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ABSTRACT

Real-time Predictive Control of Constrained Nonlinear Systems Using the IPA-SQP
Approach

by

Hyeongjun Park

Co-Chairs: Jing Sun and Ilya V. Kolmanovsky

Model Predictive Control (MPC) is an effective control method that has been used

for a diverse set of applications. Specifically, MPC for linear systems with quadratic

cost functions is considered a mature technology. For nonlinear systems whose un-

derlying dynamics are fast, however, the computational complexity of the numerical

optimization has emerged as one of the main challenges in MPC applications.

An integrated perturbation analysis and sequential quadratic programming (IPA-

SQP) algorithm has been developed to address the computational burden and to meet

the real-time computation requirements in nonlinear MPC (NMPC). A parametric

neighboring extremal (PNE) approach has also been developed. It provides a closed-

form neighboring extremal (NE) solution for systems subject to initial state variation

where a control sequence and a set of parameters are optimized.

Motivated by the effectiveness of the IPA-SQP and PNE approaches and by their

possibilities of extending methodologically, this dissertation primarily focuses on de-

velopment of methodological extension to the IPA-SQP and PNE approaches to deal

xvi



with adaptive MPC (AMPC) and minimum-time MPC problems, respectively. An

indirect AMPC algorithm is developed to effectively integrate adaptation and con-

strained dynamic optimization. The AMPC algorithm based on IPA-SQP facilitates

fast updates of the control sequence when model parameters change. A method-

ological extension to the PNE approach has been developed for minimum-time MPC

which is of interest due to its ability to improve robustness to model uncertainties

and disturbances, satisfy constraints, and provide automatic control refinements near

the target.

This dissertation also focuses on challenging real-time applications of the IPA-

SQP algorithm. A novel optimization-based power management controller (PMC) is

developed, analyzed, and tested on a physical test-bed platform with multiple power

sources and loads. The development of model predictive controllers for spacecraft

applications is also presented. A conventional linear quadratic MPC (LQ MPC) for

spacecraft relative motion maneuvering is developed. The LQ MPC, however, does

not enable the direct handling of nonlinear constraints. Hence the IPA-SQP MPC

approach is applied to solve the NMPC problems arising in spacecraft relative motion

maneuvers.
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CHAPTER I

Introduction

1.1 Motivation

Model Predictive Control (MPC) is an effective control method that has been used

for a diverse set of applications [2, 3, 4, 5]. In the MPC framework, a cost function is

minimized over a prediction horizon, subject to system dynamics and pointwise-in-

time state/input constraints. By solving the optimization problem, a control sequence

is calculated at each sampling time instant. The first element of the obtained control

sequence is applied to the system, and the procedure is repeated at the next sampling

time instant [6, 7].

MPC provides several advantages over other control methods [6]. It has a flexible

framework. It can be used for various systems from those with relatively simple

dynamics to more complicated ones. Specifically, MPC can deal with multi-variable

and hybrid systems, and the constraints can be systemically enforced. In addition,

MPC recomputes the control action at each time instant based on measured output,

which leads to a form of a feedback law that is able to compensate for unmeasured

disturbances.

Most MPC applications have been reported for systems with slow response time

and abundant computational resources [2, 5]. MPC for linear systems with quadratic

cost functions is especially considered a mature technology [8]. For nonlinear systems

1



whose underlying dynamics are fast, however, the computational complexity of the

numerical optimization has emerged as one of the main challenges in using MPC.

To reduce the online computational effort, several methodologies and numerical al-

gorithms have been proposed. One of the proposed methodologies is using model com-

plexity reduction techniques [9, 10, 11]. Model complexity reduction can be achieved

by focusing on dominant dynamics using the time scale decomposition of dynamics of

different components [10, 11], the regional linear approximation of nonlinear models

[12, 13], and other techniques [14]. Model complexity reduction techniques, how-

ever, may degrade closed-loop performance and cause instability because of model

uncertainties [15].

Explicit MPC has also been proposed [16, 17] to address computational complex-

ity. Explicit solutions to MPC problems are obtained offline [16, 18] so that the

resulting explicit control law can be stored for online use [19]. Explicit MPC ap-

proaches have an advantage in that they also do not require real-time optimization

solvers to be implemented online. At the same time, large memory may be required

to store the solution. This can cause issues, especially for problems with a long

prediction horizon or many states [14, 19].

Thus real-time optimization solvers for MPC are beneficial in applications when

the model may be changing online, when a long prediction horizon is necessary, and

when strong nonlinearities in systems and/or constraints are present [14]. Several

numerical algorithms [20, 21, 22, 23, 24, 25, 26] have been developed for real-time

implementation of nonlinear MPC (NMPC) problems. In Section 1.2, the detailed

overview for the proposed numerical algorithms is provided.

To address the computational burden and to meet the real-time computation re-

quirements in various applications, an integrated perturbation analysis and sequential

quadratic programming (IPA-SQP) algorithm has been developed and applied to solve

a constrained NMPC optimization by Ghaemi et al. [27, 28, 29, 30]. It combines the
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solutions derived using perturbation analysis (PA) and sequential quadratic program-

ming (SQP) in a single unified framework to solve the discrete-time optimal control

problem with an initial state perturbation. Thus the IPA-SQP algorithm updates

the solution to an MPC problem at time t by considering it as a perturbation to the

solution at time (t − 1). The basis for the IPA-SQP algorithm is the neighboring

optimal control theory extended to discrete-time systems with constraints [31]. The

IPA-SQP corrects the solution derived on the basis of neighboring optimal control

theory using SQP updates. The merged PA and SQP updates represent efficient

predictor-corrector style updates, thereby yielding a fast solver for real-time nonlin-

ear MPC problems [14]. The IPA-SQP approach has been implemented and validated

through several simulations and experimental applications. These include regulating

the output voltage of a DC/DC converter [1] and controlling a model ship to follow

a pre-specified path [14]. A parametric neighboring extremal (PNE) approach has

also been developed for simultaneous control trajectory and parameter optimization.

It provides a closed-form neighboring extremal (NE) solution for systems subject

to initial state variation where control input sequence and a set of parameters are

optimized.

Motivated by the effectiveness of the IPA-SQP and PNE approaches and by

their possibilities of extending methodologically, this dissertation primarily focuses

on developing methodologies to deal with adaptive MPC (AMPC) and minimum-

time MPC problems by means of the IPA-SQP approach and PNE approach. This

dissertation also focuses on challenging real-time applications of the IPA-SQP algo-

rithm. Specifically, an optimization-based power management controller (PMC) is

developed, analyzed, and tested on a physical test-bed platform. The development

of model predictive controllers for spacecraft applications is also presented in this

dissertation. A conventional linear quadratic MPC (LQ MPC) for spacecraft relative

motion maneuvering is developed. The LQ MPC, however, does not enable the direct
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handling of nonlinear constraints. Hence the IPA-SQP MPC approach is applied to

solve the NMPC problems arising in spacecraft relative motion maneuvers. The sim-

ulation results with a nonlinear thrust constraint using IPA-SQP MPC demonstrate

that the IPA-SQP algorithm can effectively handle the nonlinear constraint. The LQ

MPC has also been applied to spacecraft rendezvous/docking and debris/obstacle

avoidance maneuvering. The simulation results are reported.

In the rest of this chapter, background and literature review on NMPC, numer-

ical algorithms proposed in the literature, IPA-SQP, AMPC, minimum-time MPC,

and new applications are discussed at a high level, followed by a summary of key

contributions. The dissertation outline is provided in the final section.

1.2 Background and Literature Review

1.2.1 Nonlinear Model Predictive Control

Linear MPC techniques and theory are quite mature [6, 7]. They have been

successfully implemented in many applications, mainly in the petrochemical industry.

There are excellent survey papers on important issues such as stability and online

computation [32, 33]. Most systems, including those arising in control applications

for aerospace, marine, and automotive vehicles, are, however, nonlinear. The interest

in using NMPC has been therefore increasing to deal with such nonlinear systems in

practice.

The current state of NMPC is well-covered in recent survey articles [8, 34]. There

are two main challenges in designing and implementing NMPC [8, 34, 35]. One is

choosing the problem setting to guarantee the stability of the closed-loop system of

NMPC. Several theoretical approaches have been developed to achieve closed-loop

stability (see the review and survey papers [32, 34] and references therein). The

other issue is computing the optimal control input in real time. The need to obtain
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the optimal control solutions online with negligible computational delay makes the

real-time implementation of NMPC problems numerically challenging.

To improve the computational efficiency, several strategies have been proposed.

Reference [15] gives a good overview on the categorized approaches such as model

complexity reduction [10, 11], explicit MPC [16, 17], fast NMPC algorithms [20,

36, 37], and decentralized and hierarchical MPC [38, 39, 40, 41]. This dissertation

focuses on developing fast numerical methods and algorithms to solve optimal control

problems arising in real-time implementation of NMPC.

1.2.2 Numerical Methods and Algorithm for NMPC

There have been many recent studies that address the computational challenges

for real-time implementation of NMPC. Overviews of studies on efficient numerical

methods and algorithms for NMPC can be founded, for example, in [20, 21]. The SQP

and interior point (IP) methods are the dominant approaches for the development of

numerical algorithms that solve nonlinear optimal control problems arising in NMPC

[20, 22, 42, 43, 44, 45].

Reference [20] provides an excellent overview, specifically, on online optimization

algorithms for NMPC. For instance, a Newton-type solver has been developed by

Li and Biegler [46, 47]. In this algorithm, only one SQP iteration at each sampling

time is implemented so that the computational efficiency is improved. At the level

of the model, approximation by linearization is used in the algorithm; however, the

approximation is valid in the vicinity of the nominal trajectory for nonlinear models,

and it might have problems in convergence [47, 48]. The closed-loop stability of the

resulting system has been proven for the open-loop stable process [23]. Diehl et al. [49,

50] have proposed the real-time iteration scheme that restricts the online computation

load to one SQP type iteration in each sampling time. This scheme solves efficiently

a nonlinear optimization problem by an SQP method tailored to the direct multiple
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shooting structure. This approach exploits the complete solution from the problem

at the previous sampling time without any modification, so called the initial value

embedding as proposed in [50]. The early termination and warm starting approach

can reduce computational loads. The convergence, however, may not be guaranteed

under disturbances and significant nonlinearities [48]. Reference [37] addresses the

closed-loop stability and derives error bounds for this algorithm. On the other hand,

as an IP type approach, Ohtsuka [24, 35] has developed an algorithm on the basis of

the continuation and generalized minimum residual (continuation/GMRES) methods.

This algorithm is based on IP-type treatment of inequality constraints with the fixed

path parameter. In this approach, an original continuous-time optimization problem

is discretized over the horizon, and a ‘two point boundary value problem’ (TPBVP)

is obtained to determine the control input sequence based on necessary conditions for

optimality. Instead of solving this TPBVP explicitly, the derivatives of the control

input sequence with respect to time are determined by a continuation method. Then

control updates reduce to a linear equation involving Jacobian. GMRES is used to

solve the linear equation and determine the optimal control sequence. Hence, only

one linear system is built and solved for one Newton-type iteration by the proposed

algorithm, leading to a predictor-corrector path following method. The algorithm,

however, may fail because of discretization errors. Error bounds for this algorithm

have been established in [35].

A common feature of the above algorithms is that they perform one iteration in

each sampling time, i.e., they do not solve optimization problems at each sampling

time to convergence, but instead, force early termination to save computation time.

The resulting state trajectories may be deteriorated for systems with large uncer-

tainties and significant nonlinearities. Constraint violation can also be possible after

one iteration while it could be avoided when the optimization problem is solved to

convergence [25, 48].
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To avoid the convergence issues of the early termination approaches, the advanced

step controller has been developed by Zavala and Biegler [25, 51]. In this algorithm,

a complete Newton-type IP procedure is iterated to convergence. It uses the cur-

rent control action to predict the future state and solves the future optimal control

problem using the IP type procedure in advance at the current sampling time. The

approach exploits the parametric property of the optimization problem and approxi-

mates the optimal solution. The feasibility-perturbed SQP (FP-SQP) algorithm has

been proposed by Tenny et al. [52]. The algorithm maintains all intermediate iter-

ations feasible and uses a suboptimal control approach to reduce computation time

[48]. Bock et al. [26] have proposed a multi-level real-time algorithm. The algorithm

solves one condensed QP at the lowest level and a linear MPC form at the base

level. The nonlinear constraint residuals are then evaluated on the next two interme-

diate levels. The computational efficiency is achieved since these level iterations are

cheaper than one full SQP iteration. Reference [53] has the results that guarantee

the optimality and closed-loop stability for this algorithm.

As compared to the above algorithms, the unique feature of IPA-SQP is that it

uses neighboring extremal updates in the predictor step to improve computational

efficiency. Neighboring extremal control has been studied in [31, 54, 55]. Büskens

and Maurer [56] have studied sensitivity of the discretized optimal solution with

parameters. Fast updates are calculated as a function of parametric uncertainties

when active sets change because of disturbance [57]. Würth et al. [48] have proposed

a different method uses neighboring extremal updates for real-time NMPC. In their

method, if the neighboring extremal update is not fulfilling optimality criteria, an

efficient adjoint-based method is exploited until the feasibility and optimality criteria

are satisfied. In the next section, the features of IPA-SQP algorithm are introduced.
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1.2.3 IPA-SQP Approach

The IPA-SQP algorithm combines the complementary features of PA and SQP

for solving constrained dynamic optimization problems [27, 28, 30]. The PA is an

approach to predict a change in the optimal solution when some of the parameters,

such as the initial conditions, are changed. The PA provides closed-form solutions;

however, because of its approximate nature, it does not guarantee successive opti-

mality when the algorithm is applied repeatedly as necessary in constrained dynamic

optimization problems. The SQP, on the other hand, is a standard optimization ap-

proach to solve constrained optimization problems. It achieves local optimality by

applying quadratic programming (QP) iteratively. To correct the solution towards

satisfying necessary conditions, SQP updates based on linearization and quadratic

cost approximation can be applied. Through the synergetic integration of PA and

SQP algorithms into IPA-SQP, the optimal control sequence at each sampling instant

t with the observed state x(t) is calculated using the optimal control sequence from

the previous sampling instant (t−1). The IPA-SQP achieves successive optimality for

each MPC update by using a special PA and SQP formulation to perform iterations

and achieve computational efficiency. It can be shown that the IPA-SQP has the

linear computational complexity of O(N) as compared to SQP of O(N1.5) to O(N3),

where N is the prediction horizon of the MPC problem [14]. Moreover, the IPA-SQP

incorporates the following special features:

1) The IPA-SQP efficiently computes the approximation of the optimal solution

by taking advantage of backward recursive updates.

2) When active constraints are not changed by the perturbation, δx(t) = x(t) −

x(t−1), in the initial state, the closed-form PA solutions can be derived, thereby

leading to very efficient computations. If the perturbation δx(t) in the initial

state causes changes in the activity status of constraints, the perturbation δx(t)
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is divided into smaller sub-variation perturbation so that the PA solution can

be applied to each one [27, 28]. It has been shown in several applications that

a good trade-off between efficient computation and accurate optimization can

be achieved [1, 14, 28].

In Chapter II, the detailed IPA-SQP algorithm, including a flow chart illustrates

the main steps of the IPA-SQP algorithm [1] and the key equations involved, will be

described.

A PNE algorithm applicable to simultaneous control trajectory and parameter

optimization has also been proposed by Ghaemi et al. [30] (see also Gao et al. [58]

for an application to ship path following). In Chapter IV, the detailed derivation is

introduced. This dissertation develops solutions within the IPA-SQP framework for

AMPC and the PNE approach for minimum-time MPC problems. It also explores

several important applications of the IPA-SQP algorithm. To provide a context for the

dissertation work, in the following subsections, background and literature review are

provided for AMPC, minimum-time MPC, shipboard power management controllers,

and MPC for spacecraft relative motion maneuvers.

1.2.4 Adaptive Model Predictive Control

Compared to a substantial amount of research on conventional MPC, progress on

adaptive MPC (AMPC) for systems with constraints has been limited. AMPC has

been identified as a vital research direction by Morari [59].

There are several challenges in the development of rigorous approaches to AMPC

and in associated computations. In particular, the ‘separation principle’ used for most

certainty equivalence designs in indirect adaptive control may not hold in general

class of nonlinear systems [60, 61]. In addition, the control law does not have a

closed-form solution and has to be computed numerically in MPC. Furthermore,

since the parameter identification is intertwined with the feedback loop, the closed-
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loop performance of AMPC depends on both estimation and optimization, as well as

their interactions. Finally, the predictive constraint enforcement based on an adaptive

model requires special care.

Early developments in AMPC have been in the area of the generalized predictive

control (GPC) [62, 63, 64, 65], for which general state and output constraints have

not been treated. More recent work on AMPC includes, for example, linear AMPC

considered in [66], and AMPC using multiple linear models in [67, 68, 69, 70]. For

nonlinear systems, the development of AMPC solutions has generally proceeded in two

directions. Several of the approaches rely on the argument of parameter convergence

to apply the ‘separation principle’. For example, [71] shows that under appropriate

assumptions, there must exist a finite time period when the persistent excitation

condition is satisfied (during which period the trajectories are assumed to be bounded)

and, therefore, parameter convergence is achieved. In [66], additional constraints are

included to ensure persistent excitation for online parameter identification. In [72], a

different approach is taken to design an Input-to-State Stable (ISS) control Lyapunov

function to provide robust stabilization for the closed-loop system without adaptation,

and at the same time to ensure asymptotic stability with parameter adaptation for

a class of unconstrained nonlinear systems. Another approach to integrating the

adaptation into MPC is by ensuring sufficient ‘robustness’ while the estimation is still

in progress. This is the approach taken, for instance, by [60, 73, 74, 75], where a set

valued description of parameter uncertainty is adapted, and a robust min-max MPC

is implemented for the identified parameter set. While this approach can deal with

constraints, the underlying min-max feedback MPC problem can be computationally

prohibitive to solve, especially in real-time.

The approach pursued in this dissertation is motivated by the need to integrate

optimization-based control solutions with online parameter identification algorithms

for hybrid propulsion systems arising in aerospace, marine, and automotive domains.
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These systems involve multiple heterogeneous power plant and load networks, have

stringent safety and self sustainability requirements, and are expected to operate

in wide range of conditions over their long life cycle. Moreover, they require fast

sampling given their fast dynamics, yet they have limited on-board memory and

computing power due to cost and space constraints. Consequently, efficient AMPC

algorithms are necessary to handle real-time optimization, physical and operational

constraints, and online identification and adaptation.

An indirect AMPC algorithm based on the IPA-SQP framework is proposed in

Chapter III aimed at developing efficient algorithms to integrate adaptation and op-

timization. Exploring the structure of the neighboring extremal solution, parameter

updates are treated, together with updated initial conditions as the states are evolv-

ing, as perturbations in the MPC problem formulation. The IPA-SQP framework is

used to derive an algorithm for a fast computation/update of the control sequence.

1.2.5 Minimum-time Model Predictive Control

Minimum-time optimal control problems have been well studied, see e.g., [31, 76,

77, 78, 79]. In simple cases, such as for a double integrator with control constraints,

a feedback law can be computed explicitly. In more general cases, obtaining a closed-

form solution for a feedback law is a challenging task and a minimum-time open loop

(feed-forward) trajectory is generated numerically by applying either direct methods

(such as the direct shooting method, penalty function method, and SQP) or indirect

methods (such as the multiple shooting method and collocation method), see e.g.,

[80, 81]. To provide robustness to unmeasured uncertainties and disturbances, open-

loop control can be augmented with a feedback stabilizer to the computed open-loop

trajectory. References [82, 83] developed another approach to minimum-time control

for linear systems in discrete-time based on set theoretic techniques.

Applying MPC philosophy to minimum-time control involves recomputing the
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open-loop state and control trajectory subject to pointwise-in-time state and control

constraints, terminal state constraint, and the current state as the initial conditions.

The computed control trajectory is applied open-loop till the next time instant when

it is recomputed. As in traditional MPC, see [6], by recomputing the minimum-time

control based on updated state information, robustness to unmeasured disturbances

and uncertainties is improved.

Many spacecraft and airplane control problems can be formulated as the minimum-

time control problem. Some of them have been solved using MPC. For instance, the

low thrust orbital maneuvering and for hypersonic vehicle guidance problems are

solved in [84, 85]. The basic MPC strategy solves the minimum-time optimal control

problem over a horizon and obtains the optimal control as a function of time as a

vehicle progresses along its trajectory. The detailed procedure to formulate a problem

for minimum-time MPC is provided in Chapter V. In these applications, minimum-

time MPC has been used to improve robustness to unmeasured disturbances and

uncertainties. For instance, the ability to perform Earth-to-Mars low thrust orbital

transfers despite thrust errors and perturbation forces has been demonstrated in [84].

Additionally, the finite-time convergence of the minimum-time control is advantageous

for applications that involve way-point following. In hypersonic vehicle applications,

way points have to be reached in minimum time subject to exclusion zone and control

input constraints (see [85]).

The fact that the minimum-time feedback control possesses finite time stability

and robustness properties is easily seen in continuous time. The cost-to-go function,

V (x), under appropriate assumptions, satisfies the Bellman equation, V̇ (t) = −1,

leading to finite-time convergence of V (x(t)) to 0 and x(t) to xT , where xT denotes

the target state (e.g. a way point) for the minimum-time control [84]. If the pertur-

bations do not destroy the property, V̇ (t) ≤ ε < 0, it is shown in [84] that finite-time

convergence is maintained despite these perturbations. The minimum-time MPC
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solutions represent an approximation to the minimum-time feedback control.

To generate the minimum-time MPC law, however, a fast nonlinear optimizer is

necessary in real-time implementation. In this dissertation, a methodology using the

PNE approach for minimum-time MPC is developed.

1.2.6 Real-time Optimization for Shipboard Power Management

Shipboard integrated power systems (IPS) have been investigated as the key en-

abling technology in ship electrification for applications including warships and high

value commercial ships [86, 87]. They provide electrical power for both the propulsion

system and service loads, and rely on power management control (PMC) strategies

to coordinate the power sources and loads for efficient and safe operation. The goals

of PMC strategies are to achieve efficient and robust operation and to meet vari-

ous dynamic requirements in diverse and sometimes adverse conditions. Moreover,

effective PMC strategies are expected to provide improved fuel efficiency, enhanced

response speed, and superior reliability in real-time [88]. To accomplish this, PMC

must deal effectively with nonlinear system dynamics and stringent constraints to

protect and operate the components involved. In addition, PMC must be flexible and

easy to tune in order to manage trade-offs and re-balancing performance attributes.

Several approaches have been proposed for shipboard PMC with IPS. An automatic

rule-based expert system is proposed for the reconfiguration of shipboard IPS to en-

hance survivability of naval ships in [89]. In [90], an automated self-healing strategy

is investigated by solving an optimization problem with constraints using a linear

programming algorithm. In [91], a decentralized control approach using an intelligent

multi-agent system for shipboard power systems is proposed.

A number of research groups have developed shipboard PMC strategies using

the real-time optimization framework. For example, a fast reconfiguration algorithm

based on zone selection differential protection schemes is reported in [92]; however,
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[92] provides no evidence that the algorithm can be implemented in real time. In other

studies, real-time simulation results are reported. For instance, in [93], using the small

population-based particle swarm optimization method, a fast intelligent reconfigura-

tion algorithm is implemented on a real-time simulator. Reference [94] pursues a

methodology that exploits time scale separation to achieve real-time optimization of

a shipboard IPS. By solving a two-level simplified optimization problem, the real-

time computational efficiency is achieved and validated on a real-time simulator.

Most studies for PMC strategies in the optimization-based framework demonstrate

the real-time feasibility using real-time simulations. To the author’s best knowledge,

however, no study has demonstrated optimization-based PMC strategies with test

results on a physical platform.

1.2.7 MPC for Spacecraft Relative Motion Maneuvers

Autonomous spacecraft relative motion maneuvers, including rendezvous and dock-

ing, are important and difficult parts of modern spacecraft missions. Examples

of spacecraft relative motion maneuvering problems and solutions can be found in

[95, 96, 97] and references therein.

For instance, to recover a tumbling/out-of-control satellite that may exhibit com-

plicated motion, a transport vehicle has to approach the International Space Station,

and it has to avoid debris/obstacle appearing on the spacecraft path. The rendezvous

and docking problems lead to control problems with pointwise-in-time and terminal

constraints imposed on both state and control variables. For instance, the approach-

ing spacecraft must maintain its position within a Line-of-Sight (LOS) cone from the

docking port on the target platform [98, 99, 100, 101]. In addition, terminal trans-

lational velocity of the spacecraft must match the velocity of the docking port to

ensure soft-docking [99, 102]. Collisions with debris/obstacle emerging on the space-

craft path must be avoided, and the spacecraft fuel consumption must be minimized
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in addition to satisfying constraints during the maneuvers.

Spacecraft rendezvous and docking problems have received significant attention

in the literature, see [99, 101, 103, 104, 105, 106] and references therein. Various

approaches have also been proposed for spacecraft rendezvous and docking based on

variants of the MPC framework [107]. An MPC strategy with a variable horizon has

been developed in [108]. In this strategy, auxiliary integer variables are introduced to

represent the state of the mission at a given time (specifically whether a prescribed

‘box’ around the docking port is reached or yet to be reached) and the problem is

treated as a mixed integer programming problem where the objective function is

the weighted sum of fuel consumption and maneuver time. In [99], the strategy is

extended to obtain failure-safe trajectories. In [109], a ‘rubber band’ MPC controller

is proposed. In [110], the authors propose an application of MPC to spacecraft

navigation in proximity of a space station. For guidance to the neighborhood of the

space station, an unconstrained MPC is used while a constrained spacecraft attitude

controller maintains the LOS between the space station and the spacecraft.

The available spacecraft computing power is restricted in most spacecraft missions,

including not only nanosats and cubesats but also high end spacecraft. Therefore,

the MPC solutions to spacecraft relative motion control problems must have low

computing effort in order to be feasible.

1.3 Contributions

This dissertation deals with methodologies for AMPC and minimum-time MPC

that can be developed by exploiting the IPA-SQP and PNE approaches, and with

specific applications that require real-time implementation of NMPC using the IPA-

SQP approach. The contributions of this dissertation include both the development

of methodological extensions to the IPA-SQP approach to AMPC and minimum-

time MPC and the specific applications of MPC using IPA-SQP algorithm. The

15



contributions are summarized as follows:

1) As a methodological extension to the IPA-SQP framework, an indirect AMPC

algorithm is developed to effectively integrate adaptation and constrained dy-

namic optimization. The AMPC algorithm based on IPA-SQP facilitates fast

updates of the control sequence when model parameters change [111]. Thus

IPA-SQP enables computationally efficient implementation of AMPC.

2) The conditions for the existence of a NE solution have been derived in the

parametric optimal control problem to guarantee applicability of PNE in special

cases. The obtained conditions provide insight into assumptions that are needed

in future analysis of NE solution existence in more general situations.

