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CHAPTER I 
 

Introduction 

Visual depictions of abstract data (information visualizations) support the 

discovery and understanding of data insights, and increase the memorability and salience 

of information (e.g., Larkin and Simon 1987, Shah et al. 2005, Tue 1983, Chua et al. 

2006, Stone et al. 1997). As a communication medium, visualization enhances analysts, 

designers, and others’ ability to convey messages based on data to large numbers of others 

across a variety of domains.  

e practice of using visualizations to communicate insights in data to potentially 

large audiences is not novel. Newspapers and other print media publishers have a long 

history of using data graphics to emphasize particular points made in an article.  With the 

interactive possibilities afforded by the web and a shi to digital sources of news and 

information, we are now witnessing widespread popular use of data graphics in online 

contexts where information is shared. As data representations, these visualizations 

naturally support data analysis by facilitating value comparisons and perceptually-based 

judgments of otherwise complex phenomena like trends or “typical” behavior. However, 

like the print news graphics that predate them, many of the visualizations that are created 

and presented on the web have clear communication purposes. ese “communicative” 

visualizations are designed with the intention of conveying specific insights to audiences.

For such graphics, the analytical operations that they support are more a means of 

achieving message conveyance than an end that a visualization user manipulates to 

achieve his or her own insight goals. 

“Narrative” or storytelling visualizations bring elements of analytic, user-driven 

exploratory visualization into otherwise highly guided or “framed” information 
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presentations. is form of visualization practice has emerged as a new research area in 

the field of information visualization. e news media are an important source of

examples used to motivate research. e New York Times graphics department designers 

(Figure I.I, Figure I.III) have used interactive visualizations to accompany news articles 

published on the site, and similar news themed visualizations regularly appear on the BBC 

website, the Guardian Datablog, and the Economist Graphic Detail blog. ese companies 

employ graphics teams with designers trained in journalism, statistics, programming, and 

other relevant fields. eir work produces ovel visualizations and even graphical formats 

that combine storytelling with data science to attract the attention of news readers. 

 
Figure I-I: An interactive visualization depicts geographical trends in government benefits to
accompany a  news article from the New York Times. 

Also drawing attention among scholars and web users are data graphics presented 

on the websites of organizations that may have particular messages to convey to a group. 

ese include political parties prior to an election, who oen use data charts to 

communicate with voters or other groups of citizens (Figure I.II). e 2011 State of the 

Union address by Barack Obama was streamed online with a side panel that presented 

relevant data graphics. Non-profits (e.g. Kiva), national government or private

organizations (e.g., Census Bureau) and global organizations (e.g.. OECD) who store a 
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great deal of data are also increasingly presenting interactive data graphics on their 

websites. In addition their use as communication aids targeted at large public audiences, 

organizations have created visualizations under the guise of communicating with other 

organizations or groups. is subset of organizational use includes the graphics created to 

convey the Republican’s assessment of the Democratic Health Care plan in 2010 (Figure 

III-III), and the graphics used by the Tea Party during the election of 2008 (Figure I.II). 

                                 

e societal significance of these

practices lies in their potential to produce data 

presentations that act as “social artifacts” that 

symbolize complex issues and situations 

important to groups and individuals.  e 

Health plan graphic achieved notoriety in a 

number of online forums, even provoking a 

counter-point graphic aimed at the Republican 

party (Figure III.III). “A Peek into Netflix

Queues,” by the New York Times graphic 

department (Figure III.IV) quickly received over 

100 comments discussing subtle assumptions 

held around the privacy of information 

concerning entertainment choices, and the demographics that drive these choices. David 

McCandless’ “How I Stopped Worrying and Learnt to Love the Bomb (Kinda)” similarly 

provoked discussion around weapons of mass destruction, including of how to best 

convey communicate their impact to individual without direct experience. 

ese visualizations, and the discussions that occur around them in social media 

or social visualization sites, also shape beliefs and behavior around critical societal issues. 

For example, the New York Times’ “Paths to the White House,” launched shortly before 

Figure I-II: Graphic presented by Sarah 
Palin’s campaign in the presidential election 
of 2008. 
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the election, depicted a decision tree that detailed 512 possible outcomes for the 2012 

presidential election (Figure I.III). Individuals who studied the visualization as they 

watched the election could update their private forecasts directly and accurately using the 

external visual aid; some may have even changed their decision about whether or not to 

vote based on the outcome forecasted by the visualization. Government and other 

organizations and politicians have also turned to static and interactive graphics to inform 

and gain the public’s support for their agendas, including the creation of jobs, saving of 

environmental resources, and state of public education.     

 

Figure I-III: "512 Paths to the White House" presented on the New York Times website prior to the 2012 
presidential election. 
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ough less visible to the public eye, the use of data graphics use for 

communication is pervasive in business and other data driven industries, where the 

results of data analyses must be shared among analysts, clients, and other stakeholders 

(Elias et al. 2013). Here, the formats tend toward a few canonical types (such as slideshow-

style presentations and narrative reports) yet like visualizations created by the media, 

these visualizations can be quite powerful in communicating insights from data analysis 

to larger numbers of business stakeholders. Figure I.IV depicts an interactive slideshow 

format for a business strategy report, created with Tableau Soware. e salience of 

information presented in a well-designed visualization can convince others, such as 

business stakeholders, of the importance of particular decisions and strategies.  

 
Figure I-IV: An interactive slideshow visualization created by a business consultancy is used to convey 
the results of a strategic analysis done for a client company. 

e creation of visualizations for media-based, organizational, business, and even 

personal use is supported by a number of data visualization tools. ese range from web 

and desktop soware that non-expert designers can easily create visualizations (Many 

Eyes, Tableau, Microso Excel) to programming toolkits like D3, Protovis, Prefuse or 

Processing or visualization packages for statistical soware like R’s ggplot2, maps, etc. 

ey do so by making it easier to map data to visual output, for example, with some even 

providing the visualization creator guidance for choosing an appropriate visual format 
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given a selected subset of data (Figure I.V). While the particular algorithms and the 

degree to which automated design features are supported may differ between systems, 

most share a common intention to ease the effort required to produce graphs by a wide 

range of visualization creators. Some of these tools, such as Microso Excel Charts and 

more recently, Tableau Soware, as well as d3, are very likely supporting the creation of a 

sizeable percentage of the visualizations that are produced today.  

 
Figure I-V: A screenshot of an analyst using Tableau Soware’s automatic visualization suggestion 
features. Variables are dragged to the “shelves” above the graphical display and an optimized 
visualization appears.  

Despite the many environments in which visualizations for communication 

currently appear, there remains a need for frameworks and theories to shed light on how 

storytelling goals can be mapped to visualization features. e knowledge of the 

professional designers who create many of the most lauded visualizations, such as in 

popular news media, is tacit and thus unavailable to the many less experienced designers 

using existing soware to create visualizations. Further, while visualization tools have 

evolved to offer various design optimizations to ease the act of creating a visualization 

given a data set (e.g., Mackinlay et al. 2007), many of these tools are framed from the 

perspective of analytical visualization guidelines rather than communication purposes. 
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For example, in considering particular visualizations that have been successful at 

engaging and communicating data to broad audiences, it becomes clear that some of their 

most notable design features remain unsupported in most current tools. Narrative 

visualizations, for example, are lauded for the way they guide a user through complex data 

visualizations using features like text annotation and sequential presentation (Segel and 

Heer 2010). Many of the most popular visualizations strike a balance between the 

complexity of a representation and its easy interpretability among end-users. ese 

characteristics betray careful decisions made in the design, perhaps with awareness of how 

end-users would interpret the graph, yet it remains unclear what processes and 

information are being used to make these decisions. Consider, for example, if the “512 

Paths to the White House” (Figure I.III) were shown in a treemap rather than a decision 

tree format. Both graphical formats are valid presentations for hierarchical data, yet little 

explicit knowledge is available in the visualization literature for guiding a designers’ 

decision between the two in this case. Would the graphic be as engaging as a treemap? e 

more condensed treemap format saves screen space, but is less likely to be so amenable to 

linear thinking processes that consider possible outcomes as trajectories of actions in 

multiple possible worlds. e clear hierarchy in the decision tree format makes it easy to 

hypothesize about different possible outcomes that are mapped to linear paths. e color 

choices further maintain established associations between Democrats and blue and 

Republicans and red, further supporting easy understanding. Other types of design 

decisions are also evident, such as those involved with identifying and representing the 

particular paths that are highlighted through small representations at the bottom of the 

decision tree. Finally, the text annotation at the top of the “513 Paths to the White House” 

graphic summarizes that Obama has 431 possible ways to win the election, to Romney’s 

78. e large difference between these numbers of possible winning paths implies that 

Obama’s win is slightly more likely, yet a statistician might criticize the annotation as an 

over-simplification of the true probabilities of each candidate’s success, since these
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numbers do not capture how probable any given single path is. Would further annotations 

that explicitly label each path with a predicted probability be a helpful addition to the 

visualization, or would this information overwhelm users? Such decisions about notions 

of probability and uncertainty related to data presentation are a common challenge in 

design.  

is dissertation examines current visualization practice for evidence of where 

particular design needs are not yet supported, and presents empirically-derived 

knowledge and techniques to support these gaps. Specifically, the dissertationaddresses a 

lack of design guidelines for using visualizations to convey particular messages, a lack of 

guidelines and support for designing sets of visualizations for presentation, and the need 

for more easily understandable uncertainty representations. e remainder of this 

introduction motivates the characterization of these challenges via the concept of design 

trade-offs, which is a device for framing the studies presented in this dissertation. is is 

followed by a summary of the dissertation’s methodology and an outline of the chapters 

and key findings.  

Understanding Visualization Design As Trade-offs  

Consider an interactive visualization like that shown in Figure I.VI, which was 

presented in the New York Times as commentary on how mayor Edward Koch’s tenure 

spanned important demographic changes to the NYC population.  Subtle cues in the 

display suggest that the designers were faced with design trade-offs, decisions between 

multiple potentially conflicting design features. For example, the desigers of this 

visualization undoubtedly faced decisions about what data from a larger data set to 

present, and what to omit. ese decisions lead to support for some comparisons between 

data values, and consequently hypotheses, but at the expense of other comparisons and 

insights that might also be relevant. e designers reference several large data sets as 

sources for the visualization, including the 2010 Census Bureau data. e visualization 
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displays four time and or spatially-indexed measures from the Census data: the NYC 

wealth distribution for three time points spanning 20 years is shown on a map, and line 

and bar graphs display the white percentage of the population over 40 years, the murder 

rate over 48 years, and spending on housing over 20 years. e storytelling goal of the 

designers who created the visualization might be generally described as “New York’s 

population changed during Koch’s tenure,” with the title of the graphic promising to 

portray the differences.  Yet if we consider the many demographic variables that changed 

during this time that were also undoubtedly available (such as unemployment rates, or 

immigration statistics, to name a few) a question arises of “Why were these variables 

selected?” e fact that only a limited set of variables were chosen from those available 

suggest an inevitable trade-off between the designers’ ability to fully realize their implied 

objective of displaying “e Difference Between Koch’s City and Today” and the need to 

create a display that would inform, but not overwhelm, the average user. e data that 

appears may have been chosen with a goal of including the measures that show the largest 

magnitude of change during Koch’s run, and/or other design goals such as maximizing the 

visual salience of the differences between values of a variable shown in the visualization, 

or maximizing the relevance of the selected data to current topics of interest in news 

about New York City.  
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Figure I-VI: A multiple view  interactive visualization created by the New York Times graphics 
department  summarizes how various  demographic statistics changed during Mayor Koch’s time in 
office. 

Interestingly, the necessity of omissions to limit the amount and complexity of 

data shown in such visualizations runs counter to other desirable features of news 

artifacts. For example, neglecting to present other relevant data counters the goals of a 

journalistic code of ethics that prioritizes transparency and objectivity in presenting data 

to the public (Kovach and Rosenstiel 2007). e goals of this code may have inspired 

other cues in the visualization that suggest a transparent presentation philosophy. For 

example, text annotations are used to describe an adjustment to the data to control for 

inflation Figure I.VI lower le), and to cite the reason why data on housing is not shown 

for years before 1983 (Figure I.VI lower right).  
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e concept of a design trade-off does not only concern notions of transparent 

versus persuasive visualization design, or data omission versus inclusion. e design of 

the visualization in Figure I.VI is also likely to have required care on the designers’ parts 

to balance “local” optimizations—those concerning the most effective data-to-visual 

mappings in the three distinct, single representations of NYC wealth data in 1980, 1990, 

and 2010 to the le of the screen—with “global” optimizations concerning the most 

effective data-to-visual mappings for the composite visualization comprised of these 

singular representations. Techniques for achieving a locally-optimal visualization typically 

automate design decisions in ways that maximize the accurate presentation of data in a 

single visualization that is being created, such as by mapping the data in a way that makes 

differences between values most visually distinct. ese features are embedded in the 

visual mapping algorithms used in many visualization soware tools, from Tableau 

Soware to R’s Ggplot2 package. In this example, if the designer had not taken care to 

design the mappings of the wealth data from 1980, 1990, and 2010 in a way that 

considered the properties of all three distributions, the maps are likely to have had  

qualitatively different color bins applied across the three views, preventing cross 

comparisons.  

For an example of how this consequence might affect interpretation, consider the 

series of visualizations shown in Figure I.VII. ese two visualization “slides” are 

displayed consecutively in a presentation on wealth and poverty in African from the 

Guardian. A close look at the use of the color scales in each visualization shows that the 

same colors are used for very different data values. For example, yellow indicates 65.0 – 

82.1% proportions in the top visualization, and symbolizes much lower proportions in the 

bottom visualization, where yellow indicates 20 – 25%. While the difference between the 

highest and lowest percentage values in the second visualization are easier to see with this 

mapping, it is also possible that some end-users will not notice that a new mapping is 

applied since the same colors are re-used. Identifying the design that best balances these 
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competing considerations is likely to be difficult and time-intensive due to a lack of tools 

for modeling such trade-offs. 

 

 

 
Figure I-VII: Two visualizations from an interactive slideshow visualization created by the Guardian 
graphics department. e same color space is mapped differently depending on the data in each 
individual view. 

e slideshow format used in Figure I.VII introduces another form of trade-off: 

the question of the best order in which to present a series of separate yet related 

visualizations. e slideshow begins with a map visualization showing statistics on the 

current time period with (when the visualization was created; Percentage Growth in GDP 
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in 2010). Aer displaying related statistics describing the current conditions in a series of 

slides (including those shown in Figure I.VII), the slideshow concludes with a 

visualization of the Percentage Growth in GDP in 2012 by African country.  is decision, 

to start in the current time and end with a future projection, is likely to impact the content 

and/or valence of the end-users’ conclusions. Presenting the future projection first might

even confuse users, preventing them from reaching an intended interpretation like “the 

economic situation in Africa is gradually improving.”  

Finally, the visualizations shown in both figures pose interesting questions about

design decisions that involve communicating uncertainty to users. In designing 

visualizations for online audiences, designers must balance the accuracy benefits of

faithfully presenting the data as an approximation of a real-world phenomena with the 

easier intepretability of a simpler approach to design e question of how to display 

uncertainty remains challenging despite an established line of research in visualization 

uncertainty, as statistical concepts like uncertainty, variation, or reliability are challenging 

for most individuals to grasp (Tversky and Kahneman 1971). Nonetheless, uncertainty 

affects nearly all data sets as result of unavoidable error in collecting and modeling data. 

For example, if we again consider the data presented in the visualizations depicting wealth 

distributions for the three years in the le of Figure I.VI, uncertainty is likely to result 

from the way that data was collected. Income data like that available from the U.S. Census 

data is subject to the same sources of sampling error as other Census data, including 

underreporting of certain groups of citizens (such as those in nursing homes), and the 

possibility that the subset of households that were surveyed are not representative of the 

greater population (Census Bureau 2012).  A researcher (John Logan of Brown University) 

is cited as the source of the income data that is shown, leaving it unclear if this data set is 

based on the Census data or a private survey. It is further unclear whether the data may 

have been transformed or modeled in other ways that introduce the potential for error. 

Canonical advice emphasizes the importance of providing full provenance information 
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with a visualization (Tue 1983), yet the designer of Figure I.VI does not include 

modeling details nor visually depict information about potential uncertainty in the data.  

is may reflect an intentional decision based on the designer’s awareness of the

expectations or skills of many of the end-user. Would the average viewer of this 

visualization understand how to adjust her interpretation based on potential uncertainty? 

It is possible that the information was omitted in the interest of not confusing users with 

complex statistical descriptions or graphical displays of uncertainty.  

e significanceof this decision comes from the power visualizations have to 

shape our beliefs, and consequently, our behavior when it comes to phenomena like 

political elections, environmental issues, or debt. Consider, for example, the political 

choropleth maps that are oen shown leading up to elections by news sources like the 

New York Times. Such maps display statistical predictions or raw data from citizen polls 

designed to forecast which candidate will win. When end-users take them seriously as 

indicative of the true political intentions of their fellow voters, they may modify their own 

behavior (for example, choosing not to vote if they see the winner to be a foregone 

conclusion). Hence, in many situations it is critical that properties like the “margin of 

error” are conveyed. e question arises of how this can be done when standard 

representations (like error bars for a bar chart) are likely to be misunderstood due to lower 

levels of statistical background (Belia et al. 2005) or are inapplicable to the chart format.  

  Trade-offs like those illustrated through Figure I.VI and Figure I.VII—between 

constrained and comprehensive presentation, transparent versus persuasive framing, 

singular versus set-wise design optimization, and uncertainty representation versus 

simpler summary estimates—motivate the work that comprises this dissertation. Using 

the trade-off as a focal point in the design process, the projects presented here seek to 

contribute to understanding around the design of visualizations for serving 

communication as well as analysis purposes, and to provide new knowledge artifacts and 

approaches for enhancing the current visualization design tool set. 
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Methodology     

As this introduction has served to illustrate, critical decision points in the 

visualization design process can be thought of as trade-offs. e methods applied in this 

dissertation are motivated by the belief that to support the production of effective 

communicative visualizations, it is first necessary to examine the specifi c consideration

that arise at these decision points in detail. Deeper understanding in turn enables 

modeling or operationalizing of the trade-off points and consequently, the development of 

techniques for helping designers negotiate the decisions. While various approaches could 

serve our initial goal of understanding design trade-offs, this dissertation will primarily 

apply methods that study the output of professional practice as a window into design 

decisions. Initial study of large samples of professionally-designed visualizations supports 

the process of inferring and then operationalizing design strategies for effectively 

negotiating trade-offs of interest. In the last study, an examination of expert practices for 

quantifying uncertainty serves as the formative study that motivates the development of a 

new visualization technique.  

roughout this dissertation, formative studies are complemented with 

experimental methods. Controlled experimentation is used to validate principles that are 

found and to evaluate the output of the proposed algorithm and techniques that make use 

of these principles. is “dual approach,” which combines study of design and reception, is 

warranted by the nature of design trade-offs as decisions between alternatives that are best 

solved using knowledge of how end-users will react to particular features. Our goal will be 

to learn something both about the form that these trade-offs take, and the effects that they 

have on user interpretations. 

Outline of the Dissertation and Findings 

is dissertation presents three projects to demonstrate how experts’ processes can 

be learned, formalized, and scaled to support the production of effective communicative 
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visualizations among broader audiences. is is accomplished by identifying and 

operationalizing professional’s design strategies for use in the development of new design 

frameworks, techniques and models. Chapter II sets context for the themes explored 

throughout the work by summarizing forms of practice, challenges, and research in 

communicative visualization practice.  

Chapter III focuses on communicative visualizations designed to persuade users to 

adopt specific interpretations. W   present a study of professional “storytelling” 

visualization practice to provide insight into expert design strategies for guiding end-

users’ interpretations. The proposed rhetorical framework characterizes the persuasive 

dimension of visualization design by providing empirical evidence of several classes of 

rhetorical design strategies that trade-off comprehensive, impartial data presentation goals 

with intentions to persuade users toward intended interpretations. Classes of strategies are 

traced to editorial decisions in the design process, and to their expected effects on end-user 

interpretation. This chapter also contributes to understanding of how narrative design 

strategies interact with “extra-representational” factors like viewing codes. Visualization 

designers also bene�it from these results. 

Chapter IV takes a closer look at trade-offs that arise in designing communicative 

visualizations that rely on sequential presentation mechanisms, such as slideshow-style 

presentations or animations. Here, a creator must negotiate how to divide and present a 

set of data relationships across multiple data visualizations without losing the sense of 

coherence and completeness of a singular data graphic. A study of professional practice is 

combined with online experiments to identify, operationalize, and validate design 

principles for sequenced communicative visualizations. Studies indicate the need to ease 

the understandability of transitions in visualization presentations by minimizing the 

amount of conceptual change. Results also show how high-level structuring principles can 

benefit memory but may reduce possible comparisons.is knowledge forms the basis of 

a proposed graph-based algorithm for modeling sequence in the context of design support 

tools. is approach provides a novel approach to the problems that Chapter IV highlights 
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around needing to optimize for both local or “single visualization” design and for global 

“visualization sequence” or set design.  

Chapters V demonstrates how statistical modeling practice can inform a new 

design technique that addresses the trade-off between faithfully presenting data as 

approximate or uncertain on the one hand, and creating a visualization that can be easily 

interpreted by users without statistical background on the other. Chapter V proposes and 

evaluates a new method for generating and visualizing hypothetical data samples in ways 

that support comparison between multiple sample plots. e proposed comparative 

sample plot approach conveys data uncertainty more directly than abstract yet 

conventional uncertainty annotations like errors bars. Non-statistician end-users can 

produce more cautious and at times more accurate estimates of the reliability of data 

patterns through the use of a comparative sample plots method.  

Chapter VI presents a vision for future work suggested by deeper study of design 

trade-offs in communicative visualization.  Chapter VII summarizes the findings of this

dissertation.’ 
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CHAPTER II 
 

Related Work 

 
is dissertation builds on prior work focused on using visualization to communicate, 

including designing visualizations for presentation to audiences who may lack advanced 

training in data analysis or statistics. Specifically, thepresented studies address a gap in 

the literature related to explicit design guidance for narrative visualization creation, 

including automated support for sets of visualization for presentation, as well as a gap 

related to conveying uncertainty to non-expert audiences. e concept of design trade-

offs that is used throughout this dissertation builds on prior conceptions of the 

visualization design process.  

Guidelines for Visualization for Communication and 
Presentation  

NARRATIVE VISUALIZATION 

Early views of data graphics as communication aids describe these visualizations 

as highly constrained in the amount of data they show (such as only a few data points), as 

their usual purpose is to display summary statistics (Spence and Lewandowsky 1990). 

Others note that graphics made for presentation are best limited to very familiar graphical 

formats (ibid., Kosslyn 1985) as users are generally non-experts. e work of Tue (1983) 

promotes examples of analytical and communicative graphics, yet focuses mostly on the 

value of design features that prioritize analysis (e.g., avoiding extraneous elements) in 

using visualizations to communicate messages about data.  
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More recently, Gershon and Page (2001) motivate communication and storytelling 

features in particular as an avenue for future research in visualization.  e authors cite 

storytelling’s potential to aid users in integrating presented information streams, and note 

the efficiency and intuitiveness of stories as a form of communication. Similar to the more 

recent work of Segel and Heer (2010), Gershon and Page draw analogies between film

editing and visualization, though without explicitly translating film techniques to graphics

visualization design. e authors also note features like highlighting and redundant 

messages across media as traits representative of storytelling graphics. However, their 

treatment is largely aimed at motivating research, rather than providing specific

approaches to the design of storytelling visualizations.  

Segel and Heer’s (2010) characterization of the narrative visualization design space 

builds upon Gershon and Page’s work, contributing a study of common design features 

and genres based on 58 examples from news media and organizations (e.g., Minnesota 

Employment Explorer, Gapminder). e authors used the sample to highlight commonly-

used formats (genres) like interactive slideshows, drill down stories, and the martini glass 

format, in which a constrained author-driven presentation transitions to a more reader-

driven exploratory phase later in the interaction session. eir work also illustrates 

features that tend to co-occur in narrative visualizations, distinguishing these graphics 

from more analytically motivated visualizations. ese include annotation, visual 

highlighting, tacit tutorials, and progress bars, among other features that similarly serve to 

guide a user’s interaction. e authors suggest the importance of semantic cues for 

guiding a user through a visualization, such as the usefulness of semantically consistent 

coloring (Figure II.I). e authors also note the relatively untapped potential for better 

understanding of how to present information in ways that leverage conventions of use, 

such as the le-to-right reading order of web pages.  

e main contribution of Segel and Heer’s work is to acknowledge the various 

design features and genres that distinguish narrative visualizations. e authors’ 
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contribution stops short of providing specific guidelines for using the features they

present, though two examples of professional design graphics are used to illustrate the 

features in situ. is leaves some area for speculation when it comes to the intended effects 

on interpretation of these features. ere remains a need for theories that support tracing 

design decisions to their expected effects on the meaning made by a user of a narrative 

visualization. Chapter III’s analysis of visualizations that result from rhetorical design 

strategies contributes to this gap by characterizing various design features’ effects on 

interpretation via an analogy to “framing effects” in decision literature and related fields. 

 
Figure II-I: "Afghanistan, Behind the Front Line" by the Financial Times consistently maps brightness 
to larger data values in different map views.  

Controlled evaluations are one way to fortify the connection between 

communicative design strategies and visualization reception. For example, many of the 

features that Segel and Heer (2010) propose as semantically-intentioned design strategies, 

such as meaningful color mappings, visual highlighting, text messaging, or use of 

consistent visual layouts could be topics for controlled experimentation. e goal of such 

studies would be to provide more explicit design guidelines by providing predictive 

models for how particular features affect interpretations Yet while researchers generally 
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agree on the fact that defined metrics and evaluation methods are needed for measuring

narrative visualization effectiveness (e.g., Kosara and Mackinlay 2013, DiMicco et al. 2010, 

2011); the question of what metrics, and how they should be applied to assess these and 

other communicative visualizations fuels debate. is is partly because narrative and other 

forms of communicative visualizations are oen designed for different reasons (such as 

message conveyance) than visualizations that have inspired traditional visualization 

evaluation methods that frame success as the elimination of error.  

       
Figure II-II: Examples of visualizations that include extraneous (non-data representing) elements tested 
by Borkin et al. (2013). 

In the last five years, the most visible attempts to measure the success of

communicative visualizations in the news and other public-facing media have focused on 

the impacts of extraneous visual elements (“chart junk” per Tue 1983) on the user’s 

ability to remember information presented in a visualization (Bateman et al. 2010, Borgo 

et al. 2012). Borkin et al. (2013) alternatively measure object recognition over a very short 

span of time for visualizations taken from the news media, infographics, and 

visualizations from scientific publications Figure II.II). e studies presented in Chapter 

VI build upon this body of existing work, but focuses on the effects on memory and ease 
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of understanding that structural properties for visualization presentations such as 

transitions between consecutive visualizations and high-level “global” presentation 

structures have. Chapter VI’s evaluation of a global transition structure also connects 

high-level structural storytelling properties to the user’s ability to make comparisons using 

a visualization. is contributes to existing work a new outcome measure that directly 

addresses how the comprehension process is affected by storytelling features, in contrast 

to techniques that focus only on low-level cognitive symptoms of such graphics (e.g., 

Borkin et al. 2013, Peck et al. 2013).  

GUIDELINES FOR SETS OF VISUALIZATION FOR PRESENTATION 

Chapter IV builds on several specific lines of visualization researchin visualization 

transitions and graphical provenance by addressing open questions regarding how to use 

structure and transitions in communicating via sets of visualizations. Animated 

transitions are explored by Heer and Robertson (2007) as a method for supporting 

comprehension of complex transitions between two views in an interactive visualization 

(Figure II.III). By interpolating and animating intermediate steps between two 

visualizations, the technique makes it easier for a user to understand how the second view 

is derived from the first. e authorsuse two controlled experiments to assess the 

interpretive benefits of animated transitions, finding that users of animated transitions ca

better understand syntactic elements (tracing the properties of visual objects and their 

properties, such as color or size) and semantic elements (tracing the changes to the 

underlying data schema) of visualizations. ese results are promising, but are limited to 

visualization presentations that are created with systems that support animating 

transitions, or by visualization designers who implement the transitions themselves. Many 

of the slideshow format graphics that are discussed in Segel and Heer’s (2010) work (e.g., 

Figure I.IV), do not use animated transitions. ese graphics also present questions that 

extend beyond the scope of animated transitions, which are limited by the assumption 
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that a designer has already chosen some transition between views and simply wants to 

make the transition the least costly to users. How might a design choose between various 

possible transitions instead? Some researchers have noted that animations may also bring 

less positive impacts on interpretation, such as by resulting in more superficial

understandings than static diagrams or text (Tversky et al. 2002). ese limitations 

suggest exploration of additional approaches for easing the interpretability of complex 

transitions made in visualizations presentation.       

 
Figure II-III: Snapshot of an animated transition from a scatterplot to a bar chart representation. 

Heer and Roberston introduce a taxonomy of transition types and posit several 

design guidelines for effective use of animated transitions, which may extend to use of 

transitions in visualization presentation more generally. However, the types they identify 

tend to be motivated by the analysis interactions that are possible with an exploratory 

visualization system, such as view transformations (panning or zooming), substrate 

transformations (axis rescaling), timesteps, and data schema changes.  More recently, Heer 

and Shneiderman (2012) describe similar transition types in characterizing common 

“interactive dynamics” in visual analysis. ese transitions too are motivated by 

interactive analysis processes which might not be directly relevant to other goals for 

visualization transitions, such as presenting a set of carefully selected visualizations 

together in a slideshow format.  

