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“Not only so, but we also glory in our sufferings, because we know that suffering

produces perseverance; perseverance, character; and character, hope.”

(Romans 5:3-4)
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(2)
MD(k) that are men-

tioned previously. This figure is based on Ref. [54]. . . . . . . . . . 16
2.2 Different rational-function fits (RFF) to the two-body direct correla-

tion function (DCF) of Fe at 1772 K. ρ0 is the reference liquid density
and k is the magnitude of the wave vector. The black solid curve de-
notes the two-body DCF from molecular dynamics simulations [78](
Ĉ
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3Å−2, β1 = 8, k1 = 2π

√
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ABSTRACT

An In-Depth Examination of a Thermodynamic Framework
for the Phase-Field Crystal Model

by

Victor W. L. Chan

Chair: Katsuyo Thornton

In this dissertation, we examine the phase-field crystal (PFC) model, which is a

simulation method for modeling atomistic phenomena on diffusive time scales. Once

parameterized to equilibrium properties, the PFC model can be employed as a quan-

titative tool for predicting non-equilibrium atomistic materials phenomena on time

scales that are often inaccessible to atomistic simulations. We develop thermody-

namic relationships that are used to derive procedures for calculating equilibrium

material properties from the PFC model. These relationships are also applied to gain

a rigorous understanding of PFC simulation results.

The first set of relationships links the PFC free energy to thermodynamic state

variables and are based on the thermodynamic formalism for crystalline systems in-

troduced by Larché and Cahn [Larché and Cahn, Acta Metallurgica, 21 1051 (1973)].

These relationships are employed to examine the thermodynamic processes associated

with varying the input parameters of the PFC model. Additionally, the equilibrium

conditions between bulk crystalline solid and liquid phases are imposed on the rela-

xiii



tionships to obtain a procedure for determining solid-liquid phase coexistence. The

resulting procedure is found to be in agreement with the common-tangent construc-

tion commonly used in the PFC community. We apply the procedure to an eighth-

order-fit (EOF) PFC model that has been parameterized to body-centered-cubic (bcc)

Fe [Jaatinen et al., Physical Review E 80, 031602 (2009)] and demonstrate that the

model does not predict stable bcc structures with positive vacancy densities.

The second set of relationships is built on the recent work of Pisutha-Arnond et

al. [Pisutha-Arnond et al., Physical Review B, 87 014103 (2013)], and is applied to

develop a thermodynamically consistent procedure for determining elastic constants

from PFC models based on the classical density-functional theory (cDFT) of freezing

[Elder et al., Physical Review B, 75 064107 (2007)]. To implement these procedures,

we present two alternative deformation methods, one in real space and the other in

Fourier space, that are computationally more accurate and efficient than the method

conventionally used in the PFC community. The procedure for determining elastic

constants is implemented with the Fourier space deformation method to calculate

bulk mechanical properties from the EOF-PFC model.

Finally, we present a structural PFC model [Greenwood et al., Physical Review

Letters 105, 045702 (2010)] that yields a stable diamond-cubic (dc) structure. The

stabilization of a dc structure is accomplished by constructing a two-body direct cor-

relation function (DCF) approximated by a combination of two Gaussian functions

in Fourier space. A phase diagram that contains a dc-liquid phase coexistence re-

gion was constructed for the model. We examine the energies of the (100), (110),

and (111) solid-liquid interfaces. The dependence of interfacial energy on a temper-

ature parameter, which controls the heights of the peaks in the two-body DCF, is

described by a Gaussian function. Furthermore, the dependence of interfacial energy

on peak widths of the two-body DCF, which controls the excess energy associated

with interfaces, defects, and strain, is described by an inverse power law.

xiv



CHAPTER I

Introduction

The performance of a material is governed by its underlying atomic- and micro-

scale structures, which contain vacancies, dislocations, impurities, and grain and

phase boundaries [1]. These structural elements form and evolve under thermal and

mechanical processing, and give rise to different material properties. Thermal pro-

cesses such as cooling and annealing cause changes in the phase and grain boundaries

that affect the mechanical behavior [1, 2]. For example, in an Al-Zn alloy, a solid-state

phase transformation from a face-centered-cubic (fcc) to a two-phase mixture of fcc

and hexagonal-close-packed (hcp) phases occurs when the alloy is cooled from 300◦C

to below 275◦C. The resulting structure has significantly higher tensile and yield

strength than the structure of the initial phase [3]. On the other hand, annealing of

a polycrystalline metal causes grain growth and typically lowers the yield strength in

those cases when the grains are sufficiently large. Mechanical processes such as cold

deformation also alter the underlying structure and affect material properties. For

example, cold rolling of a metal increases dislocation density, leading to higher yield

strengths [2, 4]. Furthermore, in thin-film growth, lattice mismatch at the substrate

and thin-film interface lead to morphological instabilities. These instabilities can be

exploited to form periodic structures on a thin film, such as quantum dots, which

have optoelectronic applications [5, 6].
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As seen in the examples identified above, materials processing is intimately related

to the details of the underlying structure and ultimately dictates the properties of

the material. Therefore, a better understanding of how processing parameters affect

the formation and evolution of defects, grain structures, and phase boundaries is

important for designing materials with tailored properties and improved performance.

One of the challenges in understanding these relationships is that they stem from

phenomena occurring over multiple length and time scales. This can be illustrated in

a typical solidification example. At very small time and length scales, atomic inter-

actions in the liquid phase cause crystallites to nucleate. Once these crystallites have

formed, they grow and impinge on one another to form grain boundaries and establish

a microstructure over a much longer time scale. Thus, to understand how processing

parameters affect the structure of a material, one needs a formalism that captures

both atomic and micron length-scales while simultaneously handling the large gap be-

tween the time scale of atomic vibrations and the experimentally observable diffusive

time scales.

Because materials phenomena often involve multiple time and length scales, both

continuum and atomistic models are used to study microstructure formation and

phase selection [7]. One common continuum model is the phase-field (PF) model,

which has been successfully applied to simulate a wide range of materials phenomena

including solidification [8, 9, 10, 11], solid-state phase transformations [12, 13, 14],

and coarsening and grain growth [15, 16, 17] (see also Refs. [18, 19] for comprehensive

reviews). The PF model uses one or more order parameters to distinguish various

phases or grains within a microstructure. A PF order parameter can be considered

as a coarse-grained field that averages out individual atomic-scale details but retains

the microstructural features. The resulting model describes the evolution of the

microstructure over the diffusive time-scale. However, since the formulation of the

PF model does not account for atomic-scale details, the description of phenomena that

2



arise from crystallographic symmetries that are inherent in crystalline solids involves

auxiliary field variables, which require additional parameterization. At the other end

of the spectrum, a common atomistic model is molecular dynamics (MD). MD tracks

the positions of individual atoms, which are updated in accordance with Newton’s

laws of motion and forces that are calculated from atomic potentials [20, 21, 22]. It

captures the atomistic details of the system, as well as thermodynamics and kinetics

when the results are ensemble averaged. However, MD simulations are limited by the

time scale of atomic vibrations, which are orders of magnitude smaller than those

associated with many materials phenomena. Recently, the phase-field crystal (PFC)

model [23, 24] has been introduced to address these limitations. The PFC model

shares a similarity with the PF model because the governing equation is based on

dissipative dynamics for order-parameter evolution, but it has some of the advantages

of MD in that atomic resolution is retained.

The capability of the PFC model to describe atomistic phenomena at diffusive time

scales has enabled researchers to investigate a wide variety of materials phenomena

such as defect dynamics [25, 26, 27, 28, 29], crystal nucleation [30, 31] and growth

[32, 33, 34, 35], heteroepitaxy to form thin films [36, 37, 38, 39, 40, 41, 42, 43], and glass

formation [44]. Furthermore, links between PFC model parameters to measurable

quantities in experiments and atomistic simulations were made by Elder et al. [45],

who showed that the PFC model can be derived from the classical density-functional

theory (cDFT) of freezing [46, 47], which is based on statistical mechanics [48, 49].

In this work, (i) the PFC free energy was identified as the Helmholtz free energy, (ii)

the PFC order-parameter was found to be an atomic-probability density, obtained by

taking an ensemble average of the microscopic particle density [48], and (iii) the bulk

modulus and lattice spacing of a crystal were associated with the height and position,

respectively, of the first peak of the two-body direct correlation function (DCF), which

could be obtained from experiments or atomistic simulations. Additionally, because of
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the link established between cDFT and PFC, extensions that exists for cDFT can be

readily adapted to the PFC model, including PFC formulations for multi-component

systems [45, 50], anisotropic lattices [51], and liquid-crystalline systems [52].

Although the PFC model has been employed to study a wide variety of materials

phenomena and its model parameters have been linked to measurable quantities, the

procedures for calculating equilibrium material properties from the PFC model are

not straightforward [53] because the thermodynamic interpretation of the PFC free

energy has not been fully developed. As a result, the PFC model cannot be rigorously

parameterized to produce equilibrium properties that match those measured exper-

imentally or calculated from atomistic simulations, preventing the use of the PFC

model as a predictive tool for non-equilibrium material processes.

We present thermodynamic relationships between the PFC free energy and ther-

modynamic state variables to rigorously and quantitatively interpret results calcu-

lated from PFC simulations. We also develop thermodynamically consistent pro-

cedures for calculating solid-liquid phase coexistence and elastic constants. These

procedures are employed to investigate the validity of a PFC parameterization for

body-centered-cubic (bcc) Fe [54]. Finally, we investigate the phase coexistence and

solid-liquid interfacial energy of a PFC model with a stable diamond-cubic, dc, struc-

ture, which is based on the structural PFC (XPFC) approach [55]. The following

four sections serve as an outline and summarizes the contributions made to the field

of PFC in this dissertation.

1.1 Thermodynamic Relationships for Bulk Crystalline and

Liquid Phases in the PFC Model

We first present thermodynamic relationships between the free energy of the PFC

model and thermodynamic state variables for bulk solid and liquid phases under
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hydrostatic pressure. These relationships are derived based on the thermodynamic

formalism for crystalline solids introduced by Larché and Cahn [56] and detailed in

Voorhees and Johnson [57]. We apply the relationships to examine the thermody-

namic processes associated with varying the input parameters of the PFC model:

temperature, θ, lattice spacing (associated with unit-cell volume, VcC), and the aver-

age value of the PFC order parameter, n̄. We show that varying n̄ while holding VcC
and θ constant in a PFC simulation reflects the thermodynamic process of adding or

removing atoms to and from lattice sites while the number of lattice sites is constant.

Furthermore, varying VcC while holding n̄ and θ constant reflects the thermodynamic

process of adding or removing lattice sites while the number of atoms is constant.

The equilibrium conditions between bulk crystalline solid and liquid phases are

imposed on the thermodynamic relationships of the PFC model to obtain a procedure

for determining solid-liquid phase coexistence. The resulting procedure is found to

be in agreement with the method commonly used in the PFC community [24, 54, 58],

justifying the use of the common-tangent construction to determine solid-liquid phase

coexistence in the PFC model. Finally, we apply the procedure to an eighth-order-fit

(EOF) PFC model that has been parameterized to body-centered-cubic (bcc) Fe [54]

to demonstrate the procedure as well as to develop physical intuition about the PFC

input parameters. We demonstrate that the EOF-PFC model parameterization does

not predict stable bcc structures with positive vacancy densities. This result suggests

an alternative parameterization of the PFC model, which requires the primary peak

position of the two-body direct correlation function to shift as a function of n̄.
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1.2 Thermodynamic Relationships for Calculating Elastic

Constants in the PFC Model

A major strength of the PFC model is its capability to naturally describe crystal

elasticity and plasticity [23, 24]. However, in order for the PFC model to quanti-

tatively predict non-equilibrium mechanical processes, such as plastic deformation

[59, 60], the equilibrium mechanical properties of the model must be accurately rep-

resented. To this end, a procedure for calculating elastic constants that are con-

sistent with the definitions of thermoelasticity theory for stressed crystals [61] was

recently developed by Pisutha-Arnond et al. [53] for the phenomenologically based

Swift-Hohenberg (SH) PFC model [23, 24, 62]. Although this procedure provides

several important insights about the thermodynamic process of deformation in the

PFC model, the equilibrium values calculated from the SH-based PFC model do

not directly correspond to material properties measured experimentally or calculated

with atomistic simulations. In order to parameterize the PFC model to match its

mechanical equilibrium properties to those of experimental measurements or atom-

istic calculations, a thermodynamically consistent procedure for calculating elastic

constants must be developed for the cDFT-based PFC model. Therefore, we build on

the work of Pisutha-Arnond et al. [53] to derive such a procedure. We demonstrate

that the procedure for calculating elastic constants in the cDFT-based PFC model

requires the knowledge of the bulk modulus and pressure of the liquid reference state.

1.3 Numerical Implementation of Deformation in the PFC

Model

The relationships for calculating elastic constants in the cDFT-based PFC model

requires the numerical evaluation of the free energy of a deformed state. Numeri-

cal deformation is conventionally implemented in the PFC model by evaluating the
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free energy on coordinates that have been mapped to a desired deformed state via a

deformation-gradient tensor [53, 55, 62]. Although straightforward, this method, re-

quires interpolation of the order parameter values for shear-type deformations. There-

fore, we explore two alternative numerical methods for applying deformation. The

first alternative method maps the Laplacian operator in the PFC free energy from de-

formed to undeformed coordinates, which eliminates the need for interpolation. The

second alternative method is formulated in Fourier space and applies deformation via

a scaling of the wave vectors, which can be used when the PFC free energy is expressed

in Fourier space. Using these methods, we evaluate the PFC free-energy density for

an order parameter profile of a bcc structure, assuming the one-mode approximation,

and compare the accuracy and efficiency of these methods. The Fourier-space method

is then used to implement the relationships developed above to calculate the elastic

constants and solid bulk modulus for bcc structures stabilized by the EOF-PFC model

for two different pressure states.

1.4 PFC Model for a Diamond-Cubic Structure

We examine a more recently formulated structural PFC (XPFC) model, which

uses a two-body DCF that is phenomenologically constructed from Gaussian functions

[55]. Specifically, we focus on the XPFC model’s capability to stabilize various crystal

structures and investigate the existence of a stable dc structure within the PFC model.

We demonstrate that a two-peak DCF constructed from Gaussian functions with

positions at the first two peaks of the dc structure factor will stabilize a dc structure.

A temperature-density phase diagram containing a dc-liquid phase coexistence region

is calculated for this model.

We also examine how the solid-liquid interfacial energy of the dc structure depends

on the shape of the DCF within the dc-PFC model. A relationship for solid-liquid

interfacial energy as a function of temperature is developed for the dc structure by
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taking the peak heights of the Gaussian functions in the two-body DCF to change

with a temperature parameter according to the functional form of the Debye-Waller

Factor [55]. Additionally, since the excess energy associated with interfaces, defects,

and strain is controlled by the peak width of the Gaussian functions [55], relationships

for the dependence of interfacial energies on peak widths are also determined. These

relationships can be used to parameterize the dc-PFC model to match interfacial

energies to those measured experimentally or calculated from atomistic simulations.
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CHAPTER II

Overview of The Phase-Field Crystal Model

In this chapter, we present an overview of the PFC model. We first consider

a derivation of the PFC model based on the Swift-Hohenberg equation [63] devel-

oped for examining pattern formation arising from convective instability. This is the

phenomenological approach by which PFC was first introduced. We then describe a

derivation of the PFC model from a theoretical ground, which is based on classical

density-functional theory (cDFT) [48, 49, 64].

2.1 The PFC Model Based on Swift-Hohenberg Equation

The Swift-Hohenberg equation [63] was originally developed to study the effects

of thermal fluctuations on convective instability for Rayleigh-Bérnard convection in

which fluids are trapped between a hot and cold plate. When the temperature dif-

ference between the two plates are large enough (i.e., the Rayleigh number is large

enough), an instability arises where convective rolls form to transport the hot fluid to

the cold plate and vice versa [65]. Elder et al. [23, 24] recognized that the conserved-

dynamics form of the SH equation gives rise to a periodic structure that resembles

the arrangement of atoms in a crystal, resulting in the inception of the PFC model.

9



The PFC free-energy functional based on the SH equation is

FSH[φ(r)] =

∫
dr

[
g
φ(r)4

4
+ α

φ(r)2

2
+
φ(r)

2
λ(q2

0 +∇2)2φ(r)

]
, (2.1)

where λ and g are fitting parameters and q0 is a constant that sets the periodicity of

φ(r) when representing a crystalline phase. The coefficient α is set to be proportional

to a degree of undercooling, or α ∝ ∆T , where ∆T is the temperature difference

from the melting point. This form of the PFC free-energy functional, Eq. (2.1), will

be referred to as the SH-PFC form and denoted by the subscript SH. Additionally,

the evolution of φ(r) is governed by the mass conservation equation, along with the

flux driven by the variational derivative of the free energy with respect to φ(r) and

thermal noise [23, 24]:

∂φ(r)

∂t
= M∇2 δFSH[φ(r)]

δφ(r)
+ η, (2.2)

where M is a phenomenological constant and η is a noise term that accounts for

stochastic thermal fluctuations. The SH-PFC model is minimized by either a constant

or periodic order parameter, φ(r). The constant value of φ(r) describes a liquid phase,

while a φ(r) that is periodic in space represents a crystalline phase with a periodicity

that matches the spatial arrangement of atoms in a crystal.

Equation (2.1) can be nondimensionalized by using the scaling scheme [24, 62]:

r̃ = q0r, ε̃ = − α

λq4
0

, φ̃(r̃) =

√
g

λq4
0

φ(r), t̃ = Mλq6−d
0 t, (2.3)

where the tilde indicates the scaled dimensionless quantities and d denotes the spatial

dimensionality of the problem. The typographical error in the definition of t̃ from

Ref. [24] is corrected in Ref. [62]. Using the above scheme, one can express Eq. (2.1)
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in a scaled form as

F̃SH =
g

λ2q8−d
0

FSH =

∫ (
φ̃(r̃)

2

[
−ε̃+

(
∇̃2 + 1

)2
]
φ̃(r̃) +

φ̃(r̃)4

4

)
dr̃, (2.4)

where ε̃ is related to undercooling. The evolution equation, Eq. (2.2), becomes [24]

∂φ̃(r̃)

∂t̃
= ∇̃2 δF̃SH

(
φ̃(r̃)

)

δφ̃(r̃)
+ η̃, (2.5)

where η̃ represents the scaled thermal fluctuations.

Although simplistic in form, the SH-PFC free-energy functional in Eq. (2.4) gives

rise to fairly complex phase diagrams containing bcc, fcc, hcp, rod and stripe phases

in three dimensions [24, 66]. Along with the evolution equation of (2.5), the SH-PFC

model has been used to study a wide variety of complex phenomena that simulta-

neously involve crystal orientations, anisotropic interfacial energies, and plastic and

elastic deformations [24, 26, 27, 67].

2.2 The PFC Model Based on cDFT

Despite the success of the SH-PFC model in studying complex material phenom-

ena, its application to physical material systems is limited due to the phenomenologi-

cal origin of its free-energy functional. Later, Elder et al. [45] established a connection

between the PFC model and cDFT, providing links between the PFC model parame-

ters and measurable quantities in experiments and atomistic simulations and enabling

several systematic improvements to the model.

In this section, we provide an overview of cDFT followed by the derivation of

several variations of the PFC model that depend on the choice of the two-body DCF

defined in Fourier space. A thorough review of different formulations and extensions of

the PFC model is given in Refs. [65, 68]. Below, we consider four different formulations
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of the model: (i) a fourth-order-polynomial fit (FOF) approximation of the two-

body DCF, which is the original cDFT-based PFC model [45], (ii) an eighth-order-

polynomial fit (EOF) approximation of the two-body DCF, which has been shown

to accurately predict multiple thermodynamic properties of bcc Fe simultaneously

[54], (iii) a rational-function-fit (RFF) approximation of the two-body DCF, which

has been used to examine the short-wavelength contributions of the DCF for cDFT

and the PFC model [69], and (iv) a Gaussian approximation of the two-body DCF,

which has been used to selectively stabilize different crystal structures by adjusting

the peak heights and location of the two-body DCF [55]. Finally, the link between the

PFC evolution equation in Eq. (2.5) and dynamic density-functional theory (dDFT)

[70, 71, 72] is discussed.

2.2.1 Overview of cDFT

We first provide an overview of cDFT to formally define the atomic probability

density and the Helmholtz free energy. The theory resembles the density functional

treatment used in quantum mechanics, where the energy is expressed as a functional

of the electron-density field [73]. However, unlike the density functional treatment

used in quantum mechanics, cDFT considers the equilibrium one-body density, ρeq(r),

which is the grand canonical average of the density operator,
∑

i δ(r− ri) [49, 74]:

ρeq(r) =

〈∑

i

δ(r− ri)

〉

GC

, (2.6)

where ri is the particle position, δ(r) is the Dirac delta function, and the subscript

GC denotes the grand canonical ensemble.

The key theorem in the formulation of cDFT is the existence of a one-to-one cor-

respondence between ρeq(r) and an external potential, Vext(r), at a given temperature

T , and chemical potential µ [48, 49, 64]. This theorem enables a variational formu-
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lation for an atomic-probability density, ρ(r), which involves an intrinsic free energy

functional, F [ρ(r)]. When ρ(r) = ρeq(r), for a corresponding Vext(r), the quantity

F [ρ(r)] becomes the Helmholtz free energy and satisfies [48, 49, 64, 75]

δF [ρ(r)]

δρ(r)

∣∣∣∣∣
ρ=ρeq

+ Vext(r)− µ = 0. (2.7)

Following Refs. [48, 49, 64], F [ρ(r)] is divided into ideal and excess parts, i.e.,

F [ρ(r)] = Fid[ρ(r)] + Fex[ρ(r)]. The ideal contribution can be obtained exactly from

the ideal gas system and is given by

Fid[ρ(r)] = kBT

∫
drρ(r)

{
ln[ρ(r)λ3

T ]− 1
}
, (2.8)

where λT is the de Broglie wavelength and kB is the Boltzmann constant. The excess

contribution involves direct correlation functions (DCFs) that are generated through

the functional derivative

C(n)(r1, ..., rn; [ρ]) = − 1

kBT

δnFex[ρ(r)]

δρ(r1)...δρ(rn)
. (2.9)

The function C(n)(r1, ..., rn; [ρ]) is the n-body DCF, which contains the information

of the interparticle interactions and determines structural properties of the system.

