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to all-cause mortality independent of adiposity?
Meta-analysis of data from 169,551 Caucasian adults
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Summary
Previously, a single nucleotide polymorphism (SNP), rs9939609, in the FTO gene
showed a much stronger association with all-cause mortality than expected from its
association with body mass index (BMI), body fat mass index (FMI) and waist
circumference (WC). This finding implies that the SNP has strong pleiotropic effects
on adiposity and adiposity-independent pathological pathways that leads to
increased mortality. To investigate this further, we conducted a meta-analysis of
similar data from 34 longitudinal studies including 169,551 adult Caucasians
among whom 27,100 died during follow-up. Linear regression showed that the
minor allele of the FTO SNP was associated with greater BMI (n = 169,551;
0.32 kg m−2; 95% CI 0.28–0.32, P < 1 × 10−32), WC (n = 152,631; 0.76 cm;
0.68–0.84, P < 1 × 10−32) and FMI (n = 48,192; 0.17 kg m−2; 0.13–0.22,
P = 1.0 × 10−13). Cox proportional hazard regression analyses for mortality showed
that the hazards ratio (HR) for the minor allele of the FTO SNPs was 1.02
(1.00–1.04, P = 0.097), but the apparent excess risk was eliminated after adjust-
ment for BMI and WC (HR: 1.00; 0.98–1.03, P = 0.662) and for FMI (HR: 1.00;
0.96–1.04, P = 0.932). In conclusion, this study does not support that the FTO SNP
is associated with all-cause mortality independently of the adiposity phenotypes.

Keywords: FTO, meta-analysis, mortality, obesity.

obesity reviews (2015) 16, 327–340

Introduction

In 2007, genome-wide association studies discovered the
first obesity susceptibility locus, the ‘fat mass and obesity
associated gene’ (FTO) (1,2). A cluster of common single
nucleotide polymorphisms (SNPs) in the first intron of FTO
was identified as those carrying the association. Each addi-
tional minor A-allele of the rs9939609 SNP in the FTO
cluster is associated with increased body mass index (BMI)
by ∼0.40 kg m−2 (1) and an increased risk of obesity by

20–30% (1,3). This FTO SNP appears to influence pri-
marily the size of the overall fat mass irrespective of the
body fat distribution (4). Thus, it is expected that the FTO
SNP would also be associated with the various health-
damaging effects of adiposity. Indeed, several analyses
using the FTO SNP as instrumental variable of adiposity
confirmed the causality of the association between adipos-
ity and its detrimental health effects (5–7).

It would therefore be expected that the FTO SNP is also
associated with all-cause mortality. In observational
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studies, an underestimation of the strength of the associa-
tion between adiposity and mortality is suspected because
of the likely confounding and reverse causality, as indicated
in a previous study using the BMI of children as instrumen-
tal variable for BMI of the parents (8). However, a recent
study indicated that the FTO rs9939609 may have a much
stronger association with all-cause mortality than could
plausibly be attributed to such biases (9). While the SNP
showed the expected association with BMI, it was also
associated with a doubling of mortality (dominant genetic
model), even after adjusting for waist circumference (WC),
fat mass index (FMI = body fat mass/height2; kg m−2) and
BMI at younger ages. No distinct associations were found
with any of the major causes of death or preceding disease
incidence that could explain the finding.

On this basis, we speculate that the FTO SNP or some
other SNPs tightly linked to it in the genomic region may
have a major pleiotropic effect influencing pathways impli-
cated in the disease processes leading to increased risk of
dying independent of body weight regulation. To test the
hypothesis that the FTO SNP rs9939609 (or any proxy
SNP, r2 > 0.80) was associated with all-cause mortality,
with and without adjustment for BMI, WC and FMI, we
conducted a meta-analysis based on individual data of Cau-
casian men and women from multiple studies.

