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Abstract 
 

Oral delivery of solid dosage forms is the most frequently used route of 

administration for pharmaceutical drug products. Despite their ubiquity, 

development of robust oral dosage forms can be challenging due to the complex 

nature of dissolution and absorption in the gastrointestinal tract. The goal of this 

research was to set a basis for development of practical in vitro physiological 

dissolution methodologies that could be used to design drug product formulations 

and scientifically justify reduced regulatory requirements for product approval 

(e.g. introduction of generic products). While existing methodologies can be used 

as benchmarks for development of new dosage forms, no single in vitro 

apparatus captures the range of key physiological conditions that can impact in 

vivo bioperformance of a diverse range of drug products. 

In this work we provide a comprehensive and up-to-date summary of the 

critical physiological parameters affecting dissolution and absorption of oral 

dosage forms in humans and dogs, including average values and ranges for 

each parameter from the literature. Next, we developed a mechanistic transport 

model that successfully described the kinetics of partitioning of weak acids in 

solution from aqueous to organic medium, and proposed scaling factors for 

establishing physiological relevance of the in vitro two-phase dissolution 

apparatus. In contrast to previous kinetically derived mathematical models, our 

model uses physical input parameters that are known or can be estimated a 

priori. Next, we developed a mechanistic transport model for predicting the rate 

and extent of dissolution of solid drug particles under physiological conditions 

(e.g. low buffer capacity and moderate drug saturation), extending previously 

published models by taking into account the impact of dissolved drug 

concentration on pH change and dissolution performance as a function of time.
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Finally, we developed an in vivo transport analysis to identify practical in vitro 

dissolution methodologies that could be used to predict in vivo performance of 

oral formulations of the BCS II weak acid, Ibuprofen, in dogs. Taken as a whole, 

this work sets a basis for determination of the key, rate-determining factors 

driving in vivo oral drug product bioperformance, and selection of appropriate in 

vitro predictive dissolution methodologies.  
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Chapter 1 

Physiological Parameters for Oral Delivery and In vitro Testing 

Abstract 

Pharmaceutical solid oral dosage forms must undergo dissolution in the 

intestinal fluids of the gastrointestinal tract before they can be absorbed and 

reach the systemic circulation. Therefore, dissolution is a critical part of the drug-

delivery process. The rate and extent of drug dissolution and absorption depend 

on the characteristics of the active ingredient as well as properties of the dosage 

form. Just as importantly, characteristics of the physiological environment such 

as buffer species, pH, bile salts, gastric emptying rate, intestinal motility, and 

hydrodynamics can significantly impact dissolution and absorption.  While 

significant progress has been made since 1970 when the first compendial 

dissolution test was introduced (USP Apparatus 1), current dissolution testing 

does not take full advantage of the extensive physiologic information that is 

available.  For quality control purposes, where the question is one of lot-to-lot 

consistency in performance, using nonphysiologic test conditions that match drug 

and dosage form properties with practical dissolution media and apparatus may 

be appropriate.  However, where in vitro – in vivo correlations are desired, it is 

logical to consider and utilize knowledge of the in vivo condition.   This 

publication critically reviews the literature that is relevant to oral human drug 

delivery.  Physiologically relevant information must serve as a basis for the 

design of dissolution test methods and systems that are more representative of 

the human condition.  As in vitro methods advance in their physiological 

relevance, better in vitro - in vivo correlations will be possible.  This will, in turn, 



  

 2 

will lead to in vitro systems that can be utilized to more effectively design dosage 

forms that have improved and more consistent oral bioperformance. 

Introduction 

 Pharmaceutical solid oral dosage forms directed to the systemic 

circulation must dissolve in the intestinal fluids of the gastrointestinal (GI) tract 

prior to absorption, making dissolution vital to drug delivery. Pharmaceutical 

scientists must understand dissolution to efficiently develop robust dosage forms 

and ensure that drug products consistently meet critical performance criteria.  

The rate and extent of drug dissolution and absorption depend on characteristics 

of the active ingredient such as pKa, crystal form, and solubility, as well as 

properties of the dosage form [1]. Just as importantly, characteristics of the 

physiological environment such as buffer species, pH, bile salts, gastric emptying 

rate, intestinal motility, hydrodynamics, and shear rates significantly impact 

dissolution and absorption [2]. 

To understand the complicated process of in vivo drug dissolution, 

scientists have attempted to replicate it using a variety of in vitro test methods. 

Numerous methodologies have been developed that are routinely used for 

quality control purposes (e.g., USP tests) and as tools to understand the effects 

of formulation and processing changes [3]. While these methodologies have 

existed for many years and have been used extensively, none accurately reflect 

in vivo conditions.  Conventional USP testing methods employ simple, non-

physiologic buffers (e.g., phosphate, acetate, maleate) and hydrodynamic 

conditions (e.g., single-chambered glass vessels) that do not accurately reflect 

dynamic in vivo conditions.  To bridge the gap between in vitro and in vivo 

dissolution and absorption, the Biopharmaceutics Classification System (BCS) 

provides some guidance for predicting in vivo performance based on a drug’s 

solubility, permeability, and in vitro testing results [4]. The BCS has had a 

significant effect on the regulatory environment as the FDA and WHO consider 

biowaivers for some drugs, particularly those considered to be BCS Class 1 (high 
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solubility, high permeability) and BCS Class III (high solubility, low permeability) 

[5].   

 While significant progress has been made since 1970, when the first 

compendial dissolution test was introduced (USP Apparatus 1), current 

dissolution testing does not take full advantage of the extensive physiologic 

information that is available.  For quality control purposes, where the question is 

one of lot-to-lot consistency in performance, utilizing nonphysiologic test 

conditions that match drug and dosage form properties with practical dissolution 

media and apparatus may be appropriate.  However, where in vitro – in vivo 

correlations (IVIVCs) are desired, it is logical to consider and utilize our 

knowledge of the in vivo condition. Strides have been made in making dissolution 

testing methods more biologically based. Dressman et al. developed several 

biorelevant dissolution media designed to better reflect compositions and 

physicochemical characteristics of the fasted and fed states in the stomach and 

small intestine [6].  In addition, several authors have developed dissolution 

apparatuses that better capture aspects of the physiological environment 

compared to USP tests [7]-[9]. 

 Several good reviews of human GI physiology are available [2], [10]-[11] 

but none provide a comprehensive review of the physiological parameters that 

influence oral absorption in the context of dosage form performance and drug 

dissolution.  The focus of this publication is to critically review the literature that is 

relevant to oral human drug delivery.  This physiologically relevant information 

should serve as a basis for the design of dissolution test methods and systems 

that are more representative of the human gastrointestinal tract.  As in vitro 

methods advance in their physiological relevance, better in vitro - in vivo 

correlations will be possible, leading to improved oral bioperformance of dosage 

forms.   
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Factors Affecting Dissolution and Absorption 

Absorption is what ultimately carries orally administered drugs into the 

intestinal membrane to be transferred to the blood stream. However, the drug 

must dissolve before absorption can occur or the drug can act locally in the GI 

tract. Therefore, it is important to have a fundamental understanding of the key 

drug properties affecting both dissolution and absorption. These principles have 

taken a variety of mathematical forms over the years.  According to Amidon et 

al., for example, the fraction of drug absorbed is a function of drug solubility, 

dose, and GI permeability [4]. According to Equation 1.1, the flux of drug across 

the intestinal wall, Jw, is dependent on the intestinal wall permeability, Pw (an 

effective permeability), and the concentration of drug at the wall, Cw. The 

equation applies to each point along the membrane, assumes that each 

parameter is dependent upon time and position, and assumes the concentration 

of drug in the epithelial cell to essentially equal to zero. Assuming no luminal 

reactions, the absorption rate is given by Equation 1.2, where A is the area 

available for absorption (i.e., membrane surface in contact with the drug) and m 

is mass. 

 

(1.1) !! = !!!!  

 

(1. 2) 
!"
!"
= !!!!!"!  

 

Factors that affect dissolution can be understood by examining the simple 

Noyes-Whitney equation, which describes the mass of drug dissolving as a 

function of time. The equation, for dissolution from a planar surface, is given in 

Equation 1.3, where M is mass, D is drug diffusion coefficient, A is drug surface 

area available for dissolution, h is empirical thickness of the hydrodynamic 

boundary layer, Cs is the solubility at the solid liquid interface, and Cb is the bulk 

drug concentration [12].  
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(1.3) !"##$%&'"$(  !"#$ =    !"
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Each of the parameters in Equation 1.2, describing absorption, and Equation 
1.3, describing dissolution, is influenced by properties of the drug substance, 

drug product, and GI tract.                                           
From the above description it is clear that in vivo dissolution and 

absorption are dependent on properties of the physiological environment and 

properties of the drug itself. Key physiological parameters include the dimensions 

of the GI tract, the volume and composition of fluid, the fluid hydrodynamics (i.e., 

flow rate, gastric-emptying rate, shear rate), and the properties of the intestinal 

membrane. Important drug properties include dose, solubility, pKa, diffusion 

coefficient, permeability, and particle size.  A more complete list of drug 

properties and physiologic properties that influence oral drug dissolution and 

absorption is provided in Table 1.1. 

 

Composition of the Gastrointestinal Fluid 

 Gastrointestinal fluid is a complex, dynamic mixture of components from a 

number of different sources within the gastrointestinal tract. Gastric fluid is made 

up of saliva, gastric secretions, dietary food and liquid, and refluxed liquid from 

the duodenum. The gastric fluid composition changes as the fluid is mixed and 

delivered to the duodenum. Some major components of gastric fluid important for 

drug disposition include hydrogen ion concentration, bile salts, lipase, and the 

protein-digesting enzyme pepsin (Refer to Tables 1.2 & 1.3 for a summary of 

components and concentrations.). The concentration of hydrogen ions affects the 

pH and thus the dissolution of some ionizable drugs. Pepsin may interfere with 

the stability of proteins and peptides, while lipase may affect drug release from 

lipid-based dosage forms [2]. Bile salts can combine with lipids to form mixed 

micelles, enhancing the solubility of some drugs and may also decrease surface 

tension and thus enhance wetting [13]. 
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 Kalantzi et al. found median pepsin levels in the fasted state to range from 

0.11-0.22mg/mL [14], while other researchers have found them to be between 

0.1 and 1.3 mg/mL [15]-[16]. Pepsin in the fed state is typically higher and has 

been shown to range from 0.26 to 1.72 mg/mL [14], [16]. The concentration of 

hydrogen ions, which are secreted by the stomach in the form of hydrochloric 

acid is reflected in the pH, which is typically 1-2 in the fasted state (0.01-0.1 M) 

and ranges from about 3-7 in the fed state (10-3 – 10-7 M). Vertzoni and co-

workers state that gastric lipase is probably not important in the fasted state 

since it is active in the pH range of 3-6 and is thought to be present at 

concentrations of 0.1mg/mL [17]. Lipase activity in the fed stomach has been 

shown to range from 11.4-43.9 U/mL [18]. Bile salt levels have been found to be 

about 0.08 to 0.275 mM in the fasted stomach [17], [19] and 0.06 mM in the fed 

stomach [20]. Vertzoni and co-workers recently measured the relative amounts of 

individual bile salts in the fasted stomach and found glycochenodeoxycholate 

and glycocholate to predominate [19]. Bicarbonate concentrations in the fasted 

stomach have been shown to range from 7 to 20 mEq/L [21]-[22]. 

 The composition of the fluid in the upper small intestine is made up of 

chyme from the stomach, as well as secretions from the liver, the pancreas, and 

the wall of the small intestine. Composition is affected by fluid 

compartmentalization, mixing patterns, absorption of fluid into the intestinal wall, 

and transit down the intestinal tract. Secretions from the pancreas include 

bicarbonate as well as proteases (the major ones are trypsin and chymotrypsin), 

amylases, and lipases [23]. The liver secretes bile, which contains bile salts, 

phospholipids, bicarbonate, cholesterol, bile pigments, and organic wastes. The 

wall of the small intestine secretes mineral ions such as bicarbonate, sodium, 

and chloride, as well as water. Bicarbonate is secreted to neutralize gastric 

secretion in the GI lumen and by the duodenal epithelial cells to protect the 

duodenal epithelium from acid-related damage [24]. The buffer species in the 

gastrointestinal media can significantly affect the dissolution rates of ionizable 

drugs [25].  
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 As food intake triggers many of the secretions in the small intestine, the 

composition of fed state intestinal fluid can vary greatly from fasted state 

intestinal fluid. This difference in composition can be partially responsible for 

differences in bioavailability seen when drug is administered in the fed versus the 

fasted state. For some lipophilic drugs, coadministration with a meal has been 

shown to increase bioavailability compared to the fasted state. Sunesen et al. 

showed that the oral bioavailability of the poorly soluble drug danazol was three-

fold higher when taken with a high-lipid meal compared with 200 mL of water 

[26]. However, in some cases the oral bioavailability can be negatively affected 

due to chelation of a drug with food components [27].  

 The increased bioavailability seen for some drugs in the fed state can be 

attributed to the enhanced solubilizing capacity of intestinal fluids due to bile and 

pancreatic secretions and the presence of exogenous lipid products [28]. For 

instance, dietary triglycerides are hydrolyzed into free fatty acids and 

monoglycerides in the duodenum mainly due to pancreatic lipase, and the free 

fatty acids combine with bile salts to form mixed micelles, which can be 

transported to the intestinal membrane [29]. Many instances of enhanced 

solubility and dissolution due to mixed micelles formed by bile secretions, and 

lipolysis products formed in the fed state exist in the literature [30]-[32]. 

 Concentrations of lipolytic products, bile salts, and phospholipids in the 

upper small intestine tend to show high variability with time and between study 

subjects [14], [33]. Lipolytic product concentrations have ranged from 0-1.8 

mg/mL in the fasted and 0.5-100 mg/mL in the fed upper small intestine [18], 

[33]. After administration of Ensure Plus® (fed), and Scandishake Mix® (fat-

enriched fed) Clarysse et al. found the dominant lipolytic products in the 

duodenum to be monoglycerides, which accounted for 5-88% of total lipids, 

followed by free fatty acids [33]. Phospholipid concentrations have ranged from 

0.03-0.6 mM in the fasted [33]-[34] and 0.8-3 mM in the fed state [33], [35]. Bile 

salt concentrations have ranged from 0.6-17 mM [2], [33]  and 1.6-40 mM [36]-

[37] in the fasted and fed states, respectively. Clarysse et al. found duodenal bile 

salts to be made up of cholate and chenodeoxycholate (which comprised about 
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65%) as well as deoxycholate and ursodeoxycholate [33], while Vertzoni found 

the major bile salts in the duodenum to be glycodeoxycholate, 

glycochenodeoxycholate, and glycocholate in the fed state [19]. Concentrations 

of lipolytic products and phospholipids in the ileum are unavailable, but bile salt 

concentrations have ranged from 2-10 mM and 0.2-30 mM in the fasted and fed 

states, respectively [36], [38]. 

 The concentration of bicarbonate in the small intestine is dynamic and 

depends on location and prandial state. The bicarbonate concentration in the 

fasted state has ranged from about 2 to 30 mM in the duodenum and jejunum 

and 30-75 mM in the ileum [39]-[43]. Values in the fed state are less abundant. 

Rune and co-workers reported a value of 10 mEq L-1 in the fed duodenum [44]. 

 

Properties of the Gastrointestinal Fluid 

pH 

 The pH of the GI fluids in the local region of the intestine will influence a 

drug’s dissolution rate and possibly its permeability4. The pH strongly influences 

the solubility of weak electrolytes by determining their ionization state. When the 

pH is such that a drug is in its ionic form, the drug behaves like a strong 

electrolyte and solubility is usually high compared to its nonionized form45. The 

pH thus has a strong effect on the dissolution of drug products, especially those 

with pKa values within the physiological range. This phenomenon has been 

demonstrated for different types of dosage forms such as immediate- and 

modified-release [46]-[48]. 

The pH in the gastrointestinal tract is a function of many variables 

including prandial condition, time, meal volume and content, and volume of 

secretions, and it varies along the length of the GI tract (Refer to Table 1.3 for a 

summary of pH values in the stomach, duodenum, jejunum and ileum.). The 

gastric pH in the fasted state has been recorded between 1 and 8 for individuals 

[49]-[50], with typical median values falling between about 1 and 2 [14], [51]. 

Dressman et al. found gastric pH to remain below pH 2 68% of the time and 
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below pH 3 90% of the time [51]. Shortly after ingestion of a meal, the pH has 

been shown to rise to about 6.0-7.0, and decreases back to fasting levels after 

approximately one to four hours, depending on factors such as meal 

composition, amount, and pH [14]. Gastric pH values in the fed state have 

ranged from 2.7-6.4 [14], [51]. An approximation of a typical gastric pH profile as 

measured by Dressman et al. [51] is shown in Figure 1.1. 

 Average pH values in the fasted upper small intestine have been reported 

to range from about 4 to 8 [52], [50], with typical values around 6.5 [52]-[54]. 

Clarysse et al. found duodenal pH in the fasted state to display considerable 

intra- and inter-subject variability as shown in Figure 1.2 [33]. In the ileum pH 

has be reported as 6.5-8 in the fasted state [55]-[56]. 

The pH in the upper small intestine tends to be lower in the fed compared 

to the fasted state. As is found in the fed stomach, the pH in the upper small 

intestine tends to rise after meal intake and slowly decreases over time. Average 

values have been shown to vary from about 3 to 7 [14], [51], with typical median 

values around 5 during the later post-prandial stage [56]-[57]. Kalantzi et al. 

found the pH in the distal duodenum to decrease from 6.6 to 5.2 over the first 

210 min following administration of Ensure Plus® [14]. Fed pH values in the 

ileum have been reported in the range of 6.8-8 [58]. Clarysse et al. found the pH 

of the administered meal to have a strong impact on local pH, leading to 

decreased intersubject variability compared to the fasted state during the first 3 

hours after meal intake [33]. They found the pH to decrease with time, with 

minimum individual values of 3.9-4.9, returning to fasting values after about 300 

min after meal ingestion. Plots of individual and median pH versus time for the 

five healthy volunteers in the fasted and fed states as measured by Clarysse et 

al. are given in Figure 1.2.  
 
Buffer capacity 

 The buffer capacity of the gastrointestinal fluid can affect the dissolution 

rate, particularly for ionizable drugs. The higher the buffer capacity, the more the 

buffer will influence pH changes at the drug-liquid interface (i.e., the surface pH) 
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[25]. The buffer capacity depends on the pH of the fluid, the pKa of the buffer, 

and the buffer concentration. 

 Kalantzi et al. found the median buffer capacity in the stomach to be 7 

mmol L-1 ΔpH-1 20 min after administration of water and 18 mmol L-1 ΔpH-1 at 

later time points (fasted-state conditions) [14]. In the fed state (after ingesting 500 

mL Ensure plus), they found median values of gastric buffer capacity to increase 

from 14 to 28 mmolL-1 ΔpH-1 over a 30- to 210-min sampling period. They also 

found intersubject variability to increase with time after meal administration. 

Values for buffer capacity in the small intestine have ranged from 2-13 

mmol/L/pH in the fasted state [35], [53], and 13-30 mmol/L/pH in the fed state 

[14], [35]. While buffer capacity in the fed ileum is not available, Fadda and co-

workers reported buffer capacity in the fasted state to be 6.4 mmol/L/pH [59]. 

Buffer capacity values found in the literature are summarized in Table 1.3. 

 
Osmolality 

 Osmolality can affect drug release and excipient performance [6]. Delayed 

dissolution of 5-aminosalicylic acid from Eudragit L coated tablets was shown at 

higher osmolality [60]. Gastric osmolality in the fasted state has been shown to 

range from 29-276 mOsm/kg [61]-[62]. Kalantzi et al. found gastric contents in 

the fasted state to be hypoosmotic, with lower values of 98 mOsm/kg at early 

time points, plateauing to 140 mOsm/kg at later times. After a meal, Kalantzi et 

al. found the median value in the stomach to be 559 mOsm/kg after 30 min and 

217 mOsm/kg after 210 min, with variability decreasing with time after the meal 

[14]. 

 In the upper small intestine, osmolality values range from 124-278 

mOsm/kg in the fasted state [33], [63], and 250-367 in the fed state [33]. 

Clarysse et al. found variability in osmolality to be higher in the fed compared to 

the fasted state, with high fed state fluctuations until 240 min after food intake 

[33]. They found fasted state values to be hypoosmotic or close to isoosmotic, 

with an overall median value of 224 mOsm/kg.  In the fed- and fat-enriched-fed 

states they found values to be hyperosmotic during the first three hours post-
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prandially, with isoosmotic overall median values of 285 and 278 mOsm/kg, 

respectively. Jantratid and co-workers also state that osmolality in the distal 

duodenum increases slightly during the first 120 min after meal intake, and then 

gradually equilibrates to isosmotic [6]. Osmolality values in the stomach and 

upper small intestine are provided in Table 1.3. Literature values of osmolality in 

the ileum could not be found. 

 

Surface tension 

 Surface tension can affect dissolution by influencing wetting of the dosage 

form [13], with a higher surface tension leading to decreased wetting. Gastric 

surface tension values in the fasted and fed states range from about 41-46 and 

30-31 mN/m, respectively [14]. In the upper small intestine, surface tension 

values range from 28-46 mN/m in the fasted state, and 27-37 mN/m in the fed 

state [33], [35]. Surface tension values in the ileum are not available. 

 

Viscosity 

 Measurement of the viscosity of fluids can be complex. Simple fluids such 

as water, tea, coffee, simple syrups and edible oils behave as Newtonian fluids 

where viscosity is constant (i.e., shear rate is proportional to shear stress) [64]. 

However, many liquefied foods and biological fluids demonstrate non-Newtonian 

flow behavior meaning that viscosity is dependent upon shear rate, often 

exhibiting decreased viscosity with increased shear rate (i.e., shear thinning) [64]. 

For non-Newtonian fluids it is therefore important to know the shear rate at which 

the viscosity is measured.  In part for these reasons, measured values of GI fluid 

viscosity for humans in the fed and fasted states are very limited.  The viscosity 

of water at 37°C is 0.691 cP (1cP = 1 mPa-s), while the viscosity of various test 

meals consisting of dietary fibers (e.g., methylcellulose, bran, psyllium, and guar 

gum) are often administered in solutions with viscosities that range from 10 to 

>10,000 cP [64]-[66]. Typical meals have therefore been characterized to have 

viscosities in the range of 10 to 2000 cP [65], [67]. Marciani and coworkers 

utilized echo-planar Magnetic Resonance Imaging (MRI) in humans to monitor 
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changes in viscosity of viscous meals and demonstrated significant and rapid 

reductions in viscosity with time due to dilution by gastric fluids [64].  Viscosity is 

also influenced by pH in addition to soluble meal content and concentration.  

Increased viscosity has been shown to generally decrease stomach emptying 

and prolong GI transit and has been shown to influence blood glucose and 

cholesterol levels [65], [68]. 

 

Temperature 

 The temperature of GI fluids also affects dissolution and absorption. It can 

affect the diffusion coefficients of the drug and buffer species, the drug solubility, 

and the bulk drug concentration. The average GI temperature is generally 

considered to be 37°C. Several researchers have found 37°C to be an accurate 

resting temperature, but temperature can increase slightly after exercise. Chin 

Leong Lim and co-workers used an ingestible telemetric temperature sensor to 

measure GI temperature during rest and exercise and found the average GI 

temperature of nine healthy male runners to increase from 37.6°C at rest to 

39.3°C after running outside for 45 minutes [69]. 

 

Volume 

 The volume of liquid in the gastrointestinal tract affects the amount and 

potentially the concentration of dissolved drug. If the volume of liquid is such that 

the potential bulk concentration of drug exceeds the solubility of the drug, then 

only a small fraction of the original dose may go into solution. Like other GI 

parameters, the volume of liquid in the various compartments can vary within and 

between individuals as well as with time and prandial state. It is affected by the 

amount of liquid ingested, the volume of gastric and pancreatic secretions, 

gastric-emptying rate, intestinal transit time, as well as uptake and efflux of 

liquids along the GI membrane. 
 Volume of liquid in the stomach depends on the amount of liquid ingested, 

the rate and amount of secretions, and the rate at which it empties into the small 
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intestine. Using MRI, Steingoetter and co-workers measured liquid volumes in 

the fasted stomach before and after ingesting 300 mL of water and found them to 

be 28 (18-54) mL before water and 296 (279-323) mL after water [70].  However, 

in another study when Kwiatek et al. examined the ratio of the initial postprandial 

liquid volume in the stomach to the volume of the infused meal (nutrient drink), 

they found it to decrease as a function of infused meal volume (ratios of 1.25, 

0.95, 0.92, and 0.83 for 200-, 400-, 600-, and 800-mL meal volumes, 

respectively) [71]. They attributed this progressive decrease in initial gastric 

volume as a function of meal volume to a larger proportion of liquid nutrient 

passing into the small intestine during a rapid, early emptying phase. After their 

measurements of initial volume, they also found the gastric volumes to increase 

further (due to gastric secretions) before volumes started to decline. They found 

this increase to be independent of caloric load and greater for the smaller rather 

than the larger infused meal volumes, demonstrating a slower rate of emptying 

compared to rate of secretion for the smaller volumes, but a faster rate of 

emptying compared to rate of secretion for larger volumes. For study participants 

in a seated position, Steingoetter and co-workers found the contents to be 

distributed throughout the proximal and distal portions of the stomach, with a 

distal-to-proximal ratio of 0.23 upon ingestion of the water and 0.58 after 30 min. 
 Liquid volume in the small intestine depends on the amount of liquid 

emptying from the stomach, absorption of fluid through the intestinal wall, and 

intestinal transit time. Volume in the fasted small intestine has been shown to 

range from 30-420 mL [72], with average values tending to fall near 100 mL in 

several studies [73]-[75]. It seems that fasting volumes in the small intestine are 

less dependent on the amount of liquid ingested than fasting volumes in the 

stomach.  Volume in the fed small intestine has been recorded in the range of 

about 18 to 660 mL [73]-[74], and is more highly dependent on the amount and 

contents of the meal. Sutton recently modeled the mean plasma concentration 

profiles of four solubility-limited compounds using literature values of small and 

large intestinal liquid volumes [76]. On average a small intestinal liquid volume of 

about 130 mL (range of 10-150 mL) provided the best fits to the data, which is in 
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agreement with the average small intestinal liquid volumes reported in the 

literature. Measured human gastric and intestinal liquid volumes from the 

literature are provided in Table 1.4. 
 Schiller et al. used MRI to show that the GI lumen does not represent a 

continuous watery compartment [72]. Instead, they found the free water content 

to exist as fluid pockets. In the fasted small intestine they found the mean 

number of fluid pockets to be equal to 4, with a median volume of 12 mL per fluid 

pocket (Refer to Table 1.5.). In the fed small intestine the mean number of fluid 

pockets was 6, with a 4-mL median volume per pocket. In addition, they found 

the volume of free liquid to be lower in the fed than in the fasted state. Schiller et 

al. also showed that non-disintegrating capsules ingested prior to MRI acquisition 

were not completely surrounded by fluid in both the stomach and small intestine 

in the fasted and fed states. In the fasted small intestine only fifty-percent of 

ingested capsules (14 out of 28 capsules across multiple subjects) were 

completely surrounded by fluid. In the fed small intestine 1 out of 5 capsules 

were completely surrounded by fluid. 
Based on these results, it is possible that the volume of water a dosage 

form is in contact with is less than the volumes shown in Table 1.4. In addition, a 

dosage form may not be exposed to fluid during the entire time it spends in the 

GI tract. Both scenarios could decrease the solubility and dissolution rate and 

could lead to an inhomogeneous concentration of drug in the GI lumen. 

Consequently, the absorption rate of the drug into the GI membrane may not be 

adequately predicted, as the drug concentration at the intestinal wall may not be 

similar to the bulk drug concentration. 

 

Hydrodynamics 

 GI hydrodynamics are partially dependent on contractions in the stomach 

and small intestine, as well as the amount of liquid and solids present. Layers of 

smooth muscle contract in a coordinated, rhythmic motion. The contractions 

cause motility that propels food through the GI tract in a peristaltic motion, mixes 
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chyme within the GI lumen, and juxtaposes chyme with the brush border of the 

enterocytes. Smooth muscle also causes intestinal villi to undulate, agitating the 

unstirred layer of fluid associated with the brush border of the enterocytes [11]. 

Contractile activity typically initiates in the antrum and migrates distally through 

the duodenum of the small intestine. The autonomic nervous system and various 

digestive system hormones control the contractions. 
 Contractility in the fasted state is characterized by cyclical fluctuations.  

The cycle comprises three well-defined phases, including a quiescent phase 

(phase I), a phase of intermittent and irregular contractions that gradually 

increase in strength (phase II), and a short period of intense contractions (phase 

III) [77]. This cyclical contractility pattern is called the Migrating Motility Complex 

(MMC). The MMC can initiate not only in the stomach, but also at various points 

along the esophagus and small intestine, with the incidences varying in the 

different segments [10]. The total cycle typically lasts approximately 90-120 min, 

but has been shown to range from 15-180 min [78].  
 In the fed state, the MMC is replaced by regular, tonic contractions that 

propel food toward the antrum and mix it with gastric secretions [79]. During 

these contractions fine particles and liquids pass from the stomach to the 

duodenum, while larger particles are retro-pulsed back into the body of the 

stomach. Once the meal has been emptied from the stomach, the MMC 

resumes. Gastrointestinal motility influences the gastric emptying rate, intestinal 

transit time, and mixing patterns of solids and liquids in the stomach and intestine 

[80]-[83]. 

 

Gastric-emptying rate and forces 

 The gastric emptying rate defines the rate at which liquids and solids 

empty from the stomach into the upper small intestine. It determines the 

residence time of a drug in the stomach as well as the rate at which the drug is 

introduced into the small intestine. As most drugs are absorbed primarily in the 

small intestine, the rate and extent to which dissolved drug is presented to this 

segment influences drug absorption, and thus onset of the desired therapeutic 
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response. Gastric emptying can be the rate-limiting step in absorption for rapidly 

dissolving, immediate-release BCS I drugs [84]. 

 In the fasted state, the MMC greatly regulates gastric emptying rate, while 

in the fed state gastric emptying is influenced by low-amplitude contractions as 

well as pyloric resistance and duodenal feedback mechanisms77. In both the 

fasted and fed states, emptying rate also depends on the amount of liquid or 

solid ingested, the size/nature of the liquid or solid ingested, and the phase of 

contraction during which the liquid or solid was ingested (Refer to Table 1.6 for a 

summary of gastric residence times from the literature). 
 Non-nutrient liquids do not normally interrupt the MMC and are typically 

emptied in an exponential pattern [70], [79]. Granger and co-workers showed that 

the half-time for saline emptying from the human stomach is 12 min [85], and 

Steingoetter and co-workers found the half-time for emptying 300 mL of water to 

be 15.8 min [70]. 

 Gastric emptying postprandially is largely dependent on meal size and 

composition [79]. When nutrient liquids or solid meals are ingested, the MMC can 

be interrupted due to feedback mechanisms in the duodenum. A 25% glucose 

solution has been shown to empty in 75 min in humans [79]. Kwiatek and co-

workers found gastric emptying half time to decrease with increasing nutrient 

liquid volume and increase with increasing calorie load [71] as shown in Table 
1.7.  Dressman et al. summarized typical solid-meal half-emptying rates in 

humans from the literature and found them to range from 70-130 min [79]. 
 It is thought by many researchers that beyond a size of 2-7 mm, gastric 

emptying of solid dosage forms or solid particulates differs from that of liquids 

and occurs mainly during phase II and III of the MMC [84]. Bass showed that 

single tablets ranging in diameter from about 5-13 mm typically left the stomach 

between 5 and 120 min (the average MMC cycle time), although times ranged 

from 5 to over 200 min, with high intrasubject and intersubject variability [77]. 

Rhie et al. demonstrated that gastric emptying of 0.7 mm caffeine pellets 

happened during the fed state, while 3.6 mm acetaminophen pellets emptied 

following the onset of phase II contractions in the fasted state [86]. Using 
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modeling, Higaki et al. found gastric emptying of 0.7 mm caffeine pellets in the 

fed state to be regulated by gastric motor activity, with absorption kinetics closely 

related to the gastric-emptying profiles. Podczeck et al. showed that 3-mm- and 

10-mm-diameter tablets emptied after food (dextrose solution, beef solution, or 

shepherd’s pie) had left the stomach, and that the influence of tablet diameter on 

median emptying time was significantly less than the influence of administering 

solid food (shepherd’s pie) compared to liquid meals (dextrose or beef solutions) 

[87]. 
 The forces to which tablets are exposed in the stomach were evaluated in 

both the fed and fasted states by Kamba and coworkers [88].  They utilized 

specially designed Teflon tablets with predetermined crushing strengths to 

evaluate these forces.  They found that tablets with a crushing strength of 1.5 N 

were crushed in all four subjects under fed conditions and two of five subjects 

under fasting conditions.  Tablets with a higher crushing strength of 1.89 N were 

crushed in two of six subjects under fed conditions and zero of five subjects 

under fasting conditions.  The authors reasoned that the lower crushing forces in 

the fasted state occurred because of the open pylorus, resulting in lower overall 

forces being applied to the stomach contents.  Laulicht and coworkers also 

investigated gastric forces using a magnetic tracking system [89].  The average 

human gastric emptying force was 414±194 dyn in the fasted state, which was 

statistically insignificantly lower than the 657±84 dyn measured in the fed state.  

Corresponding area normalized gastric emptying pressures were approximately 

600 dyn/cm2 in the fasted state and 960 dyn/cm2 in the fed state. 
 
Intestinal transit time and flow rate 

 The transit time (i.e., residence time) of a drug in the intestinal tract is a 

strong determinant of dissolution and absorption.  It affects the amount of time a 

drug has to dissolve and absorb in the GI tract. The transit time of a dosage form 

in different segments of the GI tract is dependent upon factors such as gastric 

emptying rate and flow rate, and can vary significantly for even a single 

individual. Weitschies et al. performed a study on one individual in which they 
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administered a non-disintegrating capsule to a volunteer on several separate 

occasions and monitored it using magnetic marker monitoring [90]. As shown in 

Figure 1.3, the variability in residence times in different segments of the GI tract 

was high even for a single individual. Refer to Table 1.6 for a summary of 

intestinal residence times from the literature. 

 Transit time in the small intestine is often quoted to be 3-4 h. McConnell 

and co-workers found times to range from 0.5-5.4 h with a mean of 3.2 h for a 

single individual given a 1-1.4-mm ethylcellulose –coated pellet on eight separate 

occasions10. Based on a review of the literature they stated that food has 

generally not been associated with changes in transit time in the small intestine. 
Davis et al. completed a meta-analysis of transit data and found no difference 

in the intestinal transit times of tablets, pellets, and liquids [91]. Coupe et al. 

found transit times in the small intestine to range from 2.2 to 5.9 h for pellets and 

0.9-6.2 h for 11.5-mm tablets [92]. 

The mean intestinal flow rate during fasting for all three phases of the MMC 

was shown to be 0.73 mL/min in the jejunum and 0.33 mL/min in the ileum (the 

flow rate in the duodenum was too fast to measure) [93]. The flow rates were 

shown to increase postprandially, with a value of 3.0 mL/min in the jejunum and 

2.35 mL/min in the ileum [93]. Granger and co-workers stated that chyme 

traverses the small intestine in humans at a rate of 1-4 cm/min, with the velocity 

being faster in the duodenum and proximal jejunum compared to the ileum [85]. 

