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ABSTRACT 

Cyanobacteria are believed to be responsible for the oxygenation of the Earth’s 

atmosphere and oceans, which enabled the evolution of metabolisms that depend on O2.  Little is 

known about cyanobacteria adapted to low-O2, sulfidic conditions, which dominated the oceans 

when oxygenic photosynthesis first evolved.  To better understand how such cyanobacteria 

function and contribute to biogeochemistry, metagenomics and metatranscriptomics were used to 

characterize modern cyanobacterial mats that thrive under low-O2, sulfidic conditions in the 

Middle Island Sinkhole (MIS) of Lake Huron. 

Metagenomics revealed a consortium of microorganisms that regulate biogeochemical 

cycling at the sediment/water interface.  The mats were dominated by Phormidium, a 

cyanobacterium that was inferred to perform anoxygenic photosynthesis in the presence of 

sulfide based on (i) primary production rate experiments, (ii) expression of sulfide quinone 

reductase, and (iii) a high ratio of transcripts for photosystem I to photosystem II.  Combined 

with excess organic matter, chemical reductants and rapid utilization of O2 by respiration, this 

anoxygenic photosynthesis makes the MIS mats a net sink for O2.  Such anoxygenic 

cyanobacterial mats were likely widespread under the low-O2 conditions of the Proterozoic, and 

may help to explain why atmospheric O2 levels remained low for much of Earth’s history.   

 Genome sequences were reconstructed for the dominant mat organisms, and transcript 

abundance was used to identify organisms expressing metabolic pathways that regulate 

geochemical cycling at MIS.  Desulfobacterales were responsible for mediating production of 

sulfide, which likely contributes to hypoxia at MIS and regulates oxygenic versus anoxygenic 

xii 
 



photosynthesis by Phormidium.  Members of the Proteobacteria were found to perform aerobic 

oxidation of various sulfur species, H2 and CO.  Viral predation was detected by two way 

exchange of DNA between Phormidium and PhV1, an abundant virus at MIS.  Phormidium used 

viral DNA within a CRISPR system to defend itself, while PhV1 was found to possess a host 

derived nblA gene, which breaks down photosynthetic pigments.  Overall, this work suggests that 

ancient cyanobacterial mats were not necessarily a source for O2, and that sulfide concentration, 

metabolic products from other organisms, viral predation, and light availability could all 

influence cyanobacterial production of O2 in low-O2 environments.
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CHAPTER I  

Introduction 

 

1.1 Microbial mediation of geochemical cycles 

In recent years, there has been growing recognition of the extent to which microbes are 

responsible for mediating Earth's geochemical cycling of major elements such as carbon and 

nitrogen as well as less abundant elements like trace metals (Falkowski et al 2008).  Particularly 

important is the fact that microbes obtain energy for metabolism and growth by catalyzing redox 

reactions.  This changes the redox state of molecules, which can affect inherent properties such 

as solubility and volatility and influence the mobility of elements in the environment.  One of the 

best examples of how microbes can influence global biogeochemistry is oxygenic 

photosynthesis, during which sunlight is used to oxidize water, releasing O2 as a byproduct.  This 

process transformed the atmosphere and oceans from an anoxic state on the early Earth to the 

oxic planet now inhabited by oxygen-requiring plants and animals.      

This chapter reviews current knowledge of the cyanobacteria, the group of organisms 

likely responsible for the largest redox shift in Earth’s history, the oxygenation of the Earth.  The 

Middle Island Sinkhole (MIS), a modern analog of ancient cyanobacterial mats, is introduced as 

our sampling site, followed by a review of modern molecular genomics techniques and goals.   

Finally, there is a summary of the research chapters that follow, the major findings of each, and 

how they fit together to improve our understanding of these organisms and their environment. 
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1.2 Cyanobacteria and the oxygenation of the Earth 

Cyanobacteria are hailed as the originators of oxygenic photosynthesis, and are largely thought 

responsible for the oxygenation of the Earth’s atmosphere.  Earth’s first long-term oxygenation 

was long thought to have begun some 2.4 billion years ago (Ga) with the Great Oxidation Event  

(Farquhar et al 2011, Holland 2006), but recent evidence suggests that there were appreciable 

levels of O2 much earlier (Crowe et al 2013).  Oxygenic photosynthesis is the process of 

harvesting light energy to split water for the purpose of energy production, creating O2 gas as a 

byproduct.  Anoxygenic photosynthesis is believed to have existed before the evolution of the 

cyanobacteria, and does not create oxygen as a byproduct, using only one photosystem (I), 

instead of the two photosystems (I and II) required for oxygenic photosynthesis (Blankenship et 

al 2007).   

Though most studied cyanobacteria can only perform oxygenic photosynthesis, require 

O2, and are inhibited by sulfide, some cyanobacteria can withstand low O2 and high sulfide and 

still perform photosynthesis (Buhring et al 2011, Cohen et al 1986, Jorgensen et al 1986b).  

Cohen et al. (1986) describe four responses to sulfide by cyanobacteria.  Most cyanobacteria are 

sulfide sensitive, and photosynthesis completely shuts down in the presence of sulfide.  Some 

cyanobacteria are sulfide tolerant, and able to continue performing oxygenic photosynthesis 

under sulfidic conditions.  The last two groups perform anoxygenic photosynthesis in the 

presence of sulfide, either in addition to oxygenic photosynthesis or by completely switching 

over to anoxygenic photosynthesis (Cohen et al 1986).   

 The oxygenation of the earth was a series of redox shifts that slowly added oxygen to the 

oceans and atmosphere and took almost two billion years (Farquhar et al 2011, Holland 2006).  
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A rise in atmospheric O2 is detected in the geologic record around 2.4 Ga, but remained at 

roughly 1% of current atmospheric levels of O2 in an intermediate stage of oxygenation until 

around 0.8 Ga when it rose to near current levels (Holland 2006, Kump 2008).  This period was 

characterized by low levels of oxygen in the atmosphere, pervasive ocean anoxia, and localized 

or intermittent euxina (Lyons et al 2009, Reinhard et al 2013).  These variable redox conditions 

favor cyanobacteria that can switch between oxygenic and anoxygenic photosynthesis depending 

on the redox state of their environment, and can tolerate varying levels of O2 and sulfide 

(Johnston et al 2009a).  Such organisms have been implicated in prolonging the intermediate 

stage of atmospheric oxygenation by performing a combination of oxygenic and anoxygenic 

photosynthesis.  During anoxygenic photosynthesis, metabolically versatile cyanobacteria could 

have produced elemental sulfur instead of O2 as a waste product, thus reducing net O2 production 

and preventing it from accumulating in higher concentrations (Johnston et al 2009a).  While H2S 

is a better electron acceptor than water, H2S became scarce as O2 built up in the oceans, and 

water was available in almost unlimited supply (Cohen et al 1986, Jorgensen et al 1986b).   

Cyanobacteria capable of photosynthesis under sulfidic conditions are rare in the modern 

world, but were likely ubiquitous in ancient oceans and instrumental in the evolution of more 

complex life on Earth by providing oxygen as a widely available electron acceptor.  

Metabolically versatile cyanobacteria can still be found in sulfidic environments, including ice 

covered lakes in Antarctica (Andersen et al 2011), sinkholes in Lake Huron (Biddanda et al 

2006), hot springs in Yellowstone Park (Castenholz 1977b), and they have been implicated in 

emerging coral diseases around the world (Myers et al 2007, Myers and Richardson 2009).  

These environments have redox-stratified conditions similar to those thought to exist during the 
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Proterozoic (Johnston et al 2009a, Shen et al 2003, Walter and Bauld 1983), and support 

complex cyanobacterial mats that show similarity to ancient mats found in the geologic record.   

Fossilized microbial mats are some of our earliest evidence for the presence of life on 

Earth, dating back as far as 3.4 Ga (Allwood et al 2006, Walter and Paterson 1994) or 3.5 Ga 

(Noffke et al 2013).  These fossilized remains of microbial communities are abundant in the rock 

record, and suggest that microbial mats likely dominated microbial mediation of geochemical 

cycling until around 0.6 Ga, when multicellular life becomes abundant (Anbar and Knoll 2002, 

Hayes and Waldbauer 2006).  Though mats preserved in the rock record are often interpreted as 

cyanobacteria, distinguishing them from mats formed by other organisms on the basis of 

morphology can be difficult.  Stable organic molecules (or the degraded remains of those 

molecules) often preserved in the rock record (Welander et al 2009) may provide methods to 

distinguish groups of microbes based on the unique molecules they produce (Summons et al 

1999).  Studying modern cyanobacterial mats that are analogs of ancient systems could increase 

our understanding of ancient cyanobacteria by documenting the conditions under which 

metabolically versatile cyanobacteria succeed, the other microbes with which they co-occur, how 

these organisms affect their environment, and the unique molecular products they produce and 

that could be preserved in the rock record.  

 

1.3 The Middle Island Sinkhole 

The research presented here was initiated by the discovery of brilliant purple microbial mats 

living under low-O2, sulfidic conditions in a karst sinkhole located in the Thunder Bay National 

Marine Sanctuary, in Lake Huron, MI.  The mats were discovered by scuba divers from the 

National Oceanic and Atmospheric Administration who were working with a team of researchers 
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searching for shipwrecks in the Great Lakes, and investigated the 23m depression in the seafloor.  

MIS and its inhabitants have been a curiosity to local fisherman and scuba divers for some years.  

Divers noted that a meter of dense salty water reeking of sulfide (even through waterproof dry 

suits) covered the mats of bacteria.  The groundwater at MIS was found to be different than 

normal lake water, with lower temperature, pH, and concentration of dissolved oxygen, as well 

as higher salt concentrations from various sulfate salts.    

Phormidium was identified as the dominant organism in the mats by 16s ribosomal RNA 

marker gene studies (Biddanda et al 2006), and additional research indicated that cyanobacteria 

at MIS were likely performing anoxygenic photosynthesis, or significant amounts of 

chemosynthesis, making them a unique subject for study (Voorhies et al 2012).  The combination 

of environmental redox conditions with the presence of cyanobacteria potentially capable of 

anoxygenic photosynthesis, suggested MIS and Phormidium would make an informative model 

of ancient cyanobacterial, organisms we know very little about.  In order to characterize low O2, 

sulfide tolerant cyanobacteria and their interactions with other members of the community, 

including viruses, samples from the mat were collected from MIS and DNA and RNA from the 

mats were sequenced for genomic analysis. 

 

1.4 Microbial genomics and the age of the genome 

The field of microbial genomics is a relatively new one, and uses DNA and RNA sequencing to 

study organisms based on the content of their genome and the expression of their genes (Allen 

and Banfield 2005, Wilmes et al 2009).  The advancement of high-throughput shotgun 

sequencing of environmental DNA (metagenomics) (Hurwitz and Sullivan 2013, Wrighton et al 

2012) and RNA (metatranscriptomics) (Gilbert et al 2008, Shi et al 2011) has allowed the study 
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of entire microbial communities, often consisting of organisms which had previously only been 

identified by studies of environmental 16s rRNA marker genes (Rajendhran and Gunasekaran 

2011, Tajima et al 1999).  This allows us to gauge the metabolic potential and gene expression 

for environmentally important organisms, without the need to first bring them into laboratory 

culture.   While growing microbes in the lab can provide a wealth of knowledge about that 

organism, many organisms are resistant to cultivation.  This leaves the vast majority of microbial 

diversity as a proverbial black box, where we see the reactants and products of microbial 

metabolisms in the environment, but the mechanisms driving that chemistry remain a mystery.  

By rebuilding the genomes of the organisms performing this chemistry, we can assign specific 

functions to groups of organisms, and better understand how different groups of microbes 

interact with their neighbors and shape the environment around them.    

Genomics can help us understand how microbes influence their environment and 

neighbors.  Sequencing genomes allows individual genes to be compared to those of known and 

cultured organisms, thereby assigning function to those genes.  When gene content and 

expression for a community of microbes is examined in this way, complex relationships become 

evident where the products of one microbial metabolism become the reactants for other 

microbial metabolisms.  For example, sulfate might be reduced to sulfide by one organism, while 

another organism could oxidize the sulfide back to sulfate.  Investigating only one of these 

organisms leaves out half of the story, but by investigating entire communities we can assess 

interactions between microorganisms and the environment. 

Metagenomics and metatranscriptomics provide snapshots of nucleic acids from all 

community members present in high enough abundance to detect, including viruses.  While 

bacteria and archaea are estimated to be the most populous cellular organisms on the planet, 
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viruses that infect them are estimated to be an order of magnitude more abundant (Rohwer and 

Thurber 2009, Suttle 2007).  Viruses are a prevalent source of microbial mortality (Avrani et al 

2011), and can shape the function, diversity, and evolution, of microbial communities (Lindell et 

al 2004).  Viruses are obligate parasites comprised of short segments of DNA or RNA packaged 

in a coat of protein or simple lipid membrane.  Their genomes usually encode a handful of genes 

required to reproduce viral particles, however viruses require the protein machinery of a host cell 

in order to reproduce themselves, often destroying the host in the process of viral reproduction.  

Despite the ubiquitous nature of viruses, their representation in genome and gene databases is a 

small fraction of that available for bacteria, archaea or even eukaryotes.  Viral influence on 

microbial communities is poorly understood, due in part to poor genomic databases and 

difficulty in isolating viruses, but also because viral genomes are very small by comparison to 

microbes and complex eukaryotes, so environmental DNA sequencing recovers proportionally 

less of their DNA.  This makes environments like MIS special, because having a dominant 

organism yields higher genome coverage for viruses attacking that organism.  This also allows 

virus and host to be sequenced in the same sample, introducing less procedural bias than if they 

were sampled and processed separately.   

As an indicator of the impact of viruses on microbial communities, many bacteria and 

archaea use the CRISPR/CAS system (Clustered Regularly Interspaced Short Palindromic 

Repeats/CRISPR associated genes) to defend themselves from invading forms of nucleic acids 

such as viruses (and plasmids) by incorporating small segments of DNA from the invader into 

their genomes for recognition and destruction of subsequent invaders (Makarova et al 2011a, 

Makarova et al 2011b, Sorek et al 2008).  By investigating the CRISPR region of a genome, 

viruses that have previously attacked that organism can be identified (Tyson and Banfield 2008).  
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By the same token, viruses often incorporate genes from their hosts into their own genome, 

allowing a virus to be linked to its host even if the host does not contain a CRISPR system 

(Hurwitz and Sullivan 2013, Lindell et al 2004, Lindell et al 2007). 

Investigating all members of a microbial community based on their genome, and the 

genomes of those in close proximity to them can help expose complex interactions that would be 

otherwise undetectable.  Many of these interactions have large impacts on the environment in 

modern systems, which can give us a better understanding of ancient systems under similar 

conditions. 

 

1.5 Organization of the dissertation 

This dissertation comprises three research chapters which characterize a cyanobacterial mat 

community thriving under low-O2 sulfidic conditions.  In Chapter II, genomes of two 

cyanobacterial genera, Phormidium and Oscillatoria, were recovered from 2007 MIS samples, 

and are described and characterized along with analysis of process rates, mineralogy, and 

isotopic composition of the mats.  The mats were found to be a net sink for O2, and genes 

encoding sulfide quinone oxidoreductase (SQR) were found in the genome of both Phormidium 

and Oscillatoria, suggesting their involvement in anoxygenic photosynthesis.   

In Chapter III, genomes were recovered for 32 groups of microbes at MIS sampled at 

seven time points between 2007 and 2012, and transcripts of functional genes were analyzed to 

assess the roles of individual community members in mat biogeochemistry.  Gene expression 

indicates that Phormidium is performing anoxygenic photosynthesis and that photosynthetic gene 

regulation differs from previously studied cyanobacteria.  Microbes responsible for geochemical 

cycling at MIS are identified and their contributions to redox chemistry are measured by 
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transcript abundance of metabolic marker genes.  Finally, genomes for three organisms of novel 

phyla with no cultured representative are reported, constituting the first genomic data available 

for two of them.   

In Chapter IV, two genotypes of a virus (“PhV1”) infecting Phormidium are described 

and tracked over the course of five years, and interactions between virus and host are detected 

based on exchange of genetic material.  Viral DNA from PhV1 was found in the CRISPR system 

encoded on the Phormidium genome, and PhV1 was found to encode a Phormidium derived 

nblA gene, which encodes an enzyme that breaks down phycobilisomes, a major component of 

the photosynthetic apparatus.  Viral and host abundances were tracked over time, and 

correlations of abundance suggest that viruses play a major role in ecosystem dynamics.  Chapter 

V summarizes the results of these studies and places them in the context of understanding 

ancient cyanobacterial mats that lived under low-O2 sulfidic conditions. 
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Abstract  

Cyanobacteria are renowned as the mediators of Earth’s oxygenation.  However, little is known 

about the cyanobacterial communities that flourished under the low-O2 conditions that 

characterized most of their evolutionary history.  Microbial mats in the submerged Middle Island 

Sinkhole (MIS) of Lake Huron provide opportunities to investigate cyanobacteria under such 

persistent low-O2 conditions.  Here venting groundwater rich in sulfate and low in O2 supports a 

unique benthic ecosystem of purple-colored cyanobacterial mats.  Beneath the mat is a layer of 

carbonate that is enriched in calcite and to a lesser extent dolomite.  In situ benthic metabolism 

14 
 

mailto:gdick@umich.edu


chambers revealed that the mats are net sinks for O2, suggesting primary production mechanisms 

other than oxygenic photosynthesis.  Indeed, 14C-bicarbonate uptake studies of autotrophic 

production show variable contributions from oxygenic and anoxygenic photosynthesis and 

chemosynthesis, presumably due to supply of sulfide.  These results suggest the presence of 

either facultatively anoxygenic cyanobacteria or a mix of oxygenic/anoxygenic types of 

cyanobacteria.  Shotgun metagenomic sequencing revealed a remarkably low-diversity mat 

community dominated by just one genotype most closely related to the cyanobacterium 

Phormidium autumnale, for which an essentially complete genome was reconstructed.  Also 

recovered were partial genomes from a second genotype of Phormidium and several 

Oscillatoria.  Despite the taxonomic simplicity, diverse cyanobacterial genes putatively involved 

in sulfur oxidation were identified, suggesting a diversity of sulfide physiologies.  The dominant 

Phormidium genome reflects versatile metabolism and physiology that is specialized for a 

communal lifestyle under fluctuating redox conditions and light availability.  Overall, this study 

provides genomic and physiologic insights into low-O2 cyanobacterial mat ecosystems that 

played crucial geobiological roles over long stretches of Earth history. 

2.1 Introduction 

Cyanobacteria mediated Earth’s oxygenation and thus played a central role in geochemical and 

biological evolution.  They are widely recognized as the innovators of oxygenic photosynthesis, 

in which water provides electrons for photosynthesis and O2 is released as a byproduct 

(Blankenship et al 2007).  This cyanobacterial metabolism is thought to have driven a significant 

increase in atmospheric-O2 concentration ~2.4 billion years ago known as the great oxidation 

event (GOE) (Bekker et al 2004).  Conversely, recent work also suggests that cyanobacteria 

capable of anoxygenic photosynthesis may have subsequently perpetuated an extended low-O2 

15 
 



phase of Earth’s history (Johnston et al 2009b).  This intermediate stage of Earth’s redox history 

lasted for at least a billion years and was characterized by a low-O2 atmosphere and redox-

stratified oceans, where sulfide-O2 interfaces would have been prevalent (Johnston et al 2009b, 

Lyons et al 2009).  Despite the large portion of cyanobacterial evolution that occurred while O2 

was scarce, and the critical geobiological turning points that occurred under such conditions 

(Falkowski et al 2008, Johnston et al 2009b), little is known about the genetic or physiological 

characteristics of cyanobacteria that thrive under persistent sulfide-rich and/or O2-limited 

conditions. 

Modern cyanobacteria exhibit a range of physiologies in the presence of sulfide.  Most 

are highly sensitive to sulfide due to irreversible blockage of the H2O-splitting component of 

photosystem II (Cohen et al 1986, Miller and Bebout 2004a).  However, cyanobacteria inhabiting 

anoxic or hypoxic environments that are regularly exposed to sulfide have developed strategies 

for sulfide tolerance and even utilization (Buhring et al 2011, Castenholz 1976, Castenholz 

1977a, Garlick et al 1977b, Oren et al 1977).  Cohen et al. described several adaptations to 

sulfide, ranging from sulfide-resistant oxygenic photosynthesis to the ability to utilize sulfide as 

the electron donor for anoxygenic photosynthesis (Cohen et al 1986).  Different cyanobacterial 

species sharing the same oxic/anoxic interfacial environment often exhibit distinct sulfide 

physiologies, with different sulfide optima and tolerance (Garlick et al 1977b, Jorgensen et al 

1986a).  Such cyanobacteria that are capable of tolerating sulfide or using it for anoxygenic 

photosynthesis are phylogenetically diverse and spread throughout the phylum Cyanobacteria 

(Miller and Bebout 2004a). 

Despite the phylogenetically widespread nature of anoxygenic photosynthesis amongst 

the cyanobacteria, the biochemical mechanisms of this process and its genetic underpinnings 
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have been studied in just a few cyanobacterial strains, primarily Geitlerinema sp. PCC 9228 

(formerly Oscillatoria limnetica).  When confronted with sulfide in the presence of light, this 

organism rapidly switches from oxygenic to anoxygenic photosynthesis by an inducible process 

that requires protein synthesis (Cohen et al 1975b, Oren and Padan 1978).  Photosystem I 

receives electrons from sulfide and transfers them to the electron transport chain to drive proton 

pumping (Belkin and Padan 1978), and extracellular globules of elemental sulfur are generated 

as an end-product (Cohen et al 1975a).   Biochemical and genetic methods have identified genes 

encoding the enzyme that oxidizes sulfide, sulfide quinone reductase (SQR), which transfers 

electrons from sulfide to the quinone pool (Arieli et al 1994b, Bronstein et al 2000a, Schutz et al 

1997).  In Geitlerinema sp. 9228, these sulfide-derived electrons are used for photosynthesis or 

nitrogen fixation, whereas in the cyanobacterium Aphanothece halophytica and the yeast 

Schizosaccharomyces pombe SQR is thought to oxidize sulfide for the purpose of detoxification 

(Bronstein et al 2000a).   

Investigation of modern cyanobacteria inhabiting low-O2 environments can provide 

insights into the biological processes that influenced Earth’s oxygenation.  Particularly relevant 

to understanding the rise of O2 on Earth are questions surrounding the evolution of anoxygenic 

photosynthesis in the cyanobacteria, mechanisms by which versatile cyanobacteria regulate 

oxygenic vs. anoxygenic photosynthesis, and factors that affect competition between versatile 

cyanobacteria and other anoxygenic bacteria.  Many studies have focused on stratified 

cyanobacterial mat communities where O2 and sulfide concentrations fluctuate on diel cycles; 

often cyanobacteria are exposed to sulfidic conditions at night and oxic conditions during the day 

(Richardson and Castenholz 1987).  However, few studies have focused on cyanobacteria that 

thrive under persistent low-O2 conditions.   
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Here we investigate cyanobacterial mats inhabiting such a persistently low-O2 

environment, the submerged Middle Island Sinkhole (MIS) in Lake Huron (Figure 2.1).  

Groundwater that gently vents into the MIS bottom (water depth 23m) has significantly different 

physical and chemical properties than Lake Huron water, with a lower temperature (7–9 vs. 4–

250C), lower pH (~7.1 vs. 8.3), lower concentrations of dissolved oxygen (0–2 vs. 5–11 mg L-1), 

lower oxidation-reduction potential (-134 vs. 500 mV) and higher specific conductivity (~2.3 vs. 

0.3 mS cm-1) (Biddanda et al 2009).  The high conductivity of venting groundwater is 

attributable to high concentrations of dissolved sulfate (1,250 mg L-1), carbonate (48 mg L-1), 

and chloride (25 mg L-1) ions derived from interactions with subsurface Devonian evaporites 

(Black 1983, Ruberg et al 2008).  This dense groundwater forms a thin (~1 m), visibly stratified 

benthic layer that persists perennially except for brief disruptions due to major storms (Ruberg et 

al 2008).  The low-O2 conditions of the groundwater inhibit typical Lake Huron biological 

communities, favoring purple-colored cyanobacterial mats with finger-like protrusions (Figure 

2.2) that have not been found elsewhere in the Great Lakes (Biddanda et al 2009).  Beneath the 

mats are stratified microbial layers of sulfide-oxidizing bacteria, sulfate-reducing bacteria, and 

methanogens (Nold et al 2010a).  Molecular diversity studies (Nold et al 2010a) have revealed 

that they are dominated by cyanobacteria remarkably similar (>98% 16S rRNA gene sequence 

identity) to Phormidium autumnale isolates from the Arctic and Antarctic (Comte et al 2007, 

Taton et al 2006a, Taton et al 2006b), and host to distinctive archaeal and eukaryotic 

communities (Nold et al 2010c).  Furthermore, carbon, nitrogen and sulfur stable isotopic 

signatures of sinkhole chemistry have been detected in the surrounding environment and food 

web (Sanders et al 2011).   
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Figure a Figure 2.1 Location map of the study area and geologic map of bedrock 
aquifers of the Great Lakes Basin.  The focus of this study is the Middle 
Island Sinkhole, one of many submerged karst sinkholes in the Thunder 
Bay National Marine Sanctuary, Lake Huron (modified from Ruberg et al. 
2008, Biddanda et al. 2009). 

 

 

Little attention has been paid to the potential for the MIS mats as analogs for ancient 

microbial mat ecosystems.  Microbial mats are widespread throughout the Precambrian rock 

record, often as carbonate-associated stromatolites (Grotzinger and Knoll 1999).  In addition to 

their low-O2 habitat and facultatively anoxygenic metabolism (Biddanda et al 2009), several 

other features of the MIS mats make them excellent and novel analogs of Precambrian 

cyanobacterial mats (Biddanda et al in press).  The MIS mats are bathed in groundwater that is 

constantly cold (7–9°C year-long) and thus representative of low-temperature stromatolite 

settings that were common in the Paleoproterozoic (Kopp et al 2005, Walter and Bauld 1983).  

Sulfate concentrations are intermediate between freshwater and seawater (Ruberg et al 2008), 

similar to those of the Proterozoic oceans (Shen et al 2003).  Underlying the cyanobacterial mat 
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layer is a mineral layer thought to be rich in carbonate (Nold et al 2010a).  Finally, the raised 

finger-like mat features at MIS (Figure 2.2) are similar to the conical mat structures produced by 

P. autumnale in an Antarctic lake, which were recently highlighted as analogs of stromatolites 

(Andersen et al 2011).  Here we present genomic and functional insights into the MIS 

cyanobacterial mats and highlight their value as novel analogs of ancient anoxygenic 

phototrophic ecosystems. 