Populations and methods

Study selection

We planned a meta-analysis based on novel analyses of
longitudinal data. We performed a PubMed search using the
search terms ‘FTO and obesity’ to identify potential con-
tributing studies. Further studies were identified via the
network of collaborators who joined the meta-analysis and
through e-mail within the GIANT (www.broadinstitute
.org/collaboration/giant/index.php/GIANT_consortium)
and CHARGE (web.chargeconsortium.com) consortia. All
studies that included Caucasian populations and that were
able to provide baseline data on BMI and the FTO SNP
genotype, as well as mortality data during the following
observation time, were considered as eligible (Fig. 1). This
resulted in a total of 34 studies (Table S1) (10–42). They
included 37 cohorts, as in three studies data were analysed
separately for cohorts established on the basis of follow-up
of previously formed cases and controls (Health Profession-
als Follow-up Study (HPFS) (26), Nurses’ Health Studies
(NHS) (32) and Stockholm Heart Epidemiology program
(SHEEP) (39)).

Genotyping

If available, genotyping of the rs9939609 SNP was pre-
ferred, but a proxy SNP in high linkage disequilibrium with
the rs9939609 was used instead in the following studies:

EPIC Norfolk (rs1121980; r2 = 0.84) (18), EPIC-Potsdam
(rs9935401; r2 = 0.98) (19) and Heinz Nixdorf Recall
Study (rs8050136; r2 = 1) (25). In The Health ABC study
(http://www.grc.nia.nih.gov/branches/leps/healthabc/), the
genotype was generated by 1,000 genome imputation.
Only genotype data that met the local quality control cri-
teria, i.e. genotyping call rate, concordance in duplicate
samples and tests for deviations from Hardy–Weinberg
equilibrium, were used in the analyses.

Measurement of adiposity phenotype

BMI was calculated for each individual on the basis of
measured height and weight (exceptions were the use of
self-reported data, which have been validated, from The
Danish 1905-Cohort (15), the Danish Diet, Cancer, and
Health Cohort (DCH) (16), the NHS (32) and the HPFS
(26)). Furthermore, 32 of the 37 cohorts included data on
WC (10,12,14,16–35,37–42), which were measured at the
same time as height and weight, and 10 studies had infor-
mation on total body fat mass measured by bio-impedance

Data identified via PUBMED 
search, via network of the 
collaborators and other sources 

A total of 34 studies accepted 
participation 

Standardized Stata scripts for 
analysis was sent to 34 studies 

Study-specific regression 
analysis were performed:          
25 studies analysed data locally 
and nine studies allowed the 
coordinating Data Hub to
perform the analyses  

The results from the individual 
studies were combined in a 
meta-analysis  

Association of FTO
with adiposity
phenotypes  

Association of FTO
with all-cause
mortality  

Association of adiposity 
phenotypes with all-
cause mortality  

Figure 1 Study design of the FTO–mortality meta-analysis.
Eligible studies were identified by a literature search, as well as through
network of the collaborators and calls in the international consortia
GIANT and CHARGE (labelled ‘other sources’ in the figure). Of all
studies that were invited, 34 studies of adults (n = 169,551) participated
in the meta-analysis. Standardized Stata scripts were sent to each of
the studies, 25 studies analysed data locally and nine studies were
analysed centrally at the coordinating Data Hub. All the local estimates
were meta-analysed.
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from which FMI was calculated (10,14,19,21,23,
24,29,30,42).

Study-specific analyses

All the study-specific analyses were planned to be per-
formed by local analysts according to a centrally prepared
analysis plan for the covariates and through usage of a
hierarchical set of Stata scripts (Stata 12.1; StataCorp LP,
College Station, TX, USA; 2012), developed by the Data
Hub at the Institute of Preventive Medicine, Copenhagen,
Denmark. The local analysts were asked to check the accu-
racy of their variable assignments and additional checks
were later performed at the Data Hub. Any detected ambi-
guities were clarified with the respective study investigators
before the final meta-analysis stage. All the derived effect
estimates of the local analyses along with their standard
errors were automatically saved in corresponding Stata
datasets that were returned to the Data Hub. Alternatively,
data were sent directly and analysed using the same scripts
by the Data Hub analyst (LHÄ), which was performed for
nine studies (12,16,21,23,24,30,31,40,42).

For the main analyses, the effect of the FTO SNP was
tested assuming an additive allelic effect. However,
because in the previous study the effect of the FTO SNP
on mortality fitted a dominant genetic model (9), this
model was also investigated. In order to take into account
the variation in sex and age, all adiposity phenotypes
were subsequently analysed adjusting for sex and age
using residuals from regressions of the phenotypes on sex,
age, age-squared, age × sex or age-squared × sex.

