 outlines the three experimental groups for which a conjugation efficiency and 

release study were completed. Groups 2 and 3 were used in cell culture studies. After 

each construct was aminated, then functionalized with heparin, VEGF (VEGF 165 

Protein, Novus Biologicals, Littleton, CO) was conjugated onto the PCL surface. The 

constructs were washed in deionized distilled water for thirty minutes. 1 ml of VEGF 

(10µg/ml) was added to each scaffold and 0.5 ml of VEGF (20µg/ml) to each disc. The 

discs were reacted in low-attachment 24-well plates and the scaffolds in 5 ml centrifuge 

tubes coated with 1% bovine serum albumin (Sigma-Aldrich, St Louis, MO). The VEGF 

reacted for two hours at room temperature. 

 

Table 6.1 Experimental groups in VEGF conjugation and adsorption study. 

  

 

6.3.1.1  VEGF Release  

Following conjugation, in vitro VEGF release studies (n = 3) were performed in triplicate 

over five days for Group 2 and 3 outlined in Table 6.1. The discs were incubated in 1 ml 

of EC media, while the scaffolds were incubated in 2 ml of media. The discs and 

scaffolds were incubated in low attachment 24-well plates at 37ºC with gentle shake. On 

days 1, 3 and 5, the supernatant in each well was collected and replaced with fresh EC 

media of equal volume. The concentration of VEGF in the collected samples was 

measured using a VEGF ELISA.  
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6.3.1.2  VEGF Quantification 

After conjugation or adsorption, the constructs were washed for ten minutes with sterile 

water to remove unconjugated VEGF. The washes were collected, along with the residual 

from the VEGF loading solution. The conjugation or adsorbed efficiency was calculated 

indirectly, as the amount initially in the conjugation solution minus the amount washed 

off following the conjugation, which remained in the assayed fluid. For the release study, 

the media was gently suspended in the wells to remove unconjugated VEGF. The 

released amount of VEGF was calculated as the direct measurement of VEGF collected 

in the fluid samples on day 1, 3, 5 and 7.  

To quantify the amount of conjugated VEGF on the treated constructs, enzyme-linked 

immunosorbent assay (ELISA) was performed using an optimized version of a general 

double antibody sandwich ELISA protocol (Thermo Scientific and Invitrogen’s Antibody 

Pairing Kit). VEGF standards (Invitrogen) were reconstituted and prepared: 1500 pg/ml, 

750 pg/ml, 375 pg/ml, 188 pg/ml, 93.8 pg/ml, 46.9 pg/ml, 23.4 pg/ml and 0 pg/ml. The 

assay buffer (pH 7.4) consisted of sodium chloride, potassium chloride, disodium 

phosphate., monopotassium phosphate, Tween 20 and bovine serum albumin diluted in 

deionized distilled water. Aqueous Tween 20 was used as the wash buffer (pH 7.4). 

VEGF Purified, Mouse Monoclonal Antibody Unconjugated was diluted to 3 µg/ml in 

aqueous sodium bicarbonate to prepare a coating buffer (pH 9.4). The incubation buffer 

(pH 7.4) consisted of sodium chloride, potassium chloride, Disodium hydrogen 

phosphate, monopotassium phosphate, EDTA and bovine serum albumin diluted in 

deionized distilled water. VEGF Rabbit Anti-human-Biotin Conjugated (Invitrogen) was 

diluted to 0.3125 µg/ml in a detection antibody solution (pH 7.4) that consisted of sodium 

chloride, sodium dihydrogen phosphate, disodium phosphate, mouse serum and bovine 

serum albumin. A stock solution of Streptavidin HRP solution (ELISA Grade) 

(Invitrogen) was dissolved in assay buffer to prepare a 0.24 µg/ml solution. 

Tetramethylbenzidine stabilized chromagen (Invitrogen) was used as the substrate 

solution. 0.9 M (1.8N) sulfuric acid was used as the stop solution. The absorbance of the 

samples was measured in 96-well plates at 450 nm by microplate reader (Multiskan 

Spectrum, Thermo Electron Corporation). Based on a derived calibration curve, the 

amount of VEGF that remained in the loading solution was estimated. The average 
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amount of retained VEGF from each respective 0 µg sample group was subtracted from 

the average of each sample within that group to remove the baseline absorbance.  

 

6.3.2  RGD Conjugation 

The discs and scaffolds were modified with RGDC peptide following the protocol 

previously established by Zhang et al. [24] (based on published bioconjugation 

techniques [43]). Aminolysis was performed identical to the methods outlined in section 

5.2.2. Then, the aminated constructs were thoroughly washed for 24 hours in deionized 

distilled water under a vacuum at 37˚C. Then the constructs were washed three times in 

activation buffer (0.1 M phosphate-buffered saline containing 0.15 M NaCl pH 7.2). 

RGDC peptides were conjugated onto the surface of the constructs using the 

heterobifunctional crosslinker sulfosuccinimidyl 4-(N-maleimidomethyl) cyclohexane-1- 

carboxylate (sulfo-SMCC) (Pierce Biotechnology, Rockford, IL).  Each construct was 

submerged in a 4 mg/ml solution of the sulfo-SMCC and incubated for one hour at room 

temperature. Thereafter, each construct was washed twice in activation buffer and once in 

the conjugation buffer (activation buffer containing 0.1 M EDTA, pH 7.0). The RGDC 

peptide (Bachem California, Inc., Torrance, CA) was dissolved in conjugation buffer at a 

concentration of 0.125 mg/ml. 0.5 ml of the peptide solution was added to the sulfo-

SMCC-treated discs and 1 ml to the sulfo-SMCC-treated scaffolds. All constructs were 

incubated overnight at 4
o
C. The RGDC peptide immobilized density was approximately 

6.35 x 10
-10 

mol/cm
2 

[24]. The peptide-conjugated scaffolds were washed conjugation 

buffer twice and in PBS three times, then dried under a vacuum at room temperature 

overnight.  

 

6.3.3  Sodium Hydroxide Hydrolysis 

The discs and scaffolds were submerged in 5 M NaOH (Certified A.C.S, Fisher 

Scientific) at room temperature on a shaker for 72 hours. Thereafter, the constructs were 

soaked in distilled water and 90% ethanol for 3 hours. The pH of the resultant supernatant 

stabilized at 7.4. For three scaffolds, before NaOH treatment, the dry weight of the 
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scaffolds was recorded. After treatment, the scaffolds were dried and their dry weights 

were recorded. The percent weight loss was calculated using Equation 6.1. 

            ( )   
               

        
     , Equation 6.1 

where          and        are the weights of the dried untreated and treated samples, 

respectively. 

 

6.3.4  Surface Wettability 

The wettability of the control and modified PCL surface was determined by 

measurements of the water contact angle made on the surface of the flat disc (see Fig 6.3) 

(n = 3) using a goniometer (Rame-Hart Instrument Co., Netcong, NJ). The discs were 

dried for 24 hours prior to measurement. The measurements were made at room 

temperature. A digital camera (Net GmbH 1394 Digital Camera) captured the series of 

advancing sessile water drops for 30-35 samples. The contact angles were extracted from 

the collected series using image processing software (Advanced DROP Image Software, 

Rame-Hart Instrument Co., Netcong, NJ). Surfaces with smaller contact angles were 

characterized as less hydrophobic.  

 

 

Figure 6.3 Look how we measure the wettability of a surface. 

 

6.3.5  Static Cell Culture  

Human Umbilical Vein ECs were isolated from harvested umbilical cords and acquired 

from the Stegmann Lab. The HUVECs were used at Passage 8 or 9. The initial seeding 

density was between 2,500 - 5,000 cells/cm
2
. The cells were cultured until 70-80% 

confluence (4-6 days after plating). The HUVECs were cultured in EC media (EBM-2®, 

Lonza, Walkersville, MD) consisting of fetal bovine serum, ascorbic acid, 

PCL Surface PCL Surface

Good wettingPoor wetting

θ θ

water droplets

θ = contact angle

↓ contact angle ↑ hydrophilicity
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gentamicin/amphotericin-B, VEGF, hydrocortisone, human epidermal growth factor, 

human Fibroblast growth factor-basic, heparin, and human recombinant analog of 

insulin-like growth factor-I. Cell culture studies were performed in 24-well TCPS (discs) 

and 48-well TCPS (scaffolds) under static incubation (humidified atmosphere, 37°C, 5% 

CO2) conditions. Prior to cell seeding, all constructs were sterilized under an ultraviolet 

(UV) lamp for one hour, equilibrated in PBS (Dulbecco) for 30 minutes, and then 

submerged in EC media once for 30 minutes. Heparinized constructs were sterilized by 

UV prior to the addition of VEGF.  

The seeding densities were 1.2 x 10
4
 cells/disc for discs with a surface area of 1362 mm

2
 

and 9.0 x 10
4
 cells/scaffold for scaffolds with a surface area of 177 mm

2
. A cell 

suspension of known cell density was added to the top of each disc. Similarly, the top of 

the scaffolds was seeded, then incubated for 30 minutes, before they were flipped to 

expose the bottom of the scaffold for seeding. Fig. 5.4 illustrates the drop-wise seeding 

technique used. The media was changed every other day. The ten experimental groups 

are shown in Table 6.2. The effect of sodium hydroxide treatment, bound VEGF and 

bound RGD on cellular behavior was investigated by seeding cells onto PCL discs and 

scaffolds modified with the respective treatments (to be referred to as PCL-N, PCL-HV 

and PCL-R, respectively). Untreated PCL served as the control. Heparinized constructs 

with no VEGF present (to be referred to as PCL-H) were compared to Group 2 and 3 

from Table 6.1. The cells were cultured for up to four days.  

 

Table 6.2 Experimental groups for in vitro static HUVEC culture. 
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Figure 6.4 Drop-wise seeding method used for discs and scaffolds. 

 

6.3.6  Cell Viability 

Cell attachment, proliferation and spatial distribution across the disc and/or scaffold were 

determined by a MTT assay. Prior to the conducting the assay, the culture medium was 

aspirated and the discs and scaffolds were washed in PBS three times to remove 

unattached cells. The colorimetric MTT assay used a 3-(4,5-dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(4-sulfonphenyl)-2H-tetrazolium (MTS tetrazolium) 

compound (Cell-Titer 96 Aqueous One Solution Cell Proliferation Assay; Promega, 

Madison, WI). The seeded ECs were incubated for three hours with the 20% MTS 

solution in serum-free culture medium in 48-well paltes. The metabolically active ECs 

reacted with the of MTS reagent to produce soluble formazan product. From each 

scaffold-well, three aliquots of the reagent were pipetted into a 96-well plate then placed 

into a microplate reader (Multiskan Spectrum, Thermo Electron Corporation). The 

absorbance was measured at 490 nm.  

Cell attachment was assessed within 24 hours (Day 1) of initial attachment. Cell 

proliferation was evaluated after 72 hours (Day 3) of static culture. The spatial 

distribution was evaluated on Day 1 and 3. The three-dimensional scaffolds were 

sectioned in three parts with a razor. The distribution of seeded cells on scaffolds was 

determined over the three sections: top (20% of surface area), center (60% of surface 

area) and bottom (20% of surface area). Comparisons between edge and center cell 

viability account for the difference in surface area. 

 

drop-wise EC seeding
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6.3.7  Von Willebrand Factor (vWF) Assay 

On day 3, the amount of vWF released into the medium was determined using the 

standard protocol from a commercially available vWF ELISA kit (AssayPro, St Charles, 

Missouri).  

 

6.3.8  Statistical Analysis 

Each assay was performed in triplicate for three independent samples. The results were 

expressed as means ± standard deviations. In Minitab (Minitab Inc., State College, PA), 

Pairwise comparisons between the treatment groups was performed with the ANOVA 

procedure, followed by Tukey's post hoc test at a significance level of P-value < 0.05 or 

P-value < 0.01. Two-tail Student’s t-test assuming equal variance was used to determine 

whether there was significant difference between two groups. P-values below 0.05 were 

considered significant. 

 

6.4  RESULTS 

6.4.1  Effect of Surface Modifications on PCL Wettability 

The surface charge of untreated PCL was largely neutral due to the prevalence of ester 

groups (-COO-) in PCL molecules, which made it weakly acidic. The negatively charged 

residue from the RGD peptide and the strong negative charge of heparin deposited a 

negative charge onto the PCL surface. Hydrolyzation broke down the ester groups 

present in PCL molecules and formed carboxylic and alcohol by-products, which created 

a negative surface charge. Figure 6.5 shows the range of contact angles measured for the 

four surface treatments. The untreated PCL exhibited the largest contact angle and was 

significantly different from all other groups (P-value < 0.01). All groups were 

signficantly different from one another (P-value < 0.01). The average degree of the 

contact angle increased as follows: PCL-N (14° ± 8°) < PCL-R (29° ± 19°) < PCL-H (59° 

± 11°) < PCL (87° ± 12°). The chemical modification produced a significantly lower 

contact angle than the biological modifications and control group. 
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Figure 6.5 Contact angles (ascending) for surface modified PCL surfaces (n = 3).  Illustrates 

statistical significant difference between each group (p-value < 0.01). PCL – untreated; PCL-H – 

Heparinized; PCL-R – RGD immobilization; PCL-N – NaOH-treated. 

 

6.4.2  Effect of Surface Modifications on HUVEC proliferation 

After day 1, HUVECs cultured on PCL-HV discs and scaffolds exhibited the greatest 

average number of cells than all other groups (Fig 6.6a). On PCL-HV discs, the average 

number of cells was 4 times higher, and on scaffolds, seven times greater than the control 

group. For both discs and scaffolds, PCL-HV groups were statistically different from the 

untreated control group. All scaffold surface modified groups exhibited greater 

proliferation than the control group (Fig 6.6a). On the scaffolds, the average number of 

cells on PCL, PCL-R, PCL-N, PCL-HV were 5,183 ± 2,951, 49,999 ± 10,541, 28,517 ± 

6,018 and 37,421 ± 6,786, respectively. All groups were statistically different from the 

control group. For discs, the PCL-N proliferation was comparable to the PCL control 

group (Fig 6.6a). The mean percent degradation for NaOH-treated PCL scaffolds (at 

room temperature, 25°C) was 8.5 ± 1.2% and 0.43 ± 0.38% for PCL disks (n = 3). On 

day 3, the trends remained the same (Fig 6.6b). For the scaffolds, there was no statistical 

difference between PCL-R (51,385 ± 4,974), PCL-N (50,537 ± 7,324) and PCL-HV 

(56,391 ± 5,085) scaffolds. On PCL-R, PCL-N and PCL-HV discs, the average number 

of cells was twice as high, and on scaffolds, three times greater than the control group. 
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(a) 

 

 

(b) 

Figure 6.6 The average amount of HUVECs proliferated at (a) day 1 and (b) day 3 for discs and 

scaffolds (n = 3). Statistically significance shown between groups with * (p < 0.01). 

 

6.4.3  Effect VEGF conjugation on HUVEC proliferation 

Both PCL-HV discs and scaffolds demonstrated an increase in proliferation on day 1 and 

3 of culture (Fig. 6.7). The presence of VEGF (10μg loaded) on heparinized scaffolds 
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promoted slightly higher cell proliferation. After day 1, on discs, the presence of VEGF 

results in an average cell amount of three times as much as the heparinized discs with no 

VEGF present. However the two groups, PCL-H and PCL-HV were not statistically 

different on day 1 or 3, the relationship between PCL-H to PCL-HV was roughly one to 

one. Based on the VEGF conjugation efficiency study, 8.7 ± 0.01 μg (87% of initial 

loaded amount) of VEGF was immobilized on to untreated scaffolds and 8.1 ± 1.2 μg (81 

% of initial loaded amount) to heparinized scaffolds. 8.5 ± 0.23 μg (85% of initial loaded 

amount) of VEGF was immobilized on to untreated discs and 7.9 ± 0.22 μg (79% of 

initial loaded amount) to heparinized discs. Over seven days, there was less than 10 

ng/day (0.1% of initial loaded amount) release of VEGF from either group (PCL or PCL-

HV), for discs or scaffolds (Fig 6.8a-b). Table 6.3 summarizes the release of VEGF over 

7 days. There is negligible release (less than 10 ng/day) for untreated and heparinized 

scaffolds over the entire duration of the study. After day 1, the untreated discs 

demonstrated negligible release. The heparinized discs demonstrated stimulating (greater 

than 10ng/day) release levels from day 1-3, with a slight drop on days 5 and 7. 

 

 

Figure 6.7 Average amount of HUVECs at day 1 and 3 on heparin immobilized PCL discs and 

scaffolds without (PCL-H) and with 10μg of VEGF loaded (PCL-HV). No statistical significance 

between PCL constructs with and without VEGF loaded (p-value > 0.05). (n = 3) 



 

174 

 

 

(a) 

  

(b)        (c) 

Figure 6.8 VEGF retention over 7 days for (a) heparinized and untreated discs and (b) untreated 

scaffolds and (c) heparinized scaffolds (n=3). 10 μg of VEGF loaded and heparin (based on values in 

Table 6.1) onto discs and scaffolds. 
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Table 6.3 VEGF release over 7 days. Burst release on day 1 for all groups, except the untreated 

scaffolds. 

 

 

6.4.4  Effect of Surface Modifications on the Localization of HUVECs 

Sectioning and MTT analysis of the three-dimensional scaffolds revealed that the initial 

distribution of HUVECs on each treatment group had high variability at the edge and 

center of the scaffold (Fig. 6.9a). By day 3, the PCL-N (average number of HUVECs: 

27,310 ± 9,880) and PCL-R (average number of HUVECs: 61,946 ± 22,390) group 

showed higher HUVEC densities at the edge of the scaffold, compared to the control 

group (average number of HUVECs: 14,675 ± 8,762). While PCL-HV (average number 

of HUVECs: 36,486 ± 13,913) demonstrated at a higher density at the center compared to 

the control group (average number of HUVECs: 29,549 ± 2,218) (Fig 6.9b). There was 

no statistical difference among the groups, in terms of the edge density. At day 3, the 

edge-to-center ratios for PCL, PCL-R, PCL-N and PCL-HV were 2.3 ± 1.5, 1.0 ± 2.0, 1.3 

± 1.6 and 0.2 ± 0.3 respectively. PCL and PCL-N showed more uniform distribution, 

with PCL-N promoting greater cell proliferation. 