In general there is no exact expression for Fex[ρ(r)], and thus numerous techniques

have been proposed to approximate this quantity [48, 49].

In the context of freezing, Fex[ρ(r)] is approximated with a functional Taylor

expansion around a liquid reference density, ρ0, that is truncated beyond the second-

order term. Combining the approximate form of Fex[ρ(r)] with Fid[ρ(r)], the free
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energy can be expressed as follows [46, 47]:

F [ρ(r)]

kBT
=
F [ρ0]

kBT
+

µ0

kBT

∫
dr∆ρ(r) +

∫
dr

{
ρ(r) ln

[
ρ(r)

ρ0

]
−∆ρ(r)

}

−1

2

∫ ∫
dr1dr2∆ρ(r1)C(2)(r1, r2; [ρ0])∆ρ(r2), (2.10)

where µ0 is the chemical potential of the liquid reference state, ∆ρ(r) ≡ ρ(r)−ρ0, and

C(2)(r1, r2; [ρ0]) is the two-body DCF of the reference liquid state. Additional approx-

imations are applied to Eq. (2.10) to obtain PFC models. In particular, the two-body

DCF can be approximated in various manners, leading to different formulations of

PFC, as will be discussed below.

2.2.2 Derivation of PFC from cDFT

The original cDFT-based formulation of the PFC model involves approximating

the two-body DCF with a fourth-order polynomial, resulting in a form analogous to

the SH-PFC model. First, a scaled dimensionless number-density,

n(r) ≡ ρ(r)− ρ0

ρ0

, (2.11)

is used to rewrite Eq. (2.10) as

∆F [n(r)]

ρ0kBT
=

∫
dr

{
[1 + n(r)] ln[1 + n(r)]− n(r) +

µ0n(r)

kBT

−ρ0n(r)

2

∫
dr′C(2)(|r− r′|)n(r′)

}
, (2.12)

where the two-body DCF, C(2)(| r−r′ |), is assumed to be spherically symmetric. This

assumption is valid for a system whose interaction potential is isotropic. Following

Ref. [45], two approximations are made to Eq. (2.12). The first approximation, which

is used in all forms of the PFC, is a polynomial expansion of the first two terms of
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the integrand in Eq. (2.12),

[1 + n(r)] ln[1 + n(r)]− n(r) ≈ 1

2
n(r)2 − at

6
n(r)3 +

bt
12
n(r)4, (2.13)

where the constants at and bt are introduced to account for contributions from the

zeroth-mode of higher-order DCFs [30, 32, 54, 55, 76, 77]. A Taylor expansion (at = 1

and bt = 1) was used in the original derivation presented by Elder et al. [45]. The

second approximation is the Taylor expansion of the two-body DCF in Fourier space

ρ0Ĉ
(2)(k) ≈ −C0 + C2k

2 − C4k
4, (2.14)

where C0, C2, and C4 are fitting constants, k is the magnitude of the wave vector,

and the hat denotes the Fourier transform of the corresponding quantity. Figure

2.1 shows the two-body DCF from molecular dynamics simulations [78], ρ0Ĉ
(2)
MD(k),

and the approximations of Eq. (2.14) with two different sets of C0, C2, and C4. The

first approximation, shown as the red dotted curve, captures the value of ρ0Ĉ
(2)
MD(0),

the maximum value of ρ0Ĉ
(2)
MD(k), and its location [54]. The second approximation,

shown as the blue dashed curve, also captures the maximum value of ρ0Ĉ
(2)
MD(k) and

its location, but instead of capturing ρ0Ĉ
(2)
MD(0), it matches the curvature of the

maximum [78].
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Figure 2.1:
Two-body direct correlation functions (DCFs). The variables ρ0 is the
reference liquid density, k is the magnitude of the wave vector, and km
is the value of k corresponding to the maximum of the two-body DCF
(marked by the vertical dashed black line). The black solid curve de-

notes the DCF from molecular dynamics simulations, ρ0Ĉ
(2)
MD(k), of Fe at

1772 K [78]. The red dotted curve and the blue dashed curve denote the
fourth-order-polynomial fit (Eq. (2.14)) with different choices of fitting
parameters (C0, C2, and C4). The red dotted curve captures the value of

ρ0Ĉ
(2)
MD(0), the value of km, and ρ0Ĉ

(2)
MD(km). The blue dashed curve cap-

tures the value of km and ρ0Ĉ
(2)
MD(km), and the curvature at ρ0Ĉ

(2)
MD(km).

The green solid curve denotes an eighth-order-polynomial approximation
(Eq. (2.18)), which captures all four features of ρ0Ĉ

(2)
MD(k) that are men-

tioned previously. This figure is based on Ref. [54].
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The inverse Fourier transform of Eq. (2.14) yields an approximated two-body DCF

of the form

ρ0C
(2)(|r− r′|) ≈ (−C0 − C2∇2 − C4∇4)δ(|r− r′|). (2.15)

Equations (2.13) and (2.15) are substituted into Eq. (2.12) to obtain

∆FFOF[n(r)]

ρ0kBT
=

∫
dr

[
µ0n(r)

kBT
+ n(r)

1 + C0 + C2∇2 + C4∇4

2
n(r)

−at
6
n(r)3 +

bt
12
n(r)4

]
, (2.16)

where ∆FFOF is the PFC free energy and the subscript FOF denotes that a fourth-

order polynomial is used to approximate the two-body DCF in Fourier space (see Eq.

(2.14)). The linkage between the cDFT and the PFC free energies shows that the

PFC free energy is the Helmholtz free energy change from a reference state when n(r)

takes the equilibrium profile, neq(r), for a given external potential.

As pointed out in Ref. [54], the PFC free energy of Eq. (2.16) does not produce a

stable crystal structure when at = bt = 1. In order for a stable crystal structure to

arise from Eq. (2.16), either the values of at and bt need to be adjusted [54], or the

scaled density is alternatively defined [45] to be

n(r) ≡ ρ(r)− ρ̄
ρ̄

, (2.17)

where ρ̄ ≡ 1/V
∫
ρ(r)dV is the average density of the system. As mentioned earlier,

change in at and bt can be attributed to the zeroth-mode of higher-order DCFs.

The redefinition of n(r) may introduce an inconsistency since the density is no longer

scaled with respect to the reference state at which the correlation function is obtained.
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2.2.3 Eighth-Order-Polynomial Fit PFC Formulation

Jaatinen et al. [54] attempted to use the FOF-PFC formulation of Eq. (2.16) to

describe multiple thermodynamic properties of Fe at the melting temperature and

found the model too limited due to the small number of available fitting parameters.

They overcame this problem by using the approximation of the ideal contribution of

the free energy in Eq. (2.13) and proposing an improved EOF approximation of the

two-body DCF in Fourier space,

ρ0Ĉ
(2)
EOF(k) = Cm − Γ

(
k2
m − k2

k2
m

)2

− EB
(
k2
m − k2

k2
m

)4

, (2.18)

where

Γ = −k
2
mCc
8

, EB = Cm − C0 − Γ, (2.19)

and km, C0, Cm as well as Cc are fitting constants. Compared with the two-body DCF

approximation in Eq. (2.14), this model provides one additional fitting parameter.

The corresponding free energy is

∆FEOF[n(r)]

kBTρ0

=

∫
dr

[
n(r)

2

(
1− Cm + Γ

(
k2
m +∇2

k2
m

)2

+ EB

(
k2
m +∇2

k2
m

)4
)
n(r)

−at
6
n(r)3 +

bt
12
n(r)4

]
. (2.20)

This new form of the free energy allows the first peak of the two-body DCF of Fe to

be captured more accurately, as shown in Fig. 2.1. Specifically, the fitting constants

were selected so that the EOF matches (i) the value of the DCF at k = 0, (ii) the

value of the DCF at the first peak, (iii) the location of the first peak, and (iv) the

curvature of the first peak. Furthermore, in Ref. [54], the values of at and bt were

chosen to match the equilibrium amplitude of the density wave in the solid phase to
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those calculated for the solid phase in MD simulations.

The EOF-based PFC model has been parameterized to match solid-liquid inter-

facial energy and bulk modulus of bcc Fe, and was used to calculate grain boundary

energies that are in reasonable agreement with MD calculations [54]. The bulk mod-

ulus calculated from the model is 94.5GPa, while the solid-liquid interfacial energies

for the (100), (110), and (111) interfaces were 165.7, 161.5, and 157.2 ergs/cm2, re-

spectively [54]. The fitting parameters of the parameterized model are listed in table

2.1. The EOF for the listed parameter values is plotted as the green curve in Fig.

2.1.

Constant Value
at 0.6917
bt 0.08540

km 2.985Å−1

C0 −49Å−3

1− Cm 0.332Å−3

Cc −10.40Å−1

ρ0 0.0801Å−3

Table 2.1: Constants used in the work of Ref. [54].
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2.2.4 Rational-Function-Fit Formulation

The FOF- and EOF-PFC formulations presented so far are based on fits to the

two-body DCF up to the first peak. As a result, the short-wavelength features of the

DCF cannot be captured by these formulations. In order to examine the contributions

of the short-wavelength features of the two-body DCF, a RFF approximation to the

two-body DCF in Fourier space was presented by Pisutha-Arnond et al. [69]. Their

study on bcc Fe showed that the short-wavelength contributions of the two-body DCF

affect the thermodynamic properties calculated from the model. Furthermore, they

showed that the RFF technique can be used to empirically parameterize the two-body

DCF to increase the computational efficiency of cDFT while retaining its accuracy.

In the RFF formulation, the two-body DCF is approximated by a rational func-

tion,

ρ0Ĉ
(2)
RFF(k) =

P (k)

Q(k)
, (2.21)

where P (k) and Q(k) are polynomials of k with the order of P (k)/Q(k) being 1/k2.

This rational function can be decomposed into a summation of partial fractions as

ρ0Ĉ
(2)
RFF(k) =

∑

j

[
Aj

k2 + αj
+

A∗j
k2 + α∗j

]
, (2.22)

where Aj and αj are fitting constants and the asterisk denotes their complex conju-

gate. The RFF captures the oscillatory behavior of the two-body DCF, as shown in

Fig. 2.2, where the approximation of the two-body DCF improves as the number of

partial-fraction terms in Eq. (2.22) increases (or equivalently the order of P (k) and

Q(k) increases).
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k(Å−1)

ρ
0
Ĉ
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Figure 2.2:
Different rational-function fits (RFF) to the two-body direct correlation
function (DCF) of Fe at 1772 K. ρ0 is the reference liquid density and
k is the magnitude of the wave vector. The black solid curve denotes

the two-body DCF from molecular dynamics simulations [78]
(
Ĉ

(2)
MD(k)

)
.

The curves denote the RFFs with 5 (dotted blue), 7 (dot-dashed red),

and 9 (dashed green) partial-fraction terms. The fit to Ĉ
(2)
MD(k) improves

as the number of terms in the RFF increases. This figure is based Ref.
[69]
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The partial fraction decomposition in Eq. (2.22) also allows one to evaluate the

convolution integral in Eq. (2.12),

Ic(r) =

∫
C(2)(|r− r′|)n(r′)dr′, (2.23)

in real space by solving a set of inhomogeneous Helmholtz equations. When Ĉ(2)(k)

is approximated with Ĉ
(2)
RFF(k), Ic(r) can be expressed as

Ic(r) =

∫
C

(2)
RFF(|r− r′|)n(r′)dr′

=
∑

j

[Lj(r) + L∗j(r)], (2.24)

where Lj(r) and L∗j(r) are solutions to the inhomogeneous Helmholtz equations [69],

−∇2Lj(r) + αjLj(r) = Ajn(r)

−∇2L∗j(r) + αjL
∗
j(r) = A∗jn(r). (2.25)

Therefore, the RFF formulation also allows one to solve the PFC equation with an

improved DCF in real space, where techniques such as adaptive mesh refinement and

the finite element method can be employed [69].

2.2.5 Structural PFC (XPFC) Formulation

Unlike the EOF- and RFF-PFC formulations, which use approximations to a

physical two-body DCF as input, the structural PFC (XPFC) model uses a phe-

nomenologically constructed two-body DCF as input [55, 58]. In this method, the

emergence of different crystal structures is controlled by setting the positions of the

peaks in a two-body DCF to correspond to those in the structure factor. Specifically,

the two-body DCF of the XPFC model is constructed from a combination of modu-

lated Gaussian functions, each of which is centered at the position of a peak in the
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structure factor,

ρ0Ĉ
(2)(k) = max

(
Gi(k), Gi+1(k), . . . , GN(k)

)
, (2.26)

where N is the total number of Gaussian functions used in the approximation of the

DCF, and

Gi(k) = exp

(
− σ

2k2
i

2λiβi

)
exp

(
−(k − ki)2

2α2
i

)
(2.27)

is the modulated Gaussian function (i.e., a Gaussian function with its height modified

by an exponential function). The subscripts and superscripts i denote the ith family of

crystallographic planes that are being considered; the families of planes are typically

enumerated in order of decreasing interplanar spacings, where i = 1 corresponds to the

family of crystallographic planes with the largest interplanar spacing. The parameter

ki specifies the position of the ith Gaussian peak and the value of k1 corresponds to

the reciprocal lattice spacing of a crystal structure; αi corresponds to the root-mean-

square width of the ith Gaussian peak and controls the excess energy associated with

defects, interfaces, and strain [55]; σ controls the height of the Gaussian peaks and is

related to temperature [55]; λi and βi are the planar atomic density and the number of

planar symmetries of the ith family of crystallographic planes, respectively, and control

how much the height of the Gaussian functions change when σ is adjusted. Since the

parameter ki also exists in the exponential term in front of the Gaussian functions in

Eq. (2.27), ki also affects the change in the height of the Gaussian functions when σ

is adjusted.

Each value of ki sets the interplanar spacing, Li, for a family of crystallographic

planes within a crystal structure; specifically, ki = 2π/Li. For example, the k1 and

k2 values for a bcc structure corresponds to the {110} and {200} families of planes,

respectively, and have values of k1 = 2π
√

2/abcc and k2 = 4π/abcc, where abcc is the

lattice constant of the bcc structure. On the other hand, the k1 and k2 values for an
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fcc structure correspond to the {111} and {200} families of planes, respectively, and

have values of k1 = 2π
√

3/afcc and k2 = 4π/afcc, where afcc is the lattice constant

of the fcc structure. The planes corresponding to the k1 and k2 reciprocal lattice

spacings in one unit-cell of the bcc and fcc structures are illustrated in Fig. 2.3.

(a) (b)

(c) (d)

Figure 2.3:
Schematic of the (a) (110) and (b) (200) planes of the bcc structure, as well
as (c) (111) and (d) (200) planes of the fcc structure. Figure is based on
Ref. [58]. The corner lattice sites are colored red, while the body-centered
(a and b) and face-centered (c and d) lattice sites are colored blue.
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As demonstrated by Greenwood et al. [58], the XPFC model for the bcc structure

can be constructed with a two-body DCF that is approximated with a single Gaussian

function centered at k1 = 2π
√

2/abcc in Fourier space. On the other hand, the fcc

structure is stabilized by two Gaussian functions centered at k1 = 2π
√

3/afcc and

k2 = 4π/afcc at sufficiently low temperatures. Note that the ratio of the peak positions

of the fcc structure, k2/k1 =
√

4/3, is independent of afcc.

Although the XPFC model lacks a direct link to physical systems (unlike other

cDFT-based PFC models that use a physical DCF), it has the advantage of employing

a DCF that is easily customizable. The peak heights and positions of the two-body

DCF in the XPFC model has been adjusted to systematically stabilize a wide va-

riety of crystal structures, such as the bcc, fcc, simple-cubic (sc) and hcp phases

in three dimensions [55, 58], and square and triangle phases in two dimensions [55].

Furthermore, the XPFC model has been applied to study a diverse range of materials

phenomena, including solute drag effects on grain boundary motion [79], clustering

and precipitation in an Al-Cu alloy [80, 81], and the stability of stacking faults and

partial dislocations [28].

2.2.6 Evolution Equation from dDFT

The evolution equation for cDFT can be formulated by introducing the time-

dependent one-body density, ρ(r, t), as an ensemble average of the instantaneous

density operator over the realizations of random thermal noise [70, 71, 72]. By con-

sidering overdamped Brownian dynamics without hydrodynamic interactions, one can

describe the evolution of a particle system by stochastic differential equations gov-

erning particle positions (Langevin equations), or a deterministic evolution equation

of a probability density (Smoluchowski equation). Marconi and Tarazona [71, 72]

employed the former equations while Archer and Evans [70] started with the latter
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equation to arrive at the equation of motion for ρ(r, t):

∂ρ(r, t)

∂t
= γ−1∇ ·

[
ρ(r, t)∇δF

(
ρ(r, t)

)

δρ(r, t)

]
, (2.28)

where γ is the mobility. By writing ρ(r, t) = ρ0n(r, t) + ρ0, the evolution equation in

Eq. (2.28), becomes

∂n(r, τ)

∂τ
= ∇ ·

{
[n(r, τ) + 1]∇δ∆F̃

(
n(r, τ)

)

δn(r, τ)

}
, (2.29)

where τ = γ−1kBTρ0t is the rescaled time and ∆F̃ = ∆F/kBTρ0 is the dimensionless

free energy.

As suggested by Teeffelen et al. [82], one can obtain the PFC evolution equation

by replacing n(r, τ) with n̄. With this approximation, we obtain

∂n(r, τ)

∂τ
= (n̄+ 1)∇2 δ∆F̃

(
n(r, τ)

)

δn(r, τ)
, (2.30)

which, aside from the noise term, has a similar form to the PFC evolution equation,

Eq. (2.5). From the dDFT derivation, the noise term will not be present in the

evolution equation because of the noise averaging procedure that is performed on

the Langevin equations. Therefore, the presence of the noise term in Eq. (2.5) is not

justified from a fundamental viewpoint because it adds fluctuations that have already

been accounted for [72]. However, the study by Archer and Rauscher [83] showed that

the noise term is present in the evolution equation if one instead interprets the density

field as a temporally coarse-grained density operator. Nevertheless, if one adopts this

interpretation, the free energy functional in the evolution equation will no longer be

the Helmholtz free energy, and its interpretation is yet to be developed. Despite these

different viewpoints, the noise term is often included on the basis of necessity to model

phenomena such as homogeneous nucleation that cannot be simulated without the
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noise term.
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CHAPTER III

Thermodynamic Relationships for Bulk

Crystalline and Liquid Phases in the Phase-Field

Crystal Model

Although the PFC model parameters have been linked to measurable quantities,

the procedures for calculating equilibrium material properties from the PFC model

are not straightforward [53] because the thermodynamic interpretation of the PFC

free energy has not been fully developed. In this chapter, we present a thermody-

namic interpretation for bulk phases of the PFC model. As a starting point, we follow

the thermodynamic formalism for a crystalline system that was introduced by Larché

and Cahn [56] and was detailed in Voorhees and Johnson [57] to derive a thermody-

namic relationship between the PFC free energy and thermodynamic state variables.

We then apply the equilibrium conditions between a bulk crystal and liquid from

Voorhees and Johnson [57] to the thermodynamic relationship for the PFC model to

obtain a thermodynamically consistent procedure for determining solid-liquid phase

coexistence, which is demonstrated to be in agreement with the common-tangent

construction commonly used in the PFC community [24, 58, 66]. Finally, we apply

this procedure to a PFC model parameterized for body-centered-cubic (bcc) Fe [54]

via an eighth-order fit (EOF) of the two-body DCF in Fourier space. The EOF-PFC
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model is used to demonstrate the procedure as well as to examine how the average

value of the order parameter, n̄, and lattice spacing, a, are related to the number of

atoms and vacancies in a crystal simulated by the PFC model.

This chapter is outlined as follows. In Section 3.1, we describe the PFC free-

energy density for bulk crystalline and liquid phases. In Section 3.2, we describe the

thermodynamics for bulk liquid and crystalline phases. In Section 3.3, we derive the

free-energy densities (FED) for the bulk liquid and crystalline phases, which serve as

the basis for the thermodynamic interpretation of the PFC free energy. In Section

3.5, we present the equilibrium conditions between a bulk crystal and liquid phase

and apply these conditions to the thermodynamic relationship for the PFC model

to obtain a procedure for determining solid-liquid phase coexistence. In Section 3.6,

this procedure is applied to the EOF-PFC model to demonstrate the procedure, as

well as to develop physical intuition about the PFC model parameters. For this

model, we derive an upper-bound expression for n̄, above which the vacancy density

becomes negative. We further show that the EOF-PFC model does not stabilize bcc

structures if values of n̄ are below the upper bound. These results indicate a need

for an alternative parameterization of the PFC model. Finally, in Section 3.7, we

summarize the results of this chapter.