Tools for visualization provenance are also intended to support communication 

and presentation. Graphical histories (Heer et al. 2008, Figure II.IV) is a feature created 
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for the Tableau visualization system. Graphical histories capture interactions with the tool 

for later presentation. Communication in this sense is constrained to the use of the 

“history” by a single analyst who wishes to recall how she used a complex analysis to make 

a discovery, or presenting a sequence of operations performed with a visualization tool to 

communicate insights to another analyst. Other provenance systems, such as VisTrails 

(Bavoli et al. 2005), similarly constrain communication goals to the case where an analyst 

wishes to leverage a past interaction history. e assumptions in such work, particularly 

when framed as a way for analysts to share their findings, raise the question of whether an

insight is best conveyed by portraying the exact interaction trajectory that produced it. 

is question is important in considering communication of insights in data to 

stakeholders beyond other analysts. In cases like reports or presentation prepared by an 

analyst for a client or by a data journalist for an online audience, the knowledge of the 

audience regarding analysis methods may not match the analysts who created the 

presentation. It is possible that presenting a complex series of visualizations that played 

the role of intermediate steps in an analyst’s process of reaching an insight (such as graphs 

showing various transformations to a measure of interest, like log scaling or regression 

models) would confuse general audiences. It is also possible that some intermediate 

visualizations are not useful for helping an audience member to understand an insight, 

even if that audience member has sufficient training to understand a complex 

transformation. Chapter IV of this dissertation addresses these questions by motivating an 

understanding of transition and sequence as visualization properties with purely 

presentational goals, allowing for presentation orders that are distinct from the order of 

visualization viewing or creation during analysis. 
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Figure II-IV: Views from a graphical history tool in Tableau, which enables analysts to save a 
representation of the actions taken in an interactive visualization analysis session. 

Each of the studies presented in the chapters of this dissertation, and particular 

Chapter IV, touches on visualization presentations composed of multiple separate 

visualizations. is makes research from psychology and information visualization that 

notes the impact of other representations on graphical interpretation relevant. Multiple 

representations are frequently present in contexts like news media (e.g., text articles), and 

a combination of media characterizes many narrative visualizations themselves, like 

slideshows combining data graphics with text, images, and videos. Ainsworth (2006) 

presents a conceptual framework intended to provide understanding around how learners 

make use of multiple representations, including to complement or constrain 

interpretation and construct deeper understanding.  Several of the guidelines presented as 

part of this framework are directly relevant to the goals of Chapters IV and V, which deal 

with specific questions around presenting multiple representations. Ainsworth notes that

visualizations that appear in sets or with other media introduce new design 

considerations, including how much information is redundant across the representations, 

and in what order they are presented. Chapter IV’s studies and proposed approach for 
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modelling sequence in visualization design specificall works to formalize design 

guidelines for such characteristics of visualization sets. 

Visual Data Design and Interpretation By Broad Audiences 

is dissertation follow prior work in emphasizes the notion of design trade-offs 

as a common type of decision encountered in designing visualizations to achieve 

communication goals. Several chapters of this dissertation address gaps in the existing 

visualization toolbox when it comes to supporting the design process of visualization 

creators that may include non-professional designers or data analysts. Additionally, 

visualizations that are created to communicate are oen targeted at broader groups of 

end-users than were assumed in early visualization research. is dissertation presents a 

technique that extends prior work in designing uncertainty presentations appropriate for 

non-expert users.   

SUPPORTING THE DESIGN PROCESS AMONG NON-PROFESSIONAL 

CREATORS 

Existing characterizations of the design process for communicative visualizations 

include Kosara and Mackinlay (2013), Jain and Slaney (2011), and Cairo (2012), who draw 

analogies between communicative visualization design and the process that a journalistic 

uses to prepare a story. A communication goal is defined, and information is gathered that

may support that goal. e designer then engages in a series of decisions that involve 

which subset of information to include, what format to present that information in, and 

how to frame, style or render the final result.e introduction of this dissertation 

presented examples of challenges that can affect these steps, such as achieving a balance 

between the amount and detail of presented information and the usability of the 

visualization. ese decisions between potentially conflicting design alternatives, or trad-

offs, frequently occur in designing visualizations for communication and online 

presentation. However, the algorithms that designers use to solve them are difficult to 
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document or even to apply in strict, rule-based ways. Agrawala et al. (2011) describe 

design principles for visual communication as “rules of thumb that might even oppose 

and contradict one another” (pg. 62). e knowledge that professional designers bring to 

bear in creating communicative visualizations may be utilized regularly without ever 

being clearly articulated (ibid., Vande Moere and Purchase 2011).  

ese characterizations largely align with more general theories and empirical 

findingsfrom design research that construe design as reflective, exploratory, and creative

(e.g., Schon 1995, Dorst and Cross 2001, Cross 2004). e goal of a design, or constraints 

that are applied, may itself shi as a result of a designer’s exploration of the design space 

(Dorst and Cross 2001, Schon 1995). Additionally, the space of possible designs tends to 

be large for many design problems, including visualization. Observations of expert 

practice suggest that designing a high quality communicative visualization is a highly time 

consuming process (Agrawala et al. 2011) that involves, for example, the generation of a 

large number of “practice” attempts. Munzner (2009) addresses the various threats to the 

validity of an information visualization that can result from inappropriate design 

decisions. Equally telling of the number of considerations that designers must be aware of 

in creating a visualization is the way that upstream errors can cascade to all downstream 

levels. For example, an inappropriate abstraction of the needs of web searchers (to see a 

display of the full connectivity graph) can motivate multiple clever solutions that are 

nonetheless confusing and more disorienting to web searchers than having no 

representation at al (Muzner 2009).   

Overall, these portrayals of design suggest two avenues for research that aims to 

provide design support tools for designers who may not have extensive training or 

professional experience. First, the complexity of the design process as practiced by 

experts, and lack of clear articulations of their strategies suggests the need for work that 

provides explicit guidelines to help non-professionals create similarly effective 

visualizations. Vande Moere and Purchase (2011) argue this point by suggesting that 



28 

frequent articulation of design reasoning in presenting visualization research can help de-

mystify what might otherwise be considered a “romantic” process. Byron and 

Wattenberg’s (2008) work on stream graphs, among others, are cited as evidence of how 

presenting detailed design reasoning around decisions made in designing a new 

visualization technique (including seemingly inconsequential decisions like color choice) 

can result in generalizable knowledge. Each of the studies presented in this dissertation 

includes some articulation of principles for effectively designing visualizations to achieve 

common goals. e goals for which this dissertation provides design guidelines include 

message conveyance, the coherence and understandability in a set of presented 

visualizations, and visualizing uncertainty to non-expert users.  

Secondly, there is also room for more research into ways to embed design 

principles in visualization tools, as an alternative way to make them easily accessible to 

non-professional creators who may lack professionals’ experience. However, this 

integration task presents challenges even when design reasoning is clearly articulated. e 

notion of trade-offs between equally plausible designs as opposed to a single, “best” design 

(Agrawala et al. 2011, Vande Moere and Purchase 2011) and large space of possible 

designs suggests that principles for effective designs be implemented in tools in a way that 

supports consideration of multiple plausible designs. e notion of multiple plausible 

effective designs is supported by the proposed approach to modeling sets of visualizations 

for presentation in Chapter IV, which is designed to reduce the time and effort required 

for designers to explore the full space of design alternatives for single visualizations and 

the of possible linear paths for presenting a set of visualizations. Support for comparing 

possible designs to one another, in this case by reflecting on the probableframing of 

interpretive effects of different designs, is provided by the taxonomy of rhetorical design 

techniques presented in Chapter III.  
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CONVEYING COMPLEX DATA TO DIVERSE AUDIENCES  

Early information visualization research (and various trajectories of more recent 

work) frames visualization as a tool for gaining insights into large scientific data set 

among scientists or analysts who regularly engage in visual data analysis. Many of the 

examples of successful communicative visualizations discussed in recent research support 

interpretation among audiences that are larger and potentially more diverse than these 

expert populations. As noted above, unique to many communicative visualizations 

presented online today (such as those created by the New York Times graphics 

department) is their complexity, which goes beyond that which is prescribed for 

presentational data graphics in earlier work (Spence and Lewandowsky 1990). e shi in 

attitude among researchers about the capabilities of “non-experts” is described by the 

creators of IBM’s Many Eyes (Viegas et al. 2007) as a movement to “democratize” 

visualization by making the technology available to the broadest possible audience. is 

dissertation takes a similar viewpoint that non-expert analysts are capable of interpreting 

complex visualizations created by professional designers and of creating high quality 

communicative visualizations themselves given access to knowledge and tools.   

Specifically, ChapterV of this dissertation addresses issues related to conveying 

approximations to broad audiences of end-users. While the definition of “effective”

visualization for communication departs from notions of accurate interpretation alone, 

such as by also covering how well a visualization conveys an intended message, supporting 

accurate interpretation of the data values themselves remains critical as a design goal for 

communicative visualizations. e differences in interpretation that can result from a lack 

of data and graphical literacy on the part of visualizations users present challenges to 

visualization research. Statistical knowledge has long been assumed in visualization 

research, but the assumption that users can correctly interpret statistical summaries like 

confidence intervals orvariance estimates may not hold for large groups of online 

visualizations users (Busse and Hong 2008, Viegas et al. 2008). A general tendency toward 
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insensitivity to sample size may be intentionally corrected by a scientist aware of the 

higher variation likely in a small sample, for example, but never enter the awareness of 

users who lack statistical training. Micallef et al. (2012) provide evidence that a finding

that Euler diagrams positively impact the accuracy of Bayesian reasoning no longer holds 

when the user audience diversifies to include workers from Amazon’s Mechanical Turk.

ese asymmetries in research results across different user populations motivate usable 

uncertainty visualizations as a key goal for visualization research (MacEachren 1995, 

Marx 2013). 

e importance of uncertainty to visualization design is established in existing 

characterizations of the “visualization pipeline”1. In information visualization research, 

this term is generally applied to the steps taken by a visualization designer (oen a 

researcher), starting from an initial intent of capturing real-world phenomena and 

resulting in visualized data chosen based on its ability to depict this phenomena (first

referenced by Card and Mackinlay 1997, further described in Munzer 2009, among 

others). e steps in this pipeline generalize to the same process that characterizes many 

inductive scientific practics that aim to generate knowledge about real-world 

phenomena. A population of interest is identifie, with some target characteristic that is to 

be investigated in more detail through data analysis. is might take the form of a 

question or theory that a research poses about some facet of reality, such as theory about 

the impact of gender on math scores, or a query about how the average rainfall in some 

                                                      
1 The term “visualization pipeline” has also been applied to the steps involved in 

rendering imagery produced by graphics software (e.g., algorithms for achieving 

realistic lighting on a simulated scene, Van Dem et al. 1994). However, the pipeline 

characterization referenced in information visualization generally describes a broader set 

of operations. 
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unknown location compares to another known location. Measures are chosen for 

sampling from the population in a way that captures this characteristic. A representation 

is chosen, and the data presented and, if necessary, described (or more generally, framed) 

such that the phenomena of interest is clearly perceivable. Descriptions of the pipeline 

frequently acknowledge the potential for bias or uncertainty to enter the creation process 

(e.g., Amar and Stasko 2004, Munzer 2009, Pang et al. 1996, MacEachren et al. 2005). For 

example, data capture is subject to statistical error, the noise or error that arises from 

uncontrolled sources of randomness that are generally unavoidable in data collection 

(Snedecor and Cochran 1989). Captured data might be cleaned, aggregated, or otherwise 

transformed so that it more clearly represents the target phenomena; however, this choice 

brings the potential for further bias if a selected method is not appropriate. Detailed 

information can be lost (such as when only averages of data variables over a population 

are displayed). e ubiquity of uncertainty in the pipeline makes the choice of 

representation for presenting information on uncertainty to users of a visualization a 

critical one. 

                 
Figure II-V: Two means visualized in a bar chart with error bars used to depict the range of possible 
values in which the mean is likely to fall in repeated trials. 

A common approach to communicating uncertainty is to convey the range of 

values that a statistic presented in a graph might plausibly take if the data collection and 

modeling process were to be repeated.  Researchers have described how error bars, a 

relatively common uncertainty representation denoting confidence interval, are 
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misinterpreted by a many visualization users, including experts (Belia et al. 2005, Marx 

2013; Figure II.V).  Other prior research has also articulated a risk that users of 

visualizations will discount uncertainty representations as peripheral (Buttenfield 1993).

Our work on comparative sample plots addresses this gap by providing a generalizable 

technique for visualizing conveying uncertainty more directly as hypothetical samples. 

e comparative sample plots technique achieves the same goal as an error bar (depicting 

a confidence interval) but the more immediate presentation of the hypotheticalsamples as 

equally important visualizations. e directness of the technique makes it a more user-

friendly method for populations that might lack statistical training in how to interpret the 

interval depicted by the error bar.
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CHAPTER III 
 

Rhetorical Influences in Narrative Visualization 

As described in the preceding chapters, narrative visualizations introduce a unique 

set of design trade-offs, incorporating aspects of communicative and exploratory 

visualization into graphical displays that are oen novel and complex. e most notable of 

these design tensions concerns what is described by Segel and Heer (2010) as a spectrum 

along which individual narrative visualizations can be located, where one end represents 

highly constrained, “author-driven” visualizations while the other represents more 

“reader-driven” visualizations, those that allow the user flexibility in the specifi

interaction trajectory and interpretation they experience.  

Acknowledging that “author-driven” visualizations comprise a large number of 

information visualizations being presented in the media is an important step in the 

history of visualization research. e intentions of a creator have long taken a back seat to 

characterizations of visualizations that prioritize “letting the data speak” (Tue 1983) by 

eliminating sources of bias or framing. However, existing characterizations of narrative 

visualization such as that contributed by Segel and Heer (2010) detail design features at a 

relatively high level (e.g., use of text for messaging). While such characterizations can be 

generalized to describe a large number of narrative visualizations, the persuasive effects 

achieved by many of the more “author-driven” of these visualizations remain unconnected 

to characterizations of design.  Our understanding of how these visualizations are created 

to fulfill their presentational goals, and how narrative features are interpreted, remain

limited. 
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In this chapter we examine the design and end-user interpretation of narrative 

visualizations in order to deepen understanding of how common design techniques 

represent rhetorical strategies that make certain interpretations more probable. We draw 

motivation from studies in semiotics, journalism, and critical theory that indicate 

particular rhetorical techniques used to communicate an intended message (Anderson 

2000, Barthes 1978, de Souza 2005). Our work is further informed by evidence from 

decision theory, survey design, and political theory (Kahneman et al. 1982, Schwarz et al. 

1985 and 1991, Saris and Sneiderman 2004) that suggests that subtle variations in a 

representation’s rhetorical or persuasive techniques can generate large effects on users’ 

interpretations of a message. Investigations related to InfoVis provide initial evidence that 

how data is framed or presented can significantly affect interpretation (Zacks and Tversky

1999).  

We consider the design trade-offs that occur in the creation of a narrative 

visualization with reference to the various “rhetorical” or persuasive goals that these 

artifacts oen evidence. is chapter contributes to InfoVis design and theory by 

providing insight into (1) the types and forms of use of particular rhetorical techniques in 

narrative visualizations, and (2) the interaction between those techniques and individual 

and community characteristics of end-users. e first contribution is a taxonomy of how

particular design elements can be used strategically to directly or indirectly prioritize 

certain interpretations. is equips designers with a set of techniques for designing 

engaging narrative visualizations capable of communicating layered meanings. At the 

same time, the identification of classes of rhetorical techniques provides both designers

and InfoVis researchers with a vocabulary for analyzing the underlying rhetorical 

functions of particular design strategies. ese goals of visualizations remain under-

discussed in many theoretical frameworks organized primarily around exploratory 

visualization.  
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Our second contribution is a set of concepts for understanding how these 

conventions interact with characteristics of the visualization interaction, end-user’s 

knowledge, and the socio-cultural context. is stands to improve designers’ awareness of 

how designs might be received differently by individual end-users and how they can cue 

shared cultural knowledge and associations. ese “extra-representational” factors also 

tend to be neglected when designing or analyzing visualizations based on design 

principles such as those proposed by Tue (2001, 2006). Researchers in InfoVis can 

benefit from a holistic understanding of visualization interpretation capable of providing

insight into how particular interpretations arise as a result of interactions between a 

visualization, user mental models, and other external representations. is view is 

congruent with a distributed cognition model of InfoVis (Liu and Stasko 2010).  

e remainder of this chapter is as follows: important terms related to rhetoric are 

defined and these concepts contextualized within InfoVis as well as semiotics, deciion 

science, and political theory. We also describe our work in the context of research on 

narrative visualization. We begin our presentation of the Visualization Rhetoric 

framework by considering the process of narrative visualization creation, proposing that 

design decisions can be differentiated based on the components or “parts” of the 

visualization they pertain to (e.g., the data, the visual mapping, the textual framing). We 

use systematic study of a sample of narrative visualizations to trace the effects of specific

editorial choices representing rhetorical strategies that give these visualizations their 

characteristic “framed” nature, in comparison to visualizations produced primarily for 

data depiction and analysis. Analytical devices for understanding the site of techniques 

and their interaction with end-user characteristics are also presented. e Illustrating 

Visualization Rhetoric section uses two case studies to demonstrate how an 

understanding of visualization rhetoric can provide insight for the analysis and design of 

narrative visualizations. e Discussion section reflects on themes that emerge from our

analyses and highlights areas for future study.  
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Bias and Rhetoric in Communication 

In this section we address the terminology used in the chapter and define

visualization rhetoric. We then motivate the importance of our work and contextualize it 

with that of other relevant fields. is draws attention to the need for deeper

understanding of visualization interpretation as it relates to rhetorical techniques and 

design.  

A NOTE ON NOMENCLATURE 

is chapter’s focus on visualization rhetoric stands at the intersection of ideas of 

bias and user-designer relationships as understood in InfoVis, on the one hand, and 

theories of rhetoric, framing and author-reader interactions as elaborated in critical 

semiotic theories for literature, political rhetoric, and media artifacts on the other. Bias, 

rhetoric, framing (and the related literary term perspective) all describe how an 

interpretation arises from the interaction of representational, individual, and social forces. 

Differences can be traced mostly to superficial differences adhering in ordinary language.

Bias is oen defined in negatively connoted terms: “a systematic error introduced into

sampling or testing by selecting or encouraging one outcome or answer over others” 

(Merriam-Webster). To frame an idea is typically more neutrally defined as to “formor 

articulate” (Oxford American) or “shape, construct” (Merriam-Webster). Similarly, the 

concept of perspective tends to be either neutrally or positively-connoted in literary and 

critical theory as a productive force in the telling of a story. e term rhetoric has a 

complex history, but has come to be associated with persuasion as a result of the implicit 

motivation of the speaker to gain other adherents to a preconceived view or conclusion 

(Bogost 2007). 

We use the term rhetoric to refer to the set of processes by which intended 

meanings are represented in the visualization via a designer’s choices and then shaped by 

individual end-user characteristics, contextual factors involving societal or cultural codes, 
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and the end-user’s interaction. While this term may bring to mind negatively connoted 

notions of persuasion as bias common in some InfoVis literature, we seek to objectively 

describe the rhetorical nature of visualization design rather than to comment on the 

appropriateness of persuasion in visualization design. 

INFORMATION VISUALIZATION 

Despite its parallel meaning to terms like rhetoric, the pejorative term bias is more 

oen found in InfoVis literature. Early theory emphasizes the analytic nature of graphical 

displays (e.g., Kosslyn 1989, Larkin and Simon 1987) as well as automated methods that 

optimize constraints imposed by human perceptual and cognitive abilities (e.g., Mackinlay 

1986). Unequivocal designs are prioritized; “in the ideal case a chart or graph will be 

absolutely unambiguous, with its intended interpretation being transparent” (Cleveland 

1994, pg. 192). Immediate clarity and minimal intervention on the part of the creator are 

emphasized (Tue 2001). Where editorial choices must be made, designers are urged to 

provide detailed provenance information like the objective, time, and location of graph 

creation (Tue 2006). 

Some recent work in InfoVis has striven to overcome the narrow focus on 

optimizing visualization clarity and efficiency that dominated earlier work, 

acknowledging that interacting with a visualization involves thinking about and being 

influenced by factors beyon just the visual representation. Recent evaluation models 

(Munzer 2009) explicitly acknowledge that risks to validity can enter at levels beyond the 

visual encoding and interaction design, such as in characterizing the domain tasks and 

data. Additionally, several studies demonstrate that extra-representational preferences and 

conventions can influence interpretation, such as when the visual format cues

interpretation frames (Bateman et al. 2010), or individual differences lead to differing 

visualization usage (Ziemkiewicz and Kosara 2009). As Norman (1999) describes, 

interpretations can be unpredictable when design elements may not immediately 
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communicate the designer’s intended meaning as a result of influences on interpretation

deriving from the end-user’s context. Liu and Stasko (2010) frame the site of such 

differences via the mental model concept, arguing that the effects of such differences on 

interpretation have been underexplored in InfoVis. is supports a call for further 

consideration of visualization’s role within webs of situated representations. 

e visualization rhetoric model we propose is likewise motivated by an expanded 

view of visualization that takes into consideration under-acknowledged facets of design 

and interpretation. For instance, creating a visual representation necessitates 

simplification, as data is used to create an analytical abstraction that is transformed to a

visual representation (Ziemkiewicz and Kosara 2009). us a rhetorical dimension is 

present in any design. Secondly, a designer’s intentions may remain implicit and 

inarticulable by him or her, making it impossible to comply with the principle of 

providing full provenance. From the end-user’s perspective, the pleasure of a concise, 

visual representation may be decreased if engaging with the visualization also requires 

siing through explicit description of every design manipulation.  

FRAMING IN DECISION AND OPINION FORMATION 

Empirical studies in decision theory and political messaging provide evidence that 

even subtle changes in the rhetorical frame of an information presentation can 

significantly influence responses. In contrast to thrather dismissive viewpoint on 

intentional use of rhetorical devices in InfoVis literature, psychological, political and 

communication theorists have developed framing theory to investigate opinion formation 

processes in light of how people orient their thinking about an issue. Typically, these 

processes are viewed as responses to the use of particular communicative structures in 

messaging (e.g., Tversky and Kahneman 1981, Kahneman et al. 1982, Chong and 

Druckman 2007). Researchers seek to better understand “framing effects”, situations 

where oen small changes in the presentation of an issue or an event, such as slight 
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modifications of phrsing, produce measurable changes of opinion (Saris and Sneiderman 

2004). Information representations can influence interpretation in diverse ways, such as

by presenting a preliminary statistic before a decision (ibid.), or by manipulating the 

anchor points on a survey scale (Schwarz et al. 1985). Of particular relevance to InfoVis 

are findings that are explicitly visually based. For example, the amount of space provided

between response choices in a scale can be interpreted as reflecting the underlying

dimension and lead to different results when manipulated (Tourangeau et al. 2008). is 

literature further motivates a need to articulate and understand the implications of 

rhetorical strategies in visualization. 

SEMIOTICS 

Semiotics describes literary, visual, political, and other critical studies that 

examine how representations like texts, paintings, iconography, or media messaging can 

be decomposed into systems of signs. Signs—(defined as any material thing that stands for

a non-present meaning, such as a word, color choice, or visual icon)—become meaningful 

through their interaction with other signs within a representation, as well as with signs 

that are culturally present (e.g., Barthes 1978). Semiotic theory has been introduced in 

HCI as an inspection method for interactive interfaces to help assess the designer-user 

meta-communication via the interactive artifact (de Souza 2005). First applied by Jacques 

Bertin (1984) as a tool for describing how information visualizations convey meaning, 

semiotic theories emphasize the communicative properties of visualizations alluded to in 

recent works (Viegas and Wattenberg 2006). is can serve designers seeking to better 

convey their intended messages (Anderson 2000) and increase their awareness of how 

design choices may affect interpretation. Semiotic theorists analyze the relationships 

between forms of media, their production, and the “modes of seeing” or interpretive 

conventions that they engender. e concept of viewing codes, including visual, textual, 

cultural, and perceptual (Chandler 2001), describes the implicit, oen internalized 
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standards that support interpreting an artifact in a certain way. is motivates 

incorporating extra-representational factors like individual and group conventions into a 

visualization rhetoric framework. 

NARRATIVE VISUALIZATION 

In response to the growing number of online visualizations designed to convey a 

story, Segel and Heer’s (2010) design space analysis presents three ways of distinguishing 

categories of narrative visualizations: (1) genres; (2) visual narrative tactics that direct 

attention, guide view transitions, and orient the user; and (3) narrative structure tactics 

such as ordering, interactivity, and messaging. eir contribution of abstract structures 

and genres provides a general framework that opens the discussion of narrative 

visualization to a wider range of examples. e framework also allows comparisons 

between visualizations based on how they structure users’ interactions with data. We aim 

to expand the discussion of narrative visualizations to include the role of extra-

representational influencers like individual, group, and contextual differences in

interpretation. We outline additional visual and non-visual tactics used in narrative 

visualization, emphasizing how these represent omissions, additions, and implications. 

Ziemkiewicz and Kosara (2009) contrast information visualization with visual 

representations. Narrative visualizations tend to be excluded from their model by criteria 

like non-trivial interactivity (allowing users to change the visual mapping parameters 

themselves) or non one-to-one mappings between the source domain and the visual 

output domain. In contrast, our work explores the dynamics of constrained interactivity 

and techniques like visual redundancy that are used to emphasize an intended meaning in 

narrative visualization. We also extend their discussion of information loss by considering 

the rhetorical effects of information omissions regardless of intention, based on our belief 

that the increased presence of such visualizations makes it important for InfoVis 
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researchers and practitioners to better understand how the editorial process of visualizing 

data necessarily constrains possible interpretations.  

Visualization Rhetoric Framework 

A primary contribution of this chapter is the development and demonstration of 

an analytical framework to guide discussion of the rhetorical aspects of InfoVis. In this 

section we present conceptual devices as well as the results of a large qualitative analysis 

used to identify specific rhetorical strategies used in InfoVis. We begin by describing the

editorial layers of a visualization presentation where rhetorical choices are made, then 

describe the particular visualization rhetoric techniques identified in our aalysis. A 

discussion of viewing codes follows, including aspects of denotation and connotation, 

which helps capture the role of end-users’ implicit beliefs and knowledge in visualization 

interpretation.  

EDITORIAL LAYERS 

Editorial judgments, and thus rhetorical techniques, can enter into the 

construction of narrative visualizations from multiple paths. We distinguish between four 

editorial layers that can be used to convey meaning, including the data, visual 

representation, textual annotations, and interactivity. A given rhetorical technique might 

be applied to some layers more easily than others. Yet omissions, emphases, and ambiguity 

can be accomplished at each level. As the output of a designer’s decision processes, a 

narrative visualization represents a sequence of choices to either add information (such as 

by adding suggestions of an intended message using textual annotations) or omit 

information (such as by omitting some variables or interactivity features). Distinguishing 

the possible sites of these choices paves the way for more recognition of their existence, 

and effects on end-user interpretations.  



42 

At the lowest level of the data, the creator of a visualization makes choices about 

the data source to represent, including what variables to include and which to leave out. 

Additional choices can further affect data, such as removing outliers, scaling, or 

aggregating values. Both of these particular data choices lead to loss of information in the 

final representation, yet are necessary choices in the act of visualization design (see

Information Access, below). e visual representation layer carries traces of choices 

made about how the data will be mapped to the visual domain. Oen, this mapping is 

lossy as a result of human visual perception abilities. For example, mapping a continuous 

variable to a gray scale leads to “lost” information due to human perception’s sensitivity 

and capability to distinguish different intensity levels (e.g., “just noticeable differences”).  

Annotations can be textual, graphical, or social, as in the inclusion of user comments in 

the overall presentation. Annotations have oen been overlooked in InfoVis evaluation, 

yet serve an important role in many presentations that include visualization by focusing a 

user’s attention on specific areas in a graph. Finally, theinteractivity of the visualization 

can be the site of choices that constrain a user’s interaction in ways that lead her to explore 

certain subsets of data. is can occur through navigation menus that limit the number of 

views of the data set that are possible, or linked search suggestions that likewise encourage 

the user to explore particular views over others. .   

VISUALIZATION RHETORIC TECHNIQUES 

We describe and present findings on the rhetorical strategies we observed in an

extensive analysis of online narrative visualizations. 

METHOD 

We gathered a sample of fi-one professionally-produced narrative visualizations, 

many from international news outlets like the New York Times (NYT) or BBC. In the 

interest of diversity we also included online visualizations from news magazines (e.g. e 
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Economist); local news providers (e.g. annarbor.com.); political outlets (e.g. Obama.org, 

website of the speaker of the house); and independent graphic designers known to publish 

their work in leading news outlets (e.g. David McCandless). Prior to coding, we 

familiarized ourselves with framing or bias techniques identified in semiotics (e.., 

Barthes 1978, Bertin 1984, Chandler 2001, de Souza 2005), statistical presentation (e.g., 

Huff 1993, Tue 2001), decision theory (e.g., Tversky and Kahneman 1981, Kahneman et 

al. 1982) and media and communication studies (e.g., Nelson and Oxley 1991). We 

iteratively coded particular techniques we observed referring to this set of theories as a 

guide, and relied on general knowledge of current events and how to interpret various 

graph formats as needed. We restricted our analysis to the details present in the 

visualization and their surrounding presentation. e saliency and primacy of the 

observed techniques were considered as the examples were coded. As coding progressed, 

we noted where techniques appeared to represent different implementations of the same 

basic function (e.g. thresholding data by removing values above or below predefined

points). In such cases we labeled these “families” of similar techniques based on their 

simplest shared trait. e output of this analysis was a list of visualizations coded for each 

technique that appeared.   

Affinity diagramming was then used to arrive at higher-level clusters of 

techniques. As in the case of creating families of low-level techniques, we decided against 

a formal, mutually-exclusive scheme in favor of groupings based on similarities in the 

underlying mechanism. is strategy was chosen primarily because it yielded four 

distinguishable categories that we felt best covered our critical observations: information 

access rhetoric functioning to limit the amount of information presented, provenance 

rhetoric functioning to provide background information, mapping rhetoric functioning to 

map elements of the visualization to non-explicit concepts, and procedural rhetoric 

functioning to constrain interaction over time. One remaining cluster of techniques was 

not clearly distinguishable based on a common mechanism, but was rather comprised of 



44 

methods that instead appeared to cluster based on an origin in linguistic rhetoric. We then 

tabulated patterns of frequency and co-occurrence of techniques in order to show the 

interrelatedness of the categories. Alternative schemes of rhetorical techniques may be 

possible for narrative visualizations. However, the representativeness of our sample leads 

us to believe that the categories below can serve as a guide for designers seeking to 

strengthen or subdue rhetorical effects. Table III.I presents the editorial layers, forms of 

rhetoric, categories of design techniques, and specific strategies surfaced by the study 
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Table III-I: Rhetorical techniques by editorial layer, rhetorical form, and category. 

