
 
 
 
 
 

The Role of Conceptions of Value in Data Practices: A Multi-Case Study of Three Small 
Teams of Ecological Scientists 

 
                                                                
 

by 
 
 

Dharma R. Akmon 
 
 

A dissertation submitted in partial fulfillment 
of the requirements for the degree of 

Doctor of Philosophy 
(Information) 

in the University of Michigan 
2014 

 
 

 
  
 
 
 
 
 
 
 
 
 
 
 
Dissertation committee: 
 

Professor Margaret L. Hedstrom, Chair 
Professor George C. Alter 
Associate Professor Carl Lagoze 
Professor Elizabeth Yakel 
 
 
 



  ii 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

For Devon, who is always there to remind me I can get up the mountain.  
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  iii 

 
 

ACKNOWLEDGMENTS 
 
 Many people helped to make this dissertation a reality and deserve special thanks. First, I 

am deeply indebted to my advisor and dissertation chair, Margaret Hedstrom, whose feedback, 

council, and support throughout my time at the School of Information were indispensible in my 

development as a researcher. As I reflect on the distance between my earliest dissertation ideas 

and the document you see before you, I am particularly grateful to Margaret for her incisive 

critique throughout the dissertation process. Elizabeth Yakel has also been an encouraging 

source of advice and mentorship over the last several years. I also thank the other members of 

my committee—George Alter and Carl Lagoze—for their support of my work and generosity in 

providing me with insights and new perspectives for the design of my study and analysis of my 

findings. Additionally, I would like to thank Ann Zimmerman, who served on my committee 

during the proposal phase and helped me greatly in shaping the study. 

 The feedback and camaraderie of fellow students—both at the School of Information and 

at other schools—helped me develop my ideas and writing as well as provided a much-needed 

outlet for the ups and downs of graduate school. In particular, I need to thank Amelia Acker, 

Matt Burton, Eric Cook, Morgan Daniels, Kathleen Fear, and Ricky Punzalan. You all not only 

made graduate school a heck of a lot more fun, but you also generously offered astute critique of 

my work. 

 Of course, my family and friends have been there every step of the way in this long 

process, giving me encouragement and helping me maintain a healthy sense of perspective. 

Mom, Dad, Pat, Mike, Sonya, John, Desmond, Krista, Daniel, Jaylen, Jesse, Noah, Eli, Joel, 

Abbey, Heather, Erin, and Janet: I cannot thank you all enough. I must give special credit to my 



  iv 

mom, who instilled in me a lifelong love of knowledge and learning. My husband, Devon, was 

always an especially patient and reassuring presence, lifting me up when I felt discouraged and 

providing respite and joy when I needed it most. "Thank you" does not begin to cover how much 

it has meant for you to do this with me, Devon. 

 Lastly, this study would not have been possible without the participation of the Station 

and the scientists in the three teams I studied. Scientists and staff were open, tolerant of my 

strange questions, and patient with me constantly looking over their shoulders. Furthermore, they 

made data gathering thoroughly enjoyable as they welcomed me into the Station community. I 

also acknowledge the financial support of the National Science Foundation IGERT-09036291 

(OpenData), the Station, and the University of Michigan Rackham Graduate School. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  v 

Table of Contents 
Dedication.......................................................................................................................................ii 

Acknowledgments.........................................................................................................................iii 
List of Figures .............................................................................................................................. vii	
  
List of Tables .............................................................................................................................. viii	
  
Abstract ......................................................................................................................................... ix	
  
Chapter 1: Introduction ............................................................................................................... 1	
  

1.1	
   Definition of the Problem ................................................................................................... 2	
  
1.2	
   Research Questions ............................................................................................................ 5	
  
1.3	
   A Multi-Case Study at a Field Station ............................................................................... 6	
  
1.4	
   Study Overview .................................................................................................................. 8	
  
1.5	
   Key Terminology ............................................................................................................... 9	
  
1.6	
   Theoretical Foundations ..................................................................................................... 9	
  

1.6.1	
   Data Stream Model .................................................................................................... 10	
  
1.6.2	
   Value, Valuation, and Meaning ................................................................................. 13	
  

1.7	
   Significance of the Study ................................................................................................. 20	
  
Chapter 2: Literature Review .................................................................................................... 22	
  

2.1 Overview ............................................................................................................................. 22	
  
2.2 Changing Expectations for Data and the Promise of the Long Tail .................................... 22	
  
2.3 Incentives, Norms, and Motivations in Science .................................................................. 27	
  
2.4 Studies of Data Sharing and Withholding ........................................................................... 30	
  

2.4.1 Quantitative Studies on Data Sharing Practices and Attitudes ..................................... 31	
  
2.4.2 Qualitative Studies of Data Sharing Practices .............................................................. 34	
  

2.5 The Roles of Data for Scientists .......................................................................................... 37	
  
2.6 Studies that Address Scientists' Conceptions of Data's Value ............................................ 41	
  
2.7 Conclusion ........................................................................................................................... 43	
  

Chapter 3: Research Design ....................................................................................................... 45	
  
3.1 Rationale for a Qualitative, Multi-Case Study .................................................................... 45	
  
3.2 Study Site ............................................................................................................................ 47	
  
3.3 Study Participants ................................................................................................................ 50	
  

3.3.1 Rationale and Method of Participant Selection ............................................................ 50	
  
3.3.2 Brief Description of Each Team ................................................................................... 54	
  

3.4 Data Collection .................................................................................................................... 58	
  
3.4.1 Participant Observations ............................................................................................... 58	
  
3.4.2 Semi-Structured Interviews with Scientists .................................................................. 61	
  
3.4.3 Semi-Structured Interviews with Station Staff ............................................................. 63	
  
3.4.4 Documentary Sources ................................................................................................... 63	
  

3.5 Data Analysis ...................................................................................................................... 64	
  
3.6 Validity ................................................................................................................................ 65	
  
3.7 Limitations .......................................................................................................................... 66	
  
3.8 Data Presentation Conventions ........................................................................................... 67	
  

Chapter 4: Detailed Team Descriptions and Data Valuation Vignettes ................................ 69	
  



  vi 

4.1 The Invasives Management Team ....................................................................................... 69	
  
4.1.1 Team Description ......................................................................................................... 69	
  
4.1.2 Data Valuation Vignette ............................................................................................... 73	
  

4.2 The Nutrient Uptake in Streams Team ................................................................................ 76	
  
4.2.1 Team Description ......................................................................................................... 76	
  
4.2.2 Data Valuation Vignette ............................................................................................... 78	
  

4.3 The Invasion Dynamics and Modeling Team ..................................................................... 82	
  
4.3.1 Detailed Team Description ........................................................................................... 82	
  
4.3.2 Data Valuation Vignette ............................................................................................... 84	
  

4.4 Summary ............................................................................................................................. 87	
  
Chapter 5: Scientists' Conceptions of Data's Value................................................................. 90	
  

5.1 Overview ............................................................................................................................. 90	
  
5.2 What Data are For: Addressing a Gap in Knowledge ......................................................... 92	
  

5.2.1 The IM Team: Plant Community Response to Wetland Restoration ........................... 93	
  
5.2.2 The NUS Team: Leaf Litter's Effect on Nutrient Uptake in Streams ........................... 97	
  
5.2.3 The ID&M Team: Mechanisms of Wetland Plant Invasion ......................................... 99	
  
5.2.4 Summary ..................................................................................................................... 104	
  

5.3 The Prerequisites for "Good Data" .................................................................................... 105	
  
5.4 Scientists' Use of Data Type to Make Value Assessments ............................................... 112	
  

5.4.1 The Study System that Data Represent ...................................................................... 112	
  
5.4.2 Data's Publication Status and Potential ...................................................................... 124	
  
5.4.3 Data's Processing State ............................................................................................... 134	
  

5.5 Summary of Findings ........................................................................................................ 145	
  
5.6 Discussion ......................................................................................................................... 147	
  

Chapter 6: Enacting Conceptions of Data's Value ................................................................ 155	
  
6.1 Overview ........................................................................................................................... 155	
  
6.2 The Landscape For Data Practices at the Station .............................................................. 157	
  

6.2.1 Station and Funder Data Management Mandates ....................................................... 157	
  
6.2.2 Baseline Data Management Tools and Practices ........................................................ 163	
  

6.3 Producing Good Data ........................................................................................................ 171	
  
6.3.1 Deciding What Data to Collect and How to Collect Them ........................................ 171	
  
6.3.2 Making Sure Data Are Good ...................................................................................... 181	
  

6.4 Responding to Assessments of Data's Value .................................................................... 188	
  
6.4.1 Dealing with Bad Data ............................................................................................... 188	
  
6.4.2 Enacting Notions of Data's Value Beyond Good Versus Bad .................................... 194	
  

6.5 Summary of Findings ........................................................................................................ 202	
  
6.6 Discussion ......................................................................................................................... 203	
  

Chapter 7: Conclusion .............................................................................................................. 207	
  
7.1 Summary of the Study ....................................................................................................... 207	
  
7.2 Implications ....................................................................................................................... 211	
  
7.3 Future Research Directions ............................................................................................... 216	
  

Bibliography .............................................................................................................................. 222	
  



  vii 

LIST OF FIGURES 
 
 
Figure 4.1: IM Team subplot (i.e. quadrate) within a plot. The ruler was used to measure organic 
matter depth………………………………………………………………………………….......71 
Figure 4.2: Header tank, taps, and two channels for the NUS Team's artificial stream setup…...77 
Figure 4.3: NUS Team list of anticipated costs of continuing or stopping the project..................80 
Figure 4.4: NUS Team list of anticipated benefits of continuing or stopping the project.............81 
Figure 4.5: ID&M Team's mesocosm tanks at the Station before researchers populated them with 
plants (Courtesy of the ID&M Team)............................................................................................82 
Figure 5.1: The steps involved in collecting raw data for the NUS Team...................................141 
Figure 5.2: ID&M Team researchers count stems in one of the mesocosms..............................143 
Figure 6.1: The IM Team's vegetation sampling datasheet.........................................................164 
Figure 6.2: Sides 1 & 2 of the NUS Team's water sampling datasheet.......................................165 
Figure 6.3: The ID&M Team's mesocosm plant datasheet..........................................................166 
Figure 6.4: A page from the NUS Team's phosphorus notebook………………………………167 
Figure 6.5: Sampling quadrate with Typha stems. The dry, brown stems were "litter"……......175 
Figure 6.6: One of the ID&M Team's mesocosms with a sampling ring in center of the tank...183 

 



  viii 

LIST OF TABLES 
 
Table 3.1: Invasives Management Team Members.......................................................................55 
Table 3.2: Nutrient Uptake in Streams Team Members……........................................................56 
Table 3.3: Invasion Dynamics & Modeling Team Members........................................................57 
Table 3.4: Summary of the Three Teams Studied.........................................................................58 
Table 3.5: Observation and Interview Time..................................................................................60 
Table 3.6: Timeline of Observations.............................................................................................61 
 



  ix 

ABSTRACT 
 
 This dissertation examines the role of conceptions of data's value in data practices. Based 

on a study of three small teams of scientists carrying out ecological research at a biological 

station, my study addresses the following main question: How do scientists conceive of the value 

of their data, and how do scientists enact conceptions of value in their data practices? I relied on 

interviews and participant observations for my study and analyzed my data through the lens of 

theories of value and meaning. I found that scientists were primarily concerned with data's value 

for their team's own, relatively narrow uses: addressing a gap in knowledge and producing the 

outputs that would garner them credit and prestige. When asked about their data's potential value 

beyond their studies, scientists regularly cited metaanalysis, cross-site comparison, and time-

based studies as worthy secondary uses for data and assessed data's value according to how well 

they thought the data could serve those ends. 

 As they collected data and conducted their studies, scientists did not think about data's 

value beyond whether or not they were good as resources for addressing a gap in knowledge. 

However, when asked to make their data more openly available, researchers indicated that their 

decision to share was based strongly on data's value for producing publications for the team. 

Data that teams were still working with and planned to publish were regarded as too valuable to 

the team to make widely available. Conversely, when scientists thought data's publication value 

had been fully exploited for the team, they saw little threat in sharing. In addition to publication 

potential, scientists also suggested that study type influenced their decision to share data and told 
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me that they felt less compelled to share data from controlled studies because they assumed such 

data had inherently limited value.
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CHAPTER 1: INTRODUCTION 
  

 In this dissertation, I contribute to a growing body of research on scientific data 

management by examining how scientists conceive of the value of the data they create and how 

those conceptions are enacted in their data practices. To date, research on data practices has 

focused primarily on scientists' willingness or unwillingness to share data or engage in 

activities—such as data documentation—that would facilitate data reuse by others. This research 

has revealed important tensions between what an increasing number of constituents—including 

the public, the National Science Foundation (2011b), and, most recently, the Office of the 

President (2013)—are asking of scientists and the incentive structure that undergirds much of 

scientific research. However, the focus on incentives and motivations leaves out other potentially 

important factors in the decision to share data or create data that endure past the life of a project. 

In particular, some researchers' findings suggest that conceptions of data's value play an 

important role in scientists' decisions about what to do with data. An examination of how 

scientists conceive of their data's value—including what, who, and how long they think their data 

are good for—promises to contribute to a more comprehensive understanding of scientists' data 

practices, including sharing data and managing them to ensure their persistence past the life of a 

project. 
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1.1 DEFINITION OF THE PROBLEM 

Data, long regarded as expendable by-products of science, are increasingly positioned by 

the government, the public, and some scientists as valuable products of research. In recent years, 

they have been variously called a "vital" aspect of eScience or cyberinfrastructure (National 

Science Foundation Cyberinfrastructure Council, 2007, p. 2), a "collective" resource (Edwards, 

Jackson, Bowker, & Knobel, 2007, p. 19), an "integral part of the scientific record" (Hey, 

Tansley, & Tolle, 2009, p. 181), and "national and global assets" (Interagency Working Group 

on Digital Data to the National Science and Technology Council, 2009, p. 10). Reflecting this 

view of data, a number of federal funding agencies and scholarly journals have implemented 

policies meant to encourage data management, open access, and preservation. These, and other 

advocates of data sharing and archiving, are motivated by the conviction that a significant 

amount of potentially useful data are not being shared or managed by scientists to facilitate reuse 

and preservation (Arzberger et al., 2004; Committee on Issues in the Transborder Flow of 

Scientific Data & National Research Council, 1997; Costello, 2009; Interagency Working Group 

on Digital Data to the National Science and Technology Council, 2009; Nelson, 2009). 

 Data's value is largely taken for granted in efforts to increase their availability for 

secondary reuse. According to sharing and reuse proponents, openly accessible and well-

managed data make possible cross-disciplinary research (W. Anderson, 2004); facilitate new 

scientific advancements (Committee on Issues in the Transborder Flow of Scientific Data & 

National Research Council, 1997; Erpanet, 2003); maximize public investment in science 

(Arzberger et al., 2004); enable replication and verification (Uhlir & Schröder, 2007); and allow 

the identification of long-term trends (Lauriault, Craig, Taylor, & Pulsifer, 2008). These 

arguments and the policies inspired by them have not, however, necessarily impacted how 
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scientists manage their data or whether or not they share their data. In fact, researchers have 

shown that the extent of data sharing remains minimal in many fields (Tenopir et al., 2011), 

despite journal requirements and funding policies (Piwowar & Chapman, 2008, 2009) and an 

increasingly strong social message about the importance of managing data for reuse (Tucker, 

2009). 

 Research on scientists' data practices has sought to better understand why scientists rarely 

share or manage data for reuse, frequently emphasizing the conflict between the current incentive 

structure of science and the new demands being placed on scientists. Scientists, this research has 

revealed, withhold or inadequately manage data for reuse for several key reasons: documentation 

takes a significant amount of work that is not rewarded (Birnholtz & Bietz, 2003; Campbell et 

al., 2002; Louis, Jones, & Campbell, 2002); scientists are more concerned with publications 

(which are rewarded) as a product of their work (Borgman, Wallis, & Enyedy, 2007); and 

scientists fear that their data contributions will not be formally recognized (through citation or 

co-authorship, for example) (Louis et al., 2002) or that their data will be misused (Baker & 

Millerand, 2010; Cragin, Palmer, Carlson, & Witt, 2010). 

 Numerous disincentives negatively influence sharing or the creation of "archive-ready" 

data (Hedstrom & Niu, 2008); however, as the Blue Ribbon Task Force on Sustainable Digital 

Preservation and Access underscores, ensuring continuing access to science data encompasses 

not only clear incentives to act in the public interest, but also the articulation of a compelling 

value proposition (2008). Those who determine, through their decisions and actions, whether 

data are accessible over time (and this includes scientists as data creators) must, in other words, 

see some apparent benefit to doing so. 
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Empirical work on scientists' data practices suggests that conceptions of data's value are 

an important consideration in scientists' decisions about what to do with data. Social scientists in 

one study, for example, reported that they would be more likely to document and deposit their 

data if they thought those data "would be used and have a broader public benefit" (Hedstrom & 

Niu, 2008, abstract). In another study, scientists considered data shareable when they had the 

potential to generate new results (Cragin, Palmer, Carlson, et al., 2010). The Research 

Information Network revealed a similar concern with data's value among scientists across a 

variety of disciplines, who found it "difficult to believe" that other scientists would actually want 

their data (2008, p. 28). In contrast, some studies have found that scientists are less likely to 

share data that they think are of high value (Tucker, 2009) or that are hard-won or difficult to 

generate (Borgman, Wallis, & Enyedy, 2007). 

There is strong evidence that scientists' conceptions of their data's value influence their 

data practices, but no research to date has studied this relationship in depth. Further, there has 

been very little attention paid to how scientists think about their data's value as they work and the 

particular purposes for data that they have in mind as they collect and work with their data. 

While value is an underlying concept in research that focuses on sharing and withholding, these 

studies seem to take data's value for granted. As a result, not sharing or effectively managing 

data for reuse is attributed almost exclusively to a mismatch in incentives, and associated 

implications and recommendations tend to focus on strengthening policies or removing barriers 

to sharing all data. However, without understanding how scientists conceive of their data's value, 

including differing value they assign to different data and the benefits or purposes that underlie 

those assessments, researchers cannot fully characterize their data practices nor can funders, 
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repository managers, and publishers appropriately and effectively target policies, mandates, and 

incentives. 

 

1.2 RESEARCH QUESTIONS 

 This dissertation addresses the lack of understanding of the role of conceptions of value 

in scientists' data practices. Specifically, I analyze the views and practices of scientists 

conducting research at an ecological field station and working in small teams, who were 

collecting, analyzing, and otherwise working with data they created. My research answers the 

following question: 

How do scientists conceive of the value of their data, and how do scientists enact conceptions of 

value in their data practices? 

This question is made up of several related subsidiary questions: 

• What specific uses for data are salient to scientists (e.g. as evidence of claims; resources 

for conducting longitudinal studies; inputs for new research questions)?  

• What time spans do scientists use to think about their data's value? 

• On what basis do scientists assess data's value? For example, do they consider the speed 

with which technological advances are expected to render data collected with a particular 

piece of equipment obsolete; the processing state of the data; the ease of replicating the 

data, etc.? 

• How do scientists create data that are valuable (as construed by the scientists themselves), 

and what do they do in response to their notions of data's value? 
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1.3 A MULTI-CASE STUDY AT A FIELD STATION 

 In this dissertation, I focus on the views and practices of scientists who worked in three 

small teams and conducted research at a U.S. university-sponsored field station (referred to 

throughout the dissertation as "the Station"1). Broadly speaking, these researchers carried out 

ecological research. Ecology⎯a multidisciplinary field that includes disciplines such as wetland 

ecology, atmospheric science, biogeochemistry, and geoscience (among many others)⎯is the 

study of relationships of organisms to one another and with the environment. I focused my study 

on scientists conducting ecology-related research for two reasons.2 First, those with a concern for 

advancing ecological knowledge (including the scientists themselves) have made a strong case 

for data integration across both time and sites to look at large-scale phenomena that are of key 

importance to human welfare (Michener & Brunt, 2000; M. Palmer et al., 2005; Whitlock, 

McPeek, Rausher, Rieseberg, & Moore, 2010). In other words, they have put forth a well-

articulated value proposition that says that carefully managed, shared, and preserved data will 

not only advance science, but also help society respond to environmental crises. In a recent 

example, ecologists argued that they could have better understood the impacts of the 2010 

Deepwater Horizon oil spill in the Gulf of Mexico had they had access to relevant planktonic, 

oceanographic, and atmospheric science data (among other kinds of data) (O. Reichman, Jones, 

& Schildhauer, 2011); and, further, that meeting mandated species recovery goals for the oil spill 

would depend crucially on openly accessible and well-managed data from a number of 

disciplines (Bjorndal et al., 2011). 

                                                
1 I have changed all place and person names to protect participants' identities.  
2 Many of the scientists at the Station, including my participants, labeled themselves according to 
a more specific disciplinary orientation than "ecology." However, when referring to my 
participants throughout the dissertation, I employ the terms "researcher," "scientist," and 
"ecologist" interchangeably. 
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 At the same time, ecological science is primarily comprised of small science disciplines, 

with characteristics that make widespread agreement on what the valuable data products are 

especially challenging. Small science, often contrasted with big science, is generally driven by 

individual investigators or small teams, with data collected and analyzed independently (J. 

Reichman & Uhlir, 2001). In big science fields, such as physics and astronomy, scientists rely on 

equipment of such a scale and expense that the resulting data is often shared among many 

collaborators (Borgman, Wallis, & Enyedy, 2007). In small science fields, like biogeochemistry 

and wetland ecology, scientists tend to collect heterogeneous and non-standardized data. 

Traditionally, few of these data have been deposited in repositories (J. Reichman & Uhlir, 2001) 

and instead have been managed locally, according to data creators' own needs (Borgman, Wallis, 

Mayernik, & Pepe, 2007). Several researchers have argued that we need extensive studies of 

small science fields to better understand how scientists manage data in a local context, 

emphasizing that "little is understood about the diverse ways [these] scientists actually produce, 

manage, and use data" (Baker & Millerand, 2010, p. 115; Borgman, Wallis, Mayernik, et al., 

2007). 

In this dissertation, I begin to fill that gap. The field station where I carried out my study 

hosts a number of teams of scientists every year and has recently implemented a "data 

management" policy. Specifically, the Station's policy states that researchers must submit a copy 

of their data, along with the appropriate metadata, to the Station for deposit in the repository 

within a year after researchers have completed their data collection. By archiving and making the 

datasets available, the Station hopes to ensure long-term access to data created using Station 

resources and to help scientists fulfill funding mandates. 
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1.4 STUDY OVERVIEW 

 This dissertation is based on a study of three small teams of scientists that conducted 

research at the Station during the summer of 2012. Approximately 40 research projects are 

carried out at the Station each summer; projects are funded by numerous agencies (including the 

NSF, the U.S. Department of Defense, the U.S. Department of Energy, and the EPA) and are 

concerned with a range of phenomena. The three teams I studied varied along several important 

dimensions, including career stage of the primary investigator(s), the type of investigation, the 

time span of the project, and the funding source. Together, the three cases I selected elucidate a 

range of ways that scientists think about data's value and manage data, based on socially situated 

meanings of data that include scientists' notions about the purposes data serve; the time spans 

over which data will useful; who might benefit from using the data; and what is required to 

create valuable data. 

 This study relies on three main sources of data: participant observations of scientists as 

they collected, analyzed, and managed their data; semi-structured interviews with scientists and 

Station staff and faculty; and documentary sources, including relevant funding and journal 

policies, grant applications, data, data documentation, and discipline-specific literature on 

sharing and reuse. I conducted the bulk of my observations and interviews with participants over 

an eight-week period during which I lived at the Station along with the scientists carrying out 

research. I employed qualitative methods to analyze all the data I collected. 
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1.5 KEY TERMINOLOGY 

 Below, I provide definitions of several terms I use regularly throughout the dissertation.  

Data Practices: Data practices in this study refers to the "research processes and activities 
related to scientists' work with data" (Cragin, Palmer, & Chao, 2010, para. 5). These practices 
encompass data collection, description, and analysis as well as activities like data sharing. 

 
Data Management: I use "data management" to refer to those activities undertaken to meet the 

need—both long- and short-term—to access, use, and understand data. This includes, but is 
not limited to, activities such as documenting contextual information about data, organizing 
data, and storing data. Data practices include data management; data management is a more 
specific set of activities than data practices. 

 
Data Sharing: The act of making data available for others' use. This can be accomplished any 

number of ways, including via personal contact or publically accessible databases. The chosen 
mode of sharing might facilitate long-term preservation (for example choosing to deposit data 
with a disciplinary repository that ensures longevity), but not necessarily. 

 
Continuing Value: Archivists define continuing value as the "enduring usefulness or 

significance of records, based on the administrative, legal, fiscal, evidential, or historical 
information they contain, justifying their ongoing preservation" (Pearce-Moses, 2005). To 
encompass the context of scientific data, I focus on the notion of enduring usefulness. 
Understanding usefulness for whom, what purpose, and for how long is one of the concerns of 
this study. 

 
 
1.6 THEORETICAL FOUNDATIONS 

 In this study, I focus on scientists' conceptions of data's value to better understand how 

they create, manage, and work with data. The theoretical foundations for this study are 

constructivist; I draw on theories from sociology and the sociology of science as well as on 

philosophical explications of value. In employing these theories, I position scientists' conceptions 

of data's value as an important factor across the span of the research process. Scientists' notions 

about data's value arise from the meaning(s) that data have for them. These meanings are socially 

situated and include assumptions about the purposes for data, the traits that make data good, how 

long data will be valuable, and who could (or should) benefit from data's use. 
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1.6.1 DATA STREAM MODEL 

 One of the many problems with making broad claims about the value of scientific data is 

that there is no one, agreed upon, standard definition for data that applies across all disciplines. 

There are, in fact, many different ways to conceptualize what data are. The Oxford English 

Dictionary defines a datum (the singular of data) as  

a thing given or granted; something known or assumed as fact, and made the basis of 
reasoning or calculation; an assumption or premise from which inferences are drawn; 
 

and data (plural) as "facts, especially numerical facts, collected together for reference or 

information." Open data sharing and long-term preservation proponents tend to similarly treat 

data as fairly self-contained and stable entities. U.S. government-sponsored reports, for example, 

liken data to bricks (Committee on Issues in the Transborder Flow of Scientific Data & National 

Research Council, 1997, p. 47) that make up the foundation of scientific knowledge or position 

them as "endless fuel for creativity" (Interagency Working Group on Digital Data to the National 

Science and Technology Council, 2009, p. 1). 

 Some definitions of data emphasize the varied forms that they can take:  

Scientific or technical measurements, values calculated there from, and observations or 
facts that can be represented by numbers, tables, graphs, models, text, or symbols and 
that are used as a basis for reasoning and further calculation (Committee on Issues in the 
Transborder Flow of Scientific Data & National Research Council, 1997, p. 197). 
 

 Others specifically emphasize data's increasingly digital format to highlight their 

potential for reanalysis. For example, Simberloff et al. (2005) define data as  

[. . .] any information that can be stored in digital form, including text, numbers, images, 
video or movies, audio, software, algorithms, equations, animations, models, simulations, 
etc. (p. 9). 
 

 Some definitions of data focus on differentiating kinds of data. For example, level of 

processing is viewed as an important characteristic of data: raw/level-one data (often the most 
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difficult for others to understand); second-level data (generally what interpretations in papers are 

based on); and third-level data (compilations of data from several sources) (Committee on Issues 

in the Transborder Flow of Scientific Data & National Research Council, 1997). Alternatively, 

another classification is based on the type of phenomena data represent: observational data 

represent one-time phenomena; experimental data are collected through controlled experiments; 

computational data are generated from simulations; and reference datasets are curated collections 

of data (Committee on Issues in the Transborder Flow of Scientific Data & National Research 

Council, 1997). 

 These definitions of data largely obfuscate, or at least overlook, the work, judgments, and 

decisions involved in making data that can be used meaningfully over time and/or by others. 

Adopting a constructivist perspective to data, Hilgartner and Brandt-Rauf (1994) warn that we 

must not 

[. . .] assume that data somehow arrive on the scene in pre-packaged units that are 
transferable, sharable, or publishable, or that there is some discrete point in time at which 
data should "naturally" be transferred (pp. 361-362). 
 

Instead, they propose a more process-based approach to understanding data-access issues, 

characterizing data as part of an "evolving stream." In their data stream model, Hilgartner and 

Brandt-Rauf describe the stream as a collection of heterogeneous elements that includes—among 

other things—output, equipment, know-how, and samples. Because the stream is heterogeneous, 

Hilgartner and Brandt-Rauf stress the importance of taking a broad view of data: one that 

encompasses the myriad component elements instead of only some pre-determined end product 

of research. 

 In addition to heterogeneity, the data stream model emphasizes several important 

qualities of data elements that are likely to bear on scientists' considerations of data's value. One 
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characteristic is the availability or rarity of a data element; at one end of the spectrum are 

commonly or widely accessible items, such as equipment; and on the other end are very rare 

items, such as craft knowledge of a novel data collection technique. Another important data 

characteristic is the factual status of data, which Hilgartner and Brandt-Rauf equate with 

certainty and reliability. At one end data are "so uncertain that even the scientists who produced 

them doubt their credibility and utility," and on the other end data are "widely regarded [as] 

reliable and valuable" (pp. 360-361). Time is an important factor for this characteristic, since 

data are constantly being interpreted and reinterpreted and their credibility and utility being 

reassessed. Finally, Hilgartner and Brandt-Rauf draw on Latour's (1987) concept of inscriptions 

to emphasize that data streams are made up of chains of products that range from relatively raw 

to highly refined. On the raw end of the spectrum lie first-order inscriptions, such as the output 

from primary inscription devices, while on the highly refined end lie extensively processed data 

graphs intended for publication in scientific papers. These different levels of inscription 

represent, they argue, not only changes in the form of data, but also alter the  

"purposes for which they can be used" and therefore the data's utility or value (p. 361). 

 The data stream model has important implications for studying scientists' conceptions of 

data's value and their data practices. Specifically, this model suggests that how scientists view 

the value of the data they create will vary throughout the research process. For example, if 

inscription level is an important characteristic for assessing data's value, then scientists would 

likely regard data collected at earlier stages of their study (i.e. rawer data) as having different 

worth than data produced in later stages (i.e. heavily processed data). Furthermore, Hilgartner 

and Brandt-Rauf's model suggests that purposes against which data's value is judged are likely to 

vary across the data stream. This leads to questions such as: What are the purposes that are 
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assessed during the research process? Which purposes are salient to scientists at different stages? 

How do notions about data's uses impact on the creation of what scientists would consider to be 

valuable data? 

 Lastly, the model also suggests that important decisions and valuations occur across the 

stream. Data preservationists have noted the path-dependent nature of digital preservation (Blue 

Ribbon Task Force on Sustainable Digital Preservation and Access, 2008): the decisions made 

early in data's life cycle (or early in the stream) play a crucial role in determining whether or not 

data will endure (Cedars Project Team, 2001; National Academy of Sciences, 2009). One of the 

aims of my study, then, is to understand not just whether scientists regard their data as having 

long-term value (Cragin, Palmer, Carlson, et al., 2010), but also how and why scientists create 

valuable objects that might persist past the life of their project. 

 

1.6.2 VALUE, VALUATION, AND MEANING 

 The meaning of value is often ambiguous. Simplistically, value is defined as the worth of 

something and valuation as the process of estimating, assessing, or measuring the worth of 

something (Saracevic & Kantor, 1997).3 Najder describes three main senses of value: 1). what 

something is worth (often this is expressed in numeric or monetary terms and is the sense of 

value that economists commonly refer to); 2). something to which worth is ascribed (the object is 

regarded as possessing value on the basis of its qualities); or 3). an ideal that causes one to judge 

"objects, qualities, or events as valuable" (e.g. fairness as a value) (1975, p. 42). Philosophical 

theories emphasize value's multi-dimensional nature, highlighting that assessments of value 

                                                
3 Values (sometimes referred to as "value with a capital V") can also refer to people's and 
society's concepts about what is good, just, moral, or ethical. While a prominent topic of study in 
both philosophy and sociology, it is not the meaning of value I am concerned with in this study. 
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encompass aspects of the object being assessed (Beckert & Aspers, 2010) and the benefits and 

purposes at issue (Rescher, 1969). In other words, to understand what is meant when something 

is said to have high value or be valuable, we should ask: value for what and whom and on what 

basis? 

 An assumption that scientific data are valuable products of science underlies claims that 

scientists should manage and share their data for reuse and preservation. In many instances, 

value is treated as a quality inherent to data. For example, the National Research Council argues 

that data (seemingly all data) are valuable because they facilitate new discovery, while the 

National Academy of Sciences states that data's ability to ensure verification and replication 

make them worthy of preservation and sharing (Committee on Issues in the Transborder Flow of 

Scientific Data & National Research Council, 1997; National Academy of Sciences, 2009). 

Other organizations and researchers emphasize that data allow for endlessly exploiting research 

investment for new ends (Arzberger et al., 2004; Association of Research Libraries, 2006; 

National Academy of Sciences, 2009; Whitlock, 2011). 

 Some data preservation proponents assert that effective data stewardship will depend on 

the careful selection of data, and, as a result, have attempted to discern which kinds of data are 

most likely to have long-term value. Several have proposed that long-term value stems from the 

type of phenomena data represent and their resulting degree of uniqueness (W. Anderson, 2004; 

Blue Ribbon Task Force on Sustainable Digital Preservation and Access, 2010; Simberloff et al., 

2005; Steering Committee for the Study on the Long-term Retention of Selected Scientific and 

Technical Records of the Federal Government National Research Council, 1995b). This schema 

positions observational data, such as astronomical observations of galaxy formation, as having 

greater preservation value because they represent one-time phenomena that cannot be recreated. 
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Experimental data, which scientists could conceivably recreate, are viewed as less worthy of 

long-term preservation (Simberloff et al., 2005). Other researchers, however, have noted that it is 

often difficult (or even impossible) from a practical standpoint to recreate experimental data 

(Collins & Pinch, 1998). 

 In another perspective on the value of scientific data, Heidorn (2008) and Cragin et al. 

(2007) argue that considerable value is likely to be found in what they call "the long tail of 

science." These authors use "the long tail" to refer to the portion of scientific research that is 

carried out by individual scientists or small teams of scientists resulting in "small but numerous 

data collections" (C. Palmer et al., 2007, para. 2). The value of data in the tail—comprised 

mainly of heterogeneous datasets (many of them experimental)—could derive, in large part, from 

their integration across time, sites, and studies, regardless of any individual dataset's 

reproducibility (C. Palmer et al., 2007). 

 These different conceptualizations of data's value highlight value's dependence on 

assumptions about what and whom data are for and also suggest several characteristics of data 

that could be used by those who seek to determine data's sharing or preservation worth. 

Problematically, however, these characterizations set up normative assumptions about the way 

scientists should regard and care for the data they generate. Policy makers then treat departures 

from the norm (i.e. not sharing openly) as indicative of scientists' unwillingness to share or 

engage in data documentation, instead of as a possible expression of how scientists view their 

data's value. In the interest of better understanding scientists' data practices, my study focuses on 

how scientists think of their data's value as they collect and work with data and as they consider 

sharing or archiving those data. 

 The philosophical study of value (known as "axiology") is concerned with value as it 
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relates to ethics, or what is good, right, and moral. In characterizing what value is, philosophical 

theories of value generally recognize two main types: intrinsic and instrumental (also frequently 

called extrinsic). Intrinsic value refers to the quality of something being "worthy in and of itself" 

(Saracevic & Kantor, 1997, p. 529); pleasure, for example, might be regarded as having intrinsic 

value. Instrumental value applies to the quality of something being valued "as a means of 

attaining some end" that is considered worthy (Attfield, 1987, p. 39). For example, when 

researchers who study scientific data practices observe that data play important roles for 

scientists in proving hypotheses (Latour & Woolgar, 1986), creating publishable products 

(Borgman, Wallis, & Enyedy, 2007), and forming collaborations with others (Birnholtz & Bietz, 

2003), they describe purposes or benefits that scientists expect to achieve through their data. This 

hints at an instrumental value for data: scientists value the data for what they expect the data will 

allow them to do. 

 Theorists argue that objects can exhibit both kinds of value: knowledge, for instance, is 

often regarded as having both intrinsic and instrumental value (Kirschenmann, 2001; Lemos, 

1995; Saracevic & Kantor, 1997). In the scholarly research context, in particular, the 

accumulation of knowledge is regarded as valuable for its own sake; and at the same time 

knowledge can be valued for its ability to reveal a cure for a common disease (Kirschenmann, 

2001). 

 Philosophical explorations of value provide a basis for understanding some of the 

dimensions along which scientists might think about their data's value. In particular, they point to 

the importance of considering the set of aims scientists strive toward as they collect and work 

with their data. Where data exhibit instrumental or use value for scientists, what specific 

purposes are salient to scientists? For example, do scientists value data for proving claims; 
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conducting longitudinal studies; or answering new research questions? Do the purposes concern 

only their own uses or also other scientists' uses of their data? And then what data traits are 

important to scientists as they think about data's value for the purposes that are salient to them? 

For instance, do scientists consider the speed with which technological advances are expected to 

render data collected with a particular piece of equipment obsolete; the processing state of the 

data; or the ease of replicating the data? 

 Philosophical characterizations, whether describing instrumental or intrinsic value, also 

hint at a more fundamental aspect of value put forth by Beckert and Aspers (2010): "Value is not 

intrinsic to the materiality of an object but rather is inseparably connected to the concept of 

meaning" (p. 11). Conceptions of value are tied to the characteristics of an object being 

evaluated, but how people valuate objects depends on the meanings that objects take on for them. 

Beckert and Aspers assert that these meanings arise from within social systems. 

 In his theory of symbolic interactionism, which largely rests on the premise that people 

act toward things and objects on the basis of the meanings objects have for them, Blumer (1969) 

similarly argues that meaning is neither a purely psychological phenomena nor something 

intrinsic to objects. Instead, meanings are social products that arise from ongoing interactions 

between people. Meanings are never stable, but rather people deal with and modify meanings 

through an interpretive process. Taking a similar perspective, Wenger (1998) provides a useful 

framework for examining meaning, which he identifies as being negotiated within communities 

of practice. 

 Wenger defines a community of practice as a group of mutually engaged participants 

working on a joint enterprise and utilizing a shared repertoire of resources. Participation in these 

communities not only shapes what we do, but also shapes who we are and how we interpret our 
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actions. Several studies of information use, including those on scientific data practices, have 

employed Wenger's communities of practice model (e.g. Birnholtz & Bietz, 2003; Talja, 2002; 

Zimmerman, 2003), largely because it emphasizes the socially situated nature of using, creating, 

and managing information resources. For this study, I use Wenger's framework to elucidate 

data's meanings for scientists and, hence, to better understand scientists' conceptions of data's 

value. The key reason I have focused my study on small teams of researchers is that the social 

phenomena of meaning-making and valuation are likely to be more visible than they would be 

were I to study the practices of individual scientists working alone. 

 Wenger repeatedly highlights the provisional and situated nature of meaning. In fact, he 

argues that in order to find the meaning of activities, objects, or concepts for individuals, we 

must look at the practice and process of its making or the negotiation of meaning. Wenger 

characterizes this negotiation (which is meant to highlight the provisional and ongoing nature of 

it) as continuous, active, and dynamic. It is both historical and rooted in the present context and 

involves interpretation and action; doing and thinking; understanding and responding. Meaning-

making happens constantly, resulting in "extend[ing], redirect[ing], dismiss[ing], reinterpret[ing], 

modify[ing], or confirm[ing] [. . .] the histories of meanings of which they are a part" (pp. 52-

53). 

 According to Wenger, meaning negotiation is made up of two component processes that 

exist in a duality with each other: participation and reification. Participation refers to the "social 

experience of living in the world in terms of membership in social communities and active 

involvement in social enterprises" that "combines doing, talking, thinking, feeling, and 

belonging" (Wenger, 1998, pp. 55-56). It is important to note that, in Wenger's model, this 

participation is always social, even when it does not directly involve conversation or other 
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interactions between people. A scientist working alone at her computer to document the details 

that she might need to evaluate a set of data later implicitly involves people who are not present, 

including the other members of her disciplinary community and the people she works with more 

closely. 

 Reification refers to "the process of giving form to our experience by producing objects 

that congeal this experience into 'thingness'" or the process of making something abstract more 

concrete (Wenger, 1998, p. 58). These reifications, according to Wenger, create points of focus 

around which actors can organize the negotiation of meaning. Wenger includes laws, procedures, 

and tools as examples of reifications. In looking at the work of scientists, reifications include 

data management mandates, plans, metadata standards, local workplace policies and procedures, 

journal publication policies, and the data themselves (to name just a few). 

 To understand the negotiation of meaning, then, Wenger asserts that we must look at the 

ways in which reification and participation interplay or come together. Looked at through this 

conceptual lens, scientists' data practices can be viewed as an example of negotiating meaning. 

These practices (which include attaching descriptions to data and arranging, processing, and 

transforming data) take place within a context that includes the scientists' local work setting, 

disciplinary expectations, work needs, training, the data themselves, past experiences with 

similar data, the time that they have to engage in data management practices, standards, the 

scientists' own planned research trajectory, who scientists are working with, and what things are 

going on as they engage in data practices. The scientist's role (participation) in meaning 

negotiation in data practices comes from her being a member of a particular community of 

practice and her related history of participation in that community. Data, mandates, policies, and 

standards also contribute to the negotiation of meaning in data practices by reflecting aspects of 
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practice that have been fixed or reified. The convergence of these two (participation by scientists 

and reification as embodied in artifacts) is where negotiation of meaning takes place; where the 

meanings of data and what they are good for are formulated. These meanings not only have 

direct bearing on scientists' conceptions of their data's value, but the data practices themselves 

also work to create data that are good for some purposes and not good for others.  

 

1.7 SIGNIFICANCE OF THE STUDY 

 As funders, the public, journal publishers, and scientists increasingly expect data to be 

managed as reusable products of research, it becomes ever more important to understand how 

scientists work with data and the factors underlying their practices. Much of the rhetoric on data 

sharing begins from the perspective that data are valuable and then asserts that scientists should 

manage data to support reuse and preservation. When scientists do not adhere to this norm, data 

sharing proponents often regard them as unwilling to share data or manage them for reuse. 

Empirical work on data practices suggests that scientists' conceptions of their data's value 

influence their decisions about providing access to data or making them archive-ready. Yet we 

have only a rudimentary understanding of how scientists think about their data's value, 

particularly as they engage in their day-to-day research practices. 

In this study, I focus on scientists carrying out ecological research at a field station. By 

examining researchers' conceptions of data's value as they relate to data practices, this study 

offers a different perspective on how scientists manage their data and the aims of such activities. 

