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ABSTRACT: With challenges in data harmonization and environmental heterogeneity across various data sources, meta-
analysis of gene–environment interaction studies can often involve subtle statistical issues. In this paper, we study the effect
of environmental covariate heterogeneity (within and between cohorts) on two approaches for fixed-effect meta-analysis:
the standard inverse-variance weighted meta-analysis and a meta-regression approach. Akin to the results in Simmonds and
Higgins (2007), we obtain analytic efficiency results for both methods under certain assumptions. The relative efficiency of
the two methods depends on the ratio of within versus between cohort variability of the environmental covariate. We propose
to use an adaptively weighted estimator (AWE), between meta-analysis and meta-regression, for the interaction parameter.
The AWE retains full efficiency of the joint analysis using individual level data under certain natural assumptions. Lin
and Zeng (2010a, b) showed that a multivariate inverse-variance weighted estimator retains full efficiency as joint analysis
using individual level data, if the estimates with full covariance matrices for all the common parameters are pooled across all
studies. We show consistency of our work with Lin and Zeng (2010a, b). Without sacrificing much efficiency, the AWE uses
only univariate summary statistics from each study, and bypasses issues with sharing individual level data or full covariance
matrices across studies. We compare the performance of the methods both analytically and numerically. The methods are
illustrated through meta-analysis of interaction between Single Nucleotide Polymorphisms in FTO gene and body mass index
on high-density lipoprotein cholesterol data from a set of eight studies of type 2 diabetes.
Genet Epidemiol 38:416–429, 2014. © 2014 Wiley Periodicals, Inc.
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Introduction

Genome-wide association studies (GWAS) provide tremen-
dous opportunities for large-scale exploration of associations
between genetic variants and complex traits. Searching ge-
netic associations based on GWAS has been successfully iden-
tifying marginal effects of variants at multiple susceptibility
loci for a wide spectrum of complex traits, e.g. type 2 dia-
betes (T2D) [Morris et al., 2012; Saxena et al., 2013; Scott
et al., 2007; Zeggini et al., 2008], cardiovascular outcomes
[Psaty et al., 2009; Sarwar et al., 2012] and cancer [Song
et al., 2013]. The agnostic discovery strategy of GWAS can
be used to detect gene–environment interactions (GEI) that
can further characterize the genetic architecture of complex
traits through subgroup or joint effects [Mukherjee et al.,
2012; Khoury and Wacholder, 2009]. In general, the defini-
tion of “environment” can be broad, including demographic
factors (age, gender etc.), behavioral factors (smoking, al-
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cohol consumption, diet, medication use etc.), and external
factors (exposure to air pollution, radio-active substances
etc.). Complex traits are influenced by both genetic and envi-
ronmental factors and possibly their interaction, e.g. physical
activity appeared to attenuate the effect of fat mass associ-
ated FTO gene variants on obesity risk [Kilpeläinen et al.,
2011]. With limited number of findings on GEIs so far, it
is likely that the GEI effects are small to modest, warrant-
ing the need for larger sample sizes and collaboration across
different study sites for joint or meta-analysis. Many collabo-
rative networks have been formed to share individual or sum-
mary level data from multiple GWAS of related traits, e.g. the
DIAGRAM (T2D) [Morris et al., 2012; Voight et al., 2010;
Zeggini et al., 2008], MAGIC (glucose and insulin-related
traits) [Dupuis et al., 2010; Scott et al., 2012], CHARGE
(heart and aging research) [Psaty et al., 2009], GIANT (an-
thropometrics) [Speliotes et al., 2010], and Global Lipids
[Teslovich et al., 2010] GWAS consortia. There are also com-
putationally efficient tools (e.g. METAL Willer et al., 2010) to
implement GWA meta-analysis (GWAMA). However, there
are relatively few papers that explore analytical issues for
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meta-analysis of GEI (e.g. Aschard et al., 2011; Manning
et al., 2011 to name a couple) compared to meta-analysis of
marginal genetic associations.

Several meta-analytic techniques largely developed for
their use in randomized clinical trials can be adapted in
genetic epidemiology, e.g. the fixed-effects model (FEM)
[Whitehead and Whitehead, 1991] and random-effects
model (REM) [DerSimonian and Laird, 1986]. The term
“fixed effect model” in the classical literature [Borenstein
et al., 2010; Fleiss, 1993; Lin and Zeng, 2010b; Whitehead and
Whitehead, 1991] most often refers to a model with fixed and
common effect. But in general, “fixed effects model” (in plu-
ral) only requires that there are fixed and unrelated effects in
each study, regardless of the homogeneity assumption. Effect
homogeneity can be tested by the Cochran’s Q-test [Cochran,
1954]. In this paper, we consider the fixed and common effect
framework for the interaction parameter as in Lin and Zeng
[2010b] to derive our analytical results. We comment on this
choice as opposed to a general-fixed effects model where the
interaction parameter can be different across studies later in
the paper.

The joint analysis of individual patient data (IPD) from
all studies is typically regarded as the “gold standard” for ev-
idence synthesis. However, considerable time and resources
are required to share individual level data even in an existing
consortium. We refer to the joint analysis of raw data from
all studies as IPD analysis (also called mega-analysis in
some papers, e.g. Lin and Zeng [2010a]), and classify the
methods that combine summary statistics derived from
analysis of different studies as meta-analysis. A natural
question to ask is how much efficiency gain, if any, can be
achieved by analyzing IPD over meta-analysis. Recently, Lin
and Zeng [2010b] considered a multivariate IVW (MIVW)
estimator under the common effect model. In constructing
the MIVW, if the estimates with full covariance matrix for
all the common parameters are pooled across studies, then
the MIVW is asymptotically equivalent to the IPD estimator.
However, in meta-analysis of published results, it is often
difficult to obtain the full covariance matrix, while univariate
summary statistics (e.g. estimate and standard error) for
the effects of interest are more likely to be available. Lin
and Zeng also quantified the efficiency loss of using an
univariate IVW (UIVW) versus a MIVW estimator. The
results from Lin and Zeng are derived in a very general
setting. In this paper, we specifically focus on the estimation
and testing of GEI parameter. Our goal is to construct
estimator for GEI parameter using only univariate summary
statistics, bypassing issues with sharing individual level data
or multivariate covariance matrices across studies, without
sacrificing much efficiency or incurring increased bias.

Another pragmatic question to ask is whether we can detect
GEI from summary statistics obtained from previously con-
ducted genome-wide meta-analysis of marginal genetic ef-
fects, without the knowledge of IPD. Meta-regression (MR) is
a regression-based technique to investigate whether some
particular study-level covariates explain heterogeneity among
effect estimates from multiple studies. Many studies (e.g.
Simmonds and Higgins 2007; Kovalchik 2013) have com-

pared aggregate data analysis (e.g. MR) with IPD analysis
to detect treatment-biomarker interactions for randomized
clinical trials (analogous to gene–environment interactions in
our case). Simmonds and Higgins considered three methods
IPD, UIVW, and MR and showed that under certain natural
assumptions, analytical power formulae to detect interac-
tions can be expressed in terms of total, within and between
study sum of squares (TSS, WSS, and BSS, respectively) corre-
sponding to the environmental covariate. In absence of IPD,
they recommended using UIVW rather than MR if the WSS
exceeds BSS and vice versa. We borrow from their work to
derive similar analytical expressions for testing GEI under
certain assumptions.

Instead of making a discrete choice between UIVW versus
MR, we propose a novel adaptively weighted estimator (AWE)
combining UIVW and MR, and archiving the same asymp-
totic efficiency as the IPD estimator under certain conditions.
The AWE has two major advantages over the MIVW estima-
tor shown in the following main text: (1) AWE requires only
univariate summary statistics from each study (study-specific
estimate and standard error for the marginal association of G
and GEI parameter, and study-level mean of E ); (2) AWE has
less efficiency loss compared to MIVW under model misspec-
ification, for example, when the main effects of G or E are het-
erogeneous across studies or when a continuous covariate E is
centered within each study at the study level mean. Our simu-
lation studies indicate that AWE is very robust across multiple
model violation scenarios we considered, including presence
of certain types of nonlinearity in the interaction term.