Editorial layer Rhetorical 

form 

Category Techniques 

Data Information 
Access 

Omission • Not citing sources 
• Ambiguous definition 
• Value, axis thresholding 
• Omitting outliers 

Data Metonymy • Variable selection 
• Aggregation and categorization 

Annotation Provenance Data provenance • Citing/linking sources 
• Additional facts/references 
• Methodology citation 
• Exception annotation 

Annotation, visual 
representation 

Representing 
uncertainty 

• Error bars 
• Describing inferential limits 
• Forecast annotation 
• Expressions of doubt 

Annotation Creator identificatio • Author bio 
• Personal anecdote 

Visual 
representation 

Mapping Obscuring • Gratuitous 3rd dimension 
• Violating discriminability 
• False cause-and-effect 
• Double axes 

Visual 
representation 

Visual metaphor and 
metonymy 

• Suggestive spatial mapping 
• Typographic, color mapping 
• Visual noise 

Visual 
representation 

Contrast • Visual contrast 
• Variable splice 

Annotation, visual 
representation 

Classificatio • Grouping by size, color, etc. 
• Consistent typographic 

mapping 
• Significance equation 

Annotation, visual 
representation 

Redundancy • Disaggregation of homogenous 
values/marks 

Annotation Linguistic Typographic 
emphases 

• Italics and bolding 

  Irony • Rhetorical questions 
• Deliberate understatement 
• Quotation marks 

  Similarity • Analogy 
• Metaphoric statements 
• Parallelism 
• Simile 
• Double entendre 

  Individualization • Apostrophe 
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Interactivity Procedural Anchoring • Default views, comparisons 
• Spatial ordering 
• Partial animation 

INFORMATION ACCESS RHETORIC 

e first decisions made by avisualization designer oen concern what data to 

represent. To simplify complex ideas in a visual representation it is oen helpful to keep 

distracting or irrelevant information to a minimum (e.g., Mayer et al. 2005). Omission 

techniques are the least likely to be explicitly indicated by a visualization, yet can be 

inferred from data that are available given ample contextual information. Assuming that 

most professional producers of online visualizations are aware of the importance of data 

provenance, neglecting to cite data sources or other important provenance information or 

defining variables ambiguousl can be considered omissions. ese may be motivated by 

knowledge assumptions of the end-user, such as when a complex statement is made 

without explicit reference to intermediate clauses. In e Atlantic’s ‘How the Recession 

Changed Us’ (Figure III.I), the overall message about negative effects of the recession 

assumes that end-users intuit several non-explicit propositions in decoding the 

iconography and statistics. e number of times that the word ‘uncertainty’ appeared in 

the New York Times, for example, only makes sense in the graphic if one assumes that 

mentions of uncertainty in articles equates to economic-related risks and recession. 

Omissions may also result from a desire to simplify complex phenomena by excluding 

complicating information from the visual representation, as in the case of thresholding 

values or omitting exceptional cases. A visual representation occurs in axis thresholding, in 

which the values most important to communicate a pattern through comparison are used 

to set the range of the axis, so that higher or lower values that may be relevant but 

complicate the message are not shown.    
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Figure III-I: “How the Recession Changed Us” presented by the Atlantic Monthly. 

Omission or information loss choices can also be transferred to the end-user via 

filteringcapabilities like search bars that allow a user to select a subset of data. Intentional 

information loss has been discussed on the part of the designer (Huff 1993, Tue 2001, 

Ziemkiewicz and Kosara 2009), but has been underexplored from the perspective of user-

driven filtering. e increasing prevalence of narrative visualization suggests that use-

driven information loss or avoidance may be a fruitful area for research.  

Metonymy techniques that manipulate part-whole relationships serve 

simplification as well. At the basest level, theselection of variables to visualize involves 

creating a subset of a larger data set to present a simplified visual representation of chosen

features. Averaging techniques like mean, median, and clustering similarly substitute 

simpler representations for a wider range of values, as do textual and visual summaries. 

Categorizing, binning, or aggregating values can be used to make an intended effect more 

apparent. An Economist graph on car sales (Figure III.II) depicts only ‘light vehicles’ for 

some countries’ data, yet all sales for other countries. 
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Figure III-II: "Vehicle Sales" visualization by the Economist Graphic Detail. 

PROVENANCE RHETORIC  

Similar to objectivity values in InfoVis, journalistic codes of ethics emphasize the 

journalist’s duty to remain impartial and present information as clearly as possible 

(Kovach and Rosenstiel 2007). A number of visualization rhetoric techniques observed in 

our sample work to signal the transparency and trustworthiness of the presentation source 

to end-users. Doing so conveys a respect for the audience and reaffirms a journalist’s 

public interest motive, strengthening the journalist’s credibility (ibid.). Data provenance 

strategies include citing and/or linking data sources, additional references, methodological 

choices, and relevant facts, as well as annotating exceptions and corrections, thus achieving 

goals proposed by Tue for graph provenance (Tue 2006). Several of these methods are 

depicted at the bottom of Figure III.II. 

Representing uncertainty can be accomplished through visual representations 

like error bars, yet appeared more oen in our sample via textual means. ese included 

descriptions of inferential limits (i.e. confidence intervals),“leap-of-faith” or forecast 

annotations explicitly labelling the point in a graph where data are extrapolated, or 
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expressions of doubt regarding potential conclusions (see Figure III.II, tag line below title). 

e dominance of textual uncertainty representations suggests an intriguing comparison 

between these visualizations and the visually-based ways of denoting uncertainty that 

have been developed in InfoVis and statistical graphics, such as error bars or confidence

envelopes (e.g., Wainer 2009). e reliance on textual means may indicate a lack of 

adequate methods or commonly understood codes for visually representing uncertainty to 

non-experts (Skeel et al. 2009).  

Finally, in some cases explicit steps are taken to signal the identificatio of a 

visualization’s designer. While author-designers are usually credited for their work, in 

some cases additional information is provided, through author bios or personal anecdotes. 

MAPPING RHETORIC  

Mapping rhetoric refers to manipulating the information presentation via the 

data-to-visual transfer function, the constraints that determine how a piece of information 

will be translated to a visual feature. Obscuring can result from introducing “noise” into a 

representation, oen on a perceptual level, such as in the case of adding a gratuitous third 

dimension. Other means of obscuring are applications of non-essential sizing 

transformations that violate discriminability limits. is may mean making some elements 

too small for judgment, oversizing to the point of overwhelming the presentation, or 

obscuring a value’s true position on an axis. More subtly, non-intentional obscuring 

occurs when a designer neglects to map information to the most salient visual judgment 

types as suggested by work like (Cleveland and McGill 1984). Noise can be introduced on 

a semantic level, by implying false cause-and-effect relationships or by using complex 

design tactics like the double-axis, which experts have noted are difficult to decode even 

when properly used (Wainer 2009; see Figure III.II and Figure III.IX).  

Visual metaphor and metonymy maps visual signs to non-present or implicit 

meanings. Some of these are interpreted automatically due to congruence with embodied 
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experience, such as suggestive spatial mappings like “le = past, right = future” or “up = 

more or better, down = less or bad” (Lakoff 1990). Typographic mappings and color 

mappings pair visualized patterns to categories via visualization components, such as by 

applying red and blue font colors representing political parties to statistics in an election-

themed visualization. Visual noise is a visual metaphor technique that can also serve to 

obscure. It has become popular in recent years through visualizations like the visually 

confusing graphics by political party representatives of political parties to represent the 

“confused” policies of the opposing group (Figure III.III, top). Visual noise can be used 

more subtly as well, as in David McCandless’ ‘Poll Dancing’ visualization (Figure III.IX) or 

more obviously as in the ‘Democrats’ Health Plan’ graphic (Figure III.III, top), which 

prompted the response graph that appeared to be motivated in part by the goal of creating 

a distinctly non-noisy graph (Figure III.III, bottom).  
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Figure III-III: "House Democrats' Health Plan" presented on John Boehner’s website (top), and 
“Organizational Chart of the Democrats’ Health Plan” created by graphic designer Robert Palmer. 

Contrast techniques can serve ambiguity, as in the juxtaposition of oppositional 

pieces of information that occur in visual contrasts or variable splices. In these cases, 

information that is not obviously associated with target variables is included, adding an 

additional layer of perspective on an issue. An example can be found in the NYT 

interactive visualization entitled ‘A Peek Into Netflix Cues’(Figure III.IV). e title and 

two variables of rental lists and movie rank variables are mapped to the important visual 

dimensions of spatial position and color. ese mappings imply an overall message 
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organized around geographic patterns in top rentals. However, a choice was made to 

include the less obviously relevant critic meta-scores for each movie, along with a sample 

NYT review of each, to the le of the map frame. e result is an implication that this 

information may generate further insight through comparisons with the geographic 

patterns. Scanning comments attached to the visualization validates that such 

comparisons did occur among users.   

 
Figure III-IV: "A Peek into Netflix Queues" by the New York Times graphics department 

Classificatio can be accomplished through grouping by size, position, or color (see 

Figure III.III, bottom). Consistent typographic manipulations of font sizes and styles and 

equations of significancepresented in a legend-like format to highlight certain values can 

also classify information within a visualization. Such classifications can show clusters of

priority or importance.  

Redundancy techniques emphasize by disaggregating homogenous values or visual 

marks. e repetition of identical labels, or the disaggregation of values with little variance 

or similar functions or relationships between them, can be used both to emphasize as well 

as to create visual noise. In a second politically-themed graph from John Boehner’s office 

on a new energy tax, a label of ‘Higher prices’ is used repeatedly in labels placed closed to 
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one another, presumably to emphasize the economic ramifications of the plan on

taxpayers over combining the labels into one (Figure III.V). We note that the bijective or 

one-to-one mapping from the data to the target (visual) domain required in Ziemkiewicz 

and Kosara’s (2009) taxonomy for information visualization is violated in nearly all 

occurrences of redundancy.  

        
Figure III-V: "Speaker Pelosi's Energy Tax: A Bureaucratic Nightmare" presented by John Boehner's 
office website. 

LINGUISTIC-BASED RHETORIC 

Multiple techniques closely resembled rhetorical devices that derive from 

conventions of language usage. ese techniques tended to be (but were not exclusively) 
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implemented at the textual layer, albeit with several exceptions.  Typographic emphases 

like font bolding or italicizing derives meaning from conventions long associated with 

typography. 

      Irony is a basic literary and artistic strategy that sets up a discordance between 

the literal meanings of a statement and an alternative implied meaning. Visualizations in 

our sample oen used rhetorical questions with irony, which has an effect of engaging the 

user’s attention by directly addressing her, while at the same time using the question in 

order to imply its inverse. ese tend to be used in titles to sarcastically set the stage for a 

user to arrive at an obvious interpretation. is is the case in ‘Budget Forecasts, Compared 

With Reality’ where a prominent textual annotation above the visualization poses the 

question “How accurate have past White House budget forecasts been?” despite numerous 

other annotations explicitly describing inaccuracies in forecasts (Figure III.VI). Quotation 

marks and deliberate understatement accomplish similar objectives.  

          
Figure III-VI: "Budget Forecasts, Compared to Reality" by the New York Times graphics department. 

Similarity techniques resemble contrast techniques except that the comparison 

between two entities is motivated by assumed similarities between them. One method is 

analogy, in which a comparison is made in order to provide insight into the lesser known 

of two entities. Metaphoric statements equate two ideas or values by labelling or directly 

asserting that one is the other, as in the visualization titled ‘Speaker Pelosi’s National 
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Energy Tax: A Bureaucratic Nightmare’ (Figure III.V).  Parallelism involves expressing two 

linguistic statements or visual features to show that they are equal in importance. An 

example occurs in ‘How the Recession Changed Us’ (Figure III.I), through the 

juxtaposition of infographics of roughly the same size representing different data yet each 

framed around negative implications of the recession. Simile resembles analogy and 

parallelism but the goal tends to be for effect and emphasis of a similarity relationship. 

Double entendre hinges on a linguistic or visual similarity alone that is used to unite two 

ideas or entities. David McCandless’ ‘Poll Dancing’ visualization (Figure III.IX) uses both, 

in the title and vertical visual format. 

Finally, individualization techniques represent ways to directly address or appeal 

to the user as an individual. ese techniques are similar to directly addressing a person 

using a second-person tense in language. is can increase interest and ease processing on 

the part of the user. Apostrophe is the direct address of the end-user in the title and 

annotations attached to a visualization, including rhetorical questions and suggested goals 

as mentioned above. More subtle means of individualization observed in our sample 

include providing alternative exploratory functions like sorting and filtering methods(Fig. 

3.6) and phrasing or imagery framed from an individual-citizen level view, such as using 

people icons and phrasing like ‘Buy Insurance’ that is framed from the ordinary citizen 

view in the ‘Organizational Chart of the House Democrats’ Health Plan’ (Figure III.III, 

top), in which labels like ‘Higher Prices’ that feature prominently across the top of the 

graph are framed sympathetic to the citizen tax-payers’ perspective. Such techniques 

suggest that the user adopt a “Cartesian” cultural viewing code that privileges the 

individual (see Viewing Codes, below for further reflection on this.   

PROCEDURAL RHETORIC 

"Procedural rhetoric" is based in an artifact’s procedural mode of representation, in 

other words, the expression of meanings through rule-based representations and 
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interactive functions (Bogost 2007). For instance, Diakopoulos et al. (2011) use 

procedural rhetoric in the form of game mechanics to drive attention in an interactive 

information graphic. e techniques we present here are similar to Segel and Heer’s 

(2010) suggestions of interactivity features for storytelling in visualizations, yet are framed 

from the perspective of the editorial emphases and omissions they represent. is 

perspective opens them up for critical analyses of their rhetorical functions.   

Anchoring techniques primarily direct a user’s attention in a way that 

subsequently helps convey a message. Default views provide an initial point of 

interpretation anchored to the default visual configuratio (e.g., Figure III.VI). Fixed 

comparisons present some information by default so that users can contrast this 

information with other values in the visualization. is can increase engagement via 

individualization when values suggested for comparisons are more likely to be salient to a 

user, such as in Figure III.VII, which presents several terms related to contested political 

issues that appeared in the speech transcript. Yet this technique also encourages a user to 

look for trends related to a particular data value over other potential comparisons in the 

larger data set. e fact that widely known methods for judging the ‘visual significance’ of

a trend (as one might judge statistical significance) are lacking among most users becomes

a particular risk. Spatial ordering leverages reading and scanning conventions to prioritize 

some information (Segel and Heer 2010). Animations leverage time to suggest a story, and 

partial animation that pauses or ends on particular views prioritizes through a “climactic” 

effect. More subtle means of anchoring include search suggestions or direct or implied goal 

suggestions, prompting the user to examine particular parts of the data rather than explore 

freely.  
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Figure III-VII: "e 2007 State of the Union Address" by the New York Times graphics department. 

More explicitly interactive techniques include filterin, through search bars or 

menuing that constrain the data depiction based on a user’s preferences for certain 

information (this also appears in individualization techniques). Search bars are likely to be 

effective in engaging a user to explore data based on how the personalization of 

information increases the salience of the message being presented (e.g., Skinner et al. 

1994). Menu choices that appear by default can also help users find the most intereting 

comparisons or views in a visualization using the information gained by designers who 

have already thoroughly explored the data in the design process.  

PATTERNS OF OCCURRENCE 

While the output of our coding is indicative of the distribution of techniques 

found within our particular sample of narrative visualizations (i.e. many drawn from 

journalism outlets), a sample from other genres of visualization would likely produce a 

different distribution. Still, our results allowed comparisons of differences in the frequency 

of specific techniques, as well as c-occurrence trends. e top ten most prevalent 

techniques (ranked by frequency) were grouping by color, aggregating values, suggestive 

spatial mappings, goal suggestions, bolded fonts, data source citations, metaphoric 

statements, color mappings, apostrophe, and variable splices (Table III.II). 
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Table III-II: Top ten most frequently observed rhetorical design techniques in sample. 

Rank Technique 

1 Color grouping 
2 Value aggregation 
3 Spatial mappings 
4 Goal suggestions 
5 Bold fonts 
6 Data source citations 
7 Metaphoric language 
8 Color mappings 
9 Apostrophe 
10 Variable splice 

 

A conclusion to be drawn from this ranking concerns the way that many of these 

techniques represent common strategies in a wide variety of data visualizations, based on 

their perceptual salience (e.g., spatial mappings, grouping by color) or their common use 

in other facets of communication (e.g., metaphoric statements). e fact that standard 

communication strategies can pave the way for potentially significant rhetorical effects

may partially result from our observation that they oen appeared in combination. A 

designer might opt to use many less obvious framing strategies to convey a visualization 

story, so as to reduce the appearance of bias that can result from extreme usage of a single 

strategy. 

is ranking excludes several techniques that affected nearly all visualization, 

albeit to different degrees. ese are variable selection, default views, knowledge 

assumptions, and visual contrasts. ese naturally occur very frequently (e.g., an infinite

number of variables cannot be visualized; a starting view for the visualization must be 

chosen; some knowledge must be assumed to communicate at all, such as a rudimentary 

ability to read charts; the goal of visualization is to compare data using vision). An insight 

to be gleaned from even these, however, arises when one considers that possible 

alternatives do exist, but appear to be unconventional. Choosing a default view, for 

example, may be unavoidable, but the choice of a single default view for all users is not a 
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given. Designers might dynamically choose default views in cases where the goal of the 

visualization is less specifically focused on a single intended interpretation. is particular

implementation was not observed however. 

Some techniques appeared together quite frequently. Data source citations tended 

to appear with other provenance techniques (i.e., methodology citations) more oen than 

they appeared alone. While knowledge assumptions are on some level unavoidable, 

analogy, parallelism or other linguistic-based similarity techniques nearly always occurred 

with more extreme assumptions. An example is the title ‘e Arab Powder Keg’, which 

assumes that the user is familiar with the powder keg reference. Again, however, we note 

that this trend is not inevitable. A designer wishing to create a chart likely to be 

understood by the largest number of users could annotate the presentations with 

definitions in smaller type so as to include users without the requisite prior knowledge.

Another notable pattern was the tendency for rhetorical questions to be used with implicit 

goal suggestions. In these cases, a question was posed that was most easily interpreted as 

ironic or pedantic in light of other annotations that directly instructed users to look for 

particular patterns. 

A pronounced pattern throughout our analysis was the observation that the 

effectiveness of individual strategies depends on references to other layers of the 

presentation. is occurs despite the way that some categories are more closely associated 

with certain editorial layers (i.e., linguistic rhetoric mapping to annotations), A clear 

example is described below for the ‘Poll Dancing’ visualization  (Figure III.IX), where a 

double-entendre in the title depends on several visual metaphors in the graph. is 

highlights the nature of narrative visualizations as multimedia artifacts that can’t easily be 

reduced to visualization alone. 
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VIEWING CODES 

e concept of viewing codes is an adaption of theories presented in semiotics 

(e.g., Barthes 1978) that capture how attributes of the receiver of an artifact influence

interpretation. Viewing codes are the cultural, perceptual, cognitive, and psychological 

lenses that guide how an end-user (or community) interprets a representation. is 

concept sheds light on the constraints imposed on end-user interpretations by habits and 

beliefs that are not explicitly contained in the visualization but rather implied by 

visualization elements. Below, we discuss how a distinction between denotation and 

connotation becomes important with regard to discussions of viewing codes.  

In semiotic studies, codes are thought of as systems of related conventions, 

accumulated over time, that correlate signifiers, or symols or representations, with 

signifieds, or meaning (Chandler 2001). In InfoVis, for example, the conventions that 

dictate what end-users expect to be communicated by given visualization formats are 

codes. Bar graphs, for example, are conventionally associated with discrete trends, while 

line graphs are associated with temporal trends. Prior experience with these graph types 

informs expectations when faced with a new graph. When non-temporal data are graphed 

in a line graph, users tend to frame their interpretations of the data using language 

associated with trends, such as “as a person gets taller they become more male” (Zacks 

and Tversky 1999).  

Cultural codes describe the social norms and wider beliefs of a culture that a 

designer can target to suggest a particular interpretation. Individual-level codes can be 

higher-cognitive constraints (e.g., abilities) or more emotionally-based patterns of 

reaction. Empirical literature demonstrates how individual differences deriving from 

spatial intelligence (e.g., Caroll 1993) as well as prior knowledge can affect visualization 

interpretation (Conati and Maclaren 2008, Ziemkiewicz and Kosara 2009) and even bias 

perception (Henderson and Ferreira 2004). For example, individuals differ in their 

interests and prior knowledge regarding various types of news. Consequently, these 
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differences lead to differences in how users interpret the implications of the story in a 

narrative visualization. 

Perceptual codes constrain what is salient to the user given human visual 

perception tendencies, such as gestalt principles of continuation, common fate, and 

closure (Wertheimer 1939). Perceptual tendencies can combine with internalized 

knowledge to form additional types of codes such as textual codes, the conventions 

associated with the presentation and interpretation of text. With regard to online 

information visualizations, these include the common positioning of the title either in the 

top center or top le of the presentation, the inclusion of source and designer credits 

toward the lower right or le hand corners of the layout, as well as the assumed le-to-

right reading style in many Western cultures noted by Segel and Heer (2010). Similarly, 

aesthetic codes combine perceptual as well as shared yet subjective preferences for a 

particular style of presentation. In the tradition of visualization design that prioritizes 

high data-ink ratios, minimalist techniques such as colorless backgrounds and an 

avoidance of non-necessary ornamentation create a particular aesthetic code that can 

affect a user’s judgment of the quality of a visualization. 

A given element of a visualization-based presentation (whether textual, visual, or a 

combination) can activate individual or cultural viewing codes in several ways. Denotation 

refers to descriptive elements, including either textual or visual statements (such as 

iconography) that directly attribute features to objects. In the above example of users’ 

differing expectations of bar versus line graphs, the height of the bars directly conveys the 

value for each bar’s group for the y-axis variable (e.g., cost, score, or another quantity of 

interest). Likewise, the location of the points comprising the line directly conveys the 

value of the y-axis in the line graph. Users familiar with how to read a bar and line graph 

use this straightforward mapping to interpret the data. Connotation, however, refers to 

cases where a secondary symbol cues, but does not directly associate, a meaning. is 
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form of communication better describes why users of a bar graph are more likely to 

interpret the data as discrete rather than a temporal trend, while line graphs tend to evoke 

temporal interpretations regardless of the data (Zacks and Tversky 1999). Users have come 

to associate each graph type with particular data types (discrete categories and temporal 

trends), and the format itself activates the code of this expectation despite the lack of 

explicit reference. 

Illustrating Visualization Rhetoric 

Two case studies are used to demonstrate the kinds of insights that the 

visualization rhetoric framework provides into the interaction of specific design strategies,

their communicative functions, and the extra-representational factors that constrain 

them. e first example, ‘Mapping America: Every City, Every Block’ highlight how the 

editorial layers described above can be used to convey meaning, and how specific

techniques employed at these levels represent omissions and emphases of some data over 

others. e second example, ‘Poll Dancing’, demonstrates how viewing codes can be cued 

through design elements in practice, either through direct communication (denotation) 

or implicit suggestion (connotation). 
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‘MAPPING AMERICA’ VISUALIZATION 

 
Figure III-VIII: "Mapping America: Every City, Every Block" by the New York Times graphics 
department. 

e United States Census represents a nation-wide attempt to provide an objective 

view of the demographic distribution of the country. e New York Times Graphic 

Department’s ‘Mapping America: Every City, Every Block’ interactive visualization depicts 

2010 U.S. Census results. Rhetorical techniques are employed at the four different editorial 

layers of the visualization described above to convey the comprehensiveness of the data 

collection. At the level of the data, the choice to use actual census results rather than 

third-party summaries of the data conveys the truthfulness of the visualization as a non-

biased depiction. e annotation layer communicates this choice. In this example, social 

annotations are provided in the form of comments in the right side bar that draw 

attention to important features and suggest conclusions based on the data. e annotation 

layer is also leveraged in this example for data provenance purposes, through a 

methodology citation behind the depiction as well as specific datasource citations. e 

latter citations may betray knowledge assumptions on the part of the designer who wishes 

to appeal to a user’s prior knowledge of the scope of the census data collection. In the 

context of visual journalism, such techniques shape users’ interactions and interpretations 

by signalling transparency such that various beliefs associated with objective information 
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visualizations as a journalistic standard (Kovach and Rosenstiel 2007) are cued. Another 

annotation works as an uncertainty representation that conveys impartiality by 

referencing the inferential limits imposed by a margin of error. e redundancy in the title 

annotation phrasing, “Every City, Every Block” emphasizes the comprehensiveness to the 

portrayal. Similarly, techniques using the interactivity layer include a default zoomed-out 

view of all of New York City (the largest US city and presumed home of the default New 

York Times user) and additional zooming features for gaining an even more holistic view 

of the country. A search bar allows users to explore data for any US region using 

addresses, zip codes, or city names of personal significance to the. Together, these 

choices convey a sense that the visualization provides a relatively unobstructed 

presentation of all information necessary to decode the patterns inhering in the data. e 

depicted story of the spatial distribution of ethnic groups is further supported by 

consistent mappings, such as of groups to colors that are applied identically to data points 

in the multiple views.  

Yet like any visualization, less impartial choices are evident as well. e choice to 

represent the families part of the ‘Housing and Families’ category with a single variable on 

‘Same-Sex Couples’ represents an example of information access rhetoric through 

metonomy, as it omits other families like two parent or single person households. If 

additional data was available from the source but the designers excluded it, this choice can 

be read as an implicit suggestion to end-users that they are expected to find this

information more interesting than other family-based variables. e visual representation 

carries further emphases on particular views of data. e choice of which variables are 

mapped to salient pre-attentive channels (Ware 2008) leads those variables to be more 

salient in the end-user’s interpretation. Here, the use of color leverages the pre-attentive 

qualities of this visual encoding channel to represent racial and ethnic groups, subtly 

privileging this information.  
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As described above, interactivity can be used to promote exploration of specific

subsets of the wider range of available information, subtly privileging some information 

over other information. For example, an emphasis is put on the race and ethnicity 

information by a default view that anchors users’ interpretations so that they are most 

likely to be formed based on this dimension of the data. By clicking on a ‘View More 

Maps’ button in the example, users are taken to a menu of additional choices, which 

enforce the priority of the Race and Ethnicity view by listing this first, making it more

likely that users will interact with these views as a result of common navigational 

conventions. Exploring these additional variables reveals some ambiguity in variable 

definition; the requirements for membership in the Race and Ethnicity categories of 

'Foreign-born population' and 'Asian population' are not explained, leaving uncertainty as 

to what extent these groups overlap. While ambiguity techniques can function oppositely 

to omission techniques by providing a user with the possibility of several differing 

interpretations, they also omit more specific information such that a user is prevented

from knowing with certainty whether her interpretation is supported. Faced with 

ambiguity, a user is able to choose for herself which definition or reading of a visualization

element to assume. She may default to the definition that better supports an interpretation

cued by her individual viewing codes, or unique knowledge and beliefs. is can work in 

favor of an intended interpretation on the part of the designer, such as in cases where 

providing the full unambiguous information might eliminate the plausibility of a highly 

engaging yet flawed intrpretation. 
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‘POLL DANCING’ VISUALIZATION 

 
Figure III-IX: Partial (le) and full view of "Poll Dancing: How accurate are poll predictions?" by David 
McCandless. 

A second example shows more clearly how extra-representational constraints can 

also significantly influence an e-user’s interpretation. David McCandless’ ‘Poll Dancing: 

How accurate are poll predictions?’ (Figure I.I) visualization summarizes the accuracy of 

political poll predictions from several years and polling agencies in a small multiples 

presentation of vertical line graphs. In each individual graph of one agency’s predictions 

over a year, colored bars representing the political parties are drawn to connect data 

points positioned on the y-axis according to the amount of time prior to the election and 

on the x-axis according to whether the predictions fell over (to the right) or under (to the 

le) of a centered vertical line representing complete accuracy (or error of zero). Despite 

the apparent straightforwardness of the representation, analysis from a rhetorical 

standpoint provides insight into several layers of meaning implied as a result of design 

choices. Which of these alternate levels of meaning an individual user prioritizes depends 

on the viewing codes that constrain the interpretation, representing a second important 

insight that can be gained from rhetorical analysis. In the ‘Poll Dancing’ visualization, the 

framing of the poll predictions as ‘dancing’ in the title annotation lines brings to mind 

cultural associations with dancing as well as potential associations that stem from a user’s 
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unique beliefs and knowledge about dancing. On a more basic level, the word ‘dancing’ 

combines with the juxtaposition of the visually-jagged line graphs in a visual-linguistic 

metaphor. Another type of visual metaphor is evident in that the variation, or 

directionality and distance to the center ‘accuracy’ line of the colored lines in the 

individual graphs, results in a visual noise effect. is effect is connected to the dancing 

association cued by the title based on a similarity between the parallelism inherent in the 

perceptual approximation of movement achieved by the jagged lines and the movement in 

dancing. In this case, the brightly-colored lines also naturally pop out against the muted 

grey and white background as a result of a perceptual codes. An aesthetic code that equates 

minimalism with representational impartiality may have motivated the colorless 

background and low contrast annotations.  

Returning to the central metaphor, based on her prior experience and associations 

with political poll predictions, a user might interpret the association drawn between 

political poll predictions and the act of dancing as a light-hearted presentational 

technique that does not necessarily comment on the value of political poll predictions. On 

the other hand, a user with a more skeptical prior orientation to poll predictions might 

interpret the dancing connection as implying a frivolous or amusing aspect that suggests 

the results should not be taken seriously. Hence, differences internalized in individual 

codes can significantly alter the message an en-user interprets.  

Another possible level of meaning can also be inferred given the specific design

elements and consideration of additional associations that might be created by the title 

and visual representation. e title ‘Poll Dancing’ implicitly connotes the identically-

pronounced term ‘pole dancing’, referring to a form of entertainment and exercise that 

traditionally takes place in strip clubs. As such, a second form of metaphorical 

substitution, double-entendre, is used to cue a double-meaning to any users who are aware 

of the existence and term for ‘pole dancing’ in English. is meaning may gain further 
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support through another visual metaphor cued by the choice to orient the line graphs 

vertically and to center the colored lines around the straight vertical line representing zero 

error. Users familiar with pole dancing may associate this vertical line with the pole that a 

pole dancer orients her movement around. is connotation, if cued in an end-user with a 

negative association with ‘pole dancing’ deriving from cultural stereotypes associated with 

the activity, might lead to an interpretation of the visualization’s message as an even 

stronger value judgment on the worth of political poll prediction. is results from the 

way these negative associations with pole dancing are metaphorically transferred to 

political poll predictions. 

Interestingly, connotation as that described above depends on denotational 

communication of meaning, as the denoted signs are used in connotation to imply a non-

present meaning (Chandler 2001). In the above example, the implication of pole dancing 

achieved by the vertical representation of the central “pole” relies on the same element 

that plays a directly descriptive role by representing the zero point (or accurate 

prediction).  

