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ABSTRACT

Rydberg molecules and circular Rydberg states in cold atom clouds
by
David A. Anderson

Chair: Georg Raithel

In this dissertation I investigate cold Rydberg atoms and molecules in which the angular-
momentum character of the quantum states involved strongly influences their properties and
dynamics. In the first part I focus on long-range diatomic Rydberg molecules formed by a ru-
bidium D-state Rydberg atom and a second rubidium atom in its ground state. Spectroscopic
measurements of molecular binding energies are presented showing the effect of the Rydberg
atom size and fine-structure coupling on the molecular potentials. A theoretical model is
introduced that takes into account all relevant angular-momentum couplings between the
molecular constituents, successfully reproducing experimental observations. Calculations of
adiabatic potentials and binding energies, molecular-state lifetimes, electric and magnetic
dipole moments are also presented. In the second part, I describe the production and mag-
netic trapping of cold circular Rydberg atoms. The circular Rydberg atoms are generated
out of a cold gas of rubidium using the crossed-fields method and magnetically trapped. The
trapping force is employed to induce center-of-mass oscillations of the trapped atom sample.
Trap parameters and observed oscillation frequencies are used to measure the magnetic mo-
ments of the circular Rydberg atoms. Trap losses and the atomic internal-state evolution in

the 300 Kelvin thermal background are also investigated.
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CHAPTER I

Introduction

1.1 A historical perspective

The development of quantum mechanics during the first decades of the twentieth century
changed our fundamental understanding of nature and provided the language to describe the
structure of atoms and molecules and their dynamics in remarkable detail. Among the many
experimental discoveries and theoretical breakthroughs during this period, two are of notable
influence. The first is the experiments described by Ernest Rutherford in his 1911 paper on
the scattering of alpha and beta particles from various metals, which led him to propose
that atoms consist of a massive central positive charge whose field is compensated by the
negative charge of surrounding electrons [6]. The second was Niels Bohr’s 1913 paper on the
hydrogen atom, which, drawing direct inspiration from Rutherford’s work, introduced the
two entirely new ideas that an electron in an atom could only occupy discrete levels with
quantized energies and that the transitions between two levels were linked to the emission
of monochromatic radiation [7]. In this, Bohr proposed a model in which the electron could
only occupy quantized circular orbits around the positively charged proton. Initially, Bohr’s
theory found success in its ability to account for the Balmer spectral series in hydrogen,
but its applicability waned as it could not account for phenomena observed in experiments
conducted soon thereafter, including the discovery of the spin of particles by Otto Stern

and Walther Gerlach [8]. Nevertheless, the ideas Bohr presented provided the conceptual



framework essential for the subsequent development of the full modern theory of quantum
wave mechanics.

An important aspect of Bohr’s model is that it linked the Rydberg constant, a constant
determined empirically to describe the wave numbers (energies) of transitions in atoms, to
fundamental constants including the mass and charge of the electron. This connection gave,
for the first time, a picture of atomic structure and physical meaning to experimentally
observed spectroscopic signatures of atoms. In addition, Bohr’s model of hydrogen provided
insight into physical properties of atoms beyond their level structures, one being that the
binding energy of the electron in a state of principal quantum number n scales as 1/n?,
establishing that electrons in states of high n are only loosely bound to the atomic nucleus
and are more easily ionized than those in low n states; another being that the radial distance
of the electron in orbit about the nucleus scales as n?, which for states with high n results
in very large orbits and atom sizes. With this, Bohr’s model provided the first description
of what today we call a Rydberg atom, an atom with an electron in a state of high n, and a
first glimpse of the many interesting properties they exhibit.

One of the earliest experiments to directly investigate the properties of Rydberg atoms
beyond their level structures was performed by Edoardo Amaldi and Emilio Segre in 1934 [9]
in which they studied the effects different foreign gases (Hy, Ny, He, and Ar) had on the
high-n absorption lines of Na and K atoms. Their experiment realized conditions in which
the alkali Rydberg atoms were large enough to encompass as many as several thousand atoms
or molecules of the foreign gas within the orbit of the Rydberg electron. They observed that
the absorption lines were shifted substantially in proportion to the pressure of the foreign
gas and were only slightly broadened. Importantly, they found that the foreign gas shifted
the spectral lines to both lower and higher energies depending on the nature of the gas, and
that the shifts were independent of the alkali species. An explanation of these observations
was provided by Enrico Fermi [10] who reasoned that two different mechanisms contributed

to the observed phenomena; the first being a polarization-induced shift in which the electric



field of the unshielded, positively-charged atomic core polarizes the foreign gas in its vicinity
within the orbit of the Rydberg electron. The energy required to polarize the gas is matched
by a reduction in the energy of the Rydberg atom, resulting in a red shift of the spectral line.
To explain the shifts to higher energies, which were unexpected and could not be accounted
for by the first mechanism, Fermi suggested a second mechanism in which the low-energy
Rydberg electron interacts via repeated scattering events with atoms of the foreign gas. In a
quantum treatment, he described the foreign gas atoms as point-like perturbers to the much
larger Rydberg electron wave function and quantified the interaction energy between the
perturber and the electron using a single parameter, the S-wave scattering length A,. The
scattering length, a concept introduced by Fermi for the first time in this 1934 paper, provides
a very general and powerful means to describe low-energy interactions by precluding the need
for an exact form of the interaction potential, which in this case would require knowledge of
the detailed structure of the perturbing atom or molecule. For given values of A, together
with the smaller contribution of the polarization-induced shift, the Fermi model successfully

described the experimental observations.