Table 1.6 includes a summary of intestinal transit times and flowrates from the 

literature. 

 Intestinal transit time is especially important for dosage forms that are not 

fully absorbed, as a change in contact time with the absorption area will result in 

a change in the fraction absorbed. While in general an increase in transit time will 

lead to an increase in the absorption of poorly or incompletely absorbed drugs, 

absorption can be decreased in cases where transit time is slowed because of an 

inhibition of smooth muscle motility due to a decrease in agitation of the unstirred 

layer [11]. 
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Geometry & Composition of Intestinal Membrane 

Surface area 

 Absorption rate is a function of the gastrointestinal surface area over 

which the drug is exposed. Generally speaking, a larger surface area would lead 

to a greater absorption rate. Drugs are rarely absorbed in the stomach due to its 

small surface area and short residence times [94]. The small intestine is the 

major site of drug absorption due to its large surface area and longer residence 

times. The mucosal surface of the small intestinal lumen is convoluted. Finger-

like projections called villi extend from the luminal surface, and each villus is 

covered with smaller microvilli. Together, the convoluted mucosa along with the 

villi and microvilli increase the surface area of the small intestine approximately 

600-fold above that of a flat tube of the same overall length and diameter [23]. 

These anatomical modifications increase the surface area of the duodenum and 

upper jejunum to a greater extent than the ileum, with the majority of surface 

area in the small intestine found in the jejunum [11]. 

 While the absolute surface area in the small intestine is quite large as 

described above, the geometric surface area (calculated solely based on the 

overall length and diameter of the intestine) may be a better estimate of the area 

of exposure for a dosage form, as it more accurately reflects the surface area of 

the unstirred layer which is a barrier to drug absorption. Absolute and geometric 

surface areas, as well as geometries are included in Table 1.4. 
 
Nature of intestinal membrane and absorption mechanisms 

 Absorption of drugs in the GI tract occurs mainly in the intestine. Several 

positive factors help drive absorption, including a concentration gradient, 

electrochemical potential difference, and hydrostatic pressure gradient between 

the intestinal lumen and the membrane [95]. In addition, several other factors 

deter drug absorption, including the physical barrier of the intestinal mucosa as a 

result of tight junctions and the lipid composition of the membrane, as well as 
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biochemical barriers such as the presence of metabolizing enzymes and efflux 

transporters [95]. 
 The pathways for drug absorption include carrier-mediated transcellular 

transport, vesicular transport, passive paracellular transport, and passive 

transcellular transport. In carrier-mediated transcellular transport, influx 

transporters expressed on the mucosa actively carry drugs across the 

membrane. The vesicular transport route includes fluid-phase endocytosis, 

receptor-mediated endocytosis, and transcytosis. In the passive paracellular 

route, drug absorption occurs through an extracellular route across the 

epithelium. Diffusion is regulated by electrochemical potential gradients derived 

from concentration differences and by electrical and hydrostatic pressure 

gradients between the two sides of the epithelium [95]. Tight junctions are the 

main barriers to this type of absorption. Finally, passive transcellular transport 

occurs when drugs move across the apical membrane, through the cytoplasm, 

and across the basolateral membrane. The surface area available for this type of 

transport makes up 99.9% versus 0.01% for the passive paracellular pathway 

[95]. 

 As mentioned above, enzymes expressed on enterocytes can metabolize 

some drugs, causing a decrease in absorption. In addition, drugs can be 

metabolized or degraded in the GI lumen. In addition, efflux transporters mediate 

the transfer of some compounds from the cytoplasm back into the intestinal 

lumen. These factors all decrease the net absorption of drugs in the intestinal 

membrane and thus lower the potential bioavailability. 

 

Physiological dissolution methodologies 

 Simulated gastric and intestinal fluids are media designed to mimic the 

major characteristics of in vivo fluids. Simulated gastric fluid (SGF) and simulated 

intestinal fluid (SIF) were described in the USP as early as 1955 [96]. As our 

knowledge of GI physiology has increased over the years, these fluids have been 

updated to more closely mimic in vivo characteristics.  The most recent update 
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by Jantratid and co-workers presents the most up-to-date fluids (Refer to Tables 
1.8 and 1.9.) and summarizes some of the changes made over the years [6].  
Jantratid and co-workers have proposed the use of “snapshot media” to simulate 

both gastric and intestinal fluids during different stages after meal consumption.  
Despite some potential drawbacks, simulated gastric and intestinal fluids make 

dissolution testing more physiological compared to using simple buffers and a 

number of successful IVIVCs have been generated using these fluids [97]-[98]. 

 While existing in vitro systems partially address some of the major fluid 

components by utilizing simulated fluids, existing dissolution and dosage form 

testing methodologies generally fail to adequately address physiologically 

relevant hydrodynamics of fluid flow, shear and viscosity [2], [6], [67]. New, 

innovative dissolution methodologies that are more reflective of in vivo 

hydrodynamics and fluid content in the human intestinal tract are needed.  

Current dissolution methodologies produce variable and generally extremely high 

fluid velocities and thus “unrealistic” fluid flow (e.g., 5000<Re<10000) [99]-[102], 

while current information on fluid flow in the human stomach and intestine 

indicate Re in the range of 1 to 30 [67], [82]-[83], [103]-[104].  Novel dissolution 

methodologies that characterize dissolution under low Re and fluid shear are 

required to better simulate dissolution in vivo. 

 

Conclusions 

 Pharmaceutical solid oral dosage forms must undergo dissolution in the 

intestinal fluids of the gastrointestinal tract before they can be absorbed and 

reach the systemic circulation. Therefore, dissolution is a critical part of the drug-

delivery process. The characteristics of the physiological environment such as 

buffer species, pH, bile salts, gastric emptying rate, intestinal motility, and 

hydrodynamics will significantly impact dissolution and absorption.  While 

significant progress has been made since 1970, when the first compendial 

dissolution test was introduced, current dissolution testing does not take full 

advantage of the extensive physiologic information that is available.  For quality 
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control purposes, where the question is one of lot-to-lot consistency in 

performance, utilizing nonphysiological test conditions that match drug and 

dosage form properties with practical dissolution media and apparatus may be 

appropriate.  However, where IVIVCs are desired, it is logical to consider and 

utilize knowledge of the in vivo situation.  Physiologically relevant information 

must serve as a basis for the design of dissolution test methods and systems that 

are more representative of the human condition.  As in vitro methods advance in 

their physiological relevance, better IVIVCs will be possible.  In vitro systems can 

then be more effectively utilized to design dosage forms that have improved and 

consistent oral bioperformance. 
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Tables and Figures 

Table 1.1. Drug properties and physiological properties that influence oral 
drug dissolution and absorption 
 
Parameter Drug properties Physiological parameters 
Drug diffusion coefficient, 
D 

Radius, mass, volume Solute concentration, 
temperature, fluid 
viscosity 

Drug surface area, A Particle size, size 
distribution, shape, state 
of particle aggregation 

Fluid hydrodynamics 

Length of hydrodynamic 
boundary layer (stagnant 
diffusion layer), h 

Particle size, diffusion 
coefficient 

Fluid velocity, viscosity, 
diffusion coefficients of 
diffusing species 

Saturated solubility, Cs Intrinsic solubility 
(molecular size, crystal 
properties, chemical 
groups), pKa 

Buffer species, buffer 
concentration, buffer 
capacity, pH, presence of 
lipolytic products, bile 
salts, and phospholipids, 
temperature 

Bulk concentration, Cb Dose, intrinsic solubility 
(molecular size, crystal 
properties, chemical 
groups), pKa, intestinal 
permeability 

Fluid volume (fluid 
ingested, gastric-emptying 
rate, transit time), 
absorption in GI 
membrane, buffer 
species, buffer 
concentration, buffer 
capacity, pH, presence of 
lipolytic products, bile 
salts, and phospholipids, 
temperature 

Intestinal wall 
permeability, Pw 

Absorption mechanism 
(Simple diffusion: 
lipophilicity, charge, 
polarity. Facilitated 
diffusion or active 
transport: affinity for 
membrane channels or 
pumps) 

Intestinal segment, 
Composition of intestinal 
wall, number of channels 
or transporters, apparent 
permeability to mass 
transport (turbulence due 
to intestinal wall 
contractions) 

Concentration at the 
intestinal wall, Cw 

Dose, intrinsic solubility 
(molecular size, crystal 
properties, chemical 
groups), pKa, permeability, 
diffusion coefficient 

Hydrodynamics, viscosity, 
shear, transit time 
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Table 1.2. Literature values for concentrations of some major components 
of fluid in the fasted and fed stomach and small intestine  
The designation (e) indicates a value that was measured early in the post-prandial phase 
(between 0 and 60 minutes), (m) denotes a value measured in the mid post-prandial phase, and  
(l) denotes a value that was measured late in the post-prandial phase (greater than 100 minutes). 
Unless indicated next to the value, units are noted next to the name of the component. 
 

   Stomach Duodenum Jejunum Ileum 

Bicarbonate 
(mEq L-1) 

Fasted Mean 7.3a 2.7105, 6.7106, 
15b 

17105, 30b, 30c, 
8.2±5 mMd 

40d, 50107, 
70b, 74108, 

75c, 
30±11mMd 

 Range 9-20g  2-20e, 5-10109, 
6-20f  

Fed Mean  10h   

Bile salts (mM) 

Fasted 

Median 0.100j 2.7k, 2.6l   

Mean 
0.08±0.03l, 
0.275110, 
0.081m 

6.4±1.3n, 
4.3±1.2n, 
5.90±1.8o 

2±0.2p  

Range  1-5.3q, 0.6-
5.1r, 0.3-9.6j 

0.8-5.5r, 0.1-
13.3i, 5-6n, 0-

17n 
2-10s 

Fed 

Median  

3.6j, 5.2j, 8.3 
(e) j, 11.9 

(e)j, 11.2(e)k, 
5.2(l) k 

 1.0t, 0.5t 

Mean 0.0620 

14.5(e) u, 
5.2(m)u, 

16.2±1.5111, 
9.7±1111, 

9.1m 

8112, 15112, 
8±0.1p, 

6.5±0.9111 
 

Range  
1.6-6.2j, 3.2-

6.8j, 6.7-
13.4o 

0.5-
40t(graph), 3-

34112 

0.5-30t, 
0.2-1.3t 

 
a From reference 21. b From reference 40. c From reference 42. d From reference 43. e From 
reference 39. f From reference 41. g From reference 22. h From reference 44. i From reference 50. 
j  From reference 33. k From reference 14. l From reference 20. m From reference 19. n From 
reference 2. o From reference 18. p From reference 35. q From reference 34. r From reference 53. 
s From reference 38. t From reference 36. u From reference 37. v From reference 15. w From 
reference 16. x From reference 17. 
 
 
 
 
 
 
 
 
 
  



  

 25 

Table 1.2 (Cont’d) 
   Stomach Duodenum Jejunum Ileum 

 
Lipids (mg/mL) 

Fasted 
Median  0.5j   
Mean 0.56o 0.6o 0.1±0.01mMp  
Range  0-1.8j   

Fed 

Median  1.8j, 2.6j   
Mean   22±1mMp  

Range 50 (l)o, 
150(e)o 

0.5-4.6j, 1.1-
3.6j, 55-100o   

Phospholipids 
(mM) 

Fasted 

Median  0.6j   
Mean   0.2±0.07p  

Range  0.1-1.5j, 
0.03-0.06q   

Fed 

Median  1.8j, 1.2j   
Mean   3±0.3p  

Range  1.3-2.4j, 0.8-
1.6j   

Pepsin 
(mg/mL) 

Fasted 
Median 0.11 (e)k, 

0.22 (m)k    

Mean 0.87v    
Range 0.83-1.27w    

Fed 

Median     
Mean 1.25v, 1.68v    

Range 0.26-0.58w, 

0.56-1.72w    

Lipase 
Fasted 

Mean ~0.1mg/mLx    
Range     

Fed Range 11.4-43.9  
U/mLo    

Potassium 
(mM) Fasted Mean 13.4±3.0i  5.4±2.1i, 

4.8±0.543 4.9±1.543 

Sodium (mM) 
Fasted Mean 68±29i  142±13i, 

142±743 140±643 

Fed Mean   106±15t, 
101±17t 

139±11t, 
133±8t 

Chloride (mM) Fasted Mean 102±28i  126±19i, 
135±843 125±1243 

Calcium (mM) Fasted Mean 0.6±0.2i  0.5±0.3i  
a From reference 21. b From reference 40. c From reference 42. d From reference 43. e From 
reference 39. f From reference 41. g From reference 22. h From reference 44. i From reference 50. 
j  From reference 33. k From reference 14. l From reference 20. m From reference 19. n From 
reference 2. o From reference 18. p From reference 35. q From reference 34. r From reference 53. 
s From reference 38. t From reference 36. u From reference 37. v From reference 15. w From 
reference 16. x From reference 17. 
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Table 1.3. Literature values for properties of fluids in the fasted and fed 
stomach and small intestine 
The designation (e) indicates a value that was measured early in the post-prandial phase 
(between 0 and 60 minutes), (m) denotes a value measured in the mid post-prandial phase, and  
(l) denotes a value that was measured late in the post-prandial phase (greater than 100 minutes). 
Unless indicated nest to the value, units are noted next to the name of the component. 
   Stomach Duodenum Jejunum Ileum 

Buffer capacity 
(mmol L-1 pH-1 

Fasted Median 7 (e) a, 18a 5.6a   

Mean   3.2359 6.4b 

Range  4-13c 2.4-2.8d  

Fed Range 14-28a 18-30a 13.2-14.6d  

Osmolality 
(mOsm kg-1) 

Fasted Median 98 (e)a, 
140 (l) a 

178a, 224e   

Mean 29f, 
191±36g, 
33.6±5.9h 

221±15h 

142f, 
137±54c 

271±15g, 
200±68c, 
278±16h 

 

Range 171-276i 124-266e   

Fed Median 559 (e)a, 
217 (l)a 

287e, 276e, 
>287 (e)a, 
287 (l)a 

  

Range  250-367e, 
268-304e 

  

Surface tension 
(mN m-1) 

Fasted Median  32.3a, 41.2e   

Mean   28±1d, 
33.7±2.8h 

 

Range 41.9-45.7a 33.3-46.0e   

Fed Median  34.2e, 35.4e   

Mean   27±1d  

Range 30-31a 32.2-36.7e, 
33.7-36.0e 

  

a From reference 14. b From reference 59. cFrom reference 53. d From reference 35. e From 
reference 33. f From reference 61. g From reference 50. h From reference 63. i From reference 62. 
j From reference 67. k From reference 51. l From reference 52. m From reference 57. n From 
reference 54. o From reference 55. p From reference 49. q From reference 56. r From reference 58. 
s From reference 58. 
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Table 1.3. (cont’d) 
   Stomach Duodenum Jejunum Ileum 

Viscosity (cP) Fasted Range     

 Fed Range 10-2000j    

pH Fasted Median 1.7k, 2.4 
(e)a, 1.7 
(l)a, 1.8143 

6.1, 6.2a, 
6.6e, 5.63113 

7.2k  

  Mean 2.9 ± 1.97g 6.71±0.44l, 
7.0±0.4c, 
4.9m, 
6.4±0.6n 

6.8±0.4c, 
7.5d, 7.1± 
0.60g 

6.5±0.2o 

  Range 1-2.5p, 1.4-
2.1k, 1.23-
7.36a, 1.4-
7.5g 

5.8-6.5k, 
4.00-5.39m, 
5.17-6.10n 

4.4-6.5114, 
5.3-8.1k, 
5.3-8.1g 

6.8-8.0q 

 Fed Median 5.0k, 6.4 (e) 

a, 2.7 (l) a 
5.4k, 6.6 (e) 

a, 5.2 (l) a, 
5.9e, 6.1e, 
5.35r 

  

  Mean  5.2 (e)m, 4.2 
(l) m 

6.2±0.2 (e) 

115, 5.4 ± 
0.2 (l)115, 
6.1d 

7.5116 

  Range 4.3-5.4k 3.1-6.7k, 
4.5-5.5 (e) 

m, 3.9-4.8 (l) 

m, 5.1-5.7 
(e) 117, 5.3-
6.1 (l)117, 
4.6-6.358 

5.2-6.0 
(e)m 

6.8-7.8118, 
6.8-8.0s 

a From reference 14. b From reference 59. cFrom reference 53. d From reference 35. e From 
reference 33. f From reference 61. g From reference 50. h From reference 63. i From reference 62. 
j From reference 67. k From reference 51. l From reference 52. m From reference 57. n From 
reference 54. o From reference 55. p From reference 49. q From reference 56. r From reference 58. 
s From reference 58. 
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Figure 1.1. Approximation of a typical pH profile in the stomach 

The letter “M” denotes food intake (Redrawn from reference 51). 
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Figure 1.2. Individual and median pH versus time in fasted (A), fed (B), and 
fat-enriched fed (C) state human duodenal fluid for five healthy subjects 
Darkened lines represent median values33. (Reprinted from reference 33 with permission.) 
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Table 1.4. Literature values for liquid volumes and geometry in the fasted 
and fed stomach and small intestine 
Values for the small intestine are for the entire small intestine unless the value is contained in an 
individual column. 
 
   Stomach Small Intestine 
    Duodenum Jejunum Ileum 
Volume 
(mL) 

Fasted Mean 28a 

296 (300mL 
water)a 
27119 

86b, 81b, 112±27c, 109 ± 36c, 165±22d, 
105±72e 

Range 18-54a 
279-323(300mL 
water)a 

21-33119 

34-46b 
37-130b 
45-319e 

Fed Mean 250±23 (200mL) 

f, 380±25 
(400mL)f, 
555±30  
(600mL)f, 
664±34(800mL) f 

47b 
381b 
590±73c 
54±41e 

Range  18-78b, 343-491b, 20-156e 
Surface 
area 
(cm2) 

Absorbing120 Mean 525.58 ± 
24.143g, 1100h 

104-1.2 X 104 (considering valves of 
keckring), 105 (considering villi), 2 X 

106 (considering microvilli) 
   900h 600000h 600000h 
Geometric Mean 942i 393i, 197-490j 4712 i, 

825-1319j 
 

4712i, 
980-
1862j 

    3300120 
a From reference 70. b From reference 73. c From reference 74. d From reference 75. e From 
reference 72. f From reference 71. g Surface area of gastric mucosa. h From reference 95. i 

Calculated using length and diameter from reference 95 assuming cylindrical geometry. j 

Calculated using absolute diameter and physiological length from reference 120 assuming 
cylindrical geometry.  k Anatomical lengths measured at autopsy or from material recovered from 
surgery and physiological lengths measured from living persons.  
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Table 1.4 (Cont’d) 
   Stomach Small Intestine 
    Duodenum Jejunum Ileum 
Length 
(cm)120, k 

Anatomical 
 

Mean 
Range 

 680 
255-1128 

Mean 
Range 
 

  
25-30 

 

260 395 

Physiological Mean 
Range 

 282 
229-337 

Mean 
Range 

 21 
18-26 

105 156 

Diameter 
(cm) 

Absolute 
 

Mean 
Range 

15h 

 
5h, 4120 
3.5-6120 

5h 

2.5-4120 
5h 

2-
3.8120 

Cranial to 
caudal 120 
 

Mean 
Range 
 

37 
29.5-49.5 
 

   

Greatest 
diameter120 
 

Mean 
Range 

15 
6.5-21.5 

   

Body120 Mean 
Range 

11 
4-19 

   

Pyloric 
antrum120 

Range 4-5    

a From reference 70. b From reference 73. c From reference 74. d From reference 75. e From 
reference 72. f From reference 71. g Surface area of gastric mucosa. h From reference 95. i 

Calculated using length and diameter from reference 95 assuming cylindrical geometry. j 

Calculated using absolute diameter and physiological length from reference 120 assuming 
cylindrical geometry.  k Anatomical lengths measured at autopsy or from material recovered from 
surgery and physiological lengths measured from living persons.  
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Table 1.5. Total volume, number and volume of liquid pockets, and 
proximity of capsules to liquid-filled regions in the fasted and fed small 
intestine 
(Reproduced from reference 72.). Fasting conditions and 1 hour after a meal (n=12)72. 
 

Condition  Fasted Fed 

Total volume of liquid 
(mL) 

Mean± s.d 105±72a 54±41a 

Range 45-319 20-156 

Median 83 39 

Individual (approx.)b 
45, 48, 69, 73, 77, 81, 
85, 94, 113, 115, 130, 

319 

20, 22, 26, 28, 
30, 38, 44, 50, 

70, 75, 101, 156 

Number of liquid 
pockets 

Mean 4c 6c 

Individual (approx.) b 2, 3, 4, 5, 8 2, 5, 6, 7, 11 

Volume of liquid 
pocket (mL) Median 12d 4d 

Number of capsules 
surrounded by liquid No./Total 14/28 1/5 

Number of capsules 
partially surrounded 

by liquid 
No./Total 6/28 1/5 

Number of capsules 
not in contact with 

liquid 
No./Total 8/28 3/5 

a P<0.01. b Approximate values read from graph. c P<0.05. dP<0.001 

 

 

 

 



  

 33 

 

Figure 1.3. Gastrointestinal transit of magnetically marked non-
disintegrating capsules in a single volunteer after ingestion with 150 mL of 
water 
Capsule taken after 8 h of fasting. Lunch served 240 min after ingestion of the capsule in 
experiments 1-490 (Reprinted from reference 90, with permission.). 
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Table 1.6. Literature values for residence time in the stomach, residence 
time in the small intestine and small intestinal flow rates 
Time for half-
emptying - 
stomach (min) 

Fasted Mean 15.8 (300mL water) a, 12 (saline) b, 
75 (glucose) c 

Range 11.5-17.0 (300mL water)a 
Fed Mean 44±15 (liquids)121, 105±21 (solids) 

121, 40±13121, 32±7 (liquids) 122, 
46±9 (liquids)122, 67±9 (liquids)122, 
76±6 (liquids) 122, 72d, 69d 
 

Range 69-93d, 50-76d 
Time for 
complete 
emptying - 
stomach (min) 

Fasted Mean 25a 
Fed Mean 40d 

Transit time - 
entire small 
intestine (min) 

Fasted Mean 192 (coated pellets) e 
 Range 90-324 (coated pellets)e, 132-354 

(pellets) f, 54-372 (tablets) f 

Fed Mean 276±99 h (liquids) 121, 342±120 hg 

 Range  
Transit time - 
duodenum to 
jejunum (min) 123, 

Fed Mean 32±3 (40kcal/h) 30±1 (90kcal/h), 
32±2 (160kcal/h) 

Transit time - 
duodenum to 
ileum (min)123 

Fed Mean 59±2 (160kcal/h), 47±3 (40kcal/h), 
47±2 (90kcal/h) 

Flow rate - 
jejunum 
(mL/min)h 

Fasted Mean 0.73 
Fed Mean 3.0 

Flow rate – ileum 
(mL/min)h 

Fasted Mean 0.33 
Fed Mean 2.35 

a From reference 70. b From reference 85. c From reference 79. d From reference 73. e From 
reference 10. f From reference 92. g From reference 49. h From reference 93. 
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Table 1.7. Effects of meal volume and caloric load on the half-emptying 
time of gastric contents 
(Reproduced from reference 71.) Data and standard error between any 2 volumes (in 
parenthesis) were estimated from mixed-effects model. The standard errors for differences 
between 2 volumes are given in parenthesis71.  

 Meal Volume (mL) 
Caloric load 

(kcal) 200 400 600 800 

200 56 (7) 41 (8) 42 (8) 38 (8)a 
300 74 (7)+ 59 (8)b 60 (8)b 56 (8)a,b 
400 92 (7) + 77 (8)b 78 (8) 74 (8)a,b 

aP ≤ 0.05 vs. 200 mL bP < 0.01 vs. 200 kcal71.
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Table 1.8. Evolution of fasted and fed simulated gastric fluids 

 
a From reference 17. b From reference 6. 
 
  

Fluid name USP SGF, 
TS96 FaSSGFa N/Ab FeSSGFb N/Ab 

Prandial state Fasted Fasted Fed (early) Fed (middle) Fed (late) 

Year 1955 2005 2008 2008 2008 

Buffer type - - - Acetate Phosphate 

Buffer 
concentration 

(mM) 
- - - 46.9 37.5 

pH ~1.2 1.6 6.4 5.0 3 

Buffer 
capacity 

(mmol/L/pH) 
- - 21.33 25 25 

Osmolality 
(mOsm/kg) 

Not 
available 120.7 ± 2.5 559 400 300 

Surface 
tension 
(mN/m) 

50.81124 42.6 49.7 ± 0.3 52.3 ± 0.3 58.1 ± 0.2 

Composition Hydrochloric 
acid, 70 mM 
Pepsin, 3.2 
g/L 
Sodium 
chloride, 
34.2 mM 
 

Sodium 
taurocholate, 
80 µM 
Lecithin, 20 
µM 
Pepsin, 0.1 
mg/mL 
Sodium 
Chloride, 
34.2 mM 
Hydrochloric 
acid, q.s. 

Sodium 
chloride, 148 
mM 
Milk:buffer, 
1:0 
Hydrochloric 
acid/Sodium 
hydroxide, 
q.s. 

Sodium 
chloride, 
237.02 mM 
Acetic acid, 
17.12 mM 
Sodium 
acetate, 
29.75 mM 
Milk:buffer, 
1:1 
Hydrochloric 
acid/Sodium 
hydroxide, 
q.s. 

Sodium 
chloride, 
122.6 mM 
Ortho-
phosphoric 
acid, 5.5 
mM 
Sodium 
dihydrogen 
phosphate, 
32 mM 
Milk:buffer, 
1:3 
Hydrochloric 
acid/Sodium 
hydroxide, 
q.s. 



  

 37 

Table 1.9. Evolution of fasted and fed simulated intestinal fluids 
Fluid 
name 

USP SIF, 
TSa 

USP SIF, 
TSb FaSSIF125 FaSSIFm126 FaSSIF-

V2c FeSSIF125 FeSSIFc126 FeSSIF-V2c 

Prandial 
state N/A Fasted Fasted Fasted Fasted Fed Fed Fed (early, 

middle, late) 
Year 1960d 1996 1998 2004 2008 1998 2004 2008 

Buffer type Phosphate Phosphate Phosphate Maleate Maleate Acetate Citrate Maleate 
Buffer 

concentrati
on (mM) 

50.0d 50.0 28.7 25.0 19.1 144 84 55.0 

pH 7.5 6.8 6.5 6.5 6.5 5.0 5.0 5.8 
Buffer 

capacity 
(mmol/L/p

H) 

N/A 
18.4 ± 0.2 

(w/o 
pancreatin) 

12 12 10 76 76 25 

Osmolality 
(mOsm/kg

) 
N/A 113 270±10 270±10 180±10 635 ± 10 635 ± 10 390 ± 10 

Surface 
tension 
(mN/m) 

N/A N/A N/A N/A 54.3 N/A N/A 40.5 ± 2 

Compositi
on (mM 
unless 

otherwise 
specified) 

Monobasic 
K 

phosphate, 
50.0d 

NaOH, 
~15.4d 

Pancreatin, 
10.0g/L 

HCl/NaOH, 
q.s. 

Monobasic 
K 
phosphate, 
50.0 
NaOH, 
~15.4 
Pancreatin, 
10.0g/L 
HCl/NaOH, 
q.s. 

Sodium 
taurocholat
e, 3 
Egg 
phosphatid
ylcholine, 
0.75 
Na 
dihydrogen 
phosphate, 
28.66 
NaOH, 
~13.8 
NaCl, 106 

Na 
taurocholate, 
3 
Egg 
phosphatidylc
holine, 0.75 
Maleic 
anhydride, 
25.01 
NaOH, ~45 
NaCl, 109 

Na 
taurocholat
e, 3 
Lecithin, 
0.2 
Maleic 
acid, 19.12 
NaOH, 
34.8 
NaCl, 
68.62 

Na 
taurocholate, 
15 
Egg 
phosphatidylch
oline, 3.75 
Acetic acid, 
144 
NaOH, ~101 
NaCl, 173 

Na 
taurocholate, 
15 
Egg 
phosphatidylc
holine, 3.75 
Citric acid, 84 
NaOH, ~200 
NaCl, 206 

Na 
taurocholate, 
10 
Lecithin, 2 
Glyceryl 
monooleate, 5 
Maleic acid, 
55.02 
Na oleate, 0.8 
NaOH, 81.65 
NaCl, 125.5 

 
a From reference 127.  b From reference 128. c From reference 6. d USP SIF, TS  was first introduced in 1955 with a buffer concentration of 
6.4 mM and a sodium hydroxide concentration of about 38 mM 96.
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Chapter 2 
 

Mechanistic analysis of solute transport in an in vitro 
physiological two-phase dissolution apparatus 

 
 

Abstract 
 
 In vitro dissolution methodologies that adequately capture oral 

bioperformance of solid dosage forms are critical tools needed to aid formulation 

development. Such methodologies must encompass important physiological 

parameters and be designed with drug properties in mind. Two-phase dissolution 

apparatuses, which contain an aqueous phase in which the drug dissolves 

(representing the dissolution/solubility component) and an organic phase into 

which the drug partitions (representing the absorption component), have the 

potential to provide meaningful predictions of in vivo oral bioperformance for 

some BCS II, and possibly some BCS IV drug products. Before such an 

apparatus can be properly evaluated, it is important to understand the kinetics of 

drug substance partitioning from the aqueous to the organic medium. 

We performed a mechanistic, drug-transport analysis of the partitioning of 

solutes in solution in an in vitro two-phase dissolution apparatus, and 

demonstrated the ability of our model to successfully describe the in vitro 

partitioning profiles of three BCS II weak acids in four different experimental set-

ups. In contrast to previous kinetically derived mathematical models, our model 

uses physical input parameters that are known or can be estimated a priori. To 

establish the physiological relevance of the test for the drug product of interest, 

we proposed scaling factors (AI/Va, MT/Va, and Va/(Kap Vo)), the values of which 

can be determined based on molecular descriptors. When these scaling
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parameters are maintained at physiologically relevant values and a physiological 

aqueous buffer is used, the saturation conditions in the aqueous medium of the 

two-phase system are expected to be similar to saturation conditions in vivo, and 

the in vitro partitioning rate is expected to be similar to the in vivo absorption rate. 

Potential IVIVCs between the in vitro partitioning and in vivo absorption profiles 

may result for some drug products that have relatively high fraction absorbed 

values and low extents of hepatic first-pass metabolism and gut 

degradation/metabolism. While this manuscript focuses on an analysis of drugs 

in solution, these scaling factors can be applied to dissolution of solid dosage 

forms in two-phase dissolution apparatuses, which will be the focus of future 

work. 

 

Introduction 
 
 Pharmaceutical solid oral dosage forms must dissolve in the 

gastrointestinal lumen and absorb into the intestinal membrane before reaching 

systemic circulation. The rate and extent of drug dissolution and absorption 

depend on the characteristics of the active ingredient such as pKa, crystal form, 

and solubility, as well as properties of the dosage form[1]. Just as importantly, 

characteristics of the physiological environment such as buffer species, pH, bile 

salts, gastric emptying rate, intestinal liquid volume, intestinal motility, and shear 

rates significantly impact dissolution and absorption[2]. While scientists have 

used in vitro test methods for many years, no single test or apparatus accurately 

captures the range of key in vivo conditions that have the potential to affect the 

relative rates and extents of in vivo dissolution and absorption for the range of 

diverse drug products. Due to the difficulty in developing a “one size fits all” 

physiological dissolution apparatus, it is helpful to use the physicochemical 

characteristics of the drug and dosage form to design a dissolution test that 

captures the key physiological conditions that have the potential to affect the oral 

bioperformance. For example, capturing the pH profile encountered when a drug 

travels from the acidic stomach to the less acidic small intestine is important for 
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low-solubility weak acids and bases with pKas in the physiological range, 

whereas the type and concentration of bile salts in the dissolution medium rather 

than the pH profile is important for low-solubility neutral compounds. 

 The Biopharmaceutics Classification System (BCS) attempts to categorize 

in vivo oral bioperformance based on a drug’s solubility, extent of permeation, 

and in vitro testing results [3]. It has had a significant effect on the regulatory 

environment as the Food and Drug Administration (FDA) and World Health 

Organization (WHO) consider biowaivers for some drugs [4]. The BCS 

classification of a drug can be used as a general guideline to predict whether 

solubility, dissolution rate, or permeation rate will be the rate-limiting step in 

reaching systemic circulation. However, even drugs within a single BCS class 

have a range of solubilities, effective human intestinal permeation rates, particle 

sizes, doses, and dosage forms, all of which may contribute to differences in 

dissolution and absorption characteristics in vivo. Therefore, for drugs that fall 

within BCS II, III, or IV, using its BCS classification alone to design the 

appropriate dissolution test has some limitations. For instance, performing a USP 

dissolution test in a non-physiological volume of buffer (i.e. 900 ml) to predict in 

vivo performance for certain BCS Class II (low solubility, high permeation) drugs 

may lead to poor in vitro-in vivo correlations (IVIVCs) due to an unrealistic degree 

of drug saturation in the dissolution medium, leading to in vitro dissolution rates 

that do not reflect the in vivo situation. 

 Two-phase dissolution apparatuses can simultaneously evaluate the 

kinetics of both drug dissolution and partitioning, and can simulate drug 

absorption while using a physiological volume of aqueous fluid (~100 ml in fasted 

humans [5]). These systems contain a volume of aqueous medium in which the 

drug dissolves and a second volume of an immiscible organic medium (e.g. 1-

octanol) that allows drug partitioning from the aqueous medium. If designed 

properly, the rate of appearance of drug in the organic phase is expected to be 

similar to the rate of absorption in vivo. Assuming that an appropriate interfacial 

surface-area-to-volume ratio between the aqueous and organic phases is used, 

the organic phase can help to maintain physiologically relevant saturation 
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conditions in the aqueous phase and physiologically relevant partitioning kinetics 

for some potential drug candidates. 

 Researchers have been exploring the utility of two-phase systems for 

novel dosage forms such as lipid-filled capsules and controlled-release dosage 

forms, as well as immediate-release dosage forms since the 1960s. Pillay & 

Fassihi employed a two-phase method to study the dissolution of poorly-soluble 

nifedipine from a lipid-based capsule formulation [6]. Their purpose was to 

circumvent possible precipitation of the drug as well as analytical difficulties 

associated with lipid-based capsule formulations. Hoa and Kinget as well as 

Gabriels & Plaizier-Vercammen developed two-phase methods to overcome 

difficulties in maintaining sink conditions for poorly-soluble anti-malarial drugs 

such as arteminsinin, dihydroartemisinin, and artemether, that occurred using 

single-phase dissolution methods [7], [8]. Grundy et al. developed a two-phase 

system to measure release from the nifedipine gastrointestinal therapeutic 

system (GITS), a push-pull osmotic system, to maintain sink conditions and to 

develop an in vitro-in vivo correlation that could not be achieved with other 

dissolution methods such as the flow-through and differential (ALZA) method [9]. 

More recently, Heigoldt, et al. performed dissolution testing of modified release 

formulations of two weakly-basic BCS II drugs in a two-phase (“biphasic”) 

dissolution test with a pH gradient in the aqueous medium [10]. They found the 

test to be “qualitatively predictive” of in vivo performance and found it to be 

superior to single-phase dissolution testing at a single pH. Shi et al. used a two-

phase dissolution apparatus that incorporated both a USP II vessel and a USP IV 

flow-through cell to successfully differentiate between three formulations of 

celeboxib and generate a rank-order relationship between the amount of drug in 

the organic phase at two hours and the in vivo area under the plasma 

concentration-time curve (AUC) or maximum plasma concentration (C(max)) 

[11]. 

