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ABSTRACT

Some problems in Stochastic Control Theory related to Inventory Management and
Coarsening

by

Jingchen Wu

Chair: Xiuli Chao and Joseph Conlon

In this dissertation, we study two stochastic control problems arising from inventory

management and coarsening.

First, we study a stochastic production/inventory system with a finite production

capacity and random demand. The cumulative production and demand are modeled

by a two-dimensional Brownian motion process. There is a setup cost for switching

on the production and a convex holding/shortage cost, and our objective is to find the

optimal production/inventory control that minimizes the average cost. Both lost-sales

and backlogging cases are studied. For the lost-sales model we show that, within a

large class of policies, the optimal production strategy is either to produce according

to an (s, S) policy, or to never turn on the machine at all (thus it is optimal for the

firm to not do the business); while for the backlog model, we prove that the optimal

production policy is always of the (s, S) types. Our approach first develops a lower

bound for the average cost among a large class of non-anticipating policies, and then

shows that the value function of the desired policy reaches the lower bound. The

results offer insights on the structure of the optimal control policies as well as the
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interplay between system parameters.

Then, we study a diffusive Carr-Penrose model which describes the phenomenon of

coarsening. We show that the solution and the coarsening rate of the diffusive model

converge to the classical Carr-Penrose model. Also, we demonstrate the relationship

between the log concavity of the initial condition and the coarsening rate of the

system. Under the assumption that the initial condition is log concave, there exists a

constant upper bound on the coarsening rate of the diffusive problem. Our approach

involves a representation of the solution using Dirichlet Green’s function. To estimate

this function, we exploit the property of a non-Markovian Gaussian process and derive

bounds (both upper and lower) on the ratio between the Dirichlet and the full space

Green’s functions. The results shed light on the connection between the classical and

diffusive Carr-Penrose models, and characterize the coarsening phenomenon under

small noise perturbation.
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CHAPTER I

Optimal Control of a Brownian

Production/Inventory System with Average Cost

Criterion

1.1 Introduction and literature review.

A fundamental result in inventory theory is the optimality of (s, S) policy for

inventory systems with setup cost (Scarf [36], Veinott [40]). The key assumption

for this result is infinite ordering/production capacity. That is, regardless of how

much is ordered, it will be ready after a leadtime that is independent of the ordering

quantity. This assumption is clearly not satisfied in many applications, especially in

production systems; all production facilities have finite capacity. Several studies have

been conducted attempting to extend the results to the case of finite capacity. In the

special case with no setup cost, Federgrun and Zipkin [14] have shown that the optimal

strategy for the capacitated inventory system is a simple extension of the optimal

base-stock policy to the uncapacitated problem, which is often called the modified

base-stock policy. Does such “modification” continue to hold in the case with setup

cost? While it is plausible that some form of a modified (s, S) policy would be optimal,

it has been shown by several authors, through counterexamples, that this is not true.

See for example, Wijngaard [43], and Chen and Lambrecht [5]. Efforts have been
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made to analyze the structure of the optimal control policy for capacitated inventory

system with setup cost, see, e.g., Gallego and Scheller-Wolf [17], and Chen [4], and

the best known result is a partial characterization of the optimal control policy. These

studies are established for periodic-review production/inventory systems, but similar

result holds for continuous-review system when the demand follows a batch Poisson

process.

There are also several studies of production/inventory systems using Brownian

motion models, and again most of these studies assume infinite production capacity,

which means, in the Brownian setting, that the inventory levels can be changed in-

stantaneously. In the stochastic control jargon, this is referred to as impulse control.

Bather [1] uses Brownian motion to model the demand process and allows the inven-

tory to be controlled instantaneously with setup cost and proportional variable cost;

and he shows that an (s, S) policy is optimal under long-run average cost criterion. In

[35], Richard considers both infinite and finite horizon problems with discounted cost

objective, and he presents sufficient conditions for the optimality of an (d,D, U, u)

policy among the class of impulse control policies; this work has been extended in

[8] to a more general setting, for which the optimal control is shown to take a form

(d,D, U, u). These papers study the backlog inventory model, in which the state

variable (the inventory level) takes any real value. Harrison in [21] studies a similar

discounted cost optimal control problem of a Brownian model, and he imposes the

condition that the state of the system is non-negative. This non-negativity condi-

tion leads to a lost-sales inventory control model, and Harrison obtains the optimal

impulse control policy for the case with or without setup cost. In [20] Harrison et

al. propose another Brownian model for a cash management problem, in which the

state of the system can be instantaneously increased or decreased, and the authors

show that a (0, q, Q, S) policy is optimal for discounted cost criterion. Sulem [38]

investigates the computational issue of the optimal control parameters based on the
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work of [8]. Ormeci et al. [30] consider linear holding and shortage cost rate and

extend the result of [20] to long-run average cost criterion, and they prove that the

optimal policy remains the (0, q, Q, S) policy. They also generalize the result to the

case when there is finite adjustment condition in the impulse control policies. Dai

and Yao [23, 24] further extend the model of Ormeci et al. [30] to convex holding

and shortage cost rate, and obtain the optimal impulse controls for both average and

discounted costs.

As mentioned, impulse control in Brownian inventory models implicitly assumes

infinite production capacity. When the production capacity is finite, which is always

true in practice, the inventory levels can only be gradually changed over time at a

finite production rate. Normally, the production rate can only be changed among a

finite set of alternatives through changing the number of staff, number of shifts, or

opening or closing production lines. However, such adjustments can be restricted in

some situations. For example, suppose a factory has multiple production lines and, to

match the demand rate, the ideal number of lines to run is between n and n+1. Then,

it is practical to consider only two production alternatives, i.e., n or n+ 1 production

lines. We consider another example, in which a factory has only one production line.

The factory can decide whether to turn it on or off, instead of changing the production

rate. Again the problem is to choose between the two production capacities. The

second example is a special case of the first but it captures many practical scenarios.

In what follows, we focus on the latter example as the stereotype problem. Therefore,

in such situations, the production decisions are when to set up the machine to produce,

and when to shut down the production. The resulting optimal production/inventory

control problem is regime-switching between production mode and non-production

mode. For this optimal switching problem, a fixed setup cost K is incurred whenever

the production precess is turned on. Due to this cost, the inventory manager needs to

limit the frequency of turning on the production process. Intuitively, the larger the
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setup cost K, the less frequently the manager should switch to the production mode.

In the special case of deterministic demand and production processes, this reduces to

the classic EOQ/EPQ model (see e.g., Hax and Candea [22]), in which the inventory

manager balances holding/shortage cost with the setup cost to minimize the average

cost. This intuition carries over to the stochastic production/demand case. The most

plausible stationary control policy is the (s, S) policy: Every time the inventory level

reaches or goes above S, the production process is turned off; and as soon as the

level drops to or below s, the production process is turned back on; otherwise the

production mode remains unchanged. As indicated above, the (s, S) policy has been

widely studied and proven optimal among the class of impulse controls for a number

of Brownian inventory models.

In this chapter, we study a stochastic production-inventory system with finite pro-

duction capacity and random demand. The cumulative production when the machine

is on, as well as the cumulative demand, are modeled by a two-dimensional Brownian

motion process. There is a fixed cost for setting up the machine for production, and

there is also convex holding and shortage cost. We are concerned with the optimal

production/inventory control strategy that minimizes the long run average cost. Both

lost-sales and backlogging cases are studied. For the lost-sales model we show that,

within a large class of policies, the optimal production strategy is either to produce

according to an (s, S) policy, or never to turn on the machine at all (thus it is opti-

mal for the firm to not enter the business); for the backlog model, we prove that the

optimal production policy is always of the (s, S) type. Our approach first develops a

lower bound for the average cost among a large class of non-anticipating policies, a

powerful method developed in Ormeci et al [30] for an impulse control setting which

we generalize here. Then we show that the value function of the proposed policy

reaches the lower bound. The results shed lights on the structure of the optimal

control policies as well as the interplays between system parameters and their effects
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on the optimal control parameters and system minimum cost.

The most relevant literature for the present paper is Vickson [42], Doshi [10, 11].

In [42], Vickson considers an average cost production-inventory problem with hold-

ing cost rate which is linear of the form h(x) = hmax{x, 0} + pmax{−x, 0}. The

production process is deterministic, and the cumulative demand process follows a

Brownian motion process. He proves the optimality of the (s, S) policy under certain

conditions. In [11], a quadratic cost and discounted cost criterion are assumed. Due

to the complexity of the mathematical expression for the cost function, Doshi only

proves the optimality of the (s, S) policy for some symmetric cost cases. Both of these

two papers study the backlogging model. In [10], Doshi considers a one-dimensional

Brownian model with multiple modes and adopts an average cost criterion. He es-

tablishes the existence of an optimal stationary policy under the assumption that

the inventory level lies in a compact interval with reflecting boundaries, and then he

proves the optimality of the (s, S) policy for a symmetric case with quadratic cost

function. Puterman [34] considers a Brownian motion model of a storage system, and

analyzes the average cost operating under an (s, S) policy; he also investigates the

computation of the optimal parameters s and S when the holding cost rate is linear

or quadratic. Sheng [37] studies a control problem with discounted cost objective

similar to [10] in the sense that it allows the one-dimensional Brownian model to

have multiple modes. Sheng provides a sufficient and necessary optimality condition

in terms of the value function and shows the optimality of band policies for some

special cases.

The problem studied here falls into the category of optimal switching. There

have been some recent developments in the understanding of optimal switching prob-

lems. Duckworth and Zervos [12] use a dynamic programming principle to derive the

Hamilton-Jacobi-Bellman (HJB) equation and apply a verification approach to solve

an optimal two-regime switching problem with discounted cost. In [31], Pham uses a
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viscosity solutions approach to prove the smooth-fit C1 property of the value functions,

and extends the well known results of optimal stopping to one-dimensional optimal

switching problem. In [39], Vath and Pham study a two-regime optimal switching

problem and provide a partial characterization on the structure of the switching re-

gions. Under the geometric Brownian motion evolution assumption, they explicitly

solve the problem for two special cases: 1) identical power profit functions with differ-

ent diffusion operators; 2) identical diffusion operators with different profit functions.

In [32], Pham et al. extend the results for case 2) in [39] to multiple regimes. More

recently, Bayraktar and Egami [2] use a sequential approximation method to study

a two-regime switching problem with discounted cost criterion, and establish a dy-

namic programming principle for the value function as two coupled optimal stopping

problems. They utilize results from optimal stopping of one-dimensional diffusion pro-

cesses, and obtain sufficient conditions on the connectedness of the optimal switching

region under some specific assumptions. They also obtain simple control policies for

several examples where the process under consideration is independent of the control

(switching) decision, i.e., the evolution of the process is the same in different switched

regions. Ghosh et al., in [18], consider a problem with random switching of modes,

in which the dynamic is influenced by the control. They prove the existence of a

homogeneous Markov nonrandomized optimal policy using a convex analytic method

and the uniqueness of the solution to the HJB equations within a certain class. All

the studies above on optimal switching adopt discounted cost criterion, and their ap-

proach and results do not directly apply to the average cost case, which is the focus

in this chapter.

The optimal production/inventory control problem we study is similar to but more

general than that in [42]. We consider a continuous-review production/inventory

system, and model the inventory level Xt by a two-dimensional Brownian model

process. The necessity of the two-dimensional Brownian motion process stems from
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the fact that there are uncertainties in both production and demand processes, which

cannot be captured with a single-dimension diffusion. The system has two possible

modes, for which the diffusion process has different drift and volatility parameters:

(−µ0, σ
2
0) and (µ1, σ

2
1), with µ0, µ1 > 0. Thus it implies that the production and

demand processes do not have to be independent, and are in general correlated. In

production mode 0, the machine is idle, so Xt decreases as demand arrives; while

in mode 1, production is on and Xt, which represents the difference between the

production and demand processes, increases at a net rate µ1. At any point in time,

the inventory manager can switch the mode of the production, which incurs a fixed

machine setup cost K > 0 if the mode is changed from 0 to 1. In addition, the

inventory level Xt incurs a holding and shortage cost rate h(Xt), i.e., if Xt ≥ 0 then

h(Xt) is the holding cost rate and if Xt < 0 it is the shortage cost rate. For lost-

sales model Xt ≥ 0 for all t thus h(Xt) only represents holding cost, but there is

also a shortage cost for each unit of demand lost. The objective is to control the

production process so as to minimize the long-run average cost of the system. In

addition, compared with Doshi’s work [10], we do not have a finite and compact

state space, which leads to additional complexity of the problem as will be seen in

Proposition I.4 and Section 1.4.

We first focus on the lost-sales model. In the case of impulse control, (0, S) policy

is known to be optimal because of the infinite production capacity. For the finite

production capacity model, the manager would possibly start the production before

the inventory level hits zero, so as to avoid the possible cost of losing customers.

We derive the lower bound for the average cost within a large class of policies, and

show that in certain range of the system parameters, there exists a unique optimal

(s, S) policy that achieves this lower bound. Thus it establishes the optimality of

(s, S) policy. When the system parameters do not fall into that region, we prove that

the “never-turn-on-the-machine” is the optimal policy, again within a large class of
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policies, implying that it is optimal for the firm to not enter the business (or to go out

of business). For the backlog models, we show that an (s, S) policy is always optimal

within a large class of policies.

There is a technical issue in the verification theorem for optimality of the finite

capacity inventory/production problem, which constitutes the major difference be-

tween our approach and those in the impulse control papers. In [30], due to the

nature of infinite production capacity, the relative value function f(x) for the optimal

band policy is guaranteed to be Lipschitz continuous, where x is inventory level. As

a result, for any control policy with a divergent state XT , it can be shown that either

E[f(XT )] diverges slower than a linear function of T , leading to a policy inferior to

the desired one, or it diverges at least as fast as a linear function of T , incurring an

infinite average cost. (See the proof of Proposition 2 in [30].) However, this approach

fails to work for the finite production capacity model. We will present an example

in Section 1.4, which shows the existence of a policy with E[f(XT )] diverging faster

than a linear function of T but yet still incurring finite average cost. To overcome

this difficulty, in our study we focus on a class of admissible policies, and show that

the desired policy is optimal within this class of policies; and we show that this class

of policies is large enough to include most policies of practical interest.

There exist abundant papers in the literature studying optimal control of infinite-

capacity production/inventory systems, but few on optimal control of finite-capacity

production systems, and real world production/inventory systems all have finite ca-

pacity. This chapter provides a complete analysis of the optimal control of a capac-

itated production/inventory system and identifies the optimal control policies. In

particular, it offers insights on the range of system parameters under which it is

economically optimal for the firm to not enter the business.

The rest of this chapter is organized as follows. In §1.2, the lost-sales model

is studied in detail. We present the Brownian motion formulation of the produc-
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tion/inventory problem in §1.2.1. In §1.2.2, we develop a lower bound for the average

cost within a large class of policies. In §1.2.3, we identify the optimal parameters

s and S within the class of (s, S) policies. Next, in §1.2.4, we show that the sys-

tem parameters can be divided into two regions. In the first region, the relative

value function associated with an (s, S) policy satisfies the lower bound conditions

in §1.2.2, thus proving that an (s, S) policy is optimal within a large class of non-

anticipating policies. In the other region, we show that the relative value function of

the “never-turn-on-machine” policy satisfies all lower bound conditions, proving that

the “never-turn-on-machine” policy is optimal. In §1.3, we extend the analysis to

the backlogging model, and show that the optimal policy is always an (s, S) policy.

We also discuss a special case in which the result can be extended to quasi-convex

holding and shortage cost rate function. In §1.4, we discuss the class of policies we

have focused on and show that it includes most cases of practical interest.

1.2 The lost-sales model.

In the lost-sales model, any demand arriving during the out of stock period is lost,

at a shortage penalty cost. The inventory manager needs to balance the shortage

cost, machine setup cost, and the inventory holding cost. We rigorously formulate

the problem in the following subsections.

1.2.1 Model and basic assumptions.

We first present the problem formulation. Let Ω be the space of all R2-valued

continuous functions ω : [0,∞) → R2. Let B = (B0
t , B

1
t )t≥0 be a two-dimensional

standard Brownian motion under a probability measure P , and Ft be the natural

filtration generated by B. Besides, let F be a σ-algebra of Ω such that Ft ⊂ F for

all t ≥ 0 . Then (Ω,F , P ) forms the probability space on which the production and

demand processes are defined.
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Let W 0
t = B0

t and Ŵt = ρB0
t +
√

1− ρ2B1
t , where ρ ∈ [−1, 1], then W 0

t and Ŵt are

Brownian motions with correlation coefficient ρ, i.e., E
[
dW 0

t · dŴt

]
= corr

[
dW 0

t , dŴt

]
=

ρdt. Denote the demand and production (if it is always on) from time 0 up to time t

by Dt and Pt respectively. Suppose Dt and Pt are governed by

dDt = −(−µ0dt+ σ0dW
0
t ),

dPt = µ̂1dt+ σ̂1dŴt,

where µ0 > 0 and µ̂1 > 0 represent the demand and production rates.

Let Xt denote the inventory level at time t and Yt ∈ {0, 1} the production mode at

time t, which governs the evolution of inventory level. When Yt = 1, the production

process is on and the inventory level is affected by both the production and demand

processes; and when Yt = 0, the machine is idle, and the inventory level is only

affected by the demand process. Due to lost-sales, 0 is a reflecting boundary. Letting

Zt denote the total demand lost up to time t, then the inventory level process is

governed by the following stochastic differential equations:

dXt = −µ0dt+ σ0dW
0
t + dZt, if Yt = 0;

dXt = (µ̂1 − µ0)dt+ σ0dW
0
t + σ̂1dŴt + dZt, if Yt = 1.

We note that

σ0dW
0
t + σ̂1dŴt = (σ0 + ρσ̂1)dB0

t +
√

1− ρ2σ̂1dB
1
t

=
(
σ2

0 + σ̂2
1 + 2ρσ0σ̂1

)1/2
dW 1

t

= σ1dW
1
t ,

where σ1 := (σ2
0 + σ̂2

1 + 2ρσ0σ̂1)
1/2

(here “:=” stands for “defined as”), and W 1
t is

a standard Brownian motion under (Ω,F , P ) as well. We notice that when ρ = 0,

10



the two Brownian motions W 0
t and Ŵt are independent and σ1 > σ0, in that case

the variance of the inventory process during production is strictly greater than that

during machine idle time; when ρ < −σ̂1/2σ0, the variance of the inventory process

during the production time is smaller than that during machine idle time. Hereafter,

we let µ1 := µ̂1 − µ0, so we have

dXt = µ1dt+ σ1dW
1
t + dZt, if Yt = 1.

The evolution of Xt for different values of Yt uses W 0
t and W 1

t alternatively. It is

worth noting that W 1
t and W 0

t are two dependent Brownian motion processes.

We have aggregated the production and demand processes during the production

mode, which forms a Brownian motion processes with drift µ1 > 0 and variance

parameter σ2
1; during non-production mode, inventory is only depleted by the demand

process, which is a Brownian motion with rate −µ0 < 0 and variance parameter σ2
0.

Note that the lost sales process Zt increases only if Xt is equal to 0, and such a process

is often referred to as regulated process, see e.g., Harrison [19]. We remark that it is

not always optimal for the firm to set the production mode to 1 when Xt hits 0, as

will be seen later. We assume that Yt is right-continuous.

Remark I.1. In the inventory control literature, it is commonly assumed, in both

discrete and continuous time models, that the demand follows a normal distribution

(or Brownian motion model for continuous time). See, for example, Section 5.1 of

Nahmias [29] for a discrete time model and Section 4 of Gallego [16] for a continuous

time model. This is an approximation to reality as there is a positive probability for

the demand to take negative values, and indeed, the assumption is made mainly for

tractability. The model reflects reality well when the likelihood of generating negative

demand is small, e.g., when the average demand is relatively high or the variance of

demand is relatively low.
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The state of the system is (Xt, Yt), with state space {(x, y);x ≥ 0, y = 0, 1}. For

an initial state (x, y) of the system and a policy π, we can define a probability measure

P π
x,y and its associated expectation Eπ

x,y.

Cost structure. There are three types of costs. First, the system incurs an inven-

tory holding cost at a rate h(Xt) ≥ 0. The assumptions on h(·) are the following.

Assumption I.2. h(·) satisfies

(i) h(·) is increasing convex;

(ii) h(·) is differentiable;

(iii) h(0) = 0; and

(iv) h(·) is polynomially bounded, i.e., there exist constants Ai > 0, i = 1, 2, and an

integer n ∈ N+, such that h(x) ≤ A1 + A2x
n, for all x.

Second, whenever the state of the system is switched from Yt− = 0 to Yt = 1, a

setup cost K > 0 is incurred. Third, there is a shortage cost c > 0 for each unit of

Zt used to prevent the inventory level from dropping below 0, which is the amount

of demand lost.

An admissible policy π is defined by a sequence of nonnegative stopping times

τ1 < τ2 < τ3 < . . ., a process Yt, with Y0 = y, and the corresponding switching

probabilities at these points, such that

(i) τ0 = 0, Yτ0 = y is the initial condition;

(ii) non-anticipating: for n ≥ 1, τn ≤ t is independent of {Ws −Wt, s > t};

(iii) for n ≥ 1, P (Yτn = 1− Yτn−1) > 0; and

(iv) P π
x,y(limn→∞ τn =∞) = 1.
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Notice that condition (iii) allows the policy to be randomized, though most policies

used in practice are stationary, with P (Yτn = 1 − Yτn−1) = 1. Let A be the class of

all admissible policies.

For any policy π ∈ A and an initial system state (x, y), we define the total cost

up to time T by

Jπx,y(T ) := Eπ
x,y

[∫ T

0

h(Xt)dt+
∑

0≤s≤T

K δ+(∆Ys) +

∫ T

0

c dZt

]
,

where ∆Ys := Ys − Ys− = Ys − limt→s− Yt, and δ+(x) : {−1, 0, 1} → {0, 1} is defined

by δ+(−1) = 0, δ+(0) = 0, δ+(1) = 1. Finally, the long-run average cost is defined by

ACπ
x,y := lim sup

T→∞

Jπx,y(T )

T
.

Let

ACx,y := inf
π∈A

ACπ
x,y.

An admissible policy π∗ is called optimal if ACπ∗
x,y = ACx,y for all states (x, y). Our

objective is to find an optimal policy for controlling the production/inventory system.

1.2.2 Lower bound for average cost.

In this subsection, we derive a lower bound for the average cost by virtue of the

generalized Ito’s formula. Roughly speaking, the lower bound provides a sufficient

condition for optimality. If we can identify an admissible control policy whose relative

value function satisfies this sufficient condition, then the average cost of this policy

achieves the lower bound for the average cost among a large class of policies, thus it

has to be optimal among this class.

The following result follows from an immediate application of the generalized Ito’s

formula for multi-dimensional stochastic processes, see e.g., the proof of Theorem 1
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in Duckworth and Zervos (2001) [12], and for the single-dimensional case with jump-

diffusions, (2.16) in Harrison (1983) [20]. Thus, its proof is omitted.

Proposition I.3. Suppose that f(x, y) : R×{0, 1} → R is continuously differentiable,

and has a continuous second derivative at all but a finite number of points with respect

to x. Then for each time T > 0, initial state x ∈ R, y ∈ {0, 1}, and admissible policy

π,

Eπ
x,y [f(XT , YT )] = f(x, y) + Eπ

x,y

[∫ T

0

{(
1

2
σ2

0f
′′(Xt, 0)− µ0f

′(Xt, 0)

)
(1− Yt)+

+

(
1

2
σ2

1f
′′(Xt, 1) + µ1f

′(Xt, 1)

)
Yt

}
dt

]
+ Eπ

x,y

[∫ T

0

f ′(Xt, 1)YtdZt

]

+ Eπ
x,y

[∫ T

0

f ′(Xt, 0)(1− Yt)dZt
]

+ Eπ
x,y

[ ∑
0≤s≤T

∆f(Xs, Ys)

]
,

(1.1)

where f ′ and f ′′ are derivatives with respect to x, and ∆f(Xs, Ys) = f(Xs, Ys) −

f(Xs, Ys−).

In what follows, we use Γ0 and Γ1 to denote the infinitesimal generator associated

with the two production modes, i.e.,

Γ0f(x, 0) := −µ0f
′(x, 0) +

1

2
σ2

0f
′′(x, 0),

Γ1f(x, 1) := µ1f
′(x, 1) +

1

2
σ2

1f
′′(x, 1).

The important result below shows that, when these functions satisfy certain con-

ditions, they can provide a lower bound on the optimal average cost.

Proposition I.4. (Lower bound) Suppose the function f(x, y) is polynomially bounded

with respect to x and satisfies the conditions in Proposition I.3, and there is positive
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number γ such that the following conditions are satisfied:

Γ0f(x, 0) + h(x)− γ ≥ 0, (1.2)

Γ1f(x, 1) + h(x)− γ ≥ 0, (1.3)

f(x, 1)− f(x, 0) ≥ −K, (1.4)

f(x, 0)− f(x, 1) ≥ 0, (1.5)

f ′(0, 1) + c ≥ 0, (1.6)

f ′(0, 0) + c ≥ 0, (1.7)

then γ is a lower bound of the average cost for all the policies in Af , i.e.,

ACπ = ACπ
x,y ≥ γ, ∀π ∈ Af , (1.8)

where Af is defined by

Af :=

{
π ∈ A : lim inf

T→∞

Eπ
x,yf(XT , YT )

T
≤ 0,∀x ∈ R,∀y ∈ {0, 1}

}
. (1.9)

Proof. It follows from Proposition I.3 and conditions (1.2) to (1.7) that

Eπ
x,y [f(XT , YT )] ≥ f(x, y) + Eπ

x,y

[∫ T

0

(γ − h(Xt)) dt− cZT +
∑

0≤s≤T

(−K) δ+(∆Ys)

]
.

Because π ∈ Af , we have

ACπ
x,y = lim sup

T→∞

Jπx,y(T )

T
≥ γ + lim sup

T→∞

f(x, y)

T
− lim inf

T→∞

Eπ
x,y [f(XT , YT )]

T
≥ γ.

This proves (1.8).

Remark I.5. This proposition claims that γ is a lower bound for the average cost

among policies in Af , which is a subset of A. In §1.4, we will discuss the class
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of policies in Af . In particular, we will define a subclass of policies in Af that is

independent of f , thus it is in Af for any f , as long as f is polynomially bounded.

Moreover, Af includes all those policies that shut off the production automatically

when the inventory level is higher than an arbitrarily large number M. This is clearly

a very reasonable assumption, and it shows that Af includes most control policies of

practical interest.

Remark I.6. For inventory control problems with infinite capacity, i.e., impulse con-

trol, it can be shown that Af , under very mild conditions, contains all admissible poli-

cies. For example, when the cost rate function h(·) is polynomially bounded, this would

be true. See, Ormeci et al. [30] for the linear holding and shortage cost case (their

argument has been extended by Dai and Yao (2011) [23] to the case with polynomially

bounded convex holding and shortage cost function). The approach used in Ormeci

et al. [30] is that, for the infinite capacity model with cost function f of the optimal

band policy, if it happens with a policy π that lim infT→∞E
π
x,y[(f(XT , YT )]/T > 0,

then the average cost for policy π must be infinity. This is shown by using the fact

that, for the impulse control problem, the relative value function f is always Lipschitz

continuous. This, however, is not true for the finite capacity case. In our case, if h(·)

is polynomially bounded with highest degree n, then the value function f can be shown

to be polynomially bounded with highest degree n+ 1 (see the appendix for analysis),

so one degree higher than that of h(·). Thus when lim infT→∞E
π
x,y[f(XT , YT )]/T > 0,

it cannot be shown that the cost function for policy π is infinity. See §1.4 for an

example on this.

1.2.3 Analysis of (s, S) policy.

In this subsection we focus on a special class of policies: (s, S) policy, with 0 ≤

s < S, such that every time the inventory level reaches S, the machine is turned off,

and every time the inventory level drops to s, the machine is turned on. For each
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policy within this class, we derive an algebraic expression for the average cost in terms

of s and S. Then, we show the optimal parameters s and S are uniquely determined

by an equation.