1.1.1 Long-range Rydberg molecules

The topic of collisions between Rydberg atoms and neutral perturbers was studied peri-
odically in the subsequent decades [11]. In 1977 the theoretical groundwork laid by Fermi
was revisited by Alain Omont [12] who described how the scattering interaction between a
Rydberg electron and ground-state atom essentially amounts to the formation of a molecular
state - a diatomic molecule formed between a Rydberg atom and ground-state atom bound
by an attractive scattering interaction. Despite the novelty of this prediction, very little
attention was paid to it due to the inability of experiments at the time to reach the high
spectral resolution and low thermal energies necessary to probe these molecular states. It
was not until the development of narrow line width tunable lasers [13], that higher resolution

spectroscopy of atomic structure become possible and more detailed studies of atomic and



molecular properties began in earnest. In addition, the subsequent development of laser
cooling and atom trapping techniques, epitomized by the Bose-Einstein condensation (BEC)
of atomic vapors in 1995 [14, 15], opened new prospects for experiments at low energy.

Following these developments, Chris Greene, Alan Dickinson, and Hossein Sadeghpour
pointed out in 2000 that the high densities and low temperatures of atomic BECs provided
suitable conditions for the observation of these molecules [4]. Greene and his colleagues also
showed that the distinctive binding mechanism of these molecules, which is unlike conven-
tional covalent, ionic, and van der Waals bonds between ground-state atoms, would result in
large molecules whose properties are strongly influenced by the angular momentum state ¢ of
the Rydberg electron. They classified Rydberg molecules into two categories: (1) low-¢ Ryd-
berg molecules formed by a Rydberg atom in a non-degenerate angular momentum state with
binding energies corresponding to tens of hx MHz and (2) high-¢ Rydberg molecules formed
by a Rydberg atom in a degenerate mix of high-angular-momentum states, whose binding
energies are typically on the order of hxGHz - a class of molecules they called “trilobite”
molecules with kilo-Debye electric dipole moments. Valuable insights were also provided by
A. A. Khuskivadze, M. I. Chibisov and I. I. Fabrikant, who calculated detailed molecular
adiabatic potentials, wave functions and electric dipole moments for both Rby, and Csy Ry-
dberg molecules [1], highlighting how the potentials for alkali systems are strongly affected
by both low-energy *S-wave and *P;-wave electron-atom scattering resonances [16, 17, 18].
In Rb,, the 3S interaction leads to the trilobite Rydberg molecules [4] and the 3P interaction
produces potentials [19] that are about an order of magnitude deeper and about a factor
of five shorter-range than the trilobite potentials. These theoretical efforts contributed to a
more detailed model of the Rydberg and ground-state atom interaction and the properties
of long-range Rydberg molecules.

Long-range Rydberg molecules were observed for the first time in 2009 in the group of
Tilman Pfau [20]. In their experiment, Rydberg molecules consisting of a rubidium n.S (¢=0)

Rydberg atom and rubidium ground-state atom were photoassociated [21] out of an ultra-



cold rubidium gas. The spectra revealed several weakly-bound (tens of MHz) vibrational
states over a range of n =34 to 40. The spectra were modeled using a Fermi/Omont-
type interaction potential to extract a value for the e™+Rb zero-energy scattering length of
As = 18.5 ay, agreeing qualitatively with predicted values [16, 17, 18]. Since then, Rydberg
molecules have continued to be the subject of significant experimental interest. Develop-
ments include studies of diatomic Rydberg molecules in cesium [22, 23], rubidium P-states
at low n [24] and D-states [25, 26], the realization of coherent bonding and dissociation of
S-type molecules [27], and the first observation of a permanent electric dipole moment in a
homonuclear molecule [28]. Polyatomic Rydberg molecules have also been generated [29] and
employed in a demonstration of the continuous transition between a few-body to many-body
regime in an ultracold quantum gas [30].