The rest of the paper is organized as follows. In the
methods section, we describe different strategies for meta-
analysis of GEI, followed by analytical results on bias, vari-
ance, and power properties of the newly proposed method.
A comprehensive simulation study was performed to assess
the performance of the meta-analysis methods under a va-
riety of scenarios. We primarily focus on the issue of envi-
ronmental covariate heterogeneity, but also explore several
other important factors that could potentially affect the rel-
ative performance of these methods: (1) departures from
gene–environment independence; (2) heterogeneity in mi-
nor allele frequencies (MAFs) across cohorts; (3) lack of a
common set of covariates to adjust for across studies; (4)
misspecification of the genetic susceptibility model (domi-
nant/codominant/additive); and finally, (5) the presence of
a nonlinear form of interaction. In the results section, we
report simulation findings followed by an illustrative exam-
ple, where we examine whether variants in FTO gene mod-
ify the effect of environmental factors (age and BMI) on
high-density lipoprotein cholesterol (HDL-C) levels, a T2D-
related quantitative trait. This paper is expected to provide
useful insights and guidelines for practitioners conducting
meta-analyses of GEI.

Methods

Meta-Analysis of GEI Under a Common Effect Model

Consider a quantitative trait Y, a continuous environmen-
tal exposure E , a biallelic genetic locus G with genotypes of
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AA , Aa, and aa (where A is the minor allele), and other
covariates Z . Suppose that there are K independent studies
and a total of N participants, with nk participants in the kth
study, k = 1, . . . , K ,

∑K
k=1 nk = N. Let Yki , E ki , G ki , and Zki

be the corresponding observations for participant i in study
k, for i = 1, . . . , nk and k = 1, . . . , K . The assumed model for
individual responses follows

Yki = β0k + βG G ki + βE E ki + δG kiE ki + β�
Z Zki + εki, (1)

where β0k are the study-specific intercepts, βG , βE , and βZ are
the main effects corresponding to G , E , and Z , and δ is the
GEI effect of primary interest. The vector β = (βG , βE , δ,βZ )
is assumed to be fixed and common across studies. The ran-
dom errors εki ’s are assumed as εki ∼ N(0, σ2

k ) and are inde-
pendent. Our interest lies in estimating the common interac-
tion parameter δ and in testing H0 : δ = 0.

There are multiple reasons for assuming a common effect
model (1). First, this model is used quite frequently in the
literature [Hartung et al., 2011; Lin and Zeng, 2010a, 2010b].
Second, the analytical derivation of the relative efficiency
and power are facilitated; Third, meta-regression can only be
meaningfully conceptualized if the interaction parameter is
assumed to be the same across studies; Fourth, with unrelated
but distinct fixed effects across studies, it is often hard to
find a scientific interpretation of the limiting/expected value
of the population parameter to which the standard inverse-
variance weighted estimator converges to; thus quantities
like bias and mean-squared error become less interpretable.
Finally, there was no evidence of effect heterogeneity for the
interaction parameters in our T2D data analysis example
of eight European studies. However, as we will discuss sub-
sequently, the “common effect” assumption can be relaxed
for testing purposes and most of the methods we discuss are
valid to test the null hypothesis H0 : δ1 = · · · = δK = 0,
if in fact we allowed study specific parameters δk

in (1).
Various susceptibility models including the dominant

model (G = 1 if AA and Aa; G = 0 if aa), recessive model
(G = 1 if AA ; G = 0 if Aa and aa), additive model (G = 2
if AA ; G = 1 if Aa; G = 0 if aa) and codominant model
(G = AA, Aa or aa with aa as the reference level) are
considered. For codominant model, βG = (βAa

G , βAA
G ) and

δ = (δAa, δAA ) for genotypes Aa and AA can be modified
accordingly in model (1).

In the following, we first describe in the existing meth-
ods section, three traditional approaches to detect GEI under
model (1). The approaches are IPD analysis, standard meta-
analysis (UIVW or MIVW) and MR. For the sake of com-
pleteness, we also describe a two-step estimator previously
suggested by Simmonds and Higgins (2007). We then propose
the new AWE in the adaptively weighted estimator section.
Throughout the paper, we use the generic notation v(δ̂) for
the asymptotic variance (covariance matrix for multivariate
δ̂) of any given estimator δ̂, and v̂(δ̂) for the corresponding
estimated variance.

Existing Methods

(i) Individual patient data analysis (IPD): The IPD anal-
ysis fits model (1) using individual level data. Methods such
as weighted least square (WLS) can be used to handle the
heterogeneous σ2

k across studies, if σ2
k can be estimated with

sufficient accuracy. However, for simplicity, we consider a
simple linear regression model that assumes common resid-
ual variance σ2

k = σ2 for k = 1, . . . , K in (1), as the standard
implementation of the IPD analysis. Denote the maximum
likelihood estimate (MLE) of δ as δ̂IPD, and its estimated
variance as v̂(δ̂IPD).

(ii) Meta-analysis using inverse-variance weighted esti-
mator: Since the data required for IPD analysis are seldom
available in published results, meta-analysis combining sum-
mary statistics across individual studies is often used. We
consider some variants of IVW estimator under model (1).

(ii.A) UIVW: A UIVW estimator needs the MLEs δ̂k and
v̂(δ̂k) estimated from model (1) using data from only study k.

Under the above model, δ̂k
iid∼ N(δ, v(δ̂k)) and are indepen-

dent across studies. The UIVW estimator is given by,

δ̂UIVW =

{∑
k

v̂(δ̂k)–1

}–1 ∑
k

v̂(δ̂k)–1δ̂k

v̂(δ̂UIVW) =

{∑
k

v̂(δ̂k)–1

}–1

.

The validity of the method requires that δ̂k is asymptotically

normal δ̂k
iid∼ N(δ, v(δ̂k)) for a large nk and the asymptotic

variance v(δ̂k) can be estimated by v̂(δ̂k) with negligible error
[Whitehead and Whitehead, 1991]. We refer to these condi-
tions as “standard conditions” throughout, and we note that
it is often implicitly assumed to hold in the traditional meta-
analysis literature (e.g. DerSimonian and Laird 1986; Lin and
Zeng 2010b; Whitehead and Whitehead 1991).

(ii.B) MIVW: Let β̂k = (β̂G k, β̂E k, δ̂k, β̂Zk) be the MLE
of β from study k, with estimated multivariate variance-
covariance matrix v̂(β̂k). When both β̂k and v̂(β̂k) are avail-
able from each study, we consider the MIVW estimator fol-
lowing Lin and Zeng [2010b],

β̂
MIVW

=

{∑
k

v̂(β̂k)–1

}–1 ∑
k

v̂(β̂k)–1β̂k

v̂
(
β̂

MIVW)
=

{∑
k

v̂(β̂k)–1

}–1

.

Then δ̂MIVW and v̂(δ̂MIVW) corresponding to the interaction
parameter δ can be obtained from the corresponding element

in β̂
MIVW

and v̂(β̂
MIVW

), respectively. Following Lin and Zeng
[2010b], δ̂MIVW has full asymptotic efficiency as δ̂IPD under the
common effect model (1). However, the full covariance ma-
trix v̂(β̂k) is not likely to appear in meta-analysis of published
results and different studies may adjust for different covariates
Z . So δ̂UIVW remains the most commonly used meta-analytic
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method in spite of potential efficiency loss when compared
to δ̂MIVW and δ̂IPD.