Theorem I.7. For an (s, S) policy with 0 ≤ s < S, the average cost can be expressed

as

γ(s, S) =

∫ S
s
G(x)dx+K∫ S
s
H(x)dx

,

where

G(x) =
2

σ2
0

∫ ∞
x

e−λ0(ξ−x)h(ξ)dξ +
2

σ2
1

∫ x

0

e−λ1(x−ξ)h(ξ)dξ + ce−λ1x, (1.10)

H(x) = m− 1

µ1

e−λ1x, (1.11)

m =
1

µ0

+
1

µ1

, (1.12)

λi =
2µi
σ2
i

, i = 0, 1.

Proof. The stochastic process Xt operating under an (s, S) policy is a regenerative

process if we define a cycle as follows. Suppose the inventory level starts from S, and

the initial production state is 0, i.e., X0 = S, Y0 = 0. So at first, Xt evolves as a

Brownian motion with drift −µ0 and variance parameter σ2
0. Denote the hitting time

of s by T1, then ES,0[T1] < ∞. According to the (s, S) policy, Yt is switched to 1 at

t = T1, after which, Xt evolves as a Brownian motion with drift µ1 and and variance

parameter σ2
1. Suppose it takes another time T2 for the process Xt to hit S. We call

the total period including T1 and T2 a cycle, and the periods of T1 and T2 downward

stage and upward stage, respectively. Due to the regenerative structure of the (s, S)

policy, the long run average cost equals to the expected cost divided by the expected

length over one cycle. See, e.g., [19, p. 86-89].

Now we compute the total cost over one cycle under this policy. For the expected
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holding cost incurred during the downward stage, we define

wd(x) = Ex,0

[∫ T1

0

h(Xt)dt

]
, x ≥ s,

where recall that T1 is the hitting time of s, and x is the starting inventory level. It is

known that wd(x) satisfies an ordinary differential equation with boundary conditions

(see, e.g., Karlin and Taylor [26, §15.3 pages 192-193]):

σ2
0

2
w′′d(x)− µ0w

′
d(x) + h(x) = 0, wd(s) = 0, lim

x→∞
e−νxwd(x) = 0, ∀ν > 0.

The solution to this equation is

wd(x) =

∫ x

s

(
2

σ2
0

∫ ∞
u

e−λ0(ξ−u)h(ξ)dξ

)
du. (1.13)

Also notice that wd(x) satisfies the differential equation

Γ0wd(x) + h(x) = 0 (1.14)

for all value of x ≥ 0, not limited to x ≥ s.

Similarly, for the expected holding cost over the upward stage, we define

wu(x) = Ex,1

[∫ T2

0

h(Xt)dt+ c

∫ T2

0

dZt

]
, x ≤ S.

where T2 is the hitting time of S, with the starting inventory level x. During this stage,

dXt = µ1dt+ σ1dW
1
t + dZt, and accordingly wu(x) obeys the differential equation

σ2
1

2
w′′u(x) + µ1w

′
u(x) + h(x) = 0, wu(S) = 0, w′u(0) = −c.
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The solution to the ordinary differential equation is

wu(x) =

∫ S

x

(
2

σ2
1

∫ u

0

eλ1(ξ−u)h(ξ)dξ + ce−λ1u

)
du. (1.15)

Note that wu(x) also satisfies the differential equation

Γ1wu(x) + h(x) = 0 (1.16)

for all values of x ≥ 0.

The expected duration of the downward stage initiated from x is Ex,0[T1] = (x−

s)/µ0. To compute T (x) := Ex,1[T2], we note that it satisfies the following ordinary

differential equation:

σ2
1

2
T ′′(x) + µ1T

′(x) + 1 = 0, T ′(0) = 0, T (S) = 0.

The solution of this differential equation is

T (x) = Ex,1(T2) =
S − x
µ1

+
σ2

1

2µ2
1

(
e−λ1S − e−λ1x

)
=

1

µ1

∫ S

x

(1− e−λ1x′)dx′.

Consequently, the average cost for the system operating under an (s, S) policy

can be expressed as

c(s, S) =
wd(S) + wu(s) +K

ES,0(T1) + Es,1(T2)
(1.17)

=

∫ S
s
G(x)dx+K

m(S − s) +
σ2
1

2µ2
1

(
e−λ1S − e−λ1s

)
=

∫ S
s
G(x)dx+K∫ S
s
H(x)dx

,

where G(x), H(x) and m are defined in equations (1.10)-(1.12).
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To establish the existence and uniqueness of the optimal choice of s and S, we

need the following lemma. Its proof is given in the appendix.

Lemma I.8. If the holding cost h(x) satisfies Assumption I.2, then

(i) G(x) is a strictly convex function, and

(ii) limx→∞G(x) =∞.

Thus, G(x) > 0 is a convex function converging to infinity. It is easy to check

that H(x) is an increasing concave function with H(0) = m− 1/µ1 = 1/µ0 > 0, and

limx→∞H(x) = m.

We want to search, among the class of (s, S) policies, the policy that minimizes

c(s, S). To that end, we introduce an auxiliary function: For all γ ≥ 0, let

`γ(s, S) =

∫ S

s

G(x)dx− γ
∫ S

s

H(x)dx+K

=

∫ S

s

(
G(x)− γH(x)

)
dx+K.

For a fixed γ > 0, since G(x) − γH(x), defined on x ≥ 0, is strictly convex and

tends to infinity as x → ∞, it has a unique minimum on [0,∞). Let this minimum

be denoted by y∗γ.

The following result is easy to prove so its proof is omitted.

Lemma I.9. (s∗, S∗) minimizes c(s, S) if and only if there exists γ∗ such that

min
0≤s≤S

`γ∗(s, S) = `γ∗(s
∗, S∗) = 0.

Therefore, in what follows we first minimize min0≤s≤S `γ(s, S) for a given γ, and

then we search for γ that satisfies Lemma I.9. The following lemma is useful in that

regard. The proof is easy so is omitted.
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Lemma I.10. For any γ ≥ 0, `γ(s, S) is increasing in S if and only if G(S) −

γH(S) ≥ 0, and it is increasing in s if and only if G(s)− γH(s) ≤ 0.

Let (s(γ), S(γ)) be the optimal solution of mins≤S `γ(s, S). It is clear that {x ≥

0;G(x) − γH(x) ≤ 0} is a null set if and only if γ is smaller than a positive critical

value γ, where γ is the smallest value of γ for which the two curves γH(x) and G(x)

touch each other. In particular, if γ < γ, then `γ(s, S) in Lemma I.9 is positive for

any s < S, i.e., any γ < γ cannot be achieved by an (s, S) policy. For convenience,

if γ < γ, then we let s(γ) = S(γ) = y∗γ. Here and below, if not otherwise stated, we

restrict our attention to those values of γ ≥ γ. It follows from Lemma I.10 that

s(γ) = min
{

0 ≤ x ≤ y∗γ; G(x)− γH(x) ≤ 0
}
, (1.18)

S(γ) = max
{
x ≥ y∗γ; G(x)− γH(x) ≤ 0

}
. (1.19)

As a result, the optimal s(γ) ≤ S(γ) exist for all γ, though they may be equal to each

other. It is seen from this definition that G(x)− γH(x) ≤ 0 on s(γ) ≤ x ≤ S(γ); and

G(x)− γH(x) ≥ 0 on 0 ≤ x ≤ s(γ) and x ≥ S(γ). Because G(x)− γH(x) is strictly

decreasing in γ, it can be seen that

A(γ) :=

∫ S(γ)

s(γ)

(
G(x)− γH(x)

)
dx (1.20)

is strictly decreasing (and concave) in γ. A(γ) is concave since

A(γ) = min
s≤S

∫ S

s

G(x)− γ
∫ S

s

H(x)dx

is the minimum of a family of concave functions of γ. In addition, S(γ) is strictly

increasing in γ and s(γ) is non-increasing in γ.

The following theorem presents the condition for parameters s and S to minimize

the average cost function c(s, S).
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Theorem I.11. The unique optimal s∗ and S∗ that minimize the average cost c(s, S)

is s∗ = s(γ∗) and S∗ = S(γ∗), where γ∗ is uniquely determined by

∫ S(γ)

s(γ)

(
G(x)− γH(x)

)
dx = −K. (1.21)

Proof. When γ > γ, A(γ) is strictly decreasing and tends to −∞ as γ → ∞. If

γ = 0, then it is easily seen by G(x) ≥ 0 that s(0) = S(0) = y∗0 and A(0) = 0. Thus,

by continuity of A(γ), there exists a unique γ∗ that satisfies A(γ∗) = −K, or (1.21),

or `γ∗(s(γ
∗), S(γ∗)) = 0. The optimality of s∗ = s(γ∗) and S∗ = S(γ∗) follows from

Lemma I.9. The uniqueness of s∗ and S∗ are easy to show due to the convexity of

G(x)− γ∗H(x).

An illustration of the optimal (s(γ), S(γ)) is given in Figure 1.1. From Figure 1.1,

it is easily seen that as K → ∞, S∗ increases, and s∗ decreases. At the same time,

the value of γ∗ increases. To further illustrate the effect of parameters K and c on

the optimal band policy, we conduct a numerical analysis as follows: Let h(x) = 2x,

µ0 = µ1 = 0.5, and consider two sets of values for σ0 and σ1: σ0 = σ1 = 2 and σ0 = 2,

σ1 = 3. The optimal average cost γ∗, together with the optimal s∗, S∗ as functions of

K for different values of c are summarized in Figure 1.2.

K

s S

GHxL
ΓHHxL

(a) s > 0

K

s S

GHxL

ΓHHxL

(b) s = 0

Figure 1.1: Optimal choice of s and S (lost-sales case)
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(d) γ∗ in terms of K, (σ1 > σ0)

Figure 1.2: The effect of K, c on the average cost and optimal choice of s, S
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1.2.4 Optimal policy.

In the previous subsection, we have identified a policy (s∗, S∗), which is optimal

among the class of (s, S) policies. In this subsection, we aim to find the optimal

policy within a larger class of policies.

The first question is whether it is possible for a non- (s, S) type of policy to be

optimal. The answer is affirmative. In the following, we show that, within a very

large class of policies, the optimal one is either to never turn on the machine for

production, or produce according to an (s, S) policy. We shall give the range of

system parameters within which each of these two policies is optimal.

If we never turn on the machine for production, then the stochastic process un-

der consideration is a regulated Brownian motion with drift −µ0 < 0 and variance

parameter σ2
0, and a reflection boundary at 0. Because the machine is never turned

on, there is no setup cost and there is only the holding and the shortage cost. The

average cost for this process is readily computed, and it is given by (see e.g., Harrison

[19, §5.6])

γ0 = G(0)/H(0) =
2µ0

σ2
0

∫ ∞
0

e−λ0ξh(ξ)dξ + µ0c. (1.22)

Since G(x)− γ0H(x) is equal to 0 when x = 0, we want to identify the other zero

point for this convex function. To that end, let S0(γ0) be the maximum zero point

for G(x)− γ0H(x), i.e.,

S0(γ0) = max{x ≥ 0; G(x)− γ0H(x) ≤ 0}. (1.23)

For convenience, in what follows we simply write S0(γ0) as S0.

By checking the sign of the derivative of G(x) − γ0H(x) at x = 0, the following

result can be easily established.
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Lemma I.12. S0 > 0 if and only if the system parameters satisfy

c > c0 :=
λ0

µ0 + µ1

(
σ2

1

σ2
0

− 1

)∫ ∞
0

e−λ0ξh(ξ)dξ. (1.24)

Note that this condition is always satisfied when σ1 ≤ σ0. If (1.24) is satisfied,

then we are interested in the system parameters that additionally satisfy

∫ S0

0

(G(x)− γ0H(x)) dx < −K, (1.25)

Remark I.13. Note that conditions (1.24) and (1.25) can be combined into only

(1.25), since when condition (1.24) is not satisfied, then S0 = 0 and (1.25) will

not be satisfied. Nevertheless, since the region of parameters satisfying (1.25) are

determined by two inequalities (1.24) and (1.25), we shall refer to both (1.24) and

(1.25).

We first consider the case when the system parameters satisfy both (1.24) and

(1.25). We will prove that, in this case we can identify an (s∗, S∗) policy, with

parameters determined in Theorem 2.2, that is optimal within a large class of policies.

We first prove that, under conditions (1.24) and (1.25), the s∗ and S∗ in Theorem

I.11 satisfy 0 < s∗ < S∗. Using the fact that `γ(s(γ), S(γ)) is strictly decreasing in

γ when A(γ) < 0 and that γ∗ is determined by `γ∗(s(γ
∗), S(γ∗)) = 0, we conclude

by (1.25) that γ0 > γ∗. Then, it follows from S(γ) is strictly increasing and s(γ)

non-increasing in γ, that

S(γ0) > S(γ∗) = S∗ ≥ s∗ = s(γ∗) ≥ s(γ0) = 0.

Because G(0)− γ∗H(0) < G(0)− γ0H(0) = 0, thereby we have s∗ = s(γ∗) > s(γ0) =

0 and 0 < s∗ < S∗. Hence, it follows from S∗ ≥ s∗ > 0 that the minimizer of
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G(x)− γ∗H(x) is positive, and that G′(x)− γ∗H ′(x) ≤ 0 on 0 ≤ x ≤ s∗ and G′(x)−

γ∗H ′(x) ≥ 0 on x ≥ S∗.

Using policy (s∗, S∗) and the corresponding γ∗, we define value functions v(x, y)

as follows:

v(x, 0) =


wd(x)− γ∗

(
x−s∗
µ0

)
+ v(s∗, 1) +K, x > s∗,

v(x, 1) +K, x ≤ s∗,

(1.26)

v(x, 1) =


wu(x)− γ∗

[
S∗−x
µ1

+
σ2
1

2µ2
1

(
e−λ1S∗ − e−λ1x

)]
, x < S∗,

v(x, 0), x ≥ S∗,

(1.27)

where wu and wd are defined by (1.15) and (1.13) using s∗ and S∗. The value func-

tion v(x, y) can be interpreted as the cost incurred starting from the current state

(x, y) until the end of the cycle, i.e., the process reaches (S∗, 1), minus the expected

remaining time of the cycle multiplied by γ∗. It is easy to verify that both v(x, 0)

and v(x, 1) are continuous functions of x. We only prove the continuity of v(x, 1) at

S∗. Since
∫ S∗
s∗

(G(x)− γ∗H(x)) dx+K = 0, we have

v(S∗, 1) = v(s∗, 0) = wd(S
∗)− γ∗

(
S∗ − s∗

µ0

)
+ v(s∗, 1) +K

= wd(S
∗) + wu(s

∗)− γ∗
(
S∗ − s∗

µ0

)
− γ∗

[
S∗ − s∗

µ1

+
σ2

1

2µ1

(
e−λ1S∗ − e−λ1s∗

)]
+K

=

∫ S∗

s∗
(G(x)− γ∗H(x)) dx+K

= 0

= lim
x→S∗−

v(x, 1).

Thus v(x, 1) is continuous at x = S∗.

The next theorem states that, when the system parameters satisfy both (1.24)

and (1.25), then an (s∗, S∗) policy is optimal among the class Av,

Theorem I.14. Suppose the system parameters satisfy both (1.24) and (1.25), then
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the (s∗, S∗) policy is optimal among all policies in Av.

Proof. It suffices to verify that the relative value function v(x, y) defined above sat-

isfies all the conditions in Proposition I.4.

For the condition (1.6) on the derivative of v(x, y) at x = 0, by (1.27) we have

v′(0, 1) = w′u(0) +
γ∗

µ1

− γ∗

µ1

e−λ10 = −c,

hence inequality (1.6) is satisfied. For v(x, 0), since for this case we have s∗ > 0, thus

v′(0, 0) = v′(0, 1) = −c, thereby inequality (1.7) is also satisfied.

From the definitions of wu, wd, and Γy, it is easy to see that when x > s∗,

Γ0v(x, 0) + h(x) − γ∗ = 0 and when x < S∗, Γ1v(x, 1) + h(x) − γ∗ = 0. Thus, to

complete the proof of (1.2) and (1.3), we need to verify Γ0v(x, 0) + h(x)− γ∗ ≥ 0 on

x ≤ s∗ and Γ1v(x, 1) + h(x)− γ∗ ≥ 0 on x ≥ S∗.

Suppose x ≤ s∗. By the definition of v(x, 0) on this range and (1.13), Γ0v(x, 0) +

h(x)− γ∗ ≥ 0 is equivalent to

Γ0v(x, 1)− Γ0wd(x)− γ∗ ≥ 0.

Substituting (1.27) into the equation yields

Γ0

(
wu(x) +

γ∗x

µ1

+
σ2

1

2µ2
1

γ∗e−λ1x

)
− Γ0wd(x)− γ∗ ≥ 0.

This can further be simplified as

− Γ0 (wd(x)− wu(x)) + Γ0

(
γ∗x

µ1

+
σ2

1

2µ2
1

γ∗e−λ1x

)
− γ∗

= − σ2
0

2
G′(x) + µ0G(x)− γ∗µ0

µ1

+
γ∗σ2

0

σ2
1

e−λ1x +
γ∗µ0

µ1

e−λ1x − γ∗

= − σ2
0

2

(
G′(x)− 2γ∗

σ2
1

e−λ1x

)
+ µ0

(
G(x)− γ∗

µ0

− γ∗

µ1

+
γ∗

µ1

e−λ1x

)
.
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Since S∗ ≥ s∗ > 0, it holds that on x ≤ s∗,

G(x) ≥ γ∗H(x) =
γ∗

µ0

+
γ∗

µ1

− γ∗

µ1

e−λ1x,

G′(x) ≤ γ∗H ′(x) =
2γ∗

σ2
1

e−λ1x.

Therefore, it leads to, whenever x ≤ s∗,

Γ0v(x, 0) + h(x)− γ∗ ≥ 0.

Next, we verify Γ1v(x, 1) + h(x)− γ∗ ≥ 0 on x ≥ S∗, which is the same as

Γ1v(x, 0)− Γ1wu(x)− γ∗ ≥ 0.

Substituting (1.26) yields

Γ1

(
wd(x)− γ∗x

µ0

)
− Γ1wu(x)− γ∗ ≥ 0.

This can be simplified as

Γ1 (wd(x)− wu(x))− Γ1

(
γ∗x

µ0

)
− γ∗

=
σ2

1

2
G′(x) + µ1G(x)− γ∗µ1

µ0

− γ∗

=
σ2

1

2

(
G′(x)− 2γ∗

σ2
1

e−λ1x

)
+ µ1

(
G(x)− γ∗

µ0

− γ∗

µ1

+
γ∗

µ1

e−λ1x

)
.

By the definition of S∗, we have, on x ≥ S∗,

G(x) ≥ γ∗H(x) =
γ∗

µ0

+
γ∗

µ1

− γ∗

µ1

e−λ1x,

G′(x) ≥ γ∗H ′(x) =
2γ∗

σ2
1

e−λ1x.
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This shows that Γ1v(x, 1) + h(x) − γ∗ ≥ 0 for all x ≥ S∗. Therefore, inequalities

(1.2)-(1.3) have been proved.

Finally, we prove v(x, y) satisfies conditions (1.4)-(1.5). By their definitions, the

inequalities are clearly satisfied on x ≥ S∗ and x ≤ s∗. If s∗ < x < S∗, then

d

dx

(
v(x, 0)− v(x, 1)

)
= G(x)− γ∗H(x) ≤ 0. (1.28)

Thus

[v(x, 0)− v(x, 1)] = [v(s∗, 0)− v(s∗, 1)] +

∫ x

s∗

(
G(u)− γ∗H(u)

)
du

= K +

∫ x

s∗

(
G(u)− γ∗H(u)

)
du

On the other hand, when s∗ < x < S∗, we have

−K ≤
∫ x

s∗

(
G(u)− γ∗H(u)

)
du ≤ 0,

hence we obtain

0 ≤ v(x, 0)− v(x, 1) ≤ K, ∀x ∈ [s∗, S∗].

This shows that (1.4)-(1.5) hold for all x.

We now verify that v(x, y) have continuous first order derivatives in x. From

their definitions, this is clearly true when x 6= s∗, S∗, hence we only need to verify

the continuity at these two points. Here we only verify the continuity of v′(x, 0) at

point x = s∗ since the verification of continuity of v′(x, 1) at x = S∗ is similar. The

optimality condition

γ∗H(s∗)−G(s∗) = 0
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implies that

lim
x→(s∗)+

v′(x, 0)− lim
x→(s∗)−

v′(x, 0)

= [w′d(s
∗)− γ∗/µ0]− v′(s∗, 1)

= [w′d(s
∗)− γ∗/µ0]−

[
w′u(s

∗) + γ∗/µ1 − (γ∗/µ1) e−λ1s∗
]

= G(s∗)− γ∗H(s∗)

= 0,

thereby v′(x, 0) is continuous at s∗.

To summarize, we have shown that all the conditions (1.2)-(1.7) are satisfied by

v(x, y); and the continuity conditions are also verified. By the definition of v(x, y), it

is clear that its second derivative is continuous at all but a finite number of points,

i.e., possibly not continuous at s∗ and S∗. Therefore, it follows from Proposition I.4

that γ∗ is an achievable lower bound on the long-run average cost for the policies in

the set Av, implying that this (s∗, S∗) policy is optimal in Av.

The theorem above shows that, when the system parameters satisfy both (1.24)

and (1.25), then the optimal policy is (s∗, S∗), which we have computed in Theorem

2.2. What happens if the system parameters do not satisfy any of them? The fol-

lowing theorem shows that in that case, the “never-turn-on-the-machine” policy is

optimal, again within a large class of policies. This implies that, in such range of cost

parameters, it is not economically justified for the firm to enter the business. Recall

that γ0 and S0 are defined in (1.22) and (1.23).

Theorem I.15. If the system parameters either do not satisfy (1.24), or they satisfy

(1.24) but do not satisfy (1.25), then the “never turn on the machine” policy is optimal
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within the class of policies Ag, where

g(x, 0) =

∫ x

0

(
2

σ2
0

∫ ∞
u

e−λ0(ξ−u)h(ξ)dξ

)
du− γ0x

µ0

, (1.29)

g(x, 1) =



g(x, 0), x ≥ S0,

∫ S0

x

(
2

σ2
1

∫ u

0

eλ1(ξ−u)h(ξ)dξ + ce−λ1u

)
du+

γ0x

µ1

+
γ0

λ1µ1

e−λ1x + θ, 0 ≤ x < S0,

(1.30)

where θ is a constant given by

θ = g(S0, 0)− γ0S0

µ1

− γ0

λ1µ1

e−λ1S0 .

Proof. We first prove the result for the case when (1.24) is satisfied but (1.25) is not

satisfied. In this case, S0 > 0. Since (1.20) is strictly decreasing in γ, and γ∗ satisfies

(1.21), it follows that in this case we have γ0 ≤ γ∗. Note that γ0 is the average cost

for the “never-turn-on-the-machine” policy, while γ∗ is that of the best (s, S) policy.

This shows that the “never-turn-on-the-machine” policy is better than the best (s, S)

policy. In the following, we prove that this policy is optimal within the larger class

of policies, Ag, but using Proposition I.4.

It is easy to verify, using the properties of (1.13) and (1.15), that g(x, y) satisfies

the differential equation

Γ0g(x, 0) + h(x)− γ0 = 0, for all x

and

Γ1g(x, 1) + h(x)− γ0 = 0, ∀ 0 ≤ x < S0.
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To prove that g(x, y) satisfy (1.2) and (1.3), we need to verify g(x, 1) satisfies Γ1g(x, 1)+

h(x)− γ0 ≥ 0 on x ≥ S0. To that end, note that, by (1.15), the function defined by

g̃(x) :=

∫ S0

x

(
2

σ2
1

∫ u

0

eλ1(ξ−u)h(ξ)dξ + ce−λ1u

)
du+

γ0x

µ1

satisfies the differential equation

Γ1g̃(x) + h(x)− γ0 = 0, ∀ x ≥ 0.

So it suffices to prove

Γ1g(x, 1)− Γ1g̃(x) = Γ1g(x, 0)− Γ1g̃(x) ≥ 0, ∀ x ≥ S0.

We have

Γ1g(x, 0)− Γ1g̃(x)

= µ1

(
2

σ2
0

∫ ∞
x

e−λ0(ξ−x)h(ξ)dξ − γ0

µ0

)
+
σ2

1

2

[
2

σ2
0

(
−h(x) + λ0

∫ ∞
x

e−λ0(ξ−x)h(ξ)dξ

)]
− µ1

(
− 2

σ2
1

∫ x

0

eλ1(ξ−x)h(ξ)dξ − ce−λ1x +
γ0

µ1

)
− σ2

1

2

[
− 2

σ2
1

(
h(x)− λ1

∫ x

0

eλ1(ξ−x)h(ξ)dξ

)
+ cλ1e

−λ1x

]
. (1.31)

By the definition of S0, on x ≥ S0 we have G′(x)−γ0H
′(x) ≥ 0 andG(x)−γ0H(x) ≥ 0.

These imply the following inequalities

2

σ2
0

(
−h(x) + λ0

∫ ∞
x

e−λ0(ξ−x)h(ξ)dξ

)
+

2

σ2
1

(
h(x)− λ1

∫ x

0

eλ1(ξ−x)h(ξ)dξ

)
− cλ1e

−λ1x − γ0

(
λ1

µ1

e−λ1x

)
≥ 0,
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2

σ2
0

∫ ∞
x

e−λ0(ξ−x)h(ξ)dξ +
2

σ2
1

∫ x

0

eλ1(ξ−x)h(ξ)dξ + ce−λ1x − γ0

(
m− 1

µ1

e−λ1x

)
≥ 0.

Substituting these two inequalities into (1.31) yields

Γ1g(x, 0)− Γ1g̃(x) ≥ µ1γ0

(
m− 1

µ1

e−λ1x

)
+
σ2

1

2
γ0

(
λ1

µ1

e−λ1x

)
− µ1γ0

µ0

− γ0 = 0.

Thus, (1.2) and (1.3) are shown to be satisfied.

We next prove (1.4) and (1.5). By their definitions, it is easy to see that g(x, y) is

continuous in x for y = 0, 1, and g(x, 1)− g(x, 0) = 0 on x ≥ S0. The differentiability

of g(x, 1) at x = S0 can be shown easily due to G(S0) − γ0H(S0) = 0 so is omitted

here. For any x ∈ [0, S0], we have

g(x, 1)− g(x, 0) = g(S0, 1)− g(S0, 0)−
∫ S0

x

(g(u, 1)− g(u, 0))′ du

= −
∫ S0

x

(g(u, 1)− g(u, 0))′du

= −
∫ S0

x

[
− 2

σ2
1

∫ u

0

eλ1(ξ−u)h(ξ)dξ − ce−λ1u +
γ0

µ1

− γ0

µ1

e−λ1u

− 2

σ2
0

∫ ∞
u

e−λ0(ξ−u)h(ξ)dξ +
γ0

µ0

]
du

=

∫ S0

x

(
G(u)− γ0H(u)

)
du

≥
∫ S0

0

(
G(u)− γ0H(u)

)
du

≥ −K,

where the first inequality follows from G(u)−γ0H(u) ≤ 0 on 0 ≤ u ≤ S0, and the last

inequality follows from the opposite of (1.25). The last equality above also shows,

again by G(u) − γ0H(u) ≤ 0 on 0 ≤ u ≤ S0, that g(x, 1) − g(x, 0) ≤ 0. Thus (1.4)

and (1.5) are proved for g(x, y).

33



We finally prove (1.6) and (1.7). By the definition of γ0, we have

g′(0, 0) =
2

σ2
0

∫ ∞
0

e−λ0ξh(ξ)dξ − γ0

µ0

= −c.

For g′(0, 1), since S0 > 0, it holds that, for 0 ≤ x < S0,

g′(x, 1) = − 2

σ2
1

∫ x

0

eλ1(ξ−x)h(ξ)dξ − ce−λ1x +
γ0

µ1

− γ0

µ1

e−λ1x,

thereby g′(0, 1) = −c. Hence (1.6) and (1.7) are also verified. This proves the result

for the case when (1.24) holds but (1.25) is not satisfied.

Next, we consider the case when (1.24) is not satisfied. Then S0 = 0. By

the definitions of s(γ) and S(γ), we also have s(γ0) = S(γ0) = 0 and as a result,

`γ0(s(γ0), S(γ0)) = K. Since `γ(s(γ), S(γ)) is strictly decreasing in γ, it follows that

the optimal γ∗, determined by `γ∗(s(γ
∗), S(γ∗)) = 0, satisfies γ0 < γ∗. As γ0 is the

average cost of the “never-turn-on-the-machine” policy, while γ∗ is minimum average

cost among the class of (s, S) policies, this shows that “never-turn-on-the-machine”

policy is also better than any of the (s, S) policy in this case, and in the following we

use Proposition I.4 to prove that the “never-turn-on-machine” is optimal among all

policies in Ag, where g(x, y) is still as defined in the theorem.

