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ABSTRACT

Progressive Damage and Failure Analysis of 3D Textile Composites Subjected to
Flexural Loading

by

Dianyun Zhang

Chair: Anthony M. Waas

3D textile composites (3DTCs) are becoming increasingly attractive as light-weight

materials for a variety of structural load bearing applications, including those in the

aerospace, marine, automotive, and energy generation sectors. Compared with lay-

ered prepreg tape-type laminated composites, 3DTCs offer a distinct cost advantage,

tailored properties, and enhanced damage tolerance. The term textile here is referred

to as an interlaced structure, known as a dry preform, which consists of fiber tows (or

bundles) that contain many thousands of individual fibers either woven or braided

together. In order to maximize the benefit of designing with 3DTCs, it is important

to develop a robust, physics-based computational tool to understand how their de-

formation response is affected by the textile architecture and constituent properties.

The focus of this research is to investigate the deformation response of 3DTCs

through flexural tests. The experimental results are subsequently used as a basis for

the development of a multiscale mechanics based model for the deformation, damage

and failure response of 3DTCs, predominantly under flexural loading. Two distinct

types of 3DTCs, a layer-to-layer interlock glass fiber 3DTC and a Z-fiber orthogonal

interlock hybrid 3DTC, have been studied in order to understand the architecture-

dependent effect.

Quasi-static flexural tests were performed either on a screw-driven loading device

or on a hydraulically activated loading machine. To achieve higher loading rates,

tests were carried out using a drop tower facility, which can provide different impact

velocities by varying the height of the weight that is dropped onto the specimen.

The digital image correlation (DIC) technique was utilized to map the deformation

xvii



history and identify the failure modes. Although the experimental results show both

architecture-dependent and rate-dependent effects, fiber tow kinking, which developed

on the compressive side of the specimen was found to be a strength limiting mechanism

for this class of materials. Distributed matrix cracking was observed in regions of

predominant tension.

A mechanics based multiscale computational model was developed for 3DTCs

based upon a global-local modeling strategy, in which the influence of textile archi-

tecture is incorporated in a mesoscale finite element model, while the composite is

homogenized at the macroscale. The mesoscale model is a collection of representative

unit cells that are composed of different types of fiber tows embedded in a surround-

ing matrix medium. Matrix microdamange, manifested as a pre-peak nonlinear stress

versus strain response, is modeled using a modified J2 deformation theory of plas-

ticity through a secant moduli approach. The fiber tow pre-peak nonlinear response

is computed using a novel, two-scale model, in which the subscale micromechanical

analysis is carried out in closed form based upon on a unit cell of a fiber-matrix con-

centric cylinder. Therefore, the influence of matrix microdamage at the microscale

manifests as the progressive degradation of the fiber tow stiffness at the mesoscale.

The post-peak strain softening responses of the fiber tows and the surrounding poly-

mer matrix are modeled through the smeared crack approach, which is designed to

be mesh objective.

The load-deflection response, along with the progressive damage and failure events,

including matrix cracking, tow kinking, and tow tensile breakage, are successfully pre-

dicted through the proposed multiscale model for the two material systems studied.

Since all the inputs are from the constituent level, the model is useful in understand-

ing how the 3DTC macroscopic response is influenced by the geometry of textile

architecture and the constitutive response of the constituents.
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CHAPTER I

Introduction

1.1 Motivation

Over the past few decades, fiber-reinforced laminated composites have emerged

as light-weight materials with widespread use in military aircraft, general aviation,

and space launch vehicles. Starting with small quantities implemented in military

aircraft, composite materials have been increasingly deployed in commercial aircraft,

from secondary wing and tail components to primary load-carrying structures. En-

couragingly, over 50 percent of the primary structures in the latest generation of

aircraft, such as the Airbus 350 XWB and the Boeing 787 Dreamliner, have been

made of composite materials, including the fuselage and wings. A significant weight

reduction is achieved owing to the use of composite materials, resulting in lower fuel

consumption and enhanced aerodynamic performance. However, high manufacturing

costs and low damage tolerance are the two major technical barriers that limit the

use of prepreg tape-type laminated composites in other civil application areas such

as marine, construction, automotive, and energy generation sectors [1].

In order to overcome these barriers, textile composite technology has been devel-

oped with an intent to reduce manufacturing costs and improve damage tolerance.

Textile composites are composed of textile reinforcements combined with a poly-

mer matrix material. The term textile here is referred to as an interlaced structure,

known as a dry preform, which consists of fiber tows (or bundles) that contain many

thousands of individual fibers either woven or braided together. 3D reinforcements,

which can be achieved using stitching, Z-pins, or 3D weaving, have gained benefit

from mechanical bindings through the thickness, for example, in a structural panel

[2]. Previous studies have shown that 3D textile composites (3DTCs) can offer in-

creased resistance to delamination and have the ability to contain (localize) the area

of damage due to delamination [3, 4, 5, 6].
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Since textiles can be mass-produced at a low cost using modern, automated man-

ufacturing techniques, textile composites achieve a significant cost advantage over

prepreg tape-type laminated composites, making them viable to be used in automo-

tive, energy saving industrial sectors, and sports gear. Textile reinforcements with

complicated internal geometry can be manufactured using a computer-aided weaving

loom, thus, the properties of textile composites can be easily tailored for specific ap-

plications by varying the types of fibers and weaving architectures. This allows for a

single component exhibiting different material properties, for example, high stiffness

in one area while increased shear strength in another. CFM International has suc-

cessfully demonstrated the implementation of 3D woven composites for their Leading

Edge Aviaton Propulsion (LEAP) engine fan blades [7]. The textile preform is de-

signed with varied thicknesses such that the blade is thinner at the top and thicker at

the bottom to improve the durability of the structure. Owning to the tailored prop-

erties and geometries, the 3D woven engine has shown a significant weight reduction

and cost advantage over a similar composite engine such as the General Electric

GE90 [7] . Moreover, textile composites are suitable for large structural components

with complicated shapes, for example, the six-meter diameter dome-shaped rear pres-

sure bulkhead of the Airbus A380, which is manufactured by resin film infusion with

non-crimp stitched biaxial carbon fibers. In addition, there are also a number of

applications of textile composites in the field of medicine. Splinting materials are

becoming the largest medical market for textile composites [1]. Such materials are

required to fit to the complicated contours of limbs, while patient comfort urges the

materials to maintain high stiffness and light weight. Other biomedical applications

include walking support frames, bone plates, and surgical implants [1].

Increased attention is being paid to the advantage of designing with textiles for tai-

lored properties and enhanced performance. In order to maximize the benefit of using

textile composites, it is important to develop a robust, physics based computational

tool to understand how their deformation response is affected by the textile architec-

ture and constituent properties. Virtual testing, which is based upon modeling and

simulation using a computer, has been increasingly employed for the design of struc-

tural components. Even though real physical testing remains valuable and necessary

in a verification process due to its reliability, virtual testing provides an efficient way

to explore new material systems with optimized properties through a large number of

“what-if” type computations. Virtual testing is capable of considering more design

possibilities while dramatically reducing the cost of physical prototypes and testing,

and shortening the product development cycle. In addition, numerical simulation
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is an important methodology to understand the material behavior, for example, the

constituent in-situ properties within the textile composite, which is difficult to char-

acterize individually through physical tests. Thus, it is critical to develop a reliable

and validated numerical tool to predict the mechanical response of textile composites

under various in-service loads.

Earlier studies on textile composites mainly focus on the prediction of effective

homogeneous responses. A number of analytical models have been developed to com-

pute the elastic properties, including elastic moduli [8, 9, 10, 11] and bending stiffness

[12]. However, it should be noted that the textile geometry of an as-fabricated com-

posite experiences various degrees of distortions due to manufacturing processes such

as curing and consolidation. It has been pointed out by many researchers, including

Cox et al. [13], Huang and Waas [14], and Rao et al. [15], that although the geomet-

ric distortion of textile architecture has little effect on the composite elastic moduli,

manufacturing induced imperfections can significantly affect the resulting damage

and failure behavior, such as strength, strain to failure, and fatigue life. Therefore,

it is important to understand the manufacturing induced effects on the composite

macroscopic responses, including both elastic properties and failure characteristics.

Since this family of materials has been extensively used for crashworthy components,

experiencing severe in-service loading scenarios such as impact, shock, and blast, it is

critical to incorporate damage and failure mechanisms into a computational frame-

work. The predictive capability of the numerical model need to be demonstrated

through a set of coupon-level tests by comparing the numerical simulation results

with the corresponding experiments.

1.2 Hierarchy of Textile Composites

Textile composites contain hierarchical structures that can be broken down into

various constituent levels, as shown in Figure 1.1. Based upon the length scale,

the composite can be differentiated into three primary scales as (1) fibers at the

microscale; (2) representative unit cells (RUCs) containing internal structures of

textile reinforcements at the mesoscale; and (3) textile composite structures at the

macroscale. The microscale is associated with fiber diameters of 5 − 10 µm. The

mesoscale is characterized by fiber tows with lengths typically ranging from 1 mm to

10 mm. Textile composite structures that contain multiple RUCs with length scales

of 1− 10 m and above are considered as the macroscale.

The hierarchical nature of textile composites makes the characterization and mod-
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Fiber Tow

Fiber and Matrix

2mm

1mm

Figure 1.1: Hierarchy of textile composites. Each hierarchical level is associated with
a characteristic length scale.

eling of such materials a great challenge. Coupon-level testing is only able to provide

the overall, macroscopic response of textile composites, while the properties of the

fiber tows and surrounding matrix within the composites are difficult to characterize

directly. Experiments need to be specifically designed to better understand the con-

stituent behavior. Alternatively, a robust numerical model at the microscale, or at the

atomic-scale, can be used to determine the constituent properties at the mesoscale

including both linear and nonlinear responses. Due to the heterogeneity of textile

composites, each constituent experiences complicated loading histories, resulting in
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various damage and failure mechanisms evolving across different length scales. Thus,

the computational model must use micromechanical considerations to couple the in-

fluence of microstructure on the macroscale response while remaining computationally

efficient for large scale structural analysis including damage tolerance and durability.

1.3 Failure Mechanisms in Textile Composites

Understanding damage and failure of textile composites is critical for widespread

use of the materials with maximal benefit from their architecture. It has been re-

ported by a number of researchers that although 3D reinforcements can improve the

resistance to delamination, the insertion of through-the-thickness Z-fibers tends to

decrease the ultimate strength in tension [13, 16, 17, 18, 19]. The failure is typically

initiated due to matrix cracking between the fiber tows, and the location is also related

to the strain concentrations caused by the presence of Z-fibers. The surface strain

histories, which can be obtained through a digital image correlation (DIC) technique,

show a strong architecture dependent result [20, 21]. Figure 1.2(a) shows the sur-

face strain contours for a Z-fiber architecture 3DTC subjected to uniaxial tension.

The site of the strain concentration indicates the onset of matrix cracking, which is

evident from the image simultaneously taken on the opposite unpainted surface, as

shown in Figure 1.2(b). These matrix cracks tend to occur at the locations where

the Z-fibers go through into the preform, causing a matrix pocket, as illustrated in

Figure 1.2(c), [19]. To further investigate the internal matrix cracking patterns, the

failed specimen was cut down the middle in the direction of the tension load, and

the exposed internal surface was soaked in a dye penetrant. As shown in Figure 1.3,

cracks tend to occur in the matrix around the fiber tows, orientated perpendicular

to the tension direction, while additional cracks are observed at the interface of the

warp and weft tows, running along the loading direction [22]. Further investigation

of the crack initiation and progression is important to understand the load transfer

between the constituent materials and the influence of architecture on the progressive

failure response of 3DTCs.

The compressive failure of textile composites has been extensively studied by

Cox et al. [8, 23], Quek et al. [24], Huang and Waas [14], and De Carvalho et

al.[25]. In their studies, although matrix cracking is observed, fiber tow kinking

is determined as a strength limiting failure mechanism for this class of materials

subjected to compression. Figure 1.4(a) shows the fiber tow kinking observed in a

2D triaxially braided textile composite right after the peak load has been reached.
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(a) Surface strain contour plots overlaid
on the tension specimen [19].

(b) Matrix cracking develops on the ten-
sion specimen [19].

(c) Illustration of crack paths [19].

Figure 1.2: Matrix cracking developed on the tension specimen shows an architecture
dependent effect. The crack paths are represented by the black lines [19].
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Figure 1.3: Internal cracking in the failed tension specimen [22].

The load drops dramatically after kink band formation, followed by a load plateau,

while the fibers are completely broken within the band, as shown in Figure 1.4(b)

[26]. The main physical event associated with the kink band formation is the rotation

of the fibers in a band within a degrading matrix. The rotation of fibers gives rise to

high localized shear strains that drive the shear degradation of the matrix material

between the fibers. The shear degradation in turn increases the rotation of the fibers

creating a positive feedback loop that culminates in a limit-load type instability. The

effect of matrix cracking on the compressive strength of textile composites has been

discussed in Ref. [27].

(a) Kink bands at the peak load.

Fiber Breakage

(b) Kink bands at the load plateau.

Figure 1.4: Fiber tow kinking observed in a 2D triaxially braided textile composite
subjected to compression [26].

Compared with laminated composites, textile composites are able to demonstrate

higher damage tolerance since the interlaced fiber tows have the ability to prevent
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the delamination from occurring and localize the area of damage. Thus, this type

of material has become a promising candidate for crashworthy components, which

are expected to experience high-rate loads in service, such as impact, shock, and

blast. The rate dependent compressive response of 3DTCs has been investigated by

Pankow et al. [6] through a set of split Hopkinson bar tests. The authors have

reported an increase in strength, along with a transition in failure modes at elevated

loading rates. The failure mode is dominated by kink band formation at low rates, as

shown in Figure 1.5(a), while delamination has been observed at much higher rates, as

shown in Figure 1.5(b). It is worth mentioning that the polymer matrix shows a rate

dependent behavior where the yield strength increases with an increased strain rate.

Thus, when the 3DTC is subjected to an elevated loading rate, the increased matrix

yield strength suppresses fiber tow kinking, while the mode of splitting is controlled

by the matrix fracture toughness [6].

(a) Static. (b) Elevated rate.

Figure 1.5: Rate dependent compressive response of 3D textile composites. The failed
specimen shows a failure mode transition from kind banding at low rates
to delamination at higher rates of loading [6].

1.4 Modeling Strategy for Textile Composites

The development of a robust, predictive computational model for textile com-

posites is important for implementation of this family of materials. The challenge

in developing a reliable model lies in the complexity of textile geometry, the pres-
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ence of a hierarchical structure with various length scales, and little knowledge on

the constituent behavior. Errors are accumulated and progressed from one hierar-

chical level to another, resulting in predictions that may encompass a high level of

uncertainty[28]. For large scale structural analysis, homogenization at the macroscale

is essential to achieve computational efficiency, however, the model also needs to con-

sider the influence of textile microstructure since damage and failure progresses at

the constituent material scale.

1.4.1 Multiscale Modeling

Multiscale modeling, in which information is shared across two or more different

length scales, is an efficient modeling methodology for heterogeneous materials such

as composites. Based upon the hierarchical level exhibited in textiles, the model

can be generally differentiated into three different scales: a micromechanics model at

the fiber and matrix level to determine the effective fiber tow properties, a mesocale

textile architecture based model at the fiber tow level through a collection of RUCs

that incorporates the damage and failure analysis for the constituents (fiber tows

and surrounding matrix material), and a macroscale model at the structural level

in which the textile composite is treated as a homogeneous solid. Data across the

different scales can be either passed from one hierarchical level to another (passed up

through homogenization or down through localization), or shared simultaneously in

a multiscale computational framework [29]. An extensive review of various multiscale

models for textile composites is given by Bogdanovich [30].

1.4.2 Mesoscale Model

The key element in multiscale modeling for textile composites is the develop-

ment of a robust, generic, and physics-based mesoscale model that can account for

localization due to textile architecture while the model is homogenized at a certain

hierarchical level, for example, the tow level. The constituent relations, which are

obtained from either experiment or a lower level analysis, are directly implemented in

the mesoscale model such that the composite macroscopic response can be captured.

The damage and failure that evolves at the the mesoscale finally manifests as the

progressive deterioration of the composite effective stiffness at the macroscale.

In the literature, a number of mesoscale finite element (FE) models have been

developed, including both linear elastic and failure analysis [26, 31, 32]. The tex-

tile geometry of the as-fabricated composite can be characterized by inspecting the
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cross-sectional images using an optical microscope or a scanning electron microscope

(SEM). In some instances, X-ray micro-computed tomography (micro CT-scan) can

be utilized to determine the internal structural variations, and the measured geomet-

ric information is directly inputted into a textile software such as WiseTex [33] to

create a mesoscale textile model. It has been reported by a couple of researchers

that the damage and failure developed in the constituent materials can be captured

via a stiffness degradation scheme base upon continuum damage mechanics (CDM)

[34, 35, 36, 37]. However, the mesoscale FE model usually contains a large amount of

elements due to the irregular geometry of the surrounding matrix material, resulting

in computational inefficiency since these matrix elements do not carry the primary

loads. The FE model also experiences difficulty when the fiber tows are interact-

ing with each other while rotating along the the three coordinate directions. Thus,

idealization of the textile architecture is necessary to build a mesoscale FE model.

Moreover, CDM has been proven to be pathologically mesh dependent since no char-

acteristic length scale is associated with damage evolution. When it is implemented

for textile composites, it is difficult to measure the scalar variables that govern the

damage progression.

An alternative approach to model the composite response at the mesosocale is the

3D Mosaic material model proposed by Bogdanovich [38]. The key in the “Mosaic”

concept is to represent a composite structure at any hierarchical level as a Mosaic as-

semblage of an arbitrary number of distinct homogeneous anisotropic material blocks

[30]. For the application to textile composites, the textile RUC is treated as an as-

sembly of 3D unidirectional composites (a representation of fiber tows) embedded

with 3D matrix blocks. Material characteristics, including linear elastic properties

and ultimate failure strains, are assigned to the unidirectional composite block, while

a set of property “reduction factors” are introduced to both unidirectional composite

and matrix bricks within the unit cell. The model has demonstrated a fairly good

representation on the progressive failure response of a 3D Z-fiber orthogonal woven

composite, as shown in Ref. [39].

Finally, it should be mentioned that the mesocale model, which serves as a link

between the macroscopic homogeneous response and the micromechanical analysis on

the individual fibers and matrix, is built based upon periodicity existing in the textile

preform. An efficient mesoscale model requires a “minimum” region to be modeled,

while the RUC should not only represent the geometric characteristics but also cap-

ture the macroscopic response including damage and failure. Issues associated with

the mesoscale modeling, such as the representation of textile architecture, periodic
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boundary conditions, and characterization of constituent properties are addressed in

Chapter VII.

1.4.3 Micromechanical Analysis

In textile composites, the microstructure of a single fiber tow, which is composed

of thousands or tens of thousands of individual fibers that are embedded in a sur-

rounding matrix material, can be represented as a unidirectional fiber-reinforced com-

posite. The computation of the effective homogenized properties of such a material

is the most fundamental problem among numerous composite theories, resulting in a

multitude of micromechanics models available in the literature, including analytical,

semi-analytical, and full numerical methods.

One of the most fundamental homogenization theories to compute the effective

moduli of a unidirectional fiber-reinforced composite is the concentric cylinder model

(CCM) developed by Hashin and Rosen [40], in which they assumed the composite

medium can be represented by a series of concentrically assembled cylinders composed

of an inner fiber core and outer matrix annulus. This model, as it was originally

proposed, is based upon a variational bounding method proposed by Hashin and

Shtrikman [41, 42, 43]. The exact closed-form solutions for four of the five elastic

constants of a unidirectional fiber-reinforced composite was first presented by Hill

[44]. However, the fifth constant, which is the transverse shear modulus, cannot be

rigorously determined from the CCM. The lower bound of this modulus obtained by

Hashin [45] has been widely accepted [46, 47].

In order to better predict the transverse shear modulus analytically, Christensen

and Lo [47] proposed a generalized self-consistent method (GSCM) in which both the

fiber and matrix material are concentrically embedded in an infinite homogeneous

medium of the equivalent composite properties. This method is also known as the

Generalized Self-Consistent Method (GSCM), following the original Self-Consistent

Method (SCM) in which the fiber is directly embedded in the equivalent infinite

medium. However, it should be pointed out that their original formulation imple-

ments the wrong composite constitutive relations in the transverse plane (the plane

perpendicular to the fiber direction). Nevertheless, their pioneering work in seeking

the closed-form solutions for the transverse properties is significant, and the model

can be further extended to compute the local constituent fields in the transverse

plane, as demonstrated in Chapter V.

A distinct theoretical method to compute the composite effective moduli is based

upon Eshelby’s equivalent (inclusion) principle [48], in which the elastic field of an
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ellipsoidal inclusion inside an infinite matrix medium was studied. However, their

solutions were only valid for composites with dilute fiber concentrations due to the

neglect of interactions between inclusions. At finite concentrations, the average stress

in the matrix is perturbed by the presence of inclusions, and this phenomenon was

first investigated by Mori and Tanaka [49]. The combination of Eshelby’s idea on

equivalent inclusion and Mori-Tanaka’s concept of “average stress” results in a series

of important studies on micromechanics problems, especially the computation of the

effective properties of composites [50, 51, 52, 53, 54, 55]. A comprehensive review

on various topics in micromechanics is given in Mura [56]. The effective properties

of a unidirectional fiber-reinforced composite, based on Eshelbys principle, was first

proposed by Tandon and Weng [57], and later, a more compact form of the solutions

was presented by Benveniste [58].

It is worth mentioning that these analytical models are developed with a focus to

compute the composite linear elastic properties in terms of the constituent properties

and volume fractions without recourse to the spatial variation within the composite

volume at the microscale (the scale of a few fibers). These homogenization techniques

have been extensively used in the linear analysis of composite structures. In addition,

these analytical micromechanics methods also find utility in case of damage and

failure analysis by extending the formulation to the nonlinear regime through a secant

moduli approach [59, 60, 61, 62]. Reviews on other important micromechanics models,

including the transformation field analysis, generalized method of cells, and full finite

element analysis (FEA), are provided in Chapter V.

1.4.4 Computational Damage and Failure Models

Over the past few decades, a multitude of damage and failure models have been

developed in order to dictate the material nonlinear response. In this research, damage

and failure are distinguished in such a manner that damage governs any nonlinear

response that preserves the positive definiteness of the material stiffness matrix; while

failure is defined as internal structural changes that results in a post-peak strain

softening response in the stress-strain relation. When damage and failure mechanics

are intended to be implemented in a FE framework, it is efficient to treat the highly

distributed cracks as a continuum solid with degrading stiffness, for example, the

CDM approach discussed in Section 1.4.2. However, when the positive definiteness of

the material tangent stiffness matrix is lost, failure will be localized within a single

element in a FE computational model. Thus, if no length scale is introduced, the

energy dissipated during failure progression becomes a function of mesh size, resulting
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a mesh dependent result. To restore mesh objectivity, both the crack band [63] and

smeared crack approach (SCA) [64] have been developed with an intent to relate the

post-peak strain softening behavior with a traction-separation law that contains a

characteristic length scale. Thus, the total energy dissipated during failure evolution

can be equated to the fracture toughness of the material through this length scale,

indicating the transition from a strain-based description for material with a positive-

definite stiffness tensor to a displacement-based theory for failure progression. The

formulation for the SCA is provided in Chapter IV.

However, even though the mesh objectivity can be justified in the crack band or

SCA at a certain length scale, problems arise when these fracture models are im-

plemented in a multiscale modeling framework due to the inconsistent length scales

across the different scales. The validation of the multiscale approach to model the

material strain softening behavior has been argued by Bažant [65]. In order to over-

come this ambiguity, the material softening model implemented in this research is

restricted to the mesocale model, which is used to simulate the entire region where

failure occurs. Details of modeling the progressive failure response of textile compos-

ites are given in Chapter VII. The idea of connecting length scales across scales has

been recently addressed by Pineda et al. [66].

1.5 Research Objectives and Thesis Outline

In this research, the deformation response of 3DTCs has been investigated through

flexural tests. The experimental results are subsequently used as a basis for developing

a multiscale mechanics model for 3DTC deformation, damage and failure response,

predominantly under flexural loading. Two distinct types of 3DTCs, a layer-to-layer

interlock glass fiber 3DTC and a Z-fiber orthogonal interlock hybrid 3DTC, have

been studied in order to understand how the composite response is influenced by

the textile architecture and constituent properties. The predictive capability of the

proposed numerical model is illustrated by comparing the computational results from

the two material systems with experiment, including the load-deflection response and

failure characteristics.

Chapter II provides a detailed description of the two types of 3DTCs investigated

in this dissertation. The layer-to-layer interlock 3DTC is made of pure glass fibers,

while the Z-fiber orthogonal interlock hybrid 3DTC is manufactured by integrally

weaving three different fibers (carbon, glass, and Kevlar) together. Both dry preforms

are subsequently impregnated and cured through a Vacuum Assist Resin Transfer
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Molding (VARTM) process to form a solid panel. Microscopic studies are carried out

using an optical microscope in conjunction with a SEM to determine the geometric

characteristics of each architecture. Manufacturing induced imperfections, including

unintended geometric distortion of textile architecture and thermal effects on hybrid

3DTCs are discussed in this chapter. The measured tow dimensions along with the

constituent properties are subsequently used as inputs to a textile architecture based

mesoscale FE model.

Chapter III presents the results of an experimental investigation on the flexural

response of 3DTCs, obtained through both quasi-static and dynamic tests. Var-

ious testing configurations have been considered in order to fully understand the

architecture-dependent effect and determine the strength limiting mechanisms for

3DTCs subjected to flexural loading. Quasi-static tests were performed on either a

screw-driven loading device or a hydraulically activated loading machine, depending

on the stiffness of the composite panels. To achieve higher loading rates, tests were

carried out using a drop tower facility, which can provide different impact velocities

by varying the height of the weight that is dropped onto the specimen. The DIC

technique was utilized to map the deformation history and identify the failure modes.

The experimental investigation suggests that the observed failure modes, for example,

matrix cracking, is greatly affected by the textile architecture. Thus, an architecture

based numerical model that incorporates damage and failure constitutive relations is

expected to predict the progressive failure response of 3DTCs.

The modeling strategy for an isotropic polymer matrix material, including damage

and failure analysis is presented in Chapter IV. The pre-peak nonlinear stress ver-

sus strain response, which is attributed to the evolution of matrix microdamage, is

modeled using a modified J2 deformation theory of plasticity through a secant moduli

approach. The accumulation of matrix microdamage can result in matrix macroscopic

cracking, followed by a post-peak strain softening behavior that is modeled through

the SCA. Mesh objectivity of the SCA is demonstrated through a uniaixal tension

test on a RUC with various mesh sizes.

A novel, micromechanics based, two-scale model for computing the pre-peak non-

linear response of a single fiber tow is established in Chapter V. The microstructure

of a fiber tow can be represented as a unidirectionally aligned fiber-reinforced com-

posite, resulting in a transversely isotropic solid at the mesoscale. The effective fiber

tow response is computed through micromechanical analysis using the fiber-matrix

concentric cylinder model as the basic repeat unit. In addition, micromechanics is

used to relate the fiber tow strains to the fiber and matrix strains through a 6 by 6
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transformation matrix. The resolved spatial variation of the matrix fields are com-

pared with the corresponding FE model to demonstrate the accuracy of the proposed

micromechanics model. The evolution of the fiber tow nonlinear response is assumed

to be governed by two scalar, strain based variables that are related to the extreme

value of an appropriately defined matrix equivalent strain, and the matrix secant

moduli are used to compute the tow secant moduli for nonlinear analysis. The ac-

curacy of the proposed two-scale model on the prediction of the composite pre-peak

nonlinear response is evaluated by comparison to a full FE model. Since fully ana-

lytical solutions are utilized for the micromechanical analysis, the proposed method

offers a distinct computational advantage and is implemented to compute the fiber

tow constitutive relations in a mesoscale FE model of 3DTCs.

Various failure mechanisms of a fiber tow are examined in Chapter VI, including

fiber tow breakage, tow kinking, and transverse cracking. When catastrophic failure

occurs, the load carrying capability of a fiber tow at the mesoscale is lost, resulting

in a post-peak strain softening response. A micromechanical analysis based upon the

two-scale model proposed in Chapter V is carried out to numerically determine the

compressive strength of a fiber tow, which is subsequently used as the failure initiation

criterion. The effects of matrix in-situ properties, fiber misalignment angles, and

mesh objectivity on the prediction of tow kinking strength are discussed. The failure

evolution, including both tension and compression failure, is modeled using the SCA

with a specific traction-separation law that is designed for a fiber tow.

A mechanics based multiscale computational model is established in Chapter VII

to predict the flexural response of 3DTCs, predominatly under three-point bending.

The model is developed based upon a global-local modeling strategy, in which the

influence of textile architecture is incorporated in a mesoscale FE model that contains

detailed geometric information for the fiber tows and matrix, while the composite is

homogenized at the macroscale. The tow pre-peak nonlinear response is modeled us-

ing the two-scale model developed in Chapter V, in which the subscale micromechan-

ical analysis is carried out in closed form. The post-peak strain softening responses

of both the fiber tows and the surrounding polymer matrix are modeled through

the SCA. The predictive capability of the proposed model is illustrated through the

two distinct 3DTCs by comparing the computational results with the experiments,

including the load-deflection response and the failure characteristics, such as matrix

cracking, tow kinking, and tow tensile fracture.
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CHAPTER II

Material Microstructure and Characterization

2.1 Introduction

A number of structural components have been recently manufactured using 3DTCs,

such as the dome-shaped pressure bulkhead and wing trailing edge panels in the Air-

bus A380, rocket nozzles, turbine engine rotors, and wind turbine blades, as described

in Ref. [1]. An extensive review of numerous potential applications for 3D textile

composites (3DTCs) is provided in [67]. One of the driving forces for the increased

use of textile composites is the low manufacturing cost. The development of weaving

techniques dates back to the Jacquard loom in the 19th century. Mass production of

textiles can be achieved at a reasonable cost using modern, computer-aided manu-

facturing technique. Moreover, the computer-controlled Jacquard loom is capable of

producing textile reinforcements for components of complicated geometry according

to design specifications.

Previous studies have shown that 3DTCs offer enhanced mechanical performance

and better damage tolerance than 2D laminated composites [4, 68]. The through-the-

thickness reinforcements in 3DTCs have the ability to contain the damage area and

prevent the spread of delamination that often occurs in layered prepreg tape type

laminated composites [3, 4, 5, 6]. Various 3D woven architectures are available in

the textile literature, including layer-to-layer interlock, through-the-thickness angle

interlock, and Z-fiber orthogonal interlock. Recently, 3D hybrid textile composites

were manufactured by weaving three different fibers (carbon, glass, and Kevlar) into a

single textile preform which is subsequently impregnated and cured through a Vacuum

Assist Resin Transfer Molding (VARTM) process to form a solid panel. Different

hybridized architectures can be achieved by varying the percentage and lay-up of

each type of constituent fiber tows. It has been pointed out by Hufenbach et al. [69]

that hybrid composites can be tailored for specific structural applications by varying
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the combination of constituent fibers and weaving architecture to achieve enhanced

mechanical properties including stiffness, strength, and energy absorption.

This chapter provides a detailed description of 3DTCs that are investigated in

this dissertation. The textile architectures, including the terminology used in the

textile literature, are provided in Section 2.2 and 2.3. The fabrication process and

the geometric distortion of the textile architecture resulting from the manufacturing

process are discussed in Section 2.4. The microscopy studies on various types of

3DTCs including the geometric characteristics of each architecture are provided in

Section 2.5. The mechanical properties for the constituent fibers and polymer matrix

are reported in Section 2.6 and 2.7 respectively.

2.2 Textile Architecture

3DTCs are different from the layered laminated composites or 2D textile compos-

ites in that there exist inter-plane movements of fiber tows that bind multiple layers

together to enhance the through-the-thickness performance. Two main types of 3D

weaving, Z-fiber orthogonal interlock and layer-to-layer interlock architectures, are

extensively discussed in [2]. As shown in Figure 2.1, the Z-fiber architecture has a

series of solid warp and weft tows, forming a 0/90o array to maintain the in-plane

layers. This is much like a coarse cross-ply laminate, however, each layer contains

distinct fiber tows. The Z-fibers, running in the same direction as the warp tows,

are drawn from top to bottom to bind multiple weft layers together. These Z-fibers

are inserted in-between the warp tows, and can alternate their path along the weft

direction to form various repeating textile architectures. The Z-fiber architecture ex-

hibits almost straight warp and weft tows due to the tension applied to the fiber tows

during the weaving process.