 

Heparinized Untreated Heparinized Untreated

Day 1 254 754 5 0.4

Day 3 40 1 2 0.4

Day 5 8 1 2 0

Day 7 7 1 0.4 0.1

ScaffoldsDiscs

VEGF RELEASE (ng)
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(a) 

 

(b) 

Figure 6.9 Average number of HUVECs at (a) day 1 and (b) day 3 at the edge and center of a 

sectioned scaffold. There was no statistical significance between localization of HUVECs on day 1 

across surface treatments or regions of the scaffold (p-value > 0.05) (n = 3). By day 3, there was no 

statistical signficance at the edges between the PCL surface treatments associated with **, but RGD-

modified scaffold showed the largest edge attachment and the VEGF-loaded scaffold showed the 

greatest attachment at the center of the scaffold (p-value > 0.05). PCL – untreated; PCL-H – 

Heparinized; PCL-R – RGD immobilization; PCL-N – NaOH-treated. 

 

6.4.5  Effect of Surface Modifications on vWF release 

The cell response to the treatment groups showed that PCL-N, PCL-R and PCL-HV 

released significantly lower levels of vWF than the control group (Fig. 6.10). For discs, 

the vWF release was twice as low, while for scaffolds the release was 3-4 times lower 
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than the respective control groups. However, there was no statistical difference among 

the release amounts among the surface modified groups. For discs, the vWF 

concentrations for PCL, PCL-R, PCL-N and PCL-HV were as follows 5.3 ± 0.16 

IU/10,000 cells, 3.4 ± 0.14 IU/10,000 cells, 3.1 ± 0.17 IU/10,000 cells and 2.3 ± 0.03 

IU/10,000 cells. For scaffolds the vWF concentrations were 6.0 ± 0.11 IU/10,000 cells, 

2.1 ± 0.18 IU/10,000 cells, 1.6 ± 0.07 IU/10,000 cells and 1.4 ± 0.05 IU/10,000 cells, 

respectively. 

 

 

Figure 6.10 Relative amount of vWF released by surface modified discs and scaffolds into media over 

48 hours, at day 3 (n = 3). Normalized to the amount of HUVECs at day 3. PCL – untreated; PCL-H 

– Heparinized; PCL-R – RGD immobilization; PCL-N – NaOH-treated. 

 

6.5  DISCUSSION AND CONCLUSIONS 

Within a three-dimensional in vitro bioreactor, each component of the system plays a 

critical role in recreating appropriate conditions for chemical and mechanical stimulation 

of cells. In particular, the following factors are critical: (i) scaffold composition and 

biocompatibility, (ii) scaffold architecture and associated properties, (iii) cell line and 

culture type, (iv) perfusion source and hydrodynamic conditions, (v) oxygen exchange / 

pH levels, (vi) presence of pro-angiogenic factors, (vii) initial static cell culture and (viii) 



 

178 

 

cell distribution. The work presented in this chapter is an initial step to a larger study that 

would systematically evaluate each of these parameters. Chapter 5 evaluated the 

influence of architecture on the adherent cells under constant, non-pulsatile flow 

conditions, within the designed bioreactor. In this chapter, the results have demonstrated 

the effect of surface modified PCL discs (two-dimensional) and scaffolds (three-

dimensional) on the proliferation and activity of HUVECs in an initial static culture. 

These static cultures are a typical precursor step to dynamic bioreactor cultures. 

Among the four groups (PCL, PCL-V, PCL-R, PCL-N), the hydrolyzed scaffolds exhibited 

the largest wettability (Fig. 6.5). Each of the surface modifications showed improved 

wettability compared to the control group. Each contact angle range 

(minimum/maximum) was statistically different from all other groups. Based on its low 

contact angles, PCL-N had the most hydrophilic surface, followed by PCL-R and lastly 

PCL-H.  

For discs and scaffolds, PCL-HV demonstrated significantly higher proliferation levels 

than the control, at day 1 and 3 (Fig. 6.6a-b). Day 1 proliferation on PCL and PCL-N 

discs were similar contrary to what would be expected based on their respective 

wettabilities (Fig. 6.6 and Fig 6.6a). For all scaffolds, more cells proliferated on the 

treatment groups than on the control, with PCL-R demonstrating the largest average 

number of cells (Fig. 6.6a-b). The NaOH degradation to discs was lower than for 

scaffolds. This decrease in degradation may have affected the degree of surface 

roughness and surface area achieved on the discs. For both discs and scaffolds, PCL-R 

and PCL-HV demonstrated the highest levels of proliferation and were not statistically 

different from one another (Fig. 6.6a-b). For both constructs, the average number of cells 

peaks at day three indicating that cell quiescence may have occurred between 24-72 

hours, once the ECs reach a high confluence on the constructs (Fig. 6.6b). By day 3, there 

is no statistical difference in viable ECs among the PCL-R, PCL-N and PCL-HV discs or 

scaffolds (Fig. 6.6b). All scaffold treatment groups had more viable cells than the control 

group. The uniform proliferation across treatment groups may indicate that although 

PCL-R and PCL-HV promoted greater attachment (or initial proliferation during the 

initial attachment period), for scaffolds and discs, the critical factor in proliferation may 

be the increased surface wettability, which was exhibited across all treatment groups.  
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The investigation on dose effect of 10μg of loaded VEGF revealed that PCL-HV 

demonstrated approximately the same average number of viable cells in comparison to 

PCL-H at day 1 and day 3 (Fig. 6.7). There was no significant difference in the number of 

proliferated cells between the two groups. There was no statistical difference in 

proliferation at day 1. The results indicate that a larger amount of VEGF must be loaded 

to produce a cell response. The VEGF release study showed that there was negligible 

release across all constructs, except for the heparinized disc group (Fig. 6.8 and Table 

6.3). The VEGF content that remains on the scaffold may be bound too tightly for 

gradual release or adequate exposure of functional end groups. Further investigations 

should compare PCL-H to PCL-R proliferation over 72 hours. As well, the dose of effect 

of VEGF should be investigated to determine if larger doses can elicit a distinctive 

response compared to PCL-H, in less than 72 hours.  

Heparin dosage can be increased in effort to improve VEGF binding and reduce 

opportunities for VEGF adsorption onto the scaffold. As such, in a second proliferation 

study (data not shown), designed to evaluate the heparin dose cell response to increased 

heparin, the PCL, PCL-R and PCL-N treatment groups were cultured over 72 hours, with 

the addition of a high dose heparin group (5 mg on discs and 10 mg on scaffolds) with 10 

μg of VEGF loaded. PCL-HV (high heparin content) had less and statistically different 

average number viable cells than PCL-R, on both scaffolds and discs. However, the 

increase in dose invoked a negative cell response, which made cell proliferation 

comparable to the control group. The heparin dose effect should be further evaluated, to 

determine an optimal dosage of VEGF needed to counteract potential heparin inhibition. 

The decrease in cumulative vWF released over 48 hours was roughly the same for all 

treatment groups on discs and scaffolds. They were all significantly lower than the 

control group. Starke et al. reported that a decrease in vWF was linked to increase in vitro 

angiogenesis [44]. Based on this finding, all surface modifications demonstrated greater 

angiogenic function: PCL-HV > PCL-N > PCL-R.  

Simulations in chapter 5 showed that for in vitro perfusion bioreactor, apoptosis is greater 

at the edges of a scaffold, where the largest shear stresses are experienced. As such, a 

surface modification to a PCL scaffold that produces high EC density at the edges and 



 

180 

 

core would provide the ideal spatial distribution for both in vitro and long-term in vivo 

application. The edges of PCL-R supported the highest average number of ECs among all 

groups (Fig. 6.9b). The average cell viability at the edges of PCL-R was higher than all 

other groups, although not statistically different. There was also no statistical difference 

between the viability of cells at the core of the scaffold. 

Overall, the implications to a bioreactor study were (i) each surface modification 

improved the hydrophilicity and as a result the cytocompatibility of PCL (Fig. 6.5), (ii) 

there was no significant difference in EC proliferation among modifications over three 

days (Fig. 6.6b), (iii) ECs should be cultured for less than 72 hours to avoid quiescence, 

but promote attachment/proliferation (Fig. 6.6b), (iv) there was no significant difference 

in EC function, in terms of vWF release, among the modified surfaces, making the 

cheaper modification (PCL-R compared to PCL-HV) advantageous (Fig. 6.10), and (v) 

the high edge density of RGD-modified scaffolds after 72 hours makes it ideal for 

bioreactor studies, without compromising EC density at the core of the scaffold (Fig. 

6.9b). In a preliminary assembly and run of the bioreactor enclosing a PCL-R scaffold 

(after 72 hour static culture), after 1 hour of perfusion, at room temperature, there was 

approximately a 30% retention of ECs on the scaffolds (n = 3). Further studies are 

required to determine the viability and maturation of cells with time within an incubator. 

Most three-dimensional bioreactor studies employ translucent matrices, such as alginate, 

Matrigel or collagen, which can be readily imaged to assess EC migration and the 

formation of tubules during angiogenesis. However, given the proposed bioreactor 

design, further studies are needed to determine the ideal method of evaluating cell and 

vessel form and function within this PCL bioreactor. Cumulative and cyclic protein/factor 

production (i.e. vWF) may be used to assess changes, but typically vessel morphology is 

the standard metric for evaluation of angiogenesis. Chapter 7 discusses imaging 

opportunities for non-translucent biomaterials. 

Tissue engineering often focuses on the treatment and restoration of damaged tissue sites 

to normal function and/or morphology. However, given its toolbox of biomaterials, 

computational models, bioengineering approaches and cell culture systems, the field of 

tissue engineering inherently lends itself to the development of disease systems [45].  As 

such, over the past few years, the challenge of moving in vitro tumor modeling from a 
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two-dimensional to three-dimensional in vitro platform has been the focus of 

interdisciplinary work between cancer researchers and tissue engineers [46-48]. Recent 

studies have highlighted the biomechanical influence of three-dimensional extracellular 

matrices (and adhering components) on the growth of normal tissue and solid tumors [49-

50]. The practical implementation of a cell bioreactor (with the addition of other 

signaling factors) for the growth of cancerous tumor models remains to be further 

explored. A localization of HUVECs on the scaffold that provides a higher density at the 

edges versus the center, may favor necrosis typical of tumorigenesis, in a co-culture with 

tissue cell lines. 
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CHAPTER 7  
 

A Review of Three-dimensional Imaging Methods for Assaying Tubule Formation 

in Three-Dimensional In Vitro Culture Models 

 

 

Abstract 

The structure and function of blood vessels is a key determinant of the viability and 

proliferation of cells in both healthy and diseased tissue. In vivo imaging of angiogenesis 

is a routine procedure to monitor treatment responses and disease progression, in both 

animal research studies and clinical practice. Two-dimensional microscopy is often 

implemented in biomedical research to visualize cell monolayers. Recently, 

investigations of physiologically-relevant in vitro three-dimensional culture models have 

heightened the need for three-dimensional, non-invasive methods to evaluate vessel 

formation and function within tissue. In order to garner real-time, structural and/or 

functional information from these models, various imaging techniques were modified to 

track angiogenesis within in vitro studies that employ synthetic or natural matrices. 

Advances in medical imaging systems and image processing make multi-scale imaging 

from the tissue-level down to molecular-level, a viable tool for the qualitative assessment 

or quantification of angiogenesis within in vitro three-dimensional culture studies. Static 

and dynamic image series acquired using imaging systems offer valuable temporal 

insight on the proliferation, migration and tubule anatomy of ECs involved in 

angiogenesis. Tissue properties, such as elasticity are also extracted from these images. In 

this article, we review the recent literature to demonstrate the utility and potential of 

imaging technologies when adapted to in vitro three-dimensional culture models. 

Magnetic resonance, optical, nuclear and ionizing radiation imaging systems are among 

the medical imaging systems discussed. 
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7.1  INTRODUCTION 

Angiogenesis is a critical step to the sustainment of healthy regenerative tissue and to the 

growth of solid cancerous tumors. The determination of whether three-dimensional in 

vitro angiogenesis models can successfully re-create favorable environments for 

endothelial cell (EC) tubulation is key to their practical application to angiogenesis or 

tumor angiogenesis research. Recent studies explored the utility of physiologically-

relevant angiogenesis and tumor angiogenesis culture models that provided 

biomechanical stimulus (via an extracellular matrix or flow): three-dimensional gel 

embedded matrices (collagen, fibrogen, alginate and Matrigel), three-dimensional 

biocompatible polymers and microfluidic models [1-10]. The success of these three-

dimensional in vitro angiogenesis models in terms of their potential to sustain tissue 

viability (normal or pathological) is often qualitatively and quantitatively characterized 

by the structure and function of newly formed blood vessels [11-12]. The physical 

phenomenon of capillary sprouting, termed angiogenesis, is the process by which new 

capillary blood vessels are created, either as offshoots or as splits from existing vessels 

[13]. Tumor angiogenesis is the rate limiting stage of tumorigenesis, marked by initiation 

and sprouting of new vessels from existing neighboring vessels [14-15].
 
This stage 

encourages the survival and uncontrolled proliferation of cancerous cells by providing the 

cancerous site with access to nutrient and waste exchange [14]. Under healthy conditions, 

angiogenesis is marked by EC migration, initiation, formation, maturation, network 

remodeling, differentiation, and regression stages as cells grow into tubules and networks 

[14]. During tumor angiogenesis, the basement epithelial layer of the extracellular matrix 

(ECM) thins, the altered cells’ mechanics allow for cell crowding and anchorage-

independent growth, and the sensitivity to growth stimuli increases for neighboring cells 

[14-16]. The new vascular networks are markedly more tortuous and leaky, compared to 

a normal capillary network [17]. The vascular network created via tumor angiogenesis 

lacks the organization and maturation of vessels characteristic of normal vascular 

networks
 
[17-18]. The formation of the vascular networks can be characterized in terms 

of EC biology (i.e. gene expression), EC proliferation, EC migration, EC differentiation 

and tubule formation [19]. Imaging techniques have increasingly been adapted to track 

the activity of ECs and changes in tissue properties indicative of the formation of 
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vascular networks (comprised of 4-10 micron vessels). These imaging techniques 

facilitate the evaluation of blood vessel development and/or regression within 

angiogenesis and tumor angiogenesis [20-22]. 

Commonly, static (well plates and natural/engineering constructs) and dynamic 

(microfluidics and in vivo) angiogenesis and tumor angiogenesis models are characterized 

based on results of histology and two-dimensional microscopy. These models are 

evaluated based on hypoxia distribution, epithelial proliferation, extracellular matrix 

composition, angiogenic factor secretions, the presence of transmembrane adhesion 

proteins, EC proliferation, blood vessel density, blood vessel diameter, tumor weight and 

tumor volume. Quantification of the tubule formation usually involves an estimation of 

the total or average number of tubules, lengths and area based on scaled measurements 

from a portion of the area of tubule growth. The presence and function of tubules is also 

quantitatively evaluated via enzyme-linked immunosorbent assays (ELISAs) that 

estimate the amount of EC surface glycoproteins that promote cell-cell adhesion, 

respectively, cluster of differentiation 31 (CD31) and von Willebrand factor (vWF).  

Imaging-based tubule formation assays of two-dimensional in vitro systems evaluate 

properties visible from the top or bottom surface of a Petri dish or well plate. As such, 

quantification of cell behavior, specifically EC migration or formation into tubules during 

angiogenesis is easily discernible in static images captured from a camera, or light or 

electron microscope [23], as illustrated in Fig. 7.1a. Techniques such as histology 

(hematoxylin and eosin staining), and immunostaining for CD31 and vWF are used to 

visualize tubules [23-25], as shown in Fig. 7.1b. Microscopy techniques that yield two-

dimensional topographic data, such as phase contrast and fluorescence imaging offers 

visualization and monitoring of in vitro vessel growth in translucent constructs, such as 

Matrigel. In a study of human umbilical vein endothelial cells (HUVECs) cultured on a 

Matrigel basement membrane matrix, Mezentsev et al. performed topological analysis on 

captured time-lapse microscopy data. The imaging data was qualitatively and 

quantitatively to evaluate the growth and regression of capillary-like networks over time 

in response to potential markers of EC dysfunction (endothelial microparticles) that were 

introduced during the observation period.  
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Figure 7.1 Two-dimensional tubule formation assays. Representative images of (A) in vivo 
immunohistochemical images of hematoxylin and eosin-stained fibrin implant sections showing the 
presence of red blood cells within anastamosed lumenal structures and (B) in vitro 
immunofluorescent images of capillaries formed within a fibrin tissue. Images courtesy of S. 
Grainger and A. Putnam, Cell Signaling in Engineered Tissues Lab, Department of Biomedical 
Engineering, University of Michigan. 

 

However, the complexity in geometry of three-dimensional engineered constructs renders 

assessments based on two-dimensional, surface imaging uninformative. Three-

dimensional constructs encompass pores, crevices, and other tortuous paths that are 

hidden from a top or bottom orthogonal view. Three-dimensional assays on tubule 

formation can be thwarted by light impenetrable synthetic polymer scaffolds and by the 

dissection of tubules in preparation for histology or microscopy. In addition, assessment 

in terms of structure (i.e. volume) and function (i.e. perfusion characteristics) of un-

mineralized tissue/blood vessels, non-calcified tissue/blood vessels are useful parameters 

in the characterization of engineered three-dimensional constructs. Quantification via 

CD31 and vWF remains a feasible assessment of vessel presence and function, 

respectively. However, the localization of ECs requires the cryosectioning of scaffolds, 

which introduces error to the measurement from the inevitable displacement and damage 

to cells and tubules. Thus, in order to better capture the information available in three-

dimensional angiogenesis models, three dimensional imaging methods are needed to 

qualitatively and quantitatively characterize tubule formation under in vitro conditions in 

three-dimensional constructs. At the sub-cellular level, microscopy studies of kinetochore 

microtubule cell division dynamics have demonstrated that trajectories observed in two-

dimensional imaging may significantly differ from those visualized in three-dimensional 

imaging [26]. The use of three-dimensional imaging methods may provide a more 
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complete and accurate representation needed to characterize cellular processes and 

outcomes during in vitro angiogenesis and tumor angiogenesis studies [27]. 

Since the late 1890s, the challenge of non-invasive penetration of the human body has 

been achieved through medical imaging systems. These imaging systems generate 

datasets from which informative quantitative vascular metrics are extracted based on 

image voxel intensity values. In clinical radiology and oncology practice, static imaging 

(mainly, Magnetic Resonance Imaging and Computed Tomography) provides a 

qualitative and quantitative method to localize large vessel structures and assess their 

microvascular density. In addition, Radiation Oncology teams in therapeutic assessments 

of radiation treatment use dynamic perfusion imaging (via Magnetic Resonance Imaging, 

Computed Tomography, Positron Emission Tomography and Single-Photon Emission 

Computed Tomography) to capture image datasets over a given period of time (1-2 

minutes) in order to quantify tumor perfusion and angiogenesis. In whole-body and 

animal studies, static and dynamic imaging techniques have been employed to study 

xenograft, allograft and tissue engineered graft post-implantation [28-33]. Increasingly, 

tissue engineers have adopted whole-body and small animal imaging systems, such as 

Magnetic Resonance (MR) imaging techniques, Computed Tomography (CT) and 

Nuclear Imaging to evaluate in vitro normal and tumor angiogenesis. Several groups have 

capitalized on the strengths of the different imaging modalities to evaluate angiogenesis, 

despite some of the system’s limitations for practical cell-level biological application: 

low penetration depth (microscopy), low spatial resolution (MR), use of ionizing 

radiation (CT and x-ray) or lengthy imaging time (MR). Several molecular imaging 

modalities have also been investigated, particularly optical fluorescence imaging, 

targeted MR imaging and bioluminescence imaging.  