One of the primary contributions of this research is a better understanding of how scientists 

determine that some of their data deserve actions that facilitate the data's endurance beyond their 

immediate time of collection or creation. 
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 In terms of broader impacts, my findings have the potential to help policy makers, 

repository managers, and others interested in ensuring data preservation and reuse in two main 

ways. First, a more thorough understanding of how scientists conceive of the value of their data 

(including value for what, whom, and how long?) has the potential to reveal possible avenues for 

impacting scientists' data management behavior. Second, while many data stewardship 

proponents have argued that selection will be a necessary component of science data 

preservation efforts, governmental advisory committee reports on data sharing and federal 

funding policy seem to still be guided by an implicit assumption that scientists should manage all 

of their data to facilitate future reuse. Such a perspective not only places an onerous 

responsibility on scientists, but also potentially prevents targeted investment in stewardship for 

the most valuable data. While this dissertation does not identify which particular kinds of data 

are most valuable for preservation, it does reveal how three teams of scientists think about their 

data's value and hence sheds light on whether, how, and why the scientists I studied came to 

view any of their data as a product with continuing value.
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CHAPTER 2: LITERATURE REVIEW 
 

2.1 OVERVIEW 

 My literature review brings together several areas of research to lay the foundation for a 

study on how scientists' conceptions of data's value relate to their data practices. I begin by 

describing the demands being placed on scientists regarding their data and the reasons for those 

demands, particularly as it applies to ecology and the long tail of scientific research. These 

demands have placed considerable attention on scientists' data practices; most notably the degree 

to which scientists share and withhold data and their reasons for doing so. Much of this research 

focuses on scientific norms, incentives, and motivations, so I review this work as it relates to 

scientific practice before moving on to a discussion of sharing and withholding studies. Then, I 

discuss the current state of knowledge regarding scientists' sharing and withholding behavior to 

argue that it presents a limited view of how scientists make decisions about what to do with their 

data. I follow this with a section devoted to research, primarily drawn from science and 

technology studies (STS), on the contingency of data and the various roles that data play for 

scientists. I conclude the chapter by reviewing the limited work that has been done to understand 

how scientists view the value of the data they create. 

 

2.2 CHANGING EXPECTATIONS FOR DATA AND THE PROMISE OF THE LONG TAIL 

 In virtually every scientific field, scientists are generating data at an unprecedented rate, 

primarily using digital technologies. In climate science, for example, modeling simulations have 
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been a significant contributor to what has been called an "explosion in data" (Overpeck, Meehl, 

Bony, & Easterling, 2011, p. 701); and in genomics, genetic sequencing output has doubled 

approximately every nine months (Kahn, 2011). Even in small science fields, such as habitat 

ecology, scientists increasingly deploy sensor technologies, resulting in large volumes of digital 

data (Borgman, Wallis, & Enyedy, 2007). The proliferation of digital data and more pervasive 

networking capabilities have given scientists the ability to access and transfer data more readily, 

as well as to conduct analyses over much larger-scale data collections than ever before. 

 In many areas of research, these changes have already enabled scientific discovery that 

was previously inconceivable. For example, the mapping of the human genome and subsequent 

development of tools to analyze the resulting database, have made it possible for scientists to 

identify the genetic markers associated with specific diseases. In astronomy, scientists are able to 

use supercomputers to simulate (based on observational data) the collision of two black holes to 

better understand the fundamental laws of physics and perhaps even the origins of our universe 

(National Science Foundation Cyberinfrastructure Council, 2007; O'Hanlon, 2010; Reddy, 

2012). 

 The promise of transformative science, however, is not limited to big science fields or 

petabyte-sized datasets. In fact, several researchers have begun to argue that there is considerable 

value in bringing together the countless small science datasets that make up a significant portion 

of U.S. federal research expenditure (Heidorn, 2008). Inspired by a power law distribution 

concept introduced by Chris Anderson (2004) to explain the business strategy of online retailers, 

such as Amazon and Netflix, several researchers have employed the phrase "the long tail of 

scientific research" to describe these many, relatively small datasets collectively (Heidorn, 2008; 

C. Palmer et al., 2007). Heidorn (2008) characterizes the long tail as being comprised of 
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heterogeneous data that are generally not well-serviced by established disciplinary repositories. 

The data in the tail tend to be hand-generated (as opposed to mechanized), the result of unique 

procedures, and subject to individual curation. As a result, the data—which Heidorn estimates 

are the most voluminous by the nature of the number of studies and amount of federal funding 

they represent—are also the least accessible to others since they are primarily managed locally. 

 Palmer et al. (2007) suggest that substantial value could be realized in making data in the 

long tail more widely available. They argue that environmental and ecological science in 

particular "can profit greatly from more prudent management of the data resulting from long-tail 

science" (para. 9). Not only does better management of data in the tail have the potential to 

facilitate greater access to data for a number of important environmental stakeholders, but it 

might also allow the kind of multi-disciplinary, cross-site integration of data that many see as 

key to solving contemporary scientific grand challenges, such as global climate change and 

natural resource management (W. Anderson, 2004; Atkins et al., 2003; C. Palmer et al., 2007).  

 The growing emphasis on data in virtually all scientific fields marks an important shift 

and challenges much of traditional scientific practice. Data are no longer assumed by those who 

fund their creation and collection to be expendable by-products of research, but rather, are 

conceived of as enduring products in their own right (Bowker, 2000, 2006). Further, whereas 

scientific data have traditionally been viewed as private possessions (McCain, 1991; McSherry, 

2001) of limited value once papers were published (Latour & Woolgar, 1986), they are now 

frequently positioned, especially by research funders and journal publishers, as a collective 

resource with continuing value (Edwards et al., 2007). A prominent demonstration of this shift is 

the U.S. National Science Foundation requirement, implemented in 2011, that all grant proposals 

include a data management plan (National Science Foundation, 2011a). While the NSF does not 
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require scientists to deposit their data in a repository (and, in fact, the NSF has not yet indicated 

whether or how it will monitor and enforce adherence to the data management plans), it does 

"expect" researchers to  

[. . .] share with other researchers, at no more than incremental cost and within a 
reasonable time, the primary data, samples, physical collections and other supporting 
materials created or gathered in the course of work under NSF grants (National Science 
Foundation, 2011a). 
 

 The promised potential of data repositories, however, demands far more than that 

scientists just make their data available at the conclusion of a project (which presents plenty of 

challenges in itself). If data are to be fuel for the scientific revolution enabled by the digital age, 

scientists, as data creators, must manage their data in such a way that they are usable for others. 

Scientists are expected, in other words, to consider their data's potential value for purposes 

beyond their immediate needs and engage in activities that promote the data's capacity for reuse. 

 Scientists, it has been noted, may have little incentive to think beyond their own 

immediate needs (Blue Ribbon Task Force on Sustainable Digital Preservation and Access, 

2008) and tend to have a necessarily narrow conception of the possible uses of their data 

(Steering Committee for the Study on the Long-Term Retention of Selected Scientific and 

Technical Records of the Federal Government National Research Council, 1995a). Yet they 

represent crucially important decision-makers in enabling the continuing viability of the data 

they produce. Decisions that data creators make at the point of data creation and shortly 

thereafter have long-standing influence on what can be preserved (National Academy of 

Sciences, 2009). As the Cedars Project Report emphasizes,  

[. . .] the way a digital object is created influences how (or indeed whether) it can be 
preserved. Likewise, decisions taken at the start-point of preservation can impact on 
future access (Cedars Project Team, 2001, p. 68). 
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 There are many concrete examples in the data curation literature that serve as proof of the 

impact of scientists' actions on data preservation and reuse. Gutman et al. (2004) report that the 

Inter-university Consortium for Political and Social Research (ICPSR) data archives determines 

which data to accession based in large part upon the format of those data and the level and 

quality of descriptive information provided by the scientist(s) who created the data. In her study 

of the experiences of ecologists in reusing data created by others scientists, Zimmerman (2003) 

found that documentation of research methods, which can only be adequately captured by the 

scientists who carried out those methods, was used extensively as a tool for assessing the quality 

and applicability of data for particular purposes. Further emphasizing the crucial role of 

documentation in secondary data interpretation, Wallis et al. (2008) identified nine different 

stages at which scientists make decisions that ultimately affect data. This includes how numerical 

data are derived from other kinds of data and how data are normalized based on calibrations. In 

the absence of this knowledge—often taken for granted by data creators—it is difficult if not 

impossible to use the data meaningfully. 

 Without attention to preservation starting at the point of data's creation and beyond, by 

the time that many digital data arrive at repositories it is often too late to properly ensure their 

preservation (Wallis et al., 2008). Regardless of who should be responsible for making decisions 

about which data are most worthy of curation, scientists are already, without question, key 

determinates of the ability to preserve data (Blue Ribbon Task Force on Sustainable Digital 

Preservation and Access, 2008). It is not surprising then that researchers have focused heavily in 

recent years on the views and data practices of scientists, paying close attention to the factors 

that underlie sharing and withholding behavior. Much of this research examines the incentives, 
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norms, and motivations that operate in the scientific context. Before moving on to studies of data 

sharing and withholding, I discuss this set of factors. 

 

2.3 INCENTIVES, NORMS, AND MOTIVATIONS IN SCIENCE 

 Many scientists and researchers who study the challenge of data sharing and reuse argue 

that scientists do not share or create data that will endure past the life of their projects because 

the academic research incentive structure does not reward such activities (e.g. Association of 

Research Libraries, 2006; Borgman, 2007). At the same time, several data sharing and 

preservation proponents use the supposed scientific norm of openness to argue that scientists are 

obligated to create data as a publicly accessible resource (e.g. Arzberger et al., 2004; Fienberg, 

Martin, & Straf, 1985; National Academy of Sciences, 2009). To embark on a study of the data 

practices of scientists, then, one must understand the basic norms, incentives, and motivations at 

play in the scientific context. 

 Robert K. Merton, an early sociologist of science, devoted much of his work to 

understanding the normative structure of science and described the nature of the "ethos of 

science" through four "institutional imperatives" (Merton, 1973, p. 273). Data sharing and 

stewardship proponents commonly employ the imperative that Merton called "communism," or 

the common ownership of goods, to argue that scientists should make their data available to 

others. In short, according to Merton, property rights in science are kept at a minimum so that 

more knowledge can be generated from the resulting commons. The maintenance and efficiency 

of the institution of science is tied to the commons that is the result of scholarly publication.  

Although data sharing proponents often use his ideas to argue that science is 

fundamentally open (e.g. Campbell, Weissman, Causino, & Blumenthal, 2000; Fienberg et al., 
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1985), Merton made no claim that maintenance of the commons is necessarily an individual 

scientist's motivation to openly disseminate her research. Instead, he considered communism 

(and the other imperatives) to be an institutional norm. Scientists are rewarded for adherence to 

the norm by the recognition and esteem they receive as a result of publication. The incentive 

structure, in other words, rewards behavior that adheres, at least partially and in specific 

circumstances, to openness. 

 Similarly, Hagstrom (1965), aiming to explain why scientists would openly share the 

products of their work without direct monetary compensation, characterized the scholarly 

publication system as a gift exchange. Scientists gift manuscripts to the scientific community—

primarily through scholarly publication—and in return they (ideally) accrue status in the form of 

citation and emulation. The gift exchange, then, is "an exchange of social recognition for 

information" where one of the few exclusive rights the scientist retains to the information is the 

right to the recognition for his or her contribution (p. 13). In fact, contribution to the communal 

system is virtually the only means by which a scientist can gain credibility and recognition. 

According to Hagstrom, such a system creates a moral culture to which scientists not only 

outwardly adhere, but also internally conform. 

 Several scholars have criticized the focus on norms to explain scientists' motivation to 

expend considerable effort on making their discoveries openly available. In their anthropological 

study of "Laboratory Life," Latour and Woolgar (1986) take issue with Hagstrom's information-

recognition-exchange theory. The scientists they studied hardly ever used norms to talk about 

their behavior. Instead, scientists described their motivations in primarily quasi-economic terms, 

using economic and business metaphors and characterizing their actions in relation to investment 

and return. Credit, Latour and Woolgar argue, is not actually a gift given in exchange for 
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contribution, but a commodity that can be exchanged, shared, stolen, accumulated, or wasted. 

 While credit is an important commodity to scientists, Latour and Woolgar emphasize that 

credibility, or the "attribute of generally being believed in," is scientists' primary motivation 

because credibility allows them the ability to do science (Oxford English Dictionary as cited by 

Latour & Woolgar, 1986, p. 194). Scientists' behavior would be more properly understood as that 

of an investor in capital, where they work to build up their stockpile of credibility. Scientists can 

then invest that credibility for yet more, or different kinds of, credibility. 

 Perhaps even more significant to understanding the motivations of scientists, however, 

Latour and Woolgar's framing of scientific knowledge exchange as a contribution market reveals 

the demand side of this exchange. While Hagstrom and Merton largely overlook the reason 

scientists value others' scientific knowledge in the first place, Latour and Woolgar emphasize 

that information is valued in this market for its utility to generate fresh information.  

 An important implication of the research outlined thus far, whether scientific publication 

represents a gift exchange or a commodity market for credibility, is that the system creates a 

competitive environment in which scientists vie for priority in making discovery and expect 

community recognition of their contributions. The publication system not only creates 

competition among scientists to be the first to publish a new finding, but also works as a metric 

for distributing rewards (e.g. tenure, attractive employment prospects, and grant funding) 

(National Research Council, 2003). This competitive aspect of publishing indicates that, despite 

the tendency of scientists to make their findings widely available, scientists do so strategically 

through a system that rewards them. One might expect, then, that scientists would be reluctant to 

make their data openly available. At the very least, it seems likely that scientists would protect 

data and findings until they have turned them into the products for which they are rewarded.  



  30 

 In the next section, I detail research on data sharing and withholding to better understand 

the specific reasons scientists have for protecting their data and the various factors they consider 

as they contemplate making data openly available. I argue that while such research has revealed 

significant aspects of scientists' data practices, it has neglected other potentially important 

factors. 

 

2.4 STUDIES OF DATA SHARING AND WITHHOLDING 

 The increasing emphasis on data as a potentially reusable (but perhaps under-shared 

and/or poorly managed) product of science has resulted in numerous studies that examine 

scientists' data practices, or the "research processes and activities related to scientists' work with 

data" (Cragin, Palmer, & Chao, 2010, para. 6). Researchers have studied the practices of 

scientists as both data creators and data reusers. While the development and maintenance of data 

sharing and preservation infrastructures will depend on understanding the needs and practices of 

secondary reuse (Niu, 2009; Zimmerman, 2003), knowledge that clarifies how scientists work 

with their data, and particularly those activities that impact future reuse, is equally important. My 

primary focus is on the latter, and as a result I concentrate on studies of scientists as data 

creators. 

Research on the data sharing and withholding behavior of scientists can be grouped into 

two main kinds: quantitative studies on rates of data sharing and withholding and the attitudes of 

scientists regarding these practices; and qualitative studies that examine scientists' sharing and 

withholding behavior within the context of their day-to-day research activities.  
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2.4.1 QUANTITATIVE STUDIES ON DATA SHARING PRACTICES AND ATTITUDES 

 For all the promised potential of data as a renewable resource for scientific research, the 

numerous policies implemented to influence scientists' behavior, and an increasingly strong 

social message about managing data for reuse, many fields of science continue to struggle to 

build repositories of well-curated collections of data (Borgman, Wallis, & Enyedy, 2007; 

Interagency Working Group on Digital Data to the National Science and Technology Council, 

2009; Nelson, 2009). Data reuse proponents often attribute empty archives to scientists' 

unwillingness to share data or to take the time and effort required to create data that can be used 

by others. As a result, several studies have examined rates of, or opinions about, sharing and 

withholding in an attempt to determine which specific factors are associated with these behaviors 

and views. 

 These studies are primarily quantitative and rely on self-reported survey data and 

measures of repository participation to examine what scientists in various disciplines think about 

sharing; what their experiences are with sharing and withholding; what the predictors are of 

sharing and withholding; and to what extent scientists share and withhold. Many of these studies 

focus their data collection on a specific discipline or resource (e.g. genetics or a specific large-

scale database). 

 Several studies have examined scientists' sharing and withholding behavior and how it 

relates to journal and funder policies, journal impact factor, and scientists' experience by 

conducting quantitative analysis of submission rates to various data repositories. In one such 

study of six journals with explicit policies about sharing genetic sequence information, Noor, 

Zimmerman, and Teeter (2006) found that no journal had complete compliance with their 

requirements to deposit sequence data in a public repository. The study revealed that between 
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3% and 15% of the published studies never submitted DNA sequences; the researchers speculate 

that this may be the result of journals' lax or non-existent enforcement of their own policies. As 

Noor et al. point out, this study's lack of direct interaction with the scientists meant that the 

researchers could not ultimately determine the scientists' reasons for not submitting sequences. 

 In a similar study, Piwowar and Chapman (2008) found that journal data sharing policy 

strength had a positive association with data sharing prevalence. Yet even the journals with the 

strongest policies saw relatively low repository submission rates at 29%. Interested in 

determining what other factors might be positively associated with data repository submission, 

Piwowar and Chapman (2009) conducted a small pilot study to look at the relationship between 

data sharing and funder and publisher requirements, journal impact factor, and investigator 

experience and impact. Their preliminary findings suggest that the impact factor of a journal and 

authors' experience were most strongly related to higher rates of data sharing. 

 The strength of studies that analyze repository submission rates is that they reveal 

scientists' actual data sharing behavior (at least sharing that occurred through the repositories the 

researchers studied) instead of relying on what scientists say they do. Taken together, this 

research demonstrates that journal policies, journal impact factor, and investigator experience do 

positively affect repository submission rates, but on their own do not result in complete (or even 

overwhelming) compliance. These studies, however, do not reveal scientists' reasons for making 

or not making their data available, nor do they expose whether and why scientists consider some 

data more appropriate to submit to a repository than others. Perhaps more importantly, these 

studies are narrowly descriptive, lacking a strong conceptual foundation for explaining the 

findings or applying them beyond the scope of the studies' limited disciplinary or repository 

focus. 
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 Several survey studies of scientists' data sharing practices and views exhibit a similar lack 

of theoretical explanation, but better address the reasons that scientists have for withholding data. 

Overall, these studies—most of them of geneticists and various other life scientists—show that 

data withholding is fairly common, but not necessarily rampant. The most common reasons 

scientists gave for withholding their data were to protect their and their students' ability to fully 

exploit data first (Blumenthal, Campbell, Anderson, Causino, & Louis, 1997; Campbell et al., 

2002; Louis et al., 2002); to avoid the high cost of making data available (Blumenthal et al., 

1997; Campbell et al., 2002); and because they were concerned that their contribution would not 

be reciprocated or recognized by other scientists (Campbell et al., 2002; Louis et al., 2002). 

 Still, these survey studies do not fully reveal how scientists go about creating data that 

will have use beyond their original purpose nor do they help us understand the factors that go 

into a scientist's judgment that a particular set of data is worth the time and effort involved in 

making it available to others or managing it for continued access. At a more fundamental level, 

in approaching the study of data practices with the normative assumption that data should be 

shared, these studies (both the survey and the repository submission rate studies) tend to treat any 

deviation from the ideal as "withholding" due to ineffective punishments and rewards, instead of 

as possible indications of how scientists view their data's value. As a result, this research is 

limited in what it can reveal about scientists' data practices and the factors that underlie them. 

 In an attempt to more fully understand why scientists do not share data or manage them 

for others' reuse, some researchers have employed qualitative methods such as interviews and 

observations. These studies help to enhance what we know about scientists' views on data 

sharing as well as how scientists' data practices are situated within their research activities. 
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2.4.2 QUALITATIVE STUDIES OF DATA SHARING PRACTICES 

  Characterizations of the life-cycle of data (Borgman, Wallis, Mayernik, et al., 2007; 

Wallis et al., 2007), data curation (Digital Curation Centre, n.d.), and scientific research 

(Humphrey, 2006) have been important for identifying the stages that data go through from 

conception to possible preservation action and the implications of decisions at each stage of this 

life-cycle on reuse and preservation. All of these depictions place heavy emphasis on the 

influence that actions taken early in the life-cycle have on preservation and reuse. The actions of 

data creators throughout their research process are, in other words, vital in determining what data 

remain viable over time and the purposes to which they can be put. Unsurprisingly, then, many 

researchers have examined scientists as they carry out their activities to better understand how 

they work with and manage data, particularly as it relates to making them available to other 

scientists. 

 In their study of scientists in earthquake engineering, HIV/AIDS research, and space 

physics, Birnholtz and Bietz (2003) found that scientists had a number of reasons for not sharing 

data: they felt it was in their best interest to get as much as possible out of the data themselves 

first; data documentation required a lot of work for which they were not rewarded; and it was 

difficult for them to make explicit the tacit knowledge important to understanding the data. 

Further, the scientists generally thought there should be a period of time in which they were the 

only ones who could access data they collected. Especially interesting was Birnholtz and Bietz's 

finding that scientists highly valued data sharing as a means of forming new collaborations.   

 McCain (1991) examined what factors affected scientists' sharing behavior. Based on 

data she gathered through unstructured interviews with over twenty geneticists, McCain's 

scientists reported that they often shared information with those who directly requested it. The 
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scientists, however, described a number of what they felt were legitimate reasons for refusing 

access. Scientists thought denying a request to share data was warranted when sharing would 

threaten the interests of their graduate students; when the proposed work would duplicate their 

own; or when they lacked the time and money to make the data shareable. McCain's study 

suggests that, like the Birnholtz and Bietz study, scientists appreciate some degree of personal 

interaction with potential users of their data when making sharing decisions. 

 Borgman, Wallis, and Enyedy (2007) studied the data practices of multi-disciplinary 

teams of ecological scientists. They found that scientists embraced the concept of sharing, but 

that in practice "little sharing actually occur[ed]" (p. 17). Furthermore, the scientists were more 

focused on publications as an output of their work than they were on shareable data. Borgman, 

Wallis, and Enyedy identified several more reasons for the lack of attention scientists paid to 

creating shareable data: they were not rewarded for data management; making data shareable 

required significant effort; and they saw no need to use others' data or to share their own data. 

When asked about the kinds of data they would be willing to share, the scientists said they were 

much more willing to share data that were already published and least willing to share those that 

they planned to publish. Some of the scientists also noted that they would be less willing to share 

data that were difficult to collect. 

 Tucker (2009) focused her data sharing study on scientists' motivations and emotions 

related to sharing. Her case study of a large-scale database project at the National Cancer 

Institute (NCI) revealed that the individual motivations for data sharing often did not align with 

the stated motivations of the project. For instance, while the stated goal of the NCI cancer 

biomedical informatics grid was to create a shared repository to aid in scientific discovery, the 

scientists valued things like research grants or contracts, publications, professional recognition, 
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being the first to solve a problem (because it advances reputation), patents, and tenure. She 

points out that while proponents of the grid may think that advanced technology necessitates and 

enables increased sharing, many of the individual scientists do not have a desire or see a need to 

share. Because scientists were largely rewarded for individual achievement and data were the 

means of securing rewards, many of the scientists wanted to extract as much value out of the data 

as possible before sharing. Far from casting the scientists' self-centered motivations as negative, 

however, Tucker observes that these scientists' jobs were highly dependent on their own self-

interest. Scholarly publication has the potential to garner public recognition, which then 

strengthens a scientist's ability to procure grant funding. Many of her interviewees described this 

grant funding as the ultimate goal, since it is what kept them gainfully employed and allowed 

them to earn a decent salary and conduct their research. 

 It is clear from these qualitative studies of data sharing behavior that data sharing 

represents a complex decision based on numerous factors, including how much access to 

provide, when to provide it, and to whom to provide it. Consequently, the decision to share is 

frequently not a binary one (share or withhold) but a multi-faceted one that includes non-release, 

delayed release, and isolated release (Hilgartner, 1997). Taken together, research on data sharing 

and withholding indicates that many scientists withhold data at least sometimes, despite journal 

and funding agency policies and pleas to uphold the Mertonian norms of sharing in science. 

Further, withholding stems from a number of factors, including an incentive structure that values 

publication over data sharing or data management; scientists' perception that sharing is not 

necessary; and scientists' concern that their data will be used in ways they do not like or that their 

sharing will not be reciprocated or credited. These studies show some of the ways in which 

scientists value data for their own uses, at least in the short-term, and even clarify some of the 
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factors involved in the decision to share. Many of these studies focus on the issue of sharing vs. 

withholding; however, this downplays other factors that may be important to understanding what 

scientists do with data (including making those data available to others). Studies that examine the 

nature of data and the roles that data play for scientists help to illuminate some other factors. 

 

2.5 THE ROLES OF DATA FOR SCIENTISTS 

 Traditionally, in many scientific fields, once a scientist felt she had fully exploited her 

data for her own purposes, she tended to treat them as secondary products of research. But 

technological developments in recent years have led many to characterize this practice as a 

squandering of resources (particularly when the data are produced using federal dollars) and to 

emphasize the potential of data to answer many different research questions (e.g. Arzberger et 

al., 2004; Interagency Working Group on Digital Data to the National Science and Technology 

Council, 2009). Problematically, however, data sharing and preservation proponents often treat 

data as inherently shareable and reusable. The following excerpt from a National Research 

Council report encapsulates such a perspective: 

Data in science are universal—they have the same validity for scientists everywhere. The 
atomic mass of iron, the structure of DNA, and the amount of rainfall in Manaus in 1972 
are facts independent of the political views of their user, the time at which we determine 
them (apart from the evolving, improving accuracy of the determinations), or the user's 
location (Committee on Issues in the Transborder Flow of Scientific Data & National 
Research Council, 1997, p. 48). 
 

Such characterizations of data ignore their complexity and gloss over the amount of work 

involved in creating data that can be reused by others or that will have longevity. Examinations 

of data from the STS community offer a more complicated view of data; one that says data are 

rarely universal and always depend on theoretical and methodological assumptions. 

 Most STS-oriented definitions emphasize the contingency of data. Borgman (2007), for 
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example, characterizes data as "reinterpretable representations of information" and asserts that 

whether data are considered observations or contextual information depends on the use and user 

of the data (p. 120). The importance of contextual information—made tangible through 

metadata—in making meaningful use of data reveals data's dependence on instruments, 

techniques, and theory. Data, according to this perspective, are not just the measurements, but 

also all the relevant contextual factors that led to the creation of those data. As Bowker argues, 

there is never such a thing as pure data that can "stand outside of time" (Bowker, 2006, p. 177). 

Even supposedly "raw data" are cooked; the outcome of complex sets of assumptions about the 

level of precision required and what counts as "noise," to name just two (Gitelman, 2013). 

 Hilgartner and Brandt-Rauf (1994) characterize data as an evolving stream rather than 

easily defined end products or isolated entities and, like other researchers, draw attention to the 

heterogeneous elements that make up data. In particular, they emphasize that instruments, 

techniques, and written inscriptions, and both data inputs and outputs are important components 

of scientific data. 

 Several researchers have examined the various roles that data play for scientists. These 

researchers are less concerned with defining data than they are in uncovering what scientists use 

data to do. An especially influential conception of data in STS research is that data are laboratory 

inscriptions; surrogates for some aspect(s) of objects (Latour, 1987; Latour & Woolgar, 1986). 

Latour observes that a guinea pig cannot by itself tell a scientist much until it is turned into text 

or data. The data, unlike the guinea pig they are derived from, can be "combine[d], compare[d], 

summarize[d] [. . .] and manipulate[d]" to create knowledge (Van House, 2004, p. 14). Further, 

the guinea pig as data can be "accessed, transferred, calculated, processed and analyzed in 

seconds" (Hine, 2006, p. 131). 
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 In addition to serving as surrogates for objects, data also play a significant role as 

evidence for or against a particular hypothesis or theory (Latour & Woolgar, 1986). According to 

Latour and Woolgar, data are most effective in their persuasive role when all signs of their 

production are hidden. While Amman and Knorr Cetina (1988) caution against equating data 

with evidence, they acknowledge data's role in creating evidence.  

 Other researchers have emphasized data's role for scientists as material goods or 

commodities. Federal funders and data sharing and preservation proponents have argued that 

data generated with federal dollars are, by definition, public goods (e.g. Arzberger et al., 2004; 

Interagency Working Group on Digital Data to the National Science and Technology Council, 

2009; J. Reichman & Uhlir, 2001). And, in some cases, scientists seem to agree with this 

principle, believing that data are meant to be shared (Bietz & Lee, 2009; Vertesi & Dourish, 

2011). However, in many instances, scientists treat data as though they are private goods to be 

used by them, as they see fit (Tucker, 2009; Vertesi & Dourish, 2011). 

 As a product of a significant investment of resources and effort (Borgman, 2007; Tucker, 

2009), data represent potential payoff in terms of material or professional gain (Tucker, 2009) or 

credibility (Latour & Woolgar, 1986). They are assets that scientists are often driven to fully 

exploit (Birnholtz & Bietz, 2003) and strategically control to gain competitive edge or to use in 

exchange for other resources (Hilgartner, 1997; Hilgartner & Brandt-Rauf, 1994). Because of 

their potential market value, scientists can use data as bargaining chips in forming collaborations. 

Data can help a scientist gain entry into a collaboration, but if those data are unique she is also in 

a better position to define the terms of any collaboration that involves those data (Hilgartner, 

1997). Going further, Birnholtz and Bietz observe that a scientist with unique and valued data 

and the tacit knowledge to make use of them can effectively become a gatekeeper for others in 
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her field of study (2003). 

 As this research shows, even while funders increasingly expect data to be "end[s] in 

themselves" (i.e. reusable products of scientific research), data are, for scientists, "means to 

ends" (e.g. publishing papers, gaining credibility, etc.) (Hine, 2006, p. 11). Because of data's 

contingency on theory, instruments, and techniques, assumptions about what data are for 

necessarily undergird scientists' data practices. We know that for data to have continuing value to 

others, they must be accompanied by metadata that describe their context of creation (Borgman, 

Wallis, & Enyedy, 2007; Zimmerman, 2003). However, choices about which contextual 

information to document will always constrain possible uses for those data. Further, data may be 

surrogates for objects, but how and what they represent involves choices about equipment, 

theory, and assumptions that are often taken for granted by the scientists who created the data. 

 Much of the current research on data practices in science focuses on incentives for 

motivating scientists to share data or manage data in ways that bolster longevity, with relatively 

little attention paid to how and why data are (or are not) viewed as objects of continuing value. 

Karasti et al.'s (2006) study of data stewardship at the Long Term Ecological Research (LTER) 

network represents one notable exception, however it focused primarily on how information 

managers created long-term data, not on the views and behaviors of scientists. As a result, we 

know a fair amount about the motivational obstacles that prevent scientists from distributing 

their data widely, but lack a clear understanding of how scientists evaluate data's value and 

whether and in what ways the evaluation influences their data practices. 

 Empirical work suggests scientists' conceptions of data's value influence what they do 

with data. In a survey study, for example, social scientists indicated that they would be more 

likely to create archive-ready data if they thought those data would be of use to others (Hedstrom 
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& Niu, 2008). In another study, scientists regarded data that were expected to have the greatest 

potential for generating new results as the most shareable (Cragin, Palmer, Carlson, et al., 2010). 

These findings conflict with other studies, however, that revealed scientists are less likely to 

share data that they think are of high value (Tucker, 2009) or that are hard-won or difficult to 

generate (Borgman, Wallis, & Enyedy, 2007). Adding additional complexity to understanding 

scientists' sharing and withholding practices, Vertesi and Dourish (2011) found that the 

shareability of data depended on the context of data's production: "Data [. . .] is not a shared 

resource simply because it is data: it is a shared resource because it is crafted that way from the 

outset" (p. 540). 

 

2.6 STUDIES THAT ADDRESS SCIENTISTS' CONCEPTIONS OF DATA'S VALUE 

 Despite the emphasis that is placed on the value of scientific data, researchers interested 

in scientific data practices have largely ignored scientists' conceptions of data's value, with a few 

exceptions. In one study⎯a survey of scientists from four UK universities⎯researchers sought 

to understand scientists' long-term storage needs (Beagrie, Beagrie, & Rowlands, 2009). Beagrie 

et al. reported that scientists indicated a strong need for long-term (>5 years) and medium term 

(1-5 years) data curation and preservation services. The study showed less demand for short-term 

data storage (1-12 months). Additionally, scientists in this study said that they expected almost 

half of their data to have a useful life of less than ten years, while they expected 27% of their 

data to have an indefinite period of value. This research, however, does not specify value to what 

purpose nor does it reveal why some data were considered to be more valuable for long-term use 

than others. 
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 In another study, also aimed at understanding the services scientists need from 

institutional repositories, scientists in several domains indicated the importance of long 

preservation periods for their data (Cragin, Palmer, Carlson, et al., 2010). The largest number (13 

of 20) indicated that their data would remain valuable for reuse for a minimum of ten years; four 

indicated reuse value extended indefinitely, while the rest estimated data would be valuable for 

reuse for between three and ten years. In this study, scientists generally considered observational 

data to have very long-term value, but the study design (interviews with twenty individual 

scientists, picked from a range of disciplines, with only one or two scientists representing each 

discipline) makes it difficult to draw conclusions about what factors were important in scientists' 

consideration of their data's continuing value. 

 A recent ethnographic study of space mission scientists' data practices found that datasets 

have "fundamentally different values" depending on their context of production (Vertesi & 

Dourish, 2011, p. 540). Specifically, Vertesi and Dourish found that whether or not scientists 

thought of their data as a public good, to be shared, or a private one, to be protected and 

exploited for their own purposes, depended on how those data were crafted in practice from the 

outset of scientific work. An important point worth noting is that the differences in the 

assignment of value of data as public or private goods did not depend exclusively on disciplinary 

boundaries. While a good deal of research on scientific data practices focuses on elucidating 

disciplinary differences, Vertesi and Dourish's study reveals that how data are valued goes 

deeper than disciplinary orientation and depends a great deal on the local context of data 

production. 

 While the Vertesi and Dourish study demonstrates how data's value as a shareable public 

good is constructed in practice and specifically how value depends on assumptions made early in 
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data's life, the study does not deal with how scientists might assign differing value to different 

data and the specific dimensions of value that inform that assessment. The survey and small 

interview studies do somewhat explore scientists' conceptions of their data's continuing value, 

but not in a way that makes clear how scientists arrive at these judgments or the way value 

judgments are reflected in their data practices. 

 Valuation is at the heart of ensuring continuing access to any materials. The Blue Ribbon 

Task Force on Sustainable Digital Preservation and Access (2010) broadly defines the value of 

preserved data as the benefits that are gained as a result of having access to information in the 

future, but the specifics that such a broad definition leaves out comprise several important 

qualifying dimensions of value. Specific dimensions include: value for what purposes? For 

whom? For how long? Further, what factors determine selectors' assessment of the value of data? 

⎯The difficulty of recreating data? Data's expected level of usage? Data's source of creation or 

collection? These are some of the dimensions of value I explored as I studied scientists' 

conceptions of their data's value. 

 

2.7 CONCLUSION 

 As scientific data are increasingly expected to serve as products of science, it becomes 

ever more important to understand scientists' data practices. While a good deal of research has 

been conducted that reveals the motivations and incentives underlying sharing and withholding 

behavior, such work neglects other factors that might influence decisions to make data widely 

available or to create data that endure beyond their immediate collection. Scientists' conceptions 

of their data's value has emerged from several data practices studies as an important influence on 

what scientists do with data, but results are conflicting and do not show how or why scientists 
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come to view some of their data as having longer term value than others. In order to fully 

understand scientists' data practices, an explanatory framework that takes into account scientists' 

conceptions of data's value must be developed. In the next chapter I describe a study designed to 

address this need.
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CHAPTER 3: RESEARCH DESIGN 
 

In this chapter, I describe my research design, including the rationale for it, the site of the 

study, the case selection rationale, as well as the kinds of data I collected and the methods I used 

to analyze those data. I briefly introduce the cases that are the focus of this study: three small 

teams of scientists (from several ecology-related disciplines) that carried out work at a 

university-run field station (what I refer to as "the Station" throughout the dissertation) during 

the summer of 2012. In Chapter 4, I provide a more detailed description of the teams I studied 

and give examples of their valuation activities before I present my findings in Chapters 5 and 6. 

 

3.1 RATIONALE FOR A QUALITATIVE, MULTI-CASE STUDY 

This dissertation explores scientific data practices through the lens of scientists' 

conceptions of their data's value. I employed a qualitative, embedded, multi-case study approach 

to answer the following overarching research question: 

How do scientists conceive of the value of their data, and how do scientists enact conceptions of 

value in their data practices?  

This question is made up of several related subsidiary questions: 

• What specific uses for data are salient to scientists (e.g. as evidence of claims; resources 

for conducting longitudinal studies; inputs for new research questions)?  

• What time spans do scientists use to think about their data's value? 

• On what basis do scientists assess data's value? For example, do they consider the speed 
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with which technological advances are expected to render data collected with a particular 

piece of equipment obsolete; the processing state of the data; the ease of replicating the 

data, etc.? 

• How do scientists create data that are valuable (as construed by the scientists themselves), 

and what do they do in response to their notions of data's value? 

 My research questions focus on understanding practices that are situated within daily 

activities and are framed by a theoretical orientation that emphasizes the meanings data have for 

scientists. Therefore, like several other studies on scientific data practices (e.g. Akmon, 

Zimmerman, Daniels, & Hedstrom, 2011; Birnholtz & Bietz, 2003; Borgman, Wallis, & Enyedy, 

2007), this study relies on qualitative data. I gathered data through participant observations of 

scientists while they collected and worked with data; and semi-structured interviews with 

scientists about their experiences working with data and their impressions of their data's value. 

More specifically, I designed this research as a qualitative, embedded, multi-case study (Yin, 

1994) of three small teams of scientists who carried out research and lived at the Station during 

the summer of 2012. 

The case study research strategy emphasizes "contemporary phenomenon within its real-

life context," bounded by time and space (Yin, 1994, p. 13). This research approach, which 

includes a variety of data collection strategies, is particularly effective for addressing how 

questions. A multiple-case study design allows one to study the specifics of several cases in 

order to generate a richer understanding of the main phenomenon of interest. For this reason, the 

approach is often considered more rigorous and the findings more compelling than would be 

those from a single case, and it allows for identification of patterns and themes that cut across 

cases (Miles & Huberman, 1994; Yin, 2009). In studying multiple cases, my aim is not to make 
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generalizations to all scientists or all ecologists. As methodologists emphasize, case studies (even 

multiple case studies) do not facilitate generalization to some larger population. Instead, I intend 

to use the three cases to illuminate, in a deeply contextual sense, these scientists' conceptions of 

data's value and how conceptions of value were reflected in what they did with data. 

 

3.2 STUDY SITE 

This study centers on the data practices and views of three small teams of scientists 

engaged in research at a university-run, field station in the United States. The Station was 

founded in the early 20th century to support ecological research and education and continues to 

serve both researchers and students today. Every year, approximately 110 scientists (primarily 

working in small teams), 30 teaching faculty and assistants, and 100 undergraduate students live, 

work, and study at the Station. As a temporary living facility, the Station offers a cafeteria, 

dormitories, shared rustic cabins, and small family houses on its campus, which lies on a lake in 

a remote and sparsely populated location. 

Scientists come from around the U.S. to take advantage of the Station's research facilities 

and field sites, and, along with the students and teaching faculty, they live onsite as they conduct 

their research. With 10,000 acres of land, the Station encompasses a number of habitats of 

interest to researchers, including forests of aspen, pine, northern hardwoods, and conifer 

swamps; fields and meadows; pine plains; wetlands; and rivers and streams. In addition to the 

various sites for conducting field research, the Station also offers specialized research facilities, 

such as an artificial stream lab and atmospheric towers; a fee-based analytical lab equipped to 

perform analyses of air, soil, and water samples; and laboratory space and equipment that 

scientists can use to process different kinds of samples and perform their own analyses. 
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 The Station hosts a range of scientists, representing a variety of ecology-related 

disciplines. During the summer of 2012, this included atmospheric science, forestry, biology, 

zoology, ornithology, biogeochemistry, and wetland ecology, to name a few. As is common in 

ecological research (Michener & Brunt, 2000), small teams of scientists carry out the majority of 

funded research at the Station. During the 2012 field season (from May to August), the Station 

was home to 19 funded research projects. Of these, 14 were carried out by teams of 2 to 12 

people. The following organizations funded 2012 Station projects: the U.S. National Science 

Foundation (NSF), the Department of Energy (DoE), the Environmental Protection Agency 

(EPA), the Defense Advanced Research Projects Agency (DARPA), the National Aeronautics 

and Space Administration (NASA), the Fish and Wildlife Service (FWS), the National Oceanic 

and Atmospheric Administration (NOAA), the State Department of Natural Resources (DNR); as 

well as several North American universities. 

The Station offered a number of compelling advantages for conducting my study. First, 

as just outlined, it attracts scientists who come from a range of specialties, rely on funding from a 

diverse mix of organizations, and collect a variety of different types of data. This presented a 

unique chance to study conceptions of value from a number of perspectives. Second, the fact that 

the scientists resided (as I did) at the same location where they conducted their research offered a 

rare level of access to them and their work. Not only did I interview and observe scientists while 

they carried out their research, but I also ate meals and socialized with them on a daily basis. 

This greatly enhanced my ability to understand and observe the real-life contexts in which data 

practices and evaluation of data occur; a key component of qualitative inquiry (Lincoln & Guba, 

1985). Finally, in the last couple of years the Station has begun implementing policies and 

building an infrastructure for data sharing and archiving. While still in its infancy, this local 
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policy environment and infrastructure to support long-term data archiving presented the 

opportunity to study a diverse set of scientists working within a shared, local context in which 

staff and administrators were making a case for the value of data beyond individual projects. 

The Station implemented its current data management policies in 2010. The reasons were 

twofold: address a local problem of data inaccessibility; and be ready to meet anticipated funding 

mandates that would require attention to data management. At the time of this study, the policy 

required scientists to submit a "properly documented" set of data collected using Station 

resources to the Station within a year following the completion of a dataset. Scientists were 

permitted to deposit the data with a different public repository, but, if they made use of this 

option, they had to submit a metadata file (essentially a project abstract) to the Station so that 

staff could provide a link from the project's description to the dataset. 

The Station employed one information manager who was responsible for maintaining a 

publically accessible database of current and past research descriptions, a list of publications that 

resulted from Station research, and datasets generated using Station facilities. In the summer of 

2012, the information manager was beginning to approach faculty researchers to identify datasets 

and work with them to archive data. The information manager, however, had no role in project-

level data management, and, aside from local server space, the Station did not provide 

infrastructure for managing data during the active portion of their lifecycle. It was up to 

researchers and teams of researchers to devise methods of managing data for their own uses. 

The scientists I studied collected and worked with data for their research within the local 

setting I just described. This overarching, shared context for the scientists' work included the 

Station's data sharing and archiving mandate, a set of potential resources for conducting research, 

and a span of time for carrying out work and living at the Station that meant they ate meals 
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together, socialized, and generally were members of the Station community. At the same time, 

teams of scientists engaged in independent projects, with needs and a context that was unique to 

their projects. The following section describes my study's participants and my participant 

selection process and rationale. 