 

2.2 Methods 

Field work and sampling 

 

Figure b Figure 2.2 Remotely operated vehicle image of the sinkhole bottom, showing 
cyanobacterial mats, including purple-colored prostrate mat and raised conical 
structures we refer to as “fingers”, and exposed white areas that have lost 
cyanobacterial mat cover. “Fingers” average 10-15 centimeters in height; an example 
is indicated in the figure by a white arrow. Photo credit:  R. Paddock and V. Klump, 
University of Wisconsin-Milwaukee, USA). 
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Field work was conducted in the spring, summer, and fall from May 2007 to June 2009 at the 

Middle Island Sinkhole (N 45.19843°N, W 083.32721°W) near Alpena, MI (Figure 2.1).  Water 

samples were collected from above and below the near-bottom chemocline (lake water and 

groundwater, respectively) by divers using Niskin bottles and then dispensed into 10L 

collapsible poly cubitainers.  Sediment cores with intact mats, underlying sediments, and 

overlying water were hand collected by divers using plexiglas tubes (7.5 cm dia. x 20 cm tall).  

Cores were capped with rubber stoppers and kept upright in a core rack that was raised to the 

surface.  Water and cores were kept in iced coolers in the field and then refrigerated in the lab.  

Water was stored at 4oC and cores were maintained at in situ temperatures of ~9.5oC.  A subset 

of sediment cores were extruded and sectioned for microscopy, isotopic, and mineralogical 

analysis, according to visual cues in the sediment profile, including thin (0–0.2 cm) prostrate 

cyanobacterial mat, the underlying mineral-rich layer (0.2–0.5 cm), and sections of the thick 

organic-rich sediment.  Sediment samples were stored in 2 ml plastic tubes.  The “finger” used 

for metagenomics was collected on 6/14/2007, separated from the sediment, and transferred to a 

50-ml polypropylene tube.  Once collected, all samples were stored frozen at -20°C until 

processing. 

   

Microscopic studies of mat structure and composition  

Filamentous cyanobacteria from the surface of the mats were gently suctioned into eye droppers, 

fixed with 2% formaldehyde, imaged by differential interference contrast (DIC) with a Nikon 

eclipse 80i microscope, and photographed with a QIClick Qimaging digital camera.  In order to 

obtain a cross-sectional image of the mat-sediment continuum, intact mats were carefully peeled 

from the surface of sediment cores and placed on a Petri dish over a thin layer of groundwater. 
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Portions of the mat were sectioned and photographed using a Nikon SMZ-2T Binocular 

Microscope equipped with a Micropublisher 5.0 RTV QImaging digital camera. 

  

Benthic Chamber Studies of Dissolved Oxygen   

 

 

Figure c Figure 2.3 (A) Custom benthic metabolism chamber equipped with YSI-sonde sensors for 
dissolved oxygen, temperature and conductivity. (B) Diver deployment of chamber over benthic 
mat.  (C) light and dark chamber deployments, respectively, at the Middle Island Sinkhole (Photo 
credit: B. Biddanda, Grand Valley State University, and T. Casserly, NOAA, USA). 

 

Benthic metabolic studies were performed as time series using custom diver-deployed acrylic 

benthic chambers to evaluate potential for in situ net O2 production via oxygenic photosynthesis 

and net O2 consumption via respiration.  Each chamber consisted of a tube (21 cm dia. x 50 cm 

length), adjustable plastic collar, and a removable cap equipped with an YSI 6920 sonde (Figure 

A. B. 

C. 
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2.3).  Divers first pushed the tube/collar through the water column and into the mat/sediments, 

ensuring the tube contained representative groundwater and not any overlying lake water.  The 

collar allowed precise control over chamber volume and sensor position before clamping the cap 

onto the chamber tube. These procedures allowed us to measure metabolic processes in situ 

without disturbing the intact microbial communities with overlying groundwater and underlying 

sediments.  Sondes were configured to record data every hour for each sensor including 

temperature, conductivity, pH, oxidative-reductive potential, and O2.  From the measured 

changes in dissolved O2, estimates of photosynthesis and respiration of carbon were made using 

either a photosynthetic quotient of 1.0 or a respiratory quotient of 1.0, respectively (Biddanda et 

al 1994).  Typically, triplicate light and dark (covered with opaque dark plastic sheets) chambers 

were deployed for a period of 24–48 hrs and changes in dissolved oxygen tracked as an index of 

net carbon metabolism.  During chamber studies (June 14–15, 2007; July 24–26, 2007; August 

14–15, 2007; September 18–19, 2008), hourly PAR measurements at the mat surface were 

recorded from a LICOR LS-193 spherical bulb to a Nexsens SDL-500 data logger.  Chamber 

deployment studies were conducted five times during 2007 (May 17–18; June 14–15; July 24–

26; August 11–14; August 14–15), twice during 2008 (June 18–19; September 3–5) and once 

during 2009 (June 3–5 2009). 

 

Autotrophic process measurements by 14C bicarbonate uptake 

Laboratory 14C-bicarbonate uptake experiments were conducted on mats from sediment cores 

within 24 hours of collection using two methods:  1) mats were left intact with sediments in 

cores to simulate processes occurring at the mat/sediment interface in the sinkhole (e.g. sulfide 

production), and 2) mats were peeled away from the surface of the sediment cores and 
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homogenized in groundwater prior to incubation to simulate conditions of oxic groundwater.  

14C-sodium bicarbonate was added at a final specific activity of 2µCi ml-1, and in vitro 

experiments were performed under simulated in situ conditions of temperature and light for 6–8 

hrs under the following conditions: 1) light vs. dark treatments to distinguish between 

photosynthesis and dark chemosynthesis, and 2) treatments with and without DCMU, an 

inhibitor of photosystem II and hence oxygenic photosynthesis (Biddanda et al 2006, Pedros-

Alio et al 1993).  Each treatment had a parallel “killed” treatment where the samples were pre-

treated with 2% formaldehyde for 3 hrs prior to label spike and incubation. At the end of the 

incubations, any unassimilated inorganic carbon was liberated from the samples by acidification 

with 1N HCL for 16 hrs, and the radioactivity of the remaining assimilated organic carbon alone 

was determined in a Beckman LS6500 Liquid Scintillation Counter.  Killed controls accounted 

for 2–10% of the radiolabel found in live samples.  All autotrophic production estimates 

(oxygenic photosynthesis, anoxygenic photosynthesis and chemosynthesis) were done after 

correcting for the radioactivity in parallel killed controls (Biddanda et al 2006, Casamayor et al 

2008).  Incubations were conducted in a temperature controlled dry incubator at ~9.50C, the 

average temperature of the groundwater at MIS.  Light source was provided by a 75 watt 120 

volt Sylvania Halogen lamp with a light output of 1100 lumens, and regulated by one layer of 

blue film and one neutral density filter to approximate the light climate available at the bottom of 

the Middle Island Sinkhole (~5% of surface irradiance) (Biddanda et al 2009, Ruberg et al 2008). 

 

Stable Isotope Analyses 

Samples (n = 5) collected from a microbial “finger” were placed in a freeze-dryer for 24 hours 

and then decarbonated in weak HCl (2% solution) and re-dried. The resulting powders were 
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weighed on a microbalance (~150 μg) and placed in tin capsules.  The capsules were combusted 

in a Costech elemental analyzer attached to a Delta V+ isotope-ratio mass spectrometer for 

isotopic analysis.  Results were calibrated using standards IAEA600 and IAEA-CH-6 and are 

reported as δ13Corg values in per mil notation relative to the VPDB scale.  Analytical precision 

was maintained at better than 0.1 ‰ during the run. 

 

X-ray Diffraction (XRD) 

Samples (n = 18) were collected as a depth profile through a cyanobacterial mat into the 

underlying sediments to a depth of 23.5 cm.  X-ray diffraction (XRD) spectra were measured on 

powders using a 2.2 kW Cu-Kα Rigaku Ultima IV XRD (40 kV, 44 mA beam) with a 

Theta/Theta wide angle goniometer from 2–70° with a 0.05 2θ step-size.  Measurements of peak 

position were made using PDXL software from Rigaku. 

 

DNA extraction, Genome Sequencing Annotation, and Phylogenetic Analyses 

DNA was extracted from 1g of mat material using the Fast DNA spin kit for soil (MP 

Biomedicals), a Fastprep-24 Bead Beater (MP Biomedicals), and a DNA Clean and 

Concentrator-5 kit (Zymo Research) according to the manufacturer, except that only 0.3g of 

beads were used for bead-beating.  DNA was quantified using the Quant-IT PicoGreen dsDNA 

reagent and kit (Invitrogen) and submitted to the University of Michigan DNA Sequencing Core 

for one plate of 454 Titanium pyrosequencing.  Genomic assembly was performed using MIRA 

(Chevreux et al 2004), and contigs binned using emergent self-organizing maps (ESOM) of 

tetranucleotide frequency patterns, whereby contiguous sequences were chopped into 5kb 

sequences for which tetranucleotide frequencies were calculated and then clustered by ESOM 
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(Dick et al 2009a).  Further binning was done manually using BLAST.  Annotation was done 

through the Joint Genome Institute’s (JGI) Integrated Microbial Genomes Expert Review (IMG-

ER) portal (http://img.jgi.doe.gov/cgi-bin/pub/main.cgi), where gene and protein sequences are 

publicly available (see Supplemental Table 2.2 in Appendix A for accession numbers).  

Nucleotide sequences were submitted to GenBank under BioProject ID PRJNA72255. 

Unless noted otherwise, all BLAST analyses were performed using an e-value cutoff of 1e-5.  

Genes for sulfur oxidation were identified through BLAST with queries described in detail in 

Supplemental Table 2.1 in Appendix A.  Universally conserved genes used to evaluate genome 

completeness were identified via BLAST with cutoffs of 1e-30 and 60% sequence identity.    

Sequences for phylogenetic analysis were aligned with ClustalW (Larkin et al 2007).  

Phylogenetic analysis was performed with MEGA 4 (Tamura et al 2007) for minimum evolution 

and maximum parsimony trees and RAxML (Stamatakis 2006) for maximum likelihood trees.  

All three approaches were used and found to yield consistent results for each phylogenetic 

analysis.  All trees were bootstrapped 5,000 times; only bootstrap values > 70 are reported on the 

trees. 

 

2.3 Results and Discussion 

Mat structure and microscopy 

The benthic environment of the Middle Island Sinkhole (MIS) is impacted by hypoxic, saline 

groundwater where dense cyanobacterial mats thrive (Figure 2.2).  In addition to prostrate purple 

mats, there are occasional white patches where the cyanobacteria are not growing, exposing 

sediment or white layers of the microbial mat, as well as variably shaped features (conical to 

columnar) of raised cyanobacterial mat, which we designate “fingers” (Figure 2.2).  These 
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fingers contain gas bubbles of methane and sulfide derived from microbial metabolism in 

underlying sediments.  The structures are similar to those observed in ice-covered Antarctic 

lakes, where they have been observed to “lift-off” due to buoyant microbial gases (Andersen et al 

2011, Cowan and Tow 2004, Hawes and Schwarz 1999, Wharton et al 1983).   

Microscopic examination of the MIS mats showed predominately filamentous cells with straight, 

unbranched trichomes lacking heterocysts that fall into two main groups on the basis of trichome 

width: ~12-16 μm thick trichomes and ~6 μm thin trichomes (Figure 2.4).  Sheaths have been 

observed in both types but their presence appears to be variable.  Thick trichomes are 

consistently observed with rectangular cells that are shorter than one half cell width and 

terminate with rounded apical cells (Figure 2.4C), common of the genus Oscillatoria.   Thin 

trichomes have cell shapes that are less consistent but are typically longer than their width and 

terminate with rounded apical cells (Figure 2.4B) common in the genus Phormidium (Komarek 

et al 2003, Vincent 2000).  Despite advances made using modern genotypic and phenotypic 

approaches, there remains considerable uncertainty regarding the classification of these 

cyanobacteria at the species level (Marquardt and Palinska, 2007; Strunecky, 2010).  Although 

trichomes of Phormidium sp. and Oscillatoria sp. were the most abundant, we have observed 

other types of less common cyanobacterial filaments that are spiral-shaped and tall-celled (Figure 

2.4A).  Their identities are unclear due to lack of coverage in both the metagenome and clone 

libraries performed previously (Nold et al 2010a).  Clearly, additional molecular and taxonomic 

studies are needed.  
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Figure d Figure 2.4 (A) Bright-field microscope images of dominant thin (x) and thick (y) cyanobacterial 
trichomes of Phormidium sp. and Oscillatoria sp., respectively.  The spiral-shaped filaments 
and tall-celled filaments are far less common and have not been identified.  (B) and (C) show 
details of rounded apical cells in Phormidium sp. and Oscillatoria sp. trichomes, respectively.  
(D) Cross-sectional stereo microscopic image of purple microbial mat at the MIS showing 
layers of motile purple cyanobacterial trichomes on top and motile white filamentous sulfur 
oxidizing bacteria and carbonate crystals below.  Underlying dark organic sediment is not 
pictured. 

 

Under the fluorescence microscope, the filamentous cyanobacteria autofluoresce purple-

red when exited by green light, suggesting the presence of phycobiliproteins.  Vertical cross 

section of the mat and sediment revealed a thick layer of woven cyanobacterial trichomes over a 

white crystalline sediment matrix interspersed with unidentified white filamentous bacteria 

(Figure 2.4D).  Trichomes exhibited remarkable motility under light, being able to rapidly re-

aggregate or climb over small pebbles in minutes or hours.  When placed in darkness, the white 

filaments were observed to migrate to the mat surface, consistent with behavior of mat-

associated sulfur-oxidizing chemosynthetic bacteria.  Determining whether such diel migrations 

A B C 

D 
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occur in situ at MIS and the biogeochemical consequences of any such spatio-temporal dynamics 

is worthy of future investigation.   

 

 

Figure e Figure 2.5 Dissolved O2 concentration measured in benthic metabolism chambers over a 36-hour period 
(July 24-26, 2007). Changes in dissolved O2 concentration in light and dark chambers (both decreasing at 
nearly identical slopes) suggest that alternative production mechanisms such as anoxygenic 
photosynthesis and chemosynthesis must be prevalent at sinkholes to explain how such a prolific mat 
community could sustain itself.  Nearly identical rates and trends were measured in different years from 
2006-2009.  

 

Carbon metabolism and respiration 

Two approaches were taken to investigate carbon metabolism in the MIS mats.  First, benthic 

metabolism chambers were deployed in situ under light and dark conditions (Figure 2.3) to 

measure changes in dissolved O2 as an index of O2 production/respiration.  Second, lab 

experiments were performed on mat/sediment cores to track autotrophic 14C-bicarbonate 

incorporation into biomass.  Five benthic chamber studies conducted in 2007 and 2008 

consistently showed there was net consumption of O2, with dissolved O2 decreasing similarly in 

both light and dark treatments (Figure 2.5). However, the rates of net O2 consumption were 

significantly different (paired t-test, p=0.025), being ~30% greater in the dark (~17 mg C m-2 d-1)  
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than in the light (~12 mg C m-2 d-1) (Table 2.1).  This net consumption of O2 shows that any O2 

produced via oxygenic photosynthesis is quickly consumed either by aerobic respiration or by 

reduction with sulfide (chemical or chemosynthetic) (Supplemental Figure 2.2 in Appendix A).  

Such tight coupling of O2 production and consumption has been observed in cyanobacterial mats 

previously (Canfield and Des Marais 1993).  Calculations based on these observed rates of O2 

consumption and using a respiratory quotient of 1.0 suggest that ~17 mg C m-2 d-1 of autotrophic 

carbon synthesis is required to balance the system (Table 2.1).  These results also indicate an 

excess of carbon synthesis relative to O2 production, and suggest that primary production 

mechanisms that do not produce O2, such as anoxygenic photosynthesis and chemosynthesis, 

play significant roles in the carbon balance of the MIS habitat (Supplemental Figure 2.2 in 

Appendix A).   

Table 1  Table 2.1 C arbon consumption in in-situ light and dar k bent hic chambers estimated from decline in dissolved oxygen over 24-48 hr deployments at MIS during 5  experiments in 2007 and 2008.   A  typica l example of time-series data (July 2007 study) is shown in Figure 5. 

Table 2.1 

Carbon consumption in in-situ light and dark benthic chambers estimated from decline in 
dissolved oxygen over 24-48 hr deployments at MIS during 5 experiments in 2007 and 
2008.   A typical example of time-series data (July 2007 study) is shown in Figure 5. 

Date of Benthic Chamber Study 
Light Chambers  

(mg C/m2/d) 
Dark Chambers  

(mg C/m2/d) 

June 14-15, 2007 7 11 

July 24-26, 2007  11 14 

August 11-14, 2007 12 17 

August 14-15, 2007 11 22 

September 18-19, 2008 19 22 
Mean ± S.D. (n=5) Mat/Sediment 

Carbon Consumption 12.0 (4.4) 17.2 (4.8) 
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Table 2 Table 2.2 Autotrophic production processes in intact MIS cyanobacterial mat + sediment (cores), and mat filaments in 
groundwater (suspension). Mean ± S.D. (n=3). 

Table 2.2 
  Autotrophic production processes in intact MIS cyanobacterial mat + sediment (cores), and 

mat filaments in groundwater (suspension). Mean ± S.D. (n=3). 

Production Process 
Intact Cores (low/no O2) 

(mg/C/m2/d) 
Mat suspension (oxygenated)  

(mg C/L/d) 
Oxygenic PS not detected 4.0 (2.3) 

Anoxygenic PS 8.4 (2.4) 0.9 (0.4) 
Chemosynthesis 8.6 (2.1) 0.2 (0.03) 

Total autotrophic 
production 17 5.1 

 

14C-bicarbonate incorporation studies of mats in laboratory incubations were used to 

further assess contributions to primary production from oxygenic photosynthesis, anoxygenic 

photosynthesis, and chemosynthesis.  Experiments were conducted under two conditions 

designed to assess the effect of sulfide and O2 on autotrophic production processes by the mats:  

(1) mats were left intact with sediments (sulfide present; low O2), and (2) mats were removed 

from the sediment and suspended in groundwater (sulfide absent; high O2).  For the intact cores, 

primary production was dominated by anoxygenic photosynthesis and chemosynthesis, and no 

oxygenic photosynthesis was detected (Table 2.2).  In contrast, oxygenic photosynthesis was the 

main mode of primary production in the oxygenated mat suspension.  Interestingly, if we take 

the difference in net O2 consumption between day and night benthic chambers (5.2 mg C m-2 d-1) 

as a rough estimate of oxygenic photosynthesis (Table 2.1), this rate is approximately matched 

by the measured rate of oxygenic photosynthesis in 14C tracer studies (4.0 mg C m-2 d-1) – albeit 

under oxygenated and sulfide-free conditions (Table 2.2).  Based on these findings we draw the 

following conclusions.  First, the mats are metabolically versatile, being capable of significant 

primary production through oxygenic or anoxygenic photosynthesis or chemosynthesis.  Second, 

the balance of oxygenic versus anoxygenic photosynthesis depends on the presence of sulfide 
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and/or O2.  Third, measured rates of anoxygenic photosynthesis and chemosynthesis of ~ 17 mg 

C m-2 d-1 from 14C tracer studies of intact sediment cores are collectively sufficient to satisfy the 

carbon-deficit of ~ 17 mg C m-2 d-1 estimated from O2 consumption observed in the benthic 

chamber studies (Tables 2.1 and 2.2) – suggesting that the carbon cycle in the MIS mat is well-

balanced (Supplemental Figure 2.2 in Appendix A).  In terms of the quantity of primary 

production, rates of anoxygenic photosynthesis and chemosynthesis measured in the MIS mat-

sediment complex are comparable to those made for aquatic microbial mat communities in Solar 

Lake, Israel, and other similar mat-dominated habitats (Bachar et al 2007, Casamayor et al 2008, 

Cohen et al 1986, Fontes et al 2011, Jorgensen et al 1979, Jorgensen et al 1983, Overmann et al 

1991, Revsbech et al 1983, Stal 2000).   

Microbial “finger” δ13Corg values ranged from -27.25 to -28.43‰, with a mean of -

27.88‰ (± 0.47 1σ).  The C wt. % was variable within a relatively narrow range, and averaged 

44.88%.  Groundwater in the MIS system has a dissolved inorganic carbon (DIC) isotopic 

composition of -4.1‰ (Sanders et al 2011), so fractionation of carbon by the mat due to 

photosynthesis was -24‰.  These δ13Corg values are consistent with typical autotrophic carbon 

fixation by the Calvin-Benson cycle (which is present in the MIS-Ph1 genome – see below).  

While cyanobacterial systems in nature may display a wide array of δ13Corg values, both the mean 

value of the Lake Huron mats themselves and the degree of C fractionation are consistent with 

previous results from both marine and freshwater cyanobacterial systems (Schidlowski 2000).  

Thus, while there are relatively few Precambrian lacustrine systems that have been recognized, 

results from this system are also relevant for understanding similar marine settings with photic-

zone benthic microbial mats.  The MIS mat δ13Corg values are consistent with reported terrestrial 

Precambrian organic matter (Horodyski and Knauth 1994, Imbus et al 1992, Retallack and 
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Mindszenty 1994, Rye and Holland 2000).  Most Precambrian kerogen (fossilized organic matter 

that is insoluble in solvents) ranges between -25 and -40‰ (Pavlov et al 2001), where the 

lightest values are from systems thought to have been influenced by methanotrophy.  Microbial 

decomposition of C in sediments typically changes δ13Corg values by +2‰ or more relative to the 

original value of the organic matter (Walter et al 2007), so if organic matter from a Precambrian 

system similar to the Middle Island Sinkhole (δ13Corg value of -27.9‰) was buried, the preserved 

signal would be near the heavy end of the Precambrian kerogen range, appropriately representing 

photosynthetic systems without significant methanotrophic influence.  Precambrian microbial 

mats are most often recognized on the basis of gross morphological features (e.g., stromatolites) 

or of microbially induced sedimentary structures (Noffke, 2009; Sheldon, in press), neither of 

which are obvious in the MIS system.  Our results showing an anoxygenic cyanobacterial mat 

with δ13Corg values that are indistinguishable from those of oxygenic cyanobacteria highlights the 

difficulty in relating δ13Corg values to specific metabolic or biogeochemical function.  Further 

work is needed on the isotopic and elemental composition of the carbonates in the system, and 

on the δ15N values of the mats, to determine whether the combined isotopic results will provide a 

biosignature for similar systems in the geologic record.   

 

Identification of minerals associated with mats and underlying sediments 

The unique geochemical setting of the MIS mats presents opportunities to investigate 

cyanobacterial calcification under conditions relevant to the Precambrian, which may inform 

longstanding questions regarding the distribution of calcified stromatolites through geologic time 

(Grotzinger and Knoll 1999, Riding 2006).  The MIS mats are not lithified, but a carbonate-rich 

layer just beneath the mat has been observed (Nold et al 2010a).  XRD identified quartz, calcite, 
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and dolomite as the three major mineral phases associated with the mat and underlying 

sediments.  For the purposes of comparing normalized abundance, we present the ratio of XRD 

primary peak intensity of calcite (2θ = 29.5°) and dolomite (2θ = 31°) to quartz (2θ = 26.7°).  

This calcite/quartz ratio (C/Q) ranged with depth in mat/sediment from 0.39 to 2.31, with a mean 

of 0.57 (± 12 1σ; excluding the high value).  The layer immediately beneath the mat is 

characterized by a > 14σ increase in the C/Q ratio, indicating a prominent enrichment of calcite 

and confirming the presence of a carbonate-rich sedimentary layer immediately beneath the 

cyanobacterial mat (Nold et al 2010a).  The dolomite/quartz ratio (D/Q) ranged from 0.58–1.12 

with a mean of 0.79 (± 0.13 1σ).  The D/Q ratio was elevated both deep in the core and near the 

surface, including a >2 σ enrichment immediately underneath the cyanobacterial mat, at the same 

level as the calcite enrichment.     

There are several possible mechanisms by which the microbial mat and/or sediment 

communities may influence carbonate precipitation in this environment.  First, cyanobacteria 

produce extracellular polymeric substances (EPS), which can nucleate carbonate mineralization 

and influence the type of mineral produced (Riding 2006, Riding 2011).  Heterotrophic bacteria 

have also been shown to catalyze carbonate formation through heterogeneous nucleation (Bosak 

and Newman 2003).  Second, carbonate precipitation can be promoted by increases in alkalinity 

driven by photosynthesis or heterotrophic sulfate reduction (Dupraz et al 2009).  In particular, 

carbon concentration mechanisms possessed by the dominant MIS organism (see carbon 

acquisition and metabolism section below) are thought to induce calcification (Riding 2011).  

Sulfate reduction observed in the carbonate-rich layer of MIS has been linked to sulfate reducing 

bacteria (Nold et al 2010a) and interestingly, the cyanobacteria themselves also show some 

evidence for sulfur reduction (see below) and thus could play a role in carbonate precipitation 
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through this mechanism.  However, it is unclear whether sulfur/sulfate metabolism is directly 

involved in carbonate precipitation in the MIS sinkhole, and the relevance of this process under 

Precambrian conditions is also questionable (Bosak and Newman 2003).  The formation of 

dolomite in modern, freshwater, low temperature settings is rare, but microbial mediation of 

dolomite precipitation has also been linked to sulfate reduction (Van Lith et al 2003, 

Vasconcelos et al 1995, Warthmann et al 2000) and as well as methanogenesis (Kenward et al 

2009).  Both of these metabolisms are active in MIS sediments but further investigation is 

required to determine the specific chemical and biological factors that influence the formation of 

the observed calcite and dolomite.    

Table 3 Table 2.3 Summary of metagenomic assembly. 