In the layer-to-layer interlock architecture, Z-fibers are removed, and the warp

tows are woven through multiple weft fiber layers, as schematically shown in Figure

2.2. Since the warp tows are no longer straight, this architecture exhibits more

compliance than the Z-fiber architecture, and is affected by the manufacturing process

that makes the textile architecture to be different from the expected ideal one. The

geometry distortion can have a great impact on the damage behavior and the resulting

mechanical properties such as strength, strain to failure, and fatigue life. The aspect

of manufacturing induced effect is addressed in Section 2.4.
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Figure 2.1: Z-fiber weaving architecture.

Figure 2.2: Layer-to-layer interlock architecture.

2.3 Material Systems Investigated in This Dissertation

There are two distinct types of 3DTCs investigated in this dissertation. The first

type is a layer-to-layer interlock glass fiber composite. The dry textile preform is

made of S2 glass fibers provided by Albany Engineered Composites, Inc., NY. The

ideal textile architecture is schematically shown in Figure 2.3, in which the planes that

contain warp tows alternate with a period of four along the weft direction to achieve

a repeated textile pattern. This material is also named as Albany 2 throughout this

dissertation, which is consistent with the notation used in Ref. [2]. Figure 2.4 shows

the fiber reinforcements of the specimen after matrix burnout. The matrix burnout

tests were performed by Dr. Mark Pankow and Mr. Amit Salvi at the University of

Michigan. The test is initially used to determine the percentage of void content for

various 3D glass woven composites [2].
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Figure 2.3: Ideal textile architecture of the layer-to-layer interlock glass fiber 3DTC
(Albany 2).

The second type of 3DTCs has a hybrid Z-fiber orthogonal interlock textile ar-

chitecture, in which three different types of fibers, IM-7 carbon, S2 glass, and Kevlar

are integrally woven into a single textile preform. All the hybrid architectures are

provided by Textile Engineering and Manufacturing (T.E.A.M.), Inc., RI. The car-

bon fiber is used owing to the relatively high stiffness and strength, the glass for its

relatively low cost (high strength per unit cost), and Kevlar for its high resistance

(characterized by its toughness) to failure [19]. In this dissertation, three different

hybrid architectures, as schematically shown in Figure 2.5, are investigated to un-

derstand the effect of hybridization on the resulting flexural response, as discussed

in Chapter III. The first two architectures contain four layers of carbon (two layers

in the warp and weft directions, respectively) at one side, and the remainder are the

glass layers. The difference in the overall thickness allows for studying the size-scaling

effects by normalizing the result with respect to the panel thickness. The details are

presented in Section 3.3.3. These two architectures are considered to be unsymmetric

in the sense that the types of the layered constituent fibers are unsymmertic with

respect to the mid-plane of the composite panel. The third architecture, in which the
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Figure 2.4: The glass fiber preform of Albany 2 after the matrix burnout test.

carbon layers are used for both outer surfaces (four layers of carbon on each side), is

denoted as a symmetric panel. Among all the architectures, the planes that contain

Z-fibers alternate along the weft direction with a period of two to achieve a repeating

textile pattern. The geometric characteristics for these architectures are summarized

in Table 2.1. The percentage of the carbon content in each architecture is simply

calculated by dividing the number of carbon layers by the total layers of the compos-

ite. The images of the polished surfaces are shown in Figure 2.6, which are further

examined under microscopy to characterize the textile architecture. The microscopy

studies on these types of materials are discussed in Section 2.5.

Table 2.1: Panel thickness and constituent fractions for the 3D hybrid woven com-
posites.

Thickness # of Layers # of Carbon % Carbon
(mm) Layers

Thin Unsymmetric 8.79 ± 0.15 9 4 44.4

Thick Unsymmetric 15.96 ± 0.23 17 4 23.5

Thick Symmetric 16.80 ± 0.32 17 8 47.1
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(a) Thin unsymmetric panel. (b) Thick unsymmetric panel.

(c) Thick symmetric panel.

Weft Carbon Tows

Warp Carbon Tows

Weft Glass Tows

Warp Glass Tows

Kevlar Z-fibers

Figure 2.5: 3D hybrid Z-fiber orthogonal interlock textile architectures.
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(c) Thick symmetric panel.

Figure 2.6: Cross sections of the cured 3D hybrid textile composites.
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2.4 Fabrications and Manufacturing Induced Imperfections

Both the glass fiber layer-to-layer interlock and hybrid orthogonal Z-fiber textile

preforms are infused with SC-15 epoxy resin using a VARTM process to form a

solid panel. Impregnation and cure of the textile preform were carried out at the

Army Research Laboratory in Aberdeen, MD. VARTM is adapted from traditional

Resin Transfer Molding (RTM) by replacing the upper half mold with a vacuum

bag to enhance the impregnation of the fiber reinforcements. Details of the VARTM

technique and fabrication process are provided in [1, 2, 70, 71]. VARTM offers distinct

advantages over RTM including lower tooling cost, shorter mold time, and ability to

manufacture large structural components.

2.4.1 Geometry Imperfections in the Layer-to-Layer 3D Textile Compos-

ites

In the layer-to-layer architecture, the warp tows are used as weavers that are woven

through multiple layers, showing large undulations along the weaving path. Compared

with the Z-fiber architecture, in which the warp tows are running straight, the layer-

to-layer architecture shows much more compliance, and therefore it is more easily

affected by the fabrication process, for example, the tension exerted on the fiber tows

during the weaving process and the mold pressure applied during the curing process,

as schematically shown in Figure 2.7. In the VARTM process with a single-sided

mold, atmospheric pressure is exerted on the textile preform through the vacuum bag

covering, forcing the fiber tows to be settled in a new position that is different from

the predesigned one. This manufacturing induced geometrical imperfection of the

textile architecture in the as-fabricated composite panel is evident from the optical

microscopic images of Albany 2 sample shown in Figure 2.9.

It has been pointed out by Song et al. [72] that each manufacturing process is

associated with a unique set of characteristics that result in a produced part deviat-

ing from the expected ideal geometry. The set of such deviations, which is unique to

each manufacturing process, is termed the “manufacturing imperfection signature”.

Obtaining the manufacturing imperfection signature of the textile composite is im-

portant to determine the damage characteristics, such as strength, strain to failure,

and fatigue life, which has been reported by many researchers [13, 14, 15]. The im-

portance of incorporating the unintended geometric deviations of the woven fabric

into a textile architecture based finite element model has been recently addressed by

Zhang et al. [31].
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Figure 2.7: Manufacturing effect on the textile architecture (Albany 2).

2.4.2 Thermal Effects on the Hybrid 3DTCs

Although the Z-fiber interlock hybrid 3DTCs do not experience much geometry

distortion during the fabrication process due to their rigid warp and weft tows, they

do show some degree of initial curvature in the unsymmetric panels because of the

mismatch of the thermal expansion coefficients for different constituent fibers. When

cured, the unsymmetric panels experience different thermal strains in the carbon and

glass layers, resulting in minor bending in the specimens, as schematically shown in

Figure 2.8. The initial curvature can be estimated using classical lamination theory

as provided in Ref.[19]. For the thin unsymmetric panels, the initial radii of curvature

in the two principal directions were found to be approximately 500-600 inches for a 6

in by 6 in square panel [19].

Glass
Carbon

Figure 2.8: Initial curvatures observed in the hybrid unsymmetric panels.
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Table 2.2: Fiber tow geometry for Albany 2.

Weft tow Warp tow

Major axis (2a) (mm) 2.15 ± 0.11 2.51 ± 0.13
Minor axis (2b) (mm) 0.62 ± 0.05 0.53 ± 0.05

Wave length (2L) (mm) 11.80 ± 0.15 9.29 ± 0.16
Amplitude (A) (mm) 0.74 ± 0.07 0.45 ± 0.03

2.5 Microscopy Studies

In order to obtain a thorough understanding of the microstructure of the cured

composite, cross sectional microscopic images were inspected to characterize the tex-

tile geometry. Specimens were cut along the warp and weft directions into 1 in by

1 in blocks, and polished using a multi-speed rotating grinder/polisher. Microscopic

photographs were taken on the polished cross sectional surfaces to allow for the direct

measurement of fiber tow dimensions. The characterization is focused on Albany 2

and the thin unsymmetric hybrid specimens, and the measured dimensions are used

as inputs to a textile architecture based finite element model presented in Chapter

VII.

For Albany 2 specimen, as shown in Figure 2.9, both the warp and weft fiber

tows are idealized to undulate as sinusoidal waves with elliptical cross sections. The

measured tow dimensions are summarized in Table 2.2. The fiber volume fraction in

a fiber tow is determined to be 58% ± 8% by analyzing a scanning electron micro-

scopic (SEM) image. The volume fraction of warp, weft, and matrix provided by the

manufacturer are 24.78%, 32.76%, and 42.45%, respectively.

The micrographs for the thin unsymmetric specimen are shown in Figure 2.10, in

which both the warp and weft tows are assumed to be straight with rectangular cross

sections, and the binder tows are of elliptical cross sections . SEM images were taken

on the cross section of each type of constituent fiber tow to investigate how the fibers

are distributed inside the tow and to determine the average fiber volume fraction.

The measured fiber tow dimensions for the thin unsymmetric hybrid architecture and

the fiber volume fraction of each constituent tow are summarized in Table 2.3 and

Table 2.4, respectively.
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(b) Warp cross section.

Figure 2.9: Optical micrographs of Alany2 specimen. The fiber tow is idealized to
undulate as a sinusoidal wave with an elliptical cross section.

Table 2.3: Fiber tow geometry for the thin unsymmetric panel.

a (mm) b(mm)

Warp Carbon Tow 2.85 ± 0.12 1.00 ± 0.06
Warp Glass Tow 2.90 ± 0.33 1.11 ± 0.11

Weft Carbon Tow 1.77 ± 0.42 0.83 ± 0.10
Weft Glass Tow 1.83 ± 0.29 0.92 ± 0.06
Z-fiber Kevlar 1.44 ± 0.15 0.28 ± 0.06

2.6 Fiber Properties

S-2 glass fiber is a competitive candidate for textile reinforcement in composite

structural applications. It delivers 25% more linear-elastic stiffness than conventional

glass fibers, and offers enhanced strength, impact and fatigue resistance, and stability
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Figure 2.10: Optical micrographs for the thin unsymmetric specimens. The warp and
weft tows are assumed to be straight with rectangular cross sections, and
the binder tows are of elliptical cross sections.

Table 2.4: Fiber volume fractions for different constituent fiber tows.

Glass tow Carbon tow Kevlar tow

Albany 2 58%± 8%

Hybrid 60%± 4% 56%± 5% 69%± 7%

under extreme temperature and corrosive environments [73]. This family of glass

fibers also shows a distinct cost advantage over carbon fibers and the ability to absorb

high energy. In this research, S-2 glass fibers are used in both Albany 2 and the hybrid

textile preforms.

IM-7 carbon fiber is used in the hybrid preform due to its extraordinary high

stiffness. Unlike glass fiber, which shows isotropy during linear-elastic loading, carbon

fiber is usually considered as an orthotropic material with weak transverse and shear

properties. Surface treatment has been introduced to IM-7 carbon fiber, effectively

improving its strength and shear properties.

Kevlar is the registered trademark for a para-aramid synthetic fiber developed

at DuPont [74]. It provides superior light-weight tensile strength and toughness, as
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well as outstanding shock and impact resistance. However, the compressive strength

of Kevlar is noticeably lower than the tensile strength, suggesting that it be best

used in combination with other types of fibers, such as carbon or glass, to optimize

the overall structural performance. In the current hybrid woven composites, Kevlar

filaments are used as Z-fibers that weave multiple layers together to prevent the spread

of delamination between layers. This makes the best use of its high toughness and

resistance to failure. In addition, as an organic fiber, Kevlar tends to be more flexible

than glass and carbon, hence, it has the potential to eliminate geometric imperfections

caused by the through-the-thickness weavers.

The elastic properties along with the strength of S-2 glass, IM-7 carbon and Kevlar

fibers are summarized in Table 2.5. These values are taken from various sources

[75, 76, 77, 74, 19].

Table 2.5: Elastic modulus and ultimate strength for IM-7 carbon fiber, S-2 glass
fiber, and Kevlar.

E1 E2 ν12 G12 G23 Strength Failure strain
(GPa) (GPa) - (GPa) (GPa) (MPa) (%)

IM7 Carbon 276.0 15.0 0.279 12.0 5.02 5670 2.0

S-2 Glass 93.8 0.23 38.1 4890 5.7

Kevlar 112 0.36 41.2 3620 2.4

2.7 Matrix Properties

Both the pure glass layer-to-layer interlock preform (Albany 2) and the hybrid

preforms are infused with SC-15 epoxy resin, which is a two-phased toughened ther-

moset polymer containing part A (resin mixture of diglycidylether epoxy toughener)

and part B (hardener mixture of cycloaliphaic amine poluoxy-lalkylamine) [78]. Ow-

ing to its low viscosity, SC-15 is a good candidate for the VARTM process since it

is able to shorten the time for wetting fiber tows and improving the impregnation of

reinforcements.

A set of static tension and compression tests were performed on the post-cured

SC-15 specimens at ARL by Mr. Brian Justusson according to ASTM standard D638

and D695 respectively. The specimens were cured using the same curing cycle as that

used for the woven composites studied in this research. Representative tension and

compression stress-strain responses are shown in Figure 2.11, and the characteristic
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properties are summarized in Table 2.6 based on the average results from a minimum

of 5 tests. It can be immediately concluded that SC-15 behaves differently in tension

and compression, and the compression results yield a higher elastic modulus and

failure strength. This finding is remarkable, suggesting that the damage and failure

mechanisms for tension and compression are different. To understand this unique

behavior, a further investigation on the polymer matrix at the individual chain level,

possibly using molecular dynamics (MD), is recommended for future work. Moreover,

it should be mentioned that the in-situ response of the polymer matrix material inside

a fiber tow is different from the virgin resin properties due to the presence of the fibers

in the curing process. An extensive discussion on the determination of the matrix

in-situ properties is provided in Chapter VI.
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Figure 2.11: Representative uniaxial stree-strain responses for SC-15 expoxy in ten-
sion and compression.

Table 2.6: Static properties for SC-15 epoxy in tension and compression.

E ν Failure strength Failure strain
(GPa) - (MPa) (%)

Tension 2.20± 0.18 0.36± 0.08 58.31± 2.24 4.23± 0.48
Compression 2.51± 0.03 0.40± 0.07 76.95± 1.01 4.84± 0.69

Rate dependent behavior of SC-15 is reported in [12, 2], finding that the yield stress

and the subsequent nonlinear hardening response increase with increased loading
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rates. A material model that accounts for the rate dependent effect is presented in

[32, 79]. Studying the high strain rate behavior of this type of material is particularly

important when the textile composites are subjected to high rates of loading such as

shock and impact.

2.8 Conclusions

Various textile architectures, including the layer-to-layer interlock pure glass fibers

and Z-fiber orthogonal interlock of three different types of fibers (carbon, glass, and

Kevlar), are examined using an optical microscope and SEM to determine the fiber

tow dimensions and the fiber volume fraction of each constituent tow. The microscopy

studies on the cured composite samples show that the fabrication process has a great

impact on the final textile architecture, making it deviate from the ideal designed

one. The measured geometric characteristics are used as inputs to a textile architec-

ture based FE model, in which the manufacturing induced imperfections should be

incorporated to determine the damage behavior of this class of materials. In hybrid

composites, different types of fibers are used because of their unique properties. SC-

15 resin epoxy is used as a binding matrix due to its low viscosity, which is suitable

for the VARTM process. The mechanical properties of the fibers and matrix pro-

vide important information for the development of the material constitutive models

discussed in Chapter IV, V, and VI.
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CHAPTER III

Characterization of the Flexural Response of

3DTCs

3.1 Introduction

This chapter presents the results of an experimental investigation on the flexural

response of 3DTCs, obtained from both three-point and four-point bend tests at vari-

ous loading rates. In order to investigate the architecture-dependent effect, specimens

were loaded along the two major fiber directions, warp and weft, respectively. Quasi-

static tests were run either on a screw-driven device (Instron) or on a hydraulically

activated loading machine (MTS) depending on the stiffness of the different compos-

ite panels. The MTS can achieve a loading rate up to 2 in/sec, and for higher loading

rates, a drop tower was utilized by varying the height of the dropped weights. A

summary of various resting configurations are provided in Section 3.2. The results of

the quasi-static tests for Albany 2 and hybrid 3DTCs are reported in Section 3.3.1

and Section 3.3.2, respectively. The dynamic flexural response of hybrid 3DTCs is

discussed in Section 3.4.

3.2 Testing Configurations

The flexural response of 3DTCs were studied through a set of three-point and

four-point bend tests, as schematically shown in Figure 3.1. For Albany 2 specimens,

only quasi-static tests were carried out using the Instron machine with a loading rate

of 1mm/min. Specimens were cut along the warp and weft direction respectively,

with a length of 120 mm and a width of 19 mm using a diamond saw. The bottom

span for both three-point and four-point bend tests are 90 mm, and the upper span

for four-point bend test is 45 mm. The hybrid panels were cut with a length of 160
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mm and a width of 25.4 mm using a water jet. The upper and bottom span are 60

mm and 120 mm respectively. Both the upper and lower rollers are 0.5 in diameter.

For hybrid 3DTCs, both of the quasi-static tests were performed using the MTS

machine at a loading rate of 0.0004 in/sec. The quasi-static four-point bend tests

were carried out only on the thin unsymmetric panels, since the thick panels require

a much longer support span to achieve a four-point loading condition. The dynamic

flexural response of the hybrid panels was first investigated using a loading rate of 2

in/sec. The set-up is similar to the quasi-static testing, but tabs were attached to the

two bottom supports such that the specimen was secured during the impact event. To

achieve higher loading rates, the three-point bend tests were performed using a drop

tower. This facility can provide different impact velocities by varying the height of the

weight that is dropped onto the specimen. Two different heights were selected in the

present study. The specimen dimensions and loading configurations are summarized

in Table 3.1, and the testing matrix is shown in Figure 3.2.

In order to investigate the failure modes associated with the deformation history,

the outer surfaces of the composite panels were speckled, which were subsequently

used to obtain the surface strain fields via a DIC technique, while the outer surfaces

of the other specimens were polished such that the axial tows can be captured using

a high resolution camera. Images of the outer surface were taken during deformation

using a 12 Megapixel camera at 5-second time intervals. The full field surface strain

histories were obtained via the DIC software ARAMIS.

Figure 3.3 shows various flexural testing configurations studied in this research.

The 3DTCs were loaded in both the warp and weft directions. In addition, for the

unsymmetric hybrid panels, there exist two distinct testing configurations: the carbon

layer in compression and the glass layer in compression, both of which were tested to

investigate an architecture-dependent effect.
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(b) Four-point bend test.

Figure 3.1: Schematics of three-point and four-point bend testing configurations. The
side surface of the specimen is speckled as indicated.

Table 3.1: Flexural test configurations.

Albany 2 Hybrid

Bottom Span (L) 90 mm (3.54 in) 120 mm (4.72 in)
Upper Span (l) 45 mm (1.77 in) 60 mm (2.36 in)

Thin Unsymmetric: 8.79 mm (0.35 in)
Thickness (h) 6.35 mm (0.25 in) Thick Unsymmetric: 16.80 mm (0.66 in)

Thick Symmetric: 15.96 mm (0.63 in)

Width (w) 19.05 mm (0.75 in) 25.4 mm (1 in)

Loading Frame Instron MTS, Drop Tower

Loading Rate 1 mm/sec 0.0004 in/sec, 2 in/sec, >100 in/sec

33



Specimen

Static Dynamic (3-Pt)

3-Pt 4-Pt
MTS Drop Tower

2 in/sec H = 15 in H = 30 in

Albany 2

Thin Unsymmetric

Thick Unsymmetric

Thick Symmetric
Done

N/A

Figure 3.2: Testing matrix.
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Printed using Abaqus/CAE on: Sat Sep 21 19:27:21 Eastern Daylight Time 2013

X

Y

Z

(a) Albany 2, warp.

Printed using Abaqus/CAE on: Sat Sep 21 21:54:09 Eastern Daylight Time 2013

(b) Albany 2, weft.

(c) Thin unsymmetric, warp, C4G5. (d) Thin unsymmetric, warp, G5C4.

(e) Thin unsymmetric, weft, C4G5. (f) Thin unsymmetric, weft, G5C4.

(g) Thick unsymmetric, warp, C4G13. (h) Thick unsymmetric, warp, G13C4.

(i) Thick unsymmetric, weft, C4G13. (j) Thick unsymmetric, weft, G13C4.

(k) Thick symmetric, warp, C4G9C4. (l) Thick symmetric, weft, C4G9C4.

Figure 3.3: Various flexural configurations are studied to investigate the textile
architecture-dependent effect.
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3.3 Quasi-Static Three-Point and Four-Point Bend Tests

3.3.1 Albany 2 Panels Subjected to Flexural Loading

Representative load-displacement responses for Albany 2 panels subjected to quasi-

static three-point bending are shown in Figure 3.4(a). The load presented here is

normalized with respect to the width of the specimen such that the variation in the

specimen width due to cutting can be accounted for. The weft loading direction

shows higher initial stiffness than the warp direction due to the fact that there is one

additional axial tow in the weft direction to carry the bending moment. Overall, for

both directions the woven composites exhibit similar “plastic-like” behavior, more

representative of metals, indicating considerable damage tolerance of this type of ma-

terial. When the panel was loaded in the weft direction, the first damage occurred

at the point that deviates from the proportional loading due to fiber tow kinking

on the compression side. The kink band formation can be better observed under a

SEM, as shown in Figure 3.5. The DIC patterns before and after the first damage

occurrence are shown in Figure 3.4(b). However, when the material was loaded in the

warp direction, matrix micro-cracking occurred on the tension side and progressed in

the center of the specimen prior to the kinking on the compression side. These cracks

were captured by the DIC strain distributions as shown in Figure 3.4(c).

Figure 3.6 shows the load-displacement responses from quasi-static four-point

bend tests, and the results are compared against the ones from three-point bend tests.

It is worth noting that the load plateau in a four-point bend is almost twice the magni-

tude of the one in three-point bend, indicating that the compressive bending moment

that the material can carry is almost the same in both flexural tests. Figure 3.7 shows

the progressive damage events for Albany 2 specimen under four-point bend testing

along the warp direction, presenting similar damage modes that were observed from

three-point bend tests. Before the first load drop, matrix micro-cracking initiates at

the bottom of the specimen due to tension. These cracks progress slowly, however, no

significant load drop occurs until a kink band develops on the compression side. With

continued deformation, more kink bands develop and progress, resulting in the load

plateau in the load-displacement response. Therefore, it can be concluded that the

load capacity of this type of material subjected to flexural deformation is controlled

by the compressive strength of the fiber tow. This finding agrees with the flexural

test results of hybrid panels discussed in Section 3.3.2.
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Figure 3.4: Representative load-displacement responses for Albany 2 specimens sub-
jected to 3-pt bend tests. Surface strain patterns using DIC capture the
damage occurrences.
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Figure 3.5: Kink band formation on the compression side of the Albany 2 specimen.
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Figure 3.6: Experimental 3-pt and 4-pt load-displacement responses for Albany 2
panels (warp).
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(a) Experimental load-displacement response.

(b) At point (1). (c) At point (2).

(d) At point (3). (e) At point (4).

(f) At point (5).

Figure 3.7: Progressive damage events for Albany 2 panel subjected to quasi-static
4-point bending. Matrix cracks are illustrated by the black lines. The
specimen is loaded along the warp direction.
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3.3.2 Hybrid Panels Subjected to Flexural Loading

The experimental load-displacement responses for the different architectures loaded

in various configurations are shown in Figure 3.8. These responses exhibit similar

trends that the initial proportional loading is followed by a load plateau, indicating

considerable damage tolerance for this class of materials. Figure 3.9 shows the re-

sponse for the thin unsymmetric panel loaded along the warp direction, in which a

series of images showing the observed damage events are related to the loading history.

These images clearly show that the first damage occurred at the point that deviates

from the proportional loading, and corresponds to fiber tow kinking on the compres-

sive side of the flexed beam. When the beam deforms further, more kink bands are

formed on the compressive side, accompanied by matrix cracking at the bottom, until

a significant load drop, which is due to fiber tow rupture on the tensile side. Sim-

ilar progressive damage mechanisms were observed for the thick unsymmetric and

symmetric panels, as shown in Figure 3.10 and 3.11, respectively.

The tensile matrix cracking can be clearly seen from the DIC results, as shown

in Figure 3.12. The surface strain contours show the area of strain localization due

to the textile architecture, indicating the location that the matrix material starts

to crack. In order to further investigate the observed compressive failure occurring

in the fiber tow, tests were stopped at (or immediately after) the onset of the first

load drop. The middle damaged area was cut from the the specimen and cast into

an epoxy molding. The damaged surface was subsequently polished and examined

under both optical and scanning electron microscopes, as shown in Figure 3.13. The

kink band formation, including fiber breakage and matrix cracking, is clearly seen in

the SEM images.

The damage modes exhibited in the experiments are consistent for all three dif-

ferent architectures under various loading configurations, and can be summarized in

Figure 3.14. The experimental results show that the peak load is determined by the

fiber tow kinking strength. This agrees with the findings reported in Refs. [23, 31, 80]

that kink band formation is the strength controlling mechanism of failure. It is worth

noting that matrix cracking prevails during the deformation. In some instance, matrix

cracking can occur before the fiber tow kinking, which has been observed in Albany

2 (discussed in Section 3.3.1). Although it seems from the experiments that these

tensile cracks have little impact on the overall flexural response, the effect of the ma-

trix cracking on the stress redistribution within the fiber tow is unclear. A further

investigation of matrix cracking is carried out through a computational model, as

discussed later in Chapter IV and VII.
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Figure 3.8: Experimental three-point load-displacement responses for various hybrid
architectures.
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(a) Experimental load-displacement response.

(b) At point (1). (c) At point (2).

(d) At point (3). (e) At point (4).

(f) At point (5). (g) At point (6).

Figure 3.9: Progressive damage events for the thin unsymmetric panel subjected to
quasi-static 3-point bending. The specimen is loaded along the warp
direction.
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(a) Experimental load-displacement response.

(b) At point (1). (c) At point (2).

(d) At point (3). (e) At point (4).

(f) At point (5). (g) At point (6).

Figure 3.10: Progressive damage events for the thick unsymmetric panel subjected
to quasi-static 3-point bending. The specimen is loaded along the warp
direction.
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(a) Experimental load-displacement response.

(b) At point (1). (c) At point (2).

(d) At point (3). (e) At point (4).

(f) At point (5).

Figure 3.11: Progressive damage events for the thick symmetric panel subjected to
quasi-static 3-point bending. The specimen is loaded along the warp
direction.
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Matrix Cracking

(a) Thin unsymmetric, warp, C4G5.

Matrix Cracking

(b) Thick unsymmetric, warp, C4G13.

Matrix Cracking

(c) Thick symmetric, warp, C4G9C4.

Figure 3.12: Axial surface strain contours showing the tensile matrix cracking. The
material architectures are shown to the right.
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Figure 3.13: Kink bands were observed on the compression side of the flexed speci-
men. The post-damage surface was polished and examined under both
optical microscope and SEM.

3.3.3 Effects of Hybridization Obtained Through Quasi-Static Three-

Point Bend Tests

In order to compare the quasi-static three-point bend test results of various hybrid

panels, the measured centerline load (P ) and displacement (∆) are utilized to compute

the flexural stress, σf , and the flexural strain, εf , which are defined as the stress and

strains on the outer surface at the mid-point, respectively, according to [81].

σf =
3PL

2bh2

[
1 + 6

(
D

L

)2

− 4

(
h

L

)(
D

L

)]
(3.1)

εf =
6Dh

L2
(3.2)

where L is the support span, and b and h are the width and depth of the specimen,
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Figure 3.14: Schematic of experimental load-displacement response for 3D woven
composite subjected to flexural loading. The observed damage events
are annotated along with the deformation history.

respectively. The flexural modulus of elasticity, EB, can be computed as,

EB =
mL3

4bh3
(3.3)

where m is the slope of the initial linear portion of the load-displacement response.

It should be noted that for such highly orthotropic materials, the maximum stress

may not always occur on the outer surface of the specimen. Hence, an appropriate

beam theory, or a mechanics based model including those executed using FEA should

be employed to identify the maximum stress and strain to failure, as a function of

the textile architecture. That aspect is the subject of a separate study. The equa-

tions above allow for the comparison of the flexural responses among specimens with

different architectures through the directly measured quantities in the experiment.

Figure 3.15 shows the flexural stress-strain relations for various test architectures.

Compared with the load-displacement responses shown in Figure 3.8, these stress

versus strain responses are closer to each other in the initial slope and peak load,

indicating that these normalized quantities can be used to characterize the flexural

properties for different architectures. Moreover, the material shows a progressive

failure response, and it is difficult to identify the break point on the flexural stress-

strain response. This aspect is not discussed in ASTM standard D790-10 [81]. Here,

it is assumed that the material fails when the load drops by more than 20%. Thus,

in order to compare the performance for the different hybrid architectures, the failure
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characteristics used in the present study are, 1) the flexural yield stress, σfY , defined

as the stress at the point that deviates from the initial proportional limit, 2) the

maximum flexural stress, σfM , which is the maximum flexural stress achieved during

the bending, and 3) the strain to failure, εfM , which is defined as the break point

that corresponds to a 20% load drop. These defined failure characteristics are shown

in Figure 3.16. It is worth noting that these failure properties are defined differently

from those in the ASTM standard and utilized here for comparison purposes only.
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Figure 3.15: Flexural stress versus strain relations for various hybrid architectures.

Figure 3.16: Defined failure characteristics to compare the performance of the differ-
ent hybrid architectures.
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The flexural modulus of elasticity and failure characteristics for the three different

hybrid architectures are summarized in Table 3.2. It can be immediately concluded

that the weft direction is stiffer (higher tangent modulus of elasticity) than the warp

direction due to the fact that there is one additional axial fiber tow layer in the weft

direction. For these textile architectures, the axial tows are on the outermost layers

in the weft direction, carrying most of the bending moment. In addition, the thick

unsymmetric panel yields the lowest elastic modulus due to the decreased percentage

of carbon fibers. However, though the symmetric panel contains the highest percent-

age of carbon fibers, it does not show a significant increase in the bending stiffness,

which is different from the results in tension [19]. It is also worth noting that for the

unsymmetric panels, the “glass layers in compression” configuration shows a higher

stiffness than the “carbon layers in compression”. This finding indicates that the

material asymmetry can result in a shift of the bending axis from the geometric

mid-plane. Hence, it is suggested that the flexural response of the hybrid panels be

investigated through a more advanced theory [82, 83] or a FE model that incorporates

the geometry of textile architecture, such as the one proposed in Chapter VII.

The “glass layers in compression” presents higher yield and maximum flexural

stress and maximum ultimate strength than the “carbon layers in compression” in

both the thick and thin unsymmetric panels. It has been shown previously that the

yield flexural stress, which corresponds to the point that deviates from the initial

proportional loading, is due to the kink band formation in the fiber tow. The kink

bands are formed and progress on the compressive side of the specimen with further

deformation, limiting the maximum load capacity of this class of materials. Hence, it

can be concluded that the “glass layers in compression” exhibits higher compressive

strength than the “carbon layers in compression”. The compressive failure of compos-

ite materials have been extensively investigated in the past, resulting in a series of im-

portant studies on fiber kinking [84, 85, 86, 87, 88, 89, 90, 91, 59, 92]. It is established

that kink band formation is due to both geometric nonlinearity (fiber misalignment)

and material nonlinearity (matrix degradation) in fiber reinforced composites. The

misaligned fibers lead to localized shear strains and accompanied transverse strains,

driving the degradation of the matrix material between the fibers. The matrix degra-

dation in turn allows the fibers to rotate more easily, resulting in the formation of a

kink band. Aspects in the predicting of kinking strength using a mechanics based FE

model are discussed in Chapter VI.