Discussion 

e study of narrative visualizations offers an opportunity for increasing 

understanding of the complementary relationship between explorative and 

communicative dimensions in InfoVis. We suggest several important considerations for 

this space highlighted by our analysis, and note areas that may be fruitful for future 

exploration.   

e effects of subtle rhetorical manipulation of information has generated 

sometimes surprising results in decision theory and political and communication studies. 

Applying a similar experimental approach to narrative visualizations is a natural parallel. 

Our work sets the stage for such studies by providing a taxonomy of specific information

presentation manipulations used in narrative visualizations. Formal models that have 
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been developed to capture the formation of user opinions as dependent on personal 

attitudes (Saris and Sneiderman 2004) similarly motivate future modelling of combined 

effects of rhetorical techniques and personal and cultural viewing codes on a user’s 

interpretation in narrative visualization. 

Acknowledging the distinction between denotation and connotation contributes 

to InfoVis design and theory by highlighting an epistemological tension that invades 

many narrative visualizations. is trade-off is between techniques of "objective" charts 

informed by transparency ideals on the one hand, and the layers of connoted 

interpretation that can seep into or co-opt the basis of objectivity via rhetorical strategies 

on the other. e ‘Poll Dancing’ example leverages the visual representation to precisely 

depict trends in forecasting. At the same time, connoted meanings imply that poll 

predictions may be best characterized as “entertaining” rather than rigorous or scientific.

e fact that both modes are possible within the same space may explain why such 

visualizations are engaging in ways that is difficult for numeric representations alone to 

achieve. e intriguing tension or interplay that results from combining seemingly 

oppositional techniques may help explain how rhetoric can exert a positive influence in

visualizations. Future work includes devising means of assessing narrative visualizations 

such that these positive influences are recognized, while still acknoledging the potential 

for rhetorical decisions to negatively affect a user’s accurate interpretation of data. 

A frequent example of such a productive tension in our sample is that some 

narrative visualizations appear to be concerned with presenting their work as credible 

even in cases where the journalist may have taken some liberties in preparing the graphic. 

is is likely the influence of journalistic notions of transparency, where creators are

expected to be upfront about their knowledge as well as what they don’t know (Kovach 

and Rosenstiel 2007). In many examples, the journalist’s presence is explicitly stated, such 

as through notes about how a visualization contains ‘predictions’ or ‘forecasts’ at the 

bottom of the graph (see Figure III.II). ese acknowledgements may play a double role in 
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the sense that they strengthen the sense of the journalist’s or designer’s integrity despite 

explicitly pointing to a lack thereof. is observation dovetails with the observation that 

codes or conventions appear to operate in narrative visualizations. Not only do 

transparency clues suggest that an end-user should believe the specific interpretation

being emphasized in the visualization, they also implicitly suggest to users a preferred way 

of making similar decisions when viewing other visualizations. Insight from critical media 

and semiotic studies suggests that such codes are dynamic systems that change over time 

(Chandler 2001). Many professionally produced narrative visualizations form part of a 

larger system of meaning and rhetoric, knowledge of which guides an informed user on 

how to interpret the particular example. By giving more attention to the development, 

maintenance, and propagation of such conventions in information visualization, 

researchers and designers alike stand to gain control over dimensions of interpretation 

that have remained mostly unaccounted for or underexplored. 

A related discussion prompted by this chapter concerns the degree of 

intentionality that can be assumed behind the rhetorical effects achieved in narrative 

visualization. In analysis we noted all possible, although not necessarily intended, framing 

effects of design choices. We have demonstrated how particular trade-offs, such as 

between transparent presentation and persuasive framing of a message, appear to be 

evidenced by visualizations in our sample. However, future studies would do well to 

connect insights arrived at through inference from design outcomes (also including Segel 

and Heer’s work) with more direct observation of designers’ processes. Interview methods 

or participant observation can provide insight into the extent to which visualization 

creators are cognizant of rhetoric and related trade-offs. In any case, the power of 

rhetorical techniques to manipulate user interpretations calls for greater consideration of 

the responsibility that designers have to consider the possibly unintended effects their 

choices. Pre-existing design methodologies, such as scenario creation, could be adapted to 

support considerations of how elements of a viewing code might shape interpretations in a 
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particular direction. Similarly, greater reflection on ambiguous design elements could

provide insight into how these aspects contribute to multiple plausible interpretations.  

Finally, our analysis concentrated on professionally designed visualizations, yet a 

larger number of visualizations are created by non-professionals. A specific aim for future

work concerns the possibility for integrating rhetorical and communicative features into 

existing visualization tools that are accessible to the public online, including collaborative 

visualization systems (Chinchor and Pike 2009, omas and Cook 2005). Introducing 

knowledge around rhetorical features and trade-offs could allow analysts and other data 

workers who lack professional design training to better achieve their communication 

goals.  

Conclusion 

e rhetorically-based framework presented here summarizes many ways in 

which narrative visualizations can be used to prioritize certain interpretations of data 

through design. Within the framework we have presented, it becomes clearer how trade-

offs related to the persuasive dimension of design are likely to impact end-user 

interpretations. e concept of viewing codes, comprised of the many attributes of the 

visualization user and his or her context of use on various levels, is proposed as an 

additional set of constraints mediating interpretation. ese themes demonstrate the 

necessity for models of interpretation in the development of design support tools, a theme 

that will be explored further in the subsequent chapter.
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CHAPTER IV 
 

A Deeper Understanding of Sequence in Narrative 
Visualization 

In using visualizations to tell a story, the events of interest are patterns in data sets 

represented in visualizations, and the “presentation style” for these visualized patterns is 

the graphical format and the retinal mappings (such as the assignment of data values to 

locations, colors, or other visual variables). Chapter III characterized the creation of 

narrative visualizations as a series of editorial choices. Design decisions are made 

sequentially, oen between alternative possible alternatives, in order to define the ontext 

for the visualization, select the most appropriate information and modality for a 

storytelling goal, and to select a sequence with which to narrate or render information.  

Chapter III’s emphasizes the effects that even “minor” design choices in the 

editorial process, like posing a rhetorical question, can have on users’ interpretations of 

data. is inspires a deeper investigation of one particular set of decisions that are likely to 

constrain narrative visualization interpretation: those choices about how to use 

presentation order effectively to convey a message about data. 

In what is likely to be a ‘typical’ creation process, an individual uses a tool like 

Tableau or Microso Excel to visually analyze data, and to generate visualizations via 

vector graphics or images for presentation. e individual must decide how to thread the 

representations into a compelling yet understandable sequence. Chapter III comments on 

this final stage of ata story creation by introducing “procedural rhetoric,” referring to 

design decisions that concern information rendering by dictating the range of interactivity 

that a visualization provides end-users. Techniques observed in Chapter III’s study 
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included default views and partial animation. Elsewhere, Segel and Heer (2010) note 

structuring techniques like the Drill-down story, which similarly concerns the 

presentation structure and sequencing of the visualized content.  

Comparable textual techniques for structuring evidence, combined with the choice 

of appropriate rhetorical strategies, are referred to as “the art of storytelling” among 

literary scholars. Evidence from cognitive psychology suggests that structural aspects, 

including the sequence in which information is delivered, play an important role in 

effective storytelling. Whether trial evidence or fictional narratives, the sequencing and

forms of grouping used in a narrative affect the meaning that is constructed, the 

judgments that are consequently made by the audience (Pennington and Hastie 1992) and 

the ability to recall the information later (orndyke 1977). Yet much is still to be learned 

about the principles that govern effective structuring of transitions between consecutive 

visualizations in narrative presentations, and how different tactics for sequencing 

visualizations are combined into global strategies in common formats like slideshow 

presentations.  

A gap also exists in current understanding around how end-users’ perceptions are 

affected by sequencing choices in narrative visualization. What characteristics make a 

sequence of visualizations successful in the eyes of users, as well as the designer? Other 

challenges stem from the potential conflict between narrative or sequence (“global”)

design considerations and design optimizations framed around singular visualizations 

(“local”) that are included in many current systems. e Tableau visualization system, for 

example, relies on canonical automated visualization presentation techniques which 

model the effectiveness of different data-to-visual mappings for graphical perception as 

well as the faithfulness with which they express desired relationships (Mackinlay et al. 

2007, Mackinlay 1986). e risk occurs when the individual visualizations in a set, which 

might each be best represented with a distinct graphical format and retinal variable 

mappings, introduce complexities to interpretation as a set. e task to the end-user who 



74 

must interpret the set is likely to be complicated by applications of the same retinal value 

to different data values (see Figure I-VII, reproduced again below), for example. Equally 

difficult to interpret are visualizations that map the same data variable in two different but 

overlapping ways (e.g., overlapping qualitative color range). 

In using visualizations to tell a story, the events of interest are patterns in data sets 

represented in visualizations, and the “presentation style” for these visualized patterns is 

the graphical format and the retinal mappings (such as the assignment of data values to 

locations, colors, or other visual variables). Chapter III characterized the creation of 

narrative visualizations as a series of editorial choices. Design decisions are made 

sequentially, oen between alternative possible alternatives, in order to define the ontext 

for the visualization, select the most appropriate information and modality for a 

storytelling goal, and to select a sequence with which to narrate or render information.  

Chapter III’s emphasizes the effects that even “minor” design choices in the 

editorial process, like posing a rhetorical question, can have on users’ interpretations of 

data. is inspires a deeper investigation of one particular set of decisions that are likely to 

constrain narrative visualization interpretation: those choices about how to use 

presentation order effectively to convey a message about data. 

In what is likely to be a ‘typical’ creation process, an individual uses a tool like 

Tableau or Microso Excel to visually analyze data, and to generate visualizations via 

vector graphics or images for presentation. e individual must decide how to thread the 

representations into a compelling yet understandable sequence. Chapter III comments on 

this final stage of data story creation by introducing “procedural rhetoric,” referring to

design decisions that concern information rendering by dictating the range of interactivity 

that a visualization provides end-users. Techniques observed in Chapter III’s study 

included default views and partial animation. Elsewhere, Segel and Heer (2010) note 

structuring techniques like the Drill-down story, which similarly concerns the 

presentation structure and sequencing of the visualized content.  
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Comparable textual techniques for structuring evidence, combined with the choice 

of appropriate rhetorical strategies, are referred to as “the art of storytelling” among 

literary scholars. Evidence from cognitive psychology suggests that structural aspects, 

including the sequence in which information is delivered, play an important role in 

effective storytelling. Whether trial evidence or fictional narratives, the sequencing and

forms of grouping used in a narrative affect the meaning that is constructed, the 

judgments that are consequently made by the audience (Pennington and Hastie 1992) and 

the ability to recall the information later (orndyke 1977). Yet much is still to be learned 

about the principles that govern effective structuring of transitions between consecutive 

visualizations in narrative presentations, and how different tactics for sequencing 

visualizations are combined into global strategies in common formats like slideshow 

presentations.  

A gap also exists in current understanding around how end-users’ perceptions are 

affected by sequencing choices in narrative visualization. What characteristics make a 

sequence of visualizations successful in the eyes of users, as well as the designer? Other 

challenges stem from the potential conflict between narrative or sequence (“global”)

design considerations and design optimizations framed around singular visualizations 

(“local”) that are included in many current systems. e Tableau visualization system, for 

example, relies on canonical automated visualization presentation techniques which 

model the effectiveness of different data-to-visual mappings for graphical perception as 

well as the faithfulness with which they express desired relationships (Mackinlay et al. 

2007, Mackinlay 1986). e risk occurs when the individual visualizations in a set, which 

might each be best represented with a distinct graphical format and retinal variable 

mappings, introduce complexities to interpretation as a set. e task to the end-user who 

must interpret the set is likely to be complicated by applications of the same retinal value 

to different data values (see Figure I.VII, reproduced again below), for example. Equally 
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difficult to interpret are visualizations that map the same data variable in two different but 

overlapping ways (e.g., overlapping qualitative color range). 
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Figure IV-I: Two scatterplots apply the same colors to two different nominal variables. 

With the popularity of narrative visualization among individuals who may lack 

design or statistical expertise yet have important domain knowledge to contribute, a 

deeper understanding of sequence could pave the way for tools and systems that support 

more effective story structuring. Creators might be business analysts, marketing 

professionals, small business owners, or any number of other occupations in which data 

plays an important role. Or, they may be web users who are passionate about data and 

particular causes (e.g., politics, environmentalism, etc.). ese users are creating data 

graphics using the template-based GUI’s included in reporting tools like spreadsheet 

applications (e.g., Microso Excel), more advanced domain-general visualization tools 

(e.g., Tableau) or even presentation soware (e.g., Microso PowerPoint). ese 

visualizations reach even greater numbers of individuals who might be other stakeholders 

in the business or industry, or online audiences who encounter the data graphics in blog 

posts or social media.  

We focus in particular on how a particular subset of popular data visualization 

use—linear, slideshow-style presentations—can benefit from knowledge on the effects of

sequencing styles on user perceptions and message communication. ese may include 

slideshows based on series of data representations for live presentation as well as 
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interactive visualization slideshows presented online. A central contribution of our work 

is to outline an approach for automatic sequencing support that could help non-designers 

make structuring decisions in creating narrative visualizations. is includes a novel 

algorithm for semi-automatically identifying and presenting more “effective” visualization 

sequences during a design session. In outlining a sequence-based algorithm, we motivate 

the need for specific measures for negotiating conflicts between global and loca

automated presentation techniques.  

First, to gain empirical knowledge on the forms that structure and sequence take 

in narrative visualization, we conducted a qualitative analysis of 42 professional narrative 

visualizations. Our results inform a graph-driven approach that identifies possible

transitions in a visualization set (represented as nodes in a graph) and prioritizes 

visualization-to-visualization transitions (represented as weighted links) based on an 

objective function that minimizes the cost of transitions from the audience perspective. 

We conducted two large studies to validate this function as well as to expand our approach 

with additional knowledge of user preferences for different types of local transitions and 

the effects of global sequencing strategies on memory, preference, and comprehension. 

Our results include a relative ranking of types of visualization transitions by the audience 

perspective and support for memory and subjective rating benefits of visualization

sequences that use parallelism as a structural device. We use additional design examples to 

motivate the need for specific means of addressing conflicts with local visualizatio

optimization algorithms (e.g., Mackinlay 1986). We conclude by discussing the 

implications of our finding for the design of linear-style narrative visualization 

presentations and tools to support non-designers in creating narrative visualizations. 
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Related Work 

NARRATIVE SEQUENCE AND STYLING 

Our work is motivated by the systematic analysis of narrative in cognitive 

psychology. Researchers have empirically demonstrated that stories are perceived as being 

made of conceptually-separable episodes or sub-goals in a chain of actions that form the 

story’s plot (Black and Bower 1979). Stories are thought to contain microstructure via the 

particular details of an event and macro-structure via the relationship of those events to 

one another in the plot (e.g., orndyke 1977). We make an analogy between story 

episodes and visualization states in narrative visualizations, which must also be sequenced 

to form a larger presentation. 

Many psychological theories of narrative are grounded in experiments showing 

the importance of structure and sequence to story reception. Studies have shown that 

subjects are sensitive to suprasentential, or between-sentence, structure in a narrative, and 

use it to guide comprehension and recall. Such experiments typically test subjects 

understanding and recall for “scrambled” or randomly sequenced stories in comparison to 

those presented in “normal” order (e.g., temporal sequencing or groupings by causal 

implications (orndyke 1977). 

Our global sequencing patterns study takes motivation from this approach. 

Pennington and Hastie (1992) show that grouping court evidence by sub-stories leads to 

more confident and unanimous decisions among jurors over evidence that is presented

haphazardly (e.g., with grouping based on motives rather than temporal proximity). ese 

results may be due to story understanding being a constructive process in which audience 

members summon up explanations so as to choose between decision alternatives (see also 

Wilensky 1980). While these authors assume a “correct” story, our approach takes a more 

conservative stance by assuming that more than one compelling sequence may be effective 

to narrate a set of visualizations. Yet just as jurors in a trial must learn and choose among 
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decision alternatives in order to generate the most likely story, creators of narrative 

visualizations must infer viable transitions between visualizations and make judgments 

about which are most persuasive to use in a story. By inquiring into transition principles 

and how end-users react to them, we intend to support this aspect of the story creation. 

NARRATIVE VISUALIZATION RESEARCH 

Existing research toward widely supporting creation of narrative visualizations 

includes systems for visualizing and sharing public and personally relevant data (e.g., 

Viegas et al. 2007) supporting new interaction styles from rich media artifacts (e.g., Rich 

Interactive Narratives) and design space taxonomies that describe techniques used in 

exemplar professional artifacts (e.g., Segel and Heer 2010, Chapter III). e latter studies 

provide generalized advice for designing narrative visualizations gained from professional 

examples. In addition to noting narrative formats that appear in interactive narrative 

visualizations such as the interactive slideshow (Segel and Heer 2010), these studies 

describe how prioritization and sequencing of information can occur through spatial 

ordering, animation, and suggestive default views, among others (Segel and Heer 2010, 

Chapter III). In earlier work, Gershon and Page (2001) describe how storytelling could 

benefit information visualization. ey describe how animation could be used to preent 

time-based information in sequence. ey also propose more generally how a series of 

dynamic visualization views can be arranged as sequential frames, where each view is 

designed to display small enough amounts of information so as not to cognitively 

overwhelm a user. Yet, despite giving examples of structuring techniques that professional 

designers have refine, there is a lack of clearly outlined metrics that creators can use to 

find the best sequence for visualizations among multiple possible sequences. We expand

prior work in narrative visualization via an understanding of sequence informed by 

empirical analysis of professional visualizations and user validated metrics and transition 

characterizations.   
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Prior work on visualization transitions includes Heer and Robertson’s (2007) study 

of animated transitions in statistical graphics. ough they focused primarily on the effect 

of animation and staging of transitions taken as given, we note parallels between our 

principle of maintaining consistency and the guidelines they propose. e taxonomy of 

transition types we identify in professional narrative visualizations offer an end-user 

perspective of conceptually-based transitions (i.e., changes to the data being shown), 

providing a counterpoint to the types that Heer and Robertson define from a sytem 

representation of schematic and syntactic operations applied to data. We expand on their 

observations of transitions based in timesteps, filtering, and dat schema changes, 

elaborating how users perceive these and other conceptual changes that occur in 

transitions. 

THE ROLE OF ALTERNATIVES IN DESIGN 

Our intention to inform the design of tools for supporting narrative visualization 

creation is motivated by design research demonstrating the importance of exploration of 

alternative designs among creators. Researchers like Duncker (1945) have shown that 

individuals oen fxate on a single or narrow range of potential solutions early in a design 

process. Studies of successful design processes, however, indicate that generating and 

considering alternatives supports better understanding of the design specification:

constraints and guidelines that are not in the initial specification but which help dictate

what makes for a desirable design (Kolodner and Wills 1993). ese insights have been 

applied most recently in ad design studies that find that parallel prototyping technique 

that involve early generation of diverse examples produce better quality designs than 

techniques based in iteration and refining of a single desig (Dow et al. 2011). We note 

that the time constraints operating on creators of narrative visualization presentations like 

data slideshows make it unlikely that all possible sequencings for telling a given story from 

a visualization set will be explored. e risk is that the creator uses a less compelling 
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sequence than they might. Having a better understanding what drives sequencing choices 

in narrative visualization, and a user-validated approach for algorithmically identify and 

prioritizing possible sequences is one way to work towards supporting exploration in the 

narrative visualization design process.  

AUTOMATED VISUALIZATION PRESENTATION 

e canonical approach to providing automatic support for generating effective 

visualizations can be found in systems like Tableau (tableausoware.com), nee Polaris 

(Stolte et al. 2002). Here, a “Show Me” technique (Mackinlay et al. 2007, Figure IV.II) 

combines a table algebra with embedded models based on best practices to automatically 

identify and suggest to a user the best visualization format for representing a selected set 

of relational data. As proposed by Mackinlay (1986), the best graphical design is that 

which “expresses a set of relations and their structural properties effectively.” e 

approach, which can be framed as a constraint satisfaction problem, relies on 

“expressiveness criteria” constrain the search space of possible graphical designs by 

identify the set of graphical languages that can express desired information without 

contributing confounds (e.g., avoid encoding nominal variables with saturation as users 

will falsely interpret the variable levels as ranked). ese are combined with “effectiveness 

criteria” that use information on the accuracy of perception given different mark 

properties to determine whether a graphical language exploits capabilities of the output 

medium and human perception. ese criteria rely on prior results on the accuracy of 

interpreting numerical information depending on what retinal variable is used to encode 

the data (such as position, size, or angle) (Cleveland and McGill 1984). While many 

visualization systems offer some ability to reuse commands on new visualizations, which 

can help maintain consistency in encodings across related visualizations, more focused 

support for creating an effective set of visualizations for presentation is lacking. Later in 

this chapter, we expand the canonical approach to automated presentation to integrate 
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sequence considerations by extending the expressiveness and effectiveness criteria to 

encompass visualization sets. 

                                      
Figure IV-II: "Show Me" dialogue provides example views for a user to choose from. 

A more recent addition to the literature on automatically creating and evaluating 

the effectiveness of a visualization is a “visual embedding” model (Demiralp et al. 2014). 

ese are functions from data points to a space of visual primitives that measurably 

preserve data structure in the perceptual mapping. Structure is preserved when pairwise 

distances between data points are preserved in the visual mapping. In either case, the end 

result is a visualization designed to support accurate communication of data and 

comparisons between data values within the visualization. In proposing a sequence 

support algorithm that can be integrated with the canonical APT approach, we rely on 

pairwise comparisons between data values within a single graphic similarly to the visual 

embeddings approach as a way to model the local consequences of globally (or sequence) 

motivated changes to the design of a data graphic. 
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Our work is also relevant to graph-based approaches that make it possible to 

transfer prior actions used in creating visualizations to automatically generate new 

visualizations during the same session (e.g., Scheidegger et al. 2007, Bavoli et al. 2005, 

Jankun-Kelly et al. 2007). ese approaches focus on comparing representations of 

different graphics that results from iterative processes (or pipeline). By modeling pipelines 

as directed graphs where nodes represent particular visualization states, it is possible to 

compute the difference between two analogous visualizations (such as those that share 

many features but a few differences), and then apply the difference operation to a third 

visualization with similar properties to one of the original visualizations (Scheidegger et 

al. 2007). Our approach similarly relies on difference operations applied to pairs of 

visualization specifications that represent unique visualization states created during a use

session. However, we are interested not in learning how a difference operation can be 

applied to a new visualization to save time, but instead how more effective narrative 

visualization presentations can be created given support for modeling effectiveness at the 

level of a set of visualizations. 

Study: Patterns in Narrative Visualization Sequence  

MOTIVATING SCENARIO  

Many of the notable narrative visualizations pointed to by researchers are created by 

professional designers who draw on advanced training in journalism, graphic design, 

statistics, and other relevant fields to create compelling presentation (e.g., Hullman and 

Diakopoulos 2011, Segel and Heer 2010). Yet in numerous scenarios, non-designers create 

presentations from visualized data for the purpose of communicating a narrative of 

interest to a stakeholder or group. A marketing analyst or other data consultant may 

present clients with data presentations that describe the state of the market for a product, 

or the results of a change made to the client business strategy, product, or website. In 

many such cases, these individuals must first make sense of data themselves to distil
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important points for a presentation, capture these points in data representations like 

visualizations, and then sequence these representations in a linear presentation. In this 

chapter, we consider the latter stage in this process, namely the act of sequencing selected 

visualizations. When the creator lacks design training, this can be a time-consuming trial-

and-error process. 

We argue that analysts using narrated data presentations could be helped by tools 

for identifying effective sequences for visualizations. Considering alternative paths 

through a set of visualizations is likely to enable a more compelling final artifac based on 

the importance of design alternatives in creation (Kolodner and Wills 1993, Dow et al. 

2011). In the following section we describe an analysis of professional narrative 

visualizations that we used in order to identify what makes a good sequence. Our 

observations inform an algorithmic approach to identifying sequences introduced later in 

this chapter. 

QUALITATIVE ANALYSIS 

To inform the design of a tool that suggests good story structures with insights on 

the strategies of professional designers, we conducted a qualitative analysis of the 

structural aspects of 42 examples of explicitly-guided (i.e., unambiguously linearly 

ordered) professional narrative visualizations. e study poses several questions about 

sequencing in professional narrative visualization presentations:  

• What types of changes (transition types) drive between-visualization transitions in 

linear narrative visualizations? 

• Are there general characteristics that are shared among the common types of 

transitions?  

• How do strategies for local (visualization-to-visualization) transitions compare to 

global transitions (patterns involving multiple local transitions)?    
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STUDY DESIGN 

Forty-two visualization-based stories were compiled, starting from visualizations 

in an independently-curated sample of New York Times and Guardian interactives (Rooze 

2011). ese were supplemented with examples from visualization blogs and repositories 

(e.g., visualizing.org) and other well-known news sources (e.g., BBC) that are looked to as 

sources for high quality visualization presentations.  We included only visualizations with 

non-ambiguous sequencing cues like numbered slides or steps, a “Next,” “→,” or 

“Continue” button, or a “Play” button for a self-running video or slideshow. In other 

words, we looked for visualizations where these features occurred the presence of 

additional navigational choices. While interactive slideshows intended for online 

presentation formed the largest format in our sample (23/42), other presentation formats 

included animated data videos (7/42), animated interactive timelines (6/42), live narrated 

visualization presentations (1/42), and static slideshows archived online but originally 

intended for live presentation (5/42).  

While the individual “states” that comprise a visualization sequence is relatively 

unambiguous in a slideshow-style presentation, smooth animated narrative visualizations 

are more difficult to break down into their constituent visualization states. A visualization 

state has previously been defined as a set of parameters applied to data(Jankun-Kelly et al. 

2007) or the settings of interface widgets in a visualization environment along with the 

application content (Heer et al. 2008). We draw from these definitions to define 

“narrative visualization state” as an informationally-distinct visual representation in a 

presentation. Our definition of a state does not consider different portions of a single

static visualization to be unique states. ough static visualizations are likely to be 

processed sequentially (such as if labels suggest that users examine data in a particular 

order), coding these would require more arbitrary judgments on how to divide static 

graphs. While a slideshow composed of unique static slides typically divides into one story 

unit per slide, a single slide could represent multiple units if it contains animation within 
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single slides. Rather than counting the number of states in a smooth animation, our 

interest is in noting changes from one transition form to another. For instance, we are 

interested in when a series of chronological transitions showing population estimates for 

different time slices (possibly spanning many states) changes to another transition form. 

e time-based transition sequence might give way to a transition where the measure or 

measure changes to GDP per capita while time stays constant. 

Coding proceeded as follows: two coders first informally analyzed visualizatios in 

the set with a focus on those aspects of the presentations that suggested how consecutive 

states in a data story are prioritized or ordered. Over several iterations, various categories 

of state-to-state order emerged. A coding protocol that captured these aspects was created 

and discussed by both coders. Visual interaction strategies that appeared relevant to 

sequencing, such as animated transitions between states, were also noted. Ten 

visualizations were randomly drawn from the set and coded independently by both 

coders, and the protocol updated upon reconciliation of disagreements. e remaining 

visualizations were then coded independently. 

Additionally, we analyzed “global” structuring tactics spanning longer sequences 

of visualizations in a presentation. Coding first at the local level of visualizatio-to-

visualization transitions allowed us to work up to observations at a global presentational 

level in a final collaborative coding. is entailed reviewing the combinations of

transitions that occurred in each presentation to note patterns indicating global 

sequencing strategies. 
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Table IV-I: Transition types and sample prevalence. 

Category Transition Types Sample 

Frequency 

Total 

Dialogue Question & Answer (4/42) 16.7% 

Who, What, When, 

Where, Why, How 

(3/42) 

Temporal Simple chronological (28/42) 88.1% 

Reverse chronological (11/42) 

Future chronological (12/42) 

Causal Explicit Cause (7/42) 23.8% 

Alternative Reality (3/42) 

Spatial Spatial Proximity (10/42) 23.8% 

Hierarchical General to Specifi (28/42) 71.4% 

Specific to Genera (16/42) 

Comparison Dimension Walk (20/42) 64.3% 

MeasureWalk (19/42) 

 

DESIGN IMPLICATIONS 

Several insights that emerged from our analysis inform the design of an 

algorithmic approach that we describe below for identifying sequencing possibilities in 

narrative visualization. e first implication consists of a set oftransition types 

characterizing the difference between the data shown in one visualization and another 

that directly follows it (Table IV.I). A key aspect of the types we observed is that each 

represents a single change in one dimension of a data representation from one slide 

(visualization) to the next. As such, the types imply a data-dependent intention behind 

sequencing choices. Five primary categories of transition types that share this 

characteristic emerged from coding.  
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In Dialogue transitions, a question is explicitly posed in one state (such as a slide in 

an interactive slideshow or a frame in an animation), and is immediately followed by a 

visualization that answers that question. Temporal transitions are orderings of 

visualization states based on a time variable associated with the data in each (Figure 

IV.III). ese include standard chronology (forward progression through time) as well as 

moving from back in time from one visualization to the next (reverse chronological) or 

forward in time to a visualization that shows a future projection (e.g., future 

chronological).  
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Figure IV-III: Reverse chronological (temporal) transition sequence in "A Historic Shi" by the NYT. 
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In Causal transitions, one visualization state follows another to explicitly 

hypothesize a causal relationship. For example, a bar chart of voting likelihood by region 

could be followed by a bar chart of voting likelihood by income along with an explicit 

statement like “Income drives voting patterns.” Hierarchical transitions order visualization 

states based on the level of detail or degree of filtering of data they involv. Our definition

of this transition type encompasses existing definitions ofmore specific forms of

transitions that involve hierarchy that are noted in research on analytical visualization 

operations. We code visualization transitions in our sample as hierarchical transitions that 

resemble drill-down transitions as described by Segel and Heer (2010): presentations of a 

general theme followed by the viewer’s choice of specific instances of ths theme. However, 

the explicitly ordered examples we observed in our sample did not provide such as choice 

to the user. An example is a map of the world followed by a view of a map of a specific

location  (Figure IV.VI). Our definition of hierarchical transitions also includes view

transformations (defined asmovement of a camera through a virtual space by Heer and 

Roberston (2007)) like zooming, and filter transformations in which data elements are

added or removed from the display without changes to the underlying data schema. For 

example, we label as hierarchical a sequence of increasingly detailed visualizations (e.g., a 

choropleth map of the world with the mean GDP of continents indicated followed by the 

same map frame with the GDP of countries indicated). Our definition spans these

multiple prior transitions based on the observational perspective of our qualitative study, 

which considers the output visualization rather than the output visualization and the 

series of steps that created the visualization. 

