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SUMMARY. There has been a lot of work fitting Ising models to multivariate binary data in order to understand the conditional
dependency relationships between the variables. However, additional covariates are frequently recorded together with the
binary data, and may influence the dependence relationships. Motivated by such a dataset on genomic instability collected
from tumor samples of several types, we propose a sparse covariate dependent Ising model to study both the conditional
dependency within the binary data and its relationship with the additional covariates. This results in subject-specific Ising
models, where the subject’s covariates influence the strength of association between the genes. As in all exploratory data
analysis, interpretability of results is important, and we use ¢; penalties to induce sparsity in the fitted graphs and in the
number of selected covariates. Two algorithms to fit the model are proposed and compared on a set of simulated data, and
asymptotic results are established. The results on the tumor dataset and their biological significance are discussed in detail.
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1. Introduction

Markov networks have been applied in a wide range of scien-
tific and engineering problems to infer the local conditional
dependency of the variables. Examples include gene asso-
ciation studies (Peng et al., 2009; Wang, Chao, and Hsu,
2011), image processing (Woods, 1978; Hassner and Sklan-
sky, 1980), and natural language processing (Manning and
Schutze, 1999). A pairwise Markov network can be repre-
sented by an undirected graph G = (V, E), where V is the
node set representing the collection of random variables, and
E is the edge set where the existence of an edge is equivalent
to the conditional dependency between the corresponding pair
of variables, given the rest of the graph.

Previous studies have focused on the case where an i.i.d.
sample is drawn from an underlying Markov network, and
the goal is to recover the graph structure, that is, the edge set
E, from the data. Two types of graphical models have been
studied extensively: the multivariate Gaussian model for
continuous data, and the Ising model (Ising, 1925) for binary
data. In the multivariate Gaussian case, the graph structure
E is completely specified by the off-diagonal elements of the
inverse covariance matrix, also known as the precision matrix.
Therefore, estimating the edge set E is equivalent to identify-
ing the non-zero off-diagonal entries of the precision matrix.
Many articles on estimating the inverse covariance matrix
have appeared in recent years, with a focus on the high-
dimensional framework, for example, Meinshausen and
Bithlmann (2006), Yuan and Lin (2007), d’Aspremont,
Banerjee, and El Ghaoui (2008), Ravikumar et al. (2008),
Rocha, Zhao, and Yu et al. (2008), Rothman et al. (2008),
Lam and Fan (2009), Peng et al. (2009), Yuan (2010), Cai,
Liu, and Luo (2011). Most of these articles focus on penalized
likelihood methods, and many establish asymptotic proper-
ties such as consistency and sparsistency. Many have also
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proposed fast computational algorithms, the most popular of
which is perhaps glasso by Friedman, Hastie, and Tibshirani
(2008), which was recently improved further by Witten, Fried-
man, and Simon (2011) and Mazumder and Hastie (2012).
In the Ising model, the network structure can be iden-
tified from the coefficients of the interaction terms in the
probability mass function. The problem is, however, consid-
erably more difficult due to the intractable normalizing con-
stant, which makes the penalized likelihood methods popular
for the Gaussian case extremely computationally demanding.
Ravikumar, Wainwright, and Lafferty (2010) proposed an ap-
proach in the spirit of Meinshausen and Biihlmann (2006)’s
work for the Gaussian case, fitting separate £;-penalized lo-
gistic regressions for each node to infer the graph structure. A
pseudo-likelihood based algorithm was developed by Hoefling
and Tibshirani (2009) and analyzed by Guo et al. (2010).
The existing literature mostly assumes that the data are an
ii.d. sample from one underlying graphical model, although
the case of data sampled from several related graphical mod-
els on the same nodes has been studied both for the Gaussian
and binary cases (Guo et al., 2010, 2014). However, in many
real-life situations, the structure of the network may further
depend on other extraneous factors available to us in the
form of explanatory variables or covariates, which result in
subject-specific graphical models. For example, in genetic
studies, deletion of tumor suppressor genes plays a crucial role
in tumor initiation and development. Since genes function
through complicated regulatory relationships, it is of interest
to characterize the associations among various deletion events
in tumor samples. However, in practice we observe not only
the deletion events, but also various clinical phenotypes for
each subject, such as tumor category, mutation status, and
so on. These additional factors may influence the regulatory
relationships, and thus should be included in the model.
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Motivated by situations like this, here we propose a model for
the conditional distribution of binary network data given co-
variates, which naturally incorporates covariate information
into the Ising model, allowing the strength of the connection
to depend on the covariates. With high-dimensional data in
mind, we impose sparsity in the model, both in the network
structure and in covariate effects. This allows us to select
important covariates that have influence on the network
structure.