Utilized at fixed endpoints, these static and dynamic imaging methods provide 

observations of single-cell responses and bulk property changes (i.e. microvessel density) 

that are directly and indirectly related to normal and/or pathological angiogenesis and the 

resultant altered microenvironment. Existing imaging modalities used in angiogenesis 

research examine the structure and/or function of tubules and their local environment in 

terms of cellular composition, local environment (i.e. presence of biomarkers), stiffness 

(associated with tumor angiogenesis), length, coverage area, density, diameter and/or 
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branching. Direct metrics evaluate the structural characteristics of tubule formation, while 

indirect metrics assess changes caused by angiogenesis, such as construct stiffness and 

vascular permeability. 

In this paper, the methodologies available for noninvasive, in vitro imaging of tubules 

created during angiogenesis are explored. As well, their experimental requirements, 

potential benefits and inherent limitations are explored from the vantage point of 

applying these tools to the nascent explorations on in vitro three-dimensional 

angiogenesis models. This paper primarily focuses on the image-based characterization 

of tubule formation in terms of structural, mechanical and/or functional properties 

extracted from imaging methodologies, since angiogenesis studies commonly use the 

extent of vascularization as an end marker of tissue viability and tumor therapy. There is 

also brief mention of cell seeding and migration visualization. 

 

7.2  MEDICAL IMAGING MODALITIES  

7.2.1  Optical Imaging 

7.2.1.1  Phase Contrast and Fluorescence Microscopy 

Microscopy provides an assay method to capture live-cell kinetics. Specifically, phase-

contrast microscopy uses the fact that denser mediums transmit light at slower rates, than 

do less dense mediums. The change in this optical path of light allows for the 

visualization of living and otherwise transparent biological tissue and sub-cellular 

components, without the use of fixation or dyes [34]. Fluorescence microscopy offers 

enhanced contrast using near-monochromatic illumination to excite fluorescent-labeled 

biomolecules within a biological sample [35] to visualize structure and function of 

molecular or cellular components [35]. The stimulated fluorescent molecules emit a 

lower energy light (in the presence of light, biological parameters or gradients) that is 

used to produce an image that enhances the excited features [36], as shown in Fig. 7.2c. 

To visualize the distribution of a molecule within a sample, immunofluorescence 

employs antibody-antigen pairings tagged with fluorescent dyes to localized biomolecule 

targets [37]. Biological compounds, such as hemoglobin, nicotinamide adenosine 

diphosphate (NAD/NADH) and matrix metallo-proteases (MMPs), which are present 
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during metabolic processes can be indirectly measured [38-40]. McDonald and Choyke 

[41] summarized a list of available markers to labeling ECs.  Each of these microscopy 

methods can be used to acquire a two-dimensional surface image of section sample (sub-

millimeter field of view).  

 

 

Figure 7.2 Example of three-dimensional phase-contrast microscopy coupled with fluorescent optical 
imaging. (A) Schematic of the fibrin/bead assay. Endothelial cells (red) are coated onto Cytodex 
beads and embedded into fibrin gels. (B) Phase contrast image of branching vascular sprouts 
emerging from a bead. Scale bar is 500um. (C) Endothelial cells were transduced with retrovirus 
expressing mCherry and sprouts were visualized under epifluorescence. (D) Confocal image of a 
sprout stained with phalloidin (actin) and DAPI (nuclei), demonstrating the presence of a lumen in 
the trunk of the vessel and a non-lumenized tip cell at the head of the sprout. Scale bar 10um. Images 
courtesy of C. W. Hughes and M. N. Nakatsu, Department of Molecular Biology and Biochemistry, 
University of California Irvine, Irvine, California. 

 

In a study that evaluated the distribution and survival of fibroblasts seeded onto a 

poly(lactic-co-glycolic acid) (PLGA) salt-leached scaffold, Thevenot and Tang [42] 

imaged 20-micron sections of the scaffold from top to bottom, using phase-contrast, and 

red and green fluorescence imaging. A three-dimensional rendering in NIH Image J (U. 

S. National Institutes of Health, Bethesda, MD) allowed for the direct quantification of 

viability and distribution of cells using three distinct seeding methods.  
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In time-lapse microscopy, the dynamic and transient behavior of cells is captured within a 

given two-dimensional (x-y) field of view determined by the contrast mode (i.e. phase or 

fluorescence) adopted using an inverted microscope, at discrete intervals, for a given 

period of time [43]. Typically, time-lapse experiments comprise of hundreds of images 

that are analyzed by an automated post-processing method [43]. The visual output offers 

limited, quantitative information, since only a few vessels are visible in the small region 

imaged— a function of the required magnification (approximately 40-200 times). As 

well, the assay is subject to the selection of the field of view and the inherent variability 

within the network. Time-lapse microscopy is commonly used to track cell migration and 

growth, and can be combined with phase contrast microscopy [44-45].  

 

7.2.1.2  Confocal Microscopy 

In contrast to phase contrast and fluorescence microscopy, confocal microscopy 

generates three-dimensional volume reconstructions of scanned optical sections of a 

translucent three-dimensional sample. Three-dimensional confocal microscopy improves 

the quality of the image and offers a slighter higher resolution improvement (by roughly a 

factor of 1.4 [46]) over other microscopy techniques, making it useful for observations of 

three-dimensional structures thicker than 2-3 micrometers [47-48]. Image formation in a 

confocal microscope is achieved through point by point, serial reconstructions (i.e. 0.1-30 

Hz frame rate for a 512 x 512 image) of three-dimensional (z-series) data collected from 

the illuminated volumes [49-50]. The volume reconstructions are assembled from the 

series of thin vertical slices collected. Within confocal microscopy, a laser emitting 

monochromatic, coherent light is focused at a motor-driven dichromatic mirror(s) that 

scans the sample and then selectively excites thin sections of the sample [47,51]. 

Fluorescence emitted from the excited volumes is transmitted back through the mirror(s); 

low frequencies are reflected by the mirror(s), while higher frequencies are transmitted 

through the mirror, and then focused through a pinhole aperture. Only light in confocal 

(along a conjugate plane) with the source and pinhole passes through the aperture and is 

detected by a single photodiode or photomultiplier tube. The confocal pinhole or single-

mode fiber restricts the scanned volume confocal to the source and pinhole, thereby 

ignoring the scattered or unfocused light produced by the fluorescence background that 
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would otherwise contribute to the detected signal. A barrier filter is employed to ensure 

that none of the excitation light is detected in the final signal [51]. Confocal microscopy 

achieves roughly a 1 micron resolution, and submillimeter field of view and depth of 

penetration [52]. 

Similarly, two-photon confocal microscopy uses the simultaneous absorption of two 

infrared photons to excite section of a sample, in the same manner as previously 

described in confocal (one-photon) microscopy [53-54]. The two-photon method utilizes 

longer excitation wavelengths (higher frequency), which produce less scatter and out-of-

focus fluorescent background (at depths of about 1 mm) [53-55]. The longer wavelengths 

improve depth penetration and provide greater spatial confinement of light-matter 

interactions to reduce the absorption of excitation light outside the focal plane. The 

resulting biological implications are decreased phototoxicity and photobleaching on 

scanned cells [52-54,56].  

Dawood et al. used z-stack three-dimensional image reconstruction of images from 

immunofluorescent confocal microscopy to evaluate the number of HUVEC cells and 

tubule formation in multichanneled hydrogels (collagen VI and Matrigel) [57]. In the 

evaluation of translucent fibrogen gels, Nakatsu and Hughes stained the vessel walls 

within their construct with vimentin, and the EC nuclei with 4',6-diamidino-2-

phenylindole (DAPI) to visualize the three-dimensional hollow lumens recently sprouted 

in their in vitro angiogenesis study. They coupled phase-contrast microscope images with 

fluorescent (optical) images to generate a z-sliced image dataset, in order to confirm the 

presence of intercellular lumens and the polarity of HUVEC cell orientation relative to 

the collagen IV basement membrane and fibrin gel. Nakatsu and Hughes captured 

fluorescent images using a two-photon Carl Zeiss MicroImaging LSM 510 Meta 

microscope, then generated three-dimensional renderings [58]. Fig. 7.2a illustrates the 

setup of their fibrin/bead assay and Fig. 7.2b shows results from their phase contrast. Fig. 

7.2c-7.2d shows the results of three-dimensional renderings of fluorescent optical image 

stacks.  

Within a microfluidic device, volume renderings of tubule formation within individual 

channels were realized in a study by Chau et al., using z-stack image reconstructions and 

confocal fluorescent imaging of a vWF staining [59]. Similarly, Vickerman et al. in an 
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evaluation of capillary morphogenesis within a microfluidic system, generated three-

dimensional reconstructions of confocal images to visually confirm the patency of newly 

created fluorescent marked lumen structures [60]. Other investigations using microfluidic 

devices have combined fluorescent, confocal and/or time-lapse microscopy to optimize 

their set-up to monitor soluble chemicals such as oxygen tension [6,61].  

In an evaluation of engineered capillary networks, Grainger and Putnam co-cultured 

human lung fibroblasts and micro-carrier beads coated with HUVECs in a fibrinogen gel 

for 14 days [62]. The seeded gels were immersed in a fluorescent dextran tracer to allow 

for tracer perfusion into the luminal space of newly formed vessels.  The technique 

evaluated the permeability of the networks, as immature early sprouts are highly 

permeable, while mature networks possess mature cell-cell cadherin junction that are less 

permeable to the tracer. Confocal microscopy images were collected to quantify the total 

network length and to estimate a pixel intensity-based permeability measurement, which 

illustrated a decrease in tracer uptake over the 14 days. Although, the Grainger and 

Putnam, performed the study using Matrigel, the technique may be adapted to other 

three-dimensional in vitro models and the pixel intensity-based permeability algorithm 

could be expanded to a three-dimensional volume rendered from confocal images. As 

well, the technique provided a useful analytical tool to distinguish normal vascular 

networks from leaky, cancerous networks. 

Song and Munn illustrated the effects of positive and negative localized vascular 

endothelial growth factor (VEGF) gradients and fluid forces (approximately 0 - 3 

dynes/cm
2
) on in vitro angiogenic sprouting in microchannels [63]. Vascular endothelial-

cadherins were stained with a cyanine (Cy3) dye and HUVECs with 5’bromo-2’-

deoxyuridine (BrdU) in a microfluidic device fabricated with poly(dimethylsiloxane) 

(PDMS) and containing a localized coating of collagen gel. Phase constrast and 

fluorescent images were collected with an epifluorescence microscope, then processed to 

quantify EC proliferation and to qualitatively and quantitatively evaluate EC invasion 

into the collagen gel. Z-stacks of confocal images were also acquired to count the number 

of filopodia formation in sprouting HUVECs in a given area. The combined use of phase 

contrast, fluorescent, and confocal microscopy demonstrated the benefit of strategically 
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combining microscopy techniques to further understand angiogenesis and to assess tubule 

formation within a dynamic in vitro model. 

Meijering et al. [43] highlights that living cells are sensitive to photodamage due to 

excessive light exposure, such as that received during time-lapse microscopy. As such, 

before using these imaging protocols, validation studies should be performed to confirm 

that neither the light nor fluorescent probes alter cell physiology. Experimental set-ups 

should include controls and treatments that evaluate the sensitivity of cell-types under 

different culture conditions to light exposure and probes. 

 

7.2.1.3  Bioluminescent imaging (BLI) 

Bioluminescent imaging (BLI) provides a high sensitivity and specificity imaging 

technique to track cell viability/proliferation and localize neovascularization, using a cool 

charge-coupled device (CCCD) camera. In vitro BLI of cells is another noninvasive 

imaging technique that is useful in the evaluation of angiogenesis. It offers a colorimetric 

evaluation of the hypoxia levels of cells. Within BLI, energy in the form of light that is 

emitted from a chemical reaction within a biological sample is captured to form an 

image. Luciferins, light-emitting biological pigments, can be introduced to a sample to 

react with oxygen [64]. The light emission from these reactions is transient, and may be 

influenced by factors that are not controllable in the study. Liu demonstrated the viability 

of the assay for three-dimensional scaffolds by effectively visualizing oxygen gradients 

across cylindrical engineered agarose gels (4.8 mm x 4.8 mm), seeded with transfected 

Chinese hamster ovary A4-4 cells, and then subcutaneously implanted into nude mice 

[65]. Wang and El-Deiry [66]
,
, Wang et al. [67] and Jenkins et al. [68] performed in vitro 

BLI imaging on wells seeded with mesenchymal stem cells, ECs and/or tumor cells that 

were transfected with the firefly luciferase gene. In each study, image intensity was 

directly correlated with cell counts in order to quantify viability and proliferation. BLI 

has mainly been limited to in vivo whole body imaging and ex vivo imaging of excised 

tissue. Nadella et al. [69] and Xie et al. [70] tracked disease progression, in terms of 

tumor volume, through the delineation of tumor boundaries volumes using BLI. 

Preliminary work reported by S.J. Lapp [71], demonstrated the application of to a 
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dynamic bioreactor. In the study, chitosan scaffolds (13 mm × 13 mm × 25 mm) were 

embedded in a bone perfusion bioreactor and imaged over 11 days with BLI to monitor 

cell viability and bone morphogenetic protein 2 (BMP-2) expression of both MB-Luc and 

MC3T3-E1 cells. 

For a three-dimensional engineered scaffold or dynamic construct, the sensitivity of the 

BLI technique may be diminished as the material properties of the 3-D construct can 

produce high scatter and attenuation causing a low transmission of the bioluminescence 

signal at increased depths. BLI does not resolve depth, instead produces a two-

dimensional image representation of the visualized activity in the sample, whereby 

overlapped signals from the structure sum to form the final image. In a study by Logeart-

Avramoglou et al. [72], the cell counts for tagged murine stem (C3H10T1/2) cells in a 

known cell suspension were correlated to the number of cells adherent to a hydrogel (6 

mm diameter x 2 mm height) and ceramic (3 mm x 3 mm x 3 mm) scaffold. Logeart-

Avramoglou et al. suggested that the degree of signal attenuation and corresponding 

linear decrease in cell count were a material constant dependent on the scaffold properties 

(i.e. size, shape and porosity).  

As well, it should be noted that sources closest to the imaging source may appear brighter 

than those towards the bottom or at the core of the engineered scaffold. Initial studies 

should determine the percent loss of signal with increased depth for a given in vitro three-

dimensional model. Multiple CCCD cameras could be configured to capture multiple 

views of the construct in order to provide depth information. The sensitivity of the CCCD 

camera (and filters), along with spectral analysis techniques used to acquire and evaluate 

data can greatly enhance the sensitivity and resolution of BLI images. Along with an 

evaluation of signal loss, the potential inherent physiological changes that may be 

induced by the introduction of the luciferins should be assessed in a control study. 

Similarly, the transduction efficiency of the retroviral vectors for EC lines should be 

optimized. As an imaging modality for examining network formation, BLI fails to 

visualize anatomical changes, but can indirectly monitor tubule formation through the 

assessment of bulk changes in vessel formation, and the correlation between cell 

proliferation and pro-angiogenic cell function. 
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7.2.1.4  Additional Optical Imaging Techniques 

Investigations of optical imaging techniques, such as optical coherence tomography 

(OCT) and photoacoustic microscopy (PAM) have shown their utility in to monitor cell 

migration, spatial distribution, proliferation and morphology within three-dimensional 

culture models. OCT forms an image based on the indirect measurement of intensity from 

an interference pattern generated by reflected broad bandwidth, near-infrared that was 

focused light onto a given sample [73-74]. The echo time-of-flight produced from the 

scattered light is used to resolve the depth dimension. The axial and transversal 

resolutions of the system are governed by the spectral bandwidth and incident beam 

focusing, respectively [73-74]. OCT can image up to several millimeters deep, dependent 

on the optical properties of the sample, to form either two-or three-dimensional images. 

A variation of OCT, whole-field optical coherence microscopy (WFOCM, also referred 

to as full-field OCT) provides greater depth penetration than confocal microscopy [73-

75]. OCM provides high sensitivity and contrast in scattering (non-transparent) and non-

scattering (translucent) samples. Yang et al. [75] rendered three-dimensional cell 

distributions from volumetric WFOCM data for bone cells seeded on poly(l-lactic acid) 

(PLLA) scaffolds (9 mm diameter x 4 mm height) using WFOCM (resolution on order of 

0.8 μm x 0.9 μm x 0.7 μm) for 250 micrometer field of view. Coupled with multiphoton 

microscopy, OCM can be used to simultaneously acquire structural and functional 

information at the cell level [76]. 

PAM is a modified photoacoustic tomography technique, which forms an image by 

ultrasonically detecting pressure waves induced by the absorption of photons by local 

molecules irradiated by a pulsed laser beam [77-78]. The axial and lateral resolutions are 

determined by the dual detection/excitation focusing and the acoustic travel time, 

respectively [77]. The final is speckle-free image can have a resolution of few hundred 

nanometers to about a millimeter and a depth of a few millimeters [77-78]. Zhang et al. 

[79] generated three-dimensional renderings of fibroblasts which were allowed to 

proliferate on poly(D,L-lactide-co-glycolide) (PLGA) scaffolds (approximately 5 mm 

diameter). A depth penetration of 1.2 mm was achieved. However, EC studies of 

vascularization have not been imaged by these methods. The thermal sensitivity of ECs to 
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increases in temperature, as well as their response to pressure changes during imaging 

should be considered. 

 

 

Figure 7.3 (A) Photoacoustic microscopy (PAM) maximum amplitude projection (MAP) image and 
(B) the corresponding three-dimensional volume rendering of the MAP image illustrate the spatial 
distribution of fibroblast seeded on PLGA scaffold.  (C) and (D) are three-dimensional renderings 
generated from optical coherence tomography (OCT) data. Reprinted from Cell Imaging, 50, Zhang, 
Y., et al., Noninvasive photoacoustic microscopy of living cells in two and three dimensions through 
enhancement by metabolite dye, 7359-7363, 2011, with permission from Wiley-VCH Verlag GmBH 
& Co. Reprinted from Physics in Medicine and Biology, 51, Yang, Y., et al., Investigation of optical 
coherence tomography as an imaging modality in tissue engineering, 1649-1658, 2006, with 
permission from IOP Science [75,79]. 