In Comparison transitions, either the independent variable (i.e., dimension per 

database terminology, e.g., Agrawal et al. 1997) or the dependent variable (i.e., measure 

per database terminology, ibid.) is held constant while the other is changed. Again, our 

definition is applied somewhat broadly as our coding is basedon existing examples, 
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requiring inference of how designers’ conceive of independent and dependent variables in 

their data in some cases. A dimension walk can show how populations or another form of 

independent variable differs for a given outcome, as in Figure IV.IV in which a transition 

is made between a view of life expectancy at birth for males in a set of European countries 

to a view of life expectancy at birth for females in the same countries. A measure walk 

provides multiple perspectives on a single population or dimension by cycling through 

different outcome or dependent variables (Figure IV.V). Spatial transitions are a subset of 

comparison transitions where the same dependent variable is shown for different spatial 

areas in sequence. Table IV.I lists transition types and the sample frequency.  
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Figure IV-IV: Dimension walk (a comparison transition) in "Europe by the Numbers" by the Guardian. 
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Figure IV-V: Measure walk (a comparison transition) in "Europe by the Numbers" by the Guardian. 

ese transition types can be distinguished based on whether they require an 

explicit interpretation of the data applied by the creator (which we refer to as explicit 

transition types), or are inferable from the data attributes themselves using conventions 

based on data types or graphical formats (which we refer to as implicit transition types). 

For example, Question & Answer transitions require that a creator has a priori classified

visualization states by what question(s) each answers, and Causal transitions similarly 

require creator input on what variables or patterns are causal within and across 
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visualizations in the set. Chronological transitions, on the other hand, could be labeled 

automatically given simple matching of data variables against common temporal formats 

and sorting. Similarly, visualizations of data with explicitly linked hierarchies between 

data in two views (e.g., filter operations)or with spatial coordinates could be labeled 

automatically for Hierarchical and Spatial transitions, respectively. We propose that 

comparison transitions can be inferred either by relying on conventions in existing 

systems for distinguishing dimensions from measures based on data type (e.g., Stolte et al. 

2002), or by using conventions of the graphical format to infer which variable is the 

independent dimension and which is the dependent measure (e.g., the x-axis of a 

scatterplot is typically reserved for an independent variable (dimension); the color or 

graduated symbol size of a choropleth map is typically reserved for the dependent 

measure). We focus on implicit types in the sequencing approach that we outline as these 

types can be inferred more easily to enable an automated approach.  

Another finding describes highe-level or global strategies for sequencing 

visualizations. We noted that designers occasionally repeated a pattern comprised of two 

or more transition types as defined inTable IV.I, as if to lend consistency to the 

presentation’s structure as well as to equate different parts of a presentation. We refer to 

this occurrence as transition parallelism based on its resemblance to linguistic parallelism, 

in which a syntactic structure is repeated in a text, oen to equate the importance of two 

concepts or statements (Corbett and Connors 1998). is characteristic might be 

alternatively referred to as “sequence compressibility,” to capture the “chunking” effect it 

achieves through encoding several transitions as singular units in a higher-level structure. 

An example of transition parallelism occurs in the NYT interactive “Copenhagen: 

Emissions, Treaties, and Impacts,” in which three possible climate futures of water stress, 

flooding, and crop reduction are each invesigated. e three possible effects are 

combined via a measure walk. At a local level, the slides for each climate effect include a 
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general-to-specific transition from a global colo-coded map to a specific affected region,

followed by a reverse-chronological transition to an image that represents a past symptom 

of the region’s vulnerability along with a comment on likely future effects for the region 

(Figure IV.VI). We explore the impact of parallelism on user ratings and comprehension 

of visualization narratives in a finalstudy presented below. 

 
Figure IV-VI: Diagram of NYT's "Copenhagen: Emissions, Treaties, and Impacts" showing parallelism. 

e insights that 1) local transitions are frequently based on a small number of 

changes to data dimensions and 2) parallelism of sequence patterns is used at a global 

(multiple sequence) level leads to a general observation that maintaining consistency 

across transitions is an important principle in structuring visualization storytelling. We 

define maintaining consistency as a goal to minimize changes to the data schema in

transitioning from one visualization to the next. In many of the transitions we observed, 

multiple dimensions of a visualization (including both data dimensions like independent 

or dependent variables, as well as chart format) were held constant across two or more 

multiple states, such that a limited amount of information changed at a time in transition 

from one visualization to the next. For example, rather than transitioning to a bubble 

chart of the GDP of North African countries in 2000 to a bubble chart of the GDP per 
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capita of the same countries in 2010, designers tended to choose one dimension (such as 

time) and maintain the others (independent variable, dependent variable, etc.). When 

multiple aspects of a representation did occur between consecutive states, slide shows that 

included animation oen used animated transitions, a technique for easing the 

comprehensibility of transitions (Heer and Robertson 2007). We hypothesize that 

maintaining consistency through gradual changes between consecutive visualizations in 

narrative presentations enables comparisons between slides, helping to balance the 

necessary “jumps” or juxtapositions that must occur in order for the story to proceed. A 

series of nearly identical visualizations may be perceived as boring, but the introduction of 

new unknowns must proceed slowly enough that the user can comprehend the sequence 

and does not become cognitively overloaded. Considering psychological theories of 

narrative understanding, maintaining a certain amount of consistency between states is 

likely to make it easier for users to generate the explanations that tie the patterns 

represented by visualizations into a coherent story.  

An Algorithmic Approach to Visualization Sequence 
Support  

Drawing on the insights from our above analysis, we propose a graph-driven approach to 

findingeffective sequences for narrative visualizations. e goal of this approach is to help 

designers find effective presentation orders for visualizations, such as those that reduce

the amount of conceptual change between one visualization and the next (for example, the 

transition in Figure IV.VII, which depicts two economic periods that are closer in time 

and which are depicted with common axes ranges, to the transition in Figure IV.VIII, in 

which the time difference between the economic periods is larger and the axes ranges are 

different). 

 We begin by assuming a simple narrative visualization creation model, in which 

the visualization creator generates the desired single visualizations with an existing system 
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(e.g., Microso Excel, IBM’s Many Eyes, etc.) and the sequence support tool is used as an 

extension to one of these tools to aid in the design of the presentation sequence. Later in 

this chapter, we discuss additional considerations required given a more complex 

narrative visualization design process using a tool that support automated suggestion of 

the best locally optimized graphic (e.g., Tableau). e described below approach specifies

a format for representing different visualization states as nodes in a graph so as to allow an 

algorithm to compare nodes and label potential transitions using the types outlined above. 

Inputs and stages are shown in Figure IV.IX. An objective function based on the principle 

of maintaining consistency is then used to apply weights to edges (transitions) in the 

graph to allow assessment of the quality of transitions at the local level. We consider the 

potential for further prioritizing of some sequence types over others, and for supporting 

user input in the form of desired data comparisons that are used to help prioritize some 

sequences over others.  
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Figure IV-VII: Transition between depiction of latest recession (top) and economic boom on the 1990s 
(bottom). Note consistency in axes ranges. 
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Figure IV-VIII: Transition between depiction of latest recession (top) and Great Depression (bottom). 
Note change of axes ranges. 

 

 
Figure IV-IX: Diagram of graph-based approach in which visualizations represent nodes. Edges 
(possible transitions) are labeled by type and weighted using a cost function and type weightings 
(denoted by * symbols) corresponding to user preferences 

DEFINING DATA ATTRIBUTES FOR TRANSITION LABELING 

We observed a “single change” basis to the explicit transition types in our study. 

is led us to believe that if we were to identify the set of important data-based attributes 

along which change tends to occur in visualization-to-visualization transitions, we could 

infer transitions by comparing pairs of visualizations based on how their attribute values 

differ. For example the two le-most visualizations in the diagram in Figure IV.IX show 

SAT scores received in 2010 by males and females, respectively. In this case, the 

visualizations might be created by applying a filter to the underlying variables of SAT
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scores based on a second gender variable. A system could be designed to recognize and 

label this type of relationship as a dimension walk, as the two views show data for the 

same measure but for mutually-exclusive populations.  

is aspect of our approach resembles models that describe transformations that 

occur in pipelines (functions used in visualization creation) (Bavoli et al. 2005, Jankun-

Kelly et al. 2007) including as directed graphs that can be compared to semi-automatically 

create new visualizations (Scheidegger et al. 2007). Yet our focus on narrative 

visualizations differs from a focus on visualizations generated through user-controlled 

transforms in an analysis setting. While prior work has modeled the conceptual flow of

data between pipeline actions from a system perspective, our interest is primarily in user 

reactions to conceptual change over transitions. 

ese include a dependent (or outcome) variable, an independent variable, a time 

variable, and a set of hierarchical relations within or between data variables. Attribute 

values are defined using data haracteristics such as variable types or system-defined

labels and information on the data-to-visualization mapping. Hierarchical relations can be 

encoded through common hierarchies implied in a data type, such as the Roman calendar 

system; in hierarchical dependencies between several nominal variables such as a variable 

for car maker (e.g., Ford) and a related variable for car model (e.g., Focus); or by applying 

filters applied to a given variable to create subsets. Filtering can also occur by applying

operations to the visual view only (e.g., zooming) so that only a subset of data is visible. 

Time variables are oen recognizable independent of the representation, such as through 

date-time formatting applied to given variables in a data set. Additionally, for some plots, 

dependent and independent variable attributes can be inferred through their mappings to 

particular positional and retinal visual variables in a given visualization type. In common 

2D visualizations like bar charts and scatterplots, the vertical positioning of a data point 

oen corresponds to the dependent variable and the horizontal to the independent 

variable.  



102 

By characterizing each graph node (visualization state) using the four attributes 

(independent variable, dependent variable, time, and hierarchical level), it becomes 

possible for a graph-based algorithm to label potential edges (transitions) between nodes 

as Temporal, Comparative, or Hierarchical transitions (as well as subsets of these types) by 

looking for simple relationships between pairs of states. e specific comparison

transitions of a measure walk and a dimension walk represent changes in a dependent (or 

outcome) variable and an independent variable, respectively. Temporal transitions involve 

changes in a time dimension of data, while hierarchical changes involve steps between 

different levels in a data-defined hierarchy, or can be achieved by filterin 

Table IV-II: Data representation, associated transition types, and relation to common 
visualization interactions as described in Heer and Shneiderman (2012) and realized in 
ggplot2. 

Representation Transition 

Types 

Relevant Interactions  ggplot2 Realization 

Dependent 
variable 

Comparative  
– Measure 
walk 

Sort, Derive, Navigate 
(Distortion), Coordinate (small 
multiples) 

Data variable, Stat (e.g., 
logarithm), Facet (e.g., small 
multiples showing related 
metrics) 

Independent 
variable 

Comparative  
– Dimension 
walk 

Filter (independent variable, 
such as with query widget), 
Navigate (scroll, pan), 
Coordinate (small multiples) 

Data variable, Data filter (e.g.,
one group at a time), Facet (e.g., 
small multiples by group 
variable) 

Time Temporal  Filter (direct selection, slider), 
Coordinate (small multiples) 

Data variable, Data filter(e.g., 
filter data frame by subset of year
variable), Facet (e.g., small 
multiples by year) 

Hierarchical 
relation 

Hierarchical Filter (direct selection, query 
widget, slider), Navigate 
(overview & detail, zoom, 
semantic zoom), Derive 
(aggregate) 

Data variable, Data filter (e.g.,
show aggregate then filter to one
group), Stat (e.g., expand width 
of histogram bins), Scale (e.g., 
show smaller scale) 

 

Table IV.II relates this schema to common interactive dynamics in visual analytics 

as defined byHeer and Shneiderman (2012). For example, a measure walk could be 

realized in two states where the second represents a sorting or derivation of the first, such
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as going from a standard birth rate to a normalized rate, or the second is achieved through 

a distortion navigation or view coordination (faceting to creating small multiples 

displaying related dependent variables for a data group). Table 5.2 also describes the 

schema using a standardized data representation - that of the R package ggplot2 

(Wickham and Wickham 2007) which is based on Wilkinson et al.’s (1999) Grammar of 

Graphics system for visualization characterization. Below, we discuss several specific

schemes for integrating such as an algorithm into visualization soware with local 

optimization support. 

OBJECTIVE FUNCTION: MAINTAINING CONSISTENCY 

Taking a graph-based approach in which edges (transitions) between visualization 

states (nodes) are inferred by comparing relevant data attributes between the nodes makes 

it possible to identify possible local (visualization-to-visualization) sequences in a set of 

visualization states. Yet, without a means of prioritizing transitions, the approach is likely 

to identify a very large number of transitions even for a relatively small set of 

visualizations. For example, labelling possible transitions in a set of just 10 visualization 

states with up the 4 data inferable transition types results in up to 360 labels for 90 

transitions. We thus sought a means of filtering the set of possible transitions between

visualization sets by relying on edge weighting via an objective cost function.  

MAINTAINING CONSISTENCY 

Based on our observation of maintaining consistency as an apparent principle 

used by professional designs, we define an objective function oftransformation cost that 

assigns a cost to each possible edge (transition) between two nodes (visualizations states) 

in the graph. e cost function captures the amount of difference between the attribute 

values of each visualization node, where difference is measured by the number of changes 

required to transform the second visualization node into the first visualiztion node. e 

more transformations it takes to convert a first visualization to a second, the harder we
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expect that it will be for users to infer a connection between the two. is could make 

comparing the visualizations in a meaningful way more difficult, consistent with research 

in preserving mental models across transitions (Heer et al. 2007). We examine this 

assumption about transformation cost in the firstuser study below.  

As a general formulation, transformation cost is the total number of changes to the 

independent variable, dependent variable, time, and level of hierarchy required to 

transform a first visualization to a second visualization in a stat-to-state transition 

irrespective of the type of transition. For example, if we consider two bar charts shown in 

Figure IV.IX, one depicting male SAT scores by test in 2010 and one showing female SAT 

scores by test in 2009, we assign a transformation cost of 2 representing a transformation 

of the male independent variable to the female and a transformation of the temporal 

variable from 2010 to 2009 (a reverse chronological transition). If the female bar chart 

instead showed TOEFL scores, a cost of 3 would results based on the additional measure 

transition. To standardize the unit of change that equates to a transformation cost of “1” 

along any single dimension, we suggest that transformation cost should be calculated 

relative to the full set of parameters describing each visualization rather than in absolutes. 

For example, the time stamps associated with data for some visualizations might differ in 

10 year increments. If the earliest time point is 30 years before the latest time point, but 

other data sets are only 10 years apart in time, then one might map a transformation cost 

of “1” to a 10 year difference in time, and higher cost to a 30 year difference. We control 

for such within-dimension differences in cost unit in our studies below, and discuss 

possible elaborations in the Discussion section. 

Assigning a cost function aer labelling all possible state-to-state transitions 

enables filtering to a smaller set of potentially simple transitions. is filtered set might

be presented to a user in an interface for supporting end-user sequencing of narrative 

visualizations.  
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PRIORITIZING TRANSITION TYPES 

In identifying possible transitions, the transformation cost function treats 

transition types as equally effective. But do audiences of narrative visualizations regard 

two visualization states representing a measure walk transition equally to two 

visualizations representing a temporal transition? e visual information analysis mantra 

(Shneiderman 1996) suggests that general-to-specific transitions are preferable, but this

has not been empirically evaluated, and other questions remain. Systematic preferences 

for some transitions over others could be incorporated into the above approach using type 

weightings. We examine user perceptions of local transitions types in the first user study

below. 

USER INPUT  

One of the characteristic features of narrative visualizations is that design 

decisions tend to be driven by storytelling goals, rather than the more traditional design 

goal of “letting the data speak” (Tue 1983). Based on decision science literature that 

frames story interpretation as a constructive process in which aspects of the information 

sequence directly affect the meaning constructed by a receiver (Pennington and Hastie 

1992, Wilensky 1980), we propose an optional user input model based on desired 

comparisons. According to this model, visualization creators with clear a priori 

storytelling goals specify these goals in the form of a set of ranked comparisons between 

data variables that help convey their intended messages. For example, a visualization 

creator may wish to highlight a temporal increase in a particular measure, like 

unemployment, in telling a story about the consequences of a change to leadership in a 

certain location. e graph-based algorithm we propose would apply these constraints by 

checking that either single visualizations support the desired comparisons, and if not, that 

visualizations containing the variables specified as a desred comparison be consecutively 

sequenced to support that comparison (such as a visualization depicting ‘Unemployment 



106 

by county in 1989’ appearing directly before a visualization depicting ‘Unemployment by 

county in 1990’).   

AUTOMATIC GLOBAL SEQUENCING  

A final remaining question is how an approach described above can infer global

sequences in a set of visualizations that are likely to result in effective linear narrative 

visualization presentations. For example, how might a tool identify sequences that make 

use of parallelism, and what information should be used to determine whether a 

particular form of parallelism is appropriate? We address this remaining question through 

a second user study. 

Validation Studies: User Perceptions of Sequences 

We use a large two-part study on Amazon’s Mechanical Turk (MTurk) to ask two 

questions about local transitions: 

1. How do users react to the level of consistency between two consecutive 

visualizations in a presentation?  

2. Do users show systematic preferences for temporal, comparative and hierarchy 

transitions when multiple possible transitions are possible from the same initial 

visualization? 

With regard to 1, we specifically examine how users respond to thetransition cost 

of a visualization transition independent of its type. We vary transformation cost between 

two candidate transitions to examine how users’ choices are affected by cost (referred to 

below as Cost Varying trials). To answer question 2, we control cost in the second half of 

our study, and examine how choices are affected by type (referred to as Cost Constant 

trials).    

Our hypotheses are as follows: 
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H1: Users will consistently prefer lower cost transitions to higher cost transitions, 

regardless of transition type. 

H2: Users will consistently prefer dimension, temporal, and hierarchical transitions 

over measure transitions, based on the greater conceptual distance between visualizations 

showing two different dependent variables. 

DATA AND STIMULI 

A data set describing characteristics of 3109 U.S. counties across 48 contiguous states was 

obtained by combining 2010 Census Bureau data with 2012 presidential election data 

made available by the Guardian Data Blog. is set was supplemented by historical census 

data dating back to 1790, election-themed data from polls conducted earlier in 2012, and 

election results from 2008. A set of 74 visualizations was created using the R ggplot2 

package, across common chart types like bar charts, line charts, density histograms, 

country (U.S.) and state maps, scatterplots, and bubble charts.  

Our goal was to create sets of three visualization stimuli of the same type (e.g., 

map), where two visualizations represent two possible transitions relative to an initial 

visualization. We use these stimuli in a Mechanical Turk human intelligence task (HIT) 

that presents users with the initial visualization (labeled Graph 1) and asks that they 

choose between the other two visualizations (labeled Graph 2a and Graph 2b) as possible 

following states in a data presentation: “Which of the two graphs is better to appear 

directly aer Graph 1 in the presentation?” (Figure IV-X). e two visualizations to be 

chosen within each set of three included either 1) alternatives of two different costs when 

considered with respect to the first visualization (“Cost Varying” HITs), or 2) alternatives

of two different types but with cost held constant (Cost Constant HITs).  
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Figure IV-X: Experimental task presenting subjects with an initial visualization (le) and asking that 
they choose the better visualization to follow the first in a data presentation 

 Cost Varying trials: e Cost Varying HITs varied the cost of the two 

visualizations presented as options to follow Graph 1. Fieen of the 18 Cost Varying HITs 

included one visualization with a transition of cost “1” (for example, a change in the 

region shown only) and the other visualization with a cost of “2” relative to the first

visualization (for example, a change in the region and the measure shown). ree HITs 

included a visualization of cost “1” and a visualization of cost “3” relative to the first

visualization (for example, a change in the region, the measure, and the time period). We 

included these higher cost alternatives to include cases where one visualization was 

markedly different from the first and might represent a surprising transition. All

alternatives were balanced over the 4 transition types of temporal, dimension walk, 

measure walk, and hierarchical.  

Cost Constant trials: In 17 Cost Constant HITs, we tested four transition types: 

temporal (chronological, reverse chronological), comparative dimension walk, 

comparative measure walk, and hierarchical transitions (general-to-specific or specif-to-

general). ese transitions have a transition cost of 1 for the single dimension along which 

the change occurs. We chose these four types because they are implicitly conveyed by data 
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characteristics, rather than requiring creator input. To reduce the number of factors in this 

initial study, we do not distinguish subtypes of temporal and hierarchical transitions (e.g., 

reverse chronology), nor are Spatial transitions distinguished as a subset of Dimension 

transitions. However, we maintained separate variables for the comparative types of 

dimension and measure walks. Both of these types compare one view of data to another 

that is equal in the time period and the level of the hierarchy or resolution (e.g., country-

level data), but may display a large conceptual difference based on the strong human 

tendency to distinguish between causal and outcome components of phenomena 

(Diaconis 2006). 

In both Cost Varying and Cost Constant HITs we used the same syntax and chart 

format with a set of visualizations of a given type (e.g., same color and shape) unless 

changes were necessitated by the chart format (e.g., shape changes for different countries 

in a map). 

EXPERIMENTAL PROCEDURE 

e “Cost Varying” and “Cost Constant” HITs were launched as a combined series of 35 

HITs with a $0.10 reward. Each HIT began with an intro page describing that the worker 

would be presented with a data visualization and asked to decide which of two additional 

visualizations should follow the first in a data presentation (slideshow). It was stressed in

the initial description and on the later “choice” page that the subject should not consider 

the quality of the individual visualizations in her choice. Additionally, it was explained 

that the subject would start the task with an additional bonus reward of $0.15. If the 

subject’s choice of visualization matched the visualization chosen by the majority of other 

workers who saw the same stimuli set, the subject would retain the full $0.15; otherwise, 

they would lose the $0.15 bonus. is “punishment agreement” incentivization technique 

has been shown to produce significantly hiher quality responses on MTurk (Shaw et al. 

2011). 
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Upon consenting to participate, a subject was required to correctly answer a 

question about the goal of the task. She was then presented with the 3 graphs labeled “1”, 

“2a”, and “2b” (see Figure IV.X). Aer answering two “information extraction” questions 

which we required to verify that the subject paid attention, she was asked a multiple 

choice question, “Which of the two graphs is better to appear directly aer Graph 1 in the 

presentation?” with “Graph 2a” and “Graph 2b” as the only choices. 

RESULTS 

143 total workers completed the 875 HITs (trials) in the study, taking an average of 

118 seconds per trial. We omitted 179 (20.4%) of the 875 trials where subjects answered at 

least one of the information extraction questions incorrectly, leaving 696 observations. We 

insured 1) that randomization of HIT order in the sequence and presentation order of the 

2a and 2b visualizations in any single HIT was successful; and 2) that there were no 

significant differences in the time taken by subjects to complete thetask based on whether 

transformation cost varied or not (M: 114.6 s vs. 121.3, t=-1.56, p=0.12). 

Effects of transition consistency (transformation cost): We first examined question 1,

whether a lower transformation cost between the two visualizations in a sequence resulted 

in a preference for that sequence over higher cost alternatives. Table IV.III, le, displays 

the results of a multinomial logit models run with the R package mlogit, which enabled us 

to compare the costs to one another while accounting for the fact that a participant could 

complete multiple trials. “Transition choice” (a binary variable indicating whether a 

visualization transition represented by Graph 2a or 2b was chosen) is regressed on 

transformation cost of “1,” “2,” and “3” to distinguish whether effects differ by cost levels. 

Omitted from the results is a dummy variable called “present” included to account for the 

constrained set of cost alternatives available in a trial. e reported models in Table IV.III 

differ only in which cost is set to the baseline category. Results indicate that while 

participants are much less likely to choose a higher cost transition relative to a transition 
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with a cost of “1,” there is no observable difference in a participant’s likelihood to prefer a 

transition with a cost of “2” to one with a cost of “3.” e order in which the visualization 

appeared in the choice (#1 or #2) is included as a predictor.  

Table IV-III: Results of a multinomial logit regressing “chosen” transition on transition cost and an 
order indicator (le); three multinomial logits regressing "chosen" transition on transition types 
(spanning pairwise comparisons) 

 

Effects of transition types: We next considered whether participants displayed 

equivalent levels of preference for temporal, comparative, or hierarchical-based transitions 

when cost was held constant. Table IV.III reports the results of three multinomial logit 

models run on Cost-Constant trials. ese models were run identically to the Cost-

Varying models, except that the covariate of interest was transition type rather than cost, 

and again only the baseline category to be compared against differs across the three 

models.  

Our interest is in whether preferences for one type over another can be observed, 

as this would be useful in a sequence support tool for suggesting transitions. Interpreting 

the results for each type with reference to the baseline transition comparison allows us to 

assess relative preferences for transition types. We find that a temporal transition is

preferred over hierarchical, dimension, or measure transitions (all p<0.01). Both 

dimension and measure transitions are preferred over hierarchical transitions as well 

(both p<0.01). No preferences exist between a dimension and measure transition. Results 
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can be summarized as follows (“>” indicates that the type to the le was preferred over the 

type to the right, and “|” represents no preference):  

                    Temporal > (Dimension | Measure) > Hierarchical 

We also observed an order effect based on whether a visualization was in the first

or second position from le in the layout. Hence, contextual factors (such as bias toward 

the last visualizations seen) may influence interactions with narrative visualizations. 

Global Sequencing: Impacts of Parallel Presentation 
Structure 

Our qualitative study suggested the global strategy of parallelism, or repetition of 

certain local level transition sequences within a visualization presentation. Here, we use a 

between-subjects study to ask: Does using parallelism in a global sequence beneft 

presentation audience members, in the types of patterns that are understood and/or 

ability to remember a visualization story? is provides information with which we can 

evaluate whether global strategy effectiveness can be modelled simply by summing local 

transition costs, or whether additional objective functions for global sequencing are 

required. 

DATA AND STIMULI 

e primary difference between the prior study and this one is that participants in 

this experiment are shown an entire presentation, rather than only one transition (e.g., 

two visualizations) at a time. We begin with a set of visualizations that displays the 

following characteristics, which we expect to be common in many presentations: the set 

includes data on two (or more) high level concepts or “groupings,” with each grouping 

being associated with multiple visualizations in the set, and each visualization in one 

grouping having a counterpart visualization in the other grouping which differs only 

based on the grouping dimension. In our study the grouping dimensions is time period 

(1900 and 2010), but other examples might be presidential candidates (e.g., Obama 
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election results by region versus Romney election results by region), or even two levels 

within a hierarchal dataset (e.g., various labor statistics by continent and by city). We kept 

format the same across all visualizations (using bubble charts) to allow us to examine 

sequence effects in a controlled setting. e visualizations we use are all bubble chart 

visualizations that display fertilizer usage by state for three spatial regions: the full U.S., 

the Eastern U.S., and the Western U.S. time periods. e visualizations are alike except 

that the 1900 charts display 1900 population data from our Census data set (relabeled as 

Fertilizer Usage to prevent strong effects of prior knowledge in the task) using blue circles 

and the 2010 charts display 2010 population data using green circles. In each chart, the 

size of the bubble and the position along the y-axis (the only labeled axis) are both set to a 

scaled version of the population statistic for that state in either 1900 or 2010. 

We examine two main forms of parallelism described in the Design Implications 

section above, and depicted through examples in Figure IV.IV and Figure IV.V: a 

dimension walk and a measure walk strategy, plus several variants derived from these 

which deviate from the perfect repetition of local transition patterns of the first two. e

measure walk strategy, which w  

  e refer to as a between-group sequence, interleaves visualizations from the two 

groups such that a measure for one group always appears directly before the same 

measure for the other group. A dimension walk strategy, which we refer to as a within-

group sequence, keeps the visualizations corresponding to each high-level group in 

consecutive sequence (e.g., three 1900 visualizations followed by three 2010 

visualizations). Our expectation is that the between-group sequence will support 

comparisons between the two groups for each measure. On the other hand, the within-

group visualizations will support comparisons between measures within each higher level 

group. Noting that these sequence types both include one or more transitions with costs 

greater than one, we also include several variants of the between- and within-group 
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strategies, but where the sequences were revised to potentially enable additional 

comparisons and reduce the overall costs associated with the sequence. However, this 

requires breaking the “perfect” parallelism of the first two sequence (Figure IV.XI). 

         Our hypotheses are as follows: 

H1: Non-reverse treatments (between and within-group sequences) will be rated as 

more understandable and less difficult to explain than reverse treatments. 

H2: Performance on between- and within-group comparison questions will differ by 

treatment. 

H2a: Subjects who see between-group sequences will perform better on average on 

between-group questions. 

H2b: Subjects who see within-group sequences will perform better on average on 

within-group questions. 

H3: No differences for treatment will be found for accuracy on the null comparison 

questions. 

H4: Memory will be better for non-reversed sequence treatments. 

We note that confirming H1 and H4 would suggest that computing global cost by

summing local transition costs is not optimal. is is because the within-reverse and 

between-reverse treatments have lower costs than the non-reverse treatments when global 

cost is computed as the sum of local costs. Instead, another objective function(s) to 

capture global sequence preferences may be needed. 

EXPERIMENTAL PROCEDURE 

82 Master’s students from a large university were recruited and given an $8 

Amazon gi card for participating. An initial screen described that participants would 

view a presentation of data visualizations that was designed to communicate a story about 

the data, and would be asked several questions about the content. Aer answering a 

multiple-choice question that ensured understanding of the task goal, the participant 
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viewed a self-advancing presentation of the six visualizations corresponding to one of the 

four treatments. Each visualization was shown for 8 seconds before the page advanced. 

Hints that remained visible during the presentation explained the presentation format and 

prompted participants to pay attention to how the data in each visualization changed from 

state to state.  

Aer viewing the presentation, the participant answered a question to verify he or 

she paid attention to graph labels, and provided a free-text explanation of why he or she 

thought the visualizations appeared in the order they did. e participant provided 7 

point Likert ratings in response two questions: “How easy was it to come up with a reason 

for why the visualizations were put in the order they appeared in?” and “Assuming the 

presentation is designed to communicate a story about the data, how easy is it to 

understand the presentation?” e participant was then given a second, unannounced 

opportunity to watch the timed presentation, followed by a page that presented eight 

True/False questions. Each question asked about a trend that was apparent only in 

comparing two of the 6 visualizations to one another, which may or may not have 

appeared consecutively in the sequence. While 15 total visualization-to-visualization 

comparisons were possible within the group of six visualizations, we focused on a set of 

eight comparisons that included three within-group comparisons (e.g., Eastern U.S. vs. 