Each study tested the association between the FTO geno-
type and the adiposity phenotypes using linear regression.
Further, each study tested for a main effect on mortality of
FTO genotype, BMI, WC and FMI, respectively. In addi-
tion, the associations of the combined adiposity pheno-
types, (BMI and WC) and (FMI and WC), with mortality
were estimated. Finally, the association between the FTO
genotype and mortality was examined adjusting for the
single and combined adiposity phenotypes.

Due to the distinct U-shaped association between BMI
and mortality (43,44), where the increased mortality may
not reflect associations with fat mass (45), individuals with
BMI < 20 kg m−2 were excluded from the analyses.
However, as the nadir of the U curve has often been
reported to be around 25 kg m−2 (43,44), there may be a
J-shaped relationship between BMI above 20 kg m−2 and
mortality. Similarly, the association between WC and mor-
tality has been reported to be U-shaped (46–48). Studies
have shown that WC adjusted for BMI and BMI adjusted
for WC have monotonic associations with all-cause mor-
tality in opposite directions; positive and linear for the WC
and decreasing and flattening out for the BMI (46,48).
Therefore, in the corresponding regression models, both

BMI and WC were simultaneously included as linear, quan-
titative trait variables. FMI has a linear relationship with
mortality (45,49) and was hence included as a quantitative
trait variable in separate analyses. In additional analyses, it
was also adjusted for WC, which appears to capture the
effect of the FMI on mortality (49).

The Cox proportional hazards regression model was used
for the analyses of mortality and the outcome is expressed as
hazard ratios (HR) per unit difference of the covariates. The
participants were followed from date of blood collection for
DNA (or from the date of anthropometric measurements if
that took place later) until death, censoring because of loss
to follow-up, emigration or end of follow-up. To ensure
optimal adjustment for age as a major determinant of mor-
tality, we used age as the underlying time scale in the Cox
regression. This implied entrance of the individual into the
estimation of the HR at the age when the follow-up began
and hence from the age at which the individual was consid-
ered at risk of dying. Moreover, as the possible pleiotropic
effect might be most distinct in the older segments of the
cohorts (because of the higher mortality), we also performed
subgroup analyses restricting the minimum age-at-risk to
60, 65 and 70 years, respectively. All Cox regression analy-
ses were adjusted for sex and lack of difference in association
between the two sexes was confirmed. The proportional
hazard assumptions were assessed by a test based on
Schoenfeld residuals (50) using the Stata estat phtest
command; only one of 37 studies (EPIC-Potsdam) showed a
significant deviation (P = 0.01).

Meta-analysis

The locally estimated regression coefficients and standard
errors were combined by inverse variance weighted meta-
analyses with random effects (51,52), using the Stata metan
command (53). In all the meta-analyses, between-study
heterogeneity was tested for by the Q statistic and quantified
by the I2 value; I2 values of <25%, 25–75% and >75% were
defined as low, moderate and high heterogeneity, respec-
tively (53,54). If the heterogeneity turned out to be moderate
or high, meta-regression analysis was planned in order to
search for and adjust for the sources of heterogeneity.

Results

Study characteristics

The 37 participating cohorts provided data on 70,020 men
of whom 13,857 died during follow-up and 99,531 women
of whom 13,243 died during follow-up (Table S1). Regard-
ing the mean follow-up time over cohorts, the median
length was 9.4 years (range of means 2.9–20.0 years).
Mean baseline age ranged from 38 to 93 years. The minor
allele frequency of the FTO SNP ranged from 34% to 45%.
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Association of FTO with adiposity phenotypes

The association between the FTO SNP and BMI and WC
was confirmed; each additional minor allele of the FTO
SNP was associated with a 0.32 kg m−2 higher BMI and
with a 0.76 cm higher WC (Table 1). In the 10 cohorts with
data on FMI, each FTO minor allele was associated with a
0.17 kg m−2 higher FMI (Table 1).