 

In vivo small animal studies have illustrated the successful application of various optical 

imaging techniques, e.g. PAT [77-78] , OCT [80-81], multiphoton microscopy [82] and 

laser speckle imaging [83-84] to imaging functional vasculature (normal and diseased) in 

soft tissue (less than 1 mm depth penetration) imaging (Doppler, microscopy or 

A B

C D
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computed tomography), where the relative transient motion of fluorescence labeling, 

hemoglobin gradients, reporter genes, dyes or nanoparticles were detected. These 

dynamic imaging methods have not been applied to in vitro three-dimensional culture 

models, wherein the function of nascent vasculature is typically not assessed.  

 

7.2.2  Magnetic Resonance Imaging 

Magnetic Resonance Imaging (MRI) generates high contrast between different types of 

soft tissues (resolution of about 1 mm) [85]. The magnetization of hydrogen atoms 

present in the water within soft tissue causes the atoms to align their spin states, either 

with or against the applied magnetic field [85]. The image created by MRI is a function 

of how quickly the hydrogen atoms return to their original orientation (termed the 

relaxation time, T1 and T2), after the application of a radiofrequency pulse [85]. These 

variances in relaxation times are highly dependent on the water content of the tissue, and 

thus are used to distinguish tissues in the body. References to T1 and T2-weighted images 

indicate that most of the contrast between tissues is due to differences in the specified 

relaxation value [86]. In T1-weight images fat appears brighter than water, while in T2-

weight images water appears brighter than fat (typically pathological tissue has a high 

water content) [86]. T2*-weighted images offer greater contrast in tissue or lesions with 

hemorrhaging, calcification, and iron deposition [87]. Before image acquisition, a 

contrast agent that is impenetrable to the cell membrane is often administered to enhance 

the appearance of blood vessels in a particular region of tissue. The contrast agents 

reduce the T1 or T2 relaxation times [88]. MR studies have primarily evaluated the 

material stiffness of tumors and three-dimensional spatial distribution of microvessels 

grown on engineered tissue constructs, using contrast techniques such as, T1-weighting, 

T2-weighting, paramagnetic particles, magnetization transfer, perfusion and elastography 

[89-94].  

Clinically, the studies are limited in spatial resolution since regions of interest deeper 

than about 2 cm are poorly targeted by MRI, due to the rapid decrease of field strength 

with increased distance from the magnet. With respect to in vitro systems, three-
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dimensional culture models are typically between 0.3 - 1 cm, with “thick tissue” 

constructs extending the range beyond 1 cm. 

 

7.2.2.1  Magnetic Resonance Elastography (MRE) 

Recent developments in MRE have taken advantage of the remodeled and stiffened ECM 

that is evident during tumorigenesis. Animal and human (breasts, aorta, brain and liver) 

studies have demonstrated that MR elastography is sensitive to these stromal (ECM, 

MMPs, ECM glycoproteins) changes and can offer an evaluation of stiffness, in terms of 

shear modulus and shear elasticity estimations [94-96]. MRE involves the propagation of 

mechanical waves, at a controlled frequency (100-1000 Hz [95]) and amplitude (less than 

100 µm [95]), through a target sample via a wave driver, which is positioned as close as 

possible to the sample [96-97]. The MR image acquisition is synchronized with the 

periodic vibrations. The mechanical excitation induces a shear stress on the sample, 

which results in a displacement captured by the real (elasticity) and imaginary (viscosity) 

components of the shear modulus of the scanned sample [98]. From the visco-elastic MR 

data, quantitative elasticity maps are generated [96-97]. These changes are inherent to the 

multistep process of tumorigenesis (and tumor angiogenesis), which is characterized by a 

thinned basement epithelial layer of the ECM, and cell crowding and anchorage-

independent growth [16-18]. Transmembrane protein function is diminished for integrins 

that regulate cellular shape and for adheren proteins that hold epithelial cells onto the 

basement membrane together [99]. The interstitial fluid pressure is amplified with the 

increased volume of inefficient, dense ECM within the tumor [100]. The increased cell 

tension and ECM-remodeling contribute to the stiffened ECM during tumorigenesis [100-

102]. 

Although performed in vivo, the study conducted by Jugé et al. [89,103] compared 

immunostained histology (CD 31 and KI67) to acquired MRE data to draw conclusions 

about tumor behavior. Jugé et al. concluded that the blood vessel density (based on 

cellularity and number of vessels) (mm
-2

) and elasticity (based on number of vessels and 

elasticity) (kilopascals) measurements from the respective techniques, both showed 

distinction in visual and mechanical properties of tissue prior to, and post-angiogenesis 
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phase of tumorigenesis. Fig. 7.4 illustrates the MRE data that was collected from a 

colorectal mouse cancer model using T2-weighting on a 7 Telsa scanner over the course 

of 18 days. However, no comparable in vitro studies using engineered constructs have 

been published.  

 

 

Figure 7.4 In vivo MRE mapping. T2-weighted images (top row) and Gd maps (bottom row) of 
selected ectopic tumors (outlined in red) as a function of colorectal mouse tumor evolution. Gd 
measurements showed an increase of the mechanical properties when the tumor switched from its 
early stage (3.8 ± 0.6 kPa) to its angiogenic and late stage (6.5 ± 0.8 kPa to 5.8 ± 0.5 kPa). White 
arrow indicates region of interest. Images courtesy of L. Jugé and R. Sinkus, Centre de Recherche 
Biomédicale Bichat-Beaujon, INSERM U773, Clichy, France [104]. 

 

MRE is an emerging area that can offer an indirect method to evaluate the progression or 

regression of tubule formation during tumor angiogenesis, particularly when vessels may 

be too leaky or nonfunctional for perfusion methods of evaluation (i.e. DCE-MRI).  The 

shear modulus changes captured by MRE may be a biomarker indicative of changes 

induced by increased microvessel density. The model would be most applicable to a 

natural or engineered matrix with a low stiffness that may be altered during 

tumorigenesis, under the conditions of an in vitro tumor angiogenesis model. However, 

additional studies would be required to understand the role of the composition and 

structure extracellular matrix and cellularity in these viscoelastic changes [104]. 
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7.2.2.2  Dynamic Contrast Enhanced - MRI 

Dynamic Contrast Enhanced (DCE) - MRI, a method of perfusion imaging, involves the 

acquisition of a time series of images after the injection of a bolus of paramagnetic 

contrast agent (i.e. iodinated radiographic contrast material or radionuclides) into the 

bloodstream [105]. The presence of contrast agent allows for the temporal and spatial 

localization of blood in a region of interest. DCE-MRI receives these transient changes in 

the local magnetic field as temporal changes in the collected signal. Data is typically 

collected for 1-10 minutes, for each time point over some study period dependent on the 

time course of the transient activity being observed. DCE-MRI offers voxel resolution on 

the order of millimeters and a temporal resolution of less than five seconds when 

optimized MR imaging sequences are employed. DCE-MRI data can be performed on a 

standard 1.5 Tesla MR system [106]. Perfusion metrics (i.e. flow rate, microvessel 

density and volume) indicative of the extent and functionality of the vasculature are 

extracted from the collected image datasets [105]. These metrics are based on the 

conversion of the temporal signal data to tissue contrast concentration data.  

In an ex vivo study by Buschmann et al. [90] on the endothelialization of DegraPol® 

foam scaffold, quantitative contrast enhanced MRI (T1-weighted) perfusion analysis was 

performed. First, the scaffolds were seeded with ECs and cultured in vitro to allow for 

tubule formation. Subsequently, gadolinium (Gd)-DTPA dimeglumin salt (contrast agent) 

was used to outline the in-growth of new vascular networks into scaffolds assayed ex 

vivo, in a chorioallantoic membrane (CAM). MR image analysis of the scaffolds, 

saturated with contrast intravenously, demonstrated low contrast uptake by the scaffold. 

There was significant distinction between the vascular network and the background 

scaffold. The uptake of Gd was evaluated across the scaffold and used as a metric of 

microvessel density. As often seen across scaffolds, the greatest uptake was seen at the 

periphery and the least at the center of the scaffold. Buschmann et al. also evaluated three 

seeding methods to determine if the distribution of these capillaries was a function of 

whether ECs, osteoblasts or a co-culture were seeded on the scaffold. MRI showed 

insignificant differences in relative relaxation times based on the seeding method. The ex 

vivo model angiogenesis assay demonstrated the utility of DCE-MRI to evaluate 

microvessel density and distribution across scaffolds.  
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Although not yet extended to a completely in vitro study, the work by Buschmann et al. 

showed that saturation of a contrast agent on the surface (not intravenously) of a scaffold 

implanted in CAM still produced an increase in the relaxation rate, but with less 

sensitivity to changes in perfusion. These findings demonstrated the potential for DCE-

MRI technique to provide a visualization and quantification method for observing gross 

changes in tubule formation (surface area covered and vasculature permeability). Future 

studies may employ the technique to evaluate the presence or the function of newly 

formed vessels in dynamic in vitro angiogenesis models (i.e. microfluidic device or 

bioreactor). The three-dimensional dynamic culture models offer a flow source thru 

which contrast agent can be injected for uptake by permeable sprouting capillary-like 

structures. The degree of contrast agent uptake by tubules can be an indicator of 

vasculature function. Key parameters that should be optimized to ensure the credibility of 

extracted perfusion metrics include the image’s signal-to-noise ratio and contrast-to-noise 

ratio, and the length of contrast agent retention in new formed vessels. 

 

7.2.2.3  Targeted MRI 

The application of targeted MRI to cellular and molecular imaging was first introduced as 

an alternative to MRI contrast agents [107]. Highly negatively charged 

superparamagnetic iron oxide nanoparticles (SPIONs), such as ferumoxides, shorten MRI 

T2 and T2* relaxation times to produce contrast enhanced images from which useful 

metrics, such as tubule volume and area, can be extracted [108]. The ability to estimate 

tubule properties, in terms of length or number of tubules using enhanced or unenhanced 

MRI is otherwise limited by its low spatial resolution of 200 - 400 micrometers [109]. 

Cell uptake of the nanoparticles occurs via phagocytosis, but intake by nonphagocytic 

methods can also be facilitated by cationic compounds that interact with the negatively 

charged cell surface to promote endosomal uptake [110-111]. SPIONS tag biological 

molecules such as antibodies, peptides and hormones [112]. They can also be 

functionalized to localize cells or subcellular structures.  

In an in vitro targeted MRI study, Terrovitis et al. [91] cultured iron-labelled 

mesenchymal stem cells (MSC) seeded onto a collagen scaffold for four weeks. Using a 
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1.5 Tesla MRI scanner, T2-weighted scans were performed and resulting images 

demonstrated that iron-labelled MSCs on a collagen scaffold could be visualized using 

MRI. This study also illustrated that the biocompatibility of ferumoxide and its lack of 

adverse effects on the viability and proliferation of MSCs. The study methodology 

demonstrated by Terrovitis et al. could be applied to ECs in a three-dimensional tumor 

angiogenesis model. 

In the design of an in vitro method to control endothelial progenitor cell (EPC) migration, 

Wilhelm et al. [93] tagged EPCs with iron oxide magnetic nanoparticles. The tagged 

EPCs were cultured in Matrigel for 18 hours, then imaged using a high resolution MRI 

(29 micron x 29 micron) and videomicroscopy (12,000 - 24,000 times real-time). Using 

videosmicroscopy, individual vessel structures were visible. The MRI images were 

acquired with a 9.4 Tesla horizontal MRI system, using gradient echo sequences (T2* 

sensitive). The magnetic nanoparticles induced changes in the MR contrast agent 

properties, which led to visible changes in local magnetic susceptibility within images. 

Tagged EPCs appeared as black voids on a brightened Matrigel structure. In this study 

however, no quantitative metrics were used. Nonetheless, the study by Wilhelm et al. has 

implications that can be extended to tumor angiogenesis tube formation assays, since 

EPC recruitment was linked to tumor angiogenesis in both  patient studies [113-114] and 

preclinical models [115-116]. In mouse models, EPCs have been shown to control the 

angiogenic switch in lung mouse metastasis [117].  

Gimi et al. [118] tagged HUVECs with superparamagnetic iron oxide T2 contrast agent 

and cultured them in vitro for five days adjacent to MDA-MB-231 breast cancer cells 

seeded onto an ECM gel. After 24 hours of culture, a vascular network was present. The 

migration and subsequent tubule formation of the HUVECs within the gel was observable 

using an 11.74 Telsa MRI, fluorescence microscopy and phase-contrast microscopy. The 

light microscopy techniques were used to confirm that no observable physiological 

differences occurred between the tagged and untagged HUVECs. Three-dimensional 

reconstruction of the MRI data and post-processing produced an isolated volume 

rendering of the HUVEC vessel network. The volume renderings are shown in Fig. 7.5. 

The rendered volume was used to determine the fractional area of the gel occupied by 

HUVECs. In both studies, iron oxide tags did not harm cell viability or tubule formation. 
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Similarly, other macromolecular contrast media have been used in cellular imaging to tag 

biomarkers of tumor aggressiveness and to monitor normal angiogenesis [119-121]. Gimi 

et al. demonstrated how multiple imaging modalities can be simultaneously used to 

garner the additional information on tubule formation within an in vitro model.  

 

 

Figure 7. 5 Representative image and volume renderings from targeted MR imaging of endothelial 
cells 24 hours post-seeding in ECM gel. (A) Axial image of 0.5-mm-thick slice, obtained using a T2-
weighting, contains HUVECs labeled with 9 µg/ml Feridex.  (B) Three-dimensional reconstruction of 
images from multi-slice MRI data, orthogonally sliced in the axial direction to visualize network 
structure. (C) Volume rendering produced from segmented three-dimensional reconstruction, which 
illustrates intricate HUVEC network (red). Reproduced from Gimi et al. with permission [118]. 

 

In another study, although carried out in a subcutaneous xenograft mouse model, the 

potential use of paramagnetic 
19

F perfluorocarbon (PFC) nanoparticles was explored to 

quantify (in terms of the number of enhanced voxels) and visualize the extent of 

neovascularization at the periphery of tumors, using small animal MRI [122]. Bound PFC 

nanoparticles can be directly detected with high specificity once the threshold of 

detection is achieved, using MRI or MRS [123]. In addition to improvements in 

nanoparticles, advances in magnetic resonance microscopy may also provide nanometer 

resolution to visualize the mechanisms involved in tubule formation [124].  

The application of target MRI to in vitro three-dimensional angiogenesis models provides 

tool for the assessment of temporal and spatial cell migration and gene expression (via 

green fluorescent protein marker) [125] over a three-dimensional spatial distribution. 

Many studies have demonstrated the biocompatibility of these particles in terms of cell 

apoptosis rates, differentiation and proliferation for specific cells types. However, cell 

exposure to SPIONs may induce DNA damage, mitochondrial disfunction, apoptotic 

bodies, membrane leakage of lactate hydrogenase, or generate reactive oxygen species 

[126-128]. As such, to apply nanoparticle targeting (less than 200 nm in diameter) to in 
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vitro three-dimensional angiogenesis models, an investigation of the particle-EC uptake 

efficiency, retention, dose effect, detection threshold, and biocompatibility should be 

explored for the particular cell line. In addition, for surface-modified nanoparticles, the 

shelf-life, by-products of degradation, aggregation and precipitation of particles under in 

vitro conditions should be investigated prior to use in the model. Zhang et al. noted that 

the ability to track SPIONs over 5 days diminishes due to cell’s release of the iron 

particle [129]. 

 

7.2.3 Ionizing Radiation Imaging Systems 

7.2.3.1  X-ray, Fluoroscopy and Computed Tomography (CT) 

In X-ray imaging system (wavelength of 10 to 0.010 and energy range of 120eV to 

120keV), X-rays emitted from a source penetrate a tissue, then attenuate at different 

levels dependent on the density of the material. The X-rays which penetrate the tissue are 

received by scintillation detectors [130]. From these readings, a grayscale two-

dimensional image is generated. Fluoroscopy provides a real-time continuous video of X-

ray images. The technique is useful for viewing whole-body motions, and contrast agent 

or instrument motion in tissue or bloodstreams [131]. Computed Tomography (CT) 

imaging (sub-millimeter spatial resolution) involves the reconstruction of a three-

dimensional volume from a collection of two-dimensional X-ray projections taken about 

a central axis of rotation [131].  

Imaging techniques, such as X-ray, fluoroscopy and CT (including MicroCT), which emit 

ionizing radiation offer useful structural information regarding a construct’s porosity, 

strut/throat size, mineralization and overall architecture of tissue-engineered constructs 

with high-attenuation. To visualize low-attenuation structures such as blood vessels, 

MicroCT (spatial resolution 1-50 microns [132]) has been used in experimental animal 

studies to characterize structural properties [133-134]. Rai et al. [135] used Micro-CT to 

quantify vascular in-growth into poly(ε-caprolactone)-tricalcium phosphate (PCL-TCP) 

composite scaffolds implanted in rats, in terms of a vascular volume fraction.  The 

animals were anesthetized, then injected with the contrast medium, Microfil, to enhance 

vessel contrast in the MicroCT images. Similarly, Patel et al. [136] used the same method 
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for poly(propylene fumarate) (PPF) scaffolds coated with vascular endothelial growth 

factor (VEGF) to measure changes in blood vessel volumes in rats over a four week 

study. Fig. 7.6 provides an example MicroCT images produced in a similar study by 

Schmidt et al. [137]. In the study by Schmidt et al., Microfil was injected into a rat to 

quantify the ingrowth of vasculature into a porous polyurethane construct. Vessels 

between 6 - 144 micron were visualized using MicroCT. However, the well-documented 

anti-angiogenic effect of ionizing radiation, even at low doses, abrogates its use in an 

ongoing study of angiogenesis [138-140]. There is potential use for these methods in 

static imaging of non-living constructs with patent vessel structures large enough to have 

iodinated contrast agents injected, similar to DCE-MRI [135-137,141]. 
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Figure 7.6 MicroCT of Microfil-injected vessels. Representative volume renderings generated from 
MicroCT datasets of neovasculature within polyurethane construct, 10 days after delivery of 
vascular endothelial growth factor growth factor. (A) Longitudinal center slice through volume 
rendering. (B) Horizontal slice. Red color represents microvascular network and gray represents the 
construct. (C) Color-coded distribution of vessel diameter distribution across construct. Reprinted 
from publication Rapid three-dimensional quantification of VEGF-induced scaffold 
neovascularisation by microcomputed tomography, 30/5959, Schmidt, C., Bezuidenhout, D., Beck, 
M., Van der Merwe, E., Zilla, P., and Davies, N., 5959-68, Copyright (2009), with permission from 
Elsevier [137]. 
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Conversely, radiation exposure has been shown to induce tumorigenesis [142-143]. 