Table 2.3 Summary of metagenomic assembly.  
  Genomic 

Bin 
No. of 
reads 

No. of 
contigs 

Avg. 
contig 
length (bp) 

Avg. 
coverage 

Avg. % 
GC  

Total 
consensus 
sequence 
(MB) 

Metagenome 827,593 19,463 1,357 4.4x 43 26.7 
MIS-Ph1 577,920 555 11,251 38.4x 45.1 6.4 
MIS-Ph2 14,400 254 3,991 5.9x 44.4 1 
Os 94,238 748 6,210 7.9x 38.9 4.6 
Unassigned 141,035 17,906 819 3.2x 43.1 14.7 
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Figure f Figure 2.6 Phylogenetic tree of the 16S rRNA gene of selected cyanobacteria.  Metagenomic contigs 
from this study (closed red circles), clones from Nold et al. (2010a) (open red circles), and species 
for which genome sequences are available (green squares) are indicated.  Bootstrap values are the 
results of 5000 iterations; values < 70 are not shown. 
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Metagenomic sequencing, assembly, and binning 

To explore the genetic diversity and metabolic capability of the MIS microbial mat, community 

genomic DNA of a mat finger was shotgun sequenced, producing 827,593 DNA sequencing 

reads that assembled into 19,463 contiguous sequences (contigs) (Table 2.3).  16S rRNA gene 

sequences in this metagenome were dominated by two genera of cyanobacteria, Phormidium and 

Oscillatoria.  The dominant 16S rRNA gene sequence (38x average coverage) is closely related 

to Phormidium autumnale-like sequences retrieved previously from prostrate MIS mats and from 

a variety of Arctic and Antarctic environments (Figure 2.6) (Nold et al 2010a).  Of the 45 

sequences obtained from the MIS mat previously, 31 came from the same dominant Phormidium 

operational taxonomic unit (OTU), indicating that this organism dominates both prostrate and 

raised mats in the MIS.  Also present in the MIS metagenome were four contigs (2–13X 

coverage) with 16S rRNA gene sequences that cluster tightly with Planktothrix rubescens CCAP 

1459-14, Oscillatoria agardhii, and Oscillatoria sp. 49.  A partial Bacteroidetes-like 16S rRNA 

(2x genomic coverage) was also recovered. 

To better understand the genetic potential underpinning the physiology and metabolism 

of the different MIS mat community members, contigs were assigned to taxonomic groups, or 

“genomic bins”, based on emergent self-organizing maps of tetranucleotide frequency (Dick et al 

2009a).  Two bins were apparent, one containing contigs with the Phormidium 16S rRNA gene 

(MIS-Ph1), and the other containing the Oscillatoria 16S contigs.   Contigs in the Phormidium 

bin showed a bimodal distribution of genomic coverage with approximately half at 38x coverage 

and half at less than 10x coverage; we designate these as two separate bins, MIS-Ph1 and MIS-

Ph2 respectively.  The MIS-Ph2 bin contains a partial 16s rRNA gene that is identical to the 16S 

rRNA gene from MIS-Ph1, thus we infer that these bins represent two closely-related but distinct 
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genotypes, one high abundance and one low abundance.  The Oscillatoria bin contains contigs 

from at least four different genotypes that are present at similar abundance (2–10x coverage); we 

refer to these populations collectively as MIS-Os.  The 4.6 megabases of DNA recovered in this 

bin represent partial genomes of the Oscillatoria populations.  70% of the total DNA sequence 

reads assembled into the dominant MIS-Ph1 genotype, and just 17% of DNA sequence reads fell 

outside of the dominant Phormidium and Oscillatoria organisms (Table 2.3).  These results show 

that MIS mats have remarkably low species and genomic diversity, containing just a few 

dominant cyanobacteria and several lower abundance bacteria. 

 

Putative genes for anoxygenic photosynthesis  

In order to investigate the potential for anoxygenic photosynthesis among members of the MIS 

mat community, we searched the metagenome for genes known to be involved in sulfur 

oxidation.  Genes with sequence homology to SQR were found in the genomic bins of all three 

dominant mat cyanobacteria as well as in unassigned contigs (Table 2.4; accession numbers and 

annotations of all genes discussed in the text are provided in Supplemental Table 2.2 in 

Appendix A).  The Oscillatoria bin contains an SQR with 56% amino acid identity to the SQR 

from the cyanobacterium Geitlerinema sp. PCC 9228, which is involved in sulfide-dependent 

anoxygenic photosynthesis (Bronstein et al. 2000).  The Phormidium and unassigned bins 

contain homologs of SQR that are much more divergent.   Four genes with limited sequence 

similarity to SQR in the unassigned contigs are most closely related to oxidoreductases of 

unknown function from Oscillatoria sp. 6506 and Lyngbya sp. PCC 8106 (15–25% amino acid 

identity).  These unassigned SQR genes are on contigs with very low genomic coverage (1–2X) 

and thus derive from very low abundance organisms, so it is highly unlikely that they contribute 
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significantly to the anoxygenic photosynthesis reported in Table 2.2.  A phylogenetic tree of 

SQR shows that the MIS-Os SQR falls into a well-resolved cluster of SQRs including two with 

experimentally verified sulfide-oxidizing activity (Geitlerinema sp. PCC 9228 and A. 

halophytica) and eight others that are present in sequenced cyanobacterial genomes (Figure 2.7).  

Putative SQR sequences from MIS-Ph1 and MIS-Ph2 fall outside of the main clade of 

cyanobacterial SQR sequences but within the broader family, which includes an SQR from the 

eukaryote Arenicola marina that oxidizes sulfide for the purpose of detoxification (Bronstein et 

al 2000a).     

Table 4Table 2.4. Occurence of dissimilatory sulfur metabolism genes in the MIS finger metagenome. 

 
Table 2.4. Occurrence of dissimilatory sulfur metabolism genes in the MIS finger 
metagenome. 
Organism SQR fccA fccB sox dsr sorA sorB aprA aprB qmoA qmoB qmoC 

LHS-Ph1 + - - - + - - + - - + - 
LHS-Ph2 + - + - + - - - - + + + 
LHS-Os + - + - + + - - - - - - 
Unassigned + - + - + + - - - - + + 

 

BLAST survey after Frigaard and Dahl (2008), using parameters and queries described in Materials and Methods.  
Note that the dsr column represents the presence of any of the 13 dsr genes (dsrABCEFHLNMKJOP).  None of the 
bins has a full set of dsr genes, but all bins contain BLAST hits to some dsr genes.   
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Figure g Figure 2.7 Phylogenetic tree of sulfide quinone oxidoreductase (SQR).  Sequences from the MIS mat are 
indicated with red circles.  Genes that have been experimentally verified to oxidize sulfide are shown 
with a blue triangle. 

 

While the MIS mat SQR sequences that we report do indeed likely encode functional 

sulfide-oxidizing enzymes, the actual physiological role that this sulfide oxidation plays is 

difficult to discern based solely on sequence similarity.  Geitlerinema sp. PCC 9228 and 

Aphanothece halophytica  encode SQR enzymes that have been experimentally shown to oxidize 

sulfide (Bronstein et al 2000a), but they perform different physiological functions.  The SQR 

from Geitlerinema sp. PCC 9228 can be used for sulfide-dependent anoxygenic photosynthesis, 
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whereas the SQR from A. halophytica is used for detoxification of sulfide and is not linked to 

cell growth (Bronstein et al 2000a, Oren and Shilo 1979).  Further complicating the functional 

role of this enzyme in the cyanobacteria, the SQR from Geitlerinema sp. PCC 9228 can also be 

involved in anaerobic respiration (Oren and Shilo 1979).  Clearly, there is much that remains to 

be learned about the function of SQR-like genes in the cyanobacteria.       

Although SQR is the only enzyme that has been implicated in anoxygenic photosynthesis 

in the cyanobacteria to date, sulfide-dependent anoxygenic photosynthesis is phylogenetically 

widespread throughout the cyanobacteria (Miller and Bebout 2004a).  The vast majority of this 

diversity has not been explored with genetic or biochemical tools, therefore it is feasible that 

there are novel sulfur oxidation pathways in the cyanobacteria.  Homologs of several genes 

known to be involved in sulfur oxidation in the MIS metagenome were identified (Table 2.4), 

including flavocytochrome c (fccB), various dissimilatory sulfur reductase (dsr) genes, 

sulfite:cytochrome c oxidoreductase (sor), adenosince-5’-phosphosulfate reductase (apr), and the 

quinone-interacting membrane bound oxidoreductase (qmo) (Frigaard and Dahl, 2008).  Many of 

these genes are only distantly related (<30% AA identity) to known sulfur-oxidizing enzymes, 

and in many cases only a subset of subunits are present, thus we cannot ascribe function or 

taxonomy (in the case of unassigned contigs) to these genes with confidence.   

Also notable was the absence of certain sulfur oxidizing pathways typically prevalent in 

bacterial sulfur oxidation, including anoxygenic photosynthesis.  No sox genes (Friedrich et al., 

2005; Ludwig et al., 2006) were identified, and while some dsr genes were found in the 

metagenome, they were typically quite divergent from known genes, and no bin had a full 

complement.  Finally, SQR is the only gene implied in anoxygenic photosynthesis associated 

with sulfide oxidation found in MIS-Ph1  (Frigaard et al 2008).  Taken together, our results 
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suggest that the anoxygenic photosynthesis observed in the MIS mat is conducted by 

cyanobacteria via genes and biochemical pathways that are not yet well-characterized. 

 

Evidence for a complete genome of Phormidium sp. MIS-Ph1  

The MIS-Ph1 genome has ~40X genomic coverage and few polymorphisms (Supplemental 

Figure 2.1 in Appendix A), suggesting an essentially complete genome from a near-clonal 

population.  To evaluate genome completeness, we searched the MIS-Ph1 genome for 40 

universally conserved housekeeping genes that are not often duplicated or horizontally 

transferred (Raes et al 2007).  All 40 genes are present in the MIS-Ph1 genome; 36 are present in 

one copy and four were present in 2 copies (Supplemental Table 2.3 in Appendix A).  The 

occurrence of multiple copies of these genes is not uncommon amongst sequenced 

cyanobacteria; every cyanobacterial genome available on the JGI Integrated Microbial Genomes 

website (60 total as of May, 2011) has at least two of these 40 genes in multiple copies, and eight 

of the genomes are missing at least one of the 40 genes.  The presence of all 40 universal 

housekeeping genes suggests that the gene content of the MIS-Ph1 genome is very close to 

complete.  The completeness of the MIS-Ph1 genome is also supported by the presence of genes 

encoding complete photosynthetic machinery and pathways of energy and carbon metabolism; 

we identified genes for biosynthesis of chlorophyll, for proteins of photosystems I and II, the 

cytochrome b6/f complex, a complete ATP synthase, NADH dehydrogenase complex, and a 

Heme-Cu-type cytochrome/quinol oxidase. 

 A total of 5824 genes were identified in the Phormidium sp. MIS-Ph1 genome, including 

5774 protein coding genes and 50 RNA (rRNA and tRNA) coding genes.  1095 of these genes 

are present in the vast majority of cyanobacteria genomes sequenced to date (>59 of 62), whereas 
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602 of the MIS-Ph1 genes are not present in any other cyanobacterial genomes.  Overall, the 

majority of MIS-Ph1 genes could not be assigned specific functions (Figure 2.8).  Genes that are 

absent or uncommon in previously sequenced cyanobacterial genomes are especially poorly 

defined in terms of function (Figure 2.8). 

 

 

Figure h Figure 2.8 Function and distribution of Phormidium sp. MIS-Ph1 genes across the 62 cyanobacteria 
genome sequences currently publicly available.  The top pie chart shows COG functional categories for 
the entire MIS-Ph1 genome.  Pie graphs below show composition of COG functional categories for the 
indicated fractions.  “Cellular Processes” includes genes for cell cycle control, cell division, and cell 
motility.  “Poorly Characterized” indicates that the genes are of unknown function. 
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Carbon acquisition and metabolism 

The MIS-Ph1 genome encodes a complete Calvin-Benson cycle, consistent with the δ13Corg 

values (-27.25 to -28.43‰) reported above and its role as the major primary producer of the 

finger community.  The genome also has genes for carboxysome shell proteins and carbonic 

anhydrase, which constitute a carbon concentrating mechanism (CCM) and suggest that CO2 can 

become limiting in the mat environment.  This CCM is also thought to induce carbonate 

precipitation by cyanobacteria (Riding 2006).      

Genes for glycogen synthase and carbohydrate branching and debranching enzymes 

reveal a mechanism of carbon and energy storage and subsequent utilization.  The complete 

genes for glucose degradation via the pentose phosphate pathway are present, as are two genes 

that allow Phormidium to perform acetate fermentation; pyruvate:ferredoxin oxidoreductase and 

acetate kinase (Stal and Moezelaar 1997).  Fermentation may sustain MIS-Ph1 at night when 

sunlight is no longer available for photosynthesis.  During the day, mat-forming cyanobacteria 

store carbon and energy in polyglucose reserves and ferment those reserves at night (Nold and 

Ward 1996, Stal 1995), creating fermentation products that are cross-fed to heterotrophic 

community partners. 

In addition to genes for autotrophy, the MIS-Ph1 genome also contains genes for the 

acquisition and utilization of organic carbon (carbohydrates and amino acids) from the 

environment (Supplemental Table 2.2 in Appendix A).  Interestingly, genes encoding beta-

galactosidase/beta-glucuronidases are not found in any of the other 60 cyanobacteria genomes 

sequenced to date except the recently sequenced closest relative, Oscillatoria sp. PCC 6506 

(Mejean et al 2010).  There are close homologs of these proteins (> 50% amino acid ID) in other 

phyla such as Proteobacteria, Verrucomicrobia, Firmicutes, and Lentisphaerae, raising the 

44 
 



intriguing possibility of a horizontal gene transfer origin of these genes in the lineage shared by 

MIS-1 and Oscillatoria sp. PCC 6506.    

 

Oxygen sensing, regulation, and respiratory metabolism 

The MIS-Ph1 genome contains a host of genes dedicated to sensing and metabolizing O2 and 

regulating O2-sensitive pathways.  There are two different electron transport chain terminal 

reductases: a cytochrome c oxidase (subunits I, II, and III) that is present in nearly all currently 

available cyanobacteria genomes, and a cytochrome bd plastoquinol oxidase (subunits 1 and 2) 

that is less widely distributed in cyanobacteria and which is known to operate under low-O2 

conditions (Kana et al 2001).  There are also hints of anaerobic respiration; the SQR described 

above has been reported to be involved in reduction of elemental sulfur, and there is also a gene 

annotated as a sulfite reductase.  The presence of these genes raises the intriguing possibility that 

MIS-Ph1 could be involved in dissimilatory sulfur reduction that has been observed in the MIS 

mat (Nold et al 2010a).  However, these genes are distantly related to genes of known function, 

hence experimental evidence is required to test this possibility. Although anaerobic respiration of 

elemental sulfur has been observed in cyanobacteria, it remains poorly understood (Stal and 

Moezelaar 1997), and dissimilatory reduction of sulfite or sulfate by cyanobacteria has not been 

described.  The presence of two terminal O2 reductases as well as a putative mechanism for 

sulfur reduction may provide versatility in the stratified redox environment in which MIS-Ph1 

thrives.  This versatility would also be important in a microbial mat ecosystem where oxygen and 

sulfide concentrations likely vary on a diel cycle (Stal 2000).   

MIS-Ph1 is also well-equipped for detoxification of reactive oxygen species (ROS) with 

genes for superoxide dismutase, cytochrome c peroxidase, glutathione peroxidase, and 
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peroxiredoxin.  These genes likely play important roles in protecting the MIS-Ph1 biomolecules, 

including the photosynthetic apparatus, from ROS that are commonly produced at both 

photosynthetic reaction centers (He and Hader 2002).  

 

Hopanoid biosynthesis  

Genes for squalene-hopene cyclase (shc) and a radical SAM methylase (hpnP) (Welander et al 

2010) have been implicated in biosynthesis of 2-methylhopanoids, which have been used as a 

biomarker of cyanobacteria and oxygenic photosynthesis in the geologic record (Summons et al 

1999).  However, recent evidence that 2-methylhopaoids and their biosynthetic genes are not 

present in all cyanobacteria and are present in certain non-cyanobacteria questions the reliability 

of this biomarker (Rashby et al 2007, Welander et al 2009, Welander et al 2010).  We were 

unable to detect shc genes within the MIS-Ph1 genome, and homologs of hpnP are present but at 

only at such low similarity (<35% amino acid identity) that their function is uncertain.  The 

absence of hopanoid biosynthesis genes in a cyanobacterium that thrives under persistent low-O2 

conditions, which were likely common in cyanobacterial habitats through certain periods of the 

Precambrian, casts further doubt on the utility of hopanoids as a biomarker of cyanobacteria in 

the geologic record. 

  

Genomic insights into interactions of MIS-Ph1 with the mat community 

The MIS-Ph1 genome contains genes that reflect a communal lifestyle in which interactions with 

other community members are prevalent.  First, there are many genes reflective of viral predation 

pressure (Supplemental Table 2.2 in Appendix A), including seven CRISPR sequences, which 

are thought to provide adaptive immunity to genetic elements such as viruses and plasmids 
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(Makarova et al 2011b).   Second, there are many genes that appear to be involved in 

antagonistic chemical interactions with other community members including the toxins colicin D 

and hemolysin, non-ribosomal peptide synthetases (NRPS) commonly involved in the production 

of bioactive compounds, and antibiotic synthesis and drug resistance.  The function of genes for 

antibiotics is uncertain given the diverse physiological functions recently attributed to them such 

as electron transfer, signaling, and community development  (Dietrich et al 2008, Wang et al 

2010).  Third, we detected a large number of genes involved in communication and mat 

construction (Supplemental Table 2.2 in Appendix A).  Overall, the communal lifestyle encoded 

by the MIS-Ph1 genome offers significant benefits including antibiotic resistance, predation 

deterrence, and facilitation of nutrient acquisition (Blenkinsopp and Costerton 1991). 

 

Environmental sensing, regulation, and nutrient acquisition 

The MIS-Ph1 genome includes many genes dedicated to interfacing with the environment.  

Genes encoding a number of light antenna proteins, including allophycocyanin, phycoerythrin, 

and phycocyanin/phycoerythrocyanin, indicate an ability to efficiently capture energy over a 

wide spectrum of light (DeRuyter and Fromme 2008) which would be useful over daily and 

seasonal light fluctuations.  There are also four genes for bacteriophytochromes, which are used 

for sensing light and regulating light-dependent cellular processes.  Thus the MIS-Ph1 genome is 

well-equipped to optimize photosynthetic machinery according to prevailing light availability.  

There are many more sensing and regulatory genes for light and motility for which only general 

functional predication can be made (Supplemental Table 2.2 in Appendix A).   

The MIS-Ph1 genome encodes numerous transport systems for efficient acquisition of 

nutrients from the environment.  Genes are present for high-affinity transporters of iron (Fe2+, 
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Fe3+ and heme), cobalt, nickel, manganese, phosphate, nitrate, and sulfate and for regulation of 

cellular processes governing homeostasis of these nutrients.  The only authentic nitrogen fixation 

gene identified is present on an unassigned contig from a low abundance member of the 

community.  An exceptional number of genes (5) for cobalt-containing cobalamin (Vitamin B12) 

biosynthesis are present; this micronutrient limits primary production in pelagic marine 

environments (Bertrand et al 2007) but its significance in mats is unknown. 

Finally, genes encoding biosynthesis of betaine and trehalose suggest that these organic 

compatible solutes are used to maintain cellular turgor pressure in the face of osmotic stress.  

The presence of both trehalose, which has been associated with halotolerance in freshwater 

cyanobacteria, and betaine, which has been associated with halotolerance in hypersaline 

cyanobacteria (Stal, 2000), suggests that MIS-Ph1 is prepared to survive a broad range of 

salinities.   

 

2.4 Conclusions 

The Middle Island Sinkhole (MIS) hosts cyanobacterial mats that thrive under persistent low-O2 

conditions, thus providing a novel modern system for investigating geobiological processes that 

were critical in geochemical and biological evolution.  Cyanobacterial mat systems are typically 

considered as a source of O2, for example for the great oxidation event (Holland 2006) or for O2 

oases that fostered development of early animal life (Gingras 2011).  In contrast, we find that the 

MIS mats can be sinks for O2 due to significant primary production of carbon via anoxygenic 

photosynthesis and chemosynthesis.   Recognition of this modern microbial mat community that 

is dominated by cyanobacteria and has δ13Corg values indistinguishable from oxygenic 

cyanobacteria, yet functions as a sink for O2, underscores the need for caution in inferring 
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metabolic functions of filamentous cyanobacteria (or of sedimentary structures putatively made 

by cyanobacteria) preserved in the geologic record.  More broadly, these results suggest that the 

biogeochemical function of cyanobacterial communities through Earth history should be 

considered more carefully, for example as done by Johnston et al (2009).   

Remarkably, the MIS mat community is dominated by just one genotype of the 

cyanobacterium Phormidium sp. MIS-Ph1, which enabled cultivation-independent insights 

through genomic reconstruction.  This genome sequence reveals many adaptations for life in the 

hostile MIS environment, including metabolic versatility (autotrophy and heterotrophy) and the 

ability to facultatively switch between oxygenic and anoxygenic photosynthesis.  In addition, it 

also possesses systems to sense environmental conditions and optimize cellular machinery 

according to light and redox conditions.  Also encoded in the genome are tools to sustain a dense 

mat community while contending with other microorganisms, grazers, and viruses.   

Although these findings provide the first genomic insights into life within cyanobacterial mats 

under low-O2 concentrations, the preponderance of novel genes of unknown function also 

highlights critical gaps in understanding of the genetic underpinnings of these systems, 

especially with regards to anoxygenic photosynthesis.  Further insights into the relationship 

between genetic diversity and community function await deeper sequencing and tracking of 

physiology and gene expression over gradients of light and redox chemistry.  The metagenome 

also holds clues to nutrient requirements that will guide cultivation of the key organisms so that 

genome-generated hypotheses can be tested experimentally.  Overall, the MIS mat system offers 

a promising natural laboratory for determining the factors that control processes of geobiological 

interest such as O2 production, and for evaluating mineralogical, isotopic, and organic signatures 

relevant to interpretation of the geologic record.  
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The dominance of the MIS mats by one genotype points to exceptionally low microbial 

diversity; such unevenness of microbial community structure is rivaled by just a few microbial 

communities in extreme subsurface environments (Chivian et al 2008, Denef et al 2010).  On the 

one hand, this lack of diversity likely reflects the incredible versatility of MIS-Ph1; through its 

ability to thrive under a wide range of conditions it appears to have simultaneously occupied 

several key niches in the MIS environment.  On the other hand, the uneven, low-diversity nature 

of the community indicates a lack of redundancy that could signal a fragility of the MIS 

community (Wittebolle et al 2009).  This potential fragility should be considered in efforts to 

protect and preserve these unique ecosystems in the face of environmental change. 
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Supplemental Figure 1: Screen shot of a typical MIS-PH1 contig viewed through consed.  Each 
line represents a different DNA sequencing read likely derived from a different MIS-Ph1 cell.  
Note the showing deep ~40X genomic coverage and the absence of polymorphisms, suggesting a 
clonal population. 
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Supplemental Table 2.1: Genes used as 
queries for sulfur oxidation genes.  

 
  
Gene Organism 

NCBI 
Accession# 

FccA Alc. vinosum AAA23316 
FccB Alc. vinosum AAB86576 
SorA Sta. novella AAF64400 
SorB Sta. novella AAF64401 
Dsr (All) Alc. vinosum U84760 
SoxA Par. denitrificans CAA55827 
SoxB Par. denitrificans CAA55824 
SoxC Par. denitrificans CAA55829 
SoxX Par. denitrificans CAB94379 
SoxY Par. denitrificans CAB94380 
SoxZ Par. denitrificans CAB94381 
AprAB Alc. vinosum U84759 
QmoA Cba. tepidum CT0866 
QmoB Cba. tepidum CT0867 
QmoC Cba. tepidum CT0868 
Sqr Geitlerinema sp. PCC 9228 AF242368 
Sqr Aph. Halophytica AF242369 
Sqr Rho. capsulatus CAA66112 
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Supplemental Table 2.2: List of genes and accession numbers 

MIS genes of interest with IMG identifiers 
 Putative Gene Bin IMG Identifier 

   Putative genes for anoxygenic photosynthesis  
 Sqr MIS-Os 2050937426 

Sqr MIS-Ph1 2066677257  
Sqr MIS-Ph2 2050924083  

   Carbon acquisition and metabolism 
 Glycogen Synthase MIS-Ph1 2066679283 

Carbohydrate Branching  MIS-Ph1 2066678045 
Carbohydrate Branching  MIS-Ph1 2066677165 
Carbohydrate Debranching MIS-Ph1 2066679940 
Glucokinase MIS-Ph1 2066679941 
Ferredoxin Oxidoreductase  MIS-Ph1 2066680410 
Acetate Kinase MIS-Ph1 2066678572 
OprB MIS-Ph1 2066680010 
ABC-type Transporters  MIS-Ph1 2066676523- 2066676525  
ABC-type Transporters  MIS-Ph1 2066678479- 2066678484 
Carbohydrate Transporter MIS-Ph1 2066678493 
Sugar Catabolism  MIS-Ph1 2066681927 
Sugar Catabolism  MIS-Ph1 2066681203 
Sugar Catabolism  MIS-Ph1 2066681702 
Sugar Catabolism  MIS-Ph1 2066676806 

   Oxygen sensing, regulation, and metabolism 
 Superoxide dismutase  MIS-Ph1 2066676810 

Cytochrome c peroxidase  MIS-Ph1 2066679523 
Cytochrome c peroxidase  MIS-Ph1 2066679959 
Glutathione peroxidase  MIS-Ph1 2066679615 
Peroxiredoxin MIS-Ph1 2066676812 

   Genomic insights into P. autumnale interactions with the mat community  
Eco57I restriction 
endonuclease MIS-Ph1 2066678847 
Eco57I restriction 
endonuclease MIS-Ph1 2066680058 
Restriction-modification 
system MIS-Ph1 2066677275 
Restriction-modification 
system MIS-Ph1 2066678508 
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HNH endonuclease MIS-Ph1 2066679190 
Exonuclease MIS-Ph1 2066678883 
Restriction endonuclease MIS-Ph1 2066677343 
Outer membrane protective 
protein  MIS-Ph1 2066678472 
DNA methylases MIS-Ph1 2066679231, 2066678696 
AIPR MIS-Ph1 2066676575 
Aspartyl protease  MIS-Ph1 2066679955 
Phage integrase MIS-Ph1 2066676918 
Colicin D MIS-Ph1 2066676804 
Vancomycin resistance gene MIS-Ph1 2066676642 
β-lactamase  MIS-Ph1 2066677179 
Hemaglutinin-like domain  MIS-Ph1 2066679448 
Hemolysin MIS-Ph1 2066677404 
Hemolysin MIS-Ph1 2066677627 
Mechanoreceptors  MIS-Ph1 2066677234 
Mechanoreceptors  MIS-Ph1 2066680012 
Mechanoreceptors  MIS-Ph1 2066676983 
Signal transduction pathways MIS-Ph1 

 Signal peptidases  MIS-Ph1 2066679126 
Signal transducing histidine 
kinase MIS-Ph1 2066677562 
Extracellular signaling 
molecule MIS-Ph1 2066676908 
Biofilm-forming MIS-Ph1 2066678737  
Biofilm-forming MIS-Ph1 2066676776 