The nature of this new molecular bond and the properties of Rydberg molecules are
largely dependent on both the Rydberg-atom wave function and angular-momentum cou-
plings in the molecular constituents. Since their discovery, however, the effects of angular
momentum on the properties of long-range Rydberg molecules have remained largely unex-
plored. In this dissertation (Chapters IV and V) I study the effects of angular momentum
on the properties of rubidium Rydberg molecules. In experiments, the ¥Rb(nD + 55 s)
molecules are photoassociated out of a cold rubidium gas. The vibrational ground-state ener-
gies are measured for 34 < n < 40 and found to be larger than those of their ¥ Rb(nS+5S52)
counterparts, showing the dependence of the molecular binding on ¢. The molecular binding
energies are described using a simple Fermi-type model that includes S-wave triplet scat-
tering and the fine structure of the nD Rydberg atom, from which a value for the triplet
S-wave scattering length is obtained. The transition of 3Rb(nD + 55;/5) molecules from
a molecular-binding-dominant regime at low n to a fine-structure-dominant regime at high
n [akin to molecular angular-momentum Hund’s coupling cases (a) and (c), respectively] is
also revealed. An expanded Fermi model for Rydberg molecules is introduced with all the

relevant angular-momentum couplings including S-wave and P-wave singlet and triplet scat-



tering of the Rydberg electron with the 5S;/; atom, along with the fine structure coupling of
the Rydberg atom as well as the hyperfine structure coupling of the 5S;/,5 atom. For high-
¢ Rydberg molecules, the molecular binding interaction is stronger than the fine-structure
coupling, and is comparable to the hyperfine coupling of the ground-state perturber. Inclu-
sion of the 5S; » hyperfine coupling in the model generates additional adiabatic potentials of
mixed triplet and singlet character in both high- and low-¢ molecules. Very recently, low-/¢
molecular bound states in these spin-mixed potentials have been observed in Csy [23].
Alongside their appeal as fundamentally new molecular systems, long-range Rydberg
molecules are also unique in part because they amount to very low-energy (< 1meV) electron-
atom scattering experiments at the single-atom level. Because of the strong dependence of the
molecular potentials and bound-state energies on the electron-atom scattering phase shifts,
absolute measurements of these phase shifts at meV electron energies become possible via
high-resolution spectroscopy on these molecular states. Understanding the relevant angular-
momentum couplings and their effects on the properties of long-range Rydberg molecules is

a prerequisite to such measurements.

1.1.2 Circular Rydberg atoms

Bohr described the hydrogen atom as having a single valence electron in a circular orbit
around the atomic core. Today these atoms are known as circular atoms, whose quantum
wave function is a torus peaked along the circle of the classical Bohr orbit of the electron.
Circular Rydberg atoms combine a large principal quantum number n with maximal orbital
and magnetic quantum numbers ¢ = |m| = n — 1, and exhibit a unique set of properties.
These include extremely long radiative lifetimes (~ milliseconds to seconds, compared to
typical atomic state lifetimes of ~ nanoseconds to microseconds), giant magnetic moments
(readily an order of magnitude larger than those of their low-¢ counterparts), and posses no
linear Stark shifts and small quadratic Stark shifts.

While the quantum description of circular atoms was established early on with the de-



velopment of quantum mechanics, the preparation and observation of these atomic states
in the laboratory came much later. Due to the technical difficulty of imparting many units
of angular momentum into an atom, circular Rydberg atoms are not readily produced by
conventional optical excitation since a single photon carries only one unit of angular momen-
tum. It was not until 1983 that Randall Hulet and Daniel Kleppner demonstrated for the
first time the efficient transfer of lithium atoms from low m states to |m| = n — 1 circular
states using an adiabatic rapid passage technique [31]. In this technique, the lowest-lying m
state of a Stark manifold is first optically excited in the presence of an electric field. This is
followed by the application of a fixed-frequency microwave field which couples A|m| = +1
transitions as the electric field is ramped down linearly, tuning the states into resonance.
Due to the different quadratic Stark shift of the m levels, the transitions occur consecutively
in time until the maximally allowed value of |m| (i.e. the circular state) is reached. Since
then modifications to this method and other methods for the production of circular Rydberg
atoms have been developed and demonstrated [32, 33, 34, 35]. Another production technique
of particular relevance to this dissertation is the crossed-fields method, which was proposed
by Delande and Gay in 1988 [5, 36] and demonstrated soon thereafter by Hare et al. [37]. In
this method, an atom is optically excited to an extreme hydrogenic Stark state and trans-
ferred to the circular state using only external electric and magnetic fields, precluding the
need for a large number of microwave photons.

With the tools to generate circular Rydberg atoms in the laboratory, many experiments
were able to exploit the properties of these high-angular-momentum states, and in particular
their long lifetimes and reduced energy-level perturbations. Transitions between circular
states provide a near-perfect two-level system due to their single radiative decay channel
(|m| — |m|—1), making them suitable for atom-cavity interaction experiments [38]. Circular
atoms have found great success as model systems for quantum measurements and landmark
tests of quantum mechanics [39, 40, 41], a body of work that was recognized by the 2012

Nobel prize in physics shared by Serge Haroche and David Wineland [42, 43]. A notable



recent experiment used circular Rydberg atoms for the first non-demolition measurement of
single photons [44]. There, microwave photons stored in a cavity were probed repeatedly
by circular atoms, whose large dipole matrix elements make them sensitive to light-shifts at
the single-photon level. The reduced nuclear and QED perturbations, and low sensitivity to
external fields of circular states have also made these atoms good candidates for precision
Rydberg spectroscopy and high precision measurements of the Rydberg constant [45, 46, 47].

