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Abstract 

 

In this dissertation, I report the development of a nanoimprint-lithography-based method 

of fabricating a wire grid polarizer (WGP), which greatly relaxes patterning and etching 

requirements and can be easily applied to produce flexible WGPs. Nanoimprinting is a simple and 

cheap large-area nanofabrication process. To date, WGPs were fabricated by electron beam 

lithography. Although electron beam lithography has a high resolution and good profile, it is slow 

and expensive. Therefore, electron beam lithography is not suitable for large-area nanofabrication. 

To fabricate larger WGPs, nanoimprinting lithography is one of the best processes. 

Resists are very important materials used in nanoimprint lithography. WGP resolution and 

material brittleness have somewhat limited the choice of previous resists used for nanoimprinting. 

Hence, I developed an epoxy resist whose physical properties were tuned by adjusting the ratio of 

bisphenol F-type to acrylonitrile-butadiene rubber (NBR)-based epoxy resins in the resist 

formulation. The mechanical properties of the resist were tuned to obtain various aspect ratios and 

mold flexibility for conformal contact over nonplanar surfaces and large areas. 
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Roll-to-roll nanoimprint lithography is a very attractive method of manufacturing micro- 

and nanopatterns owing to its large-area patterning capabilities, high throughput, and low cost. 

Material flexibility is one of the most important requirements in roll-to-roll nanoimprint 

lithography. Commercially available bisphenol F-type epoxy resin is much less expensive than 

other resins, so it is a widely used construction polymer. NBR rubber is also widely used. Hence, 

the resist formulation I developed could be used to industrially mass-produce nanostructures. In 

addition, I used atomic layer deposition to fabricate 20-nm-linewidth, 9:1-aspect-ratio ultrasmall 

nanostructures. My method is faster and more economical than electron beam lithography. 

I used nanoimprint lithography to pattern a high-aspect-ratio, narrow-linewidth grating and 

subsequently deposited two aluminum layers angled in opposite directions to efficiently fabricate 

the large-area WGP. Anisotropic reactive-ion etching was used to remove the aluminum layer 

deposited on top of the grating while retaining that on the grating sidewalls, thereby forming a 

metal wire grid whose spacings were much smaller than those of a lithographically defined grating. 

The WGP showed good optical properties in the visible range. I encapsulated the WGP in a thin 

layer of poly(methyl methacrylate) (PMMA) for practical use, and the encapsulated WGP worked 

well in the visible range.
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Chapter 1 

Introduction: background of nanoimprint lithography and 

polarizer 

 

1.1. Motivation of nanoimprint lithography 

 

 Various methods of fabricating and tuning nanostructures are becoming increasingly 

important as industry develops. Regular, well-ordered nanostructures are being widely studied 

because they can be used in various applications. The structures whose patterns are <100 nm are 

called “nanostructures.” Electron beam lithography is one of the most widely used methods of 

fabricating nanostructures [5, 10, 20, 74, 91]. Conventional electron beam lithography limits 

nanostructure feature size to 8 nm [23]. Attempts have recently been made to fabricate 

nanostructures showing 5 nm feature size [60]. However, electron beam lithography is slow, and 

not only the electron beam lithography tool but also its maintenance are expensive [19]. Thus, 

electron beam lithography is unsuitable for large-area nanofabrication. Nanoimprint lithography 

was subsequently invented to overcome these disadvantages. 
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1.2. Nanoimprint lithography 

 

Nanoimprint lithography is an emerging technology that promises high-throughput 

nanostructure patterning. It is currently being used to fabricate electronic devices, biological 

nanosensors, and optical devices. The principle of nanoimprint lithography is quite simple. 

Nanofeatures are defined on the surface of a hard mold, which is used to emboss them into a 

polymer cast onto a wafer substrate under controlled temperature and pressure [35]. Although 

polymers were initially molded during early nanoimprint lithography development, monomers 

have been recently used in nanoimprint lithography. And the monomers were polymerized during 

the process of nanoimprint lithography [7, 52, 90]. Comparing the nanostructures produced using 

numerous polymers and monomers has shown that detailed nanostructures can, in fact, be 

fabricated using monomers. But when monomers are used in nanoimprint lithography, the volume 

of the nanostructures are reduced during polymerization [79], thereby making it difficult to control 

the exact size of nanoimprint-lithography-fabricated nanostructures. Prepolymers could be used 

instead of monomers during nanoimprint lithography, which requires using many materials 

showing various physical properties to imprint a diverse range of nanostructures. I will introduce 

nanoimprint lithography materials whose physical properties can be tuned simply by changing the 

ratio of the mixture components. Furthermore, I will introduce a method of fabricating smaller 

nanostructures. 
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Figure 1. 1. Schematic illustrating nanopattern fabrication by soft nanoimprinting with flexible 

molds. Left and right columns show patterning dense dot and hole arrays, respectively, from 

complementary molds. Left and right bottom panels show some demolding failures[47]. 

 

1.2.1. Nanoimprint lithography materials 

  

Using appropriate materials is the key in nanoimprint lithography because they determine 

which curing methods are used. For example, polydimethylsiloxane (PDMS) is commonly used 

because of its flexibility and low surface energy. However, it shows high viscosity—SYLGARD® 

184 (Dow Corning) = 3900 mPa s—thus, the material flow limits the fabrication process resolution 

for sub-100-nm pattern geometries [50, 54, 101]. Further, its relatively low Young’s modulus can 
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lead to structural problems in pattern-transfer elements, especially for high-aspect-ratio 

nanostructures [14]. 

Thermoplastic polymers have been widely used as resist layers for nanoimprint lithography 

[80]. However, such polymers show very high viscosities even when heated above their glass 

transition temperatures (Tg). Consequently, fabricating high-aspect-ratio nanostructures typically 

requires high pressures and long imprinting times, which considerably decreases throughput. 

Hence, using photocurable materials, which can be imprinted at room temperature, is preferred for 

nanopatterning to achieve the high throughput required for high-volume industrial nanofabrication 

[37]. 

To resolve the issues, the photocurable epoxysilsesquioxane (SSQ) resins were synthesized 

and they were used as functional patterning layers in high-resolution, large-area nanoimprint-

lithography applications [77]. Incorporating photocurable epoxy groups enables nanoimprinting 

to be completed within seconds at room temperature, and the phenyl groups enhance the Young’s 

modulus of the material [77]. However, cured SSQ is too brittle, so we developed a nanoimprint 

resist flexible enough to fabricate high-aspect-ratio nanostructures. 

 

1.2.2. Roll to roll nanoimprint lithography. 

  

The roll-to-roll nanoimprint lithography was used to continuously fabricate large-area 

nanopatterned structures in order to further scale processing [4, 43, 44, 69, 93, 99]. In roll-to-roll 

nanoimprint lithography, a flexible nanostructured mold wrapped around a roll makes contact with 

another roll to which a substrate coated with UV-curable resist is attached and produces a 
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nanopattern as the rolling proceeds under slight pressure and UV curing to crosslink the resist [61, 

70, 85]. 

 

  

Figure 1. 2. (a) Illustration of overall metal-insulator-metal (MIM)-based nanostructure 

fabrication. Roll-to-roll nanoimprint lithography, schematically depicted in detail in (b), was 

used to continuously transfer SSQ pattern onto MIM-deposited polyethylene terephthalate (PET) 

substrate. Flexible large-area PDMS mold showing hole pattern (c) is rolled over conformally 

contacted SSQ-coated Al/SiO2/Al/PET substrate, imprinting SSQ dot pattern with very thin 

residual layer (d) [70].  
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1.3. Motivation of fabricating wire grid polarizer 

Polarizers are widely used in display technologies. Wire grid polarizers (WGPs) consist of 

subwavelength periodic metal lines [48, 86, 98]. The WGP polarization spectrum corresponds to 

the periodic spacing of the metal lines. Early WGP nanopatterns were periodically spaced >1 µm 

apart because nanotechnology was not well developed; therefore, early WGPs were used to 

polarize infrared light [9]. The periodic spacing of visible light polarizers should be hundreds of 

nanometers. WGPs can currently be fabricated using electron beam lithography, which is slow and 

very expensive. Hence, WGPs do not commercialize well for display applications even though 

they are more efficient and compact than conventional polarizers [6]. I used nanoimprint 

lithography with relaxed conditions, which enables large-area WGPs to be economically fabricated. 

 

1.3.1. WGP principle 

 

 A WGP consists of a grid of parallel wires, which reflect one polarization of incident 

electromagnetic radiation while transmitting another. The grid period should be smaller than half 

the incident light wavelength [102]. In other words, the transverse electric (TE) field running along 

the direction of a metal wire induces free electrons to move along the wire because light is 

composed of electromagnetic fields. Thus, the polarized light is reflected similar to light reflecting 

from a metal surface. However, electrons cannot traverse very far between metal wires when 

incident light is used to apply an electric field perpendicular to the wires, so a transverse magnetic 

(TM) field is transmitted through WGPs [40]. 
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Figure 1. 3. Schematic of designed Al WGPs embedded in PDMS [40]. 