 

3.3 STUDY PARTICIPANTS 

3.3.1 RATIONALE AND METHOD OF PARTICIPANT SELECTION 

Of critical importance to successfully carrying out case study research is appropriately 

defining the unit of analysis, or the case, to be studied. This study focuses on the views and 

activities of scientists, with each of the three teams I studied constituting a case and individual 

scientists comprising embedded units within each case (Yin, 2009). Methodologists offer several 

strategies for selecting cases for a multi-case study. Making a comparison to experimental 

research design, Yin (2009) views replication as the main strength of multiple case studies. As a 

result, he argues cases should be selected based on either literal replication (similar results are 

expected) or theoretical replication (contrasting results are expected but for "anticipatable 

reasons") (Yin, 2009, p. 54). Stake (2006) recommends that cases should be selected for their 

anticipated ability to help the researcher better understand the phenomenon in question. He 

presents three main criteria for case selection: relevant to the phenomena or thing studied; 

representative of diversity across contexts; and provides opportunities to learn about complexity 

and contexts. Both Stake and Yin emphasize that a sampling logic to case selection is 

inappropriate. In other words, case study research, even those involving multiple cases, should 

never strive to represent an entire population through case selection. 
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The time period of greatest research activity (i.e. the greatest number of research projects 

underway) at the Station occurs each year during what Station staff call the "full summer 

session." In 2012, the full summer session took place between June 21 and August 21. For this 

reason, I conducted most data gathering activities during that same time period.4 In 2012, eight 

teams conducted research at the Station during the full summer session. When I arrived at the 

Station, I had reviewed descriptions of the eight projects hosted there, but I had not made any 

prior selection of cases. During the first week at the Station, I scheduled brief (approximately 15-

minute) meetings with PIs from each of the eight projects. The goal in these meetings was to 

learn more about each of the projects, including its composition, the types of data collected, the 

length of the project, and any data management mandates required by the project's funders. I also 

assessed the group's willingness to participate in my study. I quickly ruled out two groups. One 

was unsuitable because studying the group would have required extended travel away from the 

Station; I excluded another because the PI was unable to participate in the screening interview. 

From the remaining six groups, I selected three that contrasted along four main 

dimensions: career stage of the PI(s), the methodological approach to research, the length of the 

study, and the funding source for the study. I chose these characteristics as selection criteria 

based on prior research that suggests these factors play a role in scientists' sharing and archiving 

activities; and on assumptions and claims that have been made by data sharing and preservation 

proponents. While I covered this literature in detail earlier in the dissertation, I briefly cite it 

again here as justification for selecting cases based on these four dimensions. 

                                                
4 One of the teams split up their data collection activities between sites at the Station and near 
their home institution. I interviewed and observed them primarily at the Station, but also 
gathered additional data from them in the fall, after I left the Station. 
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Piwowar and Chapman (2009) found "investigator experience" to be positively associated 

with data sharing behavior. They noted in their analysis that they were unsure whether the 

influence of investigator experience had more to do with tenure status, age, or previous 

experience sharing data. However, the fact that data play such a strong role in creating the 

products on which tenure decisions are in large part based suggested that I should study groups 

that differed according to the career stage of project PIs. Two of the teams I selected were led by 

senior PIs (all had tenure and had been publishing articles for at least 20 years); one team was led 

by two junior faculty PIs, who did not yet have tenure and who had been publishing for less than 

10 years. 

Some data sharing proponents have argued that assessments of data's long-term value 

should be based on data type. In making this argument, they claim that observational data have 

longer-term value than experimental data by virtue of their uniqueness and irreproducibility 

(Simberloff et al., 2005). Further, empirical work suggests that scientists assess the length of 

their data's value on the basis of whether those data are observational in nature or drawn from 

more highly controlled experiments (Cragin, Palmer, Carlson, et al., 2010). This led me to 

consider that a team's methodological approach to gathering data might influence the scientists' 

notions of data's value. None of the teams I selected carried out purely observational work, 

where no manipulation of a study system was involved. One team, however, relied on data 

collected from a field study (some aspects of the environment were intentionally manipulated, 

and then differences between manipulated and control plots were observed); one team relied on a 

highly controlled experiment; and one team collected data from modeling simulations and a 

mesocosm experiment (mesocosm studies are more controlled than field studies, yet less 

controlled than laboratory studies). 
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The teams I selected also varied according to the length of their studies, with the 

presupposition that longer-term studies might engender a longer-term view of the value of data. 

Two of the teams were engaged in three-year studies, and the other team was carrying out a 

study lasting only one field season (approximately eight weeks). 

Lastly, I selected teams that varied according to their funding source. Several federal 

funders, including the NSF, NIH, and NASA, have implemented data sharing and/or data 

management plan requirements under the implicit assumption (or hope) that such requirements 

will influence scientists' data management and sharing behavior. Preliminary research indicates 

that funder requirements have very minor influence on whether scientists share or manage their 

data for reuse and archiving (Piwowar & Chapman, 2009). However, I felt it was worth selecting 

projects supported by funders that required data management or sharing planning as well as those 

that did not to see if such requirements came up in scientists' characterization of data's value or 

their data sharing and archiving plans. One of the team's projects was subject to data sharing plan 

mandates required by NASA; while two of the teams were subject to no requirement to write a 

data management plan or archive data (aside, of course, from the Station requirement, which all 

Station projects were subject to). 

Prior to working with a group, I obtained a signed consent form from each group 

member. The consent form informed the participants of my study and its exemption from IRB 

oversight and also stipulated that I would conceal identifying information in products of the 

research. I also let participants know that they could end their participation in the study at any 

time. I briefly describe each team below (I describe the teams in more detail in Chapter 4). 
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3.3.2 BRIEF DESCRIPTION OF EACH TEAM 

 The Invasives Management (IM) Team was at the Station in its second year of a three-

year, EPA-funded study to test environmentally sustainable methods of restoring wetland 

biodiversity. More specifically, this team was engaged in a heavily applied field experiment to 

study the effectiveness of different methods of removal of invasive Typha,5 which is highly 

destructive to coastal wetlands; and to assess the potential of using the removed biomass as a 

form of clean, renewable energy. The team was comprised of seven people, most of whom had 

been coming to the Station for several years (and in some cases decades) to conduct research. 

The grant proposal lists three PIs. One of the PIs was a tenured, full professor and vice provost at 

her university. While she played a large role in the study's conception, she had relatively little 

involvement in collecting and working with data, visiting the Station only briefly on two 

occasions during the summer. Another PI, an assistant professor, served in an advisory capacity 

for the project. During the time of my study, he had no involvement in the day-to-day activities 

of the project and was instead teaching courses at the Station. I did not include him in 

observations or interviews. The project was primarily led by a non-tenure-track, research faculty 

PI. The other members consisted of one post-doctoral fellow who was moving on to a tenure-

track position in the fall at another university; one master's student in her final year of study; one 

undergraduate; and one hired research assistant (Table 3.1). 

                                                
5 Typha is the genus name for several species of plant commonly known as "cattail."  
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Table 3.1: Invasives Management Team Members 

Name6 Career Stage Project Role 
Evelyn Tenured full professor  Primary investigator 
Phil Non-tenured assistant professor Primary investigator 
Matt Research faculty  Primary investigator 
Amy Post-doctoral fellow Post-doctoral researcher 
Renee Graduate student (master's)  Graduate researcher 
Dylan Post-bachelor's degree research staff  Research assistant 
Brooke Undergraduate student Undergraduate researcher 

 

Aside from the Station's requirement to submit completed datasets to the Station's 

repository within a year of the project's conclusion, the team was not subject to any other data 

management or sharing mandates. The EPA does not currently require data sharing or data 

management plans; however, the team stipulated in the grant application that they would deliver 

a completed database in the final report of the project to the funder. 

The Nutrient Uptake in Streams (NUS) Team, led by two junior, non-tenured PIs, was at 

the Station to carry out a controlled experiment on the effect of leaf litter on nutrient (in 

particular nitrate, ammonium, and phosphorus) uptake in streams. The research was funded by a 

subaward of a university-administered NSF ADVANCE Grant7 program at one of the PIs 

universities. The team was comprised of five people: the two PIs, from separate institutions, who 

had a history of working together on other projects; two undergraduate students, who had never 

before conducted research; and one master's student, working relatively independently on a sub-

project (Table 3.2). This was the first time that any of the members in the NUS Team conducted 

research at the Station. 

                                                
6 Pseudonyms are used to conceal participants' identities. 
7 NSF ADVANCE Grants support women conducting research in science and engineering fields. 
See http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=5383 for more information. Retrieved 
November 8, 2012. 
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Table 3.2: Nutrient Uptake in Streams Team Members 

Name Career Stage Project Role 
Elizabeth Non-tenured assistant professor  Primary investigator 
Jessica Non-tenured assistant professor Primary investigator 
Tina Graduate student (master's) Graduate researcher 
Carolyn Undergraduate student Undergraduate researcher 
Janet Undergraduate student Undergraduate researcher 

 

In terms of data mandates relevant to this team's data, because the ADVANCE grant was 

awarded to Jessica's university in 2008, NSF's data management plan requirement (implemented 

in early 2011) did not apply to this team's work. Furthermore, the university that administered 

awards from this grant to individual researchers did not require any data management plan nor 

did it require grantees to share or archive data. 

The Invasion Dynamics and Modeling (ID&M) Team was at the Station in the second 

year of a three-year, mesocosm study. A mesocosm is an enclosure that scientists use to bring the 

environment into semi-controlled conditions. In this case, each mesocosm consisted of a metal 

tank measuring six feet in diameter, which the researchers filled with soil and populated with 

various types of plants. Similar to the IM Team, this group was studying wetland invasion, 

however the scientists were focusing on understanding how nutrient dynamics affect the ability 

of two problematic invasive plants⎯Typha and Phragmites⎯to succeed in wetlands. 

Additionally, the ID&M Team was working to further develop and test a computational 

ecosystem model. The researchers intended their model to be used to generate hypotheses about 

potential futures in wetlands given particular sets of circumstances (such as the level of nutrient 

runoff into a wetland). 

The team was made up of five scientists: two co-PIs who were tenured professors; two 

post-doctoral fellows; and one lab assistant hired for the summer (Table 3.3). All but one of the 
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members of the ID&M Team had conducted research at the Station prior to the summer of 2012; 

the team's PIs had been coming to the Station for over ten years to conduct research. 

Table 3.3: Invasion Dynamics & Modeling Team Members 

Name Career Stage Project Role 
Kate Tenured full professor  Co-primary investigator 
Mark Tenured associate professor Co-primary investigator 
Ethan Post-doctoral fellow Post-doctoral researcher 
Gabe Post-doctoral fellow Post-doctoral researcher 
Chad Post-bachelor's degree research staff Research assistant 

 

The ID&M Team's project was part of a larger NASA-funded project (awarded in 2010) 

with PIs from two other universities. Scientists at the other universities were developing models 

of their own⎯using satellite imagery⎯that were intended to depict land use changes and 

hydrological flows in the state. The project was a collaborative one in which scientists from each 

institution planned to share their data with the larger group. At the time of my study, however, 

work proceeded for the most part independently at the different institutions. My observations and 

interviews included only members who were part of the team conducting work at the Station 

during summer 2012. 

NASA requires applicants to include a data sharing plan in their proposals (National 

Aeronautics and Space Administration, 2009), and this team's proposal specified that the 

researchers would make the project's data available to the scientific community (either on a 

website or through a NASA-developed repository) and create a public website to host invasion 

maps as well as a user-friendly version of the ecosystem model.  

Before moving on to the next section where I describe the data I collected and my 

methods of analysis, I have summarized the three teams that are the focus of this dissertation in 

Table 3.4. 
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Table 3.4: Summary of the Three Teams Studied 

 PI(s) Career Level Study Inquiry 
Method(s) 

Funder Data 
Mandates 

Project Length 

NUS 2 non-tenured, 
assistant professors 

Controlled 
experiment 

No (NSF 
Subaward) 

8 weeks 

IM 1 tenured full 
professor, 1 non-
tenured assistant 
professor, and 1 
non-tenure-track 
research faculty 

Field experiment 
and mesocosm 
experiment 

No (EPA) 3 years 

ID&M 1 tenured full 
professor and 1 
tenured associate 
professor 

Mesocosm 
experiment and 
modeling 

Yes (NASA) 3 years 

 

3.4 DATA COLLECTION 

Scientists from each of the three teams represent the main source of data for the study. 

The data come primarily from semi-structured interviews with scientists and participant 

observations of scientists as they collected and worked with their data. I also interviewed key 

Station staff: the director, information manager, and resident biologist. In addition to interviews 

and observations, this study also relies on various documentary sources, including grant 

applications, data, and metadata. I gathered most of the data for this research from June 25 to 

August 17, 2012 when I was living at the Station. 

 

3.4.1 PARTICIPANT OBSERVATIONS 

Lincoln and Guba argue that observations  

maximize the inquirer's ability to grasp the motives, beliefs, concerns, interests, [and] 
unconscious behaviors [. . .] to see the world as his subjects see it [. . .] to capture 
phenomenon in and on its own terms [. . .] (1985, p. 273).  
 
My interest in understanding the meanings that data have for scientists and their data 

practices made observations of scientists as they worked with data a crucially important part of 
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my research design. I conducted observations as a participant observer; I helped to record data, 

used instruments to get automated readings, measured and counted plants, sorted invertebrates 

from water samples, set up experimental stream channels, prepared soil samples for analysis, and 

assisted with carrying and setting up equipment and maintaining study setups. The length of the 

participant observation sessions ranged from a couple of hours to a two-day stay with scientists 

at a more remote field site. Most of the observations began and concluded with the workday for 

the researchers (typically from about 8am to 5pm). 

Observations focused on activities aimed at creating good data (as conceived by the 

scientists) that would be accessible and understandable past the immediate point of the data's 

creation. I was particularly concerned with uncovering when and how scientists' conceptions of 

the value of data influenced how they collected, documented, managed, and worked with data. 

Based on Hilgartner and Brandt-Rauf's (1994) data stream model, as well as subsequent research 

on the life cycle of data by Wallis et al. (2008), I expected data valuation to occur across the 

research process, including during data collection, processing, and analysis. The scientists I 

studied were primarily engaged in data collection; though I also observed some processing and 

analysis activities in all of the groups. 

My initial observations were relatively unstructured and concerned with clarifying my 

understanding of participants' work practices at a general level. As the study progressed and I 

understood more about how they created, worked with, and managed data, my observations 

became more focused on understanding the influences that the scientists' conceptions of data's 

value had on how they collected data and organized data for future use. For example, my early 

observations revealed that preformatted datasheets were a key tool for ensuring the most 

important data were captured and that data collection was consistent across the time span of the 
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study. In later observations, I focused significant attention on how the sheets were created, 

altered, and maintained. 

The main information that I captured in the observations was: 

• The points in the research process at which scientists assessed data's value 

• The activities that scientists engaged in to make data that were useful, accessible, and 

understandable past data's immediate point of collection 

• How scientists worked to create data intended for particular purposes and uses and what 

the salient uses were 

Altogether, I conducted more than 130 hours of observation, divided roughly equally 

between the three groups (Table 3.5). The timing of my observations of each group was highly 

contingent on what the group was doing. For example, while the NUS Team was collecting and 

working with data the entire time I was at the Station, the IM Team had off-weeks where team 

members were mostly gathering and organizing equipment. Members of the ID&M Team only 

came to the Station some weeks that I was there, as they split their time between the Station and 

another study site. My goal was to spend a total of two working weeks with each of the groups: 

one week each for three weeks, and then a repetition of the first three weeks. I allowed a week in 

between the cycles to go through my data and consider how I would focus observations in the 

final three weeks. 

Table 3.5: Observation and Interview Time 

Team Observations Semi-Structured Interviews n 
NUS 43 hours 4 hours 5 
IM 48 hours 5 hours 6 
ID&M 41 hours 7 hours 5 
Station Staff n/a 2 hours 3 
                                    Total 132 18 hours 19 
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I was able to adhere to this plan with two main deviations. I took the off-days earlier, and 

completed observations and interviews with ID&M Team members at their home institution in 

the fall (Table 3.6). 

Table 3.6: Timeline of Observations 

 Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 
Recruiting         
NUS Team          
IM Team            
ID&M Team           

 

I captured observations with field notes that I recorded in a notebook while I was with the 

scientists. At the end of every day, I transcribed and expanded on my notes in a Word document. 

My observational notes make up 58 single-spaced pages of text. I also took numerous 

photographs of the participants as they collected and worked with samples and data. 

 

3.4.2 SEMI-STRUCTURED INTERVIEWS WITH SCIENTISTS 

Qualitative interviews represent an effective method for understanding processes and 

their antecedents; generating holistic descriptions that represent the complexity of real life 

events; and learning how people interpret events (Weiss, 1994). My interviews with scientists in 

this study served several purposes: an orientation to the type of research they conducted and their 

planned work at the Station; a description, in the scientists' own words, about the purposes they 

conceived for their data and the aims their data practices strived to serve; clarification of my 

observations of scientists as they worked; and member checking. 

I interviewed all of the members of each team that I studied, except for one of the PIs for 

the IM Team, who was unavailable and had little involvement with the team's data. I interviewed 

each scientist at least once; some of them I interviewed two or three times to accommodate their 



  62 

schedules and to allow me the opportunity to ask follow-up questions. Total interview time with 

each participant varied from 15 minutes to two hours. I spent a total of 16 hours interviewing 

scientists (Table 3.5). With the permission of participants, I recorded these interviews and 

submitted them to Scribie8 for transcription. I proofread all of the transcripts as I listened to the 

recordings. These transcripts make up 336 single-spaced pages of text, which I uploaded into 

NVivo9 for analysis. 

 The interviews with researchers served as a significant resource for understanding 

scientists' data practices as they conceived them, as well as their own interpretations of the uses 

for data and what was needed to make data that served those uses. Further, I used the interviews 

to gain insights into how scientists thought about their data's potential continuing value to others, 

including how long data would be valuable and for what purposes. 

 In initial interviews with scientists, I used a semi-structured interview guide. In the 

interviews that followed, I based the interview questions on previous answers and things I 

learned or observed as I studied the group. I asked scientists a range of questions about (See 

Appendix 1 for Interview Guide): 

• Their scientific work (both past work and planned future work) and the kinds of data they 

collected 

• The process by which they collected and managed data 

• The uses they anticipated for their data 

• Their experience making data available for others' uses and their plans for making their 

current project's data available to others 

• The characteristics that made for what the scientists considered to be good data 

                                                
8 Scribie, http://scribie.com/. Retrieved June 19, 2013. 
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3.4.3 SEMI-STRUCTURED INTERVIEWS WITH STATION STAFF 

 I interviewed Station staff (by which I mean those responsible for the operation of the 

Station as a whole, including the data repository) to understand the Station context, including the 

data management resources offered to Station scientists, the messages communicated to them 

about the value of their data to others, and the staff's view on the kinds of data that were good 

candidates for archiving. These interviews focused on a varied set of questions depending on 

whom I interviewed (for example, the questions I asked the information manager differed from 

those I asked the director). The information I collected from these interviews more specifically 

was: 

• The requirements the Station placed on scientists with regards to their data 

• The training Station staff provided scientists in data collection and management 

• The kinds of data Station staff thought belonged in the repository and what they thought 

the data would be valuable for 

• Level of participation and compliance by scientists in contributing data 

In total, I spent two hours interviewing three Station staff members. Transcripts of these 

interviews total 24 pages of text. 

 

3.4.4 DOCUMENTARY SOURCES 

 To understand the contextual factors that influenced the scientists' conceptions of value 

as well as to more fully understand scientists' data practices, I collected a range of documentary 

sources. These included relevant journal policies, funding policies, and grant proposals. I also 

collected datasheets, samples of participants' data and metadata, grant proposals, and data quality 

control plans. 



  64 

3.5 DATA ANALYSIS   

 My data were in the form of text: transcripts of interviews with participants, 

observational field notes, and documents that I gathered from the participants. My analysis of 

these data, including coding, began with the first data I collected and ran throughout the project. 

Early analysis helped me to target observations and formulate additional interview questions. 

 I used the qualitative data management tool, NVivo9, to facilitate coding and analysis. 

My strategy was to use an inductive, open coding approach to analyzing the interview data with 

scientists and staff (Miles & Huberman, 1994) and the observations of scientists to identify 

important themes and concepts that emerged from the data. While I approached my first coding 

efforts with a provisional list of codes I developed based on the dissertation's research questions 

and theoretical framework, I developed and altered this coding scheme as themes emerged 

during data collection and analysis. 

 I created document summary forms to capture the significant and most important aspects 

of the documentary sources (e.g. grant applications, data collection sheets, and spreadsheets of 

data) I collected (Miles & Huberman, 1994). I was mostly interested in these sources as a means 

of understanding the context in which the participants carried out data practices, not as a major 

data point in and of themselves. With regard to the data and metadata samples, I compared 

differences in data's documentation across different kinds of data to determine how conceptions 

of value were translated into practices. 

 In addition, during my data analysis I regularly wrote memos that reflected on emergent 

themes, concepts, and relationships that arose. These were an effective tool for consolidating 

data at a more conceptual level as well as for identifying areas of the study and its conceptual 

framework that needed to be altered as the study progressed (Miles & Huberman, 1994). 
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 Lastly, I conducted both within and across-case analysis to uncover similarities and 

differences across the three cases as well as across scientists within the cases (Yin, 2009). In 

doing so, I sought to generate locally valid explanations for how scientists valued and managed 

their data to serve particular uses (Maxwell, 1996). 

 

3.6 VALIDITY  

 The concept of validity has its roots in the positivist tradition of inquiry and refers to the 

quality of accurately depicting reality (Creswell, 1994). Researchers who work within a 

qualitative paradigm often take issue with the application of conventional standards of validity to 

more naturalistic research, arguing that reality is contingent on the context(s) in which it is 

observed (Erlandson, Harris, Skipper, & Allen, 1993). As a result, some methodologists propose 

replacing the term "valid" with "trustworthy" and argue that trustworthy research is built on 

credibility attained primarily through prolonged engagement, triangulation between sources and 

methods, and member checks (Creswell, 1994; Lincoln & Guba, 1985). I used each of these 

strategies to ensure a fair and accurate account. 

An important consideration in selecting the Station as the site of this study was that it 

presented the opportunity for intense, prolonged engagement with participants. As a facility 

where researchers both lived and worked, the Station allowed me to become, in many ways, part 

of the community of those I was studying. My status as a non-ecological scientist studying data 

practices clearly set me apart from other scientists at the Station; I was, however, part of the day-

to-day life there. Like the other researchers, I lived in a Station cabin, ate all my meals in the 

community cafeteria, and attended social events and research talks. I quickly found that 

researchers welcomed my willingness to serve as an assistant, a role that allowed me "work with 
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people day in and day out" (Fetterman, 1989 as quoted by Creswell, 1994, p. 201), furthering my 

ability to gain an insider perspective on the scientists' views and practices. 

I triangulated data that I gathered across sources and methods. I paid careful attention to 

discrepancies and confirmations across interviews and observations and across participants in a 

team. When I found discrepancies, I investigated the circumstances that might explain the 

discrepancy and followed up with participants as needed. 

Lastly, I conducted member checks of my findings and interpretations as I gathered data 

and wrote up my analysis. As I collected observational notes and reviewed interview transcripts, 

I made note of events or statements that were unclear to me and later asked participants for 

clarification. Additionally, as I began to formulate interpretations of the data, I checked with 

participants to ensure that the interpretations were valid, and then I amended them as necessary. I 

conducted member checking both in face-to-face interactions with participants as well by 

submitting passages of some of my findings text to participants for review. For instance, after I 

wrote a draft description of a team's study, I emailed the text to participants, requesting that they 

check for accuracy. Participants returned the passage with comments that I then incorporated into 

revisions. 

 

3.7 LIMITATIONS 

Despite careful attention to the design of a study and the interpretation of results, 

researchers face limitations in any research inquiry. As is common in qualitative studies, the 

relatively small number of people I could interview and observe limits the generalizability of my 

findings. I focused my inquiry on the practices and viewpoints of 16 researchers working in three 

small teams carrying out work at the Station. I selected teams that differed across important 
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dimensions such as length of the study, funding source, and the career level of PIs in order to 

look at conceptions of value and their relationship to data practices across a variety of specific 

contexts at the Station. However, I did not employ this scheme to generate findings that would be 

applicable to all scientists everywhere or even all ecologists. Rather, I sought to understand the 

contextual factors at play as scientists considered data's value and as they engaged in data 

practices. 

A second limitation of this research is its reliance on studying scientists during what they 

called "the field season." Several of the participants characterized the field season as an intense 

period of data collection, during which they were able to devote relatively little attention to data 

analysis. With the exception of the NUS Team, whose short study timeline necessitated early and 

frequent data analysis, I did not observe much data analysis work. I addressed this limitation in a 

couple of ways. First, I asked participants questions to elicit descriptions of the parts of the 

research process I was missing. Second, I had several participants walk me through how they 

planned to analyze data. Still, as my interviews with scientists made clear, important valuation 

activities occur as scientists analyze their data and even afterward. Scientists' conceptions of 

their data's value undergo revision and refinement as their studies progress; we can expect that an 

important point of revision might occur as they analyze data and gain a better understanding of 

what data show. 

 

3.8 DATA PRESENTATION CONVENTIONS 

 To illustrate for readers how scientists understood their activities and conceptualized the 

value of their data, I quote the participants extensively throughout the dissertation. In doing so, I 

employ several conventions. I use an ellipsis without brackets to indicate an unfinished statement 
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or transition in thought by a participant. For example: "So this is like a . . . And we've talked 

about a controlled experiment for a couple of years." I employ an ellipsis with brackets ([. . .]) to 

indicate that I have omitted a portion of the speaker's words. I have been careful in these 

instances to ensure that the omitted text does not change the meaning of the speaker's utterance. 

Lastly, I also use square brackets to indicate text that I have added to clarify meaning or to hide 

identifying information such as location names. 

I use pseudonyms for all participants in this study. To avoid potential confusion about 

what team a participant belongs to and/or what position s/he holds on the team, I employ a two-

part abbreviation for both facets. For example: "So this is like a . . . And we've talked about a 

controlled experiment for a couple of years" (Elizabeth, NUS-PI). The first part of the 

abbreviation stands for the team name, while the second stands for the participant's position 

within the team. Throughout the dissertation, NUS stands for Nutrient Uptake in Streams, IM for 

Invasives Management, and ID&M for Invasion Dynamics and Modeling. PI stands for Primary 

Investigator, PD for post-doctoral researcher, GR for graduate researcher, UR for undergraduate 

researcher, and RA for research assistant. Three of the participants were Station staff and, hence, 

had no team affiliation: the station director, the resident biologist, and the information manager. 

In the dissertation I refer to each of them as such, without abbreviation. 

In the next chapter I describe the teams I studied in more detail and depict data valuation 

activities through three vignettes before moving on to my findings in Chapters 5 and 6. 
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CHAPTER 4: DETAILED TEAM DESCRIPTIONS AND DATA VALUATION VIGNETTES 
 

Before moving on to my findings, which I present in Chapters 5 and 6, I describe the 

teams that I studied in detail. In the last chapter, I briefly presented each team's composition and 

salient characteristics; here I delineate the teams' study designs and the main data they collected. 

Every team's description is paired with a data valuation vignette. These vignettes highlight the 

role of data valuation throughout scientists' research processes and demonstrate valuation's 

influence on how scientists created, managed, and worked with their data. My purpose in 

presenting the vignettes before discussing the findings is to give more tangible examples of how 

scientists' interpretations of data's value (including what and whom data are for and how long 

they might remain valuable) were woven into their work with data as well as demonstrate some 

of the ways valuations shaped decisions about what to do with data. 

 

4.1 THE INVASIVES MANAGEMENT TEAM 

4.1.1 TEAM DESCRIPTION 

The IM Team was at the Station to study the effect of different Typha removal techniques 

on wetland restoration and the feasibility of using the removed material as biofuel. At the center 

of the team's study was an experimental restoration project at three different coastal marshes, 

each with a different level of anthropogenic disturbance. The team had constructed 24 four-meter 

by four-meter plots at each of the three sites in 2011 and randomly assigned plots to one of four 

mechanical harvesting treatments: above ground removal, where researchers removed all Typha 



  70 

biomass and standing litter above the soil surface; below ground removal, where they removed 

rhizomes and roots and all biomass as well as standing dead litter above the soil surface; mow, 

where they cut all Typha biomass and standing litter above the soil surface and left the material 

within the plot; and control plots, where they removed nothing. 

The team gathered several kinds of data and samples from the plots in order to measure 

the effects of the treatments and to establish Typha's potential as biofuel. During the time of my 

observations and interviews, the team was collecting biodiversity data and samples that would 

help them assess the effects of the management treatments. Using four one-meter-square subplot 

markers (each subplot was also called a "quadrate") within each of the plots, the researchers took 

several different measurements that would later be used to determine biodiversity (Figure 4.1). 

They visually estimated the percentages of the subplots that were vegetated, bare ground, 

detritus, and Typha. They measured the heights of each Typha stem and the water depth and 

organic matter depth of each subplot. Additionally, they identified all the plant species in the 

subplots and estimated a percent cover for each species. The subplot level data would later be 

averaged together for each plot. In terms of samples, IM Team scientists collected one soil core 

from each plot, which they would later dry to measure the root biomass. All of these data were to 

contribute to a time series made up of data collected prior to the treatments in 2011 and data to 

be collected in years two (2012) and three (2013) of the project. 
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Figure 4.1: IM Team subplot (i.e. quadrate) within a plot. The ruler was used to measure 
organic matter depth. 

While not formally part of grant as written, the IM Team complemented the field study I 

just described with other, more controlled methods of study. One method consisted of a set of 40 

mesocosms that Evelyn (IM-PI) and her team built outside on a hill at the Station in 2002. 

Ecologists commonly use mesocosms to bring the natural environment into more controlled 

conditions, helping to counteract the high variability and complexity of factors in the field. In 

this instance, a mesocosm consisted of a one-meter deep, two-meter long, one-meter wide 

aluminum tank, filled with soil and populated with plants pulled from a local marsh to mimic the 

native plant community in that marsh. Additionally, each of the tanks was divided in two sides, 

with one side receiving a high-water treatment and the other a low-water treatment. After Evelyn 
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established the native communities in the tanks, she "invaded" half of the tanks (20) with Typha. 

In this study, the team planned to pair some of the data gathered from the experimental field 

plots with data collected in the mesocosms under the high and low water treatments just 

mentioned. 

The IM Team was also conducting a seed bank study to account for some of the effects 

that fluctuations in water levels might have on seedling emergence in the field plots. Because the 

researchers were interested in the restoration potential of wetlands, it was important for them to 

know what viable seeds were available in the wetlands they were studying. They were collecting 

data on plant growth at the field sites, but high water conditions could have yielded little plant 

growth in the years they were studying the sites, hence giving them limited (if any) information 

about the viability of the existing seed bank at the plots. By removing soil plugs from each of the 

plots, subjecting them to different water level treatments, and incubating them, the team could 

assess this restorability potential without the water level being a confounding factor. 

Renee (IM-GR), the graduate student working on the team, participated in the plot 

construction and data collection activities I just described. Additionally, she was collecting data 

for her master’s thesis (with assistance from other members of the team). Her thesis was 

concerned with the effects of the different Typha removal techniques on wetland 

macroinvertebrate (e.g. leeches and snails) populations. She collected samples of 

macroinvertebrates from a subsection of each of the field plots so that she could later identify, 

count, and measure the species to come up with a species-specific biomass number. She also 

collected information on the vegetation in the plots by identifying plants and either counting 

stems or estimating percent coverage. In addition, at each subplot she measured the dissolved 

oxygen content of the water, the temperature of the water, and water depth. Renee conducted 
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sample and data collection three times over the course of the summer at plots in two of the team's 

three field sites (once in June, July, and August). 

 All of the raw data that this team collected at the time of my study was recorded on 

paper, mostly using paper templates that the team created. All the team members participated in 

later transferring the data to Excel files to facilitate calculation, graphing, and the creation of 

statistical measures. 

 

4.1.2 DATA VALUATION VIGNETTE  

It is early August, and the IM Team is in its last few weeks of data collection at the 

Station for the 2012 field season. This is year two of the team's three-year, EPA-funded project 

to examine the effect of different invasive Typha removal techniques on restoring wetland 

biodiversity. Today, we are at one of the team's three field sites: a marshy wetland on the edge of 

an inland lake. This site is more than two hours' drive from the Station, so we are camping 

overnight nearby to maximize the time available for data and sample collection activities. There 

are six of us on this trip: Matt (IM-PI), Amy (IM-PD), Renee (IM-GR), Dylan (IM-RA), Brooke 

(IM-UR), and me. Upon arrival at the entry point for the wetland, we load all of the team's 

sampling and data collection equipment onto "the Argo" (an amphibious, all terrain, off-road 

vehicle) and climb aboard for a wet and bumpy ride to the first of 24, four-by-four-meter 

treatment plots the researchers had constructed and treated the previous summer. 

In this particular plot, the researchers removed Typha by taking away all of the rhizomes 

and roots of the plant as well as all of its standing litter above the soil surface. As we unload the 

equipment, the researchers look around at what is coming up in the plot. "This is diverse!" Dylan 

(IM-RA) remarks as he notices a variety of native plants growing where Typha once crowded out 
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almost everything. Matt (IM-PI) responds, "This is what it's all about. This is money; we can 

probably use these data in a paper." 

Long before they can write a paper, however, they must collect the samples and data. The 

scientists have a routine that I am by now well acquainted with (and even part of), as this is the 

third time I have accompanied and assisted the team in the field. Matt (IM-PI) begins to 

manually "edge" the plot, to maintain its borders and prevent Typha from encroaching once 

again. Amy (IM-PD) and Dylan (IM-RA) pair up to take plant survey data of the plot. To do this, 

they will sample four, one-meter subplots within the larger plot using a square the researchers 

have constructed from PVC pipe (Figure 4.1). The team has several such squares, enabling the 

researchers to break into smaller teams to collect data simultaneously. 

Renee (IM-GR) is primarily working on her own sampling and data collection. For her 

master's thesis, she is examining how wetland macroinvertebrates respond to the Typha removal 

treatments. I partner with Renee and serve as her data recorder, as Amy (IM-PD) and Dylan (IM-

RA) begin to call out their sample plot data to Brooke (IM-UR), who has a clipboard with the 

team's paper datasheets. Renee is studying the same treatments as the rest of the team and even 

collecting many of the same kinds of data, but she conducts her data collection and sampling 

activities largely separate from the efforts of the rest of the team. Not only do graduate research 

expectations demand that she collect her own data for her thesis, but the scientists' assumptions 

about what data need to be good for also differ in important ways between the two projects. As 

we are about to see, this difference in assumptions affects the data that the researchers collect 

and how they collect them. 

An important component of both the IM Team's main project and Renee's master's 

project consists of identifying plants and quantifying their amount within a sample area of a plot. 
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For the main study, which focuses specifically on native vegetation's response to Typha removal, 

the researchers must properly identify the genus and species of all the plants they see in the 

subplots and estimate what percentage of the subplot each species covers (they call this variable 

"percent cover"). They plan to use these data to calculate measures of biodiversity, such as a 

diversity index and floristic quality. 

Renee (IM-GR) also has to identify plants and quantify their amount, but she is doing so 

to calculate a diversity index and to characterize the context of her study. She hopes to determine 

whether or not plant diversity correlates with macroinvertebrate diversity. These different 

purposes mean that Renee's data are not interchangeable with that of the rest of the team's, a fact 

demonstrated when Amy (IM-PD) has trouble identifying a plant. "What did you call this?" she 

asks Renee, who has just gathered her own data from the subplot Amy and Dylan (IM-RA) now 

work on. "I called it 'Cicuda,' but it doesn't really matter for me." While important, the species 

names of the plants are not crucial to the questions Renee is trying to answer in her thesis, which 

revolve around macroinvertebrate response to invasive Typha removal. Technically, she explains 

to me later, she could just call each species "1," "2," "3," etc., "but that wouldn't be good 

science," nor an appropriate way of characterizing her plots when she describes where she 

conducted her study. As a result, she names them, but does not expend a lot of effort on ensuring 

that she has correctly identified every plant because she can afford to be less accurate. 

For the larger project, however, it is crucial that the researchers record the correct plant 

species name, because calculations like floristic quality rely on species-specific measures. To 

ensure that they capture that information accurately, the researchers carry a plant identification 

book in the field. If they are unable to identify a plant in the field, they take a small sample with 

them so that they can "key it out" later at the lab with a microscope. 
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When Renee (IM-GR) qualifies her identification of a plant with "but it doesn't really 

matter for me," she acknowledges that what are good enough data for her are likely not good 

enough—at least in this case—for the larger project. Still unable to confidently identify the plant 

in question, Amy (IM-PD) clips a small sample, places it in a plastic bag, and packs it away for 

later identification. 

 

4.2 THE NUTRIENT UPTAKE IN STREAMS TEAM 

4.2.1 TEAM DESCRIPTION 

The NUS Team was at the Station to study the effect of leaf litter on nutrient uptake in 

streams. The PIs designed an eight-week-long experiment that would utilize the Station's 

artificial stream lab to test the nutrient uptake mechanism. The team's overarching hypothesis, 

formulated from observations the PIs made together in a field study, was that uptake⎯in this 

case, the amount of nutrients consumed from the water column by microbes⎯would depend on 

the nitrogen to phosphorus ratio of the leaves that the microbes live on. 

The Station's stream lab (an outdoor facility) took in water from a nearby stream and 

pumped it out into several areas of the lab, where researchers could then use the water to conduct 

various studies. The NUS Team made use of a large concrete pad and four tanks that were fed 

with stream water. Each of the tanks had eight taps that could be turned on or off. Using plastic 

roof gutters, the team built and attached 20-meter long artificial stream channels underneath each 

of the eight taps on the four tanks (Figure 4.2). 
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Figure 4.2: Header tank, taps, and two channels for the NUS Team's artificial stream setup. 

 
The researchers randomly assigned each of the channels belonging to a header tank to a 

treatment of maple leaves, cottonwood leaves, a mix of maple and cottonwood leaves, or a 

control that had no leaves at all. If, for example, a channel was assigned a maple treatment, that 

channel was filled with 300 grams of maple leaves that the researchers gathered and brought 

with them to the Station. They planned to collect water samples and analyze them from each 

replicate periodically throughout the summer, because they hypothesized that leaf decomposition 

would affect the relative nutrient uptake from the channels. 

NUS Team researchers gathered most of the data for this project from samples of water 

they collected from the artificial stream channels. From the samples, the scientists measured 

concentrations of ammonium and phosphate using equipment they brought with them to the 

Station. They also needed to measure the concentration of nitrate in samples of water, but 
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because that equipment was not available for them to use at the Station, they would wait until 

they returned to their home institutions to analyze most of the nitrate samples (they paid to have 

the Station's analytical lab analyze a small portion of their nitrate samples so that they could 

check that their setup was appropriate). The data on the nutrient concentrations of water samples 

would later be used, along with other important data (e.g. the length of the channels), to calculate 

a "nutrient uptake rate," or the rate at which the microbes on the leaves consumed nutrients from 

the stream. 

Every day, the team spent the morning collecting water samples from the eight channels 

beneath one of the tanks. Later in the day, once all the samples were collected, the undergraduate 

researchers ran nutrient analyses on the samples. The researchers recorded all of the raw data by 

hand onto paper templates. They transferred most of these data shortly thereafter (within a few 

days) to Excel spreadsheets, designed by the PIs and formatted with formulas for calculating 

other measures. 

 

4.2.2 DATA VALUATION VIGNETTE 

It is late July, the fifth week of the NUS Team's planned eight-week project at the Station 

to study the effect of leaf litter on nutrient uptake in streams. The researchers are gathered in a 

room they have occupied this summer in the main laboratory. Carolyn (NUS-UR) and Janet 

(NUS-UR) clean equipment and prepare water samples they gathered earlier in the day for 

analysis; Tina (NUS-GR) takes notes on a separate, but related, experiment she has been 

responsible for running; and Elizabeth (NUS-PI) and Jessica (NUS-PI) look at some of the data 

that the undergraduates have entered into preformatted Excel spreadsheets. It is a fairly normal 

afternoon for these researchers save for one thing: as they carry out these activities they are also 
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discussing whether they should continue with the project or pack up early and leave the Station 

to return home. 

This team's project has been beset by difficulties from the beginning. The setup of the 

experiment, which relies on 32 artificial streams the researchers had to construct from vinyl 

gutters and fill with leaves they shipped to the Station, was more challenging and labor intensive 

than they anticipated. The time the researchers spent constructing and adjusting the setup 

ultimately cut into time that they expected to be producing data. Thankfully, they have been 

analyzing samples and looking at their data on a daily basis to, as Elizabeth (NUS-PI) explained, 

"inform what we do [. . .] as we go through the process." However, each day spent adjusting their 

experiment instead of collecting "real data" meant fewer data points on the graph they wanted to 

generate. At some point, this loss of data points would threaten to diminish the potential impact 

of what the researchers wanted to show. 

The cost of conducting the study has been relatively high for the researchers. In stark 

contrast to the other two teams I am studying, these researchers work on their project every day 

of the week (including Saturdays and Sundays). Their days start at 9am and, for the PIs, 

frequently end at 11pm, with much of that time spent exposed in the sun on hot and humid 

summer days. Additionally, their work has had the usual inconveniences of working in a place 

that is unfamiliar (NUS scientists, unlike most at the Station, had never conducted research at 

this Station) and remote: Internet service is spotty, the researchers have to go to another floor of 

the lab to get the deionized water they need to rinse sample bottles, and some of their sample 

analyses will have to wait until they return to their home institutions because the equipment is 

not available to them at the Station. 
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If they can get a good, publishable set of data (especially one compelling enough to land 

an article in Ecology, a high-impact journal) it will all be worth it. The problem⎯and the reason 

for the current meeting⎯is that, despite numerous adjustments to the experimental setup, the 

researchers are not getting the data that they need to show that the uptake of nitrogen and 

phosphorus is affected by leaf litter. Elizabeth (NUS-PI) and Jessica (NUS-PI) are struggling to 

figure out why these data do not support what they observed in the real streams they studied 

several summers ago. Is the setup too artificial? Is the vinyl gutter material influencing nutrient 

uptake? Did the researchers kill the microbes on the leaves when they switched from stream 

water to colder groundwater (an effort to reduce algae and other fine particulate matter that they 

suspected was influencing nutrient uptake)? Regardless, these are not the data that the team 

intended to capture. Now, the most salient question for the team is, "Should we continue?" and to 

answer that question the researchers generate a list of "costs" and "benefits" of continuing the 

project or stopping it (Figures 4.3 and 4.4). 

 

Figure 4.3: NUS Team list of anticipated costs of continuing or stopping the project. 
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Figure 4.4: NUS Team list of anticipated benefits of continuing or stopping the project. 

 
The only benefit the researchers can conceive of in staying is that they might generate 

data that are publishable, but that seems unlikely to the PIs now. If they stop the project, the 

researchers can spend time with their families, engage in leisure activities around the Station, 

and/or work on other things (like grant proposals, classes, student posters, and writing up 

previous research). After looking at the two lists Elizabeth (NUS-PI) remarks,  

It seems pretty clear . . . I think our energies might be better used elsewhere. It's pretty 
obvious this data isn't measuring up in terms of value to other things. 
 

The other researchers agree, and they begin to disassemble their stream channels the next day. 

All of the NUS Team researchers will have left the Station by the following week, with what 

they consider to be, at most, preliminary data for a future grant proposal. 
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4.3 THE INVASION DYNAMICS AND MODELING TEAM 

4.3.1 DETAILED TEAM DESCRIPTION 

The ID&M Team was studying how nutrient dynamics affect the ability of invasives to 

succeed in wetlands and was also developing and testing a computational model for ecosystem 

modeling. A major component of the team's study was a mesocosm experiment that the 

researchers were carrying out at two sites: one at the Station and another approximately 250 

miles south of the Station. In 2011, the ID&M Team scientists installed 50, six-foot-diameter, 

steel tanks into the ground at each of these sites. They filled the tanks with gravel and soil, 

installed water input and output systems into each of them, and planted half with native wetland 

vegetation (Figure 4.5). They left almost half (24) of the tanks unvegetated (not planted with 

native plants) at the time of my study; the team planned to invade 48 of the tanks (empty and 

those populated with natives) with Typha and Phragmites (also known as "common reed") in 

2013. 