3) A methodological extension to the PNE approach has been developed for minimum-

time nonlinear MPC problems. To achieve this, the minimum-time MPC prob-

lem is transformed to make the PNE algorithm applicable. The existing re-

sults on PNE cannot be directly applied to the minimum-time MPC since the

time horizon does not stay constant over time. A time scaling transformation,

therefore, is employed to obtain a fixed end time problem, with the terminal

time appearing as a multiplicative parameter in the dynamic equations of the

continuous-time model. The model is then converted to discrete-time, and an

optimization problem is obtained where both the control sequence and the time

horizon, now appearing as a parameter, have to be optimized. A double inte-

grator system is used to evaluate the effectiveness of the minimum-time MPC

approach by means of PNE, and to demonstrate the improved robustness in

closed-loop control with minimum-time MPC versus executing an open-loop

trajectory. The simulation results on a nonlinear system corresponding to a

hypersonic glider model show computational advantages of performing control

updates using the PNE approach over an application of MATLAB fmincon
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solver [112].

4) A novel PMC for a shipboard power system that successfully uses the IPA-SQP

approach for NMPC in real-time has been developed, analyzed, and tested on

the simulation model, the Opal-RT real-time simulator, and the physical test

bed [113]. An optimization-oriented model is derived for MPC design from the

transient power management model (TPMM) [114], which is a low-order simu-

lation model of the physical test bed of the shipboard power system. The per-

formance of the IPA-SQP-based MPC controller is analyzed using the TPMM

as the virtual test bed through both non-real-time and real-time simulations.

The developed controller is implemented on the physical test bed to evaluate its

performance in several proposed operational scenarios. This is the first reported

result that demonstrates an optimization-based PMC strategy with test results

on a physical shipboard platform.

5) Model predictive controllers have been developed and analyzed for spacecraft

relative motion maneuvering [107, 115, 116, 117, 118]. A linear quadratic MPC

(LQ MPC) coupled with dynamically reconfigurable linear constraints has been

developed in this dissertation. This LQ MPC approach is feasible for imple-

mentation on-board of the spacecraft as it reduces to an online solution of QP

for which effective numerical solvers exist. The LQ MPC, however, does not

enable the direct handling of nonlinear constraints such as that on the 2-norm

of thrust command relevant to single thruster spacecraft configurations. Hence

IPA-SQP MPC approach developed in this dissertation is applied to solve the

NMPC problem arising in spacecraft relative motion maneuvers. Simulation re-

sults on an example of spacecraft proximity maneuvering demonstrate that the

nonlinearities in the problem, such as in the thrust constraints, can be handled

effectively using the IPA-SQP algorithm. The results also show the poten-
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tial for fuel efficiency improves with the IPA-SQP as compared to conventional

thrust command saturation strategy augmented to the LQ MPC approach. The

computation time with the IPA-SQP is reduced as compared to an application

of MATLAB nonlinear programming solver fmincon. The LQ MPC has been

applied to other examples, such as docking to a rotating platform and debris

collision avoidance, and demonstrated through simulations its capability of ef-

ficient maneuvers.

Most of the results outlined above have been documented and published or

submitted in archived journals and/or referred conference proceedings [107, 111,

112, 113, 115, 116, 117, 118].

1.4 Dissertation Outline

The dissertation is organized as follows:

In Chapter II, an overview of the IPA-SQP algorithm is provided. This chapter

includes the detailed algorithm description and overview of key equations involved in

the algorithm.

Chapter III presents an AMPC algorithm that integrates a parameter estimation

with the MPC based on the IPA-SQP approach. The AMPC algorithm is derived

within the IPA-SQP framework to facilitate fast updates of the control sequence when

model parameters change. The detailed algorithm derivation is provided, along with

discussions on the performance and implementation.

Chapter IV introduces the PNE framework and its derivation. It is shown that the

NE solution satisfies the first-order optimality conditions for the auxiliary ‘linearized’

problem. The conditions on existence of an NE solution are derived for PNE in a

special case.

In Chapter V, a minimum-time MPC problem is considered. By employing a time
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scaling transformation and cost regularization, it is shown that the problem becomes

amenable to the application of the PNE approach. Simulation results for a double

integrator system and for a hypersonic vehicle model are demonstrated.

In Chapter VI, a PMC for a shipboard power system is developed. The shipboard

power system and its control objectives are described, and the simulation model

is introduced. Then, the MPC problem with constraints is formulated to design

the PMC, considering various operational requirements and constraints. Simulation

results with the TPMM on a real-time simulator are reported and analyzed. The

experimental results on the physical test bed are presented and analyzed.

Chapter VII presents predictive controllers based on LQ MPC and on IPA-SQP

for spacecraft relative motion maneuvers. First, the LQ MPC and the IPA-SQP MPC

are compared in a spacecraft proximity maneuvering example with nonlinear thrust

constraints. It is shown that the IPA-SQP algorithm handles the nonlinear constraints

directly while directionality-preserving scaling has to be applied to the output of the

LQ MPC controller. Computation time and solution accuracy of the IPA-SQP MPC

are compared with the results by fmincon function of MATLAB. The IPA-SQP algo-

rithm has much lower computing time at the same level of accuracy versus fmincon.

The results of LQ MPC on spacecraft applications such as rendezvous/docking and

debris avoidance maneuvers are also reported.

Chapter VIII provides conclusions and discusses future research plans.
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CHAPTER II

IPA-SQP Algorithm

The IPA-SQP approach, developed for nonlinear MPC in [27, 28, 29], combines

the solutions derived using perturbation analysis (PA) and sequential quadratic pro-

gramming (SQP). This approach updates the solution to the optimization problem at

time t by considering it as a perturbation to the solution at time (t− 1) using neigh-

boring optimal control theory extended to discrete-time systems with constraints [31],

and then corrects the results using one or more SQP updates. The merged PA and

SQP updates exploit the sequential form of predictor and corrector steps, thereby

yielding a fast solver for nonlinear MPC problems [14]. In this chapter, an overview

of the IPA-SQP algorithm developed by Ghaemi et al. [14, 27, 28, 29, 30, 119] is

provided for a self-contained presentation.

2.1 Perturbation Analysis Solution for Discrete-time Opti-

mal Control Problem

The generic optimization problem associated with MPC is formulated over a re-

ceding horizon. Specifically, at a sampling instant t, we consider an optimal control

20



problem minimizing a general cost function with x ∈ Rn and u ∈ Rm,

J(x(·), u(·)) = Φ(x(t+N)) +
t+N−1∑
k=t

L(x(k), u(k)), (2.1)

subject to

x(k + 1) = f(x(k), u(k)), f : Rn+m 7→ Rn,

x(t) = xt, xt ∈ Rn,

C(x(k), u(k)) ≤ 0, C : Rn+m 7→ Rl, k = t, . . . , t+N − 1,

C̄(x(k)) ≤ 0, C̄ : Rn 7→ Rp, k = t, . . . , t+N,

(2.2)

where C and C̄ denote the mixed state-input constraints and pure state constraints,

respectively, and xt is the state at the sampling instant t. We assume that the

functions L, f, Φ, C, and C̄ are twice continuously differentiable with respect to

their arguments.

Let (x0(·), u0(·)) be the optimal solution of the optimization problem by (2.1) -

(2.2). The solution (x0(·), u0(·)) is referred to as the nominal solution in the context

of the neighboring extremal (NE) analysis a The Hamiltonian function [120] is defined

as

H(k) =L(x(k), u(k)) + λT(k + 1)f(x(k), u(k))

+ µT(k)Ca(x(k), u(k)) + µ̄T(k)C̄a(x(k)),

(2.3)

where λ(k) is the sequence of co-states associated with f(x(k), u(k)) (i.e., the dynam-

ics of system), µ(k) and µ̄(k) are the vectors of Lagrange multipliers, and Ca(x(k), u(k))

and C̄a(x(k)) denote vectors consisting of the active constraints.

Before proceeding, we define compact notations for partial derivatives as follows:

Ga(k) :=
∂

∂a
G(k), Gab(k) :=

∂

∂b

(
∂

∂a
G(k)

)
,
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where the subscript letters a and b denote the variable with respect to which the

partial derivative is taken, i.e., Hx and Hu denote the partial derivative of H with

respect to x and u, respectively. Since the nominal solution (x0(·), u0(·)) is optimal,

the following necessary optimality conditions are satisfied [42]:

λ(k) = Hx(k), k = t, ..., t+N − 1,

Hu(k) = 0, k = t, ..., t+N − 1,

λ(t+N) = Φx(x(t+N)),

µ(k) ≥ 0, k = t, ..., t+N − 1,

µ̄(k) ≥ 0, k = t, ..., t+N.

(2.4)

The NE solution [31] approximates the optimal state and control sequences for

the perturbed initial state so that the necessary conditions (2.4) for optimality are

maintained to the first order. Consider the following optimization problem (see [1,

14, 28]):

min
δx(·),δu(·)

δ2J̄ , (2.5)

where

δ2J̄ =
1

2
δxT(t+N)

(
Φxx(t+N) +

∂

∂x

(
C̄aT
x (t+N)µ̄(t+N)

))
δx(t+N)

+
1

2

t+N−1∑
k=t

 δx(k)

δu(k)


T  Hxx(k) Hxu(k)

Hux(k) Huu(k)


 δx(k)

δu(k)

 ,
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subject to

δx(k + 1) = fx(k)δx(k) + fu(k)δu(k), (2.6)

δx(t) = δxt, (2.7)

Ca
x(x(k), u(k))δx(k) + Ca

u(x(k), u(k))δu(k) = 0, (2.8)

C̄a
x(x(k))δx(k) = 0, (2.9)

where δxt is defined as δxt := x(t)− x(t− 1).

The solution to the problem (2.5) - (2.9) can be proceeded as follows:

Before providing the NE solution, we introduce an approach because of the singularity

problem when Ca
u(k) is not full rank at some time instant k (see [29]). To avoid the

singularity issue, we propose the constraint back-propagation approach. When Ca
u(k)

has dependent rows, it can be transformed through linear similarity transformation

into the following form

 C̃a
u(k)

0

 , (2.10)

for some C̃a
u(k) with independent rows. Hence, (2.8) can be decomposed into

C̃a
x(x(k), u(k))δx(k) + C̃a

u(x(k), u(k))δu(k) = 0, (2.11)

Ĉa
x(x(k))δx(k) = 0, (2.12)

for appropriately defined C̃a
x(x(k), u(k)), C̃u

x (x(k), u(k)), and Ĉa
x(x(k)). Equation

(2.12) can be expressed as

Ĉa
x(x(k)) (fx(k − 1)δx(k − 1) + fu(k − 1)δu(k − 1)) = 0, (2.13)
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using (2.6). The constraint (2.13) is the results of back-propagating the constraint

(2.9) to the sampling time (k − 1).

We now define matrix sequences C̃u(·), C̃x(·), Ĉu(·), Ĉx(·), and S(·) using the

following backward recursive equations. Define

Ĉa
x(t+N) := C̄a

x(x(t+N)), (2.14)

S(t+N) := Φxx(t+N) +
∂

∂x

(
C̄aT
x (x(t+N))µ̄(t+N)

)
, (2.15)

and at sampling instant k let

Caug(k) :=

 Ca
u(k)

Ĉa
x(k + 1)fu(k)

 , (2.16)

rk := rank(Caug(k)).

At each sampling instant k, there is a matrix P (k) that transforms matrix Caug(k)

into the following form

P (k)Caug(k) = P (k)

 Ca
u(k)

Ĉa
x(k + 1)fu(k)

 =

 C̃a
u(k)

0

 , (2.17)

where the matrix C̃a
u(k) ∈ Rrk×m has independent rows. By defining

Γ(k) :=


P (k)

 Ca
x(k)

Ĉa
x(k + 1)fu(k)


C̄a
x(k)

 , (2.18)

and assuming that γk is the number of rows of matrix Γ(k), Γ(k) can be partitioned
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into a block matrix as Γ(k) =

 C̃a
x(k)

Ĉa
x(k)

. We then obtain

C̃a
x(k) =

[
Irk×rk 0rk×(γk−rk)

]
Γ(k) ∈ Rrk×m,

Ĉa
x(k) =

[
0(γk−rk)×rk I(γk−rk)×(γk−rk)

]
Γ(k) ∈ R(γk−rk)×m.

By defining

Z11(k) := Hxx(k) + fT
x (k)S(k + 1)fx(k),

Z21(k) := ZT
12(k) = Hux(k) + fT

u (k)S(k + 1)fx(k),

Z22(k) := Huu(k) + fT
u (k)S(k + 1)fu(k),

(2.19)

K0(k) :=

 Z22(k) C̃aT
u (k)

C̃a
u(k) 0


−1

, (2.20)

S(k) := Z11(k)−
[
Z12(k) C̃aT

x (k)

]
K0(k)

 Z21(k)

C̃a
x(k)

 , (2.21)

T (t+N) := 0,

T (k) := fT
x (k)T (k + 1)

−
[
Z12(k) C̃aT

x (k)

]
K0(k)

 fT
u (k)T (k + 1)

0

 ,
(2.22)

where Z22(k) > 0 for k ∈ [t, t + N ]. Hence, T (k) ≡ 0 for k ∈ [t, t + N ], but we

keep T (·) in the equations to compare the form of the NE solution with that of the

solution by the SQP approach in the next section. Using S(t + N) and T (t + N)

as the terminal conditions for backward iteration, we calculate the matrix sequences

described above. We then obtain the explicit relation between the state and input
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variations of the perturbed solution as

δu(k) = −
[
I 0

]
K0(k)

 Z21(k)δx(k) + fT
u (k)T (k + 1)

C̃a
x(k)δx(k)

 , (2.23)

δx(k + 1) = fx(k)δx(k) + fu(k)δu(k),

δx(t) = δxt.

When δxt is large and causes activity status changes in the constraints, δxt is

divided into smaller segment and the NE solution is applied to each segment. Details

in handling changes in the activity status of constraints are addressed in [14, 27, 28].

2.2 Sequential Quadratic Programming Based on Active Set

Method

In this section, the SQP method is formulated for the problem (2.1) - (2.2) before

introducing the IPA-SQP approach in the next section. The SQP method presented

in this section extends a method in [121] to the cases with inequality constraints.

We consider a feasible initial guess of the state x(·), control input u(·), sequence

of co-states λ(·), and vectors of Lagrange multipliers µ(·) and µ̄(·) associated with the

inequality constraints in (2.2) and the necessary optimality conditions (2.4). Since

the initial guess is not an optimal solution, the optimality condition,

Hu(k) = 0, (2.24)

may not be satisfied. The inequality constraints at the sampling time k are treated

as the equality constraints when they are active during the active set iteration. The

corrections δx(k) and δu(k) are obtained as the solution of the following equality
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constrained quadratic programming (QP) problem for the linearized system [14, 122]

min
δx(·),δu(·)

t+N−1∑
k=0

HT
u (k)δu(k) + δ2J̄ (2.25)

subject to

δx(k+1)=fx(k)δx(k)+fu(k)δu(k),

δx(t) = 0,

Ca
x(x(k), u(k))δx(k) + Ca

u(x(k), u(k))δu(k) = 0,

C̄a
x(x(k))δx(k) = 0.

(2.26)

The solution of the QP subject to the constraints in (2.26) is given by

δu(k) = −
[
I 0

]
K0(k)

 Z21(k)δx(k) + fT
u (k)T (k + 1) +Hu(k)

C̃a
x(k)δx(k)

 , (2.27)

δx(k + 1) = fx(k)δx(k) + fu(k)δu(k),

δx(t) = 0,

where K0(k), Z22(k), Z21(k), Z11(k), and S(·) are defined in (2.19), (2.20), and (2.21).

Moreover, the matrix T (·) is calculated using the following backward recursive equa-

tions

T (t+N) := 0,

T (k) := fT
x (k)T (k + 1)

−
[
Z12(k) C̃aT

x (k)

]
K0(k)

 fT
u (k)T (k + 1) +Hu(k)

0

 .
(2.28)

Using the solution of QP in (2.27), the active set method is implemented to deal with

constraints (see [42, 123] and reference therein). At a time instant k, we first find the
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minimum value of α that satisfies

C(x(k) + αδx(k), u(k) + αδu(k)) = 0,

or C̄(x(k) + αδx(k)) = 0,

(2.29)

where 0 < α ≤ 1, and δx(k), δu(k) are calculated from (2.27). If there exists such α

that satisfies (2.29), then the corresponding inactive inequality constraint is added to

the set of active constraints (i.e., the working set). At the next iteration the problem

(2.25) is solved with the initial solution x(k) + αδx(k) and u(k) + αδu(k).

If α does not exist, the signs of Lagrange multipliers µ(k) and µ̄(k) are examined.

If all the Lagrange multipliers are nonnegative, it means the necessary optimality

conditions are satisfied. If Z22(k) > 0, then we have reached a local optimal solu-

tion. On the other hand, if there are negative Lagrange multipliers, one inequality

constraint with a negative multiplier is deleted from the set of active constraints.

2.3 IPA-SQP Approach

In this section, we review how the perturbation analysis and SQP are unified to

achieve fast convergence and to obtain an accurate optimal solution for the perturbed

problem, given the nominal optimal solution. The IPA-SQP algorithm [14, 28] com-

bines the computational advantages of the PA approach in predicting the solution

and the ability of the SQP to further correct it.

Comparing the two optimization problems (2.1) and (2.25), we note that the

solution to the problem (2.25) is identical to that of (2.1) if we set Hu(k) = 0 and

δx(t) = δxt in (2.27) and (2.28). Based on this observation, the following formulation,
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which merges the two optimization steps into one, is proposed:

δu(k) = −
[
I 0

]
K0(k)

 Z21(k)δx(k) + fT
u (k)T (k + 1) +Hu(k)

C̃a
x(k)δx(k)

 , (2.30)

δx(k + 1) = fx(k)δx(k) + fu(k)δu(k),

δx(t) = δxt.

The correction δu(·) calculated using (2.30) compensates for the initial state pertur-

bation δxt, and it corrects the solution to enforce Hu(k) = 0 condition. Through this

combination, a more computationally efficient algorithm is obtained as compared to

SQP.

The flow chart Figure 2.1 illustrates main steps of the IPA-SQP algorithm to

obtain the NE solutions and to deal with changes in the activity status of constraints.

It is shown in [28] that (2.30) yields local quadratic convergence rates similar

to the conventional SQP. At the same time, due to integration of the NE-based

prediction, the computing time and effort are typically similar to the NE algorithm.

For instance, they tend to increase linearly rather than cubically in the horizon length,

N . Examples considered in [28, 119] and references therein confirm that the method is

computationally faster than the conventional SQP algorithm for discrete-time optimal

control problems. In particular, a comprehensive computational benchmark analysis

for a ship steering problem with a rather long prediction horizon (N = 140) was

reported in [14], and substantial computation time reduction, without compromising

performance, was demonstrated compared to SQP algorithm. Experimental results

of IPA-SQP MPC were obtained at the sampling time of 100 µs for a full bridge

DC/DC converter in [1].
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Figure 2.1: Flowchart of the IPA-SQP algorithm [1].
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CHAPTER III

Adaptive Model Predictive Control

In this chapter, an approach and a specific algorithm to integrate a parameter

estimation with the receding horizon model predictive control are proposed. This

adaptive MPC algorithm is developed based on the IPA-SQP framework. It is shown

that an algorithm can be derived in the IPA-SQP framework to perform MPC updates

when model parameters are changed. The detailed algorithm derivation is presented,

along with discussions on the performance and implementation. An example based on

the nonlinear dynamics of an inverted pendulum on a cart is included to demonstrate

the effectiveness of the proposed algorithm.

3.1 Problem Formulation

Consider a typical adaptive control problem where the system state equations and

constraints are described by

x(k + 1) = f(x(k), u(k), θ), (3.1)

and

C(x(k), u(k), θ) ≤ 0, (3.2)
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with x ∈ Rn, u ∈ Rm, and θ ∈ Rp being the state, input, and parameter vectors, re-

spectively. The functions f and C are assumed to be twice continuously differentiable

with respect to all their arguments. Note that both system dynamics and constraints

can depend on the plant parameter, θ, which captures changes and uncertainties in

the physical system and in the constraints. If the parameter θ is known, a receding

horizon optimization problem can be formulated to minimize a general cost function,

J(x(·), u(·), θ) = Φ(x(t+N)) +
t+N−1∑
k=t

L(x(k), u(k), θ), (3.3)

with respect to the control sequence u(·) over the prediction horizon [t, t+N ], subject

to the dynamic equation (3.1) and the mixed state and input constraints (3.2). When

the plant parameters θ are unknown, they are assumed to be estimated with appro-

priately designed adaptation/online identification algorithms, leading to AMPC.

3.2 Indirect Adaptive MPC in IPA-SQP Framework

We seek to develop computationally fast AMPC algorithms that can effectively

integrate adaptation and constrained dynamic optimization. Towards this end, we

extend to the adaptive case the computational framework IPA-SQP developed for

non-adaptive and nonlinear MPC. The IPA-SQP described in Chapter II provides

a general framework for efficient computation of optimal solutions when some of

the problem parameters, such as the initial condition, are changed. This problem

formulation naturally applies to AMPC where the parameters are updated through

an online identification mechanism. In this section, we develop the AMPC algorithm

using the IPA-SQP framework, and explore the properties of the resulting AMPC

scheme.

We consider the indirect AMPC where the adaptive control scheme is designed

using the certainty equivalence principle. Namely, the adaptation is performed by
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combining a separate estimation algorithm that provides an estimate θ̂t at time t for

θ and then computing the MPC control action by minimizing the cost function

J(xt(·), ut(·), θ̂t) = Φ(xt(t+N)) +
t+N−1∑
k=t

L(xt(k), ut(k), θ̂t), (3.4)

subject to the dynamic equation for the estimated plant model

xt(k + 1) = f(xt(k), ut(k), θ̂t), (3.5)

and estimated constraints

C(xt(k), ut(k), θ̂t) ≤ 0, (3.6)

for k ∈ [t, t + N − 1] until the next time when the parameter θ̂t and information on

states are updated. In (3.4)-(3.6), xt(k) and ut(k) denote the prediction of x(k) and

u(k), respectively, using information available at time t, and xt(t) = x(t).

3.2.1 Neighboring Extremal Solution for AMPC

Assume that the adaptive law for updating the parameter vector θ̂t takes the form

of

θ̂t = θ̂t−1 + ht(x, u, θ̂t−1), (3.7)

or

δθ̂t := θ̂t − θ̂t−1 = ht(x, u, θ̂t−1). (3.8)

The AMPC algorithm is based on the following NE solution

NE solution for AMPC: The control and state sequences ut(·) and xt(·) can

be predicted as:

ut(k) = ut−1(k − 1) + δu(k),

xt(k) = xt−1(k − 1) + δx(k)
(3.9)
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for k ∈ [t, t+N − 1], where

ut−1 = [ut−1(t− 1), ut−1(t) · · · , ut−1(t+N − 2)],

xt−1 = [xt−1(t− 1), xt−1(t) · · · , xt−1(t+N − 2)]

are the control and state sequences resulting from the MPC optimization at the

previous sampling time (t− 1). The correction terms δu(k) and δx(k) are calculated

as:

δu(k) = K1(k)δx(k) +K2(k)δθ̂t,

δx(k + 1) = fx(k)δx(k) + fu(k)δu(k) + fθ̂δθ̂t

(3.10)

where f(·) denotes the partial derivative of the function f with respect to the corre-

sponding variable (·) along the solution xt−1,ut−1. The time-varying gains K1(k) and

K2(k) are defined as:

K1(k) = −
[
I 0

]
K0(k)

 Z21(k)

Ca
x(k)

 ∈ Rm×n, (3.11)

K2(k) = −
[
I 0

]
K0(k)

 Z23(k)

Ca
θ̂
(k)

 ∈ Rm×p, (3.12)

where

K0(k) =

 Z22(k) CaT
u (k)

Ca
u(k) 0


−1

, (3.13)

and Ca denotes the vector of active constraints, and Ca
(·) refers to partial derivative

of the active constraints with respect to the appropriate variable. Z2i, i = 1, 2, 3 are

matrices calculated through a backward-in-time iterative procedure, as defined in the

next subsection in the derivation of the algorithm.

Remark 3.1. It should be noted that the assumptions of Z22 being positive definite

and Ca
u being of full row rank are made for the AMPC algorithm. These assumptions
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are typically satisfied if local optimum is achieved at the time instant (t− 1) and the

constraints involve the control input u explicitly. For state-only constraints where

Ca
u = 0, K0 in (3.11) and (3.12) will be singular and the algorithm cannot be applied

directly. The constraint back propagation algorithms presented in [124] and Chapter

II can be used to modify the AMPC algorithm and avoid singularity in (3.13), at the

expense of additional computational complexity.

3.2.2 Derivation of NE Solution for AMPC

We now formally derive the AMPC algorithm and define the matrices used in

(3.11)-(3.13). Consider the ‘certainty equivalence’ optimization problem defined by

(3.4)-(3.6). The Hamiltonian for the optimization problem is defined as

H(k) =L(x(k), u(k), θ̂t) + λT(k + 1)f(x(k), u(k), θ̂t)

+ µT(k)Ca(x(k), u(k), θ̂t), (3.14)

with λ denoting the sequence of co-states and µ denoting the Lagrange multipliers.

Let x∗(·) = xt−1(·), u∗(·) = ut−1(·), λ∗(·) = λt−1(·), µ∗(·) = µt−1(·) be the opti-

mal solution obtained at (t − 1). Assuming that the Karush-Kuhn-Tucker (KKT)

optimality conditions hold, it follows that

λ∗(k) =
∂

∂x
H(x∗(k), u∗(k), λ∗(k + 1), µ∗(k), θ̂t−1), (3.15)

∂

∂u
H(x∗(k), u∗(k), λ∗(k + 1), µ∗(k), θ̂t−1) = 0, (3.16)

for all k ∈ [t, t+N − 1] and

λ(t+N) =
∂

∂x
Φ(x∗(t+N)). (3.17)
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Considering the change in the initial condition δxt and the parameter estimate δθ̂t as

the perturbations in the optimization problem formulation, we can write (3.15)-(3.17)

in the perturbation form:

δλ(k) =Hxx(k)δx(k) +Hxu(k)δu(k) + fT
x (k)δλ(k + 1) + CaT

x (k)δµ(k)

+Hxθ̂(k)δθ̂t, (3.18)

Hux(k)δx(k)+Huu(k)δu(k)+fT
u (k)δλ(k+1)+CaT

u (k)δµ(k)+Huθ̂(k)δθ̂t = 0, (3.19)

for k ∈ [t, t+N − 1] and

δλ(t+N) = Φxx(t+N)δx(t+N). (3.20)

Writing the model equations and constraints in the perturbation form, we have

δx(k + 1) = fx(k)δx(k) + fu(k)δu(k) + fθ̂(k)δθ̂t, (3.21)

Ca
x(k)δx(k) + Ca

u(k)δu(k) + Ca
θ̂t

(k)δθ̂t = 0. (3.22)

Assume that δλ(k + 1) takes the form of

δλ(k + 1) = S(k + 1)δx(k + 1) + T (k + 1)δθ̂t, (3.23)

we have, from δλ(t+N) = Φxx(t+N)δx(t+N), that

S(t+N) = Φxx(t+N), T (t+N) = 0.