3.1 PFC Free-Energy Density for Bulk Crystalline and Liq-

uid Phases

Thermodynamics describe the properties of systems that are in equilibrium. In

the PFC model, an equilibrium density profile, neq(r), is obtained by relaxing n(r)

via conserved dissipative dynamics [23, 24, 45],

∂n(r)

∂t
= ∇2 δ∆F [n(r)]

δn(r)
, (3.1)
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until a stationary state is reached. This state corresponds to the lowest energy state

for the given constraints on the order-parameter average, n̄ ≡ (1/V)
∫
n(r)dr, and

lattice spacing, a, and will be referred to as the single-phase equilibrium state. In a

single-phase equilibrium bulk liquid phase (i.e., away from any interfaces or bound-

aries), neq(r) = nbulk,l
eq (r) = n̄. Thus, a coarse-grained FED for the bulk liquid phase

is ∆fbulk,l
PFC (n̄) ≡ ∆fid(n̄) + ∆fex(n̄). On the other hand, in a single-phase equilibrium

bulk crystalline phase, neq(r) = nbulk,c
eq (r), which has a density profile that is periodic

with a uniform amplitude for each value of n̄. Therefore, the free energy of a bulk

crystalline phase corresponding to nbulk,c
eq (r) is a function of n̄, a, and system volume,

V . Consequently, the coarse-grained FED of a bulk crystalline phase is given by

∆fbulk,c
PFC (n̄, a) ≡ lim

V→∞

(
∆F [nbulk,c

eq (r)]

V

)
, (3.2)

where the limit indicates that the system volume is large enough such that the bulk

phase is far away from any interfaces or boundaries. The definition in Eq. (3.2)

shows that the PFC FED of a bulk crystalline phase is a function of n̄ and a, and is

defined in terms of V . Since n̄ and a are coarse-grained variables, a system having

n(r) = nbulk,c
eq (r) for the solid phase and n(r) = nbulk,l

eq (r) = n̄ for the liquid phase can

be described by the thermodynamics of bulk phases.

The value of a that minimizes ∆fbulk
PFC(n̄, a) for each n̄ is denoted as a∗. Its value

is set by the position of the maximum of the primary (first) peak of the two-body

DCF in Fourier space, km, where a∗ ∝ k−1
m [45, 55]. Since the position of the primary

peak in the two-body DCF is weakly dependent on n̄ in the PFC model, the value of

a∗ remains essentially unchanged for all values of n̄.
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3.2 Thermodynamics for Bulk Phases

In this section, we review the thermodynamics for bulk liquid and crystalline

phases. First, we consider the thermodynamics for a bulk liquid phase, i.e., n(r) =

nbulk,l
eq (r) = n̄, and provide definitions for the entropy, Sl, hydrostatic pressure, P l,

and chemical potential, µlA, for the bulk liquid phase, where the superscript l denotes

quantities associated with the liquid phase. Next, we consider the thermodynamics

of a bulk crystalline phase, i.e., n(r) = nbulk,c
eq (r), which incorporates the description

of a lattice with sites that contain either atoms or vacancies, as introduced by Larché

and Cahn [56]. The definitions for the entropy, Sc, hydrostatic pressure, P c, and two

different chemical potentials, µcA and µcL, are provided for the bulk crystalline phase,

where the superscript c denotes quantities associated with the crystalline phase.

3.2.1 Bulk Liquid Phase

The free energy of the PFC model is the Helmholtz free energy [45]. For the bulk

liquid phase, the Helmholtz free energy is

F l = F l(θl,V l, N l
A), (3.3)

where θl, V l, and N l
A are the temperature, volume, and the number of atoms in the

bulk liquid, respectively. The differential form of F l is

dF l = −Sldθl − P ldV l + µlAdN
l
A (3.4)

where

Sl ≡ −∂F
l

∂θl

∣∣∣∣
Vl,N l

A

, P l ≡ −∂F
l

∂V l
∣∣∣∣
θl,N l

A

, µlA ≡
∂F l

∂N l
A

∣∣∣∣
θl,Vl

. (3.5)

31



The integrated form of Eq. (3.4) is

F l(θl,V l, N l
A) = −P lV l + µlAN

l
A (3.6)

and the corresponding Gibbs-Duhem relation is

0 = Sldθl − V ldP l +N l
Adµ

l
A. (3.7)

Equations (3.6) and (3.7) will be used later to derive FEDs for the bulk liquid phase.

3.2.2 Bulk Crystalline Phase

For a bulk crystalline solid, a lattice is employed to represent the spatially periodic

structure of a crystal, where each lattice site contains either an atom or a vacancy

[56, 57]. For a one-component bulk crystalline phase, the total number of lattice sites,

N c
L, is related to the number of atoms, N c

A, and vacancies, N c
V , by

N c
L = N c

A +N c
V . (3.8)

As discussed in Voorhees and Johnson [57], any two of the three thermodynamic

variables in Eq. (3.8) can be used to describe the thermodynamic state of a one-

component crystal. In this work we consider the Helmholtz free energy as a function

of N c
A and N c

L,

F c = F c(θc,Vc, N c
A, N

c
L), (3.9)

where θc and Vc are the temperature and the crystal volume, respectively. The

differential form of F c is

dF c = −Scdθc − P cdVc + µcAdN
c
A + µcLdN

c
L (3.10)
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where

Sc ≡ −∂F
c

∂θc

∣∣∣∣
Vc,Nc

A,N
c
L

, P c ≡ −∂F
c

∂Vc
∣∣∣∣
θc,Nc

A,N
c
L

, µcA ≡
∂F c

∂N c
A

∣∣∣∣
θc,Vc,Nc

L

, µcL ≡
∂F c

∂N c
L

∣∣∣∣
θc,Vc,Nc

A

.

(3.11)

The partial derivative that defines µcA provides the energy change due to the addition

or removal of an atom while the number of lattice sites and crystal volume are held

constant for an isothermal system. The definition of µcA requires a vacancy to be

eliminated when an atom is added to the crystal and a vacancy to be generated when

an atom is removed from the crystal. This chemical potential is hereafter referred

to as the diffusion potential [57] to distinguish from the chemical potential of atoms

for the bulk liquid phase. On the other hand, the partial derivative that defines µcL

provides the energy change due to a change in the number of lattice sites while the

crystal volume and the number of atoms are held constant for an isothermal system.

A lattice site can be added by moving an atom within the crystal to the surface

while simultaneously creating a vacancy within the crystal. This process will cause

an increase in the pressure when the crystal volume is held constant and the partial

molar volume of the vacancy is nonzero [57].

The integrated form of Eq. (3.10) is

F c(θc,Vc, N c
A, N

c
L) = −P cVc + µcAN

c
A + µcLN

c
L (3.12)

and the corresponding Gibbs-Duhem relation is

0 = Scdθc − VcdP c +N c
Adµ

c
A +N c

Ldµ
c
L, (3.13)

the derivation of which is presented in Appendix A. Equations (3.12) and (3.13) will

be used later to derive FEDs for a bulk crystalline phase.
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3.3 Free-Energy Densities for Bulk Phases

In this section, we derive FEDs that are defined on a reference (undeformed) vol-

ume, V ′, and the (potentially deformed) system volumes, V l and Vc, for the bulk

liquid and crystalline phases, respectively. FEDs defined on V ′ are referred to as

reference-volume FEDs, while those defined on V l or Vc are referred to as system-

volume FEDs. By defining the reference-volume FED for the bulk crystalline phase,

we make an important distinction between two sources of pressure change: mechan-

ical and configurational forces [57]. The system-volume FEDs are used to develop a

thermodynamic relationship between the PFC FED and thermodynamic state vari-

ables.

3.3.1 Bulk Liquid Phase

The reference-volume FED for the bulk liquid phase, denoted as f lV ′ , is obtained

by dividing F l by V ′,

f lV ′ ≡
F l

V ′ = −P lJ l + µlAρ
′l
A, (3.14)

where

J l ≡ V
l

V ′ , ρ′lA ≡
N l
A

V ′ . (3.15)

The variable J l describes volume change due to hydrostatic pressure and ρ′lA is the

atomic density of the liquid phase defined on V ′, as denoted by the prime symbol.

Similarly, the Gibbs-Duhem relation in Eq. (3.7) is divided by V ′ to obtain

0 = slV ′dθ
l − J ldP l + ρ′lAdµ

l
A, (3.16)

where slV ′ ≡ Sl/V ′. Differentiating Eq. (3.14) and subtracting Eq. (3.16) gives an

expression for df lV ′ ,

df lV ′ = −slV ′dθl − PdJ l + µlAdρ
′l
A, (3.17)
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where f lV ′ is a function of natural variables θl, J l, and ρ′lA.

Alternatively, the system-volume FED for the bulk liquid phase, as denoted by

f lV , is obtained by dividing F l by V l,

f lV ≡
F l

V l = −P l + µlAρ
l
A, (3.18)

where ρlA ≡ N l
A/V l. Similarly, the Gibbs-Duhem relation in Eq. (3.7) is divided by

V l to obtain

0 = slVdθ
l − dP l + ρlAdµ

l
A, (3.19)

where slV ≡ Sl/V l. The variables slV and ρlA are defined on the system volume of the

bulk liquid phase, V l. Differentiating Eq. (3.18) and subtracting Eq. (3.19) gives a

relationship for df lV ,

df lV = −slVdθl + µlAdρ
l
A, (3.20)

where f lV is a function of natural variables θl and ρlA. Equation (3.20) is defined in

terms of the system volume of the liquid phase and is a function of ρlA, which is related

to n̄ of the PFC FED for a bulk liquid via n̄ = ρlA/ρ0 − 1. Therefore, Eq. (3.20) will

be employed to develop a thermodynamic interpretation of the PFC free energy for

the bulk liquid phase.

3.3.2 Bulk Crystalline Phase

The reference-volume FED for the bulk crystalline phase, denoted as f cV ′ , is de-

termined by dividing F c with V ′,

f cV ′ ≡
F c

V ′ = −P cJ c + µcAρ
′c
A + µcLρ

′c
L, (3.21)

where

J c ≡ V
c

V ′ , ρ′cA ≡
N c
A

V ′ , ρ′cL ≡
N c
L

V ′ . (3.22)
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Similar to the bulk liquid phase, J c describes volume change due to hydrostatic

pressure in a bulk crystalline phase, and ρ′cA and ρ′cL are the atomic and lattice densities,

respectively, that are defined on the reference volume. The Gibbs-Duhem relation in

Eq. (3.13) is divided by V ′ to obtain

0 = scV ′dθ
c − J cdP c + ρ′cAdµ

c
A + ρ′cLdµ

c
L, (3.23)

where scV ′ ≡ Sc/V ′. Differentiating Eq. (3.21) and subtracting Eq. (3.23) gives an

expression for df cV ′ ,

df cV ′ = −scV ′dθc − P cdJ c + µcAdρ
′c
A + µcLdρ

′c
L, (3.24)

where f cV ′ is a function of natural variables θc, J c, ρ′cA, and ρ′cL.

Changing the volume of an isothermal bulk crystalline system (reflected by a

change in J c because V ′ is constant) while keeping the mass constant (equivalent

to fixing ρ′cA) will cause the pressure to change. This pressure change arises from

deforming the system with a mechanical force. Alternatively, as mentioned earlier, a

pressure change also arises when the number of lattice sites change when ρ′cL is adjusted

and the crystal volume is constant. To understand this latter type of pressure change,

consider a thought experiment where a crystal is enclosed by a rigid wall where

Vc is fixed (Vc = V ′). When a lattice site is added to the system, the constraint

imposed by the rigid walls prevent a volume change, resulting in a pressure change.

This type of pressure change arises from a configurational force [57]. Therefore,

the thermodynamic framework for crystalline solids described above allows us to

distinguish between pressure changes due to mechanical and configurational forces 1.

As mentioned earlier, the PFC FED is defined on the system volume. Therefore, a

1The thermodynamic framework for a crystal has also been used to distinguish between volume
change due to configurational and mechanical forces [57].
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system-volume FED for a bulk crystalline phase will be most appropriate for develop-

ing a thermodynamic relationship for the PFC model of a bulk crystal. To reformulate

the reference-volume FED, Eq. (3.21), and Eq. (3.23) in terms of the system volume,

we divide both sides of the equations by J c (see Eq. (3.22) for definition):

f
c
V ≡

f cV ′

J c
= −P c + µcA

ρ′cA
J c

+ µcL
ρ′cL
J c

(3.25)

and

0 =
scV ′

J c
dθc − dP c +

ρ′cA
J c
dµcA +

ρ′cL
J c
dµcL, (3.26)

where f
c
V is one expression for the system-volume FED. The division by J c above maps

ρ′cA, ρ′cL, and scV ′ to their system-volume counterparts: ρcA, ρcL, and scV , respectively.

The differential form of Eq. (3.25) is obtained by taking its derivative and subtracting

Eq. (3.26),

dfcV = −s
c
V ′

J c
dθc +

µcA
J c
dρ′cA +

µcL
J c
dρ′cL + (µcAρ

′c
A + µcLρ

′c
L) d(1/J c), (3.27)

where it can now be observed that f
c
V is a function of natural variables θc, ρ′cA, ρ′cL, and

1/J c. Therefore, the FED denoted by f
c
V is a system-volume FED that is a function

of densities defined on the reference volume.

In order to obtain a FED with independent variables that match those of the PFC

FED, the variables ρ′cA and ρ′cL are related to ρcA and ρcL by the chain rule

dρ′cA = d(ρcAJ
c) = J cdρcA + ρcAdJ

c and dρ′cL = d(ρcLJ
c) = J cdρcL + ρcLdJ

c. (3.28)
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Substituting Eq. (3.28) into Eq. (3.27), one obtains

df cV = −s
c
V ′

J c
dθc +

µcA
J c

(J cdρcA + ρcAdJ
c) +

µcL
J c

(J cdρcL + ρcLdJ
c) + (µcAρ

′c
A + µcLρ

′c
L) d(1/J c)

= −s
c
V ′

J c
dθc + µcAdρ

c
A + µcLdρ

c
L +

(
ρcAµ

c
A

J c
+
ρcLµ

c
L

J c

)
dJ c + (µcAρ

′c
A + µcLρ

′c
L) d(1/J c)

= −s
c
V ′

J c
dθc + µcAdρ

c
A + µcLdρ

c
L + (µcAρ

′c
A + µcLρ

′c
L − µcAJ cρcA − µcLJ cρcL) d(1/J c)

= −scVdθc + µcAdρ
c
A + µcLdρ

c
L, (3.29)

where we have used the relationships

dJ c = −(J c)2d(1/J c) and scV =
scV ′

J c
. (3.30)

The same expression can be obtained by starting from a FED based on the system

volume; however, we derive it in this manner to explicitly illustrate the connection be-

tween reference-volume and system-volume variables. This expression of the system-

volume FED for the bulk crystal, f cV , given in Eq. (3.29) is now a function of natural

variables θc, ρcA, and ρcL. By expressing ρcL in terms of the volume of a lattice site, VcL,

ρcL =
1

VcL
, (3.31)

Eq. (3.29) is related to the lattice spacing via the unit-cell volume, VcC , which is

written in terms of VcL using the number of lattice sites per unit cell, χc ≡ VcC/VcL.

The value of χc depends on the lattice structure. For example, a bcc structure, which

contains 2 lattice sites per unit cell, has χc = 2.

Equation (3.31) is used to express df cV as

df cV = −scVdθc + µcAdρ
c
A + χcµcLd(1/VcC), (3.32)

where f cV is a function of natural variables θc, ρcA, and 1/VcC . Since VcC is a sole
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function of a (e.g., for a bcc structure, VcC = a3), the FED representation in Eq.

(3.32) is a function of natural variables that correspond to those of the PFC FED of

the bulk crystal. Therefore, Eq. (3.32) is employed in developing a thermodynamic

interpretation of the PFC free energy for a bulk crystalline phase. The integrated

form of Eq. (3.32) is derived from Eqs. (3.25) and (3.31) to be

f cV = −P c + µcAρ
c
A +

χcµcL
VcC

, (3.33)

and Eqs. (3.28) and (3.31) are substituted into Eq. (3.26) to obtain

0 = −scVdθc − dP c + ρcAdµ
c
A +

χc

VcC
dµcL. (3.34)

The expressions in Eqs. (3.32) and (3.33) form the basis for deriving a thermodynamic

relationship for a bulk crystalline phase in the PFC model.

As observed from Eq. (3.32), µcA = ∂f cV/∂ρ
c
A|θc,VcC and thus changing ρcA while

holding VcC and θc constant is equivalent to changing the number of atoms while

the number of lattice sites is held constant. A negative value of µcA indicates the

presence of a driving force for adding an atom into a vacant lattice site. On the other

hand, a positive value of µcA indicates the presence of a driving force for removing

an atom from an occupied lattice site. Additionally, it can be observed that χcµcL =

∂f cV/∂(1/VcC)|θc,ρcA and thus changing VcC (equivalent to changing lattice spacing) while

holding ρcA and θc constant is equivalent to changing the number of lattice sites

while the crystal volume is held constant. Therefore, the process of changing VcC
while holding ρcA constant gives rise to a configurational force, just as in the case for

changing the number of lattice sites as indicated in Eq. (3.11). This point will be

further examined in the next section after the FED in Eq. (3.32) is linked to the PFC

FED.
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3.4 Thermodynamic Relationship for the Phase-Field Crys-

tal Model

In this section, we use the system-volume FEDs derived in the previous section to

develop the relationship of the PFC FED to thermodynamic state variables for the

bulk liquid and crystalline phases.

3.4.1 Bulk Liquid Phase

Since the PFC model is based on a free-energy difference from a reference liquid

phase, the PFC FED of a bulk liquid phase is related to f lV in Eq. (3.18) by

∆fbulk,l
PFC (n̄) = f lV − f 0, (3.35)

where f 0 is the Helmholtz FED of the reference liquid phase with a density of ρ0.

Note that f 0 remains constant as n̄ changes because the two-body DCF is taken at

the reference state and is assumed to be independent of n̄. Furthermore, n̄ is related

to ρlA of Eq. (3.18) by

ρlA = n̄ρ0 + ρ0. (3.36)

Equations (3.35) and (3.36) are combined with Eq. (3.18) to obtain

∆fbulk,l
PFC (n̄) ≡ f lV − f 0 = −P l + ρ0µ

l
A (n̄+ 1)− f 0. (3.37)

Similarly, Eq. (3.36) is combined with Eq. (3.19) to obtain

0 = slVdθ
l − dP l + ρ0(n̄+ 1)dµlA. (3.38)

Differentiating Eq. (3.37) and subtracting Eq. (3.38) gives an expression for
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d(∆fbulk,l
PFC (n̄)),

d(∆fbulk,l
PFC (n̄)) ≡ d

(
f lV − f 0

)
= −slVdθl + ρ0µ

l
Adn̄. (3.39)

It is important to note that the PFC model derived from cDFT in Ref. [45] applies to

isothermal systems, and thus dθl in Eq. (3.39) is zero. The EOF-PFC model follows

the same approach, and thus dθl = 0. However, a recent formulation, called the struc-

tural PFC model, has phenomenologically extended the PFC model to account for

temperature change via a change of peak height in the two-body DCF [55]. Therefore,

for the XPFC model, dθl is related to the peak height of the two-body DCF.

3.4.2 Bulk Crystalline Phase

The PFC FED of a bulk crystalline phase is related to f cV in Eq. (3.33) by

∆fbulk,c
PFC (n̄, a) = f cV − f 0, (3.40)

and n̄ is related to ρcA of Eq. (3.33) by

ρcA = n̄ρ0 + ρ0. (3.41)

Equations (3.40) and (3.41) are combined with Eq. (3.33) to obtain

∆fbulk,c
PFC (n̄, a) ≡ f cV − f 0 = −P c + ρ0µ

c
A (n̄+ 1) +

χcµcL
VcC
− f 0. (3.42)

Similarly, Eq. (3.41) is combined with Eq. (3.34) to obtain

0 = −scVdθc − dP c + ρ0(n̄+ 1)dµcA +
χc

VcC
dµcL. (3.43)

Differentiating Eq. (3.42) and subtracting Eq. (3.43) gives an expression for
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d(∆fbulk,c
PFC (n̄, a)),

d(∆fbulk,c
PFC (n̄, a)) ≡ d

(
f cV − f 0

)
= −scVdθc + ρ0µ

c
Adn̄+ χcµcLd(1/VcC), (3.44)

where VcC is a function of a. As mentioned earlier, the EOF-PFC model we consider

in this work is formulated for isothermal systems and thus dθc = 0.

Equation (3.44) is central to this work because it links the PFC FED to µcA and µcV ,

which are chemical potentials that correspond to different thermodynamic processes.

As seen in Eq. (3.44), µcA = 1/ρ0(∂∆fbulk,c
PFC /∂n̄|θc,VcC ) and therefore varying n̄ when

the temperature and lattice spacing are held constant in the PFC model is equivalent

to changing the number of atoms while θc, Vc, and N c
L are fixed. Similarly, since

µcV = 1/χc(∂∆fbulk,c
PFC /∂(1/VcC)|θc,n̄), varying lattice spacing when temperature and n̄

are held constant in the PFC model is equivalent to changing the number of lattice

sites while θc, Vc, and N c
A are fixed.

As discussed earlier, the addition or removal of lattice sites while the crystal vol-

ume is held constant gives rise to a pressure change due to a configurational force.

This point has not previously been elucidated, and the resulting pressure has been in-

stead attributed to pressure change due to mechanical forces, leading to an improper

procedure for elastic constant calculations with the PFC model [24, 58, 62]. A thermo-

dynamically consistent procedure for calculating elastic constants [53] was developed

in our previous work, and the framework above further validates our approach.

3.5 Solid-Liquid Phase Coexistence in the PFC Model

In this section, we apply the thermodynamic relationship developed in the previous

section to derive a procedure for determining solid-liquid phase coexistence in the

PFC model. First, we describe the equilibrium conditions presented in Voorhees and

Johnson [57] between bulk crystalline and liquid phases, which involve constraints on
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P , µA, and µcL. These equilibrium conditions are then imposed on the thermodynamic

relationship for the PFC model, Eqs. (3.39) and (3.44), to obtain a thermodynamically

consistent procedure for determining solid-liquid phase coexistence.