 

Figure 4.5: ID&M Team's mesocosm tanks at the Station before researchers populated them 
with plants (Courtesy of the ID&M Team). 
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Two tanks at each site would serve as controls, with no vegetation. Additionally, the team 

assigned different treatments of fertilizer to the tanks.  

 Using the mesocosms, the researchers intended to study how nutrients affect the 

probability and severity of invasion and how climate influences that relationship. Because none 

of the tanks had yet been invaded at the time of my study, the scientists were collecting what 

they called "baseline data" from the mesocosms. These data consisted of measurements taken by 

one of the postdocs and the research assistant on plant community and soil properties from each 

of the planted tanks. They counted and measured stems of each of the four native species they 

planted in the tanks. They planned to later convert these data into a biomass measurement, which 

is a measure of plant productivity. They also collected soil samples periodically over the field 

season from the tanks and processed them for analysis by the Station's analytic lab. Using the 

data they got back from the lab, the researchers would calculate a nitrogen mineralization rate 

(the rate at which nitrogen is converted to a form that plants can use) for the soil. Lastly, the 

team was collecting data on the chemistry of the water going into and coming out of the 

mesocosms. 

In conjunction with the mesocosm study, the ID&M Team was also developing and 

testing a computational ecosystem model. Mark (ID&M-PI), a tenured professor, led this effort 

with assistance from Gabe (ID&M-PD), a post-doctoral researcher. Mark had already developed 

a version of the model when the team applied for NASA-funding. During my study, Mark and 

Gabe were running beta tests of the model to uncover bugs in the model and were also 

preliminarily assessing how well the model's predictions matched early observations in the 

mesocosms. Most of the data generated from the model were the result of exercises that Mark 

and Gabe ran using different sets of input parameters. 
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As with the other two teams, the majority of ID&M's raw mesocosm data were recorded 

using pencil and preformatted templates. The research assistant transferred these data to Excel 

spreadsheets where the post-docs prepared the data for analysis by running various 

transformations and calculations. The modeling data were much more voluminous (millions of 

cells in a spreadsheet) than the data generated from the mesocosms. Each time Mark (ID&M-PI) 

or Gabe (ID&M-PD) ran the model, it output a text file containing a set of numeric data 

characterizing the ecosystem and its changes over time within the exercise. They would then 

import these data into Excel and Stata, a statistical software package, in order to organize the 

data, check for errors, create graphs, and look for patterns. 

 

4.3.2 DATA VALUATION VIGNETTE 

 It is early evening, after dinner, and I have been invited to observe a meeting between the 

Station's information manager and Ethan (ID&M-PD), a post-doctoral researcher for the ID&M 

Team. The information manager has been scheduling meetings with researchers at the Station 

this summer to begin to try to identify the datasets that researchers are developing and to find out 

which datasets they would be comfortable archiving at the Station. This is the second year of the 

ID&M Team's project, and the researchers are just now beginning to collect some data from the 

mesocosms they installed last summer at the Station and another site. Ethan anticipates that he 

will be the team member in the best position to provide data documentation, but also knows he 

will likely have departed the project when the data are ready to be archived. He has come to the 

meeting to find out what things the Station might want archived and what is required from the 

team to facilitate archiving the data. He has brought with him a list of datasets that the team has 
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begun to assemble so far. We sit at a picnic table outside, along the lake, and I listen as Ethan 

and the information manager talk. 

The information manager begins the meeting by checking to make sure that Ethan 

(ID&M-PD) understands the Station's data policies. While Ethan recalls reading the policy 

online, it was long enough ago that he does not remember the details. The information manager 

explains that researchers using Station resources are required to submit their data to the Station 

within a year after ending their projects. He emphasizes that this includes data themselves and 

the documentation that makes data understandable to other scientists. 

Ethan (ID&M-PD) begins to recite the list of datasets that his team is collecting to find 

out which of them the Station would be interested in archiving and what, more specifically, 

would be needed to archive them. In discussing what data the team might archive at the 

conclusion of the project, the information manager and Ethan talk about what data would be 

"useful" or "important" for other scientists to have. The information manager tells Ethan that he 

thinks some of the water data that ID&M researchers are collecting might be particularly useful 

to other scientists who conduct research at the Station. Specifically, he thinks that data on the 

chemistry of the water flowing into the mesocosm tanks have the potential to be useful to others 

because they represent something "more global." Many other Station researchers use the same 

water in their own studies, so those data have possible broad applicability. Ethan remarks in 

surprise, "That's true. I hadn't thought of it that way." In fact, Ethan came to the meeting thinking 

of those data as having a rather short-term and limited value compared to some of the other data 

his team was collecting. 

As I would later learn, the water chemistry data were just one example of several datasets 

ID&M Team researchers were compiling that they considered to be "small, ancillary datasets" 
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they would use to interpret other data. The researchers were collecting water chemistry data 

because they anticipated a difference between the water at the Station and the water at their other 

site. They did not want this difference to "mess up" their data, so they accounted for the possible 

difference by measuring it. Differences in the water chemistry, in other words, might be a way to 

explain differences that the researchers could see in their data between the two sites. 

ID&M Team researchers considered the water chemistry data, along with several other 

peripheral datasets, to have only short-term, within-team value. In the following interview 

excerpt, Kate (ID&M-PI) describes the assumptions that undergirded her ideas about what makes 

data worth archiving or sharing. 

Interviewer: Are there any data that you don't think are really worth . . . that you're 
planning to collect that you don't really think would be worth archiving or making 
available? 
 
Kate: There is some sort of what we would call "small, ancillary datasets"; just things that 
we figure are going to help us interpret, but they're pretty small. Like tomorrow and 
Friday, Ethan and Chad are going to go out and get a whole lot of temperature data. 
That's not something we're going to archive. That's something— 
 
Interviewer: Because that's to measure the water flow through the tank? 
 
Kate: Yeah, that's for us to try to figure out what is the . . . That's something that we 
might use to illustrate or to demonstrate that our treatments work in a way we'd like them 
to work, but they're not data that anybody else could ever use. The plant data is definitely 
. . . The long-term vegetation data, that's something that we will use and will add to every 
year. The changes in the soil nutrients, we would archive. The temperature data just 
sticks out to me. I mean, another little piece . . . We have some baseline data on the water 
input comparing what happens at . . . the water quality going into the mesocosms at the 
Station versus the [other site]. They're actually different. We're trying not to think about 
it, because there's not much we could do about it. It just will go into our interpretation. 
Will that be archived? I don't know. 
 

 Without the information manager's suggestion that the water chemistry data might be 

more "broadly useful," these researchers assume almost the exact opposite; that data they are just 

using to ensure their experiments are set up right and make sure they can account for anomalies 
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would have no value past the team's own very narrow use. It is still early enough in the ID&M 

Team's data collection that the information manager suggests that he and Ethan (ID&M-PD) 

meet again in the winter, when the researchers have more data. The two part, still undecided 

about what data will be archived, but Ethan leaves this meeting with a different perspective on 

what data might be worth archiving at the Station. 

 

4.4 SUMMARY 

The three vignettes I presented capture points in the research process where scientists' 

conceptions of value played an important role in determining whether and how data were 

captured, as well as how they were managed for future use. Assumptions about what data were 

for—their purposes—undergirded scientists' valuation of data as well as the creation of valuable 

data. In the IM Team, researchers ostensibly looking at some of the same variables created data 

that differed in their level of accuracy. Renee's (IM-GR) planned use for plant species 

identification demanded somewhat less accuracy than the rest of the team's use for the same data. 

It was more important that Renee capture the number of different species than to get those exact 

species right. The other researchers, however, planned to calculate a measure that required 

species-specific information. As a result, they took extra steps—consulting a plant identification 

book and taking samples back to the lab when necessary—to ensure the accuracy of these data. 

In the second vignette, which recounted an important meeting for NUS Team members, 

the researchers decided to end their project because the data they were generating were not 

effectively capturing the mechanism they intended to study, despite repeated attempts to alter the 

experimental setup. The researchers embarked on the study with the expectation that—as long as 

everything went according to plan—they would have data worthy of publication in a top-tier 
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ecological science journal. For the two PIs, who were both junior faculty members, getting data 

that could result in such a publication was especially important for bolstering their cases for 

tenure. 

The stakes for the NUS Team were high and their time to collect good data relatively 

short, both of which were reflected in the PIs regular and frequent assessment of the quality of 

their data. As they conducted the study and reviewed their data, the PIs contemplated the worth 

of the data against the costs of being at the Station, including the opportunity costs associated 

with working on this project instead of other things (grant proposals, writing up data from 

previous studies) that may have been more worthwhile. With three weeks left in their study, the 

researchers thought the most they would be able to use the data for was as preliminary data in a 

grant proposal and in the posters the undergraduates were required to present by their university 

as part of their summer research experience. Those were not end purposes that were compelling 

enough to justify continuing the project at the Station. 

In the last vignette, I described assumptions that ID&M Team researchers had about the 

limited value of "peripheral" datasets. The scientists were not necessarily interested in these data 

for analyses that would directly answer their research questions; rather, the researchers were 

gathering such data to set up their mesocosm experiment and account for possible anomalies in 

their findings. The scientists' assumption that those kinds of data had little, if any, longer-term 

value or value to researchers outside of the ID&M Team, was challenged by the information 

manager when Ethan (ID&M-PD) met with him. In discussing what ID&M data might be worth 

archiving, the information manager thought that water chemistry data would be particularly 

useful to other scientists that also relied on the same water in their own studies. Such a difference 

in conceptions about who and what and for how long data might be valuable for highlights how 
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scientists' relatively narrow focus can influence their conceptions of value as well as what they 

plan to do with data. Furthermore, it demonstrates how someone with a more global perspective, 

such as the Station's information manager, might be able to influence scientists' conceptions of 

their data's secondary or longer-term value. 

These themes will reemerge in the next two chapters, which together describe my study's 

findings. In Chapter 5, I focus on scientists' conceptions of data's value, while in Chapter 6 I 

delineate how conceptions of value were enacted in scientists' data practices. I conclude the 

dissertation in Chapter 7 with a discussion of the implications of my findings and suggestions for 

future research. 
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CHAPTER 5: SCIENTISTS' CONCEPTIONS OF DATA'S VALUE 
 

5.1 OVERVIEW 

Scientists' conceptions of data's value were woven into virtually every aspect of their 

work, from project planning and data collection to documentation, analysis, and sharing and 

archiving plans and activities. Their conceptions of value encompassed not only assessments 

about whether data were good or bad but also assumptions about how long data would be of 

value, what purposes and benefits data could serve, and who could or should reap the benefits of 

data's value. As suggested in previous research on the roles of data in science (Birnholtz & Bietz, 

2003; Latour, 1987; Latour & Woolgar, 1986), I found that the instrumental value of data was 

particularly salient for scientists: that whether scientists considered data valuable and to what 

degree depended largely on how well they thought data would serve some end that they 

considered worthy. Furthermore, my study confirms other researchers' finding that scientists are 

concerned with reward-based ends, such as peer-reviewed publications (Borgman, Wallis, & 

Enyedy, 2006), increased credibility (Latour & Woolgar, 1986), and tenure (Tucker, 2009). 

However, these ends do not fully account for scientists' conceptions of value or their data 

practices, especially given that scientists' notions of data's value were based in large part on the 

type of data being considered. 

Scientists made it clear that, first and foremost, they were carrying out their studies to 

produce data for addressing the specific gap in knowledge they had defined. Good, valuable, or 

useful data (scientists used these terms interchangeably) were data that helped the scientists 
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answer their research questions and/or test their hypotheses, and, therefore, fit-to-study was an 

important basis for assessments of data's utility or value across the data stream. However, 

scientists also made assumptions about the time span of their data's value and who or what 

purposes data would be valuable for on the basis of data type, as conceived by the scientists 

working with the data. Type designations, such as "field data," "experimental data," 

"unpublished data," "publishable data," "raw data," and "derived data" revealed the numerous 

meanings data had for scientists—both in terms of what the data represented and the purposes to 

which they could be put—that shaped which particular data scientists thought should be shared 

and/or archived. Scientists' focus on data's publication status and potential and data's processing 

state affirms the data stream model's suggestion that how scientists view the value of their data—

and hence suitability for sharing—varies according to data's level of refinement and where 

scientists are in their research process. But my findings also extend the model by uncovering an 

additional property—the potential of data to be supplemented, extended, or combined with other 

data —that is important to scientists as they consider the value of their data to others. 

I present the results of my study in two chapters. This chapter focuses on elucidating 

scientists' conceptions of data's value. It begins with a description of what scientists emphasized 

was the key purpose of their data: filling a specific gap in knowledge. Then, I describe the 

prerequisites data needed to fulfill in order for scientists to consider them of value for this 

primary purpose or to be what they considered "good data." In the second half of the chapter, I 

delineate the three main ways in which scientists characterized or classified their data when 

considering or talking about data's value. This typology reveals the bases that are important to 

scientists as they assess the value of data in the data stream. 
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5.2 WHAT DATA ARE FOR: ADDRESSING A GAP IN KNOWLEDGE 

The scientists I studied measured the nutrient content of water and soil samples, the 

lengths of various macroinvertebrates, and the amount of dissolved oxygen in wetland sample 

plots. They counted plant stems and recorded their heights, took soil temperature readings, and 

weighed soil samples. They calculated biomass, nutrient uptake length, and plant diversity 

indices. However, these activities were motivated by purposes that extended well beyond 

collecting or calculating any of the individual measures themselves, a point highlighted by a 

researcher from the IM Team. 

[. . .] if you think about it short-term it almost kind of seems meaningless. Like 
sometimes I actually find myself getting caught up in that. I'm like, "Does it really matter 
what this exact sedge is?" Like if it's Juncus balticus or Juncus nodosus, does it matter? 
But if you think about it long-term, it's not just about that. [. . .] It's not about the little 
identifying plants. (Brooke, IM-UR) 
 
At the most basic level, the teams were at the Station to examine a specifically defined 

gap in knowledge. What that particular gap was and what the teams hoped addressing it would 

accomplish informed scientists' overarching expectations for the outcomes of their work at the 

Station and their understanding of the kinds of data they needed to fulfill those expectations. 

Each of the teams came to the Station with clearly delineated research questions and/or 

hypotheses that framed virtually all of their work activities. Successfully answering their own 

research questions was a key criterion against which scientists judged the success of their work 

and, hence, the quality and value of their data. Next, I describe the knowledge gap each team was 

at the Station to explore, highlighting how it shaped researchers' understanding of what data they 

needed. 
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5.2.1 THE IM TEAM: PLANT COMMUNITY RESPONSE TO WETLAND RESTORATION 

The IM Team was working to find a successful and economically sustainable method of 

removing invasive Typha (cattail) from wetlands. IM Team scientists frequently emphasized the 

applied, rather than basic, nature of their research at the Station: 

[. . .] it's not basic. It's applied. It's applied to try to solve a problem. But there is a lot of 
basic in there, because we don't know anything about this kind of stuff. We don't know 
anything about harvesting and how much it increases biodiversity. There's definitely 
basic stuff that you can present and publish. It's just that, for me, it's sort of driven by the 
bigger question of solving a problem. (Evelyn, IM-PI) 

 
The problem of figuring out how to sustainably and affordably remove this invasive species to 

support greater biodiversity is an important one, especially for land managers who are 

responsible for mitigating plant and animal invasion. Typha, which grows prolifically via 

underground rhizomes, can quickly form a dense layer of litter that dramatically affects both 

plant and animal diversity, reducing a wetland to essentially a monoculture. Land managers do 

not currently have effective, economically sustainable, and non-harmful methods of removing 

this invasive plant. Herbicides release toxic chemicals, and burning the Typha releases 

greenhouse gases. Mechanical removal methods, such as mowing and digging below ground, are 

much less harmful to wetlands, but they are labor-intensive and, hence, expensive. IM Team 

researchers aimed to learn how different Typha removal techniques affected wetland biodiversity 

and whether removal could be made more economically viable by converting the Typha into 

biofuel that land managers could sell to recoup some of the removal costs. 

When I asked IM Team scientists to describe the goals of the project, they frequently 

emphasized the applied ends. The researchers said they wanted to "transform the way people 

manage their wetlands" (Amy, IM-PD) and "make management more sustainable" (Dylan, IM-
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RA). As a result, IM Team researchers thought it critical that their work yielded results that land 

managers could use and understand. 

We want this data to be used by not only invasive plant researchers, but [also by] land 
managers; the people who deal with Typha on a daily basis, people who have Typha 
control or people that are interested in controlling cattails where they are. They should be 
able to read these papers and be like, "This mowing technique at this time of year seems 
to be effective in eliminating cattails." (Dylan, IM-RA) 
 
 
We're trying to make it a little bit more applied, so that it can help affect change and 
bring solutions rather than just being really eccentric and kind of tedious little work that 
you publish and ten people read your papers. (Evelyn, IM-PI) 

  
The team's focus on what the scientists characterized as an applied problem and outcomes 

that could be implemented in real-world land management settings shaped their notions about 

what their data needed to be good for. Most importantly, the IM Team's data needed to 

demonstrate the biodiversity effects of different Typha removal methods and lead to results that 

could be applied by managers. This meant the data had to span enough time to convincingly 

show trends, represent phenomena in a natural setting, and be built on measurements that land 

managers could and would use. I describe each in turn. 

The changes that IM Team researchers were studying occurred over a span of several 

years. Phenomena such as native plant resurgence (including the species that emerged, their 

diversity, and how much of the plots those species covered) and Typha resurgence (including 

how quickly it came back and what portion of the plots it covered) take years to show anything 

meaningful for scientists and land managers. Evelyn (IM-PI) explained that the longer-term the 

dataset, the better. 

[. . .] because if you have long-term datasets, you can really . . . When your questions are 
like mine, which is, "What is the human impact on these natural ecosystems?" the longer-
term your database is, the more powerful your description of human impact will be. If 
you just show one-year impact it's kind of like, "Well, that's not very helpful." (Evelyn, 
IM-PI) 
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The particular project the team was working on as I conducted my study was funded for 

three years; while the researchers described this as not ideal, it was a sufficient timeframe to 

study the response to Typha removal. 

Dylan (IM-RA): [. . .] we have a management technique, and we want to find out if our 
management's working. So we need to go out and collect data over a course of a couple 
of years. This is a three-year project. This is year two, and then we're going to be 
collecting the same data year three. In those three years, we can compare changes in 
species composition, Typha density, soil, [and] organic matter. Ideally—a project like 
this—we would have decades of data, and we just—  
 
Interviewer: Because time is such an important factor? 
 
Dylan: Right. Time is really important, but we don't really have that luxury. 
 
Not only was it important that data spanned several years, but because IM Team 

scientists were focused on studying Typha management techniques, the data needed to be drawn 

from a minimally controlled setting. The main portion of the team's study focused on a field 

manipulation at three different wetland sites. In year one, the researchers cordoned off 24 plots at 

each of three wetlands (for a total of 72 plots) and assigned each of the plots to one of four 

treatments: above-ground removal, below-ground removal, mow, or control. The researchers 

referred to their study design as a "field experiment." Unlike other kinds of experimental designs 

(e.g. the mesocosm experiments conducted by the IM Team and the ID&M Team and the 

artificial stream experiment carried out by the NUS Team), in field experiments scientists control 

relatively few variables. In this case, the only manipulation the scientists performed was Typha 

removal. To study the influence of two other variables the team posited were important in 

determining biodiversity response (wetness and Typha age), the scientists also assigned plots 

according to the age of the Typha stand and relative wetness of the wetland. 



  96 

Scientists use field experiments to study phenomena in a natural environment, with the 

variabilities of the natural world kept relatively intact. This lends results a high degree of validity 

for application to the real world. At the same time, the variability that is an inherent trait of 

ecosystems (spatial, temporal, etc.) threatens to complicate findings by obscuring phenomena of 

interest. For example, the IM Team wanted to evaluate the wetlands' restoration potential, which 

would be indicated by how many species grew after Typha removal. However, because seedling 

resurgence depended not only on the seeds in the soil, but also on water level, an exceptionally 

wet year could have resulted in data that did not accurately capture wetland restorability. In 

Matt's (IM-PI) words, 

In the field there's this—particularly, the water level variability . . . it's out of our control. 
Many wetland plants species will only germinate [. . .] when the water levels are at the 
right level. So we weren't sure . . . I mean, had this been a really high-water a year, we 
might have gotten no germination in any of our treatments, which would have⎯if that 
were the only data we were collecting⎯would have not have represented the actual 
potential for restorability. And so what we did is we collected soil plugs from each of the 
plots, and then we have them in environmental chambers. We're looking at what plant 
species grow out of the sediments, which is sort of a proxy for restorability. 
 
Because of the importance of water level on seed germination, the researchers carried out 

a small-scale experiment whereby they could control the water level. Doing so would allow them 

to reliably assess the quality of the existing seed bank in the wetlands they were studying, 

regardless of the water variability in the field. 

Lastly, the scientists' interest in the results of their work having real-world application 

meant that their data had to be the result of "quick" and "simple" methods of measuring key 

variables that would be more useable to managers who, as Matt (IM-PI) explained, would not 

take a "painstaking amount of time" to carry out in their work. For example, numbers that were 

the result of the time-consuming process of counting plant stems to arrive at measures of 
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abundance were described to me as "less transferable" to the applied science community than 

percent cover measurements. 

A lot of applied scientists and managers understand percent cover, so it is something that 
is pretty transferable outside of [basic] research. (Matt, IM-PI) 
 
The IM Team's questions depended on understanding phenomena that occur over years, 

and the team sought findings that could be applied to real-world management situations. As a 

result, valuable data to the team were data collected over several years, drawn mostly from a 

relatively uncontrolled system, and based on simple and easy-to-attain measures.  

 

5.2.2 THE NUS TEAM: LEAF LITTER'S EFFECT ON NUTRIENT UPTAKE IN STREAMS 

In stark contrast to the IM Team, the NUS Team aimed to reveal a narrow mechanism 

(the reliance of nutrient uptake in streams on the chemical composition of leaf litter), and this 

undergirded an entirely different conception of valuable data. The NUS Team came to the 

Station to study how leaf litter affects nutrient uptake in streams. As human-driven nutrient 

runoff continues to plague many streams (contributing to algal growth and decreased water 

quality), results from this work could potentially suggest methods of mitigating the problem, 

such as planting specific kinds of trees along streams affected by nutrient disturbances. The 

application of the research, however, was less the focus of NUS Team's current project than was 

understanding what the PIs hypothesized was an important factor in nutrient uptake in streams. 

Based on fieldwork that the PIs previously conducted on real streams, the team hypothesized 

that: 1.) Nutrient uptake in a stream would depend on the ratio of nitrogen to phosphorus on the 

leaves in the stream; and 2.) As the leaves decomposed, the carbon to nitrogen and carbon to 

phosphorus ratios of the leaves would increase and nutrient uptake in the different leaf treatments 
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would become more similar to one another. The PIs characterized their study as designed 

specifically to address only these hypotheses and the questions related to them. 

[. . .] the whole experiment was designed around two questions, and you don't have other 
sorts of variabilities. You don't have differences in ambient concentrations or differences 
in site or differences in channel dynamics that . . . You know, they're all . . . It's all for the 
exact same thing . . . all designed just to answer two questions. (Jessica, NUS-PI) 

 
The primary goal (supporting hypotheses that the scientists developed on the basis of 

their own fieldwork) of the NUS Team was, in other words, purposefully narrow. While data 

from an earlier field study indicated that leaf litter was a significant driver of nutrient uptake in 

streams, the scientists thought a controlled experiment would better allow the team to isolate and 

test the particular mechanism and test their hypotheses. 

[. . .] we have some mathematical equations that describe the patterns that we think are 
going on. I think our steps right now are really just sort of . . . you can think of it as 
parameterizing those equations, like testing. If you actually you do have this, does it 
actually work out the way the math says it should work out? (Elizabeth, NUS-PI) 
 
In order to demonstrate the relationship between leaf litter and nutrient uptake, the team 

needed to remove other potential confounding variables from their study system. For example, 

the researchers controlled the quality of the leaf litter in their channels; the only leaves in the 

channels were the leaves they placed there themselves. Most importantly, NUS Team scientists 

worked to keep out of their system any other factors that could potentially influence nutrient 

uptake. They took several steps to accomplish this level of control. For instance, they covered 

their channels with a blue tarp to inhibit potential algae growth. The researchers attached nylon 

mesh to the output valves of the water tanks to filter out fine particulate matter (like bits of 

leaves of unknown origin and other organic material) that might be brought in from the stream. 

Lastly, every night they used paintbrushes to manually remove algae from the channels. 
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If everything went according to plan, the narrowness of this team's questions and goals 

(to show a specific, isolated mechanism) and the relatively artificial setup the researchers 

constructed would yield a set of data that showed just one thing: nutrient uptake in streams as a 

function of nutrient balance of leaf litter. Data's value to these scientists, in other words, was 

contingent upon the data showing a specific relationship. 

 

5.2.3 THE ID&M TEAM: MECHANISMS OF WETLAND PLANT INVASION 

The ID&M Team's work was part of a larger, NASA-funded, multi-disciplinary and 

multi-institutional project that aimed to understand the mechanisms of wetland ecosystem 

functioning and to quantify the potential impacts of anthropogenic changes (such as those from 

agriculture and land development) on wetlands. At the time of my study, there was minimal 

collaboration across partner sites, and work proceeded relatively independently at each 

institution. The overarching goals of the ID&M Team, then, revolved around these researchers' 

own portion of the larger plan: uncovering the mechanisms that control plant invasion into 

wetlands and refining and testing a computational model. Specifically, ID&M Team researchers 

aimed to identify the traits of invasive plants that were most important in those plants' ability to 

invade a wetland and to better understand the effect of different levels of nutrients, climate, and 

native vegetation on invasion success. Additionally, the researchers wanted to understand the 

consequences of invasion, particularly how invasion changes nutrient cycling.  

Hypotheses about these dynamics or mechanisms came from field studies that Kate 

(ID&M-PI) previously conducted and from the Wetland Ecosystem Model:9 a computational 

model developed by Mark (ID&M-PI)—an ecosystem modeler—in conjunction with Kate. This 

                                                
9 Pseudonym used. 



  100 

model simulated plant community dynamics and the biogeochemistry of nitrogen and carbon-

nitrogen interactions in wetlands. ID&M Team researchers planned to test quantitative 

relationships between invader size, nutrient availability, and competitiveness by experimentally 

manipulating the soil fertility of the wetland mesocosms they constructed at two different sites. 

In addition to using the results they gathered from the mesocosm experiment to test their 

hypotheses, the researchers planned to use the data to further parameterize the model to enhance 

its power as a hypothesis generator. To accomplish their goals, the researchers needed data that 

were drawn from a relatively controlled system, that could be used to represent change over 

time, and that were comparable to data used and generated by the Wetland Ecosystem Model. 

This team's study centered on a mesocosm experiment that the researchers set up in the 

summer of 2011. Mesocosms are constructed enclosures that bring the natural environment into 

semi-controlled conditions that scientists can then manipulate for study. This experimental 

approach (which IM Team researchers also used as a supplement to their field study) allows 

scientists a level of control that is not possible in a typical field study and at the same time 

enables scientists to maintain a degree of realism that is not normally seen in a more tightly 

controlled laboratory experiment. As Kate (ID&M-PI) explained, 

You're doing [mesocosm experiments] because you're trying to make it somewhat 
realistic, but maintain much more control than you can do in the field. [. . .] For me the 
important control is usually what the community is going to be. I can start the community 
the way I want it and then look at particular components that are going to be varied. 
Whereas if you go out in the field you've got the community and the environment co-
varying, and you can't pull out one or the other except by really huge sample sizes. You 
can isolate, you can impose the same experimental treatment, but you've just got a huge 
variation in the background [. . .] 
 
ID&M Team scientists built each mesocosm from a 6-foot diameter, metal tank. They 

placed the tanks (50 in total) in the ground at two study sites, filled them with soil, and installed 

water input and output systems in each of them. The end result was that each tank became what 
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Ethan (ID&M-PD) called "[its] own six-foot diameter wetland." In 2012, the researchers planted 

half of the mesocosms with four different species of native vegetation (they left half empty of 

vegetation) and treated the mesocosms with varying levels of fertilizer. In 2013, once the native 

plants were well established, the researchers planned to add invasive plants to all of the tanks at 

each site. 

In order to study the mechanisms that were ID&M Team's focus, the scientists 

deliberately constructed the mesocosms to isolate the variables of interest and remove other 

factors that might increase the variability of the team's data. For example, the soil (including its 

starting nutrient level) was exactly the same in every tank, because the only soil in them was 

what the researchers added. The researchers also placed each of the two sets of mesocosms in an 

exposed location without the threat of shade that might cause variability in light exposure. In this 

way, the researchers could be assured that all of the tanks would get the same amount of 

sunlight. Additionally, the team populated half of the tanks with four native species of plant, and 

each of the tanks had the same number and composition of species (the team, however, expected 

this composition to change in response to invasion and fertilizer treatments). 

While the team required data that reflected the relative isolation and control over 

variables, as Kate (ID&M-PI) emphasized the researchers also wanted to "make it somewhat 

realistic." ID&M Team scientists, in other words, felt that they needed data from a system that 

was, at least to some extent, natural. The mesocosm approach provided the team a means of 

exerting control while also maintaining the necessary level of naturalness. 

The research problem, as defined by ID&M Team, also required measurements that the 

scientists could use to see changes that occur over a few years' time. ID&M Team researchers, 

like the researchers on the IM Team, were interested in phenomena that needed at least a couple 
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seasons' growing time to develop and demonstrate their consequences. For example, the 

researchers wanted to understand how native vegetation hindered or competed with the growth 

of invasive species. The seedlings—both native and invasive species—that the researchers 

planted in the tanks required time to become established. Furthermore, the scientists' questions 

depended on seeing how factors like biomass, nutrient cycling, and nutrient availability changed 

over time and in response to variables like Typha size, which the scientists expected to change 

over several seasons. Ethan (ID&M-PD) described some of the data collection activities they 

planned over the span of the project. 

[. . .] we'll track [basic plant nutrients] over time to see if that changes as we fertilize and 
as the vegetation kind of fills out. That's what we've been doing this year. [. . .] Next 
spring, we'll be planting the invasives into all of the tanks. [. . .] then we'll be monitoring 
the rate of growth of those invasives over the next few seasons to see how they respond 
to nutrients and how they interact with the native plant community. 
 
The term of ID&M Team's NASA funding was three years (with the possibility of a one-

year, no-cost extension): the researchers spent 2011—the first year of their study—constructing 

the mesocosms. They began data collection in 2012; 2012 data would represent a baseline state 

for their mesocosms, before the researchers populated them with invasive species. Later, using 

data they collected periodically over each of the field seasons (approximately March to October, 

depending on weather), the scientists would analyze data to see changes that occurred in the 

mesocosms over the years of their study. 

Lastly, ID&M Team scientists needed the mesocosm data not only to help them answer 

research questions related to the mechanisms that control invasion, but also to develop and test 

the Wetland Ecosystem Model. Mark (ID&M-PI), the lead on the modeling portion of this team's 

study, developed the initial iteration of the model using data from other field studies and 
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mesocosm experiments. He planned to use the ID&M Team mesocosm data to further 

parameterize the model and test its predictions. As Mark explained, 

The model presents sort of a hypothesis about relationships between parameters, and the 
field study10 allows us to test whether the results in the field lend credence to a hypothesis 
about the relationships between parameters as expressed in the model. 
 

The collaboration between ID&M Team researchers who were working on the mesocosm portion 

of the study (Kate (PI), Ethan (PD), and Chad (RA)) and ID&M researchers whose work was 

focused on model development (Mark (PI) and Gabe (PD)) yielded advantages to both the 

modeling and the mesocosm work, influencing the design of the mesocosm experiment and the 

data scientists collected from the mesocosms. 

This is a great example of a very integrated project where the fieldwork directly informs 
the model, the development of the model, the parameterization of the model, and then the 
model directly informs the fieldwork. (Mark, ID&M-PI) 

 
Unlike modeling efforts in which modelers rely on data that have already been published, in the 

ID&M's project the modelers' needs were taken into account as the researchers collected the 

mesocosm data. 

Mark (ID&M-PI): I think the advantages go two ways. I have a lot of input into how the 
field study's getting conducted, which is great. And then [. . .] the people that are doing 
the fieldwork are sensitive to "What are the things that we need for the model?" So there's 
a real two-way. 
 
Interviewer: What are some differences that play out in how the data are collected that 
you might not see in publications that aren't working with modelers? 
 
Mark: That's a tough one. Well, people might not collect all the things you need for a 
budget, I guess, would be one example. In this case, we want to be able to do a nitrogen 
budget, so you need to know what's going in, you need to know what's coming out. [. . .] 

                                                
10 That Mark characterized the mesocosms as being "field" in the context of talking about the 
computational model demonstrates the importance of the relative naturalness of a study system 
to the meaning of data to scientists. While a mesocosm experiment is not a field study, 
mesocosms are far less controlled than a computation model; in other words, mesocosm 
experiments are relatively natural (i.e. "field") compared to computational modeling. I cover this 
topic in a later section of the chapter. 
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There are sort of key pools that are integrative pools that are really good for either 
developing a model or testing a model, like the nitrogen and foliage is a key one. It's like 
an integrator. There are ten different processes that control that, and if you measure that 
one thing it's a really good link between all the different processes happening in the field 
and all the different processes happening in the model. They're all linked together in this 
one thing: the nitrogen concentration and foliage. I guess if a group was not working with 
a modeler, they might not realize that and might not measure that. 
 
The ID&M Team's project depended on data that could be used to reveal the mechanisms 

that control plant invasion into wetlands and refining and testing the Wetland Ecosystem Model. 

For data to be valuable for the team, then, they had to be drawn from a relatively controlled 

system; to cover several years' time; and be comparable that to the data used and generated by 

the Wetland Ecosystem Model. 

 

5.2.4 SUMMARY 

The IM Team aimed to generate results that showed change over time and could be 

applied to a real world management setting; the NUS Team sought to reveal a narrowly defined 

mechanism that would contribute basic knowledge of what drives nutrient uptake in streams; and 

the ID&M Team was working toward understanding the mechanisms of wetland invasion and 

refining and testing a computational model that could be used to generate probabilities of 

invasion risk. The overarching purpose of addressing a gap in knowledge framed scientists' 

notions about what data needed to accomplish, shaping how they designed their studies and 

assessed the success of their work at the Station. Data's value was always assessed in relationship 

to how well the data served the purpose of answering a team's questions. Answering a team's 

research questions was, in other words, a salient purpose throughout the entire data stream, from 

project planning and study setup to data collection and analysis. 
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By emphasizing the role of each team's research questions in how scientists assessed the 

success of their work and conceived of data's value, I do not mean to suggest that the individuals 

that made up each of these teams were without their own, more personal reasons for participating 

in their team's research projects. Rather, I argue that answering research questions represented a 

prominent shared meaning for data around which the teams organized their work at the Station.  

Personal goals did come up in the interviews with scientists. These goals included things 

like to earn money while formulating new career plans (Chad, ID&M-RA); gain research 

experience and build a relationship with professors (Carolyn and Janet, NUS-UR); publish a 

piece that would strengthen a tenure case (Elizabeth and Jessica, NUS-PI); and stay connected 

with research, thereby gaining more legitimacy as a change agent on university-wide 

environmental policy (Evelyn, IM-PI). However, researchers did not refer to these individual 

goals when I asked what their data were for or why their team was doing the research. Instead, 

the researchers—no matter their status on the team—began by describing the shared meaning of 

data within the group: as resources for exploring a gap in knowledge as defined by the team. 

That was the meaning that was first and foremost in the minds of scientists as they assessed the 

value of their data, made decisions that impacted on producing valuable data, and judged the 

success of their work. 

 

5.3 THE PREREQUISITES FOR "GOOD DATA" 

With data's meaning as resources for addressing a gap in knowledge at the forefront of 

their minds, scientists enumerated several prerequisites that data needed to meet in order for 

them to consider the data of value or what they also referred to as "good" or "useful." In 

delineating their data stream model, Hilgartner and Brandt-Rauf (1994) highlight the importance 
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of reliability to scientists' sense of data's utility. While the scientists in my study regarded data's 

reliability—or trustworthiness—as crucial to their value, they also stressed that data needed to be 

comparable to one another and relevant to their team's specific research questions in order to be 

of value. I describe each of these traits in more detail, providing examples of some of their 

instantiations in the different teams. 

Scientists emphasized that good data were comparable to one another and, indeed, data 

that were not comparable to one another were of little, if any value, to them. Data's comparability 

referred to their equivalence—within a study—across data collectors, time, and individual plots 

or sites. Often, participants described this comparability as a result of what they termed 

"consistency" in data collection. 

You have to make sure that the data that's being collected is consistent among individuals 
who are collecting it and is consistent through time, even the same person. (Gabe, 
ID&M-PD) 
 

In other words, the plant count data that Chad (ID&M-RA) collected from the mesocosms 

needed to be comparable to the plant count data that the other team members collected from the 

mesocosms. Furthermore, the plant count data that Chad collected from mesocosm 1 had to be 

comparable to plant count data he collected from mesocosm 2; and the data he collected from 

mesocosm 1 today needed to be comparable to data he collected from mesocosm 1 the following 

summer. 

Renee (IM-GR) described consistency as the key difference between good and bad data 

and emphasized that even when numbers were "slightly off," if they were consistently off, it was 

often acceptable, particularly for research questions where relative difference was more 

important than exact numbers. Describing what made data good, Renee said, 

I always refer back to consistency. As long as you're being consistent, that's good enough 
for me, I suppose. 
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Matt (IM-PI) agreed, explaining during a day of field data collection, "Relative difference is as 

important as the numbers a lot of the time." 

In addition to "consistent," scientists also used the terms "repeatable," "replicable," and 

"sameness" to emphasize the qualities that made data comparable. In the following excerpts 

scientists from two different teams highlight repeatability and replicability. 

Trying to put in checks and balances to make that sure everyone's collecting the same 
kinds of data and it's repeatable, so having clear standards and checking in with each 
other and making sure everybody's doing it right. (Amy, IM-PD) 
 

 
Then you're checking the data to make sure [. . .] that you can replicate it. (Gabe, ID&M-
PD) 
 

If, for example, Dylan's (IM-RA) percent coverage assessment for Typha in a subplot was close 

to Amy's (IM-PD) assessments from the same subplot, IM Team researchers felt reasonably 

assured that they were collecting comparable data across the team. 

Scientists described challenges in ecological research that made it difficult to collect 

comparable data. Specifically, natural variabilities in ecological systems could stymie efforts to 

use the same methods to collect samples or measure variables. Such a situation created 

considerable frustration for Renee (IM-GR) in her first year of data collection for her master's 

thesis: "Last year's data were a clusterfuck. I don't know how else to describe it." 

During the summer of 2011, Renee (IM-GR) gathered her samples and data from wetland 

sites that had markedly different water levels from one another. The difference in water levels 

made it impossible for her to use the same method of collecting macroinvertebrate samples from 

each of the sites. Additionally, many of her sites had virtually no standing water, and since her 

dissolved oxygen (DO) meter required at least two inches of standing water to get a reading, she 
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was unable to collect DO data for all of her sites. Both Evelyn (IM-PI) and Renee likened the 

data that resulted from 2011's collection to "apples and oranges." 

Renee had a shitty situation last summer. She was trying to collect aquatic invertebrates, 
and then she gets to this one part of the wetland that's dried up. So she's like, "What do I 
do? I've got to collect." She's trying to go down into the soil to see if maybe there's water 
down there and there's still some of these little guys down there, and it's such a different 
method. It's like comparing apples and oranges. You don't feel good about your data. 
(Evelyn, IM-PI) 
 

 
It was just like trying to compare apples to oranges, and it was a third of my plots. Then, 
because the water levels were dropping too, some of the plots I collected with the 
stovepipe in June and then in August [I] had to take a soil core. It wasn't comparing 
directly throughout the summer or across plots or across sites, and it was just kind of a 
big hassle. (Renee, IM-GR) 
 

 The issue of comparability was an important factor in scientists' notions of data's value. 

As I discuss later in this chapter, data's degree of comparability impacted not only whether 

scientists thought data were good or bad for their own studies, but also undergirded their 

assumptions about who could derive value from data, for what purposes, and for how long. 

In addition to being comparable, to be what scientists would call "good," data also had to 

be trustworthy or—in the language of the data stream model—reliable. As Gabe (ID&M-PD) 

asserted, "Good data is data that you can trust." Scientists deemed data trustworthy when they 

had "high confidence" in them; in other words, when they felt assured the data accurately 

represented what they were supposed to represent. 

Scientists relied on their own prior knowledge and experience to assess whether data 

were trustworthy. This knowledge and experience helped them to formulate expectations for 

what the data should look like or what a reasonable numeric range for the data would be. Several 

interview excerpts demonstrate scientists' reliance on their own expectations to determine 

whether they should trust the data: 
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You're checking to make sure that all counts are right or within an area that you're 
expecting [. . .] (Gabe, ID&M-PI) 
 
 
It requires constant vigilance as you look at analyses along the way of making sure 
something makes sense. (Kate, ID&M-PI) 
 
 
Jessica (NUS-PI): [. . .] uptake lengths that sort of make sense. They shouldn't be less 
than a meter, and they shouldn't be 300 meters long. 
 
Interviewer: So knowing what your end result number should fall between? 
 
Jessica: Yeah, and we sort of have . . . We've been doing this long enough from real 
streams that we sort of have a sense. Our discharge is 100 mils per second, which you 
can't find in a real stream. I mean that wouldn't be above ground. Most of the time, you're 
working in much bigger streams. We work in streams that are a minimum of probably ten 
liters per second, and their uptake lengths are about 100 meters. So if we get an uptake 
length of ten, that's really not that surprising because our discharge is so low. And we've 
packed them with leaves. [. . .] We just want a number that's realistic. [. . .] I know we've 
packed it with leaves, but before it was so short it just wasn't realistic for . . . Microbes on 
leaf litter are not that nutrient starved, so we knew that when we were getting four 
centimeters and four millimeters that just wasn't right. We've been doing it from real 
streams long enough that we know [. . .] the uptake length should be about ten, and 
otherwise . . . If it's a lot longer for nitrate, that wouldn't surprise me because that tends to 
be the least biologically demanded nutrient [. . .]. But the rest of them should be probably 
between 10 and 15, you know, basically. 
 

As my exchange with Jessica (NUS-PI) demonstrates, if data deviated too far from scientists' 

expectations, their confidence in the data was threatened. Consequently, they would try to 

identify the cause of anomalies. "Erratic numbers" or "outliers" that did not jibe with the rest of a 

team's data or fit scientists' expectations, could, for example, indicate a basic fault in the study 

design or setup—such as was the case for the NUS Team—or anomalies could indicate natural 

variability in an ecosystem. However, anomalous data could also be the result of the peculiarities 

of one "funky" mesocosm that scientists knew to be problematic or events that happened during 

data collection. 