In this case, g(x, 0) = g(x, 1) for all x ≥ 0, and again, we need to show that this

function satisfies all the conditions of Proposition I.4, (1.2)-(1.7), and that the lower

bound is achieved by using the “never-turn-on-machine” policy.

Since the first part of (1.29) is a special case of (1.13), which satisfies (1.14), we

conclude that g(x, y) satisfies

Γ0g(x, 0) + h(x)− γ0 = 0.
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Thus (1.2) is satisfied. The second condition, (1.3), can be written as

µ1

(
2

σ2
0

∫ ∞
x

e−λ0(ξ−x)h(ξ)dξ − γ0

µ0

)
+
σ2

1

2

[
2

σ2
0

(
−h(x) + λ0

∫ ∞
x

e−λ0(ξ−x)h(ξ)dξ

)]
+ h(x)− γ0 ≥ 0, ∀ x ≥ 0. (1.32)

The third term on the left hand side, h(x), is increasing in x. We now prove that the

first two terms on the left hand side are also increasing in x. The derivative of the

first term, if we ignore the constant positive coefficient, is

− h(x) + λ0

∫ ∞
x

e−λ0(ξ−x)h(ξ)dξ

≥ − h(x) + λ0

∫ ∞
x

e−λ0(ξ−x)h(x)dξ

= 0,

where inequality follows from h(ξ) ≥ h(x) on ξ ≥ x. For the second term, we note

that

− h(x) + λ0

∫ ∞
x

e−λ0(ξ−x)h(ξ)dξ

= − λ0

∫ ∞
x

e−λ0(ξ−x)h(x)dξ + λ0

∫ ∞
x

e−λ0(ξ−x)h(ξ)dξ

= λ0

∫ ∞
x

e−λ0(ξ−x) (h(ξ)− h(x)) dξ

= λ0

∫ ∞
0

e−λ0y (h(x+ y)− h(x)) dy.

Since h(·) is a convex function, for any fixed y, h(x+y)−h(x) is increasing in x, thus

the integral above is also increasing in x.

Thus, the left hand side of (1.32) is increasing in x, and to prove (1.32), it suffices
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to prove it for x = 0. For notational convenience, let

δ =

∫ ∞
0

e−λ0ξh(ξ)dξ,

then γ0 = λ0δ + cµ0, and (1.32) becomes

2µ1

σ2
0

δ − γ0µ1

µ0

+
σ2

1λ0

σ2
0

δ − γ0 ≥ 0.

Substituting γ0 into the left hand side, it is simplified to

1

µ0 + µ1

(
σ2

1

σ2
0

− 1

)
λ0δ ≥ c.

This is precisely the range of parameters we are considering, i.e., the opposite of

(1.24), thus it ought to be satisfied. This proves (1.3).

Conditions (1.4) and (1.5) are obviously satisfied since g(x, 0) = g(x, 1). Moreover,

from the definition of γ0, we have

g′(0, y) =
2

σ2
0

∫ ∞
0

e−λ0(ξ−u)h(ξ)dξ − γ0

µ0

= −c.

This proves (1.6) and (1.7).

Therefore, we have verified conditions (1.2) to (1.7) in Proposition I.3. Since γ0 is

the average cost of the “never-turn-on-the-machine” policy, it follows from Proposition

I.3 that the said policy is optimal among all policies in Ag.

Remark I.16. It will be seen in Section 1.4 that any (s, S) policy belongs to Ag.

Remark I.17. In Theorem I.14, the (s∗, S∗) policy with S∗ ≥ s∗ > 0 is proved to be

optimal when (1.24) and (1.25) are satisfied. If (1.25) is an equality, i.e.,

∫ S0

0

(G(x)− γ0H(x))dx = −K,
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then it can be shown that the (0, S∗) policy and the “never-turn-on-the-machine” policy

are both optimal. The proof in Theorem I.14 remains valid.

Remark I.18. It can be seen from Figure 1.2(a) that, when σ0 = σ1 = 2, c = 7

and K ≥ 5, the optimal s∗ is equal to 0. The system parameters in this case satisfy

condition (1.24) but not (1.25). Figure 1.2(c) shows that when σ0 = 2, σ1 = 3, c = 7,

condition (1.24) is not satisfied, i.e., c 6> c0 = 10, therefore in this case the optimal

policy satisfies s∗(K) = 0 for the K values considered in this figure. When c = 14,

it would satisfy condition (1.24), but condition (1.25) is still not satisfied for the

smallest K (K = 1) considered in our numerical test, hence s∗ is equal to 0 on the

graph with K ≥ 1. In all these scenarios, “never-turn-on-the-machine” is the optimal

policy.

Theorems I.14 and I.15 state that an (s, S) or the “never-turn-on-the-machine”

policy is optimal among the corresponding classes of policies in Av or Ag. Av and

Ag are dependent on the functions v and g, which is not desired, so we want to know

how large the sets of policies Av and Ag are without referring to v and g. In Section

1.4 we present a subset of policies in Av that is independent of v, and it contains

most of the policies of practical interest.

1.3 The backlog model.

In this section we study the backlog model. Several special cases of the backlogging

model have been analyzed in the literature, e.g., Vickson [42] and Doshi [11]. The

backlog model is in general simpler to analyze than the lost-sales model, and in this

section, we show that regardless of the system parameters, an (s, S) policy is optimal

within a large class of policies. The approach we use for the study of the backlog

model is similar to that for the lost-sales case, thus most proofs are omitted or put

in the appendix.
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In the backlog case, the state of the system is still (Xt, Yt), where Xt is the

inventory level and Yt the mode of production, with Xt ≥ 0 representing inventory

on hand while Xt < 0 represents backlog level of −Xt. The stochastic process Xt for

the inventory level evolves according to the production mode Yt:

dXt = − µ0dt+ σ0dW
0
t , if Yt = 0;

dXt = µ1dt+ σ1dW
1
t , if Yt = 1.

The state space is now {(x, y);−∞ < x <∞, y = 0, 1}.

The cost structure is similar to the lost-sales model, except that when X(t) < 0,

there is a shortage cost rate h(Xt). We make the following assumptions on the holding

and shortage cost rate function h(x).

Assumption I.19. h(·) satisfies

(i) h(·) is convex;

(ii) h(·) is differentiable;

(iii) h(·) is polynomially bounded; and

(iv) lim|x|→∞ h(x) = +∞.

For a policy π ∈ A, with the initial condition (x, y), the expected total cost up to

time T is

Jπx,y(T ) := Eπ
x,y

[∫ T

0

h(Xt)dt+
∑

0≤s≤T

Kδ+(∆Ys)

]
,

and the average cost is defined similarly as in the lost-sales model by

ACπ
x,y := lim sup

T→∞

Jπx,y(T )

T
.

The objective is again to find the optimal policy that minimizes the average cost.
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As in §1.2.2, we present two propositions for the backlog model, in parallel to

Propositions I.3, I.4. If we can find a function f(x, y) satisfying a set of inequalities,

then it yields a lower bound for the long-run average cost.

Proposition I.20. Suppose that f(x, y) : R × {0, 1} → R is continuously differen-

tiable, and has a continuous second derivative at all but a finite number of points with

respect to x. Then for each time T > 0, initial state x ∈ R, y ∈ {0, 1}, and policy π.

Eπ
x,y [f(XT , YT )] = f(x, y) + Eπ

x,y

[∫ T

0

{(
1

2
σ2

0f
′′(Xt, 0)− µ0f

′(Xt, 0)

)
(1− Yt)+

+

(
1

2
σ2

1f
′′(Xt, 1) + µ1f

′(Xt, 1)

)
Yt

}
dt

]
+ Eπ

x,y

[ ∑
0≤s≤T

∆f(Xs, Ys)

]
, (1.33)

where f ′ and f ′′ are derivatives with respect to x, ∆f(Xs, Ys) = f(Xs, Ys)−f(Xs, Ys−).

Compared with the lost-sales case, there is no boundary condition for the function

f(x, y), thus there are two fewer inequalities for establishing the lower bound.

Proposition I.21. Suppose that function f(x, y) is polynomially bounded with respect

to x and it satisfies all the hypotheses in Proposition I.20, and there exists a positive

value γ such that the following conditions are satisfied:

Γ0f(x, 0) + h(x)− γ ≥ 0, (1.34)

Γ1f(x, 1) + h(x)− γ ≥ 0, (1.35)

f(x, 1)− f(x, 0) ≥ −K, (1.36)

f(x, 0)− f(x, 1) ≥ 0, (1.37)

then γ is the lower bound of the average cost for all the policies in Af , i.e.,

ACπ = ACπ
x,y ≥ γ, ∀π ∈ Af ,
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in which Af is defined as

Af :=

{
π ∈ A : lim inf

T→∞

Eπ
x,yf(XT , YT )

T
≤ 0, ∀x ∈ R, ∀y ∈ {0, 1}

}
.

The (s, S) policy in this section differs from that of the lost-sales case in that s is

not necessarily nonnegative.

First, we derive the average cost for an arbitrary (s, S) policy in Proposition I.22,

the proof of which is attached in the appendix.

Proposition I.22. For a given (s, S) policy, with s < S, the average cost of this

policy is

c(s, S) =

∫ S
s
G(x)dx+K

m(S − s)
, (1.38)

where

G(x) =
2

σ2
0

∫ ∞
x

e−λ0(ξ−x)h(ξ)dξ +
2

σ2
1

∫ x

−∞
e−λ1(x−ξ)h(ξ)dξ,

m =
1

µ0

+
1

µ1

.

To find the optimal choice of s and S, we need the following lemma, its proof is

given in the appendix.

Lemma I.23. Suppose the cost function h(x) satisfies Assumption I.19, then

(i) G(x) is convex, and if h(x) is strictly convex, then G(x) is also strictly convex;

(ii) limx→±∞G(x) =∞;

(iii) c(s, S) is strictly convex with respect to s and S.

Remark I.24. Since c(s, S) is strictly convex, so the optimal choice of (s, S) is

unique. The convexity of c(x, y) has been established in Zipkin [45] and Zhang [44]

for some other context.
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Since G(x) is a convex function converging to infinity as |x| → ∞, it has a

minimum say y0. Clearly, for any γ ≥ G(y0)/m, there are two points, denoted

by s(γ) and S(γ) respectively, such that s(γ) ≤ S(γ) and G(s(γ)) = G(S(γ)) = γm.

The optimal s and S that minimize c(s, S) are determined by the following result.

Theorem I.25. The optimal choice of s∗ and S∗, −∞ < s ≤ S <∞, is determined

by s∗ = s(γ∗) and S∗ = S∗(γ∗) where γ∗ is the unique γ satisfying

∫ S(γ)

s(γ)

(
G(x)−mγ

)
dx = −K. (1.39)

The illustration of (s∗, S∗) and equation (1.39) are given in Figure 1.3. As can be

seen, the area between curve y = G(x) and y = mγ is equal to K.

K

s S

GHxL

Γm

Figure 1.3: Optimal choice of s and S (backlogging case).

With the (s∗, S∗) just identified, we define the relative value functions by

v(x, 0) =


wd(x)− γ∗

(
x−s∗
µ0

)
+ v(s∗, 1) +K, x > s∗;

v(x, 1) +K, x ≤ s∗,

(1.40)

v(x, 1) =


wu(x)− γ∗

(
S∗−x
µ1

)
, x < S∗;

v(x, 0), x ≥ S∗,

(1.41)
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where

wd(x) =

∫ x

s∗

(
2

σ2
0

∫ ∞
u

e−λ0(ξ−u)h(ξ)dξ

)
du,

wu(x) =

∫ S∗

x

(
2

σ2
1

∫ u

−∞
e−λ1(u−ξ)h(ξ)dξ

)
du

are similarly defined as in the lost-sales model. Their continuity can also be similarly

shown.

The analysis and optimal control for the backlog model are much simpler than

those of the lost-sales model. The main result is that, for backlog model, an (s, S)

policy is always optimal within a large class of policies. The approach is similar to

the latter part of the lost-sales model; we can show that v(x, 0) and v(x, 1) satisfy

all the regularity conditions and inequalities (1.34)-(1.37), thus it follows from γ∗ is

the average cost for the (s∗, S∗) policy, it must be optimal among the larger class of

policies in Av.

Theorem I.26. The policy (s∗, S∗) is optimal among the policies in Av, where v is

the relative value function defined in (1.40)-(1.41).

Theorem I.26 is established under the assumption that the holding and shortage

cost rate h(·) is convex. If the production process is deterministic, or σ0 = σ1, then we

can relax the assumption to quasi-convex1. We note that Vickson [42] studies the case

of deterministic production process and linear holding cost, and obtains the optimal

control policy under certain conditions. The following result extends the results in

[42].

Proposition I.27. If σ0 = σ1, then as long as h(·) is quasi-convex, polynomially

bounded, and lim|x|→∞ h(x) = ∞, then an (s, S) policy is optimal among Av, where

v is defined in (1.40)-(1.41).

1A function f(x) is called quasi-convex if for any x, y and 0 ≤ λ ≤ 1, f(λx + (1 − λ)y) ≤
max{f(x), f(y)}.
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Proof. From the proceeding analysis, it is not hard to see that all results hold true

if G(x) is quasi-convex and lim|x|→∞G(x) =∞. Thus, in the following we show that

under the conditions stated in the proposition, G(x) indeed possesses these properties.

As in the proof of Proposition I.22, we obtain

G(x) :=
2

σ2
0

∫ ∞
x

e−λ0(ξ−x)h(ξ)dξ +
2

σ2
0

∫ x

−∞
e−λ1(x−ξ)h(ξ)dξ

=
2

σ2
0

(∫ ∞
0

e−λ1zh(x− z)dz +

∫ 0

−∞
eλ0zh(x− z)dz

)
= mE [h(x− Z)] ,

where Z is a random variable with probability density function

p(z) =



1

m

2

σ2
0

eλ0z, z ≤ 0;

1

m

2

σ2
0

e−λ1z, z > 0,

and, as before, m = 1/µ0 + 1/µ1. Since

log p(z) =


log (2/mσ2

0) + λ0z, z ≤ 0;

log (2/mσ2
0)− λ1z, z > 0

is concave, p(z) is log-concave, we deduce that G(x) = mE[h(x−Z)] is quasi-convex

[9, p. 17-20] as long as h(·) is quasi-convex. That lim|x|→∞G(x) = ∞ is obvious.

Thus, the proof of Proposition I.27 is complete.

Remark I.28. If G(x) is not strictly quasi-convex2, then the uniqueness of the opti-

mal (s, S) policy is not guaranteed.

2A function f(x) is strictly quasi-convex if for any x, y such that f(x) 6= f(y) and 0 < λ < 1,
f(λx+ (1−λ)y) < max{f(x), f(y)}. Alternatively, a function is strictly quasi-convex means that it
first strictly decreases and then strictly increases.

43



1.4 Discussion on Av and an example.

The optimality of policies in the previous sections relies heavily on the class of

policies Av. Since v is the relative value function of the said policy, Av depends on

that policy as well. This does not inform us immediately how large the class of policies

Av is. We want to know how large this set is without referring to value function v. In

this section, we present a subset of Av that is independent of v, provided v satisfies

some mild conditions. We also discuss scenarios where some policies do not belong

to Av.

Recall that Av is defined as the set of admissible policies π for which it holds that

lim inf
T→∞

Eπ
x,y [f(XT , YT )]

T
≤ 0. (1.42)

A similar condition is needed in establishing the optimal policy for production/inventory

control problems with infinite capacity and impulse control. The approach used in

impulse control is to show that, when this condition is violated by a policy, then that

policy has to be a “bad” one. That is, if condition (1.42) is not satisfied by a policy

π, then the average cost for policy π is equal to infinity. For example, in Ormeci et

al. [30], it is shown that when the holding and shortage cost rate function h(x) is

linear, then the relative value function f(x, y) is linearly bounded for y = 0, 1. That

argument can be extended to the case when h(x) is polynomially bounded of degree

n, and it can be shown that the relative value functions for the optimal band policy,

f(x, y), are also polynomially bounded functions with the same degree n, and the

similar argument as that in Ormeci et al. [30] can be used to show that if a policy

does not satisfy (1.42), then the average cost for that policy has to be infinity, see

Dai and Yao [23]. As a result, the argument shows that for impulse control problems,

the policies not in Av can be ignored, implying that a policy that is optimal within

the class of policies in Af is also optimal among all admissible policies.
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One might expect that this argument could be extended to the case with finite

production capacity. Unfortunately, that is not the case. When h(x) is polynomially

bounded with degree n, the relative value function f(x, y) for an optimal (s, S) policy

can be shown to be also polynomially bounded but with degree n + 1, and violation

of (1.42) cannot be used to show that the minimum cost for policy π is infinity. In

the following, we first provide an example to demonstrate this, and then we present

a subclass of policies that are contained in Av but independent of v, and yet it is still

large enough to include most policies of practical interest.

Example I.29. Consider a deterministic system: µ0 = µ1 = 1, and σ1 = σ2 = 0.

The holding cost function is h(x) = |x| and the setup cost is K > 0. By choosing

the holding cost function in this way, the total holding cost can be interpreted as

the area in between Xt and the axis x = 0. As for the (s, S) policy, due to the

symmetric property of the problem, s = −S. As σ0 and σ1 converge to 0, we note

that G(x) → 2h(x), thus the average cost for a (−S, S) policy, denoted by c(S),

according to (1.38) can be expressed as

c(S) =
S

2
+
K

4S
,

the minimum of which is achieved by choosing

S =

√
K

2
, γ =

√
K

2
.

Let this (s, S) policy be denoted by π. The relative value function for policy π,

45



according to (1.40), (1.41), is

v(x, 0) =



x2

2
−
√

K
2
x+ K

4
, x ≥ 0;

−x2

2
−
√

K
2
x+ K

4
, 0 ≥ x ≥ −S;

v(x, 1) +K, x < −S.

v(x, 1) =



x2

2
+
√

K
2
x− K

4
, x ≤ 0;

−x2

2
+
√

K
2
x− K

4
, 0 ≤ x ≤ S;

v(x, 0), x > S.

Assume ψ denotes the policy of keeping Yt = 1 for all t. If ψ is adopted, then the

long-run average cost is infinity. We now construct a policy φ using policies π and

ψ. Suppose the initial condition is X0 = 0, Y0− = 1, and we construct a policy φ as

follows. Let Tn = 2n, n ∈ Z+. For a sample path ω, if XTn(ω) = Tn, then the policy

for ω is switched to π at time Tn with probability 1/2, and continue to use ψ until

Tn+1 with probability 1/2. The evolution of several sample paths are shown in Figure

1.4.

2 4 6 8 10

2

4

6

8

10

Figure 1.4: Sample paths of φ.

For an arbitrary point in time T , there exists an n ∈ Z+ such that 2n−1 < T ≤ 2n.

Note that v(x, y) ≥ 0. By considering the top sample path which does not converge

46



to π, we have

lim inf
T→∞

E [v(XT , YT )]

T

≥ lim inf
T→∞

v(T, 1)/2n

T

= lim inf
T→∞

1

T2n

[
T 2

2
−
√
K

2
T +

1

4
K

]

= lim inf
T→∞

1

4

T

2n−1

≥ 1

4
6= 0.

Thus, this policy φ does not belong toAv. However, by summing up the total expected

cost up to time T for all the possible sample paths and using a relaxation, we obtain

Jφ0,0(T ) ≤ 1

2n
(
T 2/2

)
+

1

2n

[
T 2/2−

(
T − 2n−1

)2
]
+
n−2∑
i=0

1

2i+1

[
(2i)2 + γ(T − 2 · 2i) + γ · 2

√
2K
]
,

lim sup
T→∞

J(T )

T
= lim sup

T→∞

{
T

2n
− (T − 2n−1)2

2nT
+

2n−2

T
+ γ

(
1− 1

2n−1

)}
≤ γ +

3

2
.

This shows that there exists non-anticipating policies which do not satisfy the condi-

tion lim infT→∞E[v(XT , YT )]/T = 0, but it has a finite average cost.

The next question is, how large is the class of policies Av? We now present a

subset of Av that is independent of v, and it contains most of the policies of practical

interest.

Define

A∞ :=
⋃
N>0

AN ,

where AN is the class of policies such that Yt = 0 whenever Xt > N and Yt = 1

whenever Xt < −N . The definition of A∞ does not depend on any specific function;

it requires that, as the inventory level becomes very high, the policy should turn off

the machine, while when the backlog level becomes very high, then it should turn on
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the machine. Clearly, most practical policies satisfy this. Further, all (s, S) policies

are in A∞ too, because under an (s, S) policy, the machine is turned on whenever the

inventory level drops to s and turned off whenever the inventory level reaches S.

In the appendix, we show that if h(·) is polynomially bounded with degree n, then

v(x, y) is polynomially bounded with degree n+ 1. Under the condition that v(x, y)

is polynomially bounded, we will prove A∞ ⊂ Av.

Proposition I.30. A∞ ⊂ Av if v is polynomially bounded, i.e., there exists an n ∈ Z+

such that |v(x, y)| ≤ v̄(x) := B1 +B2|x|n, for some constants B1 and B2 and ∀x ∈ R,

∀y ∈ {0, 1}.

Proof. For a given policy π ∈ A∞, there exists an N such that π ∈ AN . Without

loss of generality, suppose the initial condition X0 = x ∈ (−N,N). We construct a

process M1(t) as follows

M1(t) = Xt, for 0 ≤ t ≤ τN ,

where τN is the hitting time of N ; and after hitting time τN , M1(t) is a Brownian

motion with downward drift −µ0, variance σ2
0, and N is the one-sided reflecting lower

boundary, that is the process M1(t) is always at or above N after time τN . It is easy

to show that Xt ≤M1(t). Similarly, we construct another process M2(t) by

M2(t) = Xt, for 0 ≤ t ≤ τ−N ,

where τ−N is the hitting time of −N ; and after hitting time τ−N , let M2(t) be a

Brownian motion with upward drift µ1, variance σ2
1, and with −N as a one-sided

reflecting upper boundary, thus M2(t) will be always at or below −N after τ−N . It

can be seen that Xt ≥ M2(t). If Xt ≥ 0, then v̄(Xt) ≤ v̄(M1(t)); and if Xt < 0, then
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v̄(Xt) ≤ v̄(M2(t)). Thus, v̄(Xt) ≤ max{v̄(M1(t)), v̄(M2(t)) for all t, and

Eπ
x,y [v(XT , YT )]

T
≤
Eπ
x,y [v̄(XT )]

T

≤
Eπ
x,y [max {v̄(M1(T )), v̄(M2(T ))}]

T

≤
Eπ
x,y [v̄(M1(T ))] + Eπ

x,y [v̄(M2(T ))]

T
.

Regulated Brownian motion processes with one-side reflecting boundary are well un-

derstood, see e.g., Harrison [19, §5.6]. Since both M1(t) and M2(t) have exponential

steady state distributions, that is, the probability for M1(t) (M2(t)) to take large

(negative) value is exponentially decaying. This shows that the numerator of the

fraction above is finite, so after taking lower limit we obtain, when v̄(x) is polynomi-

ally bounded,

lim inf
T→∞

Eπ
x,y [v(XT , YT )]

T
≤ 0.

This proves that A∞ ⊂ Av for all v polynomially bounded.

Remark I.31. The definition of A∞ above is similar to that defined in [41].

Remark I.32. The argument above can be used to show that, actually,

lim
T→∞

Eπ
x,y [v(XT , YT )]

T
= 0 for all π ∈ A∞.

Remark I.33. The parameters for the exponential steady state distributions of M1(t)

and −M2(t) are σ2
0/(2µ0) and σ2

1/(2µ1), respectively. It follows from the argument

above that the result would be true as long as v̄(x) is bounded by an exponential

function with parameter less than min{σ2
0/(2µ0), σ2

1/(2µ1)}.

Remark I.34. For the lost-sales model, the subset of policies can be defined as A∞ =

∪N>0AN , where AN contains all the policies satisfying that whenever Xt ≥ N , Yt = 0.

The same argument used above shows that A∞ ⊂ Av for all v polynomially bounded.
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CHAPTER II

Bound on the Coarsening Rate and Classical Limit

Theorem for the Diffusive Carr-Penrose Model

2.1 Introduction

Ostwald ripening (Coarsening) is a physics phenomenon observed in solid solu-

tions or liquid sols. Since monomers (single particles) have a larger surface area, thus

energetically less stable compared with polymers (clusters of particles), they tend to

be absorbed by polymers. Similarly, polymers with a small amount of particles tend

to have their surface particles detached from them; polymers with a large amount of

particles are formed thus to achieve higher stability. This process of smaller poly-

mers shrinking, while larger polymers growing, with the average size of the system

increasing is called Ostwald ripening, which was first described by Wilhelm Ostwald

in 1896.

Ostwald ripening is an important phenomenon since it occurs in crystallization,

coarsening of sorted stone stripes, synthesis of quantum dots, coalescence of alloy,

supersaturated solutions, digestion of precipitates, emulsion systems etc. Lifshitz,

Slyozov and Wagner are pioneers in this field of research. In 1961, Lifshitz and Slyozov

jointly and independently Wagner developed theories to explain the phenomenon.

Their conclusions (though obtained using different methods) were shown to be the
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same by Kahlweit in 1975, and are referred to as the Lifshitz-Slyozov-Wagner (LSW)

Theory of Ostwald ripening. The main focus of it is on the description of the density

(or concentration) function of polymers of different sizes at large time as well as the

coarsening rate-the rate at which the average size increases.

LSW theory involves solving a nonlinear nonlocal first order partial differential

equation (PDE) which in general does not have explicit solutions. Though self-similar

solutions are identified and predicted as long time asymptotes of a general initial

condition, the intractability of the nonlinear differential equation itself still hinders

a clear understanding of the solution. Carr and Penrose (1998) [3] propose a linear

version of the PDE, which is tractable. In their paper, they show that for a large

class of initial data, the solution behaves asymptotically like one of the self-similar

solutions, and which solution it converges to depends solely on the behavior of the

initial condition towards the end of its support. The same conclusion is believed to

be true for the LSW equation. Meerson (1999) [28] argues that by adding a diffusive

term to the LSW PDE, which adds a “Gaussian tail” to the initial condition, a strong

selection principle is obtained. When applied to the Carr-Penrose (CP) model, a

similar result should hold, i.e., only the exponential self-similar solution should give

the asymptotic behavior for the solutions of the CP model.

In this chapter, we study a CP model with a diffusive term. We express the

solution to the diffusive CP partial differential equation using a Dirichlet Green’s

function, and present the connection between the Dirichlet Green’s function and

the characteristic solution to the classical CP model. Then, we link the Dirichlet

Green’s function with the distribution function of a Gaussian process which has fixed

initial and terminal conditions. Instead of using the Markovian representation of

this process, which works well for constant drift cases, we adopt a non-Markovian

representation. We use it to show the convergence of the density function of the

diffusive CP model to the classical one as the diffusion constant ε → 0. In order
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to show the convergence of the coarsening rate, we derive uniform (in terms of the

diffusion constant ε > 0) bounds (upper and lower) of the ratio between the Dirichlet

Green’s function to the full space Green’s function. Due to the non-Markovian nature

of the representation of the Gaussian process, the value of the process at a certain

time point depends on both the realization of a Brownian motion in the past and the

future. In the derivation of the bounds, we use two main techniques (observations):

the considered stochastic process should be compared with a tractable approximating

process which has a constant drift; based on different realization of the Brownian

motion part of the stochastic process, the drift of the process to compare with should

vary. (See Lemma II.18, II.20, II.22.) Last, we demonstrate the connection between

log concavity of the initial condition and a beta function first defined in Conlon

(2011) [7], and the relation between the coarsening rate and this beta function. With

a log concavity assumption on the initial condition, we derive an upper bound on the

coarsening rate by using this beta function and the bounds on the ratio between the

Dirichlet and the full space Green’s function.

