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Chapter 1.  GENERAL INTRODUCTION 
SYSTEM’S BIOLOGY AND THE “OMICS” 

  The last two decades have witnessed a new era of research established after huge 

technological developments pertaining to the biological sciences.  These technological 

developments include mass spectrometry, arrays technologies and high-throughput sequencing 

analysis. These advances in technology opened the way for improved understanding of complex 

diseases and development of new therapies and diagnostics.  The outcome of the technological 

improvements was the capability to study large quantities of genes, RNA, proteins or 

metabolites simultaneously.  The advent of these methods added new terminology to the field 

of science, including genomics (first described in 1986), proteomics (1995), metabolomics 

(1998) (1, 2) as well as other “omics” like transcriptomics.  Genomics, transcriptomics, 

proteomics and metabolomics simply refer to the study of the complete set of cellular DNA, 

RNA, proteins and small molecules (metabolites) ,respectively.  Judicious use of several or all of 

these techniques simultaneously enables improved understanding of the complete operation of 

any living system, which could be an organism, tissue, cell or even part of a cell.  This broad-

scope study of living entities is simply termed “systems biology” (3) (Figure ‎1-1). 

 

 

Figure ‎1-1: The  “omics” cascade 
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METABOLOMICS 

  As shown in figure 1, metabolomics is the final step in the “omics” cascade, and the 

closest to the phenotype (4). Being the nearest to the phenotype, gives metabolomics the 

advantage of serving as a direct signature of biochemical activity and being described as “the 

apogee of omics” (5). Tools for comprehensive metabolomics analysis are still emerging and 

publications containing the word “metabolomics” have increased exponentially over the last 10 

years (Figure ‎1-2), but still in its infancy compared to other “omics” such as “proteomics”. The 

metabolome encompasses a large number of metabolites.  The number of known metabolites 

in human serum is estimated to be approximately 4000 (6), which jump to approximately 

40,000 metabolites when exogenous metabolites from food, drugs and the microbiome are 

included (7). The chemical diversity of the metabolome leads to the conclusion that, unlike 

genomics or proteomics, no single instrumental platform is able to analyze the entire 

metabolome (4).  

 

Figure ‎1-2: The frequency of metabolomics and proteomics term in literature. Bibliographic search using SciFinder using the 

term metabolomics or proteomics.    

 

METABOLOMICS PLATFORMS 

  The challenge in profiling cellular metabolome is not limited to the large number of 

metabolites but also involves the great heterogeneity in chemical properties and abundance of 

those metabolites.  The fact that these metabolites are only one part of a biological sample, 

which also contains other components such as DNA and protein, further increases the 
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complexity of the analysis. The most common platforms for metabolomic profiling and 

quantitation are nuclear magnetic resonance (NMR) and mass spectrometry (MS) instruments.  

NMR-based metabolomics platform 

  Application of NMR in metabolomics is very useful as it can provide a “holistic view” for 

metabolites in a complex sample.  It has many advantages, such as being non-destructive, so a 

sample can be re-used or re-measured several times.  It provides detailed structural 

information that can help identifying unknown metabolites. It does not depend on analyte 

polarity and requires minimal sample preparation such as separation or derivatization (8, 9). 

NMR is good for metabolite quantitation, providing reproducible correspondence between 

signal intensity and metabolite concentration. Different nuclei can be used in NMR; the proton 

is the most widely used nucleus due to its high abundance and resulting in higher sensitivity. 

Other nuclei like 31P and 13C can be used for phosphorus-containing compounds and flux 

analysis, respectively (10).  The main disadvantage of NMR in metabolomics is its relatively low 

sensitivity, rendering it non-suitable for low-abundance metabolites (9). Another drawback of 

NMR-based metabolomics is the challenge of identification of individual compounds in a 

complex mixture because of signal overlap (4). To reduce sample complexity, a prior sample 

separation can improve NMR identification but will further reduce the technique sensitivity as 

mentioned in the next sections.   

MS based metabolomics: 

  MS is typically more sensitive than NMR, with the lower limit of detection in the 

femtomole range for most metabolites compared to the low nanomole range for NMR (11). 

However, unlike NMR, MS is a destructive technique, where the sample is usually lost after 

analysis and can’t be reused. MS can measure several hundred of metabolites with various 

properties and concentrations simultaneously, as compared to NMR which typically detects 

high tens to just over 100 metabolites (9). MS can be used as a standalone platform by directly 

injecting the sample into the mass spectrometer or can be coupled to a separation technique. 

While direct sample analyses by mass spectrometer provides the shortest analysis time and a 

large range of metabolites can be covered (12), it has many disadvantages. Among these 

disadvantages is the competition of ionization between different molecules, which leads to an 
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ionization suppression of less efficiently ionized molecules by other highly ionized ones.  

Another disadvantage is the lack of a separation dimension, which often provides an additional 

confirmation of a metabolites’ identity. Therefore, a typical MS-based metabolomics platform 

consists of a separation technique, a mass spectrometer and data analysis tools (Figure ‎1-3). 

Mass spectrometers vary in ionization and detection capability, which further affects 

metabolome analysis. These considerations are briefly discussed in the next section.  

 

Figure ‎1-3: Work flow for a typical MS platform for metabolomics. 

Ionization  

  In order for molecules to be analyzed by MS, they must be presented as ions in the gas 

phase. Several ionization techniques exist, however the most commonly used types in 

metabolomics are electropray ionization (ESI), atmospheric pressure chemical ionization (APCI), 

atmospheric pressure photoionization (APPI), electron impact ionization (EI) and matrix assisted 

laser desorption ionization (MALDI). These ionization techniques are complementary to each 

other, each having unique advantages and disadvantages which will be described briefly. 

Electron impact ionization (EI) is mainly suitable for volatile and thermally stable compounds, 

thus it is mostly used with gas chromatography (GC) separation methods. It has the advantage 

of providing a fingerprint-like fragmentation pattern for metabolites that can be searched 

against available spectral libraries (13). Recently the Fiehn lab has released a library of 

metabolites acquired by GC-EI-MS.  The initial number of metabolites in the library was ~ 2000, 

but it is continually increasing (14). One of the disadvantage of EI is that fragmentation of the 

metabolite is often so extensive that the parent ion is entirely absent from the spectrum, which 

will increase the challenge of determining the precursor mass (13). Extensive fragmentation 

also complicates the interpretation of mass spectrum (13). MALDI is a widely used ionization 

technique for characterizing a variety of analytes. It has been used successfully in metabolomics 
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(15, 16) and provides quick analysis of metabolites in limited sample volume. However, MALDI 

has several disadvantages, mainly the difficulty of quantification and hyphenation to LC. The 

dried matrix-sample mixture is usually not homogenous, hindering quantification since the laser 

ionizes only a small portion of the sample in most cases. The hyphenation of a separation 

technique like LC is challenging, because it requires offline fractionation onto a MALDI plate.  

 Thus the three most common ionization techniques that are applied in metabolomics 

and can be hyphenated to liquid chromatography are ESI, APCI and APPI. These three modes of 

ionization have been compared before by several groups and their results confirm the 

complementarity of the three methods, although ESI offers the greatest extent of global 

metabolome coverage (17, 18).  Because APPI or APCI involve application of high levels of heat, 

several metabolites including glycerophospholipids have been shown to fragment with those 

sources, unlike ESI (17). Neutral lipids have shown better linear response with APPI and APCI 

than ESI, however ESI offered improved limit of detection (via adduct formation) (19).             

Mass analyzers 

  Choosing an appropriate mass analyzer is crucial in metabolomics studies, since 

different outputs are obtained from different types of instrumentation. If the goal is to analyze 

the concentration of a specific set of metabolites in a complex matrix, then a triple quadrupole 

mass analyzer is an ideal option. A quadrupole (Q) has limited resolution and mass accuracy 

which limits its application to identify metabolites. However, the low mass accuracy is 

compensated by the specificity of “multiple reaction monitoring” (MRM), a technique which 

can be performed using triple quadrupole MS instruments (QQQ).  In MRM, a precursor ion is 

selected in Q1 and fragmented in Q2 by collision with gas molecules (collision induced 

dissociation) and fragments are then selected for quantification in Q3.  This process excludes 

most ions except those that originate from the specific metabolite of interest, thus resulting in 

a high signal-to-noise ratio. However, the slow scanning speed of quadrupole limits the number 

of metabolites that can be analyzed simultaneously.  If the primary goal is to identify and 

analyze as many metabolites as possible, then high scan speed and high resolution mass 

analyzers should be used.  The highest resolution mass analyzer is the Fourier transform ion 
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cyclotron resonance instrument (FTICR), followed by the Orbitrap, followed by the time of flight 

mass analyzer (TOF) (Figure ‎1-4). Although the higher resolution of FTICR and Orbitrap 

instruments enables resolution of metabolites with similar masses and allows more definitive 

identification of unknown metabolites, they are not widely used in metabolomics (Figure ‎1-4).  

The less frequent application of these instruments in metabolomics is due to their substantially 

higher cost and the fact that their maximum scanning speed is several fold-lower than a TOF 

(20).   

    

Figure ‎1-4: The frequency of the application of different mass spectrometers in metabolomics. Bibliographic search using 
Scifinder. The word metabolomics was searched followed by refining the results by the key words:  “time of flight”, 
“quadrupole”, “Orbitrap” and “FTICR”. 

COMMON SEPARATION TECHNIQUES IN METABOLOMICS 

  As described above, separation is very important in metabolomics studies. Metabolite 

separation decreases sample complexity and provides further information about metabolites’ 

chemical characteristics that aid in their identification (21).  Separation can be utilized in both 

NMR and MS metabolomics platforms. Separation is crucial in mass spectrometry based 

metabolomics, since it allows the detection of low-abundant metabolites whose ionization 

could be suppressed by higher-abundant ones.  Direct coupling of separation techniques such 

as liquid chromatography to NMR is complicated and suffers limitations that reduce the 

technique’s sensitivity. Limitations include the post column peak broadening which occurs 
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during transport to the NMR flow cell; dilution of the chromatographic peak which occurs 

during filling of the flow cell, and challenges in chromatographic peak selection (22).  Common 

separation techniques used in metabolomics include gas chromatography, liquid 

chromatography and capillary electrophoresis. These separation techniques are 

complementary to each other, each having pros and cons that are described briefly below. 

Gas chromatography:  

  Gas chromatography has been regarded as the gold standard for metabolite analysis for 

several years (21).  It is usually connected to a mass spectrometer equipped with an EI 

ionization source, which renders it less prone to ionization suppression from co-eluting 

compounds, unlike LC-MS (23).  GC-MS requires that the metabolite be thermally stable and 

volatile, which are not common features for many polar metabolites. Thus, chemical 

derivatization to increase volatility is a requirement for many metabolites in order to widen the 

application range of this technique (24).  Common drawbacks of derivatization include the loss 

of sample during derivatization, and the difficulty of identifying compounds because of the 

unknown or incomplete reaction of derivatization reagent molecules with unknown 

metabolites (25). Thus, identifying metabolites through an undirected analysis approach is 

often dependent on the availability of spectra of authentic standards in GC-MS libraries. 

However, GC-MS offers an excellent complementary technique to LC-MS, enabling detection of 

many metabolites that are not amenable to LC-MS analysis. 

Liquid chromatography.  

  Liquid chromatography coupled to mass spectrometry (LC-MS) represents the technique 

of choice for global metabolite profiling (5). LC/MS allows the detection of thousands of peaks 

from biological samples. Peaks with unique mass and retention time are called “features”. The 

particle size of stationary phases ranges from 5 µm to 3 µm for conventional high pressure 

liquid chromatography “HPLC” or sub-2 µm for ultra pressure liquid chromatography “UPLC”. 

The advantage of UPLC is the reduction in total run time, improved separation efficiency by 

reduction in eddy diffusion and mass transfer kinetics. Elution of metabolites as sharper peaks 

results in increases in signal to noise ratio and consequently increases the number of detected 
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features (21, 25). As described above, metabolites vary in polarity, charge and stability. Thus, 

no single separation technique is able to resolve a complex sample, and orthogonal separation 

mechanisms should be used to ensure wider metabolome coverage (21).  The combination of 

both reversed phase liquid chromatography (RPLC) and hydrophilic ion interaction 

chromatography (HILIC) methods provides a wide range of metabolome coverage (26). C18 is 

the most widely used RPLC stationary phase for the separation of non-polar metabolites. It 

provides a reproducible and predictable retention time, and effectively resolves a wide range of 

hydrophobic metabolites and lipids (21). However, hydrophilic metabolites are mainly eluted 

non-retained in the void volume.  

  HILIC separation is an orthogonal technique to RPLC. Several stationary phases have 

been developed for HILIC, each with different functional groups that provide different 

selectivity and separation mechanisms (27). Functional groups in HILIC stationary phase include 

the amino-propyl, amide and diol groups. The major drawback of HILIC is the increase in 

retention time drift relative to RPLC (21) as well as shorter column life.  A new modification for 

HILIC was recently introduced, which is aqueous normal phase (ANP), based on a silica hydride 

stationary phase, that was shown to have more stable retention time (28). However for the 

coverage of metabolites associated with central carbon metabolism, our lab and others (26) 

have determined that the amino-propyl (29) HILIC column still offers the best coverage.  

Capillary electrophoresis  

  Capillary electrophoresis (CE) separates metabolites based on their electrophoretic 

mobility, which is dependent on metabolite hydrodynamic radius (size)-to-charge ratio (30). 

Like LC, CE can be directly coupled to mass spectrometry by electrospray ionization.  CE-MS has 

shown success in several metabolomics studies (31-37). Although it provides faster analysis and 

potentially higher resolution separations than LC, it is not as widely used in metabolomics (30) 

compared to chromatographic techniques described above (Figure ‎1-5). Among the limitations 

of CE are the low maximum injection volume (a few microliters for CE compared to hundreds 

microliters for LC or GC) (21). Also, since the capillary length and background electrolyte (BGE) 

ionic strength affect the migration time, there is usually day to day variation in the absolute 
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migration time of metabolites; however, relative migration time compared to a standard can be 

utilized (21, 30). Difficulties that are associated with the coupling of CE to MS are what really 

limit the widespread application of this technique in different labs (30). ESI-MS hyphenation to 

CE is not as straightforward as with LC, because a closed electrical circuit is required for both 

the CE separation and for ionization on the ESI-MS (38). Buffers normally used as a BGE for CE 

are not MS compatible, so these buffers need to be substituted with volatile MS-compatible 

buffers, which provide reduced quality of separation (39). Common CE-MS interfaces include 

both sheath and sheathless flow. Sheath flow involves using a co-axial liquid effluent to achieve 

electrical contact with the CE effluent; however, it causes post-capillary dilution (21, 39).  

Sheathless flow is still under development and few configurations have shown sufficient 

robustness for routine metabolomics analysis (21).      

 

 

Figure ‎1-5:The frequency of the application of chromarography or electrophoresis in metabolomics. Bibliographic search 
using SciFinder using the word metabolomics and metabonomics, and further refined using either the term chromatography 
or electrophoresis. 

As evidenced by the preceding discussion, multiple analytical strategies can be used to 

perform metabolomics research.  While no method is comprehensive, careful selection of an 

appropriate analytical strategy is important to ensure all aims of a study can be met.  In light of 

these considerations, the work described in this dissertation was performed by liquid 

chromatography-based separations, using HILIC for polar metabolites and RPLC for non-polar 
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metabolites. Both chromatographic methods were directly coupled via ESI ionization to a TOF 

high resolution mass analyzer.   

DIRECTED AND UNDIRECTED METABOLOMICS 

  After the selection of an appropriate separation and detection method, experiment 

design is the next critical stage of metabolomics research. Two major approaches are available, 

which are targeted (directed) and untargeted (undirected) metabolomics. Directed analysis is 

the approach in which a specific set of metabolites are measured, usually focusing on one or 

more related pathway(s) of interest (40). In directed analysis, the analytical method (separation 

and detection) is optimized for the desired set of metabolites using authentic standards.  This is 

followed by applying the method to biological samples, and reporting the results for this set of 

metabolites (Figure ‎1-6).  On the other hand, undirected metabolomics is the approach which 

aims to analyze as many metabolites as possible (40). In undirected analysis (Figure ‎1-6), a 

global separation and detection method should be applied that can separate and detect a wide 

range of metabolites. It also requires a high resolution mass spectrometer (as described in the 

mass analyzers section) to accurately determine the mass and help to identify those 

metabolites. This global measurement is followed by extensive data analysis procedures 

described in the next section.    

 

Figure ‎1-6: work flow for directed and undirected analysis. 
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DATA ANALYSIS 

  Data analysis techniques differ substantially between targeted and untargeted 

approaches. Data analysis for targeted metabolomics is relatively simple, where metabolites of 

interest are identified based on their mass and retention time matching with that of an 

authentic standard. Quantification can be performed by measuring metabolite peak area or 

peak height using the MS vendor software. Untargeted metabolomics involves several extra 

steps compared to targeted analysis.  The first step is to identify features (peaks) with a specific 

mass and retention time.  A normal LC-MS run contains, on average, a few thousand features, 

which necessitates automation of this step. Algorithms for feature selection software should be 

able to differentiate between a chromatographic peak and noise.  Although seemingly simple, 

this task is usually performed imperfectly by all current software and thus requires manual 

inspection of the data. The second step is to align all features that are in common between 

different samples to allow for quantitative comparison in subsequent steps. The alignment step 

is a crucial issue, especially in HILIC-LC-MS, because of retention time shifts that occur through 

different samples. Shifts in retention time may arise from degradation of the column, change in 

mobile phase pH and sample carry over.  The third step is to quantitate the data and measure 

the metabolites’ relative abundances in different sample groups.  Then, various methods of 

statistical analysis can be used to determine which metabolites differ significantly between 

sample groups.  

  The difference in features across groups can be visualized using different plots, including 

scatter plots, heat maps, volcano plots and cloud plots (Figure ‎1-7), with the later being the most 

comprehensive (41). Several software programs have been developed by many groups to 

facilitate and automate these steps, such as XCMS (42), MathDAMP, Metalign, and MZmine (5). 

Major mass spectrometer vendors have also developed software compatible with data from 

their systems to help in determination of differential abundance of metabolites and other 

biomarkers; some of these software packages include Mass Profiler by Agilent, SIEVE from 

Thermo Scientific, Marker View from Ab Sciex and MarkerLynx from Waters.  The next step is to 

search the accurate mass of features of interest against different metabolite databases. 

Available metabolomics databases include:  Metabolite link (METLIN), human metabolome data 
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base (HMDB), Kyoto encyclopedia of genes and genomes (KEGG), Mass bank, Madison 

metabolomics consortium database (MMCD) and lipid maps which is specialized in lipids (42). 

The final step is to confirm the identity of these database hits, when possible, by matching the 

retention time of the metabolite with that of a standard, and by using MS/MS.  When a 

metabolite standard is not available, an alternative approach is to expose living cells to a 

labeled precursor of this metabolite, such that the cells will generate a new labeled standard 

that can confirm the identity of this metabolite (this process is described in detail later in the 

dissertation). The unique identification of metabolites remains a challenging step in some 

cases, although identification of lipids has recently been improved due to the availability of in-

silco MS/MS fragmentation data contained within the “Lipid Blast” database (43). 

 

Figure ‎1-7: data visualization tools in metabolomics. 

FLUX ANALYSIS 

  The previously-described directed and undirected metabolomics approaches enable 

quantitation of any increase or decrease in the abundance of specific metabolites within a 

biological system.  These data clearly may provide useful information regarding the possible up-

regulation or down-regulation of particular metabolic pathways. However, not every possible 

alteration in a metabolic pathway will necessarily be reflected as absolute changes in 

metabolite levels.  It is possible for certain metabolic pathways to be differentially regulated 

between sample groups, but yet the absolute levels of metabolites remain constant because of 

different compensatory mechanisms.  To reveal the true alteration in the metabolic pathways 

in such a scenario would require another level of metabolomics investigation.  One excellent 

option would be to utilize metabolic tracers to investigate metabolic flux in those pathways. 



 

13 
 

The resulting technique, termed metabolic flux analysis, or MFA, is a key method to analyze and 

quantify in vivo rates of metabolic reactions (44).  Different stable-isotope-labeled metabolic 

tracers can be used that include 13C , 2H, 15N, and 18O (45). In many cases 2H readily exchanges 

with protons from water and other molecules; hence incorporation into the metabolome is not 

stable compared to 13C. Both 13C and 2H can be used to assess flux in nearly all metabolites, 

while 15N is mainly used for flux monitoring in nucleic acid and proteins, and 18O is less 

commonly used.   Because of the complexity of metabolic networks, mathematical modeling is 

needed to analyze flux in multiple metabolic pathways; the use of such techniques has been 

described in detail elsewhere (44). Mass isotopomer analysis is different from MFA, since the 

former does not measure metabolic flux or rate; it measures the distribution of carbons in 

specific metabolites. Using a metabolic tracer, mass isotopomer analysis enables the 

measurement of metabolites’ isotopic enrichment. The isotope enrichment data provide useful 

information about pathways being utilized by metabolic tracers. Application of metabolic tracer 

to investigate metabolic pathways is described in chapter 2, 3, 4 and 5.  

METABOLOMICS APPLICATIONS 

  By applying the analytical and data analysis tools just described, metabolomics has been 

successfully implemented in a wide range of challenges in various fields of biological research. 

Metabolomics has been applied to study metabolism in plants, animals and microorganisms. In 

plant science, metabolomics has been used to understand gene function and molecular 

breeding and to discover new phytochemicals that can be used for different purposes like 

pharmaceuticals (46). Metabolomics of biofluids and tissues from living animals has 

demonstrated successful identification of pathways involved in animal development and also in 

research involving disease and drug discovery (46). Microbial metabolomics is also currently of 

great interest, both because of potential industrial applications such as biofuel generation (47, 

48), and due to the increasing interest in gut flora (termed the “microbiome”) (49).  A human 

being harbors ~ 100 trillion bacterial cells in his or her gut, a quantity 10 times greater than that 

of human cells in the same organism.  This enormous amount of bacteria metabolizes food 

products and generates metabolites that participate in the development of several diseases and 

other phenotypes. Some cardiovascular diseases have recently been linked to 



 

14 
 

phosphatidylcholine (50, 51) and carnitine (52) metabolism by gut flora. Similar association of 

gut flora to diabetes and obesity has also been demonstrated (53-59), suggesting that flora 

modulation may provide an alternative approach for treatment of these complex diseases.  

Metabolomics has also been applied to the study of a variety of other diseases including cancer, 

psychological disorders, obesity and type 2 diabetes mellitus (T2DM) (46).  The latter two 

conditions will be the primary focus of the metabolomics-based research presented in 

remainder of this dissertation.  

APPLICATION OF METABOLOMICS TO THE STUDY OF TYPE 2 DIABETES  

Background on diabetes: 

  Diabetes is a chronic disease that is characterized by high blood glucose levels 

(hyperglycemia), which is caused by relative deficiency of insulin hormone. Diabetes is classified 

as type 1 or type 2 based on the etiology of the insulin deficiency.  In type 1 or juvenile 

diabetes, an autoimmune response destroys β-cells located in the pancreas, usually in 

childhood, which causes a complete loss of insulin secretion (Figure ‎1-8). In type 2, insulin 

resistance develops in the skeletal muscle and other organs, which leads to compensatory 

increase of insulin secretion into the blood by β- cells, resulting in hyperinsulinemia (Figure ‎1-8).    

Continuous increase of insulin secretion ultimately leads to the loss of β- cell function and the 

development of type 2 diabetes (60). The prevalence of diabetes in 2008 was estimated to be 

347 million people worldwide (61, 62), which is ~ 5% of the estimated population of the earth. 

In the US alone, 25.8 million people were diagnosed with diabetes in 2011, representing 8.3 % 

of the US population (63). About 90 % of diabetic patients are diagnosed with type 2 diabetes 

(64). 

   The main complications of hyperglycermia are associated with its long term effects on 

other organs, which include micro and macro vascular complications that can be fatal (Figure 

‎1-8). It is important to highlight that type 2 diabetes is a metabolic disorder, in which high 

glucose and high fatty acids, acting in concert with certain genetic factors, lead to β- cell toxicity 

and the development of the full range of medical complications associated with type 2 diabetes 

(60). Because of the high prevalence of type 2 diabetes, and the metabolic nature of the 
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disease, metabolomics provides a particularly useful strategy to gain insight into the molecular 

factors that contribute to this disease. 