Experiments with circular atoms have to date been performed at high temperature, pri-
marily using atomic beams. A number of proposed experiments require circular atoms at
low temperature. These include a recent proposal for a high-precision measurement of the
Rydberg constant [48] using an amplitude-modulated optical lattice [49] to drive transitions
between circular and near-circular Rydberg levels. In this effort, circular Rydberg atoms at
T < 1uK are required in order to utilize shallow lattices, which are necessary for reduced
lattice-induced shifts of the Rydberg levels. Recently, the use of cold circular Rydberg atoms
to realize a two-qubit quantum gate has also been proposed [50]. Due to the toroidal shape
of their wave functions, circular Rydberg atoms are also expected to have highly anisotropic
collision cross sections [51, 52]. A means to generate circular atoms at low temperature
would enable experimental studies of low-energy collisional processes involving high-¢ and
circular state atoms.

In Chapter VI of this dissertation I describe and demonstrate a technique for the produc-
tion and trapping of circular Rydberg atoms at low temperature [53]. This is accomplished
by generating circular Rydberg atoms locally in a cold, magnetically-trapped sample of 8"Rb
atoms in their ground state using the crossed-fields method. The high spatial resolution
afforded by the optical excitation in this method, along with the presence of the local mag-
netic trapping field, make this method particularly well-suited for localized circular Rydberg

atom generation in magnetically-trapped ground-state atom samples.



1.2 Dissertation framework

This dissertation is organized as follows. In Chapter II I present some theoretical back-
ground to the work discussed in subsequent chapters. The content is drawn from several
standard texts on quantum mechanics and atomic physics [54, 55, 56, 57, 58]. In Chap-
ter IIT I describe the experimental apparatus and methods used for preparing and probing
cold, dense rubidium ground-state and Rydberg atoms. Rubidium is used in all the experi-
ments in this work. In Chapter IV I describe an experimental study of long-range rubidium
nD Rydberg molecules and the influence of the Rydberg-atom angular momentum and fine
structure on the molecular binding. In Chapter V I present a detailed theoretical study on
the influence of angular-momentum couplings in 8" Rb, long-range Rydberg molecules formed
between a D-state Rydberg atom and 5S; 5 ground-state atom. A Fermi model is introduced
that includes S-wave and P-wave singlet and triplet scattering of the Rydberg electron with
the 5S;/ atom, along with the fine structure coupling of the Rydberg atom and hyperfine
structure coupling of the 55/, atom. In Chapter VI I describe the production and magnetic
trapping of cold circular Rydberg atoms. Trap losses and the internal state-evolution and
dynamics of the trapped circular state atoms in the T=300 K black body radiation field are

characterized.



CHAPTER II

Theoretical background

In this chapter I review some general theoretical background relevant to the work in
the following chapters. I begin in section 2.1 with the non-relativistic time-independent
Schrodinger equation for atomic hydrogen, which serves as a model for Rydberg atoms with
more complex internal structure followed by the hydrogen fine structure in section 2.2. In sec-
tion 2.3 I cover general properties of Rydberg atoms and some distinguishing features of low-¢
and high-/ states, including radiative lifetimes and effects of blackbody radiation. The Stark
effect for Rydberg atoms and the Rydberg excitation blockade are also described. Finally, in
section 2.4 I introduce the theoretical framework used to describe long-range diatomic Ry-
dberg molecules formed by a Rydberg atom and ground-state pertuber. Elastic scattering
theory and its application to low-energy electron-Rb scattering is described. The adiabatic
molecular potentials for long-range Rydberg molecules resulting from the scattering-induced
interaction are introduced and the vibrational and rotational energies of the molecular states
discussed. In the final section of this chapter I describe Hund’s cases for the classification of

angular-momentum couplings in diatomic molecules.

2.1 Hydrogen

Due to the similarity of hydrogen to other single-electron atoms, the hydrogenic wave

functions and state energies provide a useful framework for understanding the properties
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of Rydberg atoms. Hydrogen serves as a particularly good model for high-¢ and circular
Rydberg states of heavier atomic species as a result of the weak interaction between the
Rydberg electron with the atomic core for these states.

One of the most well-established applications of quantum mechanics is its use in de-
scribing atoms with a single electron orbiting in the Coulomb field of a nucleus. The non-
relativistic time-independent Schrodinger equation for an electron of mass m, and charge —e

in the field of a nucleus with mass M and charge Ze is

h2
[—EVQ +V ()Y = Ey, (2.1)
where the potential V(r) = —% is the Coulomb potential energy of the electron in the
meM

field of the positively charged nucleus and p = ( is the reduced mass of the system.

e+ M)
For hydrogen Z =1 and M is the proton mass.
Considering only the relative motion of the two particles and assuming there are no
external forces, Eq. 2.1 can be separated in spherical coordinates where the center of mass
(which is near the nucleus) is chosen to be at the origin with an arbitrary direction for the
polar axis z, and (r,0,¢) is the spatial coordinate of the electron. Writing the Laplacian

operator V2 in spherical coordinates, and expressing the eigenfunction solutions as a product

of radial and angular functions

1/)(7‘7 ‘97 ¢) - Rn,f(r>n,m(07 925) (22)

Eq. 2.1 separates into two differential equations, one for the radial part of the wave function
and one for the angular part of the wave function. The differential equation satisfied by the

angular functions Y7,,(6, ¢) is

W2 LYo (6, ¢) = BP0+ 1)Yom(6, 9), (2:3)

. 1 9 9 1 82

o P Ay A S S 2.4
0265 0%) sin2 0 0¢2 (24)
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where L? is the operator for the orbital angular momentum squared and ¢ is the orbital
angular momentum quantum number, which can take on any integer value from 0 to n — 1.