 While two-phase systems have shown improvement over conventional 

methods in some cases, limited work has been undertaken to elucidate the 

mechanism by which they may facilitate improved IVIVCs over single phase 
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systems and determine for which types of drugs and drug products they could be 

most useful. The purpose of this work is to perform a mass transport analysis of 

the kinetics of partitioning of drugs in solution from the aqueous to the organic 

phase of a two-phase dissolution apparatus. While other researchers have 

provided mathematical analyses, we use a mechanistic approach to understand 

the drug transport phenomenon within the system [12], [13]. In this paper we 

present the theory and derivation of our model and compare it to an existing 

kinetic model. We demonstrate the effectiveness of our analysis in predicting 

experimental results in four different in vitro two-phase dissolution apparatuses 

using the BCS II weak acids Ibuprofen, Nimesulide, and Piroxicam. More 

importantly, we outline how a two-phase dissolution apparatus can be scaled to 

be physiologically relevant and reflect in vivo absorption kinetics, and discuss for 

which types of drug substances a two-phase system may be most useful. 

 

Material and Methods 
 
Description of the apparatus 
 Figure 2.1 is a schematic of a two-phase dissolution apparatus. It consists 

of a flat- or round-bottom glass vessel that is maintained at constant temperature. 

It contains both aqueous and organic media that are present in two distinct 

layers, and are agitated by a single shaft fitted with two impellers. At the 

beginning of the experiment, dissolved drug is added directly to the aqueous 

medium. Partitioning of drug from the aqueous to the organic medium is 

monitored as a function of time until the equilibrium concentration of drug in each 

phase is reached. 

 
Derivation of the model 
 The kinetics of partitioning of drug from the aqueous to the organic phase 

of a two-phase system is described based on a physical model approach Suzuki 

et al. originally developed to describe simultaneous chemical equilibria and mass 

transfer of basic and acidic solutes through lipoidal barriers [14]. We assume that 
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drug transport is controlled by diffusional resistance arising from a 

hydrodynamically controlled or “stagnant” diffusion layer on each side of the 

aqueous-organic interface, and use the steady diffusion across a thin film 

approximation to predict the total flux of drug across the two diffusion layers in 

series. Model assumptions are as follows. 

 

1. The diffusion coefficient in each medium is not concentration dependent 

and aqueous diffusion coefficients of ionized and non-ionized drug are 

equal. 

2. Aqueous and organic media behave as ideal solutions. 

3. Drug transport via convection is minimal and can be neglected. 

4. An initial bolus of drug in solution is injected into the aqueous medium and 

net flux of drug occurs in one direction across each diffusion layer from the 

well-mixed, bulk aqueous medium to the well-mixed, bulk organic medium. 

5. The instantaneous concentration profile within each diffusion layer 

resembles a steady state (pseudo-steady-state approximation). 

6. Drug concentrations at the aqueous and organic sides of the interface are 

in equilibrium. 

7. Drug transfer across the aqueous-organic interface is instantaneous. 

8. Mass transfer from the aqueous to the organic medium occurs only 

through the interface. 

9. Concentration of dissolved drug in either phase is not affected by 

processes such as chemical reaction, degradation, precipitation, etc. 

10. The thickness of each diffusion layer is constant with time. 
 

 Figure 2.2 is a schematic diagram of a two-phase system tipped on its 

side, to which a monoprotic weak acid has been added to the aqueous buffer. 

The first transport step is the diffusion of ionized and non-ionized drug across the 

aqueous diffusion layer of thickness ha. According to Fick’s First Law and using 

assumptions 1-5, the flux across the aqueous diffusion layer, ja, is given in 

Equation 2.1, where RH are R- are the concentrations of non-ionized and 



	
  

 56 

ionized species, respectively, and Da is the aqueous diffusion coefficient for both 

species. 

 

(2.1)  ja = !Da

d RH( )
dx

!Da

d R!( )
dx

 

 

Upon integration from x equal to – ha to zero (the thickness of the diffusion layer) 

the flux across the aqueous diffusion layer is given as a function of the 

concentration of drug species in the bulk, Ra,b, RHa,b, and the concentration of 

drug species on the aqueous side of the interface, Ra,i, and RHa,i, as shown in 

Equation 2.2.  
 

(2.2) ja =
Da

ha
Ra,b + RHa,b( )! Ra,i + RHa,i( )"# $%    

 

Using the same assumptions as above, the flux of drug from the organic side of 

the interface to the bulk organic phase can be defined in an analogous manner 

as Equation 2.1. We do not assume that only non-ionized drug partitions into the 

organic medium, allowing for cases when ionized drug may form complexes with 

counterions and partition into the organic medium, for example (and the model 

does not change whether or not this assumption is made)[15]. Upon integration 

from x equals 0 to ho (the thickness of the organic diffusion layer), the flux of drug 

across the organic interface, jo, is given by Equation 2.3, where Ro,i and RHo,i, 

are the concentrations of ionized and non-ionized drug on the organic side of the 

interface respectively, and Ro,b and RHo,b are the concentrations of ionized and 

non-ionized drug in the bulk organic phase, respectively. Do, is the drug diffusion 

coefficient in the organic phase. 
 

(2.3) jo =
Do

ho
Ro,i + RHo,i( )! Ro,b + RHo,b( )"# $%      
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The concentration of drug on the organic side of the interface can be related to 

the concentration of drug on the aqueous side of the interface (assumption 6) 

using the apparent partition coefficient at the interface defined by Equation 2.4. 

If aqueous buffer capacity is high enough to maintain a constant bulk pH during 

the experiment, then aqueous surface pH is constant and is equal to bulk pH, 

and Kap surface is equal to Kap bulk. 
 

(2.4) Kap =
RHo,i + Ro,i
RHa,i + Ra,i

  

 

Using the pseudo-steady-state approximation (assumption 5) and assuming 

instantaneous transfer across the interface (assumption 7) the fluxes across the 

aqueous and organic diffusion layers can be set equal. Setting Equation 2.2 

equal to Equation 2.3, eliminating Ro,i and RHo,i using Equation 2.4, and letting 

Ca equal the total aqueous bulk drug concentration, RHa,b + Ra,b, and Co equal 

the total organic bulk drug concentration, RHo,b + Ro,b, gives the pseudo-steady-

state flux of drug as a function of the bulk aqueous and the bulk organic phase 

concentrations, shown in Equation 2.5. 
 

(2.5) j =
DoDaKap

Daho +DohaKap
!" #$

Ca %
Co

Kap

!

"
&
&

#

$
'
'

     

 

The interface permeation rate, PI, across the aqueous and organic diffusion 

layers (barriers in series) defined by Equation 2.6 allows for further simplification 

of the total flux from the bulk aqueous to the bulk organic phase as shown in 

Equation 2.7. PI can also be described in terms of the mass transfer coefficient 

across the organic diffusion layer, ko, and the mass transfer coefficient across the 

aqueous diffusion layer, ka, according to Equation 2.8, where korg = Do/ho and kaq 

= Da/ha.  
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(2.6) 1
PI
=

ho
DoKap

+
ha
Da

   

 

(2.7) j = PI Ca !
Co

Kap

"

#
$
$

%

&
'
'

     

 

(2.8) 1
PI
=

1
korgKap

+
1
kaq

     

 

Equation 2.6 can be further simplified by relating Do to Da through the viscosities 

of the aqueous and organic media. According to the Hayduk and Laudie (HL) and 

Othmer and Thakar (OT) methods of estimating diffusion coefficient[16], [17], the 

diffusion coefficient is a function of the molal volume of the drug and the liquid 

viscosity. Using the HL method, Do can be related to Da according to Equation 
2.9. When 1-octanol is used as the organic medium, assuming the viscosity of 

the aqueous buffer is 0.6915 cP (viscosity of water) and the viscosity of 1-octanol 

is 4.84 cP at 37 degrees Celsius[18],  [19], then Do is about equal to 0.11Da
1.  

 

(2.9) Do

Da

!
µa

µo

"

#
$

%

&
'

1.14

 

 

If it is assumed that ha and ho are equal, then the equation for PI simplifies to 

Equation 2.10. ha and ho depend on factors such as liquid viscosity, stirring rate, 

agitator length and design, and vessel geometry. In reality, ho is probably 

somewhat larger than ha due to the higher viscosity of the organic medium 

(assuming similar rotational speeds and impeller geometries). However, the 

value of these simplifying assumptions is evident from Equation 2.10. When Kap 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 Do is equal to ~0.12Da according to the OT method. The Wilke-Chang method gives diffusion 
coefficient as a function of an association parameter and liquid molecular weight in addition to 
liquid temperature and viscosity, and would estimate that Do is equal to ~0.54Da. 
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is greater than about ten, PI is primarily determined by the aqueous diffusion 

layer permeability (or mass transfer coefficient, kaq) since the organic phase is 

effectively functioning as a sink for the partitioning drug. 

 

(2.10) PI !
Da

ha

Kap

9.1+Kap

"

#
$$

%

&
''   

 

The time-dependent concentration of drug in the aqueous medium can be 

expressed according to Equation 2.11 since mass transfer only occurs through 

the interface and drug is not generated or destroyed in the system (assumptions 

8 and 9). AI is the surface area of the aqueous-organic interface, and Va is the 

volume of aqueous medium. Equation 2.7 can be substituted into Equation 2.11 

to give Equation 2.12. The aqueous and organic concentrations and Kap are 

given the subscript, t, to indicate their time dependence. As stated previously, if 

the buffer capacity is high enough, then Kap is not time dependent.  
 

(2.11) dCa

dt
= !

AI
Va

j      

 

(2.12) dCa

dt
= !

AI
Va
PI Ca,t !

Co,t

Kap,t

"

#
$
$

%

&
'
'
    

 

Before integrating Equation 2.12, Co,t must be related to Ca,t using mass 

balance. Using assumptions 4 and 9 we can write Equation 2.13, where MT is 

the total amount of drug in the system and Vo is the volume of organic medium.  
 

(2.13) MT =Ca,tVa +Co,tVo     

 

Since, experimentally,  the initial bolus of drug is injected into the aqueous phase 

at time equals 0, Ca,t=0 is equal to MT. Integrating Equation 2.12 using this initial 

condition gives an expression for Ca,t as a function of time, as shown in 
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Equations 2.14-2.15. Using the mass balance in Equation 2.13 allows 

determination of the concentration of drug in the organic phase as a function of 

time, which is given in Equation 2.16. Equations 2.17 and 2.18 give the fraction 

of drug in the aqueous and organic phases as a function of time, respectively. 
 

(2.14) Ca,t =
MT

Va 1+!( )
e
!
AI
Va
PI 1+!( )t

+!
"

#
$
$

%

&
'
'

   

(2.15) ! = Va
KapVo

  

(2.16) Co,t =
MT

Vo 1+!( )
1! e

!
AI
Va
PI 1+!( )t"

#
$
$

%

&
'
'

    

  

(2.17) Fa,t =
1

1+!( )
e
!
AI
Va
PI 1+!( )t

+!
"

#
$
$

%

&
'
'

     

 

(2.18) Fo,t =
1

1+!( )
1! e

!
AI
Va
PI 1+!( )t"

#
$
$

%

&
'
'

     

 

The value of β (defined in Equation 2.15) is the volume ratio of aqueous to 

organic media normalized by the apparent partition coefficient, Kap, and it impacts 

the rate of partitioning into the organic medium and the fraction of drug in each 

phase at equilibrium. As the normalized organic volume (Kap*Vo) increases, such 

as for drugs with high partition coefficients, the value of β decreases towards 

zero. The rate of partitioning is reflected in the decay constant, which is equal to 

(1+ β)*(AI/Va)*PI. The fraction of the dose in the organic medium at equilibrium, 

Fo,∞, is equal to 1/(1+β). When β is less than about 0.1, Equations 2.14 and 
2.16-2.18 can be simplified to Equations 2.19-2.22, since the predicted 

concentration or fraction of drug in each phase at any given time is within ten 

percent of the value predicted using the full equations. 
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 The exponential decay Equations 2.19-2.20 are the integrated solutions 

to first-order ordinary differential equations with respect to concentration or 

fraction in the aqueous phase, respectively. Equations 2.21-2.22 are analogous 

to first-order absorption equations prevalent in pharmacokinetic modeling. The 

decay constant, kp, which is equal to (AI/Va)*PI, can be directly compared to the 

pharmacokinetic first-order “absorption rate coefficient, ka”, since the equations 

are analogous. 

 

(2.19) Ca,t =
Mt

Va
e
!
AI
Va
PIt
=
Mt

Va
e!kpt   

 

(2.20) Fa,t = e
!
AI
Va
PIt
= e!kpt     

 

(2.21) Co,t =
MT

Vo
1! e

!
AI
Va
PIt"

#
$
$

%

&
'
'
=
MT

Vo
1! e!kpt"
#

%
&      

 

(2.22) Fo,t =1! e
!
AI
Va
PIt
=1! e!kpt      

 

Materials 
 Ibuprofen (Albermarle Lot No. 2050-0032F for experiments 1-4, and 

Sigma Aldrich, Cat No. I4883-10G for experiments 5-10), Nimesulide (Sigma 

Aldrich, Cat No. 1016-25G), and Piroxicam (Sigma Aldrich, Cat No. P0847-10G) 

powder, as well as 1-octanol (99% purity) and HPLC-grade methanol, were 

purchased commercially. Relevant material properties are included in Table 2.1. 

 

Apparent partition coefficient 
 The Kap of Piroxicam at 37°C in pH 7.4 buffer was determined. Ten mg of 

drug was added to a glass vial containing 7 mL of 50 mM pH 7.4 sodium 

phosphate buffer and 7 mL of 1-octanol. The glass vial was placed in an 

incubator shaker at 37°C and 150 rpm and allowed to shake for two days, after 
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which two samples were removed from each phase and prepared for 

concentration analysis using UV. Absorbance was measured at 340 nm for the 1-

octanol phase and 356 nm for the aqueous phase. 

 The Kap of Ibuprofen at 37°C in pH 7.5 was measured. Either 50 ml or 100 

ml (preparation 1 or 2, respectively) of a 511 mcg/ml solution of Ibuprofen in 1-

octanol saturated with 50 mM sodium phosphate buffer (pH 7.5) was added to 

either 75 ml or 150 ml (preparation 1 or 2, respectively) of 50 mM sodium 

phosphate buffer (pH 7.5) saturated with 1-octanol, and the mixture was stirred 

vigorously overnight at 37°C.  

 The media were allowed to separate for half a day and two samples were 

removed from both phases and prepared for concentration analysis via UV. 

Absorbance was measured at 274 nm for the 1-octanol samples and 221 nm for 

the aqueous samples.  

 The Kap of Ibuprofen at 37°C in pH 1.2 buffer was measured. Seventy-five 

ml of a solution of 1-octanol containing 15.6 mg/ml ibuprofen saturated with 65 

mM HCl and 50 ml of 65 mM HCl saturated with 1-octanol were added to a 37°C 

vessel and stirred vigorously overnight (two preparations were made). The media 

were allowed to separate for half a day and two samples were removed from 

both phases and prepared for concentration analysis via UV. The second 

derivative of the absorbance was measured at 284 nm for the 1-octanol samples 

and 237 nm for the aqueous samples.  

 For each analysis Kap was determined by calculating the ratio of the 

concentration of drug in the 1-octanol to the concentration of drug in the aqueous 

medium at equilibrium. 

 

In vitro partitioning experiments 
 In vitro partitioning experiments were performed to test the validity of the 

model. Experiments were conducted using BCS II model compounds Ibuprofen, 

Nimesulide, and Piroxicam in three different types of two-phase dissolution 

apparatuses, in two different laboratories, by three different researchers. As all 

three model compounds are at least partially ionized within the physiological pH, 
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experiments were conducted across a pH range to test the effect of apparent 

partition coefficient on the model. 1-octanol was used as the organic medium in 

all cases. Different volumes of buffer (150, 250 ml), different volumes of 1-

octanol (150, 200, 250 ml), different impeller rotational speeds (40, 50, 75, 77 

rpm), different pHs, and different doses (2.5, 3.75, 4, 5, 6.25, 12.5, 15.0 mg) 

were used for the experiments. Details for each experiment are given in Table 
2.2. Apparatus 1 was a 9-cm diameter jacketed glass vessel with a flat bottom. 

This apparatus utilized a dual paddle, which consisted of two identical 5 cm 

diameter paddles, which were centered vertically in each phase. 

Apparatus 2 consisted of a USP 2 vessel with a diameter of 9.8 cm, and the 

paddle was mounted such that the bottom of the compendial paddle was 

approximately 2.5 cm from the bottom of the vessel and the additional paddle 

was centered vertically in the 1-octanol. Apparatus 3 was a USP 2 apparatus 

(1000 ml with a hemispherical bottom), which utilized a dual paddle consisting of 

an additional paddle (5 cm diameter) mounted on the regular compendial paddle, 

with a vessel diameter of 10.1 cm. The compendial paddle was mounted such 

that the bottom of the paddle was approximately 2 mm from the bottom of the 

vessel, and the additional paddle was mounted such that it was centered 

vertically in the 1-octanol.  

 For all experiments the buffer solution was made up and mixed overnight 

with 1-octanol in a 1:1 ratio at 37 °C. The solutions were separated using a 

separatory funnel and stored at 37 °C before and between partitioning runs. The 

pH of the buffer saturated with 1-octanol was measured using a calibrated pH 

meter. The pH was adjusted using concentrated HCl or NaOH solution as 

necessary to bring it to the desired pH. The appropriate volumes of buffer 

saturated with 1-octanol and 1-octanol saturated with buffer were then measured 

using a graduated cylinder and added to the dissolution vessel, which was 

heated to 37 ± 0.2 °C using a water bath. The phases were stirred at the desired 

rotational speed for at least 20 minutes prior to the beginning of the run. Prior to 

starting the run, the temperature was measured with an external thermometer. At 

the start of the experiment, drug in solution was injected into the aqueous buffer. 
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The concentration in each phase was measured as a function of time until a 

plateau was reached in each phase (in most cases). In all cases, calibrated, UV 

Fiber Optic Probes (StellarNet Inc. Black Comet, Tampa, Florida for Apparatus 1 

and 3, or Pion Rainbow, Billerca, MA for Apparatus 2) were mounted such that 

one collected absorbance data in the aqueous medium and/or one collected 

absorbance data in the 1-octanol as a function of time. For Ibuprofen in 

Apparatus 1 and 3, the difference between the absorbance at 222 nm and 375 

nm was correlated to concentration in either the aqueous or organic medium 

using standard solutions. For Apparatus 2, absorbance of Ibuprofen at 222 nm 

(aqueous and 1-octanol for all pHs), Piroxicam at 336 or 356 nm (aqueous at pH 

1.2 or 7.5), and Nimesulide at 300 or 390 nm (aqueous at pH 1.2 or aqueous and 

1-octanol at pH 7.5) were correlated to concentration using standard solutions. 

Experiments were run in duplicate or triplicate for each condition. 

 

Data analysis 
 The fraction of the dose in the aqueous buffer and/or 1-octanol was 

plotted as a function of time. The full model (Equation 2.17) for fraction of drug in 

the buffer was fit to the buffer data and the full model (Equation 2.18) for fraction 

of drug in the organic phase was fit to the 1-octanol data for each experiment 

using non-linear least squares regression with the Nelder-Mead simplex 

algorithm as the optimization method using PythonTM, Software (Python 

Foundation, Wolfeboro Falls, NH). PI was the only adjustable parameter in the 

analysis. The value of β was calculated using a measured value of Kap when 

available, but was otherwise calculated using an estimated value of Kap, which 

was calculated assuming only non-ionized drug partitions into 1-octanol. Fitted 

values and 95% confidence intervals for PI for each experimental condition were 

reported. If both buffer and 1-octanol data for a single condition were available, a 

single, best-fit PI was determined. The average ha for each experiment was 

estimated using Equation 2.10.  

 The model was also fit to experimental two-phase partitioning data 

generated by Grassi et al [12]. Numerical values for fraction of the dose in the 
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aqueous phase as a function of time were determined by carefully extracting the 

average concentration at each time point from concentration-time plots using the 

ruler tool in Adobe® Photoshop® CS3 (Adobe, San Jose, CA) and dividing by the 

dose.  

 

Results 
 

Apparent partition coefficient 
 The measured apparent partition coefficients for Ibuprofen at pH 1.2 and 

pH 7.5 were 6670.5 (7.9% Relative Standard Deviation (RSD)), and 8.7 (3.7% 

RSD), respectively. The measured apparent partition coefficient for Piroxicam at 

pH 7.4 was 0.49 (2.0% RSD). 

  

In vitro experiments 
 Plots of experimental fraction of drug in aqueous buffer and/or 1-octanol 

as a function of time along with model fits using the best fit PI value are included 

in Figures 2.3-2.6. The best fit PI and ha values for each experimental condition 

are included in Table 2.3. 

 

Discussion 
 

Comparison of mechanistic analysis to kinetic models 
 A few researchers have introduced kinetic models to describe aqueous-to-

organic phase partitioning[13], [20]. In 2002 Grassi, Coceani, and Magarotto 

published a comprehensive mathematical model describing the partitioning 

kinetics of a solute from an aqueous to an organic medium[12]. They proposed a 

steady-state differential rate equation for aqueous drug concentration as a 

function of rate constants for transfer from the aqueous to the organic (kwo) and 

from the organic to aqueous (kow) phases. Their solution for aqueous 

concentration, Cw, as a function of time is shown in Equation 2.23, where Mo is 

the total mass of dissolved drug in the system, Vw and Vo are the volumes of the 
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aqueous and organic phases, respectively, and A is the surface area of the 

interface. Upon inspection, one can see that Equation 2.23 is analogous to 

Equation 2.14 of our mechanistic model if one sets kow equal to PI/Kap and kwo 

equal to PI. 

 

(2.23) Cw =
kowMo

kwoVo + kowVw
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kowMo
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 Grassi et al. state that Equation 2.23 cannot be applied to partitioning of 

“sparingly soluble drugs in one or both phases” and propose an empirical 

modification resulting in four different equations for Cw as a function of time. They 

select the proper equation based upon the values of defined model parameters 

that are a function of both experimental and fitted parameters (kow and kwo), 

which, according to their analysis cannot be determined a priori. When “Case 3” 

of their model is satisfied (a = 0), their model simplifies to their original model 

(Equation 2.23). Setting kow equal to PI/Kap, and kwo equal to PI reveals that this 

occurs for cases when Cso/Csw is close to or equal to Kap, where Csw is the 

equilibrium solubility of drug in the aqueous phase, and Cso is the equilibrium 

concentration of drug in the organic phase. For the majority of small molecular 

compounds, Kap ~ Cso/Csw, assuming the effect of organic/aqueous mutual 

saturation on the Kap is small, and phenomenon such as micellization or self-

association are not occurring[21], [22]. If Cso and Csw are measured in mutually-

saturated organic medium and aqueous medium respectively, then Kap should be 

equal to Cso/Cs, and Equation 2.23 of the Grassi model (which is equivalent to 

Equation 2.14 our model) should be adequate in describing the partitioning 

kinetics of the majority of drugs of pharmaceutical interest. 

 An advantage of our model over existing kinetic models is that all model 

parameters are defined by the experimental set up, can be measured or 

calculated, or can be estimated a priori. The values of MT, Va, Vo, and AI are 

defined by the experimental set up. Kap can be measured using established 

methods or can be estimated using molecular descriptors [15], [23], [24]. PI is a 
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function of Kap, Da, Do, ha, and ho. As Da and Do can be estimated, the only 

unknown parameters are ha and ho [16], and when Kap is sufficiently large, PI is 

simply a function of Da and ha, which simplifies estimation of PI.  Alternatively, PI 

can be easily determined experimentally in the two-phase system as has been 

done for other systems such as Caco-2 [25]. 

 
Apparent partition coefficient 
 The partition coefficient of Ibuprofen at pH 1.2 (drug is 100% unionized) of 

6670.5 (Log P of 3.82) is in close agreement with the calculated Log P value of 

3.84 [26]. The measured apparent partition coefficient of Ibuprofen of 8.7 at pH 

7.5 is about 40% higher than the estimated value of 5.2, which was calculated 

assuming only non-ionized drug partitions into the 1-octanol (using a pKa of 4.4 

and the measured partition coefficient of the non-ionized drug at pH 1.2). The 

apparent partition coefficient of Piroxicam of 0.49 at pH 7.4 is relatively close to 

the value of 0.8 at pH 7.5 determined by Yazdanian et al., which was also 

determined at 37 °C [27]. 

 

In vitro partitioning experiments 
 The model fit the data quite well in all cases. Deviations from the model 

are likely due to errors in the analytical method and/or suboptimal estimates for 

Kap. As demonstrated in Figures 3-6, the fraction of dose versus time curves for 

each run deviated slightly. These deviations are not surprising, as analytical error 

was noted when taking absorbance readings of mutually saturated solvents at 

elevated temperatures. In addition, using measured rather than calculated values 

for Kap for Ibuprofen at pH 4.3, 4.4, 4.5, 6.3, and 6.8, and using a measured value 

for Piroxicam at pH 7.5 rather than pH 7.4 may have given better estimates for PI 

in these experiments. 

 Based on the mass transport analysis, when β is less than about 0.1 the 

organic diffusion layer should cause negligible diffusional resistance, and the 

value of PI should be primarily a function of Da and ha. Therefore, experiments 3-

6 conducted with Ibuprofen in Apparatus 1 are predicted to have similar PI values 
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(β was less than or equal to 0.01 for all conditions).  While PI values were similar 

between pH 4.3 and 6.3, PI was somewhat smaller at pH 1.5. The best-fit PI 

value for all conditions was 3.0 X 10-3 (range of 2.2 – 4.8 X 10-3) cm/s. Since the 

contribution of the organic diffusion layer is expected to be small, ha values 

calculated from these experiments should be reasonably accurate. The best-fit 

value across all conditions was 25 (range of 16 to 34) mcm, which is in the range 

of 10 to 50 mcm that was hypothesized a priori to be a practical range. Ibuprofen 

partitioning in Apparatus 2 (Exp. 7) and 3 (Exp. 13) at pH values low enough to 

assume negligible organic diffusional resistance was also measured. Estimated 

ha values were 39 (37-41) mcm and 26 (23-29) mcm, respectively in these 

systems. As with Apparatus 1, the values fall within the expected range. 

Comparisons between ha in the different apparatuses cannot easily be made due 

to the different geometries and rotational speeds. When β is not less than 0.1, PI 

should increase with increasing Kap. The expected trend was observed for 

Ibuprofen in Apparatus 2 (Compare experiments 10 and 12 and experiments 9 

and 11), Piroxicam in Apparatus 2 (Compare experiments 15 and 18 and 

experiments 16 and 19), Piroxicam in Grassi et al.’s work (Compare experiments 

21 and 22), and Nimesulide in Grassi et al.’s work (Compare experiments 23 and 

24). 

 Since an increase in impeller rotational speed should act to decrease the 

thickness of the aqueous and organic diffusion layers, PI should increase with 

increasing rotational speed. This trend was observed in all experiments in which 

it was tested. For Ibuprofen in Apparatus 2, a two-fold increase in impeller 

rotational speed led to a two-and-a-half-fold increase in PI at both pH 6.8 

(compare experiments 9 and 10) and pH 7.5 (compare experiments 11 and 12). 

For Piroxicam in Apparatus 2, a two-fold increase in rotational speed led to about 

a six-and-a-half fold increase in PI (compare experiments 17 and 18).  This result 

may be occurring due to the smaller Kap of Piroxicam at pH 7.5 (~0.49) compared 

to Ibuprofen at pH 6.8 (~25.0) or pH 7.5 (8.7). When Kap is large, although an 

increase in rotational speed decreases both ha and ho, the contribution of ho to PI 

is minimal. However, when Kap is small, the values of both ha and ho have an 
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effect on the value of PI. For instance, assuming ha and ho are equal, and Do = 

0.11 Da (valid for a system of buffer and 1-octanol at 37 °C), when Kap is between 

10 and 20, the contributions of ha and ho on PI are about equal. However, when 

Kap is 0.5, the contribution of ho is about 20 times that of ha. 

 The value of MT/Va is not expected to have an effect on PI. A small 

difference (~7%) between PI values was observed for Ibuprofen at pH 6.8 in 

Apparatus 2 (compare experiments 8 and 9). More significant differences were 

observed for Piroxicam in Apparatus 2 at pH 1.2 (compare experiments 14, 15, 

and 16), for which PI values differed by anywhere between about 14 and 64%, 

and Piroxicam in Apparatus 2 at pH 7.5 (compare experiments 18 and 19), for 

which values differed by about 73 and 275%. MT/Va and PI. Since there was no 

trend between an increase in MT/Va and PI, and because the concentration of 

drug in the aqueous medium was far from saturation for all experiments (≤0.3% 

for Ibuprofen at pH 6.8, ≤24% for Piroxicam at pH 1.2, and ≤3% for Piroxicam at 

pH 7.5.2) the unexpected impact of MT/Va on PI may be due to experimental 

error. As can be observed by examining Figures 3-6, replicate runs at each 

condition varied in some cases, and the shapes of the experimental curves 

sometimes deviated slightly from the predicted curves. 

 

Scaling parameters for ensuring physiological relevance 
 To maintain the physiological relevance of the two-phase system, Ca,t in 

vitro should be maintained close to Ca,t in vivo. Maintaining a physiological Ca,t is 

important for drugs with high dose numbers since Ca can be very close to Cs, and 

can thus have a large impact on both the dissolution and partitioning rates in 

these cases[3]. As AI, Va, PI, and MT all influence Ca,t in the two-phase system, 

they are important parameters to consider. 

 The partitioning rate coefficient, kp, (equal to (AI/Va)*PI) reflects the rate at 

which drug partitions into the organic medium. Therefore, one approach to 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2 The saturation solubility of Ibuprofen at pH 6.8 was estimated using the intrinsic solubility and 
pKa values given in Table 1. The saturation solubilities of Piroxicam at pH 1.2 and pH 7.5 were 
taken from reference 12. 
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establish physiological relevance is to keep the in vitro kp equal to the expected 

absorption rate coefficient, ka, in vivo. This approach assumes first-order 

absorption kinetics and a relatively high fraction absorbed in vivo (Fa). Using a 

known or estimated ka and after measuring or estimating PI, we can adjust AI/Va 

such that kp and ka are similar according to Equation 2.24. 
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 While ideally Va in vitro would be set equal to the intestinal liquid volume, 

V, in vivo, it is not necessary to do so for dissolution studies as long as MT/Va and 

dose/V are similar. The average total fasted intestinal volume in vivo is about 100 

ml in humans, which may be contained within a number of liquid pockets [28].  

Neglecting gastric emptying rate and assuming a bolus of dissolved drug in the 

intestine in vivo, MT is equal to the dose. For more slowly releasing dosage 

forms, MT is equal to the amount of dissolved drug, which depends on a number 

of factors. Thus, the simplest way to ensure physiological relevance of the in vitro 

dissolution test is to set MT/Va in vitro equal to dose/V (dose/100 ml in fasted 

humans). 

 Although ka is not typically known a priori (especially for drugs early in 

development) it may be estimated. Several models exist for estimating in vivo ka 

in humans for passively absorbed drugs [29]. The value of ka can also be 

estimated using estimates of A/V and Peff. Peff in humans for passively absorbed 

drugs can be estimated using models that use molecular descriptors as input 

parameters [29] [30], and it can also be estimated based on Caco-2 or rat 

perfusion studies [29]. While Peff must be estimated for each drug, we propose 

using an average in vivo A/V to estimate ka. Assuming the small intestine to be a 

perfect cylinder, Amidon et al. estimated A/V to be equal to 2/r, where r is the 

radius of the small intestine [3]. Assuming a radius of 2 cm [5], this relationship 

would suggest an A/V of 1.0. However, as the human small intestine is a 

convoluted tube, it is likely that a compressed rather than a perfect cylindrical 
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geometry would allow for a more accurate calculation of the geometrical surface 

area and AI/Va. Assuming a radius of 2 cm, a volume of 100 ml, and a constant 

perimeter, we calculated AI/Va based on percent compression, as shown in Table 
2.4. While there is evidence that the liquid in the small intestine is not continuous, 

but instead is contained in multiple liquid pockets, for simplicity, our calculation 

method assumes that the compressed cylinder is completely full of liquid. 

Assuming the liquid contained in the liquid pockets assumes the shape of the 

intestine, our calculation method should be valid for discrete or continuous liquid 

since the surface area of each pocket would be additive. Literature values of total 

small intestinal length give an average of about 300 cm [5]. As shown in Table 
2.4, zero percent compression (perfect cylinder) shows that 100 ml of liquid 

would fill 8 out of the 300 centimeters (assuming the liquid takes the shape of the 

intestine), while the 100 ml would reside in 19 out of the 300 centimeters if the 

intestine were 70% compressed. 

 Rather than using geometrical considerations, Sugano used an equation 

relating human jejunal effective permeation rate to Fa to estimate AI/Va in humans 

in vivo to be about 2.3 cm-1 [31]3. We estimated AI/Va in humans to be about 1.9 

+/- 1.4 cm-1 by dividing average ka values from the literature by their estimated 

human jejunal permeation rate, Peff, for drugs dosed as oral solutions to humans 

that were at least 90% absorbed. Values for Peff were estimated using molecular 

descriptors using model 1b from Winiwarter et al., 1998 [32]. Use of these ka 

values to determine AI/Va is only valid if the drug solutions were completely 

permeation rate limited (e.g. appearance in plasma was independent of gastric 

emptying rate or any other process other than intestinal absorption). If 

appearance in plasma was indeed determined in all or in part by gastric emptying 

rate, ka values determined using plasma deconvolution methods could be 

artificially low. AI/Va values in the range of 1.9 to 2.3 suggest percent 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
3 In Sugano’s analysis AI/Va is represented by A/V for a perfect cylinder times the Degree of 
Flatness (DF), such that AI/Va in our analysis = 2/r X DF in Sugano’s analysis. They take r to be 
1.5 cm in humans and DF to be 1.7. This analysis also assumes gastric emptying rate >> 
absorption rate. 
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compressions in the range of 60 to 70, which seem plausible anatomically. While 

it is convenient to assume an average human AI/Va, it is likely that this ratio 

varies based on differences in the volume of liquid and how it is distributed 

throughout the small intestine, and perhaps on the drug itself depending on the 

site of absorption. 

 Since the in vitro AI/Va is dictated by the diameter and geometry of the 

vessel, options for this parameter are limited if standard, hemispherical vessels 

are used. Table 2.5 shows the minimum and maximum AI/Va that can be 

achieved in a 1000-ml USP II vessel and a 100-ml vessel of similar proportions. 

These estimates are based on practical constraints such as maintaining a 

minimum aqueous volume to achieve a practical liquid height.  

 While PI is dependent upon properties of the drug substance and aqueous 

buffer, the diffusion layer thicknesses can be modified to some extent through the 

stirring rate, agitator length and design, and vessel geometry. A balance must be 

maintained between keeping the dosage form adequately suspended (if 

necessary), maintaining a level aqueous-organic interface with a well-defined 

surface area, and maintaining physiological hydrodynamics (if desired). Given 

these constraints, PI is more of a defined rather than an adjustable parameter. 