 

1.3.2. Conventional polarizers 

 

 Conventional polarizers are most commonly fabricated by treating polyvinyl alcohol 

chains with iodine and subsequently annealing the chains to stretch and align them [34]. The 

resulting iodine/polyvinyl alcohol chains appear as atomic-scale WGPs. The electrons on iodine 

can move parallel to the aligned polyvinyl alcohol chains but cannot traverse the chains. However, 

conventional polarizers absorb 60% of the incident light [30]. The optical efficiencies of displays 

are very important, so WGPs could be good candidates to prevent absorption loss. Conventional 

polarizers must also be coated with a hydrophobic protection layer because polyvinyl alcohol 

easily dissolves in water. Fabricating thin conventional polarizers is difficult because the 
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protection layer is thick. A widely used protection layer is ~200-µm-thick triacetyl cellulose film 

[67]. Further, iodine polarizers are not durable under harsh conditions because iodine sublimates 

[59]. Recent research has focused on substituting the iodine with dye molecules [38], and WGPs 

simply fabricated using nanoimprint lithography are one of the best substitutes for iodine polarizers. 

 

Figure 1. 4. Triacetyl cellulose films used to protect liquid crystal display (LCD) polarizer [67].
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Chapter 2 

Nanoimprinting ultrasmall and high-aspect-ratio structures 

by using rubber-toughened UV cured epoxy resist 

 

2.1. Introduction 

 

The ability to fabricate and manipulate nanostructures has played an important role in 

modern science and technology, especially for electronic, optical, and nanoelectromechanical 

devices, and nanometer-scale biological sensors [36, 49, 76, 77, 84]. Conventional methods, such 

as photolithography and electron-beam lithography, used for fabricating nanostructures [66] are 

generally too costly to be suitable for many applications. Unconventional methods, such as 

nanoimprinting and soft lithography, provide simpler and cheaper alternative routes for 

nanoscale fabrication. Both nanoimprinting and soft lithography are parallel processes in which 

various patterns are simultaneously formed by the physical contact of a hard or soft mold with 

the targeted substrate.
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The imprint lithography based on a hard and rigid master mold can provide resolutions down to 

a few nanometers. However, it requires extremely flat surfaces or very high pressures for 

conformal coating of the substrate [18]. The soft lithography technique, based on a soft mold 

typically made of PDMS, does not necessarily require high pressure or a flat surface. However, its 

resolution capability is limited [25, 51, 56]. Additionally, in the sub-micrometer range, the PDMS 

mold loses its mechanical integrity and deforms into unexpected shapes [21, 42]. 

In order to overcome these problems, several approaches such as the step and flash method by 

using a relatively small area mold [8], low-pressure nanoimprint lithography using the 

fluoropolymer [46], utilizing modified PDMS [29, 68, 81], or alternative materials in soft 

lithography [75, 92] have been considered. Nevertheless, certain basic problems such as the 

requirement of an expensive quartz mold in the step and flash imprinting, relatively long 

processing time in the low-pressure imprinting, and pattern collapse in soft lithography when the 

features are fine and dense with a high aspect ratio, were found. As these problems were inherently 

related to the mold material, there was a need to engineer new imprint molds that can provide high 

rigidity sufficient for fine and dense features with a high aspect ratio and an additional degree of 

flexibility for the conformal contact over non-planar and large area surfaces.  

UV nanoimprinting is most desirable from the processing speed point of view. Cationic 

polymerization is preferred for UV nanoimprinting as free-radical polymerization suffers from 

oxygen inhibition [36]. Moreover, as epoxy functional groups can be polymerized through the 

cationic ring opening polymerization, many monomeric compounds having epoxy functional 

groups have been exploited in nanoimprinting research [2, 3, 15, 45, 58, 73]. All the synthesized 

compounds have distinct physical properties such as modulus and tensile strength after curing, and 

thus, when a different physical property is needed, the modification of epoxy functional 
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compounds is difficult.  

Epoxy resins constitute one of the most important classes of thermosetting polymers, and they 

have been extensively used as high-performance adhesive composite materials due to their 

outstanding mechanical and thermal properties such as high modulus and tensile strength, low 

creep, high glass transition temperature, high thermal stability, and moisture resistance [87]. 

However, in the cured state, epoxy resins are brittle and have fracture energies approximately two 

orders of magnitude lower than those of engineering thermoplastics. In order to endure the strong 

mechanical stress during mold separation, it is important to increase the fracture energy so that the 

integrity of the imprinted resist patterns can be maintained. One of the most successful methods to 

toughen epoxy resins is the incorporation of a rubber phase into the brittle epoxy matrix. This is 

achieved through incorporating reactive liquid rubber or preformed rubber particles with reactive 

functional end groups such as carboxyl, amine, or epoxy [12, 27, 57, 63, 78].  

In this study, a new resist formulation for nanoimprinting using a similar strategy of 

introducing rubber-containing moieties into the epoxy resist formulation is considered. The 

method is capable of tuning the properties of epoxy resins from hard to soft by adjusting the ratio 

of bisphenol F-type epoxy resin and acrylonitrile-butadiene rubber (NBR)-based epoxy resin in 

the formulation of resist. Additionally, a simple and easy method to fabricate the high-aspect-

ratio structures and the ultrasmall structures by two consecutive nanoimprintings with atomic 

layer deposition (ALD) [31] to narrow the trench width of the mold patterns is introduced. The 

residual layer of the imprinted pattern can be easily removed using standard oxygen-based 

reactive ion etching (RIE), and the pattern can be transferred into a silicon substrate by using the 

remaining nanopattern as a mask. Compared with previously developed SSQ resist [76, 77], the 
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new material offers a distinct advantage in that the Si or silica mold can be cleaned by O2 plasma 

treatment without affecting the mold structures. 

 

2.2. Experimental 

 

2.2.1. Materials and instruments 

 

1H,1H,2H,2H-perfluorodecyltrichlorosilane was purchased from Gelest and bisphenol F-

type epoxy resin (YDF-170) and NBR-based epoxy resin (R-1309) were purchased from Kukdo 

Chemical (Korea). Propylene glycol monomethyl ether acetate (PGMA) and triarylsulfonium 

hexafluoroantimonate salt (50 wt% in propylene carbonate) were purchased from Aldrich 

Chemical. The triarylsulfonium hexafluoroantimonate salt was used as a photoacid generator 

(PAG). The modulus and tensile strength were measured using a universal testing machine 

(Instron5944), and the samples of the materials were formed as films. A Nanonex imprinting tool 

(NX2000) with vacuum capability and UV curing system was used for the nanoimprinting. ALD 

was performed by OpAL (Oxford Instruments) [22], and an IR spectrum was obtained from the 

IFS 66/S (Bruker Optics). The curing was monitored using the IR spectrum obtained before and 

after the curing of nanoimprinting. In order to estimate the toughness and impact strength of the 

rubber-modified epoxy polymer, the material was measured by using an Izod impact tester (IM-

705C) according to ASTM D256. A minimum of six specimens were tested, and the average results 

were recorded.  
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2.2.2. Nanoimprinting of modulus-tunable UV cure epoxy resist 

 

An original silicon oxide master mold was vapor-coated with 1H,1H,2H,2H-

perfluorodecyltrichlorosilane in order to achieve easy mold release after the imprinting and curing 

process. The nanoimprint resist formulation was made by dissolving the bisphenol F-type resin 

and NBR-based epoxy resin in PGMA, and was followed by the addition of the PAG (3.0 wt% to 

the epoxy resin). The concentration of the resist solution was adjusted by adding more solvent so 

that the thin film thickness (from micrometers to nanometers) could be readily obtained by spin 

coating. The imprinting pressure was typically less than 50 psi due to the low viscosity of the 

epoxy resist. Although 1 min was sufficient to cure the epoxy resin, additional time was needed 

for the epoxy resin, which contained the NBR-based epoxy resin. However, the speed of curing 

could be increased by considering higher PAG concentration. 

 

2.2.3. Atomic Layer Deposition (ALD) 

 

ALD is a thin-film deposition technique that is based on the sequential use of a gas-phase 

chemical process. As the ALD process deposits precisely one atomic layer in each cycle, complete 

control over the deposition process is obtained at the nanometric scale. A process with alternating 

steps of trimethylaluminum and H2O dosing in OpAL (Oxford Instruments) was carried out. The 

first step is trimethylaluminum dosing for 20 ms followed by 4 s purging of the trimethylaluminum 

precursor. The next step is H2O dosing for 20 ms with 50 sccm Ar. The H2O dosing step hold time 

is 4 s with a total cycle time of 8 s. The growth rate is 1 A/cycle, and in order to grow 20-nm 

thickness of alumina, the total number of cycles required is 200. All the depositions are performed 

http://en.wikipedia.org/wiki/Thin-film_deposition
http://en.wikipedia.org/wiki/Chemical_process
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at a relatively low temperature of 150 °C. Using ALD, the conformal coating can be achieved even 

with high aspect ratio and complex structures.  