            

 

Figure ‎1-8: diagram for diabetes etiology and consequences, adapted from (60) 

Metabolomics as a method to study type 2 diabetes 

  During the last decade, the growing field of metabolomics has offered new insights into 

the pathology of diabetes as well as biomarkers that can predict disease onset (64).  Several 

biomarkers that are related to carbohydrate, lipid, amino acid, choline and bile acid metabolism 

have been shown to be up- or down-regulated in T2DM patients and have been thoroughly  

reviewed elsewhere (64, 65). Among the most common biomarkers are changes in amino acid 

profiles of diabatic patients. Branched chain amino acids (leucine, isoleucine and valine), 
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phenylalanine and tyrosine showed elevation in individuals susceptible to T2DM (66), and were 

detectable as elevated as early as 12 years before the onset of disease (67) . Lower levels of 

glycine (68), glutamate, and theronine were seen in T2D (66, 69). These data suggest the 

potential impact of amino acids on insulin action and glucose metabolism (64). Metabolites in 

lipid metabolism pathways also represent major biomarkers in diabetic patients.  Acyl-

carnitines have been shown to accumulate in the plasma of obese and diabetic patients, 

indicating a defect in fatty acid oxidation (70), together with accumulation of fatty acids and 

some forms of phosphatidylcholines (68).     

Animal models and β- cell lines 

  Several animal models have been developed to study T2DM development and 

treatment. Understanding and treating the disease in human subjects is the ultimate goal, but 

the development of the disease and its complication in humans takes years. This long time and 

high cost for assessing intervention outcome in the disease progression, makes animal models 

of T2DM a very attractive option. Animal models develop the disease and its complications in 

shorter time spans and are more cost efficient (71). Rodent animal models, especially mice and 

rats, have been widely used because of the complete sequencing of their genome, the ease of 

genetic manipulation, their relatively short breeding spans, and the ability to perform 

physiological and invasive testing (71). Mouse models include the obese (ob/ob) mice and the 

diabetic (db/db) mice, which have a knockout of the gene responsible for production of leptin 

or leptin receptor, respectively (71, 72). The most known rat model of T2DM is the ZDF rat, 

which has a similar mutation to leptin receptor as the (db/db) mouse. 

  In addition to studies involving live animals, additional insight can be gained through 

studies of specific, isolated tissues involved in the development of T2DM.  Of particular interest 

is the interaction of glucose and other nutrients on insulin secretion in pancreatic β- cells.   

Therefore, studies using islets obtained from human volunteers or animal models are of 

substantial interest.   However, isolated islets have several issues. The first is that non-β-cells 

contribute to ~ 40% of the mass of islets, and these cells which have different signaling 

mechanisms which may complicate understanding of β- cells action. Also, the physical isolation 
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of islets may result in retention of some pancreatic exocrine tissue, which will be a variable in 

quantity from one sample group to another.  Also, there is a risk of necrosis of inner cells in 

islets after isolation and culture because of the limited supply of O2 and nutrients to those cells 

(73). Beside those issues, since islets are very small microorgans and only limited quantities can 

be practically obtained for experimentation, performing metabolomics on islets is limited by 

low levels of metabolites and the need for relatively large number of islets per sample group to 

overcome the variation of sizes between islets. 

  These challenges led to the development of immortalized β- cell lines derived from 

rodent pancreatic tumors.  Studies of these cell lines has been shown to be very effective in 

understanding fuel signaling in β-cells (73). The cell lines have the advantage of producing 

homogenous, pure β-cells.  Limitations in quantities of cells are no longer a concern, as cells can 

be cultured in vitro until the needed amounts are obtained. For metabolomics, β-cell lines have 

the advantage that they can be cultured in a consistent manner, providing replicates with 

nearly equal cell numbers. The most widely used rat-derived β-cell lines are INS-1 cells, while 

the widely used mouse-derived β-cell lines are MIN-6 cells. Human β-cell lines have been 

recently described (74-76) but their availability are limited and their usefulness for 

metabolomics studies are yet to be investigated (73).  

  In spite of the utility of β-cell lines to gain understanding of the mechanism of insulin 

secretion, β-cell toxicity is still thought to be better studied using islets.  Due to their derivation 

from cancerous tumors, β-cell lines may have a compensatory mechanism that can relieve 

lipotoxicity that might not be available in normal islets. Nevertheless, metabolomics has 

provided valuable information for understanding the mechanism of insulin secretion, which is 

described in the following sections.     

Glucose stimulated insulin secretion  

  Glucose stimulates β- cells to secrete insulin in a biphasic manner. The first phase is 

called the KATP dependent pathway and it starts a few minutes after glucose stimulation and 

subsequently declines. It is considered ATP-dependent because the metabolism of increased 

concentrations of glucose generates more ATP, increasing the ATP/ADP ratio which leads to the 
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closure of KATP channels and cell depolarization. Voltage dependent calcium channels open 

subsequently and increase calcium influx into the cells, which causes insulin exocytosis (77, 78). 

Second-phase insulin secretion acts in synergy with the first phase, starting a few minutes after 

the first phase, and reaches its maximum at ~ 30-40 minutes after glucose stimulation (78).  It is 

called the KATP-independent pathway, since glucose metabolism generates several other 

coupling signals that facilitate insulin exocytosis (77). Although not well understood, some 

coupling factors for this pathway are GTP, NADPH, LC-CoA, glycerolipids, glutamate, PEP, 

malonyl-CoA and others (73, 77, 78) (Figure ‎1-9). 

                            

Figure ‎1-9: glucose stimulated insulin secretion proposed pathway, adapted from (73) 

  Although glucose is the most potent insulin secretagogue, some amino acids and other 

nutrients are also known to stimulate insulin secretion alone or in combination with each other, 

including leucine, glutamine, BCH, ketoisocaproate (KIC), methyl ester of succinate (MMS), 

acetoacetate, β-hydroxybutarate and  fatty acids (79, 80). The main theory behind the activity 

of these different secretagogues is their ability to increase TCA cycle activity, which will increase 

ATP as well as different metabolic intermediates. The increase in both acetyl-CoA and 

oxaloacetate is required to ensure that the TCA cycle will be activated, and generates citric acid 

(Figure ‎1-10). Thus the function of those secretagogues (81) can be represented by the 

simplified diagram in (Figure ‎1-10). 
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Figure ‎1-10: simplified pathway for secretagogues mechanism of insulin secretion. 

  Leucine activates glutamate dehydrogenase, increasing α-ketoglutarate and 

consequently oxaloacetate. At the same time it is metabolized into acetyl-CoA, therefore it can 

stimulate insulin secretion on its own. KIC is metabolized into leucine through a reaction that 

converts glutamine into glutamate, increasing α-ketoglutarate. It then acts as leucine, activating 

glutamate dehydrogenase and increasing acetyl-CoA.  Therefore it can stimulate insulin 

secretion independently, and has been shown to be even more potent than leucine (81). 

   BCH is a non-metabolizable leucine analog, which only activates glutamate 

dehydrogenase, increasing α-ketoglutarate. Therefore, BHC is a weaker secretagogue than 

leucine (81). Glutamine can increase the level of α-ketoglutarate and hence oxaloacetate, but it 

cannot stimulate insulin secretion on its own. Addition of leucine to glutamine will provide the 

acetyl-CoA necessary for TCA cycle activation and the stimulation of insulin secretion (81). Β-

hydroxybutare is metabolized into acetyl-CoA, but cannot stimulate insulin secretion on its 

own. Addition of methyl ester succinate (MMS) will ensure the availability of oxaloacetate 

necessary for TCA cycle activation and the stimulation of insulin secretion (79).Fatty acids 

cannot stimulate insulin secretion on their own, but can augment GSIS by the activation of the 

glycerolipid cycle and by providing glycerolipid intermediates (73) (Figure ‎1-9) 
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DISSERTATION OVERVIEW 

  The goal of the research presented in this dissertation is to enhance understanding of 

the interaction of glucose and fatty acids to modulate insulin secretion. Understanding of 

glucose and fatty acid interaction requires an analytical method(s) that can probe glucose and 

fatty acid metabolism inside β- cell. Application of stable isotope labeling is important to 

monitor the extent of this interaction. Thus, chapter 2 describes method development for lipid 

analysis, while the appendix shows the application of different metabolic tracers to probe 

metabolic pathways involved in insulin secretion. We applied those methods in chapter 3 to 

understand how glucose stimulates insulin secretion and to probe important pathways that are 

involved in GSIS. Chapter 4 describes the mechanism of fatty acid can potentiate GSIS and 

explains how fatty acid is metabolized in β- cell and how this metabolism can affect glucose 

metabolism. Chapter 4 also describes the role of free fatty acid receptor (FFAR/GPR40) in 

controlling glucose and fatty acid metabolism. Chapter 5 describes the effect of starvation on β- 

cells using a starvation/exercise mimetic drug. Finally, Chapter 6 describes some future 

research plans, which involve studying the chronic toxicity of glucose and fatty acids,  

understanding how other secretagogues can stimulate insulin secretion and the application of 

metabolomics to human β- cell lines that were recently established.      

 

Figure ‎1-11: dissertation outline 
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Chapter 2.  METHOD DEVELOPMENT FOR LIPID ANALYSIS. 

INTRODUCTION 

The importance of lipids in insulin secretion. Lipids are a class of biomolecules that are diverse 

in structure and function. Eukaryotic cells can have over a dozen classes of lipids, where each class can 

have hundreds of individual molecular species (1).  Lipids have multiple functions; they not only form 

the lipid bilayer and cellular matrix but also act as storage for energy sources and provide signaling 

molecules (1).  

Lipid signals are of great important in insulin secretion and β- cell function. Glucose stimulated insulin 

secretion is known to be mediated through glucose metabolism which stimulates the generation of lipid 

signals that facilitate insulin exocytosis (2). Short term exposure of β- cells to fatty acid will generate 

lipid signals that contribute to the amplification of glucose stimulated insulin secretion (3, 4). On the 

other hand, long term exposure to fatty acid can contribute to β- cell dysfunction and impairment of 

insulin secretion (5-7). 

Glycerolipids and glycerophospholipids are the most abundant lipid classes in cells.  They can be 

thought of as the linkage between glucose and fatty acid. Their synthesis starts by the condensation 

between glycerol-3-phosphate and acyl-CoA to form lysophophatidic acid (LPA), which then forms other 

glycerolipids/glycerophospholipids (figure 1). Some glycerolipids have been suggested to act as a signal 

for insulin secretion (5). Ceramides, on the other hand, are part of the sphingolipid class, and are known 

to induce β- cell apoptosis (8). Fatty acid amides are a novel class of lipids that were recently discovered 

in neuronal cells and involve the linkage between a fatty acid and an amino acid like glycine and taurine 

(9). N-palmitoyl glycine and acyl-taurines were recently shown to increase calcium flux in neuronal cells 

(10) and β- cells (11) respectively.  Acyl-carnitines are intermediates in the fatty acid oxidation pathway 

and are known to be a marker for insulin resistance and type 2 diabetes (12). The balance between fatty 

acid oxidation and esterification into lipids is crucial for insulin secretion (13) . The structure and the 

metabolic pathways for lipid classes of interest to β- cell signaling and GSIS are shown in figures 1 and 2.    
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Figure ‎2-1: Chemical structure of different lipids classes 

 

Figure ‎2-2: Metabolic pathways for different lipids classes. Red lipids can be detected in negative mode ionization mode; 
blue lipids can be detected in the positive mode ionization mode. 

 

Separation and detection of non polar metabolites. The analysis and detection of lipids has 

improved dramatically in recent decades.  In the 1980s, lipid classes were mainly separated by thin layer 

chromatography (TLC) followed by the determination of the whole total fatty acid composition using gas 

chromatography coupled to MS. This method was widely applied but it suffered from low throughput 

and the need of high sample quantity. It also does not differentiate phospholipid species within each 

spot (14). In the 2000s, global profiling of lipids using the total extract became feasible using high 
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resolution mass spectrometry (1). The application of mass spectrometry increased throughput of lipid 

analysis and provided a wealth of detailed information about different lipid species. Global profiling of 

lipids can be performed in both negative and positive mode ESI-MS, with different classes of lipids 

appearing in each ion mode depending on their ionizable head group (figure 2).  

Although lipid extracts can be injected directly into the MS using the shotgun lipids approach 

(15), this technique suffers from high ion suppression of less abundant lipids and the difficulty of lipid 

identification. Performing flux experiments using labeled isotope nutrients further increases the sample 

complexity because it increases the number of lipids isotopes and requires a significant separation of 

lipid species to avoid overlap of masses.  The two main methods for lipid separation are normal phase LC 

and reversed phase LC. Normal phase LC separates lipids classes based on their head group, while 

reversed phase LC separates based on the chain length of the fatty acid. Hydrophilic interaction liquid 

chromatography (HILIC) provides similar separation characteristics to normal phase chromatography, 

but with more convenient coupling to a mass spectrometer, especially when ESI is used (16) (figure 3). 

Different lipid classes were successfully separated using HILIC (17-19); however, it yields poor peak 

shape for many lipid classes and certain classes co-elute, which complicates identification. Reversed 

phase separation was successfully implemented for global lipid profiling (20, 21); however, long 

gradients (more than 60 minutes) were required to obtain good separation and peak shape. Two 

dimensional LC approach was used to separate lipids classes first using a normal phase column (22) or by 

solid phase extraction (21), followed by fractionation and injection into a RPC column. Although this 

approach allowed the identification of low abundant species, like phosphatidyl serine, it suffers from 

low throughput and complexity of data analysis. 

Simultaneous extraction of polar and non polar metabolites. Polar and non polar metabolites 

are known to modulate insulin secretion (see chapter 1 for details), thus analyzing those diverse classes 

are equally important in understanding insulin secretion. Undirected metabolomics also requires an 

analysis of as many metabolites as possible, so it requires unbiased metabolite extraction and detection 

methods.  

The traditional methods for lipid extraction from biological tissues use a two-layer solvent method that 

separates the lipid rich organic phase from the protein and salt rich aqueous phase. Methanol, 

chloroform and methyl tert- butyl ether (MTBE) are the most common organic solvents used in these 

two phase extraction methods (23).   These extraction methods are not designed for the extraction of 

polar metabolites and have low throughput since they involve phase separation, drying and 
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reconstitution. Recent work tried to recover polar metabolites from the aqueous layer to allow for the 

simultaneous extraction of both polar metabolites and lipids (24). This method suffered from low 

throughput because of multistep extraction, phase separation and drying. Evaporation of the aqueous 

layer was not practical because of the high level of water and proteins in this layer. Relatively high 

temperature and long time used in the aqueous layer evaporation as well as the increased levels of 

proteins and enzyme activity, might lead to degradation of some metabolites. Probably these 

complications led to the reporting of acyl carnitines and fatty acids as a representative of the polar 

fraction, while nucleotides and metabolites in the central carbon metabolism pathway were ignored.  A 

single-layer extraction using 100% methanol was reported to achieve similar lipid recovery to the two 

layer traditional methods (25), however the ability of this method to recover or analyze polar 

metabolites extraction was not addressed.  Recent work described undirected metabolomics platform 

using single extraction solvent for polar and non polar metabolites (26). However, the lipids reported 

using the reversed phase analysis were mainly polar-lipids, such as acyl-amides and carnitines, and no 

attempt was made to analyze other moderately or highly non polar lipids such as most glycerolipids.  

 

   

                           

 

Figure ‎2-3: lipid separation mechanism using HILIC or RPC chromatography 

 

To the best of our knowledge there is no comprehensive study that described simultaneous 

extraction of polar metabolites such as glycolysis and TCA cycle together with non polar metabolites 

such as glycerolipids, ceramides and acylamides. Also, there is no study that has evaluated different 
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chromatographic conditions such as column stationary phase, temperature and pH on lipid separation 

and detection. Most methods reported using C18 column, with acidic or uncontrolled mobile phase pH 

and a set temperature, without reporting the reason of those adjusted parameters. 

 Thus we decided to develop and optimize an LC-MS based platform that can be used for 

extracting and analyzing lipids and polar metabolites from adherent cell lines. Lipids of interest were 

those classes that are known to be involved in insulin secretion such as glycerolipids, acyl- carnitines, 

ceramides and acyl amides. We evaluated different methods for lipid separation, mainly using a HILIC 

column (amino propyl) that is used for polar metabolites analysis as well as several reversed phase 

columns (RPC) with different stationary phases (C18, C8 and C30).  HILIC separation showed a superior 

performance compared to RPC in phosphatidyl serine class separation, while C18-RPC columns showed 

improved separation for most other lipids classes. C18 showed better separation efficiency than C8 for 

phosphatidic acid and tripalmitin. C30 showed higher resolution than C18 in separating positional 

isomer lipids, which could be useful if such resolution is important to biological interpretation, but it 

otherwise complicates metabolite profiling. Then we decided to further optimize a C18 separation 

method by evaluating different operating conditions including temperature and mobile phase pH and 

their effect on lipids separation and stability. Optimizing the separation method was followed by 

screening different extraction solvents for lipid extraction efficiency including MTBE or combinations of 

methanol and chloroform. Single layer extraction solvent was as efficient as the traditionally used 2 

layer extraction solvents in extracting most lipids, with the exception of highly non-polar lipids.  
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MATERIALS AND METHODS: 

Materials.  INS-1 cells (832/3) were kindly provided by Dr. Christopher Newgard (Sarah W. Stedman 

Nutrition and Metabolism Center, Duke University, Durham, NC).  All chemicals were purchased form 

Sigma-Aldrich (St. Louis, MO) unless otherwise noted. RPMI media, fetal bovine serum, 4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), and penicillin-streptomycin were purchased 

from Invitrogen Corp, (Carlsbad, CA).  

Cell culture.INS-1 832/13 cells were cultured in RPMI supplemented with 2 mM glutamine, 1 mM 

sodium pyruvate, 10% FBS, 10 mM HEPES, 100 U/mL penicillin, 100 µg/mL streptomycin, 250 ng/mL 

amphotericin B, and 50 µM β-mercaptoethanol.  Cells were plated at a density of ~14 x 103 cells/cm2 

and grown in 6 cm culture dishes at 37 °C and 5% CO2 in a humidified atmosphere to ~70% confluence. 

Krebs-Ringer-HEPES buffer (KRHB) was prepared containing  20 mM HEPES, 118 mM NaCl, 5.4 mM KCl, 

2.4 mM CaCl2, 1.2 mM MgSO4, and 1.2 mM KH2PO4 and was adjusted to pH 7.4 with NaOH.  Cells were 

incubated with 500 uM palmitic acid in KRHB for 45 minutes before being quenched. Each cell plate was 

extracted with 400 ul x two times of 8:1:1 methanol: chloroform: water. All extracts were pooled 

together to form a pooled sample for evaluation of different columns, temperatures and pH values. For 

comparing different extraction solvents, equal volumes of methanol were added to the cell plates and 

cells were transferred to a glass tube. Two parts of chloroform were added to the methanol extract for 

the Folch method, or two parts of MTBE were added for the MTBE method.  

LC-MS. Reversed phase columns (RPC) were tested in pairs depending on their particle size:  Capcell, 

C18 column vs. Thermo, C-30 column (both are 3 µm x 150 mm x 2 mm) and Waters C18 column vs 

Waters C-8 column (both are 2.5 µm x 150 mm x 2 mm). Luna NH2 (3 µm x 150 mm x 2 mm) was tested 

for the HILIC mode of separation. Solvents for reversed phase separation were as follows: A is (40% 

water, 40% Acetonitrile and 20 % methanol) and B is (80% isopropanol and 20% methanol). Both 

solvents are supplemented with 0.1 % formic acid and 0.028% ammonium hydroxide (MS grade) unless 

otherwise mentioned in the pH adjustment. The gradient for RPC started at 0% B and increased to 60% B 

in 10 minutes, then increased to 80% in 40 minutes, then increased to 100%B in 5 minutes, than held at 

100% B for 10 minutes before going back to 0 % B in 0.1 minute and holding for 15 minutes. 

Temperature was kept at 35°C for the whole run unless otherwise mentioned. Detection was performed 

on an Agilent Technologies LC/MSD TOF using a dual electrospray ionization (ESI) source in both 

negative and positive ion modes.  
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RESULTS AND DISCUSSION: 

Extract from β- cell line (INS-1) cells was pooled and analyzed using LC-MS. Different columns 

were tested including amino-propyl HILIC, C18, C8 and C30 reversed phase columns. Different 

chromatographic conditions such as temperature and pH were evaluated to identify the best operating 

condition for analyzing different lipid classes.  

Method development for lipid analysis 

HILIC separation of lipids 

 Lipids were separated using a Phenomenex luna NH2 HILIC column, which is the same column 

used for polar metabolite analysis (26-28). Phospholipid classes were separated based on the polar 

group as described in the introduction. Most lipid classes such as phosphatidylethanolamine (PE) or 

phosphatidylglycerol (PG) were unretained and eluted very early in the chromatogram with bad peak 

shape. An exception for this was the  phosphatidylserine (PS) and phsophatidylinositol (PI) lipid classes 

which were more retained on the HILIC column than other lipids and yielded good peak shape (Figure 

‎2-4).   

 

Figure ‎2-4: Chromatogram showing different lipid classes separation using HILIC column. 
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Lipid species plotted here are (34:1), which are usually the most abundant lipid species in all 

classes. These lipid species are representative for the other lipids in their class, which will elute at nearly 

the same retention time with very similar peak shape. The ability to separate PS lipids from other lipids 

using HILIC provides several advantages. First, it is a low abundant lipid that will strongly benefit from its 

separation away from highly abundant lipids like PE or PC. Second, PS can be only synthesized from PC 

and PE (Figure ‎2-2), which are very large pools. The type of PS species formed from PE and PC cannot be 

anticipated, unlike the rest of glycerolipids species, since fatty acids are not directly connected to PS. 

Third, it can be analyzed simultaneously with polar metabolites without the need for a separate 

separation method.  

Reversed phase separation 

To investigate a better separation technique for the rest of lipid classes, we tested several 

reversed phase columns including C8, C18 and C30. The same injection volume of pooled sample was 

injected on different columns using the same LC gradient.  Peak shape for different lipid species was the 

main factor in giving cause to prefer one stationary phase than the other. The m/z values for 

representative moieties from each lipid class were used to generate extracted ion chromatograms and 

their peak shapes were investigated. INS-1 cells were incubated with palmitic acid, thus representative 

lipid species shown here mainly contain the palmitate moiety. 

C18-vs C8 column 

Xbridge BEH C18 and C8 columns (2.5 µm x 150 mm and 2 mm) were compared for their 

efficiency in lipid separation. Because the same LC gradient was applied for both columns, lipids eluted 

earlier on C8 compared to C18 (Figure ‎2-5A and B). Different lipid classes showed comparable peak 

shape between both columns (Figure ‎2-5C and D), however some lipids of interest like dipalmitoyl 

phosphatidic acid (Figure ‎2-5E and F), and tripalmitin (Figure ‎2-5G and H) showed poor peak shape on 

the C8 column that was consistent in several replicates. This might be attributable to the shorter chain 

length of C8 compared to C18, which might allow more direct (and undesirable) interaction of the lipid 

with the surface of with the silica particles. 
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Figure ‎2-5: Chromatograms comparing C8 versus C18 column in separating different lipids species.  

 

C18 and C30 columns 

To further compare different reversed phase stationary phases, a C18 column was compared 

with a C30 column with the same dimension (3 µm x 150 mm and 2 mm).  As expected, the longer 

hydrophobic chains of C30 column increased the retention time for most lipids (Figure ‎2-6). C30 offered 

better resolution than C18 for many lipid species and allowed the separation of lipids structural isomers 

(Figure ‎2-6C-E). This is in agreement with the manufacturer brochures and other data that support the 

superiority of this stationary phase in separating lipid isomers (29). Although isomer separation is very 

useful for lipid identification, it provides more complexity to a global metabolomics study. The goal of 

global lipid profiling is to separate all lipid classes that range from highly polar such as acyl amides to the 

most non polar such as triglycerides. The outcome of using the C30 column would be a distorted peak 

shape as shown in (Figure ‎2-6C-E), unless the LC method was optimized to resolve those structural 

isomers. A tailored method to separate one lipid isomer might not be suitable for another lipid, and 
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would result in a time consuming and impractical strategy for global lipid profiling. Bad peak shape will 

also complicate undirected analysis, where automated feature or peak selection is performed by 

software. Having shoulders in a peak will result in more errors in peak selection and improper 

quantitation.  

   

Figure ‎2-6: Chromatograms comparing C8 versus C18 columns in separating different lipid species 

As a conclusion, we showed a brief comparison between different reversed phase stationary 

phases like C18, C8 and C30 and their capabilities for separating different classes of lipids. C18 reversed 

phase stationary phase represents a reasonable-compromise chain length that enabled good separation 

of lipid classes with varying polarities. Further optimization for the chromatography conditions like pH 

and temperature using a C18 column are described in the next sections.  