Using (3.23) in (3.18), we have

δλ(k) = Z11(k)δx+ Z12(k)δu(k) + Z13(k)δθ̂t + CaT
x (k)δµ(k), (3.24)
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where

Z11(k) = Hxx(k) + fT
x (k)S(k + 1)fx(k),

Z12(k) = Hxu(k) + fT
x (k)S(k + 1)fu(k), (3.25)

Z13(k) = Hxθ̂(k) + fT
x (k)S(k + 1)fθ̂(k) + fT

x (k)T (k + 1),

for all k ∈ [t, t+N − 1]. Similarly, we can express (3.19) as

Z21(k)δx(k) + Z22(k)δu(k) + Z23(k)δθ̂t + CaT
u (k)δµ(k) = 0, (3.26)

where

Z21(k) = ZT
12(k),

Z22(k) = Huu(k) + fT
u (k)S(k + 1)fu(k), (3.27)

Z23(k) = Huθ̂(k) + fT
u (k)S(k + 1)fθ̂(k) + fT

u (k)T (k + 1).

Note that from (3.26) and (3.22)

Z21(k)δx(k) + Z22(k)δu(k) + Z23(k)δθ̂t + CaT
u (k)δµ(k) = 0,

Ca
x(k)δx(k) + Ca

u(k)δu(k) + Ca
θ̂
(k)δθ̂t = 0. (3.28)

Assuming Z22(k) > 0 and Ca
u(k) is of full row rank, and defining K0(k) in (3.13), we

have  δu(k)

δµ(k)

 = −K0(k)


 Z21(k)

Ca
x(k)

 δx(k) +

 Z23(k)

Ca
θ̂
(k)

 δθ̂t
 . (3.29)
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Using (3.29) in (3.24), we have

δλ(k) =

Z11(k)−
[
Z12(k) CaT

x (k)

]
K0(k)

 Z21(k)

Ca
x(k)


 δx(k)

+

Z13(k)−
[
Z12(k) CaT

x (k)

]
K0(k)

 Z23(k)

Ca
θ̂
(k)


 δθ̂t.

(3.30)

Therefore, by defining S(k) and T (k) as

S(k) = Z11(k)−
[
Z12(k) CaT

x (k)

]
K0(k)

 Z21(k)

Ca
x(k)

 , (3.31)

T (k) = Z13(k)−
[
Z12(k) CaT

x (k)

]
K0(k)

 Z23(k)

Ca
θ̂
(k)

 , (3.32)

we can compute all the matrices defined earlier in (3.11)-(3.13) and formulate the

gains in the predictor-corrector controller form specified in (3.11) and (3.12). This

completes the derivation of the AMPC algorithm described in Section 3.2.1.

3.2.3 AMPC with IPA-SQP

Similar to the non-adaptive case, successive application of the NE solution requires

the assumption that Hu = 0 at the previous time step, which cannot be guaranteed

with the NE solution alone. The IPA-SQP algorithm thus incorporates additional

iterations at each time step. After the first iteration at time t using the extended NE

solution, since no new update of θ̂t is expected before the next sampling time (t+ 1),

the same IPA-SQP updates as delineated in Chapter II and [28] can be applied.

Remark 3.2. Note that the NE solution is derived under the assumption that active

constraint set is not changed by the perturbations. If the perturbations of δxt and

δθt are large enough to result in change of active constraint set, these cases can be
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treated with the same extended algorithm as developed in [119].

3.2.4 Properties of AMPC

As with all other indirect adaptive schemes [125], the behavior and properties of

the closed-loop adaptive control system depend on both the control and parameter

adaptation algorithms. The certainty equivalence principle based design assumes the

adaptation law δθ̂t is ‘well-behaved’ in the sense that the measured observation error

is converging and the parameter error is reducing. Examples of such ‘well-behaved’

adaptive algorithms include gradient, projection, and least squares algorithms [126].

For general nonlinear AMPC problems with constraints, since closed-form solutions

for the optimization are in general not attainable, closed-loop stability and perfor-

mance analysis is difficult. This is also the case for the AMPC algorithm derived in

Section 3.2.

In a special case where the system is linear, the cost is quadratic, and constraints

are not imposed, however, we can obtain the closed-loop stability for AMPC:

Consider a linear system described by the transfer function

y = Gp(z)u (3.33)

where

Gp(z) =
bn−1z

n−1 + bn−2z
n−2 + · · ·+ b1z + b0

zn + an−1zn−1 + · · ·+ a1z + a0

ai, bi, i = 0, · · · , n− 1 are unknown parameters to be estimated.

Let

Zp(z) = bn−1z
n−1 + bn−2z

n−2 + · · ·+ b1z + b0,

Rp(z) = zn + an−1z
n−1 + · · ·+ a1z + a0.

(3.34)
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Then (3.33) can be expressed as

[1 + θ∗aαn−1(z)] y = θ∗Tb αn−1(z)u, (3.35)

where αi(z) =
[
z−1, z−2, . . . , z−(i−1), z−i

]T
, and

θ∗a = [an−1, an−2, . . . , a0]T , θ∗b = [bn−1, bn−2, . . . , b0]T

are the unknown parameter vectors. Putting (3.35) in the form:

y(t) = θ∗Tp φ(t), (3.36)

where θ∗p =
[
θ∗Tb , θ∗Ta

]T
, and

φ(t) = [u(t−1), u(t−2), . . . , u(t−n),−y(t−1),−y(t−2), . . . ,−y(t−n)]T .

The adaptive laws for estimating on-line the vector θ∗p can be found. (See [125, 127].)

Consider a gradient algorithm for the nth-order plant, we obtain the following

adaptive law

θ̂p(t+ 1) = θ̂p(t) + Ψε(t)φ(t),

ε(t) =
y(t)− θ̂T

p (t)φ(t)

m2(t)
,

(3.37)

where Ψ = ΨT > 0 is the adaptive gain matrix and m2(t) = 1+φT(t)φ(t). In addition,

the adaptive law that estimates θ∗ satisfies [125]:

1) θ̂p(t) is bounded.

2) ε(t), θ̂p(t), (θ̂p(t)− θ̂p(t− 1)) ∈ L∞.

3) ε(t), (θ̂p(t)− θ̂p(t− 1)) ∈ L2.

4) ε(t)→ 0 as t→∞.
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5) |θ̂p(t)− θ̂p(t− 1)| → 0 as t→∞.

Here L∞ norm is defined as

||x||∞ , sup
i≥0
|x(i)|,

where i ∈ Z+ and we say that x ∈ L∞ when ||x||∞ exists, and the Lp norm is defined

as

||x||p ,

(
∞∑
i=0

|x(i)|p
)1/p

, 1 ≤ p <∞.

We also consider the exponentially weighted L2 norm defined as

||xt||2β ,

(
t∑
i=0

β(t−i)xT (i)x(i)

)1/2

,

where 0 < β < 1 is a constant. The detailed properties on the L2β norm can be found

in [125].

Then we obtain the following result using the adaptive law (3.37) and its proper-

ties. For simplicity of the exposition, we consider the simple case of regulation. The

results can be extended to the more general case of tracking by following the same

procedure in [125] to augment the controller properly.

Theorem 3.3. Consider the linear system (3.33). If the AMPC algorithm is used to

minimize the quadratic cost function

J = xT(t+N)Sfx(t+N) +
t+N−1∑
k=t

(
y2(k) + γu2(k)

)
, (3.38)

where Sf = Sf (t) satisfies the discrete-time algebraic Riccati equation for the esti-

mated system (Ât, B̂t, C) with Q = CTC and R = γ, then, the closed-loop system is

stable while y(t)→ 0 as t→∞. Here the unknown parameters in the transfer function

of the linear system (3.33) are estimated using the adaptive law (3.37). (Ât, B̂t, C) is

the observer canonical state-space realization of the transfer function with estimated
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parameters at the time instant t and (Ât, B̂t) is assumed to be controllable.

Proof Consider an infinite-horizon LQ problem minimizing a cost function

J1 =
∞∑
k=t

x̂T(k)Qx̂(k) + uT(k)Ru(k), (3.39)

where Q = CTC, R = γ, and the estimated system is

x̂(k + 1) = Âtx̂(k) + B̂tu(k),

ŷ(k) = Cx̂(k), k ∈ [t,∞).

(3.40)

For existence of the LQ solution, we assume that the system is stabilizable and (Ât, C)

is observable whereQ = CTC (see [128]). The discrete-time algebraic Riccati equation

for the problem by (3.39)-(3.40) is

Pt = ÂT
t PtÂt − (ÂT

t PtB̂t)(R + B̂T
t PtB̂t)

−1(B̂T
t PtÂt) +Q, (3.41)

and Pt is a unique positive definite matrix [128].

The optimal solution of the infinite-horizon LQ problem is

u1(k) = Ftx̂(k), k ∈ [t,∞), (3.42)

where

Ft = −(R + B̂T
t PtB̂t)

−1B̂T
t PtÂt. (3.43)

Let Sf = Pt, then the finite-horizon LQ problem, which minimizes

J2 = x̂T(t+N)Sf x̂(t+N) +
t+N−1∑
k=t

(
x̂T(k)Qx̂(k) + uT(k)Ru(k)

)
, (3.44)
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has the optimal control

u2(k) = F̂ (k)x̂(k), k = t, . . . , t+N − 1, (3.45)

where

F̂ (k) = −(R + B̂T
t P (k + 1)B̂t)

−1B̂T
t P (k + 1)Ât,

P (k + 1) = ÂT
t P (k)Ât + ÂT

t P (k)B̂tF̂ (k) +Q, P (N) = Sf .

(3.46)

Since P (t + N) = Sf = Pt, P (t +N − 1) = P (t +N − 2) = . . . = P (t) = Pt

and the optimal solution is the same as that of the infinite-horizon LQ problem by

(3.39)-(3.40).

It can be shown that, if (Ât, B̂t) is controllable, (Ât, C) is observable, and Sf is

the solution of the discrete-time algebraic Riccati equation (3.41), then Ât+B̂tF̂ (t) is

asymptotically stable [129]. Hence, the closed-loop system x̂(t+1) = (Ât+B̂tF̂ (t))x̂(t)

of the finite-horizon LQ problem is asymptotically stable and ŷ(t)→ 0 as t→∞ for

frozen parameters, i.e., stability of the estimated plant is guaranteed.

We now show that the output y(t)→ 0 as t→∞. To do that, we follow 4 steps

as in [125].

Step 1. Develop state error equations. Assume that the state space form (A,B,C) of

the linear system at time instant t is

x(t+ 1) = Ax(t) +Bu(t),

y(t) = Cx(t).

(3.47)

The state observer at time instant t is

ê(t+ 1) = Âtê(t) + B̂tu(t)− L̂t(Cê(t)− y(t)), (3.48)

where L̂t can be chosen so that Ât− L̂tC = Ao where Ao is a constant stable matrix.
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Since (Ât, B̂t, C) is the observer canonical form, this can be easily achieved [125].

Let eo , x− ê be the observation error, then

eo(t+ 1) = (Ât − L̂tC)eo(t) + θ̃ay − θ̃bu(t), (3.49)

and

y(t) = Ceo(t) + Cê(t). (3.50)

We consider the control input in (3.45)

u(t) = F̂ (t)ê(t). (3.51)

Hence, the developed state error equations are as follows:

ê(t+ 1) = Ac(t)ê(t) + L̂tCeo(t),

e0(t+ 1) = Aoeo(t) + θ̃ay(t)− θ̃bu(t),

y(t) = Ceo(t) + Cê(t),

u(t) = F̂ (t)ê(t),

(3.52)

where Ac(t) = Ât + B̂tF̂ (t) is asymptotically stable at each time instant t, θ̃a ,

θ̂a − θ∗a = [ãn−1, ãn−2, . . . , ã0]T, θ̃b , θ̂b − θ∗b =
[
b̃n−1, b̃n−2, . . . , b̃0

]T

.

Step 2. Establish exponential stability for the homogeneous part of (3.52).

From the assumption that (Ât, B̂t) is controllable, we have F̂ (t) ∈ L∞ since the

solution of the discrete Riccati equation, Pt = P T
t > 0, exists and Pt ∈ L∞. Hence,

Ac(t) ∈ L∞. Using
(
θ̂a(t)− θ̂a(t− 1)

)
,
(
θ̂b(t)− θ̂b(t− 1)

)
∈ L2 guaranteed by the

properties of the adaptive law, we have (F̂ (t)− F̂ (t− 1)), (Ac(t)− Ac(t− 1)) ∈ L2.

Therefore, we have that Ac(t) is a uniformly asymptotically stable matrix. Since Ao is

a constant stable matrix, the exponential stability of the homogeneous part of (3.52)

follows.

44



Step 3. Use the properties of the L2β norm and the Bellman-Gronwall (B-G) Lemma

(see [125]) to establish signal boundedness.

For simplicity, we denote ||(·)t||2β for some 0 < β < 1 with || · ||. Applying Lemma

3.3.2 and 3.3.3 in [125] to (3.52), we obtain

||x̂|| ≤ c||Ceo||,

||y|| ≤ c||Ceo||+ c||x̂||+ c,

||u|| ≤ c||x̂||+ c||y||+ c,

(3.53)

where c ≥ 0 denotes any finite constant, then

||y|| ≤ c||Ceo||+ c,

||u|| ≤ c||Ceo||+ c.

(3.54)

We now relate the term Ceo with the estimation error ε by using the equation in

(3.52) to express as

Ceo =C(zI − Ao)−1(θ̃ay − θ̃bu)

=
[zn−1 zn−2 · · · z 1]

det(zI − Ao)
(θ̃ay − θ̃bu).

(3.55)
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Here we take Ao such that det(zI − Ao) = zn. Then

Ceo =ã0(t−1)y(t−1)− b̃0(t−1)u(t−1)

+ ã1(t−2)y(t−2)− b̃1(t−2)u(t−2)

+ ã2(t−3)y(t−3)− b̃2(t−3)u(t−3)

...

+ ãn−1(t−n)y(t−n)− b̃n−1(t−n)u(t−n)

= ã0(t)y(t−1)− b̃0(t)u(t−1)

+ (ã0(t−1)− ã0(t))y(t−1)−
(
b̃0(t−1)− b̃0(t)

)
u(t−1)

+ ã1(t)y(t−2)− b̃1(t)u(t−2)

+ (ã1(t−2)− ã1(t)) y(t−2)−
(
b̃1(t−2)− b̃1(t)

)
u(t−2)

...

+ ãn−1(t)y(t−n)− b̃n−1(t)u(t−n)

+ (ãn−1(t−n)− ãn−1(t)) y(t−n)−
(
b̃n−1(t−n)− b̃n−1(t)

)
u(t−n)

= − θ̃T
p (t)φ(t) + r1,

(3.56)

where

r1 = (ã0(t− 1)− ã0(t)) y(t− 1)−
(
b̃0(t− 1)− b̃0(t)

)
u(t− 1)

+ (ã1(t− 2)− ã1(t)) y(t− 2)−
(
b̃1(t− 2)− b̃1(t)

)
u(t− 2)

...

+ (ãn−1(t− n)− ãn−1(t)) y(t− n)−
(
b̃n−1(t− n)− b̃n−1(t)

)
u(t− n).

In the adaptive law in (3.37), the normalized estimation error satisfies the equation

εm2 = θ̃T
p (t)φ(t),

46



that can be used in (3.56),

Ceo = −εm2 + r1, (3.57)

From the definition of m2
f , 1 + ||u||2 + ||y||2, we can show that mf is a normalizing

signal in the sense that φ/mf , m/mf ∈ L∞ for some 0 < β < 1. From the expression

of r1, and the normalizing properties of mf , we obtain

||Ceo(t)|| ≤ c||ε(t)m(t)mf (t)||+ c||(θ̂p(t)− θ̂p(t− 1))mf ||. (3.58)

Using (3.54) and (3.58) and in the definition of mf , we have the following inequality,

m2
f (t) ≤ c||ε(t)m(t)mf (t)||+ ||(θ̂p(t)− θ̂p(t− 1))mf ||+ c,

or

m2
f (t) ≤ c||g(t)mf (t)||+ c,

where g2(t) , ε2(t)m2(t) + |θ̂p(t) − θ̂p(t − 1)|2 and g ∈ L2. We can show mf ∈ L∞

using B-G Lemma. We can also establish boundedness for the rest of the signals using

the properties of the L2β norm.

Step 4. Convergence of the tracking error to zero.

Since all signals are bounded as shown in Step 3, we can establish that |Ceo(t)| ∈

L2 and |Ceo(t)| → 0 as t → ∞ using the same procedure in page 523 of [125]. In

(3.52), we also have

ê(t+ 1) = Ac(t)ê(t) + L̂tCeo(t).

Then, ê(t)→ 0 as t→∞ sinceAc(t) is uniformly asymptotically stable and |Ceo(t)| →

0 as t → ∞. Finally, from y(t) = Ceo(t) + Cê(t), we conclude that y(t) → 0 as

t→∞.

Remark 3.4. In general cases that the reference signal is yr whose internal model
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Qr(z), i.e.,

Qr(z)yr = 0,

we consider the tracking error e1(t) = y(t)− yr at time instant t. Using

e1 =
Zp(z)

Rp(z)
u− yr =

Zp(z)Q1(z)

Rp(z)Qr(z)
ū,

where Q1(z) is an arbitrary monic Hurwitz polynomial of degree q and u = Q1(z)
Qr(z)

ū,

we can also show the closed-loop stability. (See [125] for the detailed proof.)

Note that Theorem 3.3 implies that Sf is time-varying and needs to be recom-

puted online from the discrete Riccati equation for the estimated system to preserve

stability. We also note that the preceding stability result does not require parameter

convergence. On the other hand, it does not address constraints. In fact, the algo-

rithm proposed in Section 3.2.1 enforces constraints in the certainty equivalence sense,

and the effects of uncertainties and parameter errors on the constraints, namely, the

possibility of loss of feasibility during adaptation, are not considered. Such extensions

will be pursued in future work.

3.3 AMPC for an Inverted Pendulum on a Cart

An example, based on the nonlinear dynamic model of the inverted pendulum

on the cart in Figure 3.1, is now considered. The state of the dynamic model is

x = [x1, x2, x3, x4]T , where x1 and x2 are the position and velocity of the cart,

and x3 and x4 are the angle and angular velocity of the pendulum, respectively, with
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Figure 3.1: An inverted pendulum on a cart.

respect to the vertical direction. Based on the model given in [130], we have:

ẋ1 = x2,

ẋ2 =
gθ sinx3 cosx3 − lθx2

4 sinx3 + u

(M + θ)− θ cos2 x3

,

ẋ3 = x4, (3.59)

ẋ4 =
g(M + θ) sinx3 − lθx2

4 sinx3 cosx3 + u cosx3

l(M + θ)− lθ cos2 x3

,

where u denotes the control force produced by an actuator in the horizontal direction.

θ represents the mass of the pendulum ball, l is the length of the massless rod, and

M is the mass of the cart. The discrete-time model of the system is obtained by

sampling (3.59) at 10 Hz with T = 0.1 sec.

We consider a stabilization problem where the objective is to control the angle

and angular velocity of the pendulum with the unknown mass θ to zero subject to

control constraints on the actuator. In the simulations, the values of θ = 0.05 kg

(unknown to the controller), M = 2 kg, and l = 0.5 m are used. The control force is

constrained so that

−1.2 ≤ u(t) ≤ 1.2. (3.60)
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Figure 3.2: Simulation result of the AMPC applied to the inverted pendulum dynam-
ics.

The incremental and terminal cost functions are defined as

L = xTQx+ uTRu, Φ = xTSfx,

where we choose Q = diag(1, 1, 1, 1), R = 10, and Sf = 500 × Q. The prediction

horizon is chosen as 10 steps in this example.

The closed-loop response is shown in Figure 3.2 with θ̂(0) = 0.35. As these plots

demonstrate, AMPC is able to drive the angle and angular velocity of the inverted

pendulum to the desired equilibrium, while the parameter estimate θ̂ converges. The

control constraints are satisfied. Figure 3.3 compares the responses of three closed-

loop systems: (i) MPC applied to the plant model with θ = 0.05 when the parameter

estimate θ̂ = θ = 0.05 is accurate (Case A); (ii) MPC applied to the plant model

with θ = 0.05 when the parameter estimate θ̂ = 0.35 is inaccurate (Case B); and
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Figure 3.3: Simulations compare three different responses: Case A: with perfect infor-
mation of θ, Case B: with wrong initial estimate and without adaptation
of θ, Case C: with wrong initial estimate and with adaptation of θ.

(iii) AMPC applied with the initial parameter estimate of θ̂(0) = 0.35 (Case C). The

weight matrices and other parameters are the same between these three controllers.

In all three cases, the control constraints are satisfied. The response is improved

with AMPC and it approaches to that of the MPC with known θ even though the

parameter is not converging due to the lack of persistent excitation.
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CHAPTER IV

Parametric Neighboring Extremal Algorithm

In this chapter, an overview of the PNE algorithm developed by Ghaemi et al.

[30] for the MPC problem with adjustable parameters is provided. In addition, new

theoretical aspects of the PNE are explored on the NE solution of the MPC prob-

lem with parameters (Theorem 4.1) and conditions for existence of the NE solution

(Theorem 4.4).

4.1 Overview of the Parametric Neighboring Extremal Al-

gorithm

4.1.1 Problem Formulation

The receding horizon optimization problem with adjustable parameters, at a sam-

pling instant t, minimizes a general cost function,

J(x(·), u(·), p) = Φ(x(t+N), p) +
t+N−1∑
k=t

L((x(k), u(k), p), (4.1)

52



subject to

x(k + 1) = f(x(k), u(k), p), f : Rn+m+r 7→ Rn,

x(t) = xt, xt ∈ Rn,

C(x(k), u(k), p) ≤ 0, C : Rn+m+r 7→ Rl, k = t, . . . , t+N − 1,

C̄(x(k), p) ≤ 0, C̄ : Rn+r 7→ Rq, k = t, . . . , t+N,

(4.2)

where x(·), u(·), and p are state sequence, control sequence, and an adjustable pa-

rameter vector, respectively. The parameter vector, p, are included as optimization

variables, which differentiates this problem from the one treated in the previous chap-

ter where parameters where not adjustable.

Let x0(·), u0(·), and p0 be the nominal optimal solution of the problem by (4.1)-

(4.2). To simple expositions, let

C(k) := C(x(k), u(k), p), C̄(k) = C̄(x(k), p),

Φ(t+N) := Φ(x(t+N), p), L(k) := L(x(k), u(k), p),

f(k) := f(x(k), u(k), p).

The Lagrangian function is defined as

L(x(·), u(·), p, λ(·), µ(·), µ̄(·))

= Φ(t+N) +
t+N−1∑
k=t

L(k)

+ λ(t)T (xt − x(t)) +
t+N−1∑
k=t

λ(k + 1)T (f(k)− x(k + 1))

+
t+N−1∑
k=t

µ(k)TCa(k) +
t+N∑
k=t

µ̄(k)T C̄a(k).
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We also define the Hamiltonian function as follows:

H(x(k), u(k), p, λ(k + 1), µ(k), µ̄(k))

= L(k) + λ(k + 1)Tf(k) + µT (k)Ca(k) + µ̄T (k)C̄a(k).

Then, using the Hamiltonian function H(x(k), u(k), p, λ(k + 1), µ(k), µ̄(k)) the La-

grangian function is expressed as

L(x(·), u(·), p, λ(·), µ(·), µ̄(·))

= Φ(t+N) + λ(t)Txt − λ(t+N)Tx(t+N) + µ̄(t+N)T C̄a(t+N)

+
t+N−1∑
k=t

(
H(k)− λ(k)Tx(k)

)
. (4.3)

The nominal solution (xo(·), uo(·), po) is optimal and is assumed to satisfy the

following first order necessary optimality conditions implied by the KKT theorem

[42],

Lx(k)(x(·), p, λ(·)) = 0, k = t, . . . , t+N, (4.4)

Lu(k)(x(·), p, λ(·)) = 0, k = t, . . . , t+N − 1, (4.5)

Lp(x(·), p, λ(·)) = 0. (4.6)

Then the following equations are derived

λ(k) = Hx(k), k = t, · · · , t+N − 1, (4.7)

λ(t+N) = Φx(t+N) + µ̄(t+N)T C̄a
x(t+N), (4.8)

Hu(k) = 0, k = t, · · · , t+N − 1, (4.9)

Φp(t+N) + µ̄(t+N)T C̄a
p (t+N) +

t+N−1∑
k=t

Hp(k) = 0, (4.10)
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where (4.7) and (4.8) are derived from (4.4), (4.9) is derived from (4.5), and (4.10) is

derived from (4.6).

The NE solution [31] is the first-order correction that approximates the optimal

state and control sequences for the perturbed initial state, that is it maintains nec-

essary conditions satisfied up to the first-order terms. We now demonstrate that the

NE solution can be computed from necessary conditions for a ‘linearized’ problem,

where the second-order variation of the Hamiltonian function of (4.1) is minimized

subject to the linearized dynamic equations and constraints:

min
δx(·), δu(·), δp

δ2J̄ , (4.11)

where,

δ2J̄ =
1

2

 δx(t+N)

δp


T  Φ11(t+N) Φ12(t+N)

Φ21(t+N) Φ22(t+N)


 δx(t+N)

δp



+
1

2

t+N−1∑
k=t


δx(k)

δu(k)

δp


T

Hxx(k) Hxu(k) Hxp(k)

Hux(k) Huu(k) Hup(k)

Hpx(k) Hpu(k) Hpp(k)



δx(k)

δu(k)

δp

 , (4.12)

subject to

δx(k + 1) = fx(k)δx(k) + fu(k)δu(k) + fp(k)δp, (4.13)

δx(t) = δxt, (4.14)

Ca
x(k)δx(k) + Ca

u(k)δu(k) + Ca
p (k)δp = 0, (4.15)

C̄a
x(k)δx(k) + C̄a

p (k)δp = 0, (4.16)
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where

Φ11(t+N) = Φxx(t+N) +
∂

∂x

(
µ̄(t+N)TC̄x(t+N)

)
, (4.17)

Φ12(t+N) = Φxp(t+N) +
∂

∂p

(
µ̄(t+N)TC̄x(t+N)

)
, (4.18)

Φ21(t+N) = Φpx(t+N) +
∂

∂x

(
µ̄(t+N)TC̄p(t+N)

)
, (4.19)

Φ22(t+N) = Φpp(t+N) +
∂

∂p

(
µ̄(t+N)TC̄p(t+N)

)
, (4.20)

and all the partial derivatives are computed at the nominal solution.

Theorem 4.1. The NE solution of Problem (4.1) satisfies the first-order optimality

conditions in the problem of minimizing the second-order variation (4.11) subject to

linearized constraints (4.13)-(4.16).

Proof : We assume that the point (x(·), u(·), p, λ(·), µ(·), µ̄(·)) is a regular KKT

point of Problem (4.1) which satisfies the linear independence constraint qualifica-

tion (LICQ) condition [42]. Consider perturbations:

x(·) + δx(·), u(·) + δu(·), p+ δp,

λ(·) + δλ(·), µ(·) + δµ(·), µ̄(·) + δµ̄(·).