The rest of this chapter is organized as follows. In Section 2.2, we introduce

the Carr-Penrose model and its explicit solution. In Section 2.3, we introduce the

diffusive CP model, study its general solution and estimate the Dirichlet Green’s

function. Then in Section 2.4, the convergence of the solution and coarsening rate of

the diffusive CP model to the classical case is studied. Finally, we derive an upper

bound on the coarsening rate for the diffusive CP model given certain log concavity

for the initial condition in Section 2.5.
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2.2 Classical Carr-Penrose model

2.2.1 The problem

In the theory of coarsening, the system of differential equations to characterize

the concentration of the clusters of different sizes can be expressed as in [3]:

∂c(x, t)

∂t
= − ∂

∂x
[v(x, t)c(x, t)], (2.1)

v(x, t) = a(x)[1/Λ(t)− x−1/ν ], (2.2)∫ ∞
0

xc(x, t)dx = 1, (2.3)

where x, t ≥ 0 and c(x, t) represents the density (concentration), at time t, of clusters

consisting of x particles, v(x, t) is the average rate at which the number of particles in

a cluster grows, a(x) is a given function of x, and ν is the number of space dimensions.

The mass conservation equation (2.3) implies that

Λ(t) =

∫∞
0
a(x)c(x, t)dx∫∞

0
x−1/νa(x)c(x, t)dx

.

We assume that a(x) is proportional to a power of x, say a(x) = αxβ+1/ν where α

and β are positive constants.

If we choose α = 1, then equations (2.1), (2.2) together with (2.2.1) give

∂c(x, t)

∂t
= − ∂

∂x
{xβ[1/Λ(t) · x1/ν − 1]c(x, t)},

Λ(t) =

∫∞
0
xβ+1/νc(x, t)dx∫∞

0
xβc(x, t)dx

with the conservation law ∫ ∞
0

xc(x, t)dx = 1. (2.4)

If we choose β = 0, ν = 3, then the system is the Lifshitz-Slyozov-Wagner (LSW)
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model; if β = 0, ν = 1, it becomes the Carr-Penrose model [3], which we will discuss

below. For Carr-Penrose model, we have

∂c

∂t
= − ∂

∂x

{[
x

Λ(t)
− 1

]
c(x, t)

}
, (2.5)

Λ(t) =

∫∞
0
x · c(x, t)dx∫∞

0
c(x, t)dx

. (2.6)

with (2.4)
∫∞

0
xc(x, t)dx = 1. We can define a random variable Xt whose probability

density function is given by c(x, t)/
∫∞

0
c(x, t)dx. Then the mean of Xt, 〈Xt〉 = Λ(t)1,

in which Λ(t) is a continuous function.

2.2.2 General solution

We define the function w(x, t) =
∫∞
x
c(x′, t)dx′. It is easy to see that

w(x, t)

w(0, t)
=

∫∞
x
c(x′, t)dx′∫∞

0
c(x, t)dx

= P (Xt ≥ x). (2.7)

Following (2.4), the conservation law for w(x, t) becomes

∫ ∞
0

w(x, t)dx = 1. (2.8)

Also, we define a function h(x, t) =
∫∞
x
w(x′, t)dx′. Due to conservation law (2.4),

〈Xt〉 = 1/w(0, t),

h(x, t) =

∫∞
x
w(x′, t)dx′

w(0, t)
· w(0, t) =

∫∞
x
P (Xt > x′)dx′

〈Xt〉
=
E[Xt − x;Xt > x]

〈Xt〉
,

and it follows from the conservation law (2.8) that

h(0, t) = 1. (2.9)

1〈·〉 denotes the mean of a random variable.
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Due to the differential equation (2.5) for c(x, t), we have a corresponding differ-

ential equation for w(x, t):

∂w

∂t
+

(
x

Λ(t)
− 1

)
∂w

∂x
= 0, w(x, 0) = w0(x) :=

∫ ∞
x

c0(x)dx. (2.10)

Lemma II.1. If Λ(t) is continuous, then the general solution of w(x, t) to (2.10) is

w(x, t) = w0(F (x, t)), (2.11)

where

F (x, t) = u(t)x+ v(t) (2.12)

and u(t), v(t) are defined by

u(t) = exp

[
−
∫ t

0

1

Λ(s)
ds

]
, v(t) =

∫ t

0

exp

[
−
∫ s

0

1

Λ(s′)
ds′
]
ds. (2.13)

Proof. We use the method of characteristic, and consider a curve x(s) satisfying the

condition

d

dt
x(t) =

x(t)

Λ(t)
− 1, x(0) = x0.

The solution to this initial value ordinary differential equation problem is

x(t) = x0 · exp

[∫ t

0

1

Λ(s)
ds

]
−
∫ t

0

exp

[∫ t

s′

1

Λ(s′′)
ds′′
]
ds′,

or, in another form,

x0 = exp

[
−
∫ t

0

1

Λ(s)
ds

]
x(t) +

∫ t

0

exp

[
−
∫ s

0

1

Λ(s′)
ds′
]
ds = F (x(t), t).

55



Since over this characteristic curve, we have d
dt
w(x(t), t) = 0, it follows that

w(x(t), t) = w(x0, 0) = w0(F (x(t), t)),

thus the lemma is proved.

It follows from the relation between w(x, t) and c(x, t) that

c(x, t) = c0(F (x, t)) · u(t). (2.14)

Similarly,

h(x, t) =
1

u(t)
h0(F (x, t)), (2.15)

where h0(·) := h(·, 0).

In [6], Conlon shows the existence of the solution to a diffusive Lifschitz-Slyozov-

Wagner equation. Actually, for the classical Carrr-Penrose model, a simpler case, we

can associate the existence of Λ(t), thus c(x, t), with a 2-dim dynamics.

Lemma II.2. For Carr-Penrose model (2.5) with conservation law

∫ ∞
0

x · c(x, t)dx = 1,

if c0(·) is bounded, then Λ(t) and u(t), v(t) defined in (2.13) exist.

Proof. Consider an equation (due to the conservation law),

∫ ∞
0

w0(u(t)x+ v(t))dx = 1.

Taking the derivative and we have

d

dt

[∫ ∞
0

w0(u(t)x+ v(t))dx

]
= 0,
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i.e.,

du

dt

∫ ∞
0

x w′0(u(t)x+ v(t))dx+
dv

dt

∫ ∞
0

w′0(u(t)x+ v(t))dx = 0.

By substitution z = u(t)x,

1

u2(t)

du

dt

∫ ∞
0

z · w′0(z + v(t))dz +
1

u(t)
· dv
dt

∫ ∞
0

w′0(z + v(t))dz = 0.

By integration by parts,

− 1

u2(t)

du

dt

∫ ∞
0

w0(z + v(t))dz − 1

u(t)

dv

dt
w0(v(t)) = 0.

Therefore, we have a system of ordinary differential equations

dv

dt
= u(t),

du

dt
= − w0(v(t))u2(t)∫∞

0
w0(z + v(t))dz

, u(0) = 1, v(0) = 0. (2.16)

As long as w0 is Lipschitz continuous, the ordinary differential equation system has a

unique solution. The Lipschitz continuity can be guaranteed by the boundedness of

c0, under which condition, the solutions for u and v exist and thus Λ(t) exists. Also,

Λ(t) is continuous due to the continuity of u(t) and v(t).

2.2.3 Coarsening rate

We define

β(x, t) =
c(x, t)h(x, t)

w(x, t)2
, (2.17)

as in [7] and it follows from (2.14) and (2.15) that

β(x, t) = β(F (x, t), 0). (2.18)

The definition of β(x, t) connects to the coarsening rate, which is shown by the fol-

lowing lemma.
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Lemma II.3. The mean of Xt, Λ(t), has a derivative β(0, t), i.e.,

dΛ(t)

dt
= β(0, t). (2.19)

Proof.

dΛ(t)

dt
=

d

dt

[
1

w(0, t)

]
=
−∂w

∂t
(0, t)

w(0, t)2
(2.20)

Since w(x, t) satisfies the partial differential equation (2.10), ∂w
∂t

(0, t) = ∂w
∂x

(0, t).

Therefore, by recalling the conservation law for h(x, t), h(0, t) = 1, from (2.9),

dΛ(t)

dt
=
−1 · ∂w

∂x
(0, t)

w(0, t)2
=
h(0, t)c(0, t)

w(0, t)2
= β(0, t).

Due to (2.17), we expect the coarsening rate to be determined by the behavior of

β(x∞, 0) with x∞ := supx{w0(x) > 0}.

Lemma II.4. Suppose x∞ = supx{w0(x) > 0}, then

lim
t→∞

F (0, t) = x∞. (2.21)

Proof. We know

Λ(t) = 〈Xt〉 =
1

w(0, t)
.

Since F (0, t) is an increasing function (see (2.13)), limt→∞ F (0, t) always exists (+∞

is included). If limt→∞ F (0, t) = x1 < x∞, then since w(0, t) ≥ w(x1, 0) > 0 for all t,

Λ(t) ≤ Λ∞ :=
1

w(x1, 0)
, for all t.
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Therefore, limt→∞ u(t) = 0. According to the conservation law,

∫ ∞
0

w(x, t)dx =

∫ ∞
0

w0(F (x, t))dx = 1,

which simplifies as ∫ ∞
0

w0(u(t)x+ v(t), 0)dx = 1.

By substitution z = u(t)x+ v(t),

∫ ∞
v(t)

w0(z)dz = u(t).

Let t → ∞, the left hand side approaches
∫∞
x1
w0(z)dz > 0 and the right hand side

approaches 0, leading to a contradiction. Hence, limt→∞ F (0, t) ≥ x∞.

On the other side, we notice that the characteristic curves are level sets for the

function w(x, t). If limt→∞ F (0, t) > x∞, then there exists t∗ such that F (0, t∗) = x∞,

implying that w(0, t∗) = w(x∞, 0) = 0, a contradiction to w(0, t∗) > 0. Therefore

limt→∞ F (0, t) ≤ x∞. It follows that limt→∞ F (0, t) = x∞.

In the following, we use β0 to denote the limit of β(x, 0) as x approaches the upper

limit of the support of w0(·): β0 := limx→x∞ β(x, 0). Therefore, limt→∞ β(0, t) = β0,

and the asymptotic behavior of the coarsening rate dΛ(t)/dt is determined by β0. In

the following, we give three examples demonstrating initial conditions with different

β0 values.

Example II.5. For the function w0(x) = (α + 1)(1 − x)α with α > 0, x∞ = 1. We

have

c0(x) = α(α + 1)(1− x)α−1, h0(x) = (1− x)α+1.
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Therefore, the beta function at t = 0 is

β(x, 0) =
α(α + 1)(1− x)α−1 · (1− x)α+1

(α + 1)2(1− x)2α
=

α

α + 1
.

Thus, β0 = α/(α + 1) < 1.

Example II.6. For w0(x) = (α− 1)/(x+ 1)α with α > 1, x∞ =∞.

c0(x) =
α(α− 1)

(1 + x)α+1
, h0(x) =

1

(1 + x)α−1
.

Therefore,

β(x, 0) =

α(α−1)
(1+x)α+1 · 1

(1+x)α−1

(α− 1)2/(x+ 1)2α
=

α

α− 1
.

Thus, β0 = α/(α− 1) > 1.

Example II.7. For w0(x) = e−x, x∞ =∞.

c0(x) = e−x, h0(x) = e−x.

Therefore, β(x, 0) = 1 and β0 = 1.

2.3 Diffusive CP model

2.3.1 The problem

In this section, we study a diffusive version of the Carr-Penrose model. Let ε > 0

be the diffusion constant, and the density function cε(x, t) satisfies the differential

equation together with the conservation constraint as follows:

∂cε(x, t)

∂t
+

∂

∂x

[
x

Λε(t)
− 1

]
cε(x, t) =

ε

2

∂2cε
∂x2

. (2.22)
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∫ ∞
0

xcε(x, t)dx = 1, cε(0, t) = 0. (2.23)

Similar to the classical CP model, we define wε(x, t) =
∫∞
x
cε(x

′, t)dx′ and hε(x, t) =∫∞
x
w(x′, t)dx′. Since the initial condition does not depend on ε, the corresponding

initial conditions are still named as c0(·), w0(·) and h0(·). The differential equation

wε(x, t) satisfies is

∂wε
∂t

+

[
x

Λε(t)
− 1

]
∂wε
∂x

=
ε

2

∂2wε
∂x2

. (2.24)

Identical to the classical CP model, we have

Λε(t) =

∫∞
0
xcε(x, t)dx∫∞

0
cε(x, t)dx

. (2.25)

The derivation of (2.25) relies on the Dirichlet condition cε(0, t) = 0. Subsequently,

dΛε(t)

dt
=

− ∂
∂t
w(0, t)

[
∫∞

0
cε(x, t)dx]2

.

Due to (2.24),

∂

∂t
w(0, t) =

∂wε(0, t)

∂x
+
ε

2

∂2wε(0, t)

∂x2
= −cε(0, t) +

ε

2

∂2wε(0, t))

∂x2
= −ε

2

∂cε(0, t)

∂x
,

where the last equation follows from the boundary condition cε(0, t) = 0. Therefore,

the coarsening rate for the diffusive Carr-Penrose model is given by

dΛε(t)

dt
=
ε

2

∂cε(0, t)

∂x

/[∫ ∞
0

cε(x, t)dx

]2

. (2.26)

Remark II.8. The difference between the coarsening rate of the diffusive case and

the one of the classical case is between ε
2
∂cε(0,t)
∂x

and c(0, t). This will be discussed later

in Lemma II.24.

61



2.3.2 Representation using the Green’s Functions

In the following, we introduce some common theories of Green’s function, which

helps in the expression of the solution the diffusive CP model.

Let b : R×R→ R be a continuous function which satisfies the uniform Lipschitz

condition

sup{|∂b(y, t)/∂y| : y, t ∈ R} ≤ A (2.27)

for some constant A. Then the terminal value problem

∂uε(y, t)

∂t
+ b(y, t)

∂uε(y, t)

∂y
+
ε

2

∂2uε(y, t)

∂y2
= 0, y ∈ R, t < T, (2.28)

uε(y, T ) = uT (y), y ∈ R, (2.29)

has a unique solution uε which has the representation

uε(y, t) =

∫ ∞
−∞

Gε(x, y, t, T )uT (x)dx, y ∈ R, t < T, (2.30)

where Gε is the Green’s function for the problem. For any t < T , let Yε(s), s > t, be

the solution to the initial value problem for the stochastic differential equation

dYε(s) = b(Yε(s), s)ds+
√
εdB(s), Yε(t) = y, (2.31)

where B(·) is Brownian motion. Then Gε(·, y, t, T ) is the probability density for

Yε(T ). The solution to (2.28) has an expectation expression

uε(y, t) = E
[
uT (Yε(T ))

∣∣Yε(t) = y
]
. (2.32)
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The adjoint problem to (2.28), (2.29) is the initial value problem

∂vε(x, t)

∂t
+

∂

∂x
[b(x, t)vε(x, t)] =

ε

2

∂2vε(x, t)

∂x2
, x ∈ R, t > 0, (2.33)

vε(x, 0) = v0(x), y ∈ R. (2.34)

The solution to (2.33), (2.34) is given by the formula

vε(x, t) =

∫ ∞
−∞

Gε(x, y, 0, t)v0(y)dy, x ∈ R, t > 0. (2.35)

Parallel to (2.31), we consider a diffusion process Xε(·) run backwards in time,

dXε(s) = b(Xε(s), s)ds+
√
εdB(s), Xε(T ) = x, s < T, (2.36)

where B(s), s < T is Brownian motion run backwards. The solution vε of (2.33) has

an expectation representation

vε(x, T ) = E

[
exp

{
−
∫ T

0

∂b(Xε(s), s)

∂x
ds

}
v0(Xε(0))

∣∣∣∣∣Xε(T ) = x

]
. (2.37)

Remark II.9. Here the Green’s function satisfies both Kolmogrov backward and for-

ward equations (2.28), (2.33). Below, we explain this further. Let L be a differential

operator defined as

Lu(y, t) := −b(y, t) ∂
∂y
u− ε

2

∂2

∂y2
u.

Then (2.28) can be expressed as ∂u
∂t

= Lu. Since

∫ ∞
−∞
−b(y, t)∂u

∂y
v(y, t)dy = −b(y, t)u·v

∣∣∣∣∞
−∞

+

∫ ∞
−∞

u
∂

∂y
(b(y, t)v)dy =

∫ ∞
−∞

u
∂

∂y
(b(y, t)v)dy,
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and

∫ ∞
−∞
−ε

2

∂2u

∂y2
v(y, t)dy = −ε

2

∂u

∂y
v(y, t)

∣∣∣∣∞
−∞

+
ε

2

∫ ∞
−∞

∂u

∂y
· ∂v
∂y
dy

=
ε

2
u · ∂v

∂y

∣∣∣∣∞
−∞
− ε

2

∫ ∞
−∞

u · ∂
2v

∂y2
dy = −ε

2

∫ ∞
−∞

u · ∂
2v

∂y2
dy,

the adjoint of L, which we denote by L∗, is defined as

L∗v(y, t) =
∂

∂y
(b(y, t)v)− ε

2

∂2v

∂y2
,

and the adjoint problem of (2.28) is ∂v
∂t

= −L∗v, which is (2.33).

Since u(x, t) and v(x, t) are solutions to adjoint processes,

d

dt
[u(x, t), v(x, t)] = 0,

where [u, v] :=
∫∞
−∞ u(x, t)v(x, t)dx. This implies [u(x, 0), v(x, 0)] = [u(x, T ), v(x, T )].

By choosing terminal and initial conditions u(x, T ) = δ(x−x0) and v(y, 0) = δ(y−y0),

we obtain u(y0, 0) = v(x0, T ). Due to (2.30), u(y0, 0) = G(x0, y0, 0, T ), thus v(x0, T ) =

G(x0, y0, 0, T ).

Next, in the case when b(y, t) is linear in y, e.g., b(y, t) = A(t)y − 1, where

A : R→ R, the solution to (2.31) is given by

Yε(s) = m1(t, s)y −m2(t, s) +
√
ε

∫ s

t

exp

[∫ s

s′
A(s′′)ds′′

]
dB(s′), (2.38)

where

m1(t, s) = exp

[∫ s

t

A(s′)ds′
]
, m2(t, s) =

∫ s

t

exp

[∫ s

s′
A(s′′)ds′′

]
ds′. (2.39)

Hence Yε(s) conditioned on Yε(t) = y is Gaussian with mean m1(t, s)y−m2(t, s) and
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variance εσ2(t, s) where

σ2(t, s) =

∫ s

t

exp

[
2

∫ s

s′
A(s′′)ds′′

]
ds′. (2.40)

For future convenience, we also define m1(T ) = m1(0, T ),m2(T ) = m2(0, T ) and

σ2(T ) = σ2(0, T ). Thus the Green’s function is expressed as

Gε(x, y, 0, T ) =
1√

2πεσ2(T )
exp

[
−{x+m2(T )−m1(T )y}2

2εσ2(T )

]
. (2.41)

Remark II.10. We note that

σ2(t, s) = σ2(t, t′)m2
1(t′, s) + σ2(t′, s), for t < t′ < s. (2.42)

m2(t, s) = m2(t, t′)m1(t′, s) +m2(t′, s), for t < t′ < s. (2.43)

It is convenient to use these relations in derivations of some subsequent results.

Next, we consider the problem (2.28), (2.29) in the half space y > 0 with Dirichlet

boundary condition uε(0, t) = 0, t < T . In this case, similar to (2.30), uε(y, t) has

the representation

uε(y, t) =

∫ ∞
0

Gε,D(x, y, t, T )uT (x)dx, y > 0, t < T, (2.44)

where Gε,D is the Dirichlet Green’s function. Similarly, the solution to (2.33), (2.34) in

the half space x > 0 with Dirichlet condition vε(0, t) = 0, t > 0 has the representation

vε(x, T ) =

∫ ∞
0

Gε,D(x, y, 0, T )v0(y)dy, x > 0, T > 0. (2.45)

In terms of probability, Gε,D(·, y, t, T ) is the probability density function of the random

variable Yε(T ) satisfying (2.31) conditioned on inft≤s≤T Yε(s) > 0. In most scenarios,
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there is no explicit formula for Gε,D(x, y, 0, T ). Exceptionally however, when A(·) ≡ 0,

Gε,D(x, y, 0, T ) has an explicit formula by the method of images.

Gε,D(x, y, 0, T ) =
1√

2πεT

{
exp

[
−(x− y + T )2

2εT

]
− exp

[
−2x

ε
− (x+ y − T )2

2εT

]}
(2.46)

Remark II.11. We note that Gε,D(x, y, 0, T ) satisfies the differential equation (2.28),

boundary condition Gε,D(0, y, 0, T ) = 0 and limT→0Gε,D(x, y, 0, T ) = δ(y − x). From

a diffusion process point of view: In Harrison [19, p. 11-12], for a diffusion process

Xt satisfying a SDE dXt = µdt+ σdBt, X0 = 0, by the method of images and change

of measure,

P (Xt ∈ dx,Mt ≤ y) = ft(x, y)dx,

where

ft(x, y) =
1

σ
exp

(
µx

σ2
− µ2t

2σ2

)
gt

(x
σ
,
y

σ

)
,

gt(x, y) =
[
φ(x/

√
t)− φ((x− 2y)/

√
t)
]
· t1/2,

and Mt = max0≤s≤tXs, φ(·) is the probability density function for a standard normal

distribution. By replacing x by y − x, µ by 1, and σ by
√
ε for our case, the formula

for Gε as in (2.46) can be derived.

More generally, the Dirichlet Green’s function for the process dXt = µdt+
√
εdBt

is

Gε,D(x, y, 0, t) =
1√

2πεt

[
exp

(
−(x− y − µt)2

2εt

)
− exp

(
2µx

ε

)
exp

(
−(x+ y + µt)2

2εt

)]
.

(2.47)

From (2.41) with A(·) ≡ 0 and (2.46),

Gε,D(x, y, 0, T )

Gε(x, y, 0, T )
= 1− exp[−2xy/εT ]. (2.48)
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This can be interpreted in terms of conditional probability for the solution Yε(s),

s ≥ 0 of (2.31) with b(·, ·) ≡ −1,

P

(
inf

0≤s≤T
Yε(s) > 0

∣∣∣Yε(0) = y, Yε(T ) = x

)
= 1− exp[−2xy/εT ]. (2.49)

We hope to generalize the result (2.49) to the case b(y, t) = A(t)y − 1 in a way that

is uniform as ε→ 0.

To further characterize Gε,D(x, y, 0, T ) in the case b(y, t) = A(t)y − 1, we would

like to know more about Yε(·) as defined in (2.31). First, we connect it with a classical

control problem

q(x, y, t, T ) = min
y(·)

{
1

2

∫ T

t

[
dy(s)

ds
− b(y(s), s)

]2

ds

∣∣∣∣y(t) = y, y(T ) = x

}
. (2.50)

The Euler-Lagrange equation for the minimizing trajectory y(·) of (2.50) is

d

ds

[
dy(s)

ds
− b(y(s), s)

]
+
∂b

∂y
(y(s), s)

[
dy(s)

ds
− b(y(s), s)

]
= 0, t ≤ s ≤ T, (2.51)

with boundary conditions y(t) = y, y(T ) = x.

In the case b(y, t) = A(t)y − 1, this equation becomes

[
− d2

ds2
+ A′(s) + A(s)2

]
y(s) = A(s), t ≤ s ≤ T, (2.52)

Let v(s) = dy(s)
ds
− b(y(s), s). Taking t = 0, then

dv

ds
+ A(s)v(s) = 0, 0 ≤ s ≤ T,

The solution is

v(s) = v(T ) exp

(∫ T

s

A(s′)ds′
)
. (2.53)
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By solving

dy

ds
− b(y(s), s) = v(s),

we obtain

d

ds

[
exp

(∫ T

s

A(s′)ds′
)
y(s)

]
= exp

(∫ T

s

A(s′)ds′
)

[v(s)− 1].

Since y(T ) = x, y(0) = y, we have

∫ T

0

exp

(∫ T

s

A(s′)ds′
)
v(s)ds = x+m2(T )−m1(T )y.

Together with (2.53), we get

v(T ) =
x+m2(T )−m1(T )y

σ2(T )
.

Thus,

v(s) =
dy(s)

ds
− b(y(s), s) =

x+m2(T )−m1(T )y

σ2(T )
exp

(∫ T

s

A(s′)ds′
)
. (2.54)

Plugging v(s) into (2.50), we obtain the formula for q(x, y, 0, T ),

q(x, y, 0, T ) =
(x+m2(T )−m1(T )y)2

2σ2(T )
. (2.55)

Therefore, the connection between the Green’s function for (2.31) and the control

problem (2.50) in the case b(y, t) = A(t)y − 1 is given by

Gε(x, y, 0, T ) =
1√

2πεσ2(T )
exp[−q(x, y, 0, T )/ε]. (2.56)

The minimizing trajectory y(·) for (2.50) has probabilistic significance as well as

the function q(x, y, t, T ). The probability density function for Yε(s) = z conditioned

68



on Yε(T ) = x is

Gε(z, y, t, s) ·Gε(x, z, s, T )

Gε(x, y, t, T )
=

1√
2πεσ

2(t,s)σ2(s,T )
σ2(t,T )

exp

[
− (z − y(s))2

2εσ
2(t,s)σ2(s,T )
σ2(t,T )

]
,

where

y(s) =
1

σ2(t, T )

[
xm1(s, T )σ2(t, s) + ym1(t, s)σ2(s, T )+

m1(s, T )m2(s, T )σ2(t, s)−m2(t, s)σ2(s, T )
]

(2.57)

Therefore, the solution Yε(s), 0 ≤ s ≤ T of (2.31) conditioned on Yε(0) = y, Yε(T ) = x

is a Gaussian process with mean and variance at s given by

E[Yε(s)|Yε(0) = y, Yε(T ) = x] = y(s), 0 ≤ s ≤ T, (2.58)

V ar[Yε(s)|Yε(0) = y, Yε(T ) = x] = εσ2(0, s)σ2(s, T )/σ2(0, T ), (2.59)

where y(s) is defined in (2.57) with t = 0. Also, by examining

Gε(z1, y, t, s1)Gε(z2, z1, s1, s2)Gε(x, z2, s2, T )/Gε(x, y, t, T ),

we can obtain the covariance of Yε(·) conditioned on Yε(T ) = x and Yε(t) = y:

Covar[Yε(s1), Yε(s2)|Yε(t) = y, Yε(T ) = x] = εΓ(s1, s2), 0 ≤ s1 ≤ s2 ≤ T, (2.60)

where the symmetric function Γ : [t, T ]× [t, T ]→ R is given by the formula

Γ(s1, s2) =
m1(s1, s2)σ2(t, s1)σ2(s2, T )

σ2(t, T )
. (2.61)

We now show the relation between the conditioned process Yε(s) and the control
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problem (2.50). By solving (2.54), we have

y(s) =
x− (x+m2(T )−m1(T )y) · σ

2(s,T )
σ2(T )

+m2(s, T )

m1(s, T )

Since

1− σ2(s, T )/σ2(T )

m1(s, T )
=
σ2(T )− σ2(s, T )

m1(s, T )σ2(T )
=
m1(s, T )σ2(0, s)

σ2(T )
,

m1(T )σ2(s, T )

m1(s, T )σ2(T )
=
m1(0, s)σ2(s, T )

σ2(T )
,

−m2(T ) · σ2(s, T )/σ2(T ) +m2(s, T )

m1(s, T )
=
m2(s, T )(σ2(0, s)m2

1(s, T ) + σ2(s, T ))−m2(T )σ2(s, T )

m1(s, T )σ2(T )

=
m1(s, T )m2(s, T )σ2(0, s)−m2(0, s)σ2(s, T )

σ2(T )
,

(in deriving this identities, we need to use identities (2.42), (2.43)) we have

y(s) = x
m1(s, T )σ2(0, s)

σ2(T )
+y

m1(0, s)σ2(s, T )

σ2(T )
+
m1(s, T )m2(s, T )σ2(0, s)−m2(0, s)σ2(s, T )

σ2(T )
.

(2.62)

Therefore, the optimal trajectory of (2.50) is the same as the expectation of Yε(s)

given Yε(0) = y, Yε(T ) = x in (2.57).