Effect of temperature on lipid separation and detection using C18 column 

To investigate the effect of temperature on lipids separation, we examined two factors which 

are peak shape and lipid stability. The peak shape factor was determined by the full width at half 

maximum (FWHM) value for different lipids, while the stability of lipids was represented by the peak 

area of lipids at different temperatures. Pooled samples were injected on a C18 column at different 

column temperatures (20, 35, 45 and 60 °C).   The FWHM was plotted for each metabolite at those 
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temperatures (figure 7 for negative mode lipids and figure 8 for positive mode lipids). Lower 

temperature increased peak width for most investigated lipids (figures 7, 8, 9). 

        

Figure ‎2-7: Effect of temperature on the peak width of lipids ionized on negative mode MS. 

 

 

Figure ‎2-8: Effect of temperature on the peak width of lipids ionized on positive mode MS.  
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The decrease in peak width, which is also a measure of column efficiency, can be attributed to several 

factors based on the Van deemter equation :  

    
 

 
       

          
   

 
 

   
 

  
    

Where H is plate height, λ is particle shape (with regard to the packing), dp is particle diameter, 

G, ω, and R are constants, Dm is the diffusion coefficient of the mobile phase. Based on this equation, 

increasing temperature will increase the diffusion coefficient of the mobile phase which will increase the 

B term.  This is not very important in the case of high flow rate, but it will decrease the C term which will 

decrease the plate height, causing the observed improvement in peak shape and increase in column 

efficiency.  Also, at high temperature, the kinetics of secondary interactions, which are often responsible 

for peak tailing are probably accelerated, thus reducing the tailing (30). Beside the improvement of peak 

shape, increasing temperature decreased the retention time of lipids (figure 9). 

 

Figure ‎2-9: Chromatogram showing the effect of temperature on retention time and peak shape of several lipid classes. 

 

http://en.wikipedia.org/wiki/Diffusion_coefficient
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This decrease in retention time can be explained by Van’t Hoff equation (2):  

    
  

  
          (2) 

       
  

     
 

  

    
       (2) 

Where K or k’ are the retention factor or the capacity factor respectively, G is the Gibbs free 

energy, R is the universal gas constant, T is the absolute temperature, H and S are the enthalpy and the 

entropy respectively and  Φ is the phase ratio of the system. This equation predicts that the retention 

factor is inversely proportional to temperature. This reduction in retention time is important since it 

improves the resolution, allows shortening the analytical run time and increasing the analysis 

throughput.  

The previous results showed that higher temperature was useful to obtain a good peak shape 

and faster elution of lipids; however the effect of increasing temperature on lipids stability should be 

investigated. Several lipids were quantified and representative lipids were plotted (figure 10). Lower 

temperatures caused a great variation in hydrophobic lipids, like triglycerides and DAG. This can be 

attributed to the incomplete elution of those trigylcerides at low temperatures. On the other hand, high 

temperatures like 60°C decreased the signal for the polar lyso form of lipids like LPC and LPE. This 

reduction in signal is presumably because of increased degradation of those labile species, however 

further investigation is needed for ruling out any possible reason for this decreased signal. Therefore the 

optimum temperature is ~ 45° C, which will achieve good resolution and peak shape without reducing 

the signal of labile lipids. 
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Figure ‎2-10: The effect of temperature on lipid quantification. 

Effect of pH on lipid separation and detection using C18 column 

To further optimize the LC-MS method for lipid separation and detection, the effect of changing 

mobile phase pH was investigated. Ammonium hydroxide percentage in the mobile phase (A and B) was 

increased from 0.028 % to 0.2 or 0.4 %, achieving approximate pH values of 2, 4 and 8 respectively 

(figure 11C). The pH was measured in the aqueous fraction of the mobile phase before the addition of 

any organic solvent. 

Increasing the mobile phase pH reduced the signal for many lipids like sphingosine 1-phosphate and 

several lysophospholipids and distorted the peak shape of lipid species like LPA (figure 11).  
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Figure ‎2-11: The effect of pH on lipids intensity. (A) Lipids ionized in negative mode. (B) Lipids ionized in positive mode. (C) 
pH titration curve (D) pH effect on LPA separation 

On the other hand, some lipid classes, mainly those that contain several hydroxyl groups, did 

show enhanced ionization with basic pH (figure 13) in the negative ionization mode. This was true for 

acylamides, phosphatidylglycerol and phosphatidyl inositol. 
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Figure ‎2-12:  Showing the enhancement of ionization for some lipid classes under basic pH.  

In conclusion, the choice of mobile phase temperature and pH should be carefully considered 

since both affect lipid separation and detection. A higher column temperature helped to improve the 

peak shape of lipids and shorten the LC run. However, high temperatures such as 60°C could lead to 

degradation of labile lipids such as the lyso-forms, and thus a moderate temperature should be used. 

Regarding the mobile phase pH, acidic pH provides good peak shape for all lipid classes and good signal 

intensity for the majority of lipids, thus acidic pH is the mainly used pH in most lipidomics analysis (21, 

31, 32).  However, the effect of this acidic pH in suppressing the ionization of some lipids classes such as 

PG and acylamides was not reported before. The later classes could benefit from increasing mobile 

phase pH, which will enhance their ionization but at the expense of losing some lipids like LPA. For 

global metabolomics purposes, acidic pH will be the pH of choice, unless a targeted analysis for some 

lipid classes was the goal, then the best pH that provides higher signal should be chosen.  
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Lipids extraction 

Lipids have been mainly extracted from biological tissues with a two layer method that involves 

chloroform or MTBE; however, this extraction method is not designed for the extraction of polar 

metabolites and has low throughput because it involves phase separation, drying and reconstitution. 

The goal was to investigate if a single extraction solvent for both polar and lipids could achieve 

comparable results to the specialized lipid extraction methods. The Folch method that involves 2 parts 

of chloroform and 1 part of methanol was compared to the MTBE method that replaces chloroform with 

MTBE solvent. Both methods gave comparable results (figure 13) in agreement with other published 

data (23). This was followed by comparing the MTBE method to the 1 layer extraction solvent originally 

used for polar metabolites (8:1:1 methanol: chloroform: water) (33) . Lipids were plotted in order of 

elution time; the one layer extraction solvent provided comparable results to the MTBE method in most 

lipid classes. The one layer solvent showed better results in polar lipids like LPE and S1P; on the other 

hand, hydrophobic lipids like TG showed lower extraction efficiency with this one layer extraction 

solvent. These results demonstrate the efficiency of this one layer extraction solvent for global 

metabolites extraction for adherent cells. The results also highlight the limitation of this method for the 

extraction of highly non-polar lipids.   

The ability of one layer extraction solvent to extract both polar and most non-polar metabolites 

is useful for undirected analysis and also for monitoring nutrients flux in different pathways. Undirected 

analysis requires unbiased extraction solvent that can extract most metabolites, ranging from highly 

polar to non polar metabolites. Any bias in extraction will lead to incomplete undirected metabolomics 

approach. This unbiased extraction approach was also adopted by other groups, though different 

extraction solvent was used for undirected metabolomics (26). Having one extraction solvent is 

important in during stable isotopic flux monitoring, because this will allow direct monitoring of the 

utilization of metabolites in several pathways and provide direct linkage between them. Performing the 

experiment twice for different extraction solvents might lead to incorrect replication of the same 

experiment besides being more time and money consuming.  
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Figure ‎2-13: Comparing the MTBE with Folch method for lipid extraction 

 

Figure ‎2-14: Comparing the MTBE with 8:1:1 method for lipid extraction 
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CONCLUSION  

We developed a method for comprehensive polar and non polar metabolite analysis from 

adherent cell lines. One single extraction step provided good coverage of polar metabolites (33) as well 

as different lipid classes. Highly non-polar lipids such as triglycerides will need dedicated extraction 

methods for lipids that will not be suitable for polar metabolites. We described a method for separating 

low abundant lipids such as PS simultaneously with polar metabolites using a HILIC column. We also 

optimized a method for different lipid classes’ separation using a C18 column, with a temperature of 

45°C and acidic pH as general conditions. Basic pH could be selected for specific classes such as PG and 

acylamides because of the improvement in their ionization.  
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Chapter 3. METABOLOME RESPONSE TO GLUCOSE IN INS-1 β-CELL 

LINE. 
This project was performed in collaboration with Dr. Mathew Lorenz.  I contributed to experiments and analysis 
related to figures (1, 2, 3, 4, 5, 7 and S1).The integrated project is presented to convey the complete project. A brief 
comparison with INS 832/3 is described in this study. 

 

INTRODUCTION  

  β-cells in islets of Langerhans secrete insulin in response to increased blood glucose. An 

acute increase in glucose evokes a rapid release of insulin which is sustained for a short period, 

designated as 1st phase, followed by an extended period of lower secretion (2nd phase). The 

metabolic pathways that facilitate 1st and 2nd phase of glucose-stimulated insulin secretion 

(GSIS) by β-cells  are not fully understood (1).  GSIS is dependent upon glucose metabolism and 

is thought to be triggered by closure of KATP channels secondary to an increase in the ATP/ADP 

ratio.  Closure of KATP channels causes membrane depolarization, opening of voltage sensitive 

Ca2+ channels, and subsequent exocytosis of a releasable pool of insulin vesicles (2).  Evidence 

supports the concept that other metabolic processes also facilitate GSIS in KATP-independent or 

amplifying pathways (3-5). A variety of metabolic coupling factors (e.g., NADPH, long-chain acyl-

CoAs, and glutamate) and pathways (e.g., pyruvate/citrate, pyruvate/isocitrate, 

pyruvate/malate, and glycerolipid/fatty acid cycling) have been implicated in both triggering 

and amplifying GSIS (3-5).  

  Measurement of metabolite changes in β-cells that correlate with GSIS has been limited 

to measuring a relatively small set of metabolites at extended time periods that cannot 

distinguish important alterations that occur in earliest phases of insulin secretion (6).  In this 

work, we employed a recently developed liquid chromatography-time of flight-mass 

spectrometry (LC-TOF-MS) method to measure signal for hundreds of metabolites in INS-1 

832/13 cells following exposure to glucose (7).  We determined the identity and levels of 87 of 

these metabolites in response to different glucose concentrations and at short intervals after 

exposure to an increase in glucose. Specific compounds monitored included metabolites 

associated with glycolysis, the pentose phosphate shunt, and the tricarboxylic acid (TCA) cycle 

as well as an array of nucleotides and fatty acid species.  We also utilized isotopologue analysis 
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of metabolites following U-[13C]glucose stimulation to assess flux through specific pathways.  

The results allowed us to confirm or modify prevailing hypotheses regarding metabolism and its 

relationship to insulin secretion and identify new pathways that may play a role in the dynamics 

of insulin secretion following glucose exposure. 

EXPERIMENTAL PROCEDURES 

Materials.  INS-1 832/13 (8) and INS-1 832/3 cells were kindly provided by Dr. 

Christopher Newgard (Sarah W. Stedman Nutrition and Metabolism Center, Duke University, 

Durham, NC).  All chemicals were purchased form Sigma-Aldrich (St. Louis, MO) unless 

otherwise noted.  HPLC grade acetonitrile was purchased from Burdick & Jackson (Muskegon, 

MI).  RPMI media, fetal bovine serum, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

(HEPES), and penicillin-streptomycin were purchased from Invitrogen Corp, (Carlsbad, CA).   

Cell Culture.  INS-1 832/13 cells cultured in RPMI supplemented with 2 mM glutamine, 1 

mM sodium pyruvate, 10% FBS, 10 mM HEPES, 100 U/mL penicillin, 100 µg/mL streptomycin, 

250 ng/mL amphotericin B, and 50 µM β-mercaptoethanol.  Cells were plated at a density of 

~14 x 103 cells/cm2 and grown in either 6 cm or 10 cm culture dishes at 37 °C and 5% CO2 in a 

humidified atmosphere to ~70% confluence over ~5 d prior to experimentation.  Cells were 

preincubated in supplemented RPMI containing 3 mM glucose for ~20 h prior to 

experimentation. Krebs-Ringer-HEPES buffer (KRHB) was prepared containing 10 mM glucose, 

20 mM HEPES, 118 mM NaCl, 5.4 mM KCl, 2.4 mM CaCl2, 1.2 mM MgSO4, and 1.2 mM KH2PO4 

adjusted to pH 7.4 with HCl. 

Glucose Stimulation Dose Response.  Following preincubation, culture media was 

replaced with KRHB containing 0, 2, 5, 10, or 20 mM glucose + 0.2% BSA.  Cells were incubated 

for 30 min after which an aliquot of buffer was removed for insulin measurement. Metabolism 

was immediately quenched and metabolites extracted as described previously (7). 

Glucose Stimulation Time Course and Flux.  Cells were transferred to KRHB containing 

0.5 mM glucose and 0.2% BSA for 30 min prior to stimulation. Glucose was increased to 10 mM 

glucose by adding an aliquot of 1 M glucose stock.  The media was sampled for insulin 

measurement 2-90 min after initial transfer to 0.5 mM KRHB (both pre and post stimulation).  
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For metabolite measurements, cells were treated as indicated above (without addition of BSA) 

and cell plates quenched from 25 to 75 min after transfer to KRHB (5 min before to 45 min after 

increasing glucose to 10 mM).  Carbon flux through glucose was also assessed by stimulating 

cells with U-[13C]glucose using the same protocol.  In some studies, cells were pretreated with 

10 mM phenylsuccinate (Sigma-Aldrich, St. Louis, MO) for 10 min to inhibit the mitochondrial 

oxoglutarate carrier (9).  

For insulin and metabolite measurements with 5-amino-1-β-D-ribofuranosyl-imidazole-

4-carboxamide riboside (AICAR) treatment, stimulation was conducted by conditioning cells in 

KRHB containing 0.5 mM glucose for 30 min and replacing the buffer with KRHB containing 10 

mM glucose with or without 25 µM AICAR.  Incubation buffer was sampled for insulin and 

plates quenched from 10 to 60 min following stimulation. 

Insulin Measurement.  Aliquots of KRHB were briefly stored on ice, centrifuged at 3000 

rpm for 3 min to pellet any suspended cells, and an aliquot of supernatant was transferred to a 

fresh vial.  Samples were stored at -20 °C and assayed using Rat/Mouse insulin ELISA Kit 

(Millipore, Billerica, MA).  Insulin secretion rate was calculated by dividing the difference in 

insulin concentration of 2 consecutive time points by the time elapsed between sampling. 

Metabolite Measurement.  Cell plates were rinsed, metabolism quenched, and 

metabolites extracted using the procedure described previously (10).  Briefly, cell plates were 

rapidly rinsed with water and quenched with liquid nitrogen.  Metabolites were extracted with 

75% 9:1 methanol:chloroform/25% water and assayed by high performance liquid 

chromatography with time-of-flight mass spectrometry (HPLC-TOF-MS).  Chromatographic 

separations were performed with an Agilent Technologies (Santa Clara, CA) 1200 HPLC system 

equipped with a Phenomenex (Torrance, CA) Luna NH2 2.0 x 150 mm, 3 µm HPLC column and a 

2.0 x 4 mm guard column using the following conditions: mobile phase A was 100% acetonitrile 

(ACN); mobile phase B was 100% 5 mM ammonium acetate pH 9.9 with ammonium hydroxide; 

gradient program was (time, %B, flow rate) 0 min, 20%, 200 µL/min, 20 min, 100%, 200 µL/min, 

20.1 min, 100%, 300 µL/min; column temperature was 35 °C; injection volume was 80 µL; 

autosampler temperature was 4 °C.  Lipids were separated on a C18 Capcell column 2 x 150 
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mM, 3 um. Mobile phases and gradient were used as described (11).  DAG and PA detection 

was performed in positive and negative mode respectively.  Detection was performed on an 

Agilent Technologies LC/MSD TOF using a dual electrospray ionization (ESI) source in negative-

ion mode as described previously (10).  

Directed and undirected data processing was performed as described elsewhere (10). 

Combined peak areas are used for unresolved isomers (e.g., citrate + isocitrate and hexose 

phosphates). Several metabolites are not reported because of rapid degradation or 

interconversion. For example, pyruvate and oxaloacetate, are not reported because of rapid 

degradation of oxaloacetate to pyruvate (12).  Similarly, glyceraldehyde-3-phosphate and 

dihydroxyacetone phosphate are unstable in solution (13).   

Undirected analysis was performed by determining features (i.e., m/z signals at a given 

retention time) that changed in LC-MS peak area following a step change from 0.5 to 10 mM 

glucose for 25 min.  Features were included in the analysis that were detected in every 

chromatogram and had <40% relative standard deviation (RSD) within each group as 

determined using Agilent Technologies MassHunter Quantitative software for peak picking and 

MassProfiler Professional for data alignment and statistical analysis. These metabolites were 

identified by searching the Human Metabolome Database to match mass, analyzing isotope 

ratios, and comparing to standards when available. 

Calibration curves with standards that were available showed linear responses. To 

ensure that peak areas were linear with concentration even when analyzing a complex matrix 

of cell extract, standards for 24 analytes were spiked into an extract of INS-1 cells that had been 

incubated with 0.5 mM glucose for 2 h. Three to five concentration spikes were added to yield a 

concentration range that spanned that detected in cells and these standard addition 

experiments showed highly linear response for the majority of metabolited reported 

(Supplementary Figure S1). Residual protein was determined by Bradford Assay (14). Peak areas 

were measured from extracted ion chromatograms of [M-H]- metabolite ions with ± 70 ppm 

detection windows centered on the theoretical mass.  [M-2H]2- ions were used for acetyl-CoA 

(aCoA) and other CoAs to improve sensitivity.  Peak areas for internal standards were measured 
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using an identical procedure; however, values were only used to verify instrument stability and 

not used in endogenous metabolite quantification.   

Western Blot. Glucose stimulated cells were placed on ice, washed once with ice cold 

PBS and solubilized in 75 µl Laemelli's/extraction buffer (20 mM HEPES pH 7.5, 1% Triton X-100, 

-glycerophosphate, 150 mM NaCl, 10 mM NaF, 1 mM sodium orthovanadate, and 

complete protease inhibitor cocktail) from Roche Diagnostics (Indianapolis, IN).  Anti-ACC and 

anti-pACC were obtained from Cell Signaling and used at 1:1000.  Anti-HMG-CoA-reductase was 

from US Biological and was used at 2 µg/ml.  Blots were developed with ECL (Pierce, Rockford, 

IL) according to manufacturer's instructions. 

Statistics.  Data are expressed as mean ± 1 standard error of the mean (SEM).  Statistical 

significance was determined using a non-corrected two-tailed Student's t test, unpaired 

assuming equal variance or ANOVA, as appropriate. A p-value of < 0.05 was considered 

significant. 

RESULTS and DISCUSSION 

Insulin Secretion and Static Metabolite Profiles.  In these studies we employed LC-TOF-

MS to identify and quantify the levels of specific metabolites in INS-1 832/13 cells (1) following 

glucose exposure  and their relationship to insulin release.  We used U-[13C]glucose in 

secondary studies to more fully understand the dynamics of metabolite changes.      

The EC50 value for insulin secretion from INS-1 832/13 cells in response to glucose was 

6.2 mM with near maximal insulin secretion observed at ~10 mM glucose (Figure 1A), similar to 

previous reports (8).  Insulin secretion rate following a step change from 0.5 to 10 mM glucose 

showed a relatively sharp peak at ~4 min (28 ng/mg protein/ min) and a smaller broad peak 

with maxima at ~25 min corresponding to 1st phase and 2nd phase of insulin secretion (Figure 

1B, see also Figure S2 for calculation of secretion rate), consistent with previous reports of GSIS 

in islets (15) and INS-1 832/13 cells (16). Using LC-TOF-MS, a total of 1030 mass spectral 

features were detected in INS-1 832/13 cells at both 0.5 and 10 mM glucose. Following a step 

change from 0.5 to 10 mM glucose, 190 features showed statistically significant (p < 0.05) 

differences of at least 1.5-fold (Figure 1C). The identity of 87 metabolites was determined by 
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accurate mass search of the Human Metabolome Database, comparison of theoretical and 

observed isotopic distributions and, when available, coelution with authentic standards.   

These metabolites were quantified relative to baseline at multiple times following a step 

increase in glucose from 0.5 to 10 mM glucose (Figure 1D). We also measured the effect of 

different glucose concentrations at a single time point (25 min).  To determine if peak area 

changes were linearly related to concentration, we performed standard addition experiments 

for 24 metabolites (see Materials and Methods). As shown in Figure S1, responses were linear 

in the concentration range found suggesting that the peak area differences accurately reflect 

relative changes in concentration, thus matrix effects on ionization were low for these 

experiments. While we cannot rule out non-linear effects of matrix on some analytes, these 

results along with the observation that only a small fraction of the detected features actually 

changed with glucose, indicating a relative constant matrix, suggest that the peak areas a good 

measure of relative concentration change.  Metabolome of INS-1 832/3 was also profiled 

following a step increase in glucose from 0 till 16.6 mM (Figure 1E). Due to difference in cell 

lines some metabolites were of low levels and were not detected. However most detected 

metabolites showed similar response to glucose in both cell lines, confirming the importance of 

these pathways in glucose stimulated insulin secretion.  
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        Figure ‎3-1.Temporal and dose-response metabolite profiles and insulin release with glucose stimulation in INS-1 
832/13 cells and 832/3.  (A) Insulin secreted by INS-1 832/13 cells versus glucose concentration. Cells incubated in KRBH 
+0.2% BSA and 0 to 20 mM glucose for 30 min. Error bars are SEM, n = 3. (B) Insulin secretion rate versus stimulation time.  
INS-1 cells incubated in KRHB + 0.2% BSA + 0.5 mM glucose for 30 min and stimulated with 10 mM glucose for 50 min.  (C) 
Effect of 10 mM glucose treatment on LC-MS “feature” peak area. The log-log plot is for all features detected at time 0 (0.5 
mM glucose) versus 25 min of 10 mM glucose stimulation.  Features are color coded by m/z.  The 1030 features plotted were 
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detected in all replicates with RSD < 40% for either Time 0 or 25 min groups. 130 feature peak areas change >1.5 fold (shown 
outside the lines parallel to the correlation line) and are statistically different with p < 0.05.  (D) Heat maps showing 
temporal (left) and dose response (right) changes to glucose in INS-1 (832/13) metabolite levels. Levels expressed as fold 
change versus time 0.  For temporal response, cells were incubated in KRHB with 0.5 mM glucose for 30 min then stimulated 
to 10 mM glucose and sampled over 45 min. For dose response (right) INS-1 cells were incubated in KRHB + 0.2% BSA and 
treated with a step change from 0.5 to the new glucose concentration for 30 min. (E) Heat map showing temporal changes to 
glucose in INS-1 (832/3) metabolite levels. For both heat maps, asterisk indicates significant difference in peak area versus 
time 0 with p < 0.05.  

Metabolites associated with modulation of KATP Channels.  KATP channel closure 

through rise in the ATP/ADP ratio is an established trigger for GSIS.  In agreement with this 

concept, we detected a rapid increase in ATP/ADP ratio (Figure 1D and 2C) that coincided with 

1st phase insulin release. This observation matches previous reports of a several-fold increase in 

ATP/ADP in mouse β-cells that reached a maximum 1 to 3 min following glucose stimulation 

(17) and an ~2-fold increase in mouse islets within 5 min of glucose stimulation (18).  

The absolute increases in ATP concentration were <15% while both ADP and AMP fell 

markedly (Figure 1D and 2A) supporting the observations that KATP channel may be more 

influenced by reductions in ADP concentration (19) than increases in ATP. These measurements 

do not take into account the apparent rapid ATP turnover indicated by rapid rise in the level of 

phosphocreatine (Figure 1D and 2B). Phosphocreatine  has been suggested to serve as a shuttle 

for energy rich phosphate from mitochondria to plasma membrane with metabolism by KATP 

channel-associated creatine kinase to phosphorylate ADP to ATP, increasing the local ATP 

concentration (20). INS-1 832/3 cell line showed similar behavior in the increase in ATP/ADP 

ratio and phosphocreatine (Figure 2E and 2F). Although ATP level showed slight stability in INS-

1 832/13, it slightly decreased in INS-1 832/3 cell line.  The marked decrease in ADP in INS-1 

832/3 cell (figure 2D) allowed the significant rise of ATP/ADP ratio, and confirming the 

importance of the decrease in ADP in KATP channel modulation. 
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Figure ‎3-2.  Glucose stimulated time course of adenine nucleotides.  INS-1 cells were treated with 10 mM glucose and 
sampled at the indicated time points from -5 to45 min.  (A)  ATP, ADP and AMP.  (B) Phosphocreatine, (C) ATP/ADP ratios.  
Insulin secretion rate is overlaid for comparison. Error bars represent 1 SEM, n = 3 for each time point. INS-1 (832/3) cell line 
was treated with 16.6 mM glucose and sampled at indicated time points (D): ATP, ADP and AMP. (E) phosphocreatine. (F) 
ATP/ADP ratio. 
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In addition to adenine nucleotides and phosphocreatine, long-chain acyl-CoAs have 

been proposed to modulate KATP activity such that decreases in concentration aid closure of KATP 

channels (21,22). Previous studies have been discordant on the actual concentration changes of 

long-chain acyl-CoAs associated with glucose stimulation (23,24).  We found an inverse dose-

response relationship of long-chain acyl-CoAs to glucose (Figure 1D). The decrease in long-chain 

acyl-CoAs was rapid and concurrent with Phase 1 GSIS, e.g. 16:0-CoA decreased ~50% within 2 

observed in 14:0, 16:1, and 18:1 CoA upon glucose stimulation with time and in glucose dose-

response profiles (Figure 1D).  This rapid decrease in long chain acyl-CoA was true also in INS-1 

832/3 cell line (Figure 1E).  