3.5.1 Solid-Liquid Phase Coexistence in the Phase-Field Crystal Model

As described in Voorhees and Johnson [57], a bulk crystalline and liquid phase

are in equilibrium when the variation in the total energy of a system vanishes. They

showed that the variation in the system energy vanishes when thermal, mechanical,

and chemical equilibria are achieved. For a one-component bulk crystalline phase in

equilibrium with a bulk liquid phase, the equilibrium conditions are

θc = θl, P c = P l, µcA = µlA, µcL = 0. (3.45)

The last condition of µcL = 0 is unique to crystalline solids and indicates that there

is no driving force for an addition or removal of a lattice site. This condition can be

used to calculate equilibrium vacancy concentration [57].

The condition for thermal equilibrium is met when considering an isothermal sys-

tem. Furthermore, µcL = 0 when the FED of the bulk crystalline phase, ∆fbulk,c
PFC (n̄, a),

is relaxed with respect to the lattice spacing while n̄ and θc are held constant (see

Eq. (3.44)). Therefore, the task of finding solid-liquid coexistence lies in satisfying

the equilibrium conditions, P c = P l and µcA = µlA.

A relationship for pressure is obtained by rearranging the expressions for the PFC

FEDs in Eqs. (3.37) and (3.42):

−P l = ∆fbulk,l
PFC (n̄)−ρ0µ

l
A (n̄+ 1)+f0 and −P c = ∆fbulk,c

PFC (n̄, a)−ρ0µ
c
A (n̄+ 1)−χ

cµcL
VcC

+f0,

(3.46)

respectively, where the determination of P l and P c require a knowledge of f 0. How-

ever, since both the liquid and solid phases have the same reference state, f 0 will
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cancel when equating their pressures. By using

ρ0µ
l
A =

∂∆fbulk,l
PFC

∂n̄

∣∣∣∣
θl

(3.47)

obtained from Eq. (3.39), P l in terms of ∆fbulk,l
PFC (n̄) and n̄ is expressed as

−P l = ∆fbulk,l
PFC (n̄)− ∂∆fbulk,l

PFC

∂n̄

∣∣∣∣
θl

(n̄+ 1) + f0

= Y l − S l + f0 (3.48)

where

Y l ≡ ∆fbulk,l
PFC (n̄)− S ln̄ and S l ≡ ∂∆fbulk,l

PFC

∂n̄

∣∣∣∣
θl

(3.49)

are the y-intercept and slope of a ∆fbulk,l
PFC (n̄) vs. n̄ curve, respectively, when θl is

constant. A schematic of Eq. (3.49) is shown in Fig. 3.1.
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Figure 3.1:
Schematic of Eq. (3.49) on a liquid FED curve (dashed line) with tan-
gent line (solid line) at the point n̄ = n̄∗, which is marked with “×”.
The schematic for Eq. (3.52) is similar, but for the FED curve of a bulk
crystalline phase.
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Similarly, by using

ρ0µ
c
A =

∂∆fbulk,c
PFC

∂n̄

∣∣∣∣
θc,µcL

(3.50)

obtained from Eq. (3.44), P c in terms of ∆fbulk,c
PFC (n̄, a) and n̄ is expressed as

−P c = ∆fbulk,c
PFC (n̄, a)− ∂∆fbulk,c

PFC

∂n̄

∣∣∣∣
θc,µcL

(n̄+ 1)− χcµcL
VcC

+ f0

= Yc − Sc − χcµcL
VcC

+ f0, (3.51)

where

Yc ≡ ∆fbulk,c
PFC (n̄, a)− Scn̄, and Sc ≡ ∂∆fbulk,c

PFC

∂n̄

∣∣∣∣
θc,µcL

(3.52)

are the y-intercept and slope of a ∆fbulk,c
PFC vs. n̄ curve, respectively, when µcL and θc

are constant. Note that the condition µcL = 0 has not been imposed in Eq. (3.51),

but will be applied later to fulfill the equilibrium conditions listed in Eq. (3.45).

According to Eqs. (3.48) and (3.51), mechanical equilibrium for solid-liquid phase

coexistence is fulfilled when Yc = Y l, Sc = S l, and µcL = 0. Furthermore, the con-

dition, µcA = µlA, for chemical equilibrium is also satisfied when Sc = S l. Therefore,

satisfying the common-tangent condition (i.e., the y-intercept and slope of the two

curves are equal) for the ∆fbulk,c
PFC vs. n̄ and fbulk,l

PFC (n̄) vs. n̄ curves with µcL = 0 ful-

fills the equilibrium conditions for solid-liquid phase coexistence. This procedure,

which involves thermal, mechanical, and chemical equilibria, is in agreement with

the common-tangent construction commonly used for calculating solid-liquid phase

coexistence in the PFC model [24, 58, 66]. Therefore, the above analysis justifies the

use of the common-tangent construction to determine solid-liquid phase coexistence

in the PFC model.

As noted earlier, the condition of µcL = 0 is accomplished in the PFC model by

minimizing the PFC FED for the bulk crystalline phase with respect to VcC while

θc and n̄ are held constant, as seen in Eq. (3.44). Therefore, the minimization of
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the density profile according to the PFC FED with respect to lattice spacing for a

crystalline solid, which is conventionally done in the PFC model [66], is a necessary

step for obtaining the state in which µcL = 0 and for determining solid-liquid phase

coexistence.

3.6 Application to EOF-PFC Model

In this section, we apply the thermodynamic relationships for the PFC model de-

veloped in the previous section to the EOF-PFC model (see Section 2.2.3) to demon-

strate the procedure for determining phase coexistence, as well as to develop physical

intuition about the PFC input parameters.

3.6.1 Free-Energy Density Curves and Phase Coexistence for bcc Fe

We calculate the solid and liquid FED curves for the EOF-PFC model with the

fitting parameters of Ref. [54], which are listed in Table 2.1. The dimensionless PFC

FED for the solid and liquid phases are plotted as functions of n̄ in Fig. 3.2.
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Figure 3.2:
Plot of the dimensionless PFC FEDs of the EOF-PFC model for the
solid (solid red line) and liquid (dashed blue line) phases as a function
of n̄. Each point on the solid FED curve is minimized with respect to
lattice spacing, and thus satisfies µcL = 0. The dimensionless coexistence
number density for the solid, n̄s, and liquid, n̄l, phases are marked with
“×” marks.
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The equilibrium FED for each value of n̄ was calculated by relaxing a one-mode

approximation of bcc Fe according to the PFC FED via Eq. (3.1), as done in Ref.

[66]. Each point in the solid FED curve of Fig. 3.2 satisfies µcL = 0, which is achieved

by minimizing the PFC FED with respect to lattice spacing. As described in Section

3.1, the value of a that minimizes the PFC FED, denoted as a∗, remains constant

because the position of the primary peak in the two-body DCF of the PFC model is

assumed to be independent of n̄. For the calculations in Fig. 3.2, a∗ = 2.978Å for all

values of n̄.

The scaled dimensionless coexistence number densities for the solid, n̄s, and liquid,

n̄l, phases were determined with a common-tangent construction on the FED curves in

Fig. 3.2. The values for solid and liquid coexistence densities are n̄s = 9.17×10−3 and

n̄l = −2.49× 10−2, respectively. These values are in agreement with those presented

in Ref. [54].

3.6.2 Diffusion Potential

Figure 3.3 shows the diffusion potential calculated from Eq. (3.50) for the single-

phase solid region of the EOF-PFC model, n̄ > n̄s. As can be observed, µcA transitions

from a negative to a positive value at n̄ = 3.54 × 10−2. As described earlier, µcA

represents the energy change due to the addition or removal of atoms in an isothermal

system when the number of lattice sites and the crystal volume are held constant.

When µcA < 0 (left of dashed vertical line in Fig. 3.3), there is a driving force for adding

an atom into a vacant lattice site, which decreases as n̄ increases. On the other hand,

when µcA > 0 (right of dashed vertical line in Fig. 3.3), there is a driving force for

removing an atom from an occupied lattice site, which decreases as n̄ decreases. When

µcA = 0, there is no driving force for adding or removing atoms to and from lattice

sites, and the condition µcL = 0 allows us to determine the single-phase equilibrium

vacancy density.
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Figure 3.3:
Plot of diffusion potential, µcA, for n̄ > n̄s, where only solid is stable (see
Fig. 3.2). The dashed vertical line corresponds to n̄ = 3.54× 10−2, which
is the value of n̄ where µcA = 0 (denoted by horizontal dashed line).

In the solid-liquid coexistence region (n̄l < n̄ < n̄s), chemical equilibrium requires

that the chemical potentials of the two phases are equal, which will give rise to

nonzero diffusion potentials. Thus, the equilibrium vacancy density is determined

from µcA = µlA and µcL = 0.

3.6.3 An Upper Bound for n̄

As discussed earlier the number of atoms, vacancies, and lattice sites of a crystal

are related to each other by Eq. (3.8). As a result, the vacancy density, ρcV , can be

expressed in terms of ρcA and ρcL as ρcV = ρcL − ρcA. By substituting Eqs. (3.31) and
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(3.41), ρcV is expressed in terms of n̄ and VcC as

ρcV =
χc

VcC
− ρ0 (n̄+ 1) . (3.53)

Since VcC is constant for all n̄ values (see Section 3.6.1), an upper bound for n̄ arises

when the value ρcV is specified. An upper bound for n̄, n̄max, is obtained when ρcV = 0

(i.e., crystal with no vacancies),

n̄max =
χc

VcCρ0

− 1. (3.54)

For n̄ > n̄max, the vacancy density takes a negative value, which is unphysical.

The upper bound for the EOF-PFC model with the fitting parameters described in

Section 3.1 is n̄max = −5.46×10−2, where χc = 2 for a bcc structure, VcC = (2.978Å)3,

and ρ0 = 0.0801Å−3 [54]. Surprisingly, n̄max < n̄l, where the solid phase is unstable.

Therefore, the EOF-PFC model parameterized in Ref. [54] does not stabilize a bcc Fe

structure with ρcV ≥ 0.

A potential interpretation of ρcV < 0 is the presence of mobile interstitials. How-

ever, further investigation is needed to examine this possibility and its validity. In

this work, we simply consider this case as an artifact of the model parameterization

and proceed to suggest potential solutions. For example, changing the correlation

function, as well as the parameterization of at and bt in Eq. (2.13), can change the

stability of the solid phase such that n̄l < n̄max. Another approach is to require the

position of the primary peak of the two-body DCF, km, to be a function of n̄,

km(n̄) = 2π
√
l2 +m2 + n2(VcC)−

1
3

= 2π
√
l2 +m2 + n2

(
χc

[ρcV + ρ0(n̄+ 1)]

)− 1
3

, (3.55)
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where

VcC(n̄) =
χc

[ρcV + ρ0(n̄+ 1)]
(3.56)

is obtained by rearranging Eq. (3.53), and l, m, and n are the Miller indices of the

primary family of planes (e.g., l = 1, m = 1, and n = 0 for the bcc structure).

In this case, the upper bound in n̄ no longer arises. Equation (3.55) also allows

the direct control of ρcV , which has not been previously possible. It also indicates

that the manner in which the two-body DCF changes with n̄ depends on the crystal

structure via χc and the Miller indices. Equation (3.55) should only be applied when

the change in n̄ is due to the addition or removal of an atom while θc, Vc, and N c
L

are held constant. This corresponds to changing n̄ while holding θc and VcC constant

in the PFC model. Note that, in the case where the change in n̄ is due to a change

in Vc while N c
A is held constant, the value of km must remain fixed in order to apply

a mechanical force, which gives rise to a pressure change.

We point out that a change in km reflects a change in the liquid reference state.

Therefore, a parameterization that requires km to be a function of n̄ (as in Eq. (3.55))

requires ρ0 and the liquid reference pressure, P 0, to change with n̄. Since n̄ is a

function of ρ0, a relationship for km as a function n̄ can only be obtained from the

dependence of km on ρ0, which must be determined from atomistic simulations.

3.7 Chapter Summary

We have applied the thermodynamic formalism for crystalline solids of Larché and

Cahn [56] to develop a thermodynamic relationship between the PFC free energy and

thermodynamic state variables. This relationship allows us to examine the thermody-

namic processes associated with varying the PFC model parameters. We showed that

varying n̄ while keeping the unit-cell volume, VcC (and thus lattice spacing, a), and

temperature, θc, of the bulk crystalline phase constant in a PFC simulation reflects
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the thermodynamic process of adding or removing atoms to and from lattice sites.

Furthermore, changing the computational size of a PFC simulation, while keeping n̄

and θc constant, reflects the thermodynamic process of adding or removing lattice

sites.

The equilibrium conditions between bulk crystalline solid and liquid phases were

then imposed on the thermodynamic relationships for the PFC model to obtain a

procedure for determining solid-liquid phase coexistence, which we found to be in

agreement with the common-tangent construction commonly used in the PFC com-

munity. By using the procedure, we found that no stable bcc phase with a vacancy

density greater than or equal to zero exists for the EOF-PFC model that has been

parameterized to bcc Fe [54]. Therefore, we proposed an alternative parameteriza-

tion of the EOF-PFC model, which requires the position of the primary peak of the

two-body DCF to be a function of n̄.
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CHAPTER IV

Thermodynamic Relationships for Calculating

Elastic Constants in the Phase-Field Crystal

Model

In this chapter, we build on the work of Pisutha-Arnond et al. [53] to derive a

thermodynamically consistent procedure for calculating elastic constants from the

cDFT-based PFC model. Similar to the thermodynamic relationships of Chapter

III, the formulation for calculating elastic constants also uses the thermodynamic

formalism for crystalline solids of Larché and Cahn [56]. However, the crystal volume

that was used for an independent variable in the Helmholtz free energy in Chapter

III (see Eq. (3.9)) is replaced by the Lagrangian strain tensor with elements Eij in

order to describe nonhydrostatic strains. Compared to the procedure derived in Ref.

[53], we find that the procedure for calculating elastic constants in the cDFT-based

PFC model requires the knowledge of the bulk modulus and pressure of the liquid

reference state.

This chapter is outlined as follows. First, we review the formalism for representing

deformation of a solid. Then, we present the Helmholtz free energy that has elements

of the strain tensor as independent variables. We show that elastic constants can

be defined from the coefficients of a Taylor expansion of this Helmholtz free energy
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around the undeformed reference state. These definitions of the elastic constants

are used to derive relationships for calculating elastic constants in cDFT-based PFC

models. Finally, a relationship between the solid bulk modulus and the PFC free

energy is presented.

4.1 Deformation

To represent deformation, consider position vectors that are attached to material

points in the undeformed and deformed configurations. These position vectors for the

undeformed and deformed configurations, R and r, respectively, can be expressed in

terms of the Cartesian basis vectors, {ei}, as

R = R1e1 +R2e2 +R3e3 and r = r1e1 + r2e2 + r3e3, (4.1)

where the variables R1, R2, R3 and r1, r2, r3 are the coordinate values. A transfor-

mation that maps R to r is described by a deformation-gradient tensor, ααα, whose

elements are defined as

αij = ri,j =
∂ri
∂Rj

, (4.2)

where the subscripts i and j vary from 1 to 3 in three dimensions and the subscript

“, j” denotes the derivative with respect to Rj. In this work, we consider only affine

deformations.

The degree of deformation of n(r) from Ri can be described by the elements of a

displacement-gradient tensor, ui,j,

ui,j =
∂(ri −Ri)

∂Rj

= αij − δij, (4.3)

The value of ui,j is also related to the Lagrangian strain tensor by the following
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relationship (see [57, 84])

Eij =
1

2
(ui,j + uj,i + uk,iuk,j) . (4.4)

The values of ui,j and Eij depend on the type of deformation, which is described by

the values of αij. For example, ααα for isotropic, biaxial, and simple shear deformations,

αααiso, αααbi, and αααsh, respectively, are

αααiso =




1 + ξ 0 0

0 1 + ξ 0

0 0 1 + ξ



, αααbi =




1 + ξ 0 0

0 1− ξ 0

0 0 1



, αααsh =




1 −ξ 0

0 1 0

0 0 1



, (4.5)

where ξ is a parameter that quantifies the amount of deformation.

Consequently, the displacment-gradient tensor for isotropic, biaxial, and simple-

shear deformations, uiso, ubi, and ush, respectively, are

uiso =




ξ 0 0

0 ξ 0

0 0 ξ



, ubi =




ξ 0 0

0 −ξ 0

0 0 0



, ush =




0 −ξ − 1 0

0 0 0

0 0 0



, (4.6)
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and the corresponding strain tensors are

Eiso =




ξ + 1
2
ξ2 0 0

0 ξ + 1
2
ξ2 0

0 0 ξ + 1
2
ξ2



,

Ebi =




ξ + 1
2
ξ2 0 0

0 −ξ + 1
2
ξ2 0

0 0 0



,

Esh =




0 −1
2
ξ 0

−1
2
ξ 1

2
ξ 0

0 0 0



, (4.7)

respectively.

4.2 Thermodynamics for Non-Hydrostatically Stressed Bulk

Crystalline Phase

In Chapter III, we considered only hydrostatic deformation so that the deformation

can be specified solely by the crystal volume, Vc. Therefore, the thermodynamic

relationship for a bulk crystalline phase presented in Chapter III is only valid for

systems under hydrostatic pressure. In order to consider nonhydrostatic stresses,

which are required for defining the full set of elastic constants, the Helmholtz free

energy is now written in terms of Eij instead of VcC [84], i.e.,

F c = F c(θc, Eij, N
c
A, N

c
L). (4.8)

As in Eq. (3.9), Eq. (4.8) is defined for an equilibrium bulk crystalline phase.

The elastic constants as well as other thermodynamic quantities can be defined
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from the coefficients of a Taylor expansion of Eq. (4.8) around the reference unde-

formed state, Eij = 0 [61, 84],

F c(θc, Eij, N
c
A, N

c
L) = F c(θc, 0, N c

A, N
c
L) +

∂F c

∂Eij

∣∣∣∣
u

θc,E∗mn,N
c
A,N

c
L

Eij

+
1

2

∂2F c

∂Eij∂Ekl

∣∣∣∣
u

θc,E∗mn,N
c
A,N

c
L

EijEkl + · · · , (4.9)

where the superscript u denotes that the derivatives are evaluated at the undeformed

state and the subscripts E∗mn indicate that the elements of the strain tensors other

than those involved in the partial derivative are held constant. According to ther-

moelasticity theory for stressed crystals [61, 84], the elements of the Piola-Kirchoff

stress, Tij, and strain, Eij, tensors can be defined from the partial derivatives of F c

with respect to Eij,

Tij ≡
1

V ′
∂F c

∂Eij

∣∣∣∣
u

θc,E∗mn,N
c
A,N

c
L

and Cijkl ≡
1

V ′
∂2F c

∂Eij∂Ekl

∣∣∣∣
u

θc,E∗mn,N
c
A,N

c
L

. (4.10)

For a bulk crystal with cubic symmetry, the elastic constants can be reduced to three

unique non-zero terms: C11 = Ciiii, C12 = Ciijj, and C44 = Cijij = Cijji. Under

hydrostatic pressure, P c, Tij = −P cδij.

A free energy that is explicitly a function of Eij can employ Eq. (4.10) to determine

Tij and Cijkl of the system. However, since the PFC free energy is not explicitly a

function of Eij, relationships that are in terms of ξ will be more convenient to calculate

Tij and Cijkl in the PFC model. Such relationships are obtained by expressing F c in

terms of ξ by substituting Eq. (4.7) into Eq. (4.9). Expressions for F c in terms of ξ
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for isotropic, biaxial, and simple-shear deformations are

F c
iso(θc, ξ, N c

A, N
c
L) = F c

iso(θc, 0, N c
A, N

c
L) + T11V ′(ξ +

1

2
ξ2) + T22V ′(ξ +

1

2
ξ2)

+T33V ′(ξ +
1

2
ξ2) + 3C12V ′(ξ +

1

2
ξ2)2 +

3

2
C11V ′(ξ +

1

2
ξ2)2

= F c
iso(θc, 0, N c

A, N
c
L)− 3P cV ′ξ +

1

2
(−3P c + 3C11 + 6C12)V ′ξ2

+
1

2
(3C11 + 6C12)V ′ξ3 +

1

4
(3C12 + 6C11)V ′ξ4, (4.11)

F c
bi(θ

c, ξ, N c
A, N

c
L) = F c

bi(θ
c, 0, N c

A, N
c
L) + T11V ′

(
ξ +

1

2
ξ2

)
+ T22V ′

(
−ξ +

1

2
ξ2

)

+C11V ′
(
−ξ +

1

2
ξ2

)2

+ C11V ′
(
ξ +

1

2
ξ2

)2

+C12V ′
(

1

4
ξ4 − ξ2

)

= F c
bi(θ

c, 0, N c
A, N

c
L) + (−P c + C11 − C12)V ′ξ2

+
1

4
(3C12 + 6C11)V ′ξ4,

(4.12)

and

F c
sh(θc, ξ, N c

A, N
c
L) = F c

sh(θc, 0, N c
A, N

c
L)− 1

2
T12V ′ξ −

1

2
T21V ′ξ +

1

2
T22V ′ξ2

+
1

2
C44V ′ξ2 +

1

8
C11V ′ξ4

= F c
sh(θc, 0, N c

A, N
c
L) +

1

2
(−P c + C44)V ′ξ2 +

1

8
C11V ′ξ4,

(4.13)

where the subscripts iso, bi, and sh denote isotropic, biaxial, and shear deformations,

respectively.