(iii) Meta-regression: The assumed model (1) implies that
the Y-G association depends linearly on E . So we consider
a linear MR model to reveal the underlying dependence be-
tween the marginal genetic effects and the aggregated study
mean values of E (say mk =

∑
i E ki/nk). Screening for the

marginal effect of G is routinely performed as the first step in
GWA analysis. For each study k, we first consider the marginal
genetic association model

Yki = λ0k + λG kG ki + λ�
ZkZki + ηki, i = 1, . . . , nk. (2)

where the errors ηki ∼ N(0, σ2
ηk), and are independent. At the

second step, the MLE λ̂G k, the estimated genetic association
parameter in study k is regressed on mk through the MR
model

λ̂G k = γ0 + γmk + νk, k = 1, . . . , K . (3)

To account for the potential heterogeneity in v̂(λ̂G k) across
studies, we consider the WLS estimator of γ, with weight wk =

v̂(λ̂G k)–1 assumed as known, i.e. νk ∼ N(0, v̂(λ̂G k)). Denote
the WLS estimator of γ in model (3) by δ̂MR. Then δ̂MR and
v̂(δ̂MR) can be expressed as

δ̂MR =

(∑
k wk

) (∑
k wkmkλ̂G k

)
–
(∑

k wkmk

) (∑
k wkλ̂G k

)
(∑

k wk

) (∑
k wkm2

k

)
–
(∑

k wkmk

)2 ,

v̂(δ̂MR) =

∑
k wk(∑

k wk

) (∑
k wkm2

k

)
–
(∑

k wkmk

)2 σ̂2.

The advantage of MR approach is that one can identify GEI
with only limited summary data on E (only the mean mk’s)
and published results of marginal genetic effects (λ̂G k and
v̂(λ̂G k)).

(iv) Two-stage estimator: Let m =
∑

k, i E ki/N denote
the overall sample mean of E , s2

E = N–1
∑

k, i(E ki – m)2 be
the total sample variance of E , s2

E k = n–1
k

∑nk
i=1(E ki – mk)2

be the sample variance of E within the kth study. De-
note the corresponding population parameters for m, mk,
s2

E , s2
E k as μ, μk, σ2

E , σ2
E k, respectively. We make the

usual partition of the total sum of squares (TSS) of E
as the sum of the within-study sum of squares (WSS)
and between-study sum of squares (BSS), i.e. TSS =

WSS + BSS , where TSS =
∑

k, i(E ki – m)2 = Ns2
E , WSS =∑

k

∑
i(E ki – mk)2 =

∑
k nks2

E k, and BSS =
∑

k nk(mk – m)2.
Throughout this paper, we assume nk/N → 
k ∈ (0, 1) as
N → ∞. Consider the limiting true population quanti-
ties as tss = σ2

E , wss =
∑

k 
kσ
2
E k, and bss =

∑
k 
k(μk – μ)2.

We have TSS/N
p→ tss, WSS/N

p→ wss, BSS/N
p→ bss, as

N → ∞.
Motivated by the fact that asymptotic relative efficiency

(ARE) of δ̂MR compared to δ̂UIVW is driven by bss/wss, we
consider a two-stage approach analogous to Simmonds and
Higgins [2007] as

δ̂TS =

{
δ̂UIVW, if BSS/WSS ≤ 1;
δ̂MR, if BSS/WSS > 1,

i.e. using δ̂UIVW instead of δ̂MR if WSS ≥ BSS and vice versa.
Note that δ̂TS is an ad-hoc procedure of discretely determin-
ing which method to use, based on the statistic BSS/WSS
that measures heterogeneity in E between studies relative to
within study variation in E .

Adaptively Weighted Estimator

We note that, using only summary statistics, both δ̂UIVW

and δ̂MR can potentially lack precision. Moreover, δ̂MR can
have significant ecological bias [Berlin et al., 2002; Greenland,
1987; Morgenstern, 1982; Schwartz, 1994] if the aggregate
data relationship differs from the one observed in individual
level data. Thus, we propose an adaptive estimator that com-
bines δ̂UIVW and δ̂MR to trade-off between bias and efficiency
in a data adaptive way. We first use the following lemma that
is also used in Kooperberg and LeBlanc [2008] and Dai et al.,
[2012].

Lemma 1. Let Yi be independent random variables with equal
variance, for i = 1, . . . , n, and let X j = (X 1j , . . . , X nj )� be the
data vector corresponding to the j th predictor, j = 1, . . . , p + q.
Let λ̂j (j = 1, . . . , p ) and β̂j (j = 1, . . . , p + q) be the MLEs of
the parameters under the two nested linear regression models

Yi = λ0 +

p∑
j =1

λj X ij + ηi and Yi = β0 +

p +q∑
j =1

βj X ij + εi,

then (λ̂1, . . . , λ̂p ) and (β̂p +1, . . . , β̂p +q) are asymptotically in-
dependent.

Proof of Lemma 1 is presented in Supplementary Appendix
B.1 for the purpose of completeness.

Applying Lemma 1 to models (1) and (2), the marginal
genetic association λ̂G k and GEI δ̂k are asymptotically inde-
pendent within each study k, as they are coming from two
nested linear regression models using data within study k.
Note that δ̂UIVW is a linear combination of δ̂k, and that δ̂MR

is a linear combination of λ̂G k, then the following corollary
holds.

Corollary 1. δ̂UIVW and δ̂MR are asymptotically independent.

The independence of the two estimators are critical as we
can now borrow the classical idea of constructing an IVW es-
timator using these two independent ingredients. Assuming
the standard conditions, we propose an AWE of the form

δ̂AWE =

{
v̂
(
δ̂UIVW

)–1
+ v̂(δ̂MR)–1

}–1

×
{

v̂
(
δ̂UIVW

)–1
δ̂UIVW + v̂

(
δ̂MR

)–1
δ̂MR

}
,

which combines δ̂UIVW and δ̂MR using their inverse-variances
as weights. In order to calculate δ̂AWE, summary statistics of
study-specific effect estimates (δ̂k, v̂(δ̂k), λ̂G k, and v̂(λ̂G k))
and study-level covariate means mk are needed from each
study k. The intuitive rationale behind the AWE is that, when
v̂(δ̂UIVW) is relatively smaller than v̂(δ̂MR), δ̂AWE puts more
weight on δ̂UIVW and vice versa.
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Theorem 1. For the class of weighted estimators δ̂AWE(w) =

w δ̂UIVW + (1 – w)δ̂MR, 0 ≤ w ≤ 1, v(δ̂AWE(w))–1 attains its
maximum at v(δ̂UIVW)–1 + v(δ̂MR)–1 if and only if the weight
w = v(δ̂MR)/{v(δ̂UIVW) + v(δ̂MR)}.

Theorem 1 proved in Supplementary Appendix B.1 es-
tablishes the well-known optimality of the inverse variance
weights for AWE. A consequence of Theorem 1 is that the pre-
cision of δ̂AWE is the sum of the precisions of δ̂UIVW and δ̂MR.
Under the standard conditions, the estimated variance of the
AWE estimator is given by v̂(δ̂AWE)–1 = v̂(δ̂UIVW)–1 + v̂(δ̂MR)–1.
We will further show that δ̂AWE is fully efficient as δ̂IPD un-
der certain plausible assumptions in the Analytical Results
section.

Remark 1 (Codominant model.). For the codominant
the model with δ = (δAa, δAA ), it is straightforward to
translate the proposed methods to their bivariate counter-

parts. In particular, δ̂
IPD

and v̂(δ̂
IPD

) can be directly ob-

tained from (1); δ̂
UIVW

and v̂(δ̂
UIVW

) can be obtained as

{∑k v̂(δ̂k)–1}–1
∑

k v̂(δ̂k)–1δ̂k and {∑k v̂(δ̂k)–1}–1; δ̂
MIVW

and

v̂(δ̂
MIVW

) can be obtained from β̂
MIVW

and v̂(β̂
MIVW

);
MR model can be modified as a multiple response re-
gression λ̂k = γ0 + γmk + νk, where λ̂k = (λ̂Aa

G k, λ̂
AA
G k )� and

νk
iid∼ N(0, v̂(λ̂k)). Corollary 1 and Theorem 1 also hold

following Lemma 1 for bivariate δ. A bivariate form of

AWE can be considered as δ̂
AWE

= {v̂(δ̂
UIVW

)–1 + v̂(δ̂
MR

)–1}–1

{v̂(δ̂
UIVW

)–1δ̂
UIVW

+ v̂(δ̂
MR

)–1δ̂
MR}.

Analytical Results

This section presents some analytical results regarding bias,
variance, and power properties for the adaptive estimator de-
scribed in Adaptively Weighted Estimator section. We con-
sider models without covariate Z to simplify the presentation.