Assume that t = 0 to simplify the presentation without loss of generality. By using
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the first order approximation, (4.7)-(4.10) are expressed as

λ(k)+δλ(k) = Hx(k) +Hxx(k)δx(k) +Hxu(k)δu(k) +Hxp(k)δp

+Hxλδλ(k + 1) +Hxµδµ(k) +Hxµ̄δµ̄(k), k=0, . . . , N−1, (4.21)

λ(N)+δλ(N)= Φx(N)+Φxx(N)δx(N)+Φxp(N)δp+Φxλ(N)δλ(N)+Φxµ̄δµ̄(N)

+ µ̄(N)T C̄a
x(N) +

∂

∂x

(
µ̄(N)T C̄a

x(N)
)
δx(N)

+
∂

∂p

(
µ̄(N)T C̄a

x(N)
)
δp+

∂

∂µ̄

(
µ̄(N)T C̄a

x(N)
)
δµ̄(N), (4.22)

Hu(k) +Hux(k)δx(k) +Huu(k)δu(k) +Hup(k)δp+Huλδλ(k + 1)

+Huµδµ(k) +Huµ̄δµ̄(k) = 0, k=0, . . . , N−1, (4.23)

Φp(N) + Φpx(N)δx(N) + Φpp(N)δp+ Φpλ(N)δλ(N)

+ µ̄(N)T C̄a
p (N) +

∂

∂x

(
µ̄(N)T C̄a

p (N)
)
δx(N)

+
∂

∂p

(
µ̄(N)T C̄a

p (N)
)
δp+

∂

∂µ̄

(
µ̄(N)T C̄a

p (N)
)
δµ̄(N)

+
N−1∑
k=0

[Hp(k) +Hpx(k)δx(k) +Hpu(k)δu(k) +Hpp(k)δp

+Hpλδλ(k + 1) +Hpµδµ(k) +Hpµ̄δµ̄(k)] = 0, (4.24)

x(k + 1) + δx(k + 1)

= f(k) + fx(k)δx(k) + fu(k)δu(k) + fp(k)δp, k=0, ..., N − 1, (4.25)

x(0) + δx(0) = x0 + δx0. (4.26)
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Hence, the NE solution satisfies the following equations:

δλ(k) = Hxx(k)δx(k) +Hxu(k)δu(k) +Hxp(k)δp+ fTx (k)δλ(k + 1)

+ Ca
x(k)T δµ(k) + C̄a

x(k)T δµ̄(k), k = 0, . . . , N−1, (4.27)

δλ(N) =

(
Φxx(N) +

∂

∂x

(
µ̄(N)T C̄a

x(N)
))

δx(k)

+

(
Φxp(N) +

∂

∂p

(
µ̄(N)T C̄a

x(N)
))

δp+ C̄a
x(N)T δµ̄(N), (4.28)

Hux(k)δx(k) +Huu(k)δu(k) +Hup(k)δp+ fTu (k)δλ(k + 1)

+ Ca
u(k)δµ(k) = 0, k=0, . . . , N−1, (4.29)(

Φpx(N) +
∂

∂x

(
µ̄(N)T C̄a

p (N)
))

δx(N)

+

(
Φpp(N) +

∂

∂p

(
µ̄(N)T C̄a

p (N)
))

δp

+
N−1∑
k=0

[Hpx(k)δx(k) +Hpu(k)δu(k) +Hpp(k)δp+ fTu (k)δλ(k + 1)

+ Ca
p (k)T δµ(k) + C̄a

p (k)T δµ̄(k)] = 0, (4.30)

δx(k + 1) = fx(k)δx(k) + fu(k)δu(k) + fp(k)δp, k= 0, . . . , N − 1, (4.31)

δx(0) = δx0. (4.32)

We now consider the minimization problem (4.12) subject to linearized constraints

(4.13)-(4.16) where t = 0. The Lagrangian function of (4.12) is defined as

L̄(δx(·), δu(·), δp, δλ(·), δµ(·), δµ̄(·))

= δ2J̄ + δλ(0)T (δx0 − δx(0))

+
N−1∑
k=0

δλ(k + 1)T (fx(k)δx+ fu(k)δu(k) + fp(k)δp− δx(k + 1))

+
N−1∑
k=0

δµ(k)TCa(k) +
N∑
k=0

δµ̄(k)T C̄a(k). (4.33)
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The Hamiltonian function is

H̄(δx(k), δu(k), δp, δλ(k + 1), δµ(k), δµ̄(k))

=
1

2

N−1∑
k=0


δx(k)

δu(k)

δp


T

Hxx(k) Hxu(k) Hxp(k)

Hux(k) Huu(k) Hup(k)

Hpx(k) Hpu(k) Hpp(k)



δx(k)

δu(k)

δp


+ δλ(k + 1)T (fx(k)δx(k) + fu(k)δu(k) + fp(k)δp)

+ δµ(k)TCa(k) + δµ̄(k)T C̄a(k). (4.34)

Then, the Lagrangian function (4.33) is expressed using the Hamiltonian function

(4.34),

L̄(δx(·), δu(·), δp, δλ(·), δµ(·), δµ̄(·))

=
1

2

 δx(N)

δp


T  Φ11(N) Φ12(N)

Φ21(N) Φ22(N)


 δx(N)

δp


+ δλ(0)T δx0 − δλ(N)T δx(N) + δµ̄(N)T C̄a(N) +

N−1∑
k=0

(H̄(k)− δλ(k)T δx(k)).

(4.35)

The first order necessary optimality conditions from KKT conditions are,

∂

∂(δx)
L̄(δx(·), δu(·), δp, δλ(·), δµ(·), δµ̄(·)) = 0, (4.36)

∂

∂(δu)
L̄(δx(·), δu(·), δp, δλ(·), δµ(·), δµ̄(·)) = 0, (4.37)

∂

∂(δp)
L̄(δx(·), δu(·), δp, δλ(·), δµ(·), δµ̄(·)) = 0, (4.38)

δx(k + 1) = fx(k)δx(k) + fu(k)δu(k) + fp(k)δp, k = 0, ..., N − 1, (4.39)

δx(0) = δx0. (4.40)
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Then, the following equations are obtained

δλ(k) = Hxx(k)δx(k) +Hxu(k)δu(k) +Hxp(k)δp+ fTx (k)δλ(k + 1)

+ Ca
x(k)T δµ(k) + C̄a

x(k)T δµ̄(k), k = 0, . . . , N−1, (4.41)

δλ(N) =

(
Φxx(N) +

∂

∂x

(
µ̄(N)T C̄a

x(N)
))

δx(k)

+

(
Φxp(N) +

∂

∂p

(
µ̄(N)T C̄a

x(N)
))

δp+ C̄a
x(N)T δµ̄(N), (4.42)

Hux(k)δx(k) +Huu(k)δu(k) +Hup(k)δp+ fTu (k)δλ(k + 1)

+ Ca
u(k)δµ(k) = 0, k=0, . . . , N−1, (4.43)(

Φpx(N) +
∂

∂x

(
µ̄(N)T C̄a

p (N)
))

δx(N)

+

(
Φpp(N) +

∂

∂p

(
µ̄(N)T C̄a

p (N)
))

δp

+
N−1∑
k=0

[Hpx(k)δx(k) +Hpu(k)δu(k) +Hpp(k)δp+ fTu (k)δλ(k + 1)

+ Ca
p (k)T δµ(k) + C̄a

p (k)T δµ̄(k)] = 0, (4.44)

δx(k + 1) = fx(k)δx(k) + fu(k)δu(k) + fp(k)δp, k= 0, . . . , N − 1, (4.45)

δx(0) = δx0. (4.46)

Equations (4.27)−(4.32) and (4.41)−(4.46) are the same.

4.1.2 Computation of the NE Solution

As we decomposed the linearized constraints in Chapter II (see (2.11)-(2.13)), the

constraints (4.15) and (4.16) can be expressed

C̃a
x(k)δx(k) + C̃a

u(k)δu(k) + C̃p
u(k)δp = 0, (4.47)

Ĉa
x(k)δx(k) + Ĉa

p (k)δp = 0, (4.48)

where C̃a
u(k) is of full row rank.
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Assume t = 0 and let δµ̂(N) := δµ̄(N) and Ĉa
x(N) := C̄a

x(N). Define

S11(N) := Φxx(N) +
∂

∂x

(
µ̄(N)T C̄a

x(N)
)
,

T12(N) := Φxp(N) +
∂

∂p

(
µ̄(N)T C̄a

x(N)
)
.

Note that the NE solution satisfies (4.41)−(4.46). Equation (4.42) can be written as

δλ(N) = S11(N)δx(N) + T12(N)δp+ Ĉa
x(N)T δµ̂(N). (4.49)

Assume that δλ(k + 1) at the sampling time (k + 1) is represented as

δλ(k + 1) = S11(k + 1)δx(k + 1) + T12(k + 1)δp+ Ĉa
x(k + 1)T δµ̂(k + 1). (4.50)

Equation (4.41) can be written as

δλ(k) =Hxx(k)δx(k) +Hxu(k)δu(k) +Hxp(k)δp

+ fTx (k)λ(k + 1) + Ca
x(k)T δµ(k) + C̄a

x(k)T δµ̄(k)

=Hxx(k)δx(k) +Hxu(k)δu(k) +Hxp(k)δp+ Ca
x(k)T δµ(k) + C̄a

x(k)T δµ̄(k)

+ fTx (k)[S11(k + 1)(fx(k)δx(k) + fu(k)δu(k) + fp(k)δp) + T12(k + 1)δp

+ Ĉa
x(k + 1)T δµ̂(k + 1)]. (4.51)

Define

Z11(k) := Hxx(k) + fTx (k)Z11(k + 1)fx(k),

Z12(k) := Hxp(k) + fTx (k)Z11(k + 1)fp(k),

Z13(k) := Hxu(k) + fTx (k)Z11(k + 1)fu(k),

(4.52)
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and

Γ(k) :=


P (k)

 Ca
x(k)

Ĉa
x(k + 1)fu(k)


C̄a
x(k)

 =

 C̃a
x(k)

Ĉa
x(k)

 , (4.53)

Λ(k) :=


P (k)

 Ca
p (k)

Ĉa
x(k + 1)fp(k) + Ĉa

p (k + 1)


C̄a
p (k)

 =

 C̃a
p (k)

Ĉa
p (k)

 . (4.54)

Then, we obtain

δλ(k) =Z11(k)δx(k) + Z13(k)δu(k)

+ [Z12(k) + fTx (k)T12(k + 1)]δp+ C̃a
x(k)T δµ̃(k) + Ĉa

x(k)δµ̂(k). (4.55)

Equation (4.43) is expressed

[Hux(k) + fu(k)TS11(k + 1)fx(k)]δx(k) + [Huu(k) + fu(k)TS11(k + 1)fu(k)]δu(k)

+ [Hup(k) + fu(k)TS11(k + 1)fp(k) + fu(k)TT12(k + 1)]δp

+ fu(k)T Ĉa
x(k + 1)δµ̂(k + 1) + Ca

u(k)δµ(k) = 0. (4.56)

Define

Z31(k) := Z13(k)T ,

Z33(k) := Huu(k) + fTu (k)S11(k + 1)fu(k),

Z32(k) := Hup(k) + fTu (k)S11(k + 1)fp(k).
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Then, we obtain

Z33(k)δu(k) + C̃a
x(k)T δµ̃(k) = −Z31(k)δx(k)− [Z32(k) + fu(k)TT12(k + 1)]δp.

(4.57)

From the constraint (4.47)

C̃a
u(k)δu(k) = −C̃a

x(k)δx(k)− C̃p
u(k)δp. (4.58)

Using (4.57) and (4.58),

 Z33(k) C̃a
u(k)T

C̃a
u(k) 0


 δu(k)

δµ̃(k)


= −

 Z31(k)

C̃a
x(k)

 δx(k)−

 Z32(k) + fu(k)TT12(k + 1)

C̃a
p (k)

 δp. (4.59)

Let

K0(k) :=

 Z33(k) C̃a
u(k)T

C̃a
u(k) 0


−1

. (4.60)

Hence

δu(k) = K1(k)δx(k) +K2(k)δp, (4.61)

where

K1(k) = −
[
I 0

]
K0(k)

 Z31(k)

C̃a
x(k)

 ,
K2(k) = −

[
I 0

]
K0(k)

 Z32(k) + fT
u (k)T12(k + 1)

C̃a
p (k)

 .
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We now simplify (4.44). Let

S11(k) := Z11 −
[
Z13 C̃a

x(k)T
]
K0(k)

 Z31(k)

C̃a
x(k)

 ,
S12(k) := Z12 −

[
Z13 C̃a

x(k)T
]
K0(k)

 Z32(k)

C̃a
p (k)

 ,
S21(N) := T12(N)T , S21(k) := S12(k)T ,

T12(k) :=

fx(k)T −
[
Z13 C̃a

x(k)T
]
K0(k)

 fu(k)T

0


T12(k + 1) + S12(k),

T22(N) := Φpp(N) +
∂

∂p

(
µ̄(N)T C̄a

p (N)
)
,

W22(N) := T22(N), Ĉp(N) := C̄p(N), µ̂(N) := µ̄(N),

Z21(k) := Hpx(k) + fTp (k)S11(k + 1)fx(k),

Z22(k) := Hpp(k) + fTp (k)S11(k + 1)fp(k),

Z23(k) := Hpu(k) + fTp (k)S11(k + 1)fu(k).

Then, (4.44) is expressed as

S21(N)δx(N) +W22(N)δp+ Ĉp(N)T µ̂(N)

+
N−1∑
k=0

[Z21(k)δx(k) + Z23(k)δu(k) + Z22(k)δp+ fTp (k)δλ(k + 1)

+ Cp(k)T δµ(k) + C̄p(k)T δµ̄(k)] = 0. (4.62)
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Using (4.54) and (4.59), (4.62) can be written as

S21(N)δx(N) +W22(N)δp

+
N−1∑
k=0

[Z21(k)δx(k) + Z23(k)δu(k) + Z22(k)δp+ fTp (k)δλ(k + 1) + C̃p(k)T δµ̃(k)]

= S21(N)δx(N) +W22(N)δp+
N−1∑
k=0

(S21(k)δx(k) + T22(k)δp) = 0. (4.63)

Define

W21(N) := T21(N),

W21(k) := S21(k) +W21(k + 1)(fx(k) + fu(k)K1(k)),

W22(k) := T22(k) +W22(k + 1) +W21(k + 1)(fp(k) + fu(k)K2(k)).

We then can simplify (4.63) to

W21(0)δx(0) +W22(0)δp = 0. (4.64)

Finally, we obtain the closed-form solution of (4.12)-(4.16) for the initial state per-

turbation δx0. If Ĉx(0) is empty, Z33(k) > 0 for k ∈ [0, N − 1], C̃a
u(k) is of full rack,

and W22(0) is invertible (compare with Theorem 3 in [30]),

δu(k) = K1(k)δx(0) +K2(k)δp,

δp = −W−1
22 (0)W21(0)δx0.

(4.65)

Remark 4.2. The above derivation of NE solution assumed that the activity status

of the constraints does not change. When the initial state change δxt is large and

causes activity status changes in constraints, we decompose δxt into a sequence of

smaller changes and apply the NE solution to each change. The details are analogous
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to [27, 119].

Remark 4.3. The parametric IPA-SQP algorithm could be obtained by augmenting

the predictor update (4.65) of the PNE algorithm with SQP updates similarly to

[14, 28, 119].

4.2 NE Solution Existence for a Special Case

In this section, conditions for existence of NE solution, i.e., the conditions under

which one can write the solution in the form (4.65), are studied for a quadratic cost

functional and a linear discrete-time system. We consider the simplest case without

inequality constraints on state, control input, and parameters.

Consider a linear discrete-time system,

x(k + 1) = Ax(k) +B1u(k) +B2p, (4.66)

where both the control sequence u(k) and the parameter p are adjustable, and where

A ∈ Rn×n, B1 ∈ Rn×m, and B2 ∈ Rn×l. The cost functional at the time instant t = 0

is given by

J(x0, u, p) =
1

2
x(N)Qx(N) +

1

2
pTMp+

1

2

N−1∑
k=0

(
x(k)TQx(k) + u(k)TRu(k)

)
, (4.67)

where R = RT > 0, Q = QT ≥ 0 and M = MT ≥ 0. The optimization problem takes

the form,

min
u,p

J(x0, u, p). (4.68)

In this case, given a nominal solution of the problem (4.68), the necessary opti-

mality conditions in Section 4.1 are also the sufficient optimality conditions. The NE

solution then minimizes the second-order variation of the Hamiltonian function of the
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problem

min
δu,δp

δ2J(δx0, δu, δp), (4.69)

where

δ2J(δx0, δu, δp)

=
1

2
δx(N)Qδx(N) +

1

2
δpTMδp+

1

2

N−1∑
k=0

(
δx(k)TQδx(k) + δu(k)TRδu(k)

)
,

(4.70)

subject to,

δx(k + 1) = Aδx(k) +B1δu(k) +B2δp, (4.71)

δx(0) = δx0. (4.72)

To solve the problem (4.69), we decompose it into a two-stage optimization prob-

lem where in the inner stage δp is treated as a fixed parameter and the optimization

is performed with respect to δu while in the outer stage the optimization is performed

with respect to δp. Thus we exploit the following relation,

min
δu,δp

J(δx0, δu, δp) = min
δp

(
min
δu

J(δx0, δu, δp)
)
. (4.73)

The inner-loop optimization problem is a conventional LQ problem. To see this,

we augment δp as another state with constant dynamics to (4.66), i.e.,

δx(k + 1) = Aδx(k) +B1δu(k) +B2δp(k),

δp(k + 1) = δp(k).

(4.74)

Defining

δX(k) =

 δx(k)

δp(k)

 , (4.75)
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we can re-write (4.74) as

δX(k + 1) = ÃδX(k) + B̃δu(k), (4.76)

where

Ã =

 A B2

0 I

 , B̃ =

 B1

0

 .
For system (4.76), the cost (4.67) is re-written as

J(δx0, δu, δp) =
1

2
δX(N)Q̃δX(N) +

1

2

N−1∑
k=0

(
δX(k)TQ̃δX(k) + δu(k)TRδu(k)

)
,

(4.77)

where

Q̃ =

 Q 0

0 M
N+1

 .
Let J∗(δx0, δp) denote the optimal cost value in the problem of minimizing (4.77)

with respect to δu subject to (4.76). Since this is a standard LQ problem on a finite

time interval with R > 0, the solution exists, is unique and yields,

J∗(δx0, δp) =
1

2
δXT

0 P0δX0, (4.78)

where

P (k − 1) = Q̃+ ÃTP (k)Ã+ ÃTP (k)B̃F (k − 1), P (N) = Q̃, (4.79)

F (k − 1) = −(R + B̃TP (k)B̃)−1B̃TP (k)Ã, (4.80)

and where the optimal control is given by

δu∗(k) = F (k)δX(k), k = 0, · · · , N − 1. (4.81)
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If we decompose the positive semi-definite symmetric matrix P0 into sub-blocks

according to the dimensions of δx and δp,

P0 =

 P11 P12

P21 P22

 , (4.82)

where P12 = PT
21, the outer loop optimization problem of minimizing J∗(δx0, δp) with

respect to δp becomes

min
δp

J∗(δx0, δp), (4.83)

where

J∗(δx0, δp) =
1

2
δxT

0 P11δx0 + δxT
0 P12δp+

1

2
δpTP22δp. (4.84)

This problem of minimizing a quadratic function is explicitly solvable if

P22 > 0. (4.85)

The solution of the outer loop optimization problem (note in the form dependent

explicitly on the initial state) is given by

δp∗ = −(P22)−1P21δx0. (4.86)

If the condition (4.85) is violated, then the minimizer (non-unique) exists if P21x0 ∈

Range(P22).

Thus the procedure to solve the parametric LQ problem under the assumption

P22 > 0 is as follows:

• Step 1: Calculate P0 using (4.79) and (4.80).

• Step 2: Determine optimal parameter δp∗ according to (4.86).

• Step 3: Form the vector, δX0 = [δxT
0 δp∗T]T.
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• Step 4: Compute the control sequence δu∗(k) based on (4.81) and (4.76).

It remains to establish the conditions when (4.85) holds. Note that these condi-

tions imply the existence of a neighboring extremal solution (4.86).

The conditions for (4.85) to hold are linked to observability properties of δp in

the cost (4.77) or (4.67). Since our model is discrete-time, we have to be careful since

observability properties may change with the horizon length, N .

Suppose the matrix Q̃ ≥ 0 is decomposed as

Q̃ = C̃TC̃.

Definition 1: A state δX0 6= 0 is called observable in the cost over a horizon N if

∃k, 0 ≤ k ≤ N, such that C̃ÃkδX0 6= 0. [131]

Note that this observability property is defined for the open-loop system (4.76),

i.e., with δu(k) = 0.

Definition 2: The parameter is observable in the cost over the horizon N if any

state of the form δX0 = [0, δpT]T with δp 6= 0 is observable in the cost over the

horizon N .

Theorem 4.4. Suppose the parameter is observable in the cost over the horizon N .

Then (4.85) holds.

Proof : By contradiction, assume (4.85) does not hold. Then there exists δp such

that P22δp = 0. Let δX0 = [0, δpT]T.

From (4.77) and (4.83),

0 =J∗(δx0, δp) =
1

2
δpTP22δp

=
1

2
δX∗T(N)C̃TC̃δX∗(N) +

1

2

N−1∑
k=0

(
δX∗T(k)C̃TC̃δX∗(k) + δu∗T(k)Rδu∗(k)

)
.

(4.87)
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Here δX∗(k) is the solution of (4.76) corresponding to the optimal control δu∗(k) of

the inner loop optimization problem (4.81). Given that all terms are non-negative,

the sum can be zero only if all terms are zero, and

C̃δX∗(k) = 0, k = 0, · · · , N, δu∗(k) = 0, k = 0, · · · , N − 1.

Since δu∗(k) = 0, δX∗(k) = ÃkδX0 and thus

C̃ÃkδX0 = 0, k = 0, · · · , N.

This contradicts our assumption of observability.

Remark 4.5. It is easy to give sufficient conditions when the result of Theorem 4.4

holds. For instance, if the pair (C̃, Ã) satisfies the standard rank observability test

and the horizon is sufficiently long (N > dim X̃). Another condition is simply M > 0,

i.e., the cost includes strictly positive definite penalty on the parameter. Then, for

δX0 = [0, δpT]T, C̃X0 6= 0 if δp 6= 0.

Here, we obtained the conditions for the existence of NE solution in a parametric

optimal control problem without considering inequality constraints or nonlinear dy-

namics. Obtaining conditions that imply the existence of NE solution is a challenging

task for parametric optimal control problems with inequality constraints. It will be

pursued as future work.
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CHAPTER V

Minimum-time Model Predictive Control

An interesting application of the PNE algorithm to a minimum-time MPC prob-

lem is considered in this chapter. Minimum-time MPC problems have been studied in

[84, 85, 132]. They are of interest for certain applications and have favorable robust-

ness and disturbance rejection properties. Applying MPC philosophy to minimum-

time control involves recomputing the open-loop state and control trajectory sub-

ject to constraints. The existing results on PNE cannot be directly applied to the

minimum-time MPC problem since the time horizon does not stay constant over time.

We therefore employ a time scaling transformation to obtain a fixed-end time prob-

lem, with the terminal time appearing as a multiplicative parameter in the dynamic

equations of the continuous-time model. We then convert the model to discrete-time

and formulate an optimization problem where both the control sequence and the time

horizon, now appearing as a parameter, have to be optimized. The PNE algorithm

introduced in [30, 58] and elaborated in Chapter IV is applicable to simultaneous con-

trol trajectory and parameter optimization. The reformulated variant of the problem

fits nicely into the PNE algorithm. Since appropriate regularity properties need to

be satisfied to be able to apply the PNE algorithm, the cost functional is regularized.

To illustrate the proposed approach, two examples are considered. The first exam-

ple is for a double integrator with a control constraint for which the optimal solution
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can be computed using other numerical methods to validate the result of PNE. The

second example is based on a two-dimensional model of a hypersonic vehicle whose

minimum-time control problem cannot be easily solved and numerical optimization

has to be adopted.

5.1 Problem Formulation and Transformation

The minimum-time MPC solves a minimum-time optimal control problem for

steering the system from the current state x0 at the current time t0 to the origin at

the terminal time tf :

min J = tf , (5.1)

subject to

ẋ(t) = f(x(t), u(t)),

x(t0) = xt,

x(tf ) = 0,

C(x(t), u(t)) ≤ 0, t0 ≤ t ≤ tf ,

(5.2)

where x ∈ Rn and u ∈ Rm are state and control input, respectively. Here, C defines

constraints.

To be able to apply the PNE framework, the cost function is regularized by aug-

menting a control penalty. The cost is modified to

min J = tf + ε

tf∫
t0

u(t)Tu(t)dt, (5.3)

where ε is a small positive scalar, i.e., ε ∈ R+. This cost must be minimized subject

to (5.2).

A time scaling transformation is now employed to convert the free-terminal-time
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problem to a fixed-terminal-time problem,

τ =
t− t0
tf − t0

. (5.4)

Since t0 ≤ t ≤ tf , it follows that

0 ≤ τ ≤ 1. (5.5)

The dynamics of the system is then expressed as

x′ ,
dx

dτ
=
dx

dt

dt

dτ
= (tf − t0)f(x(k), u(k)). (5.6)

The transformed model (5.6) is converted to discrete-time,

x(k + 1) = x(k) + ∆τ(tf − t0)f(x(k), u(k)), (5.7)

where ∆τ = 1/N , and N is the number of control nodes employed in discretizing the

trajectory. The cost functional in (5.3) is then converted to

Jd = tf + ε
N−1∑
k=0

∆τ(tf − t0)u(k)Tu(k). (5.8)

The adjustable variables are the control time sequence, {u(0), u(1), · · · , u(N − 1)}

and the parameter p = tf − t0 that need to be simultaneously optimized.

As a final step of reformulating the problem, we replace the hard terminal con-

straint, x(tf ) = 0, by a penalty added to the cost (5.8) so that the cost being mini-

mized becomes

J̄d = ρx(N)Tx(N) + p+ ε
N−1∑
k=0

∆τpu(k)Tu(k), (5.9)

where ρ > 0 is the penalty weighting factor. This change is not essential but simpli-

fies subsequent numerical implementation and mitigates potential terminal constraint
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infeasibility.

To summarize, the problem to which PNE framework will be applied has the

following form,

min
u(·),p

J̄d, (5.10)

subject to

x(k + 1) = x(k) + p∆τf(x(k), u(k)),

x(t0) = x0,

C(x(k), u(k), p) ≤ 0.

(5.11)

The minimum-time MPC is a feedback law uMPC(x0) defined based on the solution

of the above optimization problem with t0 as the current time and xt as the current

state. The number of control nodes, N , is maintained constant, and, consequently,

the control corrections become finer as the state gets closer to the origin. To avoid

control time subinterval becoming infinitesimally small after the convergence within

a prescribed tolerance of the origin is achieved, the control is no longer recomputed,

and an open-loop trajectory is simply followed to steer the state to the origin.

5.2 Simulations of a Double Integrator System

To evaluate the effectiveness of the PNE approach, we consider a double inte-

grator system with control input constraints. The minimum-time MPC problem for

transferring a nonzero initial state to the origin for the double integrator system has

the form,

min
u(·),p

J̄d = ρx(N)Tx(N) + p+ p∆τε
N−1∑
k=0

u(k)Tu(k), (5.12)
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Figure 5.1: Open-loop control by fmincon. Top: Phase plot of the state. Bottom:
Control input history.

subject to

x(k + 1) = x(k) + p∆τ(Ax(k) +Bu(k)),

x(t0) = xt,

|u(k)| ≤ 1,

(5.13)

where

x =

 x1

x2

 , A =

 0 1

0 0

 , and B =

 0

1

 .
We chose the number of control nodes as N = 50, ρ = 106, and ε = 0.1. The initial

state is x0 = (2, 2)T.
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5.2.1 Open-loop Control

Before implementing the PNE approach, we obtain the nominal optimal solution

of (5.12)-(5.13) at the initial time using MATLAB nonlinear programming solver

fmincon. Figure 5.1 shows the phase plot of the open-loop state and control input

sequences. The minimum-time of the maneuver is p0 = 6.083 sec.