There have been a few recent articles on graphical models
that incorporate covariates, but they do so in ways quite dif-
ferent from ours. Yin and Li (2011) and Cai et al. (2013)
proposed to use conditional Gaussian graphical models to
fit the eQTL (gene expression quantitative loci) data, but
only the mean is modeled as a function of covariates, and
the network remains fixed across different subjects. Liu et al.
(2010) proposed a graph-valued regression, which partitions
the covariate space and fits separate Gaussian graphical mod-
els for each region using glasso. This model does result in
different networks for different subjects, but lacks interpreta-
tion of the relationship between covariates and the graphical
model. Further, there is a concern about stability, since the so
built graphical models for nearby regions of the covariates are
not necessarily similar. In our model, covariates are incorpo-
rated directly into the conditional Ising model, which leads to
straightforward interpretation and “continuity” of the graphs
as a function of the covariates, since in our model it is the
strength of the edges rather than the edges themselves that
change from subject to subject.

The rest of the article is organized as follows. In Section 2,
we describe the conditional Ising model with covariates, and
two estimation procedures for fitting it. Section 3 establishes
asymptotic properties of the proposed estimation method. We
evaluate the performance of our method on simulated data in
Section 4, and apply it to a dataset on genomic instability in
breast cancer samples in Section 5. Section 6 concludes with
a summary and discussion.

2. Conditional Ising Model with Covariates
2.1. Model Set-Up

We start from a brief review of the Ising model, origi-
nally proposed in statistical physics by Ising (1925). Let
y=(1,..., ) €{0,1}7 denote a binary random vector. The
Ising model specifies the probability mass function Py(y) as

1
Py(y) = %exp Z%y,- + Zejkyj)’k ,
j

k>j

where 0 = (011, 012, ..., 0414, 049) is a g(g + 1)/2-dimensional
parameter vector and Z(0) is the partition function ensuring
the 2¢ probabilities summing up to 1. Note that from now
on we assume 60 equals to 6;; unless otherwise specified. The
Markov property is related to the parameter 6 via

Ok =0 y; Ll g, Vi#k, (1)
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that is, y; and y; are independent given all other y’s if and
only if 6 = 0.

Now suppose we have additional covariate
tion, and the data are a sample of n i.i.d. points D, =
{(xt, 1), ..., (x", y")} with x' € R? and y' € {0,1}9. We as-
sume that given covariates x, the binary response y follows
the Ising distribution given by

informa-

>

(jk):1<k<j<q

1 q
P(ylx) = mexp /X:; 0,;(x)y; + 0(x)yjyi

)
We note that for any covariates x', the conditional
Ising model is fully specified by the vector 6(x')=
(011 (x7), 012(x"), ..., 0,-1,(x), 8,,(x")), and by setting 0;;(x) =
0 (x) for all j> k, the functions 8, (x) can be connected to
conditional log-odds in the following way,

P(y; = 1|y
log( (¥ _|y\/ x)
1—P(y; =1y, %)

) =0+ ol @)
kik#j

where, y\; = (y1,--., Yj-1, Yj+1, - - - » ¥q). Further, conditioning

on y\jx being 0, we have

P(y; =1,y =0l yuy>» X)P(y; = 0, i = 1] y\(juy> X)
= 0jk(x).

log (P(Yj =1,y =1 Y. X)P(y; =0, % =0| y\{j,k;,x))

Similarly to (1), this implies y; and y; are conditionally in-
dependent given covariates x and all other y’s if and only if
0./1( (x) =0.

A natural way to model 0;(x) is to parametrize it as a
linear function of x. Specifically, for 1 < j < k < g, we let

jk(x) = 9_,'/(0 + 017.,(x,

0 where 0;( = (01, ...
0 (x) = 0;;(x),

,ijp)
Vj>k.

The model can be expressed in terms of the parameter vector
0 as follows:

Py(ylx)

Z(O(x)) exp Z( _/_10"‘ ”x)y, +Z( k0 + /kx)y.]yk

Jj=1 k>j

(4)

Instead of (3), we now have the log-odds that depend on the
covariates, through

P(y; = 1y, x) ) T Z T
g =0--0+0.4x+ (9-k0+9-kx)yk.
(1 — P(yj =1y %) o

(®)
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Note that for each j, the conditional log-odds in (5) involves
(p + 1)g parameters; taking into account the symmetry, that
is, B0 = 6kjo and @ = 8y;, we thus have a total of (p + 1)g(q +
1)/2 parameters in the fully parametrized model.