 To understand the fall in LC-CoA levels, we measured diacylglycerol and phosphatidic 

acid and found both species increase following glucose stimulation (not shown).  When INS-1 

cells were stimulated with U-[13C]glucose, there was a non-significant trend for increases in 

phosphatidic acid and diacylglycerol species (Figure 3B).  However, we did observe a significant 

and rapid rise in a M+3 phosphatidic acid (34:1) 5 and 10 minutes after glucose addition 

(p=9.4*10-4 and 2.3*10-3, respectively) and similar rises in diacylglycerol (34:1) M+3 

isotopologues (p=5.2*10-4 and 2.9*10-3, at 5 and 10 min, respectively) (Figure 3B) suggesting 

addition of 3 carbons from 13C-glycerol-3-phosphate, which is rapidly generated by glycolysis 

(Figure 3C and 3D, see below).   

These results indicate that esterification, utilizing de novo generated glycerol-3-

phosphate, facilitates removal of long chain acyl-CoAs from cytosol during the initial phase of 

glucose stimulated insulin release.  Such a decrease may be expected to aid closure of KATP 

channels, especially during first phase secretion (21,22).  In addition to modulating KATP channel 

activity, long chain acyl-CoAs may also participate in additional downstream signaling events.  

One potential route is via the malonyl-CoA/long-chain acyl-CoA pathway in which glucose 

derived acetyl-CoA is carboxylated by acetyl-CoA-carboxylase (ACC) to form malonyl-CoA. 

Malonyl-CoA inhibits carnitine palmitoyl transferase 1 (CPT1) reducing fatty acid uptake and 

causing cytosolic accumulation of long-chain acyl-CoAs (or downstream metabolites). It has 

been proposed that the resulting long chain acyl-CoAs, or downstream metabolites, are 
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important signaling molecules or coupling factors in secretory processes such as vesicular 

trafficking (25,26).   The metabolomic data provide a means to assess the changes expected 

from this pathway.  

After stimulation with 10 mM glucose, acetyl-CoA doubles at 2 min followed by a 

gradual decrease to levels near baseline by 5 minutes (Figure 1D and Figure 3E).  Similar 2 fold 

increase in acetyl-CoA levels was seen in INS-1 832/3 cells after 5 minutes of glucose 

stimulation that decreased to baseline by 15 minutes (figure 1E). This decrease is likely due to 

rapid turnover of acetyl-CoA as evidenced by the decrease in 12C-labled and a significant 

increase (p=3.4*10-6 and 3.5*10-7 at 5 and 10 min, respectively) in M+2 13C-labeled species 

following stimulation with U-[13C]glucose (Figure 3F).  Similarly, there is an increase in total 

(Figure 3G) and 13C-labled malonyl-CoA (p=2.3*10-5 and 5.5*10-9 at 5 and 10 min, respectively) 

(Figure 3H) with only +2 m/z increasing, suggesting a rapid carboxylation of newly formed 

acetyl-CoA, likely derived via citrate and ATP-citrate lyase (see below) (27,28).  

 We also found near complete dephosphorylation/activation of ACC, after only 2 min of 

glucose exposure (Figure 3I).  The inhibition  of CPT1 by malonyl-CoA may redirect acyl-CoAs to 

autonomous signaling events or condensation with de novo generated glycerol-3-phosphate, 

described above, to generate phosphatidic acid and diacylglycerols to participate in 

amplification of insulin secretion (29).  This rapid increase in phosphatidic acid and 

diacylglycerol suggests that the generation of diacylglycerol for amplification not only comes 

from the activation of phospholipase (see (30) for discussion), but also from rapid generation 

via esterification of fatty acids. Thus, our results support a model in which glucose derived G3P 

rapidly reacts with long-chain acyl-CoAs resulting in the removal of long chain acyl-CoAs, which, 

as pointed out above, could enhance closure of the KATP channel (21,22) while simultaneously 

generate coupling factors for GSIS. Further, the malonyl CoA production supports the supply of 

long-chain CoA for this pathway, likely in addition to that derived from phospholipase activity of 

membrane phospholipids (31).    
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Glycolysis.  Glycolysis, which comprises the first steps in glucose metabolism, supports 

the change in ATP/ADP ratio and closure of the KATP channel (32) and provides carbon for the 

pentose phosphate pathway (PPP) and tricarboxylic acid (TCA) cycle. 

 Hexose phosphates, comprised primarily of glucose-6-P and fructose-6-P (which are not 

resolved chromatographically) changed little over 45 min following stimulation with 10 mM 

glucose, increasing 1.2 fold over 8 min, then decreasing by 50% to ~58 µmole/mg protein 

(Figure 1D).  Dose-response studies show a 3-fold increase at 20 mM glucose (Figure 1D).  Rapid 

increase in concentrations of fructose bisphosphate, 2-phosphoglycerate with 3-

phosphoglycerate and phosphoenolpyruvate (32-, 6.7- and 5.5-fold, respectively) was observed 

following glucose stimulation (Figure 1D), suggesting that phosphofructokinase is not rate 

limiting to glycolysis in these cells. The increase in glycolytic intermediates with glucose 

stimulation was further confirmed using the INS-1 832/3 cell line. Using 16.6 mM glucose, 

glycolytic intermediates increased by at least 4 fold, confirming the previous data obtained 

from INS-832/13 cell line. 

Reoxidation of NADH to NAD+ is critical to maintaining glycolytic flux.  The formation of 

glycerol-3-phosphate from dihydroxyacetone phosphate (DHAP) by cytosolic glycerol-3-

phosphate dehydrogenase utilizes NADH to regenerate NAD+, allowing continuing flux through 

glycolysis. The proposed glycerol-3-phosphate shuttle posits a subsequent reoxidation of 

glycerol-3-phosphate to DHAP by mitochondrial glycerol-3-phosphate dehydrogenase, 

delivering NADH to the mitochondria (33).   As indicated above, glycerol-3-phosphate increased 

3.4-fold within 2 min of glucose stimulation (Figure 3C).  Stimulating cells with 10 mM U-

[13C]glucose showed that the increase in glycerol-3-phosphate is due exclusively to de novo 

synthesis over the first 10 min of stimulation, demonstrated by the significant rise in an M+3 

glycerol isotopologue  (p=1.1*10-5 and 2.2*10-6 at 5 and 10 min, respectively) (Figure 3D).  

While the high levels of the glycerol phosphate shuttle in islets has been proposed to be 

important in GSIS (34), disruption of the mitochondrial glycerol-3-phosphate dehydrogenase 

does not affect GSIS (35).  Our finding that there is a rapid esterification of fatty acids with de 

novo generated glycerol-3-phosphate (Figure 3B), suggests that in addition to generating 
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signaling intermediates, the esterification may also play a role in regeneration of cytosolic 

NAD+, enhancing glycolytic flux, thus maintaining a high ATP/ADP ratio.   

 

 

Figure ‎3-3.Changes in metabolites associated with the malonyl-CoA mechanism of insulin secretion.  Time dependent 
changes in the relative concentration of 16:0 acyl-CoA (A), glycerol-3-phosphate (C), acetyl-CoA (E) and malonyl-CoA (G) 
levels following stimulation with 10 mM glucose in INS-1 cells.  Changes in total mass and 13C-labeled  isotopologues of 
phosphatidic acid (B), glycerol-3-phosphate (D), acetyl-CoA (F) and malonyl-CoA (H) following stimulation with 10 mM U-
[13C]glucose.  Error bars represent 1 SEM, n = 3. (I) Levels of pACC at baseline and following stimulation of INS1 cells with 10 
mM glucose for 2 or 25 min.  p-values are given for total pool size on the graph.  p-values for isotopologue analysis are 
indicated in the text 



 

62 
 

TCA cycle and anaplerotic shuttles.  Metabolites in the TCA cycle participate in 

pathways that generate metabolites and cofactors which play a role in augmenting GSIS (3-5).  

The β-cell can increase TCA intermediates from pyruvate through pyruvate dehydrogenase and 

pyruvate carboxylase (36) and through additional anaplerotic reactions  (37).  As shown above, 

acetyl-CoA increased 1.5-fold within 2 min of stimulation and returned to prestimulation 

concentration within 12 min of glucose addition.  Span 1 intermediates citrate + isocitrate 

(Figures 1D, 4A) and α-ketoglutarate (Figure 1D) increased 3- to 4-fold while, succinyl-CoA, and 

succinate showed much smaller absolute changes (Figure 1D).  The Span 2 metabolite malate, 

increased ~30-fold after glucose stimulation (Figures 1D and 4B). 

To assess the mechanisms of change in TCA cycle metabolites, we measured their 

isotopic enrichment over the initial 10 min of exposure to 10 mM U-[13C]glucose.  Acetyl-CoA is 

generated primarily from glucose as the M+2 isotopologue contributes to the majority of the de 

novo accumulated acetyl-CoA (p=3.4*10-6 and 3.5*10-6, at 5 and 10 min, respectively) (Figures 

3E and 3F) and is accompanied by a ~40% rise in citrate/isocitrate, from 20 nmol/mg protein to 

28 nmol/mg protein at 5 and 10 min (Figure 4D).  Approximately 90% of the increase in citrate 

mass was contributed by the M+2 isotopologue of citrate/isocitrate (p=3.0*10-6) (Figure 4D).  

The labeled pool continued to increase and after 10 min, the majority of the label as M+2 and 

less than 3% as M+3 or M+4 citrate/isocitrate. Thus, while total citrate/isocitrate levels rise 

slowly during the initial phases of insulin secretion, there is rapid turnover, with new 

citrate/isocitrate derived largely from pyruvate dehydrogenase (PDH) generated M+2 

[13C]acetyl-CoA.  The minimal increase in M+3 and M+4 isotopologues of citrate/isocitrate 

suggest that the majority of citrate/isocitrate exits the TCA cycle with minimal ‘turns’, at least in 

the early stages of GSIS.   

Only a small percentage of glutamate is labeled with 13C in the first 10 min following 

glucose exposure (Figure 4F). Importantly, there is a significant (p < 0.04) decrease in 12C-

glutamate, about ~20% of the pool, suggesting minimal anaplerotic flux into glutamate.    

Mitochondrial-derived glutamate has been proposed to participate in GSIS, in part through 

rapid accumulation of glutamate within the insulin secretory granules (38). While our data 

agree with previous studies (39), they do not support the hypothesis of rapid increases in 
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intracellular glutamate during GSIS (40).  We cannot rule out that the reduction in glutamate is 

due to uptake and subsequent release to the medium via secretory granules. And as a 

confirmation for the previous data, INS-1 832/3 showed also a reduction in glutamate with 

glucose stimulation (Figure 1E). 

Although oxaloacetate could not be accurately measured because of its instability, we 

found a ~3-fold increase in malate after 5 min and 4.8-fold after 10 min (Figure 1D and 4B). A 

novel finding is that in cells exposed to 16.7 mM U-[13C]glucose, the observed increase in 

malate was largely accounted for by accumulation of 12C-malate, increasing the estimated 

concentration from 12 nmol/mg protein to 70 nmol/mg at 10 min, with only about 15% of the 

increase in mass due to de novo entry of 13C-label into malate (Figure 4E).  About 60% of this de 

novo derived 13C-malate is the M+3 isotopologue and ~40% M+2 (Figure 4E), suggesting near-

equal generation from pyruvate carboxylase (M+3) and TCA cycle (M+2).  The source of the 

‘unlabeled’ malate is likely the relatively large pool of aspartate (via oxaloacetate). At 10 min, 

malate levels continue to rise and aspartate levels are restored to near baseline levels, with the 

increase due to accumulation of M+2 and M+3 isotopologues of aspartate in a similar 

proportion to that found in malate (Figure 4G).  This finding is consistent with a partial 

operation of the ‘malate-aspartate shuttle’, though we propose that the influx of aspartate is 

operating to provide anaplerotic oxaloacetate/malate to the TCA cycle and the transfer of 

NADH to the interior of the mitochondria.  A previous study (41) provided evidence that a 

decrease in aspartate was correlated with GSIS, and provided anaplerotic substrates to the TCA 

cycle.  However, based on the isotopic labeling observed, our findings do not support the 

contention that the aspartate is derived from glucose or is in a separate metabolic pool from 

malate, as suggested elsewhere (41).    

These results also do not support a robust activity of the pyruvate shuttle (1,42,43) to 

generate oxaloacetate/malate, at least in the earliest time points of insulin secretion.  If the 

pyruvate shuttle were responsible for the rise in malate, then decarboxylation of citrate would 

be expected to give rise to equal amounts of M+2 and ‘unlabled’ malate and, with the 

contribution of TCA cycle derived M+2 malate, even a relatively greater amount of M+2 malate.      
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The observed transient decrease in α-ketoglutarate concentrations in early time points 

following the addition of glucose (Figure 1D) may be due to the transamination of α-

ketoglutarate from aspartate to generate glutamate and oxaloacetate, with the latter 

subsequently reduced to malate, allowing the transfer of the glycolytically derived NADH to the 

mitochondria (see Figure 7 for schematic).  The glutamate can be converted back to α-

ketoglutarate through glutamate dehydrogenase, with the generation of NAD(P)H and NH4+.  

To further support the role of the malate-aspartate shuttle in the rise in malate we 

pretreated INS-1 cells with phenylsuccinate, which inhibits the oxoglutarate carrier, to reduce 

efflux of α-ketoglutarate and entry of malate into the mitochondria (9).  Pretreatment with 

phenylsuccinate did not impair reduction in AMP levels (Figure 4H) or reduction in NAD+/NADH 

ratio (Figure 4H and 4I) following glucose stimulation.   The rise in citrate (Figure 4J) was 

blunted and glutamate levels fell (Figure 4K) following phenylsuccinate treatment and this was 

largely due to changes in the levels of 12C-labeled isotopologues.   There was a marked and 

significant reduction in the rise in malate following phenylsuccinate treatment (Figure 4L), 

primarily in the 12C-label isotopologue.  We suggest that the fall in malate is due to 

consumption of mitochondrial malate without replenishment by cytosolic malate.  Aspartate 

levels are likewise reduced by phenylsuccinate treatment and, as with malate, the 13C-

isotopologue distribution is not changed (Figure 4M).   

As inhibition of the oxoglutarate carrier inhibits glucose-induced insulin release (44), 

these data further confirm that malate-supported anaplerosis and/or shuttling of reducing 

equivalents by malate into the mitochondria are critical to sustaining insulin secretion. The 

observed rapid increase in malate can also clarify data by Lu et al. (39) who, through modeling 

of NMR-derived spectra of INS-1 cells extracts, proposed the presence of two distinct pools of 

pyruvate that enter into the Krebs cycle following glucose stimulation of β-cells, one derived 

from glycolysis and the other from a non-glycolytically derived pool.  We believe our finding of a 

rapid rise in malate derived from a non-glucose source could, via cytosolic malic enzyme, 

generate pyruvate, giving rise to the ‘second’ pool of pyruvate.  Alternatively, the labeling 

pattern of highly glucose-responsive INS-1 cells lines presented by Lu et al, may be explained by 

rapid increase in mitochondrial malate, via import into the mitochondria which would also 
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result in a relative ‘dilution’ of the glutamate pool.  We favor the latter explanation as 

phenylsuccinate treatment results in a significant reduction in the 12C-isotopologue 

concentration of glutamate with minimal change in the M+2 13C-isotopologue levels, 

presumably derived from PDH derived M+2 13C-acetylCoA (Figure 4K).         

 

Figure ‎3-4.Temporal changes of TCA cycle and related metabolites following addition of 10 mM glucose to INS-1 cells.  A-D. 
Changes in the relative concentration of citrate/isocitrate (A), malate (B) and NADPH/NADP+ ratio (C).  D-E.  Changes in total 
mass and 13C-labeled isotopologues of Citrate/isocitrate (D), Malate (E), Glutamate (F) and Aspartate (G) following 
stimulation with 10 mM U-[13C]glucose.  H-N. Effect of phenylsuccinate on metabolite levels.  Cells were preincubated 
without or with 10 mM phenylsuccinate for10 min prior to addition of 10 mM glucose.  Total metabolite concentration of 
AMP (H) and NAD/NADH ratio (I) and changes in relative concentration of 13C-labeled isotopologues  of citrate/isocitrate 
(D), malate (K), glutamate (L) and aspartate (M) Error bars represent 1 SD, n = 3.  Note 3, 4 and 5 13C-containing 
isotopologues of glutamate were obscured by presumptive breakdown products of phenylsuccinate.  p-values for 
isotopologue analysis are indicated in the text 
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NADPH.  NADPH has been cited as a critical metabolite for GSIS.  NADPH increased 

slightly (1.3-fold) but insignificantly over ~12 min of glucose stimulation which is similar in 

magnitude to changes reported in islets (45) (Figure 1D).  The NADPH/NADP+ ratio increased 

abruptly after addition of glucose and increased 5.8 fold over 25 min, correlating well with 1st 

and 2nd phase insulin secretion (Figure 1D and 4C).  It has been proposed that cycling of 

metabolites from mitochondria to the cytosol, via citrate, isocitrate or malate to pyruvate 

results in generation of cytosolic metabolites and/or NADPH which participate in GSIS (1,42). 

The relatively rapid rise in M+2 malonyl-CoA isotopologue (Figure 3H), suggests a significant flux 

of citrate from the mitochondria which generates M+2 acetyl-CoA (Figure 3F) serving as a 

substrate for ACC via ATP-citrate lyase (46).  This efflux of citrate/isocitrate, can generate 

NADPH by the conversion of isocitrate to α-ketoglutarate in the cytosol.  In addition to the 

proposed generation of NADPH from α-ketoglutarate in the cytosol due to the malate-aspartate 

shuttle-mediated influx of aspartate (see above), could be primary sources of NADPH, 

augmenting GSIS. In INS-1 832/3, NADPH increased significantly upon glucose stimulation, on 

the other hand, NADP+ decreased significantly. The higher changes in those metabolites 

compared to INS-1 832/13 cell line might explain the improved glucose responsiveness of INS-1 

832/3 cell line (62).   

Succinate and short chain fatty acids.  Succinate has been proposed as a key metabolite 

that participates in the generation of molecules that can act as second messengers for 

potentiation of insulin secretion (43) including short chain fatty acids, acetoacetate, malonyl-

CoA and 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) (43,47).  Following glucose exposure, we 

found a rapid increase in succinate levels (Figure 1D and 5A) and malonyl-CoA (Figure 1D and 

3H) in the INS-1 832/13 cells.  In contrast we found a significant reduction in HMG-CoA (Figure 

1D and 5B), similar to previous reports (48).  The reduction in HMG-CoA levels appears to be 

due to rapid consumption as cells incubated for 5 or 10 min with U-[13C]glucose showed a rapid 

decrease in fully 12C-labeled HMG-CoA isotopologue and an increase in various 13C-labeled 

isotopologues suggesting de novo synthesis that cannot keep up with consumption (Figure 5D). 

The reduction in HMG-CoA is apparently not due to changes in HMG-CoA reductase activity as 
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we do not observe a change in the phosphorylation state of HMG-CoA reductase following 

glucose stimulation of INS-1 832/13 cells (Figure 5E).   

Farnesyl pyrophosphate, a downstream product of the HMG-CoA pathway involved in 

isoprenylation of proteins (49), was found to increase rapidly following glucose stimulation 

(Figure 5C) in a time course that mirrors that of the fall in HMG-CoA and 1st phase insulin 

secretion.    Recent studies have suggested that specific small G-proteins (Cdc42 and Rac1) play 

an important role in GSIS (50,51). These signaling proteins undergo prenylation at their C-

terminal cysteine residues which is essential for the transport and fusion of insulin-containing 

secretory granules with the plasma membrane and the exocytosis of insulin which has been 

implicated in GSIS (50). The rapid increase in substrate for isoprenylation, farnesyl 

pyrophosphate, suggests that such modifications can occur in a time frame to be relevant for 1st 

phase insulin secretion. Further, the dramatic reduction in HMG-CoA suggests that it may 

become limiting to flux through this pathway and therefore limiting GSIS.  

INS-1 (832/3) cell line showed similar decrease in HMG-CoA and increase in FPP upon 

glucose stimulation (figure 1E) confirming the higher glucose flux through the mevalonate 

pathway during GSIS. However, succinate showed different response compared to INS-1 

(832/13), where it decreased after glucose stimulation. This decrease can be attributed to the 

higher flux in TCA cycle and its rapid consumption. 
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Figure ‎3-5.Metabolites participating in the succinate mechanism of glucose stimulated insulin secretion. A-C.  Time-
dependent changes in Succinate (A), HMG-CoA (B) and farnesyl pyrophosphate (C).  D. Changes in total mass and 13C-labeled  
isotopologues of HMG-CoA following stimulation with 10 mM U-[13C]glucose.   Error bars represent 1 SEM, n = 3. E. 
Phosphorylated HMG-CoA reductase at baseline and following stimulation with glucose for 2 or 25 min. p-values for 
isotopologue analysis are indicated in the text 

Pentose Phosphate Pathway (PPP) derived metabolites.  Metabolites in the PPP are not 

often measured in investigations of GSIS but play a key part in cellular metabolism by supplying 

5-carbon substrates for purine, pyrimidine, and histidine synthesis and generating NADPH for 

lipid biosynthetic pathways. However, the PPP is not highly active in β-cells and likely 

contributes little to the generation of NADPH (42).  We observed that most PPP metabolites 

increased in parallel to increasing glucose concentration (Figure 1A and B). Rapid and 

substantial relative increases in the pentose phosphate pathway metabolites pentose 

phosphates, 6-phosphogluconate, sedoheptulose phosphates and phosphoribosyl 

pyrophosphate (1.8-, 3.2-, 2.4-, and 7.4- fold increases, respectively) were observed. Significant 

labeling of 6-phosphogluconate following stimulation of cells with U–[13C]glucose was observed 

(not shown), indicating direct flux into the PPP.    Although large relative increases in PPP 

metabolite levels with glucose stimulation are detected, the pool size of these metabolites is 

substantially smaller than for those of the TCA cycle supporting previous findings that the bulk 
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of glucose carbon enters the TCA cycle and does not enter the PPP (52) and a relative 

unimportance for this pathway in the generation of NADPH in supporting GSIS.   

ZMP is an endogenous metabolite in the purine synthesis pathway and a precursor to 

IMP.  Although measurements of endogenous ZMP levels have not been reported in β-cells, we 

detected a 9-fold increase to ~4.0 μmole/mg protein that reached a maximum ~25 min after 

glucose stimulation (Figure 1D and 6A).  Supporting an increase by de novo biogenesis as 

opposed to stabilization of ZMP, we found that both phosphoribosyl pyrophosphate which links 

the PPP to the nucleotide synthesis pathway and glycinamide ribotide, a ZMP precursor, were 

also detected and increased both temporally and in a dose-response manner after addition of 

glucose (Figure 1D and 6A, B).  This was true also in INS-1 832/3 cell line, where all pentose 

phosphate pathway metabolites as well as ZMP increased significantly after glucose stimulation 

(figure 1E). 