Relationships for elastic constants are obtained from the second derivatives of Eqs.
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(4.11), (4.12), and (4.13) with respect to ξ while holding θc, N c
A, and N c

L constant,

Qiso ≡
1

V ′
∂2F c

iso

∂ξ2

∣∣∣∣
ξ=0

θ,Nc
A,N

c
L

= −3P c + 3C11 + 6C12

Qbi ≡
1

V ′
∂2F c

bi

∂ξ2

∣∣∣∣
ξ=0

θc,Nc
A,N

c
L

= −2P c + 2C11 − 2C12

Qsh ≡
1

V ′
∂2F c

sh

∂ξ2

∣∣∣∣
ξ=0

θc,Nc
A,N

c
L

= −P c + C44, (4.14)

where the superscript ξ = 0 denotes that the derivatives are evaluated at the unde-

formed state. It is worth noting that the elastic constants are defined in terms of

derivatives of the reference-volume FED (see Eq. (3.24)); thus, the pressure change

is due to a mechanical force. The three elastic constants, C11, C12, and C44, are

determined by rewriting the expressions in Eq. (4.14) as

C11 = P c +
1

9
Qiso +

1

3
Qbi

C12 =
1

9
Qiso −

1

6
Qbi

C44 = Qsh + P c, (4.15)

where P c is determined from

P c = − 1

3V ′
∂F c

iso

∂ξ

∣∣∣∣
ξ=0

θ,Nc
A,N

c
L

. (4.16)

The expressions in Eqs. (4.14) and (4.15) form the basis for calculating elastic con-

stants in the PFC model. In Ref. [53], these equations were used to determine the

elastic constants for the SH-PFC model. We will now apply the approach to the

cDFT-based PFC model.
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4.3 Relationships for Calculating Elastic Constants in the

cDFT-based PFC Model

The relationships in Section 4.2 are used to derive a procedure for calculating elas-

tic constants from the cDFT-based PFC model. However, two modifications to Eq.

(4.14) must be implemented before it can be directly applied to the cDFT-based PFC

model. First, as shown in Eq. (4.14), the calculation of elastic constants requires that

the total number of atoms, N c
A, and lattice sites, N c

L, to be constant during deforma-

tion. The value of N c
L is fixed as long as the number of peaks in the computational

domain remain constant during deformation. On the other hand, in order to fix N c
A

during deformation, the value of n̄,

n̄ =
ρcA − ρ0

ρ0

=
ρ′cA/Jt − ρ0

ρ0

, (4.17)

must be modified so that ρ′cA ≡ N c
A/V ′ is kept constant. To conveniently hold N c

A

constant, we define a new average scaled density that is in terms of ρ̄′,

n̄′ ≡ ρ′cA − ρ0

ρ0

, (4.18)

where holding n̄′ constant is equivalent to keeping N c
A constant.

Second, since the PFC model is based on a free-energy difference from a reference

liquid phase, the PFC free energy is related to F c
t by

∆Fbulk,c
PFC,t [n

bulk,c
eq (r), ξ] = F c

t − F 0
t , (4.19)

where F 0
t is the Helmholtz free energy of the liquid reference state, and the PFC

free energy for the bulk crystalline phase depends on ξ and the type of deformation

denoted by the subscript t (t=iso,bi, or sh). Using Eq. (4.19), an alternative form of
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Eq. (4.14) is

Ht =
∂2

∂ξ2

(
∆Fbulk,c

PFC,t

V ′

)∣∣∣∣
ξ=0

θc,n̄′

=
∂2F c

t

∂ξ2

∣∣∣∣
ξ=0

θc,n̄′
− ∂2F 0

t

∂ξ2

∣∣∣∣
ξ=0

θc,n̄′

= Qt −
∂2F 0

t

∂ξ2

∣∣∣∣
ξ=0

θc,n̄′
(4.20)

where the second derivative of F 0
t with respect to ξ arises as an additional term

as compared to the case for SH-PFC (Eq. (4.14)). Note that we have left out the

dependence of ∆Fbulk,c
PFC,t [n

bulk,c
eq (r), ξ] for brevity. Further note that N c

A is held constant

by keeping n̄′ fixed.

The additional term associated with the liquid reference state in Eq. (4.20) is

related to the bulk modulus, K0, and pressure, P 0, of the liquid reference state,

P 0 ≡ −∂F
0
t

∂V

∣∣∣∣
θ,n̄′

K0 ≡ −V ∂P
0

∂V

∣∣∣∣
θ,n̄′

= V ∂
2F 0

t

∂V2

∣∣∣∣
θ,n̄′
, (4.21)

To demonstrate this fact, we rewrite the second derivative of F 0
t to be with respect

to the system volume, V , by applying the chain rule,

∂2

∂ξ2
=

∂

∂ξ

(
∂

∂ξ

)
=

∂

∂ξ

(
∂V
∂ξ

∂

∂V

)

=
∂2V
∂ξ2

∂

∂V +
∂V
∂ξ

(
∂V
∂ξ

∂

∂V

(
∂

∂V

))

=
∂2V
∂ξ2

∂

∂V +

(
∂V
∂ξ

)2
∂2

∂V2
. (4.22)

Thus, the second derivative of F 0
t with respect to ξ is expressed as

∂2F 0
t

∂ξ2

∣∣∣∣
ξ=0

θ,n̄′
=
∂2V
∂ξ2

∂F 0
t

∂V

∣∣∣∣
ξ=0

θ,n̄′
+

(
∂V
∂ξ

)2
∂2F 0

t

∂V2

∣∣∣∣
ξ=0

θ,n̄′
, (4.23)
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where the functional dependence of V on ξ depends on the type of deformation.

Specifically, for isotropic deformations,

∂2F 0
iso

∂ξ2

∣∣∣∣
ξ=0

θ,n̄′
= 6(1 + ξ)V ′∂F

0
iso

∂V

∣∣∣∣
ξ=0

θ,n̄′
+ 9(1 + ξ)4(V ′)2∂

2F 0
iso

∂V2

∣∣∣∣
ξ=0

θ,n̄′

= −6(1 + ξ)V ′P 0

∣∣∣∣
ξ=0

θ,n̄′
+ 9(1 + ξ)4(V ′)2 K0

(1 + ξ)3V ′
∣∣∣∣
ξ=0

θ,n̄′

= −6V ′P 0 + 9V ′K0, (4.24)

where V = (1+ ξ)3V ′ for isotropic deformation. Similary, for biaxial and simple-shear

deformations,

∂2F 0
bi

∂ξ2

∣∣∣∣
ξ=0

θ,n̄′
= 2V ′P 0 (4.25)

and

∂2F 0
sh

∂ξ2

∣∣∣∣
ξ=0

θ,n̄′
= 0, (4.26)

respectively, where V is (1− ξ2)V ′ and V ′ for biaxial and simple-shear deformations,

respectively.
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Substituting Eqs. (4.14), (4.24), (4.25), and (4.26) into Eq. (4.20), we obtain

Hiso ≡
1

V ′
∂2∆Fbulk,c

PFC,iso

∂ξ2

∣∣∣∣
ξ=0

θc,n̄′

=
1

V ′
∂2F c

iso

∂ξ2

∣∣∣∣
ξ=0

θc,n̄′
− 1

V ′
∂2F 0

iso

∂ξ2

∣∣∣∣
ξ=0

θ,n̄′

= −3P c + 3C11 + 6C12 − 9K0 + 6P 0

Hbi ≡
1

V ′
∂2∆Fbulk,c

PFC,bi

∂ξ2

∣∣∣∣
ξ=0

θc,n̄′

=
1

V ′
∂2F c

bi

∂ξ2

∣∣∣∣
ξ=0

θc,n̄′
− 1

V ′
∂2F 0

bi

∂ξ2

∣∣∣∣
ξ=0

θ,n̄′

= −2P c + 2C11 − 2C12 − 2P 0

Hsh ≡
1

V ′
∂2∆Fbulk,c

PFC,sh

∂ξ2

∣∣∣∣
ξ=0

θc,n̄′

=
1

V ′
∂2F c

sh

∂ξ2

∣∣∣∣
ξ=0

θc,n̄′
− 1

V ′
∂2F 0

sh

∂ξ2

∣∣∣∣
ξ=0

θ,n̄′

= −P c + C44. (4.27)

Therefore, the three elastic constants, C11, C12, and C44, for the cDFT-based PFC

model can be calculated from the derivatives of the PFC free energy via

C11 = P c +
1

9
Hiso +

1

3
Hbi − 4K0

C12 =
1

9
Hiso −

1

6
Hbi +

1

2
K0 + P 0

C44 = P c +Hsh, (4.28)
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where

P c = − 1

3V ′
∂∆Fbulk,c

PFC,iso

∂ξ

∣∣∣∣
ξ=0

θc,n̄′
− 1

3V ′
∂F 0

iso

∂ξ

∣∣∣∣
ξ=0

θ,n̄′

= − 1

3V ′
∂∆Fbulk,c

PFC,iso

∂ξ

∣∣∣∣
ξ=0

θc,n̄′
− 1

3V ′
∂V
∂ξ

∂F 0
iso

∂V

∣∣∣∣
ξ=0

θ,n̄′

= − 1

3V ′
∂∆Fbulk,c

PFC,iso

∂ξ

∣∣∣∣
ξ=0

θc,n̄′
+ P 0. (4.29)

Additionally, the value of K0 is related to the two-body DCF at k = 0 [48] by

K0 =
1

κ0
= ρ0kBT (1− ρ0Ĉ

(2)(0)), (4.30)

where κ0 is the liquid compressibility of the liquid reference state.

4.4 Solid Bulk Modulus

The solid bulk modulus of the bulk crystalline phase, Kc, which measures the

Helmholtz energy change due to hydrostatic deformation, can be directly calculated

from the derivative of the cDFT-based PFC free energy with respect to Vc. To

demonstrate this fact, consider the definition of Kc [84],

Kc = Vc ∂
2F c

iso

∂(Vc)2

∣∣∣∣
θc,n̄′

= Vc
∂2Fbulk,c

PFC,iso

∂(Vc)2

∣∣∣∣
ξ=0

θc,n̄′
. (4.31)

The second derivative of Fbulk,c
PFC,iso with respect to Vc can be written in terms of
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C11, C12, and P c using the chain rule in Eqs. (4.22) to be

Kc = Vc
∂2Fbulk,c

PFC,iso

∂(Vc)2

∣∣∣∣
ξ=0

θc,n̄′

= (1 + ξ)3V ′
∣∣∣∣
ξ=0
(

1

3(1 + ξ)2V ′
∣∣∣∣
ξ=0
)2

(
∂2Fbulk,c

PFC,iso

∂ξ2

∣∣∣∣
ξ=0

θc,n̄′
− 6(1 + ξ)V ′

∣∣∣∣
ξ=0

1

3(1 + ξ)2V ′
∣∣∣∣
ξ=0∂Fbulk,c

PFC,iso

∂ξ

∣∣∣∣
ξ=0

θc,n̄′

)

=
1

9V ′

(
∂2Fbulk,c

PFC,iso

∂ξ2

∣∣∣∣
ξ=0

θc,n̄′
− 2

∂Fbulk,c
PFC,iso

∂ξ

∣∣∣∣
ξ=0

θc,n̄′

)

=
1

9V ′

(
∂2F c

iso

∂ξ2

∣∣∣∣
ξ=0

θc,n̄′
− 2

∂F c
iso

∂ξ

∣∣∣∣
ξ=0

θc,n̄′

)

=
C11 + 2C12 + P c

3
,

(4.32)

where Vc = (1 + ξ)3V ′ for isotropic deformation, and Eqs. (4.14) and (4.16) are

employed for the last equality. Since Fbulk,c
PFC,iso = ∆Fbulk,c

PFC,iso + F 0
iso, Kc can also be

expressed in terms of the second derivative of the PFC free energy with respect to ξ

Kc = Vc
∂2Fbulk,c

PFC,iso

∂(Vc)2

∣∣∣∣
ξ=0

θc,n̄′

= Vc
∂2∆Fbulk,c

PFC,iso

∂(Vc)2

∣∣∣∣
ξ=0

θc,n̄′
+ V ∂

2F 0
iso

∂V2

∣∣∣∣
ξ=0

θ,n̄′

= Vc
∂2∆Fbulk,c

PFC,iso

∂(Vc)2

∣∣∣∣
ξ=0

θc,n̄′
+K0, (4.33)

where a knowledge of K0 is required to determine Kc from the PFC free energy.

4.5 Chapter Summary

We have presented thermodynamic relationships for calculating elastic constants

from cDFT-based PFC models. We demonstrated that a knowledge of the bulk
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modulus and pressure of the liquid reference state are required to calculate the elastic

constants of a bulk crystalline phase with cubic symmetry. A relationship to calculate

the bulk modulus of the crystalline phase from the PFC free energy was also derived.
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CHAPTER V

Numerical Implementation of Deformation in the

Phase-Field Crystal Model

In Chapter IV, we presented thermodynamic relationships for calculating elastic

constants in the PFC model. We demonstrated that the calculation of elastic con-

stants requires the evaluation of the PFC free energy, ∆Fbulk,c
PFC,t , for different types of

deformation. Numerical deformation is conventionally implemented in the PFC model

by evaluating the free energy on coordinates that have been mapped to a desired de-

formed state via a deformation-gradient tensor [53, 55, 62]. Although straightforward,

this method, as we will later show, requires interpolation of the order parameter val-

ues for shear-type deformations. Therefore, in this chapter we explore two alternative

numerical methods for applying deformation. The first alternative method maps the

Laplacian operator in the PFC free energy from deformed to undeformed coordinates,

which eliminates the need for interpolation. The second alternative method is for-

mulated in Fourier space and applies deformation via a scaling of the wave vectors,

which can be used when the PFC free energy is expressed in Fourier space. Using

these methods, we evaluate the PFC free-energy density (FED) for an order parame-

ter profile of a bcc structure, assuming the one-mode approximation, and compare the

accuracy and efficiency of these methods. The Fourier-space method is then used to

implement the relationships developed in Chapter IV to calculate the elastic constants
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and solid bulk modulus for bcc structures stabilized by the EOF-PFC model.

This chapter is outlined as follows. In Section 5.1, we provide the theoretical

background for numerically evaluating the FED in a deformed state within the PFC

model. In Section 5.2, we review the conventional method used in the PFC literature

for evaluating deformed-state FEDs, and illustrate the need for interpolation when

applying deformations that skew the computational domain. In Section 5.3, we map

the Laplacian operator from deformed to undeformed coordinates, which eliminates

the need for interpolation. In Section 5.4, we formulate a Fourier-space method that

applies deformation via a scaling of the wave vectors. In Section 5.5, the numerical

accuracy and computational efficiency of the three methods for isotropic, biaxial, and

simple-shear deformations are compared. Finally, in Section 5.6, the Fourier-space

method for deformation is employed to implement the relationships developed in

Chapter IV to calculate elastic constants and the solid bulk modulus for bcc structures

from the EOF-PFC model.

5.1 Background

In this section, we present the theoretical concepts that are used to numerically

evaluate the PFC free energy of a deformed system. We first discuss the mathematical

formalism for describing deformations, and then provide the notations used to describe

discretization in later sections.

5.1.1 Deformation

To represent deformation, we use the same notation described in Section 4.1, where

the deformation-gradient tensor for isotropic, biaxial, and simple-shear deformations
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are repeated here:

αααiso =




1 + ξ 0 0

0 1 + ξ 0

0 0 1 + ξ



, αααbi =




1 + ξ 0 0

0 1− ξ 0

0 0 1



, αααsh =




1 −ξ 0

0 1 0

0 0 1



. (5.1)

The tensor for biaxial deformation describes an expansion along the r1 axis and com-

pression along the r2 axis, respectively, while the tensor for simple-shear deformation

describes a shear along the r1 coordinate. The inverses of these tensors are

ααα−1
iso =




1
1+ξ

0 0

0 1
1+ξ

0

0 0 1
1+ξ



, ααα−1

bi =




1
1+ξ

0 0

0 1
1−ξ 0

0 0 1



, ααα−1

sh =




1 ξ 0

0 1 0

0 0 1



. (5.2)

The ratio of the system volume, V , to the reference volume, V ′, denoted by J ≡ V/V ′,

is given by the determinant of ααα, i.e., J = det|ααα| [57]. The value of J for isotropic,

biaxial, and simple-shear deformations are

Jiso = (1 + ξ)3, Jbi = 1− ξ2, Jsh = 1. (5.3)

The order parameter for the undeformed state is denoted as φ(x), while the or-

der parameter for the deformed state is denoted as φDt (x), where t denotes the type

of deformation, e.g., t = iso for isotropic deformation. We focus on the potential

applications of the methods for calculations of equilibrium properties such as elas-

tic constants. Therefore, we consider the evaluation of the PFC FED for a single

deformed unit cell.
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5.1.2 Discretization

In this section, we present the notations for the discretization of the Laplacian

operator, which is employed to numerically evaluate the PFC FED (see Chapter II).

Specifically, we consider the discretizations of the Laplacian of an order parameter

in the undeformed and deformed state. These notations will be used later to show

that an interpolation step is required when applying simple-shear deformation with

the conventional method.

In the undeformed configuration, we assume that the system of interest resides

in a rectangular prism whose sides are parallel to each one of the coordinate axes.

The lengths of the sides parallel to the axes of R1, R2, and R3 are L1, L2, and L3,

respectively. The side parallel to the axis of coordinate Ri is discretized into Ni + 1

grid points with a grid spacing of ∆Ri, where i = 1, 2, or 3. Therefore, the coordinate

values in each direction can be expressed as

Rl
1 = R0

1 + l∆R1, Rm
2 = R0

2 +m∆R2, Rn
3 = R0

3 + n∆R3, (5.4)

where l, m, and n are indices of the computational grid points and take on integer

values l = 0, . . . , N1, m = 0, . . . , N2, n = 0, . . . , N3; the variables R0
1, R0

2, and R0
3 are

lower bounds of the coordinate values.

Using the notation presented above, the Laplacian of the order parameter of the

undeformed state can be approximated with a second-order central-difference scheme
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as

∇2
Rφ
(
Rl

1, R
m
2 , R

n
3

)
≈

φ
(
Rl

1 + ∆R1, R
m
2 , R

n
3

)
+ φ

(
Rl

1 −∆R1, R
m
2 , R

n
3

)
− 2φ

(
Rl

1, R
m
2 , R

n
3

)

(∆R1)2

+
φ
(
Rl

1, R
m
2 + ∆R2, R

n
3

)
+ φ

(
Rl

1, R
m
2 −∆R2, R

n
3

)
− 2φ

(
Rl

1, R
m
2 , R

n
3

)

(∆R2)2

+
φ
(
Rl

1, R
m
2 , R

n
3 + ∆R3

)
+ φ

(
Rl

1, R
m
2 , R

n
3 −∆R3

)
− 2φ

(
Rl

1, R
m
2 , R

n
3

)

(∆R3)2 .

(5.5)

Since Eq. (5.5) involves only the undeformed coordinates, we define the discretized

order parameter value of the undeformed configuration at each grid point as

φl,m,n ≡ φ
(
Rl

1, R
m
2 , R

n
3

)
(5.6)

to rewrite Eq. (5.5) as

∇2
Rφl,m,n ≈

φl+1,m,n + φl−1,m,n − 2φl,m,n

(∆R1)2 +
φl,m+1,n + φl,m−1,n − 2φl,m,n

(∆R2)2

+
φl,m,n+1 + φl,m,n−1 − 2φl,m,n

(∆R3)2 . (5.7)

Since this expression requires solely the grid values of φ, φl,m,n, its evaluation does

not involve interpolations. Therefore, the evaluation of this expression is more com-

putationally efficient than those that require interpolations.

The position vector associated with a material point in the undeformed configura-

tion,
(
Rl

1, R
m
2 , R

n
3

)
, will be mapped to the corresponding position after deformation,

(
rl1, r

m
2 , r

n
3

)
, via 



rl1

rm2

rn3




= αααt




Rl
1

Rm
2

Rn
3



. (5.8)
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Thus, the equations corresponding to Eq. (5.4) for deformed coordinates are

rl1
(
R0

1, R
m
2 , R

n
3

)
= r0

1

(
R0

1, R
m
2 , R

n
3

)
+ l∆r1,

rm2
(
Rl

1, R
0
2, R

n
3

)
= r0

2

(
Rl

1, R
0
2, R

n
3

)
+m∆r2,

rn3
(
Rl

1, R
m
2 , R

0
3

)
= r0

3

(
Rl

1, R
m
2 , R

0
3

)
+ n∆r3, (5.9)

where the grid spacing ∆ri is given by

∆r1 = α11∆R1, ∆r2 = α22∆R2, ∆r3 = α33∆R3. (5.10)

Once again, using the notation above, the Laplacian of the order parameter of the

deformed state can be approximated with a second-order central-difference scheme

by

∇2
rφl,m,n ≈

φDt
(
rl1 + ∆r1, r

m
2 , r

n
3

)
+ φDt

(
rl1 −∆r1, r

m
2 , r

n
3

)
− 2φDl,m,n

(∆r1)2

+
φDt
(
rl1, r

m
2 + ∆r2, r

n
3

)
+ φDt

(
rl1, r

m
2 −∆r2, r

n
3

)
− 2φDl,m,n

(∆r2)2

+
φDt
(
rl1, r

m
2 , r

n
3 + ∆r3

)
+ φDt

(
rl1, r

m
2 , r

n
3 −∆r3

)
− 2φDl,m,n

(∆r3)2 , (5.11)

where we have defined the discretized order parameter value of the deformed config-

uration at each grid point as

φDl,m,n ≡ φDt
(
rl1, r

m
2 , r

n
3

)
. (5.12)

For isotropic and biaxial deformations, the neighboring values of φDt
(
rl1, r

m
2 , r

n
3

)
can

73



also be replaced by discretized order parameter values that exist at each grid point,

φDt
(
rl1 ±∆r1, r

m
2 , r

n
3

)
= φDl±1,m,n

φDt
(
rl1, r

m
2 ±∆r2, r

n
3

)
= φDl,m±1,n

φDt
(
rl1, r

m
2 , r

n
3 ±∆r3

)
= φDl,m,n±1. (5.13)

On the other hand, for simple-shear deformation, as we will show later, only two of

the three relationships in Eq. (5.13) are valid. Consequently, it is not possible to

express the discretization of the Laplacian in Eq. (5.11) solely in terms of deformed-

state discretized order parameter values resulting from the mapping of the grid points

from the undeformed coordinates.