2.3.3 A non-Markovian representation

In this subsection, we derive a non-Markovian representation for the process Yε(·)

with given initial and terminal conditions. First we note that the function Γ as defined

in (2.61) is the Dirichlet Green’s function for the operator on the LHS of (2.52). Thus

taking t = 0, one has

[
− d2

ds2
1

+ A′(s1) + A(s1)2

]
Γ(s1, s2) = δ(s1 − s2), 0 < s1, s2 < T, (2.63)
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and Γ(0, s2) = Γ(T, s2) = 0 for all 0 < s2 < T . By exploiting this fact, we can

construct the non-Markovian representation for Yε(·) that we need.

Remark II.12. To show (2.63), when s1 < s2, (the proof for s1 > s2 is similar so

omitted.)

− d2

ds2
1

Γ(s1, s2) =− σ2(s2, T )

σ2(T )
·
(
d2

ds2
1

m1(s1, s2)σ2(0, s1)

+2
d

ds1

m1(s1, s2)
d

ds1

σ2(0, s1) +
d2

ds2
1

σ2(0, s1)m1(s1, s2)

)
=− σ2(s2, T )

σ2(T )
·
(
(A2(s1)− A′(s1))m1(s1, s2)σ2(0, s1)

− 2A(s1)m1(s1, s2) · (1 + 2A(s1)σ2(0, s1))

+ 2A′(s1)σ2(0, s1)m1(s1, s2) + 2A(s1)(1 + 2A(s1)σ2(0, s1))m1(s1, s2)
)

=− σ2(s2, T )

σ2(T )
· (A2(s1) + A′(s1))m1(s1, s2)σ2(0, s1)

thus [
− d2

ds2
1

+ A′(s1) + A(s1)2

]
Γ(s1, s2) = 0, for s1 < s2.

We notice that ∂Γ(s1, s2)/∂s1 is not continuous around s1 = s2. Actually, when

s1 ↑ s2,

lim
s1→s−2

∂Γ(s1, s2)

∂s1

=
σ2(s, T )

σ2(T )

[
A(s)σ2(0, s) + 1

]
,

where s = s2. when s1 ↓ s2,

lim
s1→s+2

∂Γ(s1, s2)

∂s1

=
σ2(0, s)

σ2(T )

[
A(s)σ2(s, T )−m2

1(s, T ).
]

Thus (
lim
s1→s−2

− lim
s1→s+2

)
∂Γ(s1, s2)

∂s1

=
σ2(s, T ) + σ2(0, s)m2

1(s, T )

σ2(0, T )
= 1,

where the second equality holds due to (2.42). Therefore (2.63) is true.

Next, we try to derive a representation of the conditioned process Yε(·) in terms
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of the white noise process, by obtaining a factorization of Γ corresponding to the

factorization

− d2

ds2
+ A′(s) + A(s)2 =

[
− d

ds
− A(s)

] [
d

ds
− A(s)

]
.

We note that the boundary value problem

[
d

ds
− A(s)

]
u(s) = v(s), 0 < s < T, u(0) = u(T ) = 0, (2.64)

has a solution if and only if the function v : [0, T ] → R satisfies the orthogonality

condition ∫ T

0

v(s)

m1(0, s)
ds = 0. (2.65)

Therefore, in order to solve the boundary value problem

[
− d2

ds2
+ A′(s) + A(s)2

]
u(s) = f(s), 0 < s < T, u(0) = u(T ) = 0, (2.66)

we only need to find the solution u to

[
− d

ds
− A(s)

]
v(s) = f(s), 0 < s < T, (2.67)

which satisfies the orthogonality condition (2.65). The solution to (2.65), (2.67) is

given by an expression

v(s) = K∗f(s) :=

∫ T

0

k(s′, s)f(s′)ds′, 0 ≤ s ≤ T, (2.68)
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where the kernel k : [0, T ]× [0, T ]→ R is defined by

k(s′, s) =
m1(s, s′)σ2(s′, T )

σ2(T )
if s′ > s,

k(s′, s) =
σ2(s′, T )

m1(s′, s)σ2(T )
− 1

m1(s′, s)
if s′ < s. (2.69)

If v satisfies the condition (2.65), then

u(s) = Kv(s) =

∫ T

0

k(s, s′)v(s′)ds′, 0 ≤ s ≤ T, (2.70)

is the solution to (2.64).

Remark II.13. In this remark, we show the results stated above. By solving (2.67),

we obtain

v(s) =
v(0)

m1(0, s)
−
∫ s

0

f(s′)

m1(s′, s)
ds′.

Due to (2.65), we have

v(0) =

∫ T

0

ds

m1(0, s)

∫ s

0

f(s′)ds′

m1(s′, s)

/∫ T

0

1

m2
1(0, s)

ds

=

∫ T

0

ds′f(s′)l(s′, s),

where

l(s′) =

∫ T

s′

ds′′

m1(0, s′′) ·m1(s′, s′′)

/∫ T

0

1

m2
1(0, s′′)

ds′′.

It is easy to show (2.68), (2.69) from here.

As for the expression of u(s), by solving (2.64), we have

u(s) = m1(s)

∫ s

0

v(s′)

m1(s′)
ds′ = −m1(s)

∫ T

s

v(s′)

m1(s′)
ds′.
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Thus, u(s) can as well be expressed as

u(s) =

[(
σ2(s, T )m1(s)

σ2(T )

)∫ s

0

v(s′)

m1(s′)
ds′ −

(
m1(s)− σ2(s, T )m1(s)

σ2(T )

)∫ T

s

v(s′)

m1(s′)
ds′
]

=

∫ s

0

m1(s′, s)σ2(s, T )

σ2(T )
v(s′)ds′ +

∫ T

s

[
σ2(s, T )

m1(s, s′)σ2(T )
− 1

m1(s, s′)

]
v(s′)ds′

=

∫ T

0

k(s, s′)v(s′)ds′.

It follows that the kernel Γ, as an operator, has the factorization Γ = KK∗, where

Kf(s) =

∫ T

0

k(s, s′)f(s′)ds′, K∗f(s) =

∫ T

0

k(s′, s)f(s′)ds′,

thereby

u(s) = Γf(s) =

∫ T

0

Γ(s, s′)f(s′)ds′ =∫ T

0

k(s, s′)

(∫ T

0

k(s′′, s′)f(s′′)ds′′
)
ds′ = KK∗f(s),

and

Γ(s1, s2) =

∫ T

0

k(s1, s)k(s2, s)ds.

Therefore, the conditioned process Yε(·) has the representation

Yε(s) = y(s) +
√
ε

∫ T

0

k(s, s′)dB(s′), 0 ≤ s ≤ T. (2.71)

Remark II.14. It is easy to check that the covariance of this representation (2.71)

is the same as Γ(s1, s2):

E

[√
ε

∫ T

0

k(s1, s
′)dB(s′)

√
ε

∫ T

0

k(s2, s
′)dB(s′)

]
= ε

∫ T

0

k(s1, s
′)k(s2, s

′)ds′ = Γ(s1, s2).
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When A(·) ≡ 0, equation (2.71) yields the familiar representation

Yε(s) =
s

T
x+

(
1− s

T

)
y +
√
ε
[
B(s)− s

T
B(T )

]
, 0 ≤ s ≤ T,

for the Brownian bridge process.

2.3.4 A Markovian representation

We notice that the representation (2.71) of the conditioned process Yε(s) is not

Markovian. In the following, we obtain an alternative representation by considering

a stochastic control problem. Let Yε(·) be the solution to the stochastic differential

equation

dYε(s) = λε(·, s)ds+
√
εdB(s), (2.72)

where λε(·, s) is a non-anticipating function. We consider the problem of minimizing

the cost function given by the formula

qε(x, y, t, T ) = min
λε

E

[
1

2

∫ T

t

[λε(·, s)− b(Yε(s), s)]2ds
∣∣∣Yε(t) = y, Yε(T ) = x

]
. (2.73)

The minimum is to be taken over all non-anticipating λε(·, s), t ≤ s < T , which have

the property that the solution of (2.72) with initial condition Yε(t) = y satisfy the

terminal condition Yε(T ) = x with probability 1. The optimal controller λ∗ for the

problem is given formally by the expression

λε(·, s) = λ∗ε(x, Yε(s), s) = b(Yε(s), s)−
∂qε
∂y

(x, Yε(s), s),
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where qε satisfies the HJB equation

0 = min
λ

[
1

2
(λ− b(y, t))2 +

∂qε
∂y

λ+
ε

2

∂2qε
∂y2

+
∂qε
∂t

]
=
ε

2

∂2qε
∂y2
− 1

2

(
∂qε
∂y

)2

+ b(y, t)
∂qε
∂y

+
∂qε
∂t
.

In the classical case, ε = 0, the solution to (2.72), (2.73) is the same as the variational

problem (2.50). When b(y, t) is linear in y, the problem is of linear-quadratic type

and the difference between the cost functions for the classical and stochastic control

problems is independent of y, therefore,

λ∗ε(x, y, t) = b(y, t)− ∂q(x, y, t, T )

∂y
= A(t)y − 1− ∂

∂y

[x+m2(t, T )−m1(t, T )y]2

2σ2(t, T )
.

(2.74)

It is easy to see that if we solve the SDE (2.72) with controller given by (2.74) and

conditioned on Yε(t) = y, then Yε(T ) = x with probability 1. In fact, this Markovian

process Yε(s), t ≤ s ≤ T has the same distribution as the process Yε(s), t ≤ s ≤ T ,

satisfying the SDE (2.31) conditioned on Yε(t) = y, Yε(T ) = x.

Remark II.15. In this remark, we justify the statement in the end of the previous

paragraph. Substituting λε(·, s) by the optimal choice in (2.74), we have the SDE for

Yε(s) as

dYε(s)+

[
m2

1(s, T )

σ2(s, T )
− A(s)

]
Yε(s)ds =

(
−1 +

m1(s, T )(x+m2(s, T ))

σ2(s, T )

)
ds+
√
εdB(s).

(2.75)

Multiplying both sides by the integral factor m1(s, T )/σ2(s, T ), it follows that

d

(
m1(s, T )

σ2(s, T )
Yε

)
=
m1(s, T )

σ2(s, T )

(
−1 +

m1(s, T )(x+m2(s, T ))

σ2(s, T )

)
ds+

√
ε
m1(s, T )

σ2(s, T )
dB.
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Since

∫ s

0

m1(s′, T )

σ2(s′, T )

(
−1 +

m1(s′, T )(x+m2(s′, T ))

σ2(s′, T )

)
ds′ =

x

[
1

σ2(s, T )
− 1

σ2(T )

]
− m2(0, T )

σ2(0, T )
+
m2(s, T )

σ2(s, T )
,

the mean of Yε(s) is2

E[Yε(s)] = x
σ2(0, s)m1(s, T )

σ2(T )
+ y

m1(0, s)σ2(s, T )

σ2(T )
+

1

σ2(T )

[
m1(s, T )m2(s, T )σ2(0, s)−m2(0, s)σ2(s, T )

]
,

the same as (2.57). We can see that the variance of Yε(s) is

ε

∫ s

0

m2
1(s′, T )

[σ2(s′, T )]2
ds′ ×

[
σ2(s, T )

m1(s, T )

]2

= ε
1

σ2(s′, T )

∣∣∣s
0
×
[
σ2(s, T )

m1(s, T )

]2

= ε
σ2(0, s)σ2(s, T )

σ2(T )
,

the same as (2.59). As for the covariance, if 0 ≤ s1 ≤ s2 ≤ T

E[(Yε(s1)− y(s1))(Yε(s2)− y(s2)] = ε
σ2(s1, T )σ2(s2, T )

m1(s1, T )m1(s2, T

∫ s1

0

[
m1(s′, T )

σ2(s′, T )

]2

ds′

= ε
σ2(s1, T )σ2(s2, T )

m1(s1, T )m1(s2, T

[
− 1

σ2(s′, T )

] ∣∣∣∣∣
s1

0

= ε
σ2(s1, T )σ2(s2, T )

m1(s1, T )m1(s2, T

[
1

σ2(T )
− 1

σ2(s1, T )

]
= ε

σ2(0, s1)m1(s1, s2)σ2(s2, T )

σ2(T )
, (2.76)

which is the same as εΓ(s1, s2), Γ(s1, s2) being defined in (2.61). In the last step of

(2.76), we use (2.42). Therefore, the Markovian process satisfying (2.75) is the same

as the solution Yε(s), 0 ≤ s ≤ T of (2.31) conditioned on Yε(0) = y, Yε(T ) = x with

b(y, s) = A(s)y − 1.

Remark II.16. We note that qε is logarithmically divergent at s = T with the optimal

2It should be noticed that m2(s, T )−m2(0, T ) = −m1(s, T )m2(0, s).
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controller: With λ∗ε chose in (2.74), the function qε(x, y, t, T ) is approximately

E

[
1

2

∫ T

t

(
x− Yε(s)
T − s

)2

ds

]
. (2.77)

Some other terms are neglected for the purpose of demonstration. When s is close to

T , Yε(s) is governed by an approximated SDE

dYε(s) =
x− Yε(s)
T − s

ds+
√
εdB(s),

thus

d

[
Yε(s)− x
T − s

]
=

√
ε

T − s
dB(s),

which further implies

Yε(s)− x
T − s

=
y − x
T

+
√
ε

∫ s

0

1

T − s
dB(s).

Therefore, it follows (2.77) that

qε(x, y, t, T ) ≈ ε

2

∫ T

t

E

(∫ s

0

1

T − s′
dB(s′)

)2

ds =
ε

2

∫ T

t

(
1

T − s
− 1

T

)
ds.

We notice that
∫ T
t

1/(T − s)ds diverges logarithmically. Thus qε is not well-defined

for all when t = T . However, ∂qε/∂y always exists and is continuous.

Solving (2.72) with drift (2.74) and Yε(0) = y, then if t = 0 (2.71) holds with

another kernel k given by

k(s, s′) =
m1(s′, s)σ2(s, T )

σ2(s′, T )
if s′ < s, k(s, s′) = 0 if s′ > s. (2.78)

This kernel corresponds to the Cholesky factorization Γ = KK∗ for the kernel Γ.
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In the case A(·) ≡ 0 equation (2.71) yields the Markovian representation

Yε(s) =
s

T
x+

(
1− s

T

)
y +
√
ε(T − s)

∫ s

0

dB(s′)

T − s′
, 0 ≤ s ≤ T, (2.79)

for the Brownian bridge process.

With the help of the Markovian representation (2.72), we can express the ratio

in (2.48) of Green’s functions for the linear case b(y, t) = A(t)y − 1 in terms of the

solution to a partial differential equation. We assume x > 0 and define

u(y, t) = P

(
inf

t≤s≤T
Yε(s) > 0

∣∣∣Yε(t) = y

)
, y > 0, t < T, (2.80)

where Yε(·) is the solution to the SDE (2.72) with drift (2.74). Then u(y, t) is the

solution to the PDE

∂u(y, t)

∂t
+ λ∗ε(x, y, t)

∂u(y, t)

∂y
+
ε

2

∂2u(y, t)

∂y2
= 0, y > 0, t < T, (2.81)

with boundary and terminal conditions

u(0, t) = 0 for t < T, lim
t→T

u(y, t) = 1 for y > 0. (2.82)

In the case A(·) ≡ 0, the PDE (2.81) becomes

∂u(y, t)

∂t
+

(
x− y
T − t

)
∂u(y, t)

∂y
+
ε

2

∂2u(y, t)

∂y2
= 0, y > 0, t < T. (2.83)

It can easily be shown that

u(y, t) = 1− exp

[
− 2xy

ε(T − t)

]
, t < T, y > 0

is the solution to (2.82), (2.83). We note that when t = 0, the function above is the
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same as (2.48).

Remark II.17. A drawback of the Markovian representation is that the contribution

from the BM part is infinite towards the end t = T . (See (2.79).)

2.3.5 Estimation on the Dirichlet Green’s function

The Dirichlet Green’s function has a crucial role in deriving the classic limit theo-

rem. In this section, we study the relationship between the full space Green’s function

(without a boundary) and the Dirichlet Green’s function in a more general setting.

We know that the ratio of the Dirichlet Green’s function to the full space Green’s

function, Gε,D(x, y, 0, T )/Gε(x, y, 0, T ), is the same as the probability

P

(
inf

0≤s≤T
Yε(s) > 0

∣∣∣∣Yε(0) = y, Yε(T ) = x

)
,

which has an explicit expression when A(·) ≡ 0. (See (2.48), (2.49).) We will show

similar results for the non-zero case of A(·) when ε→ 0.

Proposition II.18. Assume b(y, t) = A(t)y − 1 where (2.27) holds and the function

A(·) is non-negative. Then for λ, y, T > 0 the ratio of the Dirichlet to full space

Green’s function satisfies the limit

lim
ε→0

Gε,D(λε, y, 0, T )

Gε(λε, y, 0, T )
= 1− exp

[
−2λ

{
1− m2(T )

σ2(T )
+
m1(T )y

σ2(T )

}]
. (2.84)

Remark II.19. We note that for a process

dZε(t) = µdt+
√
εdB(t), Zε(0) = λε, (2.85)

with µ > 0, we have

P
(

inf
t>0

Zε(t) < 0
)

= e−2λµ 3. (2.86)

3Show that P (inft>0 Zε(t) < 0) = e−2λµ: Suppose that f(x) = P (inft>0 Zε(t) > 0|Zε(0) = λε).
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The right hand side of (2.84) behaves like the probability of inft>0 Zε(t) being positive

with µ = 1−m2(T )/σ2(T )+m1(T )y/σ2(T ). The ratio on the left hand side of (2.84),

Gε,D(λε, y, 0, T )/Gε(λε, y, 0, T ), is the probability for Yε(s) to be positive over [0, T ],

where Yε(s) is defined as in (2.71) with x in (2.57) being λε.

Since Yε(s) is most likely to exit through the boundary 0 at a time T − O(ε)4, as

ε → 0, only the drift of Yε(s) close to the time point T matters to the probability

for Yε(s) > 0. This drift is 1 − m2(T )/σ2(T ) + m1(T )y/σ2(T ), which intuitively

explains why the µ in (2.86) is substituted by this specific value. We note that under

the assumption that A(·) ≥ 0, this drift is positive. Actually, it can be easily shown

by noting

m2(T )

σ2(T )
=

∫ T
0

exp(
∫ T
s
A(s′)ds′)ds∫ T

0
exp(

∫ T
s

2A(s′)ds′)ds
≤ 1.

Proof of Proposition II.18. According to (2.71), let

Yε(s) = y(s) +
√
ε

[
m1(s)σ2(s, T )

σ2(T )

∫ T

0

dB(s′)

m1(s′)
−m1(s)

∫ T

s

dB(s′)

m1(s′)

]
, (2.87)

with Yε(T ) = λε. In order to find limε→0 P (inf0≤s≤T Yε(s) > 0), we derive both upper

and lower bounds for this probability.

Before the analysis on the two bounds, we first have a close look at the derivative

of the mean of the random process Yε(s), y(s). Following (2.57), we have

y′(s) =
1

σ2(T )

{
λε ·m1(s, T )(1 + A(s)σ2(0, s))

+ y ·m1(0, s)[A(s)σ2(s, T )−m2
1(s, T )]

+m1(s, T )m2(s, T )(1 + A(s)σ2(0, s))−m2
1(s, T )σ2(0, s))

− (1 + A(s)m2(0, s))σ2(s, T ) +m2(0, s)m2
1(s, T )

}
. (2.88)

Since dZε(t) = µdt+
√
εdB(t), f(x) satisfies a differential equation µf ′(x)+εf ′′(x)/2 = 0, f(0) = 1.

The solution of this differential equation with condition limx→∞ f(x) = 0 is e−2λµ.
4 Suppose the exiting time is τ , then µτ+

√
εdB(τ) = −λε. Since B(τ) ∼

√
τ , as ε→ 0, τ = O(ε).
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At s = T ,

y′(T ) = O(ε)− 1 +
m2(T )

σ2(T )
− m1(T )y

σ2(T )
. (2.89)

For the upper bound, as long as aε < T , where a is a variable relying on ε to be

specified later, we have

P

(
inf

0≤s≤T
Yε(s) > 0

)
≤ P

(
inf

0≤t≤aε
Yε(T − t) > 0

)
= P

(
inf

0≤t≤aε
[Zε(t) + Z̃ε(t)] > 0

)
,

(2.90)

where Zε(t) is a stochastic process adopting a fixed drift which is the same as −y′(T )

without the ε-related part:

dZε(t) = µdt+
√
εdB(t), Zε(0) = λε, (2.91)

where µ = 1−m2(T )/σ2(T ) +m1(T )y/σ2(T ), and from (2.87),

Z̃ε(t) = Yε(T − t)− Zε(t) = y(T − t)− y(T ) + y′(T )t

+
√
ε

[
m1(T − t)σ2(T − t, T )

σ2(T )

∫ T

0

dB(s′)

m1(s′)
+

∫ T

T−t

(
1− m1(T − t)

m1(s′)

)
dB(s′)

]
. (2.92)

Here Zε(t) is the “linearization” of Yε(T − t) and Z̃ε(t) is the “error” of the approxi-

mation.

We use the inequality

P

(
inf

0≤t≤aε
[Zε(t) + Z̃ε(t)] > 0

)
≤ P

(
inf

0≤t≤aε
Zε(t) > −bλε

)
+P

(
sup

0≤t≤aε
Z̃ε(t) > bλε

)
,

(2.93)

which holds true for any b > 05.

Since Zε(t) has a constant drift, we are able to estimate the first term on the right

5 Similarly to a, b will be specifically chosen later. We notice that inf0≤t≤aε Zε(t) is compared
with bλε since the change of Zε(t) over the interval [0, aε] is of the scale O(ε).
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hand side of (2.93) by using the method of images6:

P

(
inf

0≤t≤aε
Zε(t) < −bλε

)
= 1−

∫ ∞
−bλε

P

(
Zε(t) ∈ dy, inf

0≤t≤aε
Zε(t) > −bλε

)
= e−2µ(1+b)λ 1√

2π

∫ ∞
[(1+b)λ−µa]/

√
a

e−z
2/2dz +

1√
2π

∫ −[(1+b)λ+µa]/
√
a

−∞
e−z

2/2dz. (2.94)

From this equation, we expect the first term gives the main contribution to the bound.

We will later choose a and b in a way such that as ε→ 0, the right hand side of (2.94)

converges to exp{−2µλ}.

Next we estimate the second term on the right hand side of (2.93). Intuitively, we

expect Z̃ε(aε) to be smaller than the scale O(ε). Now we analyze the components of

Z̃ε(t) in (2.92) one by one.

1. Based on Taylor expansion,

sup
0≤t≤aε

|y(T − t)− y(T ) + y′(T )t| ≤ 1

2
sup

0≤t≤aε
|y′′(t)|a2ε2, 0 < aε ≤ T. (2.95)

Due to the expression of y(s) in (2.57), there exists C constant only depending

on A, T , such that y′′(t) ≤ C[λε+ y + 1]. Therefore

sup
0≤t≤aε

|y(T − t)− y(T ) + y′(T )t| ≤ C[λε+ y + 1]a2ε2, 0 < aε ≤ T. (2.96)

As long as bλε converges to 0 slower than O(ε2), the contribution of this term

to the probability P
(

sup0≤t≤aε Z̃ε(t) > bλε
)

is negligible, i.e., when ε is small

enough,

P (|y(T − t)− y(T ) + y′(T )t| > bλε/4) = 0. (2.97)

6 See Harrison [19, page 14 (11)]. For a process dXt = µdt + σdBt, X0 = 0, P (T (y) > t) =
Φ
(
y−µt
σt1/2

)
− e2µy/σ2

Φ
(−y−µt
σt1/2

)
, where T (y) is the hitting time of y > 0. Here we only need to replace

µ by −µ, y by (b+ 1)λε, and t by aε to obtain the equation.
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2. The second term is bounded by

sup
0≤t≤aε

∣∣∣∣√εm1(T − t)σ2(T − t, T )

σ2(T )

∫ T

0

dB(s′)

m1(s′)

∣∣∣∣ .
We notice that m1(T − t) and σ2(T ) can both be bounded by constants, and

σ2(T − t, T ) =
∫ T
T−t exp

(∫ T
s

2A(s′)ds′
)
ds ≤ exp(2AT )aε. Thus

sup
0≤t≤aε

∣∣∣∣√εm1(T − t)σ2(T − t, T )

σ2(T )

∫ T

0

dB(s′)

m1(s′)

∣∣∣∣ ≤ Caε3/2

∣∣∣∣∫ T

0

dB(s′)

m1(s′)

∣∣∣∣ , (2.98)

where C only depends on A and T . This term converges to 0 in the order

O(ε3/2).

To more rigorously demonstrate this, we use Martingale properties. If g :

(−∞, T )→ R is a continuous function we define X(t) , t ≥ 0, by

X(t) =

∫ T

T−t
g(s)dB(s). (2.99)

Then for any θ ∈ R,

Xθ(t) = exp

[
θX(t)− θ2

2

∫ T

T−t
ds g(s)2

]
is an exponential Martingale

and E[Xθ(t)] = 1. (2.100)

According to the Markov inequality,

P (|X(T )| > M) = 2P (X(T ) > M) = 2P

(
Xθ(T ) > exp

[
θM − θ2

2

∫ T

0

g(s)2ds

])
≤ 2 exp

[
−θM +

θ2

2

∫ T

0

g(s)2ds

]
, for θ > 0. (2.101)

The fact that E[Xθ(T )] = 1 is used in the inequality above. By choosing the
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θ to minimize the right hand side7 of the inequality (2.101), and substituting

g(s) by 1/m1(s), we obtain

P

(
aε3/2

∣∣∣∣∫ T

0

dB(s′)

m1(s′)

∣∣∣∣ > bλε/4

)
≤ 2 exp[−Cb2λ2/a2ε], (2.102)

where C > 0 is a constant depending only on A, T . We note here the choice of

a, b needs to guarantee b2/a2ε→∞ as ε→ 0.

3. The third term is bounded as 8

sup
0≤t≤aε

∣∣∣∣√ε∫ T

T−t

(
1− m1(T − t)

m1(s′)

)
dB(s′)

∣∣∣∣ ≤ sup
0≤t≤aε

∣∣∣∣√ε∫ T

T−t

(
1− m1(T )

m1(s′)

)
dB(s′)

∣∣∣∣
+ Caε3/2 sup

0≤t≤aε

∣∣∣∣∫ T

T−t

dB(s′)

m1(s′)

∣∣∣∣ , (2.103)

where C depends only on A, T . To estimate the two terms on the right of

(2.103), we define X(t) and Xθ(t) the same as (2.99) and (2.100). However,

instead of using Markov inequality, we use Doob’s inequality here (See [25,

page 13]). For any θ > 0, we have

P

(
sup

0≤t≤t0
X(t) > M

)
≤ P

(
sup

0≤t≤t0
Xθ(t) > exp

[
θM − θ2

2

∫ T

T−t0
g(s)2ds

])
≤ exp

[
−θM +

θ2

2

∫ T

T−t0
g(s)2ds

]
. (2.104)

Optimizing the term on the right hand side of the inequality above with respect

7By choosing θ = M/
∫ T

0
g(s)2ds,

exp

[
−θM +

θ2

2

∫ T

0

g(s)2ds

]
= exp

[
− M2

2
∫ T

0
g(s)2ds

]
.

8We note that the two terms on the right hand side of (2.103) are both martingales.
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to θ we conclude that

P

(
sup

0≤t≤t0
|X(t)| > M

)
≤ 2 exp

[
−M2

/
2

∫ T

T−t0
g(s)2ds

]
. (2.105)

Hence we have for the first term on the right hand side of (2.103) that

P

(
sup

0≤t≤aε

∣∣∣∣√ε∫ T

T−t

(
1− m1(T )

m1(s′)

)
dB(s′)

∣∣∣∣ > bλε/4

)
≤ 2 exp[−C1b

2λ2/a3ε2] 9,

(2.106)

where C1 > 0 is a constant depending only on A, T . Similarly we have

P

(
aε3/2 sup

0≤t≤aε

∣∣∣∣∫ T

T−t

dB(s′)

m1(s′)

∣∣∣∣ > bλε/4

)
≤ 2 exp[−C2b

2λ2/a3ε2], (2.107)

where the constant C2 > 0 also depends only on A and T .