 

2.2.4. Reactive ion etching (RIE) 

 

LAM 9400 (LAM Research Corporation, CA, USA) was used for RIE. In order to remove the 

residual layer, RIE was conducted in the presence of O2. The applied pressure was 12 mTorr. The 

TCF RF was 100 W, and the bias RF was 30 W. The flow rate of O2 was 20 sccm, and the etching 

time of 10 s was required to remove the 25 nm residual layer. RIE was performed with Cl2 in order 

to remove the SiO2 on the silicon wafer. The pressure in this RIE process was 12 mTorr, and the 

TCP RF was 300 W. The bias RF was 50 W, and the flow rate of Cl2 was 30 sccm. The etching 

time required was 5 s. In order to remove the silicon part on the silicon wafer, RIE was conducted 

with HBr and He. The pressure in the RIE process was 12 mTorr, the TCP RF was 500 W, and the 

bias RF was 30 W. The flow rate of HBr was 100 sccm, while that of He was 100 sccm. 

 

2.3. Results and discussion 

 

2.3.1. Tuning Physical Property of Resist 

 

The use of resist materials for nanoimprinting results in specific mechanical properties. 

However, it is desirable to tune the hardness or flexibility of the resist for different applications. 

In this study, two kinds of epoxy resins—bisphenol F-type epoxy resin and acrylonitrile-butadiene 
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rubber (NBR)-based epoxy resin—are used for nanoimprinting. Bisphenol F-type epoxy resin was 

used as a basic epoxy resin material, and NBR-based epoxy resin was added for the increased 

flexibility of the finally cured epoxy material. The chemical structures are shown in figure 2.1. 

The physical property of the epoxy resist is modulated by changing the mixing ratio of the epoxy 

resins. It is very important to achieve homogeneity of the mixture when more than two kinds of 

epoxy resins are mixed. Thus, a mechanical stirrer was used for more than 40 h to ensure adequate 

mixing. A sulfonium salt was used as the initiator for UV curing of the mixed epoxy resins. 

 

 

 

  (a) 

 

  (b) 

Figure 2. 1. Chemical structure of bisphenol F-type epoxy resin (a) and NBR-based epoxy resin 

(b). 

 

Prior to nanoimprint study, important mechanical properties such as the modulus, the tensile 

strength, and the impact strength of the cured epoxy resins were measured for materials with 

different mixing ratios of the epoxy resins, and the results are summarized in figure 2.2. 
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(a)                                        (b) 

 

(c)    (d) 

Figure 2. 2. Modulus (a), tensile strength (b), impact strength (c), and elongation (d) of the 

cured epoxy resin containing different mixing ratio of bisphenol F-type epoxy resin and NBR-

based epoxy resin. 
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From analysis of figure 2.2(a), it is apparent that we can control the modulus from 2,900 

MPa to 1,200 MPa by changing the NBR-based epoxy resin mixing ratio from 0 % to 20 %, thus 

allowing the preparation of a range of materials from hard to soft. In figure 2.2(b), it can be seen 

that the tensile strength decreased with an increase in the mixing ratio of the NBR-based epoxy 

resin. A less rigid material maintaining sufficient modulus and tensile strength is advantageous to 

create a mold for nanoimprinting as it can increase the yield during the demolding process and can 

be ideal raw materials for good flexible mold for the roll-to-roll nanoimprinting process [2, 3]. 

Impact strength is one of the important physical properties for estimating the toughness of the 

polymer. The impact strength of the epoxy polymers used in this study was estimated by the Izod 

method. In figure 2.2(c), the impact strength of the epoxy polymer (YDF-170) was 25 J/m, and 

this impact strength was increased sharply to 51 J/m by addition of a small amount of the NBR-

modified epoxy resin (R-1309). Addition of more than 10 % of R-1309 slightly decreased the 

impact strength. The sharp increase represented twice the impact strength of some of the 

thermoplastic materials commonly used for nanoimprinting, e.g., poly(methyl methacrylate) 

[PMMA] (~27 J/m) and polystyrene (~28 J/m). Some of the highest-aspect-ratio structures were 

imprinted into PMMA [36]. In addition, mixing the NBR-based epoxy resin to the bisphenol F-

type epoxy resin results in the most important change, i.e., several-folds increase in the elongation 

at break. In figure 2.2(d), the elongation of the epoxy polymer (YDF-170) was only 1.9 %, while 

the elongation increased sharply to 6.8 % due to addition of the 20 % NBR-modified epoxy resin 

(R-1309). The increase in elongation is closely connected to the toughness of the polymer. In this 

system, even though the decrease in tensile strength is connected to a decrease in the toughness, 

as the extent of elongation increase is much larger than the extent of decrease in tensile strength, 
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the toughness of the epoxy polymer increases with an increasing mixing ratio of the NBR-modified 

epoxy resin in the range of this experiment. 

 

2.3.2.Nanoimprinting with silicon dioxide mold using the epoxy resins 

 

Nanoimprinting was performed with a silicon dioxide mold (180 nm period, 60 nm line 

width, and 180 nm height) using different mixing ratios of the epoxy resin so as to obtain various 

nanoimprinted molds with diverse physical properties. The SEM image of the nanoimprinted 

pattern using epoxy resin [with mixing ratio 85: 15 (YDF-170: R-1309)] is shown in figure 2.3. 

 

 

Figure 2. 3. SEM image of the nanopattern after first nanoimprinting. 

 

In Figure 2.3, the SEM of nanopattern of mold with 180 nm period, 120 nm line width, 60 nm 
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trench, and 180 nm depth is shown. This epoxy resin is softer and tougher than the epoxy resin 

that is generally used in nanoimprinting. Therefore, the handling of this epoxy resin was easier 

than that of other epoxy resins; more importantly, large-area imprinting at the non-flat surface was 

greatly facilitated by the conformal contact between the mold and the imprinting material, which 

was enabled by the mechanical flexibility of the system.  

The curing of epoxy resin was monitored by IR spectrums that were obtained before and after 

nanoimprinting. The IR spectra shows increased hydroxyl group (3,418 cm-1) absorption, ether 

linkage (1,111 cm-1) absorption, and the reduction in epoxy rings (914 cm-1) absorption, 

confirming the polymerization through epoxy ring opening. 

 

2.3.3. Reducing the trench of the nanopattern 

 

A process for fabricating the ultrasmall structures with high aspect ratios through two 

consecutive nanoimprint processes with ALD so as to reduce the line width of the imprinted mold 

is developed in this study. The schematic of this process is shown in figure 2.4. 

  



20 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4. Schematic of the fabrication process of ultrasmall structures using ALD and a 

tunable UV curable epoxy resin. 

 

During the ALD, Al2O3 is deposited at the rate of 20 nm/h. The SEM image result of the ALD 

of the structure with 180 nm period, 160 nm line width, 20 nm trench, and 180 nm depth is shown 

in figure 2.5. The trench of the nanopattern was reduced from 60 nm to 20 nm using the ALD.  

 

Epoxy resist 1 

SiO2 mold 

First nanoimprint ALD 

Al2O3 layer 

Second nanoimprint 

Epoxy resist 2 

Ultra-small structure 
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Figure 2.5. SEM image of the nanopattern after the ALD of alumina 

 

2.3.4. Nanoimprinting to get the 20-nm-line-width nanopattern 

 

Using this alumina-coated structure as a mold, nanoimprinting was carried out, and the final 

nanopattern was obtained with a structure with 180 nm period, 20 nm line width, and 180 nm 

height, leading to an aspect ratio of 9:1, which is among the highest ever reported. Taking 

advantage of increased impact strength by mixing the epoxy resins with ratio of YDF-170: R-1309 

= 95: 5, the result showed the finest-structured nanopattern amongst all previous results. The SEM 

image of this nanopattern is shown in figure 2.6.  

It is concluded that using the epoxy resin YDF-170: R-1309 = 85: 15 at the first nanoimprinting 

and using the epoxy resin YDF-170: R-1309 = 95: 5 at the second nanoimprinting is the best 

method for obtaining the fine nanoimprinted structure. Additionally, the process was successfully 

20 nm 
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applied without any difficulties, and good results were obtained for larger areas (2 in × 2 in).  

 

 

                                             (a) 

 

            (b) 

Figure 2.6. SEM images of the nanopattern after second nanoimprinting (a) Cross-section shape 

and (b) top view. 

 

20 nm 

20 nm 
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2.3.5. Reactive ion etching (RIE) 

After conducting the nanoimprinting process, the average thickness of the residual layer 

was determined to be 25 ± 2 nm. In order to remove the residual layer, RIE was performed using 

O2, and the etching rate was 3 nm/s.The SEM images for the cross section of the nanopattern before 

and after conducting RIE are shown in figure 2.7. 