   Environmental sensing, regulation, and adaptation  
Signal transduction MIS-Ph1 2066677572 
Signal transduction MIS-Ph2 2066678224 
Signal transduction MIS-Ph3 2066677573 

   Evolution and genetic diversity  
 Competence protein  MIS-Ph1 2066679070 
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Supplemental Table 2.3: Single copy COG genes used to quantify 
genome completeness Out of 60 cyanos 
COG Description             Count 2+/genome absent 
COG0012 GTP-binding protein YchF  

     
1 0 0 

COG0016 
Phenylalanyl-tRNA synthetase, 
alpha subunit  

   
1 1 0 

COG0018 Arginyl-tRNA synthetase  
     

1 14 0 
COG0048 Ribosomal protein S12P  

     
1 0 0 

COG0049 Ribosomal protein S7P  
      

1 0 1 
COG0052 Ribosomal protein S2P  

      
1 0 0 

COG0060 Isoleucyl-tRNA synthetase 
     

2 3 0 
COG0080 Ribosomal protein L11P  

     
1 0 1 

COG0081 Ribosomal protein L1P  
      

1 0 1 

COG0085 
DNA-directed RNA polymerase 
subunit beta  

   
2 2 1 

COG0087 Ribosomal protein L3P  
      

1 1 0 
COG0088 Ribosomal protein L4P  

      
1 0 0 

COG0090 Ribosomal protein L2P  
      

1 0 0 
COG0091 Ribosomal protein L22 

      
1 0 0 

COG0092 Ribosomal protein S3P  
      

1 0 0 
COG0093 Ribosomal protein L14P  

     
1 1 0 

COG0094 Ribosomal protein L5P  
      

1 0 0 
COG0096 Ribosomal protein S8P  

      
1 0 0 

COG0097 Ribosomal protein L6P  
      

1 0 0 
COG0098 Ribosomal protein S5P  

      
1 0 0 

COG0099 Ribosomal protein S13P  
     

1 0 0 
COG0100 Ribosomal protein S11P  

     
1 0 0 

COG0102 Ribosomal protein L13P  
     

1 0 0 
COG0103 Ribosomal protein S9P  

      
1 0 0 

COG0124 Histidyl-tRNA synthetase 
     

2 22 0 
COG0143 Methionyl-tRNA synthetase 

     
1 1 0 

COG0172 Seryl-tRNA synthetase  
     

1 0 0 
COG0184 Ribosomal protein S15P/S13E 

     
1 1 0 

COG0185 Ribosomal protein S19P  
     

1 0 1 
COG0186 Ribosomal protein S17P  

     
1 1 0 

COG0197 Ribosomal protein L16P  
     

1 2 0 
COG0200 Ribosomal protein L15P  

     
1 1 0 

COG0201 
Protein translocase subunit secY 
alpha  

    
1 0 1 

COG0202 
DNA-directed RNA polymerase 
subunit alpha  

   
1 0 0 
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COG0256 Ribosomal protein L18 
      

1 0 0 
COG0495 Leucyl-tRNA synthetase  

     
2 1 0 

COG0522 Ribosomal protein S4P  
      

1 0 0 

COG0525 
Ribosomal proteinalyl-tRNA 
synthetase  

    
1 1 0 

COG0533 
O-sialoglycoprotein 
endopeptidase  

    
1 1 1 

COG0541 
Signal recognition particle 
subunit FFH          1 1 1 
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Abstract 

Metagenomic and metatranscriptomic analysis was conducted on 15 samples collected over five 

years from a benthic cyanobacterial mat in a low-O2 sulfidic environment to investigate 

phototrophic, lithotrophic, and heterotrophic metabolisms.  Random shotgun sequencing, de 

novo assembly and binning yielded 32 genomic bins, including genomes for the dominant 

cyanobacteria, three bacterial candidate divisions, and for numerous Proteobacteria involved in 

sulfate reduction, sulfide oxidation, and heterotrophy.  A near-complete genome was recovered 

for candidate division WS3, as well as partial genomes for SM2F11 and RF3.  This is the first 

substantial genomic and transcriptomic data to be reported for SM2F11 and RF3, both of which 

appear to be novel with regard to gene content.  Mapping of transcripts to the WS3 genome 
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revealed expression of genes involved in chemotaxis, H2 oxidation and aerobic respiration using 

a cytochrome C oxidase/reductase, and gene content suggests WS3 is a versatile aerobic oxidizer 

of H2 and sulfur species. Genomic bins were also recovered from several Betaproteobacteria, 

Epsilonproteobacteria, and Gammaproteobacteria.  Thiotrichales were found to primarily 

express genes for sulfur oxidation.  Desulfobacterales genomes recruited the majority of 

transcripts for sulfate reduction, suggesting that these organisms are chiefly responsible for 

production of sulfide at MIS.   

Higher abundance of transcripts was observed for the photosynthetic reaction core genes 

psaA and psbA from cyanobacteria in the dark than in samples collected during the day.  This is 

in contrast to previously studied cyanobacteria that show the peak of psaA and psbA transcription 

during the day, coincident with photosynthesis.   Phormidium transcripts were recovered for 

sulfide quinone oxidoreductase, which is known to oxidize sulfide during anoxygenic 

photosynthesis by cyanobacteria.  We also observed a high ratio of transcripts for photosystem I 

to photosystem II genes, consistent with a genetic regulatory shift towards photosystem I for 

anoxygenic photosynthesis in the presence of sulfide.  We infer that Phormidium populations 

within the mat are likely performing a combination of anoxygenic and oxygenic photosynthesis.  

Overall, these genomic and transcriptomic results link specific groups of microbes to observed 

redox chemistry that underpins biogeochemical cycling at MIS.  

 

3.1 Introduction 

Recent advances in environmental shotgun sequencing (metagenomics) (Wrighton et al 2012) 

and single cell genomics (Rinke et al 2013) have begun to shed light on the functions and 

potential environmental impacts of microbes that have remained unstudied because of their 
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resistance to isolation and culture.  While a small number of model cultured microbes have been 

well studied and characterized, they represent only a fraction of microbial diversity in nature as 

revealed by culture-independent 16s small subunit ribosomal RNA (16s) studies (Rajendhran and 

Gunasekaran 2011, Rappe and Giovannoni 2003).  Culture independent genomic approaches 

have enabled the reconstruction of genomes and prediction of metabolic potential for microbes in 

diverse environments, and added to our understanding of biogeochemical cycles in these systems 

(Castelle et al 2013, Falkowski et al 2008).  Shotgun sequencing of environmentally expressed 

RNA (metatranscriptomics) allows us to take culture independent snapshots of transcriptional 

activity, which can illuminate the dynamics of major metabolic pathways influencing 

biogeochemical cycling in time and space (Frias-Lopez et al 2008).   

Oxygenic photosynthesis, the cellular ability to harvest light energy using water as the 

electron donor and producing O2 as a byproduct, is thought to be largely responsible for the 

oxygenation of Earth’s atmosphere and the resulting shift in redox chemistry.  Cyanobacteria are 

thought to have first evolved oxygenic photosynthesis by coupling together two different 

photosystems derived from anoxygenic bacteria (Blankenship et al 2007).  Transcription of 

photosynthesis genes by cyanobacteria has been shown to be regulated on a day/night cycle (Ito 

et al 2009, Stoeckel et al 2008), peaking during the day in both laboratory pure cultures (Stockel 

et al 2011) and environmental samples (Frias-Lopez et al 2008).  However, these transcriptomic 

studies have focused on unicellular cyanobacteria that are ubiquitous in surface freshwater and 

marine waters, but may not be representative of filamentous cyanobacterial expression in benthic 

microbial mats.   

While most cyanobacteria typically conduct oxygenic photosynthesis and are inhibited by 

sulfide, some cyanobacteria have been shown to perform anoxygenic photosynthesis in the 
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presence of sulfide (Cohen et al 1986).  During oxygenic photosynthesis, photosystem II (PS II) 

and photosystem I (PS I) operate in tandem.  If PS II is inhibited by sulfide, cyanobacteria 

capable of anoxygenic photosynthesis shut down PS II and utilize sulfide as an electron donor 

for PS I (Bronstein et al 2000b, Schutz et al 1997).  Sulfide-quinone oxidoreductase (SQR) is a 

key enzyme for anoxygenic photosynthesis by cyanobacteria (Bronstein et al 2000b) that 

oxidizes sulfide and transfers electrons to PS I through the quinone pool, effectively bypassing 

PS II (Arieli et al 1994a, Bronstein et al 2000b, Schutz et al 1997).  SQR is a diverse protein 

family that has also been linked to sulfide detoxification in cyanobacteria and other phototrophs 

(Bronstein et al 2000b).  Although laboratory studies have elucidated the physiological responses 

of cyanobacteria to sulfide and the role of SQR in anoxygenic photosynthesis, little is known 

about how anoxygenic photosynthesis by cyanobacteria operates at the genomic or 

transcriptomic level, or in natural communities of microorganisms.   

The Middle Island Sinkhole (MIS) in Lake Huron, MI is host to cyanobacterial mats 

living in low-O2, sulfidic conditions.  Although low-O2conditions are often inhibitory to modern 

cyanobacteria, they were common throughout much of their evolutionary history (Johnston et al 

2009a), thus MIS provides a valuable functional analog of ancient cyanobacteria.  The mats sit 

atop anoxic, organic-rich sediments where microbial methanogenesis and sulfate reduction 

produce methane and sulfide, leading to sharp and dynamic redox gradients that favor organisms 

with versatile metabolisms (Nold et al 2010b, Nold et al 2010d, Voorhies et al 2012).  Previous 

studies of MIS have indicated that the mats are metabolically versatile, having the ability to 

conduct oxygenic photosynthesis, anoxygenic photosynthesis, and chemosynthesis, but are 

dominated by cyanobacteria (Voorhies et al 2012).   
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The MIS mats were shown to be a net sink for O2, suggesting a significant contribution to 

primary production by anoxygenic photosynthesis, likely by Phormidium or Oscillatoria, whose 

genomes revealed SQR genes that could be used to perform anoxygenic photosynthesis 

(Voorhies et al 2012).  In order to investigate metabolic gene expression in low O2 

cyanobacterial mats, and pair organisms to specific redox chemistry at MIS, we used 

metagenomics and metatranscriptomics to reconstruct genomes for the most abundant organisms 

from fifteen samples collected at seven time points collected between 2007 and 2012.  Transcript 

abundance showed that Phormidium is performing both oxygenic and anoxygenic 

photosynthesis, likely using SQR.  Various Proteobacteria were responsible for sulfur cycling at 

MIS, and genomes and expression are reported for three novel bacterial candidate divisions, 

WS3, SM2F11 and RF3.  

 

3.2 Materials and Methods 

Sample collection and sequencing 

15 environmental mat samples were collected by scuba divers aboard the R/V Storm between 

2007 and 2012 (Supplemental Table 3.1 in Appendix B).  Samples were collected from within a 

100m area by hand cores containing sediments, mat and overlying groundwater.  Cores were 

rapidly transferred to the surface and mats were extracted from the cores and submerged in RNA 

Later immediately shipboard, with less than five minutes passing from collection to preservation.  

Before preservation, mat samples were quickly rinsed in ground water at the top of the core to 

remove as much underlying sediment as possible, but some sediment entrainment was 

unavoidable.  These samples are diverse in nature, from microbial structures we refer to as 

‘fingers’, to mat lying flat on the overlying sediments, and contain varying levels of sediment, 
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especially the two samples from 2010 which were heavily entrained with sediment.  In order to 

maximize reconstruction of genomes from low abundance members, all 15 samples were used in 

a combined metagenomic assembly. 

DNA was extracted and processed for shotgun metagenomic sequencing (without 

amplification) as previously described (Voorhies et al 2012).  Samples were sequenced using an 

Illumina Hi Seq 2000 instrument producing paired end reads at the University of Michigan DNA 

Sequencing Core.  In 2012, three samples of mat were collected at approximately 1pm (day), and 

1am (night) from within a 9 m2 sampling area.  RNA was extracted from these six samples, 

randomly amplified with the MessageAmp II-Bacteria Kit (Ambion), and converted to 

complementary (cDNA) using the SuperScript Double-Stranded cDNA Synthesis Kit 

(Invitrogen), both as previously described (Frias-Lopez et al 2008).  No ribosomal RNA (rRNA) 

removal methods were used and cDNA was sequenced at the University of Michigan DNA 

Sequencing Core on an Illumina Hi Seq 2000 instrument producing paired end reads.  The 2012 

samples were collected with the intention of comparing RNA transcript abundance of 

photosynthetic (and various other) metabolic genes in day versus night samples.  

 

Assembly and genomic analysis 

A total of 922 million reads from all genomic DNA (gDNA) samples were combined and co-

assembled using IDBA UD (Peng et al 2012).  Contigs greater than 4kb were sorted into 

genomic bins of varying genome completeness (Supplemental Figure 3.1 in Appendix B) using 

emergent self-organizing maps of tetranucleotide frequencies as described previously (Dick et al 

2009b).  Phormidium contigs between 1kb-4kb were identified by BLASTp to previous 

assemblies and added to the Phormidium bin and designated as ‘short contigs’.  Taxonomy of 

genomic bins was determined by BLASTn of 16s genes against the Silva Small Subunit RNA 
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database release 115 (Quast et al 2013), or in the absence of a 16s gene, by tallying best BLAST 

hits to a certain taxonomic group where at least half of all genes in a bin got their best hit to that 

group.  Genus level assignment was only made for bins with a 16s gene with greater than 97% 

nucleotide identity to a known organism.   

Assembly was validated against previous assemblies of MIS using multiple sequencing 

platforms and assembly programs including a previously published metagenome (Voorhies et al 

2012), Illumina assemblies of individual samples created with Velvet (Zerbino and Birney 2008), 

and by manual curation using the genomic viewers IGV (Robinson et al 2011) and Geneious 

(Biomatters 2013) to visualize reads mapped to contigs and genes using BWA (Li and Durbin 

2009).  Gene calling and annotation was performed by the Joint Genome Institute’s Integrated 

Microbial Genomes Expert Review portal (https://img.jgi.doe.gov/cgi-bin/mer/main.cgi) and 

annotation of specific genes of interest were verified using BLASTp with cutoffs of 150 bitscore 

and ID of 30% to NR, COG, KEGG and Pfam. 

 Read coverage for cDNA and gDNA from each sample was assessed by mapping reads to 

contigs and genes using BWA using default settings.  Read coverage was normalized for the 

length of the contig, gene or bin of interest and sequencing effort based on formula 3.1.  Day and 

night cDNA read coverage was calculated by averaging the three day and three night samples, 

and error bars represent standard deviation of coverage across samples. 

 

avg. read coverage = �
Reads mapped ∗  Average read length (100bp)

Total length in bp of gene, contig or  genome
� ∗  Sequencing effort normalization 

Formula 3.1 Formula used for calculating average coverage of a gene, contig or bin of interest.  Sequencing effort 

normalization is a ratio that accounts for variable sequencing effort between samples. 
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3.3 Results and Discussion 

Community composition and function 

Metagenomic assembly produced 420,571 contiguous sequences (contigs) greater than 1kb, 

comprising 1,140,878,834 bp of consensus sequence and 1,478,052 predicted genes.  Genomic 

binning by emergent self-organizing maps of tetranucleotide frequency (Supplemental Figure 3.1 

in Appendix B) yielded 32 genomic bins and 137 estimated genomes representing 12 phyla 

(Table 3.1).  Cyanobacteria were the most abundant organisms in the mat, with Phormidium 

being present at nearly 4000x genome coverage, and Oscillatoria present at approximately 500x 

genome coverage.  Together the Phormidium and Oscillatoria make up more than 50% of the 

mat community in eleven out of fifteen samples, as well as total gDNA from all samples 

combined (Figure 3.1).  While community membership is dynamic across time and space, 

Phormidium is consistently the dominant organism in the MIS mats. 

Genomic bins were also recovered for Acidobacteria, Bacteroidetes, Chloroflexi, 

Firmicutes, Proteobacteria, Spirochaetes, Verrucomicrobia and eukaryotes, as well as a 

Bacillariophyta (diatom) chloroplast, which encodes its own genome.  Many of these groups are 

commonly found in anaerobic or hypoxic sediments and other environments (Tsertova et al 

2011, Yau et al 2013), and several of the low abundance genomic bins have been shown by 16s 

survey to be enriched in the sediments below the mats at MIS (Nold et al 2010b).  Among the 

genomic bins containing 16s genes (Supplemental Table 3.2 in Appendix B) were 

representatives of three bacterial candidate divisions: a near complete genome for WS3 

(3.9Mbp), a partial genome of SM2F11 (1.2Mbp), and a partial genome of RF3 (170Kbp).  

Genome completeness was estimated based on the presence of 36 single copy house-keeping 

genes (Ciccarelli et al 2006), with WS3 containing a single copy of all 36 genes.  The SM2F11 
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bin contains 2 partial genomes with an estimated completeness of 81%, while the RF3 bin has an 

estimated completeness of 17% (Table 3.1). 
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Table 5 Table 3.1 Metagenomic bin statistics and metabolism 

 

74 
 



 

Figure i Figure 3.1 Abundance of each genomic bin by sample as a percentage of the total community.  Finger 
samples were microbial mat structures raised off the sediment.  Mat samples were in contact with the 
sediment. 

 

BLASTp was used to identify potential metabolic pathways of interest in the genomic 

bins based on hits to NR, COG, KEGG and Pfam.  The WS3 genome contains genes for 

autotrophy by the reverse TCA cycle as well as heterotrophy using branch chain ABC-type 

amino acid transporters, and citrate transporters.  Genes for aerobic respiration by cytochrome C-
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type, cytochrome bd-type and heme/copper-type cytochrome quinol oxidases were recovered 

along with a host of oxidative pathways, including those for H2, CO, sulfur, sulfide, and sulfite 

oxidation (Table 3.1).  These findings indicate that the MIS type WS3 is metabolically versatile 

and adapted to using O2 as an electron acceptor, and able to utilize a wide range of electron 

donors.  A single cell genome for a member of WS3 was recently recovered from soil (Rinke et 

al 2013), but it did not contain genes for electron transport or sulfur utilization genes that are 

present in the MIS WS3 metagenome, suggesting varying metabolic potential within the WS3 

candidate division. 

The data presented here is the first genomic sequence reported for candidate divisions 

SM2F11 and RF3, which have been previously identified only by 16s rRNA gene sequence 

(Castelle et al 2013, Tajima et al 1999, Tsertova et al 2011).   The genome of SM2F11 is 

remarkably novel, with 812 of 1569 genes having no significant matches to the NR, COG, 

KEGG or Pfam databases, making identification of metabolic genes difficult.  SM2F11 codes for 

a Rhodanese-related sulfurtransferase and coupled thioredoxin reductase, which can be used for 

intracellular thiosulfate oxidation, or other functions including sulfur detoxification (Ray et al 

2000).  It also has a predicted protein with low sequence similarity (23% amino acid sequence 

ID) to COG3256 (Nitric oxide reductase large subunit) which can be involved in denitrification.  

No identifiable metabolic genes were found in the RF3 genome (Table 3.1). 

  Analysis of genomic bins from proteobacteria identified organisms involved in sulfur 

cycling at MIS.  A full set of dissimilatory sulfite reductase genes was identified within the bin 

for the Desulfobacterales (Deltaproteobacteria), indicating it is capable of sulfate reduction.  

Potential for oxidation of elemental sulfur using reverse dissimilatory sulfite reductase (rdsrAB) 

was detected in the Burkholderiales (Betaproteobacteria), Campylobacterales 
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(Epsilonproteobacteria) and Methylococcales (Gammaproteobacteria), and soxABZ genes for 

sulfur oxidation were identified in multiple members of the Gammaproteobacteria and 

Epsilonproteobacteria. Finally, methane oxidation genes pmmoCAB were identified within the 

Methylococcales genomic bin. 

 

Whole-community transcriptomics 

Metatranscriptomic sequencing was conducted on three samples collected at approximately 1pm 

(day) and three collected at approximately 1am (night). All of these samples were collected 

within an area with a radius of three meters, and the day/night samples were collected twelve 

hours apart.  Overall, the majority of the 500 genes with the highest transcript abundance at MIS 

show relatively equal abundance of transcripts between day and night samples, with most 

organisms showing no significant difference in transcript abundance (Figure 3.2).  However, 

several of the organisms expressing the most abundant genes show subtle trends in day versus 

night transcript abundance.  
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Figure j Figure 3.2 Rank abundance plot of the 500 most abundant mRNA transcripts at MIS. Genes with a positive 
Y axis value had higher transcript abundance during the day, while genes with negative values indicate 
higher transcript abundance at night. The red dashed line indicates equal abundance of transcripts in 
day/night samples.  Transcript abundance is the average of three samples and accounts for gene length in 
different organisms and varying sampling effort between samples.  See Methods for a description of 
normalization procedures. 

Cyanobacterial genes were found to dominate the 500 genes with highest transcript 

abundance, with many genes having a higher abundance of transcripts at night.  Phormidium was 

responsible for 108 of the 500 most transcriptionally abundant genes, with 92% of those genes 

having higher transcript abundance at night.  Diel regulation of gene expression is not 

uncommon amongst cyanobacteria studied previously, with as much as 80% of Prochlorococcus 

genes showing gene regulation based on light availability (Zinser et al 2009).  Oscillatoria was 

responsible for 68 transcriptionally abundant genes, with 74% showing higher transcript levels at 

night.  By contrast, the chloroplast belonging to a Bacillariophyta diatom showed higher day 

transcript abundance in 71% of the thirty eight genes shown here.   The Campylobacterales 

(Epsilonproteobacteria) were responsible for twenty five of the most transcriptionally abundant 

genes, with 92% having more expression at night, consistent with these putative sulfur oxidizing 
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bacteria (Table 3.1) migrating vertically to track shoaling sulfide at night as has been observed 

previously in redox stratified microbial mat systems (Garcia-Pichel et al 1994). The 

Burkholderiales (Betaproteobacteria) showed higher transcript abundance in 80% of its forty 

highest expressed genes during the day.  All five groups responsible for the majority of the top 

500 transcriptionally abundant genes (279/500 genes) show higher transcript abundance in either 

day or night samples, indicating temporal fluctuations in gene expression play an important role 

at MIS. 

 

 

Figure k Figure 3.3 Transcript abundance of photosynthesis genes. (A) Transcript abundance of photosystem I 
reaction core gene psaA; (B) Transcript abundance of photosystem II reaction core gene psbA.  Error bars 
are based on standard deviation of normalized and averaged day and night samples. Coverage is calculated 
as the average transcript abundance of 3 samples and accounts for gene length in different organisms and 
varying sampling effort between samples.  See Methods for a description of normalization procedures.  

 

 Analysis of transcript data for genes encoding photosystem I psaA (PS I) and 

photosystem II psbA (PS II) show that Phormidium had significantly higher abundance of 
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transcripts at night than in day samples (Figure 3.3).  In contrast, previous studies of marine 

cyanobacterial transcription have shown highest expression of photosynthesis reaction core 

genes (psaA and psbA) during the day, when photosynthesis takes place (Shi et al 2010, Stockel 

et al 2011, Zinser et al 2009).  The diatom chloroplast showed no significant difference in 

transcript abundance of either PS I or PS II genes between day and night samples.   

A large number of transcripts for Phormidium PS II genes were obtained (>2000x cDNA 

coverage), indicating that it is performing oxygenic photosynthesis at least some of the time.  

However, Phormidium had two times higher abundance of transcripts for PS I genes than PS II 

genes (Figure 3.3). In contrast, the diatom chloroplast expressed about six times more PS II 

genes than PS I genes, and a high ratio PS II to PS I normalized transcripts for psbA to psaA was 

also found in Prochlorococcus, a planktonic unicellular marine cyanobacteria (Zinser et al 2009).  

Assuming that the 6:1 ratio of transcripts for PS II to PS I genes is normal for oxygenic 

photosynthesis, we infer that the elevated level of PS I transcripts for Phormidium reflects 

transcriptional regulation of photosystem genes to down-regulate PS II genes and/or up-regulate 

PS I genes to conduct anoxygenic photosynthesis in the presence of sulfide.  Although to our 

knowledge this is the first transcriptional data from anoxygenic cyanobacteria, it is consistent 

with the physiological shift towards PS II-independent anoxygenic photosynthesis that has been 

reported previously (Cohen et al 1986, Jorgensen et al 1986b), and with genes for anoxygenic 

photosynthesis being inducible and under the control of a transcriptional regulator (Bronstein et 

al 2000b).  

The key enzyme for transfer of electrons from sulfide to PS I during anoxygenic 

photosynthesis by cyanobacteria is sulfide quinone oxidoreductase (SQR) (Bronstein et al 

2000b).  Although there are homologous genes of SQR in six different MIS genomic bins (Table 
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3.1), the Phormidium SQR had by far the highest abundance of transcripts in the mat community 

(Figure 3.4).  The Phormidium SQR showed higher transcript abundance at night than during the 

day (Figure 3.4).  A Phormidium gene for sulfite oxidation (aprA) also recruited transcripts, 

though at lower levels than SQR and in equal abundance between day and night.  Previous work 

indicates that the oxidation product of anoxygenic photosynthesis by cyanobacteria is elemental 

sulfur (Garlick et al 1977a), the expected product of sulfide oxidation by SQR, thus aprA is not 

necessarily involved in anoxygenic photosynthesis.  

Of the five sulfur oxidizing metabolisms investigated (Figure 3.4), thiosulfate oxidation 

using the sox genes showed the highest transcript abundance and was dominated by the 

Epsilonproteobacteria, Gammaproteobacteria, and Betaproteobacteria.  Betaproteobacteria 

showed the highest sulfide oxidation transcript abundance using the reverse dissimilatory sulfite 

reductase pathway (rdsrA/B) while sulfide oxidation using flavocytochrome c sulfide 

dehydrogenase (fcc) observed significant transcriptional abundance from the Betaproteobacteria 

and Gammaproteobacteria. 

Transcripts from Desulfobacterales (Deltaproteobacteria) for sulfur reduction using the 

dissimilarity sulfite reductase pathway (dsr) were highly abundant with over 90x total cDNA 

read coverage (Figure 3.5).  Reduction of sulfate to elemental sulfur and hydrogen sulfide is well 

characterized amongst the Desulfobacterales and many Deltaproteobacteria, and sulfate reducing 

bacteria are believed to be major players in carbon cycling in sediments and other anaerobic 

environments (Muyzer and Stams 2008).  The only other dsr genes that showed expression do 

not belong to a classified genomic bin, and together they have only one fifth of the transcript 

abundance of Desulfobacterales (Figure 3.5), indicating this deltaproteobacterium is responsible 

for the majority of sulfate reduction at MIS. 
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Figure l Figure 3.4 Transcript abundance of sulfur cycling genes. (A) Sulfur oxidation using R-dsrA; (B) sulfide 
oxidation using sulfide quinone oxidoreductase (SQR); (C) sulfide oxidation using flavocytochrome C 
sulfide dehydrogenase (fcc); (D) sulfite oxidation using aprA; (E) thiosulfate oxidation using soxZ (only 
bins with soxABZ included).  Error bars are based on standard deviation of normalized and averaged day 
and night samples. Coverage is calculated as the average transcript abundance of 3 samples and accounts 
for gene length in different organisms and varying sampling effort between samples.  See Methods for a 
description of normalization procedures. 