When the unsymmetric panels are subjected to bending, the outermost carbon

layers carry a larger percentage of the bending moment than the glass layers. Thus, if
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it is assumed that the carbon and glass fibers have the same degree of misalignment,

then in the instance that the carbon layers are in compression, the matrix inside the

carbon tows will experience higher shear strains, resulting in a lower flexural yield

stress. On the other hand, the “carbon layers in compression” gives higher ultimate

strain to failure, indicating that the bottom glass layers present considerable energy

absorption. The ultimate strains to failure for IM-7 carbon fibers and S-2 glass fibers

are approximately 1.8% and 5.7%, respectively. Hence, it is expected that the glass

tows can provide higher strain to failure in tension than the carbon tows. This result

agrees with the findings reported in Ref. [19] that the pure glass architecture shows

the highest ultimate tensile strength among all the hybrid configurations.

As shown in Figure 3.15, although the three different hybrid textile composites

studied in this paper vary in the constituent fraction and panel thickness, the flexural

stress-strain relation shows similar response and variation in the magnitude of the

yield flexural stress, and the maximum flexural stresses are in the range of 11.8% and

11.0%, respectively. If it is assumed that the hybrid textile composites exhibit the

same degree of fiber misalignment, the compressive strength of this type of material

shall have a strong dependence on the matrix nonlinear properties. As a result,

increasing the content of carbon fibers cannot help increase the flexural strength.

However, it is also worth noting that the mechanism associated with fiber tow kinking

in textile composites is complicated due to the complex textile geometry and the

influence of the surrounding matrix. In order to further understand the tow kinking

behavior and to better predict the kinking stress, the development of an architecture

based 3D FE model is motivated. This work is presented in Chapter VII.
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3.4 Dynamic Three-Point Bend Tests

3.4.1 MTS: 2 in/sec

The dynamic flexural response of hybrid 3DTCs was first investigated using the

MTS machine at a loading rate of 2 in/sec with a predetermined end deformation of 1

in. The deformation history was captured using a high-speed camera, Photron SA.5,

recording images at 10,000 fps. The recorded load-deflection responses for the three

different hybrid architectures are shown in Figure 3.17 - 3.19, and the corresponding

results from the quasi-static tests are overlayed to show the rate-dependent effect.

The dynamic flexural response shows a similar load-deflection trend and progres-

sive damage compared with the quasi-static response. When the loading rate is

increased to 2 in/sec, the specimen tends to carry a higher load compared to that

from static testing. The increase in the maximum load is most significant in the

instance that the glass layers are in compression. This is because the compressive

strength is controlled by the kink band formation, which is the result of fiber mis-

alignment and matrix nonlinearity, as discussed in Section 3.3.2. This indicates that

the matrix material inside the fiber tow behaves differently and exhibits different

rate-dependent effects in the carbon and glass. This is evident in the testing of a

(+45/−45) laminated composite panel composed of either pure carbon or pure glass

fibers. The matrix static stress versus strain response obtained from the laminate

shear test shows different nonlinear behavior in the carbon and glass, while both pan-

els were manufactured using the same curing cycles as the one used for fabricating

the hybrid panels, as shown in Section 6.3.2. In order to further understand the effect

of loading rate on the in-situ matrix material, the pure glass and carbon laminates

should be first tested under a higher rate. Investigating the in-situ matrix response

is important, because it affects the formation of kink bands which limit the load

carrying capacity.
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(a) Thin unsymmetric, warp, C4G5.
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(b) Thin unsymmetric, warp, G5C4.
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(c) Thin unsymmetric, weft, C4G5.
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Figure 3.17: Experimental load-displacement responses for each of the testing con-
figurations of the thin unsymmetric panels at two loading rates. The
dynamic three-point bend tests were performed using MTS testing ma-
chine at a loading rate of 2 in/sec.

53



0 5 10 15 20 25 30
0

200

400

600

800

Displacement (mm)

Lo
ad

/W
id

th
 (

N
/m

m
)

 

 

Static
Static
2 in/s
2 in/s

(a) Thick unsymmetric, warp, C4G13.
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(b) Thick unsymmetric, warp, G13C4.
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(c) Thick unsymmetric, weft, C4G13.

0 10 20 30
0

200

400

600

800

1000

Displacement (mm)

L
o

a
d

/W
id

th
 (

N
/m

m
)

 

 

Static
Static

2 in/s
2 in/s

(d) Thick unsymmetric, weft, G13C4.

Figure 3.18: Experimental load-displacement responses for each of the testing con-
figurations of the thick unsymmtric panels at two loading rates. The
dynamic three-point bend tests were performed using MTS testing ma-
chine at a loading rate of 2 in/sec.
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(a) Thick symmetric, warp, C4G9C4.
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Figure 3.19: Experimental load-displacement responses for the thick symmetric pan-
els testing along both warp and weft directions at two loading rates.
The dynamic three-point bend tests were performed using MTS testing
machine at a loading rate of 2 in/sec.
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Table 3.3: Experimental setup for drop tower test. The thick panel includes the thick
symmetric and unsymmetric one.

Specimen Height Velocity Mass Energy
- (in) (m) (in/sec) (m/sec) (kg) (J)

Thick Panel
15 0.38 108 2.73 63.1 235.0
30 0.76 152 3.87 63.1 470.0

Thin Panel
15 0.38 108 2.73 25.1 93.5
30 0.76 152 3.87 25.1 187.0

3.4.2 Drop Tower Test

In order to obtain a higher loading rate, the dynamic three-point bend tests were

performed using a drop tower facility, as shown in Figure 3.20. Different impact

velocities can be achieved by varying the height of the weight that is dropped onto

the specimen, and the impact energy (E) is calculated as E = mgh, where m is

the mass of the weight, h is the predetermined height, and g = 9.8m/sec2. In the

present study, two different heights, 15 in and 30 in, were chosen to achieve impact

velocities of 108 in/sec and 152 in/sec, respectively. The mass of the weight that is

dropped on the thick panels, including the thick symmetric and thick unsymmetric

ones, is 63.1 kg to fail the specimens, while the weight is reduced to 25.1 kg for

tests on the thin unsymmetric panels due to safety reasons. The experimental setup

and the calculated impact energy for each testing configuration are summarized in

Table 3.3. The impact force is measured using a Kistler 9104A load cell, which is

mounted between the dropped mass and the impactor. Two Photron SA.5 high-speed

cameras were utilized to capture the deformation history of the specimen, with one

focused on the speckled surface of the dropped mass and the other on the specimen.

The displacement of the impactor is calculated through the images of the speckled

dropped mass via the DIC technique. The initial impact velocity obtained from

the DIC result based upon the few frames before contact is correlated well with the

velocity calculated using the equations for a free-falling object. The two cameras were

synchronized with a recording rate of 15,000 fps.

The experimental load-deflection responses for the three different hybrid archi-

tectures are shown in Figure 3.21 − 3.23. Similar to the quasi-static testing results,

the first damage event that affects the initial proportional loading is determined to

be fiber tow kinking on the compressive side. When the specimen deforms further,

more kink bands are formed on the compressive side, followed by a significant load
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Figure 3.20: Drop tower test setup.

drop due to tow breakage on the tensile side. In the static test, a “load plateau”

is observed during the progression of kink banding, however, the load recorded from

the drop tower test shows a “chattering” response in this progressive damage regime.

The peak loads obtained from the two different impact velocities are almost the same,

however, the final catastrophic failure is significantly affected by the loading rates in

the “glass layer in tension” testing configuration for both of the unsymmetric panels.

For the thick unsymmetric panel under the impact velocity of 108 in/sec, the post-

test specimen still remains a certain degree of load-carrying capability since the final

load even does not drop much in the “glass layer in tension” configuration, as shown

in Figure 3.22(a) and (c). However, the catastrophic strain to failure is not affected

by the impact velocity in the “carbon layer in tension” configuration, as shown in

Figure 3.21(b) and (c), Figure 3.22(b) and (c), and Figure 3.23.

The load-deflection responses for each hybrid architecture at the four different

loading rates (quasi-static, 2 in/sec, 108 in/sec, and 152 in/sec) are shown in Figure
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3.24 − 3.26. The rate-dependent effect is more significant in the glass layers than

that in the carbon layers, for both tension (tow breakage) and compression (tow

kinking) failure responses. It is also worth noting that the highest peak load occurs

at the loading rate of 2 in/sec for each testing configuration. Elevated loading rates

achieved by the drop tower does not lead to an increase in the peak load, which is

controlled by the tow kinking strength. However, it should be pointed out that the

drop tower facility is different from the MTS machine in that additional kinetic energy

is introduced to the testing framework by the dropped weight. Therefore, it is critical

to further investigate the effect of kinetic energy on the progressive damage and

failure response of 3DTCs through both experimental and computational analysis. A

computational model that captures both rate-dependent and architecture-dependent

effects is presented in Chapter VII.
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(c) Thin unsymmetric, weft, C4G5.
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(d) Thin unsymmetric, weft, G5C4.

Figure 3.21: Experimental load-displacement responses for each of the testing config-
urations of the thin unsymmetric panels from drop tower tests.
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(a) Thick unsymmetric, warp, C4G13.
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(b) Thick unsymmetric, warp, G13C4.
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(c) Thick unsymmetric, weft, C4G13.
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(d) Thick unsymmetric, weft, G13C4.

Figure 3.22: Experimental load-displacement responses for each of the testing config-
urations of the thick unsymmetric panels from drop tower tests.
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(a) Thick symmetric, warp, C4G9C4.
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Figure 3.23: Experimental load-displacement responses for each of the testing config-
urations of the thick symmetric panels from drop tower tests.
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(a) Thin unsymmetric, warp, C4G5.
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(c) Thin unsymmetric, weft, C4G5.
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Figure 3.24: Experimental load-displacement responses for each of the testing con-
figurations of the thin unsymmetric panels at the four different loading
rates.
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(a) Thick unsymmetric, warp, C4G13.
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(c) Thick unsymmetric, weft, C4G13.
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Figure 3.25: Experimental load-displacement responses for each of the testing config-
urations of the thick unsymmetric panels at the four different loading
rates.

0 5 10 15 20 25 30
0

200

400

600

800

Displacement (mm)

L
o

a
d

/W
id

th
 (

N
/m

m
)

 

 

Static
2 in/s

108 in/s
152 in/s

(a) Thick symmetric, warp, C4G9C4.
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Figure 3.26: Experimental load-displacement responses for each of the testing con-
figurations of the thick symmetric panels at the four different loading
rates.
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3.5 Conclusions

The flexural response of two distinct material systems, a layer-to-layer interlock

pure glass fiber 3DTC (Albany 2) and Z-fiber orthogonal interlock hybrid 3DTCs

of three different architectures, have been examined through both quasi-static and

dynamic tests. The quasi-static load-displacement responses show similar behavior

for various architectures. It is observed that the load deviates from the initial pro-

portional loading due to fiber tow kinking on the compressive side of the specimen.

With continued deformation, additional kink bands are formed on the compressive

side, while the progression of matrix cracking is captured using a DIC technique.

The observed load plateau indicates that this class of materials exhibit considerable

damage tolerance. The final significant load drop was observed due to fiber tow rup-

ture on the tensile side. The flexural response of hybrid textile composites show a

strong dependence on the fiber lay-ups, and the addition of carbon fiber layers do not

always improve the performance, including the bending modulus, flexural strength,

and strain to failure.

The dynamic three-point bend tests were performed only on the hybrid panels

at three different loading rates. The MTS machine can achieve a loading rate of 2

in/sec, and the drop tower provides higher impact velocities of 108 in/sec and 152

in/sec by setting the height of the dropped weight to be 15 in and 30 in, respectively.

The dynamic response shows a similar load-deflection trend and progressive damage

behavior compared with the quasi-static response. The highest peak load is obtained

at the loading of 2 in/sec, while the elevated loading rates achieved using the drop

tower result in a decrease in the peak load that is controlled by the tow kinking

strength. However, it should be pointed out that the drop tower facility is different

from the MTS machine in that additional kinetic energy is introduced to the testing

framework by the dropped weight. Thus, the progressive damage and failure response

of 3DTCs is also affected by the energy transfer between the kinetic energy of the

dropped impactor to the strain energy stored in the deformed beam.

Although the experimental results show an architecture-dependent effect, fiber

tow kinking on the compressive side of the specimen is determined to be a strength

limiting mechanism for this class of materials. The tow kinking phenomenon along

with matrix cracking due to strain localization indicate the importance of the textile

architecture on the failure mechanisms of this class of material. Hence an architec-

ture based numerical model that incorporates constitutive relations that encompass

damage is expected to predict the failure modes observed in the experiment. A
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computational model that captures both rate-dependent and architecture-dependent

effects is presented in Chapter VII.
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CHAPTER IV

Modeling Progressive Microdamage and Failure in

a Polymer Matrix

4.1 Introduction

Matrix cracking is prevalent in fiber-reinforced composite materials when sub-

jected to mechanical loading. As shown in Chapter III, matrix cracking is observed

on the tensile side of a flexed 3DTC panel and progressed throughout the specimen. In

addition, the experimental stress-strain responses for the monolithic matrix material

under tension and compression (see Figure 2.11) suggest that the material exhibits

nonlinearity before reaching the peak stress. In this work, damage and failure are

distinguished in such a manner that damage governs any nonlinear response that

preserves the positive definiteness of the material stiffness tensor; whereas failure is

defined as the structural changes that result in post-peak strain softening in the stress

versus strain response. Figure 4.1 shows a representative full constitutive response

of a polymer matrix including damage and failure behavior. The pre-peak nonlinear

behavior is attributed to matrix microdamage due to the growth of voids and flaws in

the matrix, and is considered as a damage mechanism. The accumulation of matrix

microdamge finally results in matrix macroscopic cracking that is categorized as a

failure mechanism due to the loss of the positive definiteness of the material tangent

stiffness tensor.

A multitude of damage and failure models have been developed over the past

few decades, with an intent to be implemented in a FE modeling framework. In

this sense, continuum damage mechanics (CDM) has emerged as an efficient way for

modeling the nonlinear behavior of the material with growing damage, such as the

evolution of matrix cracking in composite materials and crack propagation in concrete.

Rather than treating the highly distributed cracks individually, CDM captures the
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Figure 4.1: Schematic of matrix constitutive behavior including damage and failure.

average effects of these progressively distributed cracks by reducing the components

of the material stiffness tensor. It assumes that the cracks, which are considered

as discontinuities at a lower scale, can be represented as a continuous medium at a

larger scale by scaling the area of damage with respect to a finite volume. In the

CDM theory, a representative volume element (RVE) is introduced, in which all the

material properties are represented by homogenized variables. Therefore, the damage

and failure behavior can be modeled using a set of scalar damage variables that are

associated with certain observed damage/failure mechanisms. The idea of using scalar

damage variables was first proposed by Kachanov [93], and later, a number of practical

applications of CDM were published in [94, 95, 96, 97, 98, 99]. Implementation of

CDM in modeling the damage and failure in composite materials has been reported

in [100, 101, 102, 103, 104, 105].

Although CDM has the ability to capture the material strain softening behavior,

this method is pathologically mesh dependent since no characteristic length scale is

associated with the damage evolution. When implementing CDM in a FE framework,

failure will be localized within a single element, and the energy dissipated due to

failure becomes a function of element size. In essence, the element size becomes the

characteristic length. Consequently, in the limit of zero element size, the amount of

energy dissipation also approaches zero. In order to restore mesh objectivity, that is,

to prevent element size from being the characteristic length, nonlocal theory [106, 107]

and gradient-based theory [108, 109] have been developed by enforcing a characteristic

length, which is independent of element size, to be associated with damage evolution

equations.

65



An alternative method to preserve mesh objectivity is to associate the post-peak

strain softening behavior with a traction-separation law such that the total strain

energy dissipated during the failure process can be equated to the fracture toughness

of the material, thereby introducing a characteristic element length which is related

to energy dissipation. Both the crack band [63] approach and smeared crack approach

(SCA) [64] have been developed with this motivation. In these theories, the pre-peak

stress-strain response is modeled using a standard continuum theory (such as elastic-

ity, plasticity, CDM, Schapery theory [110, 111]), while the post-peak strain softening

failure behavior is represented through a traction-separation law that incorporates a

characteristic length. This characteristic length is related to element size through

an equation that includes material properties, including fracture toughness, fracture

strength, and elastic modulus. Implementation of various failure initiation criteria

and subsequent evolution laws for modeling progressive failure in composite materials

has been reported in [112, 113, 114, 115]. Recently, Pineda et al. [116] investigated

the capability of utilizing the crack band theory to predict the progressive matrix

cracking within a fiber-matrix microstructure.

In this chapter, the modeling strategy for an isotropic matrix material is pre-

sented, including damage and failure analysis. The matrix microdamage, manifested

as the pre-peak nonlinear stress versus strain response, is modeled using a modified J2

deformation theory of plasticity, as formulated in Section 4.2. The secant moduli are

degraded with the progression of microdamage, however, the positive definiteness of

the tangent stiffness tensor is still preserved. When a critical stress state is reached,

failure is initiated and the post-peak strain softening behavior is modeled through the

SCA. The SCA, originally developed to capture tensile cracks (mode-I) in concrete,

is extend to model matrix macroscopic cracking in both tension and compression, as

given in Section 4.3. An example of demonstrating mesh objectivity of the SCA to

model the post-peak strain softening behavior is given in Section 4.4. The implemen-

tation of this matrix material model to the mesoscale textile architecture based FE

model is presented in Chapter VII, in which the progression of matrix cracking in 3D

woven composites is successfully captured.

4.2 Modeling the Microdamage in Matrix Based upon Mod-

ified J2 Deformation Theory of Plasticity

The pre-peak nonlinear behavior of a polymer matrix material is the result of

matrix microdamage. The evolution of such a damage mechanism accounts for pro-
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gressive deterioration of the material stiffness, however, the tangent stiffness tensor

still remains positive-definite. It has been shown by Sicking [117] that a polymer

matrix exhibits loading path independence behavior through a combined tension and

torsion test. Hence, for such an isotropic material, the state of stress can be uniquely

determined from the state of strain through a secant modulus as long as the material

does not unload. It further assumes that the evolution of damage is an irreversible

process, therefore, once the matrix stiffness tensor is degraded due to microdamage, it

cannot be recovered. Such behavior suggests that a modified J2 deformation theory

of plasticity be employed to model the nonlinear stress-strain relation of this type

of material. The present constitutive model is different from the original theory in

that the degrading secant moduli are utilized to compute the material stiffness tensor

during unloading, as schematically shown in Figure 4.2.

sE





y

eE

p e

Figure 4.2: Representative uniaxial stress-strain response for polymer matrix. The
evolution of pre-peak nonlinearity is modeled through a secant moduli
approach.

In the classical theory of plasticity, it is assumed that the total strains, εij, can be

decomposed into elastic strains, εeij, and plastic strains, εpij, for small strains, as,

εij = εeij + εpij (4.1)

For a J2-material, the plastic strain is related to the stress deviator, sij, as,

εpij = φ(J2)sij (4.2)
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where the scalar, φ(J2), is a material property determined by experiment. From the

uniaxial stress-strain response shown in Figure 4.2.

εp11 = φ(J2)s11 = ε11 − εe11 =
σ11
Es
− σ11
Ee

=
3

2

(
1

Es
− 1

Ee

)
s11 (4.3)

where Ee and Es are the material elastic and secant Young’s moduli, respectively.

Hence,

φ(J2) =
3

2

(
1

Es
− 1

Ee

)
(4.4)

εpij =
3

2

(
1

Es
− 1

Ee

)
sij (4.5)

Substituting Eq. (4.5) into Eq. (4.1), results in,

εij =
1 + νe
Ee

σij −
ν

Ee
σkkδij +

3

2

(
1

Es
− 1

Ee

)
sij

=

[
1 + νe
Ee

+
3

2

(
1

Es
− 1

Ee

)]
σij −

[
νe
Ee

+
1

2

(
1

Es
− 1

Ee

)]
σkkδij (4.6)

where νe is the elastic Poisson’s ratio. In order to simplify Eq. (4.6), a secant Poisson’s

ratio, νs, is defined as,

νs =
1

2
+
Es
Ee

(
νe −

1

2

)
(4.7)

Hence, Eq. (4.6) is reduced to,

εij =
1 + νs
Es

σij −
νs
Es
σkkδij (4.8)

Therefore, the total stress versus strain relation for a nonlinear material can be

formulated using secant moduli, Es and νs, Eq. (4.8) appears in form like the relation

for a linear elastic material. For an isotropic material, other material constants, such

as µ and λ, can be extended to secant quantities in a similar manner as,

µs =
Es

2(1 + νs)
λs =

νsEs
(1 + νs)(1− 2νs)

(4.9)

Thus, the total stress-strain constitutive relation can be written as,

σij = 2µsεij + λsεkkδij (4.10)
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In order to utilize a uniaxial stress-strain response to determine the material re-

sponse under multi-axial loading, two equivalent variables, the equivalent stress, σeq,

and the equivalent strain, εeq, are introduced and related through Es as,

σeq = Esεeq (4.11)

According to J2 deformation theory, σeq is defined as,

σeq =
√

3J2

=

√
1

2
[(σ11 − σ22)2 + (σ22 − σ33)2 + (σ33 − σ11)2] + 3 (σ2

12 + σ2
13 + σ2

23)
(4.12)

Squaring both sides of Eq. (4.11), it gives σ2
e = E2

s ε
2
eq. Since σ2

e = 3J2 = 3
2
sijsij, it

follows that,

ε2eq =
3

2

1

E2
s

sijsij (4.13)

Noting that,

sij = 2µseij =
Es

1 + νs
eij (4.14)

where eij are the strain deviators. Substituting Eq. (4.14) into Eq. (4.13), it results

in,

ε2eq =
3

2

1

(1 + νs)2
eijeij (4.15)

Taking the square root of both sides of Eq. (4.15) leads to,

εeq =
1

1 + νs

√
1

2
[(ε11 − ε22)2 + (ε22 − ε33)2 + (ε33 − ε11)2] +

3

4
(γ212 + γ213 + γ223)

(4.16)

It can be shown that when the matrix is subjected to a uniaxial tension state

(σ11 > 0 and other σij = 0), σeq is reduced to σ11 according to Eq. (4.12). On

the other hand, the non-zero strains in a uniaxial tensile stress state are ε11 > 0

and ε22 = ε33 = −νsε11. Substituting these relations into Eq. (4.16), εeq is readily

reduced to ε11. Thus, a simple uniaxial stress-strain response from tensile testing can

be used to construct the effective stress versus effective strain response, and no other

measurements are required.

In this research, the matrix nonlinear stress-strain relation is characterized using

an exponential relation as,

σeq = σy −
K1

K2

(
e−K2εeq − e−K2

σy
Ee

)
(4.17)
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where σy is the yield stress in a simple uniaxial tension test, and K1 and K2 are

the two material constants that govern the evolution of matrix microdamage. These

material properties can be determined from the experimental stress-strain response

shown in Figure 2.11.

4.3 Modeling the Failure of the Matrix Material Using the

SCA

The accumulation of matrix microdamage leads to the initiation of matrix macro-

scopic cracking, followed by a post-peak strain softening response in the stress versus

strain response. In this research, the evolution of matrix failure is modeled using the

SCA, which is originally developed by Rots et al. [64] to model crack propagation

and fracture in concrete. In the SCA, it is hypothesized that distributed cracks are

“smeared” out over a certain width within the finite element such that the effect of

progressive cracking is represented by a macroscopic strain softening behavior in a

continuum scheme. Here, a characteristic length scale is introduced to associate this

strain softening response with the traction-separation law (see Figure 4.3), indicating

the transition from a strain-based description for material with a positive-definiteness

stiffness tensor to a displacement-based theory for failure progression. Mesh objectiv-

ity is restored by equating the total energy release rate during failure to the material

fracture toughness. The general formulation of the SCA for an isotropic material is

provided in Section 4.3.1, followed by the failure initiation criterion and evolution law

for two different failure modes, tension (mode-I) and compression (mode-II) presented

in Section 4.3.3 and 4.3.4, respectively.

4.3.1 SCA Formulation

The formulation of the SCA for an isotropic material presented in this section is

similar to that reported in Refs. [64, 118, 119]. In the pre-peak regime, the material

response is governed by a standard continuum theory such as elasticity, plasticity, or

CDM. When failure initiates, it is assumed that the total strain, ε, is decomposed

into a continuum strain, εco, and cracked strain, εcr, as,

ε = εco + εcr (4.18)

Again, this additive decomposition assumes small strain. In a continuum scheme,

εco can be further decomposed into elastic, plastic, and thermal strains, if they are
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Figure 4.3: Traction-separation laws.

present. In the current study, the matrix nonlinear response is modeled as a degrading

secant solid as shown earlier, therefore, the secant strains at the onset of failure

initiation is used for εco. Here, ε, εco, and εcr are presented in the global coordinates.

Figure 4.4 shows the crack morphology in 3D. At the crack interface, there exist

three relative displacements between the crack faces. One is the crack opening dis-

placement, and the other two are the crack sliding displacements. The subscript n

and t are used to designate the directions normal to the crack and tangential to the

crack, respectively. The key to the SCA is to embed cracks into a continuum, hence,

the mode-I crack opening displacement is represented by a local smeared normal crack

strain, εcrnn, and the two mode-II crack sliding displacements are replaced by two local

smeared shear crack strains, γcrt1 and γcrt2 . These local crack strains are defined in the

local coordinates that incorporate crack orientation, and can be related to the global

coordinates through a transformation matrix, N , as,

εcr = Necr = N


εcrnn

γcrt1

γcrt2

 (4.19)

where ecr is a vector that contains local crack strains, andN is a 6 by 3 transformation

matrix depending on crack orientation. The derivation forN in terms of the direction

cosines of the crack plane is provided in Appendix A.

In the instance that multiple cracks occur at one sampling point, or integration
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nents at the crack interface in 3D stress state.

point in FEA, the vector that assembles the local crack strains has the form [120],

ecr =
[
εcrnn1 γcrt11 γcrt12 εcrnn2 γcrt21 γcrt22 · · · εcrnnK γcrtK1 γcrtK2

]T
(4.20)

where the superscript T denotes a transpose. The size of the local crack strain

vector, ecr, depends on the number of open cracks, K. Consequently, for a 3D solid,

N becomes a 6 by 3 ∗K matrix, dictating the transformation of crack strains from

local to global coordinates for each individual open crack. In the current study, only

a single crack is allowed for each integration point, and the relation is reduced to Eq.

(4.19).

Similarly, the interface stresses at the crack interface, scr, can be transferred to

the global stress state, σ, through,

scr =


σcrnn

τ crt1

τ crt2

 = NTσ (4.21)
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The crack interface stresses are related to the local crack strains through,

scr = Dcrecr (4.22)

where Dcr is the crack interface stiffness matrix that dictates the failure evolution in

the post-peak strain softening regime. For a single crack in a 3D solid, Dcr can be

expanded as,

Dcr =

Dc 0 0

0 Gc1 0

0 0 Gc2

 (4.23)

whereDc is the secant stiffness across the crack interface due to crack opening, andGc1

and Gc2 are the two secant shear stiffness governed by crack sliding. These quantities

identify the modes of failure and are related to the corresponding traction-separation

laws with a characteristic length scale. The off-diagonal terms are assumed to be zero,

indicating that there is no coupling between the normal and shear crack components.

The coupling between the crack shear and opening displacements, known as crack

dilatancy, has been extensively studied by Bažant and Gambarova [121], Walraven

[122], Walraven and Reinhardt [123], and Gambarova and Karakoç [124]. Further

investigation on crack propagation at the atomic level is motivated to characterize

the material behavior at the crack tip. Since the simple uncoupled relation in Eq.

(4.23) is sufficient to dictate the effect of macroscopic strain softening behavior of a

cracked material, while crack dilatancy is not accounted for in this study.

In addition, if multiple cracks occur, Dcr is a diagonal matrix with a variable size

depending on the number of cracks, K, as,

Dcr =


Dcr

1

Dcr
2

. . .

Dcr
K

 (4.24)

where each submatrix, Dcr
i (i = 1, 2, · · · , K), has the form as in Eq. (4.23). All the

off-diagonal submatrices are zero, indicating that there is no coupling effect between

different cracks. Various criteria can be utilized to identify failure initiation and

provide crack orientation. In this chapter, the matrix material is assumed to fail

either in tension or in compression. The determination of the components of the Dcr

matrix is given in Section 4.3.3 for tensile failure and Section 4.3.4 for compressive

failure.
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It should be pointed out that the sudden loss of the positive definiteness of the

material tangent stiffness tensor may result in oscillations in the numerical solutions

corresponding to the post-peak softening regime. Hence, a damping matrix, Dda, is

introduced to modify the stress-strain relation at the crack interface, and Eq. (4.22)

becomes [119],

scr = Dcrecr +Ddaėcr (4.25)

Consequently, the crack progression becomes a time dependent property by the

use of a damping matrix. The crack strain rate, ėcr, is approximated at each time

step using a backward finite difference scheme as,

ėcr ≈ e
cr(t+ ∆t)− ecr(t)

∆t
=
ecr − ecrold

∆t
(4.26)

Substituting Eq. (4.26) into Eq. (4.25) provides the expression for the local crack

stresses as,

scr = Dcrecr +
1

∆t
Ddaecr − 1

∆t
Ddaecrold (4.27)

The constitutive relation for a continuum is,

σ = Dcoεco (4.28)

where Dco is the continuum stiffness tensor. In the current study, since the matrix

material is modeled as a secant degrading solid in the pre-peak regime, Dco is com-

puted using the secant Young’s modulus, Es and secant Poisson’s ratio (see Eq. (4.7))

at the onset of failure initiation. Combining Eq. (4.18), (4.19), and (4.28) results in,

σ = Dco [ε− εcr] = Dco [ε−Necr] (4.29)

Noting Eq. (4.21) and (4.27),

Dcrecr +
1

∆t
Ddaecr − 1

∆t
Ddaecrold = NTσ (4.30)

Substituting Eq. (4.29) into Eq. (4.30) provides,

Dcrecr +
1

∆t
Ddaecr − 1

∆
Ddaecrold = NTDco [ε−Necr] (4.31)

Consequently, the relation between the local crack strains and the total global strains
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can be obtained by rearranging Eq. (4.31) as,

ecr =

[
Dcr +NTDcoN +

1

∆t
Dda

]−1 [
NTDcoε+

1

∆t
Ddaecrold

]
(4.32)

Finally, the relation between the total stress and total strain in the post-peak regime

is computed by substituting Eq. (4.32) into Eq. (4.29), which gives,

σ =

[
Dco −DcoN

(
Dcr +NTDcoN +

1

∆t
Dda

)−1
NTDco

]
ε

− 1

∆t
DcoN

[
Dcr +NTDcoN +

1

∆t
Dda

]−1
Ddaecrold

(4.33)

Noting that the original SCA by Rots et al. [64] is formulated in an incremental

fashion such that the loading path dependency is accounted for, however, Eq. (4.33)

gives the total stress versus total strain relation, which is similar to that presented in

Ref. [119]. The total stress versus strain scheme is suitable for large time increments,

and the stress at the end of each time increment can be exactly determined based

upon the corresponding traction-separation law.

Since the components in Dcr are related to the traction-separation law and are

functions of local crack strains, Eq. (4.32) represents a group of highly nonlinear

equations involving local crack strains. Newton’s method is employed to solve for ecr,

that satisfies,

f(ecr) =

[
Dcr +NTDcoN +

1

∆t
Dda

]
ecr −NTDcoε− 1

∆t
Ddaecrold = 0 (4.34)

Therefore, the local crack strains are computed using a successive iterative scheme.