Western U.S. in 1900), three between-group comparisons (e.g., Eastern U.S. 1900 vs. 

Western U.S. in 2010), and two “null” comparisons, which asked about a trend between 

two visualizations that did not appear in consecutive order in any of the treatment 

sequences. 
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Figure IV-XI: Global sequences to support different hypothesized comparisons between consecutive 
visualizations (depicted with dotted lines). 

RESULTS 

82 subjects completed the task, averaging 711 seconds. Removing data from subjects who 

incorrectly answered the verification question le data from 73 subjects for analysis. We

first checked whether atings on the difficulty in explaining a visualization and how 

understandable the presentation was differed based on whether the sequence exhibited 

“perfect” parallelism (e.g., was not a reverse sequence treatment). Regarding H1, ratings 

for the difficulty of explaining the presentation higher for reverse treatments (M: 

reverse=4.79, non-reverse=4.03), yet this difference was not significant t=-1.85, p=0.06). 

Ratings for the understandability of the presentation did not significantly differ M: 

reverse=4.12, non-reverse=4.56; df=67, t=-1.25, p=0.21).  

We next examined whether accuracy on the between, within, and null comparison 

questions differed based on sequence type. While accuracy on the between-group 

questions was better among subjects who saw a between-group sequence (including 

reversed) (M: 0.92 vs. 0.86) and accuracy on within-group questions was higher for 

subjects who saw a within group sequence (including reverse) (M: 0.87 vs. 0.84), t-tests for 

between and within question accuracy indicated no significant differences by treatment

(df=69, t=1.58, p=0.12 for accuracy on between group questions, df=70, t=-0.57, p=0.57 

for accuracy on within group questions). As H3 expects, no treatment-based differences 

existed for accuracy on null comparisons (comparing pooled between-group treatments 
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with pooled within-group treatments; df=70, t=-0.26, p=0.80 comparing pooled between 

and pooled within treatments).  

Finally, we calculated total error for the memory task by summing the number of 

visualizations (out of six) that were incorrectly sequenced in the memory task. H4 

predicts that memory for the original presentation sequence will be better if the sequence 

uses “perfect” (non-reverse) parallelism. Results confirmed the difference. An ANOVA

indicated significant differences between individual treatments (F(3,69)=5.59,p=0.002). 

TukeyHSD tests comparing the four individual treatments identified significantly bette

memory for the original sequence in the between-group treatment compared to either the 

between-group reverse or within-group reverse treatments (adjusted p=0.04 and p=0.007, 

respectively), as well as significantly better memory for the original sequence in the

within-group treatment compared to the within-group reverse treatment (adjusted 

p=0.02) and marginally better memory for within-group compared to the between-group 

reverse treatment (adjusted p=0.09). 

Integrating Sequence Support in Automated Presentation  

As discussed above, our proposed graph algorithm assumes a relative simple 

design scenario for narrative visualization presentations, in which visualizations are 

created a priori and the algorithm is used to suggest effective sequences, with optional 

user input capturing storytelling goals. We now discuss modification for integrating our 

algorithm into existing visualization systems that provide semi-automated local (singular) 

visualization design suggestions. is context calls for several new objective functions to 

negotiate potential conflicts between localized and global visualiation design 

optimization.  

In this section, we firs outline an APT-style generation algorithm that can be used 

to populate the space of possible visualization designs for each desired visualization. 

Pattern expressiveness is introduced as a measure for capturing the extent to which a 



118 

singular visualization design expresses possible pairwise comparisons between data 

points. A pattern effectiveness scores is calculated by applying a perceptual model to this 

measure. We expand upon the graph algorithm described above by outlining a specific

process for determining preferable sequences given a large space of possible singular 

designs.  

AUTOMATED PRESENTATION DESIGN SCENARIO 

We assume a visualization creator has obtained a multivariate dataset, which might 

include any mix of Boolean, nominal, ordinal, geographical, and quantitative variables. 

e creator also specifies n “input visualization list” of the data to be used to create 

visualizations in the presentation. Each item in this list (referred to as the visualization id, 

or vid) is itself a list of data variables that the creator wishes to combine in each single 

visualization, similar to the ranked lists of variable names used as input to Tableau’s Show 

Me feature (Mackinlay et al. 2007). An example of a visualization input list is shown in 

Figure IV.XII. While our prototype implementation supports data variable labels, the 

input visualization list could alternatively include lists of MySQL-style statements to 

support more sophisticated data subsetting. 
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Figure IV-XII: Example of an input visualization list. Each row is assigned a unique vid. 

A visualization generator uses this list to populate the space of possible 

visualization designs given each ranked list in the input list, relying on existing 

expressiveness and effectiveness rules (Mackinlay 1986). Each visualization design 

becomes a node in an undirected graph. Edges are created according to transition 

expressiveness constraints, and weighted using transition effectiveness criteria. Paths are 

then identifiedusing a greedy approach that also takes into account pattern effectiveness 

as a function to be maximized. 

We describe the components of the approach in more detail below, as they are 

used in a prototype implementation of the technique. 

SPECIFIC APPROACH 

VISUALIZATION DESIGN GENERATION 

For our prototype, we assume that each vid in the visualization input list contains 

three variables from the data set that the creator wishes to use to create a single 

visualization (e.g., latitude, longitude, GDP Per Capita 2010; GDP Per Capita 2010, 
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Unemployment Rate 2010, Percent Health Care Coverage 2010). e visualization design 

generator proceeds through this list, applying APT-style expressiveness and effectiveness 

criteria to assign the best 2D visualization format (mark type) to the first two variables in

the list. Our current implementation supports 2D mark types of choropleth and graduated 

symbol maps, bar graphs, and scatterplots. Additional expressiveness criteria are applied 

to identify the best retinal variable for visualizing the third variable specified for that

visualization. Our implementation supports qualitative color mappings, sequential color 

mappings, divergent color mappings, qualitative shape, and circular area. For example, if 

the specified data list for the visualization are the three quantitative variables of GDP Per

Capita 2010, Unemployment Rate 2010, and Percent Health Care Coverage 2010, the 

visualization design generator assigns a scatterplot with mappings to position along x- and 

y-axes as the best 2D mark type. According to graphical perception research, circular area 

is more accurate for conveying numerical data than is color. e visualization generator 

assigns circular area as the retinal variable to which the Percent Health Care Coverage 

2010 data is mapped. Alternative retinal variable mappings (such as sequential color 

mapping for the example) are also retained. Table IV.IV shows the mark type and retinal 

variable mappings supported by our expressiveness criteria.  
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Table IV-IV: Expressiveness criteria adapted from Mackinlay (1986). 

2D Var. 

Type 

2D Mark 

Type 

Var. 3 (Retinal) 

Type 

Retinal Var. 

Mapping 

Binning Levels 

Quant., 
Quant. 

Scatterplot Nominal, 
Boolean 

Qualitative 
color, symbol 
shape 

Given Given  

Quant. (!all x > 0) Diverging color Quantile, 
Equal Interval 

4-8 

Quant. (all x > 0) Sequential 
color, circular 
area 

Quantile, 
Equal Interval 

4-8 

Nominal, 
Quant. 

Bar Nominal, 
Boolean 

   

Quant. (!all x > 0) Diverging color Quantile, 
Equal Interval 

4-8 

Quant. (all x > 0) Sequential 
color 

Quantile, 
Equal Interval 

4-8 

Latitude, 
longitude 

Map Nominal, 
Boolean 

   

Quant. (!all x > 0) Diverging color Quantile, 
Equal Interval 

4-8 

Quant. (all x > 0) Sequential 
color, circular 
area (graduated 
symbols) 

Quantile, 
Equal Interval 

4-8 

 

e visualization generator then produces a set of design alternatives with the 

selected mark type and each possible retinal variable mapping. is set can range in size, 

potentially including a large number of designs (e.g., 100+) depending on the number of 

possible realizations for the retinal variable mapping. Qualitative mappings (those 

generated for nominal variables) typically result in the smallest number of design 

alternatives based on the determinate nature of the number of levels for the nominal 

variable. For example, the nominal variable “Government Type,” referring to the type of 
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rule in a country, can take 11 possible values. is limits the possible design alternatives to 

the set of qualitative color mappings that contain 11 values (e.g., two ColorBrewer 

schemes). If the mark type selected given the other two visualizations in the set is a 

scatterplot, any qualitative shape schemes that contain at least 11 distinct shapes are also 

used to create design alternatives.  

In the case of quantitative data-to-retinal variable mappings, the data values must 

first be binned so that they can be mapped to a finite number of renal variable 

realizations (e.g., distinct color shades in a sequential or diverging color scheme, or 

distinct circular area sizes). For sequential and divergent color mappings, we create 

designs by systematically varying the number of pre-specified levels (i.e., bins)applied to 

the data values from 4 to 8 based on the typical number of items that can be stored in 

working memory (Miller 1956). We also systematically vary the type of binning algorithm 

applied for color, using either Jenks natural breaks, quantile binning, or equal interval 

binning. Jenks natural breaks is an iterative data classification metho for determining the 

best binning given the observed distances between sets of values (Jenks et al. 1971). 

Quantile binning computes the cumulative distribution function (CDF) for the set of 

values, assigning equal proportions of the values to each of four quantiles. Equal interval 

binning divides the range of possible values into equal size bins. For size mappings, we 

find bins using both quantile binning and equalinterval binning. 

Each design is captured as a design specification,  json object with fields

containing the design index (a combination of the vid or index of the item in the input 

visualization list and a unique number distinguishing that design from other possibilities 

for the input item, e.g., “0_1”); a 2D mark type; position frame information for the x- and 

y-axes (specifying the range of data values to be mapped to either the width or height of 

the visualization frame); the frame information for the retinal variable applied to the third 
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variable, including the set of bin levels describing the range of values in each bin, and the 

realization of that bin as a color, circular area, or shape.  

Finally, the design generator applies a retinal variable effectiveness criteria by 

evaluating the extent to which the visualization design supports pairwise comparisons 

between data values. We define apattern expressiveness score, which is the percentage of 

all pairwise comparisons between data values for which the two values in the pair are 

mapped to distinguishable visual elements. Because we use ColorBrewer for all of our 

color mapping schemes, for designs that use color mappings for the third variable we 

simply calculate the percentage of data value pairs that are mapped to two different bins 

(i.e., the color applied to convey the data in each bin is guaranteed to be distinguishable by 

non-color blind users from all other bin colors in the scheme). For nominal variables, we 

count two distinct data values that take the same level as distinguishable (e.g., if two 

different countries take the value ‘Democratic’ for Government Type, we consider those 

two values comparable given the determinate nature of the data categorization). For 

quantitative variables, two distinct values that are assigned to the same bin (and therefore, 

color or size realization) are not counted as a distinguishable pair. For circular area 

mappings, we use an interpolation function to map bin levels (represented as the mean of 

the range of values assigned to that bin) to distinguishable circular areas. Our function 

applies the Stevens’ exponent identified in graphical perception research for ara 

judgments (0.7; Stevens 1969). Stevens’ power law describes the increase in stimulus 

magnitude required to result in an equal increase in perceived magnitude (Stevens 1957). 

e pattern expressiveness score for each design is captured in the design 

specification 

GRAPH REPRESENTATION 

Each visualization design becomes a node in an undirected graph (Figure 

IV.XIII:). Two indexes are assigned as node attributes: the vid is used to keep track of the 
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item from the input visualization list that the design was created to depict and the design 

index is recorded for the specific design (e.g., ‘-0’ represents the first possible design

created for the first item in the input viualization list, ‘14-120’ represents the 120th design 

created for the 14th visualization in the input visualization list, etc.). Other node attributes 

include the pattern effectiveness score, the 2D mapping type, the positional frames of the 

first two variables in the list item, the retinal mapping type applied to the third variable in

the list item, and the retinal frame applied to the third variable.  

Edges are created between each two nodes in the graph (i.e., visualization designs) 

so long as the pair does not violate any of the following three sequence expressiveness 

criteria: 

• Unique input visualization violation: e vid for which node a was 

designed is the same as the input visualization list item for which node b 

was designed.  

• Mapping violation: Two different data variables (e.g., GDP in 2010 and 

GDP per capita in 2010) are mapped to retinal variables in identical ways. 

Two retinal variable mappings are considered identical if each unique 

visual-data realization (e.g., color, symbol size, shape where color, size, or 

shape are used to convey data value, shape) that appears in one design is 

also used in the other design. For example, consider a first visualization

design that is a scatterplot showing teachers’ salaries (position along y-axis) 

by their days on the job (position along x-axis), with the shape of the 

points mapped to circles, squares, triangles, and bars to convey the 

teachers’ political leanings (e.g., Democratic, Republican, Libertarian, 

Green party).  A second visualization design displays a scatterplot of 

teachers’ bonuses (y-axis) by their salaries (position along x-axis), with the 

same shapes mapped to their university affiliations (e.g., Univ. of Michigan, 
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Michigan State, Ohio State, MIT). By applying the same retinal variable 

mappings (shapes to points in a scatterplot), some end-users may 

mistakenly assume that the shapes in the second visualization are also 

depicting political parties. ose who do not make this assumption face 

the need to relearn that the same shapes stand for different categories.  

• Data violation: e same data variable (e.g., GDP in 2010) is mapped in 

two distinct ways. A retinal variable mapping is considered distinct if it 

contains no overlapping visual-data realizations (i.e., none of the same 

colors, shapes, or sizes where color, shape, or size is used to depict data 

values). As an example, consider a first visualization design which is a map

depicting U.S. states colored using a three-level sequential blue mapping 

(from royal blue to white) to show unemployment rates. A second design is 

a bar graph that depicts U.S. states (mapped to position along x-axis) and 

their GDPs (mapped to position along y-axis), with bars colored by their 

unemployment rate using a five level sequential blue mapping (from royal

blue to white). Despite using the same colors as the end points for a 

sequential color mapping of the unemployment rates, these two designs are 

differ in the way they map the same data for some data points to shades of 

blue. is type of violation may confuse users if they intuitively try to apply 

the mapping they learned from the first visualization to interpreting the

second visualization.   
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Figure IV-XIII: Diagram of graph-based approach. Edges represent transitions between visualization 
designs with unique vids and no data or mapping violations. 

All edges that are created are indexed with a unique edge index, and assigned a 

“vid_pair” edge attribute that indicates the two vids for each node in the pair (e.g., “0_2” 

indicates that one node is created to depict the first list of three ranked variables in the

input visualization list, and the second node depicts the third list of ranked variables in 

the input visualization list). e vid_pair enables filtering to only the edges for a transition

between two specific intended visualizations 

We assign several more edge attributes for later use in filtering the possible paths

representing visualization sequences. A transition cost captures the relative number of 

variables (out of the total number in each ranked list in the input visualization list, which 

is 3 in our demo prototype) that appear in both the visualization designs for that edge. 

Specifically, we calcuate transition cost as the number of changing variables over the total 

number of variables (e.g., an edge for two visualizations that share only one variable 

results in 2/3 = 0.67 transition cost).  
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Figure IV.XIII provides an example diagram of the approach containing designs 

for two vids from the input list. Widths of the edges in Figure IV.XIII represent transition 

costs. 

PATH IDENTIFICATION 

Overview. We propose a greedy approach to searching the graph for paths where 

each visualization design and transition is “maximally effective” according to measures of 

visualization and transition effectiveness. We capture the effectiveness of each single 

visualization design associated with an edge with the pattern effectiveness measure 

described above. Transition effectiveness is operationalized as transition cost.  

Detailed Summary. We begin by identifying the maximally effective visualization 

transitions for each pairing of vids. We first combine the pattern effectiveness scores of

each of the two visualization designs in each pair (i.e., edge) with the transition cost of 

that edge. We compute the visualization-transition effectiveness score as the sum of the 

pattern effectiveness scores divided by the cost of that transition. is enables us to know 

the score of the maximally effective edges in the graph for each pairing of items in the 

input visualization list.  

We then apply a greedy search to the space of possible permutations (i.e., 

orderings) of the vids. We first generate all possible orderings. at is,if the input 

visualization list contained 11 items (i.e., lists of three variables indicating the data to be 

shown in a particular visualization), then we are generating all possible permutations of 

the set (0, 1, … 11). For each possible ordering of vids (e.g., 2, 1, 7, 3, 11, 10, 4, 6, 9, 8, 5), 

we identify a path for each unique first edge in the sequence (e.g., 2, 1) thatachieves the 

maximum score for that pairing. For example, for the first transition (2, 1) specified in th

example ordering we identify all edges between a visualization design with a vid of 2 and a 

visualization design with a vid of 1. Each of these edges initializes a path. We continue 

constructing each of these paths by checking whether any instantiations of the second vid 
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in the path (in the example, designs corresponding to vid 1) are associated with maximum 

scoring paths between that item and the next in the sequence (e.g., designs with vid 7). If 

not, we select the edge with the maximum score, and move to the next index in the list 

(e.g., 3), etc. Once the entire path has been constructed, we evaluate the path by finding

the mean visualization-transition effectiveness score for that path. 

Adjustment for creator specified comparisons If the visualization creator specifie a 

list of desired data variable or subset comparisons as described above, than any desired 

comparisons that are not supported by any single visualization can become consecutive 

order constraints. More specifically, thevids for the two data variable lists that contain the 

variables that are to be compared (e.g., GDP Per Capita 2010 from list “2” and GDP Per 

Capita 2012 from list “1”) can be specified as a required consecutive transition (eg., 

“2_1”) in any generated paths. is serves to filter the set of possible orderings early in the

graph search phase of the algorithm.  

Additional optimization. e approach can be further refined by applying

additional constraints to evaluation of the possible paths, such as by identifying paths that 

use more preferred transitions or global structuring techniques. For example, temporal 

transitions (or other encoded types) can be preferred as an additional constraint, as 

suggested by the preference for these transition identified in our sequence type validation

study above. For instance, our prototype implementation supports temporal transition 

identification using a simpletemporal transition boolean. is identifies edges where the

three variables in each visualization design are identical with the exception of the year 

associated with one more of the variables. For example, we note a temporal transition for 

an edge between a design that depicts country centroid latitude and longitude with GDP 

Per Capita 2010 and a design that depicts country centroid latitude and longitude with 

GDP Per Capita 2013.  Temporal transition identification is supported by a variable

naming scheme that we assume for our prototype implementation, in which all data 
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variables in the input data set include the date for when the data refers to at the end of the 

variable name (e.g., GDP_Per_Capita_2010).  

Paths with parallel structure (“sequence compressibility”) can be identifie given a 

more complete transition type labeling.  ough not supported in our prototype 

implementation, this could be achieved by having the visualization creator specify a label 

from the set (dimension, measure) for each variable or MySQL-style statement in the 

input visualization list. In addition to temporal transition inference as described above, 

added hierarchical inference features (such as a means of identifying where two MySQL-

style statements in the input visualization list refer to subsets of the same data), could be 

used to label hierarchical transitions. It then becomes possible to label each path through 

the visualization design space as a sequence of types (e.g., H-HT-T-D-M-T-D-M-HT-DT) 

and apply pattern mining techniques to these strings to capture those with repeated type 

sequences.  

We have also experimented with capturing the similarity between variables that 

change for low cost transitions using term overlap calculations.  We calculate the number 

of terms that are shared between the two variables that differ between two designs, and 

divide this number of shared terms by the total number of terms in the longer variable 

name, aer removing temporal indicators. is information is used to calculate a term 

overlap score that can be used to prefer transitions for which the two designs display 

distinct yet related variables (e.g., GDP and GDP Per Capita).  

Discussion 

We summarize the sequence approach above, addressing how our studies’ insights 

can be integrated into existing literature, and key implications of our work.  

ALGORITHMICALLY IDENTIFYING EFFECTIVE SEQUENCES 

e graph-driven approach we propose includes an objective function for 

minimizing local (visualization-to-visualization) costs of transitions. Each visualization 
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state becomes a node represented by several attributes (independent and dependent 

variables, time, and level of hierarchy), and a graph including possible type-labeled edges 

(types of local transitions) is constructed by comparing the attribute values for each pair 

of nodes. Graph edges are weighted with the transformation cost calculated for those two 

nodes, and an additional weighting based on type applied to choose between sequences of 

the same cost. Our first study’s finding of a strong preference for lower cost transitions at 

local level supports the importance of frst weighting by cost, such as to filter a large set of

possible transitions in a sequence support system. e additional systematic differences in 

preferences based on type that were uncovered supports also weighting edges by type to 

identify sequences.  

e results of our global sequencing study suggest a need for more sophisticated 

global constraints than simply summing local transition costs to determine the best path 

through a graph of weighted visualization transitions. While our results regarding how 

comparisons are affected by sequence were inconclusive, if further study confirms a link

between consecutive sequence and comparison, then a sequence support system could 

take the comparisons that the visualization designer wants to make as input, and use these 

as constraints in identifying the best sequence. Finally, the improved sequence 

memorability for sequences with “perfect” parallelism, rather than those that reverse local 

transition patterns, suggests benefits to also automatically identifying an prioritizing 

sequences that use parallelism. In the context of approaching automatic sequencing as a 

graph search, a promising approach would be to infer graph motifs (patterns in local 

transition type) (e.g., Wernicke 2006) from string representations of paths through the 

graph, and then identify paths that contain the motifs two or more times.   

LIMITATIONS 

We evaluated temporal and hierarchical transitions as singular types without 

distinguishing subtypes like chronological and reverse chronological transitions. Yet 
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differences in perceptions and preferences may exist between subtypes (e.g., a preference 

for going forward in time rather than backward). We also did not distinguish spatial 

transitions from other independent variable changes but it is possible that participants’ 

reactions to the spatial subtypes are somewhat distinct from other forms of independent 

variable transitions.  

Future studies should determine the extent to which explicit guidance about the 

reasoning behind a transition can overcome sequence effects. For example, can 

annotations added to visualizations in an interactive slideshow, or a presenter’s statements 

in a live presentation, overcome the effects on the audience of a complex transition?   

As noted in the description of the approach above, there may be ambiguity in the 

particular decision rules used in transition labelling under a given grammar. Factorial 

crowdsourced user studies in which transition labels are removed is one avenue for 

distinguishing the conceptual differences between visualizations to resolve discrepancies 

in rankings transitions in implementing automatic sequence support for narrative 

visualization. 

IMPLICATIONS AND FUTURE WORK  

A primary intention of our work has been to demonstrate how sequencing can be 

systematically approached in narrative visualization, such as in system design. Future 

work should further evaluate how to best combine information on local transition costs, 

type weightings, and global constraints like parallelism.  

A related question is whether animating a transition can balance the potential 

negative effects of a costly transition. Suppose that several visual representations that a 

creator wishes to include in a presentation require costly transitions. Can animating these 

transitions reduce the negative effects for presentation users?  

Additionally, by relating our approach to the grammar of graphics (Wilkinson et 

al. 1999) and standard visualization interactions (Heer and Shneiderman 2012) we 
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demonstrate how decision rules for labelling transitions might be defined.At the same 

time, the results of our qualitative approach on observed transitions can be compared to 

the types of interactions that we did not observe, such as transitions achieved simply by 

sorting. Doing so could enable deeper understanding of the differences between 

communicative and exploratory visualization, as well as potentially suggest forms of 

transitions that could be used in guided interactive narrative visualizations that are 

designed to suggest a given conclusion by walking a user through analysis step by step. 

An important avenue for future work is to evaluate algorithms for reconciling 

potential conficts between sequence optimization and automated optimizations that 

suggest the most effective single visualization (e.g., Mackinlay 1986, Mackinlay et al. 

2007). We have presented the details of an implementation of such an algorithm which 

extends the canonical expressiveness and effectiveness criteria to also include global 

(sequence) considerations. e pattern effectiveness measure that we design provides a 

means of capturing how well a single visualization supports pattern finding by an en-

user. At the same time, global considerations like transition costs and sequence 

compressibility (parallel structure) are identified. Combining these two types of measures

is required to negotiate local versus global design trade-offs. 

Finally, our work has implications for designers of narrative visualizations. Our 

global sequencing results provide some suggestion that sequential order supports 

comparisons between presented visualizations. e common “interactive slideshow” 

format for narrative visualizations could be adapted to allow more comparisons in cases 

where they are relevant. Navigational choices beyond “Previous” and “Next” buttons (such 

as an “Up” and “Down” option), could enable comparisons with visualizations that do not 

appear directly before or aer the visualization of focus. Doing so may increase how much 

is learned from visualized data without resulting in an entirely “reader-driven” 

presentation where the user is presented with an overwhelming number of navigation 

options.   
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Conclusion 

is chapter has made several contributions to understanding of narrative visualization by 

presenting theories around the role of sequential order and the construction of sets of 

visualizations for presentation. Study of professional narrative visualization presentations 

was used to identify a set of key transition types popular in these artifacts, as well as 

tendencies toward minimizing the number of changes to key data attributes (including 

independent, dependent, hierarchical, and temporal variables). A graph-based model was 

outlined with the understanding that modelling sets of visualizations as nodes in a graph 

and transitions as edges could enable automatic identification of “good” sequences using

objective functions like transformation cost minimization and a preference for parallel 

structure. is model was validated through studies of user perceptions of sequence 

effects. We contextualize the graph-based approach against prior visualization research 

with a specific focus on integrating global design consideratins for narrative visualization 

with local design optimization. e results contribute new metrics and patterns that can 

aid researchers and practitioners in evaluating narrative visualization designs, and 

motivated a vision of how systems might use the model to provide semi-automated, 

guided support for visualization creation.  
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CHAPTER V2 
Comparative Sample Plots: Visualizing Uncertainty for 

Complex Visualizations  

A theme that emerges in the prior chapters is that many critical design decisions 

concern comparisons that one wishes to support with a visualization. e importance of 

setting up the right comparisons aligns with references to the advantages of visualizations 

as external visual memory aids that enable offloading of otherwise effortful cognitive 

operations to the perceptual system (e.g., Larkin and Simon 1987). Supporting 

comparisons occurred in the form of selecting and juxtaposing subsets of data in 

suggestive ways in Chapter III’s investigation of rhetorical visualization, and through 

sequential ordering and design consistencies between visualizations in a set in Chapter IV. 

In this chapter, we consider a new challenge related to this theme: how a designer can 

design visualizations to support intended comparisons to convey to users that data is 

uncertain without generating confusion. Like other decisions explored in this dissertation, 

this consideration too oen involves trade-offs. Users who are made aware that data are 

estimates based on sampling are less likely to form unsupported opinions based on data 

that they encounter. Yet supporting awareness of concepts like variation or margin of 

error is difficult given most individuals’ difficulties with statistical concepts (e.g., Tversky 

and Kahneman 1971), and a lack of support for visualizing uncertainty among many 

visualization formats.  

 Consider Figure V.I, which depicts an excerpt from a post that appeared in a New 

York Times political blog around the time of the 2012 Presidential election (Gelman and 

                                                      
2 is chapter is an expanded version of: Hullman, J., Adar, E., Resnick, P., Ghitza, Y., and Gelman, A. 
“Comparative Sample Plots: Visualizing Uncertainty for Complex Visualizations” (in preparation). 
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Feller 2012). e post describes how in addition to a rich versus poor divide that has 

driven Republican versus Democratic voting among many Americans in recent elections, 

the 2012 election exit polls also provide evidence of a party split among richer voters. A 

grid of four visualizations displays the percentage of Republican vote in each state for 

different income brackets. e distribution of colors by state in each individual map view 

supports the hypothesis that higher income groups tend to vary more in their voting 

behavior. By comparing the percentages for the same state across different income levels, 

it is also possible to infer which states show a party divide based on income, versus which 

states tend to favor the same party regardless of income. Similar map grids are presented 

to display voting differences by age group, gender, and race, supporting further inferences 

that some demographic groups tend to vary more in their voting preferences than others.  

 
Figure V-I: Voting grid map displayed in the NYT shows voting patterns in the 2012 Presidential 
election by income level. 

A reader of the New York Times post might form generalized opinions about 

voting patterns and demographics based on the presented evidence of group divisions.  

e statistical and political modeling experience of the posts’ authors and the critical 
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editorial process that the post is likely to have gone through to appear in the Times 

reduces the likelihood that the hypotheses it presents will support inaccurate conclusions.  

However, readers may be at risk of taking too seriously some of the differences shown in 

the grids for certain demographic groups. For example, an apparently stronger Republican 

favoring among high income groups in Kansas versus Montana may disappear in future 

elections based on the expectedly high levels of variation for both these states, which have 

small populations. A reader with an interest in one or both of these locations might take 

this visual difference as proof of a difference between the two populations. How might the 

designer of these visualizations have conveyed these types of subtle yet important 

differences in estimate reliability using the map visualization? e study presented in 

Chapter III surfaced evidence of designers’ use of uncertainty annotations to note where 

visualized data is subject to a margin of error, but it is unclear whether just mentioning 

the possibility of error would be enough.  

In this chapter, we address these questions and others related to visualization 

trade-offs that involve communicating the approximate nature of data. Our intention is to 

provide insight into alternative methods for representing uncertainty that are appropriate 

for use in online visualizations presented to end-users who are not necessarily experts. We 

begin by acknowledging that the interpretations of visualized data that any end-user 

draws can only be as accurate as the data itself. e term uncertainty refers to cases where 

an interpretation based on data is not entirely reliable, as a result of ambiguity or 

imprecision in judged probabilities, due to a lack of evidence, conflicting evidence, or

unreliable evidence  (Curley and Yates 1989). It can stem from random variation (or 

statistical error) that occurs naturally in taking multiple measurements, such as when 

multiple rainfall readings are averaged to predict the monthly rainfall rate for a location. 

Or, error may be systematic, like when an instrument takes overly high readings, or a 

model (e.g., spatial interpolation) has a particularly high error rate for certain types of 

input data (e.g., outliers). e ubiquity of error and variation in data has made uncertainty 
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visualization a critical issue in visualization and geovisualization (MacEachren 1992, Marx 

2013, etc.)  