Association of adiposity phenotypes with
all-cause mortality

All-cause mortality was positively associated with BMI
(HR per unit BMI of 1.02, 95% confidence interval [CI]:
1.01–1.03; P = 1.0 × 10−8), but the association went in the
opposite direction when BMI was concurrently adjusted for
WC (HR: 0.97, 95% CI: 0.96–0.98; P = 4.5 × 10−6)
(Table 2). The mortality was positively associated with WC
(HR: 1.01, 95% CI: 1.01–1.02; P = 5.6 × 10−24), also when
concurrently adjusted for BMI (HR: 1.02, 95% CI: 1.02–
1.03; P = 8.8 × 10−18) (Table 2). Mortality was positively
associated with FMI alone (HR: 1.05 (95% CI: 1.02–1.08;
P = 0.003), but negatively associated when adjusted for
WC (HR: 0.97, 95% CI: 0.95–0.99; P = 0.009) (Table 2).

Associations of FTO with all-cause mortality

FTO was associated (albeit non-significantly) with all-cause
mortality with a HR of 1.02 (95% CI: 1.00–1.04; P =
0.097) per minor allele. Adjustment for BMI and WC
attenuated the estimate to a HR of 1.00 (95% CI: 0.98–
1.03; P = 0.662) (Fig. 3).

In the subset of 10 studies including 48,192 individuals
with FMI data (6,436 deaths), each minor FTO allele was
associated with mortality with a HR of 1.01 (95% CI:
0.96–1.06; P = 0.731) and a HR of 1.00 (95% CI: 0.96–
1.04; P = 0.932) when adjusted for FMI (Fig. 4).

The analyses assuming a dominant genetic model
showed no association between FTO and mortality (HR of
1.00, 95% CI: 0.98–1.03; P = 0.901). The age-restricted

subgroup analyses (observations left-truncated with
delayed entry at 60, 65 and 70 years, respectively) and the
sex-specific analyses showed results consistent with the
non-censored analyses (Tables S2 & S3).

The heterogeneity in all meta-analyses was very low, so
there was no reason to conduct a comprehensive meta-
regression analysis. The possible modification of the FTO–
mortality association by mean age at events in each cohort
was addressed by a meta-regression analysis, which did not
show a significant relationship.

Discussion

In this meta-analysis, combining data of up to 169,551
adults of whom 27,100 died during follow-up, we found a
very modest and statistically insignificant effect of the
adiposity-associated FTO SNPs on all-cause mortality.
When assuming an additive genetic effect, each minor allele
increased mortality by ∼2% with CIs ranging from ∼0% to
∼4% (Fig. 2). When adjusting for the adiposity phenotypes,
there was virtually no association between the FTO SNPs
and all-cause mortality.

Our results do not support the findings from the previous
study, which reported a statistically significant very strong
positive association between the FTO rs9939609 SNP and
all-cause mortality (9). In the previous study, FTO minor
allele carriers had almost twice the mortality rate of the
homozygous carriers of the major allele when analysed in a
dominant genetic effect model (9). The results from the
present meta-analysis provide evidence that if FTO has an
effect on mortality that is not attributable to its association
with the adiposity phenotypes, it is – almost without doubt

Table 1 Association of the minor (A) allele of the rs9939609 SNP in
FTO with BMI, WC and FMI, respectively, in a random effects
meta-analysis of Caucasian adults

Phenotype n β (95% CI) P-value

BMI (kg m−2) 169,551 0.32 (0.28–0.32) <1 × 10−32

WC (cm) 152,631 0.76 (0.68–0.84) <1 × 10−32

FMI (kg m−2) 48,192 0.17 (0.13–0.22) 1.0 × 10−13

β, estimated difference in phenotype per minor allele of the rs9939609
or a proxy (r2 > 0.8); BMI, body mass index; CI, confidence interval;
FMI, fat mass index; n, number of individuals; SNP, single nucleotide
polymorphism; WC, waist circumference.