At the kth iteration step,

[ecr](k) = [ecr](k−1) −
[

df

decr

]−1
f(ecr) (4.35)

where J =
[

df
decr

]
defines the Jacobian matrix in a nonlinear system. Iteration

continues until f(ecr) approaches zero, or a suitable tolerance is met between two

successive values of ecr. Once the local strains are solved, they are substituted into

Eq. (4.33) to compute the total stress at the end of an increment.
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4.3.2 Characteristic Length Scale Associated with the Traction-Separation

Law

In the SCA, the distributed cracks are “smeared” out within a finite element,

and the effect of crack progression is dictated as a post-peak strain softening in the

stress versus strain response. To restore mesh objectivity, a characteristic length

is introduced such that the total energy release rate during failure in a continuum

element is equal to the fracture toughness. The fracture toughness, or the critical

energy release rate, GC , is defined by the area under the traction-separation law that

dictates the cohesive behavior of crack propagation (see Figure 4.3).

GC =

∫ δf

0

σ(u) du (4.36)

where u is the crack displacement within the fracture zone, as schematically shown

in Figure 4.5(a). In the SCA, u represents the crack opening acting across a certain

width within a finite element, denoted as the crack band width, h, as shown in Figure

4.5(b). Assuming that all the cracks are uniformly distributed over the crack band,

and εcr is the accumulation of all the crack strains over the fracture zone,

u = h εcr (4.37)

If gc is defined as the area under the softening branch of the stress-crack strain

response, then substitute Eq. (4.37) into Eq. (4.36) results in,

GC =

∫ δf

0

σ(hεcr)h dεcr = h

∫ εcrf

0

σ(εcr) dεcr = h gc (4.38)

Therefore, the strain-based description for a softening material is related to the

displacement-based traction-separation laws through the characteristic length, h. In

a FE setting, h is chosen based upon the element type, element size, element shape,

and the integration scheme [64]. Typically the length of the element projected onto

the crack normal is used as a characteristic element length, as shown in Figure 4.7.

In the present study, a 1D uncoupled traction-separation law is employed, conse-

quently, Eq. (4.23) becomes,

Dcr =

E
cr 0 0

0 Gcr
1 0

0 0 Gcr
2

 (4.39)
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where Ecr is the secant crack modulus resulting from normal crack strain (mode-I

type of failure), while Gcr
1 and Gcr

2 are associated with shear crack strains (mode-

II type of failure). In the current study, secant crack stiffness is used so that the

softening response follows the traction-separation law exactly, as shown in Figure 4.8.

To prevent healing from happening, it is required that,

Ėcr < 0 and Ġcr < 0 (4.40)

Hence, once the crack stiffness is degraded, it cannot be recovered. The loading and

unloading behavior during the evolution of the failure process is specified in Figure

4.8.

u

(a) Discrete crack.

h

(b) Smeared crack.

Figure 4.5: Discrete cracks are smeared out within a finite element.
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Figure 4.6: Stress-strain softening response is related to the traction-separation law
through a characteristic length, h.
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Figure 4.8: Crack evolution is dictated using degrading secant crack stiffness.
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4.3.3 Tensile Failure

Matrix tensile cracking is a common failure mechanism in composite materials

under loading. In a monolithic material, cracks are likely to grow under pure mode-I

condition since this type of failure mode is energetically favorable. In textile compos-

ites, cracks in the surrounding matrix may be subjected to mixed-mode loading due

to the presence of fiber tows, or at microscale, the crack orientation of the matrix

inside the fiber tow can be affected by the individual fibers. However, in this study, it

is assumed that tensile cracks grow under pure mode-I conditions, oriented with the

maximum principal stress plane. For a given stress state, the principal stresses, σ1,

σ2, and σ3, and the corresponding principal axes n1, n2, and n3, are first computed.

The primary condition to initiate a tensile crack is that the maximum principal stress

with the maximum magnitude is in tension.

| σ1 |>| σ2 |>| σ3 | and σ1 > 0 (4.41)

The failure criterion and the subsequent evolution law for the instance that σ1 < 0

is given in Section 4.3.4. Maximum tensile stress criterion is used for tensile crack

initiation as,
σ1
σcr

= 1 (4.42)

where σcr is the cohesive strength, or the critical fracture stress, in the mode-I traction

separation law as illustrated in Figure 4.3(a). In practical applications, it is further

assumed that once the crack is initiated, the crack orientation, determined from the

principal stress direction, is fixed during the failure evolution.

Various shapes can be used to describe the post-peak branch of the traction-

separation law, such as linear, bi-linear, or exponential softening curves. In the current

work, the mode-I traction-separation law is described as,

σnn = σcr exp

(
−σ

crh

GIC

εcrnn

)
(4.43)

Where GIc is the mode-I fracture toughness of the material. Here, a characteristic

length, h, which is associated with element size, is introduced to restore mesh ob-

jectivity and to relate a displacement-based traction-separation law to a stress-strain

description for a continuum material, as discussed in Section 4.3.2. The secant crack
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stiffness is calculated by dividing σnn by εcrnn as,

Ecr = σcr exp

(
−σ

crh

GIC

εcrnn

)
1

εcrnn
(4.44)

In concrete fracture mechanics, shear retention factor is usually used to indicate

the percentage of shear capacity that is retained after cracking [64, 118, 125]. In this

study, it is assumed that the crack interface is free of both normal and shear tractions

if all the fracture energy has been dissipated. The two crack shear moduli, Gcr
1 and

Gcr
2 , are degraded according to Ecr as,

Gcr
1 = Gcr

2 =
Ecr

2(1 + ν)
(4.45)

where ν is the Poisson’s ratio of the material. Here, the crack shear stiffness evolves

only as a function of εcrnn, indicating that the cracks grow under mode-I dominated

conditions. It is possible that the crack shear moduli are degraded with respect to

γcrt1 or γcrt2 , and a mixed-mode traction-separation law should be introduced to ensure

that the shear failure evolves under mode-II conditions [114, 126]. However, such a

complicated failure mechanism requires further study of crack progression behavior at

the microscale, and it is not considered in the current study. Once the crack stiffness

matrix, Dcr, is computed at the given local crack strains, Eq. (4.32) can be solved

using the aforementioned iteration scheme (Eq. (4.34) and (4.35)) to determine the

consistent local crack strains at each time increment. Finally, the total stresses are

updated at the end of an increment using Eq. (4.33).

4.3.4 Compressive Failure

Experiments show that matrix materials fail in compression as well. In this in-

stance, since the normal traction at the crack tip is subjected to compression, it is

impossible for the cracks to grow under mode-I conditions. This scenario occurs when

the principal stress with the maximum magnitude is in compression (σ1 < 0). It has

been pointed out by a number of researchers [127, 128, 129, 130] the compressive fail-

ure in brittle and quasi-brittle material is attributed to the internal friction, dictated

as mode-II shear fracture. Hence, when σ1 < 0, the Mohr-Coulomb failure criterion

is employed to identify the crack initiation in the matrix, and the crack orientation

is aligned with the plane of maximum principal shear stress. The Mohr-Coulomb
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criterion defines a critical combination of normal and shear stresses as [131, 132],

| τ |= c− σ tanφ (4.46)

where τ and σ are the normal and shear stresses on the failure plane, which is the

plane of maximum principal shear stress. Here, c is a material constant, and φ is

the angle of internal friction, both of which are obtained from the measured values of

tensile and compressive strength in uniaxial tests as [131],

φ = sin−1
(
σc − σt
σc + σt

)
with 0 ≤ φ <

π

2
, c =

1

2

√
σcσt (4.47)

where σt and σc are the strength in tension and compression, respectively. Equation

(4.47) also indicates that σt < σc for the Mohr-Coulomb criterion. To initiate a crack

to grow under compression, it is required that,

| τ |
τ cr

= 1 and σ1 < 0 (4.48)

where τ cr is the cohesive shear strength in mode-II traction-separation law. Absolute

value is used in Eq. (4.48), indicating that mode-II is an anti-symmetric fracture

mode. Once the crack is initiated, it grows with a fixed orientation determined from

the plane of maximum principal shear stress. It has been shown by Pineda et al. [116]

that the local crack shear strain can be used to degrade the crack shear modulus.

The evolution of failure, characterized by the secant crack shear modulus, is related

to mode-II traction-separation law with exponential softening behavior as,

Gcr = τ cr exp

(
− τ

crh

GIIC

γcrt

)
1

γcrt
(4.49)

When the cracks grow under mode-II conditions, the normal traction at the crack

interface is in compression, preventing a crack from opening. Therefore, only the

shear moduli are degraded, and the normal stiffness remains intact.

4.4 Example – Mesh Objectivity

In order to verify mesh objectivity of the SCA in a FEA framework, a uniaxial

tension test was performed on a unit volume cube with four different mesh sizes.

As shown in Figure 4.10, the RUC is discretized into 3×3×3, 5×5×5, 11×11×11,

and 21×21×21 elements respectively. The material elastic-damaging properties are
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calibrated with the tension response of SC-15 epoxy shown in Figure 2.11. The value

of fracture toughness is taken from the literature [133]. In the SCA formulation

presented in Section 4.3.1, a damping matrix, Dda, is introduced to smoothen and

stabilize the post-peak solutions. Since the damping matrix is formulated at the crack

tip, it is reasonable to assume that Dda is in the same form as Dcr. For a single crack

in a 3D solid, Dda is expanded as,

Dda =

β1 · h 0 0

0 β2 · h 0

0 0 β3 · h

 (4.50)

where h is the characteristic element length. Since there is no physical law to govern

the relations among β1, β2, and β3, it is simply assumed that β2 = β3 = β1
2∗(1+ν) =

β
2∗(1+ν) . Even though the choice of βi (i = 1, 2, 3) is not unique, one should make sure

that the values of βi’s do not affect the prediction of the critical stress. If the values of

βi’s are too large, the FEA result will overshoot the critical stress. On the other hand,

if the values of βi’s are too small, the FEA solver may encounter convergence issues

in the post-peak softening regime due to the sudden loss of the positive definiteness

of the tangent stiffness tensor. The proper selection of the damping matrix can help

speed-up the computation, meanwhile the fracture response is correctly predicted.

For multiple cracks, Dda becomes,

Dda =


Dcr

1

Dcr
2

. . .

Dda
K

 (4.51)

where each submatrix, Dda
i (i = 1, 2, · · · , K), is expanded as Eq. (4.50). All the

material properties that are used in the mesh objectivity study are summarized in

Table 4.1.

Figure 4.9 illustrates the boundary conditions for a RUC subjected to uniaxial

tension. A uniform displacement field is prescribed on the surface CDGF (U1 =

δ), while the opposite surface (surface BAHE) is constrained along the x1-direction

(U1 = 0). Additionally, the point A is fixed (U1 = U2 = U3 = 0) to prevent rigid body

motion, and the point B is restrained from moving along the x2-direction (U2 = 0).

The elements that lie on the mid-plane perpendicular to the loading direction are

assigned a 0.5% lower critical stress than the rest of elements, so that the cracks are
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Table 4.1: Material properties used in the mesh objectivity study.

Property Value

E (GPa) 2.487
ν 0.35
σy (MPa) 30
K1 (MPa) 4500
K2 (MPa) 58.31
σcr (MPa) 60
GIC (N/mm) 1.5
β (MPa·sec) 1

localized within the RUC, as shown in Figure 4.10.

The resulting load (P ) versus displacement (δ) responses for the four different

mesh sizes are plotted in Figure 4.11. It clearly shows that the computed fracture

characteristics, including the peak load and the fracture energy dissipation, are in-

dependent of the mesh size. Mesh objectivity of the SCA is verified through this

example.

A

B
C

D
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F

GH



1x

2x

3x

Figure 4.9: Boundary conditions for a RUC subjected to uniaxial tension. A uniform
displacement field is prescribed.
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(a) 3×3×3 elements (b) 5×5×5 elements

(c) 11×11×11 elements (d) 21×21×21 elements

Figure 4.10: Four different mesh sizes used in mesh objectivity study. The cracked
elements are shown in red.
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Figure 4.11: Load-displacement responses for RUC subjected to tension with four dif-
ferent mesh sizes. The peak load and the fracture energy are unaffected
by the element size.

4.5 Conclusions

This chapter presents the modeling strategy for the polymer matrix material

within the 3D textile composites investigated in this research. The pre-peak nonlinear

stress versus strain response is attributed to the matrix microdamage and is modeled

as a degrading secant solid based upon a modified J2 deformation theory of plasticity.

The coalescence of matrix microdamage finally causes macroscopic cracking, resulting

in a post-peak strain softening behavior and the positive definiteness of the material

tangent stiffness matrix is lost. It is assumed that the matrix material fails either

in tension or compression. If the principal stress with the maximum magnitude is in

tension, the cracks grow under pure mode-I conditions with the orientations aligned

with the plane of the maximum principal stress; while if the principal stress with

the maximum magnitude is in compression, the matrix fractures, resulting from local

internal fracture (Mohr-Coulomb criterion), and is dictated as mode-II shear failure,

and the crack orientation is aligned with the plane of maximum principal shear stress.

Both tension and compression failure behavior are modeled using the SCA, in which

the cracks are assumed to be smeared out over a certain width within a finite element.

In a FE setting, a characteristic element length is introduced such that the post-peak
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strain softening response can be associated with a traction-separation law. Mesh ob-

jectivity of the SCA is verified through a uniaxial tension test on a RUC with four

different mesh sizes. The implementation of the proposed matrix nonlinear-fracture

model in the mesoscale textile architecture based FE model is presented in Chapter

VII.
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CHAPTER V

A Micromechanics-Based Multiscale Model for a

Single Fiber Tow

5.1 Introduction

A single fiber tow within a textile composite is composed of thousands or tens of

thousands of individual fibers embedded in a matrix medium. A cross sectional SEM

image of a glass fiber tow is shown in Figure 5.1. In view of the modeling strategy for

textile composites, modeling each individual fiber inside a tow is impractical under the

current computational capability, hence, a homogenized model on the fiber tow-level,

or a multiscale computational framework with an efficient subscale micromechanical

analysis scheme is desired. In the literature, a number of micromechanics models have

been developed, including analytical, semi-analytical, and fully numerical methods.

Reviews on various homogenization techniques are given in [75, 134].

The analytical models, including the concentric cylinder model (CCM) [40], the

generalized self-consistent method (GSCM) [47], and the Mori-Tanaka (M-T) method

[49], have been developed with a focus to obtain closed-form solutions for composite

effective elastic properties in terms of the constituent properties and their volume

fractions without recourse to spatial variations within composite volumes at the scale

of a few fibers. These homogenization techniques have been extensively used in the

linear analysis for composite structures. In addition, these analytical micromechanics

methods also find utility in case of damage and failure analysis by extending their

utility to the nonlinear regime through a secant moduli approach [59, 60, 61, 62].

However, these methods, based upon the homogenization technique and the average

of the constituent properties, neglect the local stress and strain concentrations within

the constituent materials and usually result in an overestimation of the composite

nonlinear behavior. Because damage and failure are governed by extreme properties of
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Figure 5.1: The cross section of a single fiber tow under SEM.

the fields and not necessarily by the average properties, these methods find difficulty

in extension to progressive damage development and failure analysis of composite

structures.

In order to resolve the local fields in the constituent materials at the microscale,

and to obtain a better prediction of the composite nonlinear response, a multitude

of semi-analytical methods have been developed. The microstructure of a unidi-

rectional fiber-reinforced composite material is represented by a repeating unit cell

(RUC), which can be subsequently partitioned into a number of subregions. The

global composite effective constitutive law is governed by the constitutive relation

in the subregions in which the local fields are expressed in terms of the Fourier se-

ries. This method was first proposed by Nemat-Nasser et al. [135] to compute the

composite elastic constants, and was later improved by Accorsi and Nemat-Nasser

[136] to provide bounds for nonlinear composites. Ideally, the exact description of

the effective behavior of a composite material containing nonlinear phase requires

infinitely many internal variables. The transformation field analysis (TFA), proposed

by Dvorak [137, 138], is an efficient approximation method to reduce the number of

unknowns in the system. The effective composite constitutive relation, governed by

the local stress and strains fields in each constituent, is derived through eigenstrains

(or transformation strains) and concentration factor tensors. The eigenstrains, which

accounts for all the nonlinear effects including plasticity, viscoplasticity and damage,

are approximated to be piecewise uniform. The global fields are related to the local

fields through the concentration factors that are determined from a micromechanics

model such as M-T method. The TFA was later extended to nonuniform transfor-
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mation field analysis (NTFA) by Michel and Suqent [139] to better approximate the

nonuniform local fields in the nonlinear constituent phase.

Alternatively, the composite effective nonlinear constitutive relation can be ob-

tained through a generalized variational principle, which results in a number of stud-

ies on deriving bounds for nonlinear composites. Ponte Castañeda [140] extended the

Hashin-Shtrikman variational principle for linear material to the nonlinear regime

through a second-order homogenization method. The nonlinear potential for each

phase is replaced by a second-order Taylor expansion evaluated at the appropriately

defined phase average strains. This method is later improved to incorporate field

fluctuations in the constituent phases such that the bounds for nonlinear compos-

ite material can be better predicted [141, 142]. However, there exists a duality gap

between the stress-based and strain-based estimates, and this requires further inves-

tigation.

The method of cells (MOC), developed by Aboudi [143], is another powerful semi-

analytical method to approximate the composite effective behavior. In the MOC, the

RUC is divided into four subcells, one of which represents the fiber, and the remaining

three subcells are occupied by the matrix. The subcell displacement vector is assumed

to be linearly expanded in terms of the local subcell coordinates. The continuity

conditions of the displacement and traction at the interfaces between subcells and

between adjacent RUCs are imposed on a average basis, resulting in a set of equations

that relate the local microscopic strains to the global macroscopic strains through

a concentration tensor, thus the local strain fields can be solved by knowing the

applied fields. The local stress fields are readily resolved from the local constitutive

relations, and the composite effective properties are determined from the local fields

via a volume average. The MOC was later extend to the generalized method of cells

(GMC) by Paley and Aboudi [144] in which the RUC is discretized into an arbitrary

number of subcells such that the fiber geometry and packing arrangement can be

accounted for. In order to improve the prediction of the local fields, the high-fidelity

generalized method of cells (HFGMC) was developed by Aboudi et al. [145], in which

the subcell displacement fields are expanded using second-order approximations. It

has been shown that the HFGMC provides accurate prediction on the composite

nonlinear response as well as the gradients in the local fields [146, 147], compared to

FE based fully 3D analysis. The HFGMC also shows capability in damage and failure

analysis at the constituent scales such as fiber-matrix debonding and matrix cracking

[116, 148, 149, 150]. The semi-analytical methods offer a distinct advantage over the

analytical methods in that the spatial variations in the local fields are better resolved,
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and the methods achieve computational advantage over fully numerical methods.

However, the computational time increases rapidly if more details of the nonlinear

effects in the local fields are required to be captured.

The exact variations of the local fields within the constituent materials can be

obtained through fully numerical methods such as FEA, in which the micromechanics

is modeled through a RUC with detailed fiber geometry and packing arrangements.

Some of the important issues in the FE model include the correct boundary conditions

imposed on the RUC [151, 152, 153] and the minimum size of the RUC to represent

the macroscopic properties of the composite [154, 155, 156, 157]. Recently, Totry et

al. [158, 159] investigated the failure behavior of a fiber-reinforced composite under

multiaxial loading using a 3D RUC, in which detailed information for the fiber and

matrix properties as well as the damage and failure mechanics are implemented using

FEA.

The purpose of this chapter is to establish a two-scale computational framework

for computing the nonlinear response of a single fiber tow, with a focus on the sub-

scale micromechanical analysis. The microstructure of a fiber tow can be represented

as a unidirectionally aligned fiber-reinforced composite, resulting in a transversely

isotropic solid at the mesoscale, as discussed in Section 5.2. The effective fiber tow

response is computed through micromechanical analysis using the fiber-matrix con-

centric cylinder model as the basic repeat unit. In addition, micromechanics is used

to relate the fiber tow strains to the fiber and matrix strains through a 6 by 6 trans-

formation matrix, as provided in Section 5.3. The resolved spatial variation of the

matrix fields are compared with the corresponding FE model to demonstrate the ac-

curacy of the proposed micromechanics model. It has been shown in Chapter IV that

the polymer matrix material exhibits pre-peak nonlinear stress versus strain response,

which is attributed to the matrix microdamage due to the growth of voids and flaws

in the polymer. The evolution of matrix microdamage at the microscale manifests

as the progressive degradation of the fiber tow stiffness at the mesoscale. Thus, it

is further assumed that the evolution of the fiber tow effective nonlinear stress ver-

sus strain response can be captured through two scalar variables that are related

the extreme values of appropriately defined matrix equivalent strains, as discussed in

Section 5.4. The accuracy of the proposed two-scale micromechanics based model on

the prediction of fiber tow pre-peak nonlinear responses is evaluated by comparison

to a discrete FE model shown in Section 5.5.

It should be pointed out that the focus of this chapter is on the fiber tow pre-preak

nonlinear response that preserves the positive definiteness of the material stiffness
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tensor. However, in experiments, catastrophic failure mechanisms have been observed,

including fiber tow breakage, tow kinking, and transverse cracking, resulting in a

loss of load carrying capability at the macroscale, followed by a post-peak strain

softening response. Since the positive definiteness of the tangent stiffness matrix is

lost, the aforementioned two-scale model will provide mesh dependent results in a FE

framework if no characteristic length is introduced. The modeling of the fiber tow

failure behavior using a mesh objective method is presented in Chapter VI.

5.2 Tow Microstructure

The microstructure of a single fiber tow can be represented as a unidirectional

aligned fiber-reinforced composite. In the instance that the fiber tow undulates along

its longitudinal direction, each infinitesimal section of a fiber tow can be considered

as a unidirectional composite, with its local coordinate aligned with the tow orien-

tation [11], as schematically shown in Figure 5.2. Hence, computing the fiber tow

stress versus strain relation is equivalent to establishing a constitutive model for a

unidirectional composite. Thus, in this chapter, the term “composite” is referred to

the “fiber tow”.

The effective response of a unidirectional composite is transversely isotropic, re-

quiring five independent constants to form the composite stiffness tensor. Although

the choices of these elastic constants are not unique, the axial modulus, Ec
1, the axial

Poisson’s ratio, νc12, the axial shear modulus, Gc
12, the plane-strain bulk modulus, Kc

23,

and the transverse shear modulus, Gc
23, are used throughout this research. Therefore,

the stiffness tensor for a transversely isotropic material can be written in terms of

these elastic constants as,

Cc =



Ec
1 + 4νc

2

12K
c
23 2νc12K

c
23 2νc12K

c
23 0 0 0

2νc12K
c
23 Kc

23 +Gc
23 Kc

23 −Gc
23 0 0 0

2νc12K
c
23 Kc

23 −Gc
23 Kc

23 +Gc
23 0 0 0

0 0 0 Gc
23 0 0

0 0 0 0 Gc
12 0

0 0 0 0 0 Gc
12


(5.1)

Other important constants, including the transverse modulus, Ec
2, and transverse
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Poisson’s ratio, νc23, can be computed as,

Ec
2 =

4Gc
23K

c
23

Kc
23 + ψGc

23

(5.2)

νc23 =
Kc

23 − ψGc
23

Kc
23 + ψGc

23

(5.3)

where,

ψ = 1 +
4Kc

23ν
c2

12

Ec
1

In this chapter, the fiber is assumed to be linear elastic, transversely isotropic, with

“1” designating its longitudinal direction. Its stiffness tensor, Cf , can be written in

terms of fiber properties as Eq. (5.1) by replacing the superscript “c” with “f”. The

matrix material is an isotropic elastic-damaging solid, and its nonlinear response is

modeled using a modified J2 deformation theory of plasticity through a secant moduli

approach, as discussed in Section 4.2. As a result, the composite effective stress versus

strain response is extended to the nonlinear regime by substituting secant moduli into

Eq. (5.1).

x1

x2

x3

Figure 5.2: Fiber tow is represented as a unidirectional fiber-reinforced composite.

5.3 Micromechanics Model

In order to predict the composite effective nonlinear response, the micromechanics

model at the fiber and matrix scale should be able to capture the spatial variations in

the local fields of the constituent materials. The key to the proposed micromechanics

model is to relate the composite strains (the strain applied on the fiber-matrix mi-

crostructure) to the local matrix strains through a 6 by 6 transformation matrix, F ,
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as, 

εm11

εm22

εm33

γm12

γm13

γm23


=



F11 F12 F13 F14 F15 F16

F21 F22 F23 F24 F25 F26

F31 F32 F33 F34 F35 F36

F41 F42 F43 F44 F45 F46

F51 F52 F53 F54 F55 F56

F61 F62 F63 F64 F65 F66





εc11

εc22

εc33

γc12

γc13

γc23


(5.4)

The Fij components can be computed by imposing a single non-zero composite strain

on the fiber-matrix microstructure and solving the resulting matrix strain fields. In

the present model, the axial properties, including the axial tension (Ec
1 and νc12) and

axial shear (Gc
12), are computed through a two-phase CCM, which is subsequently

used for the computation of Fi1, Fi4, and Fi5. The rest of the components in the

F matrix are determined via an extended three-phase GSCM, which also gives the

composite transverse properties, Kc
23 and Gc

23. The procedure to compute each com-

ponent in the F matrix as well the composite effective constants are provided in the

following section. It should be noted that the proposed micromechanics model is

based upon the homogenization techniques that are originally used to compute the

composite effective moduli, hence, both the fiber and matrix are assumed to be lin-

ear elastic. When the matrix stiffness is reduced due to microdamage, the nonlinear

response of the matrix is modeled through a secant moduli approach, in which the

matrix elastic properties are replaced with the corresponding secant moduli.

5.3.1 Computation of Ec
1, ν

c
12, and Fi1 components by applying εc11

When a unidirectional fiber-reinforced composite is subjected to a uniform axial

strain, εc11, the response of the fiber and matrix can be best studied using the concen-

tric cylinder model (CCM), [75, 160], in which the composite material is represented

by an inner fiber core and an outer matrix annulus. It assumes that the size of the

concentric pair varies such that the entire volume of the composite can be filled with

the cylinders, while the ratio of the fiber radius to the matrix radius keeps constant

to maintain the fiber volume fraction. A representative single cylinder unit with fiber

radius a and matrix outer radius b is shown in Figure 5.3, and the resulting fiber

volume fraction is Vf = a2

b2
.

Since the concentric cylinders are loaded along the fiber direction, the response

is axisymmetric, and there are no shear stresses present. In addition, if end effects

are ignored, the stresses and the strains are independent of the axial direction. The

axisymmetric displacement fields for the fiber and matrix in cylindrical coordinates
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are [160],

U f
r (x, r) = Afr (0 ≤ r ≤ a) Um

r (x, r) = Amr +
Bm

r
(a ≤ r ≤ b)

U f
x (x, r) = εf11x (0 ≤ r ≤ a) Um

x (x, r) = εm11x (a ≤ r ≤ b)
(5.5)

where Ur and Ux are the radial and axial displacements, respectively. Af , Am, and

Bm are the constants to be determined from the boundary conditions. εf11 and εm11 are

the axial strains for the fiber and matrix, respectively, which are constants to satisfy

the Saint-Venant’s principle. The strains in the fiber and matrix can be obtained

from strain-displacement relations and are related to the stress components through

material constitutive law. The continuity conditions at the fiber-matrix interface are,

U f
r (a) = Um

r (a), U f
x (x, a) = U f

x (x, a), and σfr (a) = σmr (a) (5.6)

The continuity condition for the axial displacements immediately gives εf11 = εm11 = εc11.

The composite effective properties are determined by equating the strain energy of the

concentric pair to that of the equivalent homogenized composite material. Following

the procedure given in [160], the closed-form expressions for E12 and ν12 are,

Ec
1 = Ef

1Vf + Em(1− Vf ) +
4Vf (1− Vf )(νf12 − νm)2Gm

Gm(1−Vf )
Kf

23

+
GmVf
Km

23
+ 1

(5.7)

νc12 = νf12Vf + νm(1− Vf ) +
Vf (1− Vf )(νf12 − νm)

(
Gm

Km
23
− Gm

Kf
23

)
Gm(1−Vf )

Kf
23

+
GmVf
Km

23
+ 1

(5.8)

In order to compute the Fi1’s, the only nonzero strain components prescribed on

the concentric pair is εc11. Hence, the lateral surface of the cylinder is constrained,

following,

Ur(b) = 0 (5.9)

Solving Eq. (5.6) and (5.9) gives the three unknown constants, Af , Am, and Bm, in

terms of εc11. With these constants, the matrix strain field, readily determined from
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the displacement field, are related to the applied composite strain as,

εmxx = εc11

εmrr =
Vf

(
νf12
Km

23
− νm

Kf
23

)
Vf

Kf
23

+ 1−2νm
Kf

23

+
1−Vf
Km

23

(
1 +

b2

r2

)
εc11

εmθθ =
Vf

(
νf12
Km

23
− νm

Kf
23

)
Vf

Kf
23

+ 1−2νm
Kf

23

+
1−Vf
Km

23

(
1− b2

r2

)
εc11

(5.10)

These matrix strains can be further transformed to the Cartesian coordinates through

the transformation relations provided in Appendix B. Hence, the Fi1 components are

found to be,

F11 = 1

F21 =
Vf

(
νf12
Km

23
− νm

Kf
23

)
Vf

Kf
23

+ 1−2νm
Kf

23

+
1−Vf
Km

23

[
1 +

(
b

r

)2

cos 2θ

]

F31 =
Vf

(
νf12
Km

23
− νm

Kf
23

)
Vf

Kf
23

+ 1−2νm
Kf

23

+
1−Vf
Km

23

[
1−

(
b

r

)2

cos 2θ

]

F61 = 2
Vf

(
νf12
Km

23
− νm

Kf
23

)
Vf

Kf
23

+ 1−2νm
Kf

23

+
1−Vf
Km

23

(
b

r

)2

sin 2θ

F41 = F51 = 0

(5.11)

5.3.2 Computation of Gc
12 and Fi4 components by applying γc12

In order to analyze the axial shear response of the concentric cylinders, it is

convenient to view the representative concentric cylinder unit projected onto the

x1−x2 plane, as shown in Figure 5.4. The outer boundary of the concentric cylinders

are subjected to displacement fields such that the an overall axial shear of γc12 is

produced. The resulting displacements for the fiber in a cylindrical coordinate system

95



rθ x2

x3

x1
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Matrix r=br=a

Figure 5.3: Two-phase concentric cylinder model.

are,

U f
x =

(
Afr +

Bf

r

)
cos θ

U f
θ = −Cfx sin θ

U f
r = Cfx cos θ

(5.12)

and the displacements in the matrix are,

Um
x =

(
Amr +

Bm

r

)
cos θ

Um
θ = −Cmx sin θ

Um
r = Cmx cos θ

(5.13)

where Af , Bf , Cf , Am, Bm and Cm are the unknown constants to be determined

from the boundary conditions. The nonzero stresses in the fiber that results from the

displacement fields are,

τ fxr = Gf
12

(
Af + Cf − Bf

r2

)
cos θ

τ fxθ = −Gf
12

(
Af + Cf +

Bf

r2

)
sin θ

(5.14)
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and the stresses in the matrix are,

τmxr = Gm

(
Am + Cm − Bm

r2

)
cos θ

τmxθ = −Gm

(
Am + Cm +

Bm

r2

)
sin θ

(5.15)

Since the displacement at the center of the fiber should be bounded, Bf = 0. The

displacement and traction continuity conditions at the fiber-matrix interface are,

U f
x (x, θ, a) = Um

x (x, θ, a)

U f
θ (x, θ, a) = Um

θ (x, θ, a)

U f
r (x, θ, a) = Um

r (x, θ, a)

τ fxr(x, θ, a) = τmxr(x, θ, a)

(5.16)

Note that the second and third equations in Eq. (5.16) result in the same relation.