We now choose a = ε−α, b = εβ for some α, β > 0. Since µ > 0 it follows from

(2.94) that the first term on the right hand side of (2.93) converges to 1 − e−2λµ as

ε → 0. We also see from the estimates of the previous paragraph that the second

term on the right hand side of (2.93) converges to 0 as ε→ 0 provided 3α + 2β < 2

and 2α + 2β < 1. We have therefore shown that lim supε→0 P (inf0≤s≤T Yε(s) > 0) is

bounded above by the right hand side of (2.84).

To obtain the corresponding lower bound we use the inequality

P

(
inf

0≤s≤T
Yε(s) > 0

)
≥ P

(
inf

T−aε≤s≤T
Yε(s) > 0

)
− P

(
inf

0≤s≤T−aε
Yε(s) < 0

)
10.

(2.108)

9Need to use the fact that m1(T )/m1(s)− 1 < Caε
10Since if infT−aε≤s≤T Yε(s) > 0 then either inf0≤s≤T Yε(s) > 0 or inf0≤s≤T−aε Yε(s) < 0.

86



Next, we use an inequality similar to (2.93):

P

(
inf

T−aε≤s≤T
Yε(s) > 0

)
≥ P

(
inf

0≤t≤aε
Zε(t) > bλε

)
− P

(
inf

0≤t≤aε
Z̃ε(t) < −bλε

)
11.

(2.109)

Similar to previously, we can choose a = ε−α, b = εβ with 3α+2β < 2 and 2α+2β < 1

to conclude that lim infε→0 P (infT−aε≤s≤T Yε(s) > 0) is bounded below by the right

hand side of (2.84).

Next, we would like to show that the second term on the right hand side (without

the negative sign) of (2.108) vanishes as ε→ 0. Since A(·) is non-negative bounded,

there is a positive constant C depending only on A, T such that the function y(s) of

(2.57) is bounded below by a linear function: y(s) ≥ C(T − s)y for 0 ≤ s ≤ T . We

can see this by observing that when A(·) ≥ 0,

σ2(0, s) ≥ m2(0, s) and m1(s, T )m2(s, T ) ≥ σ2(s, T ),

thus in (2.57),

m1(s, T )m2(s, T )σ2(0, s)−m2(0, s)σ2(s, T ) ≥ 0.

Therefore

y(s) ≥ m1(0, s)σ2(s, T )

σ2(T )
y ≥ C(T − s)y. (2.110)

Since the expression of Yε(s) in (2.87) has two stochastic components, the absolute

value of one of them will have a large realization if inf0≤s≤T−ε1−α Yε(s) < 0. Hence

11Since if inf0≤t≤aε Zε(t) > bλε, then either infT−aε≤s≤T Yε(s) > 0 or inf0≤t≤aε Z̃ε(t) < −bλε.
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there is a positive constant c depending only on A, T such that12

P

(
inf

0≤s≤T−ε1−α
Yε(s) < 0

)
≤ P

(∣∣∣∣∫ T

0

dB(s′)

m1(s′)

∣∣∣∣ > cy√
ε

)
+ P

(
sup

ε1−α≤t≤T

∣∣∣∣1t
∫ T

T−t

dB(s′)

m1(s′)

∣∣∣∣ > cy√
ε

)
. (2.111)

The first term on the right hand side can be bounded similarly to (2.102). For the

second term, since the integral has t in its integral limit, which changes its variance,

we split the interval [ε1−α ≤ t ≤ T ] into many small pieces. For any stochastic process

X(t),

P

(
sup

ε1−α≤t≤T
|X(t)| > cy/

√
ε

)
≤
∑
k≥1

P

(
sup

kε1−α≤t≤(k+1)ε1−α
|X(t)| > cy/

√
ε

)
. (2.112)

By using Doob’s inequality, similarly to (2.105), we see that for k ≥ 1,

P

(
sup

kε1−α≤t≤(k+1)ε1−α

∣∣∣∣1t
∫ T

T−t

dB(s′)

m1(s′)

∣∣∣∣ > cy√
ε

)
≤ 2 exp

[
−c1ky

2

εα

]
(2.113)

where c1 > 0 depends only on A, T . Therefore

P

(
sup

ε1−α≤t≤T

∣∣∣∣1t
∫ T

T−t

dB(s′)

m1(s′)

∣∣∣∣ > cy√
ε

)
≤ 2 exp [−c1y

2/εα]

1− exp [−c1y2/εα]
, (2.114)

which converges to 0 as ε → 0. Hence lim infε→0 P (inf0≤s≤T Yε(s) > 0) is bounded

below by the right hand side of (2.84). Hitherto, we have finished the proof of this

proposition.

Next we would like to derive an estimation on the ratioGε,D(λε, y, 0, T )/Gε(λε, y, 0, T )

with ε 6= 0 which is uniform as λ→ 0.

Lemma II.20. Assume the function A(·) is non-negative and that 0 < λ ≤ 1, 0 <

12Notice that m1(s), σ2(T ) behaves like constant, σ2(s, T ) like (T − s). Also we have substituted
a = ε−α into the equation.
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ε ≤ T , y > 0. Let Γ : R+ ×R+ → R+ be the function Γ(a, b) = 1 if b > a−1/4 and

otherwise Γ(a, b) = a1/8. Then there is a constant C depending only on AT such that

Gε,D(λε, y, 0, T )

Gε(λε, y, 0, T )
≤

1− exp

[
−2λ

{
1− m2(T )

σ2(T )
+
m1(T )y

σ2(T )

}]
+ CλΓ

( ε
T
,
y

T

) [
1 +

y

T

]
. (2.115)

Remark II.21. Intuitively, in (2.115), the first part on the right hand side is the

same as the limit in (2.84). The second part mainly depends on ε and y, since larger

values of ε and y will pull the trajectory of Yε(s) away from the boundary 0, thus

leading to a higher probability for inf0≤s≤T Yε(s) > 0.

Proof of Lemma II.20. The process Yε(s) we are considering is given in equation

(2.87). We have observed from Proposition II.18, the derivative of y(s) towards

the end s = T determines the main behavior of P (inf0≤s≤T Yε(s) > 0). It will be

convenient to make a change of variable so that we work on a process with time 0

being the point we mainly focus on. Also, we would like to express
∫ T
s

dB(s′)
m1(s′)

as a

Brownian motion. In order to serve this purpose, we make a change of variable and

define a variable t such that s(t) satisfies

ds

dt
= −

[
m1(s)

m1(T )

]2

, s(0) = T. (2.116)

We note that when t = 0, s = T . also s ' T − t if t is small in the sense that

limt→0(T − s)/t = 1 13. By solving the differential equation (2.116), we can obtain a

13It is obvious that s(t) is a decreasing function of t. Since ds/dt = − exp
(
−
∫ T
s

2A(s′)ds′
)
> −1

and − exp
(
−
∫ T
s

2A(s′)ds′
)
< − exp (−2A(T − s)) < −(1− 2A(T − s)), therefore 1− 2A(T − s) <

d(T − s)/dt < 1, which implies (1− e−2At)/2A < T − s < t.
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time point T̃ = σ2(0, T ) for the variable t such that s(T̃ ) = 0. Also, we have

m1(T )

∫ T

s

dB(s′)

m1(s′)
=

∫ t

0

dB̃(t′)14, (2.117)

where B̃(·) is a Brownian motion. Therefore from (2.86) we can define Ỹε(t) =

Yε(s(t)),

Ỹε(t) = ỹ(t) +
√
ε

[
m1(s)σ2(s, T )

m1(T )σ2(T )

∫ T̃

0

dB̃(t′)− m1(s)

m1(T )

∫ t

0

dB̃(t′)

]
, 15 (2.118)

where ỹ(t) = y(s(t)). From now on, we basically work on Ỹε(t).

Since Ỹε(t) tends to exit through the boundary 0 in a time of order O(ε), we

consider any a for which 0 < aε ≤ T̃ and observe that

P

(
inf

0≤s≤T
Yε(s) > 0

)
≤ P

(
inf

0≤t≤aε
Ỹε(t) > 0

)
. (2.119)

The magnitude of Ỹε(t) depends on both the deterministic part ỹ(t) and the stochastic

part. For different realization of the stochastic part, the estimation on the probability

above is different. For any M > 0,

P

(
inf

0≤t≤aε
Ỹε(t) > 0

)
= P

(
inf

0≤t≤aε
Ỹε(t) > 0; sup

0≤t≤aε

∣∣∣∣∫ t

0

dB̃(t′)

∣∣∣∣ ≤M

)
+ P

(
inf

0≤t≤aε
Ỹε(t) > 0; sup

0≤t≤aε

∣∣∣∣∫ t

0

dB̃(t′)

∣∣∣∣ > M

)
. (2.120)

For the first term on the right hand side of (2.120), we compare Ỹε(t) with a process

Ỹ0,ε(t) which is defined as

Ỹ0,ε(t) = ỹ(t) +
C
√
εMt

T
+
√
ε
m1(s)σ2(s, T )

m1(T )σ2(T )

∫ T̃

aε

dB̃(t′)−
√
ε
m1(s)

m1(T )

∫ t

0

dB̃(t′),

(2.121)

14 dB̃(t) can be defined as dB̃(t) = m1(T )dB(s)/m1(s).
15In this equation and below, s can be seen as s(t).
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where C depends only on AT . To derive C, we have

√
ε
m1(s)σ2(s, T )

m1(T )σ2(T )

∫ aε

0

dB̃(t′) <
√
εM

∫ T
s
m2

1(s′, T )ds′∫ T
0
m2

1(s′, T )ds′
<
√
εM

t · exp[2AT ]

T
.

The C in (2.121) can be chosen as exp[2AT ]. It is easy to see that Ỹ0,ε(t) ≥ Ỹε(t) for

0 ≤ t ≤ aε under the condition that sup0≤t≤aε

∣∣∣∫ t0 dB̃(t′)
∣∣∣ ≤M . Therefore,

P

(
inf

0≤t≤aε
Ỹε(t) > 0; sup

0≤t≤aε

∣∣∣∣∫ t

0

dB̃(t′)

∣∣∣∣ ≤M

)
≤ P

(
inf

0≤t≤aε
Ỹ0,ε(t) > 0

)
(2.122)

We would like to define a process Zε(t) as in (2.91),

dZε(t) = µdt−
√
εdB̃(t), Zε(0) = λε[1 + Caε/T ], (2.123)

with µ = µrand a well-chosen constant drift such that m1(s)Zε(t)/m1(T ) ≥ Ỹ0,ε(t)

over 0 ≤ t ≤ aε 16. To do this, we need to estimate the derivative of ỹ(t) over the

interval [0, aε]. At t = 0, dỹ(t)/dt = O(ε) + 1 − m2(T )
σ2(T )

+ m1(T )y
σ2(T )

; for 0 ≤ t ≤ aε,

according to equation (2.88),

dỹ

dt
< 1− m2(T )

σ2(T )
+
m1(T )y

σ2(T )
+
Caε

T

[
1 +

y

T

]
+
Cλε

T
17. (2.124)

Therefore, we can choose µrand as

µrand = 1− m2(T )

σ2(T )
+
m1(T )y

σ2(T )
+
Caε

T

[
1 +

y

T

]
+
Cλε

T
+
C
√
ε

T

[
M +

∣∣∣∣∣
∫ T̃

aε

dB̃(t′)

∣∣∣∣∣
]
,

(2.125)

16 Since m1(T )/m1(s) ≤ 1 + Caε/T , we set Zε(0) = λε[1 + Caε/T ].
17
∣∣λε ·m1(s, T )(1 +A(s)σ2(0, s))/σ2(T )

∣∣ ≤ λε exp(AT ) · (1 + A · C1T )/C2T ≤ Cλε/T ,
where C1, C2 and C are constants depending only on AT .

∣∣y ·m1(0, s)A(s)σ2(s, T )/σ2(T )
∣∣ ≤

Cy exp(AT )Aaε/T ≤ Cyaε/T 2, where C is a constant depending only on AT .∣∣m1(s, T )m2(s, T )(1 +A(s)σ2(0, s))/σ2(T )
∣∣ ≤ Caε/T for C being a constant depending only

on AT .
∣∣−(1 +A(s)m2(0, s))σ2(s, T )/σ2(T )

∣∣ ≤ Caε/T for C being a constant depending only on
AT .

91



in which C is a constant only depending on AT such that m1(s)Zε(t)/m1(T ) ≥

Ỹ0,ε(t)
18. Therefore,

P

(
inf

0≤t≤aε
Ỹ0,ε(t) > 0

)
= P

(
inf

0≤t≤aε

m1(T )

m1(s)
Ỹ0,ε(t) > 0

)
≤ E

[
P

(
inf

0≤t≤aε
Zε(t) > 0

∣∣∣µ = µrand, Zε(0) = λε[1 + Caε/T ]

)]
. (2.126)

To bound the right hand side of (2.126), we use an identity

P

(
inf

0≤t≤a′ε
Zε(t) > 0

∣∣∣∣Zε(0) = λ′ε

)
=

{
1− e−2µλ′

} 1√
2π

∫ ∞
[λ′−µa′]/

√
a′
e−z

2/2dz +
1√
2π

∫ [λ′−µa′]/
√
a′

[−λ′−µa′]/
√
a′
e−z

2/2dz. (2.127)

From this identity, we can obtain an upper bound

P

(
inf

0≤t≤a′ε
Zε(t) > 0

∣∣∣∣Zε(0) = λ′ε

)
≤ 1− e−2µλ′ +

2λ′√
2πa′

. (2.128)

This bound plays an important role in deriving the last term on the right hand

side of (2.115). Using (2.128), we estimate the right hand side of (2.126) when

a = min
[
(T/ε)α, T̃ /ε

]
for some α satisfying 0 < α < 1 19. In that case λ′ = λ[1 +

Caε/T ] ≤ λ[1 + C] for some constant C depending only on AT . Taking M = C1

√
T

in (2.125) where C1 is a constant depending only on AT , then we have for 0 < λ ≤ 1,

18 Note that

m1(T )
m1(s)

(
1− m2(T )

σ2(T )
+
m1(T )y
σ2(T )

)
≤ (1 + Caε/T ) ·

(
1− m2(T )

σ2(T )
+
m1(T )y
σ2(T )

)
≤
(

1− m2(T )
σ2(T )

+
m1(T )y
σ2(T )

)
+
Caε

T

[
1 +

y

T

]
.

19 With a defined in this way, aε→ 0 as ε→ 0, but aε converges to 0 slower than ε.
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0 < ε ≤ T ,

P

(
inf

0≤t≤aε
Ỹ0,ε(t) > 0

)
≤ E

[
1− e−2µrandλ(1+Caε/T ) +

2λ(1 + C)√
2πa

]
≤ 1− exp

[
−2λ

{
1− m2(T )

σ2(T )
+
m1(T )y

σ2(T )

}]
+ C2λ

[( ε
T

)1−α (
1 +

y

T

)
+
( ε
T

)1/2

+
( ε
T

)α/2]
≤ 1− exp

[
−2λ

{
1− m2(T )

σ2(T )
+
m1(T )y

σ2(T )

}]
+ C3λ

[( ε
T

)1−α (
1 +

y

T

)
+
( ε
T

)α/2]
.

(2.129)

In this inequality,
(
ε
T

)1−α (
1 + y

T

)
+
(
ε
T

)1/2
comes from e−2µrandλ(1+Caε/T ),

(
ε
T

)α/2
comes

from 2λ(1+C)√
2πa

, and the third inequality is true since (ε/T )1/2 can be absorbed by

(ε/T )α/2 20. So far, we have finished the estimation of the first term on the right

hand side of (2.120).

Next we estimate the second term. To do this, we introduce the stopping time τ

defined by

τ = inf

{
t < T̃ :

∣∣∣∣∫ t

0

dB̃(t′)

∣∣∣∣ > M

}
. (2.130)

Hence the second term is bounded above by P
(

inf0≤t≤τ Ỹε(t) > 0; τ < aε
)

. To es-

timate the probability, we usually need to compare the process with other ones of

constant drifts. From (2.118), we see that the random drift of Ỹε(t) is impacted by

the realization of the integral
∫ T̃

0
dB̃(t′). By using this as an indicator, we compare

Ỹε(t) with different simpler stochastic processes. Intuitively, the larger
∫ T̃

0
dB̃(t′) is,

the larger the probability for the compared process to be positive, but at the same

20(ε/T )1/2 = o(ε/T )α/2 as ε→ 0.
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time, the probability for a large realization of
∫ T̃

0
dB̃(t′) is small.

P

(
inf

0≤t≤τ
Ỹε(t) > 0; τ < aε

)
=

∞∑
n=1

P

(
inf

0≤t≤τ
Ỹε(t) > 0; τ < aε, (n− 1)M1 ≤ sup

τ≤t≤τ+T̃

∣∣∣∣∫ t

τ

dB̃(t′)

∣∣∣∣ < nM1

)

≤
∞∑
n=1

P

(
inf

0≤t≤τ
Ỹn,ε(t) > 0; τ < aε

)
P

(
(n− 1)M1 ≤ sup

τ≤t≤τ+T̃

∣∣∣∣∫ t

τ

dB̃(t′)

∣∣∣∣ < nM1

)

=
∞∑
n=1

P

(
inf

0≤t≤τ
Ỹn,ε(t) > 0; τ < aε

)
P

(
(n− 1)M1 ≤ sup

0≤t≤T̃

∣∣∣∣∫ t

0

dB̃(t′)

∣∣∣∣ < nM1

)
,

(2.131)

where Ỹn,ε is given by the formula

Ỹn,ε(t) = ỹ(t) +
C
√
ε(M + nM1)t

T
−
√
ε
m1(s)

m1(T )

∫ t

0

dB̃(t′), (2.132)

and the constant C depends only on AT . Here, we have used the strong Markov

property of τ which implies that
{
B̃(t) : 0 < t ≤ τ

}
are independent of the variable

supτ≤t≤τ+T̃

∣∣∣∫ t0 dB̃(t′)
∣∣∣. At the hitting time τ , we have

Ỹn,ε(τ) = ỹ(τ) +
C
√
ε(M + nM1)τ

T
±M

√
ε
m1(s(τ))

m1(T )
. (2.133)

We choose M1 =
√
T and M = C1

√
T where C1 is a constant depending only on

AT . We also notice that there exists constant C2 depending only on AT , such that

ỹ(τ) ≤ C2(1 + y/T )τ . Therefore, we can find a lower bound of τ for different values

of n, τn, such that the hitting time τ has to be larger than τn in order for Ỹn,ε(τ) to

be non-negative when (2.133) holds with minus sign,

τ > τn = cT

√
ε

T

[
1 +

y

T
+ n

√
ε

T

]−1

, (2.134)
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where c is a constant depending only on AT . We notice that 1 + y/T and n influence

the magnitude of τn. If τn > aε, then the probability for inf0≤t≤τ Ỹn,ε(t) < 0 for

τ < aε is 0. We observe now that if α < 1/2 then τn > aε provided

1 +
y

T
+ n

√
ε

T
≤ 2c1

(
T

ε

)1/2−α

for c1 = c/2 > 0 depending only on AT. (2.135)

If τn > aε, i.e., the inequality in (2.135) happens, then P
(

inf0≤t≤τ Ỹn,ε(t) > 0; τ < aε
)

as in (2.131) equals to 0. Therefore, we only need to concern ourself with the scenario

that 1 + y
T

+ n
√

ε
T
> 2c1

(
T
ε

)1/2−α
. We note that (2.133) can hold with τ < aε and a

“−” in front of the last term only if (necessary but not sufficient)

1 +
y

T
≥ c1

(
T

ε

)1/2−α

or n ≥ c1

(
T

ε

)1−α

, (2.136)

which corresponds to the union of the regions (I), (II), (IV) in Figure 2.1.

	   n
	  

1+ y
T

	  

1+ y
T

= c1
T


⎛
⎝⎜

⎞
⎠⎟
1/2−α

	  

n = c1
T


⎛
⎝⎜

⎞
⎠⎟
1−α

	  

(I)	  (II)	  

(III)	  

(IV)	  

Figure 2.1: Four possible combinations of 1 + y/T and n.
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In the case when τn < aε we see from (2.133) that there is a constant C depending

only on AT and

P

(
inf

0≤t≤τn
Ỹn,ε(t) > 0

)
≤ P

(
inf

0≤t≤τn
Zε(t) > 0

∣∣∣∣µ = µn, Zε(0) = λε[1 + Caε/T ]

)
,

(2.137)

where Zε(·) is the solution to the SDE in (2.91). The drift µn is given by the formula

µn = C

[
1 +

y

T
+ n

√
ε

T

]
where C depends only on AT. (2.138)

Following (2.128), (2.137) and (2.138), we have

P

(
inf

0≤t≤τn
Ỹn,ε(t) > 0

)
≤ C1λ

[
1 +

y

T
+ n

√
ε

T
+

(
ε

τn

)1/2
]
≤ C2λ

[
1 +

y

T
+ n

√
ε

T

]
,

(2.139)

where constants C1, C2 only depends on AT . The second inequality holds since

(
ε

τn

)1/2

= C

[√
ε

T

(
1 +

y

T
+ n

√
ε

T

)]1/2

≤ C ′
(

1 +
y

T
+ n

√
ε

T

)
, (2.140)

in which C,C ′ are constants depending only on AT .

Further, for large n values, i.e., n ≥ c1(T/ε)1−α (which corresponds to region (I)

and (II) in Figure 2.1), we conclude from (2.139) that

∑
n≥c1(T/ε)1−α

P

(
inf

0≤t≤τn
Ỹn,ε(t) > 0

)
P

(
(n− 1)M1 ≤

∣∣∣∣∣ sup
0≤t≤T̃

∫ t

0

dB̃(t′)

∣∣∣∣∣ < nM1

)

≤ Cλ
∑

n≥c1(T/ε)1−α

[
1 +

y

T
+ n

√
ε

T

]
e−n

2/2 ≤ C1λ
(

1 +
y

T

)
exp

[
−c1

(
T

ε

)2(1−α)
]
,

(2.141)

where the constants C1, c1 depend only on AT . When n is small, i.e., n < c1

(
T
ε

)1−α
,
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and 1 + y/T > C1(T/ε)1/2−α, we have n
√
ε/T ≤ 1 + y/T , then according to (2.139),

P

(
inf

0≤t≤τn
Ỹn,ε(t) > 0

)
≤ C3λ

[
1 +

y

T

]
, for n < c1(T/ε)1−α. (2.142)

Therefore,

∑
n<c1(T/ε)1−α

P

(
inf

0≤t≤τn
Ỹn,ε(t) > 0

)
P

(
(n− 1)M1 ≤

∣∣∣∣∣ sup
0≤t≤T̃

∫ t

0

dB̃(t′)

∣∣∣∣∣ < nM1

)

≤ P

(
inf

0≤t≤τN
ỸN,ε(t) > 0

) ∑
n<c1(T/ε)1−α

P

(
(n− 1)M1 ≤

∣∣∣∣∣ sup
0≤t≤T̃

∫ t

0

dB̃(t′)

∣∣∣∣∣ < nM1

)

≤ P

(
inf

0≤t≤τN
ỸN,ε(t) > 0

)
≤ C3λ

[
1 +

y

T

]
,

(2.143)

where N = bc1

(
T
ε

)1−αc.

Next we consider the situation when (2.133) holds with the plus sign. One sees

that

P

(
inf

0≤t≤τ
Ỹn,ε(t) > 0; τ < aε,

∫ τ

0

dB̃(t′) = −M
)

≤ P

(
inf

0≤t≤τ
Zε(t) > 0; τ < aε, Zε(τ) ≥M

√
ε
∣∣∣µ = µn, Zε(0) = λε[1 + Caε/T ],

)
(2.144)

where µn is given by (2.138). Here, Zε(t) ≈ m1(T )Ỹn,ε(t)/m1(s(t)). By observing the

right hand side of (2.144), we see that it is bounded by the probability that the dif-

fusion Zε(·) started at λε[1 +O(ε1−α)] exits the interval [0, C1T (ε/T )1/2] through the

boundary C1T (ε/T )1/2 in time less than T (ε/T )1−α. When α < 1/2, T (ε/T )1−α con-

verges to 0 faster than C1T (ε/T )1/2, thus we are essentially estimating the probability

for a diffusion to exit a large interval in a very short period of time, which converges

to 0 as ε/T → 0. To find an expression for (2.144), we first choose C1 large enough
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so that Zε(0) < C1T (ε/T )1/2/2 for any ε satisfying 0 < ε ≤ T . The process associ-

ated to the probability we are studying is composed of two parts: 1) exiting through

C1T (ε/T )1/2/2 instead of 0; 2) moving up to C1T (ε/T )1/2 from C1T (ε/T )1/2/2 within

a period of time aε.

P

(
inf

0≤t≤aε
Zε(t) > 0, sup

0≤t≤aε
Zε(t) ≥ Λ′ε|Zε(0) = λ′ε

)
≤

P (0 < Zε(t) < Λ′ε/2, t < τ, Zε(τ) = Λ′ε/2|Zε(0) = λ′ε)·

P

(
sup

0≤t≤aε
Zε(t) ≥ Λ′ε

∣∣∣∣Zε(0) = Λ′ε/2

)
. (2.145)

We now compute these two probabilities individually.

For part 1), it is easy to see that for 0 < λ′ < Λ′,

P (0 < Zε(t) < Λ′ε, t < τ, Zε(τ) = Λ′ε
∣∣Zε(0) = λ′ε) =

1− e−2µλ′

1− e−2µΛ′
. (2.146)

By plugging in Λ′ = C1(T/ε)1/2, µ = µn and λ′ = λ[1 + Caε/T ], whence µΛ′ ≥ c for

some positive c depending only on AT 21, we conclude that

P (0 < Zε(t) < Λ′ε/2, t < τ, Zε(τ) = Λ′ε/2|Zε(0) = λ′ε) ≤ Cλ

[
1 +

y

T
+ n

√
ε

T

]
(2.147)

for some constant C depending only on AT .

For part 2),

P

(
sup

0≤t≤aε
Zε(t) ≥ Λ′ε

∣∣∣∣Zε(0) = Λ′ε/2

)
≤ C exp

[
− Λ′2

32a

]
(2.148)

for some universal constant C provided µa < Λ′/4 22. We observe that µna < Λ′/4 is

21Thus 1− e−2µΛ′
> 1− e−2c.

22The method of image can be applied here, and since since µa < Λ′/4

P

(
sup

0≤t≤aε
Zε(t) ≥ Λ′ε

∣∣∣∣Zε(0) = Λ′ε/2
)
≤ C exp

[
− (Λ′ε− Λ′ε/2− µaε)2

2ε · aε

]
≤ C exp

[
− (Λ′ε/4)2

2a

]
.
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naturally implied if (2.135) holds. We conclude that if (2.135) holds, then

P

(
inf

0≤t≤aε
Zε(t) > 0, sup

0≤t≤aε
Zε(t) ≥ Λ′ε

∣∣∣∣Zε(0) = λ′ε

)
≤ C2λ

[
1 +

y

T
+ n

√
ε

T

]
exp

[
−c2

(
T

ε

)1−α
]
. (2.149)

If (2.135) does not hold, we can argue as before to obtain an inequality similar to

(2.141). On choosing α = 1/4, (2.115) follows from (2.129), (2.141) and (2.149).

Lemma II.20 demonstrates an upper bound for the ratio of the Dirichlet Green’s

function to the full space Green’s function. Next we try to derive a lower bound for

this ratio.

Lemma II.22. Assume the function A(·) is non-negative and that 0 < λ ≤ 1, 0 <

ε ≤ T , y > 0. Then there are positive constants C, c depending only on AT such that

if γ = c(T/ε)1/8(y/T ) ≥ 5 then

Gε,D(λε, y, 0, T )

Gε(λε, y, 0, T )
≥ [1+e−γ

2/4]−2

(
1− exp

[
− 2λ

1 + C(ε/T )1/8

{
1− m2(T )

σ2(T )
+
m1(T )y

σ2(T )

}])
.