ZMP can substitute for AMP in enhancing phosphorylation and activation of AMP-

activated protein kinase (AMPK), an important regulator of cellular energy balance (53). Indeed, 

AICA riboside (AICAR), which is phosphorylated in cells to generate ZMP, is widely used to 

activate AMPK.  Acute exposure to AICAR has been found to both decrease (54,55) and 

potentiate insulin release (56).   Based on the timing of the increase in endogenous ZMP found 

in our studies, we hypothesized that it may serve as a negative regulator of GSIS during the 

second phase of insulin release.  To test this idea, we treated INS-1 832/13 cells with 10 mM 

glucose and 25 µM AICAR and achieved ~4x higher intracellular ZMP levels at 40 min relative to 

control cells stimulated with 10 mM glucose only (Figure 6C).  This increase in ZMP was 

accompanied by 20% reduction in rate of insulin release 40 to 60 min post glucose stimulation 

(Figure 6D).   Although ZMP increases, there was no evidence of activation of AMPK as no 

change was seen in the phosphorylation of HMG-CoA reductase and a decrease in ACC-1 

phosphorylation was observed following glucose addition (Figure 3I).  Therefore, while ZMP 

may restrain GSIS, at endogenous levels this effect does not seem to be through AMPK; perhaps 

through an alternate route such as altering lipid metabolism independent of AMPK activation 

(57). 
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Figure ‎3-6. Formation and effect of ZMP in INS-1 cells.  A and B.  Time (A) and concentration-dependent (B) changes in purine 
metabolic pathway in INS-1 cells stimulated with glucose.  PRPP = Phosphoribosylpyrophosphate, GAR =  glycinamide 
ribotide, ZMP = 5-amino-4-imidazolecarboxamide ribotide.  (C) Time-dependent formation of ZMP in INS-1 cells stimulated 
with 10 mM glucose with or without 25 µM AICAR. Error bars represent 1 SEM, n = 3.  (D)  insulin secretion rate measured by 
change in incubation buffer insulin concentration over indicated time period.  Error bars represent 1 SEM, n = 8.  Asterisk 
indicates significant difference in insulin release rate with p < 0.05. 

Sugar Nucleotide Donors.  We detected 8 common sugar nucleotide donors with GDP-

mannose changing the most substantially (Figure 1D).  GDP-mannose forms from conversion of 

glycolytic intermediate fructose-6-phosphate to mannose-6-phosphate and mannose-1-

phosphate before condensing with GTP (58).  This metabolite has not previously been 

quantified in β-cells; but, we observe a rapid increase that peaked at 14-fold over basal (~4.2 

μmole/mg protein) within 8 min of glucose followed by a gradual decrease.  GDP-fucose, a 

product of GDP-mannose metabolism (59), was unchanged.  While determination of these 

metabolites in β-cells have not been previously explored, we have previously described that 

activation of the insulin-like growth factor II (IGF-II)/mannose-6-phosphate (M-6-P) receptor by 
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IGF-II results in augmentation of insulin secretion, even at low concentrations of glucose (60).  

The binding of mannose-6-phosphate-tagged proteins may play a regulatory role in insulin 

secretion by interaction with insulin secretory vesicles.   

Additional metabolites.   In these studies, we identified additional metabolites that 

showed dynamic changes following glucose exposure in INS-1 (832/13). In addition to 

adenosine, other mono- and diphosphonucleotides decreased by 1.7-4.3 fold within 2 min of 

glucose stimulation.  GTP increased only slightly (< 5%) whereas UTP and CTP increased 40% 

and 80%, respectively with reciprocal falls in their mono and dinucleotides (Figure 1D).  These 

results were different in Ins-1 832/3 cells, were GTP and UTP slightly decreased with glucose 

stimulation, while CTP did not change. Recent studies have provided evidence for a significant 

role for mitochondrial GTP in GSIS (61).  While GTP levels do not change significantly, the pool 

of mitochondrial GTP is small compared to the cytosolic pool, thus changes in the mitochondrial 

pool may not be detectable.  

We also observed decreases in pantothenic acid with glucose in both cell lines.  As this 

metabolite is important for CoA synthesis, its decrease may reflect consumption in de novo 

production of CoAs.  Besides long-chain acyl-CoAs and farnesyl pyrophosphate discussed above, 

we also found changes in other compounds involved in lipid metabolism including decreases in 

free fatty acids and citicolline, an intermediate in production of phosphatidylcholine. Citicolline 

or CDP-choline and CDP-ethanolamine decreased upon glucose stimulation in INS-1 832/3 cell 

as well. This decrease seen in both cell lines is presumably due to the denovo-lipogenesis that 

consume those intermediates to form PC and PE respectively.  While investigation of all these 

pathways is beyond the scope of this paper, these results indicate that this analytical method 

may be used for studying a wide range of metabolites and pathways connected to insulin 

secretion. 
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Figure ‎3-7. Schematic of metabolite levels and 13C enrichment of indicated metabolites at baseline and after 5 and 10 min 
exposure to 10 mM glucose.  The size of each circle denotes the relative concentration of that metabolite, but does not 
reflect the relative concentration among the metabolites.  13C isotopologue percentage is indicated by the gradation of the 
pie and includes the baseline natural enrichment of 13C of ~1%.  Grey circles indicate that the isotopic enrichment was not 
determined for those metabolites. 

 

Conclusions.  The use of LC-TOF-MS has allowed us to measure the temporal and 

dose response to increasing glucose concentration for a wide range of metabolites in INS-1 

832/13 cells.  By combining static (Figure 1) measurements and flux analysis (Figures 3-5) we 

have confirmed, extended or proposed modifications to several prevailing hypotheses 

regarding the metabolic pathways associated with GSIS (Figure 7). The simultaneous 

measurement of  glycolytic and TCA cycle intermediates, nucleotides, long- and short-chain 
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acyl-CoAs and other intermediates show a novel interaction of metabolites.  Novel findings 

include: 1.  rapid esterification of long chain acyl-CoA with de novo synthesized glycerol-3-

phosphate which explains the rapid fall in acyl-CoAs, allowing enhanced closure of the KATP 

channel and generation of phosphatidic acid and diacylglycerols to act as possible second 

messengers. 2.  Rapid turnover of Span 1 TCA metabolites and rapid increases in the Span 2 

metabolite, malate, which increases primarily by influx of malate into the mitochondria.  3.  

Rapid generation of malonyl-CoA from citrate coincident with a glucose-induced 

dephosphorylation of ACC1.  4.  Significant flux of glucose-derived carbon into HMG-CoA and a 

rapid depletion of this metabolite with a parallel, rapid rise in farnesyl pyrophosphate, 

providing substrate for isoprenylation of proteins.  5.  De novo synthesis of ZMP from glucose 

entering the pentose phosphate pathway which may modulate insulin release. 6.  Increases in 

sugar nucelotides, including GDP-mannose, which may provide substrate for modification of 

proteins important for secretion.     

These studies are limited to the glucose-responsive INS1 (832/13) cells but most findings 

were also reproduced in another glucose responsive cell line INS-1 (832/3).  The studies 

presented here provide several hypotheses for metabolic pathways that may play varying roles 

in the augmentation of GSIS which can be tested in additional experiments in both INS-1 cells 

and in isolated isles.  Assessing the alterations of specific metabolites in response to high 

glucose or fatty acid exposure may also provide information as to how chronic insulin resistance 

associated with obesity may result in altered β-cell metabolism which may lead to altered 

insulin secretory dynamics and diabetes mellitus. 
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 Supplmentary information 

 

Figure S1. Results from standard addition experiment to determine linearity of response for 24 metabolites. An extract of 
INS-1 cells that had been incubated for 2 h in 0.5 mM glucose in KRB was divided into aliquots. The aliquots were spiked to 
create different concentrations of 24 metabolites and a constant final volume of extract. Each sample was analyzed by LC-
TOF-MS and peak areas related to the spiked concentration (i.e., does not incorporate endogenous concentration). Analytes 
that have a smaller number of points in the lines have high concentrations so low concentration spikes were not used 
because they had undetectable effects on peak area. Each plot indicates the R2 value from linear regression analysis.  
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Chapter 4. METABOLIC REMODELING BY FATTY ACIDS AND 

ENHANCEMENT BY FFAR1/GPR40 AGONISTS DURING 

POTENTIATION OF INSULIN SECRETION 

ABSTRACT 

Acute fatty acid (FA) exposure potentiates GSIS in β-cells through metabolic and 

receptor mediated effects.  We assessed the effect of fatty acids on the dynamics of the 

metabolome in INS-1 (832/3) cells following exposure to U-[13C]glucose to assess flux through 

metabolic pathways.  Metabolite profiling showed a fatty acid-induced increase in acyl-CoAs 

which were rapidly esterified with glucose-derived glycerol-3-phosphate to form  

lysophosphatidic acid, mono- and diacylglycerols and other glycerolipids, some implicated in 

augmenting insulin secretion.  Glycolytic flux increased along with a reduction in the 

NADH/NAD+ ratio, presumably by an increase in conversion of dihydoxyacetone phosphate to 

glycerol-3-phosphate.  The fatty acid-induced increase in glycolysis also resulted in increases in 

tricarboxylic cycle flux and oxygen consumption.  Inhibition of fatty acid activation of 

FFAR1/GPR40 by antagonist or siRNA knockdown decreased glycerolipid formation, attenuated 

fatty acid increases in glucose oxidation, and increased mitochondrial FA flux as evidenced by 

increased acyl-carnitine levels.  Conversely, FFAR1/GPR40 activation in the presence of low FA, 

increased flux into glycerolipids and enhanced glucose oxidation.  These results suggest that by 

remodeling glucose and lipid metabolism, fatty acid significantly increases the formation of 

both lipid- and TCA cycle-derived factors that augment insulin secretion.    

INTRODUCTION 

Glucose stimulated insulin secretion (GSIS) is mediated by a series of events that depend 

upon increases in glycolytic and tricarboxylic cycle (TCA) flux and the generation of metabolic 

coupling factors (1).  Glycolytically derived ATP likely plays a role on the closure of KATP channels 

during the early phase of insulin secretion (1) and efficient glycolysis is dependent upon 

regeneration of NAD+, at least in part via malate-aspartate and glycerol-3-phosphate shuttles 

(2).  The TCA cycle is thought to participate in substrate cycling which allows the generation of 

NADPH and other proposed intermediates which participate in augmentation of insulin 

secretion (3).  
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Free fatty acids play an important role in regulating β-cell function under physiological and 

pathological conditions.  Exposure to fatty acid is known to amplify glucose stimulated insulin 

secretion (GSIS) with optimal potentiation dependent upon both fatty acid metabolism within 

the β-cell (4, 5) and activation of the FFAR1/GPR40 receptor. Activation of this surface G protein 

coupled receptor has been shown to be responsible for ~ 50% of fatty acid potentiation effect 

of the second phase of GSIS in rat islets (6, 7).   Both lipogenesis and lipolysis generate 

glycerolipids, such as DAG, which provides additional signals for potentiating GSIS (8).   Fatty 

acids must be esterified to acyl-CoAs to function in GSIS potentiation; inhibition of lipogenesis 

by triascin C, an acyl-CoA synthase inhibitor, inhibited FFA potentiation of insulin secretion in 

rat islets (9). Long chain acyl-CoA can act as a lipid signal for insulin exocytosis (10, 11), increase 

intracellular free calcium, and modulate KATP (12) and calcium channels (13).  Increased 

formation of malonyl-CoA via mitochondrial derived citrate reduces fatty acid oxidation and 

enhances lipogenesis (5), increasing the availability of acyl-CoAs for metabolism.  In addition, 

inhibition of lipase decreased phase 2 insulin secretion in rat islets (14), indicating a role for 

lipolysis in potentiation of insulin secretion.  The decrease was reversed by palmitic acid, 

suggesting that lipolysis can be substituted by de novo generation of signaling lipids.  

To our knowledge, there are no large scale assessments of metabolite changes in 

response to acute fatty acid exposure in β-cells.  In previous papers (15, 16), we have shown 

that assessment of metabolites in INS-1 cells, a robust model for studying GSIS, can provide 

detailed temporal and assessments of flux through multiple metabolic pathways.  Using these 

techniques we assessed the changes in the INS -1 cell metabolome associated with fatty acid 

potentiation of GSIS. In addition to temporal changes in metabolites, we used both U-

[13C]glucose and U-[13C]palmitate to follow remodeling of INS -1 cell metabolism in response to 

fatty acids and to synthetic FFAR1/GPR40 agonists and antagonists.   The studies suggest that 

fatty acids enhance the flux of dihydroxyacetone phosphate to glycerol-3-phosphate, 

regenerating NAD+, resulting in enhanced glycolytic and TCA cycle flux.  We also provide 

evidence that FFAR1/GPR40 signaling enhances this flux, providing additional mechanisms for 

the positive pharmacological action FFAR1/GPR40 agonist (17, 18).   
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EXPERIMENTAL PROCEDURES 

Materials.  INS-1 832/3 cells (hereafter, INS-1) were kindly provided by Dr. Christopher 

Newgard (Duke University). All chemicals were purchased from Sigma-Aldrich unless otherwise 

noted.  

Cell Culture and media.  INS-1 cells were cultured in RPMI as described previously (16). 

Cells were incubated in RPMI supplemented with 3 mM glucose for ~6 h prior to 

experimentation. Free fatty acid solution was prepared by finely grinding fatty acid (sodium 

palmitate) using mortar and pestle and adding it to a warm solution of BSA (fatty acid free) 

dissolved in KRHB buffer (16). Leaving the palmitate solution to stir using magnetic stirrer for 

several hours at high speed yielded a homogenous suspension.   

Glucose Stimulation.  Palmitic or oleic acid (0.5 mM) was complexed with 0.5 % BSA 

(fatty acid free) solution in KRHB to achieve a 1:6 molar ratio of BSA to fatty acid. Cells were 

incubated for 30 min in glucose-free media with BSA or palmitate or oleate before stimulation 

with 16.6 mM [12C] glucose or U-[13C] glucose for time periods ranging from 5 to 60 minutes.  At 

each time point, cells were snap frozen using liquid nitrogen and kept at -80° C until metabolite 

extraction as described previously (15).  At each time point the media was also collected for 

insulin measurement.  

Fatty acid metabolism. Cells were incubated with 500 μM U-13C palmitic acid (Sigma), 

500 μM U-13C oleic acid (sigma) or 0.5 % BSA (fatty acid free) for 30 min in KRHB with 0 mM 

glucose before stimulation with 16.7 mM 12C-glucose for 60 min.  

GPR40 activation and inhibition.  Cells were incubated for 30 min with or without 

palmitate in the presence of either the FFAR1/GPR40 antagonist GW1100 (5 μM) or the 

FFAR1/GPR40 agonist Cay 10587 (10 μM) (Cayman Chemical, Ann Arbor, MI). Drugs were 

dissolved in DMSO which was added alone for control studies.   

GPR40 Knockdown.  INS-1 cells were cultured in 6 well plates and 150 pM of GPR40 

siRNA (Invitrogen) or Non-targeting siRNA (Thermo) was added for48 hours cells after which 

cells were harvested for Western blot or for metabolomic profiles.  

Oxygen consumption and extracellular acidification rate measurement.  Measurements were 

performed using a Seahorse XF24 extracellular flux analyzer (Seahorse Bioscience) using 5x KHB 

as described by the manufacturer (555 mM NaCl, 23.5 mM KCl, 10 mM MgSO4 and 6 mM 
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Na2HPO4). Briefly cells were seeded in 24 sea horse plate in full RPMI.  RPMI was replaced with 

low glucose RPMI 6 hours before the experiment. The cells were incubated at 37 C in the 

absence of CO2 for 1 hr after which media was changed to KHB containing fatty acid or BSA 

before assay. After equilibration, measurements were taken for 10 minutes followed by the 

addition of 16.7 mM glucose for an additional 40 min for assessment of oxygen consumption. 

Insulin measurement and Western blot.  For insulin assay, a 100 µl aliquot of supernatant was 

assayed using a rat/mouse insulin ELISA kit (Millipore, Billerica, MA) after dilution with 1% BSA.  

Western blot for phospho-ACC, phospho-AMPK or β-actin (all from Cell Signaling, Danvers, MA) 

or GPR40 receptor (Novus Biologicals, Littleton, CO) was performed as described (16). 

Metabolites Measurement.  Metabolites were extracted using 90% (9:1 methanol: 

chloroform)/10% water. Polar metabolites were separated using Luna NH2, and lipids 

separated using Xbridge BEH C18 XP or Capcell C18 column (2 mm x 150 mm).  Metabolites 

were detected by time of flight mass spectrometry in negative and positive mode as described 

previously (16). Untargeted analysis was performed using XCMS online (19) and metabolites 

were identified using accurate mass or authentic standards (if available) (16). Relative peak 

areas were used for relative quantification of identified metabolites (16).   

Statistics.  Data are expressed as mean ± 1 standard error (S.E). Statistical significance was 

determined when appropriate using unpaired, two-tailed Student's t test assuming equal 

variance or ANOVA using Tukey’s post-hoc analysis using SPSS; p-values < 0.05 were considered 

significant. 

 

RESULTS 

Palmitic acid potentiates glucose stimulated insulin secretion (GSIS).  INS-1 cells were 

preincubated with BSA or 500 µM palmitate complexed to BSA (‘palmitate’) for 30 min in 0 mM 

glucose followed by stimulation with 16.6 mM glucose.  Media was collected for measurement 

of insulin secretion from 0 to 60 min after addition of glucose. Cell extracts were collected for 

determination of 69 metabolites by LC-MS prior to addition of BSA or palmitate (-30 min) or 

from the same cultures used to assess insulin secretion (0 to 60 min) (Figure 1).  As previously 

demonstrated in islets (4), preincubation of INS-1cells with fatty acids potentiated GSIS by ~2-
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fold, at each time point compared to BSA controls (Figure 2A).  Heat maps of metabolite 

profiles (Figure 1) showed that 30 min of preincubation with either BSA or palmitate in glucose-

free media resulted in lowering of the concentrations of most metabolites relative to 

preincubation levels with the exception of expected rises in nucleotide monophosphate levels.    

 

As we (16) and others (20) have previously observed, palmitoyl-CoA rapidly decreased (~ 

50%) following the addition of glucose in both BSA and palmitate pretreated cells (Figure 2B).   

This observation is despite the marked increase in palmitoyl-CoA concentration following 

preincubation with palmitate (Figure 2B).  In addition, the concentration of palmitoyl-carnitine 

rapidly declined (Figure 2C), likely representing reduction in entry of palmitate into the 

mitochondria.  The reduction in fatty acid entry into the mitochondria in β-cells has been 

ascribed to elevations in malonyl-CoA which inhibits CPT1 activity on the outer mitochondrial 

membrane (for review, see (21)).  Indeed, in the absence of fatty acids, malonyl-CoA levels 

increase following glucose addition to INS-1 cells.  However, in the presence of palmitate, the 

malonyl-CoA rise was blunted (Figures 2D and 1).  
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Figure ‎4-1. Temporal metabolites profile of INS-1/832/3 cells upon glucose stimulation in the presence or absence of palmitic 
acid. The heat map (middle and right) are showing the metabolites levels expressed as fold change of the (-30 min) time 
point. INS-1 cells were incubated in RPMI with 3 mM glucose for 6 hours (-30 time point) before incubation in KRHB for 30 
minutes with no glucose in the presence or absence of 500 µM palmitate (0 time point). Cells were stimulated with 12C 
glucose for different time points (5 till 60 min). Asterisk indicates significant difference in peak area versus time -30 with p < 
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0.05.  The heat map to the left is showing the fold change for metabolites in palmitate versus BSA treated cells, comparing 
each time point. Asterisk indicates significant difference in peak area of each time point of palmitate versus the 
corresponding BSA treated cell with p < 0.05. Statistics test used was ANOVA using Tukey’s post-hoc analysis using SPSS 
software. 

 

Figure ‎4-2.Palmitic acid incubation effect on GSIS, AMPK and related metabolites. Insulin levels after stimulation with 16.6 
mM glucose for different time intervals in the presence or absence of 500 uM palmitate (A). Levels of palmitoyl-CoA (B) 
Palmitoyl-carnitine (C) Malonyl-CoA (D) AMP (G) ZMP (H) before and after 30 min incubation with 500 µM palmitate (time 
zero) and after stimulation with 16.6 mM glucose for different time points. Western blot for pAMPK (E) and pACC (F) before 
glucose addition (time zero) and after 30 min of glucose stimulation (30 min). * = p < 0.05 between BSA and palmitate at 
each time point.  Error bars represent 1 S.E n= 3-4 per time point. 

 

AMP-activated protein kinase (AMPK) is a known regulator the glycerolipids/free fatty 

acid cycle (22, 23) and generates malonyl-CoA by phosphorylating acetyl-CoA carboxylase 
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(ACC).  We found that fatty acid addition increased the phosphorylation of AMPK and ACC 

(Figure 2E-F), increased AMP levels ~30% (Figure 2G), and resulted in a small, but persistent 

increase in p-ACC following glucose addition (Figure 2F).  Interestingly, ZMP, an AMP analog 

known to activate AMPK, also increased after glucose addition with both BSA and fatty acid.  

However, ZMP remained elevated through the time course of insulin secretion in cells exposed 

to palmitate (Figure 2H), which may also contribute to the increased AMPK and ACC 

phosphorylation.   

Fatty acid caused an increase in de novo-synthesized glycerolipids.  To assess the effect 

of fatty acids on the formation of glycerolipids, we used LC-MS to quantify a series of lipid-

associated metabolites in INS-1 during GSIS using U-[13C]glucose to track de novo generation of 

glycerolipids containing palmitate.   In the absence of added palmitate, a small rise was seen in 

the M+3 isotopologues of LPA, palmitic acid (PA), diacylglycerol (DAG), triglycerides (TG), 

phosphatidylglycerol (PG) and phosphatidylinositol (PI) and monoacylglycerol (MAG) (Figures 

3A-H and Figure 1).  In contrast, total levels and M+3 isotopologues rose significantly in cells 

pre-incubated with palmitate (Figure 3A-H) with the rise in LPA preceding that of the other 

lipids, demonstrating a significant increase in the esterification of U-[13C]glycerol-3-phosphate 

(Go3P) (Figure 3A-H).  In INS-1 cells, the increase in DAG, previously suggested to play an 

important role in GSIS (6, 9), was primarily due to increases in M+3 species, suggesting that the 

bulk of DAG is generated de novo during GSIS in INS-1 cells.  We also observed increases in the 

labeling of phosphatidylcholine (PC), phosphatidyl ethanolamine (PE) and a parallel, rapid 

decrease in their precursor moieties, CDP-choline and CDP-ethanolamine, respectively (Figure 

3, I-L).  A mass shift of M+3 is detected for all these metabolites, except PG which shows M+6 

mass shifts, presumably because of the incorporation of two [13C]Go3P molecules into the lipid.   



 

86 
 

 

Figure ‎4-3.Palmitic acid effect on carnitines and glycerolipids metabolites.  Glycerolipids levels before and after stimulation 
with 16.6 mM U-[13C]glucose with and without preincubation with 500 µM palmitate for 30 min (time 0) and after 5 or 15 or 
60 min of glucose stimulation (A-I and K). CDP-choline (J) and CDP-eth (L) are measured after stimulation with 12C glucose. 
Error bars represent 1 S.E n= 3-4. 

 

Fatty acid exposure increases Sphingosine-1-Phosphate and N-acyl amide levels.   To 

further identify metabolites that could be implicated in fatty acid potentiation of GSIS, we used 

untargeted metabolomic profiling.  We found significant increases in sphingosine-1-phosphate 

and two acyl amides; palmitoyl taurine and palmitoyl glycine (Figure 4A-C) whose identities 

were confirmed by accurate-mass and retention time matching with standards.  Addition of 

taurine or glycine increased the levels of palmitoyl taurine and palmitoyl glycine, respectively, 

in the presence of palmitic acid (Figure 4, D and E).   Although significant increases in the 

palmitoylated species were observed, minimal effect on basal or GSIS was found (Figure 3F).   

Despite recent studies that suggest that acyl-taurine species added exogenously to β-cells 

enhanced GSIS, we did not detect changes in insulin secretion following addition of taurine (not 

shown) and similarly, minimal effects of glycine. 
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Figure ‎4-4.undirected analysis for metabolites changing with fatty acid treatment. levels of palmitoyl glycine, palmitoyl 
taurine and sphingosine phosphate after incubation with fatty acid for 30 min followed by stimulation with 16.6 mM U13C 
glucose for 5,15 or 60 min (A-C). Levels of palmitoyl taurine and palmitoyl glycine after the addition of increasing dose of 
their precursor amino acids in the presence or absence of palmitate (D-E). Insulin levels after incubation of cells with BSA or 
palmitic acid in the presence or absence of glycine (F). Media was collected before addition of glucose (0 minute) or after 
stimulation with 16.6 mM glucose for 20 or 60 min. Error bars represent 1 S.E n= 3-4.  