For a given £ this results in 2¢+ 1 unique solutions to Eq. 2.3 given by the spherical harmonics

Yo (0, 6) = \/ (%4; D Ei - Z;;Pgm(cosé’)eim(b, (2.5)

where P, are the associated Legendre functions and m is the magnetic quantum number,
which can take on any integer value from —/¢ to /.

The differential equation satisfied by the radial functions R, ¢(r) is given by

—h%21 d d
[ET—Q%W%) + Vers(r)]Rne = EnRyy, (2.6)

where the effective potential

R+1) Ze?
Verp(r) =

_ 2.7
24412 dmegr (27)

includes both the radial Coulomb interaction energy and the repulsive centrifugal term. The
binding energy of the electron is

pet 72

En=———"533
(4meg)?2h% n?

(2.8)

which depends only on the principal quantum number n as a result of a degeneracy of states

with different ¢ in the Coulomb potential. The radial wave function R, ¢(r) is given by

(n—é—l)!% 3 - 072041
Ry (r) = — 3 rr2e "(kr) Ly (kr 2.9
) = = e ) L ) (2.9

where L2 (rr) are the Laguerre functions and x = 2Z/n. Combining Equs. 2.5 and 2.9

one then obtains a complete expression for the hydrogen wave functions.
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2.2 Fine structure

In addition to orbital angular momentum ﬁ, which in a classical picture is a measure
of the particle’s rotation about a given axis and depends explicitly on its spatial degrees of
freedom, a particle can also have a spin S, which is an intrinsic property with no classical
counterpart. Generally, in atoms and molecules the coupling between angular momenta of
the constituent particles can strongly influence their level structures and properties. The
quantum treatment of angular momentum and addition of angular momenta is reviewed in
Appendix A.

LS-coupling and relativistic effects lead to additional fine structure splittings of atomic
energy levels. In hydrogen, the fine structure splittings are not accounted for in the non-
relativistic Schrodinger equation in Eq. 2.1 but are fully accounted for in the relativistic
quantum mechanics of Dirac, which gives an exact expression for the electron binding energy

in the absence of external fields [54]

EDirac aZ 21—-1/2
=1+ -1 2.10
mec? <n—k’+~/k2—a2Z2H (2.10)

Here, k = j + 1/2 where j is the quantum number for the total angular momentum J=L+S
of the electron, where L is its orbital angular momentum and S its spin. The constants
a = e*/4reghc = 7.297 x 1072 ~ 1/137 and ¢=2.998 x 10® m/s [59] are the fine-structure
constant and speed of light, respectively. Expanding Eq. 2.10 in powers of («Z)? and taking

the first two terms gives

Ry 2° 1 (aZ)2< 1 3

n? n j+1/2 4n

By = ) (2.11)

where the Rydberg energy Ry=m.c?a?/2 is ~13.6 eV [59]. The zeroth order term in Eq. 2.11
reproduces the non-relativistic binding energy of the electron given by Eq. 2.8. The first-

order term adds a fine-structure correction on the order of a? ~ 10~* — 10~° times the
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non-relativistic binding energy, and depends on both n and j. The splitting between the

j=104+1/2 and j = ¢ — 1/2 fine-structure states is given by

_ Ry 7Z%? 1

(1)
BB n? (E(E + 1))'

(2.12)

It follows that the fine-structure coupling for low angular-momentum (n > ¢) and high
angular-momentum (n & ) states scales as &~ 1/n® and ~ 1/n®, respectively, and the fine-
structure energy for low-¢ states is larger than for high-¢ states. In hydrogen-like alkali
Rydberg atoms, whose outer electron is affected by the presence of a larger inner core, the
relativistic corrections and core penetration to the energies are accounted for using quantum
defects (see section 2.3). However, the general n (n* in quantum defect theory) and ¢ scaling

behaviors of the fine-structure in (2.12) hold.

2.3 Rydberg atoms

Alkali Rydberg atoms are similar to hydrogen in that they have a single unpaired electron
orbiting a positive central charge. The difference lies in that the positive central charge of
alkali atoms is a larger and more complex ion, consisting of electrons in closed inner shells
surrounding a heavy nucleus. For high-¢ states, whose wave functions have a small overlap
with the ionic core, the Rydberg electron experiences nearly the same Coulomb potential as in
hydrogen and their energies are similar. For low-/ states, whose wave functions have a larger
overlap with the core, there is less screening of the nuclear charge resulting in significantly

lower energies compared to those in hydrogen. The binding energy of a Rydberg electron is

R alkali . _RYalkah

E, = — =
(=62~

, (2.13)

where n is the principal quantum number and dy; are the quantum defects, which account

for core perturbations and fine-structure in alkalis, n* is the effective principal quantum
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number, and Ry, is the Rydberg energy for a Rydberg alkali atom with effective mass p.