Bias

Following classic linear regression and meta-analysis re-
sults, δ̂IPD, δ̂UIVW, and δ̂MIVW are all asymptotically unbiased
estimators of δ. However, δ̂MR is not necessarily unbiased for
δ in general. The relationship between the marginal effect of
G and the study-specific means mk may differ from the un-
derlying relationship between the marginal effect of G and
individual level data for E . This phenomenon is known as
“ecological bias” or “ecological fallacy,” and is well character-
ized in the literature [Greenland, 1987; Morgenstern, 1982;
Schwartz, 1994]. However, we note that δ̂MR is an unbiased
estimator of δ under the following G -E independence as-
sumption, which is a plausible assumption well-discussed in
the literature. We use the generic notation P (·) to denote the
distribution of a random variable.

Assumption 1. P (G , E | study = k) = P (G | study = k)P (E |
study = k), for k = 1, . . . , K , i.e. G and E are independent
within each study.

Proposition 1. Under Assumption 1, δ̂MR as described in model
(3) is asymptotically unbiased for δ.

Proof of Proposition 1 is presented in Supplementary Ap-
pendix B.2. In the following Remark 2, we further discuss the
issue of potential bias of δ̂MR and thus in δ̂AWE (which assigns
a positive weight on the MR estimator) if Assumption 1 is
violated.

Remark 2 (Bias of δ̂MR and δ̂AWE). Without Assumption
1, we showed (in Appendix B.2) that the limiting value of
the bias of δ̂MR is proportional to the ratio tss/bss and the
correlation between G and E . If the G -E correlations within
each study are 0, then E (δ̂MR) – δ

p→ 0. If Assumption 1 holds,
δ̂AWE is an asymptotically unbiased estimator of δ as both
its components are unbiased. Moreover, we show later in
variance and relative efficiency section that the limiting value
of the weight corresponding to δ̂MR in δ̂AWE is bss/tss. So
δ̂AWE adaptively puts less weight on δ̂MR when the bias of δ̂MR

increases. We find through our numerical investigation that
δ̂AWE is robust to potential ecological bias in δ̂MR even when
the ecological bias is substantial (please see Supplementary
Appendix Fig. 9 and Table 6 for the simulation results, and
main text Table 4 corresponding to the T2D example).

Variance and Relative Efficiency

Explicit variance formulae v̂(δ̂) and v(δ̂) for each esti-
mator of δ are derived under Assumption 1 in Supplemen-
tary Appendix B.3. Because the linear regression likelihood∏

k,i P (Yki|G ki, E ki) corresponding to model (1) does not use
any assumptions about the joint distribution of G and E , the
role of the G -E independence assumption in this paper is only
to provide simpler closed form expressions for the variances.
This is different from case-control studies where assuming
G -E independence and using the retrospective likelihood
can lead to large gains in efficiency [Chatterjee and Carroll,
2005; Piegorsch et al., 1994; Umbach and Weinberg, 1997].

In this Variance and Relative Efficiency section, for simplic-
ity of presentation we assume σ2

k = σ2 for k = 1, . . . , K , and
consider a dominant susceptibility model for stating Theo-
rems 2 and 3. Let G = 1 (G = 0) indicate whether an individ-
ual is a carrier (noncarrier) of the minor allele A , and let p k

denote P (G = 1| study = k) the carrier frequencies in study
k, k = 1, . . . , K .

Theorem 2. Under Assumption 1, v(δ̂IPD)–1 ≥ v(δ̂UIVW)–1 +

v(δ̂MR)–1 = v(δ̂AWE)–1. The equality holds if and only if p k = p ,
for k = 1, 2, . . . , K , where p is the common carrier frequency
across all studies.

Proof of Theorem 2 is given in Supplementary Appendix
B.4. Under Assumption 1, the precision of δ̂IPD is in general
greater than that of δ̂AWE. However, under the additional as-
sumption of homogeneity of the MAFs (Assumption 2 stated
below), we have equality v(δ̂IPD) = v(δ̂AWE).

Assumption 2. The MAFs corresponding to the susceptible SNP
are constant across all studies, i.e. p k = p , for k = 1, 2, . . . , K .
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Table 1. Glossary of the meta-analysis methods for GEI with summary properties

Methods Data shared Bias AREa

IPD individual level data unbiased 1
UIVW δ̂k, v̂

(
δ̂k

)
unbiased wss/tss under Assumptions 1 and 2

MIVW β̂k, v̂
(
β̂k

)
unbiased 1 under assumptions in LZ

MR λ̂G k, v̂
(
λ̂G k

)
and mk unbiased under Assumption 1 bss/tss under Assumptions 1 and 2

AWE δ̂k, v̂
(
δ̂k

)
; λ̂G k, v̂

(
λ̂G k

)
and mk unbiased under Assumption 1b 1 under Assumptions 1 and 2

a ARE, asymptotic relative efficiency as compared to δ̂IPD.
b Bias adaptively controlled in AWE.
IPD, individual patient data analysis; UIVW, univariate inverse-variance weighted estimator; MIVW, multivariate inverse-variance weighted estimator; MR, Meta-regression;
AWE, adaptively weighted estimator combining UIVW and MR. λ̂k stands for estimates of marginal genetic association and δ̂k stands for gene–environment interaction,
respectively.

Theorem 3. Under Assumptions 1 and 2, v(δ̂IPD)–1 =

v(δ̂AWE)–1 = v(δ̂UIVW)–1 + v(δ̂MR)–1, where v(δ̂UIVW) =

{Np (1 – p )wss}–1σ2, v(δ̂MR) = {Np (1 – p )bss}–1σ2 and
v(δ̂IPD) = v(δ̂AWE) ={Np (1 – p )tss}–1σ2.

Proof of Theorem 3 is given in Supplementary Ap-
pendix B.5. Following Theorem 3, the asymptotic variances
v(δ̂IPD), v(δ̂UIVW), v(δ̂MR), and v(δ̂AWE) are all expressed in
terms of covariate heterogeneity of E . The ARE between
δ̂UIVW (δ̂MR) and δ̂IPD is wss/tss (bss/tss). So v(δ̂UIVW) ≤
v(δ̂MR), if wss ≥ bss, and vice versa. For the extreme case,
when there is no between-study heterogeneity in the study
means of E (i.e. μk = μ), v(δ̂UIVW) = v(δ̂IPD), and δ̂AWE re-
duces to δ̂UIVW; in contrast, if all σ2

E k = 0 (i.e. E is constant
within each study), v(δ̂MR) = v(δ̂IPD), and δ̂AWE reduces to
δ̂MR.

The limiting weights in δ̂AWE can be simplified as
w = v(δ̂MR)/{v(δ̂UIVW) + v(δ̂MR)} = bss–1/{wss–1 + bss–1} =

wss/tss. Since WSS/TSS
p→ wss/tss and BSS/TSS

p→
bss/tss, as N → ∞, we can use the estimated weights
WSS/TSS and BSS/TSS in δ̂AWE, which leads to

δ̂AWE =
WSS

TSS
δ̂UIVW +

BSS

TSS
δ̂MR.

δ̂AWE adaptively captures the precision trade-off between the
two estimators: δ̂AWE puts more weight on δ̂UIVW if WSS is
relatively larger than BSS , and vice versa. In summary, un-
der Assumptions 1 and 2, δ̂AWE is a consistent, unbiased,
and asymptotically fully efficient estimator, which uses only
univariate summary statistics without the knowledge of the
original IPD. The operating characteristics for the proposed
meta-analytic methods are summarized in Table 1. The re-
sults in Theorems 2 and 3 are numerically evaluated through
a simulation study to examine the effect of relaxing Assump-
tion 1 or 2, and relaxing the homogeneity assumption of σ2

k .

Remark 3 (Additive and codominant models). In general,
it is difficult to provide analytical results related to δ̂AWE in
Theorems 2 and 3 for an additive model, but we can directly
translate Theorems 2 and 3 for δAa and δAA respectively un-
der a codominant model if we assume diag(v̂(λ̂Aa

G k), v̂(λ̂AA
G k ))

for v̂(λ̂k) in the MR model, i.e. two separate MRs. The state-
ments in Theorems 2 and 3 are numerically evaluated for
additive and codominant models through a simulation study
relaxing Assumptions 1 or 2, and relaxing the homogeneity
assumption of σ2

k .