Accordingly, X-ray and CT could be used to introduce radiation to an experimental set-

up to investigate or control the response or rate of tumor angiogenesis or cell death in the 

presence of drugs or other factors [144-145].  

 

7.2.3.2  Nuclear Imaging 

Positron Emission Tomography (PET) imaging introduces a low radiation dose to the 

body using short-lived radionuclide tracers. The system then detects gamma rays emitted 

indirectly by the positrons released from the injected radionuclides. Scintillation crystals 

in the gamma ray detectors covert the emitted gamma rays to photons, which are then 

amplified and converted to electrical signals by photomultiplier tubes to form PET 

images [146]. A second nuclear imaging system, Single-Photon Emission Computed 

Tomography (SPECT), detects these emitted gamma rays directly to generate images 

[147]. Both systems can create clinically relevant three-dimensional volume 

visualizations of functional and metabolic processes (i.e. glucose metabolism) [148]. In 

spite of the sensitivity of radionuclides to highlight physiological effects on the level of 

100 picomolar, compared to other modalities, nuclear imaging techniques offer an 

inferior spatial resolution [148]. The clinical resolution of PET ranges between 3-5 mm
 

and between 1-2 mm
 
for

 
small animal PET imaging [149]. Clinical SPECT resolutions 

are typically greater than 1 cm, with decreased sensitivity than PET systems [150]. Both 

systems’ poor resolution outweighs its potential benefit in the evaluation of bulk 

properties characteristic of tubule formation in angiogenesis. MRI-compatible PET 

scanners are currently under investigation as a method for fusing complementary 

capabilities in small animal imaging: high sensitivity, good spatial resolution and high 

contrast [151]. There is currently no literature to support the use of nuclear imaging 

radioligands (molecules bound to radionuclides) or radiotracers to evaluate in vitro tubule 

formation or related properties, such as permeability or blood flow.  
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7.3 IMAGE PROCESSING  

Five major steps are involved in the quantification of tubulation from three-dimensional 

images. Fig. 7.7 details these steps: image acquisition, image reconstruction, image 

segmentation, feature identification, and feature measurement. The appropriate imaging 

system to be used should be based on the experimental setup and constraints, and desired 

output measures. Post-processing of acquired images requires image processing and 

analysis software. The image analysis freeware, NIH Image J [152] (and derivative 

software, Scion Image) is often cited as the tool used to stack, reconstruct, render or post-

process network formations.  

 

 

Figure 7.7 Stages of image processing. Flowchart of image analysis process required to qualitatively 
and/or quantitatively evaluate angiogenesis. 

 

Rendered volumes are subjected to a threshold (automated image segmentation) to 

contrast the desired luminal features from the background larger tissue volume. In the 

evaluation of vessel diameter, length or area, threshold values can influence final 

estimates due to the error introduced by the threshold algorithm when the boundary of the 
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lumen is defined. Boundary detection between the tubule and background construct 

requires the optimization of a fixed or adaptive, local or global threshold algorithm. 

Semi-automatic methods of image segmentation implement snakes or splines for 

boundary delineation or edge detection. Manual and semi-automated methods of 

processing imaging data require visual inspection of image by a trained eye. The human 

reader performs ‘feature identification’ based on a set of pre-determined characteristics. 

Sarkanen et al. [153] employed a grading scale from 0 to 8 using visually inspection of 

microscopy images, to quantify the number of tubules and branching achieved for a co-

culture of HUVEC and foreskin fibroblasts. Along with boundary detection, the number 

of tubules estimated is dependent on the shape and dimensional threshold parameters 

(feature identification and measurement) set either manually or by the software package. 

The cylindricality and contrast (produced by fluorophore, dye or contrast agent) of the 

tubule may be variable in given regions of the volume, and may potentially influence 

final measurements. Similarly, the length and diameter of a tubule may vary dependent 

on the level of bifurcation. Tubules may be faint, partially stained/tagged or clustered. 

Segmentation and the definition of its rubric are subjective and sensitive post-processing 

elements that are biased by the biomaterial (scaffold), cell type (and resultant vascular 

network properties) and imaging system adopted. Measurements are also subject to 

variance and user-based error incurred during manual or semi-automated segmentation 

methods. Several freeware and commercial software programs that perform automated 

and semi-automated image analysis produce output parameters such as, the number of 

tubules, branching point statistics, tube length statistics and tube size statistics [154-158].  

Many automated and semi-automated quantification algorithms directly measure 

perfusion metrics (i.e. surface area) based on two-dimensional analysis of collected two-

dimensional sectional data [159-161]. Rytlewski et al. [162] proposed a new algorithm to 

perform three-dimensional morphological analysis on two-dimensional sectional data, in 

order to increase the accuracy of output metrics. Initial evaluations of the algorithm were 

performed on an in vitro model, in which HUVECs were cultured within a PEGylated 

fibrin gel and allowed to sprout tubules. Rytlewski et al. performed confocal imaging on 

the in vitro model and then extracted morphological data, which included estimations of 

network volume, number of segments and total network length. Their study determined 
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that measurements based on three-dimensional models were significantly different than 

those based on two-dimensional planar data for multi-plane anisotropic tubule formation.  

In the post-processing of DCE images acquired for indirect measures of perfusion, 

segmentation should be performed, and then followed by the application of perfusion 

algorithms adopted or specifically developed to evaluate flow characteristics of the newly 

formation vasculature. In the evaluation of stiffness, using MRE, the acquired three-

dimensional images provide phase and amplitude maps that are modeled using an 

inversion algorithm that yields an elastogram. The generated elastogram indicates the 

spatial distribution of stiffness within the imaged construct. For each of the imaging 

methods used to acquire direct or indirect measures, the final angiogenesis metrics are 

compared across several time points within the duration of the study (minutes or days),  

in order to assess angiogenesis within the in vitro construct. For metrics that assess 

spatial deviations, image registration of the two-dimensional images across time points 

should be performed before feature isolation or other post-processing algorithm are 

applied. Image registration aligns the spatial overlay of the constructs coordinate systems 

for the given points, in order to facilitate the tracking of temporal changes. 

 

7.4 CONCLUSION  

The in vitro studies described above confirm the practical application of imaging to 

characterize blood vessel formation and function within natural or synthetic constructs. 

At the cellular level, the tracking of EC motility and alignment in the formation of 

tubules is best resolved using optical imaging, MRI or CT. The rendering of three-

dimensional volumes provides a non-invasive method to observe the structure and 

distribution of blood vessels, which may otherwise be compromised or lost through 

histology sectioning. BLI, contrast enhanced MRI, MRE and microscopy coupled with 

fluorescent tracers can provide temporal and functional information (i.e. metabolic 

activity, permeability, proliferation and stiffness) on neo-vasculature and/or the 

surrounding extracellular matrix.  

New techniques in molecular imaging (for MR, optical and nuclear imaging) that tag 

cellular structures with nano- and micro-contrast agents or particles are being developed 
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to further improve achievable resolution limits. As well, nascent imaging techniques such 

as magnetic particle imaging (MPI) may offer a more reliable or precise method of 

dynamic perfusion imaging through the quantitative detection SPIONs [163-164]. 

Although some of the techniques (i.e. MRE) have published findings only under in vivo 

conditions, the techniques still lend themselves to an in vitro environment.  

Initial implementations of these techniques require validation studies to assess toxicity 

and to identify any adverse effects caused by the introduction of light, magnetic 

resonance, particles or ionizing radiation to the given cell and cell environment. As well, 

the incorporation of an imaging modality into an experimental set-up requires a careful 

consideration of the hardware and software choices made, in terms of processor needs, 

frame rates, threshold algorithms, among other parameters that may reduce the reliability 

of quantitative estimations. In the determination of an appropriate imaging modality, the 

scaffold architecture (shape and dimension), scaffold material characteristics (physical, 

optical, mechanic and acoustic properties), and the features of interests (subcellular or 

bulk property) should be considered. Dependent on the set-up conditions and scaffold 

architecture, multi-modality imaging can be leveraged to take advantage of the respective 

features of the systems to provide more spatial, depth, structural and/or functional 

information about the imaged features.  

Future applications of imaging techniques to in vitro three-dimensional angiogenesis 

studies will provide more reliable, robust methods for comparison of the vascular 

properties exhibited within these in vitro models to animal models. Correlation of 

changes in between the two models has the potential to outline the advantages and/or 

limitations of three-dimensional angiogenesis and tumor angiogenesis culture models as 

practical tools for the investigation of mechanisms or pathophysiology acting at the 

cellular level in engineered tissue and tumors, respectively. 
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CHAPTER 8  
 

Summary and Future Works 

 

8.1  SUMMARY  

The in vitro modeling of blood vessels from the artery down to capillary-level is a 

complex challenge, in terms of the anatomical and bio-fluid considerations. This 

dissertation addresses the problem  through experimental and computational studies of a 

branching network that mimics artery/arteriole and vein/venuole structure and connects to 

a compartment with embedded porous scaffolds. Based on Murray’s Law of branching 

networks and published anatomical studies, the computer-generated networks bifurcate 

along a single plane. The flexibility of the computer-generated vascular trees will allow 

for the design to be extended, such that the tree bifurcates in three dimensions. The 

idealized “arterial-like” vascular tree (in terms of inner diameter and cylindrical 

geometry) bifurcates over four generations to reach the minimum inner diameter 

resolution of most rapid prototyping methods. There are a myriad of rapid prototyping 

methods available to tissue engineers. For the fabrication of the presented dynamic 

imaging phantom, selective laser sintering (SLS) (along with fused deposition modeling) 

provided the best spatial resolution to reliably generate hollow, cylindrical, bifurcating 

networks. To achieve the luminal diameter and/tortuosity that could achieve bulk flow 

behavior characteristic of microcirculation, scaffolds (pore diameters 0.11 - 2.2 mm) 

were incorporated into the design of the distributed flow construct. For both the dynamic 

imaging phantom and dynamic bioreactor, the SLS technique was used to generate 

scaffolds that met the target flow ranges (in terms of differential flow and shear stress, 

respectively) of the system designed. The same construct was used for both applications; 

however, the fluid and boundary conditions were optimized for the respective systems. 

In the development of the dynamic imaging phantom, the inlet flow rate of the system 

was chosen to mimic the velocity within arteries. A clinical dynamic contrast enhanced 
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(DCE)-Computed Tomography (CT) patient protocol and setup, which included contrast 

agent solution and contrast injector were used within their normal operating ranges. An 

inline mixer was incorporated into the streamline of the system prior to the phantom inlet, 

in order to achieve the mixing of contrast agent and blood-like fluid through the body, 

which normally occurs in the patient’s bloodstream. Adequate mixing was visualized in 

simulations of the system. Simulations also confirmed theoretical estimates of uniform 

flow splitting across the bifurcations of the vascular tree and porous scaffold 

compartments. Experimental and computational differential flow (DF) measurements 

confirmed that high and low differential flows were generated within the phantom, using 

scaffolds with controlled architecture and perfusion characteristics. Using a porous jump 

computational fluid dynamics (CFD) model, based on the desired differential flow, the 

intrinsic permeability required of the scaffold was determined. This information can be 

used to design an appropriate SLS scaffold to incorporate into future generations of the 

dynamic imaging phantom, in order to fine-tune or expand the range of fluid flow rate 

changes realized by the dynamic imaging phantom. The phantom successfully 

demonstrated distinct differential flows, wherein imaged anatomical structures were 

below the resolution of a clinical scanner, as with actual patient data. The simplicity of 

the manufacturing method and the reusability of the system (due to acetic acid surface 

treatment) render the phantom a useful tool to be further studied for use in the quality 

assurance of DCE-CT. Initial DCE-CT post-processing analysis based on a single input, 

single output, capillary model demonstrated similar results to the experimental and 

computational differential flow measurements. Further studies can be performed to 

validate and/or understand the sensitivity of post-analysis tools and methods, using these 

comparison standards (computational and experimental).  

The second application of the designed construct involved the development of thick 

engineered tissue. The vascular tree design distributed uniform flow to scaffolds, 

mimicking the bathing of tissue volumes by arterioles/small arteries. A perfusion 

bioreactor was adopted as a favorable in vitro pre-vascularization strategy to enable 

future implantation studies, in which the construct would be anastomosed to a nearby 

artery and vein. The biocompatibility and operating conditions of the bioreactor were 

considered in order to enhance cell proliferation and ultimately the mechanism of 
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angiogenesis. Two large scaffold architectures were considered to determine which 

geometry stimulated endothelial cell growth over 1 - 10 dynes/cm
2 

under laminar flow 

conditions, with the best tradeoff between cell stimulation and detachment. Based on 

simulations, the spherical scaffold was selected to perform biocompatibility studies, as 

the geometry provided more uniform flow across the scaffold and achieved the target 

shear stress range over a larger portion of the surface area. The biocompatibility 

properties of untreated PCL were compared to three surface modifications: RGD peptide 

conjugation, vascular endothelial growth factor conjugation and sodium hydroxide 

hydrolysis. The cell proliferation and cell spatial distribution of human umbilical vein 

endothelial cells cultured under static conditions for three days on surface-modified PCL 

matrices was assessed. Cells were seeded drop-wise onto the scaffold to avoid washout of 

seeding gels. Across treatment groups, the cell proliferation and vWF release were 

comparable, with RGD peptide-modified constructs exhibiting slightly higher cell 

proliferation across the edges of the scaffold. The successful implementation of the 

optimized in vitro perfusion bioreactor lends itself to future bone cell co-culture studies, 

as well as three-dimensional tumor model investigations where the localization of 

endothelial cells can create gradients needed for necrosis or be uniform for homogenous 

tissue growth.  

 

8.1.1  Original Contributions 

The original contributions of this research are as follows: 

(1) Developed a computerized “arterial” vascular tree for fabrication using SLS. The 

vascular tree has an inlet and outlet inner diameter of 2.2 mm and 0.620 mm, 

respectively. 

(2) Developed a construct that adjoined two vascular trees to modular scaffold 

compartments for distribution and then the collection of fluid. The construct 

allowed for the connection of a fluid source to perfuse the system, mimicking 

small artery-like inlet perfusion characteristics, in terms of either shear stress or 

differential flow, dependent on the boundary conditions and the particular 

scaffold incorporated. 
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(3) Developed a prototype dynamic imaging phantom manufactured using SLS. The 

phantom achieves the range of differential flow measurable by DCE-CT imaging 

post-processing analysis.  

(4) Demonstrated the utility of CFD in the validation of a dynamic imaging phantom. 

Validated experimental differential flow measurements against computational 

simulations through the bioreactor, for low and high permeability scaffolds. The 

entire phantom system was simulated to ensure proper fluid mixing and the 

uniformity of flow through the system.  

(5) Introduced a predictive model to determine the flow changes characteristics of a 

model scaffold (based on input architecture), in terms of the intrinsic permeability 

required to realize a range of differential flow useful for imaging within a 

dynamic phantom. 

(6) Demonstrated the usefulness of using computational simulations to determine the 

fluid-induced shear stress distribution within tissue engineered scaffolds 

(structured lattice) in a cell bioreactor. Determined the inlet velocity for which 

large (11 mm height x 11 mm diameter) spherical pore scaffold imposed a shear 

stress between 1 - 10 dynes/cm
2
 over a larger surface area than orthogonal pore 

scaffold.  

(7) Confirmed that of the two bone scaffold architectures previously studied in the 

Hollister group, the spherical pore (2.22 mm pore diameter) geometry was more 

likely than the orthogonal geometry to produce shear stress within the range 

required for in vitro endothelial cell dynamic studies. 

(8) Determined that RGD-functionalized PCL scaffolds supported greater endothelial 

cell proliferation and cell function, over the hydrolyzed and protein conjugated 

(particularly, vascular endothelial growth factor) PCL scaffolds. The RGD-

functionalized PCL scaffolds also demonstrated greater attachment at the edges of 

the scaffold, which is ideal for use in an angiogenesis bioreactor, where the 

greatest detachment occurs at the edges. 
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(9) Determined that vascular endothelial growth factor conjugation onto heparin 

functionalized PCL scaffolds fabricated using SLS did not improve the temporal 

release of VEGF.  Conjugation and adsorption showed similar VEGF retention 

and burst releases on day 1. 

(10) Developed an in vitro dynamic endothelial cell bioreactor that supports the 

proliferation of endothelial cells anchored by RGD onto large bone scaffolds.  

 

8.2 FUTURE RESEARCH 

There are several directions for future projects that can extend from this dissertation. The 

following outlines a few of them: 

 

8.2.1  Future Design Considerations for a Distributed Flow Polymer Construct 

- It would beneficial for future re-designs to consider alternate fabrication methods that 

produce less permeable structures. During the course of a 5 - 30 minute DCE imaging 

study, the network leaked. Based on observations, the cause of leakage at the entry of 

the porous compartment was due to the continued fluid force imposed on the structure 

prior to entering the compartment. Thicker vessel walls were not feasible, since an 

increased wall thickness would result in a narrowing of luminal spaces and/or the loss 

of features (i.e. holder threading). A stronger polymer such as ABSplus (used in fused 

deposition modeling) may withstand greater pressure. Polymers available for SLS and 

other RP systems with comparable resolutions should also be explored. 

- In Chapter 3, the DCE imaging studies were performed on vascular trees that 

bifurcated along a single plane. The vascular tree perfused four porous compartments 

(volume approximately 4 ml). Future iterations of the phantom design should develop 

a vascular tree that bifurcates along three-dimensions to perfuse a larger volume of 

porous compartments. Chapter 2 references previously promulgated algorithms for 

achieving larger, randomly generated structures. A three-dimensional vascular tree 

would increase the complexity and anatomical accuracy of the system, and provide a 
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volume comparable to a given tissue volume of interest e.g. a lobule of the liver ≈ 900 

ml.  

 

8.2.2  Next Generation of Dynamic Phantom 

- The current phantom system does not circulate fluid, instead requires the continuous 

addition of simulated blood fluid. The implementation of a filter or cleansing method 

that removes or separates (i.e. by chelation) the iodinated contrast agent from the 

waste reservoir would allow for a circulating closed system that would only require 

periodic (over weeks or months) changes of fluid. The addition of 10% bleach to the 

fluid would reduce potential for molding. The 0.5 mm spaces, preceding and 

following the scaffold within the compartment, provide a space for air bubbles to 

aggregate in the system. Sealing of all the connection points within the system would 

reduce the opportunities for air to be introduced to the system. A gear or dispensing 

pump may also minimize air-bubbles in the closed system. These design changes 

would make the phantom re-useable and improve the reproducibility of results over 

time. 