5.2.2 Closed-loop Control

Let (x0, u0, p0) denote the solution from Section 5.2.1 approximated as a piecewise

constant function in time with nodes at time instants t00 , t
0
1, · · · , t0N . Then, the time

interval between t00 and t01 is p0/N = 6.083/50 = 0.122 sec.

Considering the initial state perturbation δx0
0 = x0(t01)− x0(t00) where x0 denotes

the measured state, the optimal control sequence and minimum-time are obtained for

the next control cycle using the PNE approach,

u1 = u0 + δu0,

p1 = p0 + δp0.
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The nodes of u1 at the next control cycle are t10, t
1
1, · · · , t1N . The first element of

the computed optimal control sequence u1 is applied to the system between the time

instant t10 and t11. By repeating this computing procedure with the fixed number of

control nodes, the optimal trajectory is obtained as shown in Figure 5.2. In this

simulation, the threshold time to terminate the algorithm for recomputing is 0.5 sec;

this avoids infinitesimally spaced control nodes. Thus, if the minimum-time computed

at a certain control cycle reaches the threshold time, the optimal control sequence

obtained in the control cycle is applied in the open-loop without further recalculation.

In Figure 5.2, the phase plot of the state of the open-loop control by fmincon and

that of the closed-loop control by the PNE are compared. There are slight differences

between these two trajectories.
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The time of the PNE solution is computed as:

t∗f = (tsN − ts0) +
s−1∑
k=0

(tk1 − tk0), (5.14)

where s is the first control cycle whose minimum-time is less than the threshold time.

The maneuver time is 5.814 sec. It is less than the time for the open-loop minimum-

time trajectory due to the control trajectory refinements effects. Specifically, PNE

exploits the same number of nodes in each control cycle, thus the effective time

between control changes decreases with time.

In Figure 5.3, the trajectories by the minimum-time MPC based on PNE is pre-

sented as the solid line and the results of the minimum-time MPC based on fmincon

are illustrated by the dot line. Figure 5.3 shows that the solutions by the PNE and

fmincon in closed-loop control are quite similar in performance.

The total computation time of the PNE, however, is 265.4 sec while the computa-

tion time of fmincon is 472.8 sec. Thus, the PNE improved computational efficiency.

The total computation time is measured by CPU time usage. The simulations are

performed by the controller codes implemented in MATLAB on a computer with

Intel R© CPU @ 2.10 GHz.

5.2.3 Compensation of Disturbances

We now consider the effects of an unmeasured disturbance that is additive to the

control input with a constant amplitude of 0.1×umax, where umax = 1, at every time

instant. The phase plot of the open-loop response with the disturbance is shown in

Figure 5.4, where the target at (0, 0) is missed. The closed-loop trajectory is then

simulated with the unmeasured disturbance, also shown in Figure 5.4, where the

PNE recomputes the control input at every control cycle using the current state as

the initial condition. We observed that the minimum-time MPC based on the PNE
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algorithm can compensate for the disturbances. The error is 0.1724 in the norm of

the state.

5.3 Hypersonic Vehicle Flight Model

In this section, the PNE is applied to a two-dimensional flight model [133] for a

hypersonic glider. The equations of motion of the two-dimensional hypersonic glider
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model are given in [133, 134],

ẋ = V cos(β),

ẏ = V sin(β),

β̇ =
tan(αmax)

V
u,

V̇ = a,

(5.15)

where x and y denote the glider position in x and y direction, β is the glider heading

angle, V is the velocity of the vehicle, a is the acceleration, αmax is the maximum
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bank angle, and u, which is constrained as −1 ≤ u ≤ 1, is the normalized bank angle

control signal.

Note that the variables in this flight model are scaled:

x =
xu
r0

, y =
yu
r0

, β = βu,

V =
Vu√
g0r0

, a =
au
g0

, t =
tu√
r0/g0

,
(5.16)

where r0 is the radius of the Earth, g0 is the gravitational acceleration of the Earth.

xu, yu , βu, Vu, au, and tu are the x-coordinate (km), the y-coordinate (km), heading

angle (rad), velocity (km/s), acceleration (km/s2) and time (s) in physical unit.

We consider a minimum-time problem to maneuver the glider to the origin subject

to the control constraint. The values a = 0 and αmax = 10 deg were used. Fig. 5.5

illustrates the simulation results for the initial position of (2,−2), the velocity of 0.3

and the initial heading angle β = 30 deg. The number of the control nodes is chosen

as N = 20. The minimum-time t∗ is 11.656, translating to 9398 sec in unscaled time.

Fig. 5.6 illustrates the trajectories on the x− y plane starting from various initial

positions with the same heading angle of 30 deg, and approaching the same terminal

position (0, 0) in minimum time.

82



CHAPTER VI

Real-time Optimization for Shipboard Power

Management Using the IPA-SQP Approach

Shipboard integrated power systems (IPS), the key enablers of ship electrifica-

tion, call for effective PMC to achieve optimal and reliable operation in dynamic

environments under hardware limitations and operational constraints. The design of

the PMC can be treated naturally in an MPC framework where a cost function is

minimized over a prediction horizon subject to constraints. The real-time implemen-

tation of MPC-based PMC, however, is challenging due to computational complexity

of the numerical optimization. In this chapter, an MPC-based PMC for a shipboard

power system is developed and its real-time implementation is investigated. To meet

the requirements for real-time computation, an IPA-SQP algorithm is applied to

solve a constrained MPC optimization problem. Several operational scenarios are

considered to evaluate the performance of the proposed PMC solution. Simulations

and experiments show that real-time optimization, constraint enforcement, and fast

load-following can be achieved with the IPA-SQP algorithm. Different performance

attributes and their trade-offs can be coordinated through proper tuning of the design

parameters.
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Table 6.1: Subsystems of the test bed.
Key

Subsystems Description operational
parameters

GS-1
Prime mover 1 1800 rpm

Wound rotor synchronous machine max. elec. power 59 kW

GS-2
Prime mover 2 3600 rpm

Permanent magnet synchronous machine max. elec. power 11 kW

SPS
Propulsion drive 1800 rpm

Induction machine max. mech. power 37 kW

SWPPL High power buck converter
peak elec. power 8 kW

average elec. power 4 kW

6.1 System Description and MPC Formulation

6.1.1 System Description

The notional power system considered in this chapter represents a down-scaled

version of real shipboard power systems. It consists of two power generation systems,

a ship propulsion motor and a square wave pulse power load (SWPPL). The system

was developed at Purdue University as a sponsored project by the Office of Naval

Research (ONR) [114], and has been used for several sponsored research projects

[114, 135]. The schematic of the system is shown in Figure 6.1, and the physical

appearance of the test bed is shown in Figure 6.2.

Generation system 1 (GS-1) is the main shipboard power source and represents a

gas turbine generator. Generation system 2 (GS-2) represents a smaller ship power

generation source, which can be a diesel generator. The ship propulsion system

(SPS) is the primary load on the power system. The SWPPL represents the load of

an electromagnetic rail gun. The power sources and loads are connected in parallel

to a 750 V DC bus. The key components and their operational parameters are listed

in Table 6.1.
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Figure 6.1: Schematic of the shipboard power system.

Figure 6.2: Purdue test bed.

85



6.1.2 Operational Requirements and Control Objectives

For the investigation reported in this dissertation, we make the following assump-

tions:

1) The desired ship velocity, the SPS induction machine (IM) power and desired

speed, and the target bus voltage are constant.

2) The GS-2 operates in the generation mode, has its best efficiency at 5 kW , and

has a constant rotor speed.

3) The pulsed power load consists of square wave pulses with 8 kW amplitude and

1 second duration. (See Figure 6.3.)

4) The PMC has no prior knowledge of the SWPPL, i.e., the SWPPL is an un-

known disturbance.

5) The line losses are negligible.

Note that the assumptions listed above are made to simplify the exposition of the

algorithm or to reflect the hardware limitations (such as assumption 3). They can be

removed without changing the nature of the problem and the proposed solution.

The control objectives of the PMC are to coordinate the power generation sources

to meet the load demand and to achieve the following performance attributes:

1) Tracking the set points of bus voltage, GS-2 electrical power, SPS electrical

power, and SPS rotor speed.

2) Protecting and extending the life span of the machines GS-1, GS-2, and SPS.

3) Maintaining power quality of the micro-grid and minimizing bus voltage varia-

tion.
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Figure 6.3: Square wave pulse power load on the TPMM. The pulse starts at 0.5 sec
with 8 kW amplitude and 1 sec duration. The period is 2 sec.

It should be noted that the GS-1 is expected to provide most of the power for SWPPL

which may cause extreme ramping in GS-1 power output if the set point tracking

objective of GS-2 electrical power is emphasized and, consequently, have negative

impact on the gas turbine and generator life span. Therefore, some of the control

objectives are competing with each other and need to be balanced by the PMC

system.

6.1.3 Optimization-oriented Design Model and Operational Constraints

The dynamic behavior of the system has been represented in a transient power

management model (TPMM) [114], which is a low-order simulation model established

at Purdue University. Even though the TPMM is already simplified to enable fast

simulation, it is still complex to be used for model-based optimization and for the

IPA-SQP algorithm implementation which requires analytic derivations.

The optimization-oriented design model required to support analytic derivations

for the IPA-SQP algorithm implementation is developed by simplifying the TPMM
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model.

x1(k + 1) = f1(x(k), u(k)) = x1(k) +
Tsx3(k + 1)

x3(k + 1) + c1u1(k)
z(k), (6.1)

x2(k + 1) = f2(x(k), u(k)) =
1

1 + Tsc2c3

(x2(k) + Tsc2 (c3ωd + c4u3(k))) , (6.2)

x3(k + 1) = f3(x(k), u(k)) =
1

1 + Tsc5

(
x3(k) + Ts

√
c6x2

3(k) + c7Ps(k)

)
, (6.3)

where

x(k) = (x1(k) x2(k) x3(k))T ,

u(k) = (u1(k) u2(k) u3(k))T ,

z(k) = c1

(
u1(k)x1(k)

x2
3(k + 1)

− 1

)(
−c5x3(k + 1) +

√
c6x2

3(k) + c7Ps(k)

)
+ c8 (Vb − x3(k))− c8u1(k)x1(k)

x3(k + 1)
,

P2(k) = c9u
2
2(k) + c10u2(k),

P3(k) = (c11 + c12x2(k))u3(k),

Ps(k) = x1(k) + P2(k) + P3(k) + P4(k).

The equations (6.1), (6.2), and (6.3) are derived from the TPMM model [114] by

approximation and model order reduction, and discretized using the backward Euler

method to represent the dynamics of the physical test bed system in the discrete-time

format. Table 6.2 summarizes the state variables, the control inputs, and parameters

in the equations (6.1), (6.2), and (6.3). The droop gain u1 of the voltage controller

in the GS-1 is a control input. The GS-1 droop gain impacts the DC bus voltage.

It is used to indirectly control the output power of the GS-1. The GS-2 and SPS

receive the GS-2 and SPS mechanical power commands from the PMC, respectively.

Then their inner loop controllers convert the power commands to torque commands

and current commands so that tracking using hysteresis control can be accomplished
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Table 6.2: State variables, control inputs, and parameters in the optimization-
oriented design model.

Variable Symbol Description

State variables
x1 GS-1 electrical power (kW )
x2 IM rotor speed in the SPS (rad/s)
x3 DC bus voltage (V )

Control inputs
u1 GS-1 droop gain
u2 GS-2 mechanical power command (kW )
u3 SPS mechanical power command (kW )

Parameters
Ts Sampling time interval (s)
ωd Desired rotor speed of the IM (rpm)
Vb Desired bus voltage (V )

[114]. P2(k), P3(k) are the GS-2 and SPS electrical power, respectively, and P4(k) is

square wave pulse power at a sampling instant k. Ps(k) is the sum of the GS-1, GS-2,

SPS electrical power, and the SWPPL power at the sampling instant k. These values

are required to estimate GS-2 electrical power, SPS electrical power, the SWPPL

power, and the sum of the electrical power with the state variables and control inputs

at the sampling instant k. ci, i = 1, . . . , 12, are constants used in the equations

[114]. Positive sign is used for electrical power generated, and negative sign is used

for electrical power consumed.

The system has several constraints that represent hardware limitations and opera-

tional requirements. The GS-1, GS-2 and SPS have operational limitations of 59 kW ,

11 kW , and 37 kW , respectively, as given in Table 6.1. The GS-1 droop gain takes

values in the interval [−1, 1]. The constraints are mathematically expressed as:

0 ≤ x1(k) ≤ 59, (6.4)

−1 ≤ u1(k) ≤ 1, (6.5)

−11 ≤ u2(k) ≤ 0, (6.6)

0 ≤ u3(k) ≤ 37. (6.7)

Note that the system is nonlinear with constraints that include a pure state constraint
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(6.4) and pure control constraints (6.5), (6.6), and (6.7). Hence the NMPC is pursued.

6.1.4 MPC Problem Formulation

The MPC problem is formulated by considering the control objectives and oper-

ational assumptions:

min
x(·),u(·)

J(x(·), u(·)), (6.8)

where

J(x(·), u(·)) = Φ(x(t+N)) +
t+N−1∑
k=t

L(x(k), u(k)), (6.9)

and

L(x(k), u(k)) =k1(x3(k)− Vb)2 + k2(P2(k)− P2d)
2

+ k3(P3(k)− P3d)
2 + k4(x2(k)− ωd)2

+ k5(u1(k)− u1(k − 1))2 + k6(x1(k)− x1(k − 1))2

+ k7(P2(k)− P2(k − 1))2 + k8(P3(k)− P3(k − 1))2,

Φ(x(t+N)) =φ1(x2(t+N)− ωd)2 + φ2(x3(t+N)− Vb)2,

for all k ∈ [t, t+N −1], subject to the model of equations (6.1)-(6.3) and constraints

(6.4)-(6.7).

Here, P2d and P3d are the desired GS-2 electrical power and the desired SPS electrical

power, respectively. xt is the state at sampling instant t. f1, f2, and f3 are defined

in (6.1), (6.2), and (6.3), respectively. kj, j = 1, . . . , 8, denote weighting factors on

different terms in the cost function. Each weighting factor kj assigns a relative priority

to a performance aspect. The first term in L(x(k), u(k)), the error between the

measured bus voltage and the desired bus voltage, is related to bus voltage tracking.

Minimizing this error helps to assure power quality on the micro-grid. The second

term is for GS-2 to operate at the most efficient point. The other terms reflect
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Table 6.3: Weighting factors in the cost function on the test bed.
Physical variable Weight Test A Test B Test C

(Baseline) (Increase k6) (Increase k3)

DC bus voltage deviation k1 1 1 1

GS-2 power deviation k2 15 15 15

SPS power deviation k3 15 15 25

SPS induction machine speed deviation k4 1 1 1

Ramp rate of GS-1 droop gain k5 13 13 13

Ramp rate of GS-1 power k6 1 10 10

Ramp rate of GS-2 power k7 0.1 0.1 0.1

Ramp rate of SPS power k8 0.1 0.1 0.1

SPS induction machine speed deviation φ1 100 100 100

DC bus voltage deviation φ2 100 100 100

SPS electrical power tracking for the desired value, SPS rotor speed tracking for

maintaining the desired ship velocity, droop gain ramp rate, GS-1 electrical power

ramp rate, GS-2 electrical power ramp rate, and SPS electrical power ramp rate.

Component wear is reduced by penalizing power ramp rate. Φ(x(t + N)) is the

terminal cost function to penalize the deviation of x2(t+N) and x3(t+N) from their

desired values with weighting factors of φ1 and φ2, respectively. The GS-1 is treated as

a slack generator and provides the power necessary to balance the generating power

and consumed power. Hence, x1(k) is not penalized. The values of the weighting

factors used for the cost function are listed in Table 6.3.

Solving the MPC problem (6.8) subject to the constraints in real-time requires

effective optimization algorithms. The IPA-SQP algorithm, which has been shown to

have advantages in computational efficiency for nonlinear MPC [14], is used to solve

the MPC problem (6.8).

6.2 Simulation and Experimental Results

The power management strategy using MPC, where the optimization of (6.8)

subject to the constraints (6.4)-(6.7) is solved using the IPA-SQP algorithm at each

sampling time, is implemented in Simulink. The algorithm realization is a combi-
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Figure 6.4: Design and implementation procedure of the IPA-SQP based MPC ap-
proach.

nation of a MATLAB script function and some Simulink blocks from the standard

Simulink library. It should be noted that after initial design and simulation analysis,

high sensitivity of control performance to uncertainty in SWPPL delivery timing was

identified, i.e., when the SWPPL is treated as a known disturbance the performance

of the PMC varied if the actual ‘on’ and ‘off’ time for SWPPL is quite different from

the assumed value. It was decided that the SWPPL will be treated as an unknown

disturbance.

The design and implementation of MPC using the IPA-SQP approach is performed

first in the simulation environment with the TPMM as the plant for algorithm valida-

tion and performance evaluation before testing on the physical test bed. The online

computational ability and real-time performance are then evaluated through simu-

lations on an Opal-RT R© real-time simulator, and finally the IPA-SQP algorithm is

implemented on the Purdue physical test bed. The procedure of design and imple-

mentation of the IPA-SQP based MPC approach is shown in Figure 6.4.

Given the hardware limitations of the test bed, we consider the SWPPL waveform
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shown in Figure 6.3, which sinks up to 8 kW for 1 second intervals for 7 consecutive

cycles. The reference set points for tracking are P2d = 5 kW , P3d = −10 kW ,

and Vb = 750 V for GS-2 electrical power, SPS electrical power, and bus voltage,

respectively, in simulations and experiments. The prediction horizon is chosen as 5

sample intervals, and the sampling time interval is considered as 20 ms to balance

the algorithm execution time with the prediction horizon duration. Hence, the PMC

is able to look ahead 0.1 sec.

The PMC metrics are developed to evaluate and quantify the performance of

the PMC using the IPA-SQP based MPC. The metrics reflect: 1) load-following

performance measured by maximum and average deviation of SPS power from its set

point; 2) fuel efficiency in terms of deviation of GS-2 from its optimal setting; 3)

power quality represented by bus voltage deviation from 750 V , and 4) gas turbine

machinery protection in terms of the maximum and average absolute ramp rate of

GS-1 and operating time interval when the ramp rate exceeds a certain threshold.

The value of absolute GS-1 ramp rate threshold is chosen to reflect the tolerance of

GS-1 for machine protection. It is chosen to be 90 kW/s in simulations and 35 kW/s

in experiments to measure the duration that the absolute GS-1 ramp rate exceeds

the threshold.

6.2.1 Case Study Scenarios

The effectiveness of the optimization-based PMC strategy is examined with em-

phasis being placed on different ship performance attributes, such as protecting the

main generator GS-1 and extending its life span through reduced GS-1 ramp rate, and

improving SPS tracking performance. Among many available paths, several scenarios

are designed to test the PMC algorithm and to evaluate the performance as well as

the sensitivity to key design parameters and tunability of the controller:

1) Test A provides the baseline performance. After closing the control loop between
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the PMC and the test bed, the weighting factors are tuned to meet different

objectives by running many simulations. The weighting factors for the baseline

were selected as shown in Table 6.3.

2) Test B reflects the performance of the PMC algorithm when protecting the GS-

1 is emphasized, where the penalty k6 on the ramp rate of GS-1 is increased

(from 1 to 10).

3) Test C examines how the SPS tracking performance can be improved after the

SPS response is compromised in Test B as a consequence of relaxed control

authority in GS-1. The new GS-1 ramp rate of Test B is maintained and the

penalty k3 on the SPS induction machine power is increased (from 15 to 25).

The weighting factors for each scenario are reported in Table 6.3.

6.2.2 Numerical Simulation Results

Simulations are performed for the three scenarios using the TPMM as the plant

model. The results are illustrated in Figure 6.5. Plots present only one pulse period to

avoid repetition since the results for other pulses are identical. Figure 6.6 summarizes

the performance metrics obtained from TPMM simulations. Note that in Figure 6.5

all set point tracking objectives are achieved with a high accuracy (within 1% for GS-

2 electrical power, 2% for SPS electrical power, and 0.05% for bus voltage in average

root-mean-square (RMS) deviation from the desired values). The square wave load

demand is also met with fast response time in all three scenarios.

The maximum absolute GS-1 ramp rate is essentially unchanged from Test A to

Test B as shown in Figure 6.6, while the average value of GS-1 ramp rate reduces 4.5%

as the penalty on GS-1 ramp rate increases as summarized in Table 6.4. Given that

the SWPPL is treated as an unknown disturbance, the maximum ramp rate always

occurs when the pulse rise. As side effects, SPS and GS-2 electrical power tracking
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Figure 6.5: Responses on the TPMM. From top to bottom and left to right: GS-1
electrical power, GS-2 electrical power, SPS electrical power, and DC bus
voltage.

errors increase, namely, SPS and GS-2 electrical power tracking performances are

sacrificed in Test B. To mitigate some of these effects, the penalty on SPS tracking

error is increased from Test B to C. There are several consequences in increasing k4.

First, SPS tracking error is decreased. Second, the average value of GS-1 ramp rate

is increased slightly (but still less than that in Test A). Finally, GS-2 electrical power

tracking error is increased in Test C from Test B while SPS tracking is improved. The

bus voltage tracking behavior correlates to the change in the average value of GS-1

ramp rate. Table 6.4 also reports the time intervals when GS-1 ramp rate exceeds the

threshold of 90 kW/s. GS-1 ramp rate that exceeds 90 kW/s occurs less frequently

in the simulation for 14 sec in Test B and C.

The simulation results show that the IPA-SQP algorithm can be effective for
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Figure 6.6: Performance analysis on the TPMM.

power management to balance different objectives. They also illustrate that, through

adjustment of different weighting factors in the cost function, one can emphasize

different aspects of the performance attributes and achieve the desired tuning of

the controller performance. The MPC and simulation tools provide a cost-effective

approach to evaluate and balance the trade-off among competing performance goals.

6.2.3 Real-time Simulation Results

Before implementing the IPA-SQP algorithm on the physical test bed, we run

real-time simulations to validate the online computational ability and real-time per-

formance of the IPA-SQP algorithm. This simulation verifies the feasibility of real-
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Table 6.4: PMC simulation metrics on the TPMM.
Average GS-1 GS-1 ramp rate

Test ramp rate threshold exceed time
(kW/s) out of 14 seconds (s)

A 9.05 0.28
B 8.64 0.14
C 8.84 0.14

time implementation of the MPC-based algorithm, and identifies other computational

issues associated with the algorithm.

The RT-LAB R© system is used to implement real-time simulations. The real-

time simulation setup is shown in Figure 6.7. The RT-LAB R© system includes a

host personal computer (PC) and an Opal-RT R© simulator as a PC cluster-based

platform. The simulator has two CPUs which can exchange information through the

shared memory. The host PC and the simulator can communicate via the Ethernet

connection with 1 Gb/s speed. Through real-time simulations on the Opal-RT R©

simulator, we check for overruns and the effect of computational delay of the IPA-

SQP algorithm.

The waveform responses, tracking performance, and execution time are evaluated

to assess the real-time behavior of the proposed IPA-SQP solution. The same SWPPL

power profile in Figure 6.3 and the same test scenarios are considered. The TPMM

model is used as the virtual plant and simulated with the PMC.

Figure 6.7: Real-time simulation system. (a) System configuration. (b) RT-LAB
system.
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Figure 6.8: Responses of real-time simulation and non real-time simulation. From
top to bottom and left to right: GS-1 electrical power, GS-2 electrical
power, SPS electrical power, and DC bus voltage.

Figure 6.8 illustrates the waveform responses in real-time simulation, and com-

pares them to non real-time simulation of one square wave period for Test A. Both

cases have the identical responses. Table 6.5 summarizes the computation time on the

real-time simulator. As one can see from Table 6.5, the computation time is approxi-

mately linear with respect to the prediction horizon, as theoretically predicted in [14].

The IPA-SQP algorithm is shown to be sufficiently fast for online optimization and

real-time implementation in this application. Even for the prediction horizon of 50

steps with sampling time of 20 ms (which corresponds to 1 sec prediction window),

Table 6.5: Computation time on the Opal-RT simulator.
Prediction horizon 5 (0.1 sec) 25 (0.5 sec) 50 (1 sec)
Computation time ∼ 1.5 ms ∼ 6 ms ∼ 12 ms
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it takes less than 12 ms to perform the optimization and no over-runs have been

observed.
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Figure 6.9: Square wave pulse power load on the Purdue test bed.
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Figure 6.10: Control inputs of PMC using IPA-SQP based MPC on the test bed.

6.2.4 Experimental Results on the Purdue Physical Test Bed

In this section, we analyze the experimental results obtained when the algorithm

is implemented on the Purdue physical test bed. The SWPPL is shown in Figure 6.9,
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Figure 6.11: Responses on the Purdue test bed. From top to bottom and left to right:
GS-1 electrical power, GS-2 electrical power, SPS electrical power, and
DC bus voltage.

and the same testing scenarios A, B, and C, and the same reference set points for

tracking used in the simulations are used in the experiments. Figure 6.10 presents

the control inputs, while Figure 6.11 shows the waveform responses (only one pulse

period) in Tests A, B and C. Figure 6.12 reports the metrics for the measured values

on the physical test bed. Since the SWPPL is assumed to be unknown, the maximum

absolute GS-1 ramp rate occurs when the pulse first rise, and the maximum values

are similar in the test cases as shown in Figure 6.12.

Table 6.6 shows that the average value of GS-1 ramp rate reduces from Test A to

Test B as the penalty on GS-1 ramp rate increases, confirming the simulations. As

observed in the simulation, SPS and GS-2 power tracking performances are sacrificed,

reflected by the increased in the tracking errors for Test B. From Test B to C, the
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Figure 6.12: Performance analysis on the physical test bed.

penalty on SPS tracking error is increased to mitigate some of the effects. Similar

to the results obtained in the simulations, SPS tracking error is decreased as shown

in Figure 6.12, while GS-2 power tracking performance is sacrificed to accommodate

SPS power tracking in Test C from Test B.

Table 6.6 reports the maximum GS-1 ramp rate and the time intervals when GS-1

ramp rate exceeds the threshold of 35 kW/s. The maximum ramp rate of GS-1 is over

Table 6.6: Performance analysis of GS-1 ramp rate on the Purdue test bed.
Average GS-1 GS-1 ramp rate

Test ramp rate threshold exceed time
(kW/s) out of 14 seconds (s)

A 9.07 1.26
B 8.88 1.08
C 8.45 0.76
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40 kW/s for all tests. The time intervals when GS-1 ramp rate exceeds the threshold

decreases from Test A to Test B and C, namely, the duration that larger GS-1 ramp

rate occurs is less. The experimental results on the physical test bed are qualitatively

correlated to the simulation results, and the feasibility and performance of the IPA-

SQP based PMC are demonstrated experimentally. The differences in the numerical

values are attributed to unmodeled physical entities, such as power converters, line

losses, as well as unmodeled dynamics of the motors and generators.
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CHAPTER VII

Predictive Controllers for Spacecraft Relative

Motion Maneuvers

In this chapter, predictive controllers based on LQ MPC and IPA-SQP MPC are

applied to spacecraft relative motion maneuvers. IPA-SQP MPC is designed, and

compared to the results by the LQ MPC approach to evaluate the effectiveness of the

IPA-SQP MPC. It is shown that the IPA-SQP algorithm can directly handle non-

linear constraints on thrust magnitude without resorting to saturation or polyhedral

norm approximations. Spacecraft fuel consumption related metrics are examined for

performance evaluation and comparison.