The choice of linear parametrization for 6 (x) has several
advantages. First (5) mirrors the logistic regression model
when viewing the x,’s, y’s and x,y;’s (k # j) as predictors.
Thus the model has the same interpretation as the logistic re-
gression model, where each parameter describes the size of the
conditional effect of that particular predictor. Specifically, for
continuous covariates, 0y, (£ > 1) describes the effect of co-
variate x;, on the conditional log-odds of y; when y; is 1, and
Ojxo simply describes the main effect of y, on the conditional
log-odds of y;. For categorical covariates, the interpretation
is almost the same except that now the covariate would be
represented by several dummy variables, and the parameter
Ojxe represents the effect of each level of the covariate rela-
tive to the reference level. Second, this parametrization has a
straightforward relationship to the Markov network. One can
tell which edges exist and on which covariates they depend
by simply looking at 6. Specifically, the vector (6o, 0/T,\) being
zero implies that y, and y; are conditionally independent given
any x and the rest of y,’s, and 6, being zero implies that the
conditional association between y; and y, does not depend on
Xx¢. Third, the continuity of linear functions ensures the sim-
ilarity among the conditional models for similar covariates,
which is a desirable property. Finally, the linear formulation
promises the convexity of the negative log-likelihood function,
allowing efficient algorithms for fitting the model discussed
next.

2.2.  Fitting the Model

The probability model Py(y|x) in (4) includes the partition
function Z(6(x)), which requires summation of 29 terms for
each data point and makes it intractable to directly maximize
the joint conditional likelihood >""_, log Py(y'|x’). However (5)
suggests we can use logistic regression to estimate the parame-
ters, an approach in the spirit of Ravikumar et al. (2010). The
idea is essentially to maximize the conditional log-likelihood
of ¥; given y{; and x' rather than the joint log-likelihood of
y.

Specifically, the negative conditional log-likelihood for y;
can be written as follows:

1<
4(6:D,) = —— > log P(1x'. )
i=1

1 " i L
—2 3 (logt e =) (@)
i=1

where

. P(y, = 1]y, x'
r)’J-ZIOg( (yj,- |.V\Ji ),)
1— P(y; = 1]y, ')
=00 +07x" + Z(ejko +03x)3%
ki

Note that this conditional log-likelihood involves the pa-
rameter vector 6 only through its subvector 6; = (610,
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0%, ..., 0j0,0%) € RV, thus we sometimes write £;(8;; D,)
when the rest of 8 is not relevant.

There are (p + 1)g(g + 1)/2 parameters to be estimated, so
even for moderate p and ¢ the dimension of @ can be large. For
example, with p = 10 and ¢ = 10, the model has 605 parame-
ters. Thus there is a need to regularize 6. Empirical studies of
networks as well as the need for interpretation suggest that a
good estimate of # should be sparse. Thus we adopt the ¢; reg-
ularization to encourage sparsity, and propose two approaches
to maximize the conditional likelihood (6).

2.2.1. Separate regularized logistic regressions. The first
approach is to estimate each 6;, j =1, ..., g separately using
the following criterion,

min E,-(Oj;D,,)—I-AlIOj\oIll,

ﬂjeR(P+1)q
where 0,0 = 0;\{0}j0}, that is, we do not penalize the intercept
term 6jj0.

In this approach, ; and 6,; are estimated from the jth
and kth regressions, respectively, thus the symmetry 0 k= 91(.[
is not guaranteed. To enforce the symmetry in the final es-
timate, we post-process the estimates following Meinshausen
and Biithlmann (2006), where the initial estimates are com-
bined by comparing their magnitudes. Specifically, let 0 ke de-
note the final estimate and @?M denote the initial estimate
from the separate regularized logistic regressions. Then for
any 1 < j<k<gandany{=0,..., p, we can use one of the
two symmetrizing approaches:

T o
separate-max: 0y = Okje = QI'MH(W%WW&D + ekf‘fﬂ(‘gfkg|<‘9?,ﬂ)

separate-min: 6y = ¢ = H?ke]lag,?u‘dé&b + egjzﬂ(‘éﬁ(|>‘§,?ﬂ|).

The separate-min approach is always more conservative than
separate-max in the sense that the former provides more zero
estimates. It turns out that when ¢ is relatively small, the
separate-min approach is often too conservative to effectively
identify non-zero parameters, while when ¢ is relatively large,
the separate-min approach performs better than the separate-
max approach. More details are given in Section 4.