The quantum defects dy; also have a small energy dependence given by

B 5 54 56
bty = b0+ T+ o T T (2.14)

where the parameters g, d2,d4, dg, ... are determined empirically. For rubidium and other
alkalis, the quantum defects have been measured to high precision [56, 60, 61]. For high-¢
states a small quantum defect correction due to core polarization is often used given by
8¢ = 3ap /405 [56], where the measured dipolar polarizability for Rb* is ap = 9.023 atomic
units [62]. Low-¢ and high-¢ states are typically distinguished by the size of their quantum
defect. In rubidium, the S, P, and D states (¢ = 0,1 and 2, respectively) are typically
categorized as low-¢ because they have quantum defects on the order of 1, while the F, G
and higher-¢ states (¢ > 3) have much smaller defects and comprise the high-¢ group.!
Rydberg atoms exhibit properties that scale strongly with n*. Table 2.1 summarizes
some of the properties of Rydberg atoms and their n*-dependence. From Table 2.1, it is
apparent that all Rydberg atoms share similar characteristics and that low-¢ Rydberg states
exhibit different physics than high-¢ Rydberg states. In the following sections I describe in
more detail several Rydberg atom properties relevant to this work, highlighting important

differences between low-¢ and high-¢ Rydberg states.

!The small quantum defects for the F and G states in rubidium have also been measured [63, 64].
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Table 2.1: Selected properties of Rydberg atoms and their dependence on n*.

Property n*-scaling

Binding energy n*2

Orbital radius n*?

Classical velocity n*1

Keppler frequency n*3

Geometric cross section n*

Dipole moment (n*'¢ = ¢ + 1|er|n*() n*?

Polarizability n*’

Energy splitting between adjacent n* n*3

n* >/{ n* ~/{

Fine-structure splitting n*3 n*=>
Radiative lifetimes n*3 n*o

2.3.1 Radiative lifetimes

Perhaps the most striking difference between low- and high-¢ Rydberg states are the
significantly longer lifetimes of high-¢ states compared to those of low-¢ states. The lifetimes
can be understood by considering spontaneous decay rates. The spontaneous decay rate
from a Rydberg state |i) = [n*f) to a lower-energy state |f) = |[n*'¢’) is given by the Einstein
A coefficient

3

Vs
A= —0 1d, |2 2.15
=7 371'607163‘ -1 (2.15)

where v;_, s is the transition frequency and d;_,; = (f|er|i) is the transition dipole moment.

The total spontaneous decay rate out of state |i) is obtained by summing over all final states
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|f) and the initial state’s radiative lifetime is given by
= (> A (2.16)
f

Due to the strong dependence of the decay rate (2.15) on v, transitions with the highest
frequency generally contribute the largest terms in the sum (2.16), and the dominant decay
channel for a high-lying atomic state is a dipole-allowed transition to the state with the
lowest energy. For Rydberg states with n* >> ¢, the change in principal quantum number
An* is therefore large compared to the A¢ = 41, imposed by dipole selection rules. In the
limit of high n* the transition frequency v approaches a constant due to the n*~2-scaling of
the binding energy, and for low-¢ Rydberg states the decay rate is then mostly determined
by the dipole moment between the high-n Rydberg state and a low-n atomic state. This
amounts to the n*~%/2-dependence of the Rydberg wave function at small distances from the
ionic core [54, 56]. The wave function density near the nucleus is then ~ n*73 and for the
lifetimes of low-¢ Rydberg states one then finds

mad oS (2.17)

The decay behavior is different for high-¢ Rydberg states with n* ~ n ~ ¢. Consider a
circular state (CS) which has maximal angular momentum ¢ = n — 1. By dipole selection
rules, the spontaneous decay out of the CS is limited to a single decay channel with Af =

3

An = —1. In this case, the transition frequency v o« n™ is much smaller. The transition

dipole moment, on the other hand, is larger and scales like the size of the atom d = (n’ =
n— 1,0 =n—2ler|nf = n — 1) ~ n? due to the large overlap of the wave functions. From

this one then finds for the lifetimes of Rydberg atoms in high-¢ states

Tﬁ?gh—z o n’. (2.18)
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Rydberg atoms with n = 10 — 100 are common in experiments, spanning a broad range
of radiative lifetimes for both low- and high-¢ states. Radiative lifetimes for selected low-

and high-¢ Rydberg states are given in the T'= 0 K column of table 2.2.

Table 2.2: Lifetimes of selected Rydberg states at T=0 and 300 Kelvin.