We've got one mesocosm up there that leaks, and it's always giving us erratic numbers, 
and it's a pain in the ass. We're always trying to fix it. There's another one that has all 
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these ferns in it, these terrestrial ferns that have come in, and that always gives us erratic 
numbers. (Evelyn, IM-PI) 
 
Lastly, scientists were emphatic that data had to help answer the specific questions that 

the team set out to answer in their study in order for them to consider the data good. Data could 

be of high quality—comparable and trustworthy—but if they did not help scientists answer their 

research questions, they were not "good" for the team. As Amy (IM-PD) explained, 

For any science question the question needs to be clear, and in order to address that 
question you need to collect data that directly address that question. So good or bad data I 
think depends on the question you're asking. 
 

Ethan (ID&M) similarly emphasized that good data were data that helped his team "to answer 

the questions that we're trying to get at." If—as with the photographs he periodically took of the 

mesocosms (at the request of their partners at a different institution)—data could not be used to 

answer any of the IM Team's questions, Ethan did not consider them good data. 

One thing that we've been doing is just occasionally taking pictures of all the 
[mesocosms]. And there's an enormous amount of data in those pictures, but I don't really 
know how to use those data. You could look at the total amount of greenness in the tank, 
but there are different species in the tank, and really what we're interested in is 
understanding how the different species interplay with each other. And you can't tell that 
from the picture in any sort of automated way. So those wouldn't be very . . . I don't think 
of them as good data. [. . .] What I think of as good data is something that we can use to 
answer the questions that we're trying to get at; that provide useful information to 
answering those questions. [. . .] relevant to answering the questions. When I think of 
good data, I think of data that answer the primary questions that are in my head. 
 

Scientists, in other words, did not consider data to be good unless they were useful to their 

teams; and that usefulness was highly dependent on whether data addressed scientists' specific 

research questions. 

The NUS Team's work presents an especially striking example of the way in which data's 

value was assessed on the basis of whether or not scientists could use them to answer their 

research questions, primarily because the researchers were challenged in their efforts to produce 
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"good" data. NUS Team researchers' alterations of their experimental setup and their later 

decision to abandon their project at the Station stemmed from the scientists' assessment that the 

data they were collecting could not be used to answer any of their research questions, as Jessica 

(NUS-PI) explained. 

The problem with [the data we were getting before] is that that wasn't the microbes on the 
leaves that was [taking up nutrients], it was algae and microbes and all that fine 
particulate organic matter, so that's why we had to switch to groundwater last 
Wednesday. Because that's not our question. [. . .] that's not what we're interested in. That 
wasn't the whole point of why we built all these experimental channels: to grow algae and 
fine particulate organic matter of unknown C to P to N ratios. (Jessica, NUS-PI) 
 

The problem for the team was not that the data did not support their hypotheses; rather, the data 

did not address their hypotheses and associated research questions.  

The assertion that data must be comparable, trustworthy, and relevant to scientists' 

specific research questions in order for scientists to consider them good might appear, on its face, 

obvious. However, what I have highlighted so far in this chapter is scientists' recognition that 

data's value is relative and depends on a match between what scientists need the data to do and 

what the data are actually capable of doing. Scientists regarded data primarily as resources for 

addressing a problem as laid out in their study designs; and the particular questions they set out 

to answer and/or the hypotheses they aimed to test necessarily limited what they considered to be 

good data: data that were worth the considerable time and effort required to produce them. 

Scientists' conceptions of data's value, however, encompassed more than whether data 

were good or bad; of value or not of value. Scientists' value conceptions also included 

assumptions about how long data would be valuable, who could or should realize value from 

data, and the kinds of uses data could be put to. In the next part of this chapter, I delve more 

deeply into these nuances of scientists' value conceptions by describing how scientists used data 

type as a basis for data valuation. 
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5.4 SCIENTISTS' USE OF DATA TYPE TO MAKE VALUE ASSESSMENTS 

In making value statements about data, the scientists I studied frequently made 

distinctions between what they considered to be different types of data. Scientists' 

characterization of different data types was made on the basis of the kind of study system from 

which they collected data (experimental and modeling vs. field data), data's publication status 

and potential (published vs. unpublished; and publishable vs. unpublishable), and data's level of 

processing (raw vs. derived data). For the scientists, each type of data carried with it particular 

assumptions about data's value, including what the data could be used for, by whom, and for how 

long. For example, scientists explained to me that "experimental" data were likely to be of less 

value to other scientists and questions and would probably of value for a shorter duration of time 

than "field" data. 

In this section I detail the dimensions along which scientists characterized their data as 

they considered data's value. In each sub-section I focus on one dimension (e.g. the study system 

that data represent), detailing the typology that resulted from it (e.g. field data vs. experimental 

or computational data). In doing so, I describe the salient aspects that played into scientists' 

characterization of data according to that dimension and delineate, as applicable, the related 

assumptions about what scientists thought the data would be valuable for, how long they thought 

the data would be valuable, and who should or could reap value from the data. 

 

5.4.1 THE STUDY SYSTEM THAT DATA REPRESENT 

When it comes to field data, really anyone can be interested in that. Anyone who has an 
interest in, let's say, time effects on species composition or a [land] manager. I can see a 
manager in [. . .] one of the places we're going to work at being like, "What was this 
place like 15 years ago? Because it's so much different now" using that dataset. [. . .] But 
things like experimental data like the mesocosms . . . meh, I don't know. It's tough to see 
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how it's going to be that much more useful past the point of what the people who were 
doing that experiment really want the data for. (Gabe, ID&M-PD) 
 
In the passage above, Gabe (ID&M-PD) indicates that "field data" and "observational 

data" (in this instance he uses the terms synonymously) have virtually unlimited value in terms 

of the time period over which they might be valuable and who might find them valuable. Gabe 

contrasts field data with "experimental data," which he asserts will likely only have value for the 

specific question(s) that resulted in their generation and the individuals or team of individuals 

who collected them. Gabe's characterization of data's value according to the type of study system 

the data represented was indicative of a view shared across researchers and the three teams: 

experimental data (and—in the case of the ID&M Team—modeling data) were finite and 

exhaustible resources, and field data were potentially expansive and inexhaustible resources. 

This presumption was based on what scientists described as the artificial and ephemeral nature of 

controlled studies and the more natural and enduring qualities of field study systems. 

Whether researchers appended data with the qualifiers "experimental," "mesocosm," or 

"modeling," they contended that data collected from contrived or controlled study systems held 

more limited value across time and scientists than did data collected from natural field systems. 

For example, Matt (IM-PI) thought that the data from his team's mesocosm study would likely be 

of little value to other scientists, explaining that his team was "squeezing as much out of those 

data as we can" and that the number of additional questions one could ask using the same data 

was "minimal." Similarly, Mark (ID&M-PI) doubted that other scientists would find his 

modeling data useful: "I don't see what they would have to gain. [. . .] I don't think other people 

would see [reusing the modeling data] as being a valuable thing." 

 Scientists viewed the systems that were the basis of controlled experiments as 

purposefully constructed, transitory resources for addressing their specific research questions, 
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and hence thought data they generated from such systems were valuable only within the context 

of the particular study and to the team. The researchers described the systems (whether vinyl 

gutter streams or wetland mesocosms) as "designed for questions" and frequently contrasted 

them with "field" or more natural ecosystems, such as the marshes where IM Team researchers 

carried out their wetland restoration study. 

 Because experimental and computational data were collected from systems that scientists 

deliberately constructed to answer specific questions, they viewed such data as valid only from 

within the bounds of the system. For example, Gabe (ID&M-PI) described model-generated data 

as having a relatively "short shelf life," because as the model developed and changed the data 

would become, in important ways, outdated. The data might continue to serve as a record of 

what the team learned from a particular iteration of the model, but they would have no relevance 

outside of that iteration's bounds. 

The Wetland Ecosystem Model though, on the other hand, is different [than a field study] 
because the things you produce are important and the results are important, and that 
publication will be important, and that won't change. But as you . . . Let's say as you 
change the model itself and as you increase its realism maybe and other things, that could 
force some of the other data . . . I don't want to say "obsolete," because it's still important 
within the bounds that it gave it. But I think you're going to be more interested with the 
more complex, maybe more descriptive model. So I can see maybe the Wetland 
Ecosystem Model stuff having the shortest shelf life, but the results from the papers that 
come out of that, not having a shelf life. That's going to be important because the model's 
doing a certain thing at this certain time. But as the model hopefully progresses and gets 
more complicated, maybe has different aspects of it that are incorporated, like light 
competition or something . . . You might not be as interested with the old data anymore. 
(Gabe, ID&M-PI) 

 
 Similarly highlighting the deliberately constructed aspects of controlled studies and the 

resultant limitations on the value of data produced from them, both of the PIs from the NUS 

Team repeatedly stressed that the data they were generating from "artificial stream channels" 

would have less value to others than data they collected in "real streams." 
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Interviewer: So do you think that you could actually see going back and using these 
actual data to answer new questions? 
 
Jessica (NUS-PI): Probably not for this summer; not in this sort of experimental setup. 
It's really designed for two questions, and so I probably wouldn't . . . I could see that with 
field data, but not with these experimental data. 
 
Interviewer: And why is that? What's the key difference? 
 
Jessica: I think with an experimental setup, I feel like the whole experiment was designed 
around two questions, and you don't have other sorts of variabilities. You don't have 
differences in ambient concentrations, or differences in site, or differences in channel 
dynamics that . . . you know they're all . . . it's all for the exact same thing; all designed 
just to answer two questions. 
 

 Researchers' descriptions of the limited value of data from controlled experiments also 

alluded to the systems' transitory, or ephemeral, qualities. Unlike field systems, such as streams 

and wetlands, scientists viewed controlled experiment systems as relatively short-lived and 

unlikely to persist after the team was finished with them. One way to conceptualize such 

systems—which were important components of each team's data stream—was that they were 

rare; accessible only to the team and generally only for the term of a particular team's study. The 

length of time scientists planned to conduct studies using their experimental setups varied. For 

example, NUS Team researchers planned to run their experiment for approximately eight weeks, 

while ID&M Team researchers thought they would keep asking questions using the mesocosms 

for approximately ten years, contingent on continued funding. In both cases, however, scientists 

viewed their systems as subject to disassembly or, at the very least, benign neglect once they had 

exhausted them for their own questions. Both Kate (ID&M-PI) and Matt (IM-PI) described the 

contrast between the value of field and mesocosm data by pointing to the transitory nature of 

mesocosms. 

We know when cattails first came in there, because [Person Name] was taking her class 
out to [Marsh Location Name]. The class data on what that vegetation was . . . that's a 
really useful thing. The mesocosm data, in a way, is less useful in that—now that I think 
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about it, is less useful in that regard, because it's not some site that somebody could go 
back to. It's most likely [. . .] once we finish with the mesocosms that they're not going to 
be really usable for anybody else anymore. (Kate, ID&M-PI) 
 

 
It seems to make a lot of sense that data that are collected about the ecosystems on the 
Station—these long-term changes in ecological conditions on the site—that seems like 
that could be really valuable for the Station, but these mesocosms are this sort of 
ephemeral thing. We put them in, they're changing really rapidly; most people take them 
out. (Matt, IM-PI) 
 
Because the systems that were the basis of more controlled experiments were ephemeral, 

other scientists would not have the opportunity to conduct their own studies using those systems 

and therefore would be unable to expand on the data with additional variables of interest or to 

compare differences across time. Again, Kate (ID&M) contrasted the ephemerality of the 

mesocosms with the longevity of field sites and pointed out the implications: 

They're not in the field. They're mesocosms, and we're not going to keep them, and 
therefore, there's no basis for keeping them going indefinitely. At some point, they'll just 
[. . .] have so many artifacts because they've been growing in this little thing for so long 
that we'll say, "It's just no good anymore." We will stop collecting data. Whereas for field 
data, you can always go back to it. Unless you destroy the plots, you can always go back 
to them. And even with a big gap, you can still say something interesting. I think for the 
mesocosm data it's much more likely that you've got a fixed period and that once you've 
analyzed that in a lot of ways, you can run out of interesting things to do, whereas you 
could always add a longer time period for some of these long-term data if it's set up well. 

 
In addition to the artificial, or contrived, and ephemeral qualities of controlled study 

systems, several scientists pointed to experimental data's lack of utility for metaanalysis studies 

as a limiting factor in the value of their data. Metaanalysis, a method of inquiry in which 

scientists bring together data from several studies to answer questions, is increasingly common in 

ecological science (Gurevitch, Curtis, & Jones, 2001). For example, ecologists employed 

metaanalysis to examine coral decline in the Caribbean from 1975 to 2000 (Gardner, Cote, Gill, 

Grant, & Watkinson, 2003). Combining data from 263 sites and 65 different studies, scientists 

were able to tell a bigger story than any one of the studies could tell individually and were also 
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able to make a more compelling case that their findings were not the result of natural ecosystem 

variability. 

Several of the researchers I studied argued that other scientists would be unlikely to use 

experimental or modeling data to conduct such metaanalyses and, in doing so, contrasted them 

with field data. For example, Mark (ID&M-PI) asserted that his modeling data would be of little 

interest to others because it was inconceivable to him that the data would be used in any kind of 

"cross-project metaanalysis." 

[. . .] if you generate field data and made that available through a website I could see that 
being useful to other researchers. Other researchers might do a data mining exercise 
where they try to gather field data from fifty different field projects from around the 
world and do some new kind of analysis. That I could see being very useful. But I 
wouldn't see someone using my model for that kind of cross-project metaanalysis. 
 
Similarly, Elizabeth (NUS-PI) viewed field data from "real streams" as good candidates 

for synthesis across studies, but she saw very little potential for synthesis between her team's 

experimental data and others' data. In the excerpt that follows, she explains why. 

I think it's the sort of real life study system. If someone was going to do a synthesis 
paper, they're going to synthesize nutrient uptake in streams, and they are not going to 
include our little channels because little channels aren't real streams. And so I think, 
while that data might be potentially the same as the stream, our numbers themselves . . . 
they might differ in magnitude to what you see in a stream. That difference in magnitude 
is okay [for our study], because we are comparing channels to channels in our particular 
project. But it is not going to be okay if you are doing a synthesis and comparing streams 
to streams. If our numbers are different, you would just say, "Well of course they are 
different; they were done in channels." 

 
Notice that Elizabeth did not assert that other scientists would be uninterested in combining the 

NUS Team's experimental data with their own experimental data. Rather, as she considered 

whether or not someone would use her data to create a synthesis paper, she immediately focused 

on the potential combination of her experimental data with others' field data. I would learn in 

later interviews and observations with the team that, as far as the NUS Team PIs knew, no one 
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else was conducting experiments that would yield similar data to what the NUS Team 

researchers were generating that summer. In other words, there were no data that would be 

suitable candidates for synthesis because there were no comparable data. The same prerequisite 

to scientists' notions of good data for their studies colored their assumptions about who else 

might derive value from their data for their own purposes. 

As the interview excerpts I have provided thus far make clear, in considering their 

experimental data's value, scientists frequently positioned data from controlled study systems in 

contrast to data from field systems. They described experimental and modeling data's value as 

limited: not of much potential use to other scientists and sometimes not even valuable for much 

longer past the point of the data's publication. Scientists described field data's value, on the other 

hand, as expansive, imagining that the data could be used by others and would remain valuable 

across a virtually unlimited amount of time. 

When researchers talked about field data, they frequently emphasized the realness of the 

systems from which they collected the data. For example, NUS Team scientists characterized 

field data they collected in a previous study as data from "real streams," "real-life systems," and 

"natural systems." IM and ID&M Team scientists called field data "data from ecosystems" or 

"data from the forest." Sometimes scientists highlighted field systems' realness by simply 

qualifying data according a site name (e.g. Jackson Marsh data) as opposed to the experimental 

equipment (e.g. "data from the cattle tanks," "channel data," or "data from these gutters"). That 

field data were collected from actual ecosystems, as opposed to constructed imitations, meant 

that they captured information about some aspect of an ecosystem at a specific place (e.g. 

macroinvertebrate biomass in Marsh X) and time (e.g. the summer of 2012). Highlighting field 

data's status as representations of an ecosystem (or aspects of an ecosystem) at a particular place 



  119 

and time, scientists regarded such data as a historical snapshot. As the Station director explained 

to me, "It's basic data. It's almost museum-type data." That field data were tied to an ecosystem 

at a specific place and time meant, in other words, that the data were unique (representing 

something that could not be recaptured). Furthermore, as representations of real ecosystems, 

scientists could conceive of other scientists taking their own interest in the study system. For 

example, at least one of the marshes that IM Team researchers were studying had served as the 

site for research that Kate (ID&M-PI) and other Station scientists had conducted in previous 

years.  

Another trait of real ecosystems differentiated them from their constructed counterparts: 

scientists expected them to endure into the conceivable future. Scientists assumed that unless 

they "became shopping mall[s]" (Gabe, ID&M-PD), their field study sites would remain 

accessible to future study. In contrast to controlled experiment systems, scientists viewed field 

systems as a more communal resource, not "personal resources" (Dylan, IM-RA) for particular 

scientists or teams of scientists. Field systems were—in contrast to controlled experiment 

systems—common resources, likely to be utilized by other scientists, rather than rare resources 

created and utilized only by the team that constructed them. This meant that other scientists 

would have the ability to revisit the site, and this played into scientists' notions about who could 

potentially reap value from their data and for how long. For example, IM Team researchers 

created a GIS (Geographic Information System) dataset that depicted the age of the Typha stands 

in one of the marshes they were studying. The researchers found that Typha stand age was an 

important determinate of whether a wetland could be restored. But, as Matt (IM-PI) explained, 

the data his team collected on Typha stand age in that particular wetland could be of value to 

many other scientists interested in questions that were beyond the scope of his team's research. 
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[. . .] the spatial data particularly—it could be interesting to people, because we have 
these very clearly aged cattail stands there. If anyone else wanted to look at some other 
environmental factor or whatever . . . maybe if somebody was interested in insects, and 
they could go out and use our maps as a way if they wanted to look at differences in the 
insect communities with different ages. Or pick your taxa or whatever. I could see that 
being a useful starting place for additional research that's kind of beyond the scope of 
what we're doing [. . .] 
 

 The expected endurance of the sites that comprised field studies was important in 

scientists' assumption that field data had broader, longer-term value. However, endurance is not 

synonymous with permanence. Ecosystems are dynamic, and it is this dynamism (e.g. an 

ecosystem's reaction to specific disturbances) that underlies much of ecological research, also 

playing a large role in scientists' view that their field data could be of interest to others for a long 

time. In the following interview excerpt, Gabe (ID&M-PD) describes why field data have a 

"very, very long shelf life." 

Gabe (ID&M-PD): I think the field data could [have] a very, very long shelf life. The 
stuff that we haven't even really—not the mesocosms. Because if you really think about 
it, if you have this— 
 
Interviewer: Oh, the stuff you haven't collected yet?11  
 
Gabe: Yeah. That kind of stuff's going to be important, because you can monitor that 
forever. As long as [the site] doesn't become a shopping mall. [. . .] You can measure and 
track species composition throughout time. The data we have when we do species 
composition and estimate biomass; that could be good forever. Not forever, but for a very 
long time. Because anyone could be interested . . . Like, wow, twenty years from now, in 
the future, someone will look back and [be] like, "Twenty years ago, this was here. Now 
this new species is here. That's interesting. Let's try to figure it out." So that kind of data 
is useful for a long time. 
 
The participants often referenced the study of change over time as a key way in which 

other scientists might find their field data valuable. It was the study of ecosystem change over 

                                                
11 The ID&M Team originally planned to collect field data in addition to the mesocosm data. At 
the time of my study, the PIs were no longer sure that a field study would be feasible under their 
current grant. 
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time that Jessica (NUS-PI) explained made her field data—but not her team's experimental 

data—good candidates for deposit in a repository. 

Interviewer: Do you think that [the data your team is collecting this summer] would be 
worth long-term preservation in a repository? [. . .] Would it make sense from your 
perspective? 
 
Jessica (NUS-PI): This is totally [. . .] the [. . .] ecologist in me or whatever . . . is that 
yes, my field data, because field systems change over time and are subject to 
environmental perturbations. And these are gutters. 

 
Similarly, Dylan (IM-RA) described the "long shelf life" of field data by way of recounting his 

own team's experience several years ago using data that one of their team members (Phil, IM-PI) 

had previously collected at the same marshes. 

One of our studies, we were working with Phil, and he had data that he had collected in 
the 1980s. We compared that—because he was surveying the same marshes as us—
compared that with what we were doing in 2007 and came up with a really good, 
publishable manuscript that showed a lot of stark contrasts between before and after 
Typha invasions in wetlands in the same areas that we have surveyed. So [field data] has 
a really long shelf life. 

 
The IM Team researchers found value in Phil's old field data, because those data (in conjunction 

with data they gathered themselves) helped the team to show changes in the local ecosystem that 

were associated with Typha invasion. 

When I asked Renee (IM-GR) if she thought her data on wetland macroinvertebrates 

might be useful to others, she also emphasized the opportunity to study change over time. 

[Location Name] wetlands are really kind of an endangered ecosystem, but we just don't 
know that much about them. So if people were doing work in these wetlands, my data 
could be used as kind of a baseline of, "This is what was here when the water levels were 
this high." And maybe, if the water levels have changed, things have changed, or this new 
invasive has come in, or this invasive has disappeared, how has it changed from this 
baseline survey and stuff? 
 
It is important to emphasize that the long-term comparisons that scientists mentioned 

when arguing that field data might be useful to others and for a long span of time did not 
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necessarily depend on regular monitoring throughout time. Even with a gap of several years in 

which no data were gathered about a particular aspect of an ecosystem, a scientist could 

conceivably return to a site and study differences that were worthwhile. The director offered a 

compelling example of this type of potential for field data. 

Station Director: There are datasets that we're developing now that I would anticipate 
would be useful for long-term studies. For example, [Personal Name]'s work with 
earthworms. She studied the spatial distribution of different earthworm communities, all 
of which are invasive in [this area]. And she's going to write a paper, but we want to be 
careful that we can use those data to lay the groundwork for another study that might be 
done in 10 years or 20 years or 50 years, because these organisms have only been [here] 
for 50, maybe 70 . . . we're not quite sure how long. We know they weren't there 100 
years ago. We want to make sure that her dataset is available for long-term studies. Even 
for her. I mean, she's young. She'll finish her PhD this spring. She might want to come 
back with students in 20 years and say, "Hey, these are the plots I sampled. Let's see if 
these things are still here or if their abundances have changed." 

 
Interviewer: What do you see them being valuable for? In this broad sense, what are the 
kinds of things you can see— 
 
Station Director: Change detection; detecting changes in the abundances and the 
composition of biological communities; changes in resource use patterns; changes in the 
functioning of ecosystems; changes in biogeography of local species, you know, what 
their distributions are; monitoring of invasives—not only the presence and abundance of 
invasives, but the potential effects on ecosystems and human communities. 
 
Interviewer: Okay, so kind of change over time? 
 
Station Director: Right, change over time and space. 
 
As the director noted, field data are not only valuable for studying change over time, but 

also for making comparisons with other, similar ecosystems. For example, a scientist could be 

interested in differences in nutrient uptake between streams in areas with a lot of agriculture (e.g. 

sites characterized by high levels of nutrient runoff) and relatively unimpacted headwater 

streams. Or, perhaps a scientist would be interested in comparing similarities and differences 

across many streams in agriculturally influenced areas. In both cases, one team's field data could 

serve as a component for an analysis that told a "bigger story" than any individual dataset could 
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tell on its own. Describing who might be interested in his team's field data, Dylan (IM-RA) 

argued it was their field data's capability to aid in cross-site comparison that made them 

potentially valuable to other scientists. 

Certainly, anybody who's studying Typha glauca, anybody who's studying invasive 
plants, anybody who's studying biogeochemistry . . . You can look at data from a variety 
of different sites if you've got your own project and you're using similar methods to study 
a similar system, you can compare it with ours. It's definitely useful. 
 

Similarly, Matt (IM-PI) thought a "bigger story" could be told if his team's field data were 

combined with another team's field data. 

I think some of the other marsh vegetation data would be really valuable to a very small 
subset of other scientists as almost like a monitoring dataset. [. . .] We've collected 
similar veg. data over many years and it's changing with time, and if you were to take all 
of the data we've collected from the [Location Name] and [Location Name] and put it in 
the context of other people's data, you could create a bigger story, I think, with those 
data. 
 

And, while her team was not currently collecting field data, Elizabeth (NUS-PI) observed that 

were they conducting their study in "real streams," their data might be useful for creating a 

synthesis paper. 

If we were doing something like this in a stream, or like what we did last year, I think the 
useful life of that data is a lot longer because I feel like, pretty soon—in the next five 
years—someone is going to do a big synthesis paper, and then they'll be reusing our data 
or this type of data [we collected in real streams] in new ways. 
 

 Scientists drew stark comparisons between the value of their experimental and 

computational data and the value of field data, making it clear that, in their view, field data had 

broader and longer-term value than did data from controlled study systems. The most 

fundamental difference that the scientists described was the potential to expand on the data with 

additional variables or data from other studies or points in time. This property of data streams or 

data stream elements is notably absent from Hilgartner and Brandt-Rauf's model, which instead 

emphasizes reliability, processing state, and rarity in data valuation and access decisions. The 
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rarity of the study system somewhat explains scientists' view of controlled experiment data as 

having less value to others than field data. If the system was inaccessible to others, how could 

scientists possibly add to the data drawn from it? However, scientists were much more attuned to 

data's expansibility and what they saw as their resultant ability to answer new research questions 

when they talked about differences between field and experimental data's value than they were to 

data elements' rarity. 

 In the next section, I detail how scientists used data's publications status and potential as 

a way of characterizing differences in their data's value. 

 

5.4.2 DATA'S PUBLICATION STATUS AND POTENTIAL 

[The Information Manager] was just trying to identify some datasets we felt comfortable 
sharing, essentially. Then we came to . . . We decided on one particular dataset that we'd 
actually already published. [. . .] It was published, and we didn't feel like there was any 
other real use for it. I mean, there's probably some more information you could get out of 
it, but, for the most part, we did what we thought we could do with the data. (Matt, IM-
PI) 
 
Another way that researchers conceived of differences in types of data was according to 

data's ability to serve as resources for generating peer-reviewed publications. As a result, they 

made value distinctions according to data's publication potential as well as their publication 

status. This way of thinking of data's value was especially salient among junior faculty and post-

doctoral researchers, who had tenure review or a competitive job market looming in their futures, 

but was also prevalent among tenured faculty and non-tenure-track researchers who understood 

publication as the primary output of their team's work. 

In the excerpt that opens this section, Matt (IM-PI) describes a "published" dataset that, 

in the view of his team, had little remaining potential for generating more publications. 

Scientists' frequent use of the descriptors "published" and "unpublished" to describe differences 
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in data's value indicates that data's publication status was the primary factor in publication-

related value conceptions. Scientists certainly wanted their teams to be the first to publish from 

the datasets their team had produced and regarded their unpublished data as an unexploited 

resource; hence unpublished data were viewed as particularly valuable to the researchers. 

However, as Matt's statement above exemplifies, scientists were also concerned with data's 

publication potential. Did the data hold potential for the researchers to generate publications (i.e. 

were the data "publishable"?)? Or had the team already exhausted most of that value (i.e. were 

the data "published-out" for the team?)? 

In my observations of each team's work, publication was a regular topic of conversation 

among researchers as they collected data and discussed preliminary results. In these discussions, 

the researchers speculated on whether data would be good enough for publication, or, in other 

words, whether the data were publishable. IM Team researchers, for example, talked about their 

data's potential for publication before they had even transformed what they saw at their field sites 

into raw data. Pleased with the variety and number of native plants the researchers saw in their 

treatment plots, Matt (IM-PI) was quick to make an assessment of the (not-yet-collected) data's 

utility for generating publications: "This is money; we can probably use these data in a paper." In 

other words, scientists projected forward to data stream elements they had yet to produce— 

publications in this instance—to assess the value of elements in earlier stages. Mark (ID&M-PI) 

similarly explained that data's publication potential loomed large as he conducted model runs. 

As I'm generating the data, we're thinking about what paper we're going to write, we're 
thinking about what changes we might want to make [to the model] and what some of the 
next steps are. We're definitely thinking about that as we're generating the data. 
 
Primarily because they were analyzing data as they collected them, the NUS Team 

researchers' assessment of data's value on the basis of how well data would serve the team in 
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authoring publications was especially striking. Elizabeth (NUS-PI) and Jessica (NUS-PI) came to 

the Station expecting their work to yield an article worthy of publication in Ecology, one of the 

most highly regarded ecological journals. As the project progressed, the PIs periodically 

discussed—between themselves and with me—whether or not their data were good enough for 

the publication they envisioned. On one such occasion, Elizabeth described what she referred to 

as the "costs" of being at the Station that summer; namely that she was going without summer 

pay and was unable to work on other projects. When she asked, rhetorically, "Is it really worth 

it?" I suggested that when their experiment began to generate more data the researchers would 

see a payoff to all their hard work. Her response highlighted the importance of publishability to 

scientists' notions of data's value: 

Unless it's crappy data. Unless it doesn't work. Then we have a crappy paper. Is it really 
worth it for a crappy paper? I don't think so. 
 
The need to generate publishable data in order to justify the NUS Team's time at the 

Station was a prominent theme in my interviews with Elizabeth (NUS-PI) and Jessica (NUS-PI). 

Elizabeth explained that the value of the data was directly connected to the publication outcome 

of the project. 

Elizabeth (NUS-PI): Part of the value of this data is very much tied to the publication 
outcome of it in terms of thinking about the costs and benefits and my energy invested in 
this project. 
 
Interviewer: So the best outcome in terms of the investment of your time in creating these 
data would be? 
 
Elizabeth: Publication. 
 

In a separate interview, Jessica (NUS-PI) made the same point more starkly, asserting that a 

project that did not generate publishable data was not worth the team's time, particularly given 

the fact that she and Elizabeth (NUS-PI) were not yet tenured. 
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Jessica (NUS-PI): [Elizabeth and I are] not at a place in our careers where we can spend 
the summer futzing around with an experimental setup that doesn't work. That's not worth 
our time. It's not worth being away from your family for that. It's not worth . . . I mean it's 
too much work to just— 
 
Interviewer: If you're not going to get— 
 
Jessica: If you're not going to get a publication out of it, it's not worth your time, right? 
 

 As I have just described, scientists made assessments of data's value, in part, on the basis 

of whether they thought the data were worthy of publication. When data were deemed 

publishable, the peer reviewed journal article became the primary vehicle through which 

scientists were able to realize data's value. Of course, the scholarly journal article occupies a 

central role in the communication and validation of research results. As Matt (IM-PI) put it to 

Renee (IM-GR), "If you don't publish it, it's like it never happened." But additionally, as a key 

measure of a scientist's productivity and impact on his or her field, peer-reviewed publication 

was the payoff for the significant time and money scientists invested in producing data. This had 

significant implications for the different ways scientists conceived of the value of unpublished 

and published (especially published-out) data, including who should reap the benefits of data's 

publication value and the time span over which data were valuable. 

 Assuming data were publishable—a trait that for the researchers was tied to data's ability 

to answer research questions—scientists regarded unpublished data as valuable resources that 

had yet to be exploited for the production of peer-reviewed, scholarly journal articles. Further, 

scientists described their unpublished data in ways that indicated they thought of data's use for 

creating publications as finite and theirs to exploit. Until data were fully exploited by the team, 

researchers were concerned with maintaining their data as a rare resource: one that was only 

accessible to the team and afforded the researchers a possible competitive advantage over 

scientists who did not have the data. For example, the following statements from researchers 
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from each of the teams represent just a sampling of what was brought up repeatedly in interviews 

with scientists: 

In general, people are hesitant to share [data] with the public or people who aren't part of 
the team until it's published, which is kind of standard. (Amy, IM-PD) 
 
 
We haven't published [the data] yet, so it's not available for anyone else. Because we 
need to get it published first. (Jessica, NUS-PI) 
 
 
We will have a lag because, again, especially Ethan and Gabe need to be getting papers 
out from [the data]. (Kate, ID&M-PI) 
 
 
Usually, [data sharing happens] after people publish it, just because people are protective 
over their data. (Renee, IM-GR) 
 
Scientists' fixation on "protecting" unpublished data from other researchers demonstrates 

an assumption on the part of the scientists that the release of unpublished data outside of the 

scholarly publishing regime would threaten their own ability to realize an important goal of their 

hard work. To the scientists I studied, unpublished data were resources with unrealized value. If 

data were made common—for example, through deposit in the Station repository—teams would 

no longer have the exclusive right to exploit the data to their own advantage first. But perhaps 

more importantly, when scientists talked about their unpublished data, they described them not 

as resources that were endlessly exploitable, but as resources whose value for generating 

publications was depletable. 

Mark (ID&M-PI) depicted publication as the necessary outcome of his team's investment 

in setting up their study and producing data and also indicated what was at stake were his team 

not the first to publish data from the model they developed. 

Even if [it] takes a few years, we have to publish a few publications first. We have a lot 
invested in it, and you [. . .] need the publications to sort of be the outcome from that 
investment. And I want people to know this is the model I developed. So if there ends up 
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being ten different research groups that use this [model] down the road, I want people to 
know: this is the model [Mark Smith] developed. The first few publications have to be 
my publications. If I gave a copy of [the model] to someone and they said, "This is really 
great" and [they] did a whole bunch of model runs and published something with it, and 
that came out before my publication came out, that's not okay. 
 
Matt (IM-PI), who was responsible—along with Amy (IM-PD)—for managing his team's 

data collection efforts, analyzing the team's data, and making sure the team was generating 

publications, also described the importance of turning unpublished data into publications. 

[. . .] the most important thing is to get it published. So [. . .] if we're stacking up 
publications and it's like the data from this individual project would fit into a publication, 
and then, once it's published then the data are out there and we can return to them if we 
need to, but it's mostly just like trying to keep processing this stuff and moving it along. 
 

 To scientists, data that remained unpublished were like money never spent: valuable 

means to an end that was never realized. Scientists' view of unpublished data as an untapped 

resource whose value had yet to be realized meant that the trajectory of data's value was defined 

by the event of publication. For some researchers, the time that it took to reap value from 

unpublished data in the form of publication was of minor concern. As Mark (ID&M-PI) said, 

"even if it takes a few years." For other researchers—most notably those whose tenure review or 

entry into the academic job market was looming in the near future—it was important to turn 

unpublished data into publications within a relatively short timeframe. For example, one of the 

postdoctoral researchers for the ID&M Team, Ethan (ID&M-PD), expressed frustration with the 

fact that his team had yet to generate enough data to produce publications. Planning to apply for 

tenure-track faculty positions in the fall, Ethan described the time and labor he had invested in 

the project and the relative lack of value he had yet to see from that investment. 

Ethan (ID&M-PI): [. . .] [this project is] the most work per unit of data so far because 
there is so much manual labor setting these things up, and there are a lot of costs going 
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into setting these things up. I mean a hundred cattle tanks12 is $20,000 right there. It is an 
enormous cost [. . .] 
 
Interviewer: [. . .] Is that something that you think about when you think about the data? 
 
Ethan: It's not something that I have done any formal thinking about like, "Okay, should 
we do this experiment? Here's the amount of work it's going to take, here's what we're 
going to get out of it," but I have thought about it a lot [. . .] less cerebrally and more 
emotionally. It's sort of irking me that after a year of work, we have very little data. It's 
becoming kind of a strain on me that I have to start looking for jobs now, and I don't have 
much to show for the last year. It's not that it's not useful work. It's been a useful year, 
and I think a lot of data will eventually come out of it. It's just that initial lag time is really 
unfortunate for my timing. 
 

As Ethan explained, the work his team had engaged in thus far was not useless, but until the team 

generated publications from the data, he would have little to show potential employers for it.  

 Scientists viewed unpublished data as resources with the potential to yield peer-reviewed 

journal publications, and, as a result conceived of them as a valuable resource yet to be tapped. 

Conversely, researchers depicted published data as resources that had been exploited and that 

were then secondary to the peer-reviewed, published products that the data yielded. In talking 

about published data or the process of publishing data, scientists frequently used metaphors of 

extraction that indicated they regarded data as objects out of which publications could be 

"squeezed," "extracted," and "got out." As a result, scientists' view of published data's value 

depended on whether they thought their team had fully used up the data's potential for generating 

publications. 

 Some scientists argued that data's usefulness to the team diminished to virtually zero 

upon their publication, particularly for data—like the NUS Team's controlled experiment data—

that were assumed to have no value beyond the questions that inspired their creation. Jessica 

(NUS-PI), for example, said the team's data would "be useful to us up until we publish them." As 

                                                
12 Ethan frequently referred to the mesocosms as "cattle tanks," which was what the metal tanks 
were designed and sold for. 
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both she and Elizabeth (NUS-PI) explained, after the data were published, the publication—and 

the results presented within it—would remain valuable for other scientists interested in nutrient 

uptake in streams. The data themselves, however, "would not be very meaningful" (Elizabeth). 

Mark (ID&M-PI) expressed a similar perspective on his team's modeling data. 

Interviewer: If you had to say how long the useful life of the data that you're generating 
with the model [. . .], how long do you think the useful life of the data is? [. . .] How long 
is the useful life of the data to your team? 
 
Mark: You mean the model itself or the data being produced? 
 
Interviewer: The data that are being generated through the model. 
 
Mark: Well the idea is to get peer reviewed papers published. So as long as it takes to get 
peer reviewed papers published, that's when the data are useful. Once the paper's 
published, that sort of becomes the story. And if I wanted to go back ten years later, to try 
to remember what that model was showing, I probably wouldn't go back to the model run 
[data] themselves. I'd go back to the paper. That sort of becomes the record. 
 
These scientists not only realized the value of their investment through publication, but 

they also viewed the publication itself as the most valuable version of their work. As Mark 

(ID&M-PI) explained, even as the producer of the data, he was more likely to revisit the 

published paper rather than go back to the data. Importantly, Mark's team's modeling data and 

the NUS Team's data were drawn from controlled study systems, which, as I delineated in the 

previous section, led researchers to view their data as a resource with limited, short-term value. 

What I emphasize here, however, is scientists' use of publication status as an additional 

framework for conceptualizing data's value. 

As my observations of and interviews with scientists made clear, researchers viewed 

publication as a process by which they extracted the most interesting findings from a set of data, 

developed a set of conclusions, and then presented them in a vetted form. Data, then, were 

valued for means for getting to the more value-added product. In talking about his perception of 
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the value of his team's modeling data to other scientists Mark's (ID&M-PI) characterization of 

published data exemplifies this perspective well. 

I don't see what [other scientists] would have to gain. If I do 10,000 model runs and we 
would write a paper from that . . . that would be extracting the most interesting 
conclusions from that set of model of runs. And we publish a paper. Other people that are 
interested in the research would read the paper. If they get the results of the 10,000 model 
runs and expect they're going to do something with it or learn something from it, I just 
don't really see that. I don't think other people would see that as being a valuable thing. 
 

As Mark described, he expected his team to "extract" the most interesting things from the data 

and put them into the paper. Going further on this point, Mark emphasized in the same interview 

that the most useful information was to be found in the publication. 

The idea is to put what's useful in a peer-reviewed publication and have that in the open 
literature. 

 
Similarly, Matt (IM-PI) explained that his team's mesocosm data would likely not be very useful 

to other scientists because his team was already planning to "squeeze" as much out of the data as 

they could and that his team was telling "the story" of the data through the publications. 

We have a lot of the soil through time, and I think that we are basically squeezing as 
much out of those data as we can. Maybe I'm wrong. I'm sure that there are some 
statistical wizards that could come in there and look at it in a different way and probably 
make more sense of it, but I think we're telling most of that story through the various 
publications that are coming out of it. 
 

 When characterizing their data's value according to their publication status and potential, 

scientists often referred to published data in ways that indicated they thought the data's value had 

been used up with a single publication. However, several scientists also described data that they 

still considered valuable after publication because they surmised their team could continue 

publishing from them. For example, Gabe (ID&M-PD) told me he thought his team's mesocosm 

data would be remain valuable for at least a decade during which they would be able to generate 

publications. 
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[. . .] that dataset [. . .] I think will have a shelf life of, like, ten years, where you can 
really extract a lot of good stuff out of it and maybe get some more publications. 
 

And Kate (ID&M-PI) told me about mesocosm data that she had collected nearly a decade ago 

that she was still going back to in order to write more publications. Likewise, Matt (IM-PI) 

explained that his team had several datasets from which they were still generating publications. 

Importantly, however, when scientists were making publication-based value distinctions they 

also frequently suggested that data they had tapped out of publication potential were tapped out 

for all scientists. Occasionally, researchers allowed that, "perhaps there are some statistical 

wizards that could come in there and look at it in a different way," (Matt, IM-PI), but more often 

they characterized data with low publication potential to the team as having similarly low value 

to others because—rightly or wrongly—they assumed the data's value for answering questions 

had been exhausted.  

As I alluded to earlier, the issue of data's publishability was more important to some 

researchers' notions of data's value than others. While all researchers recognized peer-reviewed 

publications as the primary output of their team's research, those whose careers were not 

contingent on developing and maintaining a publication record (e.g. undergraduate researchers, 

research assistants, and others who did not plan on having an academic career) were far less 

concerned with data's publication status and potential than were the other researchers. Further, 

they expressed little worry that their data's value would be used up by others. Renee (IM-GR), 

for example, was ambivalent about publishing her data. As a graduate student, she was more 

focused on gathering and analyzing data for her master's thesis. In contrast to other scientists, 

such as Elizabeth (NUS-PI), Ethan (ID&M-PI), and Matt (IM-PI), Renee did not expect peer-

reviewed publications to be the outcome of her investment, and hence she did not conceive of 

her data's value through the lens of their publication status or potential. As Renee explained, "I 
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don't really feel like I have an academic reputation to uphold or build. The more people that can 

use my data the better." Ultimately, in Renee's view, there was no reason to protect her data, 

because there was little for her to gain by doing so. This counterexample highlights the 

importance of looking closely at the social context and associated goals that researchers are 

working toward as they collect, analyze, and manage data. Renee was conducting her research 

right alongside the other IM Team researchers; and, yet, her understanding of what was to be 

ultimately gained through the data she was collecting differed dramatically from the outcomes 

that the other researchers were working toward with the larger project. 

So far, I have described conceptions of value that were based on the type of study data 

represented and data's publication status and potential. Next, I detail one final basis on which 

scientists conceived of data's value: data's processing state. 

 

5.4.3 DATA'S PROCESSING STATE 

But obviously the raw data isn't really what we need at the end of the day. We need to get 
. . . There are a lot of mathematical manipulations that you have to do in order for us to 
get the answers that we're looking for. So after we come up with our raw data, then we're 
able to go into the little Excel sheets [. . .] and plug in data and eventually get out little 
charts and graphs and things like that that are better able to tell us what's going on in the 
streams. (Carolyn, NUS-UR) 

 
As suggested by Hilgartner and Brandt-Rauf's (1994) data stream model, data's level of 

processing was an important basis for scientists' assessments of data's value. Carolyn (NUS-UR) 

explains in the interview excerpt above that raw data were not what her team really needed in 

order to answer their research questions (i.e. "tell us what's going on in the streams"). Raw data 

sat at some distance from the products scientists most cared about: the measures, charts, and 

graphs that would more directly help scientists answer their research questions. Carolyn's 

depiction of data's value according to their processing state was common across the three teams 
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and was also apparent in my observations of and interviews with scientists. Other scientists I 

interviewed, for example, emphasized differences between raw and more processed data by 

referring to the latter as the "data we really care about" and describing the former as just 

devices—albeit crucial devices—for getting to the more results-like data that they would later 

present in publications. 