Fatty acids increase glycolytic and TCA cycle carbon flux.   Following the addition of 

glucose, glycolytic and pentose phosphate intermediates rose as expected in both BSA and 

palmitate treated cells (Figure 1); however, palmitate blunted this rise.  By using U-[13C]glucose, 

we found that the levels of fructose-bis-phosphate fell (Figure 5A) due to a reduction in 13C-

labeled intermediates (Figure 5B).  Similar finding was observed other glycolytic intermediates 

(not shown) as well as in the pentose phosphate intermediates such as 6-phsophoglucanate 

and ribose+ribulose 5P (not chromatographically resolved) (Figure 5C-F).  Similar changes were 

seen in Go3P levels (Figure 5G and H).  Palmitate did not affect the glucose-induced rise in 

2PG+3PG 2-phospho + 3-phosphoglycerate (2PG+3PG), which are not chromatographically 

resolved) or TCA cycle intermediates (Figure 5I-K and Figure 1).   
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Figure ‎4-5.Palmitic acid effect on glycolysis, pentose phosphate metabolites and TCA cycle. Changes in levels of fructose 
bisphoshphate (A) phosphogluconate (C) ribose+ribulose-P (E), glycerol-3-phosphpate (G), 2PG+3PG (I), citrate (J), malate (K) 
and NADH (L) after stimulation with 16.6 mM 12C glucose in the presence or absence of 500 µM palmitate. Changes in total 
mass and 13C isotopologues after stimulation with 16.6 mM U13C glucose for fructose bisphosphate (B), phosphogluconate 
(D), ribose and ribulose-P (F) and glycerol-3-phosphate (H).  Error bars represent 1 S.E n= 3-4 except for control at 60 minute 
using 13C glucose, where n=2, and the values were confirmed with n= 4 in separate experiment. 

Because we found an increase in the flux of glucose into glycerolipids in the presence of 

palmitate, we hypothesized that the reduction in the glycolytic intermediates was due to their 

rapid consumption.  The conversion of dihydroxyacetone phosphate to Go3P utilizes NADH and 

we observed a significant reduction the NADH levels in palmitate treated cells following the 

addition of glucose (Figure 5L) as well as reduction in the NADH/NAD+ (Figure 1).  To confirm 

increased glucose flux to Go3P by fatty acid treatment, we performed a pulse chase experiment 

in which a 15 min pulse of U-[13C]glucose was chased for 2 min with unlabeled glucose in INS-1 

pretreated with BSA or palmitate.  The consumption of 13C-labeled Go3P as well as the 

generation of unlabeled Go3P was faster in the presence of fatty acid (Figure 6A), confirming a 

rapid increase of Go3P consumption following palmitate treatment.  Identical effects on 

metabolite flux were observed following preincubation of INS-1 cells with oleic acid 

(Supplemental Figure 1).   
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Figure ‎4-6.palmitic acid effect on glycolytic flux, fatty acid oxidation and oxygen consumption.  For pulse-chase experiment, 
cells were stimulated with 16.7 mM U-13C glucose for 15 min (pulse) before the KRHB was replaced with the same media 
containing 16.7 mM 12C glucose for 2 min, after which the cells were quenched and the rate of consumption of labeled 
(Go3P) and the rate of formation of unlabeled (Go3P) in 2 min was plotted  (A). Statistics was done by comparing the slope of 
linear regression lines (ANCOVA) using GraphPad prism.  Oxygen consumption rate (OCR) and Extracellular acidification rate 
measured by sea horse system before and after the addition of 16.6 mM glucose (B and C). The percentage labeling of 
ultimate labeling of citrate, aspartate and malate after 1 hour treatment with U13C glucose (D). The % labeling of citrate 
after incubation of INS-1 cells with either BSA or U-[13C]palmitate or U-[13C]oleate for 30 min with no glucose (time zero) 
and after stimulation with 16.6 mM 12C glucose for 60 min (time 60) (E). Error bars represent 1 S.E with n= 3-4 for 
metabolites analysis and n= 10 for sea horse experiment. 

As a consequence of regeneration of NAD+ following palmitate treatment, an increase 

glucose flux into the TCA cycle would be expected.  Thus, we measured oxygen consumption in 

INS-1 cells pretreated with BSA or palmitate for 30 min.  As shown in Figure 6B, addition of 

palmitate produced a small increase in oxygen consumption rates (OCR) prior to the addition of 

glucose.  In contrast, preincubation with palmitate increased OCR by ~66% following the 

addition of glucose, demonstrating an increase in glucose oxidation.  Extracellular acidification 

rose following glucose addition, but was not affected by palmitate pretreatment (Figure 6C). 

  The rise in extra cellular acidification rate “ECAR”, a measure of lactate production, was 

small, consistent with the low levels of lactate dehydrogenase in these cells (24).  To further 

assess flux through the TCA cycle, cells were preincubated with BSA or palmitate and then for 

60 min in the presence of U-[13C] glucose. Measurement of the ratio of 13C- isotopologues of 
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TCA intermediates revealed that fully labeled citrate (M+6), malate (M+4) and aspartate (M+4) 

were increased in the palmitate pretreated cells by approximately 35% (Figure 6D), supporting 

an increase of flux of glucose into the TCA cycle following palmitate treatment.    Finally, the 

minimal contribution of palmitate to oxygen consumption in INS-1 cells was confirmed by the 

low levels of 13C-carbon incorporation into citrate following exposure of cells to U-

[13C]palmitate or U-[13C]oleate in the presence or absence of glucose (Figure 6E).   

GPR40 receptor modulates FFA potentiation of GSIS and fatty acid esterification.  We 

next examined the role of the free fatty acid receptor FFAR1/GPR40 on metabolic flux in INS-1 

cells.  We first preincubated cells with the FFAR1/GPR40 antagonist, GW1100, in the presence 

or absence of 250 µM palmitate and measured insulin secretion and metabolite levels in 

response to the addition of 16.6 mM U-[13C]glucose for 30 min.  GSIS was decreased 

significantly by GW1100 inhibition of GPR40 receptor, both in the absence and presence of 

palmitate (Figure 7A) as previously described (7, 25).   Metabolite analysis showed that 

palmitate reduced the concentration of M+6 hexose phosphates as well as M+3 Go3P while 

GW1100-treated samples showed increased levels of M+6 hexoses (Figure 7B) as well as M+3 

Go3P isotopologues (Figure 7C) following preincubation with palmitate.   There was a parallel 

decrease in accumulation of M+3 isotopologues of LPA (Figure 7D) and various DAG species 

(Figure 7E and F) in antagonist treated cells following palmitate addition.  Conversely, the 

FFAR1/GPR40 agonist, Cay 10587, increased the M+3 isotopologues of DAG, but only in the 

presence of 50 µM palmitate (Figure 7G).  
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Figure4- 7: GPR40 role in palmitic acid induced metabolic changes.  INS-1 cells were incubated with 250 µM palmitate or BSA 
in the presence or absence of 5 µM GPR40 antagonist (GW1100) for 30 min followed by stimulation with 16.6 mM U-
[13C]glucose for 60 min. Using these conditions the following are measured : insulin levels (A), changes in total mass and 13C 
isotopologues of glycerol-3-phosphate (B), Hexose phosphates (C), LPA (16:0), DAG(32:0) (E), DAG (34:1) (F) and its 
isoptologue ratio (J), CDP-ethanolamine (L).  INS-1 cells were incubated with 50 µM palmitate or BSA in the presence or 
absence of 10 µM Cay 10587 for 30 min followed by stimulation with 16.6 mM U-[13C] glucose for 60 min. Under these 
conditions, changes in total mass and 13C isotopologues of DAG(34:1) (G) and its isotopologues ratio (K) were measured.  
GPR40 was knocked down by siRNA and western blot is shown (H) for knocked down (KD) and non-transfected (control) or 
scrambled (non-targeting, NT). Under the knockdown conditions, INS-1 cells were incubated with 50 uM palmitate and 16.6 
mM U-[13C] glucose for 30 min and the ratio of DAG (34:1) isotopologues was compared between knockdown (KD) and 
scrambled (control) samples.  Error bars represent ± S.E n= 3-4. 

To further confirm that these effects were GPR40 mediated, we were able to partially 

knockdown GPR40 receptor using siRNA (Figure 7H) and assess the M+3/M+0 isotopologues of 

DAG (34:1).   GPR40 knocked down (KD) sample showed a significant decrease in the ratio of 

labeled/unlabeled DAG (34:1) (Figure 7I), similar to results seen in cells treated with the GPR40 

antagonist (Figure 7J) and opposite to the effect mediated by GPR40 agonist (Figure 7K). CDP-

ethanolamine increased in the presence of GPR40 antagonist (Figure 7L), which is in agreement 

with the decreased activity of the glycerolipids cycle (El Azzouny et al, in preparation)  



 

92 
 

Preincubation of INS-1 cells with GW1100 resulted in a ~2-fold increase in palmitoyl-

carnitine levels, suggesting an increase in flux of palmitate into the mitochondria (Figure 8A), an 

effect was also found in FFAR1/GPR40 knockdown cells (Figure 8B).   The FFAR1/GPR40 agonist 

had no effect on palmitoyl-carnitine levels when cells were incubated with low level (50 µM) 

palmitate (Figure 8C).  These results suggest that flux into glycerolipids is the primary 

determinant of fatty acid entry into mitochondria.  Neither antagonist (Figure 8D) nor agonist 

(Figure 8E) affected palmitoyl-CoA accumulation in the absence of glucose suggesting no effect 

of FFAR1/GPR40 receptors on fatty acid uptake or activation of the lipids by CoA synthase.   To 

assess the effect of FFAR1/GPR40 activation on lipolysis, we incubated INS-1cells with U-

[13C]palmitate with or without agonist for 20 min in the absence of glucose.  In the presence of 

agonist, there was an increase in the unlabeled DAG (34:1) and a decrease in the M+16/M+0 

labeling ratio (Figure 8F), consistent with previous reports of phospholipase C activation by the 

receptor (26).   

Finally, we assessed the effect of FFAR1/GPR40 receptor manipulation on palmitate-

stimulated glucose oxidation in INS-1 cells.  In the presence of agonist, there was a further 

increase in glucose oxidation in the presence of palmitate and Cay 10587 (Figure 8F).  

Conversely, the augmentation of glucose oxidation by palmitate was reduced by the antagonist 

(Figure 8G).  

 

Figure ‎4-8.Metabolic changes with GPR40 modulation. INS-1 cells were incubated with 250 µM palmitate +/- 5 µM GW1100 
in absence of glucose for 30 min and the levels of palmitoyl-carnitine (A) and palmitoyl-CoA (D) were measured at different 



 

93 
 

time points. Levels of palmitoyl carnitine in the GPR40 knockdown experiment described in figure 6 (B). INS-1 cells were 
incubated with 50 µM palmitate +/- 10 µM Cay10587 GPR40 agonist  in absence of glucose for 30 min and the levels of 
palmitoyl-carnitine (C) and palmitoyl-CoA (E) were measured at different time points. INS-1 cells were incubated  with 50 µM 
U-[13C] palmitate in the  absence of glucose +/- agonist for 30 min and the ratio of labeled DAG(34:1)+16 to unlabeled 
DAG(34:1) was measured (F). Oxygen consumption rate in the presence or absence of agonist or antagonist (G and H). Error 
bars represent 1 S.E with n= 3 or 4 for metabolites analysis and n=6-7 for SeaHorse experiment 

 

Figure ‎4-9.Proposed pathways for fatty acid potentiation of glucose stimulated insulin secretion. Metabolic remodeling of 
glucose flux due to fatty acids and FFAR1/GPR40 activation in β-cells. 

 DISCUSSION 

The secretion of insulin is primarily regulated by the entry of glucose into the β-cell but 

is modulated by nervous system, hormonal, and nutritive inputs (27).  Fatty acids augment 

insulin release in vivo and in vitro and its effects have been shown to be mediated via 

intracellular metabolism and through surface receptors (8).  In this report we show that a 30 

minute incubation of INS-1 cells with palmitate prior to addition of glucose results in a doubling 

of insulin release as seen previously in intact islets (4).   Prior to glucose addition, palmitate 

exposure results in a ~7-fold increase in intracellular palmitoyl-CoA and a small increase in 

oxygen consumption, but little effect on basal insulin secretion and minimal changes in the 

majority of intracellular metabolites with the exception of a significant increase in the 

formation of palmitoyl-carnitine likely generated by the flux of fatty acid into the mitochondria.  

This suggests that despite a small increase in TCA cycle activity, there is minimal generation of 

factors necessary for insulin secretion.  Following addition of U-[13C] glucose, palmitoyl-CoA 

rapidly declines with the formation M+3 LPA and DAG isotopologues containing palmitate, 

directly demonstrating that acyl-CoAs are rapidly esterified to Go3P derived from extracellular 
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glucose. This effect is not limited to saturated fatty acids as identical changes are seen following 

preincubation of INS-1 cells with oleic acid (Supplemental Figure 1).   

The esterification of fatty acids with Go3P has several effects that appear to contribute 

to their ability to augment insulin secretion.  We identified an increased glycolytic flux towards 

Go3P (Figure 6A and B), reduced NADH levels, and a decrease in NADH/NAD+ ratio following 

fatty acid addition (Figure 2 and 1).  As previously suggested (28), we show directly that fatty 

acid addition increases glycolytic (Figure 5A) and TCA cycle (Figure 6D) flux, and glucose 

oxidation (Figure 6B).  Each should result in the generation of additional stimulus-secretion 

coupling factors that have been suggested to arise from mitochondrial metabolism in β-cells 

(1). While fatty acids increased glucose oxidation, glucose addition reduced fatty acid entry and 

oxidation in mitochondria as indicated by the fall in C16 acyl-carnitine levels.  The reduction in 

fatty acid mitochondrial uptake has been attributed to increases in malonyl-CoA inhibition of 

CPT-1.  While malonyl-CoA levels rise with glucose, fatty acid addition results in a significant 

blunting of the rise in malonyl-CoA in INS-1 cells (Figure 2D).   The reason for the reduction is 

not clear, but decreased export of citrate/isocitrate from the mitochondria or an increase in 

consumption for de novo lipogenesis may play a role.  These results also suggest that the 

decrease in fatty acid oxidation following glucose addition may be primarily due to the 

redirection of acyl-CoA towards esterification rather than blocking influx to the mitochondria 

via CPT1 inhibition by malonyl-CoA. This is consistent with the results of Mulder et al. (29) who 

observed no effect on insulin secretion after reducing INS-1 malonyl-CoA levels by 

overexpression of a modified malonyl-CoA decarboxylase.    

The increase in de novo lipogenesis resulted in the generation of a variety of lipid 

intermediates that have been described as candidate signals for insulin secretion (8).  

Lipogenesis is part of the larger glycerolipid-free fatty acid cycle which is activated by glucose in 

β-cells and there is evidence that both the lipogenic and lipolytic arms of the cycle supply 

important signaling molecules (21).  In glucose-responsive INS-1 cells, we find that the majority 

of increases in whole cell lipid intermediates, including LPA, PA, DAG, PG, PI and MAG arise 

from the lipogenesis pathway as little increase in M+0 isotopologues are found even after 60 

min of glucose stimulation.  DAG has multiple potential roles in insulin secretion including 
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activation of Munc13-1, a receptor known to amplify insulin exocytosis (30, 31) and activation 

of phospholipase D1 (PKD1), which modulates the reorganization of the cortical actin network, 

perhaps playing a role in the second phase of insulin secretion (6).  Recently, Prentki and 

colleagues have suggested that increases in MAG, generated by lipolysis of TAG in β-cells can be 

a better activator of Munc13-1 than DAG.      

In addition to previously identified lipid species, we found marked increases in cellular 

content of various acyl-amides.  These fatty acid derivatives have not been reported previously 

in β-cells and their effect is unknown.  Acyl-amides have been found in neuronal tissue and 

reportedly possess various functions (32, 33)  including modulation of calcium flux, nitric oxide 

generation (34), and TRP calcium channels (35). While, we were able to increase the 

intracellular concentration of those metabolites by increasing their amino acid precursor’s 

levels, this did not result in alterations in insulin secretion.  Interestingly, taurine has been 

suggested to restore β-cell insulin secretion following chronic fatty acid exposure. However this 

beneficial effect was attributed to its antioxidant ability (36). 

The activation of the FFAR1/GPR40 receptor mediates about 50% of the augmentation 

of insulin secretion by fatty acid (7). As indicated above, FFAR1/GPR40 has been proposed to 

increase β-cell calcium and activate phospholipase C generating diacylglycerols which may 

tether PKD1 to the plasma membrane increasing its activity (6), though the latter has not been 

directly demonstrated in β-cells.  We sought to determine whether acute modulation of 

FFAR1/GPR40 had an effect on the β-cell metabolome.  Disrupting FFAR1/GPR40 activity by use 

of antagonist and knockdown of the receptor resulted in attenuation of the augmentation of de 

novo DAG synthesis (Figure 7E, F, I, J).  In contrast, the FFAR1/GPR40 agonist, Cay10587 

increased flux of a low concentration of palmitate (50 µM) into DAG (Figure 7G and K).  In 

addition, GW1100 reduced oxygen consumption by INS-1 cells treated palmitate while agonist 

has an augmenting effect.  These results suggest that FFAR1/GPR40 enhances the effect of fatty 

acids to remodel intermediary metabolism.  This effect does not appear to be due to increased 

uptake or activation of fatty acid as disruption of FFAR1/GPR40 did not alter the levels of 

palmitoyl-CoA in the INS-1 cells.  At present, it is unclear how the activity of the pathways 
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leading to de novo lipogenesis occurs following FFAR1/GPR40 activation, but modulation of 

GPAT activity may be a target, given the increased flux into the early steps of the lipogenic 

pathway.     

In summary, our data are consistent with the idea that in the fasting state, plasma fatty 

acids increase, increasing long chain acyl-CoA levels in β-cells.  There are both glucose and fatty 

acid oxidation, but no generation of coupling factors to increase insulin secretion (Figure 9A).  

As glucose levels rise after feeding, the presence of fatty acids increases esterification with 

glycerol-3-phosphate, resulting in an increased flux to glycolipids and the formation of lipid-

derived factors important in insulin secretion (Figure 9B).  The increased flux increases 

regeneration of NAD+, accelerating glycolysis and flux into the TCA cycle above that which 

would occur following exposure to glucose alone. Our data also suggests that in addition to the 

previously described activation of the PLC-PKD1 pathway (6), FFAR1/GPR40 activation also 

enhances flux through the glycerolipid pathway, augmenting the formation of coupling factors.  

This may be important as fatty acid entry into the β-cell likely falls as plasma fatty acids 

decrease following a meal due to insulin-mediated reduction in lipolysis in fat cells. Thus, 

activation of  the FFAR1/GPR40 receptor by fatty acids or receptor agonists (18) may ensure 

continued fatty acid esterification and the provision of signaling lipids for insulin secretion.
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SUPPLEMENTARY INFORMATION 
 

 

Figure S1: metabolites profiles of INS-1 cells after stimulation with 13C glucose in the presence or absence of BSA, oleate or 
palmitate. 
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Chapter 5. METABOLOMICS ANALYSIS REVEALS THAT AICAR 

AFFECTS GLYCEROLIPID, CERAMIDE AND NUCLEOTIDE SYNTHESIS 

PATHWAYS IN INS-1 CELLS 
 

INTRODUCTION  

 Beta cells in islets of Langerhans secrete insulin in response to high glucose levels in 

blood. Glucose stimulated insulin secretion (GSIS) is mainly dependent on glucose metabolism 

to generate signals that trigger or amplify insulin secretion (1).  Deterioration of beta cell 

function represents one of the factors responsible for development of metabolic syndrome and 

type 2 diabetes. 

An energy sensor that is located in all cells (including beta cells) is AMP-activated 

protein kinase (AMPK). AMPK switches between promoting catabolic and anabolic cellular 

processes to ensure energy balance depending upon nutrient availability (2). Increased AMP 

during starvation activates AMPK and subsequent activation of catabolic processes and 

inhibition of anabolic processes (3), on the other hand, high levels of glucose deplete AMP 

causing AMPK deactivation and subsequent activation of anabolic processes and inhibition of 

catabolic processes. 

Because of its effects on various metabolic pathways, AMPK is an interesting target for 

metabolic syndrome treatment.  Pharmacological agents like 5-Aminoimidazole-4-carboxamide 

ribonucleotide (AICAR) have been developed to activate AMPK. AICAR is a pro-drug that is 

uptaken by the cell and metabolized intracellularly into AICAR monophosphate (ZMP) which is 

an AMP analog. AICAR has been used to probe the effects of AMPK on several tissues in vitro, 

as well as in vivo (4). Intravenous administration of AICAR to diabetic patients decreased their 

hepatic glucose output and lowered their blood glucose and free fatty acids (5).  

Metabolic effects of AMPK activation varies from one tissue to another.  In adipocytes, 

AMPK activation inhibits hormone sensitive lipase, inhibiting lipolysis. In heart and 

macrophages, AMPK activation activates phosphofructokinase B2 and B3 respectively, 

activating glycolysis. In muscles and liver AMPK activation inhibits glycogen synthase 1 and 2, 

respectively, inhibiting glycogen synthesis (6). AMPK activation also has general effects that 
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have been observed in multiple tissues, such as the inhibition of acetyl-CoA carboxylase 1 and 2 

(ACC1 and ACC2), inhibiting fatty acid synthesis and increasing fatty acid oxidation respectively. 

AMPK activation also inhibits 3-hydroxy-3 methylglutaryl CoA reductase (HMGR), inhibiting 

cholesterol synthesis (6, 7). 

AMPK activation effect on B-cell insulin secretion has been studied in islets or cell lines 

like (INS-1 cells) yielding conflicting results (8). AMPK over-expression in INS-1 cells significantly 

decreased glucose stimulated insulin secretion in the presence of fatty acid, this was attributed 

to the increased oxidation of fatty acid and the reduction in lipid signals involved in insulin 

secretion (9). The reduction in lipid messengers was the same reason AMPK activation by AICAR 

was able to rescue INS-1 beta cells from saturated acid induced toxicity (10). On the other hand, 

AMP activation by AICAR was shown to potentiate insulin secretion from rat islets and INS-1 cell 

lines at low glucose, with no significant effect at higher glucose levels (11).   

Although AICAR’s primary mode of action is thought to be as an AMP mimetic that 

causes AMPK activation, some effects of AICAR have been shown to be independent of AMPK 

activation. AICAR inhibited choline kinase and phosphatidyl choline synthesis in liver cells 

independent of AMPK (12). AICAR has also been shown to induce apoptosis in chronic 

lymophcytic leukemia cells independent of AMPK leading to clinical studies on this treatment 

(13).  AMPK independent effects induced by AICAR were protective in animal models of human 

malignant hyperthermia from sudden death. This useful effect was suggested as a possible 

prophylactic treatment for the human disease (14). 

In light of the widespread use of AICAR as an activator of AMPK for research purposes 

and the growing interest in use of AICAR as a treatment for certain human diseases, improved 

understanding of the molecular basis of its action is essential.  As AICAR directly affects many 

aspects of cellular metabolism, metabolomics may be expected to provide valuable insight into 

the effects of AICAR. Global intracellular metabolite changes associated with AICAR treatment 

have been studied in human umbilical vein endothelial cells using NMR techniques (15). In 

hepatocytes, a few alterations in metabolite levels were reported, including a decrease in ATP 

as well as changes in phospholipid pathway metabolites (12, 16) . Global extracellular 
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metabolite changes were studied recently in T-cells using LC-MS and showed an increase in 

secreted purine and pyrimidine intermediates (17). 

We have recently shown that ZMP is an endogenous metabolite that increases after 

glucose stimulation in INS-1 cells which could be a negative regulator for insulin secretion, 

however we did not investigate its role in detail (1). So a follow up experiment was performed 

to study the acute effect of ZMP on beta cell metabolism and insulin secretion using INS-1 

832/13 cells. We applied metabolomics isotopic nutrients to investigate various pathways. We 

were able to identify different AMPK dependent and independent pathways as well as 

identifying metabolomics markers or fingerprint for AMPK activation in beta cell. 

MATERIAL AND METHODS  

Materials.  INS-1 cells (18) were kindly provided by Dr. Christopher Newgard (Sarah W. 

Stedman Nutrition and Metabolism Center, Duke University, Durham, NC).  All chemicals were 

purchased form Sigma-Aldrich (St. Louis, MO) unless otherwise noted. RPMI media, fetal bovine 

serum, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), and penicillin-streptomycin 

were purchased from Invitrogen Corp, (Carlsbad, CA). Stable isotope labeled U-13C glucose and 

ethanolamine were purchased from Sigma.     

Cell culture.INS-1 832/13 cells were cultured in RPMI supplemented with 2 mM 

glutamine, 1 mM sodium pyruvate, 10% FBS, 10 mM HEPES, 100 U/mL penicillin, 100 µg/mL 

streptomycin, 250 ng/mL amphotericin B, and 50 µM β-mercaptoethanol.  Cells were plated at 

a density of ~14 x 103 cells/cm2 and grown in 6 cm culture dishes at 37 °C and 5% CO2 in a 

humidified atmosphere to ~70% confluence. Krebs-Ringer-HEPES buffer (KRHB) was prepared 

containing  20 mM HEPES, 118 mM NaCl, 5.4 mM KCl, 2.4 mM CaCl2, 1.2 mM MgSO4, and 1.2 

mM KH2PO4 and was adjusted to pH 7.4 with NaOH.  