Furthermore, the displacements at the outer boundary of the concentric cylinders

must satisfy the imposed boundary conditions,

Um
x (x, θ, b) = 0

Um
θ (x, θ, b) = −γc12x sin θ

Um
r (x, θ, b) = γc12x cos θ

(5.17)

Similarly, the last two equations in Eq. (5.17) provide the same result. The unknown

constants, Af , Cf , Am, Bm and Cm, are solved in terms of γc12 through Eq. (5.16)-

(5.17). These results are further substituted into Eq. (5.15) to obtain the matrix

stresses. Since the shear stress at r = b and θ = 0 in the cylindrical coordinate system

coincides with that in the Cartesian coordinate system, the composite effective axial

modulus, G12, can be determined by dividing the shear stress by the shear stain,

resulting in,

Gc
12 = GmG

f
12(1 + Vf ) +Gm(1− Vf )

Gf
12(1− Vf ) +Gm(1 + Vf )

(5.18)
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The non-zero strains in the matrix become,

γmxθ =

[
r2(Gf

12 +Gm) + b2(Gf
12 −Gm)Vf

]
r2
[
Gf

12 +Gm − Vf (Gf
12 −Gm)

] sin θγc12

γmxr =

[
r2(Gf

12 +Gm)− b2(Gf
12 −Gm)Vf

]
r2
[
Gf

12 +Gm − Vf (Gf
12 −Gm)

] cos θγc12

(5.19)

Furthermore, the components of Fi4 are computed by transforming these matrix

strains through the transformation relations provided in Appendix B as,

F44 =
Gf

12 +Gm

Gf
12 +Gm − Vf (Gf

12 −Gm)
+

Vf (G12 −Gm)

Gf
12 +Gm − Vf (Gf

12 −Gm)

(
b

r

)2

cos 2θ

F54 =
(Gf

12 −Gm)Vf

Gf
12 +Gm − Vf (Gf

12 −Gm)

(
b

r

)2

sin 2θ

F14 = F24 = F34 = F64 = 0

(5.20)

A dual result for Fi5 components can be obtained by applying a single strain γc13.

F45 =
(Gf

12 −Gm)Vf

Gf
12 +Gm − Vf (Gf

12 −Gm)

(
b

r

)2

sin 2θ

F55 =
Gf

12 +Gm

Gf
12 +Gm − Vf (Gf

12 −Gm)
− Vf (G12 −Gm)

Gf
12 +Gm − Vf (Gf

12 −Gm)

(
b

r

)2

cos 2θ

F15 = F25 = F35 = F65 = 0

(5.21)

It is worth noting that F45 = F54, whereas F44 is different from F55 by a phase angle

of π
2
.

5.3.3 Computation of the transverse properties

Rather than the axial problem, in which a strain-type boundary condition is

imposed on the outer surface of the concentric cylinder, the computation for the

transverse response requires a traction-type boundary condition applied on the outer

boundary. However, such type of boundary conditions are not always able to provide

closed-form solutions, among which the most critical property is the transverse shear

modulus. It was first proposed by Christensen and Lo [47] that the transverse shear

problem can be best solved using the Generalized Self-Consistent Method (GSCM),

in which both the fiber and matrix are concentrically embedded in an infinite homo-
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Figure 5.4: Projection of the concentric cylinders onto the x1 − x2 plane. The con-
centric pair is subjected to an axial shear strain, γc12.

geneous medium of the equivalent composite properties. This three-phase cylinder

model is illustrated in Figure 5.5, with fiber radius a and matrix outer radius b.

Since only the transverse response is of interest, the three-phase cylinder model can

be reduced into a 2D plane strain problem with the assumption that the fiber is in-

finitely long in the longitudinal direction. Hence, the composite stress-strain relation

becomes, 
σc22

σc33

τ c23

 =

K
c
23 +Gc

23 Kc
23 −Gc

23 0

Kc
23 −Gc

23 Kc
23 +Gc

23 0

0 0 Gc
23



εc22

εc33

γc23

 (5.22)

The Airy’s stress function, φ, for such a problem in polar coordinates has the

form,

φi =
Mi

2
b2 ln r +

Ni

2
r2 +

[
Ai
2
r2 +

Bi

2

r4

b2
+
Ci
4

b4

r2
+
Di

2
b2
]

cos 2θ (5.23)

where i = 1, 2, 3. The subscripts “1”, “2” and “3” designate the fiber, matrix and

equivalent composite properties respectively. The constants Mi, Ni, Ai, Bi, Ci and

Di are to be determined based upon the boundary conditions. The stresses, strains,

and displacements for the fiber, matrix, and equivalent composite material can be

computed from the stress function, material constitutive law, and strain-displacement
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relations, as given in C.

The key to the three-phase cylinder model for the computation of transverse re-

sponse is to impose a stress state such that a state of pure shear or transverse tension

is achieved in the far field. In particular, the composite effective plane-strain bulk

modulus, Kc
23, is determined from the biaxial stress state of σc22 = σc33 = σ̄ , while

the transverse shear modulus, Gc
23, is computed under the far field stress state of

σc22 = −σc33 = σ̄. Though the determination of F ′ijs require a single strain to be

imposed on the concentric cylinders, the results can be easily deduced from a single

stress loading condition.

r=b

r=a

Fiber

Matrix

Composite

x2

x3

r

θ 

(a) Three-phase concentric cylinders

Composite

x2

x3

r

θ 

(b) Equivalent composite cylinder

Figure 5.5: Illustration of the generalized self-consistent method.

5.3.3.1 Computation of Kc
23 by applying biaxial stresses σc22 = σc33 = σ̄

The computation of the effective plane-strain bulk modulus requires the elasticity

problem to be axisymmetric, resulting in Ai = Bi = Ci = Di = 0 (i = 1, 2, 3).

By setting N3 = σ̄, a state of hydrostatic stress is reached as r → ∞. The four

unknown constants, N1, M2, N2, and M3, can be solved by imposing the traction and

displacement continuity conditions as,

σfrr(r = a) = σmrr(r = a) U f
r (r = a) = Um

r (r = a)

σmrr(r = b) = σcrr(r = b) Um
r (r = b) = U c

r (r = b)
(5.24)
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which yields, 
1 −1

2
( 1
Vf

) −1 0

2
Gf23
Kf

23

Gf23
Gm

1
Vf

−2
Gf23
Km

23
0

0 1
2

1 −1
2

0 −G23

Gm
2G23

Km
23

1



N1

M2

N2

M3

 =


0

0

σ̄

2G23

K23
σ̄

 (5.25)

Next, the internal strain energy of the three-phase cylinder model (Figure 5.5 (a))

is equated to that of the equivalent composite medium (Figure 5.5 (b)) based upon

an important finding by Eshelby [48], which states that for a homogeneous medium

containing an inclusion, the strain energy, U , under applied displacement conditions,

is determined by,

U = U o − 1

2

∫
s

(T oi ui − Tiuoi ) dS (5.26)

where S is the surface of the inclusion, U o is the strain energy of the equivalent

composite medium without inclusion, T oi and uoi are the tractions and displacements

of the equivalent medium without inclusion, and Ti and ui are the corresponding

quantities for the composite medium with the inclusion. Obviously, the strain energy

of the equivalent composite in Figure (5.5 (b)), U equiv, is identical to that of the

composite medium in Figure (5.5 (a)) if there is no inclusion, which yields U equiv = U o.

Based on the strain energy equivalence stated previously, U equiv = U . Using the

notation for the tractions and corresponding displacements, Eq. (5.26) becomes,∫ 2π

0

[σorrUr − σrrU o
r ]r=b b dθ = 0 (5.27)

where the stresses and displacements for the equivalent medium without inclusions

are,

σorr = σ̄ U o
r =

r

2K23

σ̄ (5.28)

Substituting the results for the stresses and displacements of the equivalent compos-

ites (Eq. (C.6) and (C.12) in Appendix C respectively) as well as Eq. (5.28) into Eq.

(5.27) gives,

M3 = 0 (5.29)

Thus, by solving the boundary conditions in Eq. (5.25) and setting M3 to zero, the
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effective plane-strain bulk modulus, K23, can be obtained as,

Kc
23 = Km

23 +
Vf

1

Kf
23−Km

23

+
1−Vf

Km
23+G

m

(5.30)

This result is the same as the one obtained from the two-phase CCM [75, 160]. In

addition, the stresses, strains, and displacement fields for each constituent in the

instance that the outer boundary of the equivalent composite material is subjected

to biaxial tension are obtained through Eq. (C.4)-(C.12) in Appendix C.

5.3.3.2 Computation of Gc
23 by applying normal stresses σc22 = −σc33 = σ̄

The state of stress, σ22 = −σ33 = σ̄ is achieved in the far field (r →∞) by setting

Mi = Ni = 0 (i = 1, 2, 3) and A3 = −σ̄. Hence, there are eight unknowns, A1, B1,

A2, B2, C2, D2, C3, and D3 to be determined from the continuity conditions of the

traction and displacement at the two material interfaces as,

σfrr(r = a) = σmrr(r = a) σfrθ(r = a) = σmrθ(r = a)

U f
r (r = a) = Um

r (r = a) U f
θ (r = a) = Um

θ (r = a)

σmrr(r = b) = σcrr(r = b) σmrθ(r = b) = σcrθ(r = b)

Um
r (r = b) = U c

r (r = b) Um
θ (r = b) = U c

θ (r = b)

(5.31)

The boundary value problem can be written in a matrix form as,

[B] {d} = {f} (5.32)

where,
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d =
[
A1 B1 A2 B2 C2 D2 C3 D3

]T
f =

[
0 0 0 0 σ̄ −σ̄ 2σ̄ −2σ̄

]T
Eshelby’s results on the strain energy equivalence gives,∫ 2π

0

[σorrUr + σorθUθ − σrrU o
r − σrθU o

θ ]r=b b dθ = 0 (5.34)

where the stresses and displacements for the equivalent medium without the inclusions

are,

σorr = τ23 cos 2θ σorθ = −τ23 sin 2θ

U o
r =

r

2G23

τ23 cos 2θ U o
θ = − r

2G23

τ23 sin 2θ
(5.35)

Similarly, the substitution of the stresses and displacements of the composite material

(Eq. (C.6) and (C.12) in Appendix C respectively) as well as Eq. (5.35) into Eq.

(5.34) results in,

D3 = 0 (5.36)

Thus, if the boundary conditions in Eq. (5.32) are solved, and we set D3 to be zero,

it gives the results for the composite effective transverse shear modulus through a

quadratic equation as,

A

(
Gc

23

Gm

)2

+B

(
Gc

23

Gm

)
+ C = 0 (5.37)

where,

A = a0 + a1Vf + a2V
2
f + a3V

3
f + a4V

4
f

B = b0 + b1Vf + b2V
2
f + b3V

3
f + b4V

4
f

C = c0 + c1Vf + c2V
2
f + c3V

3
f + c4V

4
f

104



with,

a0 = −2Gm2

(2Gm +Km
23)
[
2Gf

23G
m +Kf

23(G
f
23 +Gm)

] [
2Gf

23G
m +Km

23(G
f
23 +Gm)

]
a1 = 8Gm2

(
Gf

23 −Gm
) [

2Gf
23G

m +Kf
23(G

f
23 +Gm)

] (
Gm2

+GmKm
23 +Km2

23

)
a2 = −12Gm2

Km2

23

(
Gf

23 −Gm
) [

2Gf
23G

m +Kf
23(G

f
23 +Gm)

]
a3 = 8Gm2

{
Gf2

23G
m2

Kf
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23G
mKm

23(K
f
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[
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23G
m(Gf
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f
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23 +Gm)
]}
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(
Gf
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)
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23)
[
Kf
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f
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23 −Km
23) +Kf
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m
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f
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f
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m + (Gf
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]
(Gm −Km
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mKm
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(
2Gm(Kf
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23K
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)]
Finally, a complete set of stresses, strains, and displacements for each constituent

under a stress deformation of transverse shear is obtained through Eq.(C.4)-(C.12)

in Appendix C.

5.3.3.3 Computation of Fi2, Fi3, and Fi6 components

So far, the stress and strain fields of each constituent in the three-phase cylinder

model have been determined for the cases that a stress deformation of σc22 = σc33 = σ̄
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or σc22 = −σc33 = σ̄ is imposed. The matrix strain fields due to a single normal

stress, either σc22 = σ̄ or σc33 = σ̄, can be obtained through the superposition of the

aforementioned two stress states; while the state of pure shear, τ c23 = σ̄, can be easily

deduced from the stress state of σc22 = −σc33 = σ̄ by changing θ to θ + π/4.

It should be noted that the determination of the F matrix requires a single strain

to be applied on the composite medium. For example, in order to determine the Fi2

components, a single normal strain, εc22, should be imposed, and all the other strain

components are enforced to be zero, resulting in stress states of σc22 = (Kc
23 +Gc

23) ε
c
22,

σc33 = (Kc
23 −Gc

23) ε
c
22, and τ c23 = 0 based upon the the composite constitutive relation

in Eq. (5.22). Since the elasticity problem due to a single applied stress has been

solved, the matrix strain fields due to εc22 can be easily obtained by superposing the

results from the two stresses, σc22 and σc33. Thus, the matrix strains are related to εc22

in polar coordinates as,

(5.38a)

εmrr =
1

4Gmσ̄

{
Kc

23

(
M2

b2

r2
+ 2

Gm

Km
23

N2

)
+Gc

23

[
− 2A2 + 6

(Gm

Km
23

− 1
)
B2
r2

b2
− 3C2

b4

r4
− 2
(Gm

Km
23

+ 1
)
D2

b2

r2

]
cos 2θ

}
εc22

(5.38b)
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{
Kc

23

(
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}
εc22

(5.38c)γmrθ =
Gc
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2Gmσ̄

[
2A2 + 6B2

r2

b2
− 3C2

b4

r4
− 2D2

b2

r2

]
sin 2θεc22

Transforming these matrix strains to the Cartesian coordinates using Eq. (B.1) gives

the non-vanishing components in Fi2 as,

(5.39a)

F22 =
1
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2Kc

23
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(5.39b)
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}
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(5.39c)F62 =
1

2Gmσ̄
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23M2
b2

r2
sin 2θ −Gc

23

(
3C2

b4

r4
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r2

)
sin 4θ

]
Similarly, the Fi3 components can be computed by imposing a single strain εc33, and

the resulting non-vanishing components are,

(5.40a)
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23
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(5.40b)
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[
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23M2
b2

r2
sin 2θ +Gc
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(
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r4
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]
The matrix strains due to a single composite strain γc23 can be obtained from the

case where a transverse shear stress deformation is imposed in the far field of the

three-phase cylinder. The composite transverse stress and strain are simply related

by τ c23 = Gc
23 γ

c
23, where τ c23 = σ̄ is deduced from the stress state σc22 = −σc33 = σ̄ in

Section 5.3.3.2 by changing θ to θ + π/4. Thus the Fi6 components are computed

from the matrix strains due to γc23 as,

(5.41a)F26 =
Gc

23

4Gmσ̄

[(
3C2

b4

r4
+ 2D2

b2

r2

)
sin 4θ + 2

Gm

Km
23

(
3B2

r2
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−D2

b2

r2

)
sin 2θ

]
(5.41b)F36 =
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4Gmσ̄
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−
(
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)
sin 4θ + 2
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(
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)
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]
(5.41c)F66 =
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2Gmσ̄

[
−
(

2A2 + 6B2
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b2

)
+
(

3C2
b4

r4
+ 2D2

b2

r2

)
cos 4θ

]

5.3.4 Matrix strain contours under a single applied composite strain

With the computation of the F matrix in the aforementioned sections, all the

matrix strain components can be obtained by knowing the applied composite strains.

In order to validate the proposed micromechanics model, the computed matrix strain

fields under a globally prescribed single composite strain using the current analytical

solutions are compared against the results from a FE model. The FE model utilized

to analyze the axial tension and axial shear problem is a 3D two-phase cylinder model,
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while the one used to solve for the transverse tension and transverse shear problem

is a 3D three-phase model, in which both the fiber and matrix are concentrically

embedded in the equivalent composite medium. The details of the FE model as well

as the boundary conditions for each case are provided in Appendix D.

Since the composite is assumed to be transversely isotropic, only four loading

conditions are considered, including axial tension, axial shear, transverse tension,

and transverse shear. In each case, a strain value of 0.1% is prescribed to the relevant

component, and the rest of the strain components are enforced to be zero. Since the

composite undergoes small deformation, both the fiber and matrix are linear elastic

in this regime. The elastic properties of the constituent materials are summarized

in Table 5.1, which are taken from various sources [75, 19]. Both S-2 glass fiber and

SC-15 epoxy resin are isotropic, while IM-7 carbon fiber is transversely isotropic. The

fiber volume fraction is set to 60% in each case.

Table 5.1: Elastic properties for IM-7 carbon fiber, S-2 glass fiber, and SC-15 matrix.

E1 E2 ν12 G12 G23

GPa GPa - GPa GPa

IM7 Carbon Fiber 276.0 15.0 0.279 12.0 5.02

S-2 Glass Fiber 114.2 114.2 0.22 46.8 46.8

SC-15 Matrix 2.487 2.487 0.35 0.921 0.921

Figures 5.6–5.9 show the comparison of the matrix strain contour of each compo-

nent under various applied composite strains for a IM-7 carbon fiber composite. The

results for the glass fiber is not shown here. It can be concluded that the proposed

micromechanics model provides accurate prediction of the spatial variation of the

matrix fields when the composite is subjected to loading. Capturing the strain and

stress concentrations in the matrix material is important to determine the damage and

failure characteristics of composites such as nonlinear stress versus strain response,

strain to failure, strength, and fatigue life. In Section 5.4, a multi-scale computational

framework is established to compute the composite nonlinear behavior, in which the

proposed analytical method is employed for the subscale micromechanical analysis.
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Figure 5.6: Matrix strain contours under εc11 = 0.1%. The constituent fiber is IM-7
carbon fiber.
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Figure 5.7: Matrix strain contours under εc22 = 0.1%. The constituent fiber is IM-7
carbon fiber.
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Figure 5.8: Matrix strain contours under γc12 = 0.1%. The constituent fiber is IM-7
carbon fiber.
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Figure 5.9: Matrix strain contours under γc23 = 0.1%. The constituent fiber is IM-7
carbon fiber.
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5.4 Multiscale Modeling Methodology for Nonlinear Com-

posites

The macroscopic nonlinear response of composite materials are influenced by ma-

trix microdamage at the subscale. The motivation of the current study is to re-

late the subscale micromechanical analysis to the composite effective response at the

macroscale through a multiscale modeling framework. The key to the proposed model

is the selection of two scalar variables that characterize the evolution of the matrix mi-

crodamage based upon the strain contours computed in Section 5.3.4. The proposed

model is different from previous mean-field methods, [60, 62], in that the extreme

value of the matrix strains are utilized rather than the average value to determine

the composite nonlinear damage progression.

The multiscale methodology established in this research is based upon two scales.

For the macro-scale, lamina-level analysis of a fiber-reinforced laminated structure,

or fiber tow-level analysis for a textile composite is conducted by utilizing effective

homogenized properties to compute stress and strains in the lamina or fiber tow.

Simultaneously, it is intended to carry out the subscale analysis, at the fiber and

matrix level, using the micromechanics model presented in Section 5.3, in which the

constituent stress and strain fields are provided in closed form. The commercially

available finite element software, ABAQUS (version 6.10), is used for the macroscale

FE model, and the micromechanics model at the subscale is implemented at each

integration point of the macroscale, using a user defined material subroutine, UMAT.

This subroutine is called at each integration point at each increment, and the material

constitutive law is updated through user-defined options.

At the start of each increment, the material state (stress, strain, and solution-

dependent state variables) from the previous equilibrium step and the strain incre-

ments in the current step are passed into the UMAT through the ABAQUS solver.

In the nth increment, the total strain, εnij, is calculated by adding the current strain

increment, dεnij, to the strain in the previous step, εn−1ij , as εnij = εn−1ij + dεnij. In

the multiscale computational scheme, the strains at each integration point in the FE

model, are applied to the subscale micromechanics model. These integration point

strains can be treated as the effective composite strains (or macro strains) that are

applied on a discrete fiber-matrix microstructure. The constituent strain fields there-

fore can be computed in closed form by knowing the globally applied strains through

the micromechanical analysis discussed in Section 5.3.

However, it should be noted that the resulting matrix strain fields vary in space
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as shown in Figure 5.6–5.9, hence the matrix equivalent strain, computed using Eq.

(4.16), has spatial variation as well. In the current fully analytical computational

scheme, it is hypothesized that the composite nonlinear behavior can be characterized

using two scalar variables that are related to the matrix equivalent strain. This idea

is similar to the mean-field theories in which the average value of the strain fields are

utilized to determine the matrix nonlinear progression. In the present study, the two

scalar variables that govern the evolution of matrix microdamage are defined based

upon the maximum and average value of the square of the matrix equivalent strain

at the fiber-matrix interface, respectively, as,

Vmax = max

{
1

2

[
(ε̄m11 − ε̄m22)

2 + (ε̄m22 − ε̄m33)
2 + (ε̄m33 − ε̄m11)

2]+
3

4

(
γ̄m

2

12 + γ̄m
2

13 + γ̄m
2

23

)}
(5.42)

Vavg = avg

{
1

2

[
(ε̄m11 − ε̄m22)

2 + (ε̄m22 − ε̄m33)
2 + (ε̄m33 − ε̄m11)

2]+
3

4

(
γ̄m

2

12 + γ̄m
2

13 + γ̄m
2

23

)}
(5.43)

where ε̄mij is the matrix strain at the fiber-matrix interface (r = a). Physically, the

average term is dominant in the matrix strain field when the fiber volume fraction is

low, while the maximum value dominates the result for high fiber volume fraction.

Therefore, a weight function of Vmax and Vavg can be written as,

Vweight = V n
f Vmax + (1− V n

f )Vavg (5.44)

where n is dependent on the fiber-to-matrix stiffness ratio such that the effect of

constituent properties can be accounted for. In this research, it assumes,

n = 2

√(
Em

Ef
2

+
Gm

Gf
23

)
(5.45)

Consequently, two matrix equivalent strains can be computed; one is based upon the

weight function in Eq. (5.44), while the other is based upon the average value in Eq.

(5.43), as,

εeqm,1 =
1

1 + νs

√
Vweight and εeqm,2 =

1

1 + νs

√
Vavg (5.46)

Once the matrix equivalent strain is resolved, the matrix stiffness tensor is de-

graded as a secant solid according to the nonlinear damage model presented in Section
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4.2. It is further hypothesized that the matrix secant moduli calculated using εeqm,1 are

subsequently used to compute the composite effective secant moduli, Ec
1, ν

c
12, K

c
23, and

Gc
23 using Eq. (5.7), (5.8), (5.30), and (5.37), respectively; while the matrix secant

moduli determined from εeqm,2 is used to compute Gc
12 using Eq. (5.18). Consequently,

if matrix microdamage occurs, the stiffness of the subscale microstructure is reduced

based upon the proposed secant moduli approach. The subscale stiffness tensors are

subsequently used to update the global stiffness and stresses in the macroscale FE

model. Therefore, the influence of matrix microdamage at the subscale manifests as

the degradation of the global stiffness of the composite, and the composite nonlinear

response at the macroscale is captured.

5.5 Model Validation

In order to verify the proposed method to compute the composite nonlinear re-

sponse, a discrete FE model is utilized to evaluate the accuracy of the prediction.

The effective elastic moduli of the composite are computed as a function of fiber

volume fraction varying from 20% to 80%. The five elastic constants obtained from

the proposed method are compared against the results from the FEA as well as other

analytical models such as the CCM and Mori-Tanaka (M-T) method [49], as shown in

Section 5.5.2. The composite nonlinear response is presented in Section 5.5.3. Fiber

volume fractions of 50%, 60%, and 70% are selected to examine the effect of fiber

volume fraction on the accuracy of the prediction. Two types of constituent fibers,

IM-7 carbon and S-2 glass, are studied in this research. The elastic properties of the

fibers and matrix are provided in Table 5.1. The nonlinear properties of SC-15 matrix

are given in Table 5.2.

Table 5.2: The nonlinear properties of SC-15 matrix.

σmy (MPa) K1 (MPa) K2

SC-15 Matrix 30 4500 60

5.5.1 Finite Element Model

A unidirectional fiber-reinforced composite can be modeled at the fiber-matrix

level through a RUC with detailed fiber geometries and constituent properties. Though

this method is computationally expensive, it offers accurate prediction of the compos-
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ite constitutive behavior, including inelastic response and fracture. In this study, the

results from the FE model serves as a standard to verify the proposed micromechanics

based multi-scale model for computing the composite nonlinear response.

The microstructure of a unidirectional composite is represented by the RUC com-

posed of a hexagonally packed array of fibers, as shown in Figure 5.10, resulting in a

transversely isotropic solid. In fiber-reinforced composites, individual fibers are ran-

domly distributed in the matrix medium, exhibiting a certain degree of randomness

depending on the manufacturing process. Therefore, in this study, the center fiber is

slightly offset to break the symmetry of the geometry. The effect of fiber randomness

and the size of RUC have been addressed in [119]. In addition, the RUC deforms

like a jigsaw puzzle such that periodic boundary conditions are required to ensure

the continuity between the adjacent RUCs. The periodic boundary conditions are

imposed on pairs of opposite boundary surfaces as, [151],

u1(L1, x2, x3)− u1(0, x2, x3) = E11L1

u2(L1, x2, x3)− u2(0, x2, x3) = 2E12L1

u3(L1, x2, x3)− u3(0, x2, x3) = 2E13L1

u1(x1, L2, x3)− u1(x1, 0, x3) = 2E12L2

u2(x1, L2, x3)− u2(x1, 0, x3) = E22L2

u3(x1, L2, x3)− u3(x1, 0, x3) = 2E23L2

u1(x1, x2, L3)− u1(x1, x2, 0) = 2E13L3

u2(x1, x2, L3)− u2(x1, x2, 0) = 2E23L3

u3(x1, x2, L3)− u3(x1, x2, 0) = E33L3

(5.47)

where u1, u2, and u3 denote the displacements in the 1, 2, and 3 directions, respec-

tively, L1, L2, and L3, are the corresponding edge lengths, and Eij, are the macro-

scopic tensorial strains of the RUC determined by the displacements imposed on the

boundaries. The corresponding macroscopic stresses of the RUC are computed from

the force resultants acting on the surface boundaries divided by the cross sectional

area. The composite effective stress versus effective strain response is represented

by the macroscopic stresses and strains of the RUC, which are related to the non-

homogeneous stress and strain fields within the RUC based upon energy equivalence,

[151]. To obtain a full characterization of the composite nonlinear response, four load-

ing scenarios are considered, including axial tension, transverse tension, axial shear,

and transverse shear. Both carbon and glass fibers are linear elastic, while the matrix
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is modeled as an elastic-damaging solid using a secant modulus approach as presented

in Section 4.2. The analysis was carried out using the commercially available code

ABAQUS, in which the matrix constitutive law is implemented through a UMAT.

Figure 5.10: 3D finite element model.

5.5.2 Elastic Properties

In this section, the effective elastic moduli of a unidirectional composite are

computed using various micromechanics models, including the CCM, M-T method,

GSCM, and direct FEA. The formulations for the CCM and M-T method are provided

in Appendix E. It is worth noting that the CCM cannot provide a closed-form solu-

tion for G23, and thus Hashin’s lower bound is used instead (discussed in Appendix

E). Hence, not surprisingly, the CCM and M-T method yield the same results. In the

present study, the GSCM is extended to compute G23 and K23, however, the rest of

the moduli, E1, ν12, and G12, are still determined from the CCM. It should be noted

that E2 is computed according to Eq. (5.2), which depends on G23, K23, E1, and ν12.

In the instance that the extended GSCM is used, the determination of E2 involves

the axial properties (E1 and ν12) computed from the CCM, hence such a method for

computing E2 is actually based upon both the GSCM and the CCM, and denoted as

“Proposed Method”. In the FE model, the fiber volume fraction varies from 20% to

80% in increments of 5%. The results of the effective moduli computed from various

micromechanics models are shown in Figure 5.5.2.
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Figure 5.11: The composite effective elastic moduli computed from various microme-
chanics models.
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5.5.2.1 Axial Moduli: E1, ν12, and G12

The effective axial modulus, E1, and the effective axial Poisson’s ratio, ν12, com-

puted from the analytical models (CCM and M-T method) are in good agreement

with the FE results. As shown in Figure 5.5.2 (a) and (b), these two properties vary

almost linearly with fiber volume fraction, indicating that the effective moduli can

be approximated by a simple rule of mixture. In contrast to the linear variation, the

effective axial shear modulus, G12, exhibits significant nonlinearity with respect to

the fiber volume fraction, as shown in Figure 5.5.2 (c). Overall, the predictions from

the theoretical models agree with the FE results; however, when the fiber volume

fraction is high (Vf > 75%), differences exist, and the elasticity solutions yield the

lower values. It also worth noting that the scatter is larger for glass/SC-15 than

carbon/SC-15. One possible reason is that as the fiber volume fraction increases, the

fibers are close to each other and the effects of fiber interactions are significant, which

are neglected in these theoretical models but accounted for in the FE model. This

effect is critical with the increased fiber volume fraction, particularly in the case that

the mismatch of the constituent properties is large. These results also suggest that

there should be a restriction on the fiber volume fraction to ensure the accuracy of

these theoretical methods.

5.5.2.2 Transverse Moduli: E2 and G23

The predictions for the effective transverse modulus, E2, and the effective trans-

verse shear modulus, G23, are shown in Figure 5.5.2 (d) and (e), respectively. Both

properties are highly nonlinear with fiber volume fraction, and present similar trends

as observed in the case with G12. When the fiber volume fraction is low (Vf < 30%),

the proposed method almost coincides with the CCM and M-T method, and is in

good agreement with the FE result. As the fiber volume fraction increases, the

proposed method predicts higher moduli than the other two analytical methods,

which confirms that the lower values of G23 correspond to Hashin’s lower bound.

For 30% < Vf < 55%, the results from the FE model lie in between the proposed

method and the CCM/M-T method; however, the predictions from various models are

reasonably close to each other. As the fiber volume fraction gets higher, the moduli

computed from the FE model are closer to the predictions based upon the proposed

method. For Vf > 75%, the FE model provides higher values than all the theoretical

models, which is in accord with the findings for G12. One possible reason leading to

this discrepancy has been discussed in the previous section.
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The difference between the proposed method and the CCM (or M-T method) is

obvious for glass/SC-15 with fiber volume fraction greater than 30%. The difficulty

in the prediction for the transverse properties is primarily due to the non-uniform

stresses and strains within the fiber and matrix [47, 161], resulting in complicated

boundary conditions for the elasticity problems. This non-uniform effect is more sig-

nificant in a composite system with a high fiber volume fraction (Vf > 55%) and large

mismatch in the constituent properties (the fiber-to-matrix modulus ratio greater

than 10). The proposed method, which is an extension to the original GSCM and

based upon a three-phase cylinder model, is able to provide appropriate boundary

conditions for the fiber and matrix because of the outer equivalent composite medium.

Hence, the proposed method is desirable for the unidirectional fiber-reinforced com-

posite with relatively high fiber volume fraction (Vf > 55%) and large fiber-to-matrix

modulus ratio.

5.5.3 Nonlinear Response

The comparison between the proposed method and the FE model for the pre-

diction of the composite nonlinear stress versus strain response is shown in Figure

5.12–5.15. The axial normal stress-strain response, as shown in Figure 5.12, exhibits

almost linear response during the deformation since the composite axial behavior is

dominated by the fiber properties. As a result, the carbon-epoxy composite presents

higher stiffness than the glass-epoxy composite for axial tension. Significant nonlin-

earity in the stress versus strain response is shown in the transverse normal, axial

shear, and transverse shear loading cases, since these properties are dominated by

the matrix material. The effective composite stiffness is degraded with respect to the

evolution of microdamage in the matrix. It should be noted that the present model

only considers matrix pre-peak nonlinear response, therefore, the resulting compos-

ite stress-strain responses are plotted in the range before the SC-15 polymer matrix

reaches the failure strain of 4.2%.