 

 

Figure m Figure 3.5 Transcript abundance of sulfur reduction using dissimilatory sulfite reductase (dsrA). Error bars 
are based on standard deviation of normalized and averaged day and night samples. Coverage is calculated 
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as the average transcript abundance of 3 samples and accounts for gene length in different organisms and 
varying sampling effort between samples.  See Methods for a description of normalization procedures. 

  

Transcript abundance for three autotrophic pathways was measured to assess sources of 

primary production at MIS.  Autotrophy using ribulose-1,5-bisphosphate carboxylase/oxygenase 

(RuBisCo) for the Calvin cycle was measured, as was ATP citrate lyase (aclB) for the reverse 

tricarboxylic acid cycle, and CO dehydrogenase/acetyl-CoA synthase was measured for the 

Wood Ljungdahl pathway (Figure 3.6).  RuBisCo showed by far the highest transcript abundance 

of any autotrophic pathway, but low overall expression of autotrophy genes could be due to input 

of organic carbon from higher in the water column (Nold et al 2013).  The diatom chloroplast 

displayed the highest cDNA read coverage of RuBisCo, with no significant difference between 

day and night transcript abundance.  Both Phormidium and Thiotrichales 

(Gammaproteobacteria) showed highest transcript abundance of RuBisCo at night, and had the 

second and third highest autotrophy contributions respectively.  Burkholderiales 

(Betaproteobacteria) had the highest reverse TCA cycle transcript abundance and 

Desulfobacterales (Deltaproteobacteria) had the highest WLP transcript abundance, though 

neither showed significant difference in day/night expression. 

Transcriptional evidence of H2, CO, and methane oxidation as well as denitrification by 

nirK were all detected at reduced levels (< 15x gene coverage) compared to other metabolisms at 

MIS, and these metabolisms were restricted to the proteobacteria and chloroflexi (Figure 3.7).  

While a nifH homolog was found in the Phormidium genome, the rest of the pathway for 

nitrogen fixation was lacking, and significant numbers of transcripts for nitrogen fixation were 

not detected in any bin. 
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Figure n Figure 3.6 Transcript abundance of autotrophy genes. (A) RuBisCo; (B) reverse TCA cycle; (C) Wood 
Ljungdahl pathway.  Error bars are based on standard deviation of normalized and averaged day and night 
samples. Coverage is calculated as the average transcript abundance of 3 samples and accounts for gene 
length in different organisms and varying sampling effort between samples.  See Methods for a description 
of normalization procedures. 

 A small number of transcripts were observed for WS3 genes related to H2 oxidation 

(Figure 3.7), aerobic respiration and chemotaxis (Supplemental Table 3.3 in Appendix B).  No 

expression of functional genes was found in SM2F11 or RF3, and both showed expression of 

relatively small amounts of rRNA and mRNA compared to the rest of the community 

(Supplemental Figure 3.2 in Appendix B). 
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Figure o Figure 3.7 Transcript abundance for functional genes of interest. (A) Hydrogen oxidation using 
hupL/hydB; (B) carbon monoxide oxidation using coxL; (C) methane/ammonia oxidation using mmoC; (D) 
denitrification using nirK.  Error bars based on standard deviation of normalized and averaged day and 
night samples. Coverage is calculated as the average transcript abundance of 3 samples and accounts for 
gene length in different organisms and varying sampling effort between samples.  See Methods for a 
description of normalization procedures. 

 

Phormidium expression   

Comparison of the average Phormidium transcript abundance for day and night samples shows 

that Phormidium had significantly higher transcript abundance of mRNA (rRNA removed) at 
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night, with twice the gene coverage as during the day (Figure 3.8A).  Of the metabolic and 

functional genes examined, photosynthesis genes showed higher transcript abundance by orders 

of magnitude and totaled over 5000x average gene coverage of psaA and 300x average gene 

coverage of psbA (Figure 3.8).  In contrast, other functional genes including those for autotrophy 

and oxygen respiration were not detected above 100x coverage (Figure 3.8B).  Both psaA and 

psbA code for the reaction centers of their respective photosystem, which are known to denature 

at an enhanced rate compared to other proteins due to absorption of excess light energy from 

photosynthesis (Mattoo et al 1984, Soitamo et al 1996).  This higher cellular demand for protein 

likely explains the higher abundance of transcripts observed for these genes. 

 

 

Figure p Figure 3.8 Transcript abundance of Phormidium genes.  (A) Transcript abundance for the whole 
Phormidium genome; (B) Phormidium metabolic and functional genes. Error bars are based on standard 
deviation of normalized and averaged day and night samples. Coverage is calculated as the average 
transcript abundance of 3 samples and accounts for gene length in different organisms and varying 
sampling effort between samples.  See Methods for a description of normalization procedures. 

 

 Phormidium photosynthesis genes consistently show significantly higher transcript 

abundance at night (Figure 3.9) with the exceptions of psbL/U/P, which are involved in energy 

transfer or the oxygen evolving complex of PS II.  Of note is the fact that SQR had higher 

transcript abundance than PS I genes psaL and psaX, indicating that transcript abundance levels 

for SQR are on par with other Phormidium genes potentially involved in anoxygenic 

photosynthesis.  The ability to do anoxygenic photosynthesis using SQR would be consistent 
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with other members of the Oscillatoriales, such as Geitlerinema sp. PCC9228 (formerly 

Oscillatoria limnetica) which has been shown to do anoxygenic photosynthesis in the presence 

of sulfide using SQR (Cohen et al 1975c). 

 

 

Figure q Figure 3.9 Transcript abundance of Phormidium photosynthesis genes.  Error bars are based on standard 
deviation of normalized and averaged day and night samples. Coverage is calculated as the average 
transcript abundance of 3 samples and accounts for gene length in different organisms and varying 
sampling effort between samples.  See Methods for a description of normalization procedures. 

 

Overall, the metatranscriptomic data presented here is consistent with the Phormidium 

population being metabolically versatile, capable of both oxygenic and anoxygenic 

photosynthesis.  It is not clear whether this phototrophic versatility in the Phormidium stems 

from niche adaptation amongst closely related ecotypes (e.g., differential activity of strains that 

are oxygenic and anoxygenic specialists) or true cellular versatility in which Phormidium cells 

switch pathways depending on sulfide concentration.  Further, our bulk sampling of mats was not 

sensitive to the vertical gradients of sulfide concentration, so we are unable to evaluate potential 

vertical stratification of oxygenic/anoxygenic photosynthesis in the mat. 

  

3.4 Conclusions 
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Culture independent analysis of microbial communities has greatly expanded our understanding 

of environments like MIS, where cultivation and isolation efforts have been unsuccessful.  

Further, investigating an entire community can highlight interactions between community 

members that are only present in a mixed assemblage of microbes.  Here we report partial and 

near-complete genomes and metabolic gene expression for the most abundant organisms 

responsible for mediating microbial biogeochemistry in MIS microbial mats and surface 

sediments.  Several of these organisms belong to novel bacterial phyla with no cultured 

representatives, and a partial genome for SM2F11 and a second genome for WS3 along with 

expression data constitute a significant advancement in our understanding of un-cultured and un-

explored branches of the tree of life. 

Analysis of metabolic and functional gene expression at MIS shows that photosynthesis 

by diatoms and cyanobacteria is the highest expressed metabolic pathway investigated, with 

Phormidium responsible for the majority of primary production by photosynthesis, sulfide/sulfite 

oxidation, and a significant portion of carbon fixation, highlighting the essential role 

Phormidium plays in ecosystem processes.  Proteobacteria were largely responsible for 

microbially mediated sulfur cycling with the Burkholderiales (Betaproteobacteria), 

Thiotrichales and Chromatiales (Gammaproteobacteria), and Epsilonproteobacteria responsible 

for the majority of sulfur oxidation, and the Desulfobacterales (Deltaproteobacteria) responsible 

for the majority of sulfur reduction.  The Desulfobacterales were also found to oxidize hydrogen, 

which appears to be coupled to sulfate reduction, and are likely the source of the hydrogen 

sulfide at MIS.  While all three novel bacterial phyla showed some gene expression 

(Supplemental Figure 3.2 in Appendix B), WS3 transcripts for hydrogen oxidation, aerobic 

respiration and chemotaxis genes showed the only identifiable metabolic or functional gene 
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expression amongst these phyla.  With more than half the gene content of both SM2F11 and RF3 

unidentifiable by NR, KEGG, COG or Pfam, and the small portion of the RF3 genome recovered 

(~17%), lack of identifiable metabolic or functional genes is not surprising. 

Based on expression ratios of PS II genes to PS I genes, Phormidium appears to be 

performing anoxygenic photosynthesis, and all lines of evidence indicate it is using SQR to 

obtain electrons from sulfide rather than using PS II to obtain electrons from water, consistent 

with other members of the Oscillatoriales (Bronstein et al 2000b, Cohen et al 1975c).  We 

observe that Phormidium shows significantly higher transcript abundance at night, including 

genes for metabolic pathways such as photosynthesis, autotrophy and sulfur oxidation.  This is in 

contrast to previous  cyanobacterial transcriptomic analysis that shows higher transcript 

abundance of photosynthesis reaction center genes (Colon-Lopez and Sherman 1998, Shi et al 

2010, Stockel et al 2011, Straub et al 2011, Zinser et al 2009) during the time of day when 

Phormidium’s photosynthetic transcript abundance is lower.  It is not clear if this difference is 

due to fundamental differences in life cycle, environmental or ecological factors, ability to do 

anoxygenic photosynthesis, or some other factor.  Previous reports focused on unicellular 

cyanobacteria, which have not been shown to be capable of anoxygenic photosynthesis.  Perhaps 

more importantly, these unicellular cyanobacteria typically undergo rapid cell division every 24 

hours (Vijayan et al 2009, Zinser et al 2009), whereas Phormidium species are filamentous and 

much slower growing (0.07-0.5 d-1, depending on light and nutrient availability) (Litchman 2000, 

Litchman et al 2003).  While the driving factor for the difference in gene regulation is unclear 

(and likely a combination of factors), these results highlight the important differences between 

MIS benthic microbial mats and better studied cyanobacteria. 
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2007-1D June 45.1984383.32721° x x 55,742,528 none
2009-1D June 45.1984383.32721° x x 56,610,020 none
2009-2D June 45.1984383.32721° x x 58,811,950 none
2009-3D June 45.1984383.32721° x x 25,542,490 none
2010-1D Aug 45.1984383.32721° x x 69,716,858 none
2010-2D Aug 45.1984383.32721° x x 67,190,598 none
2011-1D June 45.1984383.32721° x x 98,430,946 none
2011-2N June 45.1984383.32721° x x 211,878,358 none
2011-3D June 45.1984383.32721° x x 59,608,800 none
2012-1D May 45.1984383.32721° x x 25,666,608 11,997,534
2012-2D May 45.1984383.32721° x x 41,595,684 14,577,110
2012-3D May 45.1984383.32721° x x 41,318,538 11,524,300
2012-4N May 45.1984383.32721° x x 42,876,682 12,125,414
2012-5N May 45.1984383.32721° x x 38,335,454 12,100,438
2012-6N May 45.1984383.32721° x x 28,207,614 13,079,448

3 Numbers reflect de-replicated and trimmed read totals used for mapping

Sample Collection 
Month Finger1 Prostrate 

Mat2 Day Night
Illumina 

gDNA Reads3
Illumina 

cDNA Reads3

Supplemental Table 3.1 Metagenome sample summary

LongitudeLatitude 

1 Microbial mat structure that is raised off the lake sediments
2 Microbial mat that lies flat on lake sediments
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Supplemental Figure 3.1 Emergent self-organizing maps of tetranucleotide frequencies used to 
sort sequences into genomic bins.  (A) map with 5kb sequences shown; (B) map with sequences 
removed showing  green background representing similar tetranculeotide frequency, with brown 
lines distinguishing groups of like sequences. Numbers represent bins of sequences from this 
study; letters mark genomes available in public databases.  
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Supplemental Figure 3.2 Transcript coverage of contigs for each bin.  Green indicates the 
highest transcript coverage, yellow the median and red no transcript coverage.  Transcript 
abundance normalized for total length of unique sequence per bin, not normalized for 
sequencing effort.  
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Supplemental Table 3.3 Bacterial Candidate Division expression                 

WS3 Expression     Raw number of transcripts     

Locus_Tag 
gene 
length Annotation 

2012-
1D 

2012-
2D 

2012-
3D 

2012-
4N 

2012-
5N 

2012-
6N total Coverage 

MIS_5k.100000481 404 23S rRNA. Bacterial LSU 1545 4845 12346 21387 2040 10425 52588.0 13016.8 

MIS_5k.1000096021 971 16S rRNA. Bacterial SSU 210 985 550 426 137 269 2577.0 265.4 

MIS_5k.1000004765 1613 Flagellar hook-length control protein 21 136 396 619 48 387 1607.0 99.6 

MIS_5k.1000012627 203 tRNA_Arg_CCG 10 4 8 8 4 1 35.0 17.2 

MIS_5k.100007384 638 
TonB-dependent Receptor Plug 
Domain 4 0 2 3 8 9 26.0 4.1 

MIS_5k.100000482 116 5S rRNA. Bacterial TSU 0 0 2 1 0 0 3.0 2.6 

MIS_5k.100005152 506 Single-stranded DNA-binding protein 0 0 0 7 4 0 11.0 2.2 

MIS_5k.1000775516 470 Ribosomal protein S7 0 0 4 0 0 2 6.0 1.3 

MIS_5k.1000201714 314 
Protein of unknown function 
(DUF1180) 0 0 0 2 0 2 4.0 1.3 

MIS_5k.100008165 3041 Unknown Function 10 12 8 0 0 6 36.0 1.2 

MIS_5k.1000111919 377 
Predicted DNA-binding proteins - 
COG1342 0 4 0 0 0 0 4.0 1.1 

MIS_5k.1000164614 386 Ribosomal protein S9 2 0 2 0 0 0 4.0 1.0 

MIS_100176751 215 
Flagellin and related hook-associated 
proteins 0 0 2 0 0 0 2.0 0.9 

MIS_5k.1000125426 701 Unknown Function 0 0 0 0 6 0 6.0 0.9 

MIS_5k.100000996 269 Ribosomal protein S15P/S13E 0 0 0 0 2 0 2.0 0.7 

MIS_5k.100060992 1199 
Ornithine/acetylornithine 
aminotransferase 0 0 0 0 0 8 8.0 0.7 

MIS_5k.100032788 611 Unknown Function 0 0 0 0 2 2 4.0 0.7 

MIS_5k.1000173613 308 1,4-alpha-glucan branching enzyme 0 0 0 2 0 0 2.0 0.6 

MIS_5k.100158831 308 
NADH:ubiquinone oxidoreductase 24 
kD subunit 0 0 0 0 2 0 2.0 0.6 

MIS_5k.100007386 644 Unknown Function 0 4 0 0 0 0 4.0 0.6 

MIS_5k.1000055076 674 
Flagellin and related hook-associated 
proteins 0 0 0 0 0 4 4.0 0.6 

MIS_100291774 677 Ni,Fe-hydrogenase maturation factor 0 4 0 0 0 0 4.0 0.6 

MIS_5k.1000052116 689 Deoxynucleoside kinases 0 0 0 0 0 4 4.0 0.6 

MIS_5k.100112016 1463 Cytochrome c bacterial 0 0 0 0 8 0 8.0 0.5 

MIS_5k.1000775517 920 
Translation elongation factors 
(GTPases) 3 0 2 0 0 0 5.0 0.5 

MIS_5k.1000045342 197 Ribosomal protein L29 0 0 1 0 0 0 1.0 0.5 

MIS_100296862 1202 Phosphate-selective porin O and P 0 3 3 0 0 0 6.0 0.5 

MIS_5k.1000045323 401 Ribosomal protein S11 0 0 0 2 0 0 2.0 0.5 

MIS_5k.100012642 410 Unknown Function 0 0 2 0 0 0 2.0 0.5 

MIS_5k.1000045343 413 Ribosomal protein L16/L10E 0 0 2 0 0 0 2.0 0.5 

MIS_5k.100021533 1298 Major Facilitator Superfamily 0 6 0 0 0 0 6.0 0.5 

MIS_100016422 656 Unknown Function 3 0 0 0 0 0 3.0 0.5 

MIS_5k.1000385212 941 
Glycine cleavage system H protein 
(lipoate-binding) 0 0 0 0 4 0 4.0 0.4 

MIS_5k.1000004844 980 Acetyl-CoA carboxylase alpha subunit 0 0 0 0 0 4 4.0 0.4 

MIS_5k.100096404 986 Pseudouridine synthase 0 0 4 0 0 0 4.0 0.4 

MIS_5k.100004534 1001 
Nucleoside-diphosphate-sugar 
epimerases 0 0 4 0 0 0 4.0 0.4 

MIS_5k.100051924 503 Formate hydrogenlyase subunit 6 0 0 0 0 2 0 2.0 0.4 
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MIS_100291772 1793 Ni,Fe-hydrogenase I large subunit 1 6 0 0 0 0 7.0 0.4 

MIS_5k.1000045347 830 Ribosomal protein L2 3 0 0 0 0 0 3.0 0.4 

MIS_5k.1000079520 1697 Unknown Function 0 0 6 0 0 0 6.0 0.4 

MIS_5k.1000155612 572 Unknown Function 0 0 0 0 0 2 2.0 0.3 

MIS_5k.1000005491 1145 S-adenosylmethionine synthetase 0 4 0 0 0 0 4.0 0.3 

MIS_5k.100007385 581 Unknown Function 0 0 2 0 0 0 2.0 0.3 

MIS_5k.1000055023 584 
Protein of unknown function 
(DUF3359) 0 0 0 0 2 0 2.0 0.3 

MIS_5k.1000388715 1187 Glycosyltransferase 0 0 4 0 0 0 4.0 0.3 

MIS_5k.1000073841 599 Uncharacterized membrane protein 2 0 0 0 0 0 2.0 0.3 

MIS_5k.100021538 1220 
Aspartate/tyrosine/aromatic 
aminotransferase 0 0 0 0 0 4 4.0 0.3 

MIS_5k.10000031112 1241 AAA domain (Cdc48 subfamily) 4 0 0 0 0 0 4.0 0.3 

MIS_5k.100044144 674 
Uncharacterized conserved protein, 
COG4359 0 0 2 0 0 0 2.0 0.3 

MIS_5k.100012545 1358 Glucose/sorbosone dehydrogenases 0 0 0 0 0 4 4.0 0.3 

MIS_5k.100041885 683 Riboflavin synthase alpha chain 0 0 2 0 0 0 2.0 0.3 

MIS_5k.100158832 689 AT-rich DNA-binding protein 0 0 0 0 2 0 2.0 0.3 

MIS_5k.100202267 1412 F0F1-type ATP synthase, beta subunit 0 4 0 0 0 0 4.0 0.3 

MIS_5k.1000045324 368 Ribosomal protein S13 0 0 0 0 0 1 1.0 0.3 

MIS_5k.100202265 1505 F0F1-type ATP synthase, alpha subunit 0 0 0 0 0 4 4.0 0.3 

MIS_5k.1000440111 776 
Ribosomal protein L25 (general stress 
protein Ctc) 0 0 0 0 0 2 2.0 0.3 

MIS_5k.1000201711 398 
Predicted transcriptional regulator - 
COG1959 0 1 0 0 0 0 1.0 0.3 

MIS_5k.100015009 1214 
Uncharacterized conserved protein - 
COG2966 0 0 2 0 1 0 3.0 0.2 

MIS_5k.1000020150 1235 Unknown Function 3 0 0 0 0 0 3.0 0.2 

MIS_5k.1000547312 1247 
Glycine/serine 
hydroxymethyltransferase 0 0 0 0 3 0 3.0 0.2 

MIS_5k.1000012630 1289 
Glutamate dehydrogenase/leucine 
dehydrogenase 3 0 0 0 0 0 3.0 0.2 

MIS_5k.1000004817 1727 
NADH:ubiquinone oxidoreductase 49 
kD subunit 7 4 0 0 0 0 0 4.0 0.2 

MIS_5k.1000684319 902 rRNA methylase 0 0 0 2 0 0 2.0 0.2 

MIS_5k.100008333 2711 
Predicted Zn-dependent peptidases - 
COG0612 0 0 3 0 3 0 6.0 0.2 

MIS_5k.1000005446 905 Ketopantoate hydroxymethyltransferase 0 0 2 0 0 0 2.0 0.2 

MIS_5k.1000004720 1364 
Uncharacterized conserved protein - 
COG1354 3 0 0 0 0 0 3.0 0.2 

MIS_5k.1000057530 2771 
Methylase of chemotaxis methyl-
accepting proteins 3 3 0 0 0 0 6.0 0.2 

MIS_5k.1000009931 932 Unknown Function 0 2 0 0 0 0 2.0 0.2 

MIS_5k.1000079116 1913 Deoxyxylulose-5-phosphate synthase 0 0 0 4 0 0 4.0 0.2 

MIS_5k.1000012631 2960 Phosphoenolpyruvate synthase 0 0 6 0 0 0 6.0 0.2 

MIS_5k.1000020118 998 Unknown Function 0 0 0 0 0 2 2.0 0.2 

MIS_5k.1000045321 998 
DNA-directed RNA polymerase, alpha 
subunit 2 0 0 0 0 0 2.0 0.2 

MIS_5k.1000440115 1001 
Predicted membrane protein 
(DUF2232) 0 0 0 2 0 0 2.0 0.2 

MIS_5k.100037096 1544 Repeat of unknown function (DUF346) 0 0 3 0 0 0 3.0 0.2 

MIS_5k.1000370913 1046 
Predicted nucleoside-diphosphate sugar 
epimerases 0 2 0 0 0 0 2.0 0.2 

MIS_5k.1000445011 2141 Cell division GTPase 0 0 0 4 0 0 4.0 0.2 

MIS_5k.100005055 2183 
Alpha-glucosidases, family 31 of 
glycosyl hydrolases 4 0 0 0 0 0 4.0 0.2 

MIS_5k.1000020127 1142 Gram-negative bacterial tonB protein 0 0 0 0 2 0 2.0 0.2 

MIS_5k.1000083316 2297 Putative Ser protein kinase 0 0 0 0 0 4 4.0 0.2 

MIS_5k.100009855 2309 Unknown Function 0 0 4 0 0 0 4.0 0.2 

MIS_5k.1000045352 1190 GTPases - translation elongation factors 2 0 0 0 0 0 2.0 0.2 

MIS_5k.100170552 1202 
Predicted signal transduction protein - 
COG1639 0 2 0 0 0 0 2.0 0.2 
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MIS_5k.1000215320 611 WD40-like Beta Propeller Repeat 0 0 0 0 1 0 1.0 0.2 

MIS_5k.1000025513 1835 Bacterial Ig-like domain (DUF1927) 0 2 0 1 0 0 3.0 0.2 

MIS_5k.1000164620 1844 
Single-stranded DNA-specific 
exonuclease 0 0 0 0 0 3 3.0 0.2 

MIS_5k.1001121711 1280 Unknown Function 0 0 0 2 0 0 2.0 0.2 

MIS_5k.1000025514 1286 Unknown Function 0 0 0 2 0 0 2.0 0.2 

MIS_5k.100134091 2699 Uncharacterized conserved protein 0 0 0 0 0 4 4.0 0.1 

MIS_5k.1000009920 1367 
Glycine cleavage system protein P 
(pyridoxal-binding) 2 0 0 0 0 0 2.0 0.1 

MIS_5k.1000091120 1445 

Glutamine 
phosphoribosylpyrophosphate 
amidotransferase 0 0 0 0 0 2 2.0 0.1 

MIS_5k.100087906 2981 Signal transduction histidine kinase 0 0 0 0 4 0 4.0 0.1 

MIS_5k.100096408 1493 Transcription elongation factor 0 0 2 0 0 0 2.0 0.1 

MIS_100018691 1505 FOG: PKD repeat 0 2 0 0 0 0 2.0 0.1 

MIS_5k.1000012632 1550 
NAD-dependent aldehyde 
dehydrogenases 0 0 0 0 0 2 2.0 0.1 

MIS_5k.1000091122 1571 Ribonucleases G and E 0 0 0 0 0 2 2.0 0.1 

MIS_5k.1000017234 1616 Preprotein translocase subunit SecD 0 0 0 2 0 0 2.0 0.1 

MIS_5k.100000548 1622 Acyl-CoA dehydrogenases 0 2 0 0 0 0 2.0 0.1 

MIS_5k.1000079125 818 
Sugar transferases involved in 
lipopolysaccharide synthesis 0 0 0 1 0 0 1.0 0.1 

MIS_5k.1000012757 1664 Unknown Function 0 0 0 0 0 2 2.0 0.1 

MIS_5k.100021537 1664 
Phosphoenolpyruvate carboxykinase 
(ATP) 0 0 0 0 2 0 2.0 0.1 

MIS_5k.100008167 2501 Unknown Function 0 3 0 0 0 0 3.0 0.1 

MIS_5k.100012691 2546 Unknown Function 0 0 0 0 3 0 3.0 0.1 

MIS_5k.100087907 1712 Unknown Function 0 0 0 0 0 2 2.0 0.1 

MIS_5k.1000003162 1769 
Histidine kinase-, DNA gyrase B-, and 
HSP90-like ATPase 0 0 2 0 0 0 2.0 0.1 

MIS_5k.100173795 1880 Predicted symporter 0 0 2 0 0 0 2.0 0.1 

MIS_5k.100183332 3860 Cellobiose phosphorylase 0 0 0 0 0 4 4.0 0.1 

MIS_5k.1000025516 1952 Gamma-glutamyltransferase 0 0 2 0 0 0 2.0 0.1 

MIS_5k.100322755 1961 Methyl-accepting chemotaxis protein 0 2 0 0 0 0 2.0 0.1 

MIS_5k.1000007041 1007 Unknown Function 0 0 0 0 1 0 1.0 0.1 

MIS_5k.1000109117 2057 Urocanate hydratase 2 0 0 0 0 0 2.0 0.1 

MIS_5k.1000201715 3110 Sigma-54 interaction domain 0 0 3 0 0 0 3.0 0.1 

MIS_5k.100012645 1058 
ABC-type multidrug transport system, 
ATPase component 1 0 0 0 0 0 1.0 0.1 