- Based on the relationship between the intrinsic permeability and differential flow 

discussed in Chapter 4, alternate scaffold fabrication techniques can be explored to 

expand the range of differential flows, lower than 20%. The pore diameter of SLS 

scaffolds can be tailored to generate differential flows between 20 - 80%. The 

sensitivity of image-extracted perfusion metrics can be evaluated to understand the 

influence of partial volume averaging and fluid behavior (constant versus pulsatile), 

in the context of the single-input, single-compartment model for a given 

system/protocol/post-processing algorithm. Similar studies would be needed to 

experimentally and computationally validate flow across a two-input compartment 

model. A longitudinal study should also be conducted to evaluate the repeatability of 

metrics over the course of weeks, in order to determine the lifetime of the phantom 

and the long-term contrast agent uptake activity of PCL. 
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- DCE-Magnetic Resonance Imaging (MRI) has practical benefits over DCE-CT and 

other functional imaging modalities. The technique offers evaluation of angiogenesis, 

in terms of blood flow, blood volume, vascular density and vascular permeability [1], 

without the introduction of ionizing radiation. DCE-MRI can also visualize structures 

compromised by bone artifacts under CT. The developed phantom system can be 

adapted to DCE-MRI with minor modifications to the system to ensure magnetic 

compatibility. The tissue equivalent liquid surrounding the vascular phantom can be 

modified by the addition of paramagnetic ions (water or gel-based) to achieve T1 and 

T2 relaxation times characteristic of human tissue, 270 - 860 ms and 50 – 80 ms 

respectively [2]. The peristaltic pump would also require magnetic field shielding. 

Gadolinium (similar viscosity and density properties to iodinate contrast agent) would 

be used as the contrast agent within the non-water-soluble PCL polymer that would 

otherwise be invisible under MRI. A recent study by Blanquer et al. investigated the 

development of a MRI-visible poly(epsilon-caprolactone) (PCL) graft coated with 

paramagnetic agents that improved T1 contrast enhancement [3]. Advances in the 

field of materials/macromolecules would be needed to establish coatings that lengthen 

T2 relaxation times characteristic of polymers and strengthen the MRI signal.  

- The designed vascular network can also be scaled to meet the requirements of 

particular organ systems, such as the liver, which requires a dual-input single 

compartment model with separate input arterial and venous perfusion. With the 

addition of a second inlet into the phantom box, two boluses can be injected at two 

different rates, on delays, into the dynamic phantom to generate the three time-

enhancement curves typically evaluated in liver perfusion analysis. 

- Lastly, future experiments should investigate a new inlet flow rate for contrast agent 

and simulated blood fluid. The two fluids should have identical or closely matching 

input velocities, so as to avoid the fluctuations in speed that can influence the 

measured velocity that is computed in the post-analysis. 
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8.2.3  Modeling of an Endothelial Cell Bioreactor 

- Chapter 5 discusses the initial flow rate conditions required to achieve an ideal range 

of shear stress rates within the developed endothelial cell bioreactor. However, the 

model does not account for the growth of endothelial cells and ultimately blood 

vessels on the surface of the PCL. The integration of a cell growth model, which 

takes into account this growth over time, would provide a guide for flow rate 

adjustments over a 7-14 day study. These changes would further create favorable 

conditions for cell growth and sprouting. 

 

8.2.4  Enhancement of Endothelial Cell Activity on PCL 

- Future work should include a larger scale investigation of the PCL surface 

modification study discussed in Chapter 6. The preliminary findings were adequate 

for an initial dynamic bioreactor study. To further support this work, the investigation 

should be repeated for 4 - 5 independent studies for Passage 5-10 endothelial cells to 

quantify the increased growth expected for HUVECs and human microvascular 

dermal endothelial (HMVEC-ds) cultured on VEGF immobilized by heparin on 

sodium hydroxide treated PCL scaffolds, dependent on the amount of loaded and 

retained heparin and VEGF. 

- The effects of VEGF are dose dependent. Large doses have been shown to produce a 

greater fraction of immature vessels, compared to lower effective doses, which 

generate mature vessels. The generation of mature or immature vessels would be 

relevant to the investigation of tumor-like and/or normal vasculature. An increased 

dose of VEGF may increase the amount of VEGF release per day, after the initial 

burst effect. The release kinetics for PCL scaffolds loaded with varying amounts of 

VEGF should be explored to determine if higher amounts of loaded VEGF can 

increase the daily release to 100 ng/day, as recommended by the literature 

(summarized in Table 1 of Chapter 6) after the initial burst release. Currently, the 

literature does not provide a standard method to assess VEGF bioactivity under in 

vitro culture conditions. In order to indirectly assess bioactivity, variable doses of 
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VEGF may be added to the PCL using the conjugation method discussed in Chapter 

6, then evaluated based on the rate of endothelial cell proliferation measured through 

MTT assays.  

- Advancements in conjugation methods for the immobilization of VEGF onto PCL 

scaffolds may improve release kinetics. Alternate methods may eliminate the need for 

heparin, which competes with angiogenesis through the inhibition of endothelial cell 

proliferation and organization [4]. He et al.
 [5]

 demonstrated that the cross-linker 

reagents, Traut’s reagent and sulfo-SMCC (4-(N-maleimidomethyl) cyclohexane-1-

carboxylic acid 3-sulfo-N-hydroxysuccinimide ester sodium salt), can be used to 

immobilize VEGF onto collagen. These two reagents can be explored for PCL. 

 

8.2.5  Endothelial Cell Bioreactor 

- Chapter 6 discusses only the viability of HUVEC cells in the bioreactor. Continued 

studies should also examine the viability of HMVEC-ds in the bioreactor, under 

appropriate shear stress conditions. Under in vivo conditions, microvascular and 

macrovascular cells are exposed to different levels of shear stress. An HMVEC-d 

study would demonstrate the robustness of the design.  

- In addition, the endothelial cell bioreactor study was performed under constant flow, 

which would be ideal for microvascular cells, but may not be for macrovascular cells, 

which under in vivo conditions experience oscillatory or pulsatile flow. Future studies 

should examine the influence of the flow behavior on the proliferation of HUVECs 

and HMVEC-ds within the endothelial cell bioreactor.  

- Future angiogenesis bioreactor investigations can use the constructed system to study 

tumor angiogenesis and explore in vitro tumorigenesis. Wells et al. [6] demonstrated 

the feasibility of growing solid tumor masses in vitro in a microfluidic device. The 

developed perfusion bioreactor can be adapted to provide a platform for future basic 

cancer research related to bone or breast cancer. The bioreactor environment needs to 

be enhanced to provide the complex signaling (i.e. addition of stromal cells, Kupffer 
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cells and leukocytes) that promote cancer cell proliferation and ultimately the 

formation of a solid tumor mass.   

- The developed bioreactor lends itself to in vivo studies, where the inlet and outlet 

would be anastomosed to an artery and vein, respectively. The design can be scaled 

down to fit a mouse model. As a pre-vascularization strategy, bone marrow stromal 

cells or chondrocytes can be seeded onto the scaffolds, cultured in vitro then 

implanted to study the degree of bone in-growth and the associated mechanical 

properties of the generated bone or cartilage, respectively. 

 

8.2.6  Imaging Angiogenesis 

- It has been hypothesized that Von Willebrand factor (vWF) regulates angiogenesis 

through the promotion of EC migration [7-8].
 
The work by 

Zanetta 
et al. suggested that 

vWF messenger ribonucleic acid levels correlated with the endothelium or 

angiogenesis
 activation [9]. An investigation of the relationship (cumulative and/or 

temporal) between vWF release and tubulation may support findings garnered using 

emergent in vitro angiogenesis imaging methods for opaque constructs.   

- In this thesis, proliferation across the large scaffolds was assessed at the center and 

two outer sections of the porous scaffold. An MTT assay of the three sections 

quantified the proliferation across each section. This intrusive method can be 

substituted with a bioluminescence imaging (BLI) assay. Measurement of a BLI 

signal from the luciferase-transfected endothelial cells can provide a non-invasive 

method of evaluating cell attachment and proliferation under both static and dynamic 

culture conditions. Initial work should assess the cell toxicity and/or changes in 

proliferation due to the introduction of luciferase. 

- Chapter 7 discusses recent investigations into the use of DCE-MRI and targeted MRI 

in the evaluation of angiogenesis through the localization of endothelial cells or 

related-signals. The use of either of these methods to evaluate tubulation under static 

and dynamic cell culture conditions may be used to evaluate the maturity of blood 
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vessels. The vascular permeability can be evaluated based on the uptake of these 

agents, as shown in the investigation reported by Grainger et al. [10]. Vasculature 

generated during tumor angiogenesis is characterized by the leakiness of the vessel 

network [11]. Thus, in the development of vascular networks characteristic of tumor 

growths, enhanced MRI techniques may be valuable. Initial work requires an initial 

cell toxicity and cell growth study to determine the effects of the contrast agent or 

nanoparticles on the endothelial cells. 

 

8.3  MAJOR CONTRIBUTIONS 

The major achievements of this dissertation to the field are as follows 

(1) Prototyping of a dynamic flow imaging phantom: In this thesis, the first dynamic 

imaging phantom to incorporate a vascular tree and scaffolds was prototyped for 

end-to-end DCE-CT testing. Using SLS, A fourth-order vascular phantom with 

vessels between 2.2 mm and 790 µm (below typical CT scanner resolution). A 

minimum inner diameter size of 620 microns was achievable for hollow vessels, 

with a minimum resolution of 770 ± 110 microns being reliably achieved. The 

DCE-CT data collected demonstrated a bolus entrance and clearance form within 

a desired behavior range, and image-extract DFs of -96 ± 5% and -15 ± 8%, for 

low and high permeability compartments, respectively. Measured experimental 

DF values were -81% ± 6% and -22% ± 3%, for the low and high permeability 

compartments, respectively.  

 

(2) Effect of inline mixer on contrast agent (CA) and simulation blood fluid (SBF) 

mixing: Simulations illustrated that under laminar flow inlet boundary conditions, 

the CA and SBF fluid layers were stratified prior to entry into the helical mixer. 

The addition of an inline six-unit helical mixer (1.45 inches long) offered 

adequate mixing of layers. The stream path after the mixer demonstrated 

increased mixing of the fluids, with a reduced layering effect. However, existing 

DCE phantoms have not incorporated mixers. This dissertation is the first 
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promulgated work to discuss the importance of an inline mixer. These results 

suggest that all future DCE phantoms should incorporate a mixer to reduce the 

variability across the system, from which time-contrast enhancement curves are 

generated. 

(3) Computational validation of a dynamic imaging phantom: The prototyped 

dynamic imaging phantom was modeled within a CFD software program. Prior 

patient-specific or idealized CFD models have focused on large vessels involved 

in cardiac circulation or have not been physically realized. This work is the first to 

valid a dynamic imaging phantom using CFD. Simulation results showed that the 

velocities exhibited at the inlet (1.5 x 10-3 m/s) and outlet (3 x 10-4 m/s) of the 

vascular tree were characteristic of microcirculation [12]. The DF was measured 

across the porous geometry model and compared to measurements extracted from 

DCE-CT data performed on the dynamic imaging phantom. The computational 

estimations of the DF across the low and high permeability compartments from 

the porous geometry model were -77% and -21%, respectively. Both values were 

within ±4% of experimental results, which had a standard deviation of 6% and 

3%, respectively. Although, air bubbles within the system remain a prevalent 

issue, the computational results along with experimental measurements, for the 

high and low permeability scaffolds, provide benchmark range for comparisons to 

image-derived metrics. 

(4) Porous jump model to predict realizable differential flow range: This 

investigation is the first to provide a porous jump model that uses experimentally 

determined intrinsic permeability values to determine the differential flow 

achievable across a compartment. The measured DFs were -73% and -25%, for 

the low and high permeability scaffolds, respectively. Simulations results for the 

porous geometry and porous jump-geometry closely matched (± 4%). The DFs 

were significantly less than the experimentally measured DF for the high 

permeability compartment. For the low permeability compartment, the DF was 

significantly higher than the DCE-CT imaging measurements. The experimental 

results for the low permeability compartment were significantly less than the 
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porous jump DF measurement. Overall, the predictive model provides a DF range 

with some error. Based on the suggested intrinsic permeability value, an 

appropriate scaffold should be selected to create a porous geometry model for 

further simulations, as previously discussed. 

(5) Evaluation of shear stress across large spherical and orthogonal scaffold: 

Orthogonal and spherical scaffold architectures are commonly adopted in bone 

tissue engineering to promote bone in-growth; while, recent bone growth 

investigations have demonstrated the utility of seeding endothelial and osteogenic 

cell lineages [13-15]. These simulations are the first for a scaffold embedded 

within an endothelial cell bioreactor system. These results were used to determine 

the appropriate inlet velocity for an in vitro perfusion bioreactor construct. For 

inlet velocities between 0.54 - 0.61 m/s, the spherical geometry provided the best 

balance between EC detachment and stimulation. More than 50% of SA 

experienced 1 - 10 dynes/cm
2
 of shear stress for an inlet velocity equal to or 

greater than 0.54 m/s. The simulation showed that scaffolds with a well-organized 

spherical pore (2.22 mm diameter) lattice, provided more uniform shear stress 

across the scaffold, within the target shear stress range, under a laminar flow 

regime, compared to an orthogonal design (1.46 mm). The computational model 

can readily be extended to other pore geometries (i.e. hexagonal and cubical) to 

identify an optimal bone scaffold design for future EC co-culture studies. 

(6) Determined that endothelial cells cultured on RGD-modified scaffolds over 7 

days proliferated at a significantly higher rate and demonstrated more favorable 

cell function (in term of vWF productive) than sodium hydroxide treated and 

VEGF (10μg) conjugated and untreated PCL constructs. Identified RGD-modified 

PCL scaffolds as an optimal modification for future bioreactor investigations. 

Demonstrated that RGD-modified scaffolds supported cell viability across the 

scaffold, with higher densities at the edges of the scaffold. In computational 

simulations, the top edge of spherical scaffold was shown to experience the 

greatest shear stress; hence, cell detachment is more likely at this edge. 
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(7) Optimized the first PCL endothelial cell bioreactor in terms of imposed shear 

stress and cell-scaffold biocompatibility. A protocol for implementing the in vitro 

perfusion bioreactor system was outlined. 
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APPENDIX A - CHAPTER 1 
 

A.1 SUMMARY OF RAPID PROTOTYED BRANCHING MODELS WITH 

MEDICAL APPLICATION 

 
Table A.1 Review of rapid prototyped air and fluid flow models. 

Study Description Model Citation 

Side view of the Sophia anatomical 

infant nose-throat (SAINT) model 

made using stereolithography, with the 

smallest opening approximately 30 - 40 

mm. 
 

[1]  

Replica of vasculature of the human 

thoracic aorta (20 - 25 mm i.d.) from 3-

D MRI data using PolyJet technology. 

 

[2] 

Tracheobronchial hollow airway model 

fabricated using selective laser sintering 

(1 - 2 mm i.d.). 

 

[3]  

Microfluidic phantom with four 

generations of channels (1 mm - 55 μm 

i.d.) produced via soft lithography, 

whereby a capillary network is 

patterned onto a silicon wafer using 

soft-lithography. 
 

[4] 

Microfluidic device produced using 

microfabrication (0.03 - 1 mm i.d.). 

Cells are seeded and cultured to spur 

endothelialization.  

 

[5] 
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Designed in FEMLAB, then fabricated 

using lithography from 

polymethylmethacrylate (PMMA) 

polymer. Root branch 120 µm i.d, with 

dimension halving at each bifurcation.  

[6]  

MRI microchannel phantom 

microfabricated using ion etching, then 

casted with PDMS. Each capillary 

network 2 mm deep and 0.8 mm wide, 

forming a 10 x 8 periodic array. 

 

[7] Error! 
ookmark 

not 
defined. 

 

Cross-sectional view (3 mm i.d.) of 

hepatic vascular system scaffold 

constructed using low-temperature 

deposition technology. 
 

[8] Error! 
ookmark 

not 
defined. 
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APPENDIX B - CHAPTER 2 
 

B.1 INVERTED COLLOIDAL CRYSTAL SCAFFOLD FABRICATION 

Name of Procedure: ICC Scaffold Fabrication 

Prepared by: Auresa Thomas; based on Kotov Lab’s published work. 

 

Materials 

Glass beads (Polysciences, 30-50 µm #18901; 3-10 µm #07666; 105-150 µm #15927) 

Ethylene glycol (Fischer Scientific, BP230-1) 

Ice 

Sonicator 

Oven 

Furnace  

Polycaprolactone (PCL) (Polysciences #19561, MW: 43,000-50,000) 

Chloroform (Fischer Scientific, C298-1, Certified ACS) 

5.75 inch glass pipettes w/ rubber tops 

Glass vials (Fischer Scientific, 03-339-30F, shell type 1 glass, vial, 19x65mm 3 dram) 

 

Procedure 

Note:   

• The sonicator overheats, so monitor (by touch), adding ice or cold water to the 

bath every 45 minutes. Each time remove water to keep the water level consistent. 

• Ethylene glycol has a flashpoint of 111˚C. 

 

Before starting 

1. Make space for the oven in the fume hood. Preheat oven to 90˚C. 

2. Mark the desired scaffold height on the glass vials with a black marker or tape. 

Allow for 2-3mm of additional height that will be removed later in the fabrication 

process. 

3. Setup glass vials with pipette tops in sonicator. Secure with zip ties. 

4. Prepare solution of beads. Add beads to ethylene glycol (1 g/ 5 mL). 

 

Step 1: Lattice 

5. Fill vials with 5 ml of ethylene glycol. 

6. Add water to sonicator, to cover the glassware halfway (above level of black 

line). 

7. Fill pipette with bead solution. Add 6-7 drops every 20 minutes to the glass vial. 

8. Sonicate for 30 minutes after the desired height is achieved. 

 

Step 2: Drying 
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9. Drain the sonicator. 

10. Carefully cut the zip ties without disturbing the contents of the vial. 

11. Carefully remove the vial from the sonicator. 

12. Remove excess ethylene glycol from the top of the scaffold surface. 

13. Place the vials in the oven in the fume hood. Remove the vials once the ethylene 

glycol has dried out. 

 

Step 3: Annealing  

14. Anneal the beads in the oven at X˚C for Y hours. 

15. Allow glass surface to cool down. Then, carefully break the glass vial around the 

scaffold (a wrench can be used). 

16. Scrape off 1 mm of the top and bottom surface of the scaffold (and sides if 

needed). 