2.2.2. Joint regularized logistic regression. The second
approach is to estimate the entire vector @ simultaneously
instead of estimating the 6;’s separately, using the criterion,

q
min Y " 0,(6;D,) + A6yl
j=1

m
9cR(P+1)a(g+1)/2

where 0\o = 0\{6110, 6220, - - ., O4q0}. One obvious benefit of the
joint approach is that 6 can be automatically symmetrized by
treating 0 and 6y; as the same during estimation. The price,
however, is that it is computationally much less efficient than
the separate approach.

To fit the model using either the separate or the joint ap-
proach, we adopt the coordinate shooting algorithm in Fu
(1998), where we update one parameter at a time and iter-
ate until convergence. The implementation is similar to the
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glmnet algorithm of Friedman, Hastie, and Tibshirani (2010),
and we omit the details here.

3. Asymptotics: Consistency of Model Selection

In this section, we present the model selection consistency
property for the separate regularized logistic regression. Re-
sults for the joint approach can be derived in the same fash-
ion. The spirit of the proof is similar to Ravikumar et al.
(2010), but since their model does not include covariates x,
both our assumptions and conclusions are different.

In this analysis, we treat the covariates x;’s as random vec-
tors. With a slight change of notation, we now use 6, to denote
0,0, dropping the intercept which is irrelevant for model se-
lection. The true parameter is denoted by 6*. Without loss of
generality we assume that 67, = 0, and we also assume that
ijg = O

First, we introduce additional notation to be used through-
out this section. Let

I = Eg (V? log Py(y;lx, y\;)) (7)

_ Eg*(pj(l—pj)(x(@}’\j)(x®)’\j)T) (Information matrix)

Ui =Ep (x@y,)(x®y,)"). ®)
where

pi = pi(x, »;) = P (y; = 1x, ;)

@y = (Lxt, oo, )" @ (s ey Vits L Yjuts oo vg) "1}

Let S; denote the index set of the non-zero elements of 67,
and let Is,s, be the submatrix of I} indexed by S;. Slmllarly
defined are I ses; and I s0sts where SC is the complement set of
S;. Moreover, for any matrlx A, let [|Alloo = max; ZJ |A;j| be
the matrix Lo norm, and let A, (A) and Apax(A) be the
minimum and maximum eigenvalues of A, respectively.

For our main results to hold, we make the following as-
sumptions for all ¢ logistic regressions.

A1 There exists a constant « € (0, 1], such that

-1
12, (Ts5,) = (=)
J
A2 There exist constants A, > 0 and A, > 0, such that

Amin (I:;'_,-S_,-) = Amin

Amax(Ujf) = Amax

A3 There exists § > 0, such that

P(Ix]loc = M) < exp(—M?), for all M > My > 0.

9)

These assumptions bound the correlation among the effective
covariates, and the amount of dependence between the group
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of effective covariates and the rest. Under these assumptions,
we have the following result:

THEOREM 1.
the problem

For any j=1,...,q, let é_,- be a solution of

rr;in £;(0;;Dy) + Xall0)ll1- (10)
j

Assume Al, A2, and A3 hold for I and Uj. Let d=
max; ||S;llo and C > 0 be a constant mdependent of (n, p,q).
If

M, =M > (C\2n)T | (11)

I 1
A, > CM, logp+logg , (12)
n
n>CM?*d*(log p +1logq) , (13)
-c(2ny>

then the following hold with probability at least 1 — exp
(8* is a constant in (0, 1)),

(1) Uniqueness: i)j is the unique optimal solution for any
jef{l,...,q}. .

(2) £y consistency: ||6; — 02 < 5Auvd/Amin for any j €
{1,...,q} A

(8) Sign consistency: 8; correctly identifies all the zeros in
07 for any j € {1,..., q}; moreover, 8; identifies the cor-
rect sign of non-zeros in 0 whose absolute value is at

least 10M,, «/;I/Amin.

Theorem 1 establishes the consistency of model selection
allowing both of the dimensions p(n) and g(n) to grow to
infinity with n. The extra condition A3, which requires the
distribution of x to have a fast decay on large values, was not
in Ravikumar et al. (2010) as the article does not consider
covariates. The new condition is, however, quite general; for
example, it is satisfied by the Gaussian distribution and all
categorical covariates. The proof of the theorem can be found
in the Online Supplementary Materials Appendix A.