The cross section of the residual layer before conducting RIE is shown in figure 2.7 (a). The 

residual layer removed after conducting RIE using O2 is shown in figure 2.7 (b). 
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(a)      

  

(b) 

Figure 2.7. SEM images of the nanopattern before (a) and after (b) RIE using O2 

 

Pattern transfer into Si substrate by RIE was performed in order to show that the new resist 

system acts as a good etching mask for general microfabrication and nanofabrication purposes. 
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The remaining nanopattern could be used as an etching mask on removal of the residual layer. The 

native oxide on silicon wafer was removed using RIE with Cl2. Subsequently, silicon was etched 

using RIE with HBr. The SEM image for the cross section of the nanopattern obtained on 

completion of the etching process is shown in figure 2.8. 

As shown in figure 2.8, after the etching process, the mask’s height was reduced to 100 nm, and 

100 nm depth of silicon part was etched. 100 nm depth of the silicon wafer is etched, and the 

mask’s height was only reduced a little in this process, leading to a selectivity of 1:1 (resist to Si). 

This shows that the new resist formulation can be used as a mask for semiconductor processing.  

 

    

 

Figure 2.8. SEM images of the nanopattern after the reactive ion etching 
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2.4. Conclusions 

 

Thus an easy and simple method to fabricate ultrasmall structures by two consecutive 

nanoimprintings with ALD using the tunable UV cure epoxy resin is introduced in this study. The 

epoxy resin was composed of bisphenol F-type resin and NBR-based epoxy resin. The modulus of 

the cured epoxy polymer was controlled by changing the mixing ratio of the two epoxy resins. The 

impact strength of the epoxy polymer was sharply increased to 51 J/m via addition of the NBR-

modified epoxy resin. A nanopattern with a trench size of 60 nm was obtained after the first 

nanoimprinting. The size of the trench was then reduced to 20 nm using the ALD technique. Using 

this pattern as a mold, a 20 nm ultrasmall structure and a high-aspect-ratio (9:1) structure was 

finally obtained. This technique could also be used for larger size molds (more than 2 in × 2 in). 

Using RIE with O2, the residual layer in the nanopattern was removed. The silicon wafer was 

etched using RIE with HBr and He using the remaining nanopattern as a mask. This result showed 

that the resist in this study could be used in semiconductor process.
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Chapter 3 

Facile route of flexible wire grid polarizer fabrication by 

angled-depositions of aluminum on two sidewalls of an 

imprinted nanograting 

 

3.1. Introduction 

 

 A polarizer is an essential optical device for many optical systems and networks such as 

polarization-based imaging systems, free-space optical switching networks, and fiber-optic 

networks. Conventional polarizers are bulky optics and may not be suitable for certain 

applications. A metal wire grid is a potential candidate for making a high-quality, integration-

capable, thin-film-type polarizer [1, 32, 55, 71, 72, 95-97]. Wire grid polarizers (WGPs) offer a 

large spectral working range, small feature size and good integrability. WGPs are important for 

various applications such as microscopy or imaging systems, and can also be used as polarized 

beam splitters. 
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Using a WGP to replace the traditional polarizing film in LCDs can improve the LCD brightness 

as little light is absorbed by WGPs and reflected light can be recycled. Generally, a WGP consists 

of a periodical arrangement of conductive (metallic) wires on a transparent substrate. Upon 

illumination, a wire grid polarizer transmits light with an electrical field vector perpendicular to 

the wires (transverse magnetic (TM) polarization) with high efficiency, and reflects the parallel 

counterpart (transverse electric (TE) polarization). In addition to the transmission of TM-polarized 

light, the extinction ratio, which is defined by the transmission ratio of TM- and TE-polarized 

light, is another characteristic optical property of a wire grid polarizer. The spectral working range 

and the optical properties of a wire grid polarizer (such as transmittance and extinction ratio) are 

determined by the grating material and the structural parameters of the metal grating such as the 

period, grating height, and linewidth.In the last two decades various research results on the 

fabrication of WGPs using NILs were reported [1, 32, 55, 71, 72, 95-97]. Ekinci et al. have 

demonstrated the realization of a new bilayer metal WGP [24]. They fabricated the bilayer metal 

WGP by evaporating an aluminum film onto a poly(methyl methacrylate) resist grating fabricated 

using interference lithography. Hsu et al. have described the fabrication process of a flexible nano-

wired polarizer by contact-transferred and mask embedded lithography using a polyurethane 

acrylate mold [41]. To pattern the fine pitch required for WGP, nanoimprint lithography (NIL) has 

been used in recent years due to its potential for high resolution and high throughput nanoscale 

patterning [15-17, 36]. Previously we reported the fabrication of bilayer metal WGPs on flexible 

plastic substrates by roll-to-roll UV nanoimprint lithography using an epoxysilicone resist [13] 

and metal evaporation technique [2]. The high-throughput UV-NIL process has the potential to 

enable large area metal WGPs fabrications [2, 13]. 

Displays have progressed toward increasingly thinner, lighter weight, and more flexible devices 
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over the last few years. This is especially true in the field of mobile devices. Polarizers made on 

polymer substrate could find applications in future flexible LCD displays. WGPs require 

fabrication of subwavelength metal gratings, which presents a significant challenge for patterning 

and etching of dense structures, particularly for use in visible wavelength applications. This 

becomes even more challenging to process on a flexible substrate. It is known that the WGP should 

have a period lower than 150 nm in order to provide adequate bandwidth to cover the visible light 

range. In this study, a flexible WGP was fabricated on a poly(ethylene terephthalate) (PET) film 

by using a new method with the nanoimprint lithography (NIL). Even though the imprinted high 

aspect ratio grating has a relatively large 220 nm period, the WGP obtained using the new method 

still showed very good performance in the wide visible band of the spectrum. This is made possible 

by using double angled aluminum deposition to cover the sidewalls of the imprinted polymer 

grating, therefore much narrow spacing between the aluminum lines have been obtained. An 

isotropic reactive ion etching was then used to selectively remove the aluminum deposited at the 

top of the grating, thereby forming metal wire grids with much smaller spacing than 

lithographically defined gratings. This new approach significantly relaxes the stringent 

requirement for the fine line patterning process used in traditional methods, and is especially 

desirable for future manufacturing of flexible WGPs using roll to roll nanoimprint process. 

 

3.2. Experimental 

 

NIL was performed on a flexible PET film in order to fabricate a flexible WGP. A 

nanograting of 220 nm period, 70 nm linewidth, and 200 nm height was imprinted into epoxy-

silsesquioxane material. As compared with the material reported [77], the epoxy-silsesquioxane 
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used in this work was synthesized by using a larger amount of fluorinated compound to achieve 

higher aspect ratio structures. Then, two angled aluminum depositions were performed from both 

sides of the grating walls at 40 degree angle from a normal direction. Aluminum from the upper 

part of the pattern was removed by reactive ion etching. The obtained WGP had a unique structure 

in which aluminum coatings were on both sides of the wall of the nanopattern, creating a flexible 

WGP on PET. 

 

3.2.1. Materials and synthesis of SSQ 

 

To synthesize the SSQ material, phenyltrimethoxysilane (PTMS), (3-

glycidyloxypropyl)trimethoxysilane (GTMS), (tridecafluoro-1-octyl)triethoxysilane (FTES), 

CsOH, propylene glycol monomethyl ether acetate (PGMA),  were purchased from Aldrich 

Chemical (St. Louis, MO, USA). Photoacid generator (PAG) was purchased from Craig Adhesive 

and Coating Co. (Newark, NJ, USA) under the compound name of UV9390C. It contains about 

50 wt % of bis(4-dodecylphenyl)iodonium hexafluoroantimonate as an active ingredient. 

Synthesis of poly(phenyl-co-3-gylcidoxypropyl-co-perfluorooctyl)silsesquioxane (epoxy-SSQ) 

was done by a modified method that has been reported [18]. PTMS, FTES, and GTMS were used 

to synthesize Epoxy-SSQ. Mold release agent 1H,1H,2H,2H-perfluorodecyltrichlorosilane 

(FDTS) was purchased from Gelest Inc. (Morrisville, PA, USA). Silquest A-187 Silane (GTMS 

as the main ingredient) was purchased from Crompton Co. (Lisle, IL, USA). PET film was 

obtained from 3M Co. (St. Paul, MN, USA) with a thickness of 50 μm. 

 



31 

 

3.2.2. Instruments 

 

A Nanonex 2000 imprinting tool (Monmouth Junction, NJ, USA) with vacuum capability 

and wavelength for UV curing at 365 nm or a light curing system (ELC-430) from Electro-Lite 

Corporation (Bethel, Ct, USA) is used for UV-NIL. Aluminum was deposited by electron-beam 

evaporation. Reactive ion etching (RIE) was conducted in a LAM 9400 tool (LAM Research 

Corporation, Fremont, CA, USA). Scanning electron microscopy (SEM) was performed by using 

a Hitachi SU8000 scanning electron microscope (Tokyo, Japan). Transmission of TM and TE was 

measured by using a HR4000CG spectrometer (Ocean Optics Inc., Dunedin, FL, USA) and a 

Nikon Eclipse TE300 microscope (Tokyo, Japan), with the assistance of high quality polarizer. 