5.2 Method 1: Conventional Method for Applying

Deformation

In this section, we describe the conventional method for applying deformation,

which involves a mapping of undeformed coordinates to deformed coordinates [24,

53, 62]. This method, hereafter referred to as CM, has a deformed-state free energy

Fdef =

∫

Ω(ξ)

f
(
φDt (r) ,∇2

r

)
dr, (5.14)

where f denotes the FED, ∇2
r =

∑3
i=1 ∂

2/∂r2
i , and Ω(ξ) denotes the deformed unit

cell. Note that we have explicitly written out the dependence of the PFC FED on the

Laplacian operator. We will continue to use this notation for the remainder of this

chapter to highlight the differences between the three methods. For an undeformed

cubic unit cell with a side length of a, the deformed-state free energy for isotropic,
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biaxial, and simple-shear deformations are

Fiso =

∫ a(1+ξ)

0

(∫ a(1+ξ)

0

(∫ a(1+ξ)

0

f
(
φDiso (r) ,∇2

r

)
dr1

)
dr2

)
dr3

Fbi =

∫ a

0

(∫ a(1−ξ)

0

(∫ a(1+ξ)

0

f
(
φDbi (r) ,∇2

r

)
dr1

)
dr2

)
dr3

Fsh =

∫ a

0

(∫ a

0

(∫ a−ξr2

−ξr2
f
(
φDsh (r) ,∇2

r

)
dr1

)
dr2

)
dr3, (5.15)

respectively, where we note that the integration limit for simple-shear deformation is

over a non-rectangular domain, necessitating the expression for the integration limit

to be dependent on r2.

CM is straightforward to implement for deformations that do not skew the com-

putational domain, such as isotropic and biaxial deformations, because the discretiza-

tion of the Laplacian operator only involves values that lie on the computational grid

points. However, for deformations that do skew the computational domain, such as

the simple-shear deformation considered here, the discretization of the Laplacian op-

erator involves values that must be interpolated from values on the computational

grid point, which we refer to as resampling. In the following paragraphs we employ

Eq. (5.11) and the notation of Section 5.1.2 to illustrate why resampling is required

for simple-shear deformation, but not for isotropic and biaxial deformations.

We will first consider isotropic and biaxial deformations, where the relationship

between deformed and undeformed coordinates is given by

rl1 = α11R
l
1, rm2 = α22R

m
2 , rn3 = α33R

n
3 (5.16)

because only the diagonal elements of αααt are nonzero. Using Eq. (5.10), the values of
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φDt at neighboring points along the r1 coordinate in Eq. (5.11) can be expressed as

φDt
(
rl1 ±∆r1, r

m
2 , r

n
3

)
= φDt

(
α11(Rl

1 ±∆R1), α22R
m
2 , α33R

n
3

)

= φDt
(
α11R

l+1
1 , α22R

m
2 , α33R

n
3

)

= φDl±1,m,n. (5.17)

Similarly, the values of φDt at the neighboring points along the r2 and r3 coordinates

are

φDt
(
rl1, r

m
2 ±∆r2, r

n
3

)
= φDl,m±1,n

φDt
(
rl1, r

m
2 , r

n
3 ±∆r3

)
= φDl,m,n±1. (5.18)

Combining Eqs. (5.17) and (5.18), the discretization of the Laplacian in Eq. (5.11)

becomes

∇2
rφ

D
l,m,n ≈

φDl+1,m,n + φDl−1,m,n − 2φDl,m,n

(∆r1)2 +
φDl,m+1,n + φDl,m−1,n − 2φDl,m,n

(∆r2)2

+
φDl,m,n+1 + φDl,m,n−1 − 2φDl,m,n

(∆r3)2 , (5.19)

where the discretization of the Laplacian of the order parameter values involve only

values that lie on the grid points of the computational domain. A comparison of

Eqs. (5.7) and (5.19) demonstrates that isotropic and biaxial deformations effectively

change the grid spacing, where the choice of αααt affects the magnitude of ∆ri (see Eq.

(5.10)).

Schematics of the positions of grid points in two dimensions for an undeformed

coordinate (Eq. (5.7)) and an isotropically deformed coordinate (Eq. (5.19)) are shown

in Figs. 5.1(a) and (b), respectively. Each dot represents a computational grid point

in the respective discretized coordinate system. Relative to the center grid point
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labeled with C, the grid points directly above (m+ 1) and below (m− 1) are labeled

T and B, respectively, while the grid points directly to the left (l−1) and right (l+1)

are labeled L and R, respectively. As seen in Figs. 5.1(a) and (b), the discretization

stencil of the Laplacian operator for the undeformed and isotropically deformed states

solely involve values of the discretized order parameter that lie on a grid point, and

therefore resampling is not required. The only difference between the undeformed

and isotropically deformed state is the spacing between the grid points.

Next we consider simple-shear deformation where the relationship between the

deformed and undeformed coordinates is

rl1 = Rl
1 − ξRm

2 , rm2 = Rm
2 , rn3 = Rn

3 . (5.20)

Thus, the neighboring values that lie on the computational grid points along the r2

coordinate, φDl,m±1,n, are

φDl,m±1,n = φDsh
(
rl1, r

m±1
2 , rn3

)

= φDsh
(
Rl

1 − ξRm±1
2 , Rm±1

2 , Rn
3

)

= φDsh
(
Rl

1 − ξ(Rm
2 ±∆R2), Rm

2 ±∆R2, R
n
3

)
, (5.21)

while the values in the discretization of the Laplacian term along the r2 coordinate

are

φDsh
(
rl1, r

m
2 ±∆r2, r

n
3

)
= φDsh

(
Rl

1 − ξRm
2 , R

m
2 ±∆R2, R

n
3

)
. (5.22)

Since Eq. (5.22) cannot simply be expressed as Eq. (5.21), the discretization of the

Laplacian term along the r2 coordinate for simple-shear deformation requires inter-

polation from φDl,m±1,n to φDsh
(
rl1, r

m
2 ±∆r2, r

n
3

)
.

A schematic of the two-dimensional discretization of the Laplacian operator for
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simple-shear deformation is illustrated in Fig. 5.1(c). As seen in the figure, the grid

points directly above (m+ 1) and below (m− 1) the grid point C, labeled T and B,

respectively, do not coincide with the discretization stencil of the Laplacian operator

(IT and IB). Therefore, resampling to IT and IB is required.
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R1, r1

R2, r2

R1, r1

R2, r2

R2, r2

R1, r1

C RL

T

B

C RL

T

B

IT

C RL

T

B

IB

Figure 5.1:
A two-dimensional schematic of the material points in (a) the unde-
formed configuration and deform configuration due to (b) isotropic and
(c) simple-shear deformations. Each dot represents a computational grid
point. Relative to the center grid point labeled with C, the grid points
directly above (m + 1), below (m − 1), to the right (l + 1), and to the
left (l− 1) are labeled T, B, R, and L, respectively. The points IT and IB

in (c) mark the position to which the order parameter values need to be
interpolated for the discretization of the Laplacian term.
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5.3 Method 2: Transformation of Laplacian Operator

In this section, we describe a method for evaluating a deformed-state PFC free

energy when φDt is expressed in terms of undeformed coordinates, R, i.e., φDt (R).

This method, hereafter referred to as LM (for Laplacian mapping), does not require

resampling for all types of deformation. In order to describe deformation when the

deformed-state FED is in terms of φDt (R), the Laplacian operator in the PFC FED

must be transformed instead to account for the coordinate mapping. A relationship

between the derivatives in terms of deformed coordinates, ri, to those with respect to

undeformed coordinates, Ri, can be obtained via the chain rule,

∂

∂rm
=
∂Ri

∂rm

∂

∂Ri

= α−1
im

∂

∂Ri

. (5.23)

Using Eq. (5.23), the Laplacian operator of the deformed system is

∇2
t =

∂

∂rm

(
∂

∂rm

)
= α−1

im

∂

∂Ri

(
α−1
jm

∂

∂Rj

)
= α−1

imα
−1
jm

∂

∂Ri

∂

∂Rj

, (5.24)

where α−1
jm is independent of Ri for affine transformations, and the subscript t denotes

the type of deformation.

Combining Eqs. (5.2) and (5.24), the Laplacian operator for isotropic, biaxial, and

simple-shear deformations are

∇2
iso =

1

(1 + ξ)2

∂2

∂R2
1

+
1

(1 + ξ)2

∂2

∂R2
2

+
1

(1 + ξ)2

∂2

∂R2
3

∇2
bi =

1

(1 + ξ)2

∂2

∂R2
1

+
1

(1− ξ)2

∂2

∂R2
2

+
∂2

∂R2
3

∇2
sh = (1 + ξ2)

∂2

∂R2
1

+ 2ξ
∂2

∂R1∂R2

+
∂2

∂R2
2

+
∂2

∂R2
3

, (5.25)

respectively. Note that, the discretization of the Laplacian operators for isotropic and

biaxial deformations are identical to Eq. (5.19), where ri = (1 + ξ)Ri for isotropic
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deformation, and r1 = (1+ξ)R1, r2 = (1−ξ)R2, and r3 = R3 for biaxial deformation.

Furthermore, since LM involves a FED that is defined on undeformed coordinates (and

on the undeformed domain), the integral must be written in terms of the undeformed

coordinates. In general, the integral over the deformed volume can be written in

terms of the integral taken in the undeformed coordinates as

∫ ∫ ∫

Ω(ξ)

dr1dr2dr3 = Jt

∫ ∫ ∫

Ω′
dR1dR2dR3, (5.26)

where Jt is independent of Ri, and Ω′ denotes the reference undeformed unit cell.

Combining Eqs. (5.24) and (5.26), the free energy of a deformed system for LM is

Fdef = Jt

∫

Ω′
f
(
φDt (R),∇2

t

)
dR. (5.27)

LM does not require resampling for all types of deformation because the discretized

Laplacian in LM only involves order parameter values that lie on the computational

grid (i.e., φDl,m,n). To demonstrate this fact, consider the discretized Laplacian for

simple-shear deformation, ∇2
shφ

D
t (R) = ∇2

shφ
D
l,m,n,

∇2
shφ

D
l,m,n ≈(1 + ξ2)

φDl+1,m,n + φDl−1,m,n − 2φDi,j,k
(∆R1)2

+ 2ξ
φDi+1,j+1,k − φDi+1,j−1,k − φDi−1,j+1,k + φDi−1,j−1,k

4∆R1∆R2

φDl,m+1,n + φDl,m−1,n − 2φDi,j,k
(∆R2)2

+
φDl,m,n+1 + φDl,m,n−1 − 2φDi,j,k

(∆R3)2
, (5.28)

where all points involved in the Laplacian lies on a computational grid point.

5.4 Method 3: Fourier Space Formulation

In this section, we describe a numerical method for implementing deformation

when the PFC free energy is expressed in Fourier space. This method, hereafter
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referred to as FM, is necessary when the PFC FED only has a closed-form FED

expression in Fourier space, but not in real space, e.g., the structural PFC (XPFC) [55]

and the rational-function fit (RFF) PFC [69] formulations. An alternative numerical

method for implementing shear-type deformation in Fourier space, which involves the

interpolation of order parameter values, was described in Ref. [58]. In this method,

the deformed free energy can only be calculated when the deformed configuration

is periodic. As a result, this method requires a large system size when applying

shear deformations that involve small strains, and is impractical for three-dimensional

calculations.

FM is formulated based on the similarity theorem of the Fourier transform [85],

where deformation is described by shifts in the wave vector [86, 87]. As shown in

Appendix B, the mapping from undeformed to deformed coordinates in reciprocal

space is given by ααα−Tt , which is the transpose of the inverse of αααt. Therefore, the

deformed-state free energy in Eq. (5.14) becomes

Fdef =

∫

Ω′
F−1

[
f̂
(
φ̂Dt (k′), (k′)

2
)]
JtdR

=

∫

Ω′
F−1

[
f̂
(
φ̂Dt (ααα−Tt · k),

(
ααα−Tt · k

)2
)]
JtdR, (5.29)

where k′ denotes the deformed coordinates in reciprocal space, the notation F−1[g(k)]

indicates the inverse Fourier transform operation of g(k), the hat symbols denote

quantities in Fourier space, and the volume change of the unit cell due to mapping is

accounted for by Jt. For the set of deformations we consider, ααα−Tt is given by

ααα−Tiso =




1
1+ξ

0 0

0 1
1+ξ

0

0 0 1
1+ξ



, ααα−Tbi =




1
1+ξ

0 0

0 1
1−ξ 0

0 0 1



, ααα−Tsh =




1 0 0

ξ 1 0

0 0 1



. (5.30)

Equation (5.30) can be used to rewrite the Fourier-space representation of the
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Laplacian operator,

L̂k = −
(
k2

1 + k2
2 + k2

3

)
, (5.31)

as

L̂iso = − 1

(1 + ξ)2

[
k2

1 + k2
2 + k2

3

]

L̂bi = − 1

(1 + ξ)2

[
k2

1 + k2
2

]
+ k2

3

L̂sh = −
[
(1 + ξ2)k2

1 + k2
2 + k2

3 + 2ξk1k2

]
, (5.32)

for isotropic, biaxial, and simple-shear deformations, respectively, and k1, k2, and k3

are the undeformed coordinate values in real space.

5.5 Comparison of Methods

In this section, we compare the accuracy and efficiency of CM, LM, and FM for

the numerical evaluation of the PFC FED in Eq. (2.4) for a deformed unit cell. Since

unit-cell deformations are employed to determine elastic constants in the PFC model

[53, 55, 62], we will compare the values of

Q ≡ ∂2f

∂ξ2

∣∣∣∣
ξ=0

φ̄

, (5.33)

which are directly related to elastic constants [53]. The subscript φ̄ denotes that the

average of φ is held constant and the superscript ξ = 0 denotes that Q is evaluated

at the undeformed state.

For our calculations, we consider a single unit cell of the body-centered-cubic (bcc)

structure, and thus the order parameter of the undeformed state can be expressed

analytically in terms of the undeformed coordinates when a one-mode approximation
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is assumed [24]:

φone(R) = cos

(
2πR1

a

)
cos

(
2πR2

a

)
+ cos

(
2πR1

a

)
cos

(
2πR3

a

)

+ cos

(
2πR2

a

)
cos

(
2πR3

a

)
, (5.34)

where a is the edge length of a unit cell.

For the purpose of this chapter, which focuses on the demonstration and validation

of the proposed methods, we simply assume that φ is mapped to the deformed coor-

dinates under deformation (i.e., without numerical relaxation). Such assumption is

typically made when a one-mode approximation is assumed and the FED calculations

are performed analytically or semianalytically [24, 62]. In this case,

φDt (r) = φone(ααα
−1 · r) (5.35)

and

φDt (R) = φone(R) (5.36)

for the free energy evaluations in Eqs. (5.14) and (5.27), respectively. While this

assumption is sufficient for the demonstration and comparisons of the methods, it

should be noted that φDt must be relaxed in an actual calculation of elastic constants.

The accuracy of the numerical methods is measured by comparing the values of

Q determined from numerical and analytical evaluations of the deformed-state PFC

free energy, Qnumerical and Qanalytical, respectively. Specifically, we consider the percent

error of Q, %eQ,

%eQ =
|Qanalytical −Qnumerical|

|Qanalytical|
× 100%, (5.37)

for isotropic, biaxial, and simple-shear deformations. To measure efficiency, we com-

pare how %eQ decreases as the number of grid points in each direction, N , increases

for the different methods.
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The values of %eQ as a function of N is plotted in Fig. 5.2 for CM, LM, and FM

for different deformations. The calculations in Fig. 5.2 are performed on a single unit

cell given by Eq. (5.34) with a = 2π
√

2. Cubic interpolation [88] was implemented

to evaluate the PFC FED for CM using the interp3 function of MATLAB R2013b

(version 8.2.0.701). The PFC FED expressions with ε̃ = 0.0923 [53, 78] were numeri-

cally integrated using a three-dimensional trapezoidal rule. A single curve is plotted

for CM and LM for isotropic and biaxial deformations because their implementations

are identical in these methods. Additionally, only a single curve is plotted for FM

because %eQ < 0.001% for all deformations and values of N considered. As expected,

%eQ decreases as N increases for all methods.
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Figure 5.2:
Percent error of Q as a function of N for CM, LM, and FM for isotropic,
biaxial, and simple-shear deformations.
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FM employs spectral differentiation (see Eq. (5.32)) to evaluate the PFC free

energy and therefore exhibits spectral accuracy for smooth functions that have a

rapidly decaying Fourier transform [89]. Since the calculations in Fig. 5.2 are for a

one-mode approximation, which has a single wave mode in Fourier space, the results

of FM are essentially identical to the analytical solution.

CM is fairly accurate for isotropic deformation with %eQ < 0.4% for N = 16 and

is less accurate for biaxial and simple-shear deformations. For biaxial deformation,

%eQ drops below 1% for N = 64, while for simple-shear deformation %eQ > 3%

even at the highest resolution of N = 256. LM is identical to CM for isotropic

and biaxial deformations. However, LM is significantly more accurate for simple-

shear deformation where %eQ drops below 1% for N = 64 because the interpolation

required for applying shear deformation is eliminated. Although the interpolation

error in CM may be reduced by experimenting with various interpolation schemes

[88], a thorough investigation is beyond the scope of this work.

Since Q is directly related to the values of elastic constants in the PFC model,

the results in Fig. 5.2 reflect the errors that are expected when calculating elastic

constants using these methods. FM is the most efficient method when the PFC free

energy is expressed in Fourier space because FM requires significantly less resolution

than CM or LM to accurately evaluate Q. In the case where a real space evaluation

of Q is necessary, LM is more accurate and efficient than CM.

5.6 Elastic Constants and Bulk Modulus of EOF-PFC Model

In this section, we employ FM to implement the thermodynamic relationships

developed in Chapter IV to calculate the elastic constants and solid bulk modulus of

two bcc structures that are stabilized by the EOF-PFC model at two different pressure

states. The first structure is at the solid coexistence density, which corresponds to

a non-zero pressure, while the second structure is at a zero-pressure state. In both
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cases, we calculate the elastic constants C11, C12, and C44, as well as the solid bulk

modulus, Kc.

5.6.1 Elastic Constants and Bulk Modulus for bcc Structure at Solid Co-

existence Density

To determine the elastic constants and bulk modulus of a bcc structure stabilized

by the EOF-PFC model, FM is employed to calculate the EOF-PFC free energy (Eq.

(2.20)) for different deformations (i.e., as a function of ξ). At each value of ξ, the free

energy is relaxed according to Eq. (3.1) for the parameters listed in table 2.1, while

n̄ is held constant. However, the value of n̄ may change during deformation (i.e., for

different values of ξ) depending on the type of deformation by

n̄ =

(
n̄′ρ0+ρ0
Jt(ξ)

− ρ0

)

ρ0

=
n̄′ + 1

Jt
− 1, (5.38)

where n̄′ is held constant to keep the number of atoms, N c
A, and lattice sites, N c

L,

fixed, while Jt may be a function of ξ, depending on the type of deformation (see Eq.

(5.3)). For elastic constants at the coexistence density n̄′ is set to n̄s = 9.17 × 10−3

(see Section 3.6.1).

The values ofHiso, Hbi, andHsh, which are used to determine C11, C12, and C44, as

well as Kc, are then calculated from the second derivative of the EOF-PFC free energy

with respect to ξ for isotropic, biaxial, and simple-shear deformations, respectively

(see Section 4.3). As seen in Eq. (4.27), the calculation of Ht requires a knowledge

of the pressure, P 0, and bulk modulus, K0, of the liquid reference state. For the

EOF-PFC model considered here, K0 = 50ρ0kBT because ρ0Ĉ
(2)(0) = −49 [54], and

P 0 is set to zero because the EAM-MD potential used to calculate the two-body DCF

of bcc Fe [20] of Ref. [54] was fitted to a system at zero pressure.

The non-dimensionalized EOF-PFC FEDs as a function of ξ for isotropic, biaxial,
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and simple-shear deformations are plotted in Figs. 5.3, 5.4, and 5.5, respectively, and

the dashed red curves are plots of a polynomial that is fitted to the simulation results.

For isotropic and biaxial deformations, the value of n̄ corresponding to each value of ξ

is different, where n̄ = n̄s = 9.17×10−3 at ξ = 0. On the other hand, for simple-shear

deformation, n̄ = n̄s = 9.17 × 10−3 for all values of ξ because the volume does not

change during deformation. The values of Hiso, Hbi, and Hsh, which are determined

by evaluating the second derivative of the corresponding curves at ξ = 0 (undeformed

state and marked by green square), are listed in Table 5.1. The hydrostatic pressure

of the crystalline phase, P c, is determined from evaluating the first derivative of Fig.