Note that the properties in Theorem 1 hold on the origi-
nal fit for each separate regression; in practice, we still need
to post-process the fitted parameters by symmetrizing them
using either the separate-max or the separate-min approach
described earlier in Section 2.2.1. Here, we briefly investigate
the three properties after this symmetrization. For property
(1), the symmetrized estimates might not necessarily be the
optimal solution for each regression, thus it is not sensible to
consider uniqueness anymore; next, it is not difficult to see
that property (3) still holds for both sets of symmetrized esti-
mates since it characterizes the relationship between the fitted
value and the true value and the true value remains the same
for different fits of the same parameters; as for property (2),
we will have to enlarge the upper bound on the right hand
side by a factor of d1/2, that is,

167" = ll2 < 5hud/Amin,

~min

10,  —0ill> < 5%,d/Amin, forany je{l,...,q}. (14)
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A simple proof of this adapted results can be found in the
Online Supplementary Materials Appendix B.

4. Empirical Performance Evaluation

In this section, we present four sets of simulation studies de-
signed to test the model selection performance of our meth-
ods. We vary different aspects of the model, including sparsity,
signal strength, and proportion of relevant covariates. The re-
sults are presented in the form of ROC curves, where the rate
of estimated true non-zero parameters (sensitivity) is plotted
against the rate of estimated false non-zero parameters (1-
specificity) across a fine grid of the regularization parameter.
Each curve is smoothed over 20 replications.

The data generation scheme is as follows. For each simula-
tion, we fix the dimension of the covariates p, the dimension
of the response ¢, the sample size n and a graph structure E
in the form of a ¢ x g adjacency matrix (randomly generated
scale-free networks (Barabdsi and Albert, 1999); in the Online
Supplementary Materials Appendix E, we also study the ef-
fect of sparsity for k-nearest neighbor graphs). For any (j, k),
1< j<k<gq, (0o, 0%) consists of (p 4 1) independently gen-
erated and selected from three possible values: > 0 (with
probability p/2), —B (with probability p/2), and 0 (with prob-
ability 1 — p). An exception is made for the intercept terms
00, where p is always set to 1. Covariates x'’s are gener-
ated independently from the multivariate Gaussian distribu-
tion N,(0, 1,). Given each x' and #, we use Gibbs sampling to
generate the y', where we iteratively generate a sequence of
yys (j=1,...q) from a Bernoulli distribution with probabil-
ity Py(y; =1|y{;, x') and take the last value of the sequence
when a stopping criterion is satisfied.

We compared three estimation methods: the separate-min
method, the separate-max method and the joint method. Our
simulation results indicate that performance of the separate-
min method is substantially inferior to that of the separate-
max method when the dimension of the response is relatively
small (results omitted for lack of space). Thus we only present
results for the separate-max and the joint methods for the first
three simulation studies.

4.1.  Effect of Sparsity

First, we investigate how the selection performance is affected
by the sparsity of the true model. The sparsity of # can be
controlled by two factors: the number of edges in E, denoted
by ng, and the average proportion of effective covariates for
each edge, p. We fix the dimensions ¢ = 10, p = 20, and the
sample size n = 200, and set the signal size to f = 4. Under
this setting, the total number of parameters is 1155. The spar-
sity parameter np takes values in the set {10, 20, 30}, and p
takes values in {0.2, 0.5, 0.8}. The resulting ROC curves are
shown in Figure 1.

The first row shows the results of the joint approach and the
second row of the separate-max approach. As the true model
becomes less sparse, the performance of both the joint and the
separate methods deteriorates, since sparse models have the
smallest effective number of parameters to estimate and bene-
fit the most from penalization. Note that the model selection
performance seems to depend on the total number of non-
zero parameters ((¢ + ng)(p + 1)p), not just on the number of
edges (ng). For example, both approaches perform better in
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case ng = 20, p = 0.2 than ng = 10, p = 0.5, even though the
former has a more complicated network structure. Comparing
the separate-max method and the joint method, we observe
that the two methods are quite comparable, with the joint
method being slightly less sensitive to increasing the number
of edges.

In practice, one often needs to select a value for the tuning
parameter. We compared different methods for selecting the
optimal tuning parameter: validating the conditional likeli-
hood on a separate data set of the same size, cross-validation,
AIC, and BIC. The selected models corresponding to each
method are marked on the ROC curves. As we can see, cross-
validation seems to provide a reasonable choice in terms of
balancing the true positive rate and the false positive rate.

4.2.  Effect of Stgnal Size

Second, we assess the effect of signal size. The dimensions
are set to be the same as in the previous simulation, that is,
g =10, p =20, and n = 200, and underlying network is the
same. The expected proportion of effective covariates for each
edge is p = 0.5. The signal strength parameter g takes values
in the set {0.5,1, 2,4, 8,16}. For each setting, the non-zero
entries of the parameter vectors 6 are at the same positions
with the same signs, only differing in magnitude. The resulting
ROC curves are shown in Figure 2.