Confidence intervals, which quantify statistical error and convey precision

associated with a calculation (Cumming and Finch 2005), are the basis of many visual 

uncertainty representations. Error bar representations are commonly added to bar or line 

charts, where they depict a distribution of possible values around a central, most likely 

estimate. However, graphical uncertainty annotations like error bars, confidence

envelopes, and other summary plots have been criticized for requiring levels of statistical 

background that novice and even expert users may lack (Belia et al. 2005, Marx 2013). To 

understand how the error associated with one estimate shown in a bar chart compares to 

another requires understanding how to interpret the interval created by the error bars, 

which can itself be ambiguous (e.g., standard error or a 95% confidence interval).e 

interpretation can also be unintuitive, leading to common misunderstandings. For 

example, a 95% confidence interval is described as such because if one were to repeat the

experiment an infinite number of times and construct a 95% confidence interval aroun

the parameter to be estimated each time, then 95% of these intervals would contain the 

true value. However, the intervals are more commonly interpreted as the interval will 

contain the true value 95% of the time. Uncertainty glyphs are also difficult to apply to 

more complex formats. Alternative uncertainty representations like color, saturation, or 

blur are difficult for users to perceive and quantify (Kosara 2011, MacEachren et al. 1998). 

Specific representations of uncertainty have been created for some complex visualization

formats (Holzhüter et al. 2010, Talbot et al. 2009) but rarely generalize. 

is chapter proposes and studies a methodology for producing, visualizing, and 

presenting plots of hypothetical data samples to convey uncertainty. We contribute 

detailed demonstrations of how a comparative sample plot technique can be applied in 

two common data modeling scenarios: dealing with uncertainty from missing data in 

social network diagrams, and dealing with uncertainty in model predictions for voting 
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behavior in a presidential election. is requires development of techniques both for 

generating hypothetical samples and for making the sample plots visually comparable. For 

each technique, exploratory user studies confirm the potential usefulness of comparative

sample plots for conveying uncertainty to users who are not necessarily expert data 

analysts. 

 

Related Work 

UNCERTAINTY VISUALIZATION 

Understanding and integrating uncertainty information is a critical yet challenging 

part of visual analysis (Marx 2013). Taxonomies frame uncertainty as symptomatic of 

processes used to create a visualization, from data collection to dissemination 

(MacEachren et al. 2005, MacEachren 1992, Pang et al. 1996, omson et al. 2005, Skeels 

et al. 2008). We are primarily interested in measurement errors, which affect the outcome 

of models applied to data yet can be difficult to convey. 

As described above, graphical formats for confidence intervals, like error bars of

                                      

Figure 6.5: A map grid distinguishes voting patterns in the U.S. by ethnicity (rows) and income levels (columns). 
e data represents predicted voting choices and turnout (Ghitza and Gelman 2013). 
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envelopes, are perhaps the most common visual representation of statistical error but can 

be misinterpreted, even by experts (e.g., Belia et al. 2005, Marx 2013). Retinal variables 

like saturation, blur, and transparency have been explored in geographic visualization 

(e..g., MacEachren 1992), though results suggest that perceivers have difficulty quantifying 

these visual effects (Kosara 2011). Methods are needed that can depict uncertainty 

simultaneously with data (MacEachren 1992) to avoid users’ tendencies to dismiss 

uncertainty information as peripheral (Buttenfield 1993) 

We explore presentations comprised of multiple hypothetical samples as an 

alternative format that avoids separating uncertainty information from the data. is 

approach is inspired by research on dynamic uncertainty representation in geospatial 

applications (Aerts et al. 2003, Bastin et al. 2002, Elschlaeger et al. 1997, Goodchild et al. 

1994). Elschlaeger et al. (1997) demonstrated how the quality of Digital Evaluation Model 

(DEM) data affects predicted costs for new highways. ey stochastically generated 

multiple visualizations representing possible outcomes and sequenced these via 

animation. ey contribute a method for logically ordering realizations and interpolating 

intermediate scenes, but did not evaluate their method or discuss generalization to other 

problems. Evans (1997) conducted a comparison between the use of color saturation to 

display value certainty levels on land cover maps with maps that displayed only highly 

certain data and a “flickering” map that alternated between showing all data and only

highly certain data. e flickering maps were found to be helpful overall, though annoying

to some users.  

Bastin et al. (2002) proposed generating and animating realizations via a fuzzy 

membership function to convey membership likelihoods for map and image categories. 

e authors note, however, that introducing a fuzzy membership function greatly 

increases the dimensionality of the visualization space, as fuzzy classification yields a set 

of continuous membership maps in contrast to a single map produced by hard 

classification. Additionally, while the information in the produced membership maps can 
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be combined in a single visualization, such visualizations tend to be more difficult to 

interpret, as there are no established representations of fuzzy set memberships. e visual 

mappings that are available to show the memberships, such as color, may conflict wth the 

preferred visual variable for displaying the predicted community memberships. Bastin et 

al. (2002) focus on linkage between potentially complex visualizations of continuous 

membership maps in order to provide the analyst with tools to make sense of the 

potentially unfamiliar methods and representations. Alternatively, we focus in our first

demonstration below on the simpler scenario in which uncertainty is depicted for hard 

classifications using the comparative sample plots technique. While our techique also 

contributes additional complexity in the form of presenting more plots showing 

hypothetical samples, our technique does not require adding additional visual mappings 

to display fuzzy memberships. is is likely to simplify the visual judgment of a user for 

any single visualization. In addition to this distinction, we generalize the approach of 

displaying possible outcomes beyond geospatial data modeling scenarios.  

GRAPHICAL STATISTICAL INFERENCE 

Visualization and the comparison of multiple views of data are important in 

exploratory data analysis (EDA) (Tukey 1988, Wang Baldanado et al. 2000), as this 

supports identifying subtle relationships in data and developing inferential models. Our 

work is motivated by statistical approaches to using visual comparisons in model 

evaluation. Gelman (2004) proposes an inferential framework for using graphical displays 

to assess a model that has been applied to data, such as a statistical distribution. “Model-

congruent” data is simulated and compared to the observed data to judge the model’s 

appropriateness or fit. Permutation bootstrapping has been proposed as a basis for a visual

hypothesis test method, in which visualization users judge a series of plots with regard to a 

particular hypothesis (Buja et al. 2009, Majumder et al. 2013, Wickham et al. 2010, 

Hoffman et al. 2012). If an analyst can pick the observed data from out of a line-up 



141 

including 19 “null plots” representing the null hypothesis that no pattern exists, a standard 

significance test has been approimated. 

While that approach is analogous to statistical hypothesis testing, our approach is 

more analogous to statistical confidence intervals. Classical confidence intervals ar

generated by making some assumptions about the process by which the observed data 

sample was generated, which allows inferences about the sampling distribution of some 

property of the sample (such as the mean) that would result if the same sampling process 

were run many times. Rather than analytically derive a sampling distribution for a 

particular property of the sample, we empirically generate alternative hypothetical 

samples. While comparisons between the observed and simulated data are of interest in 

the hypothesis testing approaches, visually comparing the resampled plots to one another 

is the important operation in our approach. In this way, our work is closer to Diaconis’ 

and Efron’s (1982; Figure V.II) use of contour plot visualizations for exploring effects of 

variation in input data. In Diaconis and Efron’s work, an original sample of 2,000 

measurements of the pH value (representing the acidity) of every rainfall recorded at nine 

weather stations over a two year period were bootstrapped to produce additional samples 

of 2,000 observations. Each sample was fed as input to a spatial interpolation method 

(kriging), and the results shown in the four maps reproduced in Figure V.II. As the 

authors describe, the maps (and underlying samples) allow the analyst to estimate the 

variability that the contours inferred by kriging would show if many additional sets of 

2,000 observations could be collected and compared. Large regions of low acidity on the 

original map may become much smaller “islands” on the additional maps, or vice versa.  
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Figure V-II: Contour plots of resampled data convey the extent to which the contour predictions (of pH 
levels in rainfall) are affected by variation in the input data (Efron and Diaconis 1982). 

Recent work on resampling-based graphical inference for InfoVis (Wickham et al. 

2010, Majumder et al. 2013) has neglected to address design considerations for achieving 

the required visual consistency across plots. We provide several specific methods for

maintaining visual stability for clustered network diagrams and choropleth maps, and 

discuss the generalization of the visual stability requirement. ese methods can be 

mapped back onto graphical inference techniques for hypothesis testing.  We evaluate the 

potential for displaying larger numbers of visualizations (e.g., ~100) than have typically 

been used in statistical visualization. Finally, while prior work in graphical inference has 

been criticized for not addressing perceptual models that may influence the visual test’s

power, we explicitly examine the effects of different levels of perceptibility on CSP’s 

usefulness. 

NETWORK UNCERTAINTY AND DYNAMIC VISUALIZATION 

e task of conveying uncertainty for community-clustered graphs has been 

addressed using various imputation and fuzzy membership techniques. For the reasons 
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described in the above section, we focus on hard classification, but adapt an imputation

technique (Adamic and Adar 2001) to draw samples from the space of probable networks. 

ese samples represent the same group of nodes, but have varying edge properties, and 

thus community predictions differ. is approach allows for inference of the variability of 

community predictions, which can result from inaccuracy in the input graph (e.g., 

missing edges). It also supports many common applications in which “hard” community 

algorithms are used (e.g., nodes are classified into on cluster), in contrast to “fuzzy” 

classification methods for networks (e.g., Vehlow et al. 2013) 

Our presentation of a technique for supporting visual comparisons across 

clustered network diagrams resembles dynamic graph visualization approaches for 

maintaining object similarity across multiple temporal states of a network (Yee and Fisher 

2001, Purchase et al. 2006). However, the goal of depicting temporal evolution of non-

clustered graphs that motivates these approaches differs from our objective of supporting 

visual comparisons despite changes in community membership across non-temporal 

graph instantiations.  To our knowledge, this problem has not been addressed in prior 

work.  

Uncertainty as Hypothetical Outcomes 

We describe how comparative sample plots can be generated and used to quantify 

and visualize uncertainty for observed or modeled data. We then discuss why we expect 

the approach to have advantages over showing a single visualization. 

GENERATING HYPOTHETICAL SAMPLES 

e introduction of computation and resampling methods like bootstrapping 

provided statisticians with ways to overcome several constraints on calculating estimates 

and their reliability. e use of computers for resampling provided an alternative to 

manual calculations of the uncertainty associated with a parameter (Davison and Hinkley 

1997). As a general approach, it frees researchers from the assumptions that 1) data 
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conform to a Gaussian distribution, and 2) the only available statistical measures are those 

whose theoretical properties can be analyzed mathematically (Diaconis and Efron 1983). 

ere are two ways to generate samples: 

1. Bootstrapping (non-parametric) approach: When the appropriate model (i.e., 

statistical distribution) is not known, such as when the observed dataset is small or 

skewed, then non-parametric resampling with replacement (bootstrapping) can be 

applied. e input data set is resampled with replacement many times (100 or more), 

producing hypothetical datasets with the same number of observations as the input 

dataset. e technique can be used directly for samples assumed to come from 

independent, identically distributed observation. Established adjustment techniques 

enable applying a bootstrap in complex scenarios where data display known 

correlations, such as repeated measures from a single subject.  

2. Model-based (parametric) approach: When a model for input data is known, it can be 

used to generate new, hypothetical samples. Parameters of the model can be 

estimated from the available dataset. e model can then be “run” on hypothetical 

inputs to produce new samples. e resulting samples can communicate the range of 

values that a given parameter is predicted to take, even if the original dataset did not 

span the entire range. A simple example is generating samples using the mean and 

standard deviation of a dataset modeled as coming from a Gaussian distribution. We 

demonstrate how model-based sample generation can be used for two more complex 

models: a social network clustered into communities, and a model that predicts voter 

choice and turnout for the 2008 presidential election. 
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Figure V-III: Overview of the process. 

COMPARATIVE PRESENTATION OF GENERATED SAMPLES 

Generated samples can be visualized using the same visual mapping function that 

would otherwise be applied to data. We refer to the visualization of each generated sample 

as a sample plot. A method for maintaining visual stability is necessary, so that plots of 

different generated samples can be compared without complex visual decoding by the 

user. For example, a visualization function may be locally optimized to find the best visual

mapping given a single input data set. is can result in the same data elements being 

assigned different locations or retinal values (such as different colors) across sample plots 

unless the technique is adapted to make the plots more visually comparable. In the 

Discussion section below we provide a general formulation of the visual stability 

requirement. 

e cognitive limits of a human observer pose questions regarding how sample 

plots should be presented, and how many. We propose and evaluate the effectiveness of 

three presentation mechanisms that vary in 1) how many plots are presented, 2) at what 

rate, and 3) with what level of interactive control (Figure V.III). A small multiples 

presentation presents a small set of randomly drawn sample plots (e.g., four), affording 

comparisons between the outcomes represented in each. An animation presents a 

randomly ordered sequence of 100 sample plots at a frame rate of 20 FPS. Animation 

allows presenting more possible realizations of data than could static small multiples, and 

facilitates perceptions of changes between states provided there is consistent use of retinal 
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variables (Robertson et al. 2008). Finally, prior work predicts benefits for understanding

uncertainty in data if interactive capabilities allow a user to guide his or her own 

understanding (Rheingans 1992). An interactive slideshow visualization enables browsing 

of a large set (e.g., 100) of sample plots in the same random order as the animation, but 

through the use of forward () and back () control buttons.  

HYPOTHESES 

We compare the relative effectiveness of these presentation formats as applied to 

network diagrams and choropleth map using between-subjects user studies, which we 

present below. ese studies focus on several key measures of interpretation accuracy. 

Firstly, we calculate the rates of perceptual errors by treatment type by comparing 

observed responses to a ground truth perception of the data . e ground truth is the 

answer that a “perfect perceiver and integrator” of the information is expected to produce. 

In the case of the baseline, this is simply the correct value (whether on a binary or 

continuous scale) for the target attribute of a data point. For the comparative sample plots 

presentations, we assume that the perfect perceiver correctly perceives the value for the 

target attribute in each individual plot, and then integrates those values using unweighted 

averaging. Our expectation for perceptual accuracy (HPerception) is that perceptual errors 

will be more frequent as the number of sample plots and rate of presentation increases; 

hence: 

 Baseline < Small Multiples < Interactive Slideshow < Animation  

We are interested in how well individuals can recognize the true level of reliability 

for a given data pattern using the different presentation formats. We test reliability 

estimation accuracy by determining a ground truth reliability level for each possible 

outcome (out of two total) that a user is asked to compare. Our study protocol first poses a

question of which of two possible outcomes are more likely. e participants are then 

asked to predict the number of times the outcome they report as more likely in this first
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question would persist if 100 additional data samples collected in the exact same way were 

available. Relative and absolute frequency elicitation frames such as this (e.g., “In 100 

cases, how many times would X occur?”) have been shown to reduce random noise 

affecting judgments of uncertainty (e.g., “What is the probability that X will occur?”) 

(Price 1998) and to increase Bayesian reasoning (Gigerenzer & Hoffrage ’95) over 

probability formats. 

We determine the true level of reliability using a set of 100 generated hypothetical 

samples. Our expectation regarding reliability estimation (HReliability) is that individuals 

will be more accurately infer the true reliability level as the number of plots and 

interactivity of the presentation format increases.  

We provide the baseline users with the option of refraining from making the 

reliability judgment with no penalty. is option is provided as we expect users of the 

singular baseline visualization to recognize the difficulty of estimating the reliability of 

data patterns given a single data sample (see descriptions of study visualizations below for 

more information on indirect information that might inform some users’ reliability 

estimates). We expect the following pattern of accuracy: 

Baseline < Small Multiples < Animation < Interactive Slideshow 

More specifically we suspect that the better accuracy that results from viewing more 

samples in the animation and interactive slideshow presentations will result in part from 

the fact that the small multiples presentation can suggest a true reliability only in 

increments of 25%. For example, if two plots show the same outcome and the two other 

plots show the opposite outcome, then a rational user of the presentation will assume the 

true reliability to be 50%; if three plots show the first outcome the estimate of the true

reliability will be 75%, etc. We test these expectations in analyzing our study results below. 
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Domain 1: Community Inference in Networks 

Network (i.e., node-link) diagrams depict relational datasets, such as social 

relationships (e.g., Heer and boyd 2005, Perer and Shneiderman 2008). Network diagrams 

support analyzing how connections cluster nodes into communities, which are 

determined by a community finding algorithm (e.g., the “Louvain” method (Blondel et a. 

2008)). Communities are oen visualized with convex hulls encircling member nodes 

(e.g., (Heer and boyd 2005, Perer and Shneiderman 2008). However, noise in data 

acquisition can lead to missing edges, like when some individuals do not consistently 

update connections or join a network (e.g., a friend does not use Facebook). 

Misclassification into communities can result from such noise in input data. e binary

nature of community membership in most visualization schemes, in which communities 

are grouped in hulls and/or by color, can prevent users from understanding how sensitive 

outcomes are to variation in the input data.  

We describe how hypothetical network samples can be generated by adapting 

existing imputation techniques for networks, resulting in samples that are slight variations 

of the observed network and share all its key structural properties. Next, we describe how 

plots can be generated for these hypothetical samples in a way that permits visual 

comparisons between them. Finally, we present study of the impact of the comparative 

plots on users’ ability to answer questions and assess the reliability of their answers. 

DATA AND POSSIBLE OUTCOME GENERATION 

e starting sample dataset was the real egonet of an adult Facebook user. . We 

isolated the graph’s largest connected component for use in the experiment (350 nodes, 

3492 edges, with an avg. degree of 19.95, a density of .0517, and modularity (Newman 

2006) of .483 when applying the Louvain community detection algorithm (Blondel et al. 

2005). 
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We generated additional hypothetical samples that each included some additional 

edges, using a model-based approach. We estimated a model from the observed 350 node 

graph, a model with a similarity parameter for each pair of nodes that are not linked in the 

graph. We applied a normalized version of the similarity metric described by Adamic and 

Adar (2001) (specifically, using a form that only takes into account structural features 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥, 𝑦) =  �
1

log |𝛤(𝑧)|
𝑧∈𝛤(𝑥)∩𝛤(𝑦)

 

where x,y and z are nodes and Γ(k) indicates the neighbors of k. Intuitively, the similarity 

increases with the number of shared connections, with extra weight for those shared 

neighbors that have few other neighbors. We normalized the similarity into a pseudo-

probability in the range of 0 to 1 by dividing the largest value the similarity may take in 

the network and then by the largest observed similarity. A new hypothetical graph was 

generated by including all of the original edges and including each additional edge with 

probability equal to its normalized similarity score. (An alternative approach would omit 

observed edges from the original graph with some probability but we did not do that.) 

is procedure was run 100 times. Resultant graphs had edge counts from 4903 to 5057 

(M: 4979), density: .08 to .0827 (M: .082), avg. degree: 28.02 to 28.89 (M: 28.46), and a 

modularity ranging from .385 to .41 (M: .397). 

To support easy comparison of data elements across multiple resampled 

visualization requires maintaining retinal variables and other visual encodings across 

representations. We accomplished that by maintaining (1) a single layout, with each node 

having a fixed position across all plots of hypothetical samples, and (2) by maintaining a

large degree of color consistency, so that observed color differences between plots always 

conveyed semantic meaning of a node being in different communities in the two plots. 

To do this, we used the information about which nodes appear together across the 

set of sample graphs to create a “co-community graph,” which contained an edge for every 

pair of nodes that appeared together in the same community partition at least once. Edges 
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were weighted by the number of sample graphs where the pair of nodes were predicted to 

be in the same community (e.g., if nodes A and B were in the same community 50 times, 

the edge would have a weight of 50). Edges between node pairs that appeared together in 

less than half of the samples were eliminated, and the resulting network was drawn in 

GUESS (Adar 2006) using a standard force-directed layout. Because nodes that oen were 

in the same community formed cliques, the force- directed layout pulled nodes within the 

same community together but further apart from other communities. Nodes that 

belonged to multiple communities tended to be placed between the communities to which 

they might belong, preserving the semantics of the network layout. is layout defined

fixed coordinates for all nodes across all plots 

Next, we assigned colors to the weakly connected components in that co-

community graph. Colors were assigned using ColorBrewer (Harrower and Brewer 2003) 

to achieve maximal orthogonality, to make it easier for users to visually distinguish them. 

Each node’s “preferred” color was recorded based on the color assigned to its component 

in the co-community graph. 

To ensure that communities were assigned consistent coloring we determined a 

stability measure for each node in the following way. An increasing threshold was applied 

to edges in the co-community graph to eliminate edges that did not appear together at 

least k times. Each time we incremented k we noted when a node became disconnected 

and assigned it a stability score of k. Intuitively, those communities that were consistent 

across all hypothetical samples never became disconnected as they were consistent across 

all samples, and thus their nodes received the maximum possible stability score. 

  In each sample plot, a community was assigned the preferred color of the most 

stable node in that community (ties were broken by the arbitrary numerical id of the 

node). Intuitively, this had the effect of keeping nodes that were stably together in the 

same communities, across many samples, the same color in all the plots. ose nodes that 
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moved between communities took on the “stable” color of the communities to which they 

were assigned in that particular sample. 

               For each of the 100 plots a modified metaball was drawn underneath it to take the

place of a convex hull (both due to aesthetic concerns but more practically because the 

hull misrepresents cluster size when an outlier node “pulls” the hull boundary to a far 

position). e 100 images were used to create a small multiples presentation containing 

four randomly drawn network diagrams, an animation, and an interactive slideshow 

visualization as described above. Examples of the diagrams can be seen in Figure V.III and 

Figure V.IV. 

STUDY QUESTIONS AND OBJECTIVES 

Viewing nodes relative to social communities is a common task in using network 

diagrams (e.g., Heer and boyd 2005). Here, the community membership predicted for a 

given node might be of interest (i.e., with what community is an individual most 

associated?) Another relevant comparison concerns the size of communities relative to 

one another. We selected four nodes, each of which might be associated with one of two 

communities, and four communities to use in node membership questions and 

community size comparisons. 

Each user answered all eight questions: four node membership questions and four 

community size comparison questions. For each, the user was also asked to assess the 

reliability of their answer. Samples of each type of question are show below. 

• Node membership. “Which community is Person 4 more likely to be part of, 

community C or community E?” 

• Reliability of node membership. “Imagine that you have access to 100 samples of 

data (100 network diagrams). Estimate the number of times out of 100 that Person 4 

will be part of the community that you selected above?” 
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• Community size comparison. “Which community is bigger (has more nodes), A or 

C?” 

• Reliability of community size comparison. “Imagine that you have access to 100 

samples of data (100 network diagrams). Estimate the number of times out of 100 that 

the answer you chose above will be larger.” 

As described above, we framed the reliability question using a relative frequency 

based format rather than a probability-based format (e.g., “What is the probability that the 

community you chose will also be larger if more data is collected?”), based on 

experimental evidence that frequency formats reduce random error among estimates 

(Price 1988, Gigerenzer and Hoffrage 1995). 

e node membership question asks for a binary judgment. For baseline users 

presented with a single plot, answering should amount to decoding the color of the node 

and matching that color to the community colors to identify the correct label. For users of 

comparative sample plots, this same judgment calls for a more complex process, in which 

the user notes the node’s predicted community (color) in each sample plot, then integrates 

these responses across all plots. 

In choosing questions we aimed to include a range of different ‘true reliability’ 

levels, calculated as described above. High reliability associated with one of two possible 

outcomes might be one outcome occurring in 85-90% of a set of new samples; low 

reliability is when each of two outcomes are roughly equally likely (50%). We selected 

nodes and communities to use in four node membership and four community size 

comparison questions. 

EXPERIMENTAL PROCEDURE 

Tasks were run as a between-subjects experiment on Amazon’s Mechanical Turk 

(AMT) with a base reward of $1.00. Study participants were told that the network 

diagrams depict predicted groupings with a social network. Participants who saw more 
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than one diagram were informed that the multiple diagrams represent different 

hypothetical samples of the same network for which communities have been predicted.  

Participants were instructed on how to use the network layout and required to identify the 

mean node count in communities in a sample network. A practice question familiarized 

participants with the two-part question format. Participants in the baseline treatment 

were told they could answer “NA” to the second part of a question (the reliability 

question) without being penalized in their reward or bonus if they did not feel equipped 

to estimate the reliability of a pattern from the single visualization they were shown. is 

option was included so as not to force inaccurate reliability estimates among baseline 

participants.  

e eight two-part questions were divided across two screens. Participants earned 

a $0.15 bonus if one randomly selected part of their answer for each question matched the 

majority response (if part one) or came within 15 of the majority response (if part two) for 

the same question/visualization. Baseline users who responded “NA” for the second part 

were told that the first part of their answer would be scored. 

RESULTS 

199 participants completed the task (mean time: 644.9s). 25 participants with 

answers that conveyed a misunderstanding of the question (an answer less than 50 for the 

second question part) were removed.  

Table 1 summarizes the results. Overall, comparing community sizes was 

considerably more difficult than classification of nodes’ community membership

(perceptual error rates 0.41 vs. 0.17 ; t(339)=-11.2, p<.001). e plots did not directly 

convey the number of nodes in a community and the node count per community was also 

large (μ: 45), so some of the community size comparisons may have been difficult to judge 

without manually counting the nodes.  
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Table V-I: Summary of error rates for network task. Bolded cells indicate a significantly
lower error rate in a pairwise comparison with the base, single plot condition (α = 0.05, 
TukeyHSD correction). 

Question type Presentation 

type  

Perceptual error 

(frequency of 

wrong 

community 

selected) 

Reliability error 

(mean of absolute 

difference from true 

reliability) 

Signed reliability 

error (mean of 

difference from 

true reliability) 

Node 

membership 

Base 0.25 26.3 0.1 
sm mult 0.12 20.8 -6.7 
Anim 0.11 21.5 -6.1 

Slideshow 0.19 24.9 -1.7 
Community 

size 

Base 0.40 41.2 16.3   
sm mult 0.41 44.0 14.2 
Anim 0.39 44.1 12.1 

slideshow 0.42 43.6 15.7 

 

For community size comparisons, there was no significant difference in perceptual

errors among the conditions (F(3,170)=.15, p>.10). For node membership questions, users 

of the baseline visualization made twice as many errors as users of the animation and 

small multiples (F(3,170)=4.6, p<.01). (No differences existed between the interactive 

slideshow error rates and other presentation types.)  

For reliability estimates on community size comparisons, there was no significant

difference between conditions (F(3,170)=.94, p>.10). In all conditions, users tended to 

overestimate reliability, and by similar amounts.  

For reliability estimates of individual nodes’ community membership, not all 

conditions were the same  (F(3,170)=5.8, p<.001). e estimates from users in the small 

multiples condition were significantly closer to the true reliability scores than users in the

base condition. In contrast to reliability estimates for community size comparisons, there 

was no clear pattern in the direction of estimation errors; if anything, users of the 

animation and small multiples tended to underestimate reliability. e small multiples 

also performed better than the interactive slideshow, in contrast to our expectation.  
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Interestingly, only 4 users out of 52 responded “NA” for a node membership or 

community size question. is is somewhat surprising considering that the baseline 

visualization provided no direct signal of reliability. 

 

DETAILED RESULTS AND INTERPRETATION 

We see no clear evidence of comparative sample plots increasing perceptual error 

as predicted. Indeed, the animation and small multiples versions led to fewer errors in 

assessing node membership. is led us to question if there might also be some perceptual 

benefit to seeing slight variations of a visualization that balances the added complexity.

One possible explanation is that comparative sample plots may support easier correction 

of initial misjudgments of visualized data. When there is a just barely perceptible feature 

in a single plot, that feature may be more noticeable in some of the plots of hypothetical 

samples. 

         
Figure V-IV: Two network diagrams, depicting the same node (4, lower le) being predicted members 
of two different communities (Communities C and E). 

For some of the community membership questions that were posed to users, the 

communities to choose between were very similar in color (e.g., light orange E vs. brown 

C) while in others they were more distinct (e.g., bright pink B vs. brown C). ere were 

also differences in how geographically close the two communities were in the network 
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layout (see Figure V.IV for an example). It is more difficult to distinguish the node’s color 

(and consequently the community) when the colors are less distinct and the communities 

farther apart. We found that the primary difference in between error rates by presentation 

format occurred for a comparison involving very similar colored, distant communities C 

(brown) and E (light orange). In this case, baseline users make more than three times the 

errors that animation users did (μanim=.09,μcont=.32). For the other three questions, where 

the communities were always adjacent and colors more distinct, there were no differences 

in error rates (F(3,170)=1.9, p>.10).  

While our results support some advantages over the baseline of the animation and 

small multiples, the interactive slideshow tended to perform on par with the baseline. 

Logged data on how many samples were looked at by users of the interactive slideshows 

showed considerable variation (μ: 184.6; median: 14, min: 1, max: 1235). Slideshow users 

who viewed more plots had considerably lower perceptual and reliability estimation errors 

than those who viewed only a single plot (t=5.44, df=28, p<.001 and t=4.55, df=34, p<.001, 

respectively). 

Our expectation is that the users of the small multiples presentation based their 

reliability estimates on the percentage of new samples suggested by the patterns across the 

four randomly chosen plots they were shown. To investigate whether our results support 

this expectation, we examined the pattern of reliability estimates by question among users 

of each presentation format. Figure V-V displays the single visualization shown to 

baseline users above four facetted histograms, each of which shows the number of users 

(y-axis) who submitted a reliability estimate (x-axis). (Users who did not choose the 

correct community label for the first part o that node membership question are omitted 

for clarity). With each set of histograms we display the two signals that we expect to 

influence the slideshow and animation users and small mltiples comparative sample plot 
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users, respectively: the true reliability as defined using 100 sample plot (True), and the 

reliability level suggested by the four plots included in the small multiples (SMimplied).  

e results shown in Figure V-V suggest that in general, our expectations for the 

small multiples reliability estimates hold true. By comparing the SMimplied to the 

histograms, it is apparent that the small multiples users were considerably more likely to 

estimate in accordance with this signal, with the exception of the comparison between E 

or F. In this case, the SMimplied value for the true answer was only 25, which was not a valid 

response given our question framing, which instructed users that their reliability estimates 

should be between 50 and 100. For this question (2nd histogram set from top) many small 

multiples users submitted of or near 50. e small multiples users’ estimates for the 

comparisons for which the SMimplied was 100 may provide evidence that some users were 

uncomfortable with this level of reliability. For these comparisons (first and fourth

histogram set from top) a response of 90 is more common than 100.  
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B vs. C 
True: 100 
SMimplied:100 

E vs. F 
True: 52 
SMimplied: 25 
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Figure V-V: Baseline network visualization, plus histograms of reliability estimates for network node 
membership questions. Incorrect responses to the first part of the question are omitted for clarity. 