17. Pour water at top of surface to assess the latency of porous structure. 

18. Allow water to completely evaporate (overnight). 

 

Step 4: PCL infusing 

19. Prepare Z% PCL (g of PCL / mL of chloroform = X/100). 

20. Infuse PCL into scaffold. Add Z% PCL to centrifuge tube with scaffold.  

21. Centrifuge contents at 5800 rpm for 60 minutes (may need to break into 3 

intervals). 

22. All the contents of the tube to dry in the fume hood at room temperature. 

23. Place under vacuum for 24 hours. 

24. Remove top, bottom and side layers of the scaffold. 

 

Step 5: Glass dissolving 

25. Place scaffold in centrifuge tube and add 5% HF for 1 day to dissolve glass beads. 

26. Change the 5% HF and saturate scaffolds for a second day. 

27. Rinse scaffold with distilled water for 2 hours on shaker. 

28. Saturate scaffold in 1 N HCl for 1 day. Change the solution every 6-8 hours for 24 

hours. 

29. Repeat steps 27 and 18 a second time. 

30. Wash scaffolds in PBS until pH is 7.4. 
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APPENDIX C - CHAPTER 3 
 

C.1 REDUCTION OF CONTRAST AGENT UPTAKE BY SURFACE-MODIFIED 

PCL 

As such, a secondary objective of this chapter is to evaluate the hydrophobicity and 

uptake of contrast agent by surface-modified constructs. Initial DCE imaging 

experiments showed significant uptake of contrast agent in early designs of the phantom, 

which was made of polycaprolactone (PCL), a polyester with hydroxyl end groups (OH-) 

(Fig. C.1). Although, the aqueous iodine contrast agent, iopamidol is documented as 

stable and nonreactive agent, its interaction with PCL may lead to the replacement of 

hydroxyl groups on the surface of PCL. Another method of adherence of iopamidol onto 

PCL may be due to adsorption, as the rough surface of the polymer contains macro- and 

micro-pores, which may trap the contrast agent during perfusion. To resolve the issue of 

contrast agent retention after each experiment, the surface of the PCL constructs were 

chemically treated. Degradation of PCL occurs by hydrolysis of its ester linkages (R-

CO2- ′, where   and  ′ are alkyl groups) at the surface-level. The hydroxyl group on 

PCL was capped by acylation with acetic acid, converting them into acetoxy groups 

(CH3-C(=O)-O-R). The relatively low reactivity of the acetoxy groups and iodine was 

hypothesized to reduce PCL uptake of the contrast agent. As a result of the hydrolysis, 

the PCL was hypothesized to become more hydrophobic.  

 

Figure C.1 Chemical structure of reactants in DCE imaging: PCL  and iopamidol . 
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PCL scaffolds and flat discs were treated with 17.4 M acetic acid (≥99.7 w/w %, 

Certified ACS, Fisher Scientific) (Fig. C.2). The wettability of discs treated for 15, 5 and 

0 seconds was measured using a goniometer (Rame-Hart Instrument, Co., Netcong, NJ) 

and drop-shape analysis program (DROPImage, Rame-Hart Instrument, Co., Netcong, 

NJ).  Three repeat tests were performed for three treated and untreated circular discs. For 

each disc, the water contact angle between the droplet and the surface of the disc was 

measured as water was added and removed from the surface. The goniometer measured 

the contact angle (receding an ascending) formed due to the surface tension between the 

discs and water droplets add to its surface. The average receding and ascending contact 

angle was calculated for each group. A two-tail Student’s t-test assuming unequal 

variance was used to compare the measured contact angles. P-values less than 0.05 were 

considered to show significant difference between the two groups. 

 

 

Figure C.2 Hydrolysis of PCL surface. 

 

Changes in the perfusion characteristics of the treatment group that showed the greatest 

increase in hydrophobicity were assessed. The differential flow was experimentally 

measured using equations 3 and 4, then compared to the respective values for untreated 

PCL scaffolds. A two-tail Student’s t-test assuming unequal variance was used to 

compare the measured differential flow. Significance was set at P -values< 0.05. Fig. C.3 

illustrates acetic acid treatment increases the hydrophobicity of the PCL. A greater 

contact angle was measured for longer exposure times. Fig. C.4 shows that the 

differential flow was not significantly different for untreated high permeability scaffolds 

compared to acetic acid treated scaffolds. 
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Figure C.3 Average maximal (ascending) and minimal (receding) contact angle measurements for 
PCL disc treated with acetic acid for 5 seconds and 15 seconds. Increased wettability was observed 
for the longer treatment. The increased surface tension makes the acetic acid treated construct more 
hydrophobic. 

 

 

Figure C.4 Average differential flow measurements for untreated scaffolds and scaffolds treated for 
15 seconds with acetic acid. Treated scaffolds showed an increase in resistance to flow across the 
scaffold. Small = 2.02 mm spherical pore diameter (low permeability). (Sample size was 5 for large 
pore scaffolds and 6 for small pore scaffolds.) 

 

Lastly, the difference in intensity between the start (baseline: 1 - 5 seconds before bolus) 

and end (5 - 10 seconds during SBF flush after bolus injection) of a DCE analysis was 

computed for a treated and untreated vascular phantom to determine whether there was a 

difference in contrast agent uptake between the groups. Both experiments were 

performed with high permeability scaffolds in the vascular phantom. Section 3.4.2 details 
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the imaging protocol and system parameters used to collect the DCE data. Contrast agent 

uptake (HU) was defined as the final intensity after a 15 second flush with SBF, minus 

the baseline intensity during the first 5 seconds prior to injection. Figure C.5 shows that 

the acetic acid treatment to the PCL construct reduced the uptake of contrast agent. Thus, 

with acetic acid treatment for 15 seconds, the same vascular phantom can be used for 

repeated DCE imaging studies. 

 

 

Figure C.5 The average contrast agent uptake by a PCL construct treated with acetic acid was 
negligible compared to that of an untreated construct, for a single pass of bolus through the vascular 
construct. The reported average enhancement values represent the difference between the final 
plateau (after peak of bolus) and the initial baseline, for four regions of interests that encompassed 
each compartment. 

 

There was only a significant difference in differential flow for the larger pore diameter, 

which showed an increased differential flow for acetic acid treated scaffolds. As such, 

future experiments should evaluate the sensitivity of DCE-extracted flow rates to these 

small changes in experimentally measured differential flow (±10%). 
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APPENDIX D - CHAPTER 4 
 

D.1 MESH INDEPENDENT TESTS 

The following data confirms that the models evaluated in Chapter 4 were within 

acceptable mesh resolution limits that minimized the error associated with mesh settings. 

 
Table D.1 Mesh data over four levels of mesh refinement for the modeled T-junction/mixer model. 

Mesh Refinement Number of Elements Number of Nodes 

Baseline 59,424 208,332 

1 96,486 375,651 

2 124,693 473,350 

3 132,211 509,611 

 

 

Figure D.1 Spatial mesh independence for T-junction with an inline static mixer. Illustrates the 
variation in ‘Mass Flow Average’ at the mid-plane of the tube distal to the scaffold, with increased 
mesh resolution. Sensitivity falls within ±5%. 
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Table D.2 Mesh data over four levels of mesh refinement for the permeability chamber simulation 
for a high permeability scaffold. 

Mesh Refinement Number of Elements Number of Nodes 

Baseline 293,870 110,606 

1 383,550 144,232 

2 463,056 169,577 

3 506,473 182,441 

 

 

 

Figure D.2 Mesh Independence. Illustrates the variation in ‘Mass Flow Average’ at the mid-plane of 
the tube distal to the scaffold, with increased mesh resolution. Sensitivity falls within ±5%. 
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Table D.3 Mesh data over four levels of mesh refinement for the modeled vascular tree. 

Mesh Refinement Number of Elements Number of Nodes 

Baseline 217,299 45,427 

1 311,195 60,091 

2 404,505 74,731 

3 491,181 88,397 

 

 

Figure D.3 Vascular tree mesh independence. Illustrates the variation in ‘Mass Flow Average’ at the 
topmost outlet of the vascular tree, with increased mesh resolution. Sensitivity falls within ±5% over 

the last two level of mesh refinement. 
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Table D.4 Mesh data over five levels of mesh refinement for the low permeability compartment. 

Mesh Refinement Number of Elements Number of Nodes 

Baseline 158, 540 36,892 

1 241,426 54,096 

2 322,369 70,405 

3 455,239 96,994 

4 506,663 107,040 

 

 

Figure D.4 Low permeability compartment mesh independence. Illustrates the variation in ‘Mass 
Flow Average’ along plane downstream of scaffold and prior to the compartment outlets. Sensitivity 
falls within ±5% across all levels of refinement. 

 
Table D.5 Mesh data over four levels of mesh refinement for the high permeability compartment. 

Mesh Refinement Number of Elements Number of Nodes 

Baseline 204,389 45,220 

1 305,798 70,947 

2 461,123 102,716 

3 509,073 112,531 
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Figure D.5 High permeability compartment mesh independence. Illustrates the variation in ‘Mass 
Flow Average’ along plane downstream of scaffold and prior to the compartment outlets. Sensitivity 
falls within ±5% for the third level of refinement. 

 
Table D.6 Mesh data over five levels of mesh refinement for a single scaffold compartment with four 
0.79 mm inlets and a porous jump (intrinsic permeability of 1 x 10-9 m2) positioned at the mid-plane. 

Mesh Refinement Number of Elements Number of Nodes 

Baseline 142,204 63,934 

1 249,202 107,310 

2 356,411 146,802 

3 448,598 180,593 

4 511,322 202,261 
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Figure D.6 Mesh Independence. Variation in ‘Mass Flow Average’ with increasing mesh resolution. 
Sensitivity falls within ±5%. 

 

 

D.2  EFFECT OF REYNOLDS NUMBER ON PERMEABILITY 

In the discussion of the reliability of results acquired using the in-house mass 

flow/permeability system, it was shown that the system underestimated the permeability 

of the Sponceram® when compared to the results published by Sanz-Herrera et al. [1]. 

Further studies were conducted to determine the influence of the Reynolds number on the 

measured perfusion metric of permeability. Fig. D.7 shows that the measured intrinsic 

permeability using water (highest Reynolds number of approximately 100) generated 

lower permeability measurements. Using a glycerin/water mixture (60-80% v/v), the 

Reynolds number was reduced to less than or equal to 10, to be within assumptions limits 

of Darcy’s Law. The data presented in Fig. D.7 indicates that true permeability may be 5 

to 100 times larger than that estimated by water. There were similar trends in the 

permeability for both the high permeability and low permeability scaffolds. These 

findings support the data presented in Table 4.3, which indicated that compared to the 

results published by Sanz-Herrera et al. [1], our system when used with water, 

underestimates the permeability by an order of one or two. Based on these observations, a 

true value of permeability may not be attainable; instead, a range within the Reynolds of 
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1 to 10 may be used to provide a relative value. In chapter 4, a correct factor of 2.7 is 

applied to the experimentally measured hydraulic permeabilities to closely match the 

differential flow values acquired using the porous geometry CFD model for the low and 

high permeability scaffolds.  

 

(a) 

 

 

(b) 
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Figure D.7 Illustrates exponential relationship between the Reynolds number and intrinsic 
permeability within the in-house flow meter system for (a) high permeability and (b) low 
permeability scaffolds. (Note: The scaffolds used were designed at a lower voxel higher resolution.) 
(All standard deviations of the intrinsic permeability values are an order smaller.) 

 

D.3  TRANSIENT FLOW USER-DEFINED FUNCTIONS 

Macros implemented to set material and boundary conditions for transient flow 

simulation of T-junction/mixer model. 

/********************************************************************* 

   UDF that simulates change in density of fluid type over time (kg/m^3)                                   

**********************************************************************/ 

#include "udf.h" 

 

DEFINE_PROPERTY(cell_density, c, t) 

{ 

   real my_rho_baf = 1080; 

   real my_rho_ca = 1369; 

 

 if (CURRENT_TIME<=5) 

  return my_rho_baf; 

 else if (CURRENT_TIME == 6 || CURRENT_TIME == 7) 

  return my_rho_ca; 

 else if (CURRENT_TIME >=8) 

  return my_rho_baf; 

} 

 
 
/********************************************************************* 

   UDF that simulates change in viscosity of fluid type over time  (kg/m*s)  

   UDF that simulates viscosity of non-Newtonian blood analog fluid based on Carreau 

model                                    

**********************************************************************/ 

#include "udf.h" 

 

DEFINE_PROPERTY(cell_viscosity, c, t) 

{ 

   real my_mu_baf, mu_z, mu_inf, n,lambda,gamma, a, temp; 

   real my_mu_ca = 0.0047; 

 

 if (CURRENT_TIME<=5) 

        { 

    mu_inf = 0.00364; 

    mu_z = 0.076; 

                  n = 0.23; 

           lambda = 22.06; 
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    a = 2; 

    gamma = C_STRAIN_RATE_MAG(c,t); 

                  temp = n-1/a; 

    my_mu_baf= mu_inf + (mu_z - mu_inf) * pow((1+pow(lambda,a) * 

pow(gamma,a)), temp); 

    return my_mu_baf; 

 } 

 

 else if (CURRENT_TIME == 6 || CURRENT_TIME == 7) 

      return my_mu_ca; 

 

 else if (CURRENT_TIME>=8) 

 { 

    mu_inf = 0.00364; 

    mu_z = 0.076; 

                  n = 0.23; 

           lambda = 22.06; 

    a = 2; 

    gamma = C_STRAIN_RATE_MAG(c,t); 

                  temp = n-1/a; 

    my_mu_baf= mu_inf + (mu_z - mu_inf) * pow((1+pow(lambda,a) * 

pow(gamma,a)), temp); 

    return my_mu_baf; 

 } 

} 

 
 
/**********************************************************************/ 

/* umyinlet.c                                                         */ 

/* UDF for specifying a transient mass flow rate profile boundary condition */ 

/**********************************************************************/ 

/* at t<=2 sec the target mass flow rate set to 0.002748 kg/s for contrast agent   */ 

/* when t>2 sec the target mass flow rate will change to 0.0014 kg/s for blood analog 

fluid */ 

/* ca_inlet_diameter = 3mm  and sbf_inlet_diameter= 3.2mm   */ 

 

#include "udf.h" 

 

DEFINE_PROFILE(trans_mf, thread, position)  

{ 

  real my_mf; 

  face_t f; 

  real mf_baf = 0.00108 ; 

  real mf_ca = 0 .002738;  

 

  begin_f_loop(f, thread) 
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    { 

  if (CURRENT_TIME<=5) 

          F_PROFILE(f, thread, position) = mf_baf; 

  else if (CURRENT_TIME == 6 || CURRENT_TIME == 7) 

          F_PROFILE(f, thread, position) = mf_ca; 

  else if (CURRENT_TIME>=8) 

          F_PROFILE(f, thread, position) = mf_baf; 

    } 

  end_f_loop(f, thread) 

} 
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APPENDIX E - CHAPTER 5 
 

E.1 SURVEY OF DYNAMIC ENDOTHELIAL CELL CULTURES 

 
Table E.1Comparative summary of published in vitro dynamic angiogenesis bioreactor studies (3-10 
days). 

Reference Cell 
Line(s) 

Scaffold 
Type Flow  Dimensions Angiogenesis 

Assays 

[1] 
RAEC and 

Rat MSC 

collagen 

gel on  
PET 

membrane 

constant: 300 

ml/h 
(≈ 6 dynes/cm

2
) 

undisclosed; 
manually perforated  

 

Histology, cell 

proliferation assay, 

western blot, cell 

morphology 

(microscopy),                                                       

VEGF/TGFβ1/ 

PDGF-BB ELISA 

[2] HUVEC fibrin gel constant: 7 ml/h undisclosed 

Quantification of 

VEGF receptor 1, 

cell morphology 

(microscopy) 

[3-4] 
BEC and 

LEC 

fibrin/ 

collagen 

gel 

Radial  
(2-20 

dynes/cm
2
) 

1.6 mm diameter; 

thickness 

undisclosed  
 

Vessel 

morphology 

(confocal 

microscopy), 

human MMP 

ELISA   
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Table E.2  Summary of EC behavior and protein/gene expression from selected FSS studies 
performed on macrovascular cells (SS compared to 0 dynes/cm2 static environment, unless alternate 
SS value provided). 

Reference 
Cell 
Type 

Study 
Environment 

Shear stress 
(dynes/cm²) Findings 

[5] HUVEC 
modified 100-

mm culture dish   

10  

(orbital)                     

ECs elongated and aligned,  

↓ apoptosis,  

↑ VEGF receptor 2 expression  

[6] HUVEC 

cone and plate 

rheological 

system 

0.5 and 12 

All conditions: ↔ cell density 
 

Isolated cells at 0.5 dynes/cm
2
:   

↓ directionality of migration,  

↓ migration speed; 
 

Isolated cells at 12 dynes/cm
2
:   

↑ directionality of migration,  

↓ migration speed (compared to 

static and 0.5 dynes/cm
2
); 

 

Monolayer at 12 dynes/cm
2
:   

↑ EC elongation,  

↑ homogenous orientation in the 

direction of flow 

[7] HUVEC 

channels in  

microfluidic 

device  infused 

with 50 ng/ml of 

VEGF 

3  

attenuated sprout formation 

through NO signaling,  

↑ area of sprout formation 

[8] HUVEC 

collagen-coated 

parallel plate 

flow chamber 

0.12, 3, 5.3 

and 12 

At 5 dyn/cm
2
:  

maximum Atk activation 
 

At 12 dyn/cm
2
:  

↑ sprouting density,  

↑ sprouting extension,  

↑ narrowing of sprouts,  

↓ Atk activation 

[9] Dog EC 

scaffold tube 

(layers of 

fibroblasts and 

collagen) in 

dynamic 

bioreactor 

1.5 - 5.3 

(pulsatile, 

stepwise 

ramping) 

elongated shape, alignment in the 

direction of flow,  

↑cells retention rate 

 

[10] HUVEC 

vascular 

construct in 

dynamic 

bioreactor 

5    
(orbital) 

time-dependent ↑ cell elongation 

and alignment, 

endothelial F-actin microfilament 

organization, 

↑ E-selectin expression, 

↓ ICAM-1 levels 
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Reference 
Cell 
Type 

Study 
Environment 

Shear stress 
(dynes/cm²) Findings 

[11] HUVEC 

orbital shaker,  

parallel plate 

chamber 

(laminar) 

≈ 5 / ≈ 11.5 

(orbital) 

and 

14 

(laminar) 

At 5 dynes/cm
2
:  

↑ proliferation, ↑ apoptosis,  

↓ Akt phosphorylation,  

↑ ICAM expression,  

↓ E-selectin down-regulation 

(greater than laminar and static) 

[12] BPMEC 

collagen gel 

positioned 

within dynamic 

flow chamber 

3  

(laminar) 

↑network formation,  

↑ total network length,  

↑ EC migration velocity, 

 ↔ network density 

[13] HUVEC 

culture dish 

within cone-

and-plate 

viscometer 

1, 15, 30 

(laminar)  

↓ evidence of apoptosis, 

↑ expression of the anti-apoptotic 

FasExo6Del and Bcl-xL, 

↑ pro-apoptotic Bak, 

↓ apoptosis inducing Fas receptor 

[14] HUVEC 
cone-and-plate 

apparatus 

2, 8, 12 

dyn/cm
2 

(laminar) 

↑ cumulative vWF release 

[15] BAEC 

tissue culture 

plate within 

cone-plate 

viscometer 

15 

(pulsatile, 

turbulent, 

laminar) 

and 

36
 

(laminar) 

All conditions:  

↑ PDGF-B, ↑ bFGF m NA,  

↓ PDGF-B mRNA; 
 

At 36 dynes/cm
2
:  

alignment in the direction of flow 

[16] BAEC 

glass coverslips 

within cone-

plate viscometer 

8-15  

(laminar) 

and 

1.5 
 

(turbulent)
 

 

Laminar: 

 alignment in the direction of flow, 

↑ ellipsoidal shape,  

↔ cell density; 
 

Turbulent:  

random orientation of cells in the 

monolayer,  

↑ roundness, ↑ EC turnover,  

↑ DNA synthesis, ↓ cell density, 

↑ gaps in monolayer (cell 

retraction) 

[17] 

RPAEC 

and 

Rat 

SMC 

semipermeable 

polypropylene 

capillary bundle 

within dynamic 

chamber 

0.07 - 3 

(stepwise 

ramping) 

adherent monolayer formed,  

typical subcellular and gross 

morphology, 

 lack of alignment with flow 

direction 
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E.1  MESH INDEPENDENCE TESTS 

The following data confirms that the models evaluated in Chapter 5 were within 

acceptable mesh resolution limits that minimized the error associated with mesh settings. 