 Given the somewhat limited range of in vitro AI/Va and the inability to fully 

control PI, the desired kp won’t be achievable in all cases. Table 2.6 gives the 

estimated ranges for ka and kp for BCS II compounds. Since the range of kp (0.01 

to 50 X 104 cm/s) values envelops the range of estimated ka values when A/V is 

assumed to be 2, there is a good chance that kp may be obtained as desired in 

many cases. However, the ability to do so depends on the relationship between 

Peff and PI, which cannot be easily predicted. 

 In addition to maintaining the correct kp and MT/Va values, ideally a two-

phase experiment should be designed such that Fo,∞ is similar to Fa in vivo. Fa 

can be estimated using Equation 2.25, where tres is the residence time in the 

small intestine. An average value for tres in the fasted human small intestine is 

about 3.5 h[5]. Once Fa has been estimated, the value of β required to achieve a 

Fo,∞  similar to Fa can be determined using Equation 2.26.  As Kap increases, the 
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required Vo relative to Va needed to achieve a given Fo,∞ decreases. An upper 

limit of a Vo that is three times Va (Va/Vo ≥ 0.33) seems to be a practical cutoff for 

determining when the required Vo becomes impractical. When the Log Kap of a 

compound at the desired pH is at least ~0.5 and Va/Vo is at least 0.33, then Fo,∞ 

is at least 0.90 (β ≤ ~0.11).The importance of Kap can be demonstrated by 

examining the required in vitro Va/Vo for Metoprolol, which is used as a reference 

compound to designate drug substances as having low or high permeability 

according to the BCS[33]. Greater than 90% of an oral dose of Metoprolol is 

known to be absorbed in the small intestine. Metoprolol has a log P of 2.2 

(neutral species), but a log Kap of about -0.8 at pH 6.5[34], which is often taken to 

be the average fasted state pH in the upper small intestine. Because of its low 

Kap in the intestinal pH range, six liters of 1-octanol would be required to achieve 

a Fo,∞ of 0.9 (similar to its Fa), making Metoprolol a less than ideal candidate for 

the two-phase system despite its high extent of in vivo absorption.  However, for 

Ibuprofen, which is > 99% absorbed in humans and has a calculated Log Kap of 

1.7 at pH 6.5, only 200 ml of 1-octanol would be needed to achieve a Fo,∞ of 0.99 

(Va/Vo of 0.5) [35].  

 

(2.25) Fa =1! e
!katres  

 

(2.26) ! = Va
KapVo

=
1!Fa
Fa

 

 

 We present a few case studies to demonstrate how a two-phase system 

would be set up to mimic in vivo absorption rate for a few compounds for which in 

vivo ka values have already been determined in humans. We took the ka values 

of four compounds dosed as oral solutions (Ibuprofen, Valproic acid, Felodipine, 

and Ondansetron) from the publication by Linnankoski et al. [36] that were said to 

be passively absorbed and demonstrate completely permeation rate-limited 

absorption, had Fa values of one, and had calculated Log D values at pH 6.5 
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(average fasted human intestinal pH [5]) greater than one 4. We then used our 

proposed scaling factors, AI/Va, MT/Va, and Va/(Kap Vo) to estimate the vessel 

size, aqueous volume, organic volume, and dose that would be required to 

achieve a “physiological two-phase set-up” for these compounds when 

performing two-phase dissolution experiments, as outlined below. 

 

1. Determine dissolution vessel size and in vitro Va using AI/Va. 

2. Estimate ka in vivo. 

3. Estimate PI using Equation 2.10 with the following values. 

4. Estimate Da using Hayduk-Laudie method. 

5. Assume ha equals 30 µm. 

6. Kap = 10 cLogD 6.5 

7. Estimate desired AI/Va using Equation 2.24. 

8. Determine which dissolution vessel size can achieve similar AI/Va (with the 

preference being a 1000-ml USP 2 vessel using the standard set-up for 

stirrer position) and which value of Va must be used to achieve that value. 

9. Determine MT (dose in vitro) using MT/Va. 

10. Estimate in vivo dose/V (dose/100 ml in fasted humans). 

11. MT in vitro = in vivo dose/V * Va 

12. Determine Vo in vitro using β = Va/(Kap Vo). 

13. Determine Fa in vivo using Equation 2.25. 

14. Determine ideal β in vitro using Equation 2.26. 

15. Vo = Va/(10 cLogD 6.5 * β). Select Vo such that Fo, ∞ is within 10% of Fa. 

 

 Results are tabulated in Table 2.7. Valproic acid requires a high AI/Va of 

0.52, which is at the top of the achievable range. An AI/Va as high as about 0.47 

can be achieved with a standard 100-ml vessel and minimum height of 1 cm 

below the impeller. Ibuprofen and Ondansetron require AI/Va values of 0.29 and 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
4 While not investigated by Linnankoski and coworkers, if appearances of these compounds in 
plasma were determined in all or part by gastric emptying, the ka values given may be artificially 
low.   
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0.31, respectively. Values in this range can be achieved with any vessel in the 

range of 100 to 1000-ml. Felodipine requires an AI/Va of 0.62, which cannot be 

conveniently achieved in the two-phase system. Figure 2.7 compares the 

average in vivo absorption profiles using the given ka values with the predicted in 

vitro partitioning profiles using the kp values from Table 2.7 for Ibuprofen, 

Valproic Acid, and Ondansetron. Despite the differences between ka and kp due 

to the constraints of the vessels, the in vitro and in vivo curves match up quite 

well, demonstrating similarities between in vivo absorption and predicted in vitro 

two-phase partitioning profiles of drugs in solution that result when the apparatus 

is scaled using the parameters AI/Va, MT/Va, and Va/(Kap Vo). 

 The purpose of these case studies is to demonstrate how a two-phase 

system can be set-up to be physiologically relevant when conducting an 

experiment using a solid dosage form. When these scaling parameters are 

maintained at physiological values as described above, and a physiological 

aqueous buffer is used, the saturation conditions in the aqueous medium of the 

two-phase system are expected to be similar to saturation conditions in vivo, and 

the in vitro partitioning rate is expected to be similar to the in vivo absorption rate, 

facilitating potential IVIVCs for some drug candidates as described in the next 

section. 

 

Potential drug candidates 
 Two-phase dissolution apparatuses can be useful tools to scientists 

developing solid oral drug formulations. As no one dissolution apparatus 

currently captures the range of physiological conditions affecting dissolution and 

absorption, it is important that the chosen apparatus encompasses the most 

important factors for the particular drug product of interest. If the key 

physiological scaling parameters (AI/Va, MT/Va, and Va/(Kap Vo)) for the two-phase 

system described above are properly designed, and a physiological aqueous 

buffer is used, it is reasonable to expect similar saturation conditions between the 

in vitro aqueous medium and the intestinal lumen and to expect an in vitro 

partitioning rate that is similar to the in vivo absorption rate of a drug substance. 
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However, an IVIVC has the potential to be developed only for drug substances 

for which the Fa is similar to the fraction bioavailable. Thus, for a drug substance 

to be a candidate for the two-phase system it should have a relatively high Fa in 

vivo, should be relatively hydrophobic (i.e. Log Kap at pH 6.5 should be greater 

than about ~0.5-1 so a practical volume of organic medium can be used to 

achieve an extent of in vitro partitioning that is similar to the Fa), and its Fa should 

be similar to its fraction bioavailable (i.e. low first-pass metabolism and gut 

metabolism/degradation). 

 The feasibility of using the two-phase system to predict in vivo 

performance should be verified by properly scaling the apparatus as discussed 

above and performing experiments using solid dosage forms of drugs with 

different physicochemical properties (e.g. acid-base character, particle size, pH-

solubility profile, human jejunal effective permeation rate, dose), using relevant 

aqueous media types (e.g. surfactant level, buffer species, constant or variable 

pH). In each case, solubility and dissolution rate of drug in the chosen buffer 

should be compared with solubility and dissolution rate of drug in the chosen 

buffer saturated with organic medium. Unpublished data from our laboratory 

shows no difference between dissolution rates of Ibuprofen particles in sodium 

acetate buffer (50 mM, pH 4.5, isotonic) and sodium acetate buffer saturated with 

1-octanol. However, the presence of organic medium in buffer containing 

surfactant could have greater effects on solubility and dissolution rate as well as 

on rate and extent of partitioning into the organic medium [37]. Research has 

shown that long-chain alcohols like 1-octanol can form mixed micelles with ionic 

surfactants [38]. Depending on the relative concentrations of the long-chain 

alcohol and surfactant, the alcohol can decrease the critical micelle concentration 

(CMC) of surfactant, increase the ionization of micelles, and change the micellar 

size and structure [38], [39].    

 In addition to the possible impact of surfactants on dosage form 

performance in the two-phase apparatus, integrity of the aqueous-organic 

interface should also be considered. Shi et al. successfully performed two-phase 

experiments at polysorbate 80 concentrations as high as 0.23 mM [11]. We have 
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demonstrated the formation of a clear, distinct aqueous-organic interface using 

Fasted State Simulated Intestinal Fluid and Fed State Simulated Intestinal Fluid 

(Phares FaSSIF and FeSSIF, Muttenz, Switzerland), and 0.7 mM Sodium 

Dodecyl Sulfate (SDS) in a USP II apparatus as 25, 50, and 75 rpm (unpublished 

data). The interface was somewhat obscured at 100 rpm. However, we 

recommend running USP II two-phase experiments at speeds lower than 75 rpm 

to minimize formation of a vortex.  

 Since the two-phase system adds a level of complexity compared to 

single-phase systems it’s also important to outline for which drug substances and 

drug products a two-phase system may lead to improved IVIVCs over a single-

phase system that employs a large aqueous volume (e.g. 900 ml). A two-phase 

system will likely be more useful when dissolution is limited by solubility (i.e. dose 

number is high), which often occurs when solubility is low and dose is moderate-

to-high. In this situation the drug saturation profile in the aqueous medium will 

likely be different in a two-phase system with 100 ml of aqueous buffer and a 

sufficient volume of organic medium to achieve physiologically relevant extent 

and rate of partitioning than it would be in a single-phase system with 900 ml of 

medium. Another case when a two-phase system may provide an improved 

IVIVC over a single-phase system is when the rate of appearance of drug in the 

organic medium is limited at least in part by permeation rate, which can occur for 

drugs with low to moderate average intestinal permeation rates. 

 In general, a two-phase test may be most useful for some BCS II 

compounds (which often have solubility limitations), but may presumably also be 

useful for some BCS IV compounds (which often have solubility and permeation 

rate limitations). As each class contains drugs with a range of properties, it will be 

important to assess the potential applicability of two-phase systems based on 

key drug physicochemical properties such as acid-base character, particle size, 

pH-solubility profile, human jejunal effective permeation rate, and dose. 
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Conclusions 
 
 Two-phase dissolution apparatuses simultaneously capture the processes 

of drug dissolution and partitioning, thereby simulating absorption while 

maintaining a physiological volume of buffer. They have the potential to provide 

meaningful predictions of in vivo performance for some drug products, and can 

therefore be useful tools to industrial and academic scientists for designing and 

developing drug product formulations. 

 While researchers have been exploring the utility of two-phase systems for 

simple and novel oral dosage forms since the 1960s, and have shown improved 

predictive capabilities over conventional methods, no one has elucidated the 

mechanism by which two-phase dissolution apparatuses may facilitate improved 

IVIVCs over conventional single-phase systems, or determined for which drugs 

and dosage forms these apparatuses could be most useful. We performed a 

mechanistic, drug-transport analysis of the partitioning of solutes in solution in an 

in vitro two-phase dissolution apparatus, and demonstrated the ability of our 

model to successfully describe the in vitro partitioning profiles of three BCS II 

weak acids in four different experimental set-ups. In contrast to previous 

kinetically derived mathematical models, our model uses physical input 

parameters that are known or can be estimated a priori. To establish the 

physiological relevance of the test for the drug product of interest, we have 

proposed scaling factors (AI/Va, MT/Va, and Va/(Kap Vo)), the values of which can 

be determined based on molecular descriptors. When these scaling parameters 

are maintained at physiologically relevant values and a physiological aqueous 

buffer is used, the saturation conditions in the aqueous medium of the two-phase 

system are expected to be similar to saturation conditions in vivo, and the in vitro 

partitioning rate is expected to be similar to the in vivo absorption rate. Potential 

IVIVCs between the in vitro partitioning and in vivo absorption profiles may result 

for some drug products that have relatively high fraction absorbed values and low 

extents of hepatic first-pass metabolism and gut degradation/metabolism. While 

this manuscript focuses on an analysis of drugs in solution, these scaling factors 
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can be applied to dissolution of solid dosage forms in two-phase dissolution 

apparatuses, which will be the focus of future work. 

 The two-phase system may be a more physiologically relevant tool than a 

conventional single-phase system for some BCS II, and possibly some BCS IV 

drugs. Although the dissolution-partitioning behavior of a drug dosage form is 

complex and dependent upon drug physicochemical properties, dose, 

permeation rate, dosage form type, and formulation composition, it’s probable 

that two-phase systems may be particularly useful for drug products that 

experience solubility-limited dissolution and/or a permeation rate limitation in 

vivo, or include functional excipients that may affect dissolution and/or absorption 

at physiological concentrations. To help determine the general applicability of the 

two-phase system and provide recommendations for determining for which drugs 

and dosage forms a two-phase dissolution apparatus may be most useful, our 

mass transport analysis could be extended to include simultaneous dissolution 

and partitioning of drug substances from dosage forms, and tested in a two-

phase system using solid dosage forms of drugs with different physicochemical 

properties (such as acid-base character, particle size, pH-solubility profile, 

human jejunal effective permeation rate, and dose) using relevant aqueous 

media types. The in vivo relevance could be ascertained by performing studies in 

dogs or humans (or by using existing in vivo data from the literature) and 

comparing the deconvoluted in vivo absorption profiles with the in vitro organic 

phase partitioning profiles. 
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Tables and Figures 
 

 
Figure 2.1. Schematic diagram of a two-phase dissolution apparatus 
 

 

 
Figure 2.2. Schematic diagram of physical model with key parameters 
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Table 2.1. Properties of the model drugs 
 
Drug Ibuprofen Nimesulide Piroxicam 

BCS Class II II II 

Structure 

 
 

 
 

Molecular weight 

(g/mol) 

206.3 308.3 331.3 

pKa at 37°C 4.4 (acidic)a 6.8 (acidic)b 2.3 (basic)c 

5.3 (acidic)c 

cLog P 3.84d 1.79d 0.60d 

Log D pH 4.5 – 3.4 e 

pH 5.0 – 3.1 e 

pH 6.5 – 1.7 e 

pH 6.8 – 1.4 e 

pH 7.5 – 0.7 e 

pH 1.2: 1.92f  

pH 7.5: -0.10e 

pH 1.2: 0.92f 

pH 7.5: 0.8g 

Intrinsic solubility at 

37°C (M) 

3.3 X 10-4 a 3.8 X 10-5 f 6.6 X 10-5 f 

a Measured value from reference [40] 

b Calculated value from reference [30] 

c Measured value from reference [41] 

d Calculated value from reference [26] 

e Calculated using a pKa of 4.4 and a Log P of 3.8, assuming only non-ionized drug 

partitions into 1-octanol. 

f Measured value from Reference [12] 
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Table 2.2. Experimental details for in vitro partitioning experiments 
(Continued on next page) 
 
Exp./Fig 

No. Apparatus Drug pH Buffer 
Speciesa 

Buffer 
Conc. 

Rotational 
speed Va Vo MT AI

b β MT/Va AI/Va 
No. 
rep.c 

     
mM rpm ml ml mg cm2 

 
mcg/ml cm-1 

 
3/3(a) 1 Ibuprofen 1.5 HCl 10 77 150 150 2.5 63.6 1.58 X 10-

4 16.7 0.42 2 

4/3(b) 1 Ibuprofen 4.3 Sodium 
Acetate 50 77 150 150 2.5 63.6 3.17 X 10-

4 16.7 0.42 2 

5/3(c) 1 Ibuprofen 4.4 Sodium 
Acetate 50 77 150 150 2.5 63.6 2.84 X 10-

4 16.7 0.42 2 

6/3(d) 1 Ibuprofen 6.3 Sodium 
Phosphate 43 77 150 150 2.5 63.6 1.28 X 10-

2 16.7 0.42 2 

7/4(a) 2 Ibuprofen 5 Sodium 
acetate 50 75 250 200 6.25 75.4 9.87 X 10-

4 25 0.3 3 

8/4(b) 2 Ibuprofen 6.8 Sodium 
phosphate 50 75 250 200 12.5 75.4 5.00 X 10-

2 50 0.3 3 

9/4(c) 2 Ibuprofen 6.8 Sodium 
phosphate 50 75 250 200 6.25 75.4 5.00 X 10-

2 25 0.3 3 

10/4(d) 2 Ibuprofen 6.8 Sodium 
phosphate 50 40 250 200 6.25 75.4 5.00 X 10-

2 25 0.3 3 

11/4(e) 2 Ibuprofen 7.5 Sodium 
phosphate 50 75 250 200 6.25 75.4 0.144 25 0.3 3 

12/4(f) 2 Ibuprofen 7.5 Sodium 
phosphate 50 40 250 200 6.25 75.4 0.144 25 0.3 3 

13/4(g) 3 Ibuprofen 4.5 Sodium 
Acetate 50 50 250 250 4 80.1 3.58 X 10-

4 16 0.32 3 
a Buffers used in experiments 3-13 were made isotonic with bodily fluids. 
b AI in experiments conducted at 75 rpm in Apparatus 2 may have been as much as 4% higher than reported due to a slight vortex observed during 
mixing. 
c Number of replicates performed per experimental condition. 
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Table 2.2. (Cont’d) 
Exp./Fig 

No. Apparatus Drug pH Buffer 
Speciesa 

Buffer 
Conc. 

Rotational 
speed Va Vo MT AI

b β MT/Va AI/Va 
No. 
rep.c 

     mM rpm ml ml mg cm2  mcg/ml cm-1  

14/5(a) 2 Piroxicam 1.2 HCl 0.06 75 250 200 15 75.4 0.149 60 0.3 3 

15/5(b) 2 Piroxicam 1.2 HCl 0.06 75 250 200 5 75.4 0.149 20 0.3 3 

16/5(c) 2 Piroxicam 1.2 HCl 0.06 75 250 200 3.75 75.4 0.149 15 0.3 3 

17/5(d) 2 Piroxicam 7.5 Sodium 
phosphate 50 40 250 200 5 75.4 2.53 20 0.3 3 

18/5(e) 2 Piroxicam 7.5 Sodium 
phosphate 50 75 250 200 5 75.4 2.53 20 0.3 3 

19/5(f) 2 Piroxicam 7.5 Sodium 
phosphate 50 75 250 200 15 75.4 2.53 60 0.3 3 

20/5(g) 2 Nimesulide 7.5 Sodium 
phosphate 50 75 250 200 12.25 75.4 8.99 X 10-

2 49 0.3 3 

a Buffers used in experiments 3-13 were made isotonic with bodily fluids. 
b AI in experiments conducted at 75 rpm in Apparatus 2 may have been as much as 4% higher than reported due to a slight vortex observed during 
mixing. 
c Number of replicates performed per experimental condition. 
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Figure 2.3. In vitro fraction of dose as a function of time for Ibuprofen in Apparatus 1 (experiments 3-6 in 
plots (a)-(d), respectively, see also Table 2.3.  
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Figure 2.4. In vitro fraction of dose as a function of time for Ibuprofen in 
Apparatus 2 and 3 (experiments 7-13 in plots (a)-(g), respectively, see also 
Table 2.3.   
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Figure 2.5. In vitro fraction of dose as a function of time for Piroxicam and 
Nimesulide in Apparatus 2 (experiments 14-20 in plots (a)-(g), respectively, 
see also Table 2.3. 
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Figure 2.6. In vitro fraction of dose as a function of time for Piroxicam and Nimesulide in Grassi et al’s 
experiments (experiments 21-24 in plots (a)-(d), respectively, see also Table 2.3)  

Mudie, D.M. Figure 6

0 1 2 3 4 5 6 7 80

0.2

0.4

0.6

0.8

1

Time, min

Fr
ac

tio
n 

of
 d

os
e

(a)

 

 
Model, buffer
Experiment, buffer

0 10 20 30 40 50 60 70 800

0.2

0.4

0.6

0.8

1

Time, min

Fr
ac

tio
n 

of
 d

os
e

(b)

 

 

Model, buffer
Experiment, buffer

0 10 20 30 40 50 60 70 800

0.2

0.4

0.6

0.8

1

Time, min

Fr
ac

tio
n 

of
 d

os
e

(c)

 

 
Model, buffer
Experiment, buffer

0 10 20 30 40 50 60 70 800

0.2

0.4

0.6

0.8

1

Time, min

Fr
ac

tio
n 

of
 d

os
e

(d)

 

 
Model, buffer
Experiment, buffer



	
   88	
  

Table 2.3. Best fit PI and estimated ha values from in vitro partitioning experiments 
Exp./Fig 

No. 
Drug Apparatus pH 

Rotational 

speed 
A/Va β MT/Va Fo, inf Kap/(9.2+Kap) PI X 104 (95% CI) ha, full (95% CI) 

    
rpm cm-1 

 
mcg/ml 

  
cm/s X 104 mcm 

3/3(a) Ibuprofen 1 1.5 77 0.42 1.58 X 10-4 16.7 1.00 1.00 23.71 (22.16 - 25.41) 32 (29 - 34) 

4/3(b) Ibuprofen 1 4.3 77 0.42 2.84 X 10-4 16.7 1.00 1.00 30.06 (29.45 - 30.68) 25 (24 - 25) 

5/3(c) Ibuprofen 1 4.4 77 0.42 3.17 X 10-4 16.7 1.00 1.00 37.52 (30.30 - 47.73) 20 (16 - 25) 

6/3(d) Ibuprofen 1 6.3 77 0.42 1.28 X 10-2 16.7 0.99 0.89 30.81 (28.79 - 33.03) 22 (20 - 23) 

7/4(a) Ibuprofen 2 5.0 75 0.30 9.87 X 10-4 25.0 1.00 0.99 19.08 (18.13 - 20.10) 39 (37 - 41) 

8/4(b) Ibuprofen 2 6.8 75 0.30 5.00 X 10-2 50.0 0.95 0.73 28.73 (24.64 - 33.73) 19 (16 - 22) 

9/4(c) Ibuprofen 2 6.8 75 0.30 5.0 X 10-2 25.0 0.95 0.73 26.85 (26.09 - 27.63) 20 (20 - 21) 

10/4(d) Ibuprofen 2 6.8 40 0.30 5.00 X 10-2 25.0 0.95 0.73 10.92 (10.69 - 11.17) 50 (49 - 51) 

11/4(e) Ibuprofen 2 7.5 75 0.30 1.44 X 10-1 25.0 0.87 0.49 23.01 (20.07 - 26.59) 16 (14 - 18) 

12/4(f) Ibuprofen 2 7.5 40 0.30 1.44 X 10-1 25.0 0.87 0.49 9.03 (8.38 - 9.70) 40 (38 - 43) 

13/4(g) Ibuprofen 3 4.5 50 0.32 3.58 X 10-4 16.0 1.00 1.00 28.72 (25.45 - 32.65) 26 (23 - 29) 

14/5(a) Piroxicam 2 1.2 75 0.30 1.49 X 10-1 15.0 0.87 0.48 20.85 (16.47 - 26.73) 15 (12 - 19) 

15/5(b) Piroxicam 2 1.2 75 0.30 1.49 X 10-1 20.0 0.87 0.48 17.06 (16.77 - 17.36) 19 (18 - 19) 

16/5(c) Piroxicam 2 1.2 75 0.30 1.49 X 10-1 60.0 0.87 0.48 28.04 (24.65 - 32.12) 11 (10 - 13) 

17/5(d) Piroxicam 2 7.5 40 0.30 2.53 20.0 0.28 0.05 1.64 (1.48 - 1.80) 21 (19 - 23) 

18/5(e) Piroxicam 2 7.5 75 0.30 2.53 20.0 0.28 0.05 6.15 (5.87 – 6.44) 6 (5 - 6) 

19/5(f) Piroxicam 2 7.5 75 0.30 2.53 60.0 0.28 0.05 1.78 (1.75 - 1.81) 19 (19 - 20) 

20/5(g) Nimesulide 2 7.5 75 0.30 8.99 X 10-2 49.0 0.92 0.60 10.71 (9.80 - 11.71) 39 (36 - 43) 

21/6(a) Piroxicam Grassi 1.2 unknown 0.23 0.357 15.2 0.74 0.48 265.4 (257.7 - 273.5) 12 (12 - 12) 

22/6(b) Piroxicam Grassi 7.5 unknown 0.23 6.07 21.8 0.14 0.05 3.41 (3.35 - 3.46) 10 (10 - 10) 

23/6(c) Nimesulide Grassi 1.2 unknown 0.23 3.59 X 10-2 8.5 0.97 0.90 22.98 (22.71 - 23.25) 27 (27 - 28) 

24/6(d) Nimesulide Grassi 7.5 unknown 0.23 2.16 X 10-1 45.0 0.82 0.60 11.80 (11.60 - 12.01) 36 (35 - 36) 
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Table 2.4. Calculated length, surface area, and surface-area-to-volume 
ratio, AI/Va, of a cylinder as a function of percent compression assuming a 
constant perimeter 
 

% 

compression 

aa 

(cm) 

bb (cm) Lengthc 

(cm) 

Surface aread (cm2) AI/Va
e (cm-1) 

95 0.1 2.8 112.6 1415.1 14.15 

90 0.2 2.8 56.4 708.9 7.09 

70 0.6 2.8 19.2 241.2 2.41 

60 0.8 2.7 14.7 184.3 1.84 

50 1.0 2.6 12.0 151.2 1.51 

30 1.4 2.5 9.3 116.3 1.16 

0 2.0 2.0 8.0 100.0 1.00 
a Equal to average radius, r (equal to 2 cm), times (100% - % compression)/100% 
b Equal to sqrt(r2/0.5 - a2). Uses approximate formula for the perimeter of an ellipse 

and sets it equal to the perimeter of a circle with a radius of 2 (2pi*r = p = 

2pi*(a2+b2)/2) 
c Equal to 100 cm3/a/b. 
d Equal to 2*pi*r*length. 
e Equal to surface area/100 cm3. 

 

 

Table 2.5. Minimum and maximum AI/Va values for 100 and 1000 ml 
hemispherical in vitro dissolution vessels 
 

Capacity Diameter Minimum 

aqueous 

volumea 

Maximum 

aqueous 

volumeb  

Minimum 

AI/Va
c 

Maximum 

AI/Va
c 

ml cm ml ml cm-1 cm-1 

100 4 27 50 0.25 0.47 

1000 (USP II) 10 288 500 0.16 0.26 
a Value gives minimum volume needed to achieve an aqueous liquid height high enough to allow for 

1 cm below the bottom of the impeller for the 100 ml vessel (impeller is 0.8 cm tall)  and 2.5 cm 

below the bottom of the 2 cm high impeller for the 1000 ml vessel (impeller is 2 cm tall) as well as 1 

cm above the impeller for both vessels. Values calculated assuming a perfect hemispherical bottom. 
b Value is half of the nominal capacity of the vessel, which assumes a 1:1 ratio of aqueous to organic 

medium. 
c Minimum AI/Va is the aqueous-organic surface area divided by the maximum aqueous volume and 

maximum AI/Va is the aqueous-organic surface area divided by the minimum aqueous volume. 
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Table 2.6. Estimated ranges of the average absorption rate coefficient in 
vivo (ka) and the average partitioning rate coefficient in vitro (kp) for BCS II 
compounds 
Values based on ranges for surface area to volume ratio in vivo (A/V) and in vitro (AI/Va), and 
average permeation rate in vivo (Peff) and in vitro (PI). 
 

A/Va Peff X 104 b ka X 104 c AI/Va
d PI X 104

e kp X 104 f 

cm-1 cm/s s-1 cm-1 cm/s s-1 

2 1 to 14 2 to 28 0.16 to 0.47 0.01 to 100 0.01 to 50 

(1 to 7)  (1 to 100)    
aEstimated based on an A/V of 2 and plausible percent compression based on Table 

2.2 
bApproximate range for measured human jejunal effective permeation rate for BCS II 

compounds from reference [32] 
cCalculated – equal to A/V * Peff X 104 

dRange from Table 1 assuming standard USP guidelines for impeller positioning.  
eEstimated using equation 28 assuming ha from 10 to 50 mcm and Da from 10-5 to 

10-7. 
f cCalculated – equal to AI/Va* PI X 104 
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Table 2.7. Desired and achievable in vitro two-phase parameters to make dissolution test physiological for 
Valproic acid, Ondansetron, Ibuprofen, and Felodipine based on in vivo properties and performance 
Continued on next page. 

  in vivo properties/performance in vitro drug properties 
Drug name FA

1 ka
1 

X 104 
Dose2 V3 Dose/V clogD 6.54 Da

5 

X 106 
PI

6 

X 104 

  actual  decon. theo. est. est. calc. est. est. 

    s-1 mg ml mg/ml - cm2/s cm/s 
Valproic acid (BCS II) 1 11.0 250 100 2.5 1.43 8.87 22.0 
Ondansetron (BCS I or III) 1 5.25 8 100 0.08 1.65 6.63 18.4 
Ibuprofen (BCS II) 1 7.42 200 100 2.00 2.19 7.50 23.6 
Felodipine (BCS II) 1 12.5 5 100 0.05 3.41 6.10 20.3 
1 From reference [36] 
2 Arbitrarily chose one of the marketed oral unit doses 
3 Average human fasted intestinal volume. 
4 Determined using reference [26] 
5 Estimated using Hayduk-Laudie (H-L) method. 
6Estimated using Equation 10 assuming ha = ho = 30 mcm. 
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Table 2.7 (Cont’d) 
  desired in vitro parameters achievable in vitro parameters 

Drug name kp
7 

X 
104 

AI/Va
8 

Fo, inf
9 MT/Va

10 Vessel 
capacit

y 

depth 
below 

impeller11 

Vessel 
AI/Va

12 
Va

13 kp
14 

X 104 
Vo

15 Va/(Kap 
Vo) 

Dose16 

  bas
ed 
on 
ka 

est.  based 
on 

dose/V 

 based on 
USP 

standard 

 req. est. req.  req. 

  s-1 cm-1 - mg/ml ml cm cm-1 ml s-1 ml - mg 
Valproic acid (BCS II) 10.0 0.52 0.974 2.5 100 1 0.47 27 10.2 70 0.027 125 
Ondansetron (BCS I) 5.25 0.29 0.985 0.08 1000 2.5 0.26 301 4.77 449 0.015 24 
Ibuprofen (BCS II) 7.42 0.31 0.985 2.00 1000 2.5 0.26 301 6.14 130 0.015 602 
Felodipine (BCS II) 12.5 0.62 0.985 0.05 impossible unless depth below impeller decreased & smaller vessel used 
7 Equal to ka 
8 Calculated using Equation 24 
9 Value should ideally be equal or close to FA in vivo. 0.97 chosen for Valproic acid based on height constraints of the standard 100-ml 
vessel. 0.99 chosen for other compounds since it was easily achievable, but a smaller value would require less 1-octanol. 
10 Equal to Dose/V 
11 The standard set-up for distance from bottom of vessel to bottom of impeller is 2.5 cm for the 1000-ml USP 2 vessel. 1 cm chosen for 
100-ml vessel, which should accommodate a tablet or capsule.. 
12 From Table 2.1. Value set by apparatus geometry and minimum or maximum pratical volume of media. 
13 Volume required to achieve AI/Va. 
14 Equal to estimated PI times the actual AI/Va. 
15 Volume required to achieve desired Fo,inf based on cLogD 6.5 and Va. 
16 Equal to MT/Va * Va.since it was easily achievable, although a smaller value would require less 1-octanol and may be desirable. 
10 Equal to Dose/V 
11 The standard set-up for distance from bottom of vessel to bottom of impeller is 2.5 cm for the 1000-ml USP 2 vessel. 1 cm chosen for 
100-ml vessel, which should accommodate a tablet or capsule. 
12 From Table 2.1. Value set by apparatus geometry and minimum or maximum practical volume of medium. 
13 Volume required to achieve AI/Va. 
14 Equal to estimated PI times the actual AI/Va. 
15 Volume required to achieve desired Fo,inf based on cLogD 6.5 and Va. 
16 Equal to MT/Va * Va. 
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Figure 2.7. Comparison of fraction absorbed in vivo (in humans) and estimated fraction partitioned in 1-
octanol in vitro in a 1000-ml USP 2 vessel for Ibuprofen, Ondansetron, and Valproic acid using the 
simplified model 
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Chapter 3 
 

Dissolution of spherical particles of ionizable weak 
acids into low buffer capacity buffers 

 

Abstract 
 

In vitro and in silico methods for predicting in vivo dissolution rates are 

often carried out under high buffer capacity and low drug saturation conditions. 

However, a review of the literature suggests low buffer capacities in the fasted 

human and canine gastrointestinal fluids. Depending upon properties such as the 

administered dose and intestinal permeation rate, concentration of an ionizable, 

acidic drug in a low buffer capacity fluid may be high enough to decrease fluid 

pH, which in turn can decrease dissolution rate. A mechanistic transport model 

was developed to understand the rate and extent of dissolution of spherical 

particles of a weak acid dissolving in low buffer capacity buffers under moderate-

to-high drug saturation conditions, taking into account changes in pH at the 

particle surface and in the bulk dissolution medium. Convective diffusion with 

instantaneous chemical reaction was assumed to occur radially across a 

hydrodynamic boundary layer adjacent to the particle surface.  

Experiments in a USP 2 apparatus were conducted using two different 

particle sizes and three different doses of the BCS 2 weak acid, Ibuprofen, under 

a physiological range of pH and buffer concentration. The transport model 

successfully predicted percent of dose dissolved and change in bulk pH as a 

function of time for all conditions tested, using both the Hintz and Johnson 

approach (with a critical particle radius of twenty micrometers) and a fluid 

dynamics theory approach of estimating the relationship between effective 

boundary layer thickness and particle radius. Dissolution rate of Ibuprofen was
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influenced by both drug properties (particle size and dose) as well as fluid 

properties (pH and buffer concentration), underscoring the importance of 

evaluating dissolution of a weak acid using physiological buffer systems.  

Success of the mechanistic transport model in predicting dissolution rate 

of Ibuprofen in a USP 2 apparatus in vitro lends credibility to its use in predicting 

dissolution rate of a number of different weak acids with a range of drug 

properties (e.g. intrinsic solubility, pKa, particle size and dose), dissolving in a 

range of different physiological buffer conditions (e.g. concentration, pH and 

species) in physiological dissolution apparatuses. Factors such as deviation of 

particle shape from sphericity, and the relationship between effective boundary 

layer thickness and particle radius under different hydrodynamic conditions 

should be investigated. 

 

Introduction 
 

Numerous approaches describing dissolution rate of solid particles exist in 

the literature, many of which are derived from the Nernst-Brunner model, which 

assumes a hydrodynamic boundary layer adjacent to the surface of the drug 

particle across which the dissolved drug must diffuse before reaching the bulk 

solution. These models differ in terms of assumptions, including those regarding 

the effective boundary layer thickness relative to the radius of the dissolving 

particle, and whether or not they are applicable for dissolution in buffered versus 

non-buffered medium [1], [2]. 