At the same time, as first-level inscriptions of wetland field plots, artificial stream 

channels, and mesocosm tanks, scientists' rawest data were the representations closest to the 

actual objects scientists were studying. With the exception of modeling data, their production 

relied on a significant amount of manual labor, and they could not be reproduced without 

reengaging with the objects they represented. This stood in stark contrast to scientists' even 

minimally derived data, which could be fairly easily reproduced almost anywhere, using little 

more than the raw data and a laptop. The costs associated with producing raw data were highly 

salient to scientists so that even while the researchers devalued their raw data in comparison to 

the more refined products, it was important to them to avoid having to reproduce raw, level-one 

data. 

In making value statements about data based on their processing state, scientists talked 

about data in dichotomous terms: for example, "raw" data versus "derived," "processed," or 

"calculated" data; "raw" data verses "charts" or "graphs"; or "raw" data versus "results," 

"answers," or "what we're really after at the end of the day." However, when I asked scientists to 

clarify what they were referring to in using these terms, it became apparent that their data 

actually fell along a spectrum; from not at all processed on one end to highly processed on the 

other. In between the two extremes of the rawest form of data (e.g. macroinvertebrate lengths 

measured by Renee (IM-GR)) and the most heavily processed form of data (e.g. a graph showing 
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the relationship between macroinvertebrate biomass and the number of Typha stems in a plot) 

there were data that represented various levels of processing. Scientists called data that were 

subjected to no processing "raw," but they also frequently used "raw" to refer to data that 

resulted from some calculation and/or transformation and that were then used as inputs to get 

even more refined data. 

For example, Typha stem heights—upon which the IM Team relied—were 

understandably regarded by scientists as raw because no processing whatsoever was involved in 

their production; the researchers simply recorded the Typha stem heights in meters, to the nearest 

centimeter. But other datasets that scientists referred to as "raw" relied on transforming data that 

were yet rawer. A conversation I had with Matt (IM-PI) exemplifies this point. Early in my 

study, Matt (IM-PI) briefly mentioned a "raw pollen dataset" that he and Evelyn (IM-PI) 

produced in a previous project and had recently handed off for deposit in the Station repository. 

Eager to learn more about it, I asked Matt to describe the dataset in greater detail. He 

subsequently explained that the pollen data were not completely raw; at least not in the same way 

that his team's Typha stem height measurements were. 

[. . .] the pollen dataset . . . that I guess is all . . . Even what I was referring to as "raw" 
there's some . . . it's derived. The raw pollen data are just counts, but you basically [. . .] 
The dataset that we have kind of corrects for [. . .] proportion. [. . .] Just all the count data 
aren't really important for analyses, so I guess there is some level of work that's been 
done to some of these datasets before they go into that—what I was referring to as "raw" 
[. . .] 
 
Similarly, NUS Team scientists referred to their measurements of the phosphorus 

concentrations of water samples taken from their artificial stream channels as "raw," even though 

the scientists did not directly measure phosphorus concentrations. Instead, they used a 

spectrophotometer machine to get a reading of the color absorbance of each water sample. Then, 

by plotting the relationship between known standards' phosphorus concentrations and their 
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absorbances, the researchers converted the color absorbance readings of their water samples into 

phosphorus concentrations. They would later use the phosphorus concentrations—along with 

several other numbers—to calculate an uptake rate for the nutrients in the streams. NUS Team 

researchers characterized both the absorbance readings and the phosphorus concentration 

numbers as "raw," though, as I have described, these two types of measurements were the result 

of different levels of processing. 

There was no clearly demarcated line between the data that scientists called raw and data 

they called derived. However, I found that when using processing state as a basis for 

differentiating data's value, researchers tended to reserve the terms "derived" or "calculated" for 

data that were subjected to more extensive forms of processing, such as tests of statistical 

significance, graphing, regression analysis, statistical correlations, rate calculations (such as the 

rate of ammonium uptake in an experimental stream channel), and analysis of variance 

(ANOVA). Processing state based conceptions of data's value concerned the distance of data 

from the results or anticipated products of the teams' work. The further downstream the data 

were on the chain of inscriptions scientists produced (i.e. heavily processed data that scientists 

would include in a publication), the more likely scientists were to characterize them as the goal 

of their work and, as a result, to ascribe high value to them. Conversely, the closer upstream data 

were (i.e. raw, level-one data), the more likely scientists were to devalue the data and cast them 

almost entirely in terms of what measures and products the data would allow them to produce. 

For example, as Jessica (NUS-PI) described her team's process for producing nutrient 

uptake measurements, she explained that the uptake rate of each nutrient (a measure of how 

many micrograms of a nutrient per meter square per minute were taken up in the channel) was 

what her team "was after." 
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Jessica (NUS-PI): We'll take twenty samples through our curve and five background 
samples and we'll run them for our nutrients and our chloride, and we'll end up with one 
uptake number. And that's what we're after; what we publish. 
 
Interviewer: The one you're interested in. 
 
Jessica: Yeah. 

 
Other NUS Team researchers echoed this sentiment, asserting that they were working toward 

producing "a point on a graph" (Elizabeth, NUS-PI) and likening the output of their calculations 

on raw data to "answers to questions" (Janet, NUS-UR) and "answers that we're looking for" 

(Carolyn, NUS-UR). 

Renee (IM-GR) explained to me on more than one occasion that all the raw data she was 

collecting over the summer (e.g. macroinvertebrate lengths and plant coverage numbers) were 

"essentially so I can get two numbers: biomass and diversity." She went on,  

Those are the ones I really care about. Biomass is my main . . . that's what I'm really 
interested in, because biomass is important for these other organisms. 
 

Biomass, unlike macroinvertebrate lengths, represented an element central to the questions in her 

study. Stated another way, macroinvertebrate biomass was a key variable in Renee's research, 

and biomass measurements would allow her to compare differences between treatment sites. 

Likewise, ID&M Team researchers characterized their native plant species biomass 

measurements and nitrogen mineralization data as expected outcomes of their work, referring to 

them—in contrast to raw height measurements and plant stem counts—as "what we're really 

after" and "what we're really measuring." Even though many of the derived data that scientists 

described as "what they were really after" were not necessarily synonymous with results (for 

example, plant species biomass was not, in itself, an answer to any of the ID&M Team's research 

questions), they were relatively close to results, especially compared to raw plant stem counts 

and heights. 
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Scientists frequently told me that that, in contrast to derived data, their raw data were not 

what they actually cared about or were after in their studies. Rather, they explained, they 

collected the raw data in order to produce data that more closely resembled what they were after 

(i.e. results or answers to their questions). As Carolyn (NUS-UR) described in the opening 

passage, her team was ultimately interested in understanding how leaf litter affected nutrient 

uptake in streams, and the raw data were not what they "really need[ed] at the end of the day." 

Jessica (NUS-PI) described the relationship between raw and processed data in more detail. 

What we are interested in is measuring nutrient uptake. That's sort of the ultimate . . . To 
answer our question of how nutrients are related and what influences whether or not 
there's more uptake of nitrogen versus uptake of phosphorous, the thing we're measuring 
is nutrient uptake. And so the first thing we have to do is we collect a whole bunch of 
water samples that have different levels of the nutrient that we're looking at [. . .]. We 
have to analyze those to determine what the concentration is. [. . .] That's sort of our first 
step. 
 

That first step—collecting water samples with different nutrients in them and analyzing them to 

determine their concentrations—resulted in data that the scientists would use to produce the data 

they were interested in; in this case, a measurement of nutrient uptake in the channels. As the 

researchers characterized it, they only cared about the concentration of, say, ammonium in a 

sample taken from one of their stream channels as an input for calculating ammonium uptake in 

the channels as a function of the leaves in the channels. 

Matt (IM-PI) similarly described his team's raw field data in means-ends terms that 

indicated his team collected raw data, such as vegetation data, only so that they could produce 

the measures that were closer to products that answered their research questions. 

We collect vegetation data, which [. . .] includes species and dominance coverage values 
for each species. From those data, we calculate diversity indices and some other measures 
[like the] coefficient of conservatism. There's a bunch of other different kinds of plant 
values that we can calculate from the different species-specific data. 
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 Kate (ID&M-PI) went so far as to describe her team's raw data as not what they were 

"really measuring." Referring to the plant stem height data that I helped record for each of the 

ID&M Team's vegetated mesocosms, Kate asserted, "Well, measuring those heights? You're not 

measuring that. [. . .] We want to translate that to biomass." In other words, while in fact the 

researchers were measuring the heights of plant stems in the planted mesocosms, those numbers 

did not represent the variable that they were really interested in capturing. Rather, raw plant stem 

height measurements were used (along with regression formulas) for extrapolating the numbers 

they were "really after": measures of plant biomass. 

 At the same time that scientists devalued raw data in comparison to data that were closer 

to the results they sought, it was clear that raw data played a crucial role in enabling scientists to 

produce more results-like data. In many cases, the variables that were the focus of researchers' 

studies could not be captured directly. For example, scientists in both the IM and ID&M teams 

were concerned with measuring plant species biomass. However, as scientists from both teams 

explained to me, they could not measure biomass directly without removing the plants, drying 

them, and measuring their weights; and thereby destroying the field study and mesocosm 

experiment. Instead, the researchers needed a means of extrapolating biomass measurements 

from data they could collect directly without destroying their studies. The raw plant stem counts 

and height measurements were such means. Likewise, NUS Team researchers explained that, 

while they would never publish raw data like the phosphorus concentrations of each sample, raw 

data were "necessary to get to the number that you would publish" (Jessica, NUS-PI). 

Further adding complexity to how scientists conceived of data's value according to their 

processing state, scientists' rawest data were also difficult, if not impossible, to replace. Scientists 

collected raw, level-one data by interacting directly with the objects they were studying. For 
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instance, the ID&M Team's plant stem heights were first-order inscriptions that required the 

researchers to go to their mesocosms with a ruler and measure each stem within a sample area. 

After such data were captured, they could not be recaptured without engaging once again in what 

was already a costly and time-consuming process. 

As an example of the amount of time and effort involved in collecting raw, level-one 

data, consider that the production of raw water sample data from four stream channels took NUS 

Team researchers an entire day that began at 8:30 a.m. and ended around 6:00 p.m. The process 

entailed five different steps just to collect and prepare samples, and this five-step process was 

carried out for each of three nutrients on each of four channels (Figure 5.1).  

 

Figure 5.1: The steps involved in collecting raw data for the NUS Team. 

 
After collecting and preparing the samples, the team then had to analyze each of the samples for 

nutrient concentrations. At 15 samples for each of three nutrients, in each of four stream 

channels, the team generated 180 samples on a daily basis that they then had to analyze, thus 

transforming them into raw data. 

Step 1: Measure and record the rate at which water is flowing into channel 1 
Step 2: Pour a known amount of a nutrient ("a slug") (either nitrogen, phosphorus, or 
ammonium) into channel 1 
Step 3: Wait for a conduction meter to show the nutrient has begun to reach the end of the 
channel 
Step 4: Begin taking samples (15 in total) of the water from the end of the stream, 
approximately every 40 seconds, filtering each one of debris 
Step 5: Go inside (there was an indoor facility at the stream lab) and measure and record each 
sample's conductivity 
Step 6: Repeat Steps 1-5 for the other two nutrients in channel 1 
Step 7: Repeat steps 1-6 for the remaining three channels (2, 3, and 4) 
Step 8: Take all samples back to the main Station lab and prepare them for analysis by 
creating the standards to use as a basis of comparison 
Step 9: Analyze the ammonium and phosphorus samples and standards (the researchers 
planned to analyze the nitrogen samples when they returned home)  
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For the other two teams, collecting raw, level-one data was no less labor intensive or time 

consuming than it was for NUS Team researchers. To collect their rawest data, IM Team 

scientists had to start by loading up the necessary field equipment (e.g. coolers for collecting 

samples, length measurement tools, waders, shovels, sample plot markers, a GPS device, a soil 

corer) after which they would drive anywhere from 20 minutes to two hours just to get to the 

wetland site they were working in on a particular day. On arrival, the researchers unloaded all of 

the equipment from the vehicle and hiked with it—often wearing waders to keep water and 

leeches away from their bodies—to the individual plots at the site. Then, data collection could 

begin: a process that took five people approximately one hour to complete for each plot. 

To collect raw, level-one data from their mesocosms (plant counts and heights), ID&M 

Team researchers spent hours hunched over tanks on bended knees counting all of the stems 

(hundreds) of each species in a sample area of each mesocosm and measuring their heights.13 

They divided this task between two people, with an additional person (me, on the days I was 

observing their work) recording the data as they called them out (Figure 5.2). Each tank took 

approximately one hour to complete, and gathering the raw plant data for an entire set of 24 

vegetated mesocosms took our three-person team three days to finish. 

Scientists frequently mentioned the large amount of labor and discomfort involved in 

collecting their raw, level-one data. Kate (ID&M-PI), for instance, described the raw data her 

team was collecting from the mesocosms as "a pain in the butt to get" and the process "just plain 

physically hard." She went on: 

It's just really bad on your back and it's hot and it's miserable, and you've got your head 
stuck in there, and you're drooling. You're not drooling, you're sniffling. It's just plain not 
fun. 

                                                
13 ID&M Team researchers measured the heights of all of two of the four species in the tanks. 
For the other two (whose stems were far more numerous), they measured a subset. 
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Figure 5.2: ID&M Team researchers count stems in one of the mesocosms. 

 
Likewise, Renee (IM-GR) explained, "It takes so much energy to create those [raw] data"; Matt 

(IM-PI) characterized raw data collection as "physically difficult"; and Elizabeth (NUS-PI) 

asserted that raw data collection was "difficult because of the time involved." 

Given the extensive amount of work involved in collecting level-one data, from a 

practical standpoint, they could not be easily replaced (if they could be replaced at all). For 

example, when NUS Team researchers realized that the raw data they had collected in the first 

few days of their experiment were not what they needed (they added too little phosphorus to the 

channel to detect a change in concentration in the samples), the team had to engage with the 

entire, daylong process of nutrient addition, sample collection, and sample analysis once again. 

This came at a high cost to the team, not only in terms of the labor involved in redoing the entire 

process, but also in terms of opportunity costs. An important dimension of this team's questions 

concerned change over time; NUS Team researchers wanted to see how nutrient uptake changed 

as the leaves in the channels decayed over the course of several weeks. As Elizabeth (NUS-PI) 
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described it, each day's loss of raw data meant "less points in [their] final graph," lessening the 

impact of the phenomenon they wanted to show. 

If level-one data were difficult for NUS Team researchers to replace, they were virtually 

impossible for IM and ID&M Team researchers to replace. First of all, the summer field season 

left neither team's researchers time to analyze data as they went about collecting them. By the 

time errors would have been spotted—in the fall or winter—the researchers would be a minimum 

of several hundred miles away from the Station and their study sites. Additionally, the passage of 

time was a key factor for both the IM and the ID&M Teams: once fall began and vegetation 

started to die back for the winter, the researchers—even if they were still at the Station—would 

not have been able to capture the raw data again (unless, of course, they wanted to restart their 

entire study; a prohibitively costly option for both teams). The high amount of labor involved in 

collecting raw, level-one data and their practical irreproducibility were important to scientists. 

Even while scientists used data's processing state to explain raw data were of relatively lower 

value than their more heavily processed counterparts (e.g. "the raw data aren't what we're really 

after at the end of the day"), researchers regularly indicated that the costs associated with 

producing their rawest data were such that the researchers wanted to avoid having to replicate 

their production.  

Conceptions of value based on data's processing state, then, were not as straightforward 

as notions of value that were based on the type of study data represented or on data's publication 

status and potential. Scientists regarded data at the rawer end of the inscription spectrum as less 

valuable (for showing them what was going on/answering questions) than data at the more 

heavily processed end, yet also made it clear that level-one inscriptions—as practically 
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irreproducible representations of what they were studying—demanded somewhat more care in 

ensuring they only had to produce them once. 

In closing this section, I would like to point out that when scientists used data's 

processing state to talk about data's value, they rarely brought up data's potential value to other 

scientists. Some scientists did occasionally use processing state to differentiate between data they 

would and would not publish, explaining that they would not publish their raw data but that 

derived metrics would go into a paper. However, when asked which, if any, of their data might 

be valuable to other scientists, researchers tended to focus on the previous two dimensions 

discussed (type of study system and data publication status and potential) rather than data's 

processing state. 

 

5.5 SUMMARY OF FINDINGS 

 The theories of value that frame my study emphasize that the value of objects—in this 

case, science data—is inseparable from objects' meanings to those who interact with them 

(Beckert & Aspers, 2010; Blumer, 1969; Najder, 1975). My examination of scientists' 

conceptions of data's value, then, is necessarily tied to questions of the meaning(s) of data to 

scientists. My findings reveal several meanings of data that were salient to scientists as they 

considered whether data were good or bad, how long data would be valuable for, who should or 

could reap value from data, and the purposes to which data could be put. 

 The most prominent meaning of data to scientists was as resources for addressing a gap 

in knowledge, and in this role scientists emphasized that data needed to fulfill three main criteria 

to be of value to the team. Data had to be comparable, trustworthy, and relevant to scientists' 

specific research questions. Data that did not fulfill these prerequisites were of little value to the 
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teams I studied, with researchers characterizing such data as "crappy," "not worth the time," 

"unusable," or a "clusterfuck." 

 Other meanings for data, however, were also apparent, most notably in scientists' 

characterization of how long their data would be of value and who could or should reap value 

from their data. Scientists depicted data not only as resources for addressing a specific gap in 

knowledge, but also as representations of particular kinds of study systems, resources for 

producing publications, and inscriptions of objects that allowed them to create yet more 

inscriptions or were closer to the desired endpoint. Employing these meanings of data, the 

researchers thought the value of data from controlled studies was more limited than the value of 

data from field studies. While researchers could conceive of their field data as valuable to other 

scientists and across a long span of time, they thought data from controlled studies would likely 

not be of much value "past the point of what the people who were doing that experiment really 

want the data for" (Gabe, ID&M-PD). 

 As resources for generating publications, researchers made it clear that data's publication 

status and potential were important to their notions of data's value. Scientists described 

unpublished data as untapped resources for generating peer-reviewed publications (the most 

rewarded product of their work), and therefore of very high value to the team. That value, 

however, could only be realized with data's publication. Once data were published—assuming 

the team did not plan to generate yet more publications from them—scientists primarily regarded 

the publication as the valuable product and record of their work; not the data themselves. 

 Lastly, scientists made differentiations of their data's value on the basis of their meaning 

as inscriptions of the things they were studying. As inscriptions, scientists were particularly 

attuned to whether data were inputs—in which case their value was described in means-ends 



  147 

terms—or outputs that represented what the scientists were "really after" in their work. In this 

way scientists devalued raw data in comparison to their more heavily processed counterparts. At 

the same time, however, first-level raw data—as the most fundamental surrogates of scientific 

objects—required significant costs to produce; costs that were large enough to make their 

reproduction difficult if not impossible to carry out. As a result, scientists' rawest data stood out 

to scientists as unique resources that enabled them to manipulate, combine, and transform what 

they were studying into something more closely resembling results. 

 

5.6 DISCUSSION 

The meanings of data that scientists emphasized as they talked about their data's value 

reveal the uses for data that were salient to scientists across the data stream (both as they worked 

and as they were asked to consider making their data available to others); the timespans involved 

in value considerations; and the specific factors that contributed to scientists' conceptions of 

data's value. Not surprisingly, scientists were primarily concerned with data's value for their 

team's own, relatively narrow uses: addressing a gap in knowledge and producing the outputs 

that would garner them credit and prestige for successfully filling the knowledge gap (e.g. peer 

reviewed publications). 

However, while scientists mostly worried about their own limited uses for data, they did 

not necessarily exclude uses beyond their teams in their considerations of data's value. Previous 

research has suggested that scientists feel more compelled to share and archive data if they think 

doing so would advance science (Borgman, 2010), be of use to others (Cragin, Palmer, Carlson, 

et al., 2010), or have broader public benefit (Niu & Hedstrom, 2007). While all three of these 

ends share in common the concern that data be of some practical use to others if scientists are to 
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take the time to share them, they still leave unclear what specific uses or benefits scientists have 

in mind. In elucidating the specific secondary uses that were prominent in scientists' conceptions 

of data's value, my study adds considerable detail and nuance to this other work. 

When asked about their data's potential value beyond their studies, scientists regularly 

cited metaanalysis, cross-site comparison, and time-based studies as worthy secondary uses for 

data and assessed data's value according to how well they thought the data could serve those 

ends. In calls to make data more open and to enable data's preservation, researchers and 

government officials have similarly highlighted data's capacity to serve as inputs in comparative 

studies, metaanalyses, and studies that look at change over time (Heidorn, 2008; Lauriault et al., 

2008; National Academy of Sciences, 2009). And in ecology—where scientists have long been 

concerned with understanding long-term changes to ecosystems and changes as the result of 

different human perturbations—such uses for properly managed and preserved data have been 

heavily promoted (Michener & Brunt, 2000; M. Palmer et al., 2005; Whitlock et al., 2010). My 

study provides empirical evidence that value propositions based on the integration and 

comparison of data from more than one study is compelling to scientists conducting ecological 

research; particularly when they are asked to consider their data's secondary value. 

Interestingly, data integration and comparison were the only uses researchers highlighted 

when asked to consider their data's value beyond their own studies. Aside from a single offhand 

comment from Matt (IM-PI) that "some statistical wizard" might possibly be able to look at his 

team's mesocosm data in a different way, none of the researchers cited data's potential value for 

verifying results, replicating a study, or reanalyzing a study's findings. Funders and other data 

sharing proponents have regularly lauded well-managed and shared data's value for validating 

and replicating science (National Academy of Sciences, 2009; National Research Council, 2003; 
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Tenopir et al., 2011; Uhlir & Schröder, 2007; Whitlock, 2011), but in my study such uses did not 

figure into scientists' consideration of their data's secondary value. 

There are two possible explanations for this finding. First, validation and replication 

could conceivably threaten the scientists who produced the data by revealing errors in their work. 

While none of the scientists mentioned such a threat (after all, they did not even bring up 

reanalysis and validation as potential secondary uses), other studies have revealed a high concern 

among scientists that their data sharing and/or archiving efforts bring them benefit or, at the very 

least, not threaten their own interests (Campbell et al., 2002; Louis et al., 2002; McCain, 1991). 

Another possible reason scientists did not bring up the value of data for validation and reanalysis 

could stem from the absence of such activities in the day-to-day practice of science as they knew 

it. Contrasted with metaanalyses or time and site based comparisons, scientists did not discuss 

secondary validation and reanalysis as important aspects of their disciplinary community's work. 

Though the scientific ideal stresses the importance of validation (via replication of a study, for 

example) and reanalysis (Shapin & Schaffer, 1985), these appeared to be relatively rare practices 

for the scientists I studied. 

 In addition to identifying the uses that were salient to scientists as they considered their 

data's value, my study also sheds light on the timespans involved in scientists' value conceptions. 

Previous research has tended to employ absolute timespans (e.g. 1-5 years, 1-12 months) in 

trying to understand how long scientists think their data will be of value (Beagrie et al., 2009; 

Cragin, Palmer, Carlson, et al., 2010). My study, however, suggests that when conceptualizing 

the length of time their data might be valuable, scientists think primarily in terms of events, 

rather than in numbers of years. The most salient timespan began with the collection of raw, 

level-one data and ended with data's publication in a peer-reviewed scholarly journal. The length 
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of time between these two events was variable among the teams I studied: NUS Team 

researchers anticipated generating articles within several weeks of completing their work at the 

Station, but longer-term projects like those of the IM and ID&M Teams might not yield 

publications for several months to a year or more. Regardless of the actual span of time, several 

scientists designated publication as the event past which data had relatively low value to the 

team. However, data's value was not necessarily fully exhausted for the team after the first 

publication. In particular, IM Team researchers described several datasets that they were still 

planning to generate new publications from. This suggests another important event in scientists' 

conceptions of data's value: the point at which the data are "published-out" for the team because 

the researchers do not anticipate being able to mine any new publications from the data. 

Furthermore, this finding challenges many mandates that stipulate that scientists should deposit 

their data within some set time after collection or publication. For example, the Station's mandate 

that researchers deposit their data within one year of completing their collection might not be 

meaningful for scientists who anticipate a fairly long period of time before they feel the data are 

published out and, hence, no longer need to be protected from others. 

 Beyond their own uses for the data they produced, researchers suggested that if data were 

at all valuable to scientists outside the team, the data would be valuable for a virtually unlimited 

time period. Field data—which scientists described as of potential use to others—were depicted 

as potentially having value for "decades," "a really long time," or even "until the end of time." 

Data from more controlled experiments, on the other hand, were described by scientists as 

having a much shorter timespan of value: one that ended after the data were used to answer the 

study's questions and were published. 
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Finally, my study highlights several factors that were key to scientists' value conceptions: 

the depletability of data's value for generating publishable findings; the ephemerality and 

artificiality of the study systems used to produce data; and data's status as inscriptions. As 

scientists talked about their data's value, they repeatedly brought up data's publication status, 

differentiating between "published" and "unpublished" data. This binary categorization, 

however, belied a more complicated notion of data's value that was based primarily on the 

perceived potential of the data to yield publications for the team. Scientists regarded data that 

were likely to result in new publications for their team as having very high value, but included in 

this category unpublished data as well as data the team had already published but that had not yet 

been exhausted of its publication value for the team. 

Furthermore, when scientists described data's value from the vantage point of data's role 

in generating publications, they were emphasizing not only the importance of publications as 

products of their team's work (a finding that has shown up in virtually every data sharing study, 

e.g. Baker & Millerand, 2010; Blumenthal et al., 1997; Borgman et al., 2006; Cragin, Palmer, 

Carlson, et al., 2010; Tucker, 2009), but also data's depletability as a resource for generating 

publications. This runs counter to many arguments in favor of data sharing, which insist data are 

"endless fuel for creativity" (Interagency Working Group on Digital Data to the National Science 

and Technology Council, 2009, p. 1); and that data's "value is enhanced, not exhausted, by the 

first publication of conclusions drawn from them" (Whitlock, 2011, p. 62). Scientists' 

conceptions of data's value included the assumption that some of their data were indeed limited 

fuel for creativity, and in such instances, scientists planned to exhaust that fuel themselves. The 

scientists only viewed their data's value in the more expansive way suggested by data sharing 
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proponents when the data were the product of studies of systems like wetland field sites and real 

streams. 

Just as some data preservationists have suggested data's long-term value depends on the 

type of study system that yielded the data (W. Anderson, 2004; Blue Ribbon Task Force on 

Sustainable Digital Preservation and Access, 2010; Simberloff et al., 2005; Steering Committee 

for the Study on the Long-term Retention of Selected Scientific and Technical Records of the 

Federal Government National Research Council, 1995b), the scientists in my study also based 

their notions of data's value on whether data were from mesocosms, models, artificial stream 

channels, real streams, or wetland field sites. However, unlike the data preservationists, scientists 

did not tell me their experimental data were of limited value because they could be easily 

reproduced by rerunning the experiment; nor did they indicate that field data had longer-term, 

more expansive value solely based on the data's uniqueness. Rather, when scientists used study 

system type to explain differences in their data's value, they focused primarily on study systems' 

degree of naturalness, their likelihood of persistence, and their comparability to other systems. 

Data that were the product of more natural, less constructed-for-a-particular purpose, and more 

likely-to-be-around-for-the-foreseeable-future systems (e.g. data from wetland field sites) were 

seen as data that could be added to and/or compared to other similar data. These virtually 

inexhaustible resources stood in stark contrast to data from more artificial, deliberately 

constructed-just-to-answer-this-set-of questions systems that were likely to be dismantled or 

neglected to the point of uselessness. These data (e.g. data from artificial stream channels or data 

from model runs) were seen as inherently limited. This suggests an additional property of data 

streams that is important to how scientists view the value of their data and hence the data's 
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suitability for sharing: the potential for data to be expanded upon in order to answer new 

questions. 

Lastly, scientists revealed that data's processing state was important to their notions of 

data's value. In doing so, they foregrounded both data's power as inscriptions and their role as 

either intermediaries or end goals. Latour's notion of data as inscriptions of laboratory objects 

(where the laboratory is "the place where scientists work" (Latour, 1987, p. 64)) emphasizes 

inscriptions' ability to allow people to "act at a distance" (p. 223). Unlike the objects they 

represent, inscriptions are mobile, stable, and combinable. As Latour explains, "When you hold a 

piece of information you have the form of something without the thing itself": the list of water 

nutrient concentrations without the artificial stream channels (NUS Team); the plant vegetation 

data without the actual wetland (IM Team); the biomass numbers without the mesocosms 

(ID&M Team) (p. 243, emphasis in original). 

Whether data were first-order inscriptions (inscriptions of the laboratory object itself) or 

2nd, 3rd, and nth-order inscriptions (inscriptions of inscriptions) (Hilgartner & Brandt-Rauf, 1994) 

played into to scientists' value conceptions, because first order inscriptions could not be 

reproduced without significant effort, if they could be reproduced at all. Scientist' rawest data 

replaced laboratory objects that were messy, tied to specific locations, and—in many cases—

changing such that the timing of the production of the inscription mattered. Contrast that with 

scientists' second-level (and third, and fourth-level inscriptions), which—because they relied on, 

say, vegetation data instead of plants in a wetland—could be regenerated fairly easily, almost 

anytime and anywhere. 

The focus on processing state to talk about data's value also reflected the importance to 

scientists of whether data were intended as intermediaries/inputs or goals/outputs. When data 
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were viewed as intermediaries they were cast in language that indicated their value only 

extended to their use as a means of getting to something else that was more important: e.g. "not 

what we're after at the end of the day, but what we need to get the results." More heavily 

processed data, on the other hand, were characterized as outputs, answers, and results, and 

scientists described them in ways that reflected the view that such data had more value to the 

scientists than the rawer counterparts (e.g. "the answers we're looking for," "what I'm really 

after"). 

This chapter has shed light on the first part of my research question: how scientists 

conceive of their data's value. However, it still largely leaves open the question of how value 

conceptions are reflected in scientists' data practices. How, for example, do scientists' 

conceptions of value based on scientists' narrow, study-specific concerns play into how scientists 

produce valuable data? Further, how do assessments that data are not good for addressing the 

scientists' study problem affect what scientists do with their data? This, and other enactments of 

value conceptions, is the subject of the next chapter. 
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CHAPTER 6: ENACTING CONCEPTIONS OF DATA'S VALUE 
 

6.1 OVERVIEW 

 In the last chapter, I described how scientists conceived of the value of their data. Now, I 

turn my dissertation's focus toward delineating how scientists enacted conceptions of data's value 

in their data practices. Specifically, I describe how scientists worked to create data that they 

would consider valuable and what scientists did in response to their conceptions of data's value. 

 "Data practices" is an umbrella term employed by science and technology studies 

scholars to encompass the "research processes and activities related to scientists' work with data" 

(Cragin, Palmer, & Chao, 2010). In studying data practices, scholars have looked at a number of 

different activities surrounding scientists' work with data, including data collection, calibration, 

documentation, and sharing and archiving. In my examination of the intersection between value 

conceptions and data practices, I found that scientists enacted their notions of data's value all 

throughout their work, including when they decided which data to collect and how to collect 

them; when they engaged in quality control activities related to data collection and determined 

that data were not good for the team's purposes; when they managed data during the active 

portion of their life cycle for the teams; and when they made decisions related to public deposit 

of data. 

 As scientists collected and worked with data, their primary concern was with data's value 

to their team and their study's specific questions and/or hypotheses. Scientists spent considerable 

effort producing "good" data, where goodness was always measured by data's fit to the study at 
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hand. Furthermore, they regularly assessed data's value for their study, seeking to identify bad 

data and minimize its effects. However, in contrast to the considerable nuance exhibited in 

scientists' conceptions of data's value, scientists' collection and management of data varied 

according to little beyond good versus bad distinctions in data's value. For example, I did not 

find evidence that scientists managed field data (which, when asked, they described as having 

potentially broader and longer-term value) differently than data from more controlled studies. 

 As they collected data and conducted their studies, scientists did not think about data's 

value beyond whether or not they were good as resources for addressing a gap in knowledge as 

they had defined it. However, when asked to make their data more openly available—e.g. by 

funders or the Station—researchers indicated that their decision to share was based strongly on 

data's value for producing publications for the team. Data that teams were still working with and 

planned to publish were regarded as too valuable to the team to make widely available, and 

scientists were unwilling to deposit such data in a public repository. Conversely, when scientists 

thought data's publication value had been fully exploited for the team, they saw little threat in 

sharing. In addition to publication potential, scientists also suggested that study type influenced 

their decision to share data and told me that they felt less compelled to share data from controlled 

studies because they assumed such data had inherently limited value. 

I have divided this chapter's findings into three main sections. The first section lays out 

the data mandates that scientists were beholden to for their projects and describes the baseline set 

of data practices I observed in the three teams. The mandates and baseline practices are intended 

to serve as the backdrop to understanding activities that were based on scientists' value 

conceptions. In the second section, I focus on how scientists worked to create valuable data and 
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the steps they took to identify data that were not of value to the project. The last main findings 

section describes the actions scientists undertook in response to assessments of data's value. 

 

6.2 THE LANDSCAPE FOR DATA PRACTICES AT THE STATION 

6.2.1 STATION AND FUNDER DATA MANAGEMENT MANDATES 

 Because they were using Station resources to conduct their research, all of the teams in 

my study were subject to the Station's "data management policy." Established in 2010 and 

promoted through the Station's website, the policy ostensibly required scientists and teams of 

scientists to deposit their data in the Station repository within a year of completing their study's 

data collection activities. At the time of my research, the policy was being implemented with 

considerable flexibility. For example, although the Station built and maintained its own data 

repository, scientists had the option to deposit their data with an alternate public repository of 

their choosing so long as they provided the Station with a description of their study's 

methodology and a link to the data. Additionally, despite the official "requirement" to deposit 

data, Station staff indicated to me that they understood and accepted that scientists would be 

unwilling to deposit some of their data and had, thus far, not exerted much pressure on faculty 

researchers to abide by the data sharing requirement. 

 In the summer of 2012, the information manager was beginning to meet with faculty 

researchers for the first time since the Station implemented the data management policy to find 

out what data they would be willing to deposit. As the information manager described these 

meetings, they were primarily focused on learning what datasets scientists were developing and 

which, if any, of the datasets they were "comfortable" archiving. 

I've reached out to some PIs individually to set up meetings. Those meetings are more or 
less data interviews where I'm [. . . ] trying to identify all the datasets that are in play that 
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the person's developing and then hopefully identifying one or two datasets [. . .] which 
the researcher's comfortable working with me on in terms of immediately archiving or at 
least identifying a timeline which they're comfortable with in order to eventually get 
those data into the system. (Information Manager) 
 

Importantly, aside from server space, the Station did not provide resources for managing data as 

scientists were collecting and working with data; and, in fact, the information manager said that 

he deliberately stayed away from intervening in scientists' "project-level" data management 

activities. 

I don't get involved in how individual projects manage their data. [. . .] the closest I get to 
that is meeting with some of the summer fellows14 prior to their collection of data to try 
to give them some tips. That's mostly just . . . that's not really even project . . . that's a 
relatively tight focus, and that's mostly designed because I need to get data from them a 
good month later. So, no, I don't get too involved. Actually I try not to get involved in 
project-level data management. (Information Manager) 
 

Instead, the information manager—and other senior Station staff—was primarily concerned with 

the "management" of data after researchers completed their projects. The information manager 

explained that the Station's interest in making sure scientists' data were archived and made 

available to others was motivated by three main goals: the Station wanted to help researchers 

adhere to data management mandates (e.g. NSF and publisher mandates); to create a record that 

demonstrated the research output enabled by the Station; and to build a repository that future 

students and researchers could use. 

[. . .] one of the primary points is that it acts to support future research and education, 
which are the primary missions of the Station. Availability of data describing the Station 
and its property and the systems around here will only help [. . .] future students and 
researchers. So I think that's a big part of it. The nice thing about [. . .] data management 
mandates and other potential or current data mandates is that it puts us in a position of 
providing a service to researchers. That's definitely another part of it. And that was one of 
the specifications of [. . .] our information management system and the policies: they 
need to be built in such a way that they can help researchers meet mandates. Those are 
two primary items. Then the other value comes in terms of supporting arguments for the 

                                                
14 The Station hosted several NSF-IGERT and REU (Research Experience for Undergraduates) 
student researchers every summer. 
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Station itself in terms of showing . . . we can show all our publications and show how 
many publications per year; the amount of work from the Station and grants that go 
through the Station. We have a better way of documenting what they've accomplished, 
and I think that's useful as well. (Information Manager) 
 

 At the time of my study, there were 60 datasets in the Station's repository. The majority 

of these were captured by Station staff, such as the resident biologists, and were historical 

datasets (e.g. the nutrient profile of a nearby lake from 1913-1950) or datasets that characterized 

some aspect of the Station's facilities (e.g. GIS data depicting ecosystem type boundaries at the 

Station). None of the teams I studied was yet at the point in the projects they were carrying out 

during the summer of 2012 where they were being asked by the Station to deposit those projects' 

data. One of the teams, however, held data from prior projects they had carried out at the Station. 

Another team initiated a meeting with the information manager with the goal of learning early in 

their study what would be required to archive data later. As a result, the information manager's 

interaction with researchers about archiving their data and/or preparing their data for later 

archiving varied across the teams. 

 The IM Team had been carrying out research at the Station for several years, under a 

series of different grant-funded projects. By the summer of 2012, the team had amassed several 

datasets, and the information manager was working with Matt (IM-PI) and Evelyn (IM-PI) to get 

some of the data into the Station's repository. The information manager's meetings with Matt and 

Evelyn did not deal with the data the team was generating for the study they were still carrying 

out: wetland response to Typha removal. Renee (IM-GR)—who was considered part of the team, 

but was working on her own master's thesis project—was in her last year of data collection and 

did not plan to return to the Station the following year. She and the information manager met 

twice during the summer of 2012 to discuss depositing her data when she finished her thesis in 

December. 
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 At the time of my study, the ID&M Team was only just beginning to collect data. Ethan 

(ID&M-PD) was aware of the Station's data management policy and initiated a meeting with the 

information manager to apprise him of the data his team was collecting, learn more about which 

of the team's data the Station would be interested in archiving, and ascertain what his team would 

need to do to prepare the data for deposit. Ethan said his primary motivation for instigating the 

meeting—even though his team had thus far collected few data and planned to continue 

collecting data for at least another year—was that he saw himself as the person on the team in the 

best position to provide data documentation. Because 2012 would likely be his last summer on 

the ID&M Team's project (he planned to apply for faculty positions in the fall), Ethan wanted to 

better understand what was required of his team while he still had an opportunity to be of 

assistance. 

 Notably, the ID&M Team's computational data was not a topic of the discussion between 

Ethan (ID&M) and the information manager as they discussed future archiving of the team's 

data. Since the modeling portion of the study—unlike the mesocosm portion—was not carried 

out using Station facilities, the Station's data management policy technically did not apply to the 

data generated from the model. In fact, Mark (ID&M-PI) and Gabe (ID&M-PD) spent very little 

time at the Station (only visiting occasionally to help with the mesocosms) and conducted the 

modeling work at the their university. 

 NUS Team researchers and the information manager had never met to discuss archiving 

their data at the Station. The information manager paid a visit to the team early in the summer—

as he did with all the research teams—to learn more about their project, but he did not initiate a 

conversation with the team about their data or the Station's data management policy. This was 

not out of the ordinary, given the fact that NUS Team researchers had never before conducted 
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research at the Station (i.e. unlike the IM Team, they had no prior data that was under the 

purview of the Station's data management policy) nor had they reached a point in their project 

where the data were, according to the Station's policy, supposed to be publically deposited. 

When I asked Elizabeth (NUS-PI) and Jessica (NUS-PI) what, if anything, they had been told 

regarding the Station's data policy, they both indicated little awareness of it. Jessica said that she 

remembered that something about data archiving was brought up at the Station's winter 

orientation meeting, but she was unsure of the specifics. Elizabeth, who had not attended the 

winter meeting, was unfamiliar with any Station policies that applied to her team's data. 

Interviewer: What about instruction from the Station regarding your data? Have you 
received any instruction from the folks here about data archiving or data management?  
 
Elizabeth (NUS-PI): No. I didn't read it, or I didn't receive it. Either one of those two. I 
don't think . . . I don't know. It's a great question. I know there's something about photos. 
Can be any photo that the Station takes are their property or something like that, but data 
. . . 
 
Interviewer: You're kind of doing it on your own? 
 
Elizabeth: I kind of feel like we're kind of under the radar here. I mean there very well 
may be something. I should probably ask. 
 
Interviewer: I'm just trying to understand the [. . .] context of what's going here with 
regard to data management. That's why I asked. Like if any resources were provided or 
instruction about what should be done with data? But it doesn't sound like it. 
 
Elizabeth: No. It isn't, no. 
 

 As for funder mandates that applied to teams' data, only one team—the ID&M Team—

was obligated to include a "data sharing plan" in the project's grant application. The ID&M 

Team's work was part of a larger, NASA-funded multi-institutional project. In the project 

proposal, the investigators included a one-paragraph data sharing plan that specified "data 

collected and products produced" would be made available through a "publically accessible 

project website" and/or through the Oak Ridge National Laboratory's Distributed Active Archive 
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Center (ORNL-DAAC), "where NASA-developed field data, remote sensing products, and 

models are held" (project grant application). Interestingly, however, when I asked ID&M Team 

scientists whether their funder required them to archive or otherwise make their data available, 

some said that NASA did not require them to do anything in particular with data. 

NSF . . . you have to have a data management plan, and in the data management plan—
well, this is not NSF. This is NASA, so they actually . . . they don't. (Kate, ID&M-PI) 
 

Other researchers indicated some familiarity with NASA data mandates, yet made no reference 

to the sharing and archiving activities the team had committed to in the project's grant 

application. 

For field data, the granting agencies . . . they typically expect you to have a data 
management plan, so you write that into the proposal. And then part of that data 
management plan should be to archive your field data and make that available to other 
researchers in the community and to other scientists funded by the agency. This project is 
funded by NASA. NASA would say, "Give us a data management plan that says how 
you're going to put all the fieldwork on a server that's through a website that's going to be 
available to other NASA researchers." They would expect you to write that plan in the 
proposal. The follow through on those is very spotty if it exists at all. So I don't know if 
they would follow up on whether you did it or not. (Mark, ID&M-PI) 
 
 
But the funding agencies . . . this is NASA-funded, and I'm not sure if they have a policy 
or not, but I feel like they probably do. (Ethan, ID&M-PD) 
 

 While all of the teams were subject to the Station's "data management" policy, those 

mandates were not an immediate concern for any of the data that researchers were producing at 

the time of my study. Station mandates were focused on getting data into the Station's 

repository—or some other public repository—within a year after teams were finished collecting 

them, and, as a result, seemed to play little role in scientists' practices during their studies. Of the 

three teams, only the ID&M Team's project was accountable to funder mandates; however, as 

with the Station's mandates, the data sharing plan the researchers included in the funding 

application was not salient to the scientists as they collected and worked with data during the 
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field season. In fact, none of the researchers referenced the data sharing plans that they and their 

partners had stipulated in the grant application. 