Remark 4 (Centering of covariate E ). Continuous E is of-
ten centered to facilitate the interpretation of βG as the main
effect of G at the mean value of E . Under a meta-analysis set-
up, it is natural to consider each study k fits model (1) with E
centered at their respective study specific means mk. For the
IPD analysis, it is natural to consider that E is centered at the
overall mean m. With these centering strategies, δ̂IPD, δ̂UIVW,
δ̂MR, and δ̂AWE remain invariant, and results in Theorems 1–3
still hold for the centered models. The details are shown in
Appendix B.4. However, properties of δ̂MIVW do not hold
under the above centering strategy. It is not fully efficient,
because mk-centered model creates artificial heterogeneous
main effects of G (depending on mk) across studies. The
mk-centered model only has two common fixed-effects com-
pared to the true model having three common fixed-effects
(Appendix B.4), and this leads to efficiency loss of δ̂MIVW ac-
cording to Lin and Zeng [2010b]. In terms of efficiency, δ̂AWE

is preferable to δ̂MIVW when covariate E is mk-centered using
the study level means.

Remark 5 (Relaxing the common effect assumption). First,
we consider the situation with heterogeneous main effects of
G and E , namely (βG k, βE k) with a common GEI δ across
studies in model (1). To handle effect heterogeneity, we
could replace (βG , βE ) by (βG k, βE k) in model (1) for the
IPD analysis; replace MR model (3) by λ̂G k = γ0k + γmk + νk

for the MR analysis; and still use δ̂UIVW as it does not
require homogeneity of (βG k, βE k). According to Lin and
Zeng [2010b], the modified estimator has the property that
v(δ̂IPD) = v(δ̂MIVW) = v(δ̂UIVW) because δ is the only com-
mon parameter across studies. Theorem 1 still holds since
it makes no homogeneity assumption on (βG k, βE k). Then
we have v(δ̂AWE) < v(δ̂MIVW). In terms of precision, δ̂AWE is
better than δ̂MIVW when (βG k, βE k) are heterogeneous. Next,
we consider heterogeneous GEI δ1, . . . , δK across studies in
model (1), regardless of (βG k, βE k) are homogeneous or not.
In this case, it is hard to interpret the expected value of
δ̂UIVW, δ̂MIVW, δ̂MR, or δ̂AWE as a scientifically relevant pop-
ulation parameter. Thus, estimation properties such as bias
and mean squared error (MSE) become less meaningful. In
this case, we are simply getting an weighted average of within
study interaction estimates. Although the analytical results
corresponding to δ̂AWE are derived under a common effect
model, the test based on δ̂AWE is still valid for the null hy-
pothesis H0 : δ1 = ... = δK = 0. We numerically evaluate the
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power and Type-I error under violation of the common ef-
fect assumption through simulation studies.

Power

For dominant and additive models, we consider the Wald-
type test statistic T = v̂(δ̂)– 1

2 δ̂ for testing the null hypothesis
H0: δ = 0 against H1: δ � = 0. The power to detect an effect size
δ∗ at level α is approximately Pw (δ∗, α) = �(–z α

2
+ v̂(δ̂)– 1

2 δ∗) +

�(–z α
2

– v̂(δ̂)– 1
2 δ∗), where � is the cumulative distribution

function (CDF) of a standard normal variable Z and z α
2

is the
corresponding α

2 th upper percentile. For codominant mod-

els, we consider a joint Wald test statistic T = δ̂
�

v̂(δ̂)–1δ̂
H0∼ χ2

2

for testing H0: δ = 0 against H1: δ �= 0, whereχ2
2 is a Chi-square

distribution with two degrees of freedom. The power is ap-
proximately Pw (δ∗, α) = 1 – �χ2

2
(χ2

2,α
– δ∗�v̂(δ̂)–1δ∗), where

�χ2
2

is the CDF for a χ2
2 distributed random variable and

χ2
2,α is the corresponding αth upper percentile. The power

function Pw (δ∗, α), or simply Pw , is strictly decreasing in
the variance v̂(δ̂). Thus, the results regarding variances in
Theorems 1–3 also determine relative power properties.

Table 1 provides a glossary table for all the methods we
have discussed, along with their properties, and the summary
statistics required to carry out these procedures.

Simulation Study

In order to study the role of G -E independence (Assump-
tion 1) and homogeneity in MAFs across cohorts (Assump-
tion 2), we consider P (G , E ) under four different settings:
when Assumptions 1 and 2 hold and do not hold. To study
the role of covariate heterogeneity in E , we consider cases
where wss is greater or smaller than bss, for a fixed value of
tss. The details of generating data pair (G ki, E ki) jointly are
described in Supplementary Appendix B.6.

Given (G ki, E ki), we then generate the continuous trait
Yki under the IPD model (1), where the study specific in-

tercepts are sampled from β0k
iid∼ U(1.3, 1.5), and the true

effect sizes (β∗
E , β∗

G , δ∗) are determined such that G , E ,

and GEI explain 1%, 10%, and 0.5 – 1% of the total vari-
ation in Y, respectively, in terms of partial R2. The resid-
uals follow a N(0, σ2

k ) distribution, i.e. no requirement
for homogeneity of σ2

k is made. In particular, we generate

σ2
k

iid∼ U(0.3, 0.45) that leads to a marginal distribution of
Y ∼ N(1.4, 0.42). The choice of N(1.4, 0.42) is motivated by
the distribution of log HDL-C level (mmol/l) in our T2D
dataset. We generate K = 20 studies with different sample
sizes involving a total of N = 10, 000 participants (nk = 200,
for k = 1, . . . , 6; nk = 400, for k = 7, . . . , 11; nk = 500, for
k = 12, . . . , 17; n18 = 800; n19 = 1000; n20 = 2000).

We calculate δ̂ and v̂(δ̂) corresponding to each pro-
posed estimator, including δ̂IPD, δ̂UIVW, δ̂MIVW, δ̂MR, δ̂TS, and
δ̂AWE. We carry out R = 1, 000 replications under each set-
ting, and summarize the results in terms of relative bias
( 1

R

∑R
r=1 δ̂(r) – δ∗)/δ∗ × 100%, average model-based variance

1
R

∑R
r=1 v̂(δ̂(r)), empirical variance 1

R–1

∑R
r=1(δ̂(r) – δ̂(r))2, MSE

( 1
R

∑R
r=1(δ̂(r) – δ∗)2), power (proportion of simulations re-

jecting the null hypothesis using the Wald test) and Type-I
error (proportion of simulations rejecting the null hypothesis
when the data are generated under the null).

Lack of common set of covariates across studies: We then
consider covariate Z = (Z 1, Z 2, Z 3) that stand for typical co-
variates (age, sex, race) in the IPD model (1). In particular,
we consider a hypothetical study where age (Z 1) is contin-
uous and associated with E , gender (Z 2) is binary and in-
dependent of both (G , E ), race (Z 3) is a 3-level categorical
variable and associated with both (G , E ), with β∗

Z is deter-
mined such that the Type-III partial R2 corresponding to
(Z 1, Z 2, Z 3) is (2%, 1%, 1%), respectively. Let Zk be the set
of covariates for the kth study. We consider an analysis where
Zk is only partially available from individual studies, and
refer to this situation as “lack of common set of covariates
across studies.” In particular, we consider Zk = (Z 1

k, Z 2
k, Z 3

k)
for k = 1, 2, 3; Zk = (Z 1

k, Z 2
k) for k = 4, 5, 6; Zk = (Z 1

k, Z 3
k)

for k = 7, 8, 9; Zk = (Z 2
k, Z 3

k) for k = 10, 11, 12; Zk = Z 1
k for

k = 13, 14; Zk = Z 2
k for k = 15, 16; Zk = Z 3

k for k = 17, 18; No
Zk available for k = 19, 20. For IPD analysis without any im-
putation of covariates, one can only obtain an IPD estimator
based on the common subset of variables available across all
studies, which reduces to an unadjusted model in the above
setting. We refer it as a naive IPD estimator (δ̂NIPD). For the
meta-analysis, we obtain δ̂UIVW and δ̂MIVW from the kth study
model adjusted for available Zk, for k = 1, . . . , K . For MR,
we adjust for Zk at the first stage in the marginal genetic as-
sociation model, and regress the MLEs of adjusted effects of
G on mk. These methods are compared with an ideal IPD es-
timator δ̂IPD that adjusted for all Z . This ideal IPD estimator
can only be computed in the simulation study but can not be
calculated in reality with some studies missing components
of Z .