Stella and coworkers derived a model describing dissolution of an 

ionizable weak acid into a high buffer capacity buffer under low percent drug 

saturation conditions in a rotating disk apparatus (planar surface) [3]. Later, 

Ozturk and coworkers refined this approach by converting the equations to 

spherical coordinates and modifying the boundary conditions to allow for an 

analytical solution of the differential equations governing the underlying 

processes of diffusion and chemical reaction [4]. However, both transport 

analyses assume that the buffer capacity is high enough such that the pH values 
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and relative concentrations of buffer species at the surface of the particle and in 

the bulk solution are constant as a function of time. This approach is sufficient for 

calculating dissolution rates using high buffer capacities under so called “sink-

conditions”, for which concentration of drug in solution at the surface of the 

particle is much larger than the concentration of drug dissolved in the bulk 

solution. However, this approach is not accurate in cases where a large dose of 

an acidic drug is dissolving into a buffer with a low buffer capacity. In these 

cases, as the drug dissolves and diffuses into the bulk solution, the pH in the bulk 

and at the particle surface decrease, decreasing the driving-force for dissolution 

to a greater extent than would be predicted if bulk and surface pH were assumed 

to be constant with time. 

The current analysis presents a method for calculating the dissolution rate 

and extent of dissolution of polydisperse spherical drug particles of a weak acid 

dissolving into a low capacity buffer, using physical parameters that are defined 

by the experimental set-up or can be measured or estimated a priori. The 

effectiveness of the method to predict results in vitro is shown experimentally in a 

USP 2 apparatus using the BCS 2 model compound Ibuprofen under a range of 

buffer concentrations, pH values and doses. With careful consideration, this 

method can be used to predict the rate and extent of dissolution in a number of in 

vitro dissolution apparatuses and can be extended to predictions of dissolution 

rate in the gastrointestinal tract in vivo, for which buffer capacity is expected to be 

low. 

  

Materials and Methods 
 

Mechanistic transport model 
 The kinetics of dissolution of solid drug particles into buffered medium is 

described using the theory of mass transfer with chemical reaction. For ionizable 

drugs in buffered solutions, pH at the drug particle is not necessarily equal to the 

bulk pH. The pH at the particle surface is a function of the relative concentrations 

and pKa values of the drug and buffer species at the surface of the particle. Stella 
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and coworkers derived a method to estimate pH at the surface of a dissolving 

solid ionizable drug in a buffered solution in a rotating disk apparatus (planar 

surface) [3]. In the present analysis the method of Ozturk and coworkers was 

used to determine the pH and flux of drug at the surface of spherical drug 

particles [4]. Simplifying assumptions include the following. 

 

1. Particles approximate spheres 

2. Net flux of drug occurs in the radial direction across a hydrodynamically 

controlled boundary layer around each solid particle 

3. Chemical reactions are instantaneous and reversible 

4. Instantaneous concentration profile across each boundary layer resembles a 

steady state (pseudo-steady-state approximation) 

5. Bulk aqueous medium behaves as ideal solution, and is well mixed with no 

concentration gradients 

6. Solid/liquid interface at particle surface is open only to non-ionized drug 

7. Relatively little water infiltration into the solid drug occurs 

8. Diffusion coefficients in the aqueous medium are not concentration 

dependent 

Flux of non-ionized drug from the solid spherical particle surface, JHA, is given 

in Equation 3.1, where DHA is the diffusion coefficient of non-ionized drug, heff is 

the effective boundary layer thickness around the solid particle, and r is the 

radius of the solid drug particle. The “dynamic total concentration of drug,” at the 

particle surface, [HA]T,s, and in the bulk, [HA]T,b, are defined in Equations 3.2 and 
3.3, respectively, where γHA is equal to DA/DHA [4]. In the present analysis DA- and 

DHA are assumed to be equal, so [HA]T is simply the sum of the concentrations of 

non-ionized and ionized drug species. For this analysis, [HA]T,s will be referred to 

as Cs, and [HA]T,b will be referred to as Cb. Equation 3.4 describes the 

dissolution flux in terms of the mass transfer coefficient, kd, where kd = DHA/h (1 + 

heff/r) and assumes γHA is equal to one. 

 
(3.1) JHA = DHA/heff (1 + heff/r) ([HA]T,s – [HA]T,b) 
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(3.2) [HA]T,s =  [HA]s + γHA[A-]s 

 

(3.3) [HA]T,b =  [HA]b + γHA[A-]b 

 

(3.4) JHA = kd (Cb – Cs) 

 

The dissolution rate, dMd/dt, is a product of the dissolution flux and the 

surface area, A, of the drug particles, and is given in Equations 3.5-3.10, where 

MT is the dose, ρp is the true particle density, N is the total number of drug 

particles, and Vp,o is the initial volume of a single drug particle, Mp,t is the mass of 

a single particle, and Mu,t is the total mass of non-dissolved drug [1]. As 

designated by the subscript “t”, the values of many of the variables can change 

with time as the particles dissolve, including the surface area between the solid 

drug particles and the buffered medium, A,t, the effective boundary layer 

thickness, heff,t, the particle radius, r,t, and the concentrations of drug in solution 

at the particle surface and in the bulk medium, Cs,t and Cb,t, respectively.  

 

(3.5) dMd,t/dt = A,t JHA,t = 4π r,t 2 N DHA/ heff,t (1 + heff,t /r,t ) (Cs,t – Cb,t) 

 

(3.6) A,t = 4π r,t 2 N 

 

(3.7) N = MT / (Vp,o ρp) 

 

(3.8) Vp,o = 4/3 π r,o
3 

 

(3.9) Mp,t = Mu,t/N 

 

(3.10) r,t = (3 Mp,t / (ρp 4 π) )1/3 

 



	
  

	
   103	
  

Ozturk and coworkers give an equation for calculating the pH at the 

surface of a drug particle dissolving in a diprotic buffer. The equation is a function 

of the diffusion coefficients of drug and buffer species in solution (DHA, DA, DHB, 

DB, DOH, DH), concentrations of drug and buffer species in solution, and ionization 

rate constants (KA, KA,B, Kw) (not reproduced here)1. This equation is used in the 

current analysis to determine particle surface pH, pHs. In the analyses by Ozturk 

and coworkers and Mooney and coworkers pHs and therefore Cs is assumed to 

be constant as a function of time. This assumption holds in their analyses 

because the buffer capacity of the buffer is assumed to be high enough to 

maintain a constant bulk pH, pHb, and Cb is assumed to be a lot lower than Cs, 

such that so called “sink conditions” hold, and Cb is assumed to be equal to zero. 

Therefore, the relative concentrations of buffer species in the bulk and at the 

surface of the particle are constant as the particle dissolves. An improvement of 

the current analysis over those of Ozturk and coworkers or Mooney and 

coworkers is that pHs, pHb, Cs,t and Cb,t are not assumed to be constant as a 

function of time. Instead, proton balance equations are written to determine the 

relative concentrations of drug and buffer species, and corresponding pH values 

in the bulk and at the surface as a function of time as the drug dissolves and 

diffuses into the bulk solution [5]. 

The approach of Hintz and Johnson was used to determine the value of 

heff as a function of time [6]. With this method it is assumed that heff,t is equal to 

the critical particle radius, hc, when particle radius, r,t, is greater than or equal to 

hc, but equal to r,t when r,t is less than hc, as written out in Equation 3.11. Another 

method for determining heff,t based on Fluid Dynamics (FD) Theory is discussed 

later and compared with the Hintz and Johnson approach. 

 

(3.11) heff,t = hc when r,t ≥ hc & heff,t = r,t when r,t < hc 

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1	
  Omission of a negative sign in the equation for θ (used in surface pH calculation) was 
noted and corrected. The correct equation is θ = cos-1 (R/√-Q3) 
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The dissolution rate and change in the variables discussed above can be 

calculated using an iterative process, which can be expedited by writing a script 

in a program such as MATLAB®. The following steps can be conducted and 

quantities can be determined over small time increments (such as 1 s). 

 

For time = 0 s (before drug begins dissolving) 

1. Let r,t = ro and calculate heff,t (Equation 3.11) 

2. Calculate N based on MT and ro (Equation 3.7) 

3. Calculate pHb and concentrations of buffer species in the bulk solution (before 

drug is added) using proton balance equations 

For time > 0s 

4. Calculate pHs and Cs,t at the surface of the drug particles 

5. Calculate mass dissolved (Equation 3.5) and Δt = 1s (Let Cb,t equal 0 for the  

first iteration) 

6. Calculate the new particle mass, Mp,t, and radius, r,t (Equations 3.9 and 3.10) 

7. Calculate the new value of heff,t using r,t and hc 

8. Calculate bulk pH and bulk concentrations of buffer species using proton 

balance equations 

9. Repeat steps 4 through 8 until (Cs,t – Cb,t) = 0 or r,t = 0 

 

Drug and buffer properties 
 Ibuprofen was chosen as the model compound for this study. It is a non-

steroidal anti-inflammatory drug (NSAID) widely used for the treatment of mild to 

moderate pain. It is characterized as a Biopharmaceutics Classification System 

(BCS) 2 weak acid [7]. Shaw and coworkers as well as Levis and coworkers 

reported an intrinsic solubility of about 0.067 mg/ml and apparent pKa of about 

4.4 at 37 °C. Ibuprofen is mostly unionized and thus has a low solubility at low 

pH, but is 98-99.9% ionized under typical fasted intestinal (pH range of about 6-

7.5) with an expected 50-1,000-fold increase in solubility. Additional Ibuprofen 

properties of aqueous diffusion coefficient and true density were calculated using 
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established methods or taken from the results of measurements reported in the 

literature and are included in Table 3.1. 

 Sodium phosphate was chosen as the buffer for the in vitro experiments. 

Within the pH range tested, phosphate buffer can be considered monoprotic, and 

the ionization reaction between dihydrogen phosphate and hydrogen phosphate 

can be considered instantaneous, which is an assumption used in the current 

transport analysis. Phosphate buffer is used extensively in dissolution testing 

because of its ease of preparation, lack of appreciable absorption in the UV 

spectrum making UV analysis of the drug substance straightforward, and 

because it has a pKa within the physiological range, giving it a potentially high 

buffer capacity at reasonable buffer concentrations (e.g. 50 mM). Buffer 

properties relevant to the dissolution analysis include the aqueous diffusion 

coefficients of the hydrogen phosphate ion, dihydrogen phosphate ion, hydroxide 

ion and hydronium ion, as well as the pKa of the dissociation of dihydrogen 

phosphate to hydrogen phosphate. These values were taken from the literature 

and included in Table 3.1 [8]. The initial buffer capacity (in absence of drug 

species) for each experiment was calculated using Equation 3.12. 
 

(3.12) β = 2.3 ([BH]+[B]) (Ka,b [H30+])/(Ka,b + [H30+])2 

 
Materials 
 The free acid form of Ibuprofen drug powder was purchased commercially. 

All additional chemicals were of analytical grade or purer and were purchased 

commercially. 

 
Preparation of sieve cuts & particle size analysis 

To obtain the desired particle size of Ibuprofen, bulk Ibuprofen was 

blended with 0.5% colloidal silicon dioxide in a V-blender to facilitate flowability of 

Ibuprofen through and recovery from the mesh screens. 10 g of the blend was 

added to the top of a stack of 3-inch diameter screens with a range of mesh sizes 

that were then placed in an ATM Sonic Sifter and pulsed for at least 5-minute 
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increments at a pulse amplitude of 8. The percentage of drug on each screen 

was determined after each pulsing increment and the sieves were again placed 

in the sonic sifter and pulsed for again until the percentage change of mass of 

drug recovered on each sieve was no more than 5%. The sieve cuts from the 63-

75 and 212-250 mesh screens were selected for use in the dissolution 

experiments. 

 The particle size distributions of the 63-75 and 212-250 mesh sieve cuts of 

Ibuprofen were determined using microscopy. Particles were visualized using a 

Nikon OPTI-PHOT – POL optical microscope with SPOT Insight color camera 

model 3.2.0 and SPOT 5.1 Advanced Imaging software (SPOT Imaging 

Solutions, Sterling Heights, MI). The widths, lengths and thicknesses of about 10-

15 particles from each sieve cut were determined and a mean thickness-to-width 

ratio was calculated for each sieve cut. The maximum lengths and widths of 

about 300 randomly selected particles from each sieve cut were then 

determined. The mean thickness-to-width ratio determined using the 10-15 

particles was used to estimate the thicknesses of the ~300 particles for which 

width and length values were determined. The volume of each particle, Vp, was 

calculated by calculating the product of the length, width and thickness. The 

equivalent spherical diameter, ESD, of each particle was calculated using 

Equation 3.13. The mass of each particle was determined by multiplying the true 

density (1.1 g/cm3 [9]) by Vp. The D50 (median) and D90 ESD by mass were 

determined by finding the ESD of the particles with a mass at the 50th and 90th 

percentiles, respectively, of the total mass of the ~300 particles. The value of 

D90/D50 for each sieve cut was calculated as a means of assessing the breadth 

of the size distributions. 

 

(3.13) ESD = (3/2 Vp π)⅓ 

 
In Vitro dissolution experiments 
 In vitro dissolution experiments were performed to test the validity of the 

model. All experiments were performed in a 1-L USP jacketed dissolution vessel 
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with a hemispherical bottom (10.1 cm diameter) using a standard USP 2 paddle 

(7.5 cm diameter). The bottom of the paddle was positioned approximately 2 mm 

from the bottom of the vessel. All experiments were conducted in 200 ml of buffer 

stirred at 50 rpm and heated to 37.0 ± 0.2 °C using an external water bath. 

Phosphate buffers of the appropriate pH and concentration were prepared using 

appropriate amounts of sodium phosphate monobasic monohydrate and sodium 

hydroxide. The required amount of sodium chloride was added to each buffer to 

reach a calculated ionic strength of 0.154 ± 0.005 M. Final pH at 37 °C as 

measured using an Accumet ResearchTM AR60 pH meter and pH probe 

(ThermoFisher Scientific, Inc., Waltham, MA) was adjusted to the desired value 

with 1 N HCl or 2 N NaOH. The buffer solution was then deaerated under 

vacuum for 30-60 minutes. The experimental conditions of initial buffer pH, buffer 

concentration, initial buffer capacity, Ibuprofen particle size and dose are 

specified in Table 3.2. Buffer pH chosen was in the range of typical values in the 

upper small intestine of humans and dogs in the fasted state (Chapter 1 and 4), 

and buffer concentration was chosen in the range of values documented in the 

fasted state (10 mM) to those typically used in conventional dissolution studies 

(50 mM) (Chapter 1). Each condition was performed in duplicate. 

 For each experiment 200 ml of buffer was added to the dissolution vessel 

and stirred for 20-30 minutes. Actual buffer temperature was measured with a 

thermometer to ensure the buffer had reached 37.0 ± 0.2 °C. Next, the desired 

mass of drug particles was added directly to the dissolution vessel. Ultraviolet 

(UV) absorbance of Ibuprofen in solution was measured using a StellarNet 

BLACK-Comet concave grating spectrometer with SL5 light source and 300-

micron transmission dip probe with a 10-mm pathlength tip (StellarNet Inc., 

Tampa, FL) at a wavelength of 272 nm at regular time intervals. Absorbance 

values were correlated to concentration of Ibuprofen in solution using a standard 

curve developed using solutions with known Ibuprofen concentrations. The bulk 

pH of the solution was also recorded at regular intervals. Each experiment was 

concluded once one hundred percent of the dose had dissolved. 

 



	
  

	
   108	
  

Data analysis 
 Predictions of percent of the dose dissolved versus time as well as bulk 

pH versus time for each experimental condition were made using the theoretical 

dissolution analysis using the parameters specified in Table 3.1, along with 

values for initial median particle radius, dose, bulk pH and total buffer 

concentration provided in Table 3.2. Each parameter remained fixed expect for 

hc. Theoretical percent of dose dissolved versus time and bulk pH versus time 

were compared with experimental results for each condition. The value of hc that 

appeared to describe the experimental data best for all of the combined 

experimental conditions was selected as the best fit value describing the 

hydrodynamic conditions in the in vitro dissolution vessel. 

 

Results 
 

Particle size distributions 
 The particle size distributions of the two different particle size sieve cuts of 

Ibuprofen are shown in Figure 3.1 and particle characteristics of the two sieve 

cuts are shown in Table 3.3. The median particle diameters of the small and 

large particle size sieve cuts were 87 µm, and 330 µm, respectively. Particles 

were lath shaped, and particle size distributions were very narrow as suggested 

by the D90/D50 values of 1.2 for both sieve cuts. 

 

In vitro experiments and transport model predictions 
 Results of the in vitro experiments together with predictions from the 

transport analysis are shown in Figures 3.2-3.5. The value of hc that best 

described the change in effective boundary layer thickness for all of the 

experiments was 20 µm. Experimental values for average time to reach twenty-

five percent dissolved, t25%, fifty percent dissolved, t50% and seventy-five percent 

dissolved, t75%, for each experimental condition are included in Table 3.4. 

Theoretical values for change in pH at the particle surface, change in pH in the 

bulk medium, percent drug saturation in the bulk medium and initial dissolution 
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rate are included in Table 3.5. Buffer component concentrations and properties 

are included in Table 3.6. 

 

Discussion 
 

In vitro experiments and transport model predictions 
 The transport model described the experimental data well, particularly for 

the first 75-90% of the dose dissolved. For the experiment conducted with 100 

mg of the 87-µm median diameter particles dissolving in pH 6, 20 mM phosphate, 

dissolution rate was over-predicted by the model for about the last 25% of the 

dose. However, for all other experiments, dissolution rate was predicted well for 

at least the first 90% of the dose dissolved. Deviation from experimental values 

near the end of the dissolution process could be explained by possible particle 

agglomeration, leading to a decreased total surface area for dissolution. 

Evaluating the transport model assuming a polydisperse particle size distribution, 

with each sieve cut described using five particle size bins, had a negligible effect 

on the predictions, and did not explain the slower dissolution rate of particles 

toward the end of the experiments. Deviations of predictions from experimental 

values could also be due to the non-spherical shape of Ibuprofen, which is the 

assumed geometry in the analysis. The median diameter chosen for determining 

the predicted dissolution rate was the ESD, based on the volume of an 

equivalent sphere. In actuality, Ibuprofen particles are lath-shaped, with a 

surface-area-to-volume ratio of 1.2 cm-1. The equivalent spherical diameter 

based on the surface area, rather than the volume, of an equivalent sphere is 

104.4 µm. Use of this diameter may be more appropriate for calculation of the 

total surface area available for dissolution as a function of time, which, holding all 

other parameters constant, should have the effect of increasing the predicted 

dissolution rate. Since the predicted rates using the ESD based on volume were 

adequate for this analysis, the transport model was not modified to include a 

factor to correct for deviation from spherical geometry. 
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Results of the in vitro dissolution experiments demonstrated the influence 

of particle size, buffer concentration, dose and pH on dissolution rate of 

Ibuprofen particles dissolving into 200 ml of aqueous buffer. Influence of particle 

size on dissolution rate is shown in Figure 3.2 (dissolution into pH 7 10 mM 

buffer) and Figure 3.3 (dissolution into pH 6 50 mM buffer) and in Table 3.4. 

Under both conditions, the particles with the smaller diameter dissolve faster than 

the particles of the larger diameter, due to the increase in the number of particles 

at a given mass, and therefore the increase in surface area for dissolution. For 

Ibuprofen dissolving in pH 6 50 mM buffer there is roughly a four-fold increase in 

t25%, t50% and t75% for the larger compared to the smaller particles. For Ibuprofen 

dissolving in pH 7, 10 mM buffer there is roughly a five-fold increase in t25%, but a 

six-fold increase in t50% and t75% for the larger compared to the smaller particles. 

If the same two sets of experiments had been conducted in a large enough 

volume of medium to maintain sink conditions, then a consistent five-fold 

increase in t25%, t50% and t75% for the larger compared to the smaller particles 

would have theoretically occurred in both cases. A five-fold increase is the 

expected increase based on the ratio of the theoretical initial dissolution rates 

shown in Table 3.5, and represents the theoretical change in dissolution rate 

based on particle size alone. For the experiments discussed above, dissolution 

rate was also a function of the difference between Cs and Cb, which changed as 

the particle dissolved. 

 The effect of buffer concentration on dissolution rate was demonstrated 

experimentally by comparing dissolution rates of the smaller particles dissolving 

in pH 6, 50 mM buffer as shown in Figure 3.3, and pH 6, 20 mM buffer as shown 

in Figure 3.4 (experiments 1 and 3 in Tables 3.4 and 3.5). The particles 

dissolved faster in the 50 mM buffer compared to the 20 mM buffer, with roughly 

a 2-fold increase in t25%, t50% and t75% for the particles dissolving in the 20 mM 

versus the 50 mM buffer. The decrease in dissolution rate of the particles 

dissolving in the buffer with lower buffer concentration is due to the lower pH at 

the particle surface for those particles. The lower buffer concentration in the bulk 

leads to lower buffer concentration at the particle surface resulting in a lower 
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buffer capacity at the surface. Therefore, as drug dissolves the pH at the particle 

surface is lowered to a greater extent in the lower buffer capacity buffer. As a 

result, the drug solubility at the surface is lower and therefore the concentration 

at the surface, Cs, is lower as well. The theoretical initial particle surface pH is 5.7 

for the 50 mM buffer, but only 5.5 for the 20 mM buffer, resulting in an initial Cs of 

1.4 mg/ml, versus an initial Cs of 0.9 mg/ml, respectively. Tsume and coworkers 

also demonstrated the effect of buffer concentration on dissolution performance 

of commercial Ibuprofen tablets [10]. They noted a decrease in dissolution rate at 

a pH of 6.8 in 10 compared to 50 mM phosphate buffer, and a decrease in both 

the rate and the extent of dissolution at a pH of 6.0 in 10 compared to a 50 mM 

phosphate buffer. 

 The effect of dose is evident by comparing 100 mg of the smaller particles 

dissolving in pH 6 20 mM buffer, as shown in Figure 3.3 versus 50 mg of the 

smaller particles dissolving in the same buffer, as shown in Figure 3.4 

(experiments 3 and 4 in Tables 3.4 and 3.5). The values of t25% and t50% are 

equal between the two experiments, whereas there is a 1.2-fold increase in t75% 

for the higher compared to the lower dose. Due to the same buffer conditions and 

initial particle size, fluxes are initially equal. However, as the particles dissolve 

the value of Cb increases to a higher extent for the higher dose, leading to a 

smaller value of Cs – Cb and therefore a smaller flux as a function of time.  

 While no two sets of experiments differed by pH alone, the affect of initial 

pH on dissolution rate can be explained in terms of its affect on the pH at the 

particle surface. For Ibuprofen a higher pH in the bulk medium would lead to a 

higher pH at the particle surface, and thus a higher drug saturation solubility at 

the surface. The higher saturation solubility would increase the value of Cs and 

therefore the flux of drug. Tsume and coworkers also demonstrated a decrease 

in rate and extent of dissolution when conducting experiments in a pH 6.0 

compared to a pH 6.8 phosphate buffer at two different buffer concentrations (10 

mM and 50 mM) [10]. 
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Effective boundary layer thickness estimation 
 The value of hc used in the transport model that best describes the 

experimental results for all conditions tested is 20 µm. This value of hc also 

described the experimental data well for a low dose (4 mg) of three different 

particle size sieve cuts of Ibuprofen (median diameters ranging from 87 – 330 

µm) dissolving in 200 ml of 50 mM pH 5.8 sodium phosphate buffer [11]. It should 

be noted that the value of heff remains equal to 20 µm for the first 90% of the 

dissolved dose for the 87-µm particles and for 99.8% of the dissolved dose for 

the 330-µm particles, since r does not drop below hc until that amount of the dose 

has dissolved. Therefore, for median particle diameters greater than about 87 

µm, choosing a constant value of heff in the transport model gives virtually 

analogous results to the more complicated method of calculating heff based on 

the relationship between r and hc. A value for hc of 20 µm is in line with 

experiments conducted by other researchers. A value for hc of 30 µm was initially 

suggested by Hintz and Johnson based on experiments in a rotating disk 

apparatus, and was later estimated to be about 14-18 µm based on  ~ 50-µm 

diameter hydrocortisone particles dissolving in 900 ml of buffer in a USP 2 

apparatus at 75 rpm, assuming spherical particles [12]. 

Another means of estimating heff, which is a more complex, but perhaps 

more realistic approach, is based upon Fluid Dynamics (FD) theory. The value of 

heff can be calculated according to Equations 3.14-3.17, where dp is particle 

diameter, Sh is Sherwood number, Rep is particle Reynold’s number, Sc is 

Schmidt number, Vrel,tot is total relative velocity of the particle, and ν is kinematic 

viscosity [13]. Different relationships between Sh, Rep and Sc have been 

suggested in the literature. Equation 3.15 is a semi-empirical approximation 

developed by Ranz and Marshall, which is often used for spherical particles. 

 

(3.14) heff = dp / Sh 

 

(3.15) Sh = 2 + 0.6 Rep ½ Sc1/3 
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(3.16) Rep = dp Vrel,tot / ν 

 

(3.17) Sc = ν / DHA 

 

All parameters in Equations 3.14-3.17 are relatively well defined, with the 

exception of Vrel,tot. Sugano suggests calculating Vrel,tot using Equation 3.18, 

where vt is the terminal (sedimentation) slip velocity, and vme is the relative 

effective velocity between particles and microeddies. The value of vt can be 

calculated using Equation 3.19 when Rep is less than 0.3, or Equations 3.20-
3.21 when Rep is greater than 0.3, where g is the gravitational constant, µ is the 

dynamic viscosity of the fluid. For spherical particles under 0.3 < Rep < 100, 

A=20.5, B=0.310 and m=2.07, based on fitting to experimental data [14]. The 

value of vme can be calculated using Equation 3.22, where ε is the power input 

per unit mass. An expression for ε is shown in Equation 3.23, where PN is the 

power number specific to the paddle shape, Npaddle is rotational speed, Dpaddle is 

paddle diameter, and Vfluid is fluid volume. The value of ε was shown to be 0.004 

m2/s3 for 1 L of fluid stirred at 50 rpm [15]. To account for different fluid volumes, 

this value could be multiplied by the quotient of 1000 cm3 times the relevant 

volume in cm3. 

 

(3.18) vrel,tot = √ (vt
2 + vme

2) 

 

(3.19) vt = (ρp – ρf) dp
2 g/ (18µ) for Rep < 0.3 

 

(3.20) vt = ν/dp (√ ((1/4) (A/B)2/m + (4/3 dp*
3/B)1/m) – ½(A/B)1/m)m for Rep > 0.3 

 

(3.21) dp* = ( (ρp/ρf - 1) g(1/ν)2)1/3 dp 

 

(3.22) vme = 0.195 dp
1.1 ε0.525 µ-0.575 

 

(3.23) ε = PN ρf Npaddle
3 Dpaddle

5 / Vfluid 
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The theoretical values of heff as a function of r calculated according to the 

current approach (Hintz and Johnson), where hc = 20 µm, is compared with the 

values determined using FD theory in Figure 3.6. Values of the constants used 

for the FD theory calculations are shown in Table 3.7. Values of heff for the two 

approaches are approximately equal up to a radius of 5 µm, whereas heff values 

for a given radius are smaller using FD theory compared to the Hintz and 

Johnson approach when r is greater than about 5 µm. The FD theory approach 

leads to a maximum value of heff of 19 µm for the largest particles. For values of r 

ranging from 0 to 165 µm, the values for vrel,tot and Rep range from 0 to 1.5 cm/s 

and from 0 to 7, respectively. These calculated velocities for the particles 

themselves fall within plausible values for the fluid in the USP 2 apparatus at 50 

rpm, based on recent estimates by Bai and coworkers, who determined velocity 

profiles in the USP 2 apparatus at different impeller rotational speeds using both 

Laser Doppler Velocimetry (LDV) and Computational Fluid Dynamics (CFD), 

results from which were in good agreement [16]. Experiments/simulations were 

conducted using 1 L of deionized water at 25 °C with the impeller blade at the 

typical height from the bottom recommended for USP 2 experiments, namely 5 

cm. With the exception of directly next to the impeller blade, for which velocities 

approached those of the impeller tip speed (20 cm/s at 50 rpm), the majority of 

values for velocity magnitude ranged from 0 to about 12 cm/s, with the majority of 

values appearing to be in the range of about 5-8 cm/s. 

 Inputting equations based on FD theory into the transport model to 

determine heff leads to very similar predictions for the in vitro results. For 

example, for all experimental conditions, predictions for t50% the 87-µm particles 

are within less than one minute of predictions using the Hintz and Johnson 

approach, with an hc of 20 µm, with the FD theory approach leading to slightly 

faster dissolution rates. For the 330-µm particles, predictions based on both 

methods of predicting heff are nearly identical. Assuming vrel,tot to be independent 

of particle size, and instead using values for fluid velocity determined by Bai and 

coworkers lead to either significant under-prediction of dissolution rate for the 

larger particle size sieve cut or significant over-prediction of dissolution rate for 
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the smaller particle size sieve cut. The “best fit” velocity for the smaller size was 

about 0.08 cm/s, but 1.3 cm/s for the larger size (data not shown). 

Another important consideration is that, while selection of an hc of 20 µm 

(or use of FD theory with the suggested parameters) seems to be appropriate 

under the conditions tested, it may not be appropriate using different volumes of 

buffer, different depths of the USP 2 paddle, or different rotational speeds. An 

advantage of the FD theory over the Hintz and Johnson method is that it allows 

for a priori calculation of heff,t for different experimental conditions. However, the 

accuracy of the resulting predictions for particle dissolution rate under these 

differing hydrodynamic conditions should be explored. 

 

Prediction of drug dissolution in physiological in vitro dissolution 
apparatuses and the in vivo gastrointestinal tract 
 The ability of the transport model to predict the in vitro results lends 

credibility to use of the analysis to predict the rate and extent of dissolution of 

Ibuprofen particles using different combinations of properties such as median 

particle size, buffer pH and concentration, and dose under sink and non-sink 

conditions. The mechanistic model has also been successful in describing 

dissolution rate for Ibuprofen particle suspensions (data not shown) as well as 

rapidly-disintegrating tablets ([11]. While not tested as part of this analysis, 

predictions could be extended to additional monoprotic acidic drugs, simply by 

using the appropriate pKa and solubility in the transport model. Effects of different 

particle shapes (e.g. non-spherical or non-lathe shaped) should be considered 

and incorporated into the analysis (e.g. addition of a shape factor). The analysis 

could also be extended to different monoprotic buffer systems, by changing the 

pKa of the buffer in the transport model, as long as the assumption of 

instantaneous chemical reaction was still appropriate. Extension of the model to 

the physiological bicarbonate buffer could also be performed, by taking the 

kinetics of CO2 hydration into account. 

While the current analysis has been presented in the context of drug 

particles dissolving into a single buffer, of great interest is prediction of drug 

transport in in vitro physiological dissolution apparatuses, such as the two-phase 
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or two-compartment (e.g. ASD) system. Extension of the transport model for both 

systems can be fairly simply achieved by considering the major transport steps 

involved. Chapter 2 of this thesis described transport of drugs in solution from an 

aqueous to an organic medium. By considering the processes of drug particle 

dissolution and solute partitioning occurring simultaneously, transport of drug in a 

two-phase apparatus could be described. In addition, transport of drug in a two-

compartment system could be described simply by considering drug particles 

emptying in a first-order manner into the bulk dissolution medium with the onset 

of dissolution occurring once the particles have reached the vessel. In Chapter 4, 

transport of Ibuprofen in a two-phase dissolution apparatus as well as a two-

compartment dissolution apparatus is described using these two approaches. 

 To apply this analysis to prediction of drug dissolution in vivo, one must 

have an understanding of the range of important physiological properties 

affecting dissolution rate of ionizable weak acids in vivo, including buffer species 

and concentration, pH, ionic strength, aqueous volume and hydrodynamics. 

Chapter 1 presents average values and ranges for gastrointestinal properties in 

fasted humans, and Chapter 4 extends this analysis to the fasted canine 

gastrointestinal tract. The only variables not discussed in these chapters and 

potentially the least well-defined properties relevant to dissolution in the 

gastrointestinal tract are those impacting the values of v,rel,tot. The value of v,rel,tot 

is affected by the value of the resistance coefficient from the fluid, CD (imbedded 

in Equation 3.19) when Rep is less than 0.1, which can change the magnitude of 

vt by a factor of CD
-0.5. When Rep is greater than 0.3 it is shown to be dependent 

upon Rep range and particle shape. The value of v,rel,tot is also affected by the 

value of vme, which is directly proportional to, ε0.525, described in Equation 3.23 

for USP paddle methods. If agitation in vivo were comparable to a USP paddle 

rotational speed of 20-75 rpm, as suggested by Katori and coworkers, as well as 

Scholz and coworkers, ε would range from 0.0003 to 0.014 m2/s3 [17] [18] [13].  A 

plot of heff versus r for ε of 0.0003 and 0.014 m2/s3, together with heff versus r for 

the value of ε selected for the in vitro experiments conducted in this study is 

shown in Figure 3.7. Values of heff for the three different values of ε are nearly 
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identical up to a radius of about 5 µm, and at a radius of 12.5 µm the maximum 

variation in heff is only 2 µm. The maximum variation in heff, which occurs at large 

particle sizes is about 7 µm. It should be noted that a further decrease in ε, which 

might be expected to represent potentially less vigorous mixing in vivo does not 

lead to an appreciable increase in the value of heff. Figure 3.8 shows the impact 

of the aforementioned range of ε on dissolution rate. A pH of 6.0 and a buffer 

concentration of 10 mM were chosen since those conditions would be most 

discriminating within a pH range of 6-7 and a buffer concentration range of 10-20 

mM. Percent of dose dissolved versus time for 100 mg of three different particle 

sizes (r = 25, 87 and 330 µm) of Ibuprofen in 200 ml of buffer at ε values of 

0.0003 and 0.014 m2/s3 are included. Values for t50% for the 25, 87 and 330 µm 

sizes different by only 0, 2 and 10 min, respectively. These results suggest that 

for small initial particle size distributions, the value of heff within the expected 

range for ε has a negligible effect on dissolution rate, whereas for larger particle 

sizes the value of ε has a small to moderate effect. 

 Assuming a value of ε of 0.0003 m2/s3 or less to be the most indicative of 

in vivo conditions, it was desired to determine the impact of using the Hintz and 

Johnson approach with values of hc ranging from 25-30 µm, as opposed to FD 

theory on dissolution rate prediction. Using the same conditions as above (100 

mg of Ibuprofen in 200 ml pH 6 10 mM phosphate) for the same three initial 

particle diameters (25, 87 and 330 µm) of Ibuprofen, it was determined that when 

ro = 25 µm the three curves were indistinguishable, and when ro = 87 µm t50% was 

1 min greater when hc = 25 µm and 2 min greater when hc = 30 µm compared to 

FD theory. When ro = 330 µm, there was a 2 min decrease for hc of 25 compared 

to FD theory, and a 5 minute increase for hc of 30 µm (curves not shown). 

 

Conclusions 
 

A review of the literature suggests low buffer concentrations and 

corresponding low buffer capacities of fluids in the gastrointestinal tract. 

Depending on the administered dose as well as the relative rates of major in vivo 
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transport processes for weak acids in the gastrointestinal tract, including 

emptying from the stomach, dissolution in the intestinal tract and absorption into 

the intestinal membrane, concentration of dissolved drug in the gastrointestinal 

fluid may be high enough to decrease pH of the low buffer capacity fluid, which in 

turn can decrease dissolution rate of a weak acid. 