The transverse normal and transverse shear responses are shown in Figure 5.13

and 5.15, respectively. Theses two properties are determined from the weight function

defined in Eq. (5.44), suggesting that the fiber volume fraction and the fiber-to-matrix

stiffness ratio affect the choice of the scalar variables that characterize the composite

nonlinear responses. In particular, when the fiber volume fraction is low or the fiber-

to-matrix stiffness ratio approaches one, the resulting composite nonlinear behavior

tends to be dominated by the average value of the matrix strain at the fiber-matrix

interface, while on the other hand, the maximum value is dominant for either high
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fiber volume fraction or large fiber-to-matrix stiffness ratio. It should be noted that

IM-7 carbon fiber is transversely isotropic, and its transverse stiffness is significantly

lower than that of S-2 glass, as shown in Table 5.1. Even though the proposed

method is an approximation based upon the choice of the scalar variables, it offers

good predictions for both composite systems with fiber volume fraction varying from

50% to 70%. The results for the axial shear response, as shown in Figure 5.14,

present increased accuracy of prediction with decreased fiber volume fraction from

70% to 50%. Since this property is determined from the average matrix strain at the

fiber-matrix interface, it tends to overpredict the nonlinear response when the fiber

volume fraction is high. However, in comparison with the full FEA, the proposed

method still offers a good prediction for fiber volume fraction up to 70%.
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(a) IM-7 carbon – SC-15 epoxy.
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Figure 5.12: The composite effective axial normal stress versus strain response.
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Figure 5.13: The composite effective transverse normal stress versus strain response.
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Figure 5.14: The composite effective axial shear stress versus strain response.
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Figure 5.15: The composite effective transverse shear stress versus strain response.
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5.6 Conclusions

In this chapter, a novel, two-scale micromechanics model is established for comput-

ing the nonlinear response of a unidirectional composite (or a single fiber tow). Since

the results are presented in closed form, the model is suitable to be used in a mul-

tiscale computational framework for large scale structural analysis. In the proposed

method, the axial tension and axial shear problem are solved through a two-phase

CCM, while the transverse tension and transverse shear are studied using an extended

three-phase GSCM. The matrix strains are related to the applied composite strains

through a 6 by 6 transformation matrix, and the resolved spatial variations of the

matrix fields are correlated well with the FEA results.

In the elastic regime, the transverse properties (Ec
2 and Gc

23) are better predicted

using the proposed method than the CCM or M-T method. It has been shown that the

proposed method predicts higher transverse properties (Ec
2 and Gc

23) than the CCM

and M-T method, and the difference is more significant for an isotropic constituent

fiber than for an orthotropic fiber. It is worth noting that all the theoretical models

underestimate the effective moduli Ec
2, G

c
12, and Gc

23 when the fiber volume fraction

is greater than 75%. However, this high volume fraction is hard to achieve for a

unidirectional fiber-reinforced composite using the current manufacturing technique.

In order to capture the composite nonlinear response, it is further hypothesized

that the evolution of the composite nonlinear response is governed by two scalar vari-

ables that are defined as the maximum and mean value of the matrix equivalent strain

at the fiber-matrix interface, according to Eq. (5.43) and (5.44), respectively. Once

the matrix stiffness tensor is degraded through a modified J2 deformation theory,

the matrix secant moduli are subsequently used to compute the composite secant

moduli. In particular, Ec
1, ν

c
12, K

c
23, and Gc

23 are computed based upon the matrix

secant moduli determined from Eq. (5.44), while Gc
12 is calculated using the matrix

secant moduli determined from Eq. (5.43). Therefore, the influence of matrix mi-

crodamage at the microscale manifests as the degradation of the effective composite

stiffness at the macroscale through a secant moduli approach. Compared with a full

3D FE model, the proposed method provides a good prediction of the composite

nonlinear stress versus strain response. The predictive capability of the model has

been illustrated through two distinct composite material systems, carbon and glass,

for fiber volume fraction varying from 50% to 70%. Since fully analytical solutions

are utilized for the subscale micromechanical analysis, the proposed method offers a

distinct computational advantage and is suitable for large scale progressive damage
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and failure analysis of composite material structures. The implementation of the pro-

posed micormechanics model within the fiber tow in a mesoscale textile composite

model is presented in Chapter VII.
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CHAPTER VI

Fiber Tow Failure Mechanisms

6.1 Introduction

In Chapter V, it is assumed that the fiber tow pre-peak nonlinear response is

attributed to the evolution of matrix microdamage developed at the subscale. Such

behavior is captured through a two-scale model, in which the subscale micromechan-

ical analysis at the fiber and matrix level is carried out in closed form. The dete-

rioration of the matrix moduli due to microdamage is manifested as the progressive

degradation of the fiber tow stiffness. Therefore, in the pre-peak nonlinear regime, no

macroscopic damage criterion is required to drive the damage progression in the fiber

tow. However, more catastrophic failure mechanisms have been observed in the ex-

periment, such as fiber tow breakage, tow kinking, and transverse cracking, resulting

in a loss of load carrying capability at the macroscale, followed by a post-peak strain

softening response in the stress versus strain response. Since the positive definiteness

of the tangent stiffness matrix is lost, the aforementioned two-scale model will provide

mesh dependent results in a FE framework if no characteristic length is introduced.

Moreover, when catastrophic failure modes are observed, the fiber tow no longer can

be assumed to be a continuum. As a result, the micromechanics model established in

Chapter V is not suitable for modeling the post-peak softening response.

In order to restore mesh objectivity in the post-peak strain softening regime, a

traction separation law should be utilized to associate the total energy dissipation

during failure progression with the fracture toughness of the material through a char-

acteristic length scale. Discussion on various mesh objective methods is provided in

Chapter IV, Section 4.1. It should be noted that multiple failure modes have been

observed in fiber tows, depending on the constituent (fiber and matrix) properties

and loading conditions. Therefore, performing failure analysis on the fiber and ma-

trix level is motivated. The transverse compression and shear of a unidirectional
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fiber-reinforced composite have been studied by Totry et al. [156, 158, 159] through a

micromechanics based FE model. Recently, Pineda et al. [116] studied the progressive

failure behavior of a unidirectional lamina subjected to transverse tension and com-

pression by implementing the crack band theory within the high-fidelity generalized

method of cells model. These micromehanics models provide deep understanding on

failure progression of a unidirectional composite, however, they are computationally

expensive, and thus are not suitable to be implemented in a multiscale computa-

tional model for 3DTCs. Alternatively, phenomenological failure criteria are utilized

to predict the macroscopic failure response of a unidirectional composite or a single

fiber tow by assuming the existence of a certain type of failure mode. This work

was pioneered by Hashin [162], and was later improved and implemented within a

FE framework by a number of researchers [112, 113, 114, 115] to demonstrate the

predictive capability of this methodology. The use of phenomenological failure crite-

ria offers distinct computational efficiency compared with the micromechanics model,

while the physics of various failure mechanisms is preserved.

The purpose of this chapter is to examine the failure modes of a single fiber tow

and to perform failure analysis using a mesh objective method. Various failure modes

are discussed in Section 6.2, among which the two most critical modes are tow kinking

in compression and tow breakage in tension. A micromechanical analysis based upon

the two-scale model proposed in Chapter V is carried out to numerically determine the

compressive strength of a fiber tow, which is difficult to measure through experiment.

Aspects including matrix in-situ property, fiber misalignment, and mesh objectivity

are discussed in Section 6.3. The obtained compressive strength is used as the failure

initiation criterion for a fiber tow subjected to compression. The progressive failure

evolution is modeled within a FE framework as demonstrated in Section 6.4.

6.2 Failure Mechanisms of a Single Fiber Tow

In textile composites, fiber tows are surrounded by a polymer matrix, resulting in

a complicated state of stress. Due to the heterogeneity of the microstructure and the

complexity of the stress fields, fiber tows exhibit multiple failure modes, including tow

kinking in compression, tow breakage in tension, shear banding, and transverse and

shear cracking. In some instances, the fiber tow can delaminate from the surrounding

matrix at high strain rates, as shown by Pankow et al. [79] through a split Hopkinson

pressure bar test. Shear bands are observed when the textile composite is subjected

to through-the-thickness compression [2, 79]. Generally, the failure modes of a fiber
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tow can be grouped into two types, fiber failure modes that include tow breakage in

tension and tow kinking in compression, and matrix failure modes in which the failure

plane is parallel to the fiber direction, as shown in Figure 6.1 and 6.2, respectively.

This assumption is the same as the one made by Hashin [162]. In the matrix failure

modes, there exist three stress components on the crack plane, σnn, σnt, and σnl, which

are the couplings between σ22, σ33,σ23, σ12, and σ13. Thus the matrix failure modes

account for cracks growing along the transverse normal, axial shear, and transverse

shear directions, predicated on the strength and toughness of the polymer matrix

material.

x1

x2

(a) Tow breakage (tension).

x1

x2

(b) Tow kinking (compression).

Figure 6.1: Fiber failure modes.

x1

x3
x2

Failure 

plane

nn

nt
nl

Figure 6.2: Matrix failure mode.

It is evident from experiment that when a 3DTC is subjected to flexural loading,

the major failure modes for a fiber tow are the fiber failure modes that include tow

130



kinking and tensile breakage. Even though the matrix failure mode, such as trans-

verse cracking, has been observed inside the tow during deformation, this matrix

dominant failure mode does not lead to a noticeable loss in load carrying capability,

and therefore the resulting post-peak strain softening response is ignored. However, it

should be noted that the pre-peak nonlinear response due to the evolution of matrix

microdamage is correctly modeled using the two-scale model discussed in Chapter V.

6.3 Compressive Failure: A Micromechanical Study on Kink

Banding

The response of a single fiber tow, which consists of thousands of fibers embedded

in a matrix medium, is equivalent to that of a unidirectional lamina of the same

fiber volume fraction. Since it is difficult to experimentally measure the compressive

strength of a fiber tow, the purpose of this section is to numerically compute the

tow compressive strength through a micromechanics based model. The computed

compressive strength is subsequently used as the failure initiation criterion for a

single fiber tow subjected to compression. The failure evolution, modeled using the

SCA, is presented in Section 6.4.

The compressive strength of a unidirectional fiber-reinforced composite is signifi-

cantly lower than the tensile strength due to the unique failure characteristic known

as kink banding. Since the load carrying capability of the composite has been limited

by the compressive strength, kinking has been determined as a strength controlling

mechanism of failure. This critical failure mode has been extensively studied by a

number of researchers, such as Budiansky and Fleck [84], Kyriakides et al. [85],

Schultheisz and Waas [86], Waas and Schultheisz [87], Lee and Waas [88], Basu and

Waas [89], Feld et al. [90, 91], and Prabhakar and Waas [59, 92]. The main physi-

cal event associated with the kink band formation is the rotation of the fibers in a

band within a degrading matrix. The rotation of fibers gives rise to localized shear

strains that drive the shear degradation of the matrix material between the fibers.

The shear degradation in turn increases the rotation of the fibers, creating a positive

feedback loot that culminates in a limit-load type instability. It is important to note

that the formation of kink banding is an evolutionary event that is driven by the

external loading with the evolutionary parameters being the band rotation and the

fiber rotation within the bands.

Since kink banding occurs at the fiber-matrix level, it is critical to model the

evolution of kinking through a full micromechanics FE model, as presented by Kyri-
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akides et al. [85], Vogler et al. [163], Hsu et al. [164], and Yerramalli and Waas [165].

These FE models containing individual fibers and surrounding matrix provide deep

understanding on the kink band formation and the subsequent evolution process. On

the other hand, a more computationally efficient model on the lamina level has been

developed to predict the kinking strength. These models consider the effect of matrix

nonlinearity at the microscale as the nonlinear stress versus strain relation at the lam-

ina level, or mesoscale. The lamina nonlinear response can be obtained either from

simple tension and shear tests [117], or from a micromechanics based computational

model. The nonlinear progression can be dictated through a nonlinear constitutive

law, such as Schapery theory [111] or Hill’s anisotropic plasticity theory [166]. The

direct implementation of the lamina level nonlinear constitutive relations within a FE

framework to predict the kind band formation has been presented by Basu et al. [89],

Song et al. [26], and Zhang et al. [31]. The key in these models is to allow the princi-

pal orthotropic material axis to rotate as a function of deformation. The rotations of

the fibers induce large and localized shear strains, which in turn degrade the matrix

shear modulus and allow the fiber to rotate more easily, resulting in a localized band.

It is noted that kink banding is not an isolated event, and may also occur in concert

with splitting. Lee and Waas [88] were the first to consider the possibility of splitting

in conjunction with kink banding, while recent work by Prabhakar and Waas [59, 92]

provided a comprehensive account of failure mode interaction between kinking and

splitting in the compressive failure of composites.

6.3.1 Micromechanics-Based Two-Scale Model for a Single Fiber Tow

In this research, the two-scale model established in Chapter V is used to predict

the kinking strength of a fiber tow. For the macro-scale, lamina-level analysis of a

fiber-reinforced laminated structure, or fiber tow-level analysis of a textile compos-

ite is conducted by utilizing effective homogenized properties to compute stress and

strains in the lamina or fiber tow. Simultaneously, it is intended to carry out the

subscale analysis, at the fiber and matrix level, using the micromechanics model pre-

sented in Section 5.3, in which the constituent stress and strain fields are provided in

closed form. The commercially available finite element software, ABAQUS (version

6.10), is used for the macroscale FEA, and the micromechanics model at the subscale

is implemented at each integration point of the macroscale, using a user defined ma-

terial subroutine, UMAT. This subroutine is called at each integration point at each

increment, and the material constitutive law is updated through user-defined options.
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6.3.1.1 Fiber Misalignment

In textile composites, the kink bands of interest are formed within a single finite

tow composed of individual fibers and matrix. Fibers are assumed to be misaligned

with respect to the locus of an undulating tow. Cox et al. [167] used photographic

digitization technique to statistically determine the fiber misalignment angles in a tow

that ideally was assumed to be straight. However, they also concluded that it was

impossible to obtain accurate fiber misalignment angles for severely crimped tows.

In this research, two different material systems are presented, which are the layer-

to-layer interlock (Albany 2) and the Z-fiber interlock (hybrid architectures). It is

obvious that the fiber tows in Albany 2 exhibit more crimpness than that in the hybrid

panels. The fiber misalignment angles assumed for Albany 2 and the hybrid textile

composites are 1.5◦ and 1◦, respectively, whereas a misalignment angle of 1◦ − 2◦

has been observed in pre-preg based laminates. It is of interest to experimentally

determine the fiber initial misalignment angle in a wavy tow, and this work is left for

future study.

6.3.2 In-Situ Matrix Properties

The in-situ response of the polymer matrix material inside a fiber-reinforced com-

posite is different from the virgin resin properties due to curing process. Obtaining

the matrix in-situ behavior, especially the shear response, is important to predict the

composite compressive strength, as pointed out by Kyriakides [85]. Yerramalli and

Waas [168] characterized the matrix in-situ shear response through a torsion test on

a unidirectional fiber-reinforced composite cylinder. Later, Ng et al. [169] proposed

to determine the lamina in-situ shear response through a tension test on a ±45◦

symmetric laminate in conjunction with a computational micromechanics model.

In this study, the matrix in-situ properties are characterized using the method

demonstrated in [169]. Tension tests were carried out on both ±45◦ symmetric IM-7

carbon/SC-15 epoxy laminate and ±45◦ symmetric S-2 glass/SC-15 epoxy laminate.

The laminated composites were manufactured using the same curing cycles as the ones

used for making the hybrid panels. Tests were performed by Mr. Brian Justusson at

the Army Research Laboratory.

The obtained in-situ uniaxial stress versus strain responses of the matrix materials

in both carbon and glass laminates are shown in Figure 6.3, and the results are com-

pared against the uniaxial responses of the virgin resin in both tension and compres-

sion. It can be immediately concluded that the matrix material behaves differently in
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the two types of fiber-reinforced composite, especially in the nonlinear regime. Since

the coefficient of thermal expansion of the glass fiber is different from that of the

carbon, different residual stresses are generated within the matrix materials in the

two types of laminates during the same curing cycles, resulting in a difference in the

effective in-situ response. Moreover, the matrix in-situ stress versus strain responses

obtained from both laminates show a hardening response in the regime where the

virgin resin has already reached the strain to failure. It should be noted that the

in-situ matrix is computed from the shear stress versus shear strain of the laminate,

in which the presence of the fibers can bridge the evolution of matrix cracking, re-

sulting in a hardening effect. However, it is not evident that the matrix can present

the same hardening response when the composite is in compression. The focus of the

current study is to compute the compressive strength of a single fiber tow, therefore,

this hardening effect is not considered. The matrix nonlinear properties used in the

current two-scale model are extracted from the in-situ stress-strain response before

the failure strain of the virgin resin is reached. Figure 6.4 shows matrix nonlinear

stress-strain responses that are used to compute the compressive strength of the car-

bon and glass tows through the two-scale model proposed in Chapter V, in which

the matrix stiffness tensor is degraded through a modified J2 deformation theory of

plasticity. It should be noted that the two-scale micromechanics based model only

considers matrix pre-peak nonlinear response, while the post-peak strain softening

behavior is not accounted for. The in-situ nonlinear properties for the matrix inside

both carbon and glass tows are summarized in Table 6.1.
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Figure 6.3: Uniaxial responses of SC-15 epoxy resin obtained from the four different
tests.
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two-scale micromechanics model to compute the fiber tow compressive
strength.
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Table 6.1: Nonlinear matrix properties used in the two-scale micromechanics model
to compute the fiber tow compressive strength.

σmy (MPa) K1 (MPa) K2

In-Situ Carbon 25 3500 60

In-Situ Glass 25 1700 40

6.3.3 FE Model

The fiber tow is modeled as a rectangular solid with an initial imperfection angle

of φ0, as schematically shown in Figure 6.5. The axial length (L) is 2.5 mm, and

both the thickness (h) and width (b) are 1 mm. The aspect ratio (AR) of the tow,

defined by the ratio L/h, is kept to be 2.5 throughout the analysis. To achieve a

uniaxial compression loading condition, the left surface ABCD is constrained from

moving along the x1-direction (U1 = 0), while the right surface EFGH is subjected

to a compressive axial displacement ∆ (U1 = −∆). Point A is additionally fixed in

both the x2- and x3-directions (U2 = U3 = 0), and point B is constrained in the

x2-direction (U2 = 0) to prevent rigid body motion. Dynamic implicit analysis in the

ABAQUS standard solver is used to capture the post-peak load drop after the kink

band formation. 3D linear solid elements C3D8 available in the ABAQUS element

library are used throughout the analysis. A mesh sensitivity study is carried out using

the three different discretization sizes summarized in Table 6.2.

Table 6.2: Three different mesh sizes used in the mesh sensitivity study to compute
the fiber tow compressive strength.

Mesh Size (mm) Number of Elements

Mesh A 0.15 833

Mesh B 0.10 2500

Mesh C 0.075 5577
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Figure 6.5: Boundary conditions for the fiber tow subjected to uniaxial compres-
sion with initial fiber misalignment angle φ0. ζ1 − ζ2 coordinate system
designates the instantaneous material frame where “1” defines the fiber
direction.
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6.3.4 Results: Compressive Strength

The load-end shortening (P −∆) data are normalized by using,

σ11 =
P

A
, ε11 =

∆

L
(6.1)

where A and L denote the initial cross-sectional area and the axial length, respectively.

Figure 6.6 shows the compressive response of the glass fiber tow with a fiber volume

fraction of 58% and an imperfection angle of 1◦. The mesh objectivity is demonstrated

through the normalized stress versus strain responses using the three different mesh

sizes. The predicted peak stress is independent of the mesh size, while there is little

variation in the post-peak residual stress.

The deformed shapes at the load levels annotated in Figure 6.6 are shown in Figure

6.7, in which the contour plots show the axial shear strains in the instantaneous

material frame ζ1 − ζ2, as illustrated in Figure 6.5(b). The initial fiber misalignment

initiates localized shear strains that drive the rotation of fibers, which is evident

from the rotation of the material instantaneous coordinates. With continued loading,

deformation starts to localize within a finite band, in which the rotation of the fibers in

turn facilitate the shear degradation, creating a positive feedback loop that culminates

in a limit-load type instability. Beyond the peak load, the load drops continuously

with additional rotation of the fibers within the band, manifested as a kinked band

of fibers.

The post-peak deformed shapes with the three different mesh sizes are shown in

Figure 6.8, in which the kink band width is defined as the length of the band that

contains highly rotated fibers. The kink band widths for the three different mesh

sizes are 0.51 mm, 0.53 mm, and 0.42 mm, respectively. This small difference in the

kink band width explains the little variation in the post-peak residual stress shown

in Figure 6.6. However, it should be pointed out that the final kink band width is

determined by fiber breakage due to bending, which is evident from the experiment

as shown in Figure 3.13. Since the fiber breakage is not accounted for in the present

two-scale model, the resulting post-peak response may be only used as a reference,

and cannot be used for the subsequent failure analysis. Therefore, only the predicted

compressive strength from the two-scale model is used as an input in the subsequent

failure analysis, and the post-peak response is modeled using the SCA discussed in

Section 6.4. Further investigation of the post-kink behavior within a micromechanics

viewpoint, including the analysis of matrix failure and fiber breakage, is motivated.
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Figure 6.6: Normalized axial stress versus strain response for glass fiber tow using
the three different mesh sizes. The initial fiber misalignment angle is 1◦,
and the fiber volume fraction is 60%.
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Figure 6.7: Deformed shapes at various loading levels. The contours show the axial
shear strain in the instantaneous material frame ζ1 − ζ2 illustrated in
Figure 6.5(b).
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Figure 6.8: Kink band formation computed using the three different mesh sizes.
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Table 6.3: Computed compressive strength for carbon and glass fiber tows using var-
ious initial fiber misalignment angles.

Imperfection Carbon Tow Glass Tow Glass Tow
Angle (Vf = 60%) (Vf = 58%) ((Vf = 60%))

1 deg 977 MPa 720 MPa 740 MPa

1.5 deg 762 MPa 579 MPa 592 MPa

2 deg 628 MPa 484 MPa 496 MPa

6.4 Implementation of the SCA to Model the Failure Re-

sponse of a Single Fiber Tow

The failure response of fiber tows (post-peak softening response) is modeled us-

ing the SCA formulated in Section 4.3. The fiber tow is assumed to fail either in

compression due to kink banding or in tension due to tow breakage. It is further

assumed that when the critical stress (either tension or compression) is reached, the

crack plane aligns perpendicular to the fiber direction. Therefore, the crack orienta-

tion transformation matrix, N , defined in Eq. (4.19), is determined by the material

orientation rather than the state of stress. The computation of N using the direction

cosines in the material coordinate frame is provided in Appendix A. If the total stress

and strain components are ordered as,

σ =
[
σ11 σ22 σ33 σ12 σ13 σ23

]T
(6.2)

ε =
[
ε11 ε22 ε33 γ12 γ13 γ23

]T
(6.3)

where “1” designates the fiber direction, N is simply reduced to,

N =



1 0 0

0 0 0

0 0 0

0 1 0

0 0 1

0 0 0


(6.4)
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The constitutive relation at the crack interface thus can be written as,
σcr11

τ cr12

τ cr13

 =

Dc 0 0

0 Gc1 0

0 0 Gc2



εcr12

γcr12

γcr13

 (6.5)

where Dc dictates the crack evolution across the crack interface, and Gc1 and Gc2 are

the crack shear moduli. Since the crack normal is aligned with the fiber direction, Dc

is governed by the fiber failure modes that include both tow breakage in tension and

tow kinking in compression.

It is worth noting that the tow compressive failure evolution is different from the

tensile failure behavior. In the experiment, when the fiber tow fails under compres-

sion, the formation of kink band limits the peak load, while additional kink bands

are developed with continued deformation, resulting in a “load plateau”. It indicates

that even though the fibers are broken within the kink band, load is still trans-

ferred through the band, allowing for stress redistribution. On the other hand, when

the tensile failure occurs, the material loses the load-carrying capability completely,

resulting in a significant load drop as shown in Chapter III. Therefore, a specific

traction-separation law is designed to account for the different failure characteris-

tics for tension and compression, as illustrated in Figure 6.9. It is assumed that

when failure progresses under compression, the crack interface can carry 50% of the

compressive strength in the post-peak regime, while fracture energy is completely

dissipated for tensile failure.

Study on the post-kinking response is critical to determine the amount of the

load that can be transferred after kink band formation [170]. In the present study, a

parametric study is utilized to understand how the failure characteristics of the fiber

tow affect the composite macroscopic response, as shown in Chapter VII.
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Figure 6.9: Traction-separation law for fiber tows that accounts for the difference
between tension and compression.
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6.5 Conclusion

Various failure modes that exist in a fiber tow have been studied, among which

the fiber failure modes that include tow kinking in compression and tow breakage

in tension are considered as the dominant failure modes. Tow kinking is studied

through a two-scale micromechanics model, in which the fiber tow is homogenized at

the mesoscale, while the subscale micromechanical analysis at the fiber-matrix level is

carried out through an analytical approach using the model developed in Chapter V.

The computed kinking strength is affected by the matrix in-situ properties and initial

fiber misalignment angle, while the result is independent of the mesoscale mesh size.

The obtained kinking strength is used as the failure initiation criterion for the fiber

tow subjected to compression. The failure evolution is modeled using the SCA with a

specific traction-separation law that is designed for the fiber tow. The failure plane is

assumed to be perpendicular to the fiber direction for both tension and compression.

It is further assumed that when the tow fails in compression due to kinking, the crack

interface can carry 50% of the compressive strength after the kink band formation.

On the other hand, if the fiber tow fails in tension, the fracture energy due to tow

tensile breakage is released completely. The implementation of the fiber tow failure

response in the multiscale model of 3DTCs is provided in Chapter VII.
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CHAPTER VII

Mechanics Based Multiscale Modeling of

Progressive Damage and Failure of 3D Woven

Composites

7.1 Introduction

Textile composites have demonstrated enhanced mechanical performance and tai-

lored properties achieved by optimizing textile architecture and types of constituent

fibers [5, 4, 67, 69, 171]. Early studies on this class of materials are primarily focused

on the prediction of composite homogenized properties based upon textile architec-

ture using simplified analytical methods [8, 9, 10, 11]. Even though the effect of

geometry imperfections arising from the manufacturing process can be accounted

for in the analytical model developed by Pankow et al. [12], this model is only fo-

cused on the elastic response and does not consider any failure mechanisms. Textile

composites exhibit progressive damage and failure behavior, accompanied by various

modes of failure, including fiber tow kinking in compression, tow breakage in tension,

and matrix cracking, as shown in Chapter III. The damage and failure developed in

the constituents (tows and matrix) manifests as progressive degradation of composite

stiffness, resulting in a macroscopically nonlinear stress versus strain response. There-

fore, in order to predict the strength of textile composites, it is motivated to develop

a textile architecture based model that incorporates damage and failure mechanics

for the constituent materials.

One of the difficulties in the modeling of textile composites lies in their complicated

internal microstructure. A dry textile preform is composed of fiber tows that are either

woven or braided to each other according to the predefined specification. The preform

is subsequently infused with epoxy resin using the VARTM process, as discussed in

Chapter II. In this fabrication process, atmospheric pressure is applied on the textile
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preform through the plastic covering, while the mold pressure is exerted on the other

side, forcing the fiber tows to settle and find new positions that are different from

the predesigned one. In 2D textile composites with multiple layers of textile preforms

stacked on top of each other, these layers can penetrate into each other under the

pressure, resulting in a phenomenon known as nesting [1]. It has been pointed out by

Lomov et al. [172] and Zhang et al. [31] that this unintended geometrical deviation

of textile architecture can play a key role on the mechanical properties of this type

of material. Therefore, it is important to obtain the geometry characteristics of the

as-fabricated composite to establish a predictive textile architecture based model.

Characterization of the actual geometry of textile reinforcements is usually carried

out using an optical microscope by inspecting the cross sections of a composite panel

[11, 173, 31]. The internal structural variation of textile architecture has been studied

by Desplentere et al. [174] through an X-ray microCT. The measured fabric geometric

parameters are directly used as inputs to a “virtual” textile model created using a

textile software such as WiseTex [33]. Although modeling the exact fabric geometry

is possible using a computed-aided drawing software, the model usually encounters

difficulty in the subsequent FEA if the fiber tows are interacting with each other [2].

In some instance, the model tends to contain a large number of elements caused by

the irregular geometry of the matrix material sitting between the tows, and therefore

it is not suitable for large scale structural analysis.

Textile composites exhibit periodicity in their microstructure, allowing them to

be modeled using a collection of RUCs. An efficient computational model for textile

composites requires a “minimum” region to be modeled with appropriately applied

boundary conditions. Whitcomb et al. [175] exploited the periodicity and symmetries

existing in a textile composite, and derived the boundary conditions for the RUC

of a eight-harness stain weave composite. The technique was later generalized for

materials with periodic microstructure, including both 2D and 3D textile composites

[176]. The concept of “equivalent subcell” is used for the smallest region that need

to be modeled in a textile architecture based model. However, it should be pointed

out that in the analysis of textile composites, the minimum size of the RUC needs

to be determined through a convergence study such that the predicted composite

macroscopic response remains unchanged beyond a certain RUC size. The RUC

should not only represent the geometric characteristics of textile architecture, but

also have to capture all the macroscopic behavior, including linear, nonlinear, and

failure responses.

Mesoscale FE models, in which the textile composite is modeled using a collection
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of RUCs that is composed of fiber tows and surrounding matrix, have been widely

adopted to determine the composite macroscopic properties, stress and strain fields in

the constituents, location of damage initiation, and damage progression. When dam-

age occurs, the constituent properties are degraded based upon the observed damage

modes via a CDM approach [34, 177, 35, 36]. Ivanov et al. [37] investigated the

damage and failure behavior of a triaxially braided textile composite (TBTC) sub-

ject to tension. In their mesoscale FE model, Puck’s failure criterion [113] is utilized

to predict the damage initiation and crack orientation for matrix intra-yarn cracks.

The progressive deterioration of the yarn stiffness is modeled using the degradation

scheme of Murakami-Ohno [178] in conjunction with the damage evolution law of

Ladeveze [179] based upon the average stress state of the yarns. The effect of matrix

cracking on the compressive strength of a 2D triaxially braided composite has been

studied by Song et al. ([27]).

Although CDM is able to capture damage and failure in a composite through a

set of scalar variables, this method is pathologically mesh dependent since no charac-

teristic length scale is associated with damage evolution. Discussion on various mesh

objective methods is provided in Chapter IV. Moreover, each damage variable used

in CDM is associated with a unique damage mode that needs to be determined from

a specifically designed experiment. Characterization of these variables is required for

each material system with different textile architecture and loading conditions. In

addition, it is difficult to measure these damage variables for the constituents within

the textile composite, for example, the damage progression inside a fiber tow. Thus,

it is motivated to develop a computation model at the microscale (at the fiber-matrix

level) to predict the damage and failure initiation at the fiber tow level. A parametric

study on damage variables is also expected to understand how the damage developed

at the constituent level affects the composite macroscopic response.

The focus of this chapter is to establish a mechanics based multiscale computa-

tional model for 3DTCs subjected to three-point bending, including both quasi-static

and dynamic responses. The model is developed based upon a global-local modeling

strategy, in which the influence of textile architecture is incorporated in a mesoscale

model that contains detailed geometric information for the fiber tows and matrix,

while the composite is homogenized at the macroscale. Details including the con-

struction of the multisccale model and implementation of constitutive relations that

encompass damage and failure are provided in Section 7.2. The predictive capa-

bility of the proposed model is illustrated by comparing the computational results

with the experiments, including the load-deflection response and progressive failure
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characteristics, such as matrix cracking, tow kinking, and tow tensile fracture. The

computational results for the layer-to-layer architecture (Albany 2) are presented in

Section 7.3. The progressive failure responses of hybrid 3DTCs are presented in

Section 7.4, including both quasi-static and dynamic analysis.

7.2 Multiscale Modeling Framework

The hierarchical nature of textile composites enables them to be differentiated into

three different levels, each of which is associated with a characteristic length scale.

Generally, the microscale is referred to the fibers and matrix within the fiber tows,

while structural level analysis of textile composites is considered as the macroscale.

The scale in-between is the mesoscale, which defines the internal structures of textile

reinforcements on the tow level using a set of RUCs. The analysis at the microscale

provides the constitutive relations of fiber tows (including both linear and nonlinear

analysis) that are subsequently used in the mesoscale analysis. The mesoscale model,

which accounts for textile architecture and incorporates damage constitutive laws and

failure criteria, is able to determine the damage and failure characteristics that finally

manifest as the deterioration of composite homogenized mechanical properties at the

macroscale.

7.2.1 Global-Local Hybrid Finite Element Model

The computational model developed in this work is focused on the flexural re-

sponse of 3DTCs, predominately under three-point bending, including both quasi-

static and dynamic responses. It has been shown in the experiments (discussed in

Chapter III) that the primary damage modes, including fiber tow kinking, tow break-

age, and matrix cracking, are observed nearly in the region under the loading point.