 

6.2.2 BASELINE DATA MANAGEMENT TOOLS AND PRACTICES 

 The basic artifacts and methods for data management were remarkably similar across the 

teams I studied and not appreciably unlike those described in a book published in 2000 on 

ecological data management (Brunt, 2000). Scientists recorded raw data onto paper templates; 

transferred the raw data to Excel spreadsheets, where they could sort, check, and analyze data; 

and stored their data in project-specific paper and digital files for indefinite within-team access. 

Before I delve into how scientists enacted value conceptions in their data practices, I describe the 

baseline data management practices I observed and that scientists articulated in my interviews 

with them. 

 Scientists in all three of the teams recorded the vast majority of their raw, level-one data 

by hand, using pencil and paper. With the exception of the ID&M Team's computational data—

which were output digitally as they were generated—the measurement of variables and their 

inscription were two distinct activities that were often even carried out by different people on the 

team. For example, IM Team researchers counted Typha stems and measured their heights, 

calling the measurements out to another team member (usually Brooke (ID&M-UR), but also to 

me when I observed the team's work), who recorded the data on a paper sheet attached to a 

clipboard. Even when scientists used more sophisticated technical instruments—such as a 

dissolved oxygen (DO) meter or spectrophotometer machine—they recorded the data using 

pencil and paper. Such devices displayed data on a screen, but did not output data in any other 

manner. Recording data on paper templates was, as a result, the first step in capturing and 
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organizing data. I encountered two kinds of templates for recording raw data: "datasheets" and 

bound paper notebooks. 

 By far, datasheets were the most common artifact for collecting raw data. For example, 

the IM Team created a "vegetation sampling" datasheet for collecting data from their field plots 

(Figure 6.1), and a datasheet for raw data from their seedbank study. 

 
Figure 6.1: The IM Team's vegetation sampling datasheet. 

 
Renee (IM-GR) created her own datasheets for recording data from field plots and for raw 

macroinvertebrate data. The NUS Team made a datasheet to collect data as they were gathering 

their samples (Figure 6.2), and the ID&M Team made a datasheet for collecting raw plants data 

in their mesocosms (Figure 6.3).  
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Figure 6.2: Sides 1 & 2 of the NUS Team's water sampling datasheet. 

 
 The basic design of the datasheets was the same—no matter the team—and consisted of a 

printed-out piece of paper with labeled, empty slots for site-specific study information (e.g. plot 

and subplot numbers, channel number, or mesocosm tank number); the data collection date; and 

the variables scientists intended to measure (e.g. organic depth, bottle conductivity, or plant 

counts). Additionally, datasheets had a blank area for recording "notes," such as any problems 

that happened during data collection. As Elizabeth (NUS-PI) explained, "stuff always happens." 

Scientists printed several copies of the datasheets (usually on water-proof paper to ensure field 

conditions would not destroy the sheets), attached to them clipboards, and carried them into "the 

field"15 when they were collecting data. 

                                                
15 Regardless of whether scientists were conducting their studies on mesocosms, artificial stream 
channels, or wetland plots, they often referred to data activities that took place away from an 
indoor laboratory as "in the field." 



  166 

 
Figure 6.3: The ID&M Team's mesocosm plant datasheet. 

 
 In addition to datasheets, NUS Team researchers also relied on templates in each of two 

notebooks they used to record their samples analyses: one for ammonium, and the other for 

phosphorus. In the first page of each of the notebooks, Jessica (NUS-PI) wrote down the 

headings for all of the pieces of data that the undergraduate researchers should include as they 

analyzed the team's ammonium and phosphorus samples. After the first page of the notebook 

was filled in, the undergraduates used the previous day's page as a reference, copying the 

template to a new page and then filling it in as they analyzed the water samples. 
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Figure 6.4: A page from the NUS Team's phosphorus notebook. 

 
 The paper templates—whether loose-leaf datasheets or pages in notebooks—served two 

main data management-oriented purposes for the scientists: they ensured that scientists recorded 

all of the pieces of data they needed for their study; and they organized the raw data to facilitate 

their understandability and later transfer to Excel files.  

 Several scientists told me that the datasheets helped their team make sure they captured 

all the data they needed to each time they collected data. Elizabeth (NUS-PI), for instance, noted 

that having the slots laid out served as a reminder to all of the team members of what they 

needed to record. 

Elizabeth (NUS-PI): [. . .] Laying out templates [. . .] so that people know how they need 
to be recording the data for the types of analyses that they're doing has also been really 
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helpful, just in terms of consistency. A lot of that is just we have a big team and 
everybody does bits of everything, and so making sure that when you switch from one 
person doing something to another person doing something, it's obvious to them what 
they need to do based on just looking at a datasheet, even if they haven't explicitly been 
. . . you know, have been told how they need to set up their data. 
 
Interviewer: Because the slots are kind of there. 
 
Elizabeth: Yeah, the slots are kind of there. They can look in a notebook. They can look 
back at what somebody did last time, and they can see all the sort of metadata stuff that 
they need to write down at the top and they can see how to lay out their data as they start 
analyzing the samples. 
 

Dylan (IM-RA) explained that datasheets made it possible for him and his colleagues to 

remember everything they needed to record. 

The projects are pretty involved, and it's impossible to really memorize all that stuff that 
we're taking, but as long as we have those datasheets as reference, we'll make sure that 
we don't leave without any data that we're looking for. 
 

 I witnessed the datasheets' memory-serving function when I assisted the IM Team as the 

"data monkey." The data monkey—a role often filled by Brooke (IM-UR)—was responsible for 

filling out the vegetation datasheet with the data that the other researchers on the team called out 

loud in the wetland study plots. Dividing the labor this way helped those responsible for 

measuring variables focus their attention on measurement; a task that almost always required the 

use of their hands (e.g. holding up a measuring stick to capture Typha stem height). When I 

recorded data, I noticed that I had to regularly remind the researchers that some piece of data was 

still needed when they thought they had completed data collection in a subplot. On one such 

occasion, Dylan (IM-RA) began to walk away from the subplot to help with plot maintenance 

activities. I quickly scanned the datasheet and noticed that a slot remained empty for "organic 

depth" in his subplot and reminded Dylan that he needed to measure it before we could move to 

the next plot. Overhearing this exchange, Matt (IM-PI) said, "That's what the data recorder is for; 
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to keep the caller honest." In a later interview, Brooke (IM-UR) explained that—as the team's 

data monkey—she was often responsible for making sure all the data were filled in for each plot. 

I'm always the one to be like, "Ok, now I need this, now I need this and this and this," and 
make sure that everything gets captured. Like yesterday when we were out, I was like, 
"Ok, Matt, you should give me the lat. long. coordinates, and Amy, I need substrate depth 
for plot B." So, yeah, I'd be the one to make sure everything was recorded at the site, 
because at the end of each plot they would say, "Ok, Brooke, do we have everything?" 
And I would go through the whole sheet to make sure that everything was filled out. 
 

 In addition to helping scientists remember what data to record, the datasheets and 

notebook templates also organized scientists' data to facilitate the data's later transfer to Excel 

spreadsheets. Without the datasheets, Jessica (NUS-PI) imagined her team would be "recording 

data on paper towels." The datasheets provided a structure for data, and in doing so made "it 

easier for data entry and data QA, quality control, types of things" (Elizabeth, NUS-PI).  

 Scientists collected raw, level-one data on paper, using templates that facilitated the 

consistent capture and organization of raw data. However, the paper form of data did not lend 

itself well to calculation and the generation of results. To create derived numbers and generate 

graphs and tables, scientists needed data to be digital. As a result, the second major data 

management activity for scientists in all the teams consisted of transferring the data from the 

paper datasheets and notebooks into Excel spreadsheets or workbooks (containing multiple 

spreadsheets). The more senior members of the teams (i.e. those who would be conducting data 

analysis later) created the spreadsheets, formatting them to facilitate data analysis. Because 

spreadsheets were meant to enable data analysis rather than raw data collection, spreadsheet 

templates were laid out differently from the paper datasheets.16 

                                                
16 Scientists also reported using statistical software to analyze their data, but none were involved 
in such activities at the time of my study. 
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I mean, it's often the way it is . . . is that the most efficient way of taking data in the field 
is not going to be the most efficient way of putting it in for data analysis. (Ethan, ID&M-
PD) 
 

Often, the researchers formatted the cells in a spreadsheet to perform calculations that would 

yield derived numbers (e.g. uptake length or species richness) as the raw data were entered. 

Sometimes researchers waited until after the data were entered to run calculations. 

 In the NUS Team, the undergraduate researchers transferred data on a daily basis from 

the datasheets and notebooks into the team's preformatted Excel spreadsheets. All IM Team 

researchers involved in data collection transferred the data to spreadsheets as they had time. Matt 

(IM-PI) told me that while his team tried to get data entered into Excel "as soon as possible," a 

significant portion of the team's data entry did not occur until after the end of the field season. In 

the ID&M Team, Chad (ID&M-RA) was responsible for transferring his team's mesocosm data 

to Excel spreadsheets. He undertook this task as time allowed, but generally entered data into 

Excel within a week of collecting them. 

 Lastly, scientists described storing their team's data. Storage responsibilities typically fell 

with the PIs for the projects. PIs held onto paper datasheets indefinitely, keeping them in a file 

cabinet or file folders and saved digital data in a project-specific file folder on their computers. 

PIs also reported using some form of redundancy or backup protection, copying their digital files 

to thumb drives, external hard drives, departmental server space, and/or cloud-based data storage 

services such as Dropbox. 

Now that I have described the mandates that were relevant to scientists' data practices and 

the basic tools and methods scientists used to collect and manage their data, I turn my attention 

to elucidating how scientists enacted their conceptions of data's value in their data practices. 
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6.3 PRODUCING GOOD DATA 

6.3.1 DECIDING WHAT DATA TO COLLECT AND HOW TO COLLECT THEM 

 Scientists' data collection activities were aimed at producing data that they and their 

teams could use to address their study questions. In scientists' view, there was no such thing as 

data that were good for every purpose or valuable in every context. As a result, data collection 

necessarily involved choices that shaped data into objects that were good for accomplishing 

some things and, conversely, likely not good for accomplishing others. Some of the earliest 

decisions related to data collection happened in the project planning stages, as scientists designed 

their studies and wrote their funding proposals. In the last chapter, I described how scientists' 

research questions shaped their high-level notions of what data ultimately needed to do in order 

to be valuable for the team, highlighting how they affected particular study design choices (e.g. 

controlled vs. more natural study systems; long- vs. short-term studies). Here, I turn my focus 

toward delineating how scientists enacted data's value as resources for addressing a gap in 

knowledge in the data they collected and the methods they employed for collecting data. 

 When they were available, scientists began with already established methods (within 

ecological science) for collecting data. Other times, scientists gathered data that had no 

established precedent, and they had to devise their own, unique approach to collecting data. In 

both cases, however, scientists paid close attention to the products they wanted to create, the 

phenomena they wanted to show, and the questions they ultimately wanted to answer, using 

methods aimed at producing the data that would be useful to their study. Considerations of data's 

value beyond the teams' studies had little impact on scientists' decisions about which data to 

collect and how to collect them. Even in instances where the researchers said their data could 
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have potential value beyond their studies, it was largely absent as a factor in scientists' data 

collection activities. 

 When tested data collection methods were available, scientists used them as a basis for 

gathering data in their own studies. Wetland vegetation sampling, nutrient measurement in 

streams, nitrogen mineralization studies, and plant abundance measurement were relatively 

common data collection efforts in ecological science, so researchers had some idea of how 

samples should be prepared for analysis, the specific variables that needed to be captured, and 

the tools or instruments that were appropriate for obtaining measurements. Even with recognized 

data collection protocols, however, the researchers considered the particular needs of their study 

as they adopted—and often adapted—methods for gathering data. 

 The IM Team's approach to vegetation sampling in wetland field plots, for instance, was 

based on a published method for vegetation sampling in the local region's wetlands (developed 

by fellow team member, Phil (IM-PI)). The published method indicated wetland vegetation 

community data collection should include percent coverage estimates of each plant species found 

in a sample quadrate; substrate type; organic depth; water depth; and water clarity. However, 

while this method served as a starting point for the IM Team's selection of variables to measure, 

the team made modifications to better address their study's questions, which revolved around 

wetland plant biodiversity response to different Typha removal techniques. Specifically, IM 

Team scientists discarded some variables—such as substrate type and water clarity—that they 

regarded as irrelevant to their study and added a few—such as detritus (i.e. Typha litter) 

coverage and litter canopy height—that they thought were important to their questions. 

We used his basic method essentially, with some modification, but his plot sampling 
methods, and we also adopted his datasheets. We modified slightly, because there are 
certain variables that we wanted to add, like litter depth, which is something he doesn't 
generally collect for standard vegetation monitoring that we thought was valuable for our 
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study. We've kind of slightly modified the datasheet over time, but it's just more . . . 
maybe we threw out a couple of variables that he measured that we didn't need, and we 
added a couple of additional measures that we needed. (Matt, IM-PI) 
 

 Similarly, the NUS Team's basic method for collecting and analyzing water samples was 

"pretty standard" in stream ecology; however—as far as the PIs knew—no other researchers had 

looked at nutrient uptake in artificial stream channels, and there were peculiarities of the team's 

channels that led them to modify some of the methods. In fact, the researchers made several 

adjustments to their data collection methods and datasheets in the first couple weeks of their 

study as they better understood what specific things they needed to know in order to accurately 

calculate nutrient uptake in the channels. Carolyn (NUS-UR) described the changes her team 

made early in the project and the factors that guided those changes. 

Carolyn (NUS-UR): [. . .] in terms of knowing like what sorts of things we needed to 
collect, we definitely had to revise and change that. Like there has been a lot of talk along 
the way like, "Do we need to know just like the conductivity when we're collecting the 
actual samples, or should we know when the peak was occurring of the chloride?" I think 
a lot of it has to do with because we're not completely sure about how we're going to use 
the data once it's finished. [. . .] Like we went from just writing down when we were 
taking the samples to more like looking at the conductivity meter to help us guide how 
we were taking the samples and then even to start looking at things like, okay, we know 
we're collecting a sample like 6 minutes and 30 seconds and 7 minutes, but maybe we 
should be writing down the point at which we're reaching the highest conductivity. We 
have had to do a lot of revision based on not completely knowing what we've wanted, I 
guess. 
 
Interviewer: What's guided that revision? What kinds of things have happened that has 
made you guys go, "Oh, maybe we should be doing this?" 
 
Carolyn: I think some of that was as simple as we weren't getting the data we thought we 
were going to be getting so it was like, "Okay, we need to know more about what's going 
on, and we need to understand what's happening so maybe we need more information to 
do that." And I think some of it is also just like in order to maintain consistency we've 
realized that . . . like today for instance, we realized that throughout the course of the 
week we've been dumping in our slugs at different places. So like one day maybe it's 20 
meters and one day maybe it's 19-1/2 meters. You know, a foot and a half doesn't seem 
like a big deal, but when it's in such a short stream it can make a difference. 
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 These two examples highlight that even when established data collection methods existed 

within their field of study, scientists regarded them as subject to adjustment to better serve their 

project's specific needs. They added and discarded variables as appropriate and modified their 

approach to data collection to produce good data; data that were valuable for their studies. Many 

times, however, it was necessary for scientists to collect data on variables that were unique to 

their particular study and that had no established data collection protocols. I discovered early in 

my time at the Station that ecologists were a resourceful bunch; building their own study systems 

(e.g. stream channels made of linked-together plastic roof gutters); creating measurement devices 

(e.g. long plastic poles with meter markings); and constructing tools to facilitate sampling (e.g. 

quadrate markers made from PVC pipe). As Evelyn (IM-PI) said, "In ecology, there's a whole lot 

of . . . it's almost like creative . . . like you jerry-rig things all the time." Scientists also frequently 

improvised data collection methods. And—just as when they adapted established data collection 

methods to their own study—scientists paid careful attention to their purpose for collecting the 

data as they devised an original approach to capturing some variable. 

 Earlier, I described how IM Team researchers altered published wetland vegetation data 

collection methods to more appropriately meet the needs of their study. Two variables the 

scientists added were Typha litter height and percent coverage, because they felt Typha litter was 

an important factor in wetland native plant growth. Specifically, the researchers suspected that 

the litter negatively impacted native plant growth by creating too much shade (Figure 6.5). 

However, as far as they were aware, no other study collected data related to this factor; and they 

struggled to determine the best measure of what it was about the litter that mattered to native 

vegetation. 
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Figure 6.5: Sampling quadrate with Typha stems. The dry, brown stems were "litter." 

 
 Initially, the scientists measured the percentage of the quadrate that the Typha litter 

covered and the Typha litter's depth (the average height of the canopy of the standing litter). 

However, as the field season progressed, the researchers were less and less confident that these 

data captured the important aspects of the litter for their study. As Matt (IM-PI) explained, the 

Typha litter percent cover and height data were "not satisfying measurements," because they did 

not reliably get at the structure of the litter. 

Matt (IM-PI): I wish we had a better way of measuring this litter variable. [. . .] 
The litter height . . . the structure of this litter because we think it's important and we can 
see it and we can see how it affects the plant community underneath it, but we haven't 
been able to effectively measure it. That's a good example of something where it's like I 
wish we had a better way of [measuring]. 
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Interviewer: You guys are doing percent cover right now? 
 
Matt: Percent cover, and we're measuring depth. 
 
[. . .] 
 
Interviewer: So just measuring from the ground and seeing where the highest one— 
 
Matt: Where the average . . . If there's a canopy, where's the average canopy. And it's just 
not a satisfying measurement because it's not taking into account the density and how 
much overlap there is. Because you can have five stems that sort of create a 60 centimeter 
high layer or you could have 50 stems that are creating a 60 centimeter high layer, and 
they're not the same; but a depth measurement is only going to get at the height. 
 
Interviewer: Is it more about the shade it creates? 
 
Matt: Yeah, that's why we're looking at light now. 
 

The researchers began capturing another kind of data related to Typha litter: the light penetration 

underneath the litter, using a device that measured photosynthetically active radiation. 

 As IM Team researchers went about collecting their litter data, they were thinking 

forward to future data analysis activities. They were concerned that if they did not capture the 

right Typha litter data from their mesocosms, their analyses would yield very little in the way of 

meaningful associations with native plant growth. Projecting to a point later in the data stream, 

where scientists would produce derived data, was a common practice across the three teams. 

NUS Team PIs, for example, frequently talked about their data collection efforts in terms of the 

"ultimate graph" they would be able to generate with their data. 

Interviewer: I notice you talk a lot [. . .] in terms of a "point on a graph." So are you 
saying that that's the thing that you're after, is the point on the graph?  
 
Elizabeth (NUS-PI): I think so. I mean, when I visualize how a project is going to work, 
one of the things I like to do is draw what the graph might look just hypothetically. If I 
can see what the graph looks like, it means I know what's on my axis, and I know what 
data I need to collect if I can label an axis. [. . .] and there's obviously a hypothesis built 
into that graph too, so I feel like if I can draw a graph to begin with, then I can figure out 
what data I need to collect to make that kind of a graph. When I'm working through a 
project, [. . .] what I'm trying to do is figure out where these data that we're collecting 
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right now are going to be on that graph. I want to see if there's a pattern and what we 
expect it to be or not. 
 

Going into their study, NUS Team researchers had a strong sense of what their hypothetical, 

publication-worthy graph would look like: it ought to have "enough points to reasonably draw a 

line and say something about it" and to show a relationship between the N:P (nitrogen to 

phosphorus) uptake rate in a channel to the N:P of the leaf litter in the channel. This graph 

required not only several weeks' worth of uptake measurements ("enough points to say 

something"), but also data that showed leaf litter-driven nutrient uptake in the stream channels. 

 On that same theme, ID&M Team researchers thought ahead to the biomass data they 

needed to produce as they gathered raw vegetation data from their mesocosms. In ecology, 

biomass is often measured indirectly because direct measurement requires removing plants and 

drying and weighing them, thereby impacting the system scientists are studying. Instead, 

scientists take a small sample of plants of known size, dry and weigh them, and then create a 

regression formula that associates a size measurement with plant biomass. Plant stem heights are 

a common raw measurement used in this kind of extrapolation. However, the ID&M Team was 

faced with the challenge that two of the species in their mesocosms—Juncus balticus and Juncus 

nodosus—produce such a large number of stems (over 2,000 stems of just one species was 

common) that measuring the height of each stem would have taken a prohibitive amount of time. 

As a result, Ethan (ID&M-PD) sought a more efficient means of extrapolating biomass data for 

the two species, and identified a tight correlation—using data collected early in the field 

season—between the number of stems and the combined heights of the stems. In other words, 

Ethan devised a potential method of getting biomass data by counting stems and extrapolating 

the total height of the stems. One concern for the team, however, was that the correlation 

between stem counts and stem heights would not hold up as time went on and the plants were 
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exposed to the fertilization treatments that were part of the team's experiment. Fertilization could 

cause an increase in the stems' heights without increasing the stem numbers. If this were the 

case, the team's reliance on stem counts to calculate biomass would be faulty. To ensure Ethan's 

initial finding of a tight correlation between stem counts and stem heights held up, the 

researchers counted the stems of each of these two species and measured the heights of 50 stems 

in each mesocosm. At the time of my study, the researchers had not yet determined whether or 

not the relationship between stem counts and total stem height remained strongly correlated. 

 Scientists frequently balanced practical concerns related to time and money limitations 

with creating highly accurate data; and, again, the guideline for decisions was what researchers 

thought was actually necessary for their study. When a means of collecting data took a 

considerably greater amount of time than some other method, yet was not expected to have an 

appreciable effect on future data products or the conclusions drawn from them, researchers often 

chose less accurate methods. In Chapter 4, I described an example of such a situation in the IM 

Team's data valuation vignette. Renee (IM-GR) collected plant species name information for her 

macroinvertebrate study with less concern for accuracy than the rest of the team did for their 

study. For Renee's study, careful identification of plant species (i.e. clipping those plants she 

could not confidently identify in the field and examining them more meticulously at the lab) 

would have taken significantly more time, yet would have added very little to the quality of the 

analyses she planned to conduct. 

 Similarly, NUS Team scientists initially considered collecting 20 water samples from 

each channel, every time they added a nutrient slug to the channel. As Elizabeth (IM-PI) 

explained to me, using 20 samples could have led to more accurate derived data than the 

researchers would get from the 15 samples they actually collected. However, they concluded that 
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the derived numbers they were producing using 15 samples was sufficiently accurate for their 

study to justify forgoing the significantly more time-intensive option. 

Elizabeth (NUS-P): We could be more accurate in the derived data that we generate if we 
collected more samples. I guess we made a decision to collect fewer samples because it 
involves less time, recognizing that we could be more accurate if we collected more 
samples. But we're comfortable with the shapes of the curves that we're getting. 
 
Interviewer: You mean the 15 [samples] instead of 20?  
 
Elizabeth: Yeah, exactly. We're pretty comfortable with those numbers that we're getting 
out and the shape of those curves, so there isn't really a strong reason to collect more, and 
it would take a lot of time. 
  

 Scientists were intent on producing data that were good for their own studies, and—as I 

have just described—this often meant making choices that resulted in data that were valuable to 

the scientists' current study, with the associated implication that the data might not be useful to 

other types of inquiry. Interestingly, however, even for the kinds of data that scientists told me 

they thought could potentially be of value beyond their studies, longer-term considerations had 

relatively little bearing on data collection activities. 

 NUS Team researchers told me that they were not thinking of the potential broader value 

of their data as they collected them. As Tina (NUS-UR) said, "I guess I don't really think about 

the long-term. I just think about if it's good or bad [data]." This was not surprising, given that 

NUS Team scientists did not expect their data to have much value beyond their own narrow, 

controlled experiment. Elizabeth (NUS-PI) specifically attributed the absence of considerations 

of their data's broader value in the team's data collection activities to the controlled—rather than 

field—nature of the study. 

Interviewer: As you collect with, and work with, and manage your data [. . .] do you think 
about the long-term use of your data?  
 
Elizabeth (NUS-PI): [When we're doing a field study] I think about the larger framework 
for our data like in terms of the bigger picture questions and what's being worked on in 
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this field, in general, and how our numbers and how what we're doing and our results 
would fit into that larger framework. I think—because we know we're using methods that 
are similar to what other people do—we know that our numbers are comparable to what 
other people are doing. We would always choose methods that would produce 
comparable results. But in this particular project, I am definitely less, you know . . . not 
thinking as much about [. . .] that sort of that relevance, as I might if we were out in the 
field. 
 

 Yet IM Team researchers, who were engaged in collecting field data that they said might 

have broader value, also indicated that the possibility of data's broader potential value had little 

influence on their data collection activities. For example, Amy (IM-PD) said some of her team's 

field data might be useful to other scientists studying wetland Typha invasion. However, she also 

said data's potential use to others was not especially salient while she gathered data. 

Interviewer: Are you thinking much about the long-term use of your data or potential 
long-term use of your data as you're out there collecting it or working with it?  
 
Amy (IM-PD): Not really, honestly. I can see how most of my experience has been 
shortsighted. It's just kind of thinking about publication and meeting those short-term 
goals [. . .] 
 

In a separate interview Matt (IM-PI) agreed, asserting his team would consult standard methods 

texts as they planned and conducted data collection, but that facilitating broader or longer-term 

use of the data was not a consideration as the team collected data. 

I guess I would look—and there are some standard methods texts. As I would develop the 
methods for a project, I would look at the standard methods, and then—if they're 
available—and then record the data that they suggest. But as far as preservation goes, I 
think it's coming up with your project, and then a lot at the Station, but I guess I haven't 
thought really deeply about it. 
 

Furthermore, as their modification of published methods demonstrates, IM Team researchers' 

primary criterion for selecting which data to collect and how to collect them was fit to the study 

at hand; just as it was for researchers on the other teams. 
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6.3.2 MAKING SURE DATA ARE GOOD 

 As I talked with scientists about the steps they took to create good data and observed 

them as they worked out and settled on data collection methods, it was clear that scientists did 

not take data's value for granted. In addition to employing data collection methods that they 

thought would meet their study's purpose, researchers also regularly checked the quality of the 

data they produced. In this section, I describe quality control measures that scientists 

implemented to ensure the data they collected—or were in the process of collecting—were what 

they would consider good. 

 In Chapter 5, I identified three qualities that were key to scientists' notions of what made 

data good. Data needed to be comparable to one another, trustworthy, and relevant to scientists' 

research questions. With these three prerequisites in mind, and an underlying assumption that 

data were, first and foremost, resources for addressing the gap in knowledge the researchers were 

at the Station to study, scientists periodically checked their data; both as they were collecting the 

data as well as after they had collected data and began compiling them for analyses. 

 In all the teams, researchers emphasized the importance of collecting data that were 

comparable across different researchers on the team as well as across data collection events. For 

example, all of the researchers on the IM Team should have generated close to the same plant 

coverage estimates for a given wetland subplot, and ID&M Team researchers should be able to 

duplicate their plant stem counts for any given mesocosm.  

[. . .] making sure that everybody is collecting the same data. That can be a challenge 
[. . .]. So trying to put in checks and balances to make that sure everyone's collecting the 
same kinds of data and it's repeatable . . . having clear standards and checking in with 
each other and making sure everybody's doing it right [. . .] (Amy, IM-PD) 
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There are a lot of unsaid checkpoints in that process in which you're thinking, you're 
checking data, thinking about it. You're checking to make sure that the undergraduates17 
are counting right. Then you're checking the data to make sure [. . .] that you can replicate 
it. You're checking to make sure that all counts are right or within an area that you're 
expecting and then you can go out and recheck it, recount. (Gabe, ID&M-PD) 
 

Often, it was enough for scientists to carefully follow the same procedure each time they 

prepared samples and collected data from them. The NUS Team's data were like this—as long as 

they were "really sure" that they did things the "same way every time," there was no need to 

check data for replicability. But I found that scientists viewed replicability as more difficult to 

achieve for some kinds of data, necessitating quality control checks during data collection. 

 The IM Team's plant cover estimates were one such kind of data. In contrast with the 

team's Typha stem height data, percent cover—as a visual estimate—was especially at risk of 

inconsistency or, as Evelyn (IM-PI) put it, "laden with variability." Matt (IM-PI) further 

explained, "Two people could have wildly different estimates of the same plot." To mitigate this 

variability, the IM Team regularly conducted what the scientists referred to as "calibration" of 

their plant percent cover estimates. Every 20th subplot (there were four subplots in every wetland 

field plot), the researchers gathered together around the quadrate. Each of the researchers 

examined the plants within the marker and mentally made note of the percent cover estimate they 

would assign to each plant. When everyone was done, the scientists shared their estimates with 

the rest of the team. If the estimates were close to one another, the researchers continued with 

data collection. When, however, the estimates differed significantly between the scientists, they 

spent several minutes discussing how they generated a particular estimate. The goal of this 

exchange was to "negotiate a good estimate everyone can agree with." Once an agreement was 

                                                
17 Occasionally, the ID&M Team hired one of the many undergraduates taking courses at the 
Station for an afternoon to help count and measure plant stems. 
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reached, the team proceeded with their regular data collection activities until the next 20th 

subplot. 

 ID&M Team researchers carried out similar replicability-oriented checks as they 

collected plant stem count data from their mesocosms, though not with the same formal 

regularity as the IM Team. In each mesocosm, ID&M Team researchers placed a sampling ring 

in the center of the tank and counted the stems of each of four native species (Figure 6.6). While 

certainly not a complicated data gathering activity—as one researcher said, "everyone can 

count"—in the densely vegetated tanks, it was easy to miss stems, lose track of which stems had 

already been counted, and forget what number one was on.  

 

Figure 6.6: One of the ID&M Team's mesocosms with a sampling ring in the center of the tank. 
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To ensure stem count data were repeatable, the researchers occasionally recounted the stems 

within a tank. I observed Chad (ID&M-RA) carry out this recounting activity on one of the days 

I assisted his team with data collection. Upon completing his stem counts in the sixth tank of the 

day (all of which I recorded by pencil into a datasheet), Chad immediately counted the stems of 

one of the species again. After learning that his second count was within five stems of the first 

count (330 stems versus 325), his check was finished, and he felt secure that his stem counts 

were replicable. 

 In addition to the quality control activities that scientists carried out as they collected raw 

data, scientists engaged in quality control of their data after they collected and transferred them 

to formats more amenable to data analysis (e.g. Excel spreadsheets). Quality control of data after 

they were collected was focused on identifying "strange outliers" and numbers that "did not 

make sense" either in the context of the team's other data or in comparison to scientists' 

knowledge of ecosystems and the phenomena they were studying. Scientists considered post-data 

collection quality control an important step in making sure data were comparable, trustworthy, 

and applicable to the team's research questions. 

 While ID&M Team researchers were at least a couple of months from analyzing their 

first year's data, Ethan (ID&M-PD) had begun to carry out "exploratory analysis" on his team's 

raw data to make sure they were what he referred to as "reasonable." 

We have data from the summer already from a month ago that I've done some initial 
analyses on. And I like to do that. When you first get the data collected, get it entered, 
clean the data up, look for problems in the data, so that you don't come back four years 
later and wonder, "What the heck happened there?" I like to do that—within a month or 
two—at least take a cursory look at the data and make sure if things look like they're 
reasonable. 
 



  185 

Large outliers or data that did not match scientists' own knowledge about how ecological 

processes worked were two key challenges to reasonableness; and potential indications that the 

data, or some portion of the data, were faulty. 

[. . .] just some basic things that I do is like, I'll just plot the data out and look for an 
outlier⎯a big outlier, like ten times bigger⎯then I know a decimal point got moved or 
something like that. In doing initial analyses if you do sort of a regression, you look at the 
errors and see, "Oh this data point has a really large error. It's not what you would 
expect." And then go back and look and make sure there are no notes written down about, 
"Oh, this tank was trampled in." Yeah, just sort of exploratory data analysis, looking for 
anything that looks odd. (Ethan, ID&M-PD) 
 

As Ethan indicates in the excerpt, anomalies could be explained by something as simple as a 

misplaced decimal point that was the result of a transcription error or by a disturbance in one of 

the mesocosms. Kate (ID&M-PI) described the search for outliers or numbers that "did not make 

sense" as the search to make sure what the data showed was "for real" and not an "artifact" of 

data collection or processing. 

[. . .] that sort of awareness of data and making sure things that . . . being really skeptical. 
I guess, when I think about data, I'm a real skeptic. That means I'm constantly looking at 
things and saying, "Well, let's make sure that's showing us that for real, and it's not some 
artifact. [. . .] I guess what I'm coming around to is—for me—one of the biggest issues 
[. . .] is making sure that you're not seeing artifacts. You're not seeing anomalies that are a 
result of the way you treated data or a result of one or two bad data points that are driving 
a whole lot of differences or the manipulation of the data you did that just ended up with 
something really odd. And that happens amazingly often. It requires constant vigilance as 
you look at analyses along the way of making sure something makes sense. 
 

As Kate indicated, anomalies in data were not a rare occurrence, nor were they necessarily a 

threat to the entire study. The real threat was to miss anomalies. 

[. . .] it's important to notice it. That's the most important part. It's not that big a deal 
when it happens. The big deal happens when it's not seen, when it just goes through and 
you never know it. (Gabe, ID&M-PD) 
 

 Just as with the ID&M Team, IM Team scientists talked about the importance of 

examining data for anomalies. Evelyn (IM-PI) said her team regularly checked for outliers as 



  186 

they compiled and began to analyze data. While strange anomalies could reflect a real natural 

variability in the ecosystems the team was studying—and therefore possibly indicate that the 

study did not include enough replicates—they could also reflect data collection problems or a 

faulty mesocosm. For example, Evelyn talked about "one funky" mesocosm that leaked and was 

overgrown with terrestrial ferns; this mesocosm often gave the team erratic numbers. Knowing 

that data were collected under problematic conditions—and noted as such on the paper 

datasheets—helped scientists to feel assured that the data were not showing something real about 

what they were studying. 

What we do is when we're out in the field and we're taking measurements, if something is 
hard to measure or we're not confident in the way that we sampled, we'll write a note in 
the side. We'll say, "In plot 4D, there was like, whatever, some big problem there and we 
couldn't get the sample. Or there wasn't enough water, or it was flooded." Or whatever 
. . . whatever the issue is. Because then when you plot all your data, and that one becomes 
a huge outlier, you remember, "Oh yeah, that was the one that we had all that trouble in." 
(Evelyn, IM-PI) 
 

 Outliers and anomalies were data that did not conform to the rest of a dataset, and, as a 

result, scientists regarded them as suspect. But researchers were also concerned with data that 

fell outside the bounds of what they would expect based on other published research or their own 

previous work. As Gabe (ID&M-PD) explained,  

[. . .] we check it with the literature, and we make sure that this makes sense and it's 
within the bounds of logic that we'd been expecting; so many milligrams per kilogram or 
something. 
 

 While two of the three teams I studied were not yet far enough along in their research 

projects to conduct anything but the most preliminary of data analyses, the NUS Team offered 

the opportunity to observe how scientists applied "fit to expectations" to assess the quality of 

their data. The NUS Team was unique among the teams I studied for the researchers' frequent 

analysis of data as they carried out their stream experiments. As I noted earlier, the field season 
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generally marks an intensive period of data collection for ecologists (at least those I met at the 

Station), with relatively little time available for data analysis. NUS Team scientists, however, 

analyzed their data regularly throughout the field season. 

 NUS Team researchers had carried out similar studies in real streams, but had never run 

an experimental study in artificial stream channels. Furthermore, they were aware of no other 

studies that had used artificial stream channels to look at nutrient uptake driven by leaf litter. As 

a result, they were unsure whether their study would work and did not want to wait until 

"December when we're trying to write this up for a NABS [North American Benthological 

Society] abstract" to find out "that it's failed" (Jessica, NUS-PI). 

We're analyzing the data sort of as we go. That's why we have Wednesdays and 
Saturdays to . . . in part, because we needed to make sure it worked. (Jessica, NUS-PI) 
 
 
I think it's better to [analyze the samples] as you go through the process. Because also, 
we could go . . . everything could completely not work, and we wouldn't find out until 
December. I just couldn't handle that. (Elizabeth, NUS-PI) 
 

 In checking to "see if [the] systems are working or not," the scientists were looking 

primarily for a match between the results they expected—based on their previous work in real 

streams—and their actual results. Specifically, the researchers expected their data to show 

nutrient uptake in the channels that had leaf litter and to show no nutrient uptake in the channels 

without leaves (the control channels). Furthermore, they expected nutrient uptake to differ based 

on the type of leaf litter that was in a channel (i.e. cottonwood, maple, and a mix of cottonwood 

and maple). To check that their study was working, NUS Team researchers transferred the 

nutrient concentration data that they recorded on paper to Excel worksheets that were 

preformatted with formulas for calculating nutrient uptake. The PIs then compared their study's 

nutrient uptake results with an approximation of what they should see, given the parameters of 
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the experiment. When those numbers differed significantly, it indicated to the scientists that 

something was faulty in their experimental setup and, therefore, needed to be addressed. The 

data they were gathering were not good, and their justification for conducting the project 

threatened. 

 Thus far, I have described scientists' attentiveness to the specific needs of their study as 

they collected and examined data and tried to identify bad data. In the next section, I describe 

what scientists did in response to their assessments of data's value. 

 

6.4 RESPONDING TO ASSESSMENTS OF DATA'S VALUE 

6.4.1 DEALING WITH BAD DATA 

 In spite of the activities scientists engaged in specifically to produce data that would be 

valuable to their teams, sometimes scientists were faced with bad data: data that—in their 

estimation—were of little use for their study and the questions that underlay their study. 

Sometimes, bad data consisted of one or two points among a set of hundreds of pieces of data. 

Scientists could identify their cause as a problem with data collection confined to one plot or one 

mesocosm, and the data's exclusion from analyses was both justified and fairly inconsequential. 

Other times, bad data were a more substantive threat to scientists' study, requiring adjustments to 

a study system's setup and/or scientists' data collection activities. In these cases, scientists were 

unable to use a significant portion of their data, potentially threatening their ability to address the 

questions they set out to answer. NUS Team scientists, for example, found themselves unable to 

generate good data, despite altering their experimental setup. They ultimately decided it was 

more worthwhile to end their study than to continue producing data that could not be used to test 

the hypotheses that framed their work. 
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 Scientists told me that when they confronted a few bad data points among many and they 

could identify the source of the problem (e.g. the data were from a mesocosm that consistently 

yielded weird data), they "threw out" the problematic data points. Referring to the erratic data her 

team often found themselves with from one peculiar mesocosm, Evelyn (IM-PI) explained the 

justification for excluding some data from analyses. 

Sometimes we'll just throw the data out if it's really whacked. Because we have reason to, 
you know. It's not like . . . You can't just throw data out if it's an outlier because that 
could be the difference between here and here, and that's a natural variability. But when 
you know that [. . .] what you're sampling isn't real because of some interference or some 
bad measurement, that's when you can justify, "Let's take it out, because I think that was 
the influence of all those ferns" or whatever. 
 

Importantly, in the instance Evelyn describes, the researchers surmised—because the data came 

from a disturbed mesocosm—that the outliers were not "real." Furthermore, the outliers were not 

so numerous that they threatened the IM Team's ability to use the data to generate results. As a 

result, it was unnecessary for the researchers to adjust their study or data collection methods to 

improve data going forward. It was enough to throw those data points out, where "throwing out" 

meant excluding the data from the team's analyses. 

 However, I encountered two instances in which bad data were enough of a threat to 

scientists' studies that they felt it necessary to take steps aimed at improving the data they were 

collecting: Renee's production of incomparable data in her first year of data collection (in 2011); 

and the NUS Team's production of data that indicated a faulty experimental setup. In both cases, 

the scientists altered their studies, either changing their methods of sampling and data collection 

or the study systems themselves. Additionally, the researchers excluded data as resources that 

could be used for their studies, quarantining them to separate files where they would not threaten 

their good data. 
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 As I described earlier in the dissertation, Renee (IM-GR) was challenged in the first year 

of her master's study to produce data that were comparable to each other. The main problem was 

that many of the plots Renee surveyed had such low water levels that—in the drier plots—she 

was unable to collect data on several important variables and to employ her standard sample 

collection protocol. For example, in the dry wetland plots, Renee could not collect dissolved 

oxygen data, because the DO meter needed at least two inches of standing water to take a 

reading. Additionally, Renee could not use her pumping method to obtain macroinvertebrate 

samples from the drier plots, because there was not enough water to pump. Instead, she had to 

take a soil core, which meant that she could not be sure if results from her data indicated 

differences in her sampling method or real differences in the macroinvertebrates in the plots. 

 At the end of that first summer, Renee (IM-GR) was left with data that both she and 

Evelyn (IM-PI) referred to as "apples and oranges," a phrase they used to emphasize the data's 

lack of comparability and, hence, uselessness for Renee's study. Because the data were 

"unusable," the first major action Renee took was to exclude them from her thesis analyses.  

Renee (IM-GR): [. . .] So we ended up not using a bunch of data just because we couldn't 
compare them. 
 
Interviewer: [. . .] so what's going to happen with that?  
 
Renee: We're just pretty much, for the most part, using the samples that were collected 
with the stovepipe. 
 
Interviewer: Like you said, monitoring what was going on there instead of doing a 
comparison? 
 
Renee: [. . .]  the soil core was mostly used in these wet meadow areas so basically when 
I wrote⎯I've written this chapter, the last chapter of my thesis⎯and basically the way I 
did it was I said, "I collected all this data in the wet meadows, but there wasn't enough 
water so I had to use soil cores." Basically I'm just not going to use that data. I just used 
the data from the emergent marsh. So I said, "In an emergent marsh, how does Typha 
affect the invertebrate community?" is all I did. It was just a big hassle. And you know it 
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was my first year, and I was new so . . . And it was all stressful because I'm like, "I can't 
use a quarter of my data." 
 

In other words, Renee modified her research questions (i.e. by adding "in an emergent marsh 

[. . .]") to fit the data she gathered in the wet-enough plots. Importantly, Renee did not dispose of 

the bad data, even though she regarded them as unusable: "[. . .] last summer is not worth just 

tossing them. You don't ever want to just toss data." She held on to the datasheets that contained 

the raw data and kept the Excel files that contained a copy of the raw data. For Renee, omitting 

the data by not including them in her analyses was sufficient for negating the impact of bad data. 

 In addition to not using the data from the drier plots she confronted in that first summer, 

Renee (IM-GR) also took steps to make sure that she would not face the same issues in her 

second (and last) summer. Specifically, she changed her study design to look at only plots that 

were on the outer edge of her team's wetland sites. "Edge plots" were very likely to have high 

enough water levels to allow Renee to gather all the necessary data and use the same sampling 

methods across plots. 

Renee (IM-GR): The whole idea of setting up this summer was to say, "Okay I need to 
. . . " I knew what environmental variables I needed to relate these biomass data back to. 
Kind of choosing the sites and choosing the plots that I was going to use, all went into I 
need to be able measure DO and I need to be able to measure water depth. That's why I'm 
only sampling the edge plots. That's also why I'm not sampling at [Wetland Name]. 
 
Interviewer: So dry. 
 
Renee: Exactly. It's kind of a sticky subject too. Because you can't just be like, "Well, I'm 
just not going to sample here because it doesn't really fit into the way I want to sample." 
So it's kind of tricky. 
 