As the signal strength B increases, both the separate
and the joint methods show improved selection performance,
but the improvement levels off eventually. The separate-max
method performs better overall given that the optimal points
selected by cross-validation have lower false discovery rate.

4.3. Effect of Noise Covariates

In this set of simulations, we study how the model selec-
tion performance is affected by adding extra uninformative
covariates. At the same time, we also investigate the effect
of the number of relevant covariates pirye and the sample
size n. The dimension of the response is fixed to be ¢ = 10
and the network structure remains the same as in the previ-
ous simulation. We take pirye € {10, 20} and n € {200, 500}.
For each combination, we first fit the model on the orig-
inal data and then on augmented data with extra unin-
formative covariates added. The total number of covariates
Ptotal € {Ptrues 50, 200}. The non-zero parameters are gener-
ated the same way as before with 8 = 4 and p = 0.5. With the
changes in pint,1, the total number of non-zero parameters
remains fixed for each value of pirye, while the total number
of zeros is increasing.

To make the results more comparable across setting, we
plot the counts rather than rates of true positives and false
positives. The resulting curves are shown in Figure 3. Gener-
ally, performance improves when the sample size grows and
deteriorates when the number of noise covariates increases,
particularly with a smaller sample size. The separate-max
method dominates the joint method under these settings, but
the difference is not large.

4.4. Stability Selection When q is Large

Stability selection was proposed by Meinshausen and
Biihlmann (2010) to improve potential lack of stability of a so-
lution and to quantify the significance of a selected structure
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non-zero covariates (p). Optimal points are marked for different model selection methods.

Figure 2. ROC curves for varying levels of signal strength, as measured by the parameter . Optimal points are marked
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Separate-Max Approach, P, =10

100}
90f
801
£ 7}
o
o
o 60}
=
g sof
a
g 40f
= n=200, p=10
o == n=200, p=50
- = = =n=200, p=200 ||
n=500, p=10
10 n=500, p=50
n=500, p=200
0 . . . . : - -
0 50 100 150 200 250 300 350 400
False Positive Count
Separate—-Max Approach, Ptrue=20
200 ' ' ' '
€
>
o
o
[0
=
.c“%
o]
a
3 v
= ’ n=200, p=20
eow == n=200, p=50
0 - = -n=200, p=200|
n=500, p=20
20 n=500, p=50
n=500, p=200
0 . . . n n
0 100 200 300 400 500 600

False Positive Count

Figure 3. ROC curves for varying dimension, number of noise covariates, and sample size.

under high-dimensional settings. It is based on subsampling
in combination with (high-dimensional) selection algorithms.
Benefits of stability selection includes its insensitiveness to
the amount of the regularization in the original selection al-
gorithms and its improvement of model selection accuracy
over them. Specifically, we repeatedly fit the model 100 times
on random subsamples (without replacement) of half of the
original data size. For each tuning parameter A from a fixed
grid of values, we record the frequency of éjkg being non-zero
respectively for each covariate X,, £ =0, ..., p on all pairs
of (jk), 1< j<k<gq, and denote it by fue(A). Then we use
f;;(z = max; fj (1) as a measure of importance of covariate X,
for the edge (J, k). Finally, for each covariate X;, we rank the
edges based on the selection frequencies {fj;, : 1 < j <k < g}.
At the top of the list are the edges that depend on X, most
heavily.

We note that in previous simulation settings, even though
the dimensions of the variables are not large, the number of
parameters far exceeds the sample size. We applied stability
selection coupled with the proposed methods, and found that
the results of stability selection are comparable with those of
not using stability selection without much improvement (see
the Online Supplementary Materials Appendix C).

In this subsection, we mimic the real data example and
increase the dimension of the binary responses ¢ to a large
value. Specifically, we set the sample size n = 100, the di-
mension of the covariates p =5 and vary the dimension of
binary responses ¢ = {50, 100, 200}. The total number of non-
zero parameters is fixed to be 150. The magnitude of the
model parameters are set to be f = 8. We then compare the
three proposed methods with stability selection. The results
are shown in Figure 3 of the Online Supplementary Materials.
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We found that as the dimension ¢ increases, coupling stabil-
ity selection with the joint approach and the separate-max
approach significantly improve model selection performance
over the respective original methods. Since the separate-min
approach coupled with stability selection had the best per-
formance overall, we adopted it for our data example in Sec-
tion 5.

5. Application to Tumor Suppressor Genes
Study

In breast cancer, deletion of tumor suppressor genes plays a
crucial role in tumor initiation and development. Since genes
function through complicated regulatory relationships, it is of
interest to characterize the associations among various dele-
tion events in tumor samples, and at the same time to investi-
gate how these association patterns may vary across different
tumor subtypes or stages.