Thus, it is suitable to model such a response through a global-local modeling frame-

work, in which a textile architecture based model is utilized for the area in the vicinity

of the loading point, while a homogenized model is employed for the regions that are

far away from the “hot spots” where no damage event is observed.

Figure 7.1 illustrates the three hierarchical levels involved in the proposed global-

local multiscale model for 3DTCs. In the macroscale model, the composite beam is

homogenized as a linear elastic orthotropic solid since no damage occurs. The com-

putation of the composite effective properties is provided in Section 7.2.2. The textile

architecture based model is considered as a mesoscale model that contains a collection

of RUCs composed of fiber tows embedded in a matrix medium. The construction of
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the mesoscale model is discussed in Section 7.2.3. The fiber tow constitutive relations

(used in the mesoscale model) are determined from a subsequent micromechanical

analysis that is carried out at the fiber level, referred to as the microscale. The con-

stituent properties including the damage and failure characteristics for the matrix

and constituent tows are summarized in Section 7.2.4 and Section 7.2.5, respectively.

The connection between the models of different scales and the boundary conditions

for both quasi-static and dynamic analysis are presented in Section 7.2.6.

Figure 7.1: Illustration of the three different scales used in the proposed global-local
modeling framework.

It should be mentioned that the progressive failure analysis is coupled with the

constituent post-peak softening behavior, resulting in unstable numerical solutions in

a FE framework. Even though the specimen is deformed under a quasi-static loading

condition, the development of failure modes, for example, fiber tow kinking, can cause

a local instability or “snap-through” phenomenon that leads to convergence issues in

a static implicit analysis. Sometimes an implicit dynamic analysis scheme can be

utilized for computing the softening response in a quasi-static system by introducing

inertia effects to regularize the unstable behavior [180]. In Chapter IV, the post-strain

softening response for a monolithic matrix material is computed using the dynamic

implicit solver available in the commercial finite element codes ABAQUS. However,

when multiple damage and failure modes are developed in the FE model, the implicit

solvers usually encounter convergence difficulty, resulting in small time increment at

each iteration step. In this instance, an explicit analysis offers a computational advan-
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tage since each increment is computed using an explicit central-difference integration

rule without solving a set of simultaneous equations that are required for the implicit

solvers. Although the explicit analysis is time intensive, the computational time can

be reduced significantly owning to the recent advances in the parallel computing tech-

nique. However, it should be noted that the implicit solver usually provides accurate

and reliable results since the convergence is checked at each time increment. In the

present study, the quasi-static analysis was performed using both the implicit and

the explicit solvers available in ABAQUS, while the drop tower simulation is carried

out using the explicit scheme.

7.2.2 Determination of the Homogenized Composite Properties

In the macroscale model, the composite beam is homogenized as an orthotropic

solid, the properties of which can be characterized through nine material constants.

In this research, an analytical model proposed by Quek et al. [11] is employed to

compute the composite effective properties based upon the constituent (fiber and

matrix) properties, fiber volume fractions within the fiber tows, tow orientations, and

volume fraction of each constituent (warp tows, weft tows, Z-fibers, and matrix). The

RUC of Alany2 can be broken into three constituents, including the warp tows, weft

tows, and matrix; while the hybrid composite contains an additional constituent of

Z-fibers, as shown in Figure 7.3. The key assumption of the proposed model is that

all the constituents, including the fiber tows and surrounding matrix, carry the same

amount of strains during deformation. Thus, the homogenized composite properties

are computed based upon the volume average of the constituent properties. The

accuracy of this model on the prediction of the in-plane properties of a 2D triaxially

braided textile composite has been evaluated in Ref. [11].

Details of the computation of the composite orthotropic properties are documented

in Appendix F.The material constants for Albany 2 and the thin unsymmetric hybrid

composite are summarized in Table 7.1. The subscripts “x”, “y”, and “z” designate

the axes illustrated in Figure 7.2 and 7.3 for Albany 2 and the thin unsymmetric hy-

brid panel respectively. The warp and weft Young’s moduli (Ex and Ez respectively)

of Albany2 obtained from the tension tests are 13.28± 4.23% GPa and 19.76± 1.93%

GPa, respectively [181]. The experimental values of the warp and weft Young’s mod-

uli for the thin unsymmetric specimen are 31.78±11.34% GPa and 34.47±3.58% GPa,

respectively [22]. Overall, the elastic moduli computed using the proposed method

are correlated well with the experiment.
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Table 7.1: Homogeneous properties of the macroscale model. x, y, and z designate
the axes shown in Figure 7.2 for Albany 2 and Figure 7.3 for the thin
unsymmetric hybrid panel.

Albany 2 Thin Unsymmetric

Ex (GPa) 16.7 31.2
Ey (GPa) 6.87 6.80
Ez (GPa) 19.1 36.9

νxz 0.07 0.04
νxy 0.45 0.43
νzy 0.49 0.42

Gxz 2.32 1.98
Gxy 2.80 2.15
Gzy 3.27 2.15

7.2.3 Construction of the Mesoscale Model

The mesoscale model is a collection of RUCs that are composed of fiber tows

embedded in a polymer matrix medium. The model is created using the measured

fiber tow geometries obtained from the microscopic characterization discussed in Sec-

tion 2.5. The geometric information for Albany 2 and the thin unsymmetric hybrid

composite are summarized in Table 2.2 and Table 2.3, respectively.

As discussed in Chapter II, the textile geometric imperfections arising from the

curing and consolidation process cause the rotations of fiber tows and interactions

between each other. Modeling the full repeated textile pattern requires advanced

topology techniques and may result in meshing difficulties. At this point two different

mesoscale models are proposed with a focus on each axial geometry. In each model

only a unit width of the fiber tows were modeled along its axial direction, as illustrated

in Figure 7.2. The tows running along the width (or along the out-of-plane direction)

are assumed to be straight. 3D linear tetrahedron solid elements are used in the

mesoscale model, whereas the homogenous model is meshed using 3D linear brick

elements.

The hybrid Z-fiber architecture has a series of rigid warp and weft tows, therefore,

it experiences less geometric distortion than those in the layer-to-layer architecture.

Figure 7.3 shows the RUC for the thin unsymmetric hybrid composite, which is

created based upon the measured tow geometries presented in Table 2.3. The corners
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Figure 7.2: Mesoscale model for Albany 2. In each model, only a unit width of fiber
tows are modeled along its axial direction. The tows running along the
width are assumed to be straight.

of each fiber tow is rounded to eliminate stress concentrations resulting from the

geometric singularity. Moreover, the warp and weft layers are separated by a thin

layer of matrix of 0.05 mm in thickness to allow for correct load transfer between the

fiber tows [2]. The Z-fibers are inserted in-between the warp tows and drawn from

top to bottom following a zig-zag weaving path. The mesoscale model for the thin

unsymmetric hybrid 3DTC was first created in a similar way of Albany 2 that only a

unit width of the axial fiber tow is modeled, named as Model A, as shown in Figure

7.4(a). A size-effect study was carried out by doubling the width of Model A and

increasing the length by 4.3 mm, named as Model B, as shown in Figure 7.4(b).

In the global-local modeling framework, it is critical to determine the size of the

RUCs used in the mesoscale model through a convergence study, in which the size of

the mesocale model is kept as a parameter. A critical size is determined based upon

the fact that the computed flexural response remains unchanged beyond a certain

size of the RUCs. The determination of the critical size of the mesoscale textile

architecture model is important to ensure accurate strength prediction with minimal

computational effort. In the present study, the length of the mesoscale for Albany 2 is

40 mm, and that for the thin unsymmetric hybrid composite is 25.8 mm. The size has

been chosen so that the damage and failure modes can be fully developed within in the
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(a) Thin unsymmetric hybrid 3DTC architecture.

(b) Weft tows. (c) Warp tows.

(d) Z-fibers. (e) Matrix.

Figure 7.3: RUC for thin unsymmetric hybrid 3DTC. The RUC is broken down into
various constituents.
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(a) Model A. One fiber tow is modeled in the widthwise direction (x-
direction).
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(b) Model B. Two fiber tows are modeled in the widthwise direction
(x-direction).

Figure 7.4: Mesoscale models for thin unsymmetric hybrid 3DTC. The two models
are different in width and length.
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RUCs and the resulting load-displacement response in the elastic regime is unaffected

beyond the selected size. A systematic study on the size effect of the mesocale model

on the predicted failure response is recommended for further investigation.

7.2.4 Matrix Constitutive Relations Used in the Mesoscale Model

The key in the proposed mesoscale model is to implement damage and failure

constitutive relations for the fiber tows and surrounding polymer matrix. In the

mesoscale model, the matrix in-between the fiber tows is considered as a damaging-

fracture solid. The modeling strategy for such a nonlinear material is presented in

Chapter IV. The pre-peak nonlinear stress versus strain response, which is attributed

to matrix microdamage, is modeled using a modified J2 deformation theory of plastic-

ity through a secant moduli approach. The pre-peak nonlinear response is governed

by the yield stress, σy, and two material constants, K1, and K2, as presented in

Section 4.2.

The evolution of matrix microdamage results in macroscopic cracking, followed by

a post-peak strain softening behavior, which is characterized as a failure mechanism

due to the loss of the positive definiteness of the material tangent stiffness tensor. The

progression of matrix macroscopic cracking is modeled using the SCA (formulated

in Section 4.3), in which the cracks are assumed to be smeared out over a certain

width within a finite element. In Chapter IV, both tension and compression failure

modes have been formulated, however, only tensile cracking is considered in this

chapter. Therefore, the cracks are initiated based on the maximum principal stress,

and grow under pure mode-I condition with the orientations aligned in the plane

of the maximum principal stress. In the SCA, the mesh objectivity is restored by

relating the post-peak strain softening response to a traction-separation law through

a characteristic element length. Thus, the total amount of energy dissipated during

failure in a continuum element can be equated to the fracture toughness defined

for a cohesive element of the same size. The initiation of matrix tensile cracking

is determined by the critical stress, σcr, while the failure evolution is governed by

the mode-I fracture toughness, GIC . The matrix nonlinear properties and failure

characteristics used in the mesoscale FE model are summarized in Table 7.2

7.2.5 Fiber Tow Constitutive Relations Used in the Mesoscale Model

In the mesoscale model, the fiber tows are homogenized as a transversely isotropic

nonlinear solid, while at the microscale each fiber tow is considered as a heterogeneous
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Table 7.2: Matrix nonlinear properties and failure characteristics used in the
mesoscale FE model.

σy K1 K2 σcr GIC

(MPa) (MPa) − (MPa) (N/mm)

25 1700 40 50 1.5

material that is composed of thousands of individual fibers. The evolution of matrix

microdamage developed at the microscale manifests as progressive degradation of the

fiber tow stiffness, resulting in a pre-preak nonlinear stress versus strain response

at the mesoscale. In the proposed multiscale modeling scheme, such a progressive

damage behavior of fiber tows is captured using a novel, two-scale, micromechanics

based model that is established in Chapter V. In the proposed scheme, the mesoscale

tow-level analysis is conducted by utilizing the effective homogenized properties to

compute the local fields in each fiber tow. Simultaneously, it is intended to carry out

a micromechanical analysis, at the fiber and matrix level, using the micromechan-

ics model presented in Section 5.3, in which the constituent stress and strain fields

are provided in closed form. The commercially available finite element software,

ABAQUS (version 6.12), is used for the mesoscale FE model, and the micromechan-

ics model at the subscale is implemented at each integration point of the mesoscale

model, using a user defined material subroutine (UMAT for implicit analysis or VU-

MAT for explicit analysis). This subroutine is called at each integration point at each

increment, and the material constitutive law is updated through user-defined options.

At the start of each increment, the fiber tow states (stress, strain, and solution-

dependent state variables) from the previous equilibrium step and the strain in-

crements in the current step are passed into the UMAT or VUMAT through the

ABAQUS solver. In the nth increment, the total strain, εnij, is calculated by adding

the current strain increment, dεnij, to the strain in the previous step, εn−1ij , as εnij =

εn−1ij +dεnij. In the two-scale modeling scheme, the strains at each integration point in

the FE model, are applied to the subscale micromechanics model. These integration

point strains can be treated as the effective tow strains that are applied on a discrete

fiber-matrix microstructure. The constituent strain fields therefore can be computed

in closed form by knowing the globally applied strains using the micromechanics

model presented in Section 5.3.

It should be noted that the resulting matrix strain fields through the microme-

chanical analysis vary in space, as shown in Figure 5.6–5.9. In Chapter V, it is
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hypothesized that the fiber tow nonlinear behavior is governed by two scalar vari-

ables, Vmax and Vavg, which are defined based upon the maximum and average value

of the matrix equivalent strain at the fiber-matrix interface, respectively, as shown

in Eq. (5.42) and (5.43). In addition, a weight function, Vweight, is constructed to

account for the effects of fiber-to-matrix stiffness ratio and fiber volume fractions. In

the present fiber tow system, since the fiber is significantly stiffer than the matrix

material with a fiber volume fraction around 60% , it is reasonable to assume that

Vweight ≈ Vmax.

Once the matrix equivalent strain is resolved, the matrix stiffness tensor is de-

graded as a secant solid according to the nonlinear damage model presented in Sec-

tion 4.2. It is further hypothesized that the matrix secant moduli calculated using

Vmax are subsequently used to compute the tow effective secant moduli, Et
1, ν

t
12, K

t
23,

and Gt
23; whereas the matrix secant moduli determined from Vavg is used to com-

pute Gt
12. Consequently, if matrix microdamage occurs, the stiffness of the subscale

microstructure is reduced based upon the proposed secant moduli approach. The

subscale stiffness tensors are subsequently used to update the fiber tow stiffness and

stresses in the mesoscale FE model.

The elastic properties properties of the constituent fibers and matrix are provided

in Table 7.3, and the resulting elastic properties of the fiber tows computed using the

proposed micromechanics model are presented in Table 7.4. It has been mentioned

in Section 6.3.2 that the matrix behaves differently inside the different constituent

fibers, especially in the nonlinear regime. Thus, different matrix nonlinear properties

are used for the carbon and glass tows in the micromechanics model, as summarized

in Table 7.5.

Table 7.3: Elastic properties of the fibers and matrix used in the FE model.

E1 E2 ν12 G12 G23

(GPa) (GPa) − (GPa) (GPa)

IM7 Carbon 276.0 15.0 0.279 12.0 5.02

S-2 Glass 93.8 0.23 38.1

Kevlar 112 0.36 41.2

SC-15 Matrix 2.487 0.35 0.921

The fracture model of a single fiber tow is established in Chapter VI. In the present

study, the fiber tow is assumed to fail either in compression due to kink banding or
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Table 7.4: Elastic properties of fiber tows computed using the proposed microme-
chanics model.

Vf E1 E2 ν12 G12 G23

(%) (GPa) (GPa) − (GPa) (GPa)

Glass Tow (Albany 2) 60 57.29 9.558 0.27 3.380 3.416

Glass Tow (Hybrid) 58 55.46 9.025 0.27 3.197 3.213

Carbon Tow (Hybrid) 60 166.6 6.478 0.30 2.873 2.186

Kevlar Tow (Hybrid) 68 68.20 9.678 0.36 3.401 3.442

Table 7.5: Matrix nonlinear properties used in the two-scale micromechanics model
for modeling the pre-peak nonlinear response of the fiber tows.

σy K1 K2

(MPa) (MPa) −

Carbon Tow 25 3500 60

Glass Tow 25 1700 40

in tension due to tow breakage. The failure evolution is modeled using the SCA

with a specifically designed traction-separation law to account for the different failure

responses shown in tension and compression. In particular, when the tow fails in

compression due to kinking, it is assumed that the crack interface can carry 50% of

the compressive strength after the kink band formation, whereas, if the fiber tow fails

in tension, the fracture energy due to tow tensile breakage is released completely.

The procedure for computing the fiber tow compressive strength is presented in

Section 6.3. It is further assumed that the fiber misalignment angles for Albany 2

and hybrid 3DTCs are 1.5◦ and 1◦, respectively. The tensile strengths of the carbon

and glass tows are taken from Refs. [76] and [77] respectively. The tow fracture

toughness, including both tension and compression failure, is difficult to be measure.

In this instance, a parametric study is used to understand the tow failure response.

Table 7.6 summarizes the failure characteristics of the constituent tows used in this

study.
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Table 7.6: Failure characteristics of the constituent tows.

σcr (MPa) GIC (N/mm)

Albany 2 Glass
Tension 1700− 1900 40− 45

Compression 592 2− 4

Hybrid
Glass

Tension 1700− 1900 40− 45
Compression 720 2− 4

Carbon
Tension 1700− 1900 20− 60

Compression 977 2− 4
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7.2.6 Boundary Conditions and Analysis Procedures

Figure 7.5 illustrates the boundary conditions of the global-local FEA model that

is utilized to compute the flexural response of 3DTCs subject to three-point bending.

The region under the loading point is modeled using a textile architecture based

mesoscale model, while the rest of the beam is homogenized at the macroscale. The

connection between the mesoscale and macroscale model is enforced by requiring

displacement continuities between the two regions across the common boundaries. In

order to account for the geometric distortion of the layer-by-layer woven fabric and

shorten the computational time, only a narrow width of the specimen is modeled in

the mesoscale model. Therefore, it is assumed that the flexural response is uniform

through the width of the specimen, and the surface ABCD and EFGH are constrained

in the z−direction (U3 = 0) to prevent the out-of-plane movement. Theoretically one

of the outer surface (either surface ABCD or surface EFGH) should remain free,

however, when multiple failure modes developed during deformation, the free surface

of the mesoscale model tends to bend out of the plane, resulting in an instability

of the global structure. It should be noted that the applied out-of-plane boundary

conditions are much like a plane-strain assumption for a beam. Since the 3DTC

investigated in this research is highly orthtropic with Poisson’s ratio νxz close to zero

(see Table 7.1), such an assumption should have little impact on the global bending

stiffness.
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Figure 7.5: Boundary conditions for the 3DTC subjected to three-point bending. The
flexural response is modeled using a global-local FE model.

In the quasi-static analysis, the top roller is modeled as a rigid body with enforced

displacement along the y−direction. Both the left bottom edge BF and the right

bottom edge CG are fixed in the y− and z−directions (U2 = U3 = 0) to achieve a

three-point bend loading condition. The interaction between the roller and the top
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surface of the specimen is modeled using a general contact algorithm available in the

ABAQUS/Explicit analysis. A “hard” contact is assigned for the interface to prevent

the penetration of the roller into the specimen. The interfacial frictional behavior

(tangential behavior) is modeled through a penalty method with a friction coefficient

of 0.3. Since an explicit scheme is employed for the quasi-static analysis, mass scaling

is applied to the whole model such that the material density used in the simulation is

increased by 100 times. The numerically increased density of the constituent material

results in an artificial increase in the kinetic energy in the system that subsequently

causes the vibration of the beam, especially at the beginning of the simulation. When

the beam deforms further, the increased strain energy can suppress the effect of the

artificial kinetic energy and the solutions become stable.

In order to simulate the drop tower tests, a point mass is attached to the roller to

represent the weight of the impactor. In addition, a concentric load, which simulates

the gravity force of the dropped weight that exerts on the specimen, is applied on the

roller through this mass point along the negative y− direction. Instead of modeling

the whole falling process of the weight, the roller is placed 0.02 mm above the specimen

with an initial impact velocity of 3866 mm/sec (V2 = -3866 mm/sec). In the dynamic

simulation, the constituent materials should be modeled using their true densities

since the model should capture the correct kinetic energy in the system. However,

since the duration of the dynamic simulation is significantly shorter than the quasi-

static one, the dynamic analysis can achieve a reasonable computational time without

using mass scaling. The contact between the impactor and the specimen is the same

as the one used in the quasi-static analysis. Similarly, the edge BF and CG are fixed

in the y− and z−directions to achieve a three-point bend loading condition.

7.3 Results: Albany 2 Subjected to Quasi-Static Three-Point

Bending

This section presents the computational results of Albany 2, including both linear

elastic and failure analysis. Both analysis is carried out using the implicit solver

available in ABAQUS (version 6.12).

7.3.1 Elastic Response (Strain Contours)

The computed surface strain fields are compared against the experimental DIC

contours in the predamage regime. Figure 7.6 shows the comparison on the axial

surface strains at a midpoint displacement of 2 mm. The proposed architecture
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based FE model can successfully capture the strain localization that is developed

during the flexural deformation. The site of the strain concentration in the regions

of predominant tension indicates the onset of matrix cracking that is observed on the

tensile side of the flexed beam, as shown in Section 7.3.2.

Figure 7.6: Comparison of the axial strain fields at a load point displacement of 2
mm (Albany 2).

7.3.2 Progressive Damage and Failure Response

Since it is difficult to experimentally determine the failure characteristics of a

single fiber tow within a 3DTC , a parametric study is utilized to understand the

how the constituent failure behavior affects the composite macroscopic response. For

Albany 2, three different cases are considered, with a focus on the tensile failure

properties, as summarized in Table 7.7.

Table 7.7: Failure characteristics used in the three different cases for Albany 2.

σ−cr (MPa) G−IC (N/mm) σ+
cr (MPa) G+

IC (N/mm)

Case A 592 4 1700 40
Case B 592 4 1700 45
Case C 592 4 1900 40
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The computational load-displacement responses of the three different cases are

compared against the experimental results, as shown in Figure 7.7. The Abany2

specimen is loaded along the warp direction under quasi-static three point bending.

It can be concluded that the proposed model offers a good prediction on the elastic

flexural stiffness, kink band initiation and progression. However, the final catastrophic

failure is not fully captured in the current computational framework. Both Case A

and B predict a lower strain to failure than the experimental result. Case C shows

an increase in load for the deformation between 10.5 mm and 12 mm, while in the

experiment the load is still in the “plateau” regime. The fiber tow progressive failure

response are shown in Figure 7.9 for Case B, where the color contours illustrate

the absolute values of the tow crack strains. Since the fiber tow is modeled using

the SCA, the crack strains indicate kink band formation on the compression side

and tow breakage on the tension side. As shown in Figure 7.9, the predicted “load

plateau” between point (2) and (5) dictates the progression of kink banding on the

compression side. A significant load drop occurs at point (6), where the bottom fiber

tow breakage is observed, as shown in Figure 7.9(f). The ABAQUS implicit solver

encounters convergence difficulty after point (6). The evolution of matrix cracking is

shown in Figure 7.8

The parametric study suggests that both the tow tensile strength and fracture

toughness affect the final composite catastrophic failure response. It is also worth

noting that tow transverse failure is observed in the weft tows (the tows running

along the z−direction) at the end of the experiment, however, this failure mode is

not accounted for in the current model. Even though the transverse tows have little

contribution to the composite flexural stiffness, this type of failure mechanism can

affect the energy dissipation during the failure progress, much like the effect of matrix

cracking. This work is left for future study.
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Figure 7.7: Comparison of the load-displacement responses obtained from the exper-
iment and the computational model. The Albany 2 specimen is loaded
along the warp direction. The evolution of matrix cracking and the de-
formed shapes of the fiber tows at the labeled points are shown in Figure
7.8 and Figure 7.9, respectively.
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Figure 7.8: Evolution of matrix cracking during the deformation(Albany 2, Case B).
The cracked elements are shown in red.
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Figure 7.9: Evolution of fiber tow crack strains during the deformation (Albany 2,
Case B). The crack strains are shown in absolute values.
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7.4 Results: Hybrid 3DTC

The computational results for hybrid 3DTCs are presented in this section, in-

cluding both quasi-static and dynamic analysis discussed in Section 7.4.1 and Section

7.4.2, respectively. The model is focused on the thin unsymmetric hybrid panel loaded

along the weft direction.

7.4.1 Quasi-Static analysis

The quasi-static analysis of the thin unsymmetric hybrid panel is carried out on

the “glass layer in compression” configuration. Both the implicit and explicit solvers

are used to compute the composite flexural response. The failure characteristics of

the constituent tows used in the FE model are summarized in Table 7.8.

Table 7.8: Failure characteristics used in the quasi-static analysis for the thin unsym-
metric hybrid composite with the “glass layer in compression” configura-
tion.

σ−cr (MPa) G−IC (N/mm) σ+
cr (MPa) G+

IC (N/mm)
(Glass) (Glass) (Carbon) (Carbon)

720 4 3000 40

First, the mesoscale model that contains one single fiber tow in the widthwise

direction (Model A in Figure 7.4(a)) is used in the global-local model. The load-

displacement responses computed using the two different FE solvers are compared

against the experimental results, as shown in Figure 7.10. The computational model

offers a good prediction on the initial stiffness, kink band formation and progression.

The final load drop due to tow breakage is captured using the explicit solver, whereas,

the implicit solver encounters convergence issues. The deformed shape corresponds

to the last step of the implicit simulation is shown in Figure 7.11, indicating that the

bottom tow failure has not occurred yet. Both tensile and compressive tow failure

modes are captured through the explicit analysis, as shown in Figure 7.12, in which

the color contours illustrate the absolute values of the tow crack strains.

168



0 2 4 6 8 10 12
0

50

100

150

200

250

300

Displacement (mm)

L
o
a

d
/W

id
th

 (
N

/m
m

)

 

 

Experiment 1

Experiment 2

Experiment 3

FEA (explicit)

FEA (implicit)

(e)(d)(c)

(a)

(b)

(f)

Figure 7.10: Comparison of the load-displacement responses obtained from the exper-
iment and the computational model using Model A. The thin unsym-
metric hybrid panel is loaded along the weft direction under quasi-static
three point bending with the glass layers in compression. The deformed
shapes at the labeled points are shown in Figure 7.12.
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Figure 7.11: Deformed shapes at the last step of the implicit simulation.
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Figure 7.12: Evolution of fiber tow crack strains during the deformation computed us-
ing the explicit solver (hybrid). The crack strains are shown in absolute
values.
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Figure 7.13: Load-displacement responses obtained from the two different mesoscale
models.

The load-displacement responses obtained from the two mesoscale models of dif-

ferent sizes (shown in Figure 7.4) are compared against each other, as shown in Figure

7.13. Since the implicit analysis is utilized, neither of the models captures the final

load drop due to convergence difficulty. Very little difference has been observed in

the predicted deformation responses between the two models, while Model A offers

a distinct computational advantage, and therefore this model will be used in the

subsequent studies.

As mentioned previously, the implicit solver encounter convergence issues before

the bottom fiber tow reaches the ultimate tensile strength. It has been shown in Figure

7.11 that the surrounding matrix near the kink bands (in regions of predominant

tension) experiences large rotation, which can result in excessive distortion of these

elements that makes the solver difficult to converge, while these matrix elements

actually has little contribution to the overall stiffness. In order to examine the effect

of matrix cracking on the compression side, a modified model is proposed in which

the post-peak softening response of the matrix is suppressed in the region above the

mid-plane that is under predominantly compression loading, while matrix cracking is

accounted for in the lower half of the specimen using the SCA.

The load-displacement response obtained from the modified model is shown in

Figure 7.14(a), in which the load drop due to tow tensile breakage is successfully

captured, as shown in Figure 7.14(b) and (c). It should be noted that the uniaxial

tests on the pure polymer matrix show different deformation responses for tension and
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compression, as discussed in Section 2.7. Thus, a material model that can account

for both tension and compression failure is recommended for future investigation.
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(c) At point (2).

Figure 7.14: Deformation response obtained from the modified model compared
against the previous result. The modified model is able to capture the
tow tensile breakage.
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7.4.2 Dynamic Analysis (Drop Tower Test)

The dynamic response is investigated through the drop tower tests with an im-

pact velocity of 3866 mm/sec (152 in/sec). Both the “glass layer in compression” and

“carbon layer in compression” configurations have been examined in order to deter-

mine the architecture-dependent effect. The mesoscale model that contains a single

fiber in the widthwise direction (Model A in Figure 7.4(a)) is used throughout the

dynamic analysis. A thorough parametric study is performed for the “glass layer in

compression” configuration, with a focus on the tow fracture toughness. The failure

characteristics used in these two testing configurations are summarized in Table 7.9

and 7.10.

Table 7.9: Failure characteristics used in the drop tower simulation for the thin un-
symmetric hybrid composite with the “glass layer in compression” config-
uration.

σ−cr (MPa) G−IC (N/mm) σ+
cr (MPa) G+

IC (N/mm)
(Glass) (Glass) (Carbon) (Carbon)

Case 1 720 2 3000 40
Case 2 720 4 3000 40
Case 3 720 8 3000 40
Case 4 720 4 3000 20
Case 5 720 4 3000 60

Table 7.10: Failure characteristics used in the drop tower simulation for the thin
unsymmetric hybrid composite with the “carbon layer in compression”
configuration.

σ−cr (MPa) G−IC (N/mm) σ+
cr (MPa) G+

IC (N/mm)
(Carbon) (Carbon) (Glass) (Glass)

977 4 1700 40

Figure 7.15 shows the comparison between the computational and experimental

results for the “glass layer in compression” configuration, in which the failure char-

acteristics summarized in Case 2 is used in the FE model. Although both results

show “chattering” responses in the recorded loads during the deformation, the pro-

posed model is able to capture the overall flexural response, including the nonlinear

deformation history and final catastrophic failure.
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The effect of the tow failure characteristics on the composite flexural response is

presented in figure 7.16. It is evident from Case 1, 2, and 5 that the composite flexural

strain to failure can be increased by increasing the tow tensile fracture toughness. This

finding agrees with the result of Albany 2 (presented in Section 7.3.2) that the tow

tensile fracture toughness can affect the composite catastrophic failure response. The

results from Case 1, 2, and 3 show that the even thought the compressive fracture

toughness has little effect on the composite progressive damage response, it can affect

the final failure behavior, such as the flexural strain to failure. It is worth noting

that during the progressive failure process, multiple damage and failure modes are

developed and interacting with each other. Therefore, it is critical to understand the

influence of each mode on the composite macroscopic response.
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(b) At point (1). Kink banding is observed in
the experiment.

(c) At point (A). Kinking is captured in the FE
model illustrated by tow crack strains.

(d) At point (2). Tow tensile breakage is ob-
served in the experiment.

(e) At point (B). Tow tensile breakage is cap-
tured in the FE model illustrated by tow crack
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Figure 7.15: Comparison of the deformation responses obtained from the experiment
and the computational model with the failure characteristics of Case
2. The thin unsymmetric hybrid composite panel is loaded along the
weft direction with the glass layers in compression. The initial impact
velocity is 3866 mm/sec (152 in/sec).
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Figure 7.16: Load-displacement responses for various cases used in the parametric
study. The failure characteristics for each case are summarized in Table
7.9. The thin unsymmetric hybprid composite panel is loaded along the
weft direction with the glass layers in compression. The initial impact
velocity is 3866 mm/sec (152 in/sec).
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The computational result for the “carbon layer in compression” is presented in

Figure 7.17. It is worth noting that in the experiment, this configuration shows

considerable damage tolerance, and the specimen still demonstrates load-carrying

capability in the post-peak regime. This aspect has been successfully captured in the

current modeling framework.
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(a) Load-displacement responses.

(b) At point (1). Kink banding is observed in
the experiment.

(c) At point (A). Kinking is captured in the FE
model illustrated by tow crack strains.

(d) At point (2). Tow tensile breakage is ob-
served in the experiment.

(e) At point (B). Tow tensile breakage is cap-
tured in the FE model illustrated by tow crack
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Figure 7.17: Comparison of the deformation responses obtained from the experiment
and the computational model. The thin unsymmetric hybprid compos-
ite panel is loaded along the weft direction with the carbon layers in
compression. The initial impact velocity is 3866 mm/sec (152 in/sec).
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7.5 Conclusions

A mechanics based multiscale FE model is proposed to predict the flexural re-

sponse of 3DTCs subjected to three-point bending, including both quasi-static and

dynamic responses. The model is developed based upon a global-local modeling strat-

egy, in which a textile architecture based mesoscale model is utilized for the area in

the vicinity of the loading point, while a homogenized macroscale model is employed

for the regions that are far away from the “hot spots” where no damage event is

observed. The mesoscale model is a collection of RUCs that are composed of fiber

tows embedded in a surrounding matrix medium. The pre-peak nonlinear response of

the fiber tows is modeled using the two-scale model developed in Chapter V, in which

the subscale micromechanical analysis is carried out in closed form. The post-peak

strain softening responses of both the fiber tow and the surrounding polymer matrix

are modeled through the SCA.