Although LQ MPC cannot directly handle nonlinear constraints, it is demon-

strated that various constraints arising in the maneuvers can be effectively handled

with the LQ MPC approach. The two cases of a non-rotating and a rotating (tum-

bling) platform are treated separately, and trajectories are evaluated in terms of

maneuver time and fuel consumption. The LQ MPC is applied to debris/obstacle

avoidance maneuvers with the debris/obstacle in the spacecraft rendezvous path.
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7.1 MPC Approach for Spacecraft Relative Motion Control

The requirements in rendezvous and docking problems lead to control problems

with imposed pointwise-in-time and terminal constraints on both state and control

variables. For instance, the approaching spacecraft must maintain its position within

a Line-of-Sight (LOS) cone from the docking port on the target platform. In addition,

terminal velocity of the spacecraft should match the velocity of the docking port

to ensure soft-docking. The docking port may exhibit complicated motion if, for

instance, the target spacecraft is out-of-control and is tumbling. The collision with

debris/obstacle emerging on the spacecraft path must be avoided. The spacecraft fuel

consumption must be minimized during the maneuvers. The above requirements and

constraints can be systematically treated using MPC framework.

The LQ MPC approach for spacecraft relative motion control problems has been

developed to improve fuel efficiency, maneuvering speed, safety and robustness through

feedback control [107, 115, 116, 117]. The approach is based on utilizing LQ MPC

coupled with dynamically reconfigurable linear constraints. The LQ MPC approach

is feasible for implementation on-board of the spacecraft since the LQ MPC reduces

to an online solution of a QP for which effective numerical solvers exist. It was also

demonstrated that MPC based control is robust to unmeasured disturbances.

While the spacecraft relative motion dynamics can be approximated as linear,

several of constraints, such as the constraint on the 2−norm thrust magnitude relevant

to single thruster spacecraft configuration, are nonlinear. Other constraints, such as

the requirement ‘within LOS approach’ in three dimensional maneuvers [136], are

nonlinear.

In Section 7.2, we investigate solutions to the problem using nonlinear MPC that

enables to handle nonlinear constraints directly and is based on the IPA-SQP algo-

rithm since this is an online nonlinear MPC approach, it can also be applied to relative

motion control on elliptic orbits where the linearized dynamics are time-varying. We
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apply the IPA-SQP MPC to spacecraft relative motion control problems with thrust

magnitude constraints. To evaluate the effectiveness of the IPA-SQP approach, the

simulation results of the IPA-SQP MPC are compared with the results of the LQ

MPC. The fuel consumption is also evaluated for both approaches. In addition, we

present the simulation results of the IPA-SQP algorithm handling a nonlinear thrust

magnitude constraint.

Figure 7.1: Spacecraft and the reference frame.

7.2 Spacecraft Proximity Maneuvering

We consider a class of relative motion control problems in which a spacecraft is

controlled to a target position when the target position is located on a circular orbit

around the Earth as shown in Figure 7.1. The spacecraft is represented by a point

mass, and it has to approach the target position. The motion of the target and of the

spacecraft are confined to the orbital x− y plane, where y corresponds to the orbital

track direction and x corresponds to the radial direction along the radius-vector from

the center of the Earth to the target platform. The disturbances due to air drag,

solar pressure and non-spherical gravity perturbation (J2) effects [137] are neglected
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in the model formulation as the effects of these disturbances during the short time

period of the maneuver can be compensated by the MPC feedback.

The treatment of planar spacecraft motion is consistent with requirements of typ-

ical rendezvous and docking maneuvers [101]. The out-of-plane relative dynamics are

decoupled from the planar dynamics and are stable, and hence are neglected, here.

The spacecraft translational motion is actuated by thrusters. We assume that

thrusters can be operated to generate prescribed propulsive forces in x and y direc-

tions and that the thrust magnitude is limited. The prescribed thrust forces can

be physically realized by control allocation to appropriate thruster on-off times, see

[101, 110]. For a single main thruster spacecraft configuration, we assume that the

spacecraft orientation is changed appropriately by the attitude control system to

realize the prescribed thrust vector. The MPC feedback can be relied upon to com-

pensate for thrust vector direction and magnitude errors, as it will be shown later in

simulations.

7.2.1 Equations of Motion

To express the motion of the spacecraft relative to the target platform, we use

the Clohessy-Wiltshire-Hill (CWH) equations [103, 137]. Since the target platform is

in a circular orbit around the Earth of radius R0 (m), the orbital rate is n =
√

µ
R3

0

(rad/s), where µ (m3/s2) is the gravitational parameter of the Earth. The reference

Hill’s frame is located at the target platform center of mass; hence it rotates with

orbital rate n with respect to the inertial reference frame which is located at the center

of the Earth. The position vector to the target’s center of mass from the center of

the Earth is expressed as ~R0 = R0ı̂. The relative position vector of the spacecraft

with respect to the platform is expressed as δ~r = δxı̂+ δy̂, where δx, δy (m) are the

components of the position vector of the spacecraft relative to the platform center.

The position vector of the spacecraft with respect to the center of the Earth is thus
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given by ~R = ~R0 + δ~r = (R0 + δx)̂ı+ δy̂. The equations of motion for the spacecraft

are nonlinear and can be expressed in vector form as

~̈R = −µ
~R

R3
+

1

mc

~F , (7.1)

where ~F denotes the vector of forces applied to the spacecraft, and mc (kg) is the

mass of the spacecraft. Given that R =
√

(R0 + δx)2 + δy2 (m), we obtain

~̈R = (δẍ− 2nδẏ − n2(R0 + δx))̂ı+ (δÿ + 2nδẋ− n2δy)̂.

For δr << R, the CWH equations [103, 137] approximate the relative motion dy-

namics as

δẍ− 3n2δx− 2nδẏ =
Fx
mc

= ux,

δÿ + 2nδẋ =
Fy
mc

= uy,

(7.2)

where ux, uy (m/s2) are acceleration components of the spacecraft in x and y direc-

tions, induced by the thrust forces Fx, Fy (N), respectively. The spacecraft accelera-

tions are subsequently treated as control signals as it is common in these applications

[101].

7.2.2 Model and Thrust Constraints

Model (7.2) can be formulated as

Ẋ = AX +BU, (7.3)

where X ∈ R4 is the state vector, U ∈ R2 is the control vector and
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X=



δx

δy

δẋ

δẏ


, A=



0 0 1 0

0 0 0 1

3n2 0 0 2n

0 0 −2n 0


, B=



0 0

0 0

1 0

0 1


, U=

 ux

uy

.

For the development of the MPC controller, the continuous-time spacecraft model (7.3)

is discretized in time with a sampling period Ts (s) leading to the discrete-time model,

X(k + 1) = AdX(k) +BdU(k), (7.4)

where X(k) ∈ R4 and U(k) ∈ R2 denote, respectively, the state and input vectors at

the sampling instant k ∈ Z0+, respectively.

A similar model to (7.4) can be obtained if thruster forces are replaced by ∆v

impulse controls. In this case

BdU(k) = AB̄d∆v, (7.5)

where B̄d is a constant matrix that maps impulsive velocity change ∆v to the full

state change [138].

In the sequel we consider thrust forces that actuate the spacecraft translational

motion. The thrusters are assumed to generate prescribed propulsion forces in x and

y directions. For a single thruster spacecraft, the constraint on the maximum thrust

magnitude has the following form,

u2
x + u2

y ≤ u2
max. (7.6)

This constraint is nonlinear, but only linear input constraints can be enforced in the
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LQ MPC. By constraining

−umax√
2
≤ ux(k) ≤ umax√

2
,

−umax√
2
≤ uy(k) ≤ umax√

2
,

(7.7)

constraint (7.6) can be conservatively enforced. To avoid unnecessary control author-

ity reduction, we impose the thrust magnitude constraints in the form

−umax ≤ ux(k) ≤ umax,

−umax ≤ uy(k) ≤ umax,

(7.8)

and if ux(k)2 + uy(k)2 > u2
max occurs for some k, we modify the computed ux(k) and

uy(k) by directionality preserving scaling [101],

u′x(k) =
ux(k)√

ux(k)2 + uy(k)2
umax,

u′y(k) =
uy(k)√

ux(k)2 + uy(k)2
umax.

(7.9)

Remark 7.1. The approach mentioned above can be generalized to enforcing con-

straints

−γ̄umax ≤ ux(k) ≤ γ̄umax,

−γ̄umax ≤ uy(k) ≤ γ̄umax,

(7.10)

where γ̄ ∈ [1/
√

2, 1] is a parameter, chosen offline, that trades-off conservativeness

of the constraints and reliability of the trajectory prediction. In fact, for γ̄ =

1/
√

2, (7.10) reduces to (7.7), which is more conservative than (7.8), hence, limit-

ing the performance, but it ensures that the acceleration for the planned trajectory

can always be achieved. Instead for γ̄ = 1, (7.10) reduces to (7.9), which is less

conservative, yet it may occasionally, happen that the acceleration for the planned

trajectory cannot be actually achieved. For γ̄ ∈ (1/
√

2, 1), the intermediate trade-offs
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are obtained.

In Section 7.2.4, we discuss the simulation results of the IPA-SQP MPC and

the LQ MPC with the linear constraints (7.8) modified according to (7.9). We will

also present the results of a simulated maneuver with the nonlinear constraint (7.6)

enforced directly using the IPA-SQP MPC.

7.2.3 Model Predictive Controller Design

We design the MPC controller with the dynamic model (7.4) and thrust magnitude

constraint (7.6) or (7.8) using the IPA-SQP as the optimization algorithm. To define

the cost function for the MPC controller, we first compute the value function of the

infinite horizon unconstrained LQ problem for stabilizing the relative position and

velocity of the spacecraft to the origin, i.e.,

min
U(·)

J =
∞∑
k=0

X(k)TQX(k) + U(k)TRU(k), (7.11)

where

Q =



Q11 0 0 0

0 Q22 0 0

0 0 Q33 0

0 0 0 Q44


=

 Q1 02×2

02×2 Q2

 , R =

 R11 R12

R21 R22

 ,

U(·) = {U(0), U(1), · · · } and 0n×m denotes an n ×m zero matrix. In (7.11), Q is a

positive-definite state weighting matrix, and R is a positive-definite control weighting

matrix. Let P denote the solution of the Riccati equation for solving problem (7.11),

i.e.,

P = AT
dPAd − AT

dPBd(B
T
d PBd +R)−1BT

d PAd +Q, (7.12)
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and K the corresponding LQR feedback gain,

P =



P11 P12 P13 P14

P21 P22 P23 P24

P31 P32 P33 P34

P41 P42 P43 P44


=

 P1 P2

P3 P4

 , K =

 K11 K12 K13 K14

K21 K22 K23 K24

 ,

so that the value function is ν(X(0)) = X(0)TPX(0) for the LQ problem. We use P

in the terminal cost of the MPC problem, consistently with the classical MPC theory

(see [7, 32]), as a stability enforcing mechanism.

Then the MPC optimization problem with the infinity norm thrust constraint

(7.8) is expressed as

min
U(k)

J = XT(k +N |k)PX(k +N |k)

+
k+N−1∑
j=k

XT(j|k)QX(j|k) + UT(j|k)RU(j|k)

subject to

X(j + 1|k) = AdX(j|k) +BdU(j|k),

X(k|k) = X(k),

|U(j|k)|∞ ≤ umax.

(7.13)

where j : k ≤ j ≤ k+N . The notation a(j|k) indicates predicted value of a at time j

using information available at time k. Further U(k) = {U(k|k), . . . U(k +N − 1|k)},

and N denotes the prediction horizon. For the MPC optimization problem with the

nonlinear constraint (7.6), the constraint |U(j|k)|∞ ≤ umax in (7.13) is changed to

the nonlinear thrust constraint (7.6).
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Figure 7.2: Radial approach with the LQ MPC controller and with the infinity norm
input constraint. From top to bottom: Positions, control accelerations,
and phase plot of control inputs.
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Figure 7.3: Radial approach with the IPA-SQP MPC controller and with the infinity
norm input constraint. From top to bottom: Positions, control accelera-
tions, and phase plot of control inputs.
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7.2.4 Simulated Maneuvers

For a nominal 500 km altitude circular orbit, we have the mean motion n =

1.107× 10−3 rad/s. Assuming close proximity maneuvering, the sampling period Ts

is 0.5 sec and the simulation time is 150 sec. The prediction horizon N , the constraint

horizon, and the control horizon are all set to be 20 in the simulations. The weighting

matrices in (7.13) were selected as

Q =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


, R =

 104 0

0 104

 .

The value of umax was chosen as 0.2 m/s2.

In order to evaluate simulation results of the IPA-SQP versus the LQ MPC, we

consider a radial approach maneuver. In our simulations the initial relative position

of the spacecraft with respect to the target point is (δx0, δy0) = (200,−20) (m) and

the relative velocity is assumed to be zero.

7.2.5 Linear Thrust Constraints

Figures 7.2 and 7.3 illustrate the maneuvers of spacecraft with the infinity norm

thrust constraint (7.8) for the LQ MPC and the IPA-SQP MPC, respectively. The

phase plots of control inputs of both controllers, together with the infinity norm

constraint, are shown in Figures 7.2 and 7.3 indicating that the constraint is satisfied

in both cases. The spacecraft trajectories are similar in both cases.

Figure 7.4 presents the simulation results by imposing (7.9) on the output of each

controller to a posteriori enforce a tighter 2−norm constraint for the IPA-SQP MPC.

From the initial time to 40 sec the control is scaled based on (7.9). The ux−uy phase

plot of control inputs in Figure 7.4 illustrates the directionality preserving scaling
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effect. The results of the LQ MPC by directionality preserving scaling are similar

with the results in Figure 7.4.

7.2.6 Nonlinear Thrust Constraint

Figure 7.5 illustrates the results of the simulated maneuver with the nonlinear

2−norm constraint being enforced by the IPA-SQP MPC. Note that the control ac-

celerations in Figure 7.5 have different initial values from those of the cases with the

infinity norm constraint in Figure 7.4. In addition, the trajectory of control inputs

in Figure 7.5 converges to the origin along the path that is different from the cases

with the infinity norm constraint. In the next section we compare fuel consumption

of the maneuvers.

7.2.7 Fuel Consumption Analysis

We consider three fuel consumption-related metrics

J1 =

Td∑
k=0

|ux(k)|+ |uy(k)|,

J2 =

Td∑
k=0

(ux(k))2 + (uy(k))2,

J3 =

Td∑
k=0

√
(ux(k))2 + (uy(k))2,

(7.14)

where Td = ceil(td/Ts), ceil is the rounding to the closest larger integer, and td is the

‘time to dock’ in seconds, i.e., the time it takes from the initial condition to the target

position or achieve docking.

The metric J1 is relevant to the fuel consumption of the spacecraft which has sets

of orthogonal thrusters that can be simultaneously fired. The metric J2 represents

a quadratic penalty on the control effort and is closely related to the control cost

in the MPC cost function, but not directly to the fuel consumption. Finally, the
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Figure 7.4: Radial approach with the IPA-SQP MPC controller and with the infinity
norm input constraint modified by directionality preserving scaling. From
top to bottom: Positions, control accelerations, and phase plot of control
inputs.
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Figure 7.5: Radial approach with the IPA-SQP MPC controller and with the 2−norm
input constraint. From top to bottom: Positions, control accelerations,
and phase plot of control inputs.
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metric J3 is relevant to the spacecraft with a single thruster which is re-oriented (e.g.,

by controlling the spacecraft attitude) as necessary to realize the desired propulsive

force. In what follows, we highlight the relationship between these metrics for the

MPC maneuvers on the basis of the results of our simulations.

Table 7.1 gives the results of fuel-related costs of the IPA-SQP MPC and the LQ

MPC where Td = 150 sec is the terminal time of simulations. LQ MPC 1 and IPA-

SQP 1 are the cases with only the infinity norm thrust magnitude constraint, and

LQ MPC 2 and IPA-SQP 2 are the cases with directional preserving scaling used to

enforce the 2−norm thrust constraint. IPA-SQP 3 shows the case with the 2−norm

thrust constraint.

LQ MPC 1 and IPA-SQP 1 have quite similar fuel related costs. IPA-SQP 3 has

lowest fuel costs. Note that in IPA-SQP 3 the constraints are enforced in the design

while the thrust magnitude constraints are enforced a posteriori in IPA-SQP 2.

Table 7.1: Fuel-related costs of the MPC controllers.
J1 J2 J3

LQ MPC 1 32.48 5.38 28.99
IPA-SQP 1 32.13 5.32 28.74
LQ MPC 2 32.32 5.25 28.87
IPA-SQP 2 32.04 5.21 28.67
IPA-SQP 3 31.59 5.21 28.63

7.2.8 Optimality Condition and Computation Time

We illustrate the trade-off between efficient computation and accuracy of the op-

timization by the IPA-SQP algorithm. In the IPA-SQP algorithm, we use the termi-

nation threshold H t
u for checking the optimality condition, Hu = 0. In implementing

simulations, we terminate the algorithm when Hu < H t
u is satisfied for small value

H t
u.

Using the same simulation of the IPA-SQP MPC with the nonlinear thrust con-

straint, we compare cumulative computation time and fuel consumption-related costs
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with different termination thresholds. Table 7.2 demonstrates that fuel-related costs

are improved slightly with H t
u = 10−2 compared with the results of H t

u = 10−1. The

value of H t
u = 10−4 gives slight improvement in the fuel-related costs over H t

u = 10−2

although it requires longer computation time. Figure 7.6 illustrates the cumulative

computation time of the IPA-SQP MPC with different H t
u. We measure computa-

tion time by CPU time usage. The simulations are performed on a computer with

Intel(R) CPU @ 2.10 GHz and the controller code is implemented in MATLAB. The

total computation time is 34.99 sec when H t
u = 10−1. For the case of H t

u = 10−2 and

H t
u = 10−4, the computing time is 40.96 sec and 45.67 sec, respectively.

Table 7.2: Fuel-related costs with different H t
u .

H t
u J1 J2 J3

10−1 31.59 5.21 28.63
10−2 31.46 5.19 28.50
10−4 31.38 5.16 28.42
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Figure 7.6: Cumulative computation time of the IPA-SQP MPC with different H t
u .

We now compare computation time of the IPA-SQP approach with another method

of solving the nonlinear MPC problem with the 2−norm constraint using fmincon

function of MATLAB. We assume all simulation conditions are the same as the pre-

vious example. The threshold H t
u is selected as 10−1. In Figure 7.7 the trajectories

resulting from the nonlinear MPC with the IPA-SQP algorithm are illustrated by the
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solid line and the results using fmincon is shown by the dot line when the same non-

linear MPC problem is solved. The two solutions are almost identical in performance

while the total computational time of the IPA-SQP is 34.99 sec and that of fmincon

is 1424.30 sec. The IPA-SQP reduces total computational time for the closed-loop

simulation by about 97.5 %. The costs J1 and J3 are slightly less in the IPA-SQP

MPC as reported in Table 7.3.
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Figure 7.7: Trajectories of the nonlinear MPC with 2−norm constraint using the
IPA-SQP and using fmincon.

Table 7.3: Fuel-related costs of IPA-SQP 3 and fmincon.
J1 J2 J3

IPA-SQP 3 31.59 5.21 28.63
fmincon 31.61 5.21 28.64

7.2.9 In-track Approach

For completeness we include simulation results in the case of in-track approach

where the spacecraft approaches the target point in the direction along the orbital

track. The initial relative position of the spacecraft with respect to the target point is

chosen as (δx0, δy0) = (−20, 200) (m) to simulate the in-track approach. The relative
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Figure 7.8: In-track approach with the IPA-SQP MPC controller and with the
2−norm input constraint. From top to bottom: Positions, control ac-
celerations, and phase plot of control inputs.
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velocity is assumed to be zero. The other simulation conditions such as the sampling

time Ts, the prediction horizon N , the constraint horizon, the control horizon, the

weighting matrices, and the maximum thrust magnitude umax are the same as the

previous example. Figure 7.8 illustrates the results of the simulated maneuver of

the in-track approach with the IPA-SQP controller handling the nonlinear 2−norm

constraint.

7.3 Spacecraft Rendezvous and Docking Maneuvering

In this section, spacecraft rendezvous and docking problem in orbital plane is

treated using a traditional LQ MPC formulation, where the cost penalizes the control

effort and distance to the port. Several constraints including LOS constraints and

soft-docking constraints are imposed. The soft-docking constraints can be enforced

by replacing them by appropriately defined, convex, pointwise-in-time constraints.

Prediction of the platform and docking port motion, in the case of a rotating platform,

is demonstrated. The prediction is beneficial in terms of being able to satisfactorily

complete a larger variety of maneuvers and in terms of reducing fuel consumption.

7.3.1 Equations of Motion

We consider autonomous rendezvous and docking maneuvers between a spacecraft

and a target platform. The platform is assumed to have a disk shape of radius rp

(m). If the platform does not have disk shape to begin with or for fly-over maneuvers,

the platform can be over-bounded by a disk of a sufficiently large radius, see Figure

7.9. The center of mass of the platform is on a circular orbit around the Earth, and

the orbital radius is R0 (m). A docking port is located on the platform surface. The

platform rotates at a constant angular velocity ωp ≥ 0 (rad/s) around its center of

mass. The spacecraft is represented by a point mass, and it has to approach the

target platform for docking to the port. Other assumptions such as planar motion,
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Figure 7.9: Schematics of the spacecraft and target platform with an LOS cone.

x and y directions, and negligible disturbances are the same to the ones in Section

7.2.1.

The coordinates of the docking port in Hill’s frame at time instant k are associated

to the state variables rx(k), ry(k) (m) and have dynamics

rx(k + 1) = cos(ωpTs)rx(k)− sin(ωpTs)ry(k),

ry(k + 1) = sin(ωpTs)rx(k) + cos(ωpTs)ry(k),

(7.15)

where ωp (rad/s) is the angular velocity of the platform about its center of mass. If the

target platform is not rotating, then ωp = 0 and rx(k+ 1) = rx(k), ry(k+ 1) = ry(k).

In the rotating platform case, (7.15) enables to use MPC for docking to a moving

port. The relative coordinates of the spacecraft with respect to the docking port are

defined as

σx(k + 1) = δx(k)− rx(k),

σy(k + 1) = δy(k)− ry(k).

(7.16)

The state vector, augmented (7.4) with the position of the docking port and the
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relative coordinates from (7.16), has the following form

X̄ =

[
δx δy δẋ δẏ rx ry σx σy

]T
.

From (7.4), (7.15), and (7.16), we can represent the system model as,

X̄(k + 1) = ĀX̄(k) + B̄Ū(k), (7.17)

with appropriately defined Ā, B̄ and Ū = [UT s]T , where s is an auxiliary slack

variable used in the definition of the constraints, as explained next.

7.3.2 Constraints Modeling and Dynamic Reconfiguration

For computational efficiency reasons, we base our approach to spacecraft ren-

dezvous and proximity operations (RPO) maneuvering on the application of an LQ

MPC with linear inequality constraints. Various constraints in the RPO control

problem and the procedure to handle them by dynamically reconfigurable linear con-

straints are now discussed.

7.3.2.1 Line-of-Sight constraints

The LOS constraints confine the spacecraft to the intersection of the LOS cone,

with vertex moved slightly inside the platform and a half-plane. See lines a, b, and c

in Figure 7.10. Let γ denote the half of the LOS cone angle, and let rtol (m) denote

the distance by which the vertex of LOS cone is moved inside the platform. The

value rtol > 0, which is chosen offline, slightly relaxes the LOS constraints to mitigate

ill-conditioning of the problem caused by the LOS constraints, corresponding to a

and b, becoming borderline feasible as the spacecraft approaches the docking port.

The constraint corresponding to the half-plane c, defined by a tangent line to the

platform at the position of the docking port, ensures that collisions of the spacecraft
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Figure 7.10: Geometric representation of the LOS constraints.

with the target platform are avoided with the relaxed cone constraints.

The LOS constraints are mathematically defined by


a: sin(ϕ(k)+γ)

(rp−rtol) sin γ
δx(k)− cos(ϕ(k)+γ)

(rp−rtol) sin γ
δy(k) ≥ 1,

b: − sin(ϕ(k)−γ)
(rp−rtol) sin γ

δx(k) + cos(ϕ(k)−γ)
(rp−rtol) sin γ

δy(k) ≥ 1,

c: cosϕ(k)
rp sin γ

δx(k) + sinϕ(k)
rp sin γ

δy(k) ≥ 1,

(7.18)

where ϕ(k) is the angle between the platform docking port and the x-axis at the time

instant k.

For the case where the platform is not rotating and ϕ(k) is constant, i.e., ϕ(k) = ϕ,

the LOS constraints are linear inequalities in δx(k) and δy(k). For the case where

the platform rotates, i.e., ϕ(k) changes in time, we will consider and compare two

approaches for the treatment of LOS constraints (7.18) over the prediction horizon

of the MPC problem. In the first approach, ϕ(k) is assumed to remain constant over

the prediction horizon, and the constraints remain frozen. In the second approach

(see Section 7.3.3.2), we will approximately predict the changes in the LOS constraint

because of the platform rotation.
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7.3.2.2 Soft-docking constraint

The soft-docking constraint ensures that the relative velocity of the spacecraft,

once it approaches the docking port, is close to the docking port velocity. This

ensures that the spacecraft can follow the port and avoid excessive mechanical shock

when docking occurs.

Because the soft-docking constraint is a terminal constraint, to handle it by using

the conventional MPC formulation, we consider a related pointwise-in-time constraint,

requiring that the 1-norm of the spacecraft velocity relative to the docking port is

bounded by an affine function of the 1-norm of the distance of the spacecraft relative

to the docking port. A similar approach was used in [139] to handle the soft-landing

constraints for an electromagnetic actuator.

Let σx(j|k), σy(j|k) be the predicted values of the spacecraft position in x and y

directions relative to the docking port j steps ahead, given that k is the current time

instant at which the computations are performed. Similarly, let the predicted relative

velocities be denoted by δẋ(j|k) and δẏ(j|k) (m/s). The docking port velocities can

be predicted by vpx(j|k) = −ωpry(j|k) and vpy(j|k) = ωprx(j|k) to enforce over the

MPC prediction horizon the constraint

|σx(j|k)|+|σy(j|k)| ≥ η{|δẋ(j|k)−vpx(j|k)|+|δẏ(j|k)−vpy(j|k)|−s(j|k)}−β. (7.19)

Here, η > 0 and β > 0 are constant parameters that define the shape of the feasible

set in the position-velocity space. The variable s(j|k) is a slack variable that was

introduced as a component of Ū in (7.17), which is introduced to avoid infeasibility

of the constraint (7.19).