Figure V-V’s histograms also provide some evidence of a hesitancy among users of 

the animation and slideshow formats to provide “extreme” reliability estimates, which we 

define as estimates of either 50 or 100. ese values marked the ends of the reliability

input scale. e medians of the animation and slideshow users never span these ends of 

the scale, though in the median responses of baseline and small multiples users do include 

estimates of 50 and 100. It is possible that users perceive the difficulty of the perceptual 

A vs. F 
True: 86 
SMimplied:100 

 C vs. E 
 True: 55 
 SMimplied: 50 
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task (judging 100 plots) and are less likely to report extreme responses; however, this 

hypothesis requires more formal testing to be evaluated. 

In the following section, we use a second domain demonstration (choropleth maps 

of voting patterns) to further examine the impact of perceptual features on perceptual 

error and reliability estimate accuracy.  

 Domain 2: Choropleth Maps of Voting Patterns 

American voting behavior is a frequent topic in political science research. 

Predictive techniques have been applied to outcomes like public opinion formation and 

vote choice and voter turnout (Ghitza and Gelman 2013). Model predictions are of great 

interest to the public, especially during elections when choropleth maps displaying 

predicted voting patterns oen appear in large news publications and popular political 

blogs (e.g., nytimes.com, fivethirtyeight.co, Figure V.I).  

In analyzing predictions, large differences between groups are frequently of 

interest, such as in voting choices between voters with different income levels or among 

ethnic groups in a given state (e.g., the different preference for Democratic vs. Republican 

candidates among rich White voters and low-income White, Black, and Hispanic voters, 

respectively, in the 2012 election. It may be unwise, however, to make much of a large 

predicted difference for all rich vs. all poor voters in Illinois if there is little correlation 

between income and voter choices across states. For example, if richer voters in some 

states show an overall Democratic majority, while in other states this demographic shows 

an overall Republican majority, then a difference in Illinois may be an artifact of the high 

variance in votes from richer voters in general. In the case of voting patterns, higher 

variance for some groups may stem from more indecision among these voters, from the 

sampling process used to capture their votes, or from other systematic differences. Small 

differences can also be of great interest to the public, such as when a small advantage of a 

candidate among one group may be the key to a candidate winning an election, provided 
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that the small difference is a reliable one that holds consistently in all states (e.g., Obama’s 

advantage among female Hispanic voters in the 2008 election). Hence, the reliability of a 

prediction is not determined solely by the size of the difference that is predicted, but is 

also driven by its consistency. We investigate how using comparative sample plots may aid 

users’ understandings of uncertainty in choropleth maps of predicted voting choice and 

turnout for the 2008 presidential election (Ghitza and Gelman 2013). 

DATA AND POSSIBLE OUTCOME GENERATION 

We fit the same statistical models detailed in (Ghitza and Gelman 2013), modeling

2008 turnout (whether somebody voted or not) and vote choice (whether they voted for 

the Democratic candidate Barack Obama or the Republican candidate John McCain) as a 

function on a set of geographic and demographic covariates. Instead of using marginal 

maximum likelihood estimation, as detailed in the original paper, we fit the models using

Stan (Stan Development Team, 2013), which implements the No U-Turn sampler 

(Hoffman and Gelman, in press), an extension to Hamiltonian Monte Carlo sampling 

(Duane et al. 1987). Under this alternative modeling framework, it is trivial to pull 

samples of our quantities of interest from the posterior distribution, which is the key step 

in visualizing uncertainty within the currently discussed resampling context.  e models 

were each fit with 6 chains, run for 1000 iterations.  We saved the final 500 iterations o

each chain and randomly sampled 100 of those saved iterations for inclusion in the 

experiment. Each saved iteration serves as a hypothetical sample for our comparative 

sample plots. Each of these iterations is a model that can be used to predict turnout and 

choice in different states for different demographic groups. Our estimates account for the 

uncertainty of the statistical model, which in turn takes into account the uncertainty of 

our estimates due to sample size, along with the survey weights included in each of the 

surveys we use.  
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Figure V-VI: A map grid distinguishes voting patterns in the U.S. by ethnicity (rows) and income levels 
(columns). e data represents predicted voting choices and turnout (Ghitza and Gelman 2013). 

VISUALIZATION 

We display vote choice for six ethnicity/income subgroups in each of the lower 48 

states, among people who voted in the election (Figure V.V). Here, visual consistency in 

the location of a given group is maintained across plots by fixing the groups’ locations

within the grid of maps (e.g., the row and column index), and the location of each state 

within each map. Only colors vary between plots, and the semantics of colors also remain 

fixed between plots.Our color scheme smoothly transitions from dark blue to white to 

dark red. is matches the standard color scheme used in most visualizations of voting in 

the popular press, where blue and red reflect Democratic and Republican vote choice,

respectively. e region in which a given majority party vote (Democratic or Republican) 

is most fragile (the region closest to 50% party vote) is mapped to white, which we found 

best rendered visible subtle differences between Democratic and Republican majorities 

that are oen of interest in common usage of voting maps. We originally experimented 

with a blue-purple-red color scheme, but found that the current scheme more clearly 

shows which candidate has majority support in each group—instead of having to 
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distinguish between similar shades of purple, the transition at 50% support goes from 

light blue to light pink. 

We note, however, that as a result of this choice, other small differences occurring 

in other regions of the color spectrum (e.g., two shades of deep blue representing 

Democratic majorities) might vary in difficulty compared to judging the same difference 

in the region close to 50%. Using a gray-scale color scheme is an alternative scheme that 

we expect would produce more uniform perceptual error rates regardless of the region of 

the scale. However, that mapping also loses the party association with red and blue, 

potentially complicating the visual decoding task. 

e baseline, single visualization displayed the predicted means for each group 

using the map grid. We did not create a small multiples display as each plot already 

included a grid of six U.S. maps and thus small multiples would have been too visually 

complex. We did implement animation and interactive slideshow visualizations. 

EXPERIMENTAL PROCEDURE 

We again focus our study on how comparative sample plots support typical 

comparisons using these maps: comparing voting patterns (percentage vote for John 

McCain) for the same state but different income levels and/or demographic groups. Each 

group for comparison is therefore a combination of a state, ethnicity, and income level. 

Questions again took a two-part format, such as: 

• Voting percentage: “Which group has a higher voting percentage for McCain: white 

people in Nebraska who earn up to $75K, or hispanic people in Nebraska who earn up 

to $75K?” 

• Reliability of voting percentage. “Imagine that you have access to 100 samples of data 

(100 map grids). Estimate the number of times out of 100 that the answer you chose 

above will have a higher value?” 
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We again chose comparisons for questions with a goal of including a range in the 

true reliability. We also ensured a range in the level of true difference in the voting 

percent- ages across groups, so as to ask about both large and small differences, including 

several for groups that were predicted to split their votes nearly evenly between the two 

candidates. 

e experimental procedure followed that of the network study with one addition. 

Users first completed a perceptual calibration task of five trials in which they compare

the values (represented by colors) of different states within a single example map. ese 

enabled the user to practice doing the color comparisons and locating states. It also al- 

lowed us to gather data on what color differences were noticeable. is information 

provides a proxy for perceptual difficulty, allowing us to examine whether the challenges 

associated with a given visual judgment affect the performance of the different 

presentation types using an empirically-based threshold for a just noticeable difference 

(JND). e perceptual task included trials where users compared groups with very small 

actual voting percentage differences. Specifically, we tested a tue difference of 0, 0.02, 

0.03, 0.04, and 0.10, based on our own visual assessments that the perception threshold 

would fall somewhere below 0.04. 

RESULTS 

120 participants completed the task (mean time: 1056.2s). Seven participants with 

answers below 50 for a reliability question were removed. Again we find that many

interactive slideshow visualization users interacted with only one visualization (32%). 

We next examined whether presentation type appeared to affect perceptual error 

and reliability error overall. Perceptual error was slightly higher with the baseline, 

followed by the slideshow and small multiples, but not significantly so F(2,110)=2.1, 

p>0.10). ese results and those mentioned later in this section are shown in Table V.II. 
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Reliability error showed no significant differences from presentation type either

(F(2,110)=1.0, p>0.10). e fact that mean signed reliability was close to mean absolute 

reliability means that people almost always overestimated reliability. e signed reliability 

error was significantly lower in the animation condition F(2,110)=3.2, p<0.05), meaning 

that animation users overestimated less, and sometimes underestimated reliability. Again, 

most baseline users opted to submit reliability estimates (33 out of 35 total). 

Given the results of our perceptual calibration task, the true differences between 

the voting percentages of some groups that we asked about were unlikely to be perceptible 

to users of the baseline visualization. We noted an increase in errors from an effect size of 

0.03 to 0.02 (14% and 63% respectively) that suggests that the effect size that defines a just

noticeable difference is located within this interval. As noted above, this interval is 

approximate, as our color scale ranged from red to blue, and different regions of this scale 

may vary slightly in the effect size that is detectable. However, we use the lower end (0.02) 

as the threshold beyond which most users are likely to not perceive a given effect size. We 

examined perceptual error and reliability estimates for these comparisons between groups 

where the depiction in the baseline was below the JND threshold. We note that users of 

the comparative sample plots are more likely to see some plot that shows a larger 

difference. For the five questions in which the true difference was less than 0.02, the

animation resulted in approximately 25% fewer perceptual errors than the baseline 

(F(2,110)=4.7, p<0.05, padj <0.01). No differences were found for levels of absolute 

reliability error (F(2,110)=0.6, p>0.10). For signed reliability error, we saw marginally 

lower levels among users of the animation than the baseline by approximately 33% 

(F(2,110)=3.3, p<0.05, padj=0.07). Turning to consider the seven questions with more 

perceivable differences (>0.02), we saw no differences in the levels of error based on 

presentation type (F(2,110)=0.9, p>0.10). No differences were found for reliability 

estimation error, either for absolute error.   
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Table V-II: Summary of error rates. Bolded cells indicate a significantly lower error rate in a pairwise
comparison with the base, single plot condition (𝜶 = 𝟎. 𝟎𝟎, TukeyHSD correction). 

 Presentation type Perceptual 
error 
(frequency of 
wrong group 
selected) 

Reliability 
error (mean 
of absolute 
difference 
from true 
reliability) 

Signed reliability 
error (mean of 
difference from true 
reliability) 

Overall Base 46.6 24.7 16.7 
Anim 39.6 22.7 10.5 

Slideshow 41.5 24.3 15.3 
Questions with 
< JND in 
baseline 

Base 0.61 31.1 24.0 
Anim 0.45 29.3 15.7 

Slideshow 0.55 

 

31.7 23.9 
Questions with 
> JND in 
baseline 

Base 0.36 20.1 6.2 
Anim 0.36 17.9 4.8 

Slideshow 0.32 18.9 5.5 

Discussion 

Our work proposes that generating and visualizing many hypothetical outcomes 

can help people make reliability assessments that are more humble and more aligned with 

statistical models of the reliability of those effects. Our studies confirmed that, in some

cases, and with some presentation formats, comparative sample plots had that effect. 

However, that was not true for all comparisons that users were asked to complete. We 

briefly discuss limitations of our results and summarize a sensitivity analysis. We then

discuss potential reasons for the differential advantages we observed for comparative 

sample plots. 

LIMITATIONS 

While this chapter provides important support for apparent improvements to 

individuals’ abilities to recognize reliability levels using comparative sample plots under 

some conditions, we do not elicit our participants’ interpretations of the levels of reliability 

they support. is leaves ambiguity as to whether most individuals could translate the 
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reliability information into a more complex assessment of the significance of the data

pattern as influenced by data uncertainty. Studying the downstream effects of using

comparative sample plots versus other forms of uncertainty representation (or lack 

thereof) is a critical next step for future work.  

As described above, we chose to use a relative frequency format for our reliability 

elicitation questions based on evidence of this format’s advantages over probability 

formats. However, we note that by framing reliability as the number of times out of 100 

that the observed pattern held, it is possible that animation and interactive slider users 

were given an advantage, as they had access to the same number of hypothetical samples. 

To test the robustness of our results against a more general format, we ran a sensitivity 

analysis with the choropleth maps study materials. We substituted the relative frequency 

format elicitation prompt with a probability-based likert question: “What are the chances 

that the group your chose above would continue to have a higher percent if more data was 

gathered?: Random, Slightly better than random, Better than random, Much better than 

random, Completely certain.” We see the same patterns of results for reliability estimation 

(lower signed reliability estimate error and overall reliability estimate error), albeit by 

lower margins (10%, 20% advantage of animation).   

We did not include any surveys to capture how familiar or engaged users were 

with the content shown in the visualizations. Especially in the case of the choropleth 

voting maps, however, it is possible that users with strong political interests or prior 

knowledge would be better able to use the visualizations based on experience considering 

specific group comparisons of voting outcomes. Particularly when an effect is subtle it is 

reasonable to think that more politically-savvy users would find comparative sample

voting maps more useful in identifying small but potentially important differences 

between groups. 
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CONSIDERATIONS IN USING COMPARATIVE SAMPLE PLOTS 

PRESENTATION FORMAT 

e advantages of comparative sample plots depended in part upon the 

presentation format. In contrast to predictions of some prior work (Rheingans 1992), 

giving the user interactive control of a slideshow resulted in worse performance than 

presenting sample plots as small multiples or rapidly in an animation. e range in how 

many visualizations users of the interactive slideshow viewed suggests that engagement 

may be required in order for interactivity to benefit users of resample visualizations. Users

were more accurate when they viewed more plots, but outside of research labs and 

professional settings, this might be hard to prompt. 

A somewhat surprising finding was that animation and small multiples sometimes

led to more accurate perception of presented information compared to the baseline. Plots 

of hypothetical samples appear to prompt correction of what might otherwise be 

misperceived patterns or relationships. e greater range in possible outcomes depicted in 

a set of hypothetical samples compared to a single sample explains why this corrective 

function is possible. e advantage was primarily visible in cases where the visual 

difference between the two values was subtle in the plot of the original sample. A 

thorough perceptual model is required to predict cases where an effect size is unlikely to 

be perceptible. Users of comparative plots also tended to be more humble in their 

reliability estimates, giving lower estimates than users of single plots. Occasionally their 

estimates were too low. Given the overall predisposition of people to be overconfident in

the reliability of findings from statistical models and visualizations (Soll and Klayman

2004), a visualization technique that compels people make lower estimates of reliability 

may be valuable, even if it makes them overly cautious on occasion. 

VISUAL STABILITY REQUIREMENT 
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As described above, a key requirement in using comparative sample plots is to 

maintain visual stability between hypothetical sample plots. We presented two domain-

specificdemonstrations that called for different approaches and varying amounts of 

design manipulation to achieve. In the case of the choropleth maps, the manipulation 

required to support comparisons across sample plots was minimal. e primary visual 

attributes that identified data across hypothetical sampleswere the spatial positions of the 

predictions for each state-income-ethnicity group. State positions were fixed within each

U.S. map, and the positions of the U.S. maps representing different income-ethnicity were 

fixed inthe grid format. is is a default property of the faceting command in R’s ggplot2 

package as long as the same attributes are used to create the facets in each hypothetical 

sample plot. While color was a primary visual variable for displaying the predicting voting 

percentages, a decision was made prior to plotting to display the full range of values that 

the percentage could take (0 to 100%). A percentage scale has a standard range and so it is 

not unusual to present the full 0 to 100% range even if no single sample plot in the set 

included a prediction that achieved the maximum or minimum value on this scale (e.g., 

100%). us, we simply supplied the default domain 0 to 100% as in input to the coloring 

function which we applied to the specifc percentage values observed in each hypothetical 

sample.  

In other cases, however, the value of a target attribute may vary between sample 

plots (e.g., pH levels identified in rainfall as in Diaconis and Efron’s (1983) example

discussed above, which may not have a standardized scale range). Many default 

visualization functions that are applied in graphics systems (such as in R and similar 

mathematical and statistical modeling packages, Microso Office Products like Excel, 

Tableau Soware, IBM’s Many Eyes, etc.) apply dynamic scale definitin techniques which 

results in different realizations of slightly different sets of values, even when the 

underlying type of measure (e.g., pH level) stays the same. We refer to Wilkinson’s (1999) 

definition of  scale as a function that measures the contents of a frame for a set of values 
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that are to be plotted. e frame is the set of tuples that ranges over all possible values that 

the set of data observations take given some variable of interest. Frames play a critical role 

in mapping data values to the visual domain by serving as reference structures for how 

aesthetics are applied to those values (e.g., determining the number and properties of 

color values that will be used to display the levels of a categorical variable). When the 

scales used in a visualization are defined using he frame at the level of the single 

visualization (i.e., the set of values to be shown in a single plot), the resulting properties of 

that scale will vary with the frame’s content (i.e., with those particular data values). Hence, 

when two different sets of values for the same underlying measure (e.g., miles per gallon) 

are plotted in two separate visualizations, then the properties of the scale computed for 

each of the two visualizations may differ (e.g., different minimum and maximum on a y-

axis, as in Figure V.VI). Had the end-points for the voting percentage scale used in the 

choropleth map sample plots not been set prior to mapping the data, then maintaining 

visual stability would entail setting each individual plot’s scale properties for the voting 

percentage to the properties defined by calculating a scale on theunion of all the frames 

across the set of plots. For example, if a value of 99% for the McCain voting percentage 

was identified as the maximum McCain voting percentagefor the entire set of values 

across all plots, and a minimum value of 2% was observed across the same data set, then 

each plot should use a color mapping function with a fixed domainthat ranges from 2% to 

99%.    
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Figure V-VII: Two boxplots showing different subsets of the 'mtcars' R data set, created with the default 
boxplot jitter function in R's ggplot2. Note the differing y-axis ranges. 

 e visual design manipulation required to maintain visual stability across the set 

of hypothetical network diagrams did require overcoming dynamic scale definition, as

well as another form of “local” or “single visualization based” optimization. To support 

comparisons between community memberships across hypothetical diagrams required 

stabilizing the colors applied to communities across the set of diagrams.  It was necessary 

to fix the number of possible color values to be shown in each diagram using the

maximum number of communities identified in any single hypothetical network, so that

even if no nodes fell in that community, the colored label for that community could still 

be shown identically across all plots (overcoming dynamic scale definition as define

above). However, further adjustments were also required as a result of the locally based 

definitions ofthe communities themselves (which were defined by default entirelyby the 

nodes that were classified as being classified in the same gro for that particular 

network). We use the term dynamic attribute definitionto refer to this and other cases in 

which the presence and properties of an attribute that a user will judge in the plots is 
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determined be default at the level of a single sample (i.e., the data to be shown in a single 

hypothetical network diagram determines how many communities are present, and the 

“definition” of each community which in this case might be thought of as the number of

nodes and the properties of nodes that are classified as members ofthat community). e 

difference between dynamic attribute definition and dynamic scale definiti is that 

dynamic scale definitio results in different properties being used to realize a given 

measure, but does not change the meaning of the measure itself (e.g., miles per gallon 

means the same thing in both plots in Figure V.VI). Under default conditions that give 

rise to dynamic attribute definition, he meaning of an attribute that the user will judge 

can change (e.g., a community that is created by a group of nodes in one network diagram 

may not exist in any recognizable form in another network diagram).  

Our technique for fixingstabilizing community colors for the network diagram 

comparative sample plots thus required a method for overcoming the dynamic attribute 

definitio of the communities. In this case, we “forced” a stable attribute definition for

each of a finite set of communities bycreating a co-community graph from all of the co-

classifications of pairs of nodes acros all hypothetical networks. e co-community graph 

represents a “union” across all hypothetical networks, similar to the union operation used 

to find the range of a scale as described for choropleth maps above. By capturing

information about all hypothetical networks to be shown as separate diagrams (100 in this 

case), the co-community graph provided the information needed to fixthe definitions ofa 

finite set ofcommunities which would be consistently colored across network diagrams. 

Specifically, this was achievedby identifying the graph’s weakly connected components, 

and then identifying the most stable node in each weakly connected component, and 

assigning a unique color to each of these nodes. e mapping function used to assign 

colors to the remaining nodes in each hypothetical network then consisted of simply 

noting which of the “stable nodes” a new node was classified with, and assigning the stable

node’s color to the new node. 
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We generalize the above visual stability considerations as the requirement that 

scale definitions be fid under conditions of dynamic scale definition, and that attribute

definitions be fixed undeconditions of dynamic attribute definition. e specifi

methods that are used to overcome either form of dynamic optimization will depend on 

the functions that are used to create the outputs that are to be visualized within a given 

modeling and mapping process. However, in general the definitions of both forms of

dynamic optimization require first identifying which target attributes will be judged by

the user, and then defining the union operation andthe functions that will operate on the 

union to achieve fixed visual scales and definitions f these attributes. 

Based on this definition, we note that visual formats which contain more rigid

definitions for how a gven set of values will be displayed (e.g., how states in a map of the 

U.S. will be shown relative to one another, how to map paired sets of observations in two 

dimensions using a scatterplot) are simpler cases for applying comparative sample plots. 

However, as we have shown through the network diagrams, even in cases where the 

default modeling and visualization technique lacks rigid attribute definitions and visual

realizations of the attributes, it is possible to attain visual stability.  

JUDGMENT HEURISTICS 

e willingness of single plot users to report reliability estimates even without any 

direct indicators of uncertainty in the plots supports prior findings that concepts like

reliability, uncertainty, and probability are oen misunderstood by non-statisticians (e.g., 

Tversky and Kahneman 1971). We hypothesize that users of single plots followed a 

heuristic that the reliability of an observed difference was proportional to the size of the 

observed difference. Sometimes this heuristic works. But if, for example, a mean 

difference between two datasets is small but the variance within each is very small, the 

result may still be reliable. When the mean difference is large but the within dataset 

variability is very large it is also not a reliable difference. Examination of users’ reliability 
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reports for particular questions seem to be broadly consistent with that hypothesis, with 

more benefits from comparative sample plots when there was a mismatch between effect

sizes and variability of those effects. Further experimentation designed to explicitly test 

this hypothesis would be necessary to assess it rigorously, and is explored in the next 

chapter. 

Conclusion 

We have presented comparative sample plots, a technique for presenting 

uncertainty in visual plots by presenting multiple plots of alternative, hypothetical 

samples. e technique helps people identify some features that are hard to notice in a 

single plot. More importantly, it gives them a way to assess the reliability of a feature, 

whether it would be stably present in slight variations of the original dataset. 

Comparative sample plots can be adapted to many data modeling and 

visualization scenarios where uncertainty visualization is currently challenging. Applying 

the approach to a new type of plot involves two challenges. e first is generating

hypothetical samples. is can be done through bootstrapping (resampling from the 

observed sample) or by estimating a statistical model’s parameters from the observed 

sample and the using the model to generate additional samples. 

e second challenge is to figure out what to make visually stable across plots and

what will be allowed to vary. In our comparative network diagrams, we fixed the graph

layout and devised a way to make the colors stable for the more stable communities, while 

allowing the colors to vary between plots for nodes that moved between communities. In 

our choropleth maps, we fixed the shape and layout of the regions to be colored and fixe

the mapping of colors to quantities, with the changing quantities between samples causing 

the actual colors to vary. We provide a generalization of this requirement by defining

dynamic scale definition and dynamic attribute definitio 
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We have also explored applying comparative sample plots to treemaps of normally 

distributed data. Streamgraphs, voronoi diagrams, and various other complex 

visualization formats are also used to compare data values that are subject to uncertainty, 

making them good candidates for future applications and study. Simpler visualization 

formats like scatterplots are also amenable to a comparative sample plot approach. It will 

be important for future work to assess whether animated or interactive presentations of 

hypothetical samples can outperform existing uncertainty representations like error bars. 
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CHAPTER VI 
 

Future Directions 

Future research in supporting communicative visualization practice among broad 

audiences will provide further knowledge and tools for data storytelling using narrative 

formats. Additionally, future work will further develop and validate techniques for 

scaffolding data reasoning among end-users that are not expert analysts. 

ENHANCING NARRATIVE DATA COMMUNICATION  

e chapters on visualization rhetoric and sequence in narrative visualization 

presented in this dissertation demonstrate approaches for operationalizing narrative 

design techniques. Systematic study is occurring to better understanding the interaction 

between visualization and text, and to model this interaction in automated tools. Systems 

have been presented for automating annotation of visualizations for communicative and 

analysis purposes (Hullman et al. 2013, Kandogan 2012). A task for future work is to 

conduct user studies that complement these design foci via a model for predicting how 

text references will impact interpretations of a visualization. For example, controlled 

studies could be used to assess the extent to which text framing that suggests an 

interpretation of data that is not supported by the visualization can still shape 

interpretations. Prior study has concluded that graphical plus text descriptions of social 

information presented with a visualization can shape new users perceptions of the 

visualized data, even when the information is biased (Hullman et al. 2011). e broader 

class of framing techniques suggested by the visualization rhetoric framework pose similar 
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questions around the impacts on interpretation of more traditional forms of textual 

rhetorical framing, like rhetorical questions and suggestive metaphors.  

Another promising area for future work relates to tools for supporting data 

sharing, such as the sharing of visualizations in social media like personal blogs (Danis et 

al. 2008). A key challenge in this space is to preserve provenance information to support 

accurate interpretations of the data as it moves between online contexts. 

e chapter on sequence modeling highlights the importance of presentation 

order for message conveyance and in particular for supporting associations between 

distinct data representations. is chapter motivates future research in context-adaptive 

animation of transitions in communicative visualization presentations for narrative 

formats like interactive slideshows. Current formats provide a simple linear sequence for 

visualizations, and do not typically tailor the possible next steps from a given visualization 

slide based on the individual’s interaction trajectory. Future work will explore features that 

enable more possible paths through an interactive slideshow, such as through up and 

down buttons. ese suggestions could be customized based on the prior interaction 

sequence of an end-user. For example, a user who has viewed visualizations that tend to 

focus on economic statistics could be presented with the choice of viewing subsequent 

visualizations that provide more granular results on these statistics. is form of 

customized sequencing would reduce the typical transition cost between visualizations.  

SCAFFOLDING DATA REASONING  

Our work on comparative sample plots motivates further exploration of more 

direct, interactive methods for visualizing uncertainty, as an alternative to abstract 

graphical annotations like error bars. Future research will explore how enabling 

interaction with uncertainty representations, such as hypothetical sample plots, supports 

better understanding. Additionally, there is a need for the development of perceptual 

models for describing how visual factors impact an end-users ability to acknowledge 
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uncertainty. For example, how do different presentations of the same data (scatterplot 

versus boxplot, for example) impact interpretations of the statistical properties of the 

data? 

Our work on comparative sample plots indicates that heuristics may define how

judgments of uncertainty-related concepts like pattern reliability are formed. Future work 

will explore what other decision strategies influenc common visual judgment tasks, such 

as predictions about the typical behavior of a variable shown in a set of hypothetical 

samples (e.g., the most likely value for next year’s GDP for the U.S. given hypothetical 

samples based on this year’s data).  

Other forms of scaffolding for semantic cognition, or the process by which 

visualization users infer meaning, are also needed to better ensure effective use of 

visualizations in online environments. One example that has been recently proposed is the 

use of concrete scale representations to help users understanding scales that include very 

large or small values (Chevalier et al. 2013). ere is an opportunity for creating 

automated tools that can produce this sort of semantic scaffolding for reasoning about 

data scale. Another area for future work concerns how individuals arrive at causal 

understandings of visualized data. Causal hypotheses were oen suggested by features of 

the narrative visualizations examined in creating the visualization rhetoric framework. 

Future research might explore ways to debias causal interpretations of data, as well as the 

ways in which graphical formats and other narrative techniques subtly prompt causal 

hypotheses.
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CHAPTER VII 
 

Summary 

e goal of this dissertation was to contribute to communicative visualization 

practice by providing tools and knowledge to help visualization creators negotiate design 

trade-offs. In studying narrative visualizations, I identifie two primary types of design 

trade-offs: those related to which information to omit versus which information to present 

in order to achieve storytelling goals, and the trade-off between presenting information 

simultaneously to support the maximum number of data comparisons versus presenting 

the information sequentially to gradually convey a message about data. e visualization 

rhetoric framework presented to address the former trade-off operationalizes many 

visualization design strategies that I observed to be common in visualization 

interpretation, but that remain absent from existing design taxonomies. In studying 

persuasive examples of narrative visualization, I also found that many strategies appear to 

appeal to contextualized knowledge, such as aesthetic norms or cultural expectations. By 

acknowledging the importance of these “extra-representational” factors to how a 

communicative visualization is interpreted, the visualization rhetoric work extends prior 

research by providing theory for describing the expectations associated with graphical 

formats, for example (Zacks and Tverksy 1999, Best et al. 2001, Ziemkiewicz and Kosara 

2009) as well as less explored factors like cultural knowledge. 

In studying the impact of presentation sequence in narrative visualization, I found 

that online audiences strongly preferred visualization transitions that minimized the 

amount of conceptual change between two visualizations. I also observed systematic 

preferences for certain types of transitions. Audiences found temporal transitions, in 
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which one data visualization is followed by a second that is identical except for the time 

period of the data, to be the easiest to understand. I present the concept of parallel 

transition structure (sequence compressibility), referring to the repetition of a transition 

structure. For example, a hierarchical transition (from a high level view to a more specific

subset, such as a choropleth map of the North American continent followed by a map of 

the United States) might be repeated several times in a row, with each new use presenting 

a new subset of the data (e.g., the prior hierarchical transition is followed by a parallel 

transition between a map of Europe followed by a map of Germany). I find thatthis form 

of repetition is sequenced visualization presentations such as slideshow formats positively 

impacts end-users’ abilities to explain and remember the presentation sequence. e 

proposed graph approach for automating presentation sequence suggestions is a novel 

contribution to visualization literature, which has largely overlooked the impact of 

presentation order on interpretation. While still to be rigorously evaluated with users, my 

work on extending automatic presentation techniques to consider global (sequence) as 

well as local (singular visualization) considerations in particular contributes a new 

perspective on accepted design support approaches that are used in visualization systems 

like Tableau (Mackinlay et al. 2007, Mackinlay 1986).   

e comparative sample plots technique is a promising step for the area of 

uncertainty visualization, as our study results suggest that the technique can support 

better recognition of pattern reliability (such as when a pattern is or is not reliable) among 

broad audiences of visualization users. e results we observe indicate that our technique 

leads users to be more cautious, and to make fewer errors in perceiving information. In 

some instances, end-users more accurately judge the reliability of data patterns with 

comparative sample plots. While the effect sizes of some results are small, the technique is 

an important contribution to research in uncertainty visualization given the many 

challenges in getting most individuals to recognize uncertainty effects (e.g., Tversky and 

Kahneman 1971).  
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