Nonlinear GEI model: We consider a nonlinear GEI
model where the phenotype-genotype association parame-
ter βG (E ) varies with E through a sigmoid function βG (E ) =

2 exp(E – 50) /{1 + exp(E – 50)} + 2, instead of the assumed
linear interaction (shown in Fig. 1). In this case, βG (E )
changes at different rates for different values of E (sharper
around the mean value of E , flatter at more extreme val-
ues of E ), which leads to nonlinear interaction. In Figure
1, most studies only contribute to a restricted range of E ,
leading to heterogeneity of individual interaction estimates
across studies. In this case, meta-analysis with a misspeci-
fied linear interaction model might fail to detect the true
nonlinear interaction. In the simulation study, we gener-
ate K = 20 studies, where four studies have relatively larger
within study variability (studies 5, 10, 11, 15 in Figs. 1 and 2)
as compared to the other 16 studies. The complete descrip-
tion of nk, μk, and σE k for the 20 studies are given in Figures
1 and 2. We generate Y through the nonlinear interaction

model Yki = β0k + βG (E ki)G ki + εki , where εki
iid∼ N(0, σ2

k )
and are independent. The within study relationships of the
marginal effects of G as a function of E , namely, βG (E ) are
substantially different across studies. The effect heterogene-
ity and nonlinearity might influence the validity and relative
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Figure 1. Nonlinear GEI model: the (red) sigmoid curve shows the true relationship between Y –G association and E , namely, βG (E ) =
2 exp(E − 50)/{1 + exp(E − 50)} + 2; the boxplots show the covariate heterogeneity of E across studies where the dots show the corresponding
covariate means of E .
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Figure 2. Nonlinear GEI model: the height of the bars represent the
power to detect GEI across individual studies; the (green) curve shows
the value of the true nonlinear GEI parameter; the top panel shows the
sample sizes nk and the within study standard deviations σE k of E , the
four studies with relatively greater σE k are highlighted (in red).

performance of the proposed methods where a linear form of
interaction is assumed. Therefore, we evaluate the robustness
of the proposed meta-analysis estimators under this nonlin-
ear GEI model.

Results

Simulation Results

The simulation results are numerically presented in terms
of bias, variance, MSE, and power (Supplementary Appendix
Tables 1–4). The relative performances of the methods are
very similar across all three susceptibility models and all four
settings, so we only present in the main text the most general
setting where the data are generated without either Assump-
tion 1 or 2. The detailed simulation results are given in the
Appendix, and we only summarize the key features in the
following.

Gene–environment independence and ecological bias:
For bias, comparing settings with and without G -E inde-
pendence, we observe no substantial difference among the
proposed estimators, including the potentially biased esti-
mators δ̂MR and δ̂AWE (Supplementary Appendix Tables 1–4).
When Assumption 1 is relaxed but G -E correlation is not
very strong (Appendix Tables 3 and 4), the magnitude of
relative bias of δ̂MR may be up to ±7% but bias of δ̂AWE is
still well controlled (up to ±4%). Comparing to the Monte
Carlo error (up to ±3% even for the unbiased estimators),
the bias of δ̂AWE is not to a level of practical concern even
when there is some bias in δ̂MR. In additional simulation set-
tings where δ̂MR is susceptible to substantial ecological bias
(up to 35%) and when G -E correlation is extremely strong,
our results (Supplementary Appendix Fig. 9 and Table 6)
indicate the adaptive feature of δ̂AWE in controlling the bias
from δ̂MR by assigning decreased weight. The relative bias of
δ̂AWE is still < 5%. Thus the issue of ecological bias for aggre-
gate analysis in δ̂MR is less of a concern for δ̂AWE. For vari-
ance, we did not observe precision gain by making the G -E
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independence assumption as expected. Results stated in The-
orem 2 appear to hold numerically for all three genetic sus-
ceptibility models, even when Assumption 1 is relaxed (Sup-
plementary Appendix Tables 3 and 4).

Homogeneity in allele frequencies across cohorts: Com-
paring settings with and without homogeneous allele fre-
quencies across studies, we did not observe any appreciable
differences in results. Results in Theorem 3 appear to hold
numerically for all three genetic susceptibility models, even
when Assumption 2 is relaxed.

Covariate heterogeneity in E : We observe that the ARE
between δ̂UIVW (δ̂MR) and δ̂IPD can be well characterized in
terms of wss/tss (bss/tss), respectively. We found that δ̂UIVW

is more efficient than δ̂MR if wss > bss, and vice versa. The
precision trade-off is captured well by the adaptively deter-
mined weights in δ̂AWE. We observe that δ̂AWE is more efficient
than the usual meta-analytic estimators δ̂UIVW, δ̂MR, or δ̂TS,
and had almost the same efficiency as δ̂IPD and δ̂MIVW under
all simulation scenarios. The findings with finite samples are
consistent with our analytical results in Theorems 2 and 3
and Lin and Zeng [2010b].

In terms of power, we find the proposed methods (IPD,
UIVW, MIVW, MR, TS, and AWE) are divided into three
groups in Figure 3, as expected. Group 1: IPD, MIVW, and
AWE; group 2: UIVW; group 3: MR. Group 1 has the most
powerful tests, which is consistent with our analytical results
and Lin and Zeng [2010b]; group 2 is more powerful than
group 3 if bss < wss, and vice versa. TS performs similarly
as the better group between groups 2 and 3. The empirical
estimates of Type-I error are close to the true 0.05 level for all
tests.

Heterogeneous GEI effects across studies: We examine
the power and Type-I error corresponding to the proposed
methods, where δ1, . . . , δK are heterogeneous across studies
in model (1). In particular, for each true effect size δ∗ de-
termined by a given R2 as discussed in the Simulation Study

section, we generate δ∗
k

iid∼ U(0, 2δ∗) that vary across studies
but has the same mean δ∗. Supplementary Appendix Table 5
shows the power and Type-I error under data generated from
the heterogeneous GEI model, where we do not observe any
substantial difference with the testing results from homoge-
neous GEI model.

Misspecification of the genetic susceptibility model: We
examine the power under misspecified susceptibility mod-
els (dominant/additive), where the true generating model
is codominant. When δAA = 1.5δAa (we accordingly choose
βAA

G = 1.5βAa
G ), i.e. the second copy of A has an effect size

between the two assumed in dominant (δAA = δAa) and ad-
ditive (δAA = 2δAa) models, there is no substantial difference
of power between the misspecified dominant/additive model
and the codominant model (shown in Supplementary Ap-
pendix Fig. 7), because the misspecification is not strong and
the fitted dominant or additive models use one less parameter.
When δAA = –δAa (we accordingly choose βAA

G = –βAa
G ), i.e.

the second copy of A has a reverse effect, the fitted dominant
or additive models had much less power than the codom-
inant model (shown in Fig. 5). Thus, it could happen that

Table 2. Comparison of methods in terms of estimate, standard
error of the estimate and power for GEI, under a simulation study
of nonlinear GEI

Methodsa Estimate SEb Power

IPD 0.21 0.045 0.98
UIVW 0.18 0.070 0.69
MIVW 0.21 0.045 0.98
MR 0.23 0.060 0.82
AWE 0.21 0.045 0.98
TS 0.85

a IPD, individual patient data; UIVW, univariate inverse-variance weighted
estimator; MIVW, multivariate inverse-variance weighted estimator; MR,
Meta-regression; AWE, adaptively weighted estimator combining UIVW and MR;
TS, two-stage approach.

b SE: standard error.

the codominant model has more power compared to other
simpler models, though it uses additional parameters for cap-
turing GEI.