Our data set includes DNA copy number profiles from
c¢cDNA microarray experiments on 143 breast cancer speci-
mens (Bergamaschi et al., 2006). Among them, 88 samples
are from a cohort of Norwegian patients with locally ad-
vanced (T3/T4 and/or N2) breast cancer, receiving doxoru-
bicin (Doxo) or 5 fluorouracil/mitomycin C (FUMI) neoad-
juvant therapy (Geisler et al., 2003). The samples were col-
lected before the therapy. The other 55 are from another co-
hort of Norwegian patients from a population-based series
(Zhao et al., 2004). Each copy number profile reports the
DNA amounts of 39,632 probes in the sample. The array data
was preprocessed and copy number gain/loss events were in-
ferred as described in Bergamaschi et al. (2006). To reduce
the spatial correlation in the data, we bin the probes by cy-
togenetic bands (cytobands). For each sample, we define the
deletion status of a cytoband to be 1 if at least three probes
in this cytoband show copy number loss. Four-hundred thirty
cytobands covered by these probes show deletion frequencies
greater than 10% in this group of patients, and they were re-
tained for the subsequent analysis. The average deletion rate
for all the 430 cytobands in 143 samples is 19.59%. Our goal
is to uncover the association patterns among these cytoband-
deletion events and how the association patterns may change
with different clinical characteristics, including TP53 muta-
tion status (a binary variable), estrogen receptors (ER) sta-
tus (a binary variable), and tumor stage (an ordinal variable
taking values in {1, 2, 3, 4}).

For our analysis, denote the array data by y143x430, Wwhere
y;. indicates the deletion status of the jth cytoband in the
ith sample. Let x' denote the covariate vector containing the
three clinical phenotypes of the ith sample, and x, the ¢th
covariate vector. We first standardize the covariate matrix
Xx143x3 and then fit our Ising model with covariates with the
separate-min fitting method. We then apply stability selection
(Meinshausen and Bithlmann, 2010) to infer the stable set of
important covariates for each pairwise conditional association.
We are primarily interested in the pairs of genes belonging
to different chromosomes, as the interaction between genes
located on the same chromosome is more likely explained by
strong local dependency. The results are shown in Table 1
of the Online Supplementary Materials, where the rank list
of the edges depending on different covariates are recorded.
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The first two columns of each covariate-related columns are
the node names and the third column records the selection
frequency.

There are 348 inter-chromosome interactions (between cy-
tobands from different chromosomes) with selection probabil-
ities at least 0.3. Among these, 75 interactions change with
the TP53 status; 51 change with the ER status; and another
58 change with the tumor grade (see details in Table 1 of
the Online Supplementary Materials). These results can be
used by biologists to generate hypotheses and design rele-
vant experiments to better understand the molecular mech-
anism of breast cancer. The most frequently selected pair-
wise conditional association is between deletion on cytoband
4q31.3 and deletion on 18q23 (83% selection frequency). Cy-
toband 4q31.3 harbors the tumor suppressor candidate gene
SCFFbw7, which works cooperatively with gene TP53 to re-
strain cyclin E-associated genome instability (Minella et al.,
2007). Previous studies also support the existence of putative
tumor suppressor loci at cytoband 18q23 distal to the known
tumor suppressor genes SMAD4, SMAD2, and DCC (Huang
et al., 1995; Lassus et al., 2001). Thus the association between
the deletion events on these two cytobands is intriguing.

Another interesting finding is that the association between
deletion on cytoband 9q22.3 region and cytoband 12p13.31
appears to be stronger in the TP53 positive group than in the
TP53 negative group. A variety of chromosomal aberrations
at 9p22.3 have been found in different malignancies includ-
ing breast cancer (Mitelman, Merterns, and Johansson, 1997).
This region contains several putative tumor suppressor genes
(TSG), including DNA-damage repair genes such as FANCC
and XPA. Alterations in these TSGs have been reported to
be associated with poor patient survival (Sinha et al., 2008).
On the other hand, cytoband 12p13.31 harbors another TSG,
namely ING4 (inhibitor of growth family member 4), whose
protein binds TP53 and contributes to the TP53-dependent
regulatory pathway. A recent study also suggests involvement
of ING4 deletion in the pathogenesis of HER2-positive breast
cancer. In light of these previous findings, it is interesting
that our analysis also found the association between the dele-
tion events of 9p22.3 and 12p13.31, as well as the changing
pattern of the association under different TP53 status. This
result suggests potential cooperative roles for multiple tumor
suppressor genes in cancer initiation and progression.