MIS_5k.100279953 2126 
Response regulators consisting of a 
CheY-like domain 2 0 0 0 0 0 2.0 0.1 

MIS_5k.100017383 2150 Polyphosphate kinase 0 0 2 0 0 0 2.0 0.1 

MIS_5k.10000054104 1088 Lauroyl/myristoyl acyltransferase 0 0 0 0 0 1 1.0 0.1 

MIS_5k.100008164 2183 Glycyl-tRNA synthetase, beta subunit 0 0 0 0 0 2 2.0 0.1 

MIS_5k.1000061510 2267 Glycosidases 2 0 0 0 0 0 2.0 0.1 

MIS_5k.1000012720 1139 
DNA polymerase sliding clamp subunit 
(PCNA homolog) 1 0 0 0 0 0 1.0 0.1 

MIS_5k.1000852610 2345 Transketolase 0 0 0 2 0 0 2.0 0.1 

MIS_5k.100065842 2375 Unknown Function 0 2 0 0 0 0 2.0 0.1 

MIS_5k.100033692 4757 Regulatory P domain 0 0 0 0 4 0 4.0 0.1 

MIS_5k.1000007026 2399 3-hydroxyacyl-CoA dehydrogenase 0 2 0 0 0 0 2.0 0.1 

MIS_5k.100335782 2411 Unknown Function 0 0 2 0 0 0 2.0 0.1 

MIS_5k.1000055048 3152 Cation/multidrug efflux pump 0 0 2 0 0 0 2.0 0.1 

MIS_5k.1000025520 3491 
Predicted glutamine amidotransferase 
COG0311 2 0 0 0 0 0 2.0 0.1 

MIS_5k.1000005437 1817 Parvulin-like peptidyl-prolyl isomerase 0 0 0 0 0 1 1.0 0.1 
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SM2F11 Expression     Raw number of transcripts     

Locus_Tag 
gene 
length Annotation 

2012-
1D 

2012-
2D 

2012-
3D 

2012-
4N 

2012-
5N 

2012-
6N total Coverage 

MIS_5k.100018238 3038.0 23S rRNA. Bacterial LSU 5329.0 5049.0 3374.0 1117.0 1010.0 5294.0 21173.0 696.9 

MIS_5k.10005200.8_exon 1331.0 Unknown Function 563.0 559.0 565.0 164.0 121.0 1038.0 3010.0 226.1 

MIS_5k.100052003 1581.0 16S rRNA. Bacterial SSU 521.0 553.0 538.0 161.0 165.0 1104.0 3042.0 192.4 

MIS_5k.1002343518 89.0 Unknown Function 3.0 0.0 1.0 0.0 1.0 4.0 9.0 10.1 

MIS_5k.100018237 485.0 Ribosomal protein S7 13.0 6.0 2.0 0.0 0.0 7.0 28.0 5.8 

MIS_5k.100371722 983.0 Rhoptry-associated protein 1 (RAP-1) 4.0 4.0 4.0 0.0 0.0 10.0 22.0 2.2 

MIS_5k.100246773 165.0 Unknown Function 0.0 0.0 0.0 0.0 2.0 0.0 2.0 1.2 

MIS_5k.1000675514 185.0 Unknown Function 0.0 0.0 0.0 0.0 2.0 0.0 2.0 1.1 

MIS_5k.100281276 743.0 PspA/IM30 family 0.0 0.0 0.0 0.0 0.0 8.0 8.0 1.1 

MIS_5k.1001165710 212.0 Unknown Function 0.0 0.0 2.0 0.0 0.0 0.0 2.0 0.9 

MIS_5k.100049449 425.0 Ribosomal protein L16/L10E 0.0 0.0 0.0 0.0 0.0 4.0 4.0 0.9 

MIS_5k.100253273 449.0 Unknown Function 0.0 0.0 2.0 0.0 1.0 1.0 4.0 0.9 

MIS_5k.100337843 230.0 Preprotein translocase SecG subunit 0.0 0.0 0.0 0.0 2.0 0.0 2.0 0.9 

MIS_5k.1000182319 233.0 Unknown Function 0.0 0.0 0.0 0.0 0.0 2.0 2.0 0.9 

MIS_100033151 761.0 Bacterial SH3 domain 2.0 2.0 0.0 0.0 0.0 2.0 6.0 0.8 

MIS_5k.100274233 257.0 Unknown Function 0.0 0.0 0.0 0.0 0.0 2.0 2.0 0.8 

MIS_5k.1000675519 260.0 Unknown Function 0.0 0.0 0.0 0.0 0.0 2.0 2.0 0.8 

MIS_5k.1002467715 311.0 Unknown Function 0.0 0.0 0.0 0.0 0.0 2.0 2.0 0.6 

MIS_5k.1000983711 629.0 Superoxide dismutase 0.0 0.0 0.0 0.0 0.0 4.0 4.0 0.6 

MIS_5k.100177625 950.0 Unknown Function 0.0 0.0 0.0 0.0 0.0 6.0 6.0 0.6 

MIS_5k.100064688 317.0 Unknown Function 0.0 0.0 0.0 0.0 0.0 2.0 2.0 0.6 

MIS_5k.100251219 800.0 Ribosomal protein S5 0.0 0.0 0.0 0.0 0.0 5.0 5.0 0.6 

MIS_5k.100197803 320.0 
Bacterial nucleoid DNA-binding 
protein 2.0 0.0 0.0 0.0 0.0 0.0 2.0 0.6 

MIS_5k.100188458 977.0 
Lactate dehydrogenase and related 
dehydrogenases 0.0 6.0 0.0 0.0 0.0 0.0 6.0 0.6 

MIS_5k.100116579 710.0 
Protease subunit of ATP-dependent Clp 
proteases 0.0 0.0 0.0 0.0 0.0 4.0 4.0 0.6 

MIS_5k.100291202 533.0 
Hemolysin-type calcium-binding repeat 
(2 copies) 3.0 0.0 0.0 0.0 0.0 0.0 3.0 0.6 

MIS_5k.100112637 182.0 Unknown Function 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.5 

MIS_5k.100107866 380.0 Ribosomal protein S13 0.0 2.0 0.0 0.0 0.0 0.0 2.0 0.5 

MIS_5k.100061957 383.0 PRA1 family protein 0.0 0.0 0.0 0.0 0.0 2.0 2.0 0.5 

MIS_5k.100220618 386.0 Unknown Function 0.0 0.0 0.0 0.0 0.0 2.0 2.0 0.5 

MIS_5k.100052007 428.0 Unknown Function 2.0 0.0 0.0 0.0 0.0 0.0 2.0 0.5 

MIS_5k.100107042 1136.0 Unknown Function 0.0 4.0 0.0 0.0 0.0 1.0 5.0 0.4 

MIS_5k.100134358 458.0 Unknown Function 2.0 0.0 0.0 0.0 0.0 0.0 2.0 0.4 

MIS_5k.1000387118 1637.0 Unknown Function 0.0 1.0 0.0 0.0 0.0 6.0 7.0 0.4 

MIS_5k.100093917 482.0 Unknown Function 0.0 0.0 0.0 0.0 2.0 0.0 2.0 0.4 

MIS_5k.100168716 500.0 Ribosomal protein L24 0.0 0.0 0.0 0.0 0.0 2.0 2.0 0.4 

MIS_5k.100052002 527.0 
Uncharacterized protein conserved in 
bacteria 0.0 0.0 0.0 0.0 0.0 2.0 2.0 0.4 

MIS_100081633 539.0 
Protease subunit of ATP-dependent Clp 
proteases 2.0 0.0 0.0 0.0 0.0 0.0 2.0 0.4 

MIS_5k.100246771 275.0 
Cell division control protein 14, SIN 
component 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.4 

MIS_5k.100222872 620.0 
Predicted membrane protein - 
COG2717 0.0 0.0 0.0 0.0 0.0 2.0 2.0 0.3 

MIS_100035223 647.0 RecF/RecN/SMC N terminal domain 2.0 0.0 0.0 0.0 0.0 0.0 2.0 0.3 
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MIS_100072062 677.0 Unknown Function 2.0 0.0 0.0 0.0 0.0 0.0 2.0 0.3 

MIS_5k.1000297912 1382.0 UME (NUC010) domain 0.0 4.0 0.0 0.0 0.0 0.0 4.0 0.3 

MIS_5k.1000573111 1199.0 GTPases - translation elongation factors 0.0 0.0 0.0 0.0 0.0 3.0 3.0 0.3 

MIS_5k.100096006 1256.0 
Periplasmic serine proteases (ClpP 
class) 3.0 0.0 0.0 0.0 0.0 0.0 3.0 0.2 

MIS_5k.100200072 2219.0 Domain of unknown function DUF11 5.0 0.0 0.0 0.0 0.0 0.0 5.0 0.2 

MIS_5k.100154632 905.0 Pyruvate:ferredoxin oxidoreductase 0.0 0.0 0.0 0.0 0.0 2.0 2.0 0.2 

MIS_5k.100318411 947.0 Unknown Function 2.0 0.0 0.0 0.0 0.0 0.0 2.0 0.2 

MIS_5k.100318284 950.0 Malate/lactate dehydrogenases 2.0 0.0 0.0 0.0 0.0 0.0 2.0 0.2 

MIS_5k.1000182316 1979.0 
Bacterial capsule synthesis protein 
PGA_cap 4.0 0.0 0.0 0.0 0.0 0.0 4.0 0.2 

MIS_100121642 2117.0 Unknown Function 4.0 0.0 0.0 0.0 0.0 0.0 4.0 0.2 

MIS_5k.100096002 1106.0 Unknown Function 0.0 0.0 0.0 2.0 0.0 0.0 2.0 0.2 

MIS_5k.100044758 1178.0 
Predicted periplasmic solute-binding 
protein - COG1559 0.0 0.0 0.0 0.0 0.0 2.0 2.0 0.2 

MIS_5k.100291209 1832.0 Unknown Function 0.0 0.0 0.0 0.0 0.0 3.0 3.0 0.2 

MIS_5k.1000528912 1235.0 Putative translation factor (SUA5) 0.0 0.0 0.0 0.0 0.0 2.0 2.0 0.2 

MIS_5k.100129781 1910.0 Intermediate filament tail domain 3.0 0.0 0.0 0.0 0.0 0.0 3.0 0.2 

MIS_5k.100280172 692.0 Ribosomal protein S3 1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.1 

MIS_5k.100220615 2078.0 Glycosyltransferase 3.0 0.0 0.0 0.0 0.0 0.0 3.0 0.1 

MIS_100120067 1400.0 Excalibur calcium-binding domain 0.0 0.0 0.0 0.0 0.0 2.0 2.0 0.1 

MIS_5k.100339322 1418.0 Bacterial Ig-like domain (group 3) 2.0 0.0 0.0 0.0 0.0 0.0 2.0 0.1 

MIS_5k.100033507 1586.0 
S-adenosylmethionine-dependent 
methyltransferase COG0275 0.0 2.0 0.0 0.0 0.0 0.0 2.0 0.1 

MIS_100072063 2420.0 Type IIA topoisomerase, A subunit 0.0 0.0 0.0 0.0 0.0 3.0 3.0 0.1 

MIS_5k.100050266 815.0 Unknown Function 1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.1 

MIS_5k.100105104 1688.0 Preprotein translocase subunit SecY 0.0 0.0 0.0 0.0 0.0 2.0 2.0 0.1 

MIS_5k.100378955 1697.0 GTPase of unknown function 0.0 0.0 0.0 0.0 0.0 2.0 2.0 0.1 

MIS_5k.100354965 1745.0 Unknown Function 0.0 0.0 0.0 0.0 0.0 2.0 2.0 0.1 

MIS_5k.1000511710 1943.0 
Hydrolase of the metallo-beta-
lactamase superfamily - COG0595 0.0 0.0 0.0 0.0 0.0 2.0 2.0 0.1 

MIS_5k.100107044 2141.0 Unknown Function 0.0 0.0 0.0 0.0 2.0 0.0 2.0 0.1 

MIS_5k.100349173 2180.0 
Domain of unknown function 
(DUF3357) 0.0 0.0 0.0 0.0 0.0 2.0 2.0 0.1 

MIS_5k.100107043 2306.0 Unknown Function 2.0 0.0 0.0 0.0 0.0 0.0 2.0 0.1 

MIS_5k.100253272 2390.0 Type IIA topoisomerase, B subunit 2.0 0.0 0.0 0.0 0.0 0.0 2.0 0.1 

MIS_5k.100277045 1196.0 
Domain of unknown function 
(DUF1978) 1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.1 

MIS_5k.100064684 2450.0 Unknown Function 2.0 0.0 0.0 0.0 0.0 0.0 2.0 0.1 

MIS_5k.100061952 1355.0 Unknown Function 0.0 0.0 0.0 0.0 1.0 0.0 1.0 0.1 

MIS_5k.1000528914 3737.0 Isoleucyl-tRNA synthetase 0.0 0.0 2.0 0.0 0.0 0.0 2.0 0.1 

MIS_5k.100050269 3935.0 Leucyl-tRNA synthetase 2.0 0.0 0.0 0.0 0.0 0.0 2.0 0.1 

                      

RF3 Expression     Raw number of transcripts     

Locus_Tag 
gene 
length Annotation 

2012-
1D 

2012-
2D 

2012-
3D 

2012-
4N 

2012-
5N 

2012-
6N total Coverage 

MIS_100372431 375 16S rRNA. Bacterial SSU 13 48 28 7 13 5 114.0 30.4 

MIS_5k.100397601 101 Lysyl-tRNA synthetase (class II) 4 0 0 0 0 0 4.0 4.0 

MIS_100441878 350 
Protein of unknown function 
(DUF1475) 0 0 0 0 0 4 4.0 1.1 

MIS_5k.1000316721 953 Unknown Function 2 0 0 0 0 0 2.0 0.2 

MIS_5k.100397602 917 Unknown Function 1 0 0 0 0 0 1.0 0.1 
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Abstract 

The Middle Island Sinkhole (MIS) in Lake Huron, MI is home to cyanobacterial mats with 

extremely low species diversity, and the dominant cyanobacteria show extensive genomic 

evidence of viral predation pressure, making it an excellent model community for studying the 

interactions of viruses that infect bacteria.  Metagenomic and metatranscriptomic sequencing of 

mat samples collected at five time points between 2007 and 2012 enabled the recovery of 

complete genomes for two novel genotypes of a virus, designated as PhV1.TypeA and 

PhV1.TypeB.  Both viral genotypes code for and express a host derived nblA gene responsible 

for degradation of phycobilisomes in the host cyanobacteria.  Two complete CRISPR (clustered 
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regularly interspaced short palindromic repeats) subtype III-B loci, thought to be microbial 

defense mechanisms against viruses and plasmids,were recovered from the putative 

cyanobacterial host, Phormidium sp. MIS-PhA.  Genes from both genotypes of PhV1 as well as 

the CRISPR loci were expressed in all six 2012 samples, showing that both viral predation and 

cyanobacterial defense are transcriptionally active in the environment.  One 45bp CRISPR 

spacer from Phormidium had 100% nucleotide identity to the PhV1.TypeB genome, but this 

region was absent from the PhV1.TypeA genome, rendering it immune to host CRISPR defense.  

Analysis of viral abundance over time shows that while PhV1.TypeB (which was dominant in 

2007) was targeted by the host CRISPR spacer, its abundance dropped significantly over the 

time of this study, and by 2012 it was displaced by PhV1.TypeA.  These results reveal extensive 

genetic exchange and interactions between virus and host, highlighting the value of parallel 

analysis of viral and host genomes in natural microbial communities.  

 

Keywords 

Phage, Virus, CRISPR, cas, Cyanobacteria, Metagenomic, Metatranscriptomics. 

 

4.1 Introduction 

Bacteria and archaea are some of the most diverse and abundant organisms on the planet, yet it is 

estimated that there are as many as ten times more viruses (Weinbauer 2004).  Viruses evolve at 

a rapid rate, forcing bacteria and archaea to adapt just as quickly, driving the evolution of 

microbial defense mechanisms in what is often described as an evolutionary arms race (Avrani et 

al 2011, Banfield and Young 2009, Heidelberg et al 2009, Rodriguez-Valera et al 2009, 

Weinbauer 2004).  Genome sequences are available for only a small portion of known viruses,  
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largely from cultured viruses, leaving the interactions between bacteria and their viruses in the 

natural environment largely unexplored (Suttle 2007).  Understanding the fundamental dynamics 

of the interactions between microbial defense systems and viruses has major implications for 

medicine, industry, and environmental microbiology. 

Bacteria and archaea utilize an adaptive immunity mechanism known as the CRISPR/cas 

(CRISPR-associated sequences) system to defend themselves from viruses and plasmids 

(Barrangou et al 2007, Makarova et al 2006).  CRISPRs have been found in 40% of sequenced 

bacteria and 90% of sequenced archaea (Grissa et al 2007a), and are thought to have originated 

in archaea and spread to bacteria through lateral gene transfer (Godde and Bickerton 2006, 

Makarova et al 2006).  CRISPRs consist of short sequences of viral, plasmid or host DNA 

(“spacers”) (Barrangou et al 2007) interleaved between conserved repeat sequences and 

accompanied by an adjacent set of CRIPR-associated (cas) genes (Haft et al 2005).  Cas genes 

code for the proteins needed to acquire new spacers from invading viruses or plasmids 

(Barrangou et al 2007, Horvath and Barrangou 2010, Paez-Espino et al 2013, Sun et al 2013), 

and prevent the production of proteins from invading sources of DNA (Garneau et al 2010, Haft 

et al 2005, Horvath and Barrangou 2010, Sorek et al 2008, van der Oost et al 2009).  New 

spacers are acquired from a region of viral or plasmid DNA referred to as the proto-spacer and 

are added rapidly to one end of the CRISPR (the “leader” end) upon introduction to viral or 

plasmid DNA.  Spacers on the “trailer end” are conserved, and may guard against reinfection by 

persistent viruses (Andersson and Banfield 2008, Heidelberg et al 2009, Tyson and Banfield 

2008, Weinberger et al 2012).  Spacer content changes rapidly (though the mechanisms of 

change are still poorly understood), reflecting constantly changing dynamics in the evolution of 
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viruses and microbial defenses against them (Andersson and Banfield 2008, Paez-Espino et al 

2013, Tyson and Banfield 2008).   

While viruses are estimated to be an order of magnitude more abundant than microbes in 

most environments, their specific roles in ecosystem dynamics remain poorly understood 

(Rohwer and Thurber 2009, Suttle 2007).  Classification of viruses by phylogenetic marker 

genes, which is typically used for ecological metrics of diversity and community structure, 

remains challenging because no single gene is conserved amongst all viruses (such as the 16s 

rRNA for bacteria).  Further, classifying natural viral assemblages is made more complicated by 

extensive genome rearrangements; viral populations are in constant states of genomic flux 

(Emerson et al 2012).  As a consequence, viruses have been shown to contribute to host genome 

diversification through lateral gene transfer and hijacking of host genes, dramatically shifting 

microbial community diversity on short time scales (Lindell et al 2004, Lindell et al 2005, Mann 

et al 2003).  Finally, confounding our understanding of the role of viruses in overall ecosystem 

functioning, it is often difficult to link novel viruses to their hosts, which is essential to gauge the 

impact of viral activity on key microbial populations.  Towards this goal, recently developed 

methods, such as phageFISH (Allers et al 2013) and digital PCR (Tadmor et al 2011), can be 

used to successfully identify virus-host interactions, while whole community sequencing data 

can offer a more high-throughput approach. For instance, the sequence-based linkage between 

virus-derived spacer and host, which is intrinsic to active CRISPR/cas systems as described 

above, has been used successfully to link hosts and viruses in silico (Andersson and Banfield 

2008).  Viral populations in environmental samples can be difficult to track, often requiring far 

deeper sequencing than their microbial counterparts due to their greater genome diversity 

(Duhaime et al 2012).  Therefore, low diversity environments where viral strain variation can be 
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teased apart with sequence based techniques without the need for isolation and pure culture are 

important systems for studying predator-prey relations between virus and host. 

The Middle Island Sinkhole (MIS) in Lake Huron, MI hosts cyanobacterial mats in a low 

oxygen, sulfidic habitat (Ruberg et al 2008) that are dominated by a single genus of 

cyanobacteria that shows evidence of viral predation pressure (Voorhies et al 2012).  Here we 

reconstruct two genome sequences of the virus PhV1 and document two directional exchange of 

DNA between the virus PhV1 and its host Phormidium.  Phormidium encodes multiple CRISPR 

systems, one of which contains a DNA sequence (CRISPR spacer) derived from PhV1, and 

PhV1 contains a host derived AMG (nblA) which breaks down photosynthetic pigments. 

 

4.2 Results 

Recovery of two circular viral genomes from MIS metagenomes 

Fourteen MIS cyanobacterial mat samples were collected at seven time points in five different 

years between 2007 and 2012, including day and night samples in 2011 and 2012. Random 

shotgun sequencing and de novo genome assembly was used to recover complete genomes for 

two genomic variants of a novel virus, designated as PhV1.TypeA and PhV1.TypeB (Figure 4.1).  

Only two of fourteen samples independently yielded complete genomes for both TypeA and 

TypeB, likely due to the significantly larger number of reads available in those samples (Table 

4.1).  Separation of PhV1 genotypes in remaining samples was achieved by mapping reads from 

each sample to template sequences and visually verifying the reads matched to the correct variant 

(Supplemental Figure 4.1 in Appendix C).  By accurately identifying reads belonging to TypeA 

or TypeB, consensus sequences were created and used to evaluate genome completeness for each 

sample (Supplemental Figure 4.2 in Appendix C).   
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Figure r Figure 4.1 Phormidium phage PhV1 genotypes. (A) Genome map of PhV1.TypeA with gene annotations; 
(B) Genome map of PhV1.TypeB with gene annotations; (C) Nucleotide alignment of TypeA and TypeB. 
Green: genes with annotation; orange: hypothetical genes present in NR with no annotation; red: novel 
genes with no homologs in NR. The nucleotide alignment is represented visually with grey areas showing 
nucleotide agreement and black regions indicate nucleotide disagreement, and thin line indicating gaps in 
the alignment.  Nucleotide identity (tops of (C)) is represented by green (100%), gold (99-30%), and red 
(less than 30%). 

 

PhV1 genomes assembled into circular chromosomes, with genome sizes of 45kb for 

PhV1.TypeA and 41kb for PhV1.TypeB, encoding 62 and 57 predicted genes respectively.  

Annotation of these genomes (Supplemental Tables 4.1 and 4.2 in Appendix C) revealed 

primarily conserved genes of unknown function or completely novel coding regions with no 

known homologs, with only 9 genes in TypeA and 10 genes in TypeB having predicted 

functions.  The two genomes share 81% nucleotide identity, but due to extensive insertions and 

deletions (Figure 4.1) they only share 44 genes.  The genome size and number of coding genes 
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present in PhV1 is consistent with cyanophage Pf-WMP3, a member of the T7 supergroup 

phages that has a 43kb genome with 41 genes and infects Phormidium foveolarum  (Liu et al 

2008).  However, it should be noted that PhV1 and cyanophage Pf-WMP3 do not share any 

genes, and are thus genetically unrelated.  While only two genotypes of PhV1 were abundant 

enough to rebuild complete genomes, there is extensive evidence that other low abundance 

variants of PhV1 exist at MIS (Supplemental Figure 4.3 in Appendix C). 

BLASTp analysis showed that thirteen PhV1 genes had predicted protein sequences with 

greater than 30% amino acid identity to predicted proteins from a custom database containing all 

phage genomes available in the NCBI RefSeq database.  Twenty three PhV1 predicted proteins 

had greater than 30% ID BLASTp similarity to NCBI’s viral database, while two PhV1 genes 

were similar to known prophage (viral DNA integrated within a host genome) in cyanobacterial 

genomes available in NCBI.  The possibility that PhV1 is a plasmid is unlikely based on lack of 

signature plasmid replication or pilus genes (Ma et al 2012), homologs of which were found on 

plasmids at MIS but not in either PhV1 genome.  No ubiquitous plasmid signature genes have 

been identified, so NCBI’s plasmid DB was searched for PhV1 gene homologs.  Only seven 

PhV1 genes had homology via BLASTp, but had similarity scores of less than 50%, and the 

homology was to genes of unknown function.  Taken together, these results indicate that PhV1 is 

a virus and not a plasmid.   

 PhV1 appears to target the dominant cyanobacterium at MIS, Phormidium sp. MIS-PhA, 

based on two main lines of evidence.  First, PhV1 and Phormidium share a tetranucleotide 

frequency (Supplemental Figure 4.4 in Appendix C), which has been shown to accurately 

distinguish between Phormidium and other cyanobacteria at MIS (Voorhies et al 2012).  It has 

been shown that viruses often display a similar tetranucleotide frequency to their bacterial hosts 
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(Andersson and Banfield 2008, Dick et al 2009b, Pride and Schoenfeld 2008).  Second, the 

Phormidium sp. MIS-PhA genome contains a 45bp segment of DNA matching to the 

PhV1.TypeB genome with 100% nucleotide identity that is flanked by CRISPR subtype III-B 

repeats and is part of a complete CRISPR locus (Figure 4.2).  

 

 

Figure s Figure 4.2 Gene maps of CRISPR subtype III-B loci belonging to Phormidium sp. MIS-PhA.  (A) CRISPR 
III-B.Locus1 with the most abundant spacer order; (B) CRISPR III-B.Locus1.v2 shows alternative spacers 
and contains CRISPR.III-B.spacer1; (C) CRISPR III-B.Locus2 with the most abundant spacer order; (D) 
CRISPR spacer from III-B.Locus1.v2 aligned between PhV1 genotypes; dashes indicate missing sequence 
in that region of the genome. Green: genes which could be annotated; orange: genes of unknown function; 
purple: CRISPR III-B repeat; blue: region that matches a CRISPR III-B spacer.   

 

Although most PhV1 genes have no predicted function, or are completely unrepresented 

in public gene databases, both genotypes encode a phycobilisome degradation protein NblA, 

which has been found in two other cyanophage genomes (Gao et al 2012, Yoshida-Takashima et 

al 2012).  NblA is thought to improve viral replication by breaking down the major 

photosynthetic apparatus, thereby providing the virus with raw materials or avoiding photo-

inhibition (Gao et al 2012, Yoshida-Takashima et al 2012).  In addition to being present in the 

viral genomes, nblA is also present in the cyanobacterial host.  Four distinct versions of NblA are 

encoded by Phormidium at MIS, two of which are 69% and 67% similar at the amino acid level 

to PhV1 (Figure 4.3).   