Table 2 Association of BMI, WC and FMI with all-cause mortality in a
random effects meta-analysis of Caucasian adults

Phenotype n Deaths HR (95% CI) P-value

BMI (kg m−2)* 169,551 27,100 1.02 (1.01–1.03) 1.0 × 10−8

BMI (kg m−2)|WC 152,631 22,506 0.97 (0.96–0.98) 4.5 × 10−6

WC (cm)† 152,631 22,506 1.01 (1.01–1.02) 5.6 × 10−24

WC (cm)|BMI 152,631 22,506 1.02 (1.02–1.03) 8.8 × 10−18

FMI (kg m−2) 48,192 6,436 1.05 (1.02–1.08) 0.003
FMI (kg m−2)|WC 48,167 6,433 0.97 (0.95–0.99) 0.009

BMI, body mass index; CI, confidence interval; FMI, fat mass index;
HR, estimated hazard ratio of all-cause mortality per unit of the
phenotype; n, number of individuals; WC, waist circumference; |, means
adjusted for; e.g. BMI (kg m−2)|WC is BMI adjusted for waist
circumference.
*Due to the assumption of linearity of the BMI–mortality association for
BMI ≥ 20 kg m−2, the association between high levels of BMI and
mortality is potentially underestimated.
†Due to the assumption of linearity of the WC–mortality association, the
association between high levels of WC and mortality is potentially
underestimated.

332 Genetic variation in FTO and mortality E. Zimmermann et al. obesity reviews

© 2015 World Obesity16, 327–340, April 2015



– much smaller than that found in the previous study (as
indicated by the CI). Hence, the results of the previous
study are likely to be spurious, possibly reflecting random
sampling errors irrespective of its statistical strength and
otherwise consistent associations between the FTO SNP
and the adiposity phenotypes and their associations with

all-cause mortality (4,9). On the other hand, several previ-
ous studies have investigated the association between FTO
and cardiovascular disease and the results were recently
pooled in a meta-analysis (55). The overall conclusion was
that FTO was associated with an increased cardiovascular
risk independent of its association with BMI (55). Whether
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Figure 2 Forest plot of the effect of FTO rs9939609 on all-cause mortality in a random effects meta-analysis of 169,551 Caucasian adults sorted by
number of deaths. The studies are sorted by decreasing sample size (the largest at the top). Details of the studies are given in Table S1. The overall
estimate equalled a HR of 1.016 (0.997–1.035), P = 0.097.
95% CI, 95% confidence intervals; Deaths, number of deaths; HR, estimated hazard ratio of all-cause mortality per minor allele of the rs9939609 or a
proxy (r2 > 0.8); n, number of individuals.
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FTO has adiposity-independent effects on mortality from
specific causes remains an important challenge for future
research to elucidate.

The association between the FTO SNP and mortality
was robust as judged from the narrow CIs and the low
heterogeneity. Consistent results were also found when
restricting the time-at-risk to older ages (above 60, 65 and
70 years, respectively) and to each sex, indicating no effect

modifications by age and sex. When assuming a dominant
effect for the minor allele, no association was found
between the FTO SNP and mortality. Moreover, as
addressed in the following, the associations between the
FTO SNP and the adiposity phenotypes as well as the
associations between the adiposity phenotypes and all-
cause mortality were generally as expected from previous
studies.
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Figure 3 Forest plot of the effect of FTO rs9939609 on all-cause mortality adjusted for body mass index and waist circumference in a random effects
meta-analysis of 152,631 Caucasian adults sorted by number of deaths. The studies are sorted by decreasing sample size (the largest at the top).
Details of the studies are given in Table S1. The overall estimate equalled a HR 1.004 (0.983–1.027), P = 0.662.
95% CI, 95% confidence intervals; Deaths, number of deaths; HR, estimated hazard ratio of all-cause mortality per minor allele of the rs9939609 or a
proxy (r2 > 0.8); n, number of individuals.
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We estimated an effect size for BMI per minor allele of
FTO to 0.32 kg m−2, which is similar to the findings in
other large-scale studies in Caucasian adults, where effect
sizes ranging between 0.26 and 0.39 kg m−2 have been
reported (1,56–59). The corresponding effect size for WC
in the present meta-analysis was 0.76 cm per additional
minor allele, which is within the range of 0.73–1.00 cm per
additional minor allele previously reported in large-scale
studies in Caucasian adults (1,57,60).