Mesh refinement was performed until the number of meshing elements reduced the 

sensitivity in the maximum and average shear stress to less than 5%. Refinement was 

performed over approximately 100,000 to 600,000 elements. 

 

Table E.3 Mesh data over four levels of mesh refinement for the spherical compartment. 

Mesh Refinement Number of Elements Number of Nodes 

Baseline 186,884 41,168 

1 270,112 60,173 

2 329,068 71,884 

3 418,579 89,850 

4 511,814 108,766 

5 1,535,792 339,922 

6 2,504,894 519,208 

7 3,185,524 639,985 

8 5,735,078 1,112,063 
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Figure E.1 Spatial mesh independence for the spherical compartment. Illustrates the variation in 
‘Average Shear Stress,’ across the porous compartment shown in Fig. 5.2a, with increased mesh 
resolution. Sensitivity falls within ±5% for refinements 7 and 8. 

 
Table E.4 Mesh data over six levels of mesh refinement for the orthogonal compartment. 

Mesh Refinement Number of Elements Number of Nodes 

Baseline 299,885 74,501 

1 680,255 147,956 

2 1,357,644 273,586 

3 2,308,528 476,849 

4 3,284,090 668,384 

5 6,198,1771 1,245,986 
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Figure E.2 Spatial mesh independence for the orthogonal compartment. Illustrates the variation in 
‘Average Shear Stress,’ across the porous compartment shown in Fig. 2b, with increased mesh 
resolution. Sensitivity falls within ±5% for refinements 4-5. 
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APPENDIX F - CHAPTER 6 
 

F.1  REVIEW OF OPTIMAL VEGF CONCENTRATIONS SHOWN TO 

PROMOTE ENDOTHELIAL CELL GROWTH IN VIVO AND IN VITRO. 

 
Table F.1 Summary of VEGF concentrations shown to support angiogenesis. 

Optimal VEGF 

Concentration 
VEGF Source Study Environment Reference 

Released: 

< 70 ng/10
6
 cells/day 

neighboring cells in vivo [1]  

Released: 

50-150 ng/day 
solubilized in vivo [2] 

Loaded: 2 µg/scaffold 

Released: 79 ng/day 

 

pre-encapsulated 
poly(lactide-co-glycolide) 

(PLG) microspheres 
[3] 

Loaded: 

95-145 ng/scaffold 
solubilized 

in vitro 

human microvascular 

dermal endothelial cells 

(HMVEC) 

[4] 

Loaded: 10µg 

Released: 100 ng/day 

 

immobilized 

heparin 

crosslinked 

in vitro and in vivo [5] 

Loaded: 4.8µg/day solubilized 

in vitro 

DegraPol® scaffolds 

dynamic bioreactor 

[6] 

Loaded: 

5µg /10
6
 

cells/scaffold 

immobilized 

EDC/Sulfo-NHS 

in vitro 

Ultrafoam collagen 

sponge 

D4T cells 

dynamic bioreactor 

[7] 
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F.2  HEPARIN CONJUGATION EFFICIENCY ASSAY 

The quantification of immobilized heparin was performed using a Toluidine blue assay 

described by Smith et al. 
[
8]. A 0.0005% toluidine blue solution was prepared from 

toluidine blue (Sigma-Aldrich, St Louis, MO), 0.01 N HCl (Acros Organics) and 0.2% 

(w/v) NaCl (Certified ACS, Fisher Scientific). Heparin standards were prepared from 

stock solution of sterilized aqueous heparin solution: 100 µg, 50 µg, 25 µg, 12.5 µg, 6.25 

µg, and 3.1 µg. Untreated and sodium hydroxide treated discs and scaffolds were 

prepared. Aminated and heparin-immobilized 2-D discs and 3-D scaffolds were 

submerged in 3 ml of toluidine blue solution in a glass vial. 400 µl of 0.2% NaCl solution 

was added to all samples. The scaffolds and standards were vortexed for 30 seconds, then 

placed on a shaker for 3-24 hours at room temperature. The PCL disks and scaffolds were 

stained purple in the presence of heparin. 3ml of n-hexane (Sigma-Aldrich, St Louis, 

MO), was added to each vial to extract the formed toluidine blue-heparin complexes. The 

toluidine blue-heparin complexes formed on the surface of the scaffolds were the 

scaffolds, but the hexane was still added to the samples to ensure uniform treatment. The 

vials were vortexed for 30 seconds, then placed on a shaker for 3 hours at room 

temperature. Thereafter, the aqueous layer containing unextracted toluidine blue was 

extracted from the vial and the absorbance of 500 µl samples of the solution were 

measured at 630 nm by microplate reader (Multiskan Spectrum, Thermo Electron 

Corporation). Based on a derived calibration curve, the amount of immobilized heparin 

on the PCL scaffold was estimated.  The average amount of retained heparin from each 

respective 0 µg sample group was subtracted from the average of each sample within that 

group to remove the baseline absorbance. Fig. E.1 plots the retention of heparin onto 

aminated discs and scaffolds. There is a plateau effect seen for the scaffold. 
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(a) 

 

 

(b) 

Figure F.1 Amount of heparin immobilized onto the untreated PCL (a) discs and (b) scaffolds (n = 3). 
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F.3  CHARACTERIZATION OF DEGRADATION EFFECTS ON MECHANICAL 

AND PERFUSION PROPERTIES OF SODIUM HYDROXIDE-TREATED PCL 

SCAFFOLDS 

Eight specimens were used to estimate the compressive modulus. The moduli were 

calculated through unconfined compression testing using an MTS Alliance RT30 

electromechanical test frame (MTS Systems Corp., MN). TestWorks4 software (MTS 

Systems Corp., MN) was used to collect and analyze data during compression testing. 

Compressive modulus was calculated using area measurements derived from caliper 

height and diameter measurements of pre-tested samples. Compressive modulus was 

defined as the slope of the linear portion of the stress–strain curve. The permeability of 

the scaffolds was also estimated using our flow meter system described in Section 3.3.3. 

A two-tail Student’s t-test assuming unequal variance was used to determine whether 

there significance was significant difference in the measured compressive moduli and 

hydraulic permeability. 

The mean elastic moduli of the untreated and NaOH-treated PCL scaffolds were 23 ± 1 

MPa and 20 ± 2 MPa, respectively. The stiffness of the two scaffolds was not 

significantly different (P-value < 0.05). The hydraulic permeability of the untreated and 

NaOH-treated PCL scaffolds was 4.3 x 10
-7 

± 8.7 x10 
-8

 m
4
/N·s and 2.4 x 10

-6 
± 5.8 x10 

-7
 

m
4
/N·s, respectively. NaOH-treated scaffolds were more permeable to water perfusion. 
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Figure F.2  (a) Average elastic modulus and (b) average hydraulic permeability for the untreated and 
NaOH-treated PCL scaffolds. 
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APPENDIX G- CHAPTER 7 
 

G.1  OPERATING THE VASCULAR-LIKE ENDOTHELIAL CELL 

BIOREACTOR 

 

Name of Procedure: Setting up and operating angiogenesis bioreactor.  

Prepared by: Auresa Thomas and Leonie Genesteir 

Hazards: none  

Protective equipment: Use latex gloves, sterilizing with 70% ethanol, ethylene gas or 

autoclave; lab coat 

Waste disposal: Items that interact with cells should be placed in the biohazard trash bin. 

All other items can go into normal trash. 

 

Materials 
MasterFlex® Silicone Tubing (Platinum) L/S® 25 (25 ft)  

Three-way stopcock Leurlock, PVDF  

Rubber stopper  

Clamp, punch valve,large  

Clamp, punch valve,small  

Male LuerLock coupling (for 3/16’’ tube), polypropylene  

Female LuerLock coupling (for 3/16’’ tube), polypropylene  

Male LuerLock caps  

Female LuerLock caps  

*
~
Pulse dampener, for all Masterflex® L/S® and I/P® tubing  

*Pump  

*Flowmeter  

(Modified) Petri dish  

Flow splitter (manifold), polypropylene  

Media storage bottle, 1 L 

*Sterile 0.22 µm syringe filter 

*Sterile 5 ml Syringe 

Sterile Liquid Filters (larger than syringe filters) 

*pH test strips 

magnetic stirrer (1.5 in and 0.5 in - Length) 

*Endothelial cell media 

*70% ethanol 
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PBS 

gauze 

Autoclave tape 

Cautery system (only tips autoclaved) 

Sterile gloves 

 

*Should not be autoclaved. 
~ 

Ethylene
 
oxide sterilization 

 

 
Figure G.1 Bioreactor setup (for up to 4 connected network). 

 
Connection Properties 
 
Connections Connection Size 

Pump Tubing (everywhere except 

reservoir II to pump to pulse dampener) 

L/S® 25 (3/16’’ ;  4.8 mm) 

 

Pulse dampener inlet/out 3/16‘’ tube end to  1/8" NPT 

Pulse dampener out 1/8" NPT to 3/16‘’ tube  

Flow splitter inlet 3/16’’ tube end to 1/4" NPT 

Flow splitter outlet 3/16’’ tube end  to 1/8" NPT 

Flow meter 1/8" NPT 

Petri dish inlet/interior Luer Lock 3/16’’ tube end 

standard Luer Lock 

Point 3 
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 Petri dish inlet/outlet/interior tube 3/16’’ 

Vascular network inlet/outlet 2.2 mm into standard Luer Lock 

Stopcock (all) standard Luer Lock 

Reservoir I inlet 5 mm  

Reservoir II inlet Glass rod fitting 3/16‘’ tube 

Reservoir I outlet Glass rod fitting 3/16‘’ tube 

Reservoir II outlet Glass rod fitting 3/16‘’ tube 

 
A. Getting Started: Testing the System 

1. No sterilization is needed. 

2. Assemble the components in the incubator based on Figure 1. The follow meter 

should be connected to the system. 

3. The Modified Petri Dishes should have a tube connecting the luer lock ends (as a 

place holder for the vascular networks).   

4. Load 500-900 ml of water into reservoir 1. 

5. Turn on pump at arbitrary setting (ml/min). 

6. Monitor the flow meter readings. Determine the pump speed needed to have a 4 

g/s reading at the flow meter. 

7. Once the pump speed is determined, place the flow meter at each manifold tube 

outlet to ensure speed is the same at each outlet (that will be connected to a Petri 

dish). 

8. Record how long it takes for the water to reach the flow meter. 

9. Alternatively, the permeability chamber set-up can be used to measure flowrate. 

 
B. Getting Started: Sterilization 
 
Ethylene Oxide Sterilization (1 week before study) 

1. Ethylene
 
oxide the pulse dampener. Allow to air out in the hood for 2-3 days 

before using with cells. 

 

Sterilize Supplies (2 days before study) 

2. Autoclave or ethylene oxide all supplies. 

3. Decontaminate the incubator. 

4. Sterile the stir plates with 70% ethanol. Place stir plates in the incubator. The stir 

plate cords should be run through the hole in the back of the incubator and 

plugged into a power source. 

5. Cut up plenty of parafilm strips and soak them in a 70% ethanol bath in a large 

Petri dish. Allow to dry for 24 hours in hood. 

 

Vascular Network and Scaffold Sterilization (2 days before study) 

6. Soak scaffolds and vascular network/holders in 70% ethanol for 24 hours. 

7. Wash with sterile water for 1 hour. 



 

285 

 

8. Allow to dry for 24 hours in hood. 

 
C. Getting Started: Bioreactor Study Day 0 

1. Seed cells onto the scaffold at an appropriate density. (See ‘Seeding Protocol’) 

2. Incubate the scaffolds in EC media (2ml) in a ‘Low Attachment’ well plate for 

24-48 hours (or longer, as desired).  

 
D. Getting Started: Bioreactor Study Day 1 
 

Caution:  
1. Wash your hands with soap before begin the assembly.  

2. Next, change gloves every 30 minutes.  

3. Every time the hands are out of the hood, clean your gloves with ethanol before 

placing your hands in the hood. 

4. If you touch an unsterile item with your gloves outside of the hood, CHANGE 

your gloves 

5. Manipulate sterile elements in the center of the hood; always avoid manipulating 

close to the aeration grid. 

6. Do not handle above other sterile elements.   

 

In the hood 

1. Disinfect the hood before using it with 70% ethanol. 

2. Bring incubator shelf into the hood.  Do all assembly of parts on the shelf (for 

easy transfer of shelf to incubator). Tape components to the shelf as needed based 

on the Figure 1. 

3. Define a place for waste in the hood. 

4. Insert the clamps around silicone tubing (see the figure 1). 

5. Place the filters and the luer lock couplings at the end of the tubes and connect it 

to the media storage bottles and to the pulse dampener. 

6. Place small magnetic stirrer in pulse dampener. 

7. Place the connectors and the three-way luer lock stopcocks and install the tubes. 

8. Place 2 male luer lock couplings at the ends of silicone tubings to connect them 

with the female luer lock couplings of the Petri Dish. 

9. Attach 3 filters with tubing to the rubber stoppers. 

10. Check that all the system components are closed and well-fixed. 

11. The Modified Petri Dishes should have a tube connecting the luer lock ends (as a 

place holder for the vascular networks).   

12. Put 900 ml of 70% ethanol into the media storage bottles.  

13. Connect the silicone tubing to the pump and cycle the ethanol through the system 

for 30 minutes. (Some of the tube will have to hang outside the hood. Place pump 

on table/chair.) 

14. Turn off the pump. Empty the ethanol from the storage bottles by pipetting or 

aspirating . 

15. Wipe cord that was outside the incubator with 70% ethanol. 

16. Place 900 ml of media in the water bath to warm. 
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17. Pre-soak scaffolds in media in closed well plate. 

18. Put 900 ml of sterilized water into the media storage bottles.  

19. Connect the silicone tubing to the pump and cycle the water through the system 

for 30 minutes. (Some of the tube will have to hang outside the hood. Place pump 

on table/chair.) 

20. Turn off the pump. Empty the water from the storage bottles by pipetting or 

aspirating. 

21. Wipe cord that was outside the incubator with 70% ethanol. 

22. Put 900 ml of PBS into the media storage bottles.  

23. Connect the silicone tubing to the pump and cycle the PBS through the system for 

30 minutes. (Some of the tube will have to hang outside the hood. Place pump on 

table/chair.) 

24. Turn off the pump. Empty the PBS from the storage bottles by pipetting or 

aspirating. 

25. Wipe cord that was outside the incubator with 70% ethanol. 

26. Put 900 ml of media into the media storage bottles. Place magnetic stir bar in each 

media bottle. 

27. Close the bottles with the rubber stoppers. 

28. Connect the silicone tubing to the pump and run the media through the system 

until it reaches Point I. (Some of the tube will have to hang outside the hood. 

Place pump on table/chair.) 

29. Turn the pump off. Clamp the tubing at Point 1. 

30. Pre-fill networks as much as possible with media using a syringe and closing off 

an end of the network with a luer lock cap. 

31. Carefully (so as to not disturb cells), place the scaffolds (retrieve from the 

incubator) in the network. 

32. Use the cautery to seal the circumference of the holder at the two connection 

points. 

33. Position the vascular network in the Modified Petri Dish using the male luer lock 

couplings at the extremities of the dish. 

34. Aspirate any media that falls onto the dish. 

35. Transfer the system to the incubator (May require 2-3 people). 

36. Place the pulse dampener, and reservoir 1 and 2 on top of stir plates.  

37. Connect the silicone tubing to the pump through the hole in the back of the 

incubator. Chose the value of the flow and turn on the pump. 

38. Close the incubator hole with the rubber stopper or autoclaved gauze. 

39. Open the clamp to the petri dish (Point 1 on the Figure 1). 

40. Turn on pump a low speed and slowly ramp up to the pre-determined speed (ramp 

over 5 minutes, with 5 intervals). 

 
 

Figure F.4 (A) Sealed vascular network. (B) Operating bioreactor positioned within incubator. 
 
Daily Operation During Study 

1. Run bioreactor for 10 days. 

2. Each day, spray 70% ethanol on tubing and connections in the incubator (and 

inside surfaces of the incubator) 



 

287 

 

3. Monitor bioreactor twice a day (early morning and late afternoon) 

 

Monitoring Media pH 

1) Attach a 5ml syringe to the capped tubing at the top of the rubber stopper on the 

media bottle. 

2) Close the tubing with cap once the task is completed. 

3) Measure the pH with a pH strip. Record the value. The value of the pH in the 

medium bottle should be 7.5 ± 0.5. 

 

Changing the Media and Dampener 

There will be no need to change the media for a culture study less than 10 days, if 

500+ ml of media used at the start.  
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