(2.150)

Proof. We choose a = min
[
(T/ε)α, T̃ /ε

]
with 0 < α < 1 as in Lemma II.20. Also, we

observe that there is a constant c > 0 depending only on AT such that ỹ(t) ≥ cty/T

for 0 ≤ t ≤ T̃ . Intuitively, as long as the magnitude of the Brownian motion is small

enough, Ỹε(·) can be kept away from the boundary 0. More specifically, there exists a

constant c1 > 0 depending only on AT such that the process Ỹε(·) of (2.118) satisfies

Ỹε(t) > 0 for aε ≤ t ≤ T̃ if E holds, where the event E is defined as

∣∣∣∣∫ aε

0

dB̃(t′)

∣∣∣∣ < c1

√
T
( ε
T

)1/2−α y

T
and

sup
aε≤t≤(k+1)aε

∣∣∣∣∫ t

aε

dB̃(t′)

∣∣∣∣ ≤ c1k
√
T
( ε
T

)1/2−α y

T
, for k = 1, 2, ... (2.151)
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Actually, this can be shown as follows: for aε ≤ t ≤ T̃ ,

Ỹε(t) ≥
cty

T
− C t

T

√
εc1

⌈
T̃

aε

⌉
√
T
( ε
T

)1/2−α y

T
− C
√
ε

⌈
t

aε

⌉
c1

√
T
( ε
T

)1/2−α y

T

=
cty

T
− Cc1

ty

T
− Cc1

ty

T
,

where dxe := miny∈N{y ≥ x}, and C is a constant depending only on AT . Thus as

long as c1 is small enough, E guarantees that Ỹε(t) > 0 for aε ≤ t ≤ T̃ .

It follows that

P

(
inf

0≤s≤T
Yε(s) > 0

)
= P

(
inf

0≤t≤T̃
Ỹε(t) > 0

)
≥ P

(
inf

0≤t≤aε
Ỹε(t) > 0; E

)
. (2.152)

It is easy to see from (2.118) that on the event E there exists a constant C ′ > 0

depending only on AT such that

Ỹε(t) > 0 if Z̃ε(t) =
ỹ(t)

1 + C ′aε/T
− C ′c1t

y

T
−
√
ε

∫ t

0

dB̃(t′) > 0, for 0 < t ≤ aε,

(2.153)

where c1 is the constant of (2.151). Here Z̃ε(t) ≤ m1(T )Ỹε(t)/m1(s). We conclude

from (2.151), (2.153) that

P

(
inf

0≤s≤T
Yε(s) > 0

)
≥ P

(
Z̃ε(t) > 0, 0 < t ≤ aε;

∣∣∣∣∫ aε

0

dB̃(t′)

∣∣∣∣ < c1

√
T
( ε
T

)1/2−α y

T

)
P (E). (2.154)

We will bound the two terms on the right hand side of the inequality above separately.

In order to bound P (E) from below, we consider for γ > 0 the event Eγ defined by

∣∣∣∣∫ 1

0

dB̃(t′)

∣∣∣∣ < γ and sup
1≤t≤(k+1)

∣∣∣∣∫ t

1

dB̃(t′)

∣∣∣∣ < kγ for k = 1, 2, ... (2.155)
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Then we have

P (E) = P (Eγ) where γ = c1

(
T

ε

)α/2 ( y
T

)
. (2.156)

According to Doob’s inequality,

P

(
sup

1≤t≤(k+1)

∣∣∣∣∫ t

1

dB̃(t′)

∣∣∣∣ > kγ

)
≤ 4e−kγ

2/2. (2.157)

We also have

P

(∣∣∣∣∫ 1

0

dB̃(t′)

∣∣∣∣ < γ and sup
1≤t≤(k+1)

∣∣∣∣∫ t

1

dB̃)t′)

∣∣∣∣ < kγ for k = 1, 2, ...

)

≥ 1− P
(∣∣∣∣∫ 1

0

dB̃(t′)

∣∣∣∣ ≥ γ

) ∞∑
k=1

P

(
sup

1≤t≤(k+1)

∣∣∣∣∫ t

1

dB̃)t′)

∣∣∣∣ > kγ

)

≥ 1− 4
e−γ

2/2

1− e−γ2/2
≥ 1− e−γ2/4

1− e−γ2/2
= [1 + e−γ

2/4]−1, (2.158)

when 1− 5e−γ
2/2 > 1− e−γ2/4 which holds if γ > 2

√
ln(5).

Now we try to bound the first probability on the right hand side of (2.154). To

do this, we compare Z̃ε(t) to a Brownian motion with constant drift (See (2.91)).

According to (2.57) and the fact that m1(s, T )m2(s, T ) ≥ σ2(s, T )23, we have

y(s) ≥ 1

σ2(T )

{
xm1(s, T )σ2(0, s) + ym1(0, s)σ2(s, T ) + [σ2(0, s)−m2(0, s)]σ2(s, T )

}
,

(2.159)

Since the function s→ σ2(0, s)−m2(0, s) is an increasing function, we conclude that

there exists a constant C1 > 0 depending only on AT such that for 0 ≤ t ≤ aε,

ỹ(t) ≥ λε+ µεt

1 + C1aε/T
where µε =

m1(T )y

σ2(T )
+
σ2(0, s(aε))−m2(0, s(aε))

σ2(T )
. (2.160)

Therefore, following (2.153), for 0 ≤ t ≤ aε, there is a constant C2 > 0 depending

23This can be shown based on the assumption that A(s) ≥ 0, 0 ≤ s ≤ T .
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only on AT such that

Z̃ε(t) ≥ Zε(t) with Zε(0) =
λε

1 + C2aε/T
, µ =

µε
1 + C2aε/T

− C2c1
y

T
. (2.161)

Therefore the first probability of (2.154) is bounded below by

P

(
Zε(t) > 0, 0 < t ≤ aε; |Zε(aε)− Zε(0)− aεµ| < γε

√
a

∣∣∣∣Zε(0) =
λε

1 + C2aε/T

)
.

(2.162)

To bound the probability in (2.162), we assume that the constant c1 > 0 in (2.151)

is small enough such that µ > 0 and γ < µ
√
a. Then using the Dirichlet Green’s

function as in (2.47), we have

P
(
Zε(t) > 0, 0 < t ≤ aε; |Zε(aε)− Zε(0)− aεµ| < γε

√
a
∣∣∣Zε(0) = λ′ε

)
=

∫ λ′ε+aεµ+γε
√
a

λ′ε+aεµ−γε
√
a

Gε,D(x, λ′ε, 0, aε)dx

=
{

1− e−2µλ′
} 1√

2π

∫ γ

2λ′/
√
a−γ

e−z
2/2dz +

1√
2π

∫ 2λ′/
√
a−γ

−γ
e−z

2/2dz

− e−2µλ′ 1√
2π

∫ 2λ′/
√
a+γ

γ

e−z
2/2dz

≥
{

1− e−2µλ′
} 1√

2π

∫ γ

−γ
e−z

2/2dz. (2.163)

The last inequality is true since

(∫ 2λ′/
√
a−γ

−γ
−
∫ 2λ′/

√
a+γ

γ

)
e−z

2/2dz ≥ 0.

We take λ′ = λ/[1 + C2aε/T ] in (2.163) and choose α = 1/2, whence the drift µ
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satisfies the inequality

µ ≥ 1

1 + C3

√
ε/T

{
1− m2(T )

σ2(T )
+
m1(T )y

σ2(T )

}
− C3c1

y

T
− C3

( ε
T

)1/2
24,

for some constant C3 > 0 depending only on AT . This is consistent with the condition

γ < µ
√
a 25. We note that since ε is small, without loss of generality, we assume

ε/T ≤ 1, then there exists a constant C4 depending only on AT such that

1

1 + C3

√
ε/T

≥ 1

1 + C4(ε/T )1/8
.

Now we choose c1 = c(ε/T )1/8 26 where c > 0 depends only on AT . Since γ ≥ 5,

y > 5T
(
ε
T

)α/2
, which implies

(
1− 1

1 + C4(ε/T )1/8

)
· m1(T )y

σ2(T )
> c

( ε
T

)α/2+1/8

= c
( ε
T

)3/8

> c
( ε
T

)1/2

. (2.165)

Thus
(
ε
T

)1/2
can be absorbed by

(
1− 1

1+C4(ε/T )1/8

)
m1(T )y
σ2(T )

. Also c1
y
T

= c(ε/T )1/8 y
T

can be absorbed by (1 − 1
1+C4(ε/T )1/8

)m1(T )y
σ2(T )

. Therefore, by choosing c small enough,

we have

µ ≥ 1

1 + C4(ε/T )1/8

{
1− m2(T )

σ2(T )
+
m1(T )y

σ2(T )

}
, (2.166)

where C4 depends only on AT . If γ > 2
√

ln(5), the inequality (2.150) follows from

(2.158), (2.163), (2.166) and the fact that 1√
2π

∫ γ
−γ e

−z2/2dz > [1 + e−γ
2/4]−1 for γ >

5.

24 We get C3(ε/T )1/2 from

σ2(0, s(aε))−m2(0, s(aε)) >
σ2(0, T )−m2(0, T )

1 + Caε/T
>

[σ2(0, T )−m2(0, T )] ·
(

1− C ′
( ε
T

)1/2
)
> [σ2(0, T )−m2(0, T )]− C ′′

( ε
T

)1/2

.

25 Therefore Zε(aε) in (2.162) is greater than or equal to 0.
26 We will see below from (2.165) that we only need to choose c1 = c(ε/T )θ, where θ < 1/4.
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2.4 Classical limit theorem

In this section, we will show that the functions wε(x, t) and Λε(t) for the diffusive

case will converge to the corresponding functions for the classical case as ε→ 0, where

wε(x, t) =

∫ ∞
x

cε(x
′, t)dx′, hε(x, t) =

∫ ∞
x

wε(x
′, t)dx′. (2.167)

We note that in order to show dΛε(t)/dt → dΛ0(t)/dt, we need to justify that

limε→0
ε
2
∂cε(0,t)
∂x

= c0(0, t) for any t > 0.

Lemma II.23. Let cε(x, t),Λε(t), 0 < x, t <∞, be the solution to (2.22), (2.23) with

non-negative initial data c0(x), 0 < x < ∞, which is a locally integrable function27

satisfying ∫ ∞
0

(1 + x)c0(x)dx <∞,
∫ ∞

0

xc0(x)dx = 1. (2.168)

Then,

(i) There are positive constants C1, C2 depending only on T and c0(·) such that

C1 ≤ Λε(t) ≤ C2 for 0 < ε ≤ 1, 0 ≤ t ≤ T. (2.169)

(ii) The set of functions {Λε : [0, T ] → R : 0 < ε ≤ 1} form an equicontinuous

family.

(iii) Denote by c0(x, t), Λ0(t), 0 < x, t <∞, the solution to the Carr-Penrose equa-

tions (2.22), (2.23) with ε = 0 and initial data c0(x), 0 < x <∞. Then for all

x, t ≥ 0

lim
ε→0

wε(x, t) = w0(x, t) (2.170)

lim
ε→0

Λε(t) = Λ0(t). (2.171)

27 Integrable on any compact subset of [0,∞).
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These limits are uniform for (x, t) in any finite rectangle 0 < x ≤ x0, 0 < t ≤ T .

Proof. (i) It follows (2.26) that Λε(t) is an increasing function, thus Λε(t) has a lower

bound Λε(t) ≥ Λε(0) = 1/w(0, 0).

For the upper bound, we first prove it in the classical case ε = 0. The solution to

the classical CP equation (2.22) with ε = 0 is given by w0(x, t) = w0(F (x, t), 0), where

F (x, t) is the linear function as in (2.12). Since
∫∞

0
xc0(x)dx

/ ∫∞
0
c0(x)dx = Λ0(0) ,

it follows that

∫ ∞
Λ0(0)/2

xc0(x)dx ≥ Λ0(0)

2

∫ ∞
0

c0(x)dx =
1

2

∫ ∞
0

xc0(x)dx =
1

2
. (2.172)

Hence there is a positive constant 1/C2 depending only on c0(·) such that w0(Λ0(0)/2, 0) ≥

1/C2. Since F (0, t) < t, if follows then that w0(0, t) = w0(F (0, t), 0) > w0(t, 0) ≥

w0(Λ0(0)/2, 0) ≥ 1/C2 for 0 ≤ t ≤ Λ0(0)/2, thus Λ0(t) ≤ C2 for 0 ≤ t ≤ Λ0(0)/2.

Furthermore, Λ0(t) is a continuous function in the interval 0 ≤ t ≤ Λ0(0)/2. Since

Λ0(t) is an increasing function, similarly we can show that in the interval t∗ ≤ t ≤

t∗+Λ0(t∗)/2, where t∗ = Λ0(0)/2, Λ0(t) ≤ C3 and C3 satisfies w0(Λ0(t∗)/2, 0) ≥ 1/C3.

This extension covers the interval 0 ≤ t ≤ T in a finite number of steps.

Next, we show the existence of the upper bound for the diffusive case when 0 <

ε ≤ 1. To do this, we use the representation

wε(x, t) =

∫ ∞
0

P

(
Yε(t) > x; inf

0≤s≤t
Yε(s) > 0

∣∣∣Yε(0) = y

)
c0(y)dy, (2.173)

where Yε(s) is the solution to the SDE (2.31) with b(y, s) = y/Λε(s) − 1. We know

the solution for Yε(·) is given by (2.38), with A(s) = 1/Λε(s). We define a function

Ỹε(s) = exp

[∫ s

0

1

Λε(s′)
ds′
]
y −

∫ s

0

exp

[∫ s

s′

1

Λε(s′′)
ds′′
]
ds′. (2.174)

105



The difference between Yε(s) and Ỹε(s) is only a Brownian motion term:

Yε(s)− Ỹε(s) =
√
ε

∫ s

0

exp

[∫ s

s′

1

Λ(s′′)
ds′′
]
dB(s′).

Since Λε(s) ≥ Λε(0) = Λ0(0), it follows that for any δ > 0, t > 0 there is a positive

constant p1 depending only on δ, t,Λ0(0) such that

P

(
inf

0≤s≤t
[Yε(s)− Ỹε(s)] ≥ −δ

)
≥ p1 for 0 < ε ≤ 1. (2.175)

Because Yε(s) and Ỹε(s) are close with a large probability, we can choose δ appro-

priately that there is a positive constant p2 depending only on Λ0(0) such that if

0 < ε ≤ 1 then

P

(
Yε(t) > 0; inf

0≤s≤t
Yε(s) > 0

∣∣∣Yε(0) = y

)
≥ p2 for t = Λ0(0)/2, y ≥ Λ0(0)/2.

(2.176)

Actually, the choice of δ can be min0≤s≤Λ0(0)/2 Ỹε(s), then p2 is at least p1.28 Therefore,

following (2.173), we have

wε(0, t) ≥
∫ ∞

Λ0(0)/2

p2c0(y)dy = p2w0(Λ0(0)/2, 0) ≥ 1/C4 for t = Λ0(0)/2, (2.178)

where C4 only depends on the initial data c0(·). The same method as for the classical

case can be adopted to extend the interval for the upper bound to all T as in the

previous paragraph.

(ii) Due to the relationship between Λε and wε, we start with the continuity of

28We should be aware that under the condition y ≥ Λ0(0)/2, it is always true that Ỹε(s) > 0 for
0 ≤ s ≤ Λ0(0)/2. Actually,

Ỹε(s) = exp
[∫ s

0

1
Λε(s′)ds′

]{
y −

∫ s

0

exp

[
−
∫ s′

0

1
Λε(s′′)

ds′′

]
ds′

}
= exp

[∫ s

0

1
Λε(s′)ds′

]
{y − s} .

(2.177)
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wε(x, t).

Following (2.173), we have

wε(x, t)− wε(x+ ∆x, t) ≤ P (x < X +
√
εZ < x+ ∆x)

∫ ∞
0

c0(y)dy, (2.179)

where

X = exp

[∫ t

0

1

Λε(s)
ds

]
Y−
∫ t

0

exp

[∫ t

s′

1

Λε(s′′)
ds′′
]
ds′, Z =

∫ t

0

exp

[∫ t

s

1

Λ(s′)
ds′
]
dB(s),

(2.180)

and Y is a random variable with probability density function c0(y)/
∫∞

0
c0(y)dy. We

notice that Z is a Gaussian distribution with variance σ2 ≤
∫ t

0
exp

(
2
∫ t
s

1
Λ0(0)

ds′
)
ds.

We also have

P (x < X +
√
εZ < x+ ∆x) = P (x− κ∆x < X < x+ (κ+ 1)∆x; |

√
εZ| < κ∆x)

+ P (x < X +
√
εZ < x+ ∆x; |

√
εZ| ≥ κ∆x). (2.181)

To estimate the first term,

P (x− κ∆x < X < x+ (κ+ 1)∆x; |
√
εZ| < κ∆x)

≤ P (x− κ∆x < X < x+ (κ+ 1)∆x) (2.182)

where C is a constant depending on c0(x). The expression in (2.182) converges to 0

as (2κ + 1)∆x approaches to 0 due to the relation between X and Y in (2.180), the
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probability density function of Y and condition (2.168). For the second term,

P (x < X +
√
εZ < x+ ∆x; |

√
εZ| ≥ κ∆x)

=

∫ ∞
0

P (X ∈ dy)P (|
√
εZ| ≥ κ∆x;x− y <

√
εZ < x− y + ∆x)

≤
∫ ∞

0

P (X ∈ dy) · sup
a≥(κ−1)∆x

P (a ≤ |
√
εZ| ≤ a+ ∆x)

< C ′∆x
1√
εσ2

exp

(
−κ

2∆x2

2εσ2

)
<
C ′

κ
max
z>0

(
z · e−z2/2

)
, (2.183)

where C ′ is a positive constant. Therefore, by choosing κ = 1/
√

∆x, both (2κ+1)∆x

and (2.183) converges to 0 as ∆x converges to 0. Thus we have shown that wε is

uniformly continuous in terms of x.

Next, we observe that for ∆t > 0 there exists x(∆t) independent of ε in the

interval 0 < ε ≤ 1 such that lim∆t→0 x(∆t) = 0 and

P

(
Yε(t+ ∆t) > 0; inf

0≤s≤t+∆t
Yε(s) > 0

∣∣∣Yε(0) = y

)
≥

[1−∆t]P

(
Yε(t) > x(∆t); inf

0≤s≤t
Yε(s) > 0

∣∣∣Yε(0) = y

)
for y ≥ 0, 0 < ε ≤ 1.

(2.184)

It follows from (2.173), (2.184) that wε(0, t+∆t) ≥ [1−∆t]wε(x(∆t), t) for 0 < ε ≤ 1.

Using the continuity of wε(x, t) in terms of x, we conclude that lim∆t→0wε(0, t+∆t) ≥

wε(0, t) and the limit is uniform for 0 < ε ≤ 1. On the other side, wε(0, t + ∆t) =

1/Λε(t + ∆t) ≤ 1/Λε(t) = wε(0, t), which leads to the result that lim∆t→0wε(0, t +

∆t) = wε(0, t). Therefore, the function Λε(t) is continuous, and in fact the family of

functions Λε(t), 0 < ε ≤ 1, is equicontinuous.

(iii) Due to Ascoli-Arzela theorem and the fact that the family of functions

wε(x, t), Λε(·), 0 < ε ≤ 1, are equicontinuous, there exists a subsequence {εn} with
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εn → 0, as n → ∞, such that wεn(x, t) and Λεn(·) converge uniformly respectively.

The limit satisfy the condition w0(x, t) = w0(F (x, t), 0) and the conservation law

(2.23) continues to hold for ε = 0. Thus the limits are the solution to the classical

model. Since the solution to the classical model is unique, it follows that for all

ε→ 0, (2.170) and (2.171) hold true. The uniformity of the limits follows by similar

argument.

Lemma II.24. Let cε(x, t),Λε(t), 0 < x, t < ∞, and c0(x), 0 < x < ∞, be as in

Lemma (II.23) and (2.168). If c0(·) is a continuous function then

lim
ε→0

ε

2

∂cε(0, T )

∂x
= c0(0, T ) for any T > 0. (2.185)

Proof. We use the identity

ε

2

∂cε(0, T )

∂x
= lim

λ→0

cε(λε, T )

2λ
(2.186)

and the representation for cε(λε, T )

cε(λε, T ) =

∫ ∞
0

Gε,D(λε, y, 0, T )c0(y)dy, (2.187)

where Gε,D is the Dirichlet Green’s function corresponding to the drift b(y, t) =

y/Λε(t) − 1. Let σ2
ε(T ),m1,ε(T ),m2,ε(T ) be the functions in (2.39) and (2.40) with

A(s) = 1/Λε(s), 0 ≤ s ≤ T . Therefore we have

ε

2

∂cε(0, T )

∂x

≤
∫ ∞

0

{
1− m2,ε(T )

σ2
ε(T )

+
m1,ε(T )y

σ2
ε(T )

+ CΓ
( ε
T
,
y

T

) [
1 +

y

T

]}
Gε(0, y, 0, T )c0(y)dy,

where the constant C depends only on T/Λ0(0). When ε → 0, Gε(0, y, 0, T ) →
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1
m1,0(T )

δ
(
y, m2,0(T )

m1,0(T )

)
. While when y = m2,0(T )

m1,0(T )
,

lim
ε→0

{
1− m2,ε(T )

σ2
ε(T )

+
m1,ε(T )y

σ2
ε(T )

+ CΓ
( ε
T
,
y

T

[
1 +

y

T

])}
= 1.

Therefore, by reverse Fatou’s lemma (See [15, page 97]),

lim supε→0

ε

2

∂cε(0, T )

∂x
≤ 1

m1,0(T )
c0

(
m2,0(T )

m1,0(T )

)
, (2.188)

provided the function c0(y), y > 0, is continuous at y = m2,0(T )/m1,0(T ).

On the other side, we can obtain a lower bound of ε
2
∂cε(0,T )

∂x
by using Lemma II.22.

Thus we have

[
1 + C(ε/T )1/8

] ε
2

∂cε(0, T )

∂x
≥∫ ∞

5(ε/T )1/8T/c

[
1 + exp

(
−c2(T/ε)1/4(y2/4T 2)

)]−2
{

1− m2,ε(T )

σ2
ε(T )

+
m1,ε(T )y

σ2
ε(T )

}
·Gε(0, y, 0, T )c0(y)dy, (2.189)

where the constants C, c > 0 depend only on T/Λ0(0). We conclude that

lim infε→0
ε

2

∂cε(0, T )

∂x
≥ 1

m1,0(T )
c0

(
m2,0(T )

m1,0(T )

)
, (2.190)

provided the function c0(y), y > 0 is continuous at y = m2,0(T )/m1,0(T ). Finally,

since w0(x, t) = w0(F (x, t)), by differentiating this equation with respect to x at

x = 0, we obtain that

c0(0, T ) =
1

m1,0(T )
c0

(
m2,0(T )

m1,0(T )

)
.

Thus (2.185) has been proved.

In light of Lemma II.3, II.24, (2.26) and the fact that limε→0 Λε(t) = Λ0(t), we
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conclude that

lim
ε→0

dΛε(t)

dt
=
dΛ0(t)

dt
. (2.191)

2.5 Upper bound on the coarsening rate

In this section, we show there is an upper bound on the coarsening rate if the

initial data satisfies a convexity condition. We first recall the definition of βε(x, t) as

in (2.17),

βε(x, t) =
cε(x, t)hε(x, t)

wε(x, t)2
, (2.192)

where wε, hε are given by (2.167). We observe that hε(x, t) is log concave in x > 0 if

and only if supx>0 βε(x, t) ≤ 1. Actually, if we assume that hε(x, t) = exp[−qε(x, t)],

then

βε(x, t) = 1− ∂2qε/∂x
2

(∂qε/∂x)2
. (2.193)

It is clear that supx>0 βε(x, t) ≤ 1 if and only if ∂2qε/∂x
2 ≥ 0, i.e., hε(x, t) is log

concave in x > 0.

We shall show that if wε(x, 0) and hε(x, 0) are log concave respectively, then so

are wε(x, t) and hε(x, t) for all t > 0. Due to the PDE (2.22) that cε(x, t) satisfies,

we can derive corresponding PDEs for wε and hε,

∂wε
∂t

+
∂

∂x

[(
x

Λε(t)
− 1

)
wε

]
=

wε
Λε(t)

+
ε

2

∂2wε
∂x2

. (2.194)

∂hε
∂t

+
∂

∂x

[(
x

Λε(t)
− 1

)
hε

]
=

2hε
Λε(t)

+
ε

2

∂2hε
∂x2

. (2.195)

If there is no Dirichlet boundary condition, then

wε(x, T ) = exp

[∫ T

0

ds

Λε(s)

] ∫ ∞
−∞

Gε(x, y, 0, T )wε(y, 0)dy,

hε(x, T ) = exp

[
2

∫ T

0

ds

Λε(s)

] ∫ ∞
−∞

Gε(x, y, 0, T )hε(y, 0)dy.
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If wε(x, 0), hε(x, 0) are log concave functions then the representation of wε(x, T ), hε(x, T )

are convolutions of two log concave functions. It follows from the Prékopa-Leindler

theorem that wε(x, T ), hε(x, T ) are also log concave [33]. To show the corresponding

result for the Dirichlet problem, we use the method of Korevaar [27].

Lemma II.25. Suppose c0 : [0,∞) → R+ satisfies (2.168) and cε(x, t), x ≥ 0, t > 0

is the solution to (2.22), (2.23). If the function wε(x, t) is log concave in x at t = 0,

then it is log concave in x for all t > 0.

Proof. The function cε(x, t) is C∞ in the domain {x, t > 0} and continuous in the

domain {x ≥ 0, t > 0} with cε(0, t) = 0 for t > 0. We define the function vε by

vε(x, t) = − ∂

∂x
logwε(x, t) for x, t > 0.

In order to show that wε(x, t) is log concave, we only need to show that vε(x, t) is

increasing in x. By plugging the expression wε(x, t) = exp[−
∫
vε(x, t)dx] into (2.194),

we obtain a PDE for vε(x, t)

∂vε(x, t)

∂t
+

[
x

Λε(t)
− 1 + εvε(x, t)

]
∂vε(x, t)

∂x
+
vε(x, t)

Λε(t)
=
ε

2

∂2vε(x, t)

∂x2
. (2.196)

Since cε(0, t) = 0, t > 0, it follows the definition of vε that it satisfies the Dirichlet

condition vε(0, t) = 0 for t > 0. We consider a diffusion process Xε(·) run backwards

in time, which is the solution to the stochastic equation (2.36) with b(x, s), x, s > 0,

given by the formula

b(x, s) =
x

Λε(s)
− 1 + εvε(x, s).

For x let τε,x < T be the first hitting time at 0 of Xε(s), s < T , with Xε(T ) = x.
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Then as in (2.37), we have

vε(x, T ) = exp

{
−
∫ T

0

dt

Λε(t)

}
E

[
c0(Xε(0))

w0(Xε(0))
; τε,x ≤ 0

∣∣Xε(T ) = x

]
29. (2.197)

Suppose now that 0 < x1 < x2 and Xε,j(s), s ≤ T , is the solution to (2.36) with

Xε,j(T ) = xj, j = 1, 2. By taking the same copy of white noise for Xε,1(·) and

Xε,2(·), it is clear that Xε,1(s) ≤ Xε,2(s) for s ≤ T , hence τε,1 ≥ τε,2, where τε,j

denotes the corresponding first hitting time at 0 for Xε,j, j = 1, 2. Due to the log

concavity of wε(·, 0), c0(x)/w0(x) is an increasing function. We conclude from (2.197)

that vε(x1, T ) ≤ vε(x2, T ). Thus far, we have proved that vε(x, T ) is an increasing

function of x > 0, so wε(x, T ) is log concave in x > 0.

Lemma II.26. Suppose c0 : [0,∞) → R+ satisfies (2.168) and cε(x, t), x ≥ 0, t > 0

is the solution to (2.22), (2.23). If the function hε(x, t) is log concave in x at t = 0,

then it is log concave in x for all t > 0.

Proof. Let vε(x, t) = − ∂
∂x

log hε(x, t) (which is different from the definition in Lemma

II.25), then following (2.195), we have

∂vε(x, t)

∂t
+

[
x

Λε(t)
− 1 + εvε(x, t)

]
∂vε(x, t)

∂x
+
vε(x, t)

Λε(t)
=
ε

2

∂2vε(x, t)

∂x2
. (2.198)

By differentiating this equation with respect to x, we can obtain a PDE for the

function uε(x, t) = ∂
∂x
vε(x, t),

∂uε(x, t)

∂t
+

[
x

Λε(t)
− 1 + εvε(x, t)

]
∂uε(x, t)

∂x
+

2uε(x, t)

Λε(t)
+ εuε(x, t)

2 =
ε

2

∂2uε(x, t)

∂x2
.