Interviewer: But, like you said, it's important to get consistent data that you can actually 
compare that to. 
 
Renee: Right. That was the goal for this summer. After the data kerfuffle from over the 
winter, I was like, "I can only sample in these plots that have water in them." That kind of 
limited me to these two sites and the 12 plots instead of 24. 
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 Like Renee's first year thesis work, the NUS Team also had trouble generating what they 

would have considered good data. The main challenge for NUS Team researchers, however, was 

not the collection of comparable data. Rather, they had trouble producing data that were relevant 

to the team's research questions. As described in the last section, NUS Team researchers 

analyzed their data regularly as they were gathering them to make sure that their experimental 

setup was working appropriately. In the first couple weeks of their study, the scientists were 

frustrated to find that nutrient uptake had taken place in all of their channels, including the 

channels without leaves (the controls). Additionally, the team's results showed a much higher 

level of nutrient uptake in the channels populated with leaves than the scientists' back-of-the-

envelope estimations indicated they should have. To the scientists, these two findings indicated a 

basic fault in the study setup, which was designed to isolate nutrient uptake as a function of leaf 

litter. The finding that nutrient uptake occurred in the control channels and at a much higher rate 

than expected in the other channels meant that something besides (or in addition to) the leaves 

was taking up the nutrients. The PIs repeatedly emphasized that they were not interested in 

studying nutrient uptake as a function of any other factor aside from leaf litter. 

[. . .] that's not our question. We don't really . . . That's not what we're interested in. That 
wasn't the whole point of why we built all these experimental channels; to grow algae and 
fine particulate organic matter of unknown C to P to N ratios. (Jessica, NUS-PI) 
 

As a result, if the researchers were to continue their study, it was critical they be able to exclude 

whatever factor, or set of factors, was confounding results by taking up nutrients.  

 It occurred to the scientists that the gutter materials themselves affected nutrient uptake; 

or that the stream water intake system brought in a significant amount of organic material (such 

as algae and other fine particulate matter) that took up nutrients. There was little the researchers 

could do about the gutter materials once their study was underway, because constructing the 
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channels had taken them approximately two weeks and used up a significant portion of their 

project's funding. As for the possibility that other organic materials were in the channels, the 

team had already placed filters made of nylon hosiery on the water output valves that emptied 

into the channels; and the researchers spent time every evening manually brushing off algae from 

the channels. The only reasonable option left to the team was to change the water source from 

stream- to groundwater; and this is what they did approximately halfway through their study. 

 To the disappointment of NUS Team researchers, the switch to groundwater did not 

improve the team's results. They still found that nutrients were taken up in their control channels 

and that the amount of nutrient uptake was much larger than it should have been. As the PIs saw 

it, the data were unusable because they did not show nutrient uptake as a function only of leaf 

litter. Further demonstrating the importance of the relevance of data to scientists' particular 

research questions, the researchers concluded that the data were of such little value that they did 

not justify the team's completion of the study. With three weeks left, NUS Team researchers 

disassembled their channels and quit the study to pursue what they characterized as more 

worthwhile endeavors. 

We didn't do anything wrong. It's not like we messed up. And we're figuring this out 
early enough that we have the option to salvage the rest of our summer to do something 
else rather than realize in December when we're trying to write this up for a NABS 
abstract that it's failed. So in some ways everything is good. We did it in a way that 
allowed us to make sure we were answering the question we wanted to ask, not "Did it 
work?" And we're not interested in how much nutrients that fine particulate organic 
matter takes up. (Jessica, NUS-PI) 
 

 Like Renee (IM-GR), NUS Team scientists saw little value in data that could not be used 

to address their study's questions. Early in the study, when the researchers discovered something 

was wrong with their data, but thought they might still salvage the study, the PIs told me that 
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they would move the data to a different file so that the bad data would not "mess up" the team's 

good data. 

I think that once we learn that an experiment hasn't worked and we know why—we 
figured out why it didn't work—we pretty much discard that data. We might keep those 
files electronically, but we won't go back and revisit them, and, inevitably, my guess is 
they might get moved to a separate—all the stuff that didn't work that we've actually 
entered electronically—might get moved to a separate file so it doesn't mess up our pretty 
datasheets.18 We won't get rid of the hard copies of any of that information, but we won't 
go back and look at it. (Elizabeth, NUS-PI) 
 

"Discarding," as Elizabeth described it, did not mean permanently deleting data; rather what her 

team did with bad data would more appropriately be called "delete by omission." The team 

would still have access to the data—both the paper form and the digital—should they want to 

access them, but they would be sequestered from other, more valuable data. Furthermore, 

Elizabeth doubted they would be looked at again. 

 When NUS Team researchers decided later that their experiment was a failed one, the PIs 

sometimes facetiously said they would trash the data. But in actuality, they told me, they did not 

anticipate destroying the data: not the paper datasheets nor the Excel spreadsheets they had 

transferred their raw data to. If nothing else, the data might be useful for future study designs. 

 

6.4.2 ENACTING NOTIONS OF DATA'S VALUE BEYOND GOOD VERSUS BAD 

 Among the teams in my study, scientists did not, for the most part, treat data differently 

according value conceptions that extended beyond whether data were good or bad. In fact, aside 

from when scientists contemplated making their data available through a publically accessible 

repository, I encountered just two examples of data practices that varied as the result of more 

nuanced value conceptions; both were in the ID&M Team. 

                                                
18 Elizabeth was referring to her team's Excel spreadsheets when she used the word "datasheets" 
here. 
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 ID&M Team researchers engaged in particular data documentation and/or saving 

practices depending on whether their data fit into the category of "things we're really interested 

in" or "data we're just collecting to set up our study and/or account for potential anomalies later" 

(i.e. "peripheral," "ancillary," or "testing" data). For the mesocosm portion of the team's study, 

the former category included the team's native plant biomass and soil mineralization data. 

Sometime after the data were entered into an Excel workbook, the researchers created a 

"metadata sheet" to go along with the data. Take, for example, the team's "Soils Mineralization" 

workbook, which contained the team's soil mineralization data. In addition to separate sheets 

within the workbook for soil weights, raw data extracts of the nitrogen content of all the soil 

samples, and the calculated nitrification rates, the workbook included a spreadsheet titled 

"metadata." The metadata worksheet contained a one-sentence description of the dataset (e.g. 

"net nitrogen mineralization rates"); a list of the field methods used to collect the data; and a "file 

description" that enumerated and explained each spreadsheet in the workbook and all the 

variables contained in each sheet. 

 In sharp contrast, the scientists did not create metadata sheets for data that fell into the 

category of what both Ethan (ID&M-PD) and Kate (ID&M-PI) termed "peripheral" or 

"ancillary" data, such as the chemistry of the water going into the team's mesocosms at each of 

the two sites; and a set of data for looking at the flow patterns of water through the mesocosm 

tanks. When I noticed and asked Ethan about this difference in his team's documentation 

practices, he explained that he and the other researchers on the team were "not really interested 

in the [peripheral] data." Rather, they were just collecting these data to set up their experiment. 

 Not only did the researchers not document their ancillary data, but—as I detailed in the 

ID&M Team's data valuation vignette—they did not anticipate archiving such data at the 
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completion of the project. Until the information manager suggested otherwise to Ethan (ID&M-

PD), the researchers did not see how their ancillary data would be useful to any purpose beyond 

setting up their study and accounting for anomalies they might find later. In fact, Kate (ID&M-

PI) asserted that the data would be useless to anyone else. 

That's something that we might use to illustrate or to demonstrate that our treatments 
work in a way we'd like them to work, but they're not data that anybody else could ever 
use. (Kate, ID&M-PI) 
 

 Mark (ID&M-PI) and Gabe (ID&M-PD) also described data storage practices that 

differed according to whether their computational data were testing data or data from "real model 

runs." Model development—which was the stage of modeling work the researchers were 

engaged in at the time of my study—for the ID&M Team involved an iterative cycle of testing 

and modification. During testing and modification of the Wetland Ecosystem Model, Mark and 

Gabe ran the model, generating what they called "testing data." They examined the data to make 

sure the model was "behaving;" if it was not, they sought to understand why and made 

modifications accordingly. 

[. . .] what we're looking for is the model "behaving badly." And so things like that would 
be locking up, would be the population declining for no real reason . . . for the model 
acting in a way that is not only unexpected but even illogical and usually has a basis in 
something we're aware of, and sometimes it's not. (Gabe, ID&M-PD) 
 

 According to Mark (ID&M-PI) and Gabe (ID&M-PD), data from real modeling runs—

runs they had not yet conducted, but would conduct later to answer research questions—were 

redundantly saved on a desktop computer and an external hard drive, or what Gabe referred to as 

the "long-term data files." However, as Gabe explained, he and Mark would not take the same 

steps with testing data. Gabe might save the test run data on his computer, but—unlike data from 

real model runs—he would not store data on any other device. 
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Gabe (ID&M-PD): What Mark does is that, all this beta testing stuff he does . . . it's mine, 
which means it's not going for any long-term stuff. 
 
Interviewer: What do you mean? Sorry I'm not— 
 
Gabe: He's not . . . he does not really care. [. . .] it's not like he doesn't care about the data. 
We go through the data, [. . .] but he doesn't catalog it. If Mark's not going to put it in 
some long-term database, it's not going to get saved. I save it; it's on my computer. 
 

 From the point of view of ID&M Team scientists, what the ancillary data and testing data 

shared in common was that they were not collected to answer the team's research questions. 

Rather, such data were produced to set up the experiment, help the team interpret future data, or 

test to see that the model was functioning properly. In some ways, treating data differently 

according to whether they were for answering questions or were more peripheral was related to 

the precondition that data be relevant to research questions in order to be considered good by 

scientists. However, the scientists did not consider the ancillary or testing data to be bad or 

useless, so much as they thought of them as tangential to the study's research questions and the 

interests of the scientists and, therefore, less in need of documentation and data backup or 

archiving measures. 

 Despite the relative lack of influence that notions of data's value—aside from whether 

data were good or bad—apparently had on most areas of scientists' data practices, when 

researchers were asked to make data more widely available, they relied heavily on conceptions 

of value rooted in data's publication potential for the team. When researchers surmised that data 

had high publication value for the team, they felt that making them available outside of the team 

would squander the data's value. As a result, they were unwilling to deposit such data in public 

repositories such as the Station's. When, however, scientists thought that data's publication value 

had ended for the team, they saw little threat in making data widely accessible and were much 

more willing to publically deposit data. 
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 Of the teams I studied, only IM Team researchers had deposited any of their data with the 

Station. Early in the 2012 field season, Matt (IM-PI) handed off of two datasets to the 

information manager: one was a GIS dataset that mapped Typha stand age in a nearby wetland 

and the other a pollen dataset from the same wetland that showed the relative dominance of 

various plants (including Typha) through time. IM Team researchers used both of the datasets 

together in a published journal article that showed an association between pollen dominance and 

the spatial dominance of Typha. Matt said the decision to "hand the data over" to the Station was 

motivated primarily by the fact that the data were published and his team did not anticipate 

making any more "real use of them." 

[The information manager] was just trying to identify some datasets we felt comfortable 
sharing, essentially. Then [. . .] we decided on one particular dataset that we'd actually 
already published. 
 
[. . .] 
 
It was published, and we didn't feel like there was any other real use for it. I mean, there's 
probably some more information you could get out of it, but, for the most part, we did 
what we thought we could do with the data. (Matt, IM-PI) 
 

 As I pointed out in the last chapter, scientists often implied that the important 

publication-related distinction regarding data's value was between published and unpublished 

data. Further observations and statements, however, indicated that what was really at issue in 

scientists' conceptions of data's value was data's publication potential for the team. For example, 

IM Team researchers told me that they held other published datasets that they were unwilling to 

deposit at the Station at this time because they anticipated generating more publications with 

them. 

Some of our other datasets that we didn't want to share . . . maybe we're still working on 
them or they're not clean or there's more . . . we might be able to use them for some other 
purpose. (Matt, IM-PI) 
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One such dataset was comprised of approximately ten years' worth of data from the team's 

mesocosm study. Unlike the GIS and pollen datasets that the IM team passed along to the 

information manager for deposit, the researchers expected to write more papers using the 

mesocosm data. Matt explained, "We're still writing papers with the data, and it's our data."  

 While the other teams had not yet been asked to make their data available through the 

Station's repository, the scientists similarly emphasized that they would not share data until after 

they were done authoring publications with them. 

We haven't published it yet so it's not available for anyone else. Because we need to get it 
published first. (Jessica, NUS-PI) 
 
 
We will have a lag because, again, especially Ethan and Gabe need to be getting papers 
out from it. (Kate, ID&M-PI) 
 
 
The first few publications have to be my publications. If I gave a copy of this to someone 
and they said, "This is really great," and did a whole bunch of model runs and published 
something with it, and that came out before my publications came out, that's not okay. 
(Mark, ID&M-PI) 
 

One exception that provided an interesting contrast to the focus on publication potential as an 

important basis of data sharing decisions was Renee's (IM-GR) willingness to share her thesis 

data almost as soon as she finished collecting and organizing them. Renee met with the 

information manager twice during the summer to discuss depositing her data at the Station and 

explained to me that she was willing to share her data more quickly than the other researchers 

because she was not concerned with publishing the data. 

Renee (IM-GR): [The information manager] will eventually have all my data. 
 
Interviewer: He will? 
 
Renee: Yeah, because pretty much any research that's conducted out of the Station, he 
gets the data for. Usually, it's after people publish it, just because people are protective 
over their data. I really don't care that much [. . .] 
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Unlike the other scientists I talked to, the potential publication value of data was of minor 

concern to Renee. As a result, it did not factor into her decision to share the data. 

 In addition to data's publication value to the team as a basis for sharing decisions, 

scientists also indicated that study system type factored into their sharing behavior. For example, 

NUS Team researchers told me that they were not inclined not initiate public deposit of their 

current study's data (with the Station or any other data repository) primarily because the data 

were from a tightly controlled experiment and were therefore expected only to be useful for 

answering the study's questions. The scientists emphasized repeatedly that they could not 

imagine that such data would be of much use to others. 

Interviewer: Based on what you've said so far in this interview, would it be accurate to 
say that you don't plan to share or archive these data in any way aside from writing a 
paper?  
 
Elizabeth (NUS-PI): I think I would never delete all these files. I would never . . . but in 
terms of really long-term—like post my death type of archiving—I currently don't plan to 
do anything. 
 
Interviewer: Like deposit them in some kind of disciplinary or repository or— 
 
Elizabeth: No. 
 
Interviewer: Okay. And you don't plan to deposit them with the Station? 
 
Elizabeth: We haven't been asked to do anything like that. If they asked, I would say, 
"Sure, you're welcome to take this," [. . .]. I probably would not reach out to them about 
this kind of data, again, because it's an experiment in these channels as opposed to 
observations of the natural system, which I might be more inclined then to say, "Would 
you like some component of this data?" because it would contribute to baseline 
information or something. 
 

 Scientists on the other two teams expressed similar uncertainty about depositing data 

from controlled studies. Matt (IM-PI), for instance, said that he was not sure that his team would 

deposit their mesocosm data with the Station, even after the data's publication value had been 
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exhausted for the team. Just as with NUS Team researchers, Matt was doubtful that data from a 

more controlled system would be useful to others. 

Matt (IM-PI): I guess, eventually, we will likely share those data. But since it's a 
controlled study. I don't know. It doesn't seem . . . I don't know. I don't know how useful 
it will be for them to have those data, but I think eventually, once we've kind of worked 
with the mesocosm data a bit more, then we might give them the system too. 
 
Interviewer: When you say you don't know how useful it would be, are you saying that 
you don't⎯ 
 
Matt: Well, I guess I don't really understand what the goals of the data project are. It 
seems to make a lot of sense that data that are collected about the ecosystems on the 
Station . . . these long-term changes in ecological conditions on the site; that seems like 
that could be really valuable for the Station. But these mesocosms are this sort of 
ephemeral thing. We put them in, they're changing really rapidly . . . most people take 
them out. It's not like it's looking at the changes in the forest over time.  
 

Kate (ID&M-PI) told me her team would "probably" deposit their mesocosm data with the 

Station after they were finished generating publications from them, and Ethan's (ID&M-PD) 

meetings with the information manager suggested the same. However, in explaining why she had 

not yet made mesocosm data from a study she conducted approximately a decade ago (not at the 

Station), Kate said, "I think there's less interest in mesocosm greenhouse experiment data being 

out there than field data." 

 Unlike data's publication potential, study system type did not determine scientists' 

willingness to share data. While scientists expressed unwillingness to share data that still had 

high publication value for the team, they were not necessarily averse to share data from more 

controlled studies. In fact, scientists from all three teams said if they were required to share data 

and the data were published out for the team, they would share them, no matter if the data were 

from field or controlled studies. At the same time, however, researchers also made it clear that 

public deposit of data was somewhat less compelling when—as with controlled experiment 

data—data were regarded as having little potential value to others owing to the perception that 
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they could not be extended or expanded upon with additional variables or comparison with other 

datasets. 

 

6.5 SUMMARY OF FINDINGS 

 In this chapter, I have described how scientists enacted conceptions of data's value in 

their data practices. I found that as scientists collected and managed data during their projects, 

they were primarily concerned with creating good data and identifying and reducing—or at least 

minimizing the effects of—bad data. Scientists' work involved a number of choices—particularly 

about what to collect and how to collect it—that made data into objects that the scientists thought 

of as good for some things and not good for others. As scientists worked to create good data and 

checked to ensure the data they were producing would be valuable to their own studies, they 

regularly considered the products they wanted to create, the phenomena they wanted to show, 

and the questions they wanted to answer. In cases where scientists judged data to be useless for 

the particular purposes of the team, they worked to remove the data from their analyses and 

improve their data going forward. When, as with the NUS Team, researchers determined their 

study would not yield data the team could use, they discontinued their projects to work on "more 

worthwhile" activities. 

 There was little evidence that scientists thought much beyond good and bad distinctions 

in the value of their data until they were asked to make data publically available. Then, scientists 

were primarily concerned with whether data had publication value to the team. When scientists 

anticipated generating publications from data (even if they had already published the data once), 

they were unwilling to potentially squander that value by making them widely available. 

Conversely, scientists thought of data that they and their teams were done "squeezing" for 
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publication as having low publication value to their teams; and they therefore saw little threat in 

sharing them. Several scientists also suggested that the type of study data were from influenced 

their decision to deposit data in a public repository. Scientists conceived of data from more 

controlled studies as having little value beyond the team or the questions that motivated their 

production, and, therefore, while they were not unwilling to share such data, they were not 

especially compelled to share them either. 

 

6.6 DISCUSSION 

 My research helps to clarify how scientists manage data in a local context as they 

produce and use the data in their own work. Echoing the finding—presented in Chapter 5—that 

scientists were mostly focused on data's value for their team's own fairly narrow uses, scientists' 

data practices were heavily geared toward producing data that could be used to answer their 

study's research questions and/or test their study's hypotheses. Scientists continually enacted 

data's value for addressing a particular gap in knowledge by selecting and altering data collection 

methods, conducting quality control on data, quarantining data, and adjusting their studies. 

Furthermore, as scientists decided on the variables they would measure and their methods of data 

collection, they made it clear that the production of data that was good for their studies 

necessarily circumscribed the potential uses of those data. When, for example, Renee (IM-GR) 

decided that her plant data did not have to be highly accurate, she understood those data as good 

for her study, but not good for the team's larger project. In other words, despite the normative 

claim that data are inherently valuable, scientists' data practices are consciously aimed at 

producing valuable data given the context of the study at hand. 
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 In keeping with results from other data practices research (Birnholtz & Bietz, 2003; 

Borgman et al., 2006; Borgman, Wallis, & Enyedy, 2007; Louis et al., 2002; Tucker, 2009), my 

study provides more evidence of the important role of publication in scientists' decision to make 

data widely available. However, by focusing on scientists' enactment of value conceptions in 

their data practices, my research also shows that publication status is not necessarily the 

important determinate of scientists' willingness to share. The researchers I studied were 

principally concerned with whether data had publication value to the team, regardless of whether 

the data were published yet or not. When researchers thought their data still held the promise of 

helping the team to generate new publications, they protected their team's ability to exhaust that 

value (by withholding the data) before making the data available to others. 

 Publication value was paramount to scientists' willingness to share data. However, 

researchers also indicated their perception of data's usefulness to others influenced their data 

sharing behavior. Like the social scientists Hedstrom and Niu surveyed (2008), the scientists I 

studied were less compelled to share data that they regarded as probably not useful to others. 

Extending the work of Cragin et al. (2010) and Hedstrom and Niu, my study reveals specific data 

qualities that informed scientists' judgment of data's secondary value. Specifically, scientists 

assumed that the usefulness of their data to others was predicated on the ability to compare, 

extend, or add on to the data. As a result, scientists across all three teams thought there was less 

reason to share experimental data—like those from mesocosm studies and artificial stream 

experiments—than there was to share field data, because experimental data had finite value that 

the scientists planned to extract themselves. Researchers similarly sought to exhaust field data's 

publication value to the team before making them more widely available, but they could imagine 

additional uses for field data that went beyond their team's interests. These findings help explain 
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the seemingly conflicting findings that scientists are less likely to share data of high value 

(Tucker, 2009), yet more likely to share data that they anticipated would see high use (Hedstrom 

& Niu, 2008). The scientists I studied did not want to engage in activities—like data sharing—

that threatened their own realization of data's value. And at the same time, they did not see the 

rationale for sharing data that were likely to have their value tapped out by the time the scientists 

were willing to share them. 

 Notably, scientists demonstrated very little nuance in data practices among these different 

types of data during the early part of their work; a particularly striking finding given the 

distinctions in value scientists described when I prompted them to talk about data's value. In 

other words, while scientists exhibited subtlety in how they thought about data's value, such 

subtleties were not important to them as they produced and worked with data (at least during the 

field season). There are a couple of possible reasons for this disconnect. First, even while 

scientists viewed some kinds of data as having potential value that extended beyond the project 

occupying their attention, they may not have had the knowledge or expertise to translate these 

value conceptions into particular practices. Researchers did what they needed to do to produce 

and use data for the purposes at hand, and they devised systems that worked well for their near-

term needs. 

 A second explanation for the valuation-data practices disconnect—somewhat related to 

the first—is that scientists were quite simply not compelled to consider their data's broader value 

as they collected and worked with data. The Station's information manager deliberately stayed 

out of scientists' "project-level" data management activities, waiting until projects were nearing 

completion (or after) to discuss the deposit of project data into the repository. Furthermore, 

mandates—whether Station-level mandates presented at orientation meetings and on websites; or 
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funder mandates that required researchers to state sharing plans in their funding applications—

did not seem to make much of an impression on activities early in data's life cycle. Decisions 

made early in data's life-cycle have significant impact on data's viability beyond individual 

research projects (Cedars Project Team, 2001; National Academy of Sciences, 2009). My results 

indicate that, while compelling secondary value propositions (Blue Ribbon Task Force on 

Sustainable Digital Preservation and Access, 2010) existed for scientists, the value propositions 

had not been leveraged as well as they might have been to have the greatest impact on future 

access. 
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CHAPTER 7: CONCLUSION 
 

In this concluding chapter, I summarize the findings and contributions of my study, 

outline some of the implications of my findings, and suggest areas of future work. 

 

7.1 SUMMARY OF THE STUDY 

  This dissertation examined data practices through the lens of scientists' conceptions of 

data's value. My study was based on a multi-case examination of three small teams of scientists 

who carried out ecological research at a U.S.-based university field station. Using interviews and 

participant observations, I answered the following research question: How do scientists conceive 

of the value of their data, and how do scientists enact conceptions of value in their data 

practices? The theoretical basis for my research was constructivist, drawing on the data stream 

model as articulated by Hilgartner and Brandt-Rauf (1994) for studying data access issues as 

well as on theories of value. As I described in Chapter 1, the data stream model suggested factors 

that might enter into scientists' assessments of data's value. Specifically, Hilgartner and Brandt-

Rauf highlighted what they called "several important properties" of data streams: data streams 

are comprised of a heterogeneous collection of elements (e.g. equipment, samples, software, 

techniques, inputs, and outputs); the elements differ not only in their form, but also in their rarity 

and level of reliability or factual status; and data streams are composed of chains of products or 

inscriptions that vary according to processing state. Hilgartner and Brandt-Rauf also argued that 

the heterogeneous nature of data streams demands that researchers interested in data access 
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issues take a broader perspective of data, paying attention to the stream rather than some 

predetermined output of research. While emphasizing some of the bases on which scientists 

might assess data's value as well as how purposes for data vary across the stream, the data stream 

model does not specifically deal with the nature of value or valuation. As a result, I relied on 

philosophical theories of value that describe valuation as not only about an object's traits, but 

also about the benefits or purposes at issue (Beckert & Aspers, 2010; Rescher, 1969). Benefits or 

purposes are bound up in the socially situated meanings that objects take on for people (Blumer, 

1969; Wenger, 1998). Data's meanings to scientists, therefore, were key to my examination of 

scientists' conceptions of data's value and their data practices. 

Before presenting the findings from my study, I described in detail each of the three 

teams I studied (Chapter 4). I also presented three vignettes—one for each team—that 

demonstrated the role of data valuation throughout scientists' research processes and the 

influence of value conceptions on how scientists created, managed, and worked with their data. 

The vignettes showed how assumptions about data's value could influence the data scientists 

collected, the alteration of a study's design as well as the discontinuation of a study altogether, 

and scientists' data archiving and sharing plans. 

Chapters 5 and 6 comprised the findings from my study, with each chapter focusing on a 

different dimension of my dissertation's research question. In Chapter 5, I answered the first part 

of my question: how do scientists conceive of their data's value? I found that the most central 

component of scientists' conceptions of data's value was data's usefulness for addressing the 

specific gap in knowledge their teams had defined. Valuable (i.e. good or useful) data helped the 

scientists answer their research questions and/or test their hypotheses, and scientists emphasized 

three main characteristics that made their data good. Only one of these properties was cited in the 
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data stream model: data's reliability (or what my scientists characterized as trustworthiness). Two 

other characteristics emerged as of key importance to scientists' determination that data were 

valuable: comparability and relevance to their specific research questions. 

Scientists demonstrated nuance in their notions of data's value that went beyond whether 

data were good or bad, however. More nuanced value conceptions were particularly apparent 

when scientists were asked to consider how long their data might be of value and who and for 

what purpose others might find their data valuable. Using the designations "field data," 

"experimental data," "unpublished data," "publishable data," "raw data," and "derived data," 

scientists asserted that data's value varied according to their type. When describing data 

according to the study used to produce them (i.e. field versus experimental or modeling), 

scientists emphasized that data's long-term value and potential value to others depended on 

whether data could be combined with other similar data (i.e. metaanalysis) or be expanded upon 

with further study on the same system (e.g. studies that looked at time-based changes). 

Researchers described data from controlled studies as having much more limited value outside 

the team and over time than did data from field studies. 

Scientists also differentiated data according to their publication status and potential. In 

doing so they highlighted the perceived potential of the data to yield publications for the team 

and the threat that sharing data would have on their own team's realization of data's value. 

Researchers regarded data that were likely to result in new publications for their team as having 

very high value that needed to be protected and exploited by the team. A team's data were—

according the data stream model—rare data stream elements as long as they remained private 

resources. Scientists were reluctant to make them common by sharing them widely until they felt 

they had fully exploited data for the team's own uses. Interestingly, in using publication potential 
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as an important marker of data's value, scientists made it clear that—in contrast to the assertions 

of data sharing proponents—they regarded at least some of their data as depletable resources 

with finite value. 

In the data stream model, inscription level was described as a key characteristic of the 

products scientists generate, and this was a characteristic that bore out in scientists' conceptions 

of data's value. When making value-based distinctions between their raw and more heavily 

processed data, scientists focused on whether data were means for achieving something else or 

were closer to products of their work. The closer data were on the processing spectrum to results 

(i.e. heavily processed data), the more likely scientists were to characterize them as an end goal 

of their work and to ascribe greater value to them. Raw data—particularly level-one data—were, 

on the other hand, thought of as resources for achieving something else, with a heavy emphasis 

placed on their instrumental value. At the same time, researchers' raw, level-one data could not 

be easily reproduced. Even while they were less valued as what the researchers "were really 

after," scientists viewed such inscriptions as practically irreplaceable resources. 

In Chapter 6, I turned my attention toward answering the second part of my study's 

question: how do scientists enact conceptions of data's value in their practices? I found that as 

researchers carried out data collection and early data management activities, their data practices 

were predominantly aimed at producing data that were good for their own studies and identifying 

and rooting out data that were not. I showed how this overriding focus on the value of data for 

their own studies shaped the data scientists collected, the methods they used to collect data, and 

their evaluation of the data they produced. Beyond enacting conceptions of data's value based on 

whether they were good or bad, scientists' data practices exhibited negligible concern with other 

value conceptions, such as those based on the type of study scientists were conducting. This 
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changed as scientists were asked to make their data more widely available to others. As 

stakeholders, such as the Station, approached the scientists about depositing data in a public 

repository, data's value for producing publications was an especially prevalent factor in scientists' 

decision to share. When researchers perceived data as having high publication potential—no 

matter if the team had already published the data—scientists were decidedly unwilling to make 

the data available to people outside the team. On the other hand, when scientists felt they had 

wrung publication value (for the team) out of a given set of data, they were willing to share them 

more widely. 

Secondarily, researchers indicated that data's potential use to others was a guiding factor 

in their data sharing decisions. Unlike publication potential, however, this did not affect 

scientists' willingness to share data. Rather, when researchers viewed data as having low 

potential reuse value—as they did with experimental data—they were not as compelled to 

engage in making those data publically available. 

 

7.2 IMPLICATIONS 

This study was designed to address a gap in our understanding of data practices, 

particularly the practices of researchers engaged in small science. I noted that studies of data 

sharing and withholding have thus far focused extensively on incentives and motivations. I 

argued that while incentives and motivations are important factors in scientists' sharing and 

withholding behavior, data practices research had thus far largely left out other potentially 

important factors in the decision to share data or create data that endure past the life of a project. 

Based on findings from previous research, I asserted that value conceptions were likely to play 

an important role in scientists' data practices. My dissertation has revealed several factors that 
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were important to how scientists conceived of their data's value, and, further, how scientists 

enacted value conceptions in practices that extended from collecting data to depositing those data 

in public repositories. The results I have presented suggest implications in two main areas: data 

practices research (both practical and theoretical); and efforts aimed at increasing data sharing 

behavior. I discuss each in more detail. 

Scientific data practices research has focused heavily in recent years on understanding the 

various factors at play in the apparent lack of data sharing across many disciplines. Low rates of 

data sharing are frequently attributed—by data sharing proponents and scholars alike—to a 

mismatch in incentives and motivations in the scientific research context (e.g. Blue Ribbon Task 

Force on Sustainable Digital Preservation and Access, 2010; National Academy of Sciences, 

2009; Tucker, 2009). My research confirms that scientists are concerned with bolstering and 

protecting their ability to generate the products for which they are rewarded (i.e. peer reviewed 

publications); often at the expense of creating and managing data for reuse. However, my 

findings also suggest that there is more at play in what scientists do with data—including making 

data widely available—than incentives and disincentives.  

Specifically, the findings from my study complicate what is frequently labeled as 

"withholding" behavior when scientists do not share data. An important part of scientists' 

decision to share data does concern data's publication value to them and their teams. When the 

scientists I studied viewed data as having high publication value, they made it clear they were 

unwilling to share the data, and their decision not to publically deposit data could then be 

accurately called "data withholding." However, scientists also considered some kinds of data 

inherently limited in value and unlikely to be of much use to others or for a much longer period 

of time than their study. Scientists were not unwilling to share such data, yet they may not have 
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made the data available because they could not imagine any benefit to others in having access to 

the data. 

While the effect is the same in either case—data are not made available—the 

misattribution of the rationale behind scientists' lack of sharing has important implications for 

our understanding of scientists' data practices. The kind of "not sharing" behavior that occurs as 

the result of a perception that data would not have much value to others has very little to do with 

scientists' willingness to share and a great deal to do with a lack of any compelling purpose 

conceived in doing so. This suggests caution when interpreting the results of studies that focus 

on repository submission rates without also attending to the views of scientists. 

In terms of implications for data practices research, my study also expands upon and adds 

nuance to the data stream model, which was put forth by Hilgartner and Brandt-Rauf as a 

framework for studying data access issues. My study lends credence to the model's emphasis on 

reliability, rarity, processing state as important characteristics of data stream elements. The 

scientists in my study were clearly concerned with data's reliability, relying on it as an indicator 

of their data's value (i.e. whether the data were "good") for the team. Additionally, in their use of 

publication status and potential to differentiate data's value, scientists demonstrated that the rarity 

of data influenced their data access practices. When data were perceived as still having 

publication value to the team, researcher wanted to maintain those data's status as rare resources 

that were inaccessible to anyone outside the team. As those data's value was exhausted for the 

team, the researchers no longer sought to maintain the data's status as rare objects.  

My findings also suggest important additional characteristics of data elements that would 

enhance the data stream model's usefulness for understanding data access issues. In particular, 

my study indicated that comparability and relevance to research questions—in addition to 
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reliability—are important data traits in scientists' assessments of data's value. Like reliability, 

these two characteristics were assessed and reassessed throughout scientists' work. Furthermore, 

when scientists judged data to be incomparable to one another or irrelevant to their research 

questions, they took steps aimed at either improving data going forward or at excluding them 

from analyses. While neither directly concerned access decisions, such activities had 

implications for what was made publically available. For example, when Renee (IM-GR) 

determined that some of her data were incomparable, she excluded them not only from her own 

analyses, but also from the set of data she planned to hand over to the Station. My findings also 

indicate an additional key data characteristic that more directly concerns data access issues: 

data's expansibility. Particularly when they were asked to consider their data's value to others 

outside the team, scientists described the potential to add to, compare, or otherwise expand on 

data to develop new insights that went beyond the team's interest. Researchers studying data 

access practices should pay close attention to this characteristic of data elements as they examine 

sharing and other data access activities. 

The second area where my results have important implications is in the promotion of data 

sharing and archiving. Recent years have seen a number of efforts aimed at compelling scientists 

to share the data from their research, particularly when that research is federally funded (e.g. 

National Science Foundation, 2011a; National Science Foundation, 2011b; United States. 

Executive Office of the President. Office of Science and Technology Policy, 2013). Yet, to date, 

compliance with mandates remains low in many disciplines (Piwowar & Chapman, 2008, 2009; 

Tenopir et al., 2011). My study raises two important points for those who seek to increase the 

production of archive-ready data as well to compel scientists to share and archive their data. 

First, funders, repository managers, and publishers should get scientists thinking early in their 
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projects about the potential value of their data to others. It is not enough to have mandates in 

place at the beginning of a project. My study shows that when scientists are put in a position to 

consider data's longer-term value, they view different kinds of their data as having different 

potential reuse value. Yet, there was little evidence that these distinctions were salient to 

scientists as they collected and managed data early in their projects. In other words, while 

scientists held nuanced conceptions of their data's value that might have been leveraged to 

influence activities like data documentation practices, they were hardly ever asked—beyond my 

constant questions—to think about data's potential broader value. Someone like the Station's 

information manager could make data's broader value more salient to scientists by interacting 

with them about their data earlier than at the end of the projects. For example, we saw how the 

information manager got Ethan (ID&M-PD) to consider that the data his team assumed to be 

useless to others because of their "peripheral" nature might have actually been very useful to 

other researchers at the Station. It is worth reemphasizing that Ethan instigated the meeting with 

the information manager—what kind of impact could the information manager have had on data 

practices had he been deliberately involved with teams earlier? 

 Second, my study highlights the contrast between data sharing proponents' persistent 

characterization of data as valuable by virtue of simply being data; and scientists' conceptions of 

data's value as contingent and frequently limited and depletable. I do not wish to claim that one 

perspective is right and the other wrong; rather I argue that vague, non-specific claims about 

data's value might reduce the impact of statements intended to promote data sharing and 

archiving. The scientists in my study were emphatic in the view that all data were not equally 

valuable when it came to data's potential use by others. Furthermore, there was widespread 

consensus across the teams about the kinds of secondary uses that were particularly meaningful.  
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Data's value for validation and replication were never brought up as reasons for sharing and/or 

archiving data. Instead, scientists were compelled by uses that involved extending, adding onto, 

or comparing data. Data sharing proponents should emphasize these kinds of uses—and 

recognize that scientists do not view all data as equally suitable for these secondary uses—as 

they seek to increase data sharing and archiving. 

 

7.3 FUTURE RESEARCH DIRECTIONS 

 My study points to several areas that deserve further attention as researchers, funders, 

publishers, and repository managers continue to develop an understanding of scientists' work 

with data and, in particular, how scientists' practices impinge or facilitate the use of data by 

others. The first two research directions I suggest are intended to address the limitations of the 

current study and which I highlighted in Chapter 3, but reiterate here; the third represents a 

possible expansion on my study's contributions.  

 First, my dissertation focused almost exclusively on the views and activities of scientists 

during the field season: one segment of an entire process involved in carrying out a study. As a 

result, my observations were heavily tilted toward data collection activities and the valuations of 

data that scientists made during a fairly early stage of their projects with little observation of 

activities—like data analysis and data deposit—that generally occurred at a later point in 

scientists' studies. My study showed that conceptions of value that concerned how long data 

might be of value and whether others would likely find them valuable did not have much 

salience to scientists as they collected and organized data for their own use. However, scientists 

indicated that such value conceptions play a more significant role as they reach a point in their 

projects where others are asking them to make their data widely available. A logical extension of 
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my work, therefore, would focus on the later stages of scientists' research projects. Specifically, 

much could be added to our understanding of the role of value conceptions in data practices by 

looking more closely at scientists' work with data during analysis, publication, and data deposit. 

 A second avenue of research would test this study's findings in other settings. My 

dissertation focused on the views and practices of small teams of scientists conducting ecological 

research. Data practices studies often attend to one particular discipline (e.g. ecology, space 

science, genomics), which can challenge efforts to apply the resultant findings to other contexts 

and domains. Other researchers studying the data practices of scientists emphasize the 

importance of uncovering attitudes and practices that carry across scientific disciplines and 

identifying key dimensions of difference (Cragin, Palmer, Carlson, et al., 2010; Cragin, Palmer, 

& Chao, 2010). 

 In the current study, I deliberately selected a site that allowed me to examine the views 

and practices of scientists engaged in different kinds of research. However, even while the teams 

I studied represented various subdisciplines of ecology, they shared many similarities in their 

data collection and management activities that are likely unique to ecological science. In an 

effort to generate findings that might hold up in other settings, I highlighted the factors 

underlying value conceptions and their enactment in data practices. For example, while the 

distinction between field data and experimental data might be unique to ecological science, the 

use of data's capacity to be added to, compared to other data, or extended as a measure of data's 

potential value to others is a finding that I anticipate being replicated in many other settings and 

disciplines. 

 An expansion of my study's research in this direction might examine another small-

science discipline to determine to what extent scientists' view of data as a resource with potential 
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secondary value depends on the ability to combine or add to data. If such a similarity is found in 

a different scientific domain, how does it get translated into data types? For example, one might 

imagine that in a field with highly technical instruments that advance quickly, scientists make 

value distinctions between data produced with instrument type A and instrument type B. 

 Finally, my findings suggest a study that examines the effect of specific interventions on 

scientists' views of data value and/or their data practices. In my study, scientists showed little 

concern with data's more expansive potential value as they carried out their studies. At my 

research site, the information manager deliberately waited to approach scientists about archiving 

their data after they completed their studies. How might earlier and more direct guidance about 

data management and data's potential use to others affect scientists' views and behaviors? Were I 

to carry out such an expansion of this study, I could imagine going back to the Station and 

recruiting the information manager to intervene earlier in scientists' studies and compel them to 

think about data's potential data's value to others as they began collecting and working with data. 

This could extend my findings significantly by revealing what, if any, effect such a value-

focused intervention has on data practices. 
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APPENDIX 1: INTERVIEW GUIDE FOR SCIENTISTS  
 
Understanding the science 
 

1. Can you describe your work to me (not just what's going on here)? What are the kinds of 
research questions you're interested in? How do you go about answering them? What are 
the main outputs of your research? What do you consider to be your disciplinary 
community?  

 
2. What journals do you publish in? What conferences do you attend? What funding 

agencies typically fund your kind of research? 
 

3. Where are you at in your scientific career? What do you see as your research path going 
in the future?  

 
Station Project 
 

1. Tell me about what you are working on here this summer. What are the basic steps 
involved in doing this research? What kinds of data will you (or are you) be collecting? 
What variables are you interested in? 

 
2. How does your work here fit in with your other research work? 

 
3. What work was done on this project before getting to the Station and what will be done 

after you leave? 
 

4. What do you hope is the main outcome or hope to accomplish by the end of your time 
here? 

 
Managing and working with data 
 

1. What are the steps involved in collecting data for this project? What is required to move 
from the things you're looking at to data that you can use to answer your questions and 
publish findings? What kinds of data do you collect and what forms are they in? 

 
2. How difficult are these data to generate? What was/is required to get from concept to 

"good" data? What are good data? What are crappy data? What would it take for someone 
else to generate them? Are the tools or techniques you're using unique? 

 
3. How long of a timespan is there typically between collecting the data and analyzing or 

using them? How will you use the data? 
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4. What are you doing with data to ensure that you can access them and understand them 

when you need to? How do you find and understand data that you've collected later? Will 
data be shared with team members that aren't involved in data collection? How so? How 
will you insure that they understand them? 

 
5. Are all of your data treated the same with respect to ensuring access and understanding in 

the future? If not, what is the difference?  
 

6. How do you know as you collect and work with data that some data are worth extra 
steps? 

 
7. Are there rules within your team about how to manage data or which data should be 

managed? What do you tell the other team members about managing data as they work 
with them? 

 
8. How did you learn what to do with data so that you could understand and use them later? 

 
9. How long is the useful life of your data? (How long do you anticipate these data will be 

useful to you and your team)? What other things might you use them for? What about for 
others? 

 
10. What are data for? 

 
Managing for other uses 
 

1. Do you think your data have (or will have) value beyond the research questions 
(purposes) that motivated their generation? If so, for what and for whom? 

 
2. Do you think about long-term use of your data as you collect with, work with, and 

manage them? How so? Does it influence what you do with data? Do you think any of 
your data are worth long-term preservation? For whom? For what? Why? 

 
3. Do you plan to share or archive your data? Which ones? Why? Tell me about data you've 

collected (or are collecting) that you plan to (or have already) deposit at the Station. Do 
you deposit your data in any other repositories? Have you made other data available by 
archiving or sharing it? Tell me about it. 

 
4. Were you to make your data available to others, do you think they'd be used? By whom? 

For what? For how long would they be useful to others? 
 

5. Have others let you know that your data might be of value beyond your project? 
 

6. Have you generated other data like these in the past? Have they been useful to yourself or 
others over time? Have others requested to use them? 
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7. Do you make use of (have you ever) of data created by other scientists? 
 
Policy and Cultural Environment 
 

1. What, if any requirements or expectations exist in your field regarding data preservation 
and sharing? For example, does your funder require it? Journals that you publish in?  

 
2. Have you received any instruction from the Station regarding what you should do with 

data such as how you should manage or share them? What do you think? What's your 
interpretation of this? 

 
3. Are you aware of any standards for data in your field that are relevant to what you are 

collecting? 
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