113 
 



  

 

Figure t Figure 4.3 Maximum likelihood tree of cyanobacterial and viral phycobilisome degradation protein NblA.  
Bootstrap values below 70 have been removed.  Blue text indicates NblA sequences from viral genomes. 

 

Host defense 

Phormidium sp. MIS-PhA is the dominant organism at MIS and the only cyanobacterium present 

in all samples analyzed here.  It encodes for multiple CRISPR systems (Voorhies et al 2012), 
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which could provide defense mechanisms against viruses and plasmids.  Phormidium sp. MIS-

PhA encodes two distinct subtype III-B CRISPR loci (as classified by Makarova et al. 

(Makarova et al 2011a, Makarova et al 2011c) and designated here as Locus1 and Locus2) based 

on the presence of conserved cas genes (Figure 4.2) and five conserved signature repeats 

(Supplemental Table 4.3 in Appendix C).  While these two CRISPR loci share repeats and 

homologous cas genes, the cas1 genes share only 88.7% nucleotide identity.  Spacers, which 

may contain viral or plasmid DNA, are distinct between the two CRISPR loci (Supplemental 

Figure 4.5 in Appendix C), and 33 contigs containing different arrangements of 225 unique 

spacers were recovered.  Cas genes and the most abundant spacer combinations (“spacer 

contigs”) are conserved and were reconstructed for all samples (Supplemental Figure 4.6 in 

Appendix C).  Less abundant spacer contigs (representing less frequent arrangements of spacers) 

varied in both presence and abundance between samples, showing a gradual shift in spacer 

content over time (Figure 4.4).  Average read abundance of “spacer contigs” (calculated from 

assembled contigs of spacers) was not significantly different to average read abundance 

calculated from single spacers (Figure 4.5).  This pattern suggests that the majority of spacers are 

commonly found in the conserved order represented by our designated spacer contigs.  For most 

spacers, we do not see a discordance between “conserved order” spacer abundance and total 

spacer abundance, which would suggest prevalent exchange of single spacers through lateral 

gene transfer, or multiple acquisitions of the same spacer. 
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Figure u Figure 4.4 Heat map of CRISPR III-B spacer abundance across 14 samples from 2007 to 2012.  Year and 
type of sample (day(D)/night(N)) are indicated on the far left.  Columns represent individual spacers, and 
black vertical lines distinguish groups of spacers with conserved order assembled to the same “spacer 
contig”.  (A) spacers and conserved order contigs with relatively even abundance across most samples; (B) 
spacers and conserved order contigs more abundant in earlier samples; (C) spacers and conserved order 
contigs more abundant in later samples.   

 

 

Figure v Figure 4.5 CRISPR subtype III-B individual spacer and conserved order “spacer contigs” normalized 
average read abundance. 
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In order to determine the degree to which spacers maintain the same spacer order (e.g., by 

vertical inheritance) versus having a different spacer order (e.g., by horizontal transfer, multiple 

acquisitions, recombination, etc.) the composition of spacer contigs was compared to that of 

individual spacers over the course of five years using ANOSIM.  The R statistic from ANOSIM 

ranges from 0-1; the closer to 1, the more distinct the gene assemblages are by year, the closer to 

0, the more similar.  The composition of individual spacer abundances are more similar across 

sample years (ANOSIM R statistic of 0.668, 0.1% significant), than conserved order spacer 

contig abundances (R statistic of 0.824, 0.1% significant).  In agreement with the ANOSIM 

results, CLUSTER analysis of spacer composition between samples indicated that samples were 

more similar to each other when comparing the composition of individual spacers (60% 

similarity) instead of spacer contigs (40% similarity) (Figure 4.6).  This implies that spacer order 

differs from sample to sample more than overall spacer content.  PERMANOVA results showed 

the composition of both individual spacer and conserved order spacer contig abundances are 

conserved within each sampling year ( P=0.005; and 0.001, respectively), making samples 

collected in the same year more similar to each other than samples from other years.  Principal 

coordinate analyses (PCO; Supplemental Figure 4.7 in Appendix C) also showed that samples 

are more similar when examining individual spacers than conserved order spacer contigs, with 

58.6% and 53.8% of the variation between samples explained by the first PCO axis (correlated 

with sample year) for individual spacers and conserved order spacer contigs respectively 

(Supplemental Figure 4.7 in Appendix C). 
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Figure w Figure 4.6 Non-metric multidimensional scaling (nMDS) plots of normalized average CRISPR spacer read 
abundance.  (A) Similarity of abundance of CRISPR conserved order “spacer contigs”; (B) similarity of 
abundance of individual CRISPR spacers. 
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BLASTn was used to compare the 225 unique spacers from CRISPR subtype III-B 

against both genotypes of PhV1, revealing a single spacer that shares 100% nucleotide identity 

with the proto-spacer region of PhV1.TypeB, and is present in half the samples analyzed.  This 

spacer, designated CRISPR.III-B.spacer1, belongs to the Phormidium sp. MIS-PhA CRISPR 

Locus1, whereas Locus2 does not possess any spacers matching to either genotype of PhV1.  

The PhV1.TypeB proto-spacer that matches CRISPR.III-B.spacer1 is not present in PhV1.TypeA 

due to a gap in that region of the TypeA genome (Figure 4.2D).   

 

Gene expression of PhV1 and host CRISPR loci 

Metatranscriptomic sequencing was performed on six samples collected in 2012.  cDNA reads 

were mapped to template sequences from PhV1 and the Phormidium CRISPR loci to determine 

if these regions were actively expressing RNA in the environment at the time of collection.  The 

most highly expressed PhV1 genes were from genes of unknown function, while nblA and a gene 

with a predicted peptidoglycan binding domain were also expressed in multiple samples, albeit at 

low levels (Supplemental Figure 4.8 in Appendix C).  These results indicate that the PhV1 

viruses were transcriptionally active at the time of sampling.   

 All six metatranscriptomes from 2012 contained transcripts from both cas genes and 

spacer regions in CRISPR Locus1 (Supplemental Figure 4.9 in Appendix C), demonstrating that 

Phormidium was actively transcribing its CRISPR loci in the environment at the time of 

collection.  A non-coding region directly adjacent to the upstream series of spacers (located at 

the ~1500bp mark in Supplemental Figure 4.9 in Appendix C), is the most highly expressed area 

of Locus1.  This region may represent a regulatory non-protein-coding small RNA, which have 

been identified at high frequencies in other environmental microbial metatranscriptomes and 
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have been implicated in regulatory functions based on their proximity to regulatory genes (e.g., 

carbon metabolism, nutrient acquisition) and lack of open reading frames (Frias-Lopez et al 

2008, Gilbert et al 2008, Shi et al 2009).  It should also be noted that the spacer/repeat regions 

show significantly more expression than the cas genes themselves in all samples.  As half of the 

2012 samples were collected during the day and half at night, RNA expression was examined for 

day/night trends, but none were detected.   

 

Abundance of viral genotypes and PhV1 targeting CRISPR spacer across samples 

The CRISPR.III-B.spacer1 that matches PhV1.TypeB was recovered from seven out of fourteen 

samples taken from MIS between 2007 and 2012, including the 2007 sample, one of the three 

2011 samples, and five out of six samples from 2012 (Figure 4.7).  Normalized (to account for 

varied sequencing effort) and averaged read abundance calculated for both genotypes of PhV1 

show a decline in TypeB abundance and subsequent rise of TypeA abundance over time.  In the 

2007 sample, PhV1.TypeB is over three-fold more abundant than PhV1.TypeA, a trend that 

continues until 2011 when the viral community shifts to PhV1.TypeA being more abundant.  

During the same period, the abundance of Phormidium (based on read abundance of 4 single 

copy housekeeping genes; L2P, L4P, secY and ychF) is relatively high in 2007-2010, but 

declines in 2011-2012.  Of the nine samples from 2011-2012, only 2 samples have Phormidium 

abundances equivalent to those detected in 2007-2010.  Both samples in which Phormidium has 

a higher read abundance also contain CRISPR.III-B.spacer1 at relatively high levels 

(Supplemental Figure 4.10 in Appendix C) compared with other samples containing that spacer.    

  

120 
 



 

Figure x Figure 4.7 Normalized gDNA read abundance of Phormidium and its viruses plotted for each sample and 
averaged over the length of the gene/genome.  (A) virus PhV1.TypeA and PhV1.TypeB read abundance; 
(B) Phormidium read abundance based on four different single copy housekeeping genes.  Blue background 
shows samples that contain CRISPR.III-B.spacer1 that matches PhV1.TypeB. Note that samples collected 
during the day are followed by D and samples collected at night are followed by N. 

 

4.3 Discussion 

We have used a metagenomic and metatranscriptomic approach to link the cyanobacterium that 

dominates a microbial mat and a highly abundant virus that preys upon it.  Genome analysis 

shows that Phormidium phage MIS-PhV1 contains genes that are mostly of unknown function, 

and shares no gene sequence with viruses known to infect Phormidium in other environments 

(Liu et al 2008), highlighting the novelty of PhV1.  When PhV1 genes were compared to 
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publicly available viral databases, no structural gene homologs were identified, making further 

phylogenetic classification impossible. Two distinct genotypes of PhV1 contain large genome 

rearrangements consisting of insertions, deletions and SNPs, and there is extensive evidence that 

many low abundance genotypes coexist in the environment.   

Both genotypes of PhV1 encode a phycobilisome degradation protein NblA, which is 

used by cyanobacteria to break down the major photosynthetic apparatus and by viruses 

attacking cyanobacteria (Gao et al 2012, Yoshida-Takashima et al 2012).  Though the benefit to 

viruses encoding nblA is unknown, it has been speculated that NblA could be used to obtain 

amino acids for viral replication and to reduce photo-damage to viral particles during infection 

(Gao et al 2012, Yoshida-Takashima et al 2012).  While doubling times for Phormidium species 

at MIS are unknown, their psychrophilic nature (growing at 9° C) and the doubling times of 

known Phormidium (0.07-0.5 d-1, depending on light and nutrient availability) (Litchman 2000, 

Litchman et al 2003) suggest the MIS strains are relatively slow growing. As slower host growth 

is correlated with longer infection periods (Middelboe 2000), MIS Phormidium viruses likely 

experience long latent periods, exposing them to photo-oxidative damage for longer periods of 

time in the intracellular environment.  Microcystis phages also encode an NblA that is expressed 

during infection of a relatively slow growing host (0.12-0.45 d-1) (Van Der Westhuizen and Eloff 

1985, Yoshida-Takashima et al 2012). Dampening hosts’ photosynthetic capacity and reducing 

potential buildup of reactive oxygen species by degrading host phycobilisomes may be a strategy 

employed by viruses infecting slow-growing cyanobacteria to improve fitness. 

The nblA encoded by PhV1 clusters phylogenetically with nblA encoded by the host 

Phormidium sp. MIS-PhA, suggesting that nblA was acquired by PhV1 from its host instead of 

other viral lineages (Figure 4.3).  This pattern is consistent with other viral encoded auxiliary 
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metabolic genes (AMGs) (Breitbart et al 2007), which are primarily derived from host or other 

microbial origins (Ignacio-Espinoza and Sullivan 2012).  However, current lack of available host 

and viral genomes for these groups make definitive determination of the phylogenetic 

relationships and evolutionary history of nblA difficult.  More sequences of both host and viral 

encoded nblA are required to obtain finer phylogenetic resolution of this gene. 

As has been noted in other environmental studies of virus-host dynamics (Andersson and 

Banfield 2008, Pride et al 2011, Tyson and Banfield 2008), extensive evidence from the current 

study suggests that PhV1 relies upon rearrangements of its genome to evade CRISPR defenses.  

This form of viral evasion of host defenses differs from isolate experiments that have shown 

rapid point mutation in regions targeted by CRISPRs (Sun et al 2013).  Indeed, gDNA sequence 

reads belonging to PhV1.TypeB found in 2011-2012 contain no conserved mutations in the 

region targeted by CRISPR.III-B.spacer1, even though TypeB persists in the environment (at 

reduced abundance) in all 2011-2012 samples.  It is unclear if the lack of mutation in the proto-

spacer region of PhV1.TypeB is due to strong positive selection on that viral gene, reflects the 

relatively slow cyanobacterial growth rates at MIS compared to most viral/CRISPR studies in 

laboratory settings, or some other factor. 

 Given the high abundance and persistence of PhV1, it is surprising that only one spacer 

was found matching TypeB and no spacers were found matching TypeA.  This differs from 

previous studies which show rapid spacer acquisition upon exposure to new viruses (Barrangou 

et al 2007, Sapranauskas et al 2011, Tyson and Banfield 2008).  There is no clear explanation for 

the lack of observed mutations in the proto-spacer region of PhV1, or the lack of spacers 

targeting the very abundant virus PhV1.TypeA, but these observations imply a more stable host-
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prey dynamic with slower adaptation rates than has been observed in culture (Barrangou et al 

2007, Sun et al 2013) or other environments (Andersson and Banfield 2008). 

Spacer content of the CRISPR subtype III-B loci was found to be relatively consistent 

within samples collected from the same year, but distinct between sampling years.  A core set of 

spacers are present in all samples and probably provide resistance to ancestral or persistently 

occurring viruses (Tyson and Banfield 2008), whereas less abundant spacers change in 

abundance over time and probably reflect recently acquired spacers.  Similarity in read 

abundance between CRISPR spacer contigs and individual spacers implies most spacers 

maintain their order over the time scale of the current study, with a few high abundance spacers 

responsible for the majority of difference in spacer content from sample to sample and year to 

year.  Recent work by Paez-Espino et al. has shown a strong bias for re-acquisition of spacers 

from previously sampled proto-spacers (Paez-Espino et al 2013), which may account for the 

observed highly abundant spacers at MIS.  

During the course of this study we observed the abundance of PhV1 genotypes, as well as 

its Phormidium host, shift in a consistent fashion.   In 2007 Phormidium abundance is at its 

highest, PhV1.TypeB abundance is at its highest, and PhV1.TypeA abundance is low (Figure 

4.7).  From 2009 to 2011, PhV1 abundance for both genotypes is quite low, while Phormidium 

abundance appears to undergo a steady decline.   By 2012 PhV1.TypeA abundance is greater 

than PhV1.TypeB, and Phormidium remains lower abundance than previous years.  The 

correlation of abundance reversals of PhV1 genotypes, and overall drop in Phormidium 

abundance with the appearance of a CRISPR spacer matching PhV1.TypeB in 2007 implies that 

Phormidium was able to successfully defend itself from PhV1.TypeB, causing the observed drop 

in TypeB abundance.  The decline in PhV1.TypeB abundance correlates well with the rise of 
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PhV1.TypeA, suggesting TypeA was able to evade Phormidium’s CRISPR defense due to 

absence of the proto-spacer region.  Indeed, increased abundance of PhV1.TypeA in 2011 and 

2012 correlates with a severe decrease in abundance of Phormidium in seven out of nine 

samples.  These correlations suggest a ‘Kill-the-Winner’ (KtW) scenario (Rodriguez-Valera et al 

2009, Thingstad 2000) in which viruses target the dominant organism until its abundance 

decreases.  Such viral activity may promote increased diversity of cyanobacteria within the MIS 

microbial mats. 

 

4.4 Conclusions 

We have used metagenomics and metatranscriptomics to document exchange of DNA between a 

virus and its host.  Two genomes for the virus Phormidium phage MIS-PhV1 were recovered and 

linked to the dominant Cyanobacteria at MIS, Phormidium sp. MIS-PhA.  PhV1 was linked to 

Phormidium using a host derived AMG (nblA) encoded by the virus, which breaks down 

cyanobacterial photosynthetic pigments attuned to low light, called phycobilisomes.  A CRISPR 

spacer in the Phormidium genome matches a sequence in the PhV1.TypeB genome, and 

illuminates one potential reason for observed shifts in viral abundance from TypeB being 

dominant in 2007 (and targeted by a Phormidium CRISPR spacer), to TypeA (which is not 

susceptible to host CRISPR defense due to a deletion of the protospacer) being dominant in 

2012.   

This study highlights some of the advantages of culture independent community analysis 

by linking a high abundance virus to its host using metagenomic sequence data, inviting 

inferences about viral ecology and host interactions.  Assembly of time-series metagenomes 

revealed multiple lines of evidence that imply that viral-host adaptation rates may be slower than 
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those observed in other studies, including slow addition of CRISPR spacers by Phormidium, and 

lack of conserved mutations in the protospacer region of PhV1.TypeB.  It is not clear if this 

apparently slower adaptation rate is due to host physiology (e.g., slow growth rates of 

Phormidium), environmental factors (e.g., low temperature, low light), or some combination of 

these and other factors.   

It is clear that multiple exchanges of DNA between virus and host have occurred in the 

low oxygen cyanobacterial mats at the Middle Island Sinkhole, reflecting viral pressure on the 

dominant community member, Phormidium.  With current viral gene databases severely under-

representing true viral diversity in nature, discovery of novel viruses such as PhV1 is to be 

expected.  Therefore, linking viruses to their hosts and to possible ecological strategies can be 

invaluable for improving our understanding of viral influences on microbial mortality, and 

repercussions for ecosystem dynamics. 

 

4.5 Materials and Methods 

Sampling and sample preparation 

Microbial mat samples were collected aboard the R/V Storm by NOAA divers from MIS between 

2007 and 2012.  DNA was extracted and processed (without amplification) for metagenomic 

shotgun pyrosequencing as previously described (Voorhies et al 2012). 

RNA was extracted from 2012 samples, converted to cDNA, and amplified for sequencing as 

previously described (Frias-Lopez et al 2008).  All samples available and preserved in RNA later 

from MIS were used for metagenomic analysis to maximize sample time points. 

  

126 
 



Sequencing and assembly 

Please note, specific parameters for all bioinformatics software can be found in Supplemental 

Table 4 in Appendix C. 

 

Fourteen environmental samples (Table 4.1) were shotgun sequenced on an Illumina Hi Seq 

2000 instrument producing paired end reads at the University of Michigan DNA Sequencing 

Core.  Assembly of Illumina shotgun reads was achieved by running three independent Velvet 

(Zerbino and Birney 2008) assemblies for each sample with kmer values of 91, 75 and 61 which 

were then edited with MetaVelvet (Namiki et al 2012) and combined using the SAMtools (Li et 

al 2009) function minimus2.  Reads files were dereplicated prior to assembly to remove reads 

with 100% ID and overlap, and trimmed based on quality scores before assembly. 

 

Table 6 Table 4.1 Metagenome sample summary 

Table 4.1 Metagenome sample summary 

Sample Finger1 Prostrate 
Mat2 Day Night 

Illumina 
gDNA 

gDNA 
Normalization Illumina cDNA cDNA 

Normalization 
Reads Factor Reads Factor 

2007-1D x  x  55,742,528 3.80 none none 

2009-1D  x x  56,610,020 3.74 none none 

2009-2D x  x  58,811,950 3.60 none none 

2009-3D x  x  25,542,490 8.30 none none 

2010-1D x  x  69,716,858 3.04 none none 

2011-1D  x x  98,430,946 2.15 none none 

2011-2N  x  x 211,878,358 1.00 none none 

2011-3D x  x  59,608,800 3.55 none none 

2012-1D x  x  25,666,608 8.26 11,997,534 1.22 
2012-2D x  x  41,595,684 5.09 14,577,110 1.00 
2012-3D x  x  41,318,538 5.13 11,524,300 1.26 
2012-4N x   x 42,876,682 4.94 12,125,414 1.20 
2012-5N x   x 38,335,454 5.53 12,100,438 1.20 
2012-6N x     x 28,207,614 7.51 13,079,448 1.11 
1 Microbial mat structure that is raised off the lake sediments 
2 Microbial mat that lies flat on lake sediments 
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Separate assemblies were performed for each of the 14 samples, and contiguous 

sequences from all 14 samples were combined using minimus2 to identify regions of interest 

such as CRISPR loci or viral genomes that were present in multiple samples.  Reads from each 

sample were then mapped back onto the templates using Geneious (Biomatters 2013) 

(www.geneious.com) to create sample specific sequences from the consensus.  Assemblies were 

validated against the previous 454Ti assembly (Voorhies et al 2012), and through extensive 

manual curation using the genomic viewers IGV (Robinson et al 2011) and Geneious to visualize 

reads mapped onto contigs using BWA (Li and Durbin 2009).  Gene calling and annotation was 

performed by the Joint Genome Institute’s Integrated Microbial Genomes Expert Review portal 

(https://img.jgi.doe.gov/cgi-bin/mer/main.cgi) confirmed using Prodigal (Hyatt et al 2010).  The 

annotations of specific genes of interest were verified using BLASTp with cutoffs of 150 

bitscore and ID of 30% to NR, COG, KEGG and Pfam.  

 

Estimating viral and bacterial abundance 

Genomic DNA and cDNA read abundance was calculated by first mapping reads to regions of 

interest in BWA, and then extracting those reads into a new fastq file.  The selected reads were 

then competitively mapped to ROI DNA templates using Geneious (reads with multiple 100% 

matches were mapped to all possible regions).  Separation of different strains of PhV1, and 

CRISPRs in the Phormidium genome, were performed visually in Geneious based on read 

coverage and single nucleotide polymorphism (SNP) patterns.  Read abundances were 

normalized for the number of reads available in a sample, and then averaged over the length of 

the ROI or genome, see Table 4.1 for normalization factors and sample sizes. 
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Multivariate Statistics 

Multivariate statistics were conducted in PRIMER v6 (Clarke 2006) to visualize and analyze the 

differences in spacer and contig composition in samples from 2007 through 2012. Normalized 

spacer abundances and normalized contig abundances were 4th root transformed to de-emphasize 

the most abundant sequences, and then rank similarity matrices were calculated with the Bray-

Curtis similarity metric. A one way analysis of similarity (ANOSIM) with year as the main 

factor was then calculated with 999 permutations to retrieve the R statistic for community 

similarity between years (Clarke 1993).  Hierarchical clustering, using the group average 

method, was calculated to visualize the natural grouping of samples. Non-metric 

multidimensional scaling (NMDS) plots and Principal-coordinates analyses were created to 

further visualize differences in the composition of spacers and contigs within and between 

sampling dates. The multivariate adaptation of ANOVA, PERMANOVA (Anderson 2001) was 

then calculated with year as the main factor and Monte Carlo simulations to test the difference 

between individual spacer and spacer contig abundance across years. To examine which genes 

contributed most to the difference in the composition, the SIMPER tool in PRIMER v6 was used 

to calculate the contribution of each spacer or contig to the average Bray-Curtis dissimilarity 

between years. 

 

ML tree 

Protein sequences were globally aligned using the Geneious Alignment tool using a Blosum62 

cost matrix.  A Maximum Likelihood tree was created using PhyML (Guindon and Gascuel 

2003) using the JTT substitution model and were bootstrapped 5000 times, only values >70 are 
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reported on the tree.  An alternate tree was created using the MUSCLE aligner (Edgar 2004) and 

the LG+I+G substitution model in PhyML to verify the topology of the tree. 

 

BLAST 

Three main types of BLAST analysis were performed.  Searches for function were conducted 

using BLASTp with an identity cutoff of 60%.  Homology searches were conducted using 

BLASTp with an identity cutoff of 30%.  Searches for CRISPR repeats and spacers were 

conducted using BLASTn with an Identity cutoff of 100% over the length of the repeat or spacer, 

though lower stringency was used to search for spacers containing point mutations. 

 

Viral identification 

Potential viral sequences were searched for homology against NCBI’s viral DB, and two custom 

databases.  One of the custom databases was created using all available complete phage genomes 

available on NCBI’s RefSeq, with all non-phage sequences (mostly eukaryotic viruses) removed.  

The second was a curated database of genes found in viral metagenomes titled “The Pacific 

Ocean Virome” and curated by Hurwitz et. al. (Hurwitz and Sullivan 2013).  MIS sequences 

were also compared to a custom database created using all plasmid sequences available on 

NCBI’s RefSeq. 

 

CRISPR identification 

CRISPR sequences were identified using CRISPR Finder Online (Grissa et al 2007b) and cas 

genes were identified using a combination of BLAST and CRISPRdb (Grissa et al 2007a).  
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CRISPR repeats on contigs with cas genes were searched using BLAST against all metagenomic 

samples to identify contigs with valid CRISPRs that contain valid spacer sequences, but lacked 

cas genes due to incomplete assembly.  Cas genes were identified using BLASTp against a 

custom database comprising known cas genes from NCBI’s RefSeq and cas genes described by 

Makarova et al. (Makarova et al 2011c). 

 

Data access 

The sequence data from this study has been submitted to NCBI 

(http://www.ncbinlm.nih.gov/bioproject) under BioProject identifier PRJNA72255.  Individual 

accession numbers for reads from the 14 metagenomic samples deposited in NCBI’s Sequence 

Read Archive can be found in Supplemental Table 4.5 in Appendix C.  Accession numbers for 

assembled and annotated sequences from MIS can be found in Supplemental Table 4.6 in 

Appendix C.  Accession numbers for non-MIS NblA sequences can be found in Supplemental 

Table 4.7 in Appendix C. 