To handle the constraint (7.19), which is pointwise-in-time but still ‘mildly’ nonlin-

ear, we replace it by a related linear constraint based on the assumption that over the

prediction horizon the signs of σx(j|k), σy(j|k), δẋ(j|k)−vpx(j|k) and δẏ(j|k)−vpy(j|k)
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do not change. This leads to a dynamically reconfigurable constraint of the form,

sgn(δx(k))(σx(j|k)) + sgn(δy(k))(σy(j|k)) ≥ η{sgn(δẋ(k)− vpx(k))(δẋ(j|k)− vpx(j|k))

+ sgn(δẏ(k)− vpy(k))(δẏ(j|k)− vpy(j|k))− s(j|k)} − β,
(7.20)

where sgn(·) indicates the well-known sign function. The mismatch between the

predicted trajectory based on this simplifying assumption and the actual spacecraft

trajectory is compensated due to MPC recomputing the solution at every time instant

and updating the constraint representation in real-time.

With a limited loss of performance, constraint (7.20) can be further simplified to

ζ(k) ≥ η{sgn(δẋ(k)− vpx(k))(δẋ(j|k)− vpx(j|k))

+ sgn(δẏ(k)− vpy(k))(δẏ(j|k)− vpy(j|k))− s(j|k)} − β,
(7.21)

where

ζ(k)
∆
= |δx(k)− rx(k)|+ |δy(k)− ry(k)|

= |σx(k)|+ |σy(k)|.
(7.22)

The approach taken here to approximately handle the soft-docking constraint

(and related approach for debris/obstacle avoidance in Section 7.4) simplifies the

optimization problem to a level which enables its treatment by computationally ef-

fective, conventional MPC techniques based on linear models with linear constraints.

The subsequent simulation results indicate that this approach does not compromise

the response properties and enforces satisfactorily the constraints.

7.3.3 Model Predictive Controller Design

With the dynamical model and constraints defined in Section 7.2.2 and Sec-

tion 7.3.2, we design the MPC controller for the cases of non-rotating and rotating

platforms.
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7.3.3.1 MPC controller without prediction of platform motion

For the case of an MPC controller that does not use the prediction of the platform

motion over the horizon, the prediction model is based on (7.17) and (7.18) with

ωp = 0 and ϕ(k) = ϕ. We can express the prediction model in the form

X̄(j + 1|k) = ĀX̄(j|k) + B̄Ū(j|k), (7.23a)

Ȳ (j|k) = C̄X̄(j|k) + D̄Ū(j|k), (7.23b)

where (7.23b) represents the constrained output because of (7.17) and (7.19). These

output constraints are imposed as

Ȳ (j|k) ≥ Ȳmin(k), (7.24)

where Ȳmin(k) =

[
1 1 1 −β − ζ(k)

]T
. The matrices Ā, B̄, C̄ and D̄ in (7.23)

are expressed as

Ā =


Ad 04×4

02×2 02×2 Ω 02×2

I 02×2 −I 02×2

 , B̄ =

 Bd 04×1

04×2 04×1

 ,

C̄ =



C̄11 C̄12 0 0 0 0 0 0

C̄21 C̄22 0 0 0 0 0 0

C̄31 C̄32 0 0 0 0 0 0

0 0 C̄43 C̄44 C̄45 C̄46 0 0


, (7.25)

D̄ =

 03×2 03×1

01×2 η

 ,
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where

Ω =

 cos(ωpTs) − sin(ωpTs)

sin(ωpTs) cos(ωpTs)

 , I =

 1 0

0 1

 ,
and by assuming ϕ(j|k) = ϕ(k) = ϕ,

C̄11 =
sin(ϕ+ γ)

(rp − rtol) sin γ
, C̄12 = − cos(ϕ+ γ)

(rp − rtol) sin γ
, C̄21 = − sin(ϕ− γ)

(rp − rtol) sin γ
,

C̄22 =
cos(ϕ− γ)

(rp − rtol) sin γ
, C̄31 =

cosϕ

rp sin γ
, C̄32 =

sinϕ

rp sin γ
.

Here, C̄11, C̄12, C̄21, C̄22, C̄31 and C̄32 are used to represent the LOS constraints (7.18).

The elements C̄43, C̄44, C̄45 and C̄46 of C̄ are used to model (7.21), which approximates

the soft-docking constraint (7.19). Note that if δẋ(k) − vpx(k) ≥ 0, then C̄43 = −η,

C̄46 = ηωp; otherwise, C̄43 = η, C̄46 = −ηωp. If δẏ(k) − vpy(k) ≥ 0, then C̄44 = −η,

C̄45 = −ηωp; otherwise, C̄44 = η, C̄45 = ηωp.

At every time instant k, the MPC controller determines the control action on the

basis of the solution of the following optimization problem

min
Ū(k)

X̄(NJ |k)TP̄ X̄(NJ |k)+

NJ−1∑
j=0

X̄(j|k)TQ̄X̄(j|k)+Ū(j|k)TR̄Ū(j|k), (7.26a)

s.t. X̄(j + 1|k) = ĀX̄(j|k) + B̄Ū(j|k), (7.26b)

Ȳ (j|k) = C̄X̄(j|k) + D̄Ū(j|k), (7.26c)

X̄(0|k) = X̄(k), (7.26d)

Ū(j|k) = K̄X̄(j|k), j = NU + 1, . . . , NJ − 1, (7.26e)

Ȳ (j|k) ≥ Ȳmin(k), j = 0, . . . , NC , (7.26f)

Ū(j|k) ≥ Ūmin, j = 0, . . . , NU , (7.26g)

Ū(j|k) ≤ Ūmax, j = 0, . . . , NU , (7.26h)

where Ū(k) = {Ū(0|k), · · · , Ū(NU |k)}, NJ denotes the prediction horizon, NU de-

notes the control horizon, and NC denotes the constraint horizon. Smaller values of
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NU , and Nc tend to reduce the complexity of the optimal control problem (7.26),

and hence computational requirement of the platform where the MPC controller is

executed. The input constraints in (7.26) are defined by (7.8). The matrices P̄ , Q̄,

R̄, and K̄ are constructed from Q and R in (7.11) and the solution, P , of the Riccati

equation and the LQR gain K̄ for (7.11) as

P̄ =



02×2 02×2 02×2 02×2

02×2 P4 02×2 P3

02×2 02×2 02×2 02×2

02×2 P2 02×2 P1


, Q̄ =



02×2 02×2 02×2 02×2

02×2 Q2 02×2 02×2

02×2 02×2 02×2 02×2

02×2 02×2 02×2 Q1


,

R̄ =

 R 02×1

01×2 ρ

 , K̄ =

 02×2 K13 K14 02×2 K11 K12

02×2 K23 K24 02×2 K21 K22

 .
In (7.26), ρ > 0 is a large weight on the slack variable causing this variable to be zero

whenever feasible.

At every control cycle, from the measured/estimated state X̄(k), the MPC con-

troller solves (7.26) with respect to the finite sequence of control actions, Ū(k), and

applies the first element of the optimal sequence Ū∗(k) to the plant, Ū(k) = Ū∗(0|k).

The MPC feedback law is defined implicitly as the solution of the constrained opti-

mization problem (7.26); however, because of to the structure of (7.26), this feedback

law is a static (nonlinear) function of the current state, Ū(k) = ŪMPC(X̄(k)).

7.3.3.2 MPC controller with prediction of platform motion

Even if the constraints in (7.26) change with time, as the initial state of the

finite horizon optimal control problem X̄ changes, the bounds are assumed constant

in prediction. In this section, we propose a method to incorporate a prediction of

the LOS constraints (7.18) changes because of the rotation of the docking port for

the MPC optimization problem. To continue exploiting an LQ MPC framework, we
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employ the approximations based on the Taylor series expansion

ϕ(j|k) ' ϕ(k) + ϕ̇(k)jTs = ϕ(k) + ϕ̄(j, k, Ts), (7.27)

sin(ϕ(j|k) + γ) ' sin(ϕ(k) + γ) + cos(ϕ(k) + γ)ϕ̄(j, k, Ts),

cos(ϕ(j|k) + γ) ' cos(ϕ(k) + γ)− sin(ϕ(k) + γ)ϕ̄(j, k, Ts),

(7.28)

where k denotes the current time instant and j ∈ Z0+ is a future time instant with

respect to k. By substituting (7.27) and (7.28) into the LOS constraints (7.18), we

can obtain the following LOS constraints for prediction of the platform motion:


a′ : L1δx(j|k)− L2δy(j|k) + {L2δx(k) + L1δy(k)}(ϕ(j|k)− ϕ(k)) ≥ 1,

b′ : −L3δx(j|k) + L4δy(j|k)− {L4δx(k) + L3δy(k)}(ϕ(j|k)− ϕ(k)) ≥ 1,

c′ : L5δx(j|k) + L6δy(j|k)− {L6δx(k) + L5δy(k)}(ϕ(j|k)− ϕ(k)) ≥ 1,

(7.29)

where

L1 =
sin(ϕ(k) + γ)

(rp − rtol) sin γ
, L2 =

cos(ϕ(k) + γ)

(rp − rtol) sin γ
, L3 =

sin(ϕ(k)− γ)

(rp − rtol) sin γ
,

L4 =
cos(ϕ(k)− γ)

(rp − rtol) sin γ
, L5 =

cos(ϕ(k))

rp sin γ
, L6 =

sin(ϕ(k))

rp sin γ
.

In addition, to predict the future position of the LOS cone we introduce the auxiliary

state vector,

Z(j|k) =

 z1

z2

 =

 ϕ(j + 1|k)

ϕ(j|k)

 =

 ϕ(j|k) + ωpTs

ϕ(j|k)

 , (7.30)

131



with dynamics defined by

Z(j + 1|k) =

 2 −1

1 0

Z(j|k) = ΘZ(j|k). (7.31)

Considering (7.17), (7.29), and (7.31), the augmented prediction model has state

vector

X̃ =

[
δx δy δẋ δẏ rx ry σx σy z1 z2

]T
, (7.32)

and dynamics formulated as a linear system subject to time-varying constraints

X̃(j + 1|k) = ÃX̃(j|k) + B̃Ũ(j|k), (7.33a)

Ỹ (j|k) = C̃X̃(j|k) + D̃Ũ(j|k), (7.33b)

where

Ã =

 Ā 08×2

02×8 Θ

 , B̃ =

 B̄

02×3

 , D̃ = D̄, Ũ = Ū ,

C̃ =



C̄11 C̄12 0 0 0 0 0 0 0 C̃LOS1

C̄21 C̄22 0 0 0 0 0 0 0 C̃LOS2

C̄31 C̄32 0 0 0 0 0 0 0 C̃LOS3

0 0 C̄43 C̄44 C̄45 C̄46 0 0 0 0


,

C̃LOS1 = L2δx(k) + L1δy(k),

C̃LOS2 = −L4δx(k)− L3δy(k),

C̃LOS3 = −L6δx(k)− L5δy(k),

so that we have the auxiliary state vector and terms for the LOS constraints in the

new model.
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The output constraints (cf. (7.24)) are

Ỹ (j|k) ≥ Ỹmin(k), Ỹmin(k) = Ȳmin(k). (7.34)

Thus, for the case where prediction of the port motion is performed, the MPC

optimal control problem is formulated from (7.32)–(7.34) as

min
Ũ(k)

X̃(NJ |k)TP̃ X̃(NJ |k) +

NJ−1∑
j=0

X̃(j|k)TQ̃X̃(j|k)+Ũ(j|k)T R̃Ũ(j|k),(7.35a)

s.t. X̃(j + 1|k) = ÃX̃(j|k) + B̃Ũ(j|k), (7.35b)

Ỹ (j|k) = C̃X̃(j|k) + D̃Ũ(j|k), (7.35c)

X̃(0|k) = X̃(k), (7.35d)

Ũ(j|k) = K̃X̃(j|k), j = NU + 1, . . . , NJ − 1, (7.35e)

Ỹ (j|k) ≥ Ỹmin(k), j = 0, . . . , NC , (7.35f)

Ũ(j|k) ≥ Ũmin, j = 0, . . . , NU , (7.35g)

Ũ(j|k) ≤ Ũmax, j = 0, . . . , NU , (7.35h)

where Ũ(k) = {Ũ(0|k), · · · , Ũ(NU |k)},

P̃ =

 P̄ 08×2

02×8 02×2

 , Q̃ =

 Q̄ 08×2

02×8 02×2

 , R̃ = R̄, K̃ =

[
K̄ 02×2

]
,

and the input constraints in (7.35) are defined by (7.8).

7.3.4 Simulated Approach of a Non-Rotating Platform

In the simulations, we have used the following parameters representative of space-

craft maneuvering in close proximity of a non-rotating target platform: the radius of

the target rp is 2.5 m, the half angle of the LOS cone γ is 10 deg, the tolerance rtol
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is 0.5 m, and the orbital rate n is 1.107× 10−3 rad/s (corresponding to the orbit of

500 km above the Earth). The controller sampling period is Ts = 0.5 s. The total

maneuver simulation time is 100 sec. In (7.19), η = 1 and β = 0.25. The slack

variable weight is set as ρ = 1010. The weighting matrices are chosen in the form

Q = 3× 103

 102I 02×2

02×2 I

 , R = 102I,

The value of R was subsequently modified to study the sensitivity of fuel consump-

tion and time-to-dock. In the simulations, we use umax = 0.2 m/s2 for the input

constraints.

For all simulations, the prediction horizon of the MPC problem was set asNJ = 40,

the constraint horizon for both input and output constraints was set as NC = 5, and

the control horizon was set as NU = 5. These values were determined by tuning

closed-loop response using simulations.

7.3.4.1 Radial approach

In the radial approach, the spacecraft approaches the platform along the radial

line from the center of the Earth to the center of the target. To simulate the radial

approach, we choose the initial location for the spacecraft as (δx0, δy0) = (100,−10)

(m), which is in the range of admissible initial conditions for RPO maneuvers, and

the initial position of the docking port as (rx0, ry0) = (2.5, 0) (m). The closed-loop

responses are shown in Figure 7.11. In this and other plots of spacecraft trajectory on

the x-y plane, the LOS constraints are shown by red dashed lines. The soft-docking,

the LOS cone and thrust magnitude constraints are enforced by the MPC controller,

and the spacecraft successfully completes the maneuver.
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Figure 7.11: Radial approach to a non-rotating platform with the MPC controller.
Top row: Trajectory on the x-y plane (left), control accelerations u′x
and u′y (right). Bottom row: Relative velocity 1−norm versus relative
position 1−norm (left), and the plot of u′y versus u′x with magnitude
saturation (right).

7.3.4.2 In-track approach

In the in-track approach, the spacecraft approaches the platform in the direction

along the orbital track. To simulate the in-track approach, the initial location of the

spacecraft is chosen as (δx0, δy0) = (−10, 100) (m) and the initial position of the

docking port as (rx0, ry0) = (0, 2.5) (m). The closed-loop responses are shown in

Figure 7.12.

7.3.4.3 Trajectories from different initial locations

The initial location of the spacecraft is now varied within the LOS cone. The

starting points consist of points on the boundaries of the LOS cone and points in the

interior of LOS cone. The results are shown in Figure 7.13 for the radial approach
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Figure 7.12: In-track approach to a non-rotating platform with the MPC controller.
Top row: Trajectory on the x-y plane (left), control accelerations u′x
and u′y (right). Bottom row: Relative velocity 1−norm versus relative
position 1−norm (left), and the plot of u′y versus u′x with magnitude
saturation (right).
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Figure 7.13: Trajectories from different initial spacecraft locations for a non-rotating
platform for radial approach (left), and for in-track approach (right).

Table 7.4: Metrics in radial approach when α varies between 102 and 107.
α 102 103 104 105 106 107

J1 20.43 20.44 20.43 20.34 20.63 20.63
J2 3.37 3.37 3.37 3.35 3.36 3.31
J3 17.72 17.72 17.74 17.62 17.70 17.76
td 53.00 53.00 53.00 52.50 52.50 54.00

and for the in-track approach. The trajectories near both boundaries have similar

curvature in the both cases.

7.3.4.4 Analysis of fuel consumption-related metrics

Tables 7.4, 7.5 and 7.6 summarize the results of fuel-related costs in the radial

approach for different values of the matrix R scaled by a parameter α, which is varied

between 102 and 109, that is,

R = αI. (7.36)

Note that when α ranges between 102 and 107, J1, J2, J3 and td are essentially

Table 7.5: Metrics in radial approach when α varies between 107 and 2.5× 108.
α 107 2.5× 107 5× 107 7.5× 107 108 2.5× 108

J1 20.63 20.59 20.17 20.13 19.96 19.53
J2 3.31 3.34 3.27 3.31 3.28 3.22
J3 17.76 17.91 17.67 17.76 17.66 17.39
td 54.00 57.50 63.50 67.00 69.50 74.50
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Table 7.6: Metrics in radial approach when α varies between 2.5× 108 and 109.
α 2.5× 108 5× 108 7.5× 108 109

J1 19.53 19.19 18.94 18.77
J2 3.22 3.14 3.08 3.03
J3 17.39 17.12 16.91 16.77
td 74.50 74.50 71.50 65.50

constant. The Ji, i = 1, 2, 3, all decrease and td increases for 107 ≤ α ≤ 2.5×108. For

α ≥ 2.5×108 the trajectories start to behave differently. They are faster in the initial

phase, approach the platform a bit higher on the y-axis than the docking port and

then proceed (‘slide’) to the docking port. The Ji, i = 1, 2, 3, continue to decrease as

α increases; however, td also decreases (from 74.50 sec at α = 2× 108 to 65.50 sec at

α = 109).

Overall, the three different metrics, J1, J2, and J3, appear to exhibit similar trends

which are opposite to that of td, except for very large values of α, when, however,

the controller tends to be scarcely robust to external disturbances. These results

indicate that the quadratic type MPC cost function that does not directly account

for the fuel consumption yet allows to formulate the controller as an LQ MPC has

a direct influence on the final attributes (fuel consumption and time to dock). The

cost function weights can be used as tuning knobs to adjust the fuel consumption

versus the time-to-dock performance of the spacecraft. Figure 7.14 illustrates the

influence of α on the spacecraft trajectory during radial approach as α varies as in

Table 7.4, 7.5 and 7.6.

7.3.4.5 Compensation of the disturbances

As opposed to robust MPC (see e.g., [140, 141, 142] and the references therein),

the MPC design that is proposed here, does not provide an analytically quantifiable

robustness. It, however, possesses the intrinsic robustness of feedback control, while

resulting in a simpler algorithm that does not need information on the ranges and

type of disturbances, which, for the application at hand, may be difficult to obtain.
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Figure 7.14: Trajectories when α varies between 102 and 109.

In this section, we demonstrate the intrinsic robustness of the MPC controller to

unmeasured disturbances. In orbit, the disturbances can occur due to thrust errors,

air drag in Low Earth Orbit (LEO) or solar pressure in Geostationary Orbit (GEO).

The simulations are performed here for a non-rotating target platform.

The air drag can be represented by a constant in-track disturbance acceleration

[101] with magnitude,

w =
Fy
mc

= −ρ
2
n2R2

0

(
1

Bc

− 1

Bp

)
,

where Bc is the ballistic coefficient of the spacecraft, Bp is the ballistic coefficient of

the platform and ρ is average air density at spacecraft altitude. The equations (7.3)

with the disturbance acceleration added take the following form,

X̄(k + 1) = ĀX̄(k) + B̄Ū(k) +



0

0

0

Ts


w. (7.37)

Motivated by this air drag model, we assume an aggressive scenario when the

disturbance is acting along the orbital track and had large constant magnitude of 10
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Figure 7.15: Radial approach subject to disturbances. Top row: Open-loop trajectory
(left), open-loop control accelerations (right). Bottom row: Closed-loop
trajectory (left), closed-loop control accelerations (right).

percent of thrust, i.e., w = 0.1× umax.

We first simulate the open-loop spacecraft motion with the control inputs specified

as functions of time and under the effects of the disturbance. These control inputs are

the same as in Figure 7.11 and 7.12 and successfully complete the maneuver without

a disturbance. The closed-loop trajectories are also simulated, where the control

input is recomputed by the MPC at every step using the current state as an initial

condition and without knowledge of the disturbance. The results of the open-loop

and closed-loop maneuvers for radial and in-track approach by the spacecraft affected

by the disturbance are shown in Figure 7.15 and 7.16. With the open-loop control,

the spacecraft fails to complete the maneuver due to the disturbances. On the other

hand, the MPC controller is able to successfully guide the spacecraft despite these

disturbances: The final error is about 1.2 cm for both radial and in-track maneuvers.
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Figure 7.16: In-track approach subject to disturbances. Top row: Open-loop trajec-
tory (left), open-loop control accelerations (right). Bottom row: Closed-
loop trajectory (left), closed-loop control accelerations (right).

Figures 7.17 and 7.18 illustrate additional responses to disturbances for the radial

and in-track approaches, respectively. We consider the cases of: (i) constant distur-

bance vector with components of magnitude (0.1 × umax) on both x and y axis; (ii)

random disturbance in acceleration actuation amplitude and direction. In the second

case, the disturbance simulates errors in thrust direction, for instance due to some

error in the attitude control, and amplitude, for instance due to quantization of the

thrust pulses. In this case, the actuated spacecraft acceleration is

ur(k) = satumax
2 (Rθ(k)U

∗(0|k))

u(k) = satumax
2 ((1 + ud(k))ur(k))

where satumax
2 denotes the saturation in 2-norm by directionality preserving scal-
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Figure 7.17: Radial approach subject to disturbances. Top row: Constant distur-
bance in x-y direction. Closed-loop trajectory (left), closed-loop control
accelerations (right). Bottom row: Random magnitude disturbance in
in x-y direction. Closed-loop trajectory (left), closed-loop control accel-
erations, solid, and actuated accelerations, dash, (right).

ing (7.9), Rθ =

 cos(θ) − sin(θ)

sin(θ) − cos(θ)

 is the matrix producing a rotation of angle

θ, and θ(k) ∈ [−π
6
, π

6
], ud(k) ∈ [−0.15, 0.15] are independent, uniformly distributed

discrete-time random variables whose values change every 5s. In radial and in-track

approaches, the MPC controller is able to successfully compensate the effect of these

disturbances. The trajectories obtained for 10 simulations with random disturbances

on both radial and in-track approaches are shown in Figure 7.19. Finally, in the

simulations, actuation disturbances of up to ±25% magnitude and ±45deg direction

appear to be tolerable for the proposed control strategy.
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Figure 7.18: In-track approach subject to disturbances. Top row: Constant distur-
bance in x-y direction. Closed-loop trajectory (left), closed-loop control
accelerations (right). Bottom row: Random magnitude disturbance in
x-y direction. Closed-loop trajectory (left), closed-loop control acceler-
ations, solid, and actuated accelerations, dash, (right).
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Figure 7.19: Repeated simulations with random disturbances on thrust actuation.
Closed-loop radial approach trajectories (left). Closed-loop in-track ap-
proach trajectories (right).
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7.3.5 Simulated Approach of a Rotating Platform

The same parameters as in Section 7.3.4 were used to simulate the approach to

a rotating platform. In (7.19), β = 2.5+ωp

10
was made dependent on ωp to relax the

constraint in the case of a faster rotating platform.

In this section, we consider the case when the spacecraft approaches the platform

rotating in the counter-clockwise direction. We examine two cases. In the first case

while the platform rotates, the changes in LOS cone constraints due to rotation are

not accounted for in prediction. In other words, the MPC controller assumes that

the constraints remain frozen as they are at the current time instant. In the second

case, the evolution of LOS constraints due to platform rotation is (approximately)

predicted, as described in Section 7.3.3.2.

The initial position of the docking port is (rx0, ry0) = (2.5, 0) (m) and the space-

craft starts from a representative initial condition (δx0, δy0) = (50, 5) (m) in the

interior of the initial LOS cone. Such an initial condition and LOS cone position

correspond to a radial approach if the platform were not rotating. We simulate the

maneuvers for a lower platform angular rate of ωp = 0.6 deg/s and a higher platform

angular rate of ωp = 2.25 deg/s.

For ωp = 0.6 deg/s, Figure 7.20 and 7.21 show that maneuvers can be successfully

completed regardless of whether the prediction of platform motion and of the LOS

cone is performed or not. Table 7.7 compares the fuel consumption metrics and the

docking time for the maneuvers with and without platform motion prediction as the

control weighting α varies. For lower control weighting values, prediction reduces fuel

consumption (about 15 percent for α = 102). The time-to-dock is approximately the

same for the two controllers. The fuel consumption difference is eroded as control

weighting increase and both controllers start to strongly emphasize small control effort

and low fuel consumption. We have also found that this difference is also dependent

on the initial position of the spacecraft within LOS cone, and may be eroded when the
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Figure 7.20: Radial approach to a platform rotating at ωp = 0.6 deg/s without pre-
diction of platform motion. Top row: Trajectory on the x-y plane(left),
zoomed-in trajectory (right). Bottom row: Control accelerations u′x and
u′y (left), the plot of u′y versus u′x with magnitude saturation (right).
Initial position of the LOS cone is designated by black dashed lines and
final position by the red dashed lines.

spacecraft is close to ‘active’ constraint boundary. Qualitatively, similar conclusions

about the fuel consumption benefit of predicting the platform motion are obtained at

angular rates lower and slightly higher than 0.6 deg/s.

Figure 7.22 compares the spacecraft trajectories when prediction of the platform

motion is employed versus when it is not employed for higher ωp = 2.25 deg/s,

α = 102 and (δx0, δy0) = (50, 5) (m). The spacecraft is able to successfully perform

the maneuver with the prediction of platform motion but it is not able to keep up

and eventually violates the constraints (e.g., collides with the platform at time 62 sec)

when such prediction is not employed. Note that the control inputs remain saturated

at the limits in the case of no prediction, as the controller attempts to keep up with
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Figure 7.21: Radial approach platform rotating at ωp = 0.6 deg/s with prediction of
platform motion. Top row: Trajectory on the x-y plane(left), zoomed-in
trajectory (right). Bottom row: Control accelerations u′x and u′y (left),
the plot of u′y versus u′x with magnitude saturation (right). Initial po-
sition of the LOS cone is designated by black dashed lines and final
position by the red dashed lines.

the constraints.

Figure 7.23 illustrates the responses for the case of the radial approach and the

in-track approach with ωp = 0.6, and ωp = 2.25 while α = 1 × 102 when the initial

conditions of the spacecraft vary. The spacecraft is able to successfully complete the

maneuvers with the platform motion prediction for both lower and higher angular

rates. Note that for ωp > 2.25 deg the spacecraft mail fail to complete the maneuvers

even with the platform motion prediction as actuator authority may be insufficient to

keep up with a rapidly rotating platform in this case. To summarize, our simulation

results here and in [116, 117] suggest that incorporating the prediction of the platform

motion and changes in LOS cone can result in more fuel efficient maneuvers and in
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Table 7.7: Fuel consumption related metrics and docking time versus α.
ωp = 0.6 deg/s α 102 103 104 105 106 107 5× 107 108 5× 108

J1 17.44 18.16 15.61 17.74 15.66 14.28 13.49 13.16 12.55
non-predicted J2 2.36 2.50 2.14 2.41 2.15 1.88 1.79 1.76 1.63
constraints J3 13.33 13.94 12.18 13.59 12.29 11.51 11.20 11.10 10.64

td (s) 40.50 40.50 40.50 40.50 40.50 42.00 51.00 57.50 63.50
J1 14.35 14.34 14.28 14.38 14.04 13.65 13.12 12.94 12.13

predicted J2 1.93 1.93 1.92 1.93 1.87 1.76 1.72 1.70 1.54
constraints J3 11.57 11.57 11.54 11.58 11.41 11.17 11.00 10.91 10.27

td (s) 40.50 40.50 40.50 40.50 41.00 42.00 51.50 57.50 63.50
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Figure 7.22: Radial approach to a platform rotating at with ωp = 2.25 deg/s. Top
row: Plots without prediction of platform motion. Trajectory on the
x-y plane (left), control accelerations u′x and u′y (right). Bottom row:
Plots with prediction of platform motion. Trajectory (left) and control
accelerations (right). Initial position of the LOS cone is designated by
black dashed lines and final position by the red dashed lines.
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Figure 7.23: Trajectory on the x-y plane starting from various initial positions in a
rotating platform with prediction of platform motion. Top row: ωp = 0.6
deg/s. Radial approach (left), in-track approach (right). Bottom row:
ωp = 2.25 deg/s. Radial approach (left), in-track approach (right).
Initial position of the LOS cone is designated by black dashed lines and
final position by the red dashed lines.

being able to complete the maneuvers for higher rotational rate of the platform.