A mechanistic transport model was developed to understand rate and 

extent of dissolution of spherical particles of a weak acid dissolving in low buffer 

capacity buffers under moderate drug saturation conditions. Each transport 

parameter has a physical basis and can be measured or estimated a priori. 

Experiments in a USP 2 apparatus were conducted using two different particle 

sizes of the BCS 2 weak acid, Ibuprofen, under a range of pH values, buffer 

concentrations and doses to test the ability of the model to predict in vitro 

dissolution rates. The transport model successfully predicted percent of dose 

dissolved and change in bulk pH as a function of time for all conditions tested. 

Dissolution rate of Ibuprofen was influenced by particle size and dose, as well as 

buffer concentration and initial buffer pH, underscoring the importance of 

investigating dissolution rate using physiologically relevant fluid properties. While 

both the Hintz and Johnson and fluid dynamics theory approaches to calculating 

the relationship between effective boundary layer thickness and particle size lead 

to similar predictions for dissolution rate, the fluid dynamics theory approach has 

the advantage of allowing for a priori predictions for a range of hydrodynamic 

conditions. 

Success of the mechanistic transport model in predicting dissolution rate 

of Ibuprofen in a USP 2 apparatus in vitro lends credibility to use of the model in 

predicting dissolution rate of a number of different weak acids dissolving in a 

range of different buffer conditions (e.g. concentration, pH and species), for a 

range of drug properties (e.g. intrinsic solubility, pKa, particle size and dose). 

However, since deviations from model predictions could occur due to non-

spherical particle shapes or non well-defined hydrodynamic conditions, the 

transport model should also be tested using weak acids with different particle 

shapes in different aqueous volumes, rotational speeds and or vessel types. 
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While the model was tested using drug powder it is also applicable to drug 

particle suspensions as well as rapidly disintegrating tablets and capsules. 

In addition to application of this transport model to predict rate and extent 

of dissolution in single buffer systems, it can also be extended to the 

physiological two-phase dissolution apparatus and two-compartment (e.g. ASD) 

apparatus, by incorporating the additional transport steps of partitioning of drug in 

solution in an organic medium, or first-order emptying of drug particles into the 

buffer, respectively. Extension of this transport analysis to dissolution in the 

intestinal tract in vivo is also possible, but the same considerations must be 

made understanding the effects of physiological properties, including the effects 

of fluid hydrodynamics, on dissolution rate. 
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Tables and Figures 
 
Table 3.1. Ibuprofen and phosphate buffer physicochemical properties 
 

Ibuprofen property Value 

Molecular mass 206.3 g/mol 

Diffusion coefficient in water at 37 °C 7.5 X 10-6 (unionized)a 
7.6 X 10-6 cm2/s (ionized)a 

Intrinsic solubility at 37 °C 0.066 mg/mlb, 0.068 mg/mlc 

Apparent pKa at 37 °C 4.4b, c (not corrected for ionic 
strength) 

True density 1.1 g/cm3 d 

Buffer property Value 

D_(H2PO4)- 11.5 X 10-6 cm2/se 

D_(HPO4)2- 11.5 X 10-6 cm2/se 

D_H3O+ 104.9 X 10-6 cm2/se 

D_OH- 63 X 10-6 cm2/se 

Apparent pKa at 37 °C: 
H2PO4

- <--> HPO4 
2- + H3O+ 

6.8 (pH 7 10 mM), 6.6 (pH 6, 
20 & 50 mM)f 

Kw at 37 °C 2.57 X 10-14 g 

a Calculated using the method of Hayduk and Laudie [19]. 
b Shaw and coworkers based on best-fit curve to pH-solubility profile [20]. 
c Levis and coworkers based on best-fit curve to pH-solubility profile (ionic 
strength values of buffers ranged from 0.15 to 0.37 M) [21]. 
d Reference [9]. 
e Reference [8] 
f  Based on experiments conducted in our lab (data not shown). 
g Reference [5] 
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Table 3.2. Experimental conditions for Ibuprofen particle dissolution 
experiments. All experiments performed in 200 ml of buffer at 50 rpm and 
37 °C 
 
No
. 
 

Median 
particle 

Diameter (ro) 

Dose 
(MT) 

Initial bulk pH 
(pHb)t=0 

Total buffer 
Concentration 

Initial 
buffer 

capacitya 

- µm mg - mM mM 

1 87 200 7 10 5.5 

2 330 200 7 10 5.5 

3 87 100 6 50 18.5 

4 330 100 6 50 18.5 

5 87 50 6 20 7.4 

6 87 100 6 20 7.4 
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Figure 3.1. Particle size distributions by mass for the 80 and 310 µm 
median diameter sieve cuts of Ibuprofen determined using microscopy 
 

Table 3.3. Particle characteristics of 87 and 330 µm median diameter sieve 
cuts of Ibuprofen 
 

Median 
equivalent 
spherical 

diameter by 
mass 

 

Median 
L X W X T 
by mass 

Mean 
Surface-
area-to-

volume ratio 

D90/
D50 

Mean 
aspect 
ratio 

Mean 
thickness-
to-width 

ratio 

No. of 
particles 

measured 

µm µm cm-1 - - - no. 

87 116 X 73 
X 41 1.2 1.2 0.50 0.56 307 

330 479 X 294 
X 134 1.2 1.2 0.41 0.45 300 
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Figure 3.2: Percent of dose dissolved versus time (top) and bulk pH versus 
time (bottom) for 200 mg of Ibuprofen dissolving in pH 7, 10 mM buffer for 
the small and large median diameter particles 
Data points represent results from run 1 (R1) and run 2 (R2) and lines represent transport model 
predictions. Percent dissolved normalized to percent of the final amount dissolved in buffer. 
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Figure 3.3: Percent of dose dissolved versus time (top) and bulk pH versus 
time (bottom) for 100 mg of Ibuprofen dissolving in pH 6, 50 mM buffer for 
the small and large median diameter particles  
Data points represent results from run 1 (R1) and run 2 (R2) and lines represent transport model 
predictions. Percent dissolved normalized to percent of the final amount dissolved in buffer. 
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Figure 3.4: Percent of dose dissolved versus time (top) and bulk pH versus 
time (bottom) for 100 mg of Ibuprofen dissolving in pH 6, 20 mM buffer for 
the small median diameter particles  
Data points represent results from run 1 (R1) and run 2 (R2) and lines represent transport model 
predictions. Percent dissolved normalized to percent of the final amount dissolved in buffer. 
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Figure 3.5: Percent of dose dissolved versus time (top) and bulk pH versus 
time (bottom) for 50 mg of Ibuprofen dissolving in pH 6, 20 mM buffer for 
the small median diameter particles 
Data points represent results from run 1 (R1) and run 2 (R2) and lines represent transport model 
predictions. Percent dissolved normalized to percent of the final amount dissolved in buffer
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Table 3.4. Experimental values for average time to reach twenty-five percent dissolved, t25%, fifty percent 
dissolved, t50% and seventy-five percent dissolved, t75%, for each experimental condition 
 
No. Initial median 

particle diameter Dose Initial bulk pH Buffer 
concentration Exp. t25% 

a Exp. t50% a Exp. t75% a 

 µm mg - mM min min min 

1 87 100 6 50 1 (0.9) 2.5 (2.2) 4.5 (4.2) 

2 330 100 6 50 4 (4.7) 10 (11.4) 19 (22.0) 

3 87 100 6 20 2 (1.6) 4.5 (4.1) 10.5 (8.6) 

4 87 50 6 20 2 (1.5) 4.5 (3.6) 8.5 (6.7) 

5 87 200 7 10 1 (0.8) 2 (2.2) 4.5 (4.8) 

6 330 200 7 10 5 (4.2) 12.5 (11.2) 28 (25.3) 
a Average time to dissolve 25, 50 or 75% of the dose for both experimental runs, rounded to the nearest 0.5 minutes. 
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Table 3.5. Theoretical values for change in pH at the particle surface, change in pH in the bulk medium, 
percent drug saturation in the bulk medium and initial dissolution rate 
 

No
. 

Initial median 
particle 

diameter 
Dose Initial bulk pH Buffer 

conc. 
Theo. change 
in surface pH a 

Theo. change 
in bulk pH a 

Theo. final % 
saturated in 
the bulk a 

Theo. initial 
dissolution 

rate b 

 µm mg - mM - - % mg/s / h-1 

1 87 100 6 50 5.7 – 5.7 6.0-5.9 24 
0.50 / 17.8 

2 330 100 6 50 5.7 – 5.7 6.0-5.9 24 
0.10 / 3.6 

3 87 100 6 20 5.5-5.4 6.0-5.6 41 
0.32 / 11.6 

4 87 50 6 20 5.5-5.4 6.0-5.8 14 
0.16 / 11.6 

5 87 200 7 10 5.8-5.7 7.0-6.1 30 
1.24 / 22.2 

6 330 200 7 10 5.8-5.7 7.0-6.1 30 
0.25 / 4.5 

a Values calculated using the transport model with an hc of 20 µm. 
b Calculated using Equations 5-10 assuming Cb,t = 0 and r,t = ro.  
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Table 3.6. Buffer component concentrations and properties 
 
Component Millimoles added to 1 L of solution 

NaH2PO4 H20 10 20 50 

NaOH 7 4.2 10.6 

NaCl 130 125.8 86.4 

HCl 0.8 0 0 

Properties at 37 °C Value 

Initial pHa 7.0 6.0 6.0 

Apparent pKa b 6.78 6.58 6.58 

Ionic strength c 0.153 0.154 0.158 
a Measured using a standardized pH meter 
b Calculated using a proton balance equation 
c Calculated using  !" =    !

!
!!!!!!

!!! , where ci = concentration of 
species i in solution in M and zi = valence of species i in solution. 

 

 
 
Figure 3.6. Theoretical heff as a function of particle radius 
calculated using FD theory and the Hintz and Johnson 
method (hc = 20 µm) 
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Table 3.7. Parameters used to calculate heff based on FD Theory 
 
Parameter Value Units 

ρp 1.1 a g/cm3 

DHA 7.6 X 10-6 a cm2/s 

ρfluid at 37 °C 0.99 b g/cm3 

ν at 37 °C 0.007 c cm2/s 

g 981 cm/s2 

µ at 37 °C 0.007 c g/cm/s 

ε 200 d, 3 e,f, 40 g or 140 h cm2/s3 

m, A, B 2.07, 20.5, 0.310 f - 
a Refer to Table 3.1 for references 
b Reference [22]  
c Experiments conducted in our laboratory (data not shown) 
d Equal to 40 cm2/s3 (taken from Reference [13]) * 1000 cm3 / 200 cm3, to 
account for the difference in fluid volume between the value from which 
the original estimate was based (40 cm2/s3) and the current experiments. 
e Based on 1000 ml of fluid in USP 2 apparatus at 20 rpm 
f  Reference [13] 
g Based on 1000 ml of fluid in USP 2 apparatus at 50 rpm 
h Based on 1000 ml of fluid in USP 2 apparatus at 75 rpm 
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Figure 3.7. heff versus r for particle velocities calculated using ε = 0.0003 
and 0.014 m2/s3 (representing in vivo 20 rpm and 75 rpm equivalent, 
respectively), together with heff versus r for ε = 0.02 m2/s3 (current in vitro 
experiments) 
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Figure 3.8. Percent of dose dissolved versus time using ε = 0.0003 and 
0.014 m2/s3 (representing in vivo 20 rpm and 75 rpm equivalent, 
respectively), for 25 µm (fastest dissolving), 87 µm (moderately fast 
dissolving) and 330 µm (slowest dissolving) initial median diameter 
Ibuprofen particles 
Conditions are 100 mg of Ibuprofen dissolving into pH 6.0, 10 mM sodium phosphate buffer. 
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Chapter 4 
 

Mechanistic Oral Absorption Analysis of Ibuprofen in 
Dogs and Implications for IVIVC 

Abstract 
 

The purpose of this study was to determine in vivo performance of the 

BCS II model compound ibuprofen in dogs under well-controlled conditions and 

identify potential bioperformance dissolution methodologies that could be used to 

design and develop robust drug product formulations. Four Ibuprofen 

formulations were administered to dogs including an IV formulation to determine 

the pharmacokinetic disposition model, an oral solution to determine the rate of 

input into plasma due to gastric emptying and intestinal absorption processes 

alone, and two solid oral tablet formulations containing Ibuprofen particles of 

relatively small and relatively large particle size distributions to ascertain plasma 

input rate in the presence of a relatively fast versus a relatively slow dissolution 

step. A simple, mechanistic transport analysis was developed to describe 

average gastric emptying, dissolution and absorption rates of a BCS II weak acid 

in fasted dogs. Relevant canine physiological variables and Ibuprofen 

physicochemical properties were determined based on a review of the literature. 

Using this analysis, possible ranges for the relative rates of gastric emptying, 

dissolution, and absorption were predicted in the absence of a priori in vivo data. 

The expected trend for rate of input into plasma (solution > small particle 

size tablet > large particle size tablet) was observed qualitatively over the first 

hour after dosing. However, there was no statistical difference in Tmax between
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the small and large particle size tablets. This lack of difference could be 

attributed to possible enterohepatic recirculation or another physiological 

phenomenon, as unexpected multiple peaks were observed in the concentration-

time profiles for all four dosage forms.  

Several scenarios were successful in describing average in vivo input 

rates into plasma for the oral solution and tablet formulations using common 

transport parameters. Two different types of practical in vitro bioperformance 

dissolution methodologies were proposed depending on the relative rates of 

gastric emptying and intestinal absorption. Both methodologies were predicted to 

be adequate in describing the average in vivo plasma profiles, and could likely be 

generalized for use with additional BCS II weak acids. Selection of the more 

superior methodology would require independent measures of gastric emptying 

rate and effective intestinal permeation rate in dogs. A conventional single-phase 

(e.g. USP) methodology was predicted to underestimate the time to reach 

seventy-five percent of the dose into plasma. 

While in actuality in vivo drug transport displays significant complexity and 

heterogeneity, the aim of the current analysis was to describe average transport 

rates in a manner that would allow for selection of simple and practical in vitro 

biopredictive methodologies. More sophisticated techniques such as Monte Carlo 

simulation would be useful in explicitly describing the in vivo heterogeneity 

arising from the highly variable physiological and drug physicochemical 

properties. 

 

Introduction 
 
 Prior assessment of drug product performance in vivo is a critical step 

needed to facilitate successful clinical human and animal studies. Once the 

chemical and physical properties of the drug substance and drug product have 

been characterized, predictions of the transport of the drug substance in the 

gastrointestinal tract in vivo can be made using in silico or in vitro methods. In 

this work a simple, mechanistic transport analysis describing gastric emptying 
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rate, dissolution rate, and absorption rate of the BCS II weak acid Ibuprofen in 

fasted dogs was developed. The relevant physiological variables as well as 

Ibuprofen physicochemical properties required for the transport analysis were 

determined based on a review of the literature. Using this analysis, possible 

ranges for the relative rates of gastric emptying, dissolution, and absorption were 

predicted in the absence of a priori in vivo data. 

It was desired to determine the relevance of the transport analysis to in 

vivo data in dogs. Two studies in the literature investigated Ibuprofen 

bioavailability in dogs as a function of particle size [1] [2]. However, an IV solution 

was not dosed in either of these studies, so proper disposition models could not 

be determined with which to perform deconvolution to obtain curves for drug 

input into plasma. In addition, details of particle size and distribution were not 

well described in either study. Because dogs were not pretreated to control 

stomach pH, precipitation of the oral solution dosage form and/or dissolution of 

the solid oral dosage form in the stomach could have occurred. Therefore, it was 

determined that use of published data to support in vitro – in vivo comparisons 

directly would be difficult. 

Four well controlled in vivo studies using Ibuprofen were designed and 

conducted in fasted dogs including 1) An intravenous (IV) study to determine the 

pharmacokinetic disposition model, 2) An oral solution study to determine the 

rate of input due to the gastric empting process and absorption into the intestinal 

membrane alone, 3) A solid oral tablet study containing Ibuprofen particles of a 

relatively small particle size distribution (87 µm median diameter) to ascertain the 

rate of input of dissolved drug into plasma in the presence of a relatively fast 

dissolution step, and 4) A solid oral tablet study containing Ibuprofen particles of 

a relatively large particle size distribution (330 µm median diameter) to ascertain 

the rate of input of dissolved drug into plasma in the presence of a relatively slow 

dissolution step. 

Non-compartmental pharmacokinetic analysis of the plasma concentration 

time profiles from the four studies was conducted to determine pharmacokinetic 

parameters, such as time to peak plasma concentration (Tmax) and peak plasma 
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concentration (Cmax). A two-compartment disposition model was fit to the IV 

concentration time profile and used to perform numerical deconvolution of the 

oral solution and solid oral tablet concentration time profiles to extract the input 

rate of dissolved drug into plasma. Using the transport analysis (and within the 

constraints of the range of relevant physiological and drug physicochemical 

properties determined from the literature a priori), the average parameters for 

gastric emptying rate, dissolution rate, and absorption rate into the intestinal 

membrane that explained the average in vivo input rate into plasma from the oral 

dosage forms were determined. 

Finally, based on the simple transport analysis and outcome of the in vivo 

studies, two types of bioperformance dissolution methodologies that would likely 

be successful in describing the in vivo data and developing potential IVIVCs for 

the solid oral dosage forms were suggested. Selection of the more superior 

methodology requires further knowledge not collected in the present in vivo 

studies, such as independent measures of the gastric emptying rate of Ibuprofen 

and the effective permeation rate of Ibuprofen in the dog intestine.  

 

Materials and Methods 
 

Materials 
 The free acid form of Ibuprofen drug powder (Albermarle Lot 11550-0005) 

and Ibuprofen for injection CaldolorTM 800 mg/8 ml vials (Cumberland 

Pharmaceuticals, lot 5401 JX3) were purchased commercially. All additional 

chemicals were of analytical grade or purer and were purchased commercially. 

 
Study design 

The following four studies were conducted in six fasted dogs using a 

crossover design and a washout period of 7 days using a dose of 80 mg. All four 

studies were completed within a four-week timeframe. 

 

Study 1 – IV formulation 
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Study 2 – Oral solution 
Study 3 – Small particle size rapidly disintegrating immediate release tablets 
Study 4 – Large particle size rapidly disintegrating immediate release tablets 

 
The purpose of administering an IV formulation in study 1 was to determine the 

pharmacokinetic drug disposition model for use in deconvolution analysis of the 

oral dosage form plasma concentration-time profiles. Study 2 using an oral 

solution was conducted to determine the gastric emptying and absorption profiles 

of Ibuprofen in dogs in the absence of disintegration and dissolution steps. To 

help keep pH high and minimize possible precipitation of Ibuprofen from the oral 

solution formulation in the dog stomach, dogs were pretreated with a pH 7 BIS-

TRIS buffer 10-15 minutes prior to dosing. The purpose of administering small 

and large particle size solid dosage forms in studies 3 and 4 was to determine 

the difference in absorption rates between small and large particle size 

formulations of Ibuprofen taking dissolution rate into account. For these studies a 

pH 2 HCl-KCl buffer was administered 10-15 minutes prior to dosing to help keep 

stomach pH low and minimize dissolution of Ibuprofen in the stomach. 

 
Preparation of Ibuprofen tablets 

To obtain the desired particle size of Ibuprofen, bulk Ibuprofen was 

blended with 0.5% colloidal silicon dioxide in a V-blender to facilitate flowability of 

Ibuprofen through and recovery from the mesh screens. 10 g of the blend was 

added to the top of a stack of 3-inch diameter screens with a range of mesh sizes 

that were then placed in an ATM Sonic Sifter and pulsed for at least 5-minute 

increments at a pulse amplitude of 8. The percentage of drug on each screen 

was determined after each pulsing increment and the sieves were again placed 

in the sonic sifter and pulsed for again until the percentage change of mass of 

drug recovered on each sieve was no more than 5%. 

Direct compression blends of Ibuprofen were prepared by blending each 

Ibuprofen sieve cut with spray-dried lactose, microcrystalline cellulose ph 102 

and crospovidone by hand in a glass jar for 3 minutes. Each direct compression 
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blend was compressed into tablets using a manual hydraulic press. Eighty 

milligrams of drug was compressed at 96.5-103.5 MPa and the pressure was 

maintained for one minute followed by slow decompression over thirty seconds. 

Weight and dimensions of each tablet were measured and the solid fraction of 

each tablet was calculated according to Equation 4.1. True density of the blend 

was calculated using a weighted average taking into account the true density of 

each component and its relative proportion in the blended formulation. Refer to 

Table 4.1 for tablet composition. 

 

(4.1) !"#$%  !"#$%&'( =    !"##
!∙!"#$%&!  ∙!!!"#$%&&

∙ !
!"#$  !"#$%&'

 

 

Microscopy for particle size analysis 
 The particle size distributions of the two sieve cuts of Ibuprofen were 

determined using microscopy. Particles were visualized using a Nikon OPTI-

PHOT – POL optical microscope with SPOT Insight color camera model 3.2.0 

and SPOT 5.1 Advanced Imaging software (SPOT Imaging Solutions, Sterling 

Heights, MI). The widths, lengths and thicknesses of about 10-15 particles from 

each sieve cut were determined and a mean thickness-to-width ratio was 

calculated for each sieve cut. The maximum lengths and widths of about 300 

randomly selected particles from each sieve cut were then determined. The 

mean thickness-to-width ratio determined using the 10-15 particles was used to 

estimate the thicknesses of the ~300 particles for which width and length values 

were determined. The volume of each particle, Vp, was calculated by calculating 

the product of the length, width and thickness. The equivalent spherical diameter, 

ESD, of each particle was calculated using Equation 4.2. The mass of each 

particle was determined by multiplying the true density (1.1 g/cm3 [3]) by Vp. The 

D50 (median) and D90 ESD by mass were determined by finding the ESD of the 

particles with a mass at the 50th and 90th percentiles, respectively, of the total 

mass of the ~300 particles. The value of D90/D50 for each sieve cut was 

calculated as a means of assessing the breadth of the size distributions. 
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Animals 
The same three male and three female beagle dogs (weights ranged from 

8-12 kg) were fasted for 24 hours before administration of all dosage forms for 

each study. Dogs had free access to water at all times. Blood samples (1 ml 

each) were collected from the jugular vein at 10, 20, 30, 45, 60, 90, 120, 150, 

180, 210, 240, 300, 360, 480 and 600 minutes after dosing. The study was 

conducted in accordance with the animal welfare requirements specified in 

IACUC Protocol 1104B00384. 

 
Study protocol 
Study 1 – IV formulation 

0.8 ml of Caldolor® (800mg/8ml) was administered quickly to each dog as a 

bolus by injection into the cephalic vein. 

 

Study 2 – Oral solution 

Dogs were given 19 ml of an isotonic 0.5 M pH 7 BIS-TRIS buffer using an 

orogastric tube. Ten to fifteen minutes later 6 ml of an isotonic pH 7 13.34 mg/ml 

Ibuprofen solution (80 mg dose) was administered via an orogastric tube. Refer 

to Table 4.2 for oral solution pretreatment and Ibuprofen solution compositions. 

 

Studies 3 and 4 – Small particle size & large particle size tablets 

Dogs were given 24 ml of an isotonic pH 2 HCl-KCl buffer buffer using an 

orogastric tube. Ten to fifteen minutes later a single 80 mg tablet of small particle 

size Ibuprofen (Study 3) or large particle size Ibuprofen (Study 4) was 

administered using an orogastric tube. Refer to Table 4.3 for tablet pretreatment 

solution composition. 
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Assay 
Whole blood samples were collected into tubes containing EDTA. Plasma was 

harvested after centrifugation for 10 minutes at 4000 rpm in a refrigerated (4 °C) 

centrifuge (Eppindorf model 5810R), and transferred to 96 well titer plates and 

sealed with plate mats. Plasma samples were stored at -20 °C prior to 

analysis.  After thawing at room temperature, all samples were diluted at a ratio 

of 1:5 (sample:blank) with blank dog plasma.  Analytical plasma aliquots (25 uL) 

were precipitated with 250 uL of acetonitrile (ACN).  The protein was pelletized 

by centrifugation, and a 50 uL aliquot of supernatant was taken and diluted in 

100 uL of 0.1% formic acid in water before a 10 uL aliquot was injected for 

analysis by high performance liquid chromatography with mass spectrometric 

detection (HPLC-MS). 

The mobile phase was isocratic (25:75 ACN:10 mM ammonium acetate) 

operating at a flow rate of 0.8 mL/min.  Separation was accomplished using a 

50x3 mm column packed with 5 um particle size Betasil Cyano stationary phase 

(Thermo Scientific) with a 1.7 minute run time.  The detector was an AB Sciex 

API-5500 mass spectrometer operating under turbo-ion spray conditions in 

negative ion mode. 

 
Pharmacokinetic analysis 

The plasma concentration time profiles were analyzed using PhoenixTM 

WinNonLin® software (version 6.3.0.395; Pharsight, a CertaraTM company). 

Noncompartmental analysis was performed on the individual concentration time 

profiles from zero to eight hours for each of the six dogs for all four dosage forms 

using uniform weighting. The terminal slope, λz, was calculated using the linear 

trapezoidal rule, and the terminal half-life was determined by dividing ln(2) by λz. 

Maximum plasma concentration, Cmax, and time to maximum plasma 

concentration, Tmax, were determined by inspection of the data. The area under 

the plasma concentration profile from the initial time point to the last non-zero 

plasma concentration, AUClast, was calculated using the linear trapezoidal rule. 

The observed AUC from dosing extrapolated in infinity AUCInf_obs was 
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calculated as AUClast + Clast/λz. Absolute bioavailability, F, was calculated for 

the oral dosage forms by dividing AUCInf_obs for the oral dosage form by 

AUCInf_obs for the IV dosage form. Total body clearance, CL_obs was 

calculated by dividing the F*dose by AUCInf_obs. The volume of distribution 

based on the terminal phase, Vz_obs, was calculated by dividing the F*dose by 

λz * AUCInf_obs. Differences between Tmax, Cmax, and AUCInf_obs between 

dosage forms was assessed using a student’s t-test with a 0.05 level of 

significance. 

Compartmental modeling was performed on the individual IV concentration time 

profiles from zero to eight hours after dosing. A two-compartmental model 

(WinNonLin® Model 8 - bolus input and first-order output, macro-constants as 

primary parameters using Gauss-Newton (Levenberg and Hartly) minimization) 

with uniform weighting was found to adequately describe the data. The 

concentration-time profile was described using Equations 4.3-4.5, where -α and 

–β (α > β) are the roots of the quadratic equation r*r + (k12+k21+k10)*r + k21*k10 = 

0. Secondary parameters of AUC (AUC = A/α + B/β), volume of the central 

compartment (V1), clearance from the first compartment (CL), volume at steady-

state (Vss), volume of the peripheral compartment (V2), and clearance from the 

peripheral compartment (CLD2), were also determined. 

 

(4.3) ! ! =   !!!!∙! + !!!!∙! 
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Numerical deconvolution analysis of the oral dosage form concentration profiles 

was also performed using PhoenixTM WinNonLin® software to estimate the 

apparent systemic availability of drug as a function of time. WinNonLin® uses the 

basic principle of deconvolution through convolution (DTC). The process is 
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iterative, whereby the software deconvolves the convolution integral to extract 

the input function (the rate of drug entry into plasma) imbedded in the convolution 

integral. The convolution integral can be represented as in Equations 4.6-4.8, 

where C(t) is the drug level response (plasma concentration profile), f(t) is the 

drug input rate into plasma, and cδ(t) is the unit impulse response or disposition 

function. The variable cδ(t) is a function of  g(t), the probability that a molecule 

entering point A at t = 0 is present in the sampling space at time t, divided by Vs, 

is the volume of that sample space. The symbol “*” denotes the convolution 

operation. A full description of the PhoenixTM WinNonLin® deconvolution 

methodology can be found in reference [4]. The analysis was performed using 

the two compartment unit disposition parameters determined for each individual 

subject from the IV data as the unit impulse response, cδ(t). Automatic smoothing 

was selected, whereby the software finds the optimal value for the dispersion 

parameter. 
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Mechanistic in vivo transport analysis 
 The major transport steps for Ibuprofen from oral administration to 

appearance in the bloodstream include 1) emptying of the dosage form (solution 

or disintegrated tablet) from the stomach into the small intestine, 2) dissolution of 

the oral dosage form (if applicable) in the small intestinal lumen, and 3) 

absorption through the intestinal membrane. Analyses of each of these steps are 

outlined below. 

 

Gastric emptying 
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 In this analysis, gastric emptying was assumed to approximate either first-

order or zero-order kinetics, with the entire dose emptied in a continuous 

manner. Equation 4.9 describes the first order emptying, where dMe,t/dt is the 

rate of mass transport from the stomach into the small intestine, Me,t is the mass 

emptied, kge is the first order emptying rate coefficient, and Ms,t is the mass 

remaining in the stomach. The fraction of drug emptied as a function of time, 

dFe,t/dt, can be described by dividing both sides of Equation 4.9 by the dose 

(Equation 4.10). The time to empty fifty percent of the dose, t50, is defined in 

Equation 4.11. Equations 4.12 and 4.13 describe the mass and the fraction 

emptied as a function of time, respectively, assuming zero order kinetics. These 

equations were used for both the in vivo and in vitro simulations. 
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Dissolution 

 Predictions of dissolution rate in vivo and in vitro were carried out using 

the analysis presented in Chapter 3. The Hintz and Johnson method was used to 

determine heff,t. 
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Absorption 

Several researchers have given expressions for passive transport of drugs 

from the intestinal lumen to the intestinal membrane [5] [6]. As shown in 

Equation 4.24, drug flux across the intestinal wall, Jw, depends upon effective 

intestinal wall permeation rate, Peff, and drug concentration at the surface of the 

intestinal wall, Cw, which are both dependent upon time and position along the 

membrane. Equation 4.24 is written based on the assumption that the 

concentration of drug in the epithelial cell to essentially equal to zero. 

 

(4.24)   !! = !!""!! 

 

Assuming no luminal reactions, absorption rate of drug into the intestinal 

membrane is given by Equation 4.25, where A is the surface area of membrane 

in contact with dissolved drug and m is mass of drug in solution. 

 

(4.25) !"
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In this analysis it is assumed that Peff is uniform along the intestinal wall 

(not position dependent), which is a reasonable assumption given that Ibuprofen 

absorption is relatively fast and likely happens in the upper small intestine. It is 

also assumed that there is no radial change of drug concentration in the intestinal 

lumen, so Cw is equal to the concentration of drug in the bulk intestinal lumen 

fluid, Ca,t. V is the volume of liquid in the intestinal lumen, and A/V is the surface-

area-to-volume ratio of the liquid in contact with the intestinal membrane, which 

is also assumed to be time and position independent in the current analysis. The 

product of A/V and Peff can be represented by the net absorption rate coefficient, 

ka. Equation 4.26 describes the mass of drug absorbed as a function of time, 

Mab,t, which depends on ka and the mass of drug in solution, Ma,t at time t. The 

fraction of the dose absorbed into the membrane as a function of time, Fab,t is 
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given by Equation 4.27. Values for Peff and A/V relevant to the current analysis 

are described in later sections. 
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In an in vitro system, transport of drug can be described using a 

mechanistic transport analysis previously developed for partitioning of solutes 

from aqueous to organic medium (Chapter 2 and reference [7]). It describes 

transport of dissolved drug across two hydrodynamically controlled ‘stagnant’ 

diffusion layers on each side of an aqueous-organic interface under 

circumstances for which buffer capacity is high enough to maintain a constant 

bulk pH throughout the experiment. The flux of non-ionized drug from bulk 

aqueous to bulk organic medium is given by Equations 4.28 and 4.29, where PI 

is the permeation rate of drug across the aqueous and organic diffusion layers. PI 

depends on the thicknesses of the aqueous and organic diffusion layers, ha, and 

ho, the diffusion coefficients across the aqueous and organic diffusion layers, Da, 

and Do, and the apparent partition coefficient at the aqueous-organic surface, K. 

For drugs with high values of K (> ~10) the rate-limiting step is diffusion across 

the aqueous diffusion layer. The driving force for transport across this layer is the 

difference in total drug concentration in the bulk and on the aqueous side of the 

aqueous-organic interface. When K is high and/or concentration in the organic 

medium is low, the magnitude of the driving force simplifies to the value of the 

concentration of total drug in the bulk aqueous medium, as described in 

Equation 4.30. Va is the volume of aqueous buffer in which the drug is dissolved, 

and AI is the surface area of the aqueous-organic interface. The product of AI/Va 

and Da/ha can be represented by the net partitioning rate coefficient, kp. The rate 

of transport of drug into the organic medium is described by Equation 4.31, 

where Mo,t is the mass partitioned into the organic medium. 
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Physiological and drug related transport parameters 

To determine the transport rate of Ibuprofen in dogs using the above 

analysis a number of physiological and drug product related parameters had to 

be determined. As discussed in Chapter 1 as they relate to humans, 

physiological parameters are highly complex with large variability both within and 

between individuals [8]. Drug product parameters are defined by the intrinsic 

properties of the drug substance itself and also depend on the properties of the 

physiological environment. Physiological and drug product parameters required 

for the current analysis are described below. 

 

Ratio of small intestinal surface-area-to-volume (A/V) 

As the mass transport rate of Ibuprofen into the intestinal membrane is 

directly proportional to A/V, an estimate for this parameter in dogs was required 

to perform the calculations. An estimated range for A/V in humans was 

determined in a prior publication [7]. A similar approach was used in the present 

analysis. Assuming the dog small intestine to approximate a compressed 

cylinder, a range in geometrical surface area was calculated using known 

dimensions of the dog small intestinal tract from the literature. Assuming a radius 

of 0.5 cm and a constant perimeter, A/V was calculated as a function of percent 

compression of the cylinder (Refer to Table 4.4) [9].  This method assumes that 
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the liquid takes the shape of the intestine and is thus in direct contact with the 

intestinal wall. The total length of the dog small intestine is estimated to be about 

400 cm [10]. As shown in Table 4.4 a percent compression of 89 would give a 

compressed cylinder a total length of just over 400 cm. This percent compression 

was chosen as the maximum, with a corresponding surface area of 1290 cm2 

and a maximum A/V of 26 cm-1.  A zero percent compression was chosen as the 

minimum with a corresponding surface area of 200 cm2 and a minimum A/V of 4 

cm-1. Such a cylinder would have a length of 64 cm. A total length much shorter 

than the length of the small intestine is plausible since it is probable that the 

liquid in the small intestine is not continuous, but is separated into smaller 

pockets [11]. Literature values for small intestinal geometric surface area range 

from 990 – 1400 cm2, which for the compressed cylinder calculations would 

represent percent compression values ranging from 85-90 [10] [12]. In this 

analysis A/V was assumed to be time and position independent, so A/V as 

defined here should be considered as and average value over the absorption 

region. 

 

Volume 

Gupta & Robinson reported that the mean resting liquid volume in the 

stomach in the fasted state was about 25 ml [13]. However, values for volume of 

liquid in the small intestine in the fasted dog could not be found in the literature. 