Lack of common set of covariates across studies: Figure 4
shows the power curves under this situation without
either Assumption 1 or 2. Compared to the basic setting
without covariate adjustment (Fig. 3), there is no substantial
difference in the relative performances of these methods. We
observe that the GEI estimate δ̂ and variance v̂(δ̂) is fairly
stable, though the main effects of β̂G and β̂E are substantially
influenced under this situation. VanderWeele et al., [2012]
also showed similar results that, under G -E independence,
there is no effect of unmeasured environmental confounding
on the GEI parameter; and that if G and E are dependent,
the environmental confounding needs to be very strong to
incur substantial bias in GEI. Power curves under various
other settings with similar results are given in Supplementary
Appendix Figures 4–6.

Nonlinear GEI model: When the IPD are generated
under the nonlinear GEI model described in Figures 1
and 2, the power to detect GEI from individual stud-
ies is very low (< 0.25), except study 10 where the sam-
ple size n10, effect size (depends on E ) and variance σ2

E 10

are all relatively larger than the other studies (Fig. 2). In
Table 2, IPD, MIVW, and AWE show the highest powers. Be-
cause most of the 20 studies are unable to capture the true
nonlinear GEI, especially those with restricted range of E at
the two extremes of the E distribution, the nonlinearity of
GEI leads to the low power of δ̂UIVW. In this particular ex-
ample, we observe that power for meta-regression is higher
than power for UIVW meta-analysis. Instead of choosing al-
ternatively between δ̂UIVW and δ̂MR, we can use δ̂AWE as the
default meta-analytic estimator. The relative performance of
δ̂AWE is close to δ̂IPD. This is a practically noteworthy finding
as a linear interaction model is typically the initial screen-
ing tool, and the AWE is able to pick up signals under certain
types of model misspecification that univariate meta-analysis
methods can not.

Data Analysis for a Set of Studies Investigating T2D

The proposed methods are applied to a set of studies inves-
tigating T2D, including eight European cohorts: FIN-D2D
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Figure 3. Comparison of the proposed meta-analytical methods (in terms of power) under different scenarios of susceptibility models and
covariate heterogeneity through a simulation study, where data are simulated without any assumption on gene–environment independence or
homogeneity in allele frequencies across studies.
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Figure 4. Comparison of the proposed meta-analytical methods (in terms of power) under different scenarios of susceptibility models and
covariate heterogeneity through a simulation study (representing the situation of lack of common set of covariates across studies), where data are
simulated without any assumption on gene–environment independence or homogeneity in allele frequencies.
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Figure 5. Power curves under misspecified susceptibility models (dominant/additive), where the generating codominant model has δA A = −δAa ,
where data are simulated without any assumption on gene–environment independence or homogeneity in allele frequencies across studies.

2007 study (D2D2007), DIAbetes GENetic study (DIAGEN),
Finnish Diabetes Prevention Study (DPS), Finland-United
States Investigation of NIDDM Genetics study (FUSION,
FUSION S2), Nord-Trφndelag Health Study 2 (HUNT),
METabolic Syndrome in Men study (METSIM), and Tromsφ
study (TROMSO). A number of SNPs in the FTO gene region
(16q12.2) have previously been identified to be associated
with T2D and BMI in the DIAGRAM consortium [Voight
et al., 2010; Zeggini et al., 2008], where the variants at FTO
gene are known to influence T2D predisposition through
an effect on BMI. Age, BMI, and sex are all known risk
factors for T2D and the T2D-related quantitative trait HDL-
C [Morris et al., 2012; Scott et al., 2012]. In this paper, we
investigated whether SNPs in FTO gene modifies the effect
of environmental factors (e.g. age and BMI) on HDL-C. The
effect modification characterized by interaction on HDL-C

has not been reported so far, though marginal association be-
tween SNPs in FTO and HDL-C have been noted previously
[Doney et al., 2009; Kring et al., 2008].

Among the eight cohorts, we have a total of N = 11, 151
genotyped participants who have HDL-C levels, age, sex,
and BMI available, with sample sizes ranging between 172
and 2,729. Participants known to be on lipid medication
are excluded from this analysis. The descriptive summary
statistics for the eight cohorts are shown in Table 3. Since
the SNPs we initially examined (namely, 10 SNPs in FTO
strongly associated with T2D/obesity/BMI that are listed
on the National Human Genome Research Institute GWAS
catalog) are in high linkage disequilibrium and show very
similar results, we only present our results for one rep-
resentative SNP, rs1121980. The SNP’s genotype distribu-
tion did not significantly deviate from that expected under

Table 3. Summary statistics for the eight European cohorts

T2D HDL-C (mmol/l) rs1121980 Age (year) BMI (kg/m2) Gender SNP∗Age SNP∗BMI
Cohortsa N (%) Mean (SD) MAFb Mean (SDb ) Mean (SD) Female (%) Corr (P)c Corr (P)

D2D2007 2,116 14 1.46 (0.35) 0.41 58.8 (8.3) 27.2 (4.8) 54 –0.03 (0.19) 0.03 ( 0.24)
DIAGEN 1,510 29 1.45 (0.47) 0.46 63.3 (14.3) 27.9 (5.2) 55 –0.01 (0.76) 0.03 ( 0.24)
DPS 433 0.0 1.22 (0.29) 0.44 55.1 (7.1) 31.3 (4.6) 68 –0.02 (0.69) 0.16 (<.01)
FUSION 172 0.0 1.29 (0.32) 0.43 38.6 (10.9) 26.2 (4.9) 55 0.04 (0.56) 0.23 (<.01)
FUSION-S2 2,729 31 1.45 (0.41) 0.40 57.3 (8.4) 27.9 (5.1) 44 –0.02 (0.22) 0.06 (<.01)
HUNT 1,324 43 1.26 (0.38) 0.47 67.2 (13.1) 28.0 (4.4) 48 <.01 (0.94) 0.06 ( 0.03)
METSIM 1,456 43 1.42 (0.40) 0.44 56.3 (6.6) 27.9 (4.7) 0 –0.05 (0.08) 0.03 ( 0.32)
TROMSO 1,411 50 1.43 (0.42) 0.49 59.9 (12.5) 27.6 (4.7) 50 <.01 (0.91) 0.04 ( 0.15)
Entire study 11,151 31 1.41 (0.40) 0.44 59.4 (11.3) 27.8 (4.9) 44 <.01 (0.85) 0.05 (<.01)

a Data reflect patients who were genotyped from the eight European cohorts.
b SD, standard deviation; BMI, body mass index; MAF, minor allele frequency.
c Corr(P), Spearman correlation between SNP rs1121980 and environmental factor with corresponding P-value.
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Table 4. IPD/Meta-analysis results of GEI for the T2D study, where
log transformed HDL-C level was regressed on SNP, age, BMI, sex,
T2D status, cohorts, and SNP×E interaction (E as BMI and age
in two separate analysis) in the IPD model. Estimates, SEs and CIs
have been multiplied by 1,000

rs1121980 (additive) × BMI P-value∗

Methodsa Estimate SEb 95% CIb Additive Codominant

IPD 1.474 0.687 (0.128, 2.821) 0.03c,d 0.03c

UIVW 1.731 0.675 (0.407, 3.054) 0.01c 0.02c

MIVW 1.518 0.663 (0.219, 2.816) 0.02c 0.01c

MR –0.719 3.136 (–6.866, 5.429) 0.81 0.69
AWE 1.622 0.660 (0.328, 2.916) 0.01c 0.02c

rs1121980 (additive) × age Additive Codominant

IPD 0.011 0.304 (–0.585, 0.606) 0.97 0.68d

UIVW 0.046 0.337 (–0.613, 0.706) 0.89 0.74
MIVW –0.008 0.307 (–0.610, 0.594) 0.97 0.69
MR 0.180 0.522 (–0.843, 1.203) 0.73 0.77
AWE 0.086 0.283 (–0.469, 0.640) 0.76 0.69

a IPD, individual patient data; UIVW, univariate inverse-variance weighted
estimator; MIVW, multivariate inverse-variance weighted estimator; MR,
Meta-regression; AWE, adaptively weighted estimator combining UIVW and MR.

b SE, standard error; CI, confidence interval.
c Indicating significance at α = 0.05 level.
d Indicating whether additive or codominant model has smaller AIC under the IPD
model.