These benefits are more pronounced for medium range of ωp and are eroded for very

low values of ωp, and as ωp increases to larger values, which exceed the actuators

capabilities.

7.4 Debris/Obstacle Avoidance Maneuvers

In this section, we consider the additional objective of avoiding debris or an ob-

stacle on the spacecraft rendezvous path in the LQ MPC framework. There are more

than 22,000 debris of 10 centimeter and longer orbiting the Earth today and this
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number is growing. Collision with orbital debris or an obstacle is a serious threat

that can damage the spacecraft. Several collision risk assessment methods have been

developed, see e.g., [143, 144, 145, 146] and references therein, along with debris colli-

sion avoidance strategies, see e.g., [143, 147, 148], and references therein. In [147] and

[149], for instance, collision avoidance strategies for polyhedral objects as obstacles

have been developed based on mixed-integer linear programming.

To incorporate debris avoidance in our MPC approach, we assume that the debris

can be covered by a virtual disk of radius rd centered at (dx, dy) (m). See Figure 7.24.

7.4.1 Model Predictive Controller Design

Our approach to collision avoidance is based on covering the debris by a disk

and assuming that this ‘virtual’ disk slowly rotates with angular rate ωd (rad/s).

Referring to Figure 7.24, we impose the constraint forcing the spacecraft to remain

in a specified half-plane relative to a tangent line to the disk. As the tangent line

rotates with the disk, the constraint is dynamically reconfigured and varies in time.

For simplicity, we assume here that the docking port does not rotate, and it is at the

origin of the reference frame, i.e., (rx, ry) = (0, 0), (σx, σy) = (δx, δy).

At activation of the constraint, the disk tangent line is perpendicular to the line

between the spacecraft location, (δx(0), δy(0)) (m), and the center of the disk, (dx, dy).

Figure 7.24: Schematics of the approach used to achieve debris avoidance.
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The angle ϕd(0) is defined as the angle between the x-axis and the normal to the

tangent line so that ϕd(0) = tan−1
(
δy(0)−dy
δx(0)−dx

)
. Then ϕd(k + 1) = ϕd(k) + ωdkTs and

the debris avoidance constraint is given by

cosϕd(k)

rd
(δx(k)− dx) +

sinϕd(k)

rd
(δy(k)− dy) ≥ 1. (7.38)

A similar approach to the one in Section 7.3.5 is applied so that (7.38) is approximated

in prediction by

L7(δx(j|k)− dx) + L8(δy(j|k)− dy)

+

(
− L8(δx(k)− dx) + L7(δy(k)− dy)

)
(ϕd(j|k)− ϕd(k)) ≥ 1,

(7.39)

where

L7 =
cosϕd(k)

rd
, L8 =

sinϕd(k)

rd
, ϕd(j|k) ' ϕd(k) + ϕ̇d(k)jTs,

and j ∈ Z0+ denotes a future time instant with respect to k. The debris constraint

(7.39) is deactivated once ϕd becomes equal to ϕd(0) + π so that the constraint does

not interfere with the spacecraft motion after it passes the debris.

Similarly to (7.32), (7.33), the state vector for debris avoidance maneuver has the

following form

X̂ =

[
δx δy δẋ δẏ dx dy rdx rdy z1 z2

]T
,

and the model is represented by

X̂(j + 1|k) = ÂX̂(j|k) + B̂Û(j|k), (7.40a)

Ŷ (j|k) = ĈX̂(j|k) + D̂Û(j|k), (7.40b)
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where

Â =



Ad 04×2 04×2 04×2

02×4 I 02×2 02×2

02×4 02×2 Ωd 02×2

02×4 02×2 02×2 Θ


, B̂ = B̄, D̂ = D̄,

Û = Ū , Θ is defined in (7.31),

Ĉ =



L7 L8 0 0 −L7 −L8 0 0 0 Ĉ1

sin γ − cos γ 0 0 0 0 0 0 0 0

sin γ cos γ 0 0 0 0 0 0 0 0

Ĉ2 Ĉ3 Ĉ4 Ĉ5 0 0 0 0 0 0


.

and

Ωd =

 cos(ωdTs) − sin(ωdTs)

sin(ωdTs) cos(ωdTs)

 ,
Ĉ1 = L8(δx(k)− dx) + L7(δy(k)− dy),

Ĉ2 = sgn(δx(k)), Ĉ3 = sgn(δy(k)),

Ĉ4 = −η sgn(δẋ(k)), Ĉ5 = −η sgn(δẏ(k)).

and where the constraint

Ŷ (j|k) ≥ Ŷmin, Ŷmin =

[
1 0 0 −β

]T
, (7.41)

is imposed on the system output, representing the LOS constraints, the soft-docking

constraint with respect to the platform, and the debris avoidance constraint.

Thus, for the debris avoidance case, the MPC optimal control problem is formu-
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lated as

min
Û(k)

X̂(NJ |k)TP̂ X̂(NJ |k) +

NJ−1∑
j=0

X̂(j|k)TQ̂X̂(j|k)+Û(j|k)TR̂Û(j|k), (7.42a)

s.t. X̂(j + 1|k) = ÂX̂(j|k) + B̂Û(j|k), (7.42b)

Ŷ (j|k) = ĈX̂(j|k) + D̂Û(j|k), (7.42c)

X̂(0|k) = X̂(k), (7.42d)

Û(j|k) = K̂X̂(j|k), j = NU + 1, . . . , NJ − 1, (7.42e)

Ŷ (j|k) ≥ Ŷmin(k), j = 0, . . . , NC , (7.42f)

Û(j|k) ≥ Ûmin, j = 0, . . . , NU , (7.42g)

Û(j|k) ≤ Ûmax, j = 0, . . . , NU , (7.42h)

where Û(k) = {Û(0|k), · · · , Û(NU |k)},

P̂ =

 P 04×6

06×4 06×6

 , Q̂ =

 Q 04×6

06×4 06×6

 , R̂ = R̄, K̂ =

[
K 02×6

]
,

and the input constraints in (7.42) are defined by (7.8).

7.4.2 Simulation Results

Simulations results are now presented for rd = 2 m. Other parameters are the

same as the ones in Section 7.3.5. The debris is located at (dx, dy) = (40, 0) (m) and

the initial location of the spacecraft is (δx0, δy0) = (60, 5) (m). The docking port is

located at the origin of the reference frame and is represented here as a point mass.

The angular rate of the ‘virtual’ disk, ωd, was varied between 5 deg/s and 15 deg/s

and the best value of ωd = 12 deg/s was determined in simulations on the basis of a

trade-off between maneuver feasibility (in terms of satisfying the imposed constraints)

and speed. Figure 7.25 compares the trajectory of the spacecraft when there is no
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Figure 7.25: Comparison of the maneuvers. Top row: Trajectory on the x-y plane
without debris (left), control accelerations u′x and u′y without debris
(right). Bottom row: Trajectory on the x-y plane with debris (left),
control accelerations u′x and u′y (right) with debris.

debris and when the spacecraft performs a rendezvous while avoiding debris. Note

that the debris is placed at a location that makes infeasible the trajectory of the no-

debris case. The ‘x’ symbol represents the initial point of activation of the tangent line

constraint. The constraint is deactivated after the disk covering the debris has rotated

π rad. The line tangent to the virtual disk in Figure 7.25 is in the position after the

disk rotated π rad and the debris avoidance constraint is deactivated. Figure 7.26

illustrates debris avoidance maneuvers for various initial positions of the spacecraft.

Table 7.8: Costs and docking time in maneuvers with and without debris avoidance.
J1 J2 J3 td

w/o debris 17.88 3.03 14.77 45.5
with debris 21.03 3.53 16.18 53.0

We also report the three fuel consumption-related metrics in (7.14) and the time-
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Figure 7.26: Trajectories from various initial positions without debris (left) and with
debris (right).

to-dock for the case with and without the debris in Table 7.8. The debris avoidance

results in increased fuel consumption and longer maneuver time.
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CHAPTER VIII

Conclusions and Future Work

This dissertation has investigated the methodological extensions of the IPA-SQP

and PNE approaches to NMPC. It addressed challenging applications of real-time

NMPC by exploiting the computational advantage of IPA-SQP.

The research addressed minimum-time MPC and AMPC problems using the IPA-

SQP framework. Characterization of NE solution for parameter-dependent-discrete-

time optimal control problems with constraints has been obtained. Conditions for

an NE solution existence in the PNE approach have been established for a case that

has a quadratic cost functional and a linear affine system with adjustable parameters.

This dissertation also dealt with applications that require real-time implementation

of NMPC. A real-time shipboard PMC based on IPA-SQP MPC has been developed

and tested on the physical test platform. Model predictive controllers have been

developed for online control of spacecraft relative motion maneuvers based on LQ

MPC and IPA-SQP MPC.

8.1 Conclusions

The main developments and results of this dissertation are summarized as follows:

• Developed an indirect AMPC algorithm in the IPA-SQP framework to effec-

tively integrate adaptation and constrained dynamic optimization: An approach
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has been developed to incorporate changes in the model parameter estimates,

resulting from online adaptation, into an NMPC algorithm for control sequence

updates. This led to simple updates of the control sequence, e.g., proportionally

to the change in the parameter estimate. This approach is promising for the

implementation of AMPC, especially when efficient computation is an impor-

tant consideration for real-time implementation. An illustrative example on an

inverted pendulum of a cart has been reported.

• Derived the conditions for the existence of an NE solution in the parametric

optimal control problem: Conditions for the existence of an NE solution have

been obtained in a specific case that have a quadratic cost functional and linear

parameter-dependent dynamics with adjustable parameters without considering

constraints on states, control inputs and parameters. This guarantees applica-

bility of PNE for the case.

• Developed a methodology to apply the PNE to minimum-time MPC problems:

A methodological extension to the PNE algorithm has been developed to solve

minimum-time MPC problems. Minimum-time MPC is of interest due to its

ability to perform way-point following, to improve robustness to model uncer-

tainties and disturbances, satisfy constraints, and to provide automatic con-

trol refinements along the way. The minimum-time MPC problem was ap-

propriately transformed to make the PNE algorithm applicable. The double

integrator example was considered to show the validity of the reformulated

minimum-time control solution and computational advantages of performing

control updates using PNE over MATLAB nonlinear programming solver fmin-

con. The improved robustness has been shown in closed-loop simulations with

minimum-time MPC and disturbances. Another example of a nonlinear system

corresponding to a two-dimensional model of a hypersonic glider has also been

treated.
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• Developed a novel PMC based on the IPA-SQP approach for a shipboard power

system: The PMC that uses an IPA-SQP-based MPC has been developed,

analyzed, and tested. The experimental results on the physical test bed and

the simulation results show close correlation. Evaluations of three operational

scenarios revealed the expected performance sensitivity with respect to tun-

able parameters. The developed PMC successfully allocated requests to power

sources and loads in the baseline test with the SWPPL and appropriately mod-

ifies control inputs when different aspects of the performance attributes were

emphasized by changing weighting factors in the cost function for the MPC

problem. The feasibility of using the IPA-SQP-based MPC algorithm for real-

time power management has been demonstrated. This research also provided

a case that supports further development and implementation of optimization-

based PMC for shipboard power systems.

• Developed model predictive controllers based on utilizing LQ MPC and IPA-SQP

MPC for spacecraft relative motion maneuvers: MPC was utilized to enforce

constraints such as on velocity of approach for soft-docking, LOS cone, and

thrust magnitude constraints. The problem was treated in an LQ MPC frame-

work so that the finite horizon optimization problem can be solved by QP

algorithms, which are known to be efficient and computationally affordable. To

achieve this, dynamically reconfigurable linear constraints have been employed.

The IPA-SQP approach was applied to the spacecraft relative motion control

problem with the nonlinear constraint on thrust force magnitude. The IPA-

SQP-based MPC controller has been formulated to directly handle the NMPC

problem associated with the nonlinear constraint, while the LQ MPC used di-

rectionality preserving scaling to handle the nonlinear constraints. The fuel

consumption metrics were reduced with IPA-SQP as compared with the results

of the LQ MPC combined with scaling, which we attribute to proper accounting
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for the nonlinear constraints on thrust and available control authority. Compu-

tation time and solution accuracy using the IPA-SQP algorithm were compared

to those provided by MATLAB fmincon solver. The LQ MPC controller has

been demonstrated through simulations of spacecraft rendezvous/docking and

debris/obstacle avoidance that it is capable of planning efficient maneuvers,

while enforcing all the imposed constraints.

8.2 Future Work

Many research opportunities, challenges, and interesting directions for future work

exist to further explore the IPA-SQP framework. In particular, the author is inter-

ested in the following topics:

• Handling terminal state constraints with IPA-SQP: The general problem for-

mulation of the IPA-SQP consists of an optimal control problem with a cost

functional, initial state constraints, equality constraints associated with the dy-

namics of the system, and inequality constraints on state and control input

vectors. The current formulation of IPA-SQP does not consider terminal state

constraints which are important as a mechanism to guarantee closed-loop sta-

bility. Such an extension appears tractable as terminal constraints typically

result in transversality conditions.

• Study of stability and recursive feasibility of developed IPA-SQP-based AMPC

algorithm: Chapter III provided the indirect AMPC algorithm to integrate

adaptation and optimization and addressed the computational updates. Further

study on stability and recursive feasibility of the developed AMPC algorithm

represents an interesting topic for continuing research.

• Obtaining conditions for the existence of NE solution of parameter-dependent

convex optimal control problems with constraints: The existence conditions of
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NE solution were reported for a parametric optimal control problem with a

quadratic cost functional and a linear model. In this research, however, equality

and inequality constraints on states and control inputs were not considered so

that the conditions are obtained for the very specific and limited case. Future

work may consider extending these results to provide existence conditions of

NE solution for general constrained parametric optimal control problems.

• Development of advanced predictive controllers for challenging applications of

NMPC: The minimum-time MPC controller has been developed for the two-

dimensional model of a hypersonic glider in Chapter V. The example can be

extended to a three-dimensional model with exclusion zone constraints as a

more effective control problem. In spacecraft relative motion control problems,

we can extend the control problems, which have been proposed in Chapter VII,

to more general in and out-of plane spacecraft motion and to three dimensional

spacecraft and platform rotations considering LOS, soft-docking, and thrust

magnitude constraints. Thus, future work may consider more challenging ap-

plications of real-time NMPC.

159



APPENDICES

160



APPENDIX A

Publications

Journal Articles

[1] H. Park, J. Sun, S. Pekarek, P. Stone, D. Opila, R. Meyer, I. Kolmanovsky, and

R. DeCarlo, Real-time model predictive control for shipboard power management

using the IPA-SQP approach, IEEE Transactions on Control Systems Technology,

submitted.

[2] S. Di Cairano, H. Park, and I. Kolmanovsky, Model predictive control approach for

guidance of spacecraft rendezvous and proximity maneuvering, International Journal

of Robust and Nonlinear Control, vol. 12, No. 4, pp. 1398 1427, 2012.

Conference Proceedings

[1] H. Park, J. Sun, and I. Kolmanovsky, Tutorial overview of IPA-SQP for optimiza-

tion of constrained nonlinear systems, 11th World Congress on Intelligent Control

and Automation, submitted.

[2] R. Meyer, S. Pekarek, H. Park, J. Sun, and R. DeCarlo, Hybrid optimal power man-

agement of a naval ship, ASME 2014 International Mechanical Engineering Congress

& Exposition, submitted.
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[3] H. Park, I. Kolmanovsky, and J. Sun, Parametric integrated perturbation analy-

sis sequential quadratic programming approach for minimum-time model predictive

control, IFAC 19th World Congress, 2014, accepted.

[4] J. Sun, H. Park, I. Kolmanovsky, and R. Choroszucha, Adaptive model predictive

control in the IPA-SQP framework, 52nd IEEE Conference on Decision and Control,

2013.

[5] H. Park, I. Kolmanovsky, and J. Sun, Model predictive control of spacecraft rela-

tive motion maneuvers using the IPA-SQP approach, ASME Dynamics Systems and

Control Conference, 2013.

[6] H. Park, S. Di Cairano, and I. Kolmanovsky, Linear quadratic model predictive

control approach to spacecraft rendezvous and docking, 21st AAS/AIAA Space Flight

Mechanics Meeting, 2011.

[7] H. Park, S. Di Cairano, and I. Kolmanovsky, Model predictive control for space-

craft rendezvous and docking with a rotating/tumbling platform and for debris avoid-

ance, American Control Conference, 2011.

[8] H. Park, S. Di Cairano, and I. Kolmanovsky, Model predictive control of spacecraft

docking with a non-rotating platform, IFAC 18th World Congress, 2011.
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control of systems governed by large differential algebraic equations. Real-time
and online PDE-constrained optimization, 3:3–22, 2007.

[27] R. Ghaemi, J. Sun, and I. Kolmanovsky. Model predictive control for con-
strained discrete time systems: an optimal perturbation analysis approach.
American Control Conference, pages 3757–3762, 2007.

165



[28] R. Ghaemi, J. Sun, and I. Kolmanovsky. An integrated perturbation analysis
and sequential quadratic programming approach for model predictive control.
Automatica, 45(10):2412–2418, 2009.

[29] R. Ghaemi, J. Sun, and I. Kolmanovsky. Overcoming singularity and degeneracy
in neighboring extremal solutions of discrete-time optimal control problem with
mixed input-state constraints. 17th IFAC World Congress, 2009.

[30] R. Ghaemi, J. Sun, and I. Kolmanovsky. A neighboring extremal approach to
nonlinear model predictive control. 8th IFAC Symposium on Nonlinear Control
Systems, pages 747–752, 2010.

[31] A. Bryson and Y. Ho. Applied optimal control: optimization, estimation, and
control. Taylor & Francis, 1975.

[32] D. Mayne, J. Rawlings, C. Rao, and P. Scokaert. Constrained model predictive
control: stability and optimality. Automatica, 36(6):789–814, 2000.

[33] J Rawlings. Tutorial overview of model predictive control. IEEE Transaction
on Control Systems, 20(3):38–52, 2000.
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[56] C. Büskens and H. Maurer. Sensitivity analysis and real-time control of para-
metric optimal control problems using nonlinear programming methods. Online
Optimization of Large Scale Systems, pages 57–68, 2001.

[57] J. Kadam and W. Marquardt. Sensitivity-based solution updates in closed-loop
dynamic optimization. Proceedings of the DYCOPS, 7, 2004.

[58] L. Gao, R. Ghaemi, and J. Sun. Nonlinear adaptive model predictive control
for ship path-following using parametric neighbouring extremal approach. 11th
International Conference on Fast Sea Transportation, 2011.

[59] M. Morari. Predicting the future of model predictive control. Rec. of the AIChE
Annual Meeting, Systems and Process Control Centennial Session, Philadelphia,
USA, 2008.

[60] V. Adetola, D. DeHaan, and M. Guay. Adaptive model predictive control for
constrained nonlinear systems. Systems and Control Letters, 58(5):320–326,
2009.

[61] M. Krstic and P. Kokotovic. Adaptive nonlinear design with controller-identifier
separation and swapping. IEEE Transactions on Automatic Control, 40(3):426–
440, 1995.

[62] R. Bithmead, V. Wertz, and M. Gerers. Adaptive optimal control: the thinking
man’s GPC. Prentice Hall Professional Technical Reference, 1991.

[63] E. Camacho. Constrained generalized predictive control. IEEE transactions on
automatic control, 38(2):327–332, 1993.

[64] D. Clarke, C. Mohtadi, and P. Tuffs. Generalized predictive control part I. the
basic algorithm. Automatica, 23(2):137–148, 1987.

[65] D. Clarke, C. Mohtadi, and P. Tuffs. Generalized predictive control part II.
extensions and interpretations. Automatica, 23(2):149–160, 1987.

[66] M. Shouche, H. Genceli, V. Premkiran, and M. Nikolaou. Simultaneous con-
strained model predictive control and identification of DARX processes. Auto-
matica, 34(12):1521–1530, 1998.

[67] D. Dougherty and D. Cooper. A practical multiple model adaptive strat-
egy for multivariable model predictive control. Control Engineering Practice,
11(6):649–664, 2003.

[68] H. Fukushima, T. Kim, and T. Sugie. Adaptive model predictive control for a
class of constrained linear systems based on the comparison model. Automatica,
43(2):301–308, 2007.

[69] A. Rahideh, M. Shaheed, and H. Huijberts. Stable adaptive model predictive
control for nonlinear systems. American Control Conference, pages 1673–1678,
2008.

168



[70] B. Zhang and W. Zhang. Adaptive predictive functional control of a class of
nonlinear systems. ISA Transactions, 45(2):175–183, 2006.

[71] D. Mayne and H. Michalska. Adaptive receding horizon control for constrained
nonlinear systems. 32nd IEEE Conference on Decision and Control, pages
1286–1291, 1993.

[72] V. Adetola, D. DeHaan, and M. Guay. Adaptive extremum-seeking receding
horizon control of nonlinear systems. American Control Conference, pages 2937–
2942, 2004.

[73] D. DeHaan and M. Guay. Adaptive robust MPC: a minimally-conservative
approach. American Control Conference, pages 3937–3942, 2007.

[74] A. Voelker, K. Kouramas, and E. Pistikopoulos. Simultaneous constrained mov-
ing horizon state estimation and model predictive control by multi-parametric
programming. 49th IEEE Conference on Decision and Control, pages 5019–
5024, 2010.

[75] M. Tanaskovic, L. Fagiano, R. Smith, P. Goulart, and M. Morari. Adaptive
model predictive control for constrained linear systems. European Control Con-
ference, pages 382–387, 2013.

[76] M. Athans and P. Falb. Optimal control: an introduction to the theory and its
applications. Courier Dover Publications, 2006.

[77] Z. Gao. On discrete time optimal control: a closed-form solution. American
Control Conference, pages 52–58, 2004.

[78] L. Bako, D. Chen, and S. Lecoeuche. A numerical solution to the
minimum-time control problem for linear discrete-time systems. arXiv preprint
arXiv:1109.3772, 2011.

[79] R. Kalman. Optimal nonlinear control of saturating systems by intermittent
action. IRE Wescon Convention Record, 4:130–135, 1957.

[80] O. Von Stryk and R. Bulirsch. Direct and indirect methods for trajectory
optimization. Annals of Operations Research, 37(1):357–373, 1992.

[81] J. Ben-Asher. Optimal control theory with aerospace applications. American
Institute of Aeronautics and Astronautics, 2010.

[82] S. Keerthi and E. Gilbert. Computation of minimum-time feedback control laws
for discrete-time systems with state-control constraints. IEEE Transactions on
Automatic Control, 32(5):432–435, 1987.

[83] D. Mayne and W. Schroeder. Robust time-optimal control of constrained linear
systems. Automatica, 33(12):2103–2118, 1997.

169



[84] J. Starek and I. Kolmanovsky. Nonlinear model predictive control strategy
for low thrust spacecraft missions. Optimal Control Applications and Methods,
2012.

[85] C. Petersen, M. Baldwin, and I. Kolmanovsky. Model predictive control guid-
ance with extended command governor inner-loop flight control for hypersonic
vehicles. AIAA Guidance, Navigation and Control Conference, 2013.

[86] N. Doerry and J. Davis. Integrated power system for marine applications. Naval
Engineers Journal, 106(3):77–90, 1994.

[87] N. Doerry and K. McCoy. Next generation integrated power system: Ngips
technology development roadmap. Technical report, DTIC Document, 2007.

[88] G. Seenumani. Real-time power management of hybrid power systems in all
electric ship applications. PhD thesis, The University of Michigan, 2010.

[89] S. Srivastava and K. Butler-Purry. Expert-system method for automatic re-
configuration for restoration of shipboard power systems. IEE Proceedings-
Generation, Transmission and Distribution, 153(3):253–260, 2006.

[90] K. Butler-Purry and N. Sarma. Self-healing reconfiguration for restoration
of naval shipboard power systems. IEEE Transactions on Power Systems,
19(2):754–762, 2004.

[91] J. Solanki and N. Schulz. Using intelligent multi-agent systems for shipboard
power systems reconfiguration. 13th International Conference on Intelligent
Systems Application to Power Systems, 2005.

[92] Y. Huang. Fast reconfiguration algorithm development for shipboard power sys-
tems. PhD thesis, Mississippi State University, 2005.

[93] P. Mitra and G. Venayagamoorthy. Real-time implementation of an intelligent
algorithm for electric ship power system reconfiguration. Electric Ship Tech-
nologies Symposium, pages 219–226, 2009.

[94] G. Seenumani, J. Sun, and H. Peng. Real-time power management of integrated
power systems in all electric ships leveraging multi time scale property. IEEE
Transactions on Control Systems Technology, 20(1):232–240, 2012.

[95] J. Goodman. History of space shuttle rendezvous and proximity operations.
Journal of Spacecraft and Rockets, 43(5):944–959, 2006.

[96] M. Polites. Technology of automated rendezvous and capture in space. Journal
of Spacecraft and Rockets, 36(2):280–291, 1999.

[97] D. Woffinden and D. Geller. Navigating the road to autonomous orbital ren-
dezvous. Journal of Spacecraft and Rockets, 44(4):898–909, 2007.

170



[98] B. Aldrin. Line-of-sight guidance techniques for manned orbital rendezvous.
PhD thesis, Massachusetts Institute of Technology, 1963.

[99] L. Breger and J. How. Safe trajectories for autonomous rendezvous of spacecraft.
Journal of Guidance, Control, and Dynamics, 31(5):1478–1489, 2008.

[100] F. Clark, P. Spehar, Brazzel J., and H. Hinkel. Laser-based relative navigation
and guidance for space shuttle proximity operations. 2003.

[101] W. Fehse. Automated rendezvous and docking of spacecraft. Cambridge Univer-
sity Press, 2003.

[102] V. Coverstone-Carroll. Detumbling and reorienting underactuated rigid space-
craft. Journal of Guidance, Control, and Dynamics, 19(3):708–710, 1996.

[103] W. Clohessy and R. Wiltshire. Terminal guidance system for satellite ren-
dezvous. Journal of Aerospace Sciences, 27(9):653–658, 1960.

[104] Y. Luo and G. Tang. Spacecraft optimal rendezvous controller design using
simulated annealing. Aerospace Science and Technology, 9(8):732–737, 2005.
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