 

3.2.3. Nanoimprint process 

 

The formulation of the nanoimprint resist is prepared by dissolving the epoxy-SSQ resin 

in PGMA, followed by the addition of PAG (1 wt % of the epoxy-SSQ resin). Original silicon 

oxide master molds are vapor-coated with FDTS in order to achieve easy mold release after the 

NIL processes. The epoxy-SSQ resin solution was spun on a flexible PET film substrate. The 

substrates were previously surface treated with O2 plasma and then vapor coated with Silquest A-

187 silane as an adhesion promoter to the SSQ resist material. The imprinting process is performed 

under UV light exposure for a few seconds at room temperature. A Nanonex 2000 imprinting tool 

with vacuum capability for UV curing at 365 nm or the light curing system (ELC-430) from 

Electro-Lite Corporation is used for imprinting and curing. The imprinting pressure is typically 40 

psi. 
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3.2.4. Aluminum deposition 

 

The rate of aluminum deposition in this study is 0.5 nm/s. In order to deposit aluminum on 

the sidewalls of the imprinted nanopattern but not on the base of the trench, the deposition mount 

is tilted to 40 degrees. The deposition process is repeated at the opposite direction to make 

aluminum deposition on both sidewalls of the SSQ nanogratings. This process is explained in 

Figure 3.1. 

  

 

Figure 3.1. Angled deposition of aluminum on a nanopattern.  
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3.2.5. Plasma Ion etching process 

 

For good polarizer performance, the aluminum layer deposited on top of the SSQ grating 

needs to be removed. We used an anisotropic plasma etching process to selectively remove the top 

aluminum while leaving the aluminum on the sidewall of the grating relatively intact. Aluminum 

etching was performed in the LAM 9400 tool. Aluminum etching had to be conducted in two steps 

under 200 W Transformer Coupled Plasma RF power. First, any residual aluminum oxide layer 

(thickness ~ 1 nm) was etched by using BCl3 plasma (40 sccm) for 5 s, followed by the aluminum 

layer etching by using BCl3 (20 sccm)/Cl2 (6 sccm) plasma. The overall fabrication process of the 

WGP is illustrated in Figure 3.2. 

 

 

 

Figure 3.2. The total process involved in the fabrication of WGP in this study. 
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3.3. Results and discussion 

 

3.3.1. Design consideration of the WGP 

 

The purpose of this study is to fabricate a WGP which shows good performance across a 

wide wavelength range of the visible light by using NIL. It is well known that typical WGPs have 

a period lower than 150 nm in order to be used in the visible light range, as was done in previous 

WGPs fabricated using NIL. However it is challenging to fabricate molds with smaller periods and 

imprint with high yields, to relax the fabrication challenges, a method to create efficient WGPs by 

using molds with larger periods is desirable. 

Our new method to fabricate WGPs used angled aluminum depositions on the nanoimprinted 

pattern from both the sides at a 40 degree angle from the normal direction. As shown in Figure 

3.2, aluminum from the upper part of the pattern was removed by reactive ion etching. The final 

structure of the WGP has aluminum coatings on both sides of the nanoimprinted grating walls. A 

nanoimprinted pattern with a 220 nm period and a 70 nm linewidth was prepared by using NIL in 

this study to leave room for the aluminum coatings. 

We carried out a simulation of the performance of the WGP by using COMSOL program to design 

the structure and optimize its polarization performance. The performance of the WGP is 

characterized by the high TM transmittance the high extinction ratio, defined as the ratio of 

transmittance of the TM polarized light to that of the TE polarized light. Fixing the period at 220 

nm, linewidth at 70 nm, and sidewall Al coating at 30 nm, TM/TE transmission simulation results 

for heights varying from 100 nm to 250 nm are shown in Figure 3.3. Dips in the transmission curve 

are the result of Fabry-Perot resonances formed within the metallic nanoslits. The WGP with a 200 
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nm height showed a relatively flat TM transmission over the visible region as compared with the 

others.  

We also simulated the performance of the WGP by changing the thickness of the aluminum 

deposition from 15 nm to 35 nm thick. The simulation results of TM values and TE values at the 

different wavelength for the WGPs are shown in Table 3.1. And the simulation results in the whole 

wavelength range of the visible light for WGPs with 30 nm or 20 nm aluminum deposition on the 

sidewalls were shown in Figure 3. 3. 

 

Figure 3. 3. Simulation results for the WGPs that contain the different heights of the nanopattern 

(220 nm period, 70 nm linewidth, 30 nm thickness of aluminum). 
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Figure 3. 4. Simulation results for WGPs that contain Epoxy-SSQ nanopattern with 20 nm and 

30 nm aluminum deposition on both the sidewalls. 

 

Table 3. 1.  Simulation results of transmission (%) of TM/TE polarized light at the different 

wavelength for the WGPs for different thickness of aluminum deposition 

 

Thickness (nm) 450 nm 550 nm 650 nm 750nm 

15 47.4/0.789 91.8/0.268 91.9/0.131 83.6/0.0875 

20 72.6/0.0267 89.5/0.00853 84.9/0.00414 68.1/0.00311 

25 69.9/0.0678 90.0/0.244 87.2/0.0123 69.5/0.00835 

30 78.6/0.00423 85.7/0.00118 79.5/0.000507 62.3/0.000354 

35 74.3/0.00869 87.1/0.00299 81.7/0.00149 56.4/0.00103 
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3.3.2. Synthesis of Epoxy-SSQ and NIL 

 

Epoxy-SSQ was synthesized from PTMS, FTES, and GTMS. The PTMS component helps 

to increase the hardness of the synthesized SSQ polymer and FTES helps to improve the releasing 

property of the imprinted SSQ patterns from the mold. GTMS contains the epoxy functional group 

which can polymerize during NIL via cationic polymerization, and make it immune to the oxygen 

environment. Epoxy-SSQ was synthesized by using the method that was modified from a 

previously reported method [77] in our group. The epoxy functional group shows good mechanical 

properties after the completion of curing, and simultaneously shows good adhesion. This property 

plays an important role in a NIL process to help the adhesion of the imprinted material with the 

substrate. Better mold releasing is also very important to ensure defect-free patterning over a large 

area. This was achieved by increasing the amount of FTES in the resist formulation. The SEM of 

the formed SSQ nanograting pattern is shown in Figure 3.5(a), showing well defined high-aspect 

ratio and uniform nanopattern. Most notably a very regular and uniform pattern without any defects 

was obtained in large area, due to the increase in the amount of FTES in the resist formulation for 

ease demolding.  
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                                                   (a) 

      

    (b) 

Figure 3. 5 SEM photograph of SSQ nano pattern on a flexible PET film (a) and the cross 

section of a nanopattern after aluminum deposition and ion etching (b). 
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3.3.3. Aluminum deposition and etching  

 

  In Figure 2, the structure of the obtained WGP was the aluminum coating at both the sides 

of the 70 nm nanopattern line. The SEM photograph of the fabricated WGP after aluminum 

deposition and etching is shown in Figure 3.5(b), where the aluminum layers at both side walls of 

the nanopatterns can be clearly seen. Note that this structure was damaged slightly by the reactive 

ion etching process.  

As the WGP structure was fabricated on a PET film, the final WGP sheet is very flexible as the 

picture shown in Figure 3.6.  

 

 

 

Figure 3.6. Flexibility of a PET film containing WGP structure.   
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3.3.4. Measurement of TM & TE transmission and extinction ratio 

 

The optical property of the obtained WGP was estimated by measuring the transmittance 

of both the TM and the TE polarized-lights. The results of the measurement of TM and TE 

transmission for the fabricated WGPs are shown in Table 3.2. And the results in the whole 

wavelength range of the visible light for WGPs with 30 nm or 20 nm aluminum deposition on the 

sidewalls were shown in Figure 3.8.  

 

Table 3.2. Measured optical transmission (%) of TM/TE polarized light through nanopatterned 

Epoxy-SSQ/aluminum WGPs at the different wavelength for the WGPs of different thickness of 

aluminum deposition on the SSQ grating sidewalls 

 

Thickness (nm) 450 nm 550 nm 650 nm 750nm 

15 50.6/6.53 90.3/0.670 89.7/0.179 82.1/9.43 

20 70.5/4.65 85.8/0.082 90.6/0.031 82.9/9.09 

25 71.1/5.09 89.5/0.097 81.7/0.104 75.9/11.3 

30 77.7/5.02 80.3/0.100 82.4/0.039 74.7/10.4 

35 70.8/5.12 78.9/0,377 80.1/0.235 68.2/11.2 
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Figure 3.7. The TE & TM curves of a nanopatterned Epoxy-SSQ WGP with 20 nm and 30 nm  

aluminum deposition on both the sidewalls. 