Rydberg state T=0 K (7794) T=300 K (1)
Rb(60P) ~ 500 s ~ 200 ps
Rb(60CS) ~T70 ms ~ 400 ps

In practice, the measured lifetimes of Rydberg states are smaller than their radiative
lifetimes due to additional decay processes such as collisions with other particles and inter-
actions with external fields [65]. For the circular state experiment discussed in chapter VI, in
which cold circular Rydberg atoms are produced and magnetically trapped, the long interac-
tion times of the circular states with their environment allow additional decay mechanisms
to significantly influence their decay behavior. There, collisions between circular Rydberg
atoms and ground-state atoms as well as thermally-induced transitions out of the CS due to

300 K black body radiation play dominant roles.

2.3.2 Black body radiation

Rydberg atoms are strongly affected by room-temperature black body radiation. This is
due to the fact that k7 = 2.6 x 1072 eV at T' = 300 Kelvin is much larger than the transition
energies hv ~ 107° eV between Rydberg states, and the transition dipole moments for
Rydberg-Rydberg transitions are large, typically d > 10° eaq. In a thermal radiation field,
the stimulated emission rate from a Rydberg state to another state is equal to its spontaneous

decay rate times the photon occupation number of a corresponding mode v in a black body
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radiation field at temperature T' [56]

Bi—>f = ﬁAi—>f

Ai%f
= T (2.19)

The stimulated absorption rate of a thermal photon is similarly given by Eq.2.19 with the
transition rate A,_,; evaluated for the transition to the final higher-energy state. The black

body limited lifetime is then obtained as in (2.16)

=0 By (2.20)
f

where now the sum is over all states at both lower and higher energy, including continuum

states. From this, the total Rydberg atom lifetime then becomes

1 I
1 T 7o) L (2.21)

r=(

For Rydberg atoms, hv << kT and n =~ kT /hv so the number of thermal photons

available to drive transitions generally increases oc n*3. For high-¢ Rydberg states, whose

radiative decay rates scale as n™° (2.18), one might expect from (2.19) that B; X n=2. In
fact, it can be shown that
kT

which is typically valid for n* 2 15 and does not depend on ¢ [56]. From this, the effects of
black body radiation on the lifetimes of high and low-¢ states become apparent. Since the

rad

radiative lifetimes 7724 of high-¢ states are typically much longer than 7P, the total decay
of a high-/¢ state is dominated by black body transitions which often result in a significant
redistribution of population between nearby Rydberg levels. For the low-¢ states, whose

radiative lifetimes are shorter, thermally-driven decays play a smaller role and the lifetimes
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are less affected. A comparison is given in table 2.2, which shows calculated lifetimes for
rubidium 60P and 60CS Rydberg state for both T=0 (radiative only) and 300 K (radiative
and black body).

These lifetimes reflect the typical time the atom spends in a well-defined Rydberg state.
For atoms in circular and high-¢ Rydberg states, a 300 Kelvin radiation background preferen-
tially drives transitions to nearby Rydberg states with comparatively long radiative lifetimes.
There, the time the atom spends in a highly-excited Rydberg state prior to decaying to the
ground state or being ionized by the thermal radiation background is typically longer than
the lifetime given by Eq. 2.21. This is in contrast to low-¢ states, which are less affected by
thermal radiation and preferentially decay to low-lying states. As a result, in atom counting
and trapping experiments, while an atom may have decayed in a strict sense, there is often
still a measurable signal over much longer times and the definition of a “lifetime” becomes
ambiguous.

In addition to driving resonant transitions between states, the black body radiation field
also contributes to AC Stark shifts of the atomic energy levels. For Rydberg states, this
amounts to a ponderomotive energy shift of the loosely bound Rydberg electron in the
oscillating black body radiation field. At T=300 K, the black body induced shift is ~ 2 kHz,

which is much smaller than the smallest (~MHz) energy scales relevant in this work.

2.3.3 Stark effect

The shifting and splitting of spectral lines of atoms and molecules in a static electric field
is known as the Stark effect. Due to their large electric dipole moments, Rydberg atoms are
generally very sensitive to electric fields and exhibit large Stark shifts compared to atoms in
low-n and ground states. The Stark interaction between an atom with a dipole moment d
and an electric field E is [56]

Vstark = —d - E. (2.23)
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Using the spherical basis and choosing the direction of the electric field to be along r, the
matrix elements are

(Vistark) = eE(n'0'm/|F|nfm). (2.24)

The dipole operator in Eq. 2.23 only couples states with opposite parity (m = m’ for E || 2
and ¢/ = (+1). Since the matrix elements in Eq. 2.24 are all proportional to F, it follows that
the Stark states are linear combinations of zero-field high-¢ states. These states exhibit linear
Stark shifts and therefore posses permanent dipole moments. The Stark shifts and dipole
moments are also dependent on m. For the circular state, which has |m| = ¢ =n — 1, there
exists no other state with the same n and m. The circular state therefore exhibits no first-
order Stark shift (and only a small second-order Stark shift ~ n%). The lower m states, on the
other hand, include degenerate ¢ states that do couple with increasingly larger radial matrix
elements at lower ¢. The lowest m states in the manifold therefore exhibit the largest Stark
shifts, which are equal to approximately i%nQEeao for the most extreme states. This also
follows from describing the Stark effect in parabolic coordinates. In parabolic coordinates,
Schrodinger’s equation remains separable in the presence of an electric field, and the states
are defined by parabolic quantum numbers n; and ns, in addition to n and |m| [54, 56]. The
parabolic quantum numbers are connected by n = 1+ |m|+ny +ng, and the first-order Stark
energies given by %Eeaon(nl —na).