(2.199)

At the same time, we observe that

uε(x, t) = vε(x, t)
2[1− cε(x, t)hε(x, t)/wε(x, t)2]. (2.200)

29Notice that vε(x, t) = cε(x, t)/wε(x, t)
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Since limx→0 cε(x, t) = 0 for t > 0, it follows that lim infx→0 uε(x, t) ≥ 0 for t > 0. If

hε(x, 0) is log concave in x > 0 then the initial data uε(x, 0), x > 0 is non-negative.

According to the maximum principle30, uε(x, t) is non-negative for all x, t > 0, and

hence hε(x, t) is a log concave function of x for all t > 0.

Lemma II.27. Let cε(x, t),Λε(t), 0 < x, t <∞, be the solution to (2.22), (2.23) with

ε > 0 and non-negative initial data c0(x), 0 < x < ∞, which is locally integrable

function satisfying (2.168). Then limt→∞ Λε(t) =∞.

Proof. We have already shown that Λε(t) is an increasing function of t. Therefore,

it is sufficient to show that if there is an upper bound for Λε(t), i.e., Λε(t) ≤ Λ∞ for

some finite Λ∞, then there is a contradiction. To see this, we use the identity

d

dt

∫ ∞
0

xcε(x, t)dx =

∫ ∞
0

x

{
∂

∂x

[
1− x

Λε(t)

]
cε(x, t) +

ε

2

∂2cε(x, t)

∂x2

}
dx

=
1

Λε(t)

∫ ∞
0

xcε(x, t)dx−
∫ ∞

0

cε(x, t)dx,

where the first equation follows (2.22) and the second integration by parts and Dirich-

let boundary condition. Because of the upper bound for Λε(t), we have

d

dt

∫ ∞
0

xcε(x, t)dx ≥
(

1

2Λ∞

∫ ∞
0

xcε(x, t)dx−
∫ ∞

2Λ∞

cε(x, t)dx

)
+

1

2Λ∞

∫ ∞
0

xcε(x, t)dx−
∫ 2Λ∞

0

cε(x, t)dx

≥ 1

2Λ∞

∫ ∞
0

xcε(x, t)dx−
∫ 2Λ∞

0

cε(x, t)dx

=
1

2Λ∞
−
∫ 2Λ∞

0

cε(x, t)dx

≥ 1

2Λ∞
−
∫ 2Λ∞

0

dx

∫ ∞
0

Gε(x, y, 0, t)c0(y)dy,

30 See Theorem 1 of [13, page 344]. Though (2.199) is not technically a linear function of uε due
to the term εu2

ε(x, t). But we can see it as one with εuε(x, t) being a term in front of uε(x, t). If
we see (2.199) from the Feynman-Kac Theorem point of view, the term εuε(x, t) only influences the
discount factor, not the sign of the function.
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where the equality follows the conservation law (2.23), and the last inequality follows

from the fact that Gε,D(x, y, 0, t) ≤ Gε(x, y, 0, t), and Gε is the function (2.41) with

A(s) = 1/Λε(s), s ≥ 0. Thus

∫ ∞
0

Gε(x, y, 0, t)c0(y)dy ≥ 1√
2πεσ2(t)

∫ ∞
0

c0(y)dy ≥ 1√
2πεσ2(t)Λε(0)

,

and it follows that

d

dt

∫ ∞
0

xcε(x, t)dx ≥
1

2Λ∞
− 2Λ∞√

2πεσ2(t)Λε(0)
.

Since σ2(t) ≥ t, we conclude that

lim
t→∞

∫ ∞
0

xcε(x, t)dx =∞,

contradicting the conservation law (2.23). Therefore, there is no upper bound for

Λε(t) for all t, i.e., limt→∞ Λε(t) =∞.

Lemma II.28. Suppose c0 : [0,∞) → R+ satisfies (2.168) and cε(x, t), x ≥ 0, t > 0

is the solution to (2.22), (2.23). Assume that Λε(0) = 1 and that the function hε(x, 0)

is log concave in x. Then there exist positive universal constants C, ε0 with 0 < ε0 ≤ 1

such that

cε(λε, 1) ≤ Cλcε(ε, 1) for 0 < ε ≤ ε0, 0 < λ ≤ 1. (2.201)

Proof. Let X0 be the positive random variable with probability density function

c0(x)/
∫∞

0
c0(x′)dx′, x > 0. Then we see that 〈X0〉 = 1 due to the assumption

Λε(0) = 1. We choose a constant ζ = 1 + 0.1e−1 > 1. According to Markov inequal-

ity,

P (X0 > ζ) ≤ 1/ζ < 1.

Since hε(x, 0) is log concave in x, β(x, 0) ≤ 1, and it follows from (29) of [8] that
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there exists a universal constant δ with 0 < δ < 1− 2.2e−1 such that

P (X0 < δ) + P (X0 > ζ) ≤ c < 131, (2.202)

where c is a universal constant. We write

cε(λε, 1) =

∫ ∞
0

Gε,D(λε, y, 0, 1)c0(y)dy =

[∫ δ

0

+

∫ ζ

δ

+

∫ ∞
ζ

]
Gε,D(λε, y, 0, 1)c0(y)dy

(2.203)

We argue that when δ is small the whole integral from 0 to ∞ can be bounded by a

universal constant times the integral from δ to ζ. Since the characteristic function

Fε(x, 1) := exp

[
−
∫ 1

0

1

Λε(s)
ds

]
x+

∫ 1

0

exp

[
−
∫ s

0

1

Λε(s′)
ds′
]
ds,

and Λε(·) > 1, it follows that 1−e−1 < Fε(0, 1) < 1. For 0 < λ < 1, we can also choose

ε0 small enough such that Fε(λε, 1) satisfy the same inequality: 1−e−1 < Fε(λε, 1) <

1. Since Gε(λε, y, 0, 1) has the expression given by (2.41) with the function A(·)

in (2.39) replaced by 1/Λε(·), the axis of symmetry for Gε(λ, y, 0, 1) is at Fε(λε, 1).

Because δ < 1− 2.2e−1,

ζ − F (λε, 1) < 1.1e−1 < 1.2e−1 < F (λε, 1)− δ,

thus we always have minδ≤y≤ζ Gε(λε, y, 0, 1) ≥ max0≤y≤δ Gε(λε, y, 0, 1).

31See Remark II.29 for a detailed explanation on the existence of such δ.
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According to Lemma II.20, we have

∫ δ

0

Gε,D(λε, y, 0, 1)c0(y)dy

≤
∫ δ

0

λ

{
2

(
1− m2(1)

σ2(1)
+
m1(1)y

σ2(1)

)
+ C (1 + y)

}
Gε(λε, y, 0, 1)c0(y)dy

≤ C ′1λ

∫ δ

0

Gε(λε, y, 0, 1)c0(y)dy ≤ C1λ

∫ ζ

δ

Gε(λε, y, 0, 1)c0(y)dy,

where C1, C
′
1 are universal constants. Also,

∫ ∞
ζ

Gε,D(λε, y, 0, 1)c0(y)dy

≤
∫ ∞
ζ

λ

{
2

(
1− m2(1)

σ2(1)
+
m1(1)y

σ2(1)

)
+ C (1 + y)

}
Gε(λε, y, 0, 1)c0(y)dy.

Since Gε(λε, y, 0, 1) converges to 0 exponentially fast as y →∞, the integral above is

finite and there exist universal constants C2, C
′
2 such that

∫ ∞
ζ

Gε,D(λε, y, 0, 1)c0(y)dy ≤ C ′2

∫ ∞
ζ

(1 + y)Gε(λε, y, 0, 1)c0(y)dy

≤ C2

∫ ζ

δ

Gε(λε, y, 0, 1)c0(y)dy.

The second inequality holds since supy≥ζ(1+y)Gε(λε, y, 0, 1) ≤ const·minδ≤y≤ζ Gε(λε, y, 0, 1).

Further, with 0 < λ ≤ 1, there exists a universal constant C3 such thatGε(λε, y, 0, 1) ≤

C3Gε(ε, y, 0, 1) provided y ≤ S. Therefore,

cε(λε, 1) ≤ C4λ

∫ ζ

δ

Gε(ε, y, 0, 1)c0(y)dy for 0 < ε, λ ≤ 1, (2.204)
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where C4 > 0 is a universal constant. By applying Lemma II.22,

∫ ζ

δ

Gε(ε, y, 0, 1)c0(y)dy

≤
∫ ζ

δ

[1 + e−γ
2/4]2

(
1− exp

[
− 2

1 + Cε1/8

{
1− m2(1)

σ2(1)
+
m1(1)y

σ2(1)

}])−1

·Gε,D(λε, y, 0, 1)c0(y)dy,

where γ = c(1/ε)1/8y ≥ 5 as long as we choose a small enough ε0 (we notice that

here the choice of y has a lower bound δ). Since for a fixed δ, there exists a universal

constant C5 such that

[1 + e−γ
2/4]2

(
1− exp

[
− 2

1 + Cε1/8

{
1− m2(1)

σ2(1)
+
m1(1)y

σ2(1)

}])−1

≤ C5, for y ≥ δ,

thus we have

∫ ζ

δ

Gε(ε, y, 0, 1)c0(y)dy ≤ C5

∫ ζ

δ

Gε,D(ε, y, 0, 1)c0(y)dy ≤ C5cε(ε, 1). (2.205)

Therefore, (2.201) follows from (2.204) and (2.205).

Remark II.29. For a positive random variable X whose probability density function

is c(x)/
∫∞

0
c(x′)dx′, we define q(x) = − log(h(x)), then h(x) = exp(−q(x)), w(x) =

q′(x)h(x) and c(x) = {[q′(x)]2 − q′′(x)}h(x). Therefore

β(x) =
c(x)h(x)

w2(x)
= 1− q′′(x)

[q′(x)]2
.

By solving this differential equation of q′(x), we obtain

q′(x) =

[
1

q′(0)
− x+

∫ x

0

β(z)dz

]−1

.
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Thus

q(x) = q(0) +

∫ x

0

dz

/[
1/q′(0)− z +

∫ z

0

β(z′)dz′
]
, 0 ≤ x < ‖X‖∞32.

Also because 〈X〉 = h(0)/w(0) = 1/q′(0), it follows that

w(x)

w(0)
=

〈X〉[
〈X〉 − x+

∫ x
0
β(z′)dz′

] exp

[
−
∫ x

0

dz[
〈X〉 − z +

∫ z
0
β(z′)dz′

]]

= exp

[
−
∫ x

0

β(z)dz

〈X〉 − z +
∫ z

0
β(z′)dz′

]
. (2.206)

It is noted that ‖X‖∞ −
∫ ‖X‖∞

0
β(z′)dz′ = 〈X〉 thus (2.206) is always positive and

smaller than 1 for 0 ≤ x ≤ ‖X‖∞. The second equation of (2.206) holds since

log[〈X〉 − x+
∫ x

0
β(z′)dz′] satisfies differential equation

d

dx
log[〈X〉 − x+

∫ x

0

β(z′)dz′] =
β(x)− 1

〈X〉 − x+
∫ x

0
β(z′)dz′

,

thus

〈X〉[
〈X〉 − x+

∫ x
0
β(z′)dz′

] = exp

[∫ x

0

1− β(z)

〈X〉 − x+
∫ x

0
β(z′)dz′

]
.

Before (2.202), we assume 〈X0〉 = 1 and β(x, 0) ≤ 1, thus

w(x)/w(0) ≥ 1 · exp

[
−
∫ x

0

dz

1− z

]
. (2.207)

So there exists a universal δ > 0 such that when x ≤ δ, w(x)/w(0) large enough such

that (2.202) holds.

Lemma II.30. Suppose the initial data c0(·) for (2.22), (2.23) satisfies the conditions

of Lemma (II.28) and 0 < ε ≤ ε0. Then there is a universal constant C such that

dΛε(t)/dt ≤ C for t ≥ 1.

32‖X‖∞ = sup{x : c(x) > 0}
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Proof. Recall that hε(0, t) = 1 for all t due to the conservation law, thus according

to (2.26), at t = 1,

dΛε(1)

dt
=
ε

2

∂cε(0, 1)

∂x
· hε(0, 1)

/
wε(0, 1)2, (2.208)

where

ε
∂cε(0, 1)

∂x
= lim

λ→0
ε
cε(λε, 1)

λε
≤ lim

λ→0

C1λεcε(ε, 1)

λε
= C1cε(ε, 1).

Therefore,

dΛε(1)

dt
≤ C1cε(ε, 1)hε(0, 1)

wε(0, 1)2
≤ C1βε(ε, 1)hε(0, 1)

hε(ε, 1)
. (2.209)

The last inequality holds because wε(0, 1) ≥ wε(ε, 1). We note that for a positive

random variable X1, if δ < 〈X1〉/2 then33

E[X1 − δ;X1 > δ] ≥ cE[X1] where c > 0 is a universal constant.

We conclude that34

hε(ε, 1) =

∫ ∞
ε

(x− ε)cε(ε, 1)dx ≥ c

∫ ∞
0

xcε(x, 1)dx = chε(0, 1), (2.210)

provided ε < 1/2. Since βε(ε, 1) ≤ 1, from (2.209), we have an upper bound on

dΛε(t)/dt at t = 1.

Now we prove the upper bound for t > 1. We define a function τ(λ), λ ≥ 1, as

the solution to the equation Λε(λτ(λ)) = λ. It is clear that τ(λ) exists if Λε(·) is a

33 Firstly we have E[X − 1
2 〈X〉;X > 1

2 〈X〉] ≥ E[X − 1
2 〈X〉;X > 3

4 〈X〉]. When X > 3
4 〈X〉,

X − 1
2 〈X〉 ≥

X
3 , thus E[X − 1

2 〈X〉;X > 1
2 〈X〉] ≥

1
3E[X;X > 3

4 〈X〉]. Since we also know E[X] ≤
E[X;X > 3

4 〈X〉] + 3
4 〈X〉 · P (X < 3

4 〈X〉), thereby E[X;X > 3
4 〈X〉] ≥

1
4E[X]. Therefore E[X −

1
2 〈X〉;X > 1

2 〈X〉] ≥
1
12E[X].

34 We have equality∫ ∞
ε

xcε(x, 1)dx =
∫ ∞
ε

−x · dwε(x, 1) = ε · wε(ε, 1) +
∫ ∞
ε

wε(x, 1)dx = ε

∫ ∞
ε

cε(x, 1)dx− hε(ε, 1).
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strictly increasing function. To show this, according to the expression of dΛε(t)/dt

as in (2.26), we only need to show that ∂cε(0, t)/∂x > 0 for all t > 0, which follows

from the Hopf maximum principle35. Furthermore, the function τ(·) is continuous.

By rescaling, λ2cε(λx, λt) together with Λε(λt)/λ are solutions to (2.22) and (2.23)

(An explanation of why we rescale this way will be explained in the remark below).

Thus, based on the conclusion from the previous paragraph, we have

d

dt
Λε(λ[τ(λ) + t]) ≤ Cλ at t = 1. (2.211)

Hitherto, we have shown that dΛε(t)/dt ≤ C at t = λ[τ(λ) + 1]. Since the function

λ→ λτ(λ) is monotonically increasing with range [0,∞) the result follows.

Remark II.31. The functions c̃ε(x, t) := λ2cε(λx, λt) and Λ̃ε(t) := Λε(λt)/λ satisfy

the differential equation

∂c̃ε(x, t)

∂t
=

∂

∂x

[
1− x

Λ̃ε(t)

]
c̃ε(x, t) +

ε

2λ

∂2c̃ε
∂x2

. (2.212)

We notice that the diffusive term diminishes as λ→∞.

Proposition II.32. Suppose c0 : [0,∞) → R+ satisfies (2.168) and cε(x, t), x ≥

0, t > 0 is the solution to (2.22), (2.23). Assume that the function hε(x, t) is log

concave in x at t = 0. Then there exists a universal constant C, and T ≥ 0 depending

on c0(·), ε, such that dΛε(t)/dt ≤ C for t ≥ T .

Proof. By Lemma II.27 there exists Tε ≥ 0 such that ε/Λε(Tε) ≤ ε0 where ε0 is

the universal constant in Lemma II.30. We do rescaling as in Lemma II.30 with

λ = Λε(Tε). Based on the discussion in II.31, it follows that we can choose T =

Tε + Λε(Tε).

35 See Hopf’s Lemma [13, page 347].
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APPENDIX A

Supplementary proofs for Chapter I

Proof of Lemma I.8. Part (i). It suffices to prove Ld(x) and Lu(x) are convex, where

Ld(x) =

∫ ∞
x

e−λ0(ξ−x)h(ξ)dξ,

Lu(x) =
2

σ2
1

∫ x

0

e−λ1(x−ξ)h(ξ)dξ + ce−λ1x

Let x1 < x2 and 0 ≤ α ≤ 1. We have

Ld(αx1 + (1− α)x2) =

∫ ∞
αx1+(1−α)x2

e−λ0(ξ−αx1−(1−α)x2)h(ξ)dξ

=

∫ ∞
0

e−λ0yh(y + αx1 + (1− α)x2)dy,

and

αLd(x1) = α

∫ ∞
x1

e−λ0(ξ−x1)h(ξ)dξ = α

∫ ∞
0

e−λ0yh(y + x1)dy,

(1− α)Ld(x2) = (1− α)

∫ ∞
x2

e−λ0(ξ−x2)h(ξ)dξ = (1− α)

∫ ∞
0

e−λ0yh(y + x2)dy.

Since h(·) is convex, h(y + αx1 + (1 − αk)x2) ≤ kh(y + x1) + (1 − α)h(y + x2), we

obtain

Ld(αx1 + (1− α)x2) ≤ αLd(x1) + (1− α)Ld(x2),
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and the convexity of Ld(x) follows directly.

For Lu(x), since e−λ1x is convex, it suffices to prove the convexity of the first term.

More specifically, we prove that its second order derivative is positive.

d

dx

∫ x

0

e−λ1(x−ξ)h(ξ)dξ = h(x)− λ1

∫ x

0

e−λ1(x−ξ)h(ξ)dξ,

d2

dx2

∫ x

0

e−λ1(x−ξ)h(ξ)dξ = h′(x)− λ1h(x) + λ2
1

∫ x

0

e−λ1(x−ξ)h(ξ)dξ.

Because h(x) is convex, for any ξ ≥ 0 we have h(ξ) ≥ h(x) + h′(x)(ξ − x). Thus

d2

dx2

∫ x

0

e−λ1(x−ξ)h(ξ)dξ

≥ h′(x)− λ1h(x) + λ2
1

∫ x

0

e−λ1(x−ξ) (h(x) + h′(x)(ξ − x)) dξ

= h′(x)− λ1h(x) + λ1

(
1− e−λ1x

)
h(x)− λ1

(
−xe−λ1x +

1

λ1

− 1

λ1

e−λ1x

)
h′(x)

= λ1e
−λ1x

(
−h(x) + xh′(x)

)
+ h′(x)e−λ1x

≥ λ1 (−h(0)) e−λ1x + h′(x)e−λ1x

= h′(x)e−λ1x,

where the second inequality above follows from, by convexity of h(·), that h(x) ≤

h(0) + xh′(x) for all x ≥ 0, and the last equality follows from h(0) = 0. Therefore,

d2

dx2

(
2

σ2
1

∫ x

0

e−λ1(x−ξ)h(ξ)dξ + ce−λ1x

)
≥
(

2

σ2
1

h′(x) + cλ2
1

)
e−λ1x

≥ 0.

This proves that Lu(x) is convex. Since the second term of Lu(x), ce−λ1x, is strictly

convex, G(x) is also strictly convex. This completes the proof of Part (i).
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Part (ii). Since h(x) is increasing convex, so limx→∞ h(x) =∞. As x→∞,

∫ ∞
x

e−λ0(ξ−x)h(ξ)dξ ≥ h(x)

∫ ∞
x

e−λ0(ξ−x)dξ =
1

λ0

h(x)→∞.

This guarantees that limx→∞G(x) =∞.

Proof of Proposition I.22. Similar to the proof of Theorem I.7, we compute the

expected total cost over a cycle for a band policy with known s, S. Define wd(x) and

wu(x) respectively as the holding cost incurred during the downward stage from x

to s and during the upward stage from x to S, in parallel with those defined in the

lost-sales model. Similar to equation (1.13), we obtain the expression of wd and wu

as

wd(x) =

∫ x

s

(
2

σ2
0

∫ ∞
u

e−λ0(ξ−u)h(ξ)dξ

)
du

wu(x) =

∫ S

x

(
2

σ2
1

∫ u

−∞
eλ1(ξ−u)h(ξ)dξ

)
du.

Therefore, the expected total cost incurred over one cycle is

∫ S

s

G(x)dx+K.

The expected duration of each cycle is m(S− s), with m = 1/µ0 + 1/µ1. The average

cost of the band policy (s, S) equals to the ratio of the expected cost to the expected

duration, thus (1.38) follows.

Proof of Lemma I.23. Part (i). The proof of this part is similar to Part (i) in

Lemma I.8. Define

Ld(x) :=

∫ ∞
x

e−λ0(ξ−x)h(ξ)dξ,

Lu(x) :=

∫ x

−∞
e−λ1(x−ξ)h(ξ)dξ.
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Then prove Ld(x) and Lu(x) are convex respectively.

Part (ii). As x→∞,

∫ ∞
x

e−λ0(ξ−x)h(ξ)dξ ≥ inf
y≥x

h(y)

∫ ∞
x

e−λ0(ξ−x)dξ =
1

λ0

inf
y≥x

h(y)→∞.

The other part as x→ −∞ is proved similarly.

Part (iii). It is easily seen that the second term K/(S−s) is strictly convex. For

the first term, we use the approach of Zhang [44], by noting that it can be expressed

as E[G(s + (S − s)U)], where U is a continuous uniform random variable on [0, 1].

Since for any realization of U , G(s + (S − s)U) is convex in (s, S), it follows that

E[G(s+ (S− s)U)] is also convex in (s, S). This proves that c(s, S) is strictly convex

with respect to s and S.

Lemma A.1. If h(·) is polynomially bounded with degree n, then the relative value

function v defined in §2 and §3 are polynomially bounded with degree n+ 1.

Proof. We only prove the result for the backlog model. By the definition of v, it

suffices to prove that wd(x), x ≥ s and wu(x), x ≤ S are both polynomially bounded

with degree n + 1. We only consider the case that s is non-negative. The case with

negative s only adds a constant to the upper bound. We prove by induction that if

h(x) ≤ A1|x|n for some constant A1, then wi(x) ≤ A2 + A3|x|n+1, i = d, u, for some

constants A2 and A2. When n = 0,

wd(x) ≤
∫ x

s

(
2

σ2
0

∫ ∞
u

e−λ0(ξ−u)A1dξ

)
du

=
2A1

λ0σ2
0

(x− s).

Suppose we have shown that h(x) ≤ A1|x|i implies wd(x) ≤ A2|x|i+1, for i =
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0, 1, . . . , n− 1, then for n, we have

wd(x) =

∫ x

s

(
2

σ2
0

∫ ∞
u

e−λ0(ξ−u)h(ξ)dξ

)
du

≤
∫ x

s

(
2

σ2
0

∫ ∞
u

e−λ0(ξ−u)A1|ξ|ndξ
)
du

≤
∫ x

0

(
2

σ2
0

∫ ∞
u

e−λ0(ξ−u)A1ξ
ndξ

)
du

= −
∫ x

0

2A1

σ2
0λ0

(
e−λ0(ξ−u)ξn

∣∣∣∞
u
−
∫ ∞
u

ne−λ0(ξ−u)ξn−1dξ

)
du

=
2A1

σ2
0λ0

∫ x

0

(
un +

∫ ∞
u

ne−λ0(ξ−u)ξn−1dξ

)
du

≤ A2|x|n+1,

where the last inequality follows from induction assumption, and A2 is a constant.

The proof for wu(x) to be polynomially bounded of degree n+ 1 is similar and is

omitted. Thus, the proof of Lemma A.1 is complete.

Proof of Theorem I.25. We first show that c(s, S) is strictly and jointly convex in

(s, S). By substitution x = uS + (1− u)s, we can rewrite (1.38) as

c(s, S) =
1

m

∫ 1

0

G (uS + (1− u)s) du+
K

m(S − s)
.

Since G(x) is convex and uS+(1−u)s is an affine function of s and S, G(uS+(1−u)s)

is jointly convex in s and S for all u ∈ [0, 1]. Thus
∫ 1

0
G(uS+(1−u)s)du is also jointly

convex in s and S. Further, it is easy to show that K
S−s is strictly jointly convex in s

and S on s < S. Therefore c(s, S) is a strictly convex function.

The first order optimality condition on c(s, S) with respect to s and S yields

G(s) = G(S) =

∫ S
s
G(x)dx+K

S − s
.
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Let G(s) = G(S) = mγ, then the optimality condition has three equations

G(s) = mγ, G(s) = mγ,

∫ S

s

(G(x)−mγ)dx = −K.

This establishes (1.39). Since c(s, S) is jointly convex in s and S, the first order

necessary optimality condition is also sufficient for optimality. Thus, we only need

to prove the existence of (s, S) that satisfy these equations. To that end, define

`γ(s, S) =
∫ S
s

(G(x)− γm)dx+K and let s(γ) and S(γ) be the minimizer of `γ(s, S)

for given γ, whenever they exist, then s(γ) and S(γ) are given by (1.18) and (1.19)

after replacing H(·) by m, and by continuity of G(·) (since it is convex), we have

G(s(γ)) = mγ and G(S(γ)) = mγ. Furthermore,

A(γ) =

∫ S(γ)

s(γ)

(
G(x)− γm

)
dx

is strictly decreasing and concave in γ. Then, similar argument as that used in the

proof of Theorem I.11 shows that, there exists a unique γ∗ that satisfies A(γ∗) = −K.

Thus the optimal policy is s∗ = s(γ∗) and S∗ = S(γ∗).

Proof of Theorem I.26. It suffices to prove that the relative value functions defined in

(1.40) and (1.41) satisfy (1.34)-(1.37) in Proposition I.21. We firstly prove Γ0v(x, 0)+

h(x)− γ ≥ 0. When x ≥ s∗, we have

Γ0wd(x) + h(x) = 0,

Γ0

[
−γ

∗x

µ0

]
= γ∗,
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so Γ0v(x, 0) + h(x)− γ = 0. When x < s∗, it holds v(x, 0) = v(x, 1) +K. Further,

Γ0 [v(x, 1) +K]

=− µ0

(
− 2

σ2
1

∫ x

−∞
e−λ1(x−ξ)h(ξ)dξ +

γ∗

µ1

)
+
σ2

0

2

[
− 2

σ2
1

(
h(x)− λ1

∫ x

−∞
e−λ1(x−ξ)h(ξ)dξ

)]
.

Since

γ − h(x) = Γ0

[
wd(x)− γ∗x

µ0

]
= −µ0

[
2

σ2
0

∫ ∞
x

e−λ0(ξ−x)h(ξ)dξ − γ∗

µ0

]
+
σ2

0

2

[
2

σ2
0

(
−h(x) + λ0

∫ ∞
x

e−λ0(ξ−x)h(ξ)dξ

)]

for all x, it suffices to prove

Γ0 [v(x, 1) +K]− Γ0

[
wd(x)− γ∗x

µ0

]
≥ 0.

On x < s∗, we have G(x)− γ∗m ≥ 0 and G′(x) ≤ 0, i.e.,

2

σ2
1

∫ x

−∞
e−λ1(x−ξ)h(ξ)dξ +

2

σ2
0

∫ ∞
x

e−λ0(ξ−x)h(ξ)dξ − γ∗
(

1

µ0

+
1

µ1

)
≥ 0,

and

2

σ2
1

(
h(x)− λ1

∫ x

−∞
e−λ1(x−ξ)h(ξ)dξ

)
+

2

σ2
0

(
−h(x) + λ0

∫ ∞
x

e−λ0(ξ−x)h(ξ)dξ

)
≤ 0,

thus it follows that

Γ0 [v(x, 1) +K]− Γ0

[
wd(x)− γ∗x

µ0

]
≥ 0.
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Therefore, Γ0v(x, 0) + h(x) − γ ≥ 0 is satisfied for all x. Similarly, it can be shown

that Γ1v(x, 1)+h(x)−γ ≥ 0 for all x. The other two conditions, (1.36), (1.37), can be

proved in the same way as that in the lost-sales case, so they are omitted here. Thus,

applying Proposition I.21, we conclude that the proposed policy (s∗, S∗) is optimal

among all policies in Av.
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