Experimentation. On the day experiments were performed, the cell culture medium 

was changed to KRHB containing 2 mM glucose +/- 250 uM AICAR for 60 min prior to addition 

of 10 mM 12C or 13C glucose from 1 M stock solution. Cell metabolism was quenched at 

different time points as described in each experiment. For the dose response curve of AICAR, 

cells were incubated with 10 mM glucose and serial concentration of AICAR (0, 25, 125,250 and 

1250 uM) for 1 hour before quenching. For experiment showing the effect of starvation on 
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CDP-ethanolamine, cells were incubated in RPMI with 3 mM glucose or 10 mM glucose for 6 

hours before quenching. 

Glycerolipids pathway monitoring. For DAG and ceramide analysis, the INS-1 (832/13) 

clonal cell line was incubated with 2 mM glucose, 250 uM AICAR and 50 uM palmitic acid for 1 

hour before stimulation with 13C glucose for 30 minutes. In the case of CDP-ethanolamine 

labeling, labeled ethanolamine was also added for the 1 hour pre-incubation period.  

Insulin measurement and western blot. For insulin, aliquots of supernatant was diluted 

with 1% BSA and stored at +4 °C before being assayed using Rat/Mouse insulin ELISA Kit 

(Millipore, Billerica, MA).  For western blot, cells were washed with cold PBS before the 

addition of lysis buffer (RIPA buffer supplied with complete protease inhibitor cocktail and 

phosphatase inhibitor cocktail (Roche diagnostics)). Anti-phospho-Acc, anti-phospho-HMGR 

antibodies were obtained from Cell signaling.) Blots were developed with ECL (Pierce) according 

to manufacturer's instructions. 

Metabolite Measurement. Cell plates were rinsed, metabolism quenched, and 

metabolites extracted using the procedure described previously (1). Briefly, cell plates were 

rapidly rinsed with water and quenched with liquid nitrogen. Metabolites were extracted with 

8:1:1 methanol: chloroform: water and assayed by high performance liquid chromatography 

with time-of-flight mass spectrometry (HPLC-TOF-MS). Chromatographic separations were 

performed with an Agilent Technologies (Santa Clara, CA) 1200 HPLC system equipped with a 

Phenomenex (Torrance, CA) Luna NH2 2.0 × 150 mm, 3 μm HPLC column and a 2.0 × 4 mm 

guard column using the following conditions: mobile phase A was 100% acetonitrile (ACN); 

mobile phase B was 100% 5 mm ammonium acetate pH 9.9 with ammonium hydroxide. Lipids 

were separated on a C18 Capcell column (2 mm bore by 150 mm long packed with 3 μm 

particles). Mobile phases and gradient are similar to that described in (19) . Detection was 

performed on an Agilent Technologies LC/MSD TOF using dual electrospray ionization (ESI) 

source in negative-ion mode for polar metabolites and both negative and positive mode for 

lipids.  

Data analysis and statistics. Directed analysis was performed to measure Metabolites 

previously implicated in GSIS (e.g. glycolytic and TCA cycle intermediates). Those were 
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identified using standards, accurate mass, and isotope ratios to confirm peak assignments as 

described in (1) 

Undirected analysis was performed using XCMS online (20). Hits with significant 

increase was manually checked for correct assignment.  These metabolites were identified by 

searching both Human Metabolome Database and Metlin to match mass and comparing to 

standards. For relative quantification of identified metabolites, peak areas were used as 

described before. 

For all studies, peak areas were measured from extracted ion chromatograms of [M-

H]− metabolite ions with ± 70 ppm detection windows centered on the theoretical mass. [M-

2H]2− ions were used for malonyl-CoA (mCoA) and other CoAs to improve sensitivity. Statics 

was performed using unpaired student-t test comparing different time points +/- AICAR, with 

significance value <0.05 

RESULTS 

AICAR effect on insulin secretion and metabolome of beta cell 

The effect of 0 uM to 1250 uM AICAR treatment for 60 min on ZMP formation was 

tested. As shown in supplemental figure 1, ZMP increased linearly with AICAR concentration up 

to 250 uM where it began to level off. For all subsequent studies we used 250 uM which was 

within the linear range and generated a ZMP concentration that was ~150 times greater than 

the highest endogenous levels. This AICAR concentration is an intermediate value relative to 

previous studies, which used doses ranging from 100-1000 uM (12, 16). 

The effect of AICAR on insulin secretion was evaluated by incubating INS-1/832 (13) cells 

in KRB with 2 mM glucose for 60 minutes in the presence or absence of 250 uM AICAR. This 

pretreatment was intended to allow the uptake of AICAR and its conversion into the active form 

before stimulation with 10 mM glucose. Insulin secretion was measured after the incubation 

period at low glucose (time zero) and after 60 minutes of high glucose. At low glucose, AICAR 

substantially increased insulin secretion; however, after stimulation with elevated glucose the 

total amount of insulin secreted was unaffected by AICAR. Because of the difference in basal 

secretion, the stimulation index was significantly reduced in the presence of AICAR (Figure 1). 

These results were reproduced in a different cell line (INS-1 832/3) as shown in supplemental 
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figure 2. These results are also consistent with our previous study that showed that if 10 mM 

glucose and 25 uM AICAR were applied simultaneously to a cell, insulin secretion was slightly 

reduced at 45-60 min.  

To determine the effect of AICAR on the INS-1 cell metabolome, metabolism was 

quenched and metabolites extracted for LC-MS analysis at different times before and after 

glucose treatment. LC-MS analysis of cell extracts allowed monitoring of 66 identified 

metabolites. The relative change in metabolite concentration between AICAR treated sample 

and control at different times during glucose treatment is summarized in figure 1. The results 

show that AICAR affected many metabolites involved in a variety of pathways. Some of these 

pathways are known to be associated with AMPK activation, while others are not.  Results from 

different metabolites and follow up studies are discussed below.  
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Figure ‎5-1.insulin and metabolites changes with AICAR incubation (a) insulin level after AICAR incubation and after glucose 
stimulation for 60 minutes.(b) formation of ZMP with AICAR incubation (C) phosphoACC after AICAR incubation and after 
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glucose treatment for 10 and 20 minutes. (D) Heat map showing fold change of metabolites with AICAR treatment. 
Significantly different values are highlighted with asterisk. Student t-test was performed on each time points comparing the 
control and AICAR treated samples.  

 

AICAR decreased malonyl CoA and long chain CoA levels. 

Incubation of cells with AICAR increased ZMP levels after the incubation period, that 

decreased after glucose addition (figure 1b) (p < 0.05).In the absence of AICAR, glucose 

increased ZMP ~ 5 fold, as we have shown previously (1), but still far below that evoked by 

AICAR alone (Figure 1B, C).  

ZMP is known to activate AMPK which in turn phosphorylates and deactivates ACC. We 

confirmed this effect by determining ACC1 phosphorylation using western blot. Phospho-ACC 

increased with AICAR treatment, but then decreased with glucose stimulation (figure 1). These 

results indirectly show that the AICAR treatments used can modulate AMPK activity and that 

elevated glucose opposes the effect, mirroring the changes in intracellular ZMP. A key 

metabolic marker of this effect is malonyl CoA, the product of ACC. Malonyl CoA increases with 

glucose treatment, but AICAR lowered the concentration throughout the glucose treatment 

(Figure 2A). The substrate of ACC, acetyl CoA, was unaffected by AICAR suggesting other 

regulation of its steady state concentration. This was expected because Acetyl CoA was 

previously shown to be stable (1).   

The ratio of malonyl CoA to acetyl CoA more clearly shows the apparent effect of ACC 

phosphorylation evoked by AICAR (Figure 2C). Malonyl CoA inhibits CPT-1 and fatty acid 

oxidation with a consequence of increasing availability of long chain CoA in cytosol. As 

expected, AICAR reduced long chain CoAs at low glucose (time 0 in Figure 2B). Interestingly, 

glucose treatment without AICAR also decreases long chain CoAs. We have shown that this is 

due to consumption by reaction with glycerol phosphate, which dramatically increases with 

glucose treatment, to produce glycerolipids. While AICAR reduces long chain CoAs at low 

glucose, its effect is not additive with glucose so that at high glucose the effect of AICAR is nil on 

long chain CoAs (figure 2B). 
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Figure ‎5-2.metabolites affected by ACC deactivation. (a) Malonyl-CoA. (b) palmitoyl CoA. (c) ratio of malonyl CoA/acetyl 
CoA.(d) AMPK effect on malonyl-CoA formation. Cells were incubated with/without AICAR for 1 hour, followed by 
stimulation with 12C glucose for different time points. 

AICAR increased HMG-CoA and decreased farnesyl pyrophosphate 

AMPK also phosphorylates and deactivates HMG-CoA reductase. We found that 

phospho-HMG-CoA was increased by AICAR treatment (Figure 3D), again indirectly showing 

that the AICAR concentrations used activate AMPK. The substrate of HMG-coA reductase, 

HMG-CoA, decreases substantially with glucose treatment. AICAR did not affect the initial 

concentration but did blunt the decrease evoked by glucose (Figure 3A). Farnesyl 

pyrophosphate, a downstream product of HMG-CoA, was also not strongly affected at low 

glucose, but its increase induced by glucose was blunted by AICAR (Figure 3B). The combined 

effects, plotted as the ratio of FPP/HMG-CoA suggest that AICAR deactivation of HMG-CoA 

reductase lowers flux through this pathway and reduces net concentration of downstream 

products even with elevated glucose (Figure 3C). This would lie in agreement with AICAR 

reduction of cholesterol accumulation in myotubes(21) and macrophages(22).  

 

Figure ‎5-3. Metabolites affected by HMGR deactivation. (a) HMG-CoA, (b) Farnesyl pyrophosphate (c) ratio of Farnesyl 
pyrophophate/ HMG-CoA. Cells were incubated with/without AICAR for 1 hour, followed by stimulation with 12C glucose for 
different time points.(d) Phospho-HMGR levels after cells incubation in the presence or absence of AICAR for 1 hour. (e) 
AMPK effect on mevalonate pathway.  

AICAR did not affect glycolysis or TCA metabolites 

Glucose stimulation is known to increase flux into glycolytic pathway and TCA cycle that 

cause a consequent increase ATP/ADP ratio. To investigate if central carbon metabolism 
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pathways are affected by AICAR, key metabolites involved in glycolysis and the TCA cycle were 

analyzed and did not show significant differences (figure 1). 13C labeling of fructose 

bisphosphate and citrate after exposure of cells to U13C glucose for 30 minutes was analyzed as 

representative measure of flux in glycolysis and TCA cycle, respectively, but no significant 

effects of AICAR were detected (figure 4).This was consistent with the lack of effect on the ratio 

of ATP/ADP at early time points (figure 1). However, AICAR slightly increased ATP/ADP ratio 

after 25 minutes of glucose treatment, which was mainly because of the decrease in ADP 

concentration (described below). 

  

 

Figure ‎5-4.Effect of AICAR on TCA cycle and glycolysis: levels of the different isopotomers (a) Fructose bisphosphate (b) 
Citrate  

 

AICAR decreased GAR and PRPP with slight change in pentose phosphate shunt metabolites 

and decreased glucose flux in the purine and pyrimidine pathway. 

Our metabolomic analysis also showed significantly lower levels of glycinamide 

ribonucleotide (GAR) and phosphoribosyl pyrophosphate (PRPP) after glucose treatment (figure 

1). PRPP is a metabolite that links the pentose phosphate pathway with the purine and 

pyrimidine synthesis pathway. Glycinamide ribonucleotide (GAR) is one of the metabolites in 

the early steps of the purine synthesis pathway (figure 5G). Both PRPP and GAR increase 

significantly in control cells after glucose stimulation (1); however, AICAR incubation 

significantly blunted this increase (figure 5A, B) suggesting decreased activity in this pathway. In 

accordance with this finding, the substrate pentose phosphates increased slightly with AICAR 

incubation (figure 1 and Figure 5C). 
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To further understand the effect of AICAR on GAR and PRPP concentration, we used 

uniformly 13C labeled glucose to monitor the flux of glucose in the purine and pyrimidine 

pathway. Using uniformly 13C labeled glucose, newly synthesized ATP and UTP could be 

measured by LC-MS, by observing the 5 Dalton mass increases caused by addition of a 13C5-

labeled ribose sugar to adenine or uridine. The levels of 5 labeled ATP or UTP decreased 

significantly in the presence of AICAR (Figure 5E). The labeling of pentose phosphate 

metabolites did not show significant differences (Figure 5F). 

 

 

 

Figure ‎5-5.Effect of AICAR on pentose phosphate and purine pathway metabolites:  (a) GAR (b) PRPP (C) pentose phosphates 
(d) +5 labeled pentose phosphates. (e) Unlabeled ATP and UTP levels (f) +5 labeled ATP and UTP. Cells were incubated 
with/out AICAR for 1 hour, followed by stimulation with 12C glucose for different time point (a-c) or using 13C glucose for 30 
minutes (d-f). The percentage of maximum was calculated based on the maximum of each species.(e) the purine and 
pyrimdine pathway (1) PRPP synthase (2) PRPP amidotransferase 
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AICAR affected Kennedy pathway of phosphatidyl ethanolamine synthesis and decreased 

flux of glucose in glycerolipids pathway and decreased ceramides 

Undirected metabolomic analysis of polar metabolites revealed an increase in CDP-

ethanolamine with AICAR incubation (figure 6A and supplemental figure 2). According to the 

Kyoto Encyclopedia of Genes and Genomes (KEGG) (23, 24), CDP-ethanolamine is used only in 

de novo phospholipid synthesis (Kennedy pathway) (Figure 7E). This increase is in agreement 

with previous data showing an increase of CDP-ethanolamine in hepatocytes with AICAR 

treatment (16). The AICAR induced increase in CDP-ethanolamine was also induced by low 

glucose (figure 6 B), which suggests that the increase in CDP-Et is AMPK dependent. To confirm 

the peak assignment (since no authentic standard is available for this metabolite) and to 

understand the reason for this increase of CDP-ethanolamine, we incubated cells with 2-13C 

labeled ethanolamine in the presence or absence of AICAR. Labeled CDP-ethanolamine was 

formed and co-eluted with the unlabeled form, confirming correct peak assignment (figure 6 D, 

E, G). Both the labeled and the unlabeled CDP-ethanolamine increased with AICAR treatment 

(figure 6C) suggesting inhibition of consumption of CDP-enthanolamine rather than an increase 

in synthesis which would have preferentially increased the labeled form. 
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Figure ‎5-6.Effect of AICAR on metabolites in the Kennedy pathway for PE: (a) CDP-ethanolamine after incubation 
with/without AICAR for 1 hour followed by stimulation with glucose for different time points (b) CDP-ethanolamine levels 
after starvation for 6 hours at low glucose (c) levels of labeled and unlabeled CDP-ethanolamine-after incubation with +2 
ethanolamine for 1 hour and stimulation with glucose for 30 minutes. (D, E, G) EIC and mass spectrum of labeled and 
unlabeled CDP-ethanolamine-after incubation with +2 ethanolamine for 1 hour before glucose treatment for 30 minutes (f) 
Levels of CDP-ethanolamine after phospholipase inhibition. Cells were incubated at 2 mM glucose for 60 minutes +/- AICAR 
+/-phospholipase C (PLC) inhibitor (U-73122) 20 uM  or +/-  phospholipase D inhibitor Cay10593 (60 uM).  

In the Kennedy pathway, CDP-enthanolamine is consumed by condensation with 

diacylglycerol (DAG) to form Phosphatidyl ethanolamine (PE). To confirm that flux of DAG into 

PE formation is reduced, we incubated cells with 50 uM palmitic acid for 1 hour before the 

addition of U13C glucose to allow lipogenesis and formation of 13C3-labeled glycerolipids (figure 

7). By observing the labeling ratio (+3 labeled/unlabeled glycerolipids) it is evident that AICAR 

induced a consistent decrease of glucose flux into the glycerolipids pathway. This was also 

coupled with an accumulation of Go3P as shown in supplementary figure 3.  The decrease in 

glucose flux in the glycerolipids pathway was true in DAG and PC but surprisingly not in PE. This 

discrepancy in PE formation has been seen before (25), in that over expression of the ECT 
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enzyme in the Kennedy pathway did not change PE levels. This was attributed to a balance 

between formation of PE and phospholipase activity that results in maintenance of PE pools at 

steady-state levels regardless of alterations in flux. 

 To confirm the existence of this equilibrium between lipolysis and lipogenesis we 

attempted to inhibit phospholipase C or D using previously described inhibitors (U-73122 and 

Cay10593 respectively(26, 27)).  We observed a significant increase in CDP-ethanolamine that 

was augmented by the addition of AICAR (figure 6F). This accumulation of CDP-ethanolamine 

would imply less flux into PE in response to phospholipase inhibition. This flux was further 

inhibited by AICAR, which caused even more accumulation of CDP-ethanolamine. This would 

support the hypothesis of continuous PE formation and breakdown by phospholipases, keeping 

PE at steady-state levels. Based on these data, we conjecture that decreased formation of PE 

from DAG is partially due to reduced availability of the substrate (DAG), but also because of the 

inhibition of EPT enzyme. This suggestion is supported by the fact that CDP-ethanolamine 

accumulated mainly under low glucose conditions where there is low glucose flux and low 

lipogenic activity.  

To detect other possible effects of AICAR on lipids, untargeted metabolomics analysis 

was applied to the previous experiment using 50 uM palmitic acid and U-13C glucose. The most 

prominent identified changes were ceramides, which decreased significantly with AICAR 

treatment (figure 7D).  
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Figure ‎5-7.effect of AICAR on Ceramides and glycerolipids synthesis pathway:  (a-c) ratio of +3 labeled DAG,PC or PE( 34:1) (d) 
Ceramides levels. INS-1 cells incubated with 50 uM palmitic acid with or without AICAR 250 uM for 1 hour before stimulation 
with U-13C glucose for different time points (e) Kennedy pathway for phospholipid synthesis: ECT-ethanolamine phosphate 
cytidylyltransferase, EPT-ethanolamine phosphotransferase, GPAT-glycerol-3-phosphate O-acyltransferase, PSS-1 and PSS-2: 
phosphatidylserine synthase 1 and 2 

DISCUSSION 

We used an LC-MS based metabolomics method to probe the metabolic effect of AICAR 

on the β-cell line INS-1. The effects of AICAR treatment on β-cell lines were observed in a 

diverse range of metabolic pathways and appear to be mediated by both AMPK-dependent and 

independent processes.  These pathways appear to be relevant to the β-cell secretory function 

as well as the cancerous nature of the cell line. These pathways might represent novel targets 

for future development of treatments for diabetes and cancer.  

Effect of AICAR on GSIS related pathways. 

The metabolomics method allows us to evaluate the effect of AICAR on several key 

metabolites involved in GSIS. We have shown before that ATP/ADP ratio increases after within 
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5 min of glucose stimulation as expected to trigger first phase insulin secretion (1). AICAR did 

not affect ATP/ADP ratio at early time points, but evoked a slight increase after 25 minutes. This 

increase in ATP/ADP ratio is because of a decrease in ADP concentration presumably because of 

the ZMP induced inhibition of purine synthesis (figure 1 and 5).  

AICAR modulated the long chain coA pathway, presumably through activation of AMPK 

and its effects on ACC. AICAR lowered the levels of long-chain CoAs which is known to have 

several roles in GSIS. Long-chain CoAs can potentiate opening Katp so that decreases in long-

chain CoA’s may be stimulatory to GSIS (1). Consistent with this idea, we and others have found 

that glucose lowers the long chain CoA concentration (28). AICAR lowered the long-chain CoA 

concentration at low glucose, but did not significantly lower it further with glucose stimulation. 

These results are consistent with elevated basal insulin secretion that does not increase 

substantially with glucose. 

The succinate pathway proposed to enhance GSIS involves the formation of HMG-CoA 

through HMG-CoA reductase (HMGR) (29). The inhibition of HMGR by statin drugs has shown to 

inhibit glucose stimulated insulin secretion (29). Supporting the potential importance of this 

pathway, we have previously shown that glucose increases flux through HmgCoA yielding net a 

decrease in HmgCoA and an increase in FPP, a downstream metabolite that is involved in 

prenylation of proteins (1). Such modifications may promote exocytosis. AICAR blunted the 

effects of glucose resulting in higher HmgCoA and lower FPP. Such results are consistent with 

inactivation of HmgCoa reductase  by AICAR through AMPK and could explain some of the 

inhibitory effects on GSIS.  

Glycerolipid synthesis pathway is believed to be involved in promoting and sustaining 

GSIS (30). Products like DAG may be proximal metabolites in exocytosis while pathways 

supporting production of these compounds are critical for providing a supply at the proper time 

for GSIS. AICAR evoked a number complex changes, including a decrease in DAG, that may be 

linked to its net inhibitory effect on GSIS. The decrease in glucose flux in the glycerolipids cycle, 

would suggest that this decrease in DAG is probably due to reduced glycerol-3-phosphate and 

LC-CoA esterification by GPAT This is in agreement with the idea that GPAT enzyme could be a 

target of AMPK (31). Although Go3P did not accumulate in the preliminary metabolites 
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screening (Figure 1), it accumulated in the presence of 50 uM palmitic acid (supplementary 

figure 3) because of increased flux in the glycerolipids pathway. Similar accumulation of Go3P 

was seen before in myoloma cell (32). Although we suggest GPAT inhibition by AICAR we 

cannot exclude the possibility that the reduced esterification could be due to decreased LC-CoA 

levels. 

The reoxidation of NADH to NAD+ is critical to maintaining glycolytic flux into the 

mitochondria and for GSIS (33). The formation of Go3P from dihydroxyacetone phosphate 

(DHAP) by cytosolic glycerol-3-phosphate dehydrogenase utilizes NADH to regenerate NAD+, 

allowing continuing flux through glycolysis (1). The ratio of NADH/NAD+ slightly increased with 

AICAR, indicative of less esterification of Go3P with LC-CoA which might also explain some of 

the inhibitory effect on GSIS. 

ZMP effect on survival pathways 

The results point to several ways that AICAR may mediate survival or growth of cells. 

AICAR decreased the denovo synthesis of purine and pyrimidine metabolites by decreasing 

glucose flux through these pathways. Slight accumulation of pentose phosphate metabolites 

was seen, which would suggest that AICAR caused an inhibition in enzymes that links the 

pentose phosphate pathway with the purine and pyrimidine pathway. These enzymes could be 

PRPP synthase, the enzyme responsible of formation of PRPP and/or PRPP amido transferase 

which catalyzes the conversion of PRPP and glutamine to ribosyl amine-5 phosphate which 

forms GAR (figure 5E). Interestingly, both enzymes are known to be inhibited by metabolites in 

the purine synthesis pathway, like AMP, ADP, GMP and GDP (34, 35). This inhibition could be 

mediated by ZMP, which is an AMP analog based on being a purine derivative and probably not 

through AMPK. These observations and conclusions would support a plausible explanation for 

the decrease in ATP seen before in hepatocytes (the main site for purine synthesis) after AICAR 

treatments (12).This effect might also put AICAR in the category of an anti-metabolite therapy 

for cancer treatment. Interestingly it was shown recently that AICAR induced apoptosis in 

cancer cells independent of AMPK activation (13). Indeed, it has recently been shown that 

AICAR was able to induce apoptosis in multiple myoloma cells independent of AMPK (32). The 

cytotoxic effect was suggested to be due to inhibition of enzymes in the pyrimidine pathway, 
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mainly UMP synthase, which would agree with another published data (17). Although the 

metabolites measurements was done at 8 hours compared to our 60 minutes, but they 

observed a decrease in PRPP as we have shown. 

 Another metabolic change that is highly relevant to β- cells is the significant decrease in 

ceramides seen with AICAR incubation. Ceramides are suggested to be a lipid second 

messenger responsible for β- cell death after its exposure to saturated fatty acid (36).  This 

decrease in ceramides agrees with other work showing that showed that AMPK activation by 

AICAR inhibited serine palmitoyl transferase II (SPT II) and lowered palmitate induced ceramide 

formation in skeletal muscle (37). Serine levels decreased in a dose dependent manner after 

the addition of a range of concentrations of AICAR as shown in supplemental figure 2. This 

inhibition of SPT II could then be a consequence of less substrates availability, mainly palmitoyl 

CoA and serine. The two findings of decreased flux in the glycerolipids synthesis pathway and 

decreased ceramides synthesis in β- cells could help explain the finding that AICAR decreased 

palmitic acid induced apoptosis in INS-1 cells (10). 

Metabolic markers for enzyme activities 

An LC-MS run for a metabolomics study could provide plenty of information for enzyme 

activities and act as confirmation for immunoassay studies. It might also act as the sole marker 

for enzyme activity if no antibodies are available. Malonlyl CoA could be a useful marker for 

ACC activity as we have shown. Even better ratio would be the ratio of malonyl-CoA to acetyl-

CoA that would benefit from the stable levels of acetyl-CoA and help normalizing metabolites 

for any variation in cell mass, extraction or instrumental sensitivity, a major concern in 

metabolomics. HMG-CoA accumulation and the reduction of FPP levels would also provide a 

“finger print” for HMGR inhibition, and the ratio of HMG-CoA to FPP would also help 

normalizing the variation and provide a sensitive marker for HMGR activity. 