For non-degenerate low-¢ Rydberg states, the matrix elements in Eq. 2.24 vanish and one
needs to go to second order in the field for a contribution to the energy. The low-{¢ states

therefore do not have permanent dipole moments and exhibit quadratic Stark shifts
@_ L1 =
<VSta7‘k:> = _éapolE ) (225)

where the static polarizability

‘ 2

némler|n'¢'m’
= 2™ Lmerlacem

2.26
Wnﬁm - Wn’f’m’ ( )

n'#n
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Here, W, is the energy of the atomic state i. The polarizabilities of low-¢ Rydberg states
scale approximately as n”, making them very sensitive to electric fields. In this work, Stark
spectroscopy on rubidium D-state Rydberg atoms (apo ~ [2 X 1071 GHz/(V/em)?] x n')
is performed to measure electric fields in the experiments and calibrate voltage-controlled

electrodes used to control electric fields in the experimental region (see section 3.3).

2.3.4 Rydberg excitation blockade

Due to their large dipole moments and polarizabilities Rydberg atoms also exhibit strong
electrostatic interactions with other Rydberg atoms. For low-¢ Rydberg states, which do
not have permanent dipole moments, the interaction results from the large transition dipole
moments to nearby states. Resonant transitions give rise to first-order dipole-dipole inter-
actions AW® oc n#/r? and off-resonant transitions give rise to second-order van der Waals
interactions between the atoms AW®) oc n'!/r®. For low-/ states the van der Waals usually
dominates at long distances in the absence of external fields [66].

A consequence of the strong interactions between Rydberg atoms is the Rydberg exci-
tation blockade [67, 68, 69]. The blockade can be interpreted qualitatively as a process in
which the electrostatic field of one Rydberg atom Stark shifts atoms in its vicinity out of
resonance with the optical excitation field thereby inhibiting, or “blocking” their excitation
to Rydberg states. Since the interaction strength between Rydberg atoms depends on their
separation, the effectiveness of the blockade is limited in range. In the van der Waals case,

this range is given by the blockade radius

Cﬁn*ll

o) (227)

Tb:(

where vy is the line width of the excitation laser and the Cy coefficient sets the strength of
the Rydberg-Rydberg interaction, which for low-¢ states in rubidium have been previously

calculated [70] and recently measured [71]. Since the initial Rydberg excitation is not deter-
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ministic, the excitation blockade is in reality not a two-step process but a many-body effect,
which in recent years has been a subject of significant interest for applications in quantum
information processing [72, 73, 74]. In this work, the Rydberg blockade is not a topic of inter-
est in itself but because it can influence the number of Rydberg atoms generated by optical
excitation in an atomic sample it nevertheless plays an important role in the interpretation

of the Rydberg excitation spectra.

2.4 Long-range Rydberg molecules

The Rydberg molecules of interest in this work consist of an atom in a highly excited
Rydberg state and a second atom in its ground state. These molecular states are unique
in that the binding arises from an attractive low-energy scattering interaction between the
Rydberg atom’s valence electron and the ground-state atom. The theoretical framework for
these molecules is generally well-established. The interaction between a low-energy Rydberg
electron and ground-state atom can be described using a Fermi pseudo-potential approach [4,
10, 12]. In the Fermi model, the ground-state atom is treated as a delta-function perturber
of the Rydberg-electron wave function, resulting in oscillatory potential curves with localized
minima capable of sustaining bound molecular states. In this section I give some background
on low-energy electron-atom scattering and how this scattering interaction gives rise to bound

molecular states for a Rydberg electron scattering off of a ground-state atom.

2.4.1 [Elastic scattering and partial waves

The formal quantum approach to elastic scattering between two particles is to treat it as
the scattering of a single particle with reduced mass u by a potential Vi(r). In this center
of mass coordinate system, the free particle incident with momentum hk along the z axis

is treated as a plane wave 1;, = e** and the scattered particles, far from a spherically-

ezlm‘

symmetric scattering center Vi(r), are treated as an outgoing spherical wave 1o, = f(0)%—~.
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At large distances (r — 00) the full wave function then takes the asymptotic form [55]

ikr
b~ et 4 f(@)er , (2.28)

where f(0) is the scattering amplitude and is a function of the scattering angle 6 between the
z-axis and direction of the scattered particle. With the assumption that the two components
of the asymptotic wave function (2.28) do not interfere, namely that the measurement is
made of 1,,; only, the differential cross section for a particle scattered between 6 and 6 + df
is given by

do 9

— = 2msin(0)]f(0)]

i (2.29)

The exact wave function is a solution to Schrodinger’s equation whose radial wave function

satisfies
R 1 d ( o ARy
212 dr " Tar

) + [Ek - Veff(r)]RkJ = O, (230)
where the effective scattering potential is given by

R +1)

Vss(r) = (0, (2.31)

2412

where E}, = % is the kinetic energy of the two-particle system.? It follows from