Our linear estimates of associations between BMI and
mortality and between WC and mortality are probably
biased because of the U- or J-shaped associations (43–
46,48,49), but the other estimated associations shown in
Table 2 are likely to reflect the expected monotonic,
approximate linear associations (45,46,48,49). Thus, pre-
vious studies suggest that WC has a strong positive relation
to mortality when adjusted for BMI, whereas BMI adjusted
for WC is inversely associated with mortality (46–48). In
agreement with these relationships, a study found a direct

association between fat mass and mortality and an inverse
association between lean mass and mortality (45). Further,
when adjusting fat mass for WC, the positive association
with mortality was eliminated, whereas adjustment of lean
mass for WC did not alter the association with mortality
(49).

As reported by others studying the relation between the
FTO SNPs and the health-damaging effects of adiposity
(5–7), the present study offers an opportunity to interpret
the association of the adiposity phenotypes with all-cause
mortality in the conceptual framework of so-called Men-
delian randomization analysis by using the FTO SNP as an
instrumental variable (61). A key requirement of these
analyses is that the instrumental variable, here the alleles of
the SNP, is associated with the factor to be investigated,
here mortality, only through the investigated cause, here
the adiposity phenotypes, i.e. there must be no pleiotropic
effects. The present results support this assumption for
the FTO SNP. Such analysis provides a calculation of the
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Figure 4 Forest plot of the effect of FTO rs9939609 on all-cause mortality adjusted for fat mass index in a random effects meta-analysis of 48,192
Caucasian adults sorted by number of deaths. The studies are sorted by decreasing sample size (the largest at the top). Details of the studies are
given in Table S1. The overall estimate equalled a HR 0.998 (0.956–1.042), P = 0.932.
95% CI, 95% confidence intervals; Deaths, number of deaths; HR, estimated hazard ratio of all-cause mortality per minor allele of the rs9939609 or a
proxy (r2 > 0.8); n, number of individuals.
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association of the adiposity phenotypes with mortality that
is presumed to be unbiased by confounding or reverse
causality and may hence be interpreted as evidence for a
causal relation (61). For both BMI and FMI, the causal
calculation for mortality is a HR of 1.05 per kg m−2. This is
greater than the observed mortality for BMI (HR of 1.02),
but equal to that observed for FMI. The lower mortality
observed for BMI than calculated from the instrumental
variable analysis may reflect confounding and reverse cau-
sality, possibly inducing the inverse relation between the
lean body mass component of BMI and mortality (45). The
equality of the observed and calculated HR for FMI sug-
gests that the observed association between FMI and mor-
tality is probably unbiased and may reflect a causal
relation.

The construction of the present study does not allow us
to conduct a proper in-depth Mendelian randomization
analysis (61). In spite of the size of the study, it was not
originally set up to address such analysis and there remains
considerable statistical uncertainty of the components used
for the calculations. Furthermore, the inference would be
considerably improved by various measures such as inclu-
sion of adiposity-associated SNPs in other genomic regions,
integration of the different measures of body composition
and shape, calculation of the associations of the adiposity
phenotypes with mortality under proper control of the
well-known confounding factors (e.g. smoking), analyses
taking into account non-linear relations between the adi-
posity phenotypes and mortality and subdivision of the
mortality by age at death and by major causes of death.

The key strength of the present study is that it is strictly
hypothesis-driven and designed for and capable of testing
the proposed hypothesis. The meta-analysis was based on
analysis of original individual participant data according to
a standardized plan in all eligible cohorts. This analytical
standardization across studies minimized study heteroge-
neity and the usage of all identified data minimized bias
related to study selection, which might otherwise have
caused serious publication bias because of the difficulty in
publishing null results. However, as the study was con-
ducted among Caucasians only, it is difficult to generalize
the results to other ethnic groups.

We conclude that the FTO SNP is not associated
with all-cause mortality independently of the adiposity
phenotypes.
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Appendix S1. Note on calculation of the association
between adiposity traits and mortality by Mendelian
randomization based on the FTO SNP as instrumental
variable
Table S1. Descriptive information of the 37 study samples
included in the meta-analysis sorted alphabetically by study
name.
Table S2. Association of adiposity phenotypes and FTO
on all-cause mortality using age restrictions to being older
than 60, 65 and 70 years, respectively.
Table S3. Association of adiposity phenotypes and FTO
on all-cause mortality separately for males and females.
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