For visualization, we constructed separate graphs for each
covariate, where each graph includes all the edges depending
on that covariate with selection frequency at least 0.3. Specif-
ically, we use the results from Table 1 of the Online Supple-
mentary Materials to create Figure 4. In Figure 4, the “main
effect” subplot shows all edges in the first two columns of
Table 1 of the Online Supplementary Materials, which corre-
spond to non-zero 6 o parameters and the edges are weighted
by their selection frequency as shown in the same table. The
remaining three subplots are created in the same fashion. For
nodes that have at least three neighbors in the covariate de-
pendent plots, we also mark the names of them. To make the
graph readable, we did not include all 430 nodes but only the
nodes with edges.

Since there are obvious hubs (highly connected nodes) in
the graph, which often have important roles in genetic reg-
ulatory pathways, we also did extra analysis to confirm the
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TP53 mutation status

Figure 4. Graphs of edges depending on each covariate (based on Table 1 of the Online Supplementary Materials).

findings. As there can be different hubs associated with dif-
ferent covariates, we separate them as follows. For each node
J, covariate £, and stability selection subsample m, let the
“covariate-specific” degree of node j be d7, = #{k : éﬂd # 0}.
A ranking of nodes can then be produced for each covariate £
and each replication m, with r, being the corresponding rank.
Finally, we compute the median rank across all stability selec-
tion subsamples r;, = median{r},,m =1, ...,100}, and order
nodes by rank for each covariate. The results are listed in Ta-
ble 2 of the Online Supplementary Materials. Interestingly,
cytoband 8pl11.22 was ranked close to the top for all three
covariates. The 8p11-pl2 genomic region plays an important
role in breast cancer, as numerous studies have identified this
region as the location of multiple oncogenes and tumor sup-
pressor genes (Adélaide et al., 1998; Yang et al., 2006). High

frequency of loss of heterozygosity (LOH) of this region in
breast cancer has also been reported (Adélaide et al., 1998).
Particularly, cytoband 8p11.22 harbors the candidate tumor
suppressor gene TACC1 (transforming, acidic coiled-coil con-
taining protein 1), whose alteration is believed to disturb im-
portant regulations and participate in breast carcinogenesis
(Conte et al., 2002). From Table 1 of the Online Supplemen-
tary Materials, we can also see that the deletion of cytoband
8p11.22 region is associated with the deletion of cytoband
6p21.32 with relatively high confidence (selection frequency
= 0.46); and these associations change with both TP53 sta-
tus. This finding is interesting because high frequency LOH
at 6q in breast cancer cells are among the earliest findings
that led to the discovery of recessive tumor suppressor genes
of breast cancer (Ali et al., 1987; Devilee et al., 1991; Negrini
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et al., 1994). These results together with the associations we
detected confirm the likely cooperative roles of multiple tumor
suppressor genes involved in breast cancer.

6. Summary and Discussion

We have proposed a novel Ising graphical model which al-
lows us to incorporate extraneous factors into the graphical
model in the form of covariates. Including covariates into the
model allows for subject-specific graphical models, where the
strength of association between nodes varies smoothly with
the values of covariates. One consequence of this is that if all
covariates are continuous, then when the value of a covariate
changes, only the strength of the links is affected, and there is
zero probability for the graph structure to change. In princi-
ple this could be seen as a limitation. On the other hand, this
is a necessary consequence of continuity, and small changes
in the covariates resulting in large changes in the graph, as
can happen with the approach of Liu et al. (2010), make the
model interpretation difficult. With binary covariates, which
is the case in our motivating application, the situation is dif-
ferent; for example, since edge (j, k) depends on the value
Ojko + GJTkx, the graph structure can change in the following
situation: when 639 = 0 and 0JT-k # 0, for a subject at the ref-
erence level where the entire x is 0, edge (J, k) does not exist,
but edge (j, k) will exist if any of the “important” covariate is
at the non-reference level. It is the same case with categorical
covariates with more than two levels. Further, our approach
has the additional advantage of discovering exactly which co-
variates affect which edges, which can be more important in
terms of scientific insight.

While here we focused on binary network data, the idea can
be easily extended to categorical and Gaussian data, and to
mixed graphical models involving both discrete and continu-
ous data. Another direction of interest is understanding con-
ditions under which methods based on the neighborhood se-
lection principle of running separate regressions are preferable
to pseudo-likelihood type methods, and vice versa. This com-
parison arises frequently in the literature, and understanding
this general principle would have applications far beyond our
particular method.

7. Supplementary Materials
Web Appendices A—F, referenced in Sections 3, 4, and 5, along
with the code, are available with this paper at the Biometrics
website on Wiley Online Library.
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