Given the lack of measurements in dogs, and the relative abundance of 

measurements in humans, canine small intestinal volume was estimated by 

comparing canine and human physiology. Using MRI Mudie and coworkers 

measured a human fasted small intestinal liquid volume of 43±14 ml (5-159 ml) 

[14]. The volume of liquid in the small intestine rose to as high as 93±24 ml on 

average (15-264 ml) 12 minutes after ingestion of 240 ml of water, and measured 

77±14 ml (15-172 ml) 45 minutes when complete emptying had occurred. Other 

reports measured average values ranging from 81-165 ml of liquid in fasted 

humans after no ingestion of water immediately prior to testing [15] [11] [16]. The 

capacity for liquid is about ten times higher in humans than in dogs, based on 
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calculations using cylindrical geometry1 [17]. However, a comparison of secretion 

and water absorption rates in the GI tract for both species suggests that basal 

small intestinal liquid volumes may be similar or only slightly lower in dogs than in 

humans (Refer to Table 4.5). It is therefore likely that average values for small 

intestinal liquid volume in the fasted dog before and after about 30 ml of liquid (as 

in the current study) range from about 30-100 ml. For this study an average value 

of 50 ml was assumed. 

 

Gastric emptying rate 

 A cyclical phenomenon called the migrating motor complex (MMC) exists 

in the fasted state in dogs (and humans) and is characteristic of three distinct 

phases of contractions varying in frequency and amplitude followed by a fourth, 

short transitional phase [18]. The majority of contractions originate in the 

stomach and help move liquid and solids through the gastrointestinal tract. The 

third phase of the MMC consists of frequent, high-amplitude contractions that 

begin in the stomach and propagate throughout the intestine. The pylorus 

remains open during phase three, allowing particles and solids to move through 

it. Durations of each phase in dogs have been recorded as 40-65 min for phase I, 

15-20 min for phase II, 10-15 minutes for phase III, and 6-16 min for phase IV 

[13]. A range of gastric emptying times for liquids has been documented in the 

literature. It is generally agreed upon that large volumes of liquids (> 100-150 ml) 

empty relatively fast and in a continuous fashion (due to regulation of gastric 

function caused by distension), whereas emptying patterns of smaller volumes 

are more dependent on the phase of MMC during which the liquid was 

administered [13]. As the current study involves movement of small volumes of 

liquids (~30 ml) and liquids containing solid particles less than about 500 µm 

from the stomach and into the small intestine, determining emptying patterns of 

small volumes of liquid is of interest. Gupta and Robinson studied emptying of 

liquids ranging from 25 to 500 ml in fasted dogs, with liquid administration 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1	
  The canine small intestinal tract has a radius of about 0.5 cm and a length of up to 
about 400 cm, whereas the human small intestinal tract has a radius of about 2 cm and 
a length of about 282 cm. 
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consistently occurring during phase I of the MMC [13]. They found that following 

administration of 25-100 ml of water only a very small amount of liquid was 

emptied within the first 20-30 min followed by a continuous flow of liquid around 

the time phase II activity was expected. Half of the administered volume was 

emptied between 35 and 40 minutes and the total amount was emptied after 

about 55-65 minutes. 

Gruber and coworkers administered non-digestible solid particles with 

diameters of 0.5-6.4 mm in a capsule immediately prior to 50 ml of saline at the 

onset of phase activity [19]. They found that gastric emptying closely followed 

phasic activity, with little or zero discharge of liquid during phase I. Instead, 

emptying occurred during phase II with variable kinetics with total emptying 

lasting about 30-55 minutes. They found that particles of all sizes remained in the 

stomach until the onset of phase III activity, and emptied as a bolus after the 

liquid. Gupta and coworkers also found that small non-digestible particles empty 

as a bolus during phase III when given with small volumes (less than 100 ml) 

liquids of low viscosity [20]. 

Based on these results onset of emptying of the Ibuprofen oral solution 

(administered 10-15 minutes after orally administering a buffer solution of about 

30 ml during an unknown phase of the MMC) should begin within zero to 116 

minutes after administration (corresponding to one complete MMC cycle). Half of 

the dose should appear in the small intestine within 35-40 minutes and the entire 

dose should empty into the small intestine within 55-60 minutes. For simplicity it 

is desired to approximate the emptying pattern of the oral solution using a 

mathematical expression. Assuming zero order kinetics and a kge of 0.84 fraction 

of dose/h, half of the dose would empty in 35 minutes and the entire dose would 

empty in 70 minutes. Assuming first order emptying and a kge of 1.2 h-1, half of 

the dose would empty in 35 minutes, but only 75% of the dose would empty in 70 

minutes, with the entire dose emptying in about 4 hours. Assuming first order 

emptying and a kge of 4.6 h-1, half of the dose would empty in 9 minutes and the 

entire dose would empty in 70 minutes. For small particles, onset of emptying 

should occur between 0 and 116 minutes after administration and complete 
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emptying should occur within less than 15-30 minutes after the first few particles 

are emptied into the small intestine (Zero order kge from about 2.1 to 3.9 fraction 

of dose/h). 

 

Intestinal transit time 

 The average small intestinal residence time in fasted dogs is about 2 

hours. Youngberg and coworkers reported a small intestinal transit time of 

111±17 min (range of 15-206 min) for a Heidelberg capsule [21]. Miyabayashi 

and coworkers measured a transit time of 73 +/-16.4 min (range of 30-120) for a 

barium sulfate solution [22]. 

 

Buffer species, concentration, and pH 

 The liquid in the small intestine is complex and dynamic and comprises 

substances emptied from the stomach as well as secretions from the liver, 

pancreas, and small intestinal wall [8]. For the current analysis the physiological 

variables of interest are those affecting drug solubility and dissolution rate. For a 

weak acid such as Ibuprofen that is ionizable in the physiological range, import 

factors driving solubility and dissolution rate include buffer species, buffer 

concentration, pH, ionic strength, and surfactant concentration. 

 The pH is the upper small intestine (duodenum and jejunum) of the fasted 

dog has been shown by many researchers to range from about 6.0 to 7.3 [10] 

[23]. However, some researchers have found slightly higher pH values. Gupta & 

Robinson studied the pH in the duodenum after administration of different 

volumes of water to a fasted dog [13]. They found mean pH to be 7.7 before 

administration of water, and a pH between 7 and 8 after administration of water 

volumes up to 100 ml. Lui et al. found a maximum pH of 7.7 20 min after gastric 

emptying, which gradually declined to 7.2 180 min after emptying [24]. They 

found an overall mean intestinal pH of 7.3 +/- 0.09. 

The predominant buffer species in the canine small intestine is 

bicarbonate, with average concentrations recorded as 17 mM (range of 14-22 

mM) in the duodenum, and 22 mM (range of 5-30 mM) in the jejunum in one 
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study [25], and 20 ± 3.8 mM in the jejunum in another study [26]. These two 

studies also recorded phosphate buffer concentrations of 1.6 mM (range of 0.6-

4.0) and 44.5 ± 5.5 mM, respectively. 

For the current analysis it was desired to describe diffusion and reaction of 

Ibuprofen in a 20 mM bicarbonate buffer. However, as described above, the 

transport equations describing dissolution assume instantaneous chemical 

reactions, and it is likely that the reaction between water and carbon dioxide to 

form carbonic acid, followed by bicarbonate in the intestinal lumen itself is not 

instantaneous [27]. In many parts of the body the enzyme carbonic anhydrase 

catalyzes the reaction between carbon dioxide and water, making the reaction 

instantaneous. Carbonic anhydrase XIV is present on the apical side of the 

intestinal membrane and likely resides within the mucus layer to protect epithelial 

cells from acid-related damage [28]. While carbonic anhydrase VI is secreted in 

saliva and likely remains active as it travels through the stomach and intestine 

[29], the concentrations of this enzyme in the intestinal lumen are unknown. If 

they exist in high enough concentrations, they may catalyze the reaction between 

carbon dioxide and water, speeding up the reaction so that it occurs at a higher 

rate. 

Krieg et al. reported that experimental dissolution rates of Ibuprofen in 

bicarbonate buffer were very similar to the predicted and experimental dissolution 

rates of Ibuprofen in phosphate buffer of the same concentration in the range of 

~3-8 mM in the rotating disk apparatus [27]. At buffer concentrations higher than 

8 mM, dissolution rates tended to plateau in bicarbonate buffer, but steadily 

increase in phosphate buffer. While the current transport analysis was not 

derived for bicarbonate buffer specifically, results by Krieg and coworkers 

suggest that a 10.5 mM phosphate buffer might be an adequate substitute for a 

20 mM bicarbonate buffer. The reaction between hydrogen phosphate and 

dihydrogen phosphate can be assumed to be instantaneous, and can thus be 

described using the current transport equations. For the current analysis a buffer 

concentration of 10.5 mM and an apparent pKa value of 6.8 was used in the 

analysis to calculate dissolution of Ibuprofen in the intestinal lumen. 
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Bile acids 

Keane et al. found mean bile acid output for phase I, II, III, IV of the MMC 

to be 0.01, 1.42, 0.43 and 0.16 mmol/h, respectively [30]. Kalantzi et al. 

administered 250 mL of water containing 10 mg/mL of PEG 4000 to fasted dogs 

and recovered contents from a jejunal fistula in 22 ml aliquots, and analyzed bile 

salt and phospholipid content of pooled samples [31]. They found the bile salt 

content to be 2.41 and 2.94 mM for samples containing the first 20% and 40% of 

recovered PEG, respectively. Phospholipid content was below the limit of 

quantification in both samples. Given the range of MMC phase durations and the 

average bile output values above, the total amount of bile delivered to the small 

intestine during a complete phase would range from 0.45 to 0.63 mmol. 

Assuming a small intestinal volume of 100 ml, the concentration of bile salts 

would range from about 4.5-6.3 mM, and assuming a small intestinal volume of 

50 ml, it would range from 9.0-12.7 mM. Given these reports it is likely that bile 

acid content in the fasted dog ranges from about 3-13 mM, but likely toward the 

lower end of the range. The critical micelle concentration (CMC) of taurocholate, 

which has been reported as the major bile acid in the fasted dog stomach, is 

approximately 8 mM [32] [33]. Bile acid concentrations exceeding 8 mM could 

thus lead to changes in solubility and apparent permeability of Ibuprofen in vivo. 

Bile micelle solubilization of Ibuprofen was not taken into account in this analysis. 

 

Ibuprofen properties 

 Ibuprofen is a non-steroidal anti-inflammatory drug (NSAID) widely used 

for the treatment of mild to moderate pain. It is characterized as a BCS II weak 

acid [34]. Several Ibuprofen properties of interest are described below and 

summarized in Table 4.6. 

 

Solubility 

One important parameter required for the present analysis is the solubility 

of Ibuprofen in canine intestinal fluids. Shaw and coworkers as well as Levis and 



	
   155	
  

coworkers reported an intrinsic solubility of about 0.067 mg/ml and apparent pKa 

of about 4.4 at 37 C [35], [36]. Ibuprofen is mostly unionized and thus has a low 

solubility at low pH, but is 98-99.9% ionized under typical conditions in the fasted 

dog intestine (pH range of about 6-7.5) with an expected 50-1,000-fold increase 

in solubility. As discussed above the bile salt concentration in the fasted dog 

intestinal is low, and is likely below the CMC of taurocholate, which has been 

reported as the most prevalent bile acid in the fasted dog intestine. In cases 

where bile acids are present in concentrations just above their CMC, the 

solubility increase due to ionization would likely be significantly higher than the 

expected solubility enhancement due to bile micelle solubilization at pH values 

above 6 when Ibuprofen is 98-99.9% ionized. Levis and coworkers report a 3.5-

fold increase in solubility of Ibuprofen above the expected solubility based on a 

pH-solubility profile at a pH of 5.0 (80% ionized) and a taurocholate concentration 

of 15 mM [36]. Jinno and coworkers and Sheng and coworkers demonstrated 

buffer species and pH effects to be more important than surfactant effects in the 

case of BCS II acids piroxicam and ketoprofen, respectively [37], [38]. 

 

Effective intestinal permeation rate, Peff, and absorption rate coefficient, ka 

 A direct measurement of Peff in the small intestine in dogs could not be 

found in the literature. However, measurements for Peff of Ibuprofen in the rat 

jejunum and in caco-2 monolayers have been reported. Lane and coworkers 

measured Papp in rats using intestinal perfusion in a number of different buffers at 

pH values from 5.0 to 8.2 (98-99.9% ionized with the exception of FeSSIF) [39]. 

They found the normalized Papp (zero water flux) to be 1.1 X 10-4 cm/s. In rats 

they suggest absorption rate to be aqueous boundary layer (ABL) controlled due 

to the high value of Papp. Assuming Papp is ABL controlled the thickness hABL can 

be calculated by dividing the diffusion coefficient by Papp. Assuming DHA to range 

from 7.6 to 8.0 X 10-6 cm2/s based on the Hayduk-Laudie and Wilke-Chang 

estimation methods for ionized Ibuprofen in water at 37 C, the calculated 

apparent hABL in rats would be about 700 µm.   

Heikkinen and coworkers measured the permeation rate of Ibuprofen 
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across caco-2 cell monolayers, and suggested that ABL resistance was likely the 

rate-limiting step to Ibuprofen permeation [40]. They reported ABL thicknesses to 

range from about 100 to 700 um depending on method (transwell or side-by-side 

preparation of cells) and stirring speed  (previous publication) (which would make 

Papp equal to 0.95 X 10-4 cm/s to 3.5 X 10-4 cm/s). Apparent transcellular + 

paracellular permeation rates at pH 6.5 and 7.0, were 3.1 X 10-4 and 2.2 X 10-4, 

respectively. These values reflect mostly transcellular permeation, as paracellular 

permeation was found to be insignificant in the caco2 membrane. However, in 

dogs paracellular permeation rate is likely to contribute to membrane permeation, 

as the dog intestinal membrane tends to have a larger pore radius than the caco-

2 membrane [6]. Yee found Papp of Ibuprofen to be 0.53 X 10-4 cm/s in a 

radiolabeled Caco-2 transwell plate study at a pH of 6.5, which did not separate 

contributions from the apical ABL, cell monolayers, or basolateral ABL. It’s likely 

that the Papp value reflects permeation across the apical ABL, which is dependent 

upon rotational speed (not given). 

Observations that Ibuprofen permeation in the rat intestine and in caco-2 

cell monolayers is controlled by the ABL are in line with Sugano, who stated that 

ABL permeation is the rate-limiting step for the majority of lipophilic compounds 

[41] [6]. Given this assumption, Papp in dogs could be estimated using the 

thickness of the ABL in dogs in vivo. Levitt et al. determined the “resistance to 

absorption resulting from poor stirring of luminal contents, RLUM” in the jejunum of 

conscious beagle dogs by measuring absorption of glucose and [14C] warfarin 

and found average values to range from about 33-57 µm for the two compounds 

depending on perfusion rate [42]. The corresponding estimates for ABL limited 

permeation rate (DHA/hABL) of Ibuprofen in the canine small intestine would be 

23.6 X 10-4, and 13.7 X 10-4, respectively (Assuming DHA = 7.8 X 10-6 cm2/s). 

However, it is unlikely that Ibuprofen permeation rate is as high as that of 

glucose, and is in part limited by transcelluar or paracellular permeation as well. 

Entrapment of Ibuprofen in bile micelles could slow down diffusion of Ibuprofen 

across the ABL due to the smaller diffusion coefficient of micelles and also 

decrease the amount of free drug available at the surface of the membrane for 
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absorption. However, it is unlikely that bile micelle solubilization is a critical factor 

due to the low concentrations of bile salts that are likely in the fasted dog 

intestine [6]. It is likely that the above estimate of 13.7 X 10-4 to 23.6 X 10-4 would 

be at the very upper limit of the estimate. 

Levitt and coworkers also measured RLUM in rats and found it to be about 

100 µm [42]. With the estimate for Peff in rats mentioned above, the relative 

values of RLUM in rats and in dogs can be used to estimate dog Peff. Assuming 

Peff, species = SEFspecies X D/hspecies, where SEF is the “surface area enhancement 

factor” built in to the Peff measurement and likely different from each species, Peff, 

rat/ Peff, dog = SEFrat/SEFdog X hdog/ hrat, so Peff, rat/ Peff, dog = 0.5. Assuming a value 

of about 1.1 X 10-4 cm/s in rat, Peff,dog would be 2.2 X 10-4 cm/s. 

Another method of estimating Peff in dogs is using existing correlations 

from the literature. While no direct correlation between rat and dog intestinal 

permeation rates could be found several correlations between rat and human 

permeation rates exist. Using the correlation generated by Fagerholm and 

coworkers the estimated permeation rate in humans assuming passive diffusion 

is 4.0 X 10-4 cm/s. An estimate of human permeation rate using a correlation 

developed by Sun and coworkers is 3.8 X 10-4 cm/s (correlation without 

Verapamil). The software GastroPlusTM (Simulations Plus, Inc., Lancaster, CA) 

has a built in correlation for estimating dog intestinal permeation rate based on 

human permeation rate. Using the estimated human permeation rates of 4.0 X 

10-4 cm/s the estimated dog permeation rates using GastroPlusTM is 9.7 X 10-4 

cm/s. The larger Peff in dogs compared to humans for Ibuprofen using this 

correlation is in line with a statement by Sugano that Peff in dogs may generally 

be larger than for humans for paracellular permeation [6]. 

Finally, Peff of Ibuprofen in dogs can be estimated by comparing 

permeation in caco-2 monolayer experiments to those of propranol, for which 

permeation rate in dogs has been measured. Lipka et al. found propranolol 

permeability in dogs to be 4.2 X 10-4 cm/s. Ibuprofen and propranol have been 

found to have similar caco-2 permeation rates in two studies [43].  At pH 7.0 

Heikkinen found propranolol (0.29% unionized) had an apparent permeability of 
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4.3 X 10-4 cm/s, which is similar to Ibuprofen (0.28% ionized) at that pH. Yee et al 

found P-app of ibuprofen and propranolol to be 0.53 X 10-4 and 0.28 X 10-4 cm/s, 

respectively [44]. Thus, it is possible that in vivo in dogs Ibuprofen has a similar 

Peff as propranolol.  

Taking the above analyses into account it is likely that Peff for Ibuprofen in 

dogs ranges from about 2 X 10-4 cm/s to 25 X 10-4 cm/s. With the estimated 

range of A/V of 4-26 cm-1, the potential range of ka (equal to A/V X Peff) is 2.9 – 

234 h-1. 

 

Dimensionless numbers 

 Amidon and coworkers outlined the dimensionless numbers, dose number 

(Do), dissolution number (Dn) and absorption number (An) used extensively in 

estimating dissolution and absorption behavior of small molecules in vivo [45]. Do 

for Ibuprofen as defined by Amidon using the highest marketed dose in 250 ml of 

buffer at the minimum solubility is relatively high at 47.7. For the purposes of this 

analysis, Do was defined in terms of dose given to dogs (80 mg) divided by the 

estimated dog intestinal volume (50 ml) divided by the calculated saturation 

solubility in the pH range of 6.2 to 7.2. Using this definition, Do ranges from 0.04-

0.37. Given this low range of values, dissolution of Ibuprofen in dogs is not 

expected to be solubility rate determined. Dn was determined at two different 

median particle diameters (87 and 330 µm) and two different bulk pH values (6.2 

and 7.2), assuming a small intestinal residence time of 3 hours. Dn ranged from 

14-41 for the 87 µm median diameter particles, and 1-3 for the 330 µm median 

diameter particles. Since Dn is greater than or equal to 1 in all cases, a residence 

time of 3 hours should likely be sufficient to allow for complete or near-complete 

dissolution in all cases. Finally, An was calculated by defining two different 

values for A/V (4 and 26 cm-1), Peff ranging from 2 X 10-4 to 25 X 10-4 cm/s, and a 

small intestinal residence time of 3 hours. Under these conditions An ranges from 

9-702, suggesting enough time for complete absorption of Ibuprofen in the dog 

small intestine. Refer to Table 4.6. 
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Additional physicochemical properties 

 Additional Ibuprofen properties of aqueous diffusion coefficient, true 

density and apparent partition coefficient were calculated using established 

methods or taken from the results of measurements reported in the literature and 

are included in Table 4.6. 

 

Analysis of in vivo oral solution absorption profile 

A schematic of the transport process of Ibuprofen in solution from 

ingestion to appearance in the bloodstream is included in Figure 4.1. The 

potential rate-determining steps are emptying from the stomach into the intestinal 

lumen and absorption from the intestinal lumen into the intestinal membrane. 

Precipitation of drug in the bulk solution was not considered due to the estimated 

low values of Do in the intestinal pH range. It is assumed that once drug appears 

in the intestinal membrane, appearance of drug in the blood stream happens 

instantaneously as described in Equation 4.32, where Mb,t is mass of drug in the 

bloodstream. 

 

(4.32) 
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Based on an analysis of dog physiology, three possible scenarios exist to 

describe the potential rate determining transport steps. In the first case, emptying 

from the stomach is fast compared to absorption into the intestinal membrane 

(dFe,t/dt >> dFab,t/dt), so absorption into the intestinal membrane is the rate-

limiting step to appearance in the blood stream. In case 2 (dFe,t/dt ≈ dFab,t/dt), 

both processes affect the rate of appearance of drug in the bloodstream. In case 

3 (dFe,t/dt << dFab,t/dt), emptying from the stomach into the intestinal lumen is the 

rate-limiting step to appearance of drug in the bloodstream. Based on the 

estimated range of kge (1.2 to 4.6 h-1 (first order) or 2.1-3.9 fraction of the dose/h 

(zero order)) and corresponding estimates for dFe,t/dt, as well as for ka (2.9 h-1 to 

234 h-1) and corresponding estimates for dFab,t/dt (Refer to Table 4.7), it is likely 
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that the in vivo oral absorption process will fall under case 2 (dFe,t/dt ≈ dFab,t/dt) 

or case 3 (dFe,t/dt << dFab,t/dt). 

A MATLAB® script was written using the equations described for gastric 

emptying and absorption outlined in previous sections to determine the transport 

parameters of kge and ka that describe the in vivo data for the Ibuprofen oral 

solution. It was assumed that the entire dose was emptied and absorbed in a 

continuous manner through zero-order or first-order gastric emptying and first-

order intestinal absorption processes.  Equations were solved iteratively every 

0.5 seconds. The system was closed with respect to all other species besides 

dissolved drug. For example, emptying of stomach fluid into the intestinal lumen, 

secretion of fluid from the intestinal wall, pancreas and liver into the intestinal 

lumen, absorption of fluid from the intestinal lumen into the intestinal membrane, 

and passage of fluid from the small intestine into the large intestine were not 

considered. Table 4.8 includes the values of the transport parameters used in 

the analysis. All parameters except for ka and kge were fixed. The approach taken 

was to set ka to the minimum value and vary kge until it reached a value that 

explained the in vivo data (in vivo and simulated input into plasma versus time 

curves overlapped). The value of ka was then set to the maximum value and kge 

was varied until it reached a value that explained the in vivo data. 

 

Analysis of in vivo solid oral tablet absorption profiles 

 For the solid oral tablets, the major transport steps were considered to be 

emptying of solid drug particles from the stomach, dissolution of solid drug 

particles in the intestinal lumen and absorption of dissolved drug from the 

intestinal lumen into the intestinal membrane. A schematic of the process is 

included in Figure 4.2. Disintegration of tablets was assumed to occur in the 

stomach instantaneously since they were formulated to be rapidly disintegrating 

and observed to disintegrate within seconds in vitro (data not shown). Dissolution 

of solid drug particles in the stomach was assumed to be minimal since the drug 

was given with a low pH buffer and Ibuprofen has a very low solubility at low pH. 
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Precipitation of drug in solution was assumed not to occur due to the low values 

of estimated Do in vivo. 

Assuming the drug concentration in the intestinal fluid is far from 

saturation, the initial fraction of dose dissolved as a function of time, dFd,o/dt, is 

described by Equation 4.33, where ro is the initial particle radius, heff,o is the 

initial effective boundary layer thickness adjacent to the particle surface and Cs,o 

is the initial drug concentration at the particle surface. As the particles dissolve 

this value becomes smaller. An estimate of dFd,o/dt for both particle sizes was 

calculated at bulk pH values of 6.2 and 7.2. Assuming a bulk small intestinal pH 

of 6.2 (and a particle surface pH of 5.6) dFd,o/dt is 12.4 and 2.4 h-1 for the 87 and 

330 µm particle diameters, respectively. Assuming a bulk small intestinal pH of 

7.2 (and a particle surface pH of 6.1) this value is equal to 37.6 and 7.2 h-1 for the 

87 and 330 µm particle diameters, respectively. Given these estimates it is likely 

that dissolution will be one of the rate-determining steps to absorption into the 

bloodstream. Relative rates of stomach emptying, dissolution, and absorption 

normalized with respect to dose are included in Table 4.7. 
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 A MATLAB® script was written to demonstrate drug transport from 

spherical particles and describe the in vivo data generated in dogs. The script 

takes into account stomach emptying, dissolution and absorption into the 

intestinal membrane. A monodisperse particle size distribution was assumed due 

to the very narrow particle size distributions of the sieve cuts and to simplify the 

MATLAB® script. The system was closed with respect to all species except for 

drug (as described above in the oral solution sections). The first step was to 

determine the initial pH and concentrations of buffer in the bulk intestinal fluid, 

initial pH and concentrations of buffer and drug species at the particle surface, 

and initial pH and concentrations of buffer at the intestinal wall. An iterative 
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approach was used to solve for the following unknown values by evaluating 

equations every 0.5 seconds2: 

 

1. Mass of drug emptied from the stomach 

2. Mass of drug dissolved in the small intestinal fluid 

3. Mass of drug absorbed into the intestinal membrane 

4. pH and concentrations of buffer and drug species in the bulk intestinal             

fluid 

5. pH and concentrations of buffer and drug species at the particle surface 

6. pH and concentrations of buffer and drug species at the intestinal wall 

Table 4.8 includes the values of the transport parameters used in the analysis. 

Values for kge and ka determined using the oral solution dosage form were fixed 

in the analysis of the solid drug particle data. A range in bulk intestinal pH values 

(6.2 to 7.2) was investigated in the analysis. Predicted and actual profiles were 

compared. 

 
Results 
 
Particle size distributions 
 The particle size distributions of the two different particle size sieve cuts of 

Ibuprofen are shown in Figure 4.3 and particle characteristics of the two sieve 

cuts are shown in Table 4.9. The median particle diameters of the small and 

large particle size sieve cuts were 87 µm, and 330 µm, respectively. Particles 

were lath shaped, and particle size distributions were very narrow as suggested 

by the D90/D50 values of 1.2 for both sieve cuts. 

 
Ibuprofen tablets 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2 The total dose of drug was divided into 16 increments (10, 20, 30, 40, 50, 55, 60, 65, 70, 75, 80, 
85, 90, 95, 97 and 99 % of the dose). Calculations were performed in a stepwise manner 
assuming the given % of dose was emptied as a bolus over a pre-calculated time period. 
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 Average tablet mass was 500.2 mg (range of 500.0-500.5 mg) and 500.3 

mg (range of 500.0-500.6 mg) for the 87 µm and 330 µm median sieve cut, 

respectively. The true density of the Ibuprofen blend was calculated to be 1.44 

g/cm3. Solid fractions ranged from 0.86-0.87 for both particle size sieve cuts 

using compression pressures ranging from 96.5-98.0 MPa and 96.5-103.5 MPa 

for the 87 µm and 330 µm median sieve cut, respectively. Tablet composition can 

be found in Table 4.1. Tablets were observed to disintegrate rapidly in buffer 

(data not shown). 

 
Plasma profiles and pharmacokinetic analysis 

Individual plasma concentration profiles of Ibuprofen in each of the six 

dogs for the IV, oral solution, small particle size tablet and large particle size 

tablet dosage forms are included in Figure 4.4. The average plasma 

concentration profile for the IV formulation is included in Figure 4.5, and average 

plasma concentration profiles for the oral solution, small particle size tablet and 

large particle size tablet are shown in Figure 4.6. Multiple peaks in the individual 

and average plasma concentration profiles were observed for all four 

formulations. For the IV formulation, a double peak was observed around 6 hours 

after dosing in two of the dogs, and plateaus in the plasma profiles occurred 

around 6 hours in the other four dogs. For the oral solution, small particle size 

tablet and large particle size tablet multiple peaking occurred in virtually all of the 

dogs throughout with pronounced peaking on average at 2.5 h, 1.5 h and 1.5 h, 

respectively. 

Pharmacokinetic parameters determined from the non-compartmental 

analysis are shown in Table 4.10. Average Tmax for the oral solution, small 

particle size tablet and large particle size tablet was 0.45 ± 0.11, 1.17 ± 0.21 and 

1.08 ± 0.20, respectively. Results of student’s t-tests showed a significant 

difference in Tmax between the oral solution and the solid oral dosage forms, but 

no difference between the two solid oral dosage forms. Average Cmax for the oral 

solution, small particle size tablet, and large particle size tablet was 62.80 ± 5.51, 

62.52 ± 5.26, and 42.10 ± 6.57, respectively. Results of students t-tests did not 
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show a significant difference in Cmax between the oral solution and small particle 

size tablet dosage forms, but did suggest a significant difference in Cmax between 

the oral solution and large particle size tablets, as well as between the small 

particle size and large particle size tablets. Fraction bioavailable for the oral 

solution and small particle size tablet exceeded unity, with values of 1.27 ± 0.07 

and 1.36 ± 0.14, respectively. Fraction bioavailable for the large particle size 

tablet was 0.94 ± 0.11. A two-compartment disposition model fit the individual 

and average IV data well (Refer to Figure 4.5 and Table 4.11). Individual and 

average absorption profiles for the oral solution, small particle size tablet and 

large particle size tablet dosage forms determined from numerical deconvolution 

are included in Figure 4.7. Multiple plateaus in the individual and average input 

into plasma profiles were observed for all three oral dosage forms and the 

cumulative mass input into plasma exceeded the administered dose of 80 mg. 

Average mass input into plasma for the oral solution, small particle size tablet 

and large particle size tablet at 8 hours after dosing was 110 mg, 118 mg and 

101 mg, respectively. A time lag for the average input into plasma profiles was 

not evident. 

 

In vivo transport parameters 
 The individual and average profiles for input of the oral solution into 

plasma displayed multiple plateaus, with an average of about 90 mg in plasma at 

the first plateau in the average profile within the first hour after dosing. A time lag 

was not evident. The unknown parameters of average emptying and absorption 

rate coefficients were determined by examining the first hour of the average input 

into plasma profile and normalizing the curve by dividing by 90 mg as the 

theoretical dose. As shown in Figure 4.7a, average input into plasma during the 

first hour resembles first-order kinetics. Assuming the minimum estimated value 

of ka of 5.2 h-1 (as described in a previous section), gastric emptying would have 

had to occur extremely quickly, with either a first-order emptying coefficient of 

about 90 h-1 (t0.5 of about 0.5 min) or greater, or a zero-order emptying coefficient 

of about 67.5 fraction of dose/h or greater to describe the average absorption 
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kinetics (Refer to Figure 4.8a.). This case would describe a complete absorption 

rate limitation. However, assuming the maximum estimated value for ka of 234 h-

1, emptying of the solution in a first-order rather than a zero-order manner would 

have had to occur to describe the observed absorption profile, with a first-order 

kge of 5.2 h-1 (t0.5 of 8 min, Refer to Figure 4.8b.). Using this value of kge the 

absorption curve would be equally well described using a ka as low as about 150 

h-1. Given that the aforementioned kge and ka values fall within the extremes of 

the estimated ranges based on the mechanistic analysis, it is possible that the 

actual values fall somewhere in between, leading to a mixed gastric-emptying 

and absorption-rate limitation (Refer to Figure 4.8c). 

The individual and average input into plasma profiles for the small particle 

size tablet displayed multiple plateaus, with an average of about 65 mg input into 

plasma at the first plateau in the average profile within the first hour after dosing. 

A time lag in the average profile was not evident. The unknown parameters of 

emptying and absorption rate coefficients were determined by examining the first 

hour after dosing and normalizing the curve by dividing by 65 mg as the 

theoretical dose. Assuming absorption rate << gastric emptying rate, with the 

same values of ka and kge used for the solution (ka of 5.2 h-1 and a kge of at least 

83 h-1), pH values ranging from 6.4-7.2 in the intestinal lumen yield predictions 

that describe the in vivo data, with a pH of 6.7 describing the profile best (Refer 

to Figure 4.9a). Assuming gastric emptying rate << absorption rate, with the 

same values for kge and ka used for the solution (kge of 5.2 h-1 and the maximum 

estimated value of ka of 234 h-1), pH values ranging from about 6.2 to 6.5 

describe the in vivo profile, with a value of 6.2 describing the profile best (Refer 

to Figure 4.9b). 

The individual and average input into plasma profiles for the large particle 

size tablet displayed multiple plateaus, with an average of about 75 mg absorbed 

at the first plateau in the average profile within the first two hours after dosing. A 

time lag in the average profile was not evident. The unknown parameters of 

emptying and absorption rate coefficients were determined by examining the first 

hour after dosing and normalizing the curve by dividing by 75 mg as the 
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theoretical dose. Assuming absorption rate << gastric emptying rate, with the 

same values of ka and kge used for the solution (ka of 5.2 h-1 and a kge of at least 

83 h-1), pH values ranging from 6.4-7.2 in the intestinal lumen yield predictions 

that describe the majority of the in vivo profile (Refer to Figure 4.10a). Assuming 

gastric emptying rate << absorption rate, with the same values for kge and ka 

used for the solution (kge of 5.2 h-1 and the maximum estimated value of ka of 234 

h-1), pH values ranging from about 6.2 to 6.5 describe the majority of the in vivo 

profile (Refer to Figure 4.10b). 

Predictions using optimal transport parameters together with the in vivo 

profiles for all three oral dosage forms are shown in Figure 4.11. Figure 4.11a 

shows the scenario for absorption rate << gastric emptying rate, assuming a pH 

of 6.7 in the intestinal lumen. Figure 4.11b shows the scenario where gastric 

emptying rate << absorption rate, assuming a pH of 6.4. 

 

Discussion 
 
Plasma profiles and pharmacokinetic analysis  

The multiple peaks displayed in the plasma concentration time profiles 

were unexpected. Numerous examples of multiple peaking phenomena with 

immediate release dosage forms exist in the literature with causes including 

discontinuous gastric emptying, enterohepatic recirculation, binding to highly-

perfused organs, solubility-limited absorption, site-specific absorption, 

complexation, gastric secretion-enteral reabsorption and effects of surgery and 

anesthesia [46]. While the cause of multiple peaks in the present analysis is 

unknown, possible explanations include discontinuous gastric emptying, 

enterohepatic recirculation and binding to a highly perfused organ followed by 

slow release into plasma. As irregular gastric emptying profiles do not always 

lead to double peaks in plasma concentration profiles, it has been suggested that 

the time period and extent of interruption in gastric emptying as well as the 

relative rates of intestinal absorption and elimination from plasma for the drug of 

interest have an effect on the appearance of double peaks in plasma profiles. 
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Metsugi and coworkers examined the relationship between β (rate constant for 

elimination from central compartment for a two-compartment disposition model) 

and ka and found that when ka >> β, the decline in the plasma concentration 

profile is dictated by β and double peaks are diluted. However, when β >> ka, the 

decline in plasma concentration is determined by the absorption rate making it 

more likely that multiple peaks in the gastric emptying curve would lead to double 

peaks in the plasma concentration profile [47]. Oberle and Amidon found variable 

gastric emptying to increase the likelihood of double peaks in the plasma 

concentration profiles of cimetidine in the fasted state in humans [48]. The 

elimination rate of cimetidine from the central compartment was stated to be 0.79 

h-1, with intestinal first order absorption rate coefficients ranging from 3.8 to 6.6 h-

1 in the duodenum and jejunum. Thus ka was only about 5-8 times greater than 

k10, meaning that decline in plasma concentration could have been regulated by 

both absorption and elimination, especially during cases where there was a large 

interruption in gastric emptying. However, in this study β is equal to 0.19 ± 0.03 h-

1 and average ka ranges from about 5.2 to >150 h-1, so ka is upwards of 30 – 800 

times greater than β, making it likely that the decline in the plasma concentration 

profile is dictated by β and double peaks due to variable and discontinuous 

gastric emptying would be diluted. Also, multiple peaking continued to occur later 

than three hours after dosing, which is much longer than a typical MMC cycle (~2 

h). It is unlikely that any fraction of the drug substance would be left in the 

stomach longer than one MMC cycle. 