CDP-ethanolamine metabolite is an interesting metabolite marker that is readily 

detectable and involved only in the glycerolipids pathway. The current study showed that this 

polar metabolite can act as a simple probe for perturbation in lipogenesis and lipolysis. 
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CONCLUSION  

Metabolomic profiling revealed alterations in numerous biochemical pathways, which 

provide insight into the response of β- cells to a simulated “starvation” condition.  Stable 

isotope labeled glucose provided more detailed information regarding metabolic flux in 

pathways of interest. We highlighted metabolomic markers that act as a metabolic fingerprint 

of AMPK activation and confirm immunoassay measurements. U- 13C-glucose treatment 

revealed a decrease in glucose flux in the purine and pyrimidine pathway, suggesting an 

inhibition in PRPP synthase and/or PRPP amidotransferase enzyme by ZMP. Using labeled 

ethanolamine, we showed that AICAR may inhibit EPT via an AMPK dependent process. We also 

showed the fine equilibrium in lipogenesis and lipolysis that can be probed by CDP-

ethanolamine levels. Using U- 13C glucose and the ratio of labeled/unlabeled DAG we showed a 

decrease in glucose flux in the glycerolipid synthesis pathway suggesting an inhibition of GPAT 

enzyme. Undirected metabolomics showed a decrease in ceramides that might help to explain 

the protective role of AMPK in decreasing fatty acid induced toxicity in β- cells.  
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SUPPLEMENTARY INFORMATION 

 

Figure S1: insulin secretion levels in INS-1 (832/3) after AICAR incubation. 
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Figure S2: dose response curve: levels of ZMP, CDP-ethanolamine and serine after increasing dose of AICAR. 

  

Figure S3:  levels of G3P after incubation of INS-1 cells with 50 uM Palmitic acid, 2 mM glucose and ethanolamine +/- 250 uM 

AICAR for 1 hour.  

C
ontr

ol-0

A
IC

A
R
-0

C
ontr

ol-6
0

A
IC

A
R
-6

0

S
I-C

ontr
ol

S
I-A

IC
A
R

0

50

100

150

1.0

1.5

2.0

2.5

3.0

Insulin secretion

In
s
u

li
n

 (
n

g
/m

l)

s
tim

u
la

tio
n

 in
d

e
x

AICAR-0

Control-60

C D P -e th a n o la m in e -d o s e  r e p o n s e

A IC A R  c o n c e n tra t io n  (u M )

%
 m

a
x

im
u

m

0 5 0 0 1 0 0 0 1 5 0 0

0

5 0

1 0 0



 

123 
 

Chapter 6. SUMMARY AND FUTURE PLANS 

SUMMARY  

We developed and optimized a method for non polar metabolite extraction and analysis 

using LC-MS.  Different stationary phases were investigated including HILIC and reverse phase. 

As expected, HILIC separated lipids into classes based on its head group, while reverse phase 

separated lipids based on their chain length. HILIC provided superior separation for some low 

abundant lipid classes such as phosphatidyl serine, while reverse phase separation provided 

better separation for the rest of lipid classes. Different reverse phase stationary phases with 

various chain lengths were evaluated, such as C8, C18 and C30. The compromise chain length of 

C18 was more suitable for global lipid separation than the C8 or C30. We evaluated the impact 

of temperature and mobile phase pH on lipids separation and detection. Different extraction 

solvents were screened to evaluate its efficiency for lipid extraction. The final method for non 

polar metabolites analysis was combined with a HILIC based method for polar metabolites 

analysis, providing an analytical platform for global metabolites analysis. Using different 

metabolic tracers, this analytical platform enabled flux monitoring in different metabolic 

pathways such as glycerolipids pathway and central carbon metabolism.  

We were able to successfully apply this developed analytical platform for several 

biological questions, with main focus on beta cell and its ability to secrete insulin in response to 

different stimuli. The first question was to understand metabolic changes during glucose 

stimulated insulin secretion. Using U13C glucose we were able to probe metabolic changes that 

took place in the first 10 minutes of insulin secretion. We showed that U-13C glucose induced an 

increase in several metabolites, such as those involved in glycolysis and TCA cycle. This increase 

in metabolite levels was mainly derived from newly added glucose. We showed that malate was 

exception for this observation, where the glucose induced increase was mainly derived from 

aspartate, presumably through the aspartate malate shuttle. By blocking the aspartate-malate 

shuttle; we reduced this glucose induced increase in malate and confirmed the importance of 

this shuttle in insulin secretion. Using U13C glucose, we monitored glucose flux in the 

glycerolipids pathway and explained the rapid decrease in long chain coAs upon glucose 
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stimulation.  Those novel findings are important to understand how glucose regulate insulin 

secretion and what are metabolic pathways involved in glucose stimulated insulin secretion. 

The second biological question was to understand why fatty acids can potentiate 

glucose stimulated insulin secretion. This is representative of the hyperinsulinemia condition, 

which precedes the development of type 2 diabetes. We showed that fatty acids increase 

glucose oxidation, while being minimally oxidized by beta cell. Most fatty acids were esterified 

with glycerol-3-phosphate, derived from glucose and forming several glycerolipids signals that 

are known to facilitate insulin exocytosis. The increased glucose flux into glycerolipids pathway 

and the increased glucose oxidation are novel findings that were not reported before that 

would help understanding this potentiation mechanism. We also applied undirected 

metabolomics analysis and we found novel lipid signals that increased with fatty acid treatment 

such as palmitoyl glycine and palmitoyl taurine.  The role of those acylamides is yet to be 

investigated. 

Although the potentiation of fatty acid for insulin secretion appeared to be mainly 

mediated by the metabolism of fatty acid, the effect of free fatty acid receptor was reported to 

contribute to this potentiation mechanism. We were able to block and knockdown GPR40 

receptor and study metabolic changes associated with the inhibition of this receptor. 

Interestingly metabolic changes induced by fatty acid were partially reversed after GPR40 

inhibition. Inhibition of GPR40 led to the divergence of fatty acid away from esterification and 

towards oxidation in the mitochondria. These data suggest for the first time a role of GPR40 in 

glucose and fatty acid metabolism. This data would also justify the current development of 

GPR40 agonist drugs towards the treatment of type 2 diabetes.  

We further investigated the effect of AMPK activation on beta cells and GSIS. We used a 

pharmacological agent (AICAR) which is known to activate AMPK. AMPK is metabolic master 

switch that activated by AMP and is known to regulate many metabolic pathways. AICAR was 

developed as an AMP analog, capable of activating AMPK and was suggested to be used in the 

treatment of type 2 diabetes. We showed that AICAR reduced insulin secretion stimulatory 

index, this was parallel with a reduction in glucose flux in several metabolic pathways that are 
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known to contribute to the GSIS response. These attenuated pathways include the glycerolipids 

and mevalonate synthesis pathway. We showed also the danger of using AICAR as a purine 

analog for AMPK activation, because this would lead to the inhibition of the purine and 

pyrimidine synthesis pathway, which might lead to cell apoptosis on the long term. We also 

showed that AICAR decreased ceramides levels, which are known signals for beta cell apoptosis.  

Those novel findings would further augment importance of glycerolipids and mevalonate 

pathway in insulin secretion and would rise a concern on the usage of AICAR clinically. 

 

FUTURE DIRECTIONS 

Glucolipotoxicity 

  Acute exposure of beta cells to fatty acid will potentiate GSIS as described in chapter 4 

while the chronic exposure to fatty acids and glucose will lead to beta cell toxicity.  This toxicity 

is named “glucolipotoxicity” because it is induced by the synergistic effect of fatty acids and 

glucose, leading to impairment of insulin secretion and expression as well as beta cell apoptosis 

(1, 2). The decline in beta cell function plays a central role in the development of type-2 

diabetes.  To understand and find a treatment for type-2 diabetes, the mechanism of the 

glucolipotoxicity needs to be well understood.  Several intermediates have been suggested to 

play a role in the glucolipotoxicity process. Lipids in the glycerolipids pathway, ceramides and 

cholesterol intermediates have been suggested to be candidates’ signals for inducing cell 

toxicity (2-4). Free radical generation was also suggested as a part of the glucolipotoxicity effect 

on beta cells (3). 

  Recently a glucolipotoxicity study using INS-1 cells showed changes in the expression of 

many genes, increase in lipid synthesis as well as changes in TCA cycle intermediates (5). This 

research interestingly showed that glucose induced increase in TCA cycle intermediates is 

attenuated in the lipotoxic model (5). These results were similar to the results obtained in our 

lab, were a lipotoxic model of INS-1 cells showed lower glucose flux in TCA cycle (unpublished 

data). Our lab data showed several metabolomics changes induced by glucolipotoxicity, among 

these changes is the reduction in aspartate levels.  Following glucose stimulation, the increase 
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in malate induced by aspartate through the asp-mal shuttle was significantly attenuated, 

suggesting a defect in this shuttle.   

  Aspartate plays an important role in insulin secretion (6) since it acts as an anaplerotic 

substrate for TCA cycle and provides enough malate for TCA cycle through the asp-mal shuttle.  

The defect in asp-mal shuttle in lipotoxic models could be due to the interaction of fatty acid 

with proteins in this shuttle. An interesting hypothesis is that fatty acids modify proteins 

involved in GSIS thus affecting their function. Fatty acids like palmitic acid can covalently attach 

to proteins through a thio-ester bond in a process called palmitoylation. It was recently shown 

that many proteins including those involved in the asp-mal shuttle are palmitoylated (7, 8) and 

this palmitoylation can be inhibited by 2-bromopalmitate (9). Dynamic palmitoylation is 

reversed by enzymes named lysophospholipase 1 and 2 (LYPLA1 and LYPLA2), which can 

depamitoylate proteins (10, 11)  . The extensive palmitoylation of proteins suggested its 

important role in obesity related diseases (8) and it was recently shown that inhibition of 

palmitoylation using bromopalmitate reduced palmitate induced toxicity in beta cells (12). 

  LYPLA inhibitors were recently developed to treat some forms of cancers (11) and at the 

same time prevent the depalmitoylation step. As a preliminary data, we tested on some of 

these LYPLA inhibitors on INS-1 cells and interestingly the changes detected were mainly in the 

malate and aspartate levels (figure 1). Therefore a future work would suggest testing the 

hypothesis that palmitoylation of asp-malate shuttle is involved in the defect of GSIS in 

lipotoxicity model. Future work should also involve the inhibition of palmitoylation by 

bromopalmitate (figure 1)   
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Figure ‎6-1: showing the effect of palmitoylation inhibitors on metabolites levels in INS-1 cells (left) and a proposed 

hypothesis for the effect of fatty acid on aspartate malate shuttle (right). 

  We have shown in chapter 4, that fatty acid increase the TCA cycle activity and glucose 

oxidation. Thus, the decrease in asp-shuttle activity could also arise from the depletion of 

aspartate, which is being consumed to feed the “very active” TCA cycle. Thus a supply of 

aspartate could restore the beta cell secretory function and its response to glucose. 

Interestingly, increasing glutamate conversion into α-Ketoglutarate by BCH decreased cell death 

in glucolipotoxic cell model (13). This would confirm our suggestion for the importance of TCA 

cycle in mediating the effect of glucolipotoxity. 

Other secretagogues 

  As described in chapter 1, different secretagogues like leucine, α-ketoisocaproate (KIC) 

and monomethyl succinate (MMS) can stimulate insulin secretion. Addition of KIC alone will not 

stimulate insulin secretion but the addition of KIC with MMS will stimulate insulin secretion in 

INS-1 cells. Some metabolic couplers are being generated from these secretagogues that 

stimulate insulin secretion. Although the mechanisms for different secretagogues were 

described   in chapter 1, there are still many unanswered question. Among these questions are: 

What are the metabolic couplers or pathways that are activated by MMS addition to KIC and 

leads to insulin secretion? Why is leucine less effective than glucose in stimulating insulin 

secretion? What pathways are being activated by glucose but not by leucine? 
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Preliminary data were obtained comparing U-13C glucose vs U-13C KIC or U-13C KIC+ 

MMS. U-13C glucose increased the unlabeled malate (coming from aspartate) (figure 2) as we 

have shown before in chapter 3. KIC did not induce this increase; however the addition of MMS 

increased the unlabeled Malate. The increase in unlabeled Malate could be coming from the 

MMS itself, by supplying succinate to the TCA cycle, since aspartate levels did not change 

(figure 3).  

 

 

Figure ‎6-2: Isotope distribution of aspartate and malate after stimulation with U
13

C-labeled glucose or KIC.  

This would suggest that although KIC could not stimulate the asp-mal shuttle, addition 

of MMS acted as anaplerotic substrate rather than aspartate. However KIC+MMS were not as 

efficient as glucose in increasing malate or reducing aspartate.  

Away from the asp-mal shuttle, glucose was also able to increase flux in the mevalonate 

pathway, which reduced the level of HMG-CoA significantly (figure 3 and chapter 3-5). This mevalonate 
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pathway was suggested to play a role in insulin secretion (14). Interestingly KIC alone did not increase 

the flux in this pathway, while the addition of MMS increased the flux (figure 3), suggesting a novel role 

for these combination of nutrients.  

 

Figure ‎6-3: HMG-CoA isotope distribution after INS-1 stimulation with different nutrients. 

Finally, these preliminary data would provide a novel insight on the mechanism of these 

secretagogues. Further follow up experiments are required to investigate the importance of the 

mevalonic pathway in mediating the insulin secretion response for these secretagogues 

combination.  

Human beta cell lines 

     Human beta cell lines were successfully generated in different labs (15, 16). This 

development will open the doors towards the treatment of insulin dependent diabetic patients.  

The novel human beta cell lines were shown to be responsive to glucose and other 

secretagogues (16). Glucotoxicity (17) and lipotoxicity (18) were studied on this novel cell line 

and cells showed impairment of GSIS similar to what was shown before in rodent cell lines and 

islets. Changes in gene expression and increase in cell apoptosis was shown in those cells when 

exposed to high glucose or fatty acid (17, 18).  

  So far, there is no metabolomics study that has studied these cell lines. It is important to 

compare metabolites changes between human and rodents’ cell lines during insulin secretion, 

since this comparison will reveal any species differences in the regulation of insulin secretion. 
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This comparison is also important during glucolipotoxicity stages to discover new therapies that 

can restore human beta cell function.  

Islets from human and rodents 

   Islets from human or from rodents represent a more physiological model for studying 

metabolic signaling during insulin secretion. Drawbacks of using islets are mentioned in chapter 

1. A recent published metabolomics study performed on rat islets (19) using 240 islets for each 

time points. They were able to identify 31 metabolites changing with glucose stimulation, while 

in INS-1 cells we have monitored changes in ~70 metabolites during GSIS, without including 

glycerolipids species. The low number of identified islets metabolites in the previous study can 

be attributed to sample preparation and analysis. For sample preparation, extraction solvent 

for islets can be optimized to avoid sample dilution and increase the metabolites signal to noise 

ratio. For analysis, LC-MS can be used rather than the GC-MS used in this published study since 

the latter suffer from several drawbacks described in chapter 1. LC-MS can be further improved 

by using UPLC and nano ESI for the small and precious islets sample as described in the next 

section and in chapter 1.  

UPLC and nano electrospray  

    As described in chapter 1, electrospray ionization is the most widely used ionization 

technique using in mass spectrometer.  ESI provides the widest coverage of metabolome 

compared to other ionization techniques. However, one of the major drawbacks of ESI that low 

abundant metabolites are prone to ionization suppression from more abundant metabolites. 

The ideal scenario to avoid the ionization suppression is to have 1 ion per droplet sprayed into 

the mass spec. Nano flow LC coupled to nano spray ESI try to achieve flow rates of ~ 200 

nl/minute to gain this improvement in sensitivity.  UPLC provide a complementary increase in 

sensitivity by achieving better separation and narrower peaks. As described in chapter 1, 

narrower peaks will increase signal to noise ratio and allow the detection of many hidden 

metabolites. It is worth mentioning that the NH2 column is ideal for polar metabolites analysis 

as well as some lipid classes, but it suffers from column bleeding in high pH and hence very 

short column life compared to a reverse phase column. Hence improvement of the stationary 

phase stability represents a general need for metabolomics researchers.  
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Appendix -Flux in metabolic pathways using labeled nutrients. 
Metabolic tracers: 

 

a) U-13C Glucose: 

Glucose can be used to monitor several pathways, including glycolysis, TCA cycle, pentose phosphate 

pathway, purine and pyrimidine pathways as well as glycerolipids synthesis pathway. Using 13C glucose is 

very useful in beta cell studies, since glucose is the most powerful stimulant for insulin secretion and it 

allows the monitoring of different pathways involved in insulin secretion. 

 

Figure A-1: Some of the metabolic pathways that can be probed using U-13C glucose. 

Experimental conditions 

- INS-1 cells were incubated at low glucose for several hours (~ 6 hours) before 

completely depriving them of glucose for 30 minutes. This treatment ensures the best 

uptake of the U-13C glucose, without being diluted by any other unlabeled glucose. 

- To avoid the utilization of nutrients other than glucose, experiments were performed in 

a salt solution (typically KRHB) instead of RPMI. 
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U13C Glutamine 

Glucose can probe several pathways as described in the previous section; however some nutrients, such 

as amino acids can be used to probe specific pathways. One of the widely used amino acids is glutamine 

which acts as an anaplerotic substrate and is widely used to probe flux in the TCA cycle (1) (figure 2). 

 

Figure A-2: metabolic pathways that can be probed using U-13C glutamic acid 

Experimental conditions: 

- INS-1 cells were starved from glutamine for 6 hours (at 3 mM  glucose), before the addition of 2 

mM labeled glutamine for 30 minutes in KRHB and no glucose. This treatment resulted in ~ 50% 

labeled glutamate, aspartate and malate.  Addition of unlabeled glucose increased the uptake of 

labeled glutamic acid into the TCA cycle (figure 3). 

       

Figure A-3: glutamic and citrate labeling using U-13C glutamine. 
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Ethanolamine 

Ethanolamine can be used to monitor flux in the Kennedy pathway of 

phosphatidylethanolamine synthesis (figure 4).  Phosphoethanolamine and CDP-ethanolamine 

are polar  metabolites that can be monitored using the HILIC method, while 

phosphatidylethanolamine can be monitored using a lipid separation method. 

                 

Figure A-4: metabolic pathways that can be probed using labeled ethanolamine. Left: Kennedy pathways 
for PE synthesis. Middle: chromatogram showing the intensity of labeled and unlabeled CDP-
ethanolamine. Right: The ratio of labeled PE to unlabeled PE after 1 hour incubation with labeled 
ethanolamine. 

Experimental conditions: 

- The concentration of ethanolamine used in the experiment was 160 µM which is ~ 8 times the 

concentration originally used in advanced RPMI media (~ 20 µM). INS-1 cells could be incubated 

in RPMI or in KRHB during the experiment; however, glucose presence is crucial to allow for 

lipogenesis. 

- One hour incubation with 160 µM ethanolamine achieved  50% labeling in CDP-Et (figure 4 ) and 

achieved  14 % labeling in PE (34:1) (figure 4)  

Note: ethanolamine is an ion pairing agent that can change RPC column binding affinity; however the most 

dramatic effect will be seen in the mass spec in the positive mode, where a large peak of the ethanolamine will be 

seen in the background of subsequent runs. Washing the LC-MS system with IPA and acetonitrile is recommended 

to clean the system.  
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Choline 

Choline can be used to monitor flux in the Kennedy pathway of PC synthesis (figure 5). 

Phosphocholine and CDP-choline are polar metabolites that can be monitored using the HILIC 

method, while PC should be monitored using a lipid separation method. Phosphocholine and 

CDP-choline can be ionized in the negative mode by monitoring the M-H ion, but also by 

observing the acetate adduct formed due to the presence of the choline group. 

      

Figure A-5: metabolic pathways that can be probed using labeled choline. Left: Kennedy pathway for PC 
synthesis. Middle: the percentage labeling in polar fraction after 1 hour incubation with labeled choline. 
Right: labeling ratio of PC and LPC after 24 hour incubation in labeled choline in RPMI. 

Experimental conditions: 

- D9-choline chloride was used in the range of 200 µM - 1000 µM which is approximately 10- 50 

times the concentration used in normal RPMI media (20 µM). INS-1 cells could be incubated in 

RPMI or in KRHB during the experiment; however, glucose presence is crucial to allow for 

lipogenesis. 

- One hour of incubation with 200 µM choline chloride resulted in approximately 12 and 15 % of 

labeling in phosphocholine and CDP-choline. This low percentage is because of the endogenous 

large pool of those metabolites. Incubation of cells in RPMI supplied with 1000 µM D9-choline 

for 24 hours achieved approximately 50 % labeling in major PC forms like PC (34:1) and 20% in 

LPC (16:0). 

Note: Deuterated compounds are unstable compared to 
13

-C carbon labeled compounds, they can exchange with 

the hydrogen present in the media, causing loss of  labeling. 
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Serine 

Serine can be used to monitor flux into phosphatidyl serine. There are no polar intermediates 

except serine in this pathway. PS can only be generated indirectly in mammalian cells from PC 

or PE by PS synthase 1 or 2 (PSS-1 and PSS-2) respectively. Owing to the large pool of PC and PE, 

it is hard to anticipate which form of PS will be formed. This makes HILIC, which separates lipids 

based on their head group, an ideal option for PS measurements.  
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Figure A-6: metabolic pathways that can be monitored using serine. Upper: PS synthesis pathway from 
PE and PC. Lower left: mass spectrum showing the labeling in PS (34:1) and PS (36:1). Lower right: ratio 
of labeled to unlabeled PS after 1 hour incubation with labeled serine. 

Experimental conditions  

- The concentration of +7 serine (C3, D3, 
15N) serine used in the experiment was 1 mM which is 5 

times the concentration originally used in RPMI (~ 200 µM).  INS-1 Cells could be incubated in 

RPMI or KRHB during the experiment, however, KRHB was be preferred to avoid any dilution 

from unlabeled serine in the RPMI media. 

- INS-1 cells were incubated in KRHB with the +7 serine and low glucose (2 mM) for 1 hour before 

stimulation with 10 mM glucose for 30 minutes. This treatment resulted in ~ 10 % labeling in PS 

(34:1) (figure 6). The most abundant forms seen in INS-1 cells were PS (34:1) and PS (36:1) 

(figure 6). 
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Fatty acids 

Labeled fatty acids can be used to monitor flux into all phospholipid classes at short time points, except 

for PS, which needs extensive labeling in PE and PC first before it can be detected in PS. Lipid species 

formed are dependent on the fatty acid precursor added, for example, the addition of palmitic acid 

(16:0) will form the palmitoyl species of carnitine and LPA, while forming the dipalmitoyl species of PA, 

PE,PI,DAG,PC,PE. These forms will be in addition to the formation of oleic and palmitoyl combinations 

(18:1, 16:0) or (34:1). 

      

Figure A-7: Metabolic pathways of fatty acid. Left:  diagram showing the pathway of fatty acid. Right: the 
levels of DAG (34:1) or DAG (32:0) after incubation with 100 µM +16 fatty acid with 10 mM glucose for 
30 minutes. 

Experimental conditions: 

- The concentration of labeled fatty acid used ranged from 10 µM to 500 µM. The usage of U-13C 

palmitate or U-13C Oleate results in +16 or +18 mass shift for each fatty acid added in the lipid 

respectively. Glucose presence depends on the goal of experiment. Glucose will provide the 

glycerol back bone needed to synthesize glycerolipids; however this will consume long chain 

CoAs and reduces their intracellular levels. Fatty acid oxidation will be reduced in the presence 

of glucose, thus reducing the level of acyl-carnitines.  

- Incubation of INS-1 cells with 100 µM of U-13C palmitic acid with 10 mM glucose for 30 minutes 

resulted in 40% labeling in the abundant DAG (34:1) and 95 % labeling in the less abundant DAG 

(32:0) (figure 7). 
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Summary and conclusion   

We have described the application of different metabolic tracers to probe different metabolic 

pathways. Metabolic tracers described here include glucose, glutamine, choline, ethanolamine, 

serine and fatty acids. The culture conditions and concentration used for those metabolic 

tracers were described, together with the expected results within a specific time frame. 

Depending on the goal of the experiment, these metabolic tracers can be used in the absence 

or presence of glucose.  The applications of the previously mentioned metabolic tracers are 

summarized in figure 8. 

 

 Figure A-8: General metabolic pathways and possible metabolic tracers. 
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