Hardy–Weinberg equilibrium, and we did not need any im-
putation given the missing genotype proportion < 0.1%. The
MAF of rs1121980 ranges from 0.40–0.49 across cohorts, as
a suggestive evidence for no violation of Assumption 2. As
in Table 3, the mean age ranges from 55–67 years except FU-
SION (mean age = 39). This cohort is younger because it
is actually a subcohort of the original FUSION study, with
either spouse or offspring of selected subjects from the orig-
inal study. The mean BMI ranges from 26–28 kg/m2 ex-
cept the DPS cohort (mean BMI = 31). DPS cohort has an
inclusion criterion of having BMI> 25 at baseline. The co-
variate heterogeneity of E between cohorts is relatively small,
where BSSage/TSSage = 15% and BSSBMI /TSSBMI = 2%, re-
spectively. The two “outlier” cohorts, FUSION and DPS, both
have only very small sample sizes compared to the other stud-
ies, so their influence on UIVW and MIVW is expected to be
small. However, their influence on MR could be substantial
due to a small number of studies.

Analysis Model: The IPD model we fitted is given by

log(HDL-Cki) = β0k + βG G ki + δG ki ×E ki + βaageki

+ βb BMIki + βs sexki + βtT2Dki + εki, (4)

for k = 1, . . . , 8; i = 1, . . . , nk. In model (4), SNP rs1121980
is used for G with both additive and codominant coding; BMI
and age is used as E in two separate analyses; T2D status is
adjusted to account for biased sampling of the genotyped sub-
jects (more T2D cases are genotyped than noncases). HDL-C
is log-transformed in order to reduce the skewness of its
distribution. The proposed methods, including IPD, UIVW,
MIVW, MR, and AWE, are implemented and compared. G -E
independence appears to be violated for rs1121980×BMI
analysis (Spearman correlations across studies are reported

in Table 3). This is expected as FTO is an obesity related
gene. G -E independence does not appear to be violated for
rs1121980×age (Table 3).

Results: Figure 6 shows the forest plots of estimated GEI
from individual cohorts and the combined estimates using
joint analysis and meta-analysis. The corresponding numeri-
cal results are summarized in Table 4. There is no evidence of
effect heterogeneity for both rs1121980×BMI (P = 0.87) and
rs1121980×age (P = 0.90) interactions based on Cochran’s
Q test, so we proceed with a common effect model. In Figure 6
and Table 4, all these meta-analytical methods UIVW, MIVW,
and AWE showed very similar results as IPD, except MR. For
example, for studying the interaction rs1121980×BMI, the
marginal SNP effects of rs1121980 against mean BMI val-
ues across cohorts are plotted in Supplementary Appendix
Figure 8, where MR is very sensitive to the outliers as the
number of cohorts is small (K = 8). MR also appears to lack
efficiency due to small K and the small ratio BSS/WSS . How-
ever, δ̂AWE is robust to the bias from δ̂MR since it only assigned
a weight of 0.05 on δ̂MR (v̂(δ̂MR)–1/{v̂(δ̂UIVW)–1 + v̂(δ̂MR)–1}).
This is further evidence that δ̂AWE can data adaptively shrink
to the “better” estimator.

In the interaction model (4), positive rs1121980×BMI in-
teractions are found under all proposed methods (except
MR) in Table 4, with P-values ranging from 0.01 to 0.03 for
the additive model. In particular, the estimates obtained from
model (4), when converted in terms of percentage change in
actual HDL-C levels, indicated that: with 1 kg/m2 increase
in BMI, (1) under additive model, HDL-C level on average
decreased by 1.53% (95% CI: (1.37, 1.70)) given rs1121980 =

GG, by 1.39% (95% CI: (1.28, 1.49)) given rs1121980 = AG or
GA; and by 1.24% (95% CI: (1.06, 1.42)) given rs1121980 =

AA; (2) under codominant model, HDL-C level decreased
by 1.51% (95% CI: (1.33, 1.69)) given rs1121980 = GG, by
1.41% (95% CI: (1.27, 1.56)) given rs1121980 = AG or GA;
and by 1.21% (95% CI: (0.99, 1.42)) given rs1121980 = AA.
The results under additive and codominant models are very
close. The trend of the effects of BMI among the three groups
defined by rs1121980 indicated that the presence of minor
allele A in rs1121980 attenuated the negative association be-
tween BMI and HDL-C. We did not find similar rs1121980
×BMI interaction effect on low-density lipoprotein choles-
terol (LDL-C), total cholesterol or LDL-C/HDL-C ratio. The
suggestive effect modification of BMI by the SNPs on FTO
that we have found for HDL-C needs to be replicated in
independent studies and validated in larger meta-analysis.

Discussion

In this paper, we proposed and compared a set of meta-
analysis approaches for analyzing GEI with quantitative traits.
We showed the proposed AWE, as a combination of meta-
analysis and meta-regression estimators, performed better
than discretely choosing between the two estimators in terms
of precision and power. We showed that the precision trade-
off between the two components in AWE depends on the
environmental covariate heterogeneity through the ratio of
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Figure 6. Forest plots showing the estimated gene–environment interactions (under additive model of rs1121980) across the eight European
cohorts, as well as the combined estimates through meta-analysis. [IPD, individual patient data; UIVW, univariate inverse-variance weighted
estimator; MIVW, multivariate inverse-variance weighted estimator; AWE, adaptively weighted estimator combining UIVW and meta-regression.]

the between and within study variances of the covariate E ,
and, that the AWE adaptively weights its component estima-
tors to minimize the variance of the resulting hybrid estima-
tor. The resulting AWE retains full efficiency of the joint
analysis using IPD under certain assumptions. The AWE
is very simple to calculate based on summary statistics for
marginal genetic association and gene–environment inter-
action parameters (estimate and standard error) along with
the covariate mean of E (see Table 1). The computation is
simple and scalable to genome-wide analysis. We suggest pos-
sible use of AWE as a default choice for the meta-analysis of
GEI based on summary data. We studied several key features
that could potentially influence the efficiency and power for
meta-analysis of GEI. The features included: (1) departures
from G -E independence; (2) heterogeneity in MAFs across
cohorts; (3) lack of a common set of covariates across stud-
ies; (4) misspecification of the genetic susceptibility model
(dominant/codominant/additive); and (5) the presence of a
nonlinear form of interaction. Under all the above situations,
we found the performance of AWE is close to IPD estimator.
In particular, under the nonlinear interaction model setting,
where standard meta-analytical technique failed and the AWE
is able to capture the lost efficiency based on the summary
data. We also reported some suggestive evidence for GEI be-
tween rs1121980 on the FTO gene and BMI on HDL-C levels.

As a reviewer has pointed out, we are risking some bias for
gaining precision in AWE by including MR as a component,
and MR is susceptible to ecological bias. However, as we note
in the analysis of the T2D example in Table 4, where the
MR estimate is quite different from the rest, the AWE aligns
itself with the more sensible UIVW estimator. Our simu-
lation results also indicate this adaptive feature of AWE in
controlling the bias from the MR component by assigning

decreased weight to it (Supplementary Appendix Fig. 9 and
Table 6). Moreover, regardless of ecological fallacy, under the
additional assumption of G -E independence, AWE remains
unbiased. Thus the issue of ecological bias for aggregate anal-
ysis in MR is less of a concern for AWE. We also noted that
AWE performs well across the whole spectrum of BSS/TSS
ratio, not just intermediate values of this quantity (Supple-
mentary Appendix Fig. 9 and Table 6).

We have mainly focused on quantitative traits with an un-
derlying common fixed effect model. The potential limita-
tion of this approach is that the results might not translate
directly to dichotomous traits under a case-control design,
where assuming G -E independence can lead to huge gain
in efficiency [Chatterjee and Carroll, 2005; Piegorsch et al.,
1994; Umbach and Weinberg, 1997]. We plan to extend our
methods using a retrospective likelihood framework under
a case-control design. Investigating the results under a truly
random effects meta-analysis model is another possible ex-
tension to our work. Sample code for all methods is available
at http://www-personal.umich.edu/ bhramar/software/.
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