 Enterohepatic recirculation could be a possible explanation for the multiple 

peaking phenomena. This hypothesis is supported by the fact that multiple 

peaking occurred for the IV dosage form and because the theoretical dose of 80 

mg was exceeded in all dogs for the oral solution and small particle size dosage 

forms, and in 6 out of 8 dogs for the large particle size tablet. Enterohepatic 

recirculation has been confirmed in a study in rats and has been suggested to 

occur in dogs in veterinary literature [49] [50]. Bischoff and Mukai state that drugs 

eliminated in bile such as Ibuprofen can undergo enterohepatic recirculation [51]. 

The multiple peaking phenomena and the fact that the theoretical dose was 
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exceeded may have lead to the values of oral fraction bioavailability being 

greater than unity.  

The pretreatment protocol for the oral solution was designed to raise 

gastric pH to keep the drug in solution in the stomach in the event that the natural 

gastric pH was low. This design should, in theory, prevent precipitation and 

subsequent re-dissolution, leading to the fastest input into plasma compared with 

the solid oral dosage forms. The pretreatment protocols for the small and large 

particle size tablets were designed to keep gastric pH low to prevent dissolution 

of drug in the stomach in the event that the natural gastric pH was high. This 

approach should, in theory, lead to dissolution of the particles upon entry into the 

small intestine at a pH around 6.2-7.2, with faster dissolution of the particles with 

the smaller size distribution (80 µm median) compared to the particles with the 

larger particle size distribution (330 µm median). The corresponding expected 

trend for rate of input into plasma was oral solution > small particle size tablet > 

large particle size tablet. As shown in Figure 4.7d, within the first 45 minutes to 

one hour after dosing the average rate of input into plasma appears to follow the 

expected trend, although the difference may not be statistically significant, 

especially for the small and large particle size tablets. The expected trend for 

Tmax was oral solution < small particle size tablet < large particle size tablet. 

While Tmax is higher for the solid oral tablets compared with the oral solution, 

there is no statistical difference between the small and large particle size tablets. 

This lack of difference could likely be attributed to enterohepatic recirculation or 

another physiological phenomenon, as theoretically the dissolution rate of the 

smaller particles is appreciably faster than the dissolution rate of the larger 

particles in the pH range of 6.2-7.2. The Tmax for the oral solution (0.45 ± 0.11 h) 

is in line with values reported by Ishii and coworkers (0.5 h) and Kimura and 

coworkers (0.35 h) [1], [2]. However, results for the solid oral dosage forms are 

not necessarily in line with those from these authors. Ishii and coworkers 

observed an increase in Tmax of 1.25 h (from 1.25 to 2.5 h) when increasing in 

size from 16 to 149 µm (an increase of 133 µm). Kimura and coworkers observed 

an increase in Tmax of 1 h (from 0.5 to 1.5 h) when increasing in size from < 10 
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µm to 10-200 µm (and increase of ~ 100 µm). In our study Tmax was about 1 hour 

for both the 87 um and 330 um median diameter particles, despite an increase in 

median particle diameter of almost 250 µm. It was expected that Cmax would 

decrease as a function of particle size. While Cmax was the same for the oral 

solution and small particle size tablet (62.80 ± 5.51 vs. 62.52 ± 5.26 µg/ml), it did 

decrease for the large particle size tablet (42.10 ± 6.57 µg/ml). Ishii and 

coworkers saw a decrease in Cmax as a function of particle size (~48, ~38, and 

~32 µg/ml for the oral solution, small particle size tablet, and large particle size 

tablet, respectively). However, Kimura saw similar Cmax values for the oral 

solution and small particle size tablet (~40 µg/ml) and a smaller value for the 

large particle size tablet (~37 µg/ml). Multiple peaks were not observed in the 

data published by Kimura and coworkers or Ishii and coworkers. 

 
In vivo transport parameters  

Estimation of the in vivo transport parameters was conducted using the 

average profiles for input of drug into plasma. For the oral solution the average 

profile appeared to follow first-order kinetics. However it does seem to deviate 

slightly from a first order shape suggesting that perhaps either gastric emptying 

rate or absorption rate may have occurred more quickly over about the first 30 

minutes and then slowed down over the last 30 minutes. Inspection of the 

individual profiles for each dog suggests that they follow mostly a first-order rate 

with a lag time between about 0 and 5 minutes after dosing (Figure 4.7a). 

Evaluation of the profile with the fastest input into plasma suggested a 0-2.5 min 

lag time with a first order input rate of about 25-40 h-1, while evaluation of the 

profile with slowest input into plasma suggested or a lag time of about 5 min with 

a first order input rate in the range of about 4 h-1. 

It is difficult to conclude whether or not gastric emptying rate into the small 

intestine or absorption of drug from the intestinal lumen into the intestinal 

membrane was the rate limiting for the oral solution or whether both processes 

affected the rate at which drug entered systemic circulation. When examining the 

average profile, it is evident that if gastric emptying were rate limiting, then the 
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gastric emptying process would have had to occur via a first order process with a 

constant kge of about 5.2 h-1 over the one-hour period with a ka at least 15-20 

times greater in magnitude (ka > 75 h-1) (Figure 4.8a). Given the estimated range 

for ka of 2.9 to 234 h-1 (Table 4.7), this scenario is certainly possible. If absorption 

into the membrane were the rate-limiting step to systemic availability, then 

average gastric emptying would have occurred near instantaneously via either a 

zero or first order emptying process, with the entire dose empting within about 10 

minutes after ingestion. The average ka would have been about 5.2 h-1, with a kge 

value at least about 15 times higher in magnitude (kge > 75 h-1) (Figure 4.8b). 

While the literature data testing gastric emptying rates of small volumes of 

solution cited in this paper suggest much longer total emptying times, rapid 

emptying of the 6 ml of solution that the drug was dissolved in could have 

emptied within 10 minutes, particularly if it happened to be dosed close to phase 

III of the fasted motility cycle, or if the motility cycle were to have switched to a 

fed state pattern, perhaps due to the anticipation of a meal. Figure 4.8c shows 

the two scenarios discussed above (kge >> ka and ka >> kge), together with a 

curve describing a process whereby both gastric emptying and absorption were 

rate determining, with kge = ka = 10.4 h-1. Comparing the three curves suggests 

that the mixed scenario may be more unlikely since it acts to slow down 

appearance into systemic circulation at the beginning of the profile and speed it 

up at the end of the profile, which is opposite of the observed in vivo profile for 

the average rate of input into plasma. As mentioned in a previous section, and as 

shown in Table 4.8, all three scenarios are possible, but the absorption rate has 

the potential to be much higher than the gastric emptying rate, which may make 

the scenario where absorption rate << emptying rate less probable. 

 Predictions for the solid oral tablets were made assuming either 

absorption rate << gastric emptying rate or gastric emptying rate << absorption 

rate. Due to the dissolution process, several additional variables were added to 

the transport analysis (Refer to Table 4.7). Namely, the pH in the small intestinal 

lumen is unknown, but expected to be in the range of about 6.2-7.2. Without 

knowing the true value of pH (and knowing the likely inter- and intra-subject 
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variability) transport parameters were selected using pH values spanning the 

entire range. For the scenario assuming absorption rate << gastric emptying rate, 

pH values in the range of 6.4-7.2 describe the data for both particle sizes (Figure 
4.9a-b).  For the scenario assuming gastric emptying rate << absorption rate, pH 

values within a narrower range of 6.2-6.5 describe the data (Figure 4.10a-b).  

It was attempted to select common transport parameters that would 

describe input rate into plasma for all three oral dosage forms. As shown in 

Figure 4.11a, assuming absorption rate << gastric emptying rate, with ka = 5.2 h-

1, kge = 83 h-1 and a pH of 6.7, provides reasonable predictions for the rate of 

input into plasma for all three dosage forms. As shown in Figure 4.11b, 

assuming absorption rate >> gastric emptying rate, with ka = 234 h-1, kge= 5.2 h-1 

(t0.5 of 8 min) and an average pH of 6.4 in the intestinal lumen, leads to the 

generation of profiles that describe the average rate of input into plasma for all 

three dosage forms reasonably well. While not shown for the small and large 

particle size tablets, mid-range values for absorption rate and gastric emptying 

rate would likely also explain profiles for the small and large particle size tablets. 

 

Bioperformance dissolution methodology 
In addition to using a physiological transport analysis to aid in predicting 

the bioperformance of a drug product, it is useful to have in vitro tools to help 

understand the effects of physical and chemical properties on kinetic processes 

such as dissolution rate. While computational techniques are essential in making 

estimates of the possible range in performance of a drug product in the highly 

complex GI tract, it can be challenging to accurately predict the dissolution rate of 

all drug products. For instance, dissolution rate of a polydisperse drug substance 

in a complex formulation in a buffer containing multiple components, such as bile 

acids and lipids, may be difficult to accurately predict. While simple USP testing 

methods can be useful in some cases, particularly for Quality Control (QC), they 

do not accurately reflect physiological conditions and thus tend not to be useful 

tools to predict the bioperformance of a drug substance. It is necessary to 

develop a bioperformance dissolution methodology based on physiological 
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conditions of the species of interest as well as on the physicochemical 

characteristics of the drug substance and drug product itself. 

In general, a BCS II weak acid such as Ibuprofen should have a low extent 

of dissolution in the stomach if the gastric pH is low, and a rapid and high extent 

of dissolution in the moderate pH of the small intestine in which the drug 

substance is partially or fully ionized. Therefore, it should not be necessary to 

include a gastric compartment in the dissolution test for the purpose of studying 

the rate of dissolution in a low pH medium, in which little dissolution is likely to 

occur. Based on the transport analysis it was observed that both when 

absorption rate is relatively low (5.2 h-1) and when it is high (> 150 h-1) the 

concentration of Ibuprofen in the intestinal lumen is low compared to its 

saturation solubility. It was observed that the maximum percent drug saturation 

reached for all simulations was less than about 30% (data not shown). These 

simulations were performed assuming a net and continuous intestinal volume of 

50 ml. However, it is likely that the volume of intestinal liquid could range from 

much lower-to-much-higher and be contained within several separate liquid 

pockets. This phenomenon has been observed in humans in the literature [11]. 

Under these conditions it is likely that percent drug saturation had little-to-no 

effect on dissolution rate. If so, then the in vitro bioperformance test could be 

carried out using sink conditions in the intestinal compartment to understand the 

dissolution component at moderate pH conditions (~6.5). Rather than adding an 

intestinal compartment into which drug could partition (simulating absorption into 

the membrane) and keeping a physiologically relevant intestinal volume (such as 

50 ml) a large volume of intestinal medium could be used, such as 900 ml. 

However, to predict the entire absorption profile (and generate a level A IVIVC) 

then one would have to account for either gastric emptying rate, absorption rate 

into the membrane or a combination of the two, depending on which process or 

processes contribute to appearance into plasma. Both processes could 

theoretically be accounted for computationally, depending on the complexity of 

the drug product. 
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Alternatively, one could design an in vitro system that includes the gastric 

emptying component, absorption component or both. Based on the in vivo results 

for Ibuprofen, it is possible that gastric emptying rate << absorption rate into the 

membrane. If that is the case, then gastric emptying is likely a rate-limiting step 

to systemic availability. To achieve a Level A IVIVC it would be necessary to 

introduce drug particles into an in vitro intestinal compartment at a physiologically 

relevant rate, for instance in a first-order manner. This could be achieved by 

either choosing to include a gastric compartment (such as with 250 ml of a pH 2 

buffer) in the test and pumping gastric fluid and non-dissolved drug particles at a 

relevant rate into the intestinal compartment (such as with 900 ml of pH 6.4 10.5 

mM sodium phosphate buffer), or by manually introducing drug particles into the 

intestinal compartment at a similar rate. In vitro systems containing separate 

gastric and intestinal compartments have been discussed in the literature, and 

are often used to study weakly basic drug substances, and those that undergo 

physical form changes [52] [53]. Using the mechanistic transport analysis, 

simulations for such an in vitro test, deemed “gastric single phase” for each 

particle size tablet are included in Figure 4.12 (dashed lines). Disintegrated drug 

particles are emptied with a kge of 5.2 h-1 into 900 ml of “intestinal buffer” (in this 

case pH 6.4 10.5 mM sodium phosphate buffer). In these simulations effects of 

gastric fluid on pH in the intestinal compartment were not taken into account, and 

values for hc, ρ, D, Cs, pKa, and saturation solubility are included in Table 4.12. 
While hc was assumed to be 25 µm for the in vivo simulations, a value of 20 µm 

was deemed to be more appropriate for the in vitro simulations, as discussed in 

Chapter 3. Since it is assumed that ka in vivo is very large, absorption into the 

membrane in vivo should be nearly instantaneous so the amount of drug in 

solution in the aqueous buffer in vitro could be correlated directly with input rate 

into plasma. Simulations for both particle sizes predict the in vivo results well. 

Figure 4.13 shows the same curves for the gastric single-phase test, but also 

includes a curve showing the rate of emptying of drug from the stomach into the 

intestinal compartment (open circles). The curve representing the percent of 

dose in solution for the small particle size tablet is nearly parallel to the curve 
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representing percent of dose emptied into the small intestinal compartment, 

meaning that the rate of appearance of drug in solution is mostly determined by 

emptying rate, with the dissolution process simply adding a time lag or delay in 

appearance of drug in solution. The curve representing the percent of dose in 

solution for the large particle size tablet is not parallel to the curve representing 

percent of dose emptied into the small intestinal compartment, showing that the 

rate of appearance of drug in solution is determined either in all or in part by 

dissolution rate. 

Figure 4.14 shows simulations for in vitro tests carried out in a gastric 

single phase, versus a typical USP-type dissolution test. For the small particle 

size tablet, the curve showing appearance of drug in solution for the test without 

a gastric compartment predicts very rapid and nearly linear input into plasma. 

However, the curve representing appearance of drug in solution for the gastric 

single-phase test shows a delayed appearance in solution with a different shape, 

again confirming the contribution of gastric emptying rate. For the large particle 

size tablet, the two curves representing appearance of drug in solution for an in 

vitro USP-type test and a gastric single phase test are nearly parallel, showing 

that the rate of appearance in solution is controlled mostly by the dissolution rate, 

with the gastric emptying process just adding a delay or shift in appearance of 

drug in solution. For both particle sizes, the USP-type dissolution test 

underestimates the time to reach 75% of the initial dose dissolved by about 17 

minutes. 

Based on the in vivo results for Ibuprofen, it is also possible that 

absorption rate into the membrane << gastric emptying rate. In this case an in 

vitro system that includes an absorption component (but no gastric emptying 

component) would be necessary to achieve a Level A IVIVC. Simulations in such 

an apparatus for each particle size tablet were performed, using the transport 

analysis outlined for dissolution from spherical drug particles and partitioning into 

an organic medium, with transport parameters shown in Table 4.12. These 

simulations assume an interfacial permeation rate (equal to Da/ha, see Equation 
4.31) of 3.0 X 10-3 cm/s across the aqueous-organic interface, vessel diameter of 
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10.1 cm3 (USP II apparatus), buffer volume of 165 ml (to achieve the desired A/V 

and partitioning rate coefficient as outlined in Chapter 2 (and reference [54]), and 

a dose scaled to the larger volume, equal to 65 mg * (165ml/50ml) for the small 

particle size tablet and to 765 mg * (165ml/50ml) for the large particle size tablet. 

The amount of drug in the organic medium as a function of time can be 

correlated directly with input into plasma in vivo. As shown in Figure 4.12 the 

simulations for both particle sizes predict the results well. While a pH of 6.4 was 

chosen for these simulations, a pH of 6.7 also leads to reasonable predictions of 

the in vivo input rate into plasma for both particle sizes (data not shown). As 

demonstrated in Figure 4.15, dissolution rate appears to be the rate-limiting step 

to appearance of drug in solution in 1-octanol for both the small and large particle 

size tablet (green and red lines are parallel). 

As shown in Figure 4.12, developing an in vitro test based on either 

scenario (emptying rate << absorption rate or absorption rate << emptying rate) 

should lead to reasonable predictions for input into plasma in vivo. 

 
Conclusions 
 

The purpose of this study was to determine in vivo dissolution and 

absorption rates of the model compound ibuprofen in dogs under well-controlled 

conditions and determine potential bioperformance dissolution methodologies 

that could be used to establish IVIVCs. A simple mechanistic analysis was 

developed to understand the influence of the major transport steps to 

appearance of drug in the bloodstream in vivo (gastric emptying, dissolution, and 

absorption), and also to aid in developing potential in vitro bioperformance 

dissolution methodologies. 

 Two different types of in vitro bioperformance dissolution methodologies 

were proposed depending on the relative rates of gastric emptying and intestinal 

absorption, both of which are predicted to be adequate in describing the average 

in vivo plasma profiles for the two different particle size tablets using simulations 

based on an in vitro transport analysis. For the case when gastric emptying rate 
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<< absorption rate, it is advised to introduce the drug particles at a 

physiologically relevant rate (such as in a first order manner) to a large volume of 

intestinal buffer. For the case when absorption rate << gastric emptying rate, it is 

advised to empty drug particles as a bolus into a physiological volume of 

intestinal buffer, but to include a separate absorption compartment into the 

dissolution test (such as using an organic medium such as 1-octanol). Further 

data, which was not collected in the present study, such as an independent 

measure of the gastric emptying rate and/or effective permeation rate of 

Ibuprofen across the dog intestine, would be required to select the most relevant 

methodology. Due to the absence of either a gastric emptying step or an 

intestinal absorption step, a conventional single-phase (e.g. USP) dissolution test 

was predicted to significantly underestimate time to reach seventy-five percent of 

the dose into plasma. 

While in actuality in vivo drug transport displays significant complexity and 

heterogeneity, an advantage of the current analysis is that it can be used to 

describe average transport rates in a manner that allows for selection of simple 

and practical in vitro biopredictive methodologies. While the current work is 

specific to Ibuprofen, it could be extended to other BCS 2 weak acids, simply by 

modifying the drug physicochemical properties required in the mechanistic 

model, which can all be measured or estimated a priori of in vivo data. More 

sophisticated techniques such as Monte Carlo simulation would be useful in 

explicitly describing the in vivo heterogeneity arising from highly variable 

physiological and drug physicochemical properties. 
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Tables and Figures 
 
Table 4.1. Rapidly disintegrating tablet formulation compositions 
 
Component Mass per tablet % per tablet 
 mg % 
Ibuprofen 80.0 16.0 
Spray-dried lactose 201.0 40.2 
Microcrystalline cellulose ph 102 201.0 40.2 
Crospovidone 18.0 3.6 
Total 500.0 100.0 
 
 

Table 4.2. Compositions of pretreatment solution and Ibuprofen oral 
solution 
 
 Ibuprofen 

acid 
BIS-TRIS 

Base 
HCl NaCl Total 

volume 
 M M M M L 
Pretreatment 
solution 

0 0.5 0.13192 0.0217 0.019 

Ibuprofen oral 
solution 

0.06466 0.5 0 0 0.006 

	
  
	
  
Table 4.3. Composition of pretreatment solution to administer prior to 
tablet dosing 
 

 HCl KCl NaCl Total 
volume 

 M M M L 
Pretreatment 
solution 0.013 0.05 0.097 0.024 
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Table 4.4. Ratio of small intestinal surface-area-to-liquid volume (A/V) 
 

% 
compression a  b  Length 

Surface 
area A/V 

% cm cm cm cm2 cm-1 
90 0.1 0.7 451.3 1417.8 28.4 
89 0.06 0.70 410.48 1289.56 25.79 
85 0.1 0.7 301.8 948.2 19.0 
75 0.13 0.70 182.94 574.74 11.49 
50 0.25 0.66 96.25 302.37 6.05 
25 0.38 0.60 70.80 222.42 4.45 
0 0.50 0.50 63.66 200.00 4.00 

 
 
Table 4.5. Comparison of dog and human liquid secretion and absorption in 
the small intestine 
 
Parameter Value in dogs Value in humans 
Salivary secretions 
(resting) (ml/min) 

0.34-4.24a 0.25-0.35b 

Gastric acid secretions 
(basal) (mM/h) 

0.1c 0.4-5.8d 

Intestinal secretion of 
HCO3- (mM/h) 

0.2e 0.38f 

Pancreatic secretions 
(mEq/L) 

23.9g 20-25h 

Bile input rate 
(ml/day/kg) 

19-36 i 
(190-360 ml/day assuming 

10 kg dog) 

2.2-22.2j 

(154-1554 ml/day assuming 
70 kg human) 

Water absorption rate 
(ml/min) 

0.171 +/-0.044 (basal)k 

1-2.4 ml/min (after 75 ml of 
solution with varying 

tonicity)l  

4.7 (average per day)m 

a Reference [14], b Reference [15], c Reference [16], d Reference [17], e Reference 
[18], f Reference [19], g Reference [20], h Reference [21], i Reference [22], j Reference 
[23], k Reference [24], l Reference [25]   m Reference [26] 
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Table 4.6. Ibuprofen physicochemical properties and dimensionless 
numbers relevant to the current analysis 
 
Property Value 

Diffusion coefficient in water at 37 °C 7.5 X 10-6 (unionized)a 

7.6 X 10-6 cm2/s (ionized)a 

Intrinsic solubility at 37 °C 0.066 mg/mlb, 0.068 mg/mlc 

Apparent pKa at 37 °C 4.4b, c (not corrected for ionic strength) 

True density 1.1 g/cm3 d 

Log partition coefficient (pH 1.5) 3.8 e 

Dose number, Do 47.7 f, 0.37 g, 0.04 h 

Dissolution number, Dn 14 (87 µm, bulk pH 6.2)i, 1 (330 µm, bulk 

pH 6.2)i, 41 (87 µm, bulk pH 7.2)i, 3 (330 

µm, bulk pH 7.2)i 

Absorption number, An 9 (A/V = 4 cm-1, Peff = 2 X 10-4 cm/s)j, 

702 (A/V = 26 cm-1, Peff = 25 X 10-4 

cm/s)j 

a Calculated using the method of Hayduk and Laudie [48]. 
b Shaw and coworkers based on best-fit curve to pH-solubility profile [49]. 
c Levis and coworkers based on best-fit curve to pH-solubility profile (ionic strength 

values of buffers ranged from 0.15 to 0.37 M) [39]. 
d Reference [50]. 
e Reference [6]. 
f Do = Maximum dose/250 ml/minimum solubility. Based on maximum dose of 800 mg 

and minimum solubility of 0.067 mg/ml, ref [47] 
g Do = dose given to dogs/estimated dog intestinal volume/calculated Cs in bulk 

medium at pH 6.2 (80 mg/50 ml/4.3 mg/ml) 
h Do = dose given to dogs/estimated dog intestinal volume/calculated Cs in bulk at pH 

7.2 (80 mg/50 ml/42.3 mg/ml) 
i Dn = 3DCs/ρ/r2 × tres, where Cs = pH at the particle surface (Cs = 5.6 for bulk pH 6.2, 

and Cs = 6.1 for bulk pH 7.2 for 10.5 mM phosphate) and tres = 3 h, ref [47] 
j An = A/V Peff × tres, where tres = 3 h, ref [47] 
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Table 4.7. Maximum estimated stomach emptying, dissolution and 
intestinal absorption rates for Ibuprofen 
 

Median Particle 
Diameter 

Stomach Emptying 
(First-order)a 

dFe,t/dt 

Dissolutionb 

dFd,o/dt 
Absorptionc 

dFab,t/dt 

µm h-1 h-1 h-1 

87 

1.2 – 4.6 

pH 6.2: 12.4 

pH 7.2: 37.6  
1.4 – 117 

330 
pH 6.2: 2.4 

pH 7.2: 7.2 
a Calculated according to Equations 4.9 and 4.10. 
b Calculated according to Equation 4.33, where Cs,o = 5.6 for a bulk pH of 6.2, Cs,o = 

6.1 for a bulk pH of 7.2, heff,o = hc = 25 µm, and a dose of 80 mg. Additional parameter 

values can be found in Table 4.6. 
c Calculated according to Equations 4.26 and 4.27, assuming the fraction of drug in 

solution in the intestinal lumen is never greater than 0.5. 
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Figure 4.1. Flow diagram describing the major transport steps involved in 
drug absorption in dog after ingestion of the oral solution 
Shaded portions outlined with dashed lines represent dissolved drug. 
 
 
 
 

 
Figure 4.2. Flow diagram describing the major transport steps involved in 
drug absorption in dog after ingestion of tablets 
Small circles represent solid drug particles and shaded portions outlined with dashed lines 
represent dissolved drug. 
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Table 4.8. Values of transport parameters used in the analysis of in vivo 
input into plasma profiles 
 
Parameter Oral solution Solid tablets 

A/V Varied from 4 to 26 cm-1 Varied from 4 to 26 cm-1 

Peff Varied from 2 X 10-4 cm/s to 
25 X 10-4 cm/s 

Varied from 2 X 10-4 
cm/s to 25 X 10-4 cm/s 

ka (A/V* Peff) 2.9 – 234 h-1 2.9 – 234 h-1 

Buffer species Phosphate Phosphate 

Buffer pKa N/A 6.8 

Buffer concentration N/A 10.5 mM 

pH N/A 6.2 - 7.2 

ke (first-order) 
ke (zero-order) 

1 to 90 h-1 (t0.5 = 0.5-40 min) 
1 to 67.5 fraction of dose/h 
(t0.5 = 0.5-40 min) 

1 - 90 h-1 (t0.5 = 0.5-40 
min) 
 

hc - 25 µm 

ρ - 1.1 g/cm3 

drug pKa N/A 4.4 

D N/A 7.6 X 10-6 cm2/s 

Va N/A 50 ml 

Cs N/A 0.068 mg/ml 

Saturation solubility N/A Cs(1+10pH-pKa) 
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Figure 4.3. Particle size distributions by mass for the 80 and 310 µm 
median diameter sieve cuts of Ibuprofen determined using Microscopy 
 

 

Table 4.9. Particle characteristics of 87 and 330 µm median diameter sieve 
cuts of Ibuprofen 
 

Median equivalent 
spherical diameter 

by mass 

Median L X W 
X T by mass  D90/D50 

Mean 
thickness-to-

width ratio 

No. of 
particles 

measured 
µm µm - - no. 

87 116 X 73 X 41 1.2 0.56 307 

330 479 X 294 X 
134 1.2 0.45 300 
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Figure 4.4a. Individual plasma concentration profiles for IV formulation 
 

 
Figure 4.4b. Individual plasma concentration time profiles for the oral 
solution 
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Figure 4.4c. Individual plasma concentration time profiles for the small 
particle size tablet 
 
 

 
Figure 4.4d. Individual plasma concentration time profiles for the large 
particle size tablet 
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Figure 4.5. Average IV plasma concentration profile with two-compartment 
model 
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Figure 4.6a. Average plasma concentration time profile for the oral solution 
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Figure 4.6b. Average plasma concentration time profiles for the small and 
larger particle size tablets 
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Table 4.10. Pharmacokinetic parameters generated from non-
compartmental analysis performed on the first 8 hours after dosing. 
Values are given as average of all six subjects ± SE 
 

Parameter IV Oral solution Small particle 
size 

Large particle 
size 

Cmax (µg/ml) 60.38 ± 4.23 62.80 ± 5.51 62.52 ± 5.26 42.10 ± 6.57 

tmax (h) 0.20 ± 0.03 0.45 ± 0.11 1.17 ± 0.21 1.08 ± 0.20 

λz (h-1) 0.30 ± 0.03 0.39 ± 0.05 0.33 ± 0.03 0.34 ± 05 

AUClast (µg/ml h) 155.72 ± 
14.58 

207.17 ± 
16.53 

204.41 ± 
10.90 

174.23 ± 
19.71 

AUCInf_obs 
(µg/ml h) 

176.79 ± 
21.38 

218.76 ± 
19.85 

228.65 ± 
17.06 

204.93 ± 
32.65 

CL_obs (ml/h) 492.00 ± 
68.24 492 ± 68.24 492 ± 68.24 384.27 ± 

41.26 

Vz_obs (ml) 1639.81 ± 
128.83 

1278.96 ± 
140.80 

1479.81 ± 
89.44 

1216.72 ± 
148.80 

F - 1.27 ± 0.07 1.36 ± 0.14 0.94 ± 0.11 
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Table 4.11. Primary and secondary parameters from IV two-compartment 
disposition model 
	
  

Parameter Average SE 

A (µg/ml) 40.87 1.55 

B (µg/ml) 25.77 1.55 

Alpha (hr-1) 0.98 0.14 

Beta (hr-1) 0.19 0.03 

AUC (hr µg/ml) 202.40 33.42 

k10 (1/hr) 0.36 0.05 

k12 (1/hr) 0.29 0.07 

k21 (1/hr) 0.51 0.13 

Cmax (µg/ml) 66.64 4.22 

V1 (ml) 1225.65 80.62 

CL (ml/hr) 451.65 73.20 

Vss (ml) 2006.41 175.95 

V2 (ml) 780.76 169.44 

CLD2 (ml) 332.18 58.73 
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Figure 4.7a. Cumulative mass transported into plasma for the oral solution 
over 8 hours 
Average profile is for all six subjects with error bars representing ± SE. 
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Figure 4.7b. Cumulative mass transported into plasma for the small particle 
size tablet over the first 8 hours 
Average profile is for all six subjects with error bars representing ± SE. 

0 

20 

40 

60 

80 

100 

120 

140 

160 

180 

0 1 2 3 4 5 6 7 8 

C
um

ul
at

iv
e 

m
as

s 
ab

so
rb

ed
, m

g 

Time, h 

1084217 
1516788 
1685857 
1686047 
1825276 
5730295 
average 



	
   193	
  

 
Figure 4.7c. Cumulative mass transported into plasma for the large particle 
size tablet over the first 8 hours 
Average profile is for all six subjects with error bars representing ± SE.  
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Figure 4.7d. Cumulative average and individual mass transported into 
plasma for the oral solution, small particle size tablet and large particle size 
tablet over the first 2 hours after dosing 
Average profiles shown using thick lines and individual profiles shown using thin lines (oral 
solution in red, small particle size tablet in green and large particle size tablet in blue). Error bars 
represent ± SE.	
    

0 

20 

40 

60 

80 

100 

120 

140 

160 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

C
um

ul
at

iv
e 

m
as

s 
ab

so
rb

ed
, m

g 

Time, h 



	
   195	
  

 
	
  
Figure 4.8a. Percent input into plasma versus time for the oral solution 
assuming gastric emptying rate << absorption rate 
Assumes first order kge is equal to 5.2 h-1 (t0.5 emptying = 8 min-1). Gastric emptying is the rate 
limiting step in this scenario when ka is between ~100-250 h-1. 
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Figure 4.8b. Percent input into plasma versus time for the oral solution 
assuming absorption rate << gastric emptying rate 
Assumes first order absorption with ka equal to 5.2 h-1. Emptying must be near instantaneous with 
a first order kge of at least about 83 h-1 to match in vivo profile. 
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Figure 4.8c. Percent input into plasma versus time for the oral solution 
assuming gastric emptying rate << absorption rate (kge = 5.2 h-1, ka = 234 h-

1), absorption rate << gastric emptying rate (ka = 5.2 h-1, kge = 83 h-1 and 
absorption rate ≈ gastric emptying rate (ka = kge = 10.4 h-1). 
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Figure 4.9a. In vivo profile analysis for small particle size (87 µm median) 
assuming absorption rate << gastric emptying rate 
Profile as a function of pH for a buffer concentration of 10.5 mM. t0.5 of 0.5 min for a ka value of 
5.2 h-1, and a kge value of 83 h-1. 
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Figure 4.9b. In vivo profile analysis for large particle size (330 µm median) 
assuming absorption rate << gastric emptying rate 
Profile as a function of pH for a buffer concentration of 10.5 mM. t0.5 of 0.5 min for a ka value of 
5.2 h-1, and a kge value of 83 h-1. 
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Figure 4.10a. In vivo profile analysis for small particle size (87 µm median) 
assuming gastric emptying rate << absorption rate 
Profiles at pH values ranging from 6.2-6.5 for a buffer concentration of 10.5 mM. t0.5 of 8 min (kge 
value of 5.2 h-1) and ka of 234 h-1. 
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Figure 4.10b. In vivo profile analysis for large particle size (330 µm median) 
assuming gastric emptying rate << absorption rate 
Profiles at pH values ranging from 6.2-6.5 for a buffer concentration of 10.5 mM. t0.5 of 8 min (kge 
value of 5.2 h-1) and ka of 234 h-1. 
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Figure 4.11a. Predictions for oral solution, small particle size tablet and 
large particle size tablet at a pH of 6.7 assuming absorption rate << gastric 
emptying rate 
ka = 5.2 h-1 and kge = 83 h-1 (t0.5 = 0.5 min) 
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Figure 4.11b. Predictions for oral solution, small particle size tablet, and 
large particle size tablet at a pH of 6.4 assuming gastric emptying << 
absorption 
ka = 234 h-1 and kge = 5.2 h-1 (t0.5 = 8 min) 
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Table 4.12 Values for transport parameters used in the in vitro simulations 
 
Parameter Gastric single 

phase Two phase USP 

A/Va - 0.5 - 

Peff - 30 X 10-4 cm/s - 

Buffer species Phosphate Phosphate Phosphate 

Buffer pKa 6.8 6.8 6.8 

Buffer concentration 10.5 mM 10.5 mM 10.5 mM 

pH 6.4 6.4 6.4 

kge (first-order) 5.2 h-1 - - 

hc 20 µm 20 µm 20 µm 

ρ 1.1 g/cm3 1.1 g/cm3 1.1 g/cm3 

drug pKa 4.4 4.4 4.4 

DHA 7.6 X 10-6 cm2/s 7.6 X 10-6 cm2/s 7.6 X 10-6 cm2/s 

Va 900 ml 165 ml 900 ml 

Cs 0.068 mg/ml 0.068 mg/ml 0.068 mg/ml 

Saturation solubility Cs(1+10pH-pKa) Cs(1+10pH-pKa) Cs(1+10pH-pKa) 
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Figure 4.12. Simulations for two different types of in vitro dissolution 
methodologies compared with average in vivo input into plasma profiles  
Simulations performed at a pH of 6.4 
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Figure 4.13. Percent dissolved versus time compared with percent emptied 
versus time in an in vitro gastric single-phase apparatus for the small and 
large particle tablets 
Simulations performed at a pH of 6.4 
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Figure 4.14. Percent dissolved versus time in an in vitro gastric single-
phase apparatus versus an in vitro USP-type apparatus for the small and 
large particle tablets 
Simulations performed at a pH of 6.4 
 



	
   208	
  

 
Figure 4.15a. Simulations for 87 µm median particles dissolving in 165 ml 
of a pH 6.4 10.5 mM sodium phosphate buffer in a two-phase dissolution 
apparatus 
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Figure 4.15b. Simulations for 330 µm median particles dissolving in 165 ml 
of a pH 6.4 10.5 mM sodium phosphate buffer in a two-phase dissolution 
apparatus 
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