5.3 at ξ = 0 and multiplying by -1/3 (see Eq. (4.29)), and is also listed in Table 5.1.
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Figure 5.3:
Plot of non-dimensionalized EOF-PFC FED as a function of ξ for isotropic
deformation. All points have the same value of n̄′ (N c

A held constant),
while n̄ varies. The values calculated using FM (blue dots) are fitted
with a third-order polynomial function (red dashed curve): −910.6ξ3 +
360.8ξ2 + 3.480ξ − 0.0263. The value of Hiso is 2 × the coefficient of ξ2

and the pressure is -1/3 × the coefficient of ξ. The system corresponding
to ξ = 0 has n̄ = n̄s = 9.17× 10−3 and is marked with a green square.
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Figure 5.4:
Plot of non-dimensionalized EOF-PFC FED as a function of ξ for biaxial
deformation. All points have the same value of n̄′ (N c

A held constant),
while n̄ varies. The values calculated using FM (blue dots) are fitted with
a third-order polynomial (red dashed curve): 0.800ξ3 + 22.96ξ2− 4.134×
10−4ξ − 0.0269. The value of Hbi is 2 × the coefficient of ξ2.
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Figure 5.5:
Plot of EOF-PFC FED as a function of ξ for simple-shear deformation.
All points have the same value of n̄′ (N c

A held constant), while n̄ varies.
The values calculated using FM (blue dots) are fitted with a fourth-order
polynomial (red dashed curve): −169.0ξ4 + 0.1838ξ3 + 12.81ξ2 − 7.775×
10−4ξ − 0.0270. The value of Hsh is 2 × the coefficient of ξ2.
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The values of C11, C12, and C44 calculated from Ht in Figs 5.3, 5.4, and 5.5, as

well as Kc = (C11 + 2C12 +P c)/3 (see Eq. (4.33)) are listed in table 5.1. These values

correspond to n̄ = n̄s = 9.17× 10−3 and a = 2.978Å (see Section 3.6.1). The elastic

constants and solid bulk modulus calculated from MD simulations and the solid bulk

modulus from Jaatinen et al. [54] are also listed for comparison. The negative sign

EOF-PFC Jaatinen et al. [54] MD [62]
Hiso 721.7 - -
Hbi 45.92 - -
Hsh 25.61 - -

P c (GPa) -2.27 - 0.00
C11 (GPa) 280.7 - 128.0
C12 (GPa) 240.1 - 103.4
C44 (GPa) 45.7 - 63.9
Kc (GPa) 252.9 94.5 111.6

Table 5.1:
Elastic constants and solid bulk modulus of EOF-PFC model determined
from relationships developed in Chapter IV (second column) and solid bulk
modulus from Ref. [54] (third column) are listed. The elastic constants and
solid bulk modulus from MD simulations [62] using the EAM-MD potential
of Ref. [20] (fourth column) are also listed. The elastic constants from the
EOF-PFC model are calculated for n̄ = n̄s = 9.17 × 10−3 (see Section
3.6.1).

for P c in table 5.1 suggests that the ξ = 0 state experiences a tensile load, which is

illustrated in Fig 5.3, where the point corresponding to ξ = 0 (green square) is to the

right of the minimum where P c = 0 (when P 0 = 0).

The values of C11 and C12 calculated from the EOF-PFC model are more than

twice the values from MD simulations, while C44 from the EOF-PFC model is ap-

proximately 30% less than that of MD simulations. Whether these discrepancies arise

from the difference in pressure state between the values from EOF-PFC and MD sim-

ulations will be examined in the next section when we consider the elastic constants

from the EOF-PFC model at a zero-pressure state.

It is also important to note that the value of Kc presented in Jaatinen et al. [54],
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which we denote as K′c, although closer to the value from MD simulations, is incon-

sistent with the definition of (C11 + 2C12 + P c)/3 and is less than half the value that

we calculate for the EOF-PFC model. This discrepancy is due to a difference in the

procedure for calculating Kc and K′c. The relationships for determining Kc is based

on thermoelasticity theory (see Chapter IV), while the relationship for determining

K′c is [54]

K′c ≡ (ρcA)2

(
∂2(∆Fbulk,c

PFC,iso/VcC)

∂(ρcA)2

)∣∣∣∣
θc

= (1 + n̄)2

(
∂2∆fbulk,c

PFC,iso

∂n̄2

)∣∣∣∣
θc
, (5.39)

where ρcA = ρ0(1 + n̄) (see Eq. (3.41)). As seen in Section 3.6.1, Eq. (5.39) is related

to the curvature of the EOF-PFC FED curve vs. n̄ in Fig. 3.2 (or slope of Fig. (3.3)),

which is a measure of how the diffusion potential changes with n̄.

5.6.2 Elastic Constants and Solid Bulk Modulus of bcc Structure at

Zero-Pressure State

In this section, we examine whether matching the pressure state of the EOF-

PFC model to MD simulations will improve the match between their values of elastic

constants and solid bulk modulus. The elastic constants and solid bulk modulus

values of the EOF-PFC model at the zero-pressure state are determined by evaluating

Hiso, Hbi, and Hsh at ξ = −0.00474, which corresponds to the minimum of the FED

vs. ξ curve in Fig. 5.3 where P c = 0. The EOF-PFC FED as a function of n̄ for

isotropic deformation is replotted in Fig. 5.6 to illustrate the points corresponding to

ξ = −0.00474 (black vertical dashed line) and ξ = 0 (green square). The value of n̄

at ξ = −0.00474 is 9.30× 10−3, which is an increase from n̄s.
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Figure 5.6:
Plot of non-dimensionalized EOF-PFC FED as a function of ξ for isotropic
deformation. All points have the same value of n̄′ (N c

A held constant),
while n̄ varies. The values calculated using FM (blue dots) are fitted
with a third-order polynomial function (red dashed curve): −910.6ξ3 +
360.8ξ2 + 3.480ξ − 0.0263. The value of ξ corresponding to the zero-
pressure state is denoted by the dashed vertical black line (ξ = −0.00474),
where n̄ = 9.30 × 10−3. The green square marks the state with ξ = 0,
where n̄ = n̄s = 9.17× 10−3.
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The values of C11, C12, C44, and Kc at ξ = −0.00474 (zero-pressure state) are

listed in Table 5.2. These values correspond to n̄ = 9.30 × 10−3 and a = 2.978Å.

The elastic constants and solid bulk modulus for ξ = 0 and those calculated from

MD simulations are also listed for comparison. As seen in table 5.2, C11, C12, and

EOF (ξ = −0.00474) EOF (ξ = 0) MD [62]
Hiso 747.5 721.7 -
Hbi 45.90 45.92 -
Hsh 12.76 25.61 -

P c (GPa) 0.00 -2.27 0.00
C11 (GPa) 290.7 282.8 128.0
C12 (GPa) 245.7 240.1 103.4
C44 (GPa) 25.0 45.7 63.9
Kc (GPa) 260.7 253.6 111.6

Table 5.2:
Elastic constants and solid bulk modulus calculated from EOF-PFC model
for parameters listed in table 2.1 (second and third column) and MD simu-
lations [62] for EAM-MD potential of Ref. [20] (fourth column) are listed.
The elastic constants and solid bulk modulus, Kc from the EOF-PFC
model are calculated for n̄ = 9.30×10−3 (P c = 0) and n̄ = n̄s = 9.17×10−3

(P c = −2.27 GPa).

Kc increase by less than 3%, while C44 decreases by more than 45% when P c changes

from -2.27 to 0 GPa. Surprisingly, matching the pressure state of the EOF-PFC

model and that of the MD calculations widens the discrepancy between their results.

This result suggests that an alternative parameterization is necessary to match the

elastic constant values of the PFC model to those of MD simulations.

5.7 Chapter Summary

We have presented three numerical methods for implementing deformation in the

PFC model, which differ in how the FED of the deformed system is evaluated. We

illustrated the requirement of an interpolation step when applying shear-type defor-

mations with the conventional method, CM, used in the PFC model. An alternative
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method, LM, that eliminates the requirement of interpolation when applying shear-

type deformation is derived by transforming the Laplacian operator of the PFC free

energy. Additionally, a third method, FM, is formulated in Fourier space, where

deformation is applied via a scaling of the wave vectors.

The accuracy and efficiency of all three methods were compared for isotropic,

biaxial, and simple-shear deformations for an order parameter based on a one-mode

approximation. FM was found to be more accurate and efficient than either CM or

LM when the PFC free energy is expressed in Fourier space. In the case where a real

space method is necessary, LM is more accurate and efficient than CM.

FM was employed to implement the relationships developed in Chapter IV to

calculate the elastic constants and solid bulk modulus of bcc structures stabilized

by the EOF-PFC model at two pressure states. In both cases, the values of C11,

C12, C44, and solid bulk modulus, Kc, did not match well with those calculated from

MD calculations at zero pressure. The values of C11, C12, and Kc from the EOF-PFC

model were higher than those of MD simulations, while C44 from the EOF-PFC model

was lower than that of MD simulations.
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CHAPTER VI

Phase-Field Crystal Model for a Diamond-Cubic

Structure

In this chapter, we investigate a diamond-cubic (dc) structure based on the struc-

tural PFC (XPFC) model. We demonstrate that the XPFC model yields a stable dc

structure when the two-peak direct correlation function (DCF) is approximated with

a combination of two Gaussian functions in Fourier space, with the first and second

peak positions centered at k1 = 2π
√

3/a and k2 = 2π
√

8/a, respectively, where a

is the lattice constant of a cubic structure, and k1 and k2 are magnitudes of wave

vectors. A temperature-density phase diagram that contains a dc solid-liquid coex-

istence region is then calculated for this model. We then focus on the interfacial

energies, including the interfacial anisotropy that arises naturally in the PFC model.

We examine how the solid-liquid interfacial energy of the dc structure depends on the

shape of the DCF within the dc-PFC model. A relationship for solid-liquid interfa-

cial energy as a function of temperature is developed for the dc structure by taking

the peak heights of the Gaussian functions in the two-body DCF to change with a

temperature parameter according to the functional form of the Debye-Waller Factor

[55]. Additionally, since the energy change due to interfaces, defects, and strain is

controlled by the peak width of the Gaussian functions [55], relationships for the

dependence of interfacial energies on peak widths are also determined. These rela-
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tionships can be used to parameterize the dc-PFC model to match interfacial energies

to those measured experimentally or calculated from atomistic simulations.

This chapter is outlined as follows. We first present a procedure based on Chapter

III for constructing phase diagrams in the PFC model in Section 6.1, and use it to

calculate a phase diagram for the dc structure. The phase diagram contains a dc-liquid

coexistence region, enabling us to numerically examine the solid-liquid interfacial

properties of the dc structure in Section 6.2. Relationships between the interfacial

energy and the peak widths and heights of the Gaussian functions in the DCF are

also developed in Section 6.2.

6.1 Phase Stability of a Diamond-Cubic Structure

In this section, we demonstrate that the XPFC model can be used to stabilize the

dc crystal structure. We also examine the phase stability between dc and other phases

to construct a temperature-density phase diagram. First, we describe the procedure

for constructing a phase diagram with the PFC model [55, 58, 66], which is used

in this work. We then introduce a two-body DCF that stabilizes a dc structure and

construct a temperature-density phase diagram that consists of the bcc, dc, and liquid

phases based on the model.

6.1.1 Procedure for Constructing a Phase Diagram

A phase diagram for the PFC model is constructed by finding the average of the

scaled dimensionless number density, n̄, that corresponds to the phase boundaries as

a function of σ [55, 58, 66]. The procedure for identifying the phase boundaries for

each value of σ is divided into two steps. First, free-energy densities as a function

of n̄ are calculated for each phase by minimizing the free-energy density, ∆fα(n̄, a),

with respect to a, where the superscript α denotes the phase (e.g., α = bcc, fcc, dc).
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The quantity ∆fα(n̄, a) is calculated via,

∆fα(n̄, a) ≡ ∆Fα[na(r)]

Va
, (6.1)

where Va ≡ a3 is the unit-cell volume, a is the lattice parameter of a cubic unit

cell, and na(r) is the relaxed density profile. The relaxed density profile is obtained

by evolving a (non-relaxed) density profile that is approximated with the one-mode

approximation with an average of n̄ using conserved dissipative dynamics [23, 24, 45],

∂n(r)

∂t
= ∇2 δ∆Fα[n(r)]

δn(r)
, (6.2)

until a steady state is reached. The quantity ∆fα(n̄, a) is a function of only n̄ and a

because ∆fα(n̄, a) is the free-energy density of a system with na(r), which is periodic

with a uniform amplitude. For convenience, we denote the value of ∆fα(n̄, a) that is

minimized with respect to a as ∆fαa∗(n̄) and the corresponding lattice spacing as a∗.

This process is schematically illustrated in Fig. 6.1(a) where the point (a∗,∆fαa∗(n̄))

is marked with “×”.
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Figure 6.1:
(a) Schematic plot of free-energy density of a relaxed system as a func-
tion of the lattice spacing for a given n̄. The point at which ∆fα(n̄, a)
is minimized with respect to a is marked with “×”. (b) Schematic of
the free-energy densities that satisfy ∂∆fα(n̄, a)/∂a = 0 at each n̄ (as
illustrated in (a)). The solid curve shows the free-energy density for the
crystalline phase, and the dashed curve shows the corresponding values
for the liquid phase. The “×” denotes the comment-tangent points of the
free-energy density curves, which satisfy Eqs. (6.3) and (6.4).
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Second, phase boundaries are determined with a common-tangent construction on

the convex hull [90] of ∆fαa∗(n̄) for all phases. The common-tangent construction is

mathematically stated as a set of conditions:

∂∆fαa∗(n̄)

∂n̄

∣∣∣∣
n̄=n̄α

=
∂∆fβa∗(n̄)

∂n̄

∣∣∣∣
n̄=n̄β

(6.3)

and

∆fβa∗(n̄)−∆fαa∗(n̄) =
∂∆fαa∗(n̄)

∂n̄

∣∣∣∣
n̄=n̄α

(n̄β − n̄α). (6.4)

The additional superscript, β, denotes a phase different from that indicated by α (e.g.,

α = bcc and β = fcc) and the partial derivatives are evaluated at the specified value of

n̄, as indicated by the subscripts on the vertical line. Equations (6.3) and (6.4) ensure

that the chemical potentials and pressures of the coexisting phases, respectively, are

equal [66]. The conditions of Eqs. (6.3) and (6.4) are illustrated in Fig. 6.1(b), where

“×” marks the common-tangent points. The procedure described above is repeated

for different values of σ to construct a phase diagram.

6.1.2 A Diamond-Cubic Structure

A dc structure is an fcc derivative structure that consists of the lattice-sites of

two fcc structures that are shifted from one another by afcc/4 in each direction [91].

The lattice-site positions of the two fcc structures are specified by two basis vectors.

The two fcc structures within a single dc unit cell are illustrated in Fig. 6.2(a).
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Figure 6.2:
(a) Schematic of a unit cell of the dc structure where the shift of afcc/4
in each direction between the lattice-site positions of two fcc structures
(one represented by blue and the other by red) is denoted by arrows.
Schematics of the (b) (111) and (c) (220) crystallographic planes, where
the lattice points that are intersected by the atomic planes are highlighted
in red. Each plane of the {111} and {220} families of planes intersect 2
atoms for the dc structure.
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We find that a two-body DCF approximated with the combination of two Gaussian

functions centered at k1 = 2π
√

3/adc and k2 = 2π
√

8/adc will stabilize a dc structure.

The values of k1 = 2π
√

3/adc and k2 = 2π
√

8/adc correspond to the {111} and {220}

families of crystallographic planes, which are associated with the first two peaks of

the dc structure factor [91]. As in the fcc structure, the ratio of peak positions of

the dc structure, k2/k1 =
√

8/3, is independent of adc. An fcc structure is not stable

for this DCF because it does not contain a peak corresponding to the {200} family

of crystallographic planes, which is required for the stabilization of an fcc structure

[58].

To construct a phase diagram for the dc structure, we choose adc = 1Å and

α1 = α2 = 1.0. The {111} and {220} families of crystallographic planes of the dc

structure contain 8 and 12 equivalent planes, respectively. Therefore, the parameters

β1 and β2, which are the number of planar symmetries of the {111} and {220} families

of crystallographic planes, are 8 and 12, respectively. Each plane of the {111} and

{220} families of planes have an area of
√

3/2 × a2
dc and

√
2/2 × a2

dc, respectively,

and intersects 2 atoms in the dc structure, as shown in Figs. 6.2(b) and (c). There-

fore, the parameters λ1 and λ2 are 2/(
√

3/2) = 4/
√

3Å−2 and 2/(
√

2/2) = 2
√

2Å−2,

respectively.

The dc DCF in Fourier space is plotted for σ = 0.0, 0.2, and 0.4 in Fig. 6.3(a) for

the values of ki, λi, βi, and αi mentioned above. The stability of the dc structure was

verified by comparing the unit-cell free-energy density of the dc structure to those

of the bcc, fcc, sc, hcp, rod, and stripe phases [66]. Additionally, the stability of

the dc structure for calculations beyond a unit cell was demonstrated by the growth

of an 18 (2 × 3 × 3) unit-cell dc seed into a 64 unit-cell system for σ = 0.01 and

n̄ = 0.02 via Eq. (6.2); the initial seed was generated by appending relaxed unit cells

of the dc structure. The isosurface of the relaxed 64 unit cell system is shown in Fig.

6.3(b) and a small portion of the system is extracted in Fig. 6.3(c) to illustrate two
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overlapping fcc lattices in the dc structure. It is important to note that a metastable

bcc structure forms when the initial seed size is smaller than 18 unit cells for the 64

unit-cell system considered in Fig. 6.3(b). This suggests that the density profile can

converge to a metastable structure (bcc) instead of the stable structure (dc) when the

dynamics described by Eq. (6.2) is used to evolve the density field. The formation

of a metastable bcc phase prior to forming a stable dc phase was also observed in a

recently proposed self-assembly model [92]. An investigation of different dynamics

for the PFC model is outside the scope of this chapter. We refer the readers to Ref.

[68] for an overview of various PFC dynamics.

A density-temperature phase diagram, shown in Fig. 6.3(d), is constructed accord-

ing to the procedure presented in Section 6.1.1. The phase diagram shows a stable

liquid phase at low densities and solid phases at higher densities. The coexistence

between liquid and dc, liquid and bcc, and bcc and dc phases are also shown in Fig.

6.3(d). Since k1 corresponds to the {111} family of planes in the dc structure and

the {110} family of planes in the bcc structure, the lattice constant of the dc and bcc

structures are different and related to one another by abcc/adc =
√

2/3.

The small gap between the bcc and dc coexisting densities is due to the similarity

between the free-energy densities of the two solid phases. The similarity in the coex-

isting densities is undesirable, for example, when studying solid defects in a two-phase

system. To alter the energy of each phase and thus potentially increase the gap of

the solid-coexistence densities, one can modify, in addition to the two-body DCF, the

values of at and bt ideal-gas contribution of the PFC free energy, Eq. (2.13) [54]. This

will be investigated in the future.

An important feature of the phase diagram in Fig. 6.3(d) is the dc-liquid coexis-

tence at lower temperatures and the bcc-liquid coexistence at higher temperatures. A

bcc phase becomes stable for a two-peak DCF when the the first peak is significantly

taller than the second peak, as described in Ref. [58]. When the parameters in Eq.
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(2.27) are chosen to be

λ1β1

λ2β2

>

(
k1

k2

)2

, (6.5)

the first peak of the DCF becomes taller than the second peak as σ increases (e.g.,

see Fig. 6.3(a)). The parameters used to construct the phase diagram of Fig. 6.3(d)

has (λ1β1)/(λ2β2) = 1.45(k1/k2)2, and thus a transition from the dc phase at lower

temperatures to the bcc phase at higher temperatures is observed.

On the other hand, the bcc phase can be suppressed at all temperatures if the

height of the first and second peaks of a two-peak DCF are constrained to be equal

for all values of σ. This occurs when

λ1β1

λ2β2

=

(
k1

k2

)2

. (6.6)

A phase diagram where Eq. (6.6) is satisfied is plotted in Fig. 6.4; as expected, the

bcc phase has been suppressed.
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Figure 6.3:
(a) The two-body DCF for a dc structure for σ = 0.0, 0.2, and 0.4. The
parameters used are α1 = α2 = 1.0, λ1 = 4/

√
3Å−2, λ2 = 4/

√
2Å−2,

β1 = 8, β2 = 12, k1 = 2π
√

3Å−1, and k2 = 2π
√

8Å−1. (b) The isosurface
of a 64 unit-cell dc structure calculated for n̄ = 0.02 and σ = 0.01. (c)
Small portion of Fig. (b) showing two overlapping fcc lattices in a dc
structure. The black arrow denotes the shift of a lattice site from one fcc
lattice to the other. (d) Phase diagram containing body-centered-cubic
(bcc), diamond-cubic (dc), and liquid (L) phases.

106



−0.1 −0.05 0 0.05 0.10

0.05

0.1

0.15

0.2

dc

n̄

σ

L

Figure 6.4:
Phase diagram containing diamond-cubic (dc) and liquid (L) phases. The
parameters of the two-body DCF used to construct this phase diagram are
α1 = α2 = 1.0, λ1 = 4/

√
3Å−2, β1 = 8, k1 = 2π

√
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√
8Å−1,

and λ2β2 = 8/3λ1β1.
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6.2 Solid-Liquid Interfacial Energy

We examine the solid-liquid interfacial energies of the dc structure described in

the previous section. First, we describe a numerical procedure for calculating inter-

facial energy between two phases. Second, we determine a relationship for interfacial

energy as a function of Gaussian peak width because the peak widths of the Gaus-

sian functions in the DCF were shown to account for excess energy associated with

interfaces [55]. Third, we develop a relationship for interfacial energy as a function

of temperature by adjusting peak heights. Finally, we consider a more general case

of two-body DCFs where the first and second peaks of the Gaussian functions have

different widths. This analysis provides an approximate relationship between interfa-

cial energy and peak width of the Gaussian functions when the peak widths are not

equal. For the analysis below, ki, λi, and βi are set to the values that were used to

construct the phase diagram in Fig. 6.3(d).