The load-deflection response, along with the observed damage events, including

matrix cracking, tow kinking, and tow tensile breakage, are successfully predicted

through the proposed model for the two distinct material systems, Albany 2 and

hybrid 3DTCs. A parametric study on the tow failure characteristics is carried out

to understand the effect of the constituent properties on the composite macroscopic

response. The proposed model is also able to capture the architecture-dependent

effect exhibited in the unsymmetric hybrid panels by simulating the drop tower tests.

Since all the inputs are from the constituent level, the model is useful in understanding

how the 3DTC response is influenced by the geometry and textile architecture, the

constitutive response of the constituents, and details of any unintended geometrical

deviations of textile architecture.
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CHAPTER VIII

Concluding Remarks

In this research, the flexural response of various 3DTCs has been examined exper-

imentally and modeled using a mechanics based multiscale FE model. Two distinct

types of 3DTCs, a layer-to-layer interlock glass fiber 3DTC and Z-fiber orthogonal

interlock hybrid 3DTC, have been studied in order to understand the architecture-

dependent effect. The microscopy studies on the cured composite sample show that

the fabrication process has a great impact on the final textile architecture, making it

deviate from the ideal designed one. The measured tow dimensions along with the

constituent properties are subsequently used as inputs to a textile architecture based

mesoscale FE model.

The experimental results of numerous flexural tests show a similar progressive

failure response. It is observed that the load deviates from the initial proportional

loading due to fiber tow kinking on the compressive side of the specimen. With

continued deformation, additional kink bands are formed on the compressive side,

while the progression of matrix cracking is captured using a DIC technique. The

observed “load plateau” indicates that this class of materials exhibit considerable

damage tolerance. The final significant load drop was observed due to fiber tow

rupture on the tensile side. The flexural response of hybrid textile composites show a

strong dependence on the fiber lay-ups, and the addition of carbon fiber layers do not

always improve the performance, including the bending modulus, flexural strength,

and strain to failure.

The dynamic response shows a similar load-deflection trend and progressive dam-

age behavior compared with the quasi-static response. The highest peak load is

obtained at the loading of 2 in/sec, while the elevated loading rates achieved using

the drop tower result in a decrease in the peak load that is controlled by the tow

kinking strength. However, it should be pointed out that the drop tower facility is

different from the MTS machine in that additional kinetic energy is introduced to the
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testing framework by the dropped weight. Thus, the progressive damage and failure

response of 3DTCs is also affected by the energy transfer between the kinetic energy

of the dropped impactor to the strain energy stored in the deformed beam.

Although the experimental results show an architecture-dependent effect, fiber tow

kinking on the compressive side of the specimen is determined to be a strength limiting

mechanism for this class of materials. The tow kinking phenomenon along with matrix

cracking (due to strain localization) indicate the importance of the textile architecture

on the failure response of 3DTCs. The experimental results are subsequently used as a

basis for developing a multiscale mechanics model for 3DTC deformation, damage and

failure response, predominantly under three-point bending. The model is developed

based upon a global-local modeling strategy, in which a textile architecture based

mesoscale model is utilized for the area in the vicinity of the loading point, while a

homogenized macroscale model is employed for the regions that are far away from the

“hot spots” where no damage event is observed. The mesoscale model is a collection

of RUCs that are composed of fiber tows embedded in a surrounding matrix medium.

In the mesoscale model, the matrix microdamage, manifested as the pre-peak non-

linear stress versus strain response, is modeled using a modified J2 deformation theory

of plasticity. The secant moduli are degraded with the progression of microdamage,

however, the positive definiteness of the tangent stiffness tensor is still preserved. The

accumulation of matrix microdamage finally results in matrix macroscopic cracking,

followed by a post-peak strain softening behavior that is modeled through the SCA.

This method has demonstrated the capability to provide a mesh objective result since

a characteristic length is introduced to relate the post-peak softening response to a

traction-separation law. Therefore, the total energy release rate during failure in a

continuum element is equal to the material fracture toughness.

A novel, micromechanics based, two-scale model is proposed to model the pre-peak

nonlinear response of a single fiber tow in the mesoscale model. The microstructure

of the fiber tow is represented as a unidirectionally aligned fiber-reinforced compos-

ite, resulting in a transversely isotropic solid at the mesoscale. The effective fiber

tow response is computed through micromechanical analysis using the fiber-matrix

concentric cylinder model as the basic repeat unit. In addition, micromechanics is

used to relate the fiber tow strains to the fiber and matrix strains through a 6 by 6

transformation matrix. The resolved spatial variation of the matrix fields are com-

pared with the corresponding FE model to demonstrate the accuracy of the proposed

micromechanics model. The evolution of the fiber tow nonlinear response is assumed

to be governed by two scalar, strain based variables that are related to the extreme
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value of an appropriately defined matrix equivalent strain, and the matrix secant

moduli are used to compute the tow secant moduli for nonlinear analysis.

Various fiber tow failure modes have been studied, among which the fiber failure

modes that include tow kinking in compression and tow breakage in tension are

considered as the dominant failure modes. The compressive strength of a fiber tow

is numerically determined through the aforementioned two-scale model, in which the

subscale micromechanical analysis at the fiber-matrix level is carried out in closed

form. It has been found that the computed kinking strength is affected by the matrix

in-situ properties and initial fiber misalignment angle, while the result is independent

of the mesoscale mesh size. The obtained kinking strength is used as the failure

initiation criterion for the fiber tow subjected to compression. The failure evolution is

modeled using the SCA with a traction-separation law that is specifically designed for

the fiber tow. The failure plane is assumed to be perpendicular to the fiber direction

for both tension and compression. It is further assumed that when the tow fails in

compression due to kinking, the crack interface can carry 50% of the compressive

strength after the kink band formation. On the other hand, if the fiber tow fails in

tension, the fracture energy due to tow tensile breakage is released completely.

The load-deflection response, along with the observed damage events, including

matrix cracking, tow kinking, and tow tensile breakage, are successfully predicted

through the proposed model for the two distinct 3DTCs, Albany 2 and hybrid 3DTCs.

A parametric study on the tow failure characteristics is carried out to understand the

effect of the constituent properties on the composite macroscopic response. The

proposed model is also able to capture the architecture-dependent effect exhibited

in the unsymmetric hybrid panels by simulating the drop tower tests. Since all the

inputs are from the constituent level, the model is useful in understanding how the

3DTC response is influenced by the geometry and textile architecture, the constitutive

response of the constituents, and details of any unintended geometrical deviations of

textile architecture.
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APPENDIX A

Determination of the Crack Orientation

Transformation Matrix

This appendix provides the derivation of the crack orientation transformation

matrix, N , in Section 4.3.1.

The transformation of stress components in the Cartesian coordinate system fol-

lows the second-order tensor transformation rule as,

σ′ij = aipajqσpq (A.1)

where aij’s are the direction cosines governing the space vector transformation as,

x′i = aipxp (A.2)

As given in [182], the stress tensor transformation can be written in matrix form as,

σ′11

σ′22

σ′33

σ′12

σ′13

σ′23


=



K1 2K2

K3 K4





σ11

σ22

σ33

σ12

σ13

σ23


(A.3)

where,

(A.4a)K1 =

a
2
11 a212 a213

a221 a222 a223

a231 a232 a233


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(A.4b)K2 =

a11a12 a11a13 a12a13

a21a22 a21a23 a22a23

a31a32 a31a33 a32a33


(A.4c)K3 =

a11a21 a12a22 a13a23

a11a31 a12a32 a13a33

a21a31 a22a32 a23a33


(A.4d)K4 =

a11a22 + a12a21 a11a23 + a13a21 a12a23 + a13a22

a11a32 + a12a31 a11a33 + a13a31 a12a33 + a13a32

a21a32 + a22a31 a21a33 + a23a31 a22a33 + a23a32


Noting that Eq. A.3 can be alternatively written as,

σ′ = Kσ (A.5)

where,

K =

[
K1 2K2

K3 K4

]
(A.6)

and,

K−1 =

[
K1 2K3

K2 K4

]
(A.7)

According to Ref. [182], the strain tensor transformation is given as,

ε′ =
[
K−1

]T
ε =

[
K1 2K2

2K3 K4

]
(A.8)

where engineering shear strains are used, i.e.,

ε =
[
ε11 ε22 ε33 γ12 γ13 γ23

]T
(A.9)

Taking the inverse of Eq. (A.8),

ε =
([
K−1

]T)−1
ε′ (A.10)

i.e.,

ε = [K]T ε′ =

[
K1

T K3
T

2K2
T K4

T

]
ε′ (A.11)

186



Assuming that the global coordinates are the 1−2−3 coordinates, while the local

crack orients in the 1′ − 2′ − 3′ coordinate system with the crack normal aligned in

the 1′-direction (see Fig. A.1),

ε11

ε22

ε33

γ12

γ13

γ23


=

 N



ε′11

γ′12

γ′13

 (A.12)

and,


σ′11

σ′12

σ′13

 =

 NT





σ11

σ22

σ33

σ12

σ13

σ23


(A.13)

where,

N =



a211 a11a21 a11a31

a212 a12a22 a12a32

a213 a13a23 a13a33

2a11a12 a11a22 + a12a21 a11a32 + a12a31

2a11a13 a11a23 + a13a21 a11a33 + a13a31

2a12a13 a12a23 + a13a22 a12a33 + a13a32


(A.14)

When the SCA is implemented for a fiber tow, the crack plane is assumed to be

perpendicular to the fiber direction. Thus, the 1′-axis that defines the crack normal

coincides with the 1-axis that denotes the fiber direction, and N is further reduced
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Crack Plane

1'

2'

3'

Figure A.1: Crack orientation. The local crack orients in the 1′ − 2′ − 3′ coordinate
with the crack normal aligned with the 1′-direction

to,

N =



1 0 0

0 0 0

0 0 0

0 1 0

0 0 1

0 0 0


(A.15)
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APPENDIX B

Transformations between the Cartesian and

Cylindrical Coordinates

It is convenient to formulate the concentric cylinder model and the extended

generalized self-consistent method in the cylindrical coordinates (x − r − θ). The

resulting strains are transformed to the Cartesian coordinates (x1−x2−x3) through,

ε11 = εxx

ε22 = εrr cos2 θ + εθθ sin2 θ − γrθsinθ cos θ

ε33 = εrr sin2 θ + εθθ cos2 θ + γrθsinθ cos θ

γ12 = γxr cos θ − γxθ sin θ

γ13 = γxθ cos θ + γxr sin θ

γ23 = 2(εrr − εθθ) sin θ cos θ + γrθ(cos2 θ − sin2 θ)

(B.1)
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APPENDIX C

Formulation for the Extended Generalized

Self-Consistent Method

The stresses can be derived from the Airy’s stress function as shown in Timoshenko

and Goodier [183] as,

σrr =
1

r

∂φ

∂r
+

1

r2
∂2φ

∂θ2

σθθ =
∂2φ

∂r2
(C.1)

σrθ = − ∂

∂r

(
1

r

∂φ

∂θ

)
and the strains are related to the displacements as,

εrr =
∂Ur
∂r

εθθ =
1

r

∂Uθ
∂θ

+
Ur
r

(C.2)

γrθ =
1

r

∂Ur
∂θ

+
∂Uθ
∂r
− Uθ

r

where Ur and Uθ are radial and hoop displacements in polar coordinates. Since the

displacements should be finite at r = 0, and the stresses must be bounded as r →∞,

it follows that,

M1 = C1 = D1 = B3 = 0 (C.3)

190



Hence, the stresses for the fiber are,

σfrr = N1 − A1 cos 2θ

σfθθ = N1 +

[
A1 + 6B1

r2

b2

]
cos 2θ (C.4)

σfrθ =

[
A1 + 3B1

r2

b2

]
sin 2θ

the stresses for the matrix are,

σmrr =
1

2
M2

b2

r2
+N2 +

[
−A2 −

3

2
C2
b4

r4
− 2D2

b2

r2

]
cos 2θ

σmθθ = −1

2
M2

b2

r2
+N2 +

[
A2 + 6B2

r2

b2
+

3

2
C2
b4

r4

]
cos 2θ (C.5)

σmrθ =

[
A2 + 3B2

r2

b2
− 3

2
C2
b4

r4
−D2

b2

r2

]
sin 2θ

and the stresses for the composite are,

σcrr =
1

2
M3

b2

r2
+N3 +

[
−A3 −

3

2
C3
b4

r4
− 2D3

b2

r2

]
cos 2θ

σcθθ = −1

2
M3

b2

r2
+N3 +

[
A3 +

3

2
C3
b4

r4

]
cos 2θ (C.6)

σcrθ =

[
A3 −

3

2
C3
b4

r4
−D3

b2

r2

]
sin 2θ

According to the 2D plane-strain constitutive relations in Eq. (5.22), the strains for

the fiber are calculated as,

εfrr =
1

4Gf
23

{
2N1

Gf
23

Kf
23

+

[
− 2A1 + 6B1

(Gf
23

Kf
23

− 1
)r2
b2

]
cos 2θ

}

εfθθ =
1

4Gf
23

{
2N1

Gf
23

Kf
23

+

[
2A1 + 6B1

(Gf
23

Kf
23

+ 1
)r2
b2

]
cos 2θ

}
(C.7)

γfrθ =
1

2Gf
23

[
2A1 + 6B1

r2

b2

]
sin 2θ
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the strains for the matrix are,

εmrr =
1

4Gm

{[
M2

b2

r2
+ 2N2

Gm

Km
23

]
+

[
− 2A2 + 6B2

(Gm

Km
23

− 1
)r2
b2
− 3C2

b4

r4

− 2D2

(Gm

Km
23

+ 1
) b2
r2

]
cos 2θ

}

εmθθ =
1

4Gm

{[
−M2

b2

r2
+ 2N2

Gm

Km
23

]
+

[
2A2 + 6B2

(Gm

Km
23

+ 1
)r2
b2

+ 3C2
b4

r4

− 2D2

(Gm

Km
23

− 1
) b2
r2

]
cos 2θ

}
(C.8)

γmrθ =
1

2Gm

[
2A2 + 6B2

r2

b2
− 3C2

b4

r4
− 2D2

b2

r2

]
sin 2θ

and the strains for the equivalent composite are,

εcrr =
1

4Gc
23

{[
M3

b2

r2
+ 2N3

Gc
23

Kc
23

]
+

[
− 2A3 − 3C3

b4

r4
− 2D3

(Gc
23

Kc
23

+ 1
) b2
r2

]
cos 2θ

}

εcθθ =
1

4Gc
23

{[
−M3

b2

r2
+ 2N3

Gc
23

Kc
23

]
+

[
2A3 + 3C3

b4

r4
− 2D3

(Gc
23

Kc
23

− 1
) b2
r2

]
cos 2θ

}
(C.9)

γcrθ =
1

2Gc
23

[
2A3 − 3C3

b4

r4
− 2D3

b2

r2

]
sin 2θ

Finally, the displacements can be calculated based upon the strain-displacement re-

lations in Eq.(C.2). The displacements for the fiber are,

U f
r =

b

4Gf
23

{
2N1

Gf
23

Kf
23

r

b
+

[
− 2A1

r

b
+ 2B1

(Gf
23

Kf
23

− 1
)r3
b3

]
cos 2θ

}

U f
θ =

b

4Gf
23

[
2A1

r

b
+ 2B1

(Gf
23

Kf
23

+ 2
)r3
b3

]
sin 2θ (C.10)
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the displacements for the matrix are,

Um
r =

b

4Gm

{[
−M2

b

r
+ 2N2

Gm

Km
23

r

b

]
+

[
− 2A2

r

b
+ 2B2

(Gm

Km
23

− 1
)r3
b3

+ C2
b3

r3

+ 2D2

(Gm

Km
23

+ 1
) b
r

]
cos 2θ

}
(C.11)

Um
θ =

b

4Gm

[
2A2

r

b
+ 2B2

(Gm

Km
23

+ 2
)r3
b3

+ C2
b3

r3
− 2D2

Gm

Km
23

b

r

]
sin 2θ

and the displacements for the composite are,

U c
r =

b

4Gc
23

{[
−M3

b

r
+ 2N3

Gc
23

Kc
23

r

b

]
+

[
− 2A3

r

b
+ C3

b3

r3
+ 2D3

(Gc
23

Kc
23

+ 1
) b
r

]
cos 2θ

}

U c
θ =

b

4Gc
23

[
2A3

r

b
+ C3

b3

r3
− 2D3

Gc
23

Kc
23

b

r

]
sin 2θ (C.12)
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APPENDIX D

Compuatation of the Matrix Strain Fields Using

Finite Element Analysis

Two different FEA models are utilized to compute the matrix strain fields in Sec-

tion 5.3.4. The axial problems, including axial tension and axial shear, are analyzed

using a 3D two-phase cylinder model as schematically shown in Fig. 5.3. When the

cylinder is subjected to an axial tension, the problem is axisymmetric, hence, Uθ = 0,

is enforced everywhere on the boundary. To ensure a single axial strain is prescribed

on the cylinder, one end of the cylinder is fixed (Ux(x = 0) = 0), while the other

end is subjected to an axial displacement, δ. The outer lateral surface is constrained

(Ur(r = b) = 0) such that only a single axial strain is present. The overall axial strain

is calculated as δ/L, where L is the length of the cylinder. The boundary conditions

for the axial shear problem are given by, Eq. (5.17), with one end fixed. Note that L

should be large enough to ignore boundary effects at the ends.

To analyze the transverse problem, a three-phase cylinder model is utilized as

illustrated in Fig. D.1, in which both the fiber and the matrix are concentrically

embedded in an equivalent composite medium. The composite properties are calcu-

lated using Eq. (5.7), (5.8), (5.18), (5.30), and (5.37). Since the equivalent composite

medium is assumed to be large enough to produce uniform stress and strain distribu-

tions at the boundary, the outer boundary of the composite is modeled as rectangular

so that the boundary conditions can be enforced easily. The boundary conditions for

transverse normal and transverse shear loading are summarized in Table D.1.
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Table D.1: Boundary conditions for the transverse normal and transverse shear prob-
lem. The boundary conditions are prescribed on each outer surface of the
rectangle. L1, L2, and L3 are the length of the rectangle along x1, x2, and
x3 directions, respectively.

Transverse normal Transverse shear
εc22 = ε̄ γc23 = γ̄

ABCD U1 = 0 U1 = 0

EFGH U1 = 0 U1 = 0

AEHD U2 = 0 U2 = 0, U3 = 0

BFGC U2 = ε̄ L2 U2 = 0, U3 = γ̄ L2

ABFE U3 = 0 U3 = γ̄ x2

DCGH U3 = 0 U3 = γ̄ x2

Figure D.1: Three-phase finite element model for the transverse problem.
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APPENDIX E

Formulations for the Concentric Cylinder Model

and Mori-Tanaka Method

E.1 Concentric Cylinder Model

The concentric cylinder model was first proposed by Hashin and Rosen [40], in

which a unidirectional fiber-reinforced composite is represented by an assemblage of

concentric cylinders. In each concentric pair, the inner cylinder representing the fiber

is embedded in an annulus of the matrix, resulting in a transversely isotropic material.

The size of the concentric pair varies such that the entire volume of the composite

can be filled with the cylinders, while the ratio of the fiber radius to the matrix

radius is kept constant to maintain the correct fiber volume fraction. The key is to

impose traction or displacement boundary conditions on the cylinders and equate the

strain energy of the concentric pair (fiber-matrix cylinder) to that of the equivalent

homogeneous composite material. Hence, the effective properties of the composite

can be computed in terms of the constituent (fiber and matrix) properties and the

volume fraction of each constituent based upon the theory of elasticity.

The closed-form expressions for the effective moduli E1, ν12, K23, and G12 are

presented in [75, 160]. In their work, both fiber and matrix are treated as isotropic

solids. The effect of fiber orthotropy was extensively studied by Knott and Herakovich

[184, 185]. In this paper, a simple and compact form of equations for the composite
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effective elastic moduli are obtained by using the fiber constitutive relation as,

E1 = Ef
1Vf + Em(1− Vf ) +

4Vf (1− Vf )(νf12 − νm)2Gm

Gm(1−Vf )
Kf

23

+
GmVf
Km

23
+ 1

ν12 = νf12Vf + νm(1− Vf ) +
Vf (1− Vf )(νf12 − νm)

(
Gm

Km
23
− Gm

Kf
23

)
Gm(1−Vf )

Kf
23

+
GmVf
Km

23
+ 1

(E.1)

K23 = Km
23 +

Vf
1

Kf
23−Km

23

+
1−Vf

Km
23+G

m

G12 = GmG
f
12(1 + Vf ) +Gm(1− Vf )

Gf
12(1− Vf ) +Gm(1 + Vf )

It is impossible to find a closed-form solution for G23 using the concentric cylinder

model. Usually, Hashin’s lower bound [45] for G23 is accepted and used in conjunction

with Eq. (E.1) to form a complete set five independent elastic constants. Thus, it is

assumed that,

G23 = Gm

1 +
Vf

Gm

Gf23−Gm
+

(Km
23+2Gm)(1−Vf )
2(Km

23+G
m)

 (E.2)

E.2 Mori-Tanaka Method

An alternative way to compute the composite effective moduli is based upon the

work by Mori and Tanaka [49], who first investigated the average internal stress in

the matrix of a material containing inclusions with eigenstrains. By Combining their

work with Eshelby’s solutions [48] for an ellipsoidal inclusion inside an infinite matrix

medium, Tandon and Weng [57] obtained closed-form solutions to the five independent

elastic constants of a unidirectional fiber-reinforced composite. A more compact form

of the solution was presented by Benveniste [58] through a direct and simple approach

based upon the concept of strain concentration tensors. The derivations are briefly

summarized here.

For a fiber-reinforced composite material, the composite average stresses (σ̄) and

strains (ε̄) are the volume average of the corresponding quantities in the fiber and

matrix as,

σ̄ = Vf σ̄
f + (1− Vf )σ̄m (E.3)

ε̄ = Vf ε̄
f + (1− Vf )ε̄m
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where Vf is the fiber volume fraction, σ̄f and ε̄f are the average stresses and strains

in the fiber, and σ̄m and ε̄m are the average quantities in the matrix. The composite

effective stiffness tensor, C, is given by,

σ̄ = Cε̄ (E.4)

According to the previous formulations [57, 58], the average strains in the fiber and

matrix can be further written as,

ε̄m = ε̄0 + ε̃m (E.5)

ε̄f = ε̄0 + ε̃m + ε̃f (E.6)

where ε̄0 are the uniform stains in the far field, ε̃m are the perturbed strains in the

matrix due to the presence of the fibers, and ε̃f are perturbed strains in a fiber with

respect to the matrix. The average strains in the fiber and matrix are related to the

corresponding average stresses through,

σ̄f = Cf ε̄f (E.7)

σ̄m = Cmε̄m

where Cf and Cm are the stiffness tensors for the fiber and matrix, respectively.

Furthermore, Eshelby’s equivalent principle [48] results in,

Cf
(
ε̄0 + ε̃m + ε̃f

)
= Cm

(
ε̄0 + ε̃m + ε̃f − ε∗

)
(E.8)

where ε∗ = S−1ε̃f , and S is the fourth-order Eshelby’s transformation tensor, the

components of which depend on the geometry of the inclusions and the elastic moduli

of the matrix. For a unidirectional fiber-reinforced composite material, the inclusion

can be represented as a circular cylinder with large (infinite) aspect ratio. The non-
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zero components of the fourth-order Eshelby’s transformation tensor are [55],

S2222 = S3333 =
5− 4νm

8(1− νm)

S2233 = S3322 =
4νm − 1

8(1− νm)

S2211 = S3311 =
νm

2(1− νm)

S2323 =
3− 4νm

8(1− νm)

S1212 = S1313 =
1

4

where νm is the Poisson’s ratio of the matrix.

The average strains in the fiber and matrix can be related through a transforma-

tion matrix, T , by substituting Eq.(E.5) and (E.6) into (E.8) as,

ε̄f = T ε̄m (E.9)

where,

T =
[
I + S (Cm)−1

(
Cf −Cm

)]−1
(E.10)

Finally, the composite stiffness tensor can be computed by the use of Eq. (E.3), (E.7)

and (E.9) as [58],

C = Cm +
[
Vf
(
Cf −Cm

)
T
]

[VfT + (1− Vf )]−1 (E.11)

Hence, the effective elastic moduli of the composite material can be obtained by

knowing the components of the stiffness tensor. It is worth noting that the elastic

moduli, E1, ν12, G12 and K23 computed using the M-T method are exactly the same

as the results from the CCM (Eq. (E.1)), and G23 from the M-T method is identical

to Hashin’s lower bound (Eq. (E.2)).
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APPENDIX F

Computation of the Macroscopic Effective

Properties of 3D Textile Composites

The effective elastic properties of the 3DTCs are computed using an analytical

model developed based upon the method proposed by Quek et al. [11]. The pur-

pose of the proposed model is to determine the homogenized properties through the

constituent (fiber and matrix) properties, fiber volume fractions of both warp and

weft tows, tow orientations, volume fraction of each constituent (warp tow, weft tow,

Z-fiber, and matrix), and stacking sequences in hybrid composites. The RUC of Al-

bany 2 can be broken down into three constituents, including the warp tows (0◦),

weft tows (90◦), and matrix; while the RUC of the hybrid composite contains an ad-

ditional constituent, the Z-fibers. The key assumption of the proposed model is that

all the constituents, including the fiber tows and surrounding matrix, carry the same

amount of strains during deformation. Thus, the homogenized composite properties

are computed based upon the volume average of the constituent properties. The ac-

curacy of this model on the prediction of the in-plane properties of a 2D triaxially

braided textile composite has been demonstrated in Ref. [11].

F.1 Fiber Tow Stiffness in the 1 − 2 − 3 Coordinate System

(Local Coordinates)

A single fiber tow consists of thousands of individual fibers embedded in a sur-

rounding matrix medium, the microstructure of which can be represented as a uni-

directionally aligned fiber-reinforced composite. When the fiber tow undulates along

its longitudinal direction, each infinitesimal section of a fiber tow can be considered
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as a unidirectional composite, with its local coordinates aligned with the tow orienta-

tion, as schematically shown in Figure 5.2. The effective response of such a material

is transversely isotropic, requiring five independent constants to form the local fiber

tow stiffness tensor. The computation of fiber tow elastic properties in terms of the

fiber and matrix properties is given in Section 5.3.

F.2 Stiffness in the x′− y′− z′ Coordinate System (Ply Coor-

dinates)

Each infinitesimal section of an undulating tow makes an angle β with the x′-axis

in the x′− z′ plane, as shown in Fig. F.1. The fiber tow undulation can be measured

from the cross-sectional microscopic images of the specimen. Here, we assumed that

the shape of the fiber can be dictated using a periodic function, f(x′) , as,

z′ = f(x′) (F.1)

Therefore,

tan(β) =
df(x′)

dx′
(F.2)

m̂ = cos(β) =
1

1 + tan2(β)
(F.3)

n̂ = sin(β) =
tan(β)

1 + tan2(β)
(F.4)

 

x'

z'
12

β 

Figure F.1: x′ − z′ plane profile of an undulating fiber tow.

The contribution of the undulating tows to the stiffness in the x′ − z′ plane is

determined by averaging the transformed local stiffness over the length of the period,

L, as,
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{σ}ply =
1

L

∫ L

0

[
T̂1

]−1 [
Qlocal

][
R
] [
T̂1

] [
R
]−1

dx′ {ε}ply (F.5)

{σ}ply =
[
Q̄
]
{ε}ply (F.6)

where [T̂1] is the transformation matrix, and [R] relates engineering strains to tensorial

strains.

[
T̂1

]
=



m̂2 0 n̂2 0 2m̂n̂ 0

0 1 0 0 0 0

n̂2 0 m̂2 0 −2m̂n̂ 0

0 0 0 m̂ 0 −n̂
−m̂n̂ 0 m̂n̂ 0 m̂2 − n̂2 0

0 0 0 n̂ 0 m̂


(F.7)

[R] =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 2 0 0

0 0 0 0 2 0

0 0 0 0 0 2


(F.8)

For Albany 2, it is reasonable to assume that the fiber tow undulates as a ge-

ometric sine wave with a wavelength of 2L and an amplitude of A. These values

can be determined by measuring the microscopic images taken on the cross sections.

The hybrid composite have almost straight warp and weft tows, therefore, their ply

coordinates are aligned with the local tow coordinates.

F.3 Stiffness in the x− y− z Coordinate System (Global Co-

ordinates)

The total averaged stress-strain relation in the x′ − y′ − z′ coordinates is trans-

formed to a representation in the x − y − z coordinate system of the RUC, through

a rotation about the (z/z′) axis with an angle α. This angle is used to define the

orientation of each ply. For the [0/90] lay-up, α is 0◦ for the warp plies and 90◦ for
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the weft plies. The global stresses are calculated as,

{σ}ply = [T1]
−1[Q̄][R][T1][R]−1 {ε}ply = [Q]ply {ε}ply (F.9)

where [R] corresponds to Eq. (F.8), and [T1] is given by,

[T1] =



m2 n2 0 0 0 2mn

n2 m2 0 0 0 −2mn

0 0 1 0 0 0

0 0 0 m −n 0

0 0 0 n m 0

−mn mn 0 0 0 m2 − n2


(F.10)

F.4 RUC Stiffness

The stiffness contribution of each ply is then assembled while taking into account

the respective volume fraction of each constituent within the RUC. The volume frac-

tion of each constituent can be determined by analyzing the microscopic images of the

specimen. The effective homogenized stiffness of RUC is computed based upon the

assumption that all the constituents carry the same amount of strain, and the global

stiffness matrix of the RUC is determined using the definition of volume averaged

stresses.

In the following calculation, “i” denotes each constituent, Vi is the volume of each

constituent, and V̂i is the volume fraction of each constituent.

VRUC =

{
N∑
i=1

Vi

}
(F.11)

V̂i =
Vi

VRUC

(F.12)

The stress-strain relationship for a RUC is defined by,

{σ} =
[
QRUC

]
{ε} (F.13)

where,

QRUC =
N∑
i=1

QiV̂i (F.14)
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Hence,

〈σij〉RUC =
1

VRUC

{∫
VRUC

σijdV

}
=

1

VRUC

{∫
V1

σ1
ijdV1 +

∫
V2

σ2
ijdV2 + ...

}
(F.15)

=
1

VRUC

{
N∑
i=1

∫
Vi

σiijdVi

}

Substituting in the stress versus strain relation for the ith constituent gives,

〈σij〉RUC =
1

VRUC

{
N∑
i=1

∫
Vi

Qi
ijklε

i
kldVi

}
(F.16)

According to the iso-strain assumption,

εikl = εRUC
kl (F.17)

The constitutive relations for the RUC becomes,

〈εRUC
ij 〉 =

1

VRUC

=

{
N∑
i=1

∫
Vi

Qi
ijkldVi

}
εRUC
kl (F.18)

or,

〈εRUC
ij 〉 =

{
N∑
i=1

Qi
ijklV̂i

}
εRUC
kl (F.19)

Thus,

〈εRUC
ij 〉 =

[
QRUC
ijkl

]
εRUC
kl (F.20)

where, [
QRUC

]
=

N∑
i=1

Qi
ijklV̂i (F.21)

The compliance of the stiffness matrix is computed by inverting the stiffness matrix

as, [
SRUC

]
=
[
QRUC

]−1
(F.22)

Finally the effective engineering constants of the RUC can be determined based
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upon the global compliance matrix through,

Ex =
1

SRUC
11

Ey =
1

SRUC
22

Ez =
1

SRUC
33

Gyz =
1

SRUC
44

Gzx =
1

SRUC
55

Gxy =
1

SRUC
66

νxy = −S
RUC
12

SRUC
11

νxz = −S
RUC
13

SRUC
11

νyz = −S
RUC
23

SRUC
22

(F.23)
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[141] Ponte Castañeda, P., “Second-order homogenization estimates for nonlinear
composites incorporating field fluctuations: I–theory,” Journal of the Me-
chanics and Physics of Solids , Vol. 50, No. 4, April 2002, pp. 737–757.
doi:10.1016/S0022-5096(01)00099-0.
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