 

In the case of the WGP with 30 nm aluminum sidewall coatings, the result is shown in Figure 3.8., 

75-85 % of the TM polarized-light was transmitted in the wide wavelength range of the visible 

light. On the other hand, below 5 % of the TE polarized-light was transmitted in the same 

wavelength range. And in case of the WGP with 20 nm aluminum coating, the result is shown in 

Figure 3.7, 70-90 % of the TM polarized-light was transmitted in the wide wavelength range of 

the visible light.  

The extinction ratio (ratio of TM to TE) for the 30 nm coated WGP showed values of 803 at 550 

nm, and 2117 at 650 nm while the 20 nm coated WGP showed ratios of 1046 at 550 nm, and 2900 
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at 650 nm. The TM transmission in Figure 3.7 showed the more flat curve in the wide wavelength 

range of the visible light. 

 

3.4. Conclusion 

 

Nanopatterns of 220 nm period, 70 nm linewidth, and 200 nm height were formed using 

synthesized Epoxy-SSQ on a flexible PET film. Angled aluminum depositions were performed at 

a 40 degree angle from the perpendicular plane and aluminum was removed from the top of the 

pattern by reactive ion etching. The obtained WGP had a unique structure in which aluminum 

coatings were on both the sides of the wall of the nanopattern. Despite using a larger period than 

previously reported WGPs, high extinction ratios were achieved over the visible spectrum with a 

simple fabrication process. If these results can be migrated to roll-to-roll processing methods [2, 

3], efficient WGPs could be easily manufactured over large areas. 
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Chapter 4 

Fabrication and Encapsulation of a Short-Period Wire Grid 

Polarizer with Increased Viewing Angle by the Angled-

evaporation Method 

 

4.1. Introduction 
  

The liquid crystal display (LCD) is currently the prevailing display technology. An LCD 

requires polarized illumination to function [11, 62]. Therefore, polarizers are a very important part 

of an LCD and are also essential components in many optical systems and networks. The optical 

performance of conventional polarizers based on dichroic absorption cannot meet the requirements 

of some new optoelectronic systems currently under development. A wire grid polarizer (WGP) is 

one of the most attractive alternatives. The WGP is made of parallel metallic lines on a transparent 

substrate and is used to transmit transverse magnetic (TM) polarized light (E-field perpendicular 

to the grating) and reflect transverse electric (TE) polarized light (E-field parallel to the grating 

direction). 



44 

 

WGPs offer a large spectral range and small size, and they can be integrated with other 

optical elements on the same chip. They can also be constructed as high-quality, integration-

capable, thin-film-type polarizers[1, 32, 55, 71, 72, 95-97]. WGPs can be applied to various fields 

such as microscopy, imaging systems, and polarized beam splitters. WGPs in the visible optical 

region were reported a decade ago by the MOXTEK group as beam splitters for projection 

displays[28, 39]. WGPs may improve the brightness of LCDs because their function is not based 

on light absorption, and reflected light can be recycled[100]. However, for direct-view liquid 

crystal displays, a WGP can only be used as a bottom polarizer but cannot replace the top dichroic 

polarizers, because it would reflect ambient light[30]. One potential solution was developed by 

adding an absorptive interference layer on top of the Al grating to reduce light reflection [89]. Still 

much investigation in both design and fabrication are needed to push the WGP to practical 

application. Additionally, displays for mobile devices have progressed toward increasingly 

thinner, lighter, and more flexible devices. Future flexible displays could benefit from the WGPs 

made on a polymer substrate. 

TM transmission and TE suppression are the most important features of WGPs, and hence the 

extinction ratio, which is defined as the ratio of TM transmission to the TE transmission, is also 

an important factor. The optical properties of a WGP are determined by the grating material, the 

period and line width of the grating, and the grating height[40]. In the last two decades, various 

research results on the fabrication of WGPs using nanoimprint lithography (NIL) have been 

reported[1, 32, 55, 71, 72, 95-97]. For example, a bilayer metal WGP was presented by Ekinci et 

al.[24]. The fabrication of a flexible nano-wired polarizer by contact-transferred and mask-

embedded lithography using a polyurethane acrylate mold was described by Hsu et al. [41]. NIL 

has been used in recent years due to its potential for high resolution and high throughput nanoscale 
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patterning to produce the fine pitch required for a WGP[4, 13, 15-17, 36]. We also reported 

previously the fabrication of bilayer metal WGPs on flexible plastic substrates by roll-to-roll UV 

nanoimprint lithography and the metal evaporation technique[15], and a WGP embedded in gas-

permeable membrane for contact lens application[40]. Particularly, the high throughput UV-NIL 

process has the potential to enable large area metal WGP fabrication[2, 3].  

WGPs require fabrication of subwavelength metal gratings, which presents a significant challenge 

for patterning and etching of dense structures, particularly for use in visible-wavelength 

applications. It becomes even more challenging to fabricate these structures on a flexible substrate. 

It is known that the WGP should have a period shorter than 150 nm in order to provide adequate 

bandwidth to cover the visible light range. In our previous publication[86], a flexible WGP was 

fabricated on a polyethylene terephthalate (PET) film with an imprinted 220 nm-period high-

aspect-ratio polymer grating with double-angled aluminum deposition to cover the sidewalls of 

the imprinted polymer grating. Isotropic reactive ion etching (RIE) was then used to remove 

selectively the aluminum deposited on the top of the grating, thereby forming metal wire grids 

with spacing much closer than lithographically defined gratings. Even though the imprinted grating 

had a relatively large period of 220 nm, the obtained WGP showed good performance in the wide 

visible band of the spectrum due to a much narrower spacing between the aluminum lines. As a 

result, good optical performance was obtained in the visible band of the spectrum. This approach 

significantly relaxes the stringent requirement for the fine line patterning process used in 

traditional methods, and is particularly desirable for future manufacturing of flexible WGPs using 

the roll-to-roll nanoimprint process. For practical application, encapsulation of the WGP is highly 

desirable to improve the mechanical integrity of the high aspect ratio metallic nanogratings and 

makes it easier to integrate with other optical components. The polarizer performance degrades 
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when light is incident from a higher angle. This study shows that these issues can be addressed by 

reducing the period of the grating. In particular we fabricated the WGP using a grating mold with 

a 180 nm period to prove the principle. 

 

4.2. Experimental 
 

4.2.1. Materials and the Synthesis of Imprinting Material 

 

Phenyltrimethoxysilane (PTMS), (3-glycidyloxypropyl)trimethoxysilane (GTMS), 

(tridecafluoro-1-octyl)triethoxysilane (FTES), CsOH, and propylene glycol monomethyl ether 

acetate (PGMA) were purchased from Aldrich Chemical (St. Louis, MO, USA). Photoacid 

generator (PAG) was purchased from Craig Adhesive and Coating Co. (Newark, NJ, USA) under 

the compound name of UV9390C. It contained ~50 wt% of bis(4-dodecylphenyl)iodonium 

hexafluoroantimonate as an active ingredient. Synthesis of poly(phenyl-co-3-gylcidoxypropyl-co-

perfluorooctyl)silsesquioxane (epoxy-SSQ) was carried out by a previously reported method 

[20,21]. PTMS, FTES, and GTMS were used to synthesize epoxy-SSQ. The mold release agent 

1H,1H,2H,2H-perfluorodecyltrichlorosilane (FDTS) was purchased from Gelest, Inc. 

(Morrisville, PA, USA). Silquest A-187 silane (GTMS as the main ingredient) was purchased from 

Crompton Co. (Lisle, IL, USA). PET film with a thickness of 50 μm was obtained from 3M Co. 

(St Paul, MN, USA). PMMA (average Mw 120,000) for encapsulation was purchased from 

Aldrich. 

 

  



47 

 

4.2.2. Instruments  

 

 A Nanonex 2000 imprinting tool (Monmouth Junction, NJ, USA) with vacuum capability 

and UV curing at 365 nm, or a visible light curing system (ELC-430) from Electro-Lite 

Corporation (Bethel, CT, USA) was used for UV-NIL. Aluminum was deposited by electron-beam 

evaporation. RIE was conducted in a Lam 9400 TCP Poly Etcher tool (Lam Research Corporation, 

Fremont, CA, USA). Scanning electron microscopy was performed using a Hitachi SU8000 SEM 

(Tokyo, Japan). Transmission of TM and TE energy was measured using an HR4000CG 

spectrometer (Ocean Optics, Inc., Dunedin, FL, USA) and a Nikon Eclipse TE300 microscope 

(Tokyo, Japan) with the assistance of a high-quality polarizer. In order to measure the viewing 

angle, the sample was mounted so it could be tilted to the desired angle. The simulation was 

performed using the COMSOL program, and by the rigorous coupled wave analysis (RCWA) 

method. An ellipsometer (AutoEL) was used to measure the refractive index and the thickness of 

the thin films. 

 

4.2.3. Nanoimprint Process  

 

The formulation of the nanoimprint resist was prepared by dissolving epoxy-SSQ resin in 

PGMA, followed by the addition of PAG (1 wt% of the epoxy-SSQ resin). The original silicon 

oxide master molds were vapor coated with FDTS for easy mold release after the NIL processes. 

The epoxy-SSQ resin solution was spin coated onto a flexible PET film substrate. The substrates 

were first surface treated with O2 plasma and then vapor coated with Silquest A-187 silane to 

promote adhesion to the SSQ resist material. The imprinting process was performed under UV 

light for a few seconds at room temperature. The Nanonex 2000 imprinting tool or the ELC-430 
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light curing system was used for imprinting and curing. The imprinting pressure was typically 275 

kPa. 

 

4.2.4. Aluminum Deposition 

 

The rate of aluminum deposition in this study was 0.5 nm/s. In order to deposit aluminum 

on the sidewalls of the imprinted nanopattern but not on the base of the trench, the deposition 

mount was tilted at 40º. The deposition process was repeated in the opposite direction to deposit 

aluminum on both sidewalls of the SSQ nanogratings. The thickness of aluminum on both 

sidewalls was controlled to be 20 nm. This process is illustrated in Figure 1. 

 

4.2.5. Reactive Ion Etching Process  

 

For good polarizer performance, the aluminum layer deposited on the top of the SSQ 

grating needed to be removed. We used an anisotropic plasma etching process to remove the top 

layer of aluminum selectively while leaving the aluminum on the sidewalls of the grating relatively 

intact. Aluminum etching was performed using the Lam 9400 tool. The aluminum etching had to 

be conducted in two steps under 200 W of transformer-coupled plasma RF power. First, any 

residual aluminum oxide layer (thickness, ~1 nm) was etched with 40 sccm of BCl3 plasma for 5 

s, followed by etching the aluminum layer with 20 sccm BCl3/6 sccm Cl2 plasma. 

 

4.2.6. Encapsulation of WGP 

 

PMMA (0.50 g) was dissolved in 100 mL of acetone, and the fabricated WGP was dipped 



49 

 

in this solution. The fabricated WGP was removed from the PMMA solution and hung vertically 

for 15 min at room temperature. This encapsulated WGP was dried in an oven for 60 min at 60 ºC. 

The coating thickness was controlled to be less than 1 µm. 

 

4.3. Results and Discussion 
 

4.3.1. Simulation of Angle Dependency 

 

The WGP which was reported in our previous paper[86] showed a large angle dependency 

and had a narrow viewing angle. Consequently, the TM transmission was reduced greatly even at 

a 30º incident angle. A wide viewing angle is an important requirement for display devices such 

as an LCD. In order to improve the angle dependency of the WGP, we first tried simulations with 

a shorter period WGP. A nanoimprinted pattern with a 180 nm period, 70 nm linewidth, and 200 

nm height was used as a model system, and 20 nm aluminum gratings were deposited along both 

walls of the patterned grating lines. The final WGP had a structure with periodic 20 nm wide 

aluminum gratings with 70 nm spacing. 

Figures 4.1 (a) and (b) show the simulation results of the angle dependency for the WGPs 

made from the polymer gratings with initial periods of 220 and 180 nm, respectively. The 

simulation was conducted using the refractive index data of the base materials. The refractive index 

was measured by an ellipsometer (AutoEL), and the coating thickness was also measured.  
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  (a)                                                                              (b) 

      
   (c)               (d) 

 

Figure 4.1. Simulation results showing the angle dependency for WGPs of 220 nm-period 

polymer grating [TM transmission (a) and TE transmission (c)], and by a 180 nm-period 

polymer grating [TM transmission (b) and TE transmission (d)]. The height of the nanograting is 

200 nm, and the thickness of the aluminum coating on the grating sidewall is 20 nm. 

 

In Figures 4.1(a) and (b), the red-colored region indicates a high transmission of TM light, and the 

purple indicates low transmission of TM light. Improved angular performance is obvious for the 

shorter period grating. For example, at 500 nm, the transmission of the TM light improved greatly 

for the WGP with a 180 nm period at incident angles greater than 30º. The overall angle 

dependency of the WGP with a 180 nm period was better than that of the WGP with a 220 nm 
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period at visible wavelengths. In Figures 1(c) and (d) the transmission levels of TE light are both 

below 0.008 and showed a similar pattern. Therefore the extinction ratio of the WGP also improves 

at a large viewing angle for shorter-period gratings[96]. 

 

4.3.2. Fabrication of the WGP 

 

An effective method for fabricating WGPs with shorter periods is to use double-angled 

aluminum depositions onto both sides of the nanoimprinted polymer grating walls[86]. The 

aluminum at the upper part of the pattern can be removed by RIE. This process is shown in Figure 

4.2. The final structure of the WGP has aluminum coatings on both sides of the nanoimprinted 

grating walls. A nanoimprinted pattern with a 180 nm period, 70 nm linewidth, and 200 nm height 

was prepared using NIL in this study to ensure adequate allowance for the aluminum coatings. 

Therefore, the final structure of the WGP after completing the entire process had a periodic 70 nm 

linewidth, 20 nm aluminum grating, 70 nm interval, and 20 nm aluminum grating, as shown in 

Figure 2. The overall fabrication process of the WGP is illustrated in Figure 4.2. 
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Figure 4.2. Double-angled evaporation of aluminum onto a nanopattern and the reactive ion 

etching process. 

 

To imprint the polymer grating, we used silsesquioxane (SSQ) resist materials that were reported 

previously[76, 77]. Briefly, poly(phenyl-co-3-gylcidoxypropyl-co-perfluorooctyl)silsesquioxane 

(epoxy-SSQ) was synthesized from phenyltrimethoxysilane (PTMS), (tridecafluoro-1-

octyl)triethoxysilane (FTES), and (3-glycidy¬loxy¬propyl)trimethoxysilane (GTMS). The PTMS 

component helps to increase the hardness of the synthesized SSQ polymer, and FTES helps to 

improve the releasing property of the imprinted SSQ patterns from the mold. GTMS contains an 

epoxy functional group which can polymerize during NIL via cationic polymerization. The epoxy 

functional group shows good mechanical properties after the completion of curing and 

simultaneously shows good adhesion [76, 77, 86]. This property plays an important role in the NIL 

process to increase the adhesion of the imprinted material to the substrate, particularly for a dense, 

narrow linewidth and the high aspect ratio features required for a WGP. Better mold releasing is 
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also very important to ensure defect-free patterning over a large area. Figure 4.3 (a) is a scanning 

electron microscope (SEM) image of the formed SSQ nanograting pattern showing a well-defined 

and uniform high aspect ratio nanopattern with a 70-nm linewidth and 180 nm period. The SEM 

image of the fabricated WGP after double side angled aluminum depositions at 40 degrees and 

after RIE are shown in Figures 4.3 (b) and (c), respectively, where the aluminum layers on both 

side walls of the nanopatterns can be clearly seen. 

 

                                        (a)      (b) 

  
(c) 

 

Figure 4.3. (a) SEM image of an SSQ nanopattern on a flexible PET film, and the cross section 

of a nanopattern (b) after aluminum deposition and (c) after RIE. 
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4.3.3. Optical Properties of the WGP 

 

The optical properties of the obtained WGP were characterized by measuring the transmittance 

of both the TM and the TE of polarized light. The results of the measurement of TM and TE 

transmission for the fabricated WGPs are listed in Table 4.1, in the visible range for the WGPs 

shown in Figure 4.3. In Figure 4.4, 80–90% of the TM polarized light was transmitted in the wide 

visible wavelength range of 450–700 nm. Only 0.5–2% of the TE polarized light was transmitted 

in the same wavelength range.  

 

 

 
 

Figure 4.4. The TE and TM curves of a nanopatterned epoxy-SSQ WGP with 20 nm aluminum 

deposition on both sidewalls (180 nm period, 70 nm linewidth, 200 nm grating height). 

 

 

0

20

40

60

80

100

450 500 550 600 650 700 750

Tr
an

sm
is

si
o

n
 (

%
)

Wavelength (nm)

TM TE



55 

 

Table 4.1. Measured optical transmission (%) of TM/TE polarized light through nanopatterned 

epoxy-SSQ/aluminum WGPs. 

 450 nm 550 nm 650 nm 750 nm 

TM/TE 79.4/1.03 83.1/0.74 88.4/0.67 79.7/7.47 

 

 

 

The angle dependencies of the 220 and 180 nm period WGPs were measured. The data are 

shown in Figure 4.5. 
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Figure 4.5. The transmission of TM light for (a) the 220-nm period WGP and (b) the 180-nm 

period WGP. 
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In the case of the WGP fabricated from the imprinted 220 nm period grating, the 

transmission of TM light was reduced abruptly for 450 nm wavelength light as the angle was 

increased to 60º. The reduction was more gradual at 550 nm as the angle was increased to 60º. 

Further, no significant reduction was observed at 650 nm. In comparison, for the WGP fabricated 

from the 180 nm period grating, the transmission of TM light was not reduced at any visible 

wavelength as the angle was increased to 60º.  

Finally, we would like to discuss the optical performance of the WGP after the fabricated Al 

nanogratings are embedded in a polymer layer for protection. Such encapsulation of the WGP is 

very important for practical use; however, the encapsulating material must have minimal effect on 

the optical property of the WGP. A simulation was conducted for a WGP structure with a 90 nm 

period, 20nm wide Al grating and, 200 nm height after encapsulation by materials with refractive 

indexes of 1.0 (e.g. air), 1.5 (typical polymer), and 2.0 (high index material). The results are shown 

in Figure 4.6.   
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Figure 4.6. The simulation data for the refractive index of the encapsulating material affects the 

TE transmission. Refractive indexes are black 1.0, red 1.5, and blue 2.0. 

 

The results showed that when the refractive index of the encapsulating material is 2.0, the TE 

transmission is not blocked. This means that material like this cannot be used for encapsulation of 

a WGP. However, when the refractive index of the encapsulating material is 1.5, there is no 

problem in using it for the encapsulation of a WGP. Therefore, we chose PMMA as the 

encapsulating material for the WGP because the refractive index of PMMA is 1.49. 

Encapsulation of the WGP with PMMA was conducted by the dip-coating method. The coating 

thickness was controlled to be less than 1 µm. A simulation was conducted to estimate the effect 

of the coating thickness on TM and TE. The results are shown in the supporting information. The 

transmission of TE and TM light were then measured for the encapsulated WGP. The result is 

shown in Figure 4.7.  
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Figure 4.7. The TE and TM curves of a nanopatterned epoxy-SSQ WGP after PMMA 

encapsulation. 

 

Nearly all of the data plotted in Figure 4.7 are similar to the data plotted in Figure 4.3. This implies 

that the encapsulation of the WGP in PMMA does not affect the performance of the WGP. 

4.3.4. Measurement of the refractive index and thickness of the polymerized epoxy-SSQ 

 

An ellipsometer (AutoEL) was used to measure the refractive index and the thickness of 

thin films. Silicon was used as a substrate, and epoxy-SSQ was spin-coated onto this substrate. 

After UV curing, the refractive index and the thickness were measured. The thickness of the 

coating was controlled to be 200 nm. 
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Figure 4.8. The refractive index of the polymerized epoxy-SSQ measured with an ellipsometer. 

 

This refractive index data was used for angle simulation and encapsulation simulation. The 

refractive index of the general polymer is known to be ~1.5 in the visible wavelength range. The 

refractive index consists of 2 parts: n is a real part of the refractive index, which indicates the phase 

speed, while k is the imaginary part, which indicates the amount of absorption loss when the 

electromagnetic wave propagates through the material. This result shows that k is nearly 0 in the 

visible wavelength range. 
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4.3.5. Simulation results for the effect of the coating thickness on TM and TE  
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Figure 4.9. Simulations of TM and TE with 4 µm encapsulation of PMMA. 
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Figure 4.10. Simulations of TM and TE with 2 µm encapsulation of PMMA. 
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Figure 4.11. Fabry–Perot resonance [82, 94] between aluminum gratings and PMMA. 

 

A simulation was conducted to estimate the effect of the coating thickness on TM and TE. The 

results are shown in Figures 4.9 and 4.10. In the case of a 4 µm coating thickness and 220 nm 

grating, the TM values dropped between 410 nm and 450 nm. The oscillatory behavior is shown 

in Figures 4.2 and 4.3. These phenomena were induced from the Fabry-Perot resonance, which is 

shown in Figure 4.4. Such resonance can be suppressed by using thinner overcoating. Therefore 

the encapsulation should be thin enough. Resonance effect can be observed for the 220 nm period 

embedded structure and cannot be used as a polarizer in the blue wavelength range. However, such 

effect is suppressed in the shorter period grating of 180nm. 
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4.4. Conclusion 
 

In the present study, a WGP was fabricated by nanoimprint lithography, double-side angled 

evaporation of aluminum, and anisotropic RIE to remove the aluminum deposited on the top of 

the grating. The final structure of the Al grating has a 90 nm period, and about 20 nm aluminum 

linewidth. This WGP showed good performance in a wide range of visible wavelengths, which is 

not affected much at increased viewing angle. The WGP can be encapsulated in PMMA for 

practical use. 
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Chapter 5 

Concluding Remarks 

 

5.1. Contribution of nanoimprint materials 

 

I developed a Young’s-modulus-tunable epoxy resin and used it with nanoimprint 

lithography to increase the Young’s modulus and decrease the brittleness of cured nanoimprint 

resists. The rigiflex [88] materials for nanoimprint lithography should show appropriate Young’s 

moduli so that cured rigiflex materials are flexible enough to permit fine nanopatterning [83]. The 

epoxy resin was formulated using bisphenol F-type and NBR-based epoxy resins. The Young’s 

modulus was tuned simply by changing the ratio of the two epoxy resins in the mixture. Adding 

NBR-modified epoxy resin greatly increased the impact strength of the mixed resin, which enabled 

higher-aspect-ratio structures to be fabricated using nanoimprint lithography.  

And atomic layer deposition could be used to deposit two consecutive nanoimprinted 

layers in order to fabricate ultrasmall, high-aspect-ratio nanostructures.  
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5.2. Contribution of mold fabrication 

 

Using electron beam lithography, the method most commonly used for nanofabrication, to 

fabricate sub-20-nm nanostructures remains very challenging and very expensive [18, 33, 53]. I 

used atomic layer deposition to economically fabricate ultrasmall nanostructures. A nanopattern 

showing a 60-nm-deep trench was obtained after the initial nanoimprinting; the trench depth was 

then reduced to 20 nm after the second nanoimprinting. The final pattern served as a mold to 

fabricate a 20-nm-deep, 9:1-aspect-ratio, ultrasmall nanostructure.  

The residual layer in the nanopattern was removed using reactive-ion etching (RIE) with 

O2 plasma. Further RIE could be used to remove the entire resist if a mistake had been made during 

nanoimprinting. SSQ shows considerable etching resistance, so RIE could not be used to remove 

SSQ resists. The silicon wafer was etched using RIE with HBr and He, and the remaining 

nanopattern was used as a mask. This method could also be used for molds larger than 2 in. × 2 in. 

In particular, our resist could be used for fabricating semiconductor processing materials. 

Furthermore, I developed a simple method of fabricating ultrasmall, high-aspect-ratio patterns.  

 

5.3. Contribution of WGP fabrication method 

 



66 

 

The previously described nanopatterns can be applied in a number of research fields. I 

fabricated a WGP because it shows good polarization efficiency, long-term stability, a wide 

viewing angle, and the potential to be integrated with other optical components, unlike 

conventional polarizers. However, fabricating high-performance WGPs remains difficult because 

electron beam lithography is still commonly used to fabricate WGPs. We developed a more 

convenient method of fabricating such polarizers. I first used SSQ to synthesize a 220-nm-period, 

70-nm-linewidth, 200-nm-high nanopattern on a flexible PET film and subsequently used it to 

fabricate a WGP. Two aluminum layers were deposited 40° from the perpendicular plane on both 

sides of the WGP, and RIE was subsequently used to remove the aluminum from the top of the 

pattern. The resulting WGP showed a unique structure in which both sides of the nanopattern wall 

were coated with aluminum. High extinction ratios were achieved over a wide range of visible 

wavelengths despite using a larger-period nanopattern and simple fabrication. Efficient WGPs 

could be easily manufactured using our method if these results can be extended to roll-to-roll 

processing. 

 

5.3.1. Decreasing angular dependency of WGP  

 

The polarizer viewing angle is one of the most important properties of optical components 

such as LCDs [26, 64, 65]. I used nanoimprint lithography and 180-nm-period, 70-nm-linewidth, 
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200-nm-high nanopatterns to fabricate a more efficient, wider-viewing-angle WGP. The angled 

aluminum layers on both sides of the WGP were subsequently evaporated, and anisotropic RIE 

was used to remove the aluminum layer deposited on top of the grating. Although 180-nm-period 

nanopatterns were used, the final aluminum grating showed a 90-nm period and ~20-nm aluminum 

linewidth. The wider-viewing-angle WGP exhibited good performance over a wide range of 

visible wavelengths. The viewing angle of this WGP was significantly wider than that of the 

previously obtained one.  

 

5.3.2. Encapsulation of WGP 

 

The WGP must be encapsulated for practical use; otherwise, the aluminum grating could 

be delaminated when the substrate is subjected to stress or could be damaged in harsh 

environments. Thus, I encapsulated the WGP in a <1-μm-thick PMMA layer. The encapsulated 

WGP showed good performance, almost the same as the unencapsulated WGP. In summary, I 

developed a very convenient method of fabricating a high-performance WGP. My method can be 

used to industrially mass-produce WGPs. 
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