6.2.1 Procedure for Numerical Calculation of Solid-Liquid Interfacial

Energy

The interfacial energy of a system that is in solid-liquid coexistence can be calcu-

lated from the energy of the two-phase system minus the bulk energy of each phase

[54]. In this section, the solid-liquid interfacial energy of an interface having a normal

pointing in the direction p, γp, is evaluated by constructing a long slab of one unit-cell

in the plane of the interface and 128 unit-cells in the direction of the interface normal.

The slab is initialized with 64 unit cells of solid and 64 unit cells of liquid, with the

interface at the midpoint of the computational domain. Periodic boundary conditions

are applied to all boundaries, which places another interface at the ends of the length

of the computational domain. The slab is then numerically relaxed via Eq. (6.2). The

value of γp is determined from the numerically relaxed slab by subtracting the free

energy of the bulk phases from the total free energy of the slab and dividing by the
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cross-sectional area of the solid-liquid interface.

The bulk free energy, ∆F bulk, is calculated from the free energies of solid with the

same volume as the computational domain, ∆Fs, and liquid with the same volume

as the computational domain, ∆Fl. These free energies are weighted by the volume

fraction before they are summed. Therefore, with the average of the scaled number

densities of the solid and liquid at the coexistence density, n̄s and n̄l, respectively,

∆F bulk is given by

∆F bulk =
∆Fs(n̄− n̄l) + ∆Fl(n̄s − n̄)

n̄s − n̄l
, (6.7)

where the weighing of ∆Fs and ∆Fl is determined according to volume fractions of

solid and liquid in the system in terms of the respective densities. The value of γp is

then calculated by subtracting ∆F bulk from the total free energy of the slab containing

the solid-liquid interfaces, ∆F slabp , and dividing by the cross-sectional area, Ap,

γp =
1

ρ0kBT

(
∆F slabp −∆F bulk

2Ap

)
, (6.8)

where the factor, 1/(ρ0kBT ), nondimensionalizes the value of γp and the factor of 2

accounts for the additional interface at the edge of the computational domain due

to the periodic boundary conditions. The length of the slab in the direction of the

interface normal is chosen such that the two solid-liquid interfaces that form as a

result of periodic boundary conditions do not interact. In this work, we examine

the γp of interfaces with normals pointing in the [100], [110], and [111] directions,

where p = 100, 110, and 111, respectively. This analysis is performed on an XSEDE

computing cluster [93].
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6.2.2 Peak-Width Dependence of Solid-Liquid Interfacial Energy

We use the procedure described in Section 6.2.1 to compare the solid-liquid inter-

facial energies, γp(σ, α1, α2), for different peak widths, αi, of the Gaussian functions

in the two-body DCF. The calculations presented here are for the dc DCF used to

construct Fig. 6.3(d) with σ = 0, which leads to both peak heights to be 1, and

α1 = α2 ≡ α0, which sets the peak widths equal. The value of γp(0, α0, α0) for the

(100), (110), and (111) interfaces for values of α0 ranging from 0.25 to 1.0 are plotted

in Fig. 6.5. These interfacial energies decrease with increasing values of α0. For the

range of α0, the (111) interface has the lowest energy, while the (100) interface has

the highest energy. This is in qualitative agreement with the solid-liquid interfacial

energies calculated for dc Si using atomistic simulations [94].
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Figure 6.5:
Plots of the logarithms of γ100(0, α0, α0) (blue “×”), γ110(0, α0, α0) (green
circle), and γ111(0, α0, α0) (red square) for the dc free energy used to
construct the phase diagram of Fig. 6.3(d) as a function of the logarithm
of α0. Here, α1 = α2 = α0 and σ = 0. The dashed lines are the best fits
to the data in the form of Eq. (6.9).
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The dashed lines in Fig. 6.5 are plots of an inverse power law given by

γp(0, α0, α0) =
Dp

α0

, (6.9)

where D100 = 4.62 × 10−2, D110 = 4.17 × 10−2, and D111 = 3.90 × 10−2. Figure 6.5

demonstrates that the simulation results fit well to Eq. (6.9) with R2 values of 1.00,

0.999, and 0.999 for D100, D110, and D111, respectively.

6.2.3 Temperature Parameter Dependence of Solid-Liquid Interfacial En-

ergy

In this section, we investigate the dependence of γp(σ, α0, α0) on the peak height

of the Gaussian functions in the two-body DCF by adjusting σ. Again, we consider

the (100), (110), and (111) interfaces. First, we examine the effect of changing σ,

while keeping α0 fixed to 1. The results for these simulations are plotted in Fig. 6.6.

The results show that γp(σ, 1.0, 1.0), decreases with increasing σ.
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Figure 6.6:
(a) γp(σ, 1.0, 1.0) and (b) γp(σ, 1.0, 1.0)/γp(0, 1.0, 1.0) as a function of σ
for the (100) (blue “×”), (110) (green circle), and (111) (red square)
interfaces. The calculations are for α0 = 1.0 and dashed curves show best
fits to the data in the form of Eq. (6.10).
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The dashed curves in Fig. 6.6 are the best fit curves to the data with a Gaussian

function given by

γp(σ, α0, α0) = γp(0, α0, α0) exp
(
−bp(α0)σ2

)
, (6.10)

where γp(0, α0, α0) can be determined from Eq. (6.9) and bp(α0) is a fitting parameter,

which depends on the peak width of the Gaussian function, α0. Note that since the

magnitudes of the σ values considered in this analysis are small, a quadratic equation

will provide an equally good fit to the data. The plot in Fig. 6.6(a) shows that the

simulation results fit well to Eq. (6.10), where the fitting constants are determined to

be b100(1.0) = 25.06, b110(1.0) = 26.66, and b111(1.0) = 24.62 with R2 values of 1.00.

These values of bp(1.0) show that the dependence of γp(σ, 1.0, 1.0) on σ is weakest for

the (111) interface and strongest for the (110) interface.

In Fig. 6.6(b), we also plot the scaled values of the interfacial energy,

γp(σ, 1.0, 1.0)/γp(0, 1.0, 1.0), for the same set of data. When scaled in this manner, all

interfacial energies have a similar dependence on σ, which is expected from the similar

values of bp(1.0). While the decrease in γp(σ, 1.0, 1.0)/γp(0, 1.0, 1.0) with respect to

σ is greatest for the (110) interface and least for the (111) interface, the differences

are very small. This demonstrates that the orientation of the interface normal alters

primarily the magnitude of the interfacial energies, but not its dependence on σ.

Next, we examine the dependence of γ100(σ, α0, α0) on σ and α0. The results for

these simulations are plotted in Fig. 6.7(a). It is evident that the interfacial energies

decrease with increasing α0, which is consistent with our previous results in Section

6.2.2. The energies for the (100) interface for α0 = 0.25, 0.5, and 1.0 all decrease with

increasing σ, although the changes with respect to σ over the range examined are

much smaller than the change due to the different values of α0.
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Figure 6.7:
(a) γ100(σ, α0, α0) and (b) γ100(σ, α0, α0)/γ100(0, α0, α0) as a function of
σ for α0 = 0.25 (blue “×”), α0 = 0.5 (green circle), and α0 = 1.0 (red
square). The dashed curves show best fits to the data in the form of Eq.
(6.10).
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The dashed curves in Fig. 6.7 are the best fits to the data with the Gaussian function,

Eq. (6.10). As seen in Fig. 6.7(a), the simulation results fit well to Eq. (6.10), with

b100(α0) being approximately 25.13 (specifically 25.13, 25.24, and 25.11 with R2 values

of 1.00 for α0 = 0.25, 0.5, and 1.0, respectively). The decrease in the values of b100(α0)

with increasing α0 indicates that the dependence of γ100(σ, α0, α0) on σ becomes

weaker as α0 increases.

In Fig. 6.7(b) we also plot the scaled values of the interfacial energy,

γ100(σ, α0, α0)/γ100(0, α0, α0), for the same set of data. As expected, the values of

γ100(σ, α0, α0)/γ100(0, α0, α0) are essentially identical for all values of α0; the largest

difference between the values of b100(α0) for α0 = 0.25, 0.5, and 1.0 is less than 1%.

Although the analysis in Fig. 6.7 is for the (100) interface, the negligible dependence of

γ100(σ, α0, α0)/γ100(0, α0, α0) on α0 is expected to hold for other interface orientations

(other values of p) because γp(0, α0, α0) depends on α0 by the same relationship (Eq.

(6.9)) for all orientations of the interface normal considered.

The negligible dependence of γ100(σ, α0, α0)/γ100(0, α0, α0) on α0 suggests that the

expression in Eq. (6.10) can be simplified to

γp(σ, α0, α0) = γp(0, α0, α0) exp
(
−Rpσ

2
)
, (6.11)

where Rp is independent of α0 for each value of p. For the dc DCF used in this

analysis, R100 = 25.06, R110 = 26.66, and R111 = 24.62. Note that the heights of the

Gaussian peaks in the two-body DCF also depend on σ by a Gaussian function, as

seen in Eq. (2.27). The fact that the dependence of γp(σ, α0, α0) on σ is also descibed

by a Gaussian function suggests that the value of γp(σ, α0, α0) is strongly influenced

by the heights of the peaks in the two-body DCF.

In the analysis of Figs. 6.6 and 6.7, the values of γp(σ, α0, α0) are calculated within

the solid-liquid coexistence region, where n̄s increases with σ, as seen in Fig. 6.3. An
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increase in n̄s can only arise by adding atoms into the system (by filling vacant sites)

because the position of the primary peak of the two-body DCF, k1, is assumed to be

constant, resulting in a fixed lattice spacing for all values of n̄ and σ. As a result,

γp(σ, α0, α0) calculated for each value of σ in Figs. 6.6 and 6.7 is for a system con-

taining a different number of atoms. Therefore, the dependence of γp(σ, α0, α0) on σ

obtained above can be interpreted as that of an open system. We believe the addi-

tion of atoms into the system as σ increases is the cause for a decreasing solid-liquid

interfacial energy, which is in disagreement with the trend measured experimentally

[95, 96] and calculated using atomistic simulations [97, 98, 99] for closed systems.

Therefore, in order to directly compare the dependence of γp(σ, α0, α0) on σ from

the PFC model to the dependence of γp(σ, α0, α0) on melting temperature from ex-

periments and atomistic simulations, it is required to keep the number of particles

constant as σ is varied, which is similar to what has been implemented for calculating

elastic constants [53].

6.2.4 Solid-Liquid Interfacial Energy for Unequal Peak Widths

In this section, we investigate how the solid-liquid interfacial energy changes with

respect to α2, when α1 6= α2. For our calculations, we set α1 = 0.625 and σ = 0,

while adjusting the values of α2. These results are plotted in Fig. 6.8, which shows

that γp(0, α1, α2) decreases as the ratio of α2/α1 increases for all directions.
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Figure 6.8:
The logarithms of γ100(0, α1, α2) (blue “×”), γ110(0, α1, α2) (green circle),
and γ111(0, α1, α2) (red square) plotted as a function of the logarithms of
the ratio α2/α1. In these calculations α1 = 0.625 and σ = 0. The dashed
lines show fits to Eq. (6.12) and the solid vertical line marks the position
where α2/α1 = 1.
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The dashed lines in Fig. 6.8 are the best fits for the interfacial energies in the form

of an inverse power law given by

γp(0, α1, α2) = γp(0, α0, α0)

(
α2

α1

)−Cp
, (6.12)

where Cp has values of 0.583, 0.611, and 0.463 with R2 values of 0.982, 0.986, and

0.985 for p = 100, 110, and 111, respectively, and γp(0, α0, α0) can be calculated

with Eq. (6.9). Figure 6.8 demonstrates that Eq. (6.12) captures the trend of the

simulation results; however, the simulation data deviates significantly from the best

fit line when α2/α1 is far from unity.

These results suggest that Eq. (6.12) is too simple to fully describe the relation-

ship for the solid-liquid interfacial energy when α1 6= α2. Nonetheless, Eq. (6.12)

provides an approximation for γp(0, α1, α2) when α1 6= α2 and reduces to Eq. (6.9)

when α1 = α2. As seen in Fig. 6.8, γp(0, α1, α2) < γp(0, α0, α0) when α2 > α1, and

γp(0, α1, α2) > γp(0, α0, α0) when α2 < α1, for all orientations. However, the degree

by which γp(0, α1, α2) changes with α2/α1 depends on the interfacial orientation. As

a result, the relative energies of interfaces will change when the value of α2/α1 is far

from unity.

6.3 Chapter Summary

We have developed a PFC model with a stable dc structure, which is based on the

XPFC approach. In this model, we approximate a two-body DCF with a combination

of two Gaussian functions in Fourier space, where the first and second peak positions

are centered at k1 = 2π
√

8/a and k2 = 2π
√

3/a, respectively, and a is the lattice

constant of a cubic structure. A temperature-density phase diagram, which contains

dc-liquid, bcc-liquid, and dc-bcc phase coexistence regions, was calculated for the

model.
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We found that the interfacial energies, γp(σ, α1, α2), for the (100), (110), and (111)

interfaces depend on α0 according to an inverse power law when the temperature

parameter, σ, is set to zero and the first and second peaks of the DCF are equal,

α1 = α2 = α0. In the case where α1 6= α2, we found that the trend of γp(σ, α1, α2)

as a function of α2/α1 is approximated by an inverse power law. The dependence of

γp(σ, α1, α2) on σ is well described by a Gaussian function when α1 = α2 = α0, via

Eq. (6.11). For all peak widths and interface orientations, the fitting parameter for

the Gaussian function, Rp, was found to be within 8% of one another. Therefore,

it would be worthwhile to examine whether the dependence of γp(σ, α1, α2) on σ for

other structures will also exhibit a similar value of Rp.
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CHAPTER VII

Conclusion and Future Work

7.1 Summary

In this dissertation, we have investigated the bulk equilibrium properties of crys-

talline structures that are stable within the phase-field crystal (PFC) model. We

developed thermodynamic relationships that were used to derive procedures for cal-

culating equilibrium material properties from the PFC model. These relationships

were also applied to gain a rigorous understanding of PFC simulation results.

The first set of relationships linked the PFC free energy to thermodynamic state

variables and was derived based on the thermodynamic formalism for crystalline sys-

tems introduced by Larché and Cahn [56]. These relationships were employed to

examine the thermodynamic processes associated with varying the PFC input param-

eters. Additionally, equilibrium conditions between bulk crystalline solid and liquid

phases were imposed on these relationships to obtain a procedure for determining

solid-liquid phase coexistence. The resulting procedure was found to be in agree-

ment with the common-tangent construction commonly used in the PFC community,

justifying the approach. Using this procedure we found that the EOF-PFC model

parameterization [54] does not predict stable bcc structures with positive vacancy

densities.

The second set of relationships linked PFC free energy change due to deformation
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to elastic constants. These relationships were built on the recent work of Pisutha-

Arnond et al. [53], which is also based on the thermodynamic formalism of Larché

and Cahn [56]. We demonstrated that the calculation of elastic constants requires

the knowledge of the pressure, P 0, and bulk modulus, K0, of the liquid reference

state. Since the two-body DCF is measured at the liquid reference state, any pa-

rameterization that adjusts the shape of the DCF will also effect the resulting elastic

constant values. A computationally accurate and efficient Fourier-space method for

applying deformation was developed to implement these relationships. Using the

Fourier-space method, the elastic constants and solid bulk modulus of bcc structures

from the EOF-PFC model were determined. Large discrepancies were found between

the elastic constants and solid bulk modulus calculated from the EOF-PFC model and

those from the MD simulation upon which the EOF-PFC model was parameterized.

Finally, we investigated a diamond-cubic (dc) structure based on the structural

PFC (XPFC) model and developed relationships between the solid-liquid interfacial

energies and the shape of the two-body direct correlation function (DCF). The depen-

dence of interfacial energy on a temperature parameter, which controls the heights of

the peaks in the two-body DCF, was found to be described by a Gaussian function.

Furthermore, the dependence of interfacial energy on peak widths of the two-body

DCF, which controls the excess energy associated with interfaces, defects, and strain,

was found to be described by an inverse power law. These relationships can be em-

ployed to parameterize the PFC model for the dc structure to match solid-liquid

interfacial energies to those measured experimentally or calculated from atomistic

simulations.

7.2 Impact

A parameterization of the PFC model to produce equilibrium properties that

match those obtained from experiments and atomistic calculations is required before
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the PFC model can be applied to predict non-equlibrium materials phenomena. The

ability to directly compare PFC simulation results with experimental measurements

and calculations from other theoretical approaches, such as MD and ab-initio den-

sity functional theory [73], eliminates the ambiguities that arise when parameterizing

the PFC model [53, 54, 62]. Furthermore, the links established in this dissertation

between thermodynamics and the PFC model provide the foundation for develop-

ing additional thermodynamic relationships to investigate solid-solid and solid-liquid

interfaces [100] and creep in crystalline solids [101] with the PFC model.

7.3 Future Work

Although the procedures for calculating several equilibrium properties have been

developed and the connections between PFC input parameters and thermodynamic

state variables have been established, whether the PFC model can be parameter-

ized to produce equilibrium properties that match those of physical materials remain

unanswered. However, the findings of this dissertation point to two areas of imme-

diate future work that may provide solutions or an additional understanding of the

model.

First, in order to resolve the issue of stabilizing structures with negative vacancy

density, the PFC model must be parameterized such that the primary peak position of

the two-body DCF, km, is a function of n̄ when the change of n̄ is due to the addition

or removal of an atom while θc, Vc, and N c
L are held constant. This corresponds to

changing n̄ while holding θc and VcC constant in the PFC model. However, it should be

noted that a change in km reflects a change in the liquid reference state. Therefore, a

parameterization that requires km to be a function of n̄ necessitates P 0 and the liquid

reference density, ρ0, to change with n̄. Since n̄ depends on ρ0, a relationship for km

as a function n̄ can only be obtained from the dependence of km on ρ0, which can be

determined from atomistic simulations. We point out that the pressure of the system
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changes as ρ0 is varied. Therefore, atomistic simulations for different pressure states

will be required to determine the dependence of km on ρ0

Second, although several thermodynamic processes associated with changing PFC

input parameters were elucidated for bulk phases in this work, a thermodynamic

framework for interfaces in the PFC model remains to be developed. An extension of

this work that considers interfaces is needed in order to gain a rigorous understanding

of results obtained from PFC simulations that contain interfaces and grain boundaries.

Furthermore, since we did not consider the equilibrium conditions between different

crystal phases, the use of the common-tangent construction to determine solid-solid

phase coexistence [24, 58, 66] remains to be verified. Therefore, the extension of this

work to systems containing interfaces and different crystal phases are topics of future

investigations.
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APPENDIX A

Gibbs-Duhem Relationship for Bulk Crystalline

Solid

We derive the Gibbs-Duhem relation for a bulk crystalline solid following Voorhees

and Johnson [57]. The internal energy of a one-component crystal is a function of Sc,

Vc, N c
A, and N c

L,

Ec = Ec(Sc,Vc, N c
A, N

c
L). (A.1)

The differential form of Ec is

dEc = θcdSc − P cdVc + µcAdN
c
A + µcLdN

c
L, (A.2)

where

θc ≡ −∂E
c

∂Sc

∣∣∣∣
Vc,Nc

A,N
c
L

, P c ≡ −∂E
c

∂Vc
∣∣∣∣
Sc,Nc

A,N
c
L

, µcA ≡
∂Ec

∂N c
A

∣∣∣∣
Sc,Vc,Nc

L

, µcL ≡
∂Ec

∂N c
L

∣∣∣∣
Sc,Vc,Nc

A

.

(A.3)

Since Eq. (A.1) is a homogenous function of degree one, Eq. (A.2) yields

Ec(Sc,Vc, N c
A, N

c
L) = Scθc − P cVc + µcAN

c
A + µcLN

c
L. (A.4)
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Differentiating Eq. (A.4) and subtracting from Eq. (A.2) gives us the Gibbs-Duhem

relation for a bulk crystalline solid,

0 = Scdθc − VcdP c +N c
Adµ

c
A +N c

Ldµ
c
L. (A.5)
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APPENDIX B

Description of Deformation in Fourier Space

The the deformed coordinates, r, can be calculated from an affine transformation

of the undeformed coordinates, R, by

r = αααt ·R (B.1)

and the inverse transformation is

R = ααα−1
t · r. (B.2)

Using Eq. (B.1), the order parameter of the undeformed state can be written as

φ(R) = φ(ααα−1
t · r). (B.3)

To understand how the affine transformation behaves for coordinates in Fourier space,
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consider the Fourier transform of φ(ααα−1
t · r),

F
[
φ(ααα−1 · r)

]
=

∫
φ(ααα−1

t · r)e−ik
′·rdr

= Jt

∫
φ(R)e−ik

′·(αααt·R)dR

= Jt

∫
φ(R)e−i(ααα

T
t ·k′)·RdR

= Jtφ̂(αααTt · k′), (B.4)

where we have used the relationship dR = dr/Jt and k′ denotes the deformed coordi-

nates in reciprocal space. Equation (B.4) is a restatement of the similarity theorem

of the Fourier transform [85] in higher dimensions, where the mapping from deformed

coordinates to undeformed coordinates in reciprocal space is given by αααTt such that

k = αααTt · k′. (B.5)

Inversely, the mapping from undeformed coordinates to deformed coordinates in re-

ciprocal space is given by ααα−Tt , i.e.,

k′ = ααα−Tt · k. (B.6)

Note that the volume change due to the mapping of coordinates is accounted for by

Jt.
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