 

Abbreviations used 

Middle Island Sinkhole (MIS) 

CRISPR (clustered regularly interspaced short palindromic repeats) 

CRISPR/cas (CRISPR-associated sequences) 

auxiliary metabolic genes (AMGs) 

single nucleotide polymorphism (SNP) 

Non-metric multidimensional scaling (NMDS) 
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Supplemental Table 4.1.     PhV1.TypeA Annotations 
 Start Stop Length Annotation Direction 

1 1,575 1,575 AAA ATPase forward 
1,580 1,873 294 Novel 1 forward 
2,017 2,319 303 HP forward 
2,600 2,932 333 Novel 2 forward 
2,952 3,350 399 HP forward 
3,429 3,764 336 HP forward 
3,927 4,571 645 DNA Methyltransferase forward 
4,652 4,816 165 Novel 3 forward 
4,860 5,210 351 Novel 4 forward 
5,250 5,483 234 HP forward 
5,568 5,774 207 Novel 5 forward 
5,823 6,041 219 HP forward 
6,643 7,149 507 Novel 6 forward 
7,256 9,217 1,962 HP forward 
9,329 9,601 273 Novel 7 reverse 
9,728 10,558 831 DNA Ligase forward 

10,713 11,459 747 Nucleoid DNA Binding Protein reverse 
11,456 11,614 159 Novel 8 reverse 
11,614 11,919 306 Novel 9 reverse 
11,989 15,270 3,282 HP reverse 
15,274 17,829 2,556 DNA Repair Protein reverse 
17,865 19,526 1,662 ProB reverse 
19,596 19,967 372 Novel 10 forward 
19,978 20,634 657 HP reverse 
20,638 21,453 816 Methyltransferase reverse 
21,516 21,878 363 Novel 11 reverse 
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21,946 22,566 621 Novel 12 reverse 
22,623 23,015 393 Novel 13 reverse 
23,497 23,823 327 Novel 14 reverse 
23,925 24,545 621 HP forward 
25,327 25,809 483 Novel 15 forward 
25,806 26,171 366 HP forward 
26,267 26,581 315 HP forward 
26,768 27,172 405 Novel 16 forward 
27,287 27,838 552 HP forward 
27,841 28,140 300 Novel 17 forward 
28,256 28,645 390 HP forward 
28,723 29,172 450 HP forward 
29,266 30,003 738 HP forward 
30,110 31,009 900 Hypothetical Phage Gene forward 
31,006 31,209 204 Novel 18 forward 
31,302 31,688 387 HP forward 
31,806 32,021 216 Novel 19 forward 
32,098 32,403 306 Novel 20 forward 
32,629 33,183 555 HP forward 

33,193 33,801 609 HP - Possible Peptidoglycan Binding Protein forward 
33,796 33,906 111 Novel 21 reverse 
33,939 34,262 324 Novel 22 forward 
34,351 36,096 1,746 HP reverse 
36,093 36,515 423 Novel 23 reverse 
36,472 36,579 108 Novel 24 reverse 
36,524 37,327 804 Novel 25 reverse 
37,358 37,855 498 Novel 26 reverse 
37,946 38,191 246 Novel 27 reverse 
38,192 38,311 120 Novel 28 reverse 
38,431 38,994 564 HP reverse 
38,975 39,334 360 HP reverse 
39,740 39,979 240 Novel 29 forward 
40,058 40,219 162 NblA reverse 

40,230 43,418 3,189 Virulence Associated E Protein reverse 
43,415 43,666 252 Novel 30 reverse 
44,133 45,413 1,281 HP forward 

 

 

 

Supplemental Table 4.2     PhV1.TypeB Annotations 
 Start Stop Length Name Direction 

1 161 161 Novel 31 forward 
106 1,575 1,470 AAA ATPase forward 

1,597 1,923 327 HP forward 
1,999 2,196 198 HP - Possible Hydrolase forward 
2,207 2,599 393 HP forward 
2,628 2,989 362 HP forward 
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3,058 3,696 639 DNA Methyltransferase forward 
3,161 3,340 180 HP reverse 
3,430 3,696 267 HP forward 
3,804 4,037 234 HP forward 
4,086 4,286 201 HP forward 
4,322 4,645 324 HP forward 
4,642 4,878 237 HNH Endonuclease forward 
4,936 5,170 235 HP forward 
5,217 5,588 372 HP forward 
5,592 5,750 159 HP reverse 
5,768 6,274 507 Novel 6 forward 
6,381 7,910 1,530 HP forward 

7,994 8,281 288 
HP - Possible Membrane Protein or Specificity 
Protein forward 

8,376 8,627 252 Novel 7 reverse 
8,730 9,560 831 DNA Ligase forward 
9,679 10,398 720 Nucleoid DNA Binding Protein reverse 

10,395 10,550 156 Novel 8 reverse 
10,550 10,855 306 Novel 9 reverse 
10,925 14,206 3,282 HP reverse 
14,210 16,768 2,559 DNA Repair Protein reverse 
16,804 18,396 1,593 ProB reverse 
18,460 19,275 816 Methyltransferase reverse 
19,437 20,015 579 Novel 12 reverse 
20,107 20,433 327 Novel 14 reverse 
20,537 21,157 621 HP forward 
21,284 21,391 108 HP forward 
21,925 22,354 430 HP - Phage Protein 7.7 Like forward 
22,351 22,716 366 HP forward 
22,413 22,577 165 Novel 32 reverse 
22,574 22,771 198 HP reverse 
22,832 23,146 315 HP forward 
23,334 23,738 405 Novel 16 forward 
23,735 23,911 177 HP reverse 
23,852 24,403 552 HP forward 
24,406 24,705 300 Novel 17 forward 
24,821 25,282 462 HP forward 
25,360 25,809 450 HP forward 
25,903 26,640 738 HP forward 
26,733 27,632 900 HP - Possible gp37/gp68 Phage Gene forward 
27,629 27,832 204 Novel 18 forward 
28,039 28,254 216 Novel 19 forward 
28,344 28,532 189 Novel 20 forward 
28,594 28,701 108 CDS forward 
28,852 29,406 555 HP - Possible Endonuclease forward 
29,416 30,024 609 HP - Possible Peptidoglycan Binding Protein forward 
30,019 30,114 96 Novel 21 reverse 
30,147 30,470 324 HP forward 
30,559 32,304 1,746 HP reverse 
32,301 32,723 423 Novel 23 reverse 
32,680 32,787 108 Novel 24 reverse 
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32,732 33,535 804 Novel 25 reverse 
33,626 33,862 237 Novel 27 reverse 
33,863 33,982 120 Novel 28 reverse 
34,111 34,674 564 Nuclease reverse 
34,655 35,014 360 HP reverse 
35,419 35,547 129 Novel 29 forward 
35,684 35,845 162 NblA reverse 
35,856 39,104 3,249 Virulence Associated E Protein reverse 
39,101 39,352 252 Novel 30 reverse 
39,908 41,080 1,173 HP forward 
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CHAPTER V 

Conclusions 

 

5.1 Introduction 

While low-O2 sulfidic environments are rare on the modern Earth, they were pervasive before 

the evolution of oxygenic photosynthesis by early cyanobacteria, and even after the great 

oxygenation event (GOE) there is evidence that the oceans remained low-O2 sulfidic 

environments for almost two billion years before rising to modern levels of O2 (Canfield and 

Farquhar 2009, Holland 2006).  Although cyanobacteria are recognized as the agents of Earth’s 

oxygenation, little is known about the factors that control oxygen production by cyanobacterial 

ecosystems under low-O2 or redox-stratified conditions.  A critical aspect of this issue is the 

regulation of oxygenic versus anoxygenic photosynthesis, at both the cellular level (i.e., 

regulation of metabolism) and community level (i.e., competition between various metabolisms 

and ecotypes).  Fossils of microbial mats are preserved in the geologic record as some of the 

earliest evidence of life on Earth, but unfortunately beyond cell morphology and 

chemical/isotopic signatures of the surrounding rock, very little are left of those organisms for us 

to study, and there is limited information regarding photosynthetic metabolism of these early 

microbial mats.  Here I have presented metagenomic and metatranscriptomic analysis of a 

modern low-O2 sulfidic ecosystem that is well suited as a model of Precambrian cyanobacterial 

mats.  The conclusions are broken into sections where I first address the overall environment at 
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MIS, the most abundant and transcriptionally active organisms, and their potential contributions 

to geochemistry.  I then focus on conclusions regarding Phormidium, the dominant organism at 

MIS, and potential model of ancient cyanobacteria.  In closing I briefly address potential 

directions for future research. 

 

5.2 The Middle Island Sinkhole, a modern analog of ancient microbial mats 

Conditions at MIS 

The microbial mats at MIS are one of the better analogs of ancient redox-stratified 

cyanobacterial mats that have been found in the modern world.  Sharp chemical gradients and 

microbially mediated biogeochemistry result from immersion in a meter of dense sulfidic water 

low in O2 bathing the mats (Chapter II), creating an environment similar to what microbial mats 

in Proterozoic oceans might have experienced (Canfield and Farquhar 2009, Holland 2006).   

The MIS mat community is composed primarily of Phormidium, a cyanobacterium capable of 

facultative oxygenic/anoxygenic photosynthesis, a versatile metabolism that would have given it 

great advantages in the fluctuating redox conditions of the early Earth (Chapters II and III).  Less 

abundant community members were found to perform a wide range of metabolic 

biogeochemistry including oxidation and reduction reactions (Chapter III), helping to make the 

mats a net sink for O2 (Chapter II).  This finding is surprising in light of cyanobacteria’s well-

recognized role in oxygen production, and provides new perspectives on the role of 

cyanobacteria in Earth’s redox evolution.  Though it is widely agreed that the evolution of 

oxygenic photosynthesis probably took place shortly before the GOE (Blank 2004, Blankenship 

et al 2007), the reason for the long delay in the rise of atmospheric and aquatic O2 to modern 

levels is still poorly understood.  Most modern cyanobacterial mats are sources of O2 (Gingras 
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2011), indicating substantial contributions to primary production by anoxygenic photosynthesis 

or chemosynthesis at MIS.   

When oxygenic photosynthesis is used to create biomass by converting CO2 to organic 

carbon, O2 is produced and can be used by heterotrophs to break that organic matter back down 

into CO2, releasing it back to the atmosphere, completing the cycle.  However, if carbon is fixed 

into organic matter by anoxygenic photosynthesis or chemosynthesis, O2 is not produced.   In 

anoxic, organic carbon-rich environments any O2 that is produced by oxygenic photosynthesis 

will be quickly used before it can escape to the atmosphere.  Thus, significant contributions to 

primary production by anoxygenic photosynthesis, including those by metabolically versatile 

cyanobacteria, could slow the rise of oxygen, even after the evolution and proliferation of 

cyanobacteria capable of oxygenic photosynthesis (Johnston et al 2009a).  Our finding of a 

modern cyanobacterial mat system in low-O2 sulfidic conditions that serves as a sink for O2 

helps to demonstrate at least one of the potential reasons why the Earth’s atmosphere may have 

remained at around 1% of its current levels for over a billion years (Holland 2006), and 

highlights the importance of the balance between oxygenic and anoxygenic photosynthesis in 

controlling the redox impact of microbial communities.   

 

MIS community composition and metabolism 

The mats at MIS are largely dominated by Phormidium, with over 4000x genomic DNA 

coverage in metagenomic datasets from fifteen samples collected between 2007 and 2012.  The 

second most abundant organism (Oscillatoria) had 553x average genome coverage, and most 

genomes recovered had less than 100x total coverage (Chapter III).  This makes for a community 

with low diversity and evenness that is quite rare in modern systems, which usually have more 
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species present, and a more even spread of genomic coverage (Chivian et al 2008, Denef et al 

2010).  Phormidium also performs the majority of photosynthesis and makes a significant 

contribution to carbon fixation along with the chloroplast of a Bacillariophyta diatom (Chapter II 

and III).  The dominance of Phormidium indicates that the MIS mats lack functional redundancy 

and suggests that they could be susceptible to changing environmental conditions (Wittebolle et 

al 2009). 

 Several other groups of bacteria play key metabolic roles that influence the geochemistry 

of MIS.  Five genomic bins comprising partial genomes for seven organisms from the phylum 

Bacteroidetes were recovered (Chapter III).  Based on their abundance and gene content, these 

Bacteroidetes populations are probably performing a combination of sulfite oxidation and 

aerobic heterotrophy at MIS, though only aerobic respiration genes showed expression (Chapter 

III).  Members of this phylum have been well documented as heterotrophs, and the MIS mats are 

a carbon rich environment (Nold et al 2013).  Many microbes at MIS were also found to code for 

and express ABC transporters of the branch chain amino acid and polar amino acid variety, as 

well as di and tricarboxylate transporters, all of which have been implicated in heterotrophy.   

Members of the Desulfobacterales (Deltaproteobacteria) were found to perform the 

majority of sulfate reduction using the DSR system, converting sulfate into hydrogen sulfide 

(Chapter II and III).  They were also found to express hydrogen oxidation genes that are usually 

coupled to sulfate reduction in other Deltaproteobacteria.  Desulfobacterales coded for and 

expressed genes for both autotrophy and heterotrophy, but transcript coverage was significantly 

higher for autotrophy genes (Chapter III).  Sulfate reduction has been well documented within 

the Deltaproteobacteria, which are believed to be influential in carbon cycling in anaerobic 

environments such as sediments (Muyzer and Stams 2008).  Based on expression of sulfate 
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reducing genes, the Desulfobacterales are converting significant amounts of the sulfate at MIS 

into sulfide.  Sulfide serves as an energy source for lithotrophy performed by 

Gammaproteobacteria and Epsilonproteobacteria, and freely reacts with available O2, 

contributing to hypoxia at MIS. 

Betaproteobacteria, Epsilonproteobacteria, and Gammaproteobacteria are responsible 

for the majority of sulfur oxidation at MIS including thiosulfate oxidation using the sox system.  

Betaproteobacteria had the most transcripts for sulfide oxidation using the reverse dissimilatory 

sulfite reductase pathway, while the Betaproteobacteria and Gammaproteobacteria used 

flavocytochrome C sulfide dehydrogenase to oxidize sulfide.  Phormidium also made 

contributions to sulfide oxidation using sulfide quinone oxidoreductase (SQR) and sulfite 

oxidation using aprA.  Sulfur oxidizing and reducing bacteria play roles in modulating 

concentrations of sulfide at MIS, which is likely a key factor governing the form of 

photosynthesis conducted by the overlying cyanobacteria.   

 

MIS is host to novel organisms 

MIS has proved to be a fruitful source of genomic data for several phyla that have no cultured 

representatives.  The ARB-Silva database currently lists 57 phyla (Quast et al 2013), 30 of which 

are referred to as candidate divisions because they contain no cultured representatives.  Because 

these microbial groups are unknown in terms of metabolism and function, they have been 

referred to as “Microbial Dark Matter” (Castelle et al 2013, Rinke et al 2013).  While a few 

organisms have been cultured and very well characterized, less than 1% of organisms can be 

cultured in the lab, with entire phyla represented only by 16s rRNA marker gene surveys 

(Rajendhran and Gunasekaran 2011, Rappe and Giovannoni 2003).  In addition, almost all phyla 
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have entire classes with no cultured representatives or environmental genomes available, and a 

major push to fill in representative genomes on the tree of life is currently underway (Castelle et 

al 2013, Rinke et al 2013, Wrighton et al 2012).   

 Significant genomic and transcriptomic information on bacterial candidate divisions 

WS3, SM2F11 and RF3 was retrieved from MIS.  I have presented a near-complete genome and 

transcriptomic data for WS3, which codes for several forms of sulfur, hydrogen and carbon 

monoxide oxidation, as well as autotrophy using the reverse TCA cycle. Transcripts of genes 

relating to hydrogen oxidation, aerobic respiration and chemotaxis were recovered (Chapter III).  

This is the second genomic and first transcriptomic data available for WS3, and shows that WS3 

codes for a wide range of functions that were not found in the previously published single cell 

genome, such as sulfur oxidation and electron transport genes (Rinke et al 2013) (Chapter III). 

 Partial genomes were recovered for SM2F11 and RF3, both of which are novel in terms 

of gene content (Chapter III).  The SM2F11 genome is estimated to be 81% complete, yet 812 of 

1569 genes have no known homologs, making identification of functional or metabolic genes 

difficult.  Low similarity (23% amino acid identity) was detected to genes involved in 

denitrification, as well as a Rhodanese-related sulfurtransferase and coupled thioredoxin 

reductase, which is a large family of genes involved in thiosulfate oxidation for a variety of 

cellular and extracellular functions (Ray et al 2000).  Only a small portion of the RF3 genome 

was recovered (~18%), and no metabolic genes were identified (Chapter III). 

 The unique microbial community and geochemistry at MIS make it a valuable resource 

for trying to understand ancient cyanobacterial mat systems.  Our results highlight the large 

diversity of organisms to be found in modern microbial systems, and challenges in understanding 
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ancient microbial systems when our knowledge of modern microbial diversity and contributions 

to biogeochemistry are so incomplete.    

 

5.3 Phormidium: A metabolically versatile cyanobacterium 

Phormidium as a model of low-O2 sulfide tolerant cyanobacteria 

Phormidium is a filamentous cyanobacterium (Figure 2.4) commonly able to survive in low-O2, 

sulfidic conditions that usually inhibit cyanobacteria from performing photosynthesis (Cohen et 

al 1986, Miller and Bebout 2004b).  Measurements of primary production process rates and 

oxygen concentrations, gene content, and photosynthetic gene expression all indicate that the 

MIS Phormidium are capable of conducting anoxygenic photosynthesis (Chapter II and III) when 

photosystem II is inhibited by sulfide, as has been observed in some other cyanobacteria of the 

Oscillatoriales (Bronstein et al 2000b).  Microprobe measurements of sulfide and oxygen at MIS 

indicate fluctuating redox conditions that could inhibit photosystem II during periods of high 

sulfide (Kinsman-Costello et al., unpublished data).  Periodic inhibition of photosystem II by 

sulfide (Cohen et al 1986) may explain why Phormidium appears to use both anoxygenic and 

oxygenic photosynthesis (Figure 3.3).  It is not clear if all Phormidium cells at MIS are capable 

of anoxygenic photosynthesis or if different strains are adapted to different niches.  It is also not 

clear if MIS Phormidium use a combination of oxygenic and anoxygenic photosynthesis 

simultaneously, or if they only use anoxygenic photosynthesis when PS II is inhibited.  Closed 

genomes or pure cultures of Phormidium strains will be required to make these distinctions.  

 While the high ratio of Phormidium PS I versus PS II transcript abundance is consistent 

with anoxygenic photosynthesis (Figure 3.3), many aspects of the mechanism remain uncertain.  

Phormidium does encode and heavily express SQR, which some cyanobacteria can use to 
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perform anoxygenic photosynthesis (Bronstein et al 2000b, Cohen et al 1986).  SQR is a diverse 

family of proteins that can also be used for sulfide detoxification (Bronstein et al 2000b), and the 

SQR encoded by Phormidium is too divergent from any SQR with experimentally determined 

function to be certain of the Phormidium encoded SQRs function.  SQR in Phormidium is more 

heavily expressed than some PS I genes used in anoxygenic photosynthesis (Figure 3.9), 

consistent with its involvement in anoxygenic photosynthesis. 

 Metatranscriptomic analysis of Phormidium revealed significantly higher transcript 

abundance in night samples compared to day samples (Figure 3.8), in contrast to unicellular 

cyanobacteria that reach peak transcript abundance for photosynthesis core genes during the day 

(Colon-Lopez and Sherman 1998, Shi et al 2010, Stockel et al 2011, Straub et al 2011, Zinser et 

al 2009).  These model cyanobacteria are unicellular, and have been shown to express a portion 

of their genes (20-80%) on a diel cycle, which always includes photosynthesis genes (Shi et al 

2010, Stockel et al 2011, Zinser et al 2009).  We do not have enough temporal data points to 

resolve Phormidium’s potential diel cycle of gene expression, but from the day/night data it is 

clear that MIS Phormidium transcriptome patterns are distinct from those observed for 

cyanobacteria previously.  During the day when model cyanobacterial transcript abundance is at 

its highest point for photosynthesis reaction core genes (Zinser et al 2009), Phormidium average 

transcript abundance for photosynthesis genes is significantly lower than during the night.  It is 

not clear when Phormidium’s peak transcript abundance is, only that it is significantly higher at 

the night sampling point than the day.  Transcriptomic analysis of MIS mats at higher temporal 

resolution is required to further investigate this discrepancy.  However, it is clear that 

Phormidium deviates from expression patterns observed in model unicellular cyanobacteria, and 
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care should be taken when using unicellular cyanobacteria as models of all cyanobacterial 

photosynthesis. 

 

Using genomics of modern communities to inform studies of ancient systems 

Studying the gene content and expression of modern low-O2 sulfide tolerant cyanobacteria can 

inform our search for biomarkers of ancient cyanobacteria.   Genes for shc and hpnP have been 

implicated in the biosynthesis of 2-methylhopanoids (Welander et al 2009), which have been 

used as markers of cyanobacteria (and by proxy oxygenic photosynthesis) in fossilized microbial 

mats (Summons et al 1999).  However, doubt has recently been cast on using these molecules as 

markers of cyanobacteria, as not all cyanobacteria code for them, and they have been found in 

the genomes of organisms other than cyanobacteria (Rashby et al 2007, Welander et al 2009, 

Welander et al 2010).  Likewise, these genes are not encoded by Phormidium at MIS (Chapter 

II), and have now been shown to be a response to stress, and are not specific to cyanobacteria or 

oxygenic photosynthesis (Kulkarni et al 2013).  Genomic analysis of modern systems can be a 

powerful tool in determining the utility of biomarkers of ancient systems. 

 

The role of viral predation on modern systems 

Viral predation has been shown to play a role in microbial community abundance and structure 

in many environments, and arguments could be made that it affects every environment where life 

is found (Banfield and Young 2009, Rodriguez-Valera et al 2009, Weinbauer 2004).  Viruses 

have been estimated to be ten times more abundant in the oceans than microbes, yet our 

understanding of their impact on host mortality and repercussions for environmental metabolic 

function is still poorly characterized (Weinbauer 2004).  Microbes encode a defense mechanism 
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called the CRISPR/cas system that has been shown to provide some level of immunity against 

recurring invading nucleic acids like viruses and plasmids (Barrangou et al 2007, Makarova et al 

2006).  Three CRISPR systems were recovered from the Phormidium genome (Figure 4.2), and 

one of these CRISPR loci targets an extremely abundant virus at MIS, Phormidium phage PhV1 

(Figure 4.1), indicating that the MIS cyanobacteria face viral predation pressure.   

Complete circular genomes were reconstructed for two genotypes of the virus PhV1 

found at MIS (Figure 4.1), only one of which was targeted by Phormidium’s CRISPR system 

due to genome rearrangements (Figure 4.2D).  In addition to Phormidium containing a small 

portion of the PhV1 genome, PhV1 encodes a phycobilisome degradation protein nblA that is 

derived from Phormidium and breaks down phycobilisomes, large protein complexes that absorb 

wavelengths of light that are inaccessible to chlorophyll.  Two way transfer of DNA links 

Phormidium and PhV1 using sequence data alone, and invites inferences about viral physiology 

based on host physiology (Chapter IV). 

Over the five years of the study, we observed opposite trends in the abundance of the two 

PhV1 genotypes, with PhV1.TypeB (the genotype targeted by Phormidium’s CRISPR and 

dominant in 2007) dropping in abundance, and PhV1.TypeA (immune to Phormidium’s CRISPR 

due to genome rearrangement and dominant in 2012) showing a marked increase during that time 

(Figure 4.7A).  During the study, the relative abundance of Phormidium in the metagenome 

drops, correlating with the rise in abundance of PhV1.TypeA (Figure 4.7B).  Though this 

relationship does not show causation, as there could be other reasons for the drop in Phormidium 

abundance (e.g., fluctuations in environmental conditions, stochastic variability between 

samples), two directional exchange of DNA by virus and host does indicate that viruses have the 

potential to play a major role in ecosystem dynamics of modern cyanobacterial mat systems.  
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Better understanding of the role of viruses in modern systems could inform our understanding of 

their role in ancient systems. 

 

5.4 Potential directions for future investigations 

Our studies of the cyanobacterial mats at MIS have raised nearly as many questions as they have 

answered, with advancements in our understanding of Phormidium and MIS hinting at multiple 

potential lines of further investigation.  Here I present potential directions for further research at 

MIS that could provide insight into modern and ancient cyanobacterial mat systems, and warrant 

further scientific inquiry. 

 

Phormidium, SQR and anoxygenic photosynthesis 

Several important questions regarding Phormidium still remain unanswered.  While several lines 

of evidence indicate that Phormidium is performing anoxygenic photosynthesis, likely using 

SQR, culture based genomic investigations will be required to determine the details of 

photosynthetic gene regulation in Phormidium.  It is not clear if the PS II genes encoded by 

Phormidium are resistant enough to sulfide to perform oxygenic and anoxygenic photosynthesis 

at the same time, or if the presence of sulfide totally inhibits PS II, forcing Phormidium to switch 

to anoxygenic photosynthesis alone.  In addition, multiple genotypes of Phormidium exist at 

MIS, and resolving the differences in gene content and function between these variants may 

inform our understanding of niche differentiation and the ecological role of diversity in the MIS 

system. 

Efforts to bring Phormidium from MIS into laboratory culture have been ongoing for 

some years and have been unsuccessful.  Though we can get small pieces of mat to grow in the 
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lab, microscopy images indicate the community shifts during this time to no longer reflect the 

community at MIS, and the mats eventually deteriorate and die.  Isolation or long-term 

enrichment of Phormidium cultures would be a critical step in understanding the mechanics of 

cyanobacterial tolerance to sulfide and their ability to perform anoxygenic photosynthesis.  A 

wide range of experiments could be designed to better understand the genetic basis for this 

metabolism, as well as verify Phormidium’s use of SQR for anoxygenic photosynthesis.  Isolates 

of Phormidium could also be used to investigate the diel cycle of photosynthetic gene 

expression, placing it in context of other transcriptionally studied cyanobacteria. 

Efforts to assemble closed genomes for Phormidium strains from metagenomes have 

been unsuccessful despite nearly 4000x genome coverage.  This inability to close the genome is 

likely due to the high incidence (~200) of transposons, mobile genetic elements that can move 

DNA sequences around within one genome or from one genome to another.  Transposons with 

identical sequences ranging from 500 to 1000bp occur in multiple places in the Phormidium 

genome, making the exact sequence of genes impossible to determine because the transposons 

are five to ten times longer than the short read DNA sequences available.  Efforts to use PacBio 

sequencing (which produces reads >5000bp and could span these transposons) failed for 

unknown reasons, preventing closure of the Phormidium genome.  Efforts to overcome 

sequencing failure are underway currently, and closed genomes for Phormidium strains would be 

a valuable tool for determining the different rolls Phormidium plays in biogeochemistry.   

 

Spatial and temporal resolution of MIS 

All of the samples discussed in this dissertation were collected from the same area, with a 

diameter of about 50-100 meters in the “arena” portion of MIS.  Sampling focused only on the 
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bulk cyanobacterial mats, not the sediments beneath or the water above.  Spatially resolved 

sampling (e.g., across vertical redox gradients in the mat or across horizontal gradients along 

groundwater flow) coupled to geochemical measurements could provide insight into community 

composition and dynamics, especially the links between hydrology, chemistry, and biology at 

MIS.  In addition, visual observations of the mats show weak and incomplete mats in May, dense 

healthy looking mats in June/July, and weak and incomplete mats in September, suggesting a 

yearly cycle of growth and deterioration for the mats at MIS that is poorly understood.  Sampling 

coupled to diver observations concerning mat health taken regularly over a two year period could 

help determine the nature of annual microbial cycling at MIS. 

 

Filling in the Tree of Life 

Metagenomic sampling of the MIS mats recovered genomes for three uncultured bacterial phyla 

believed to reside in the sediments below the mats.  These sediments could be a fruitful source of 

genomic and transcriptomic data for uncultured groups of microbes we currently know nothing 

about.  16s rRNA sequences assembled from MIS mats indicate that members of at least 10 

bacterial phyla with no cultured representatives can be found at MIS, and deep sequencing of 

MIS sediments could greatly expand our knowledge of the un-cultured and un-sequenced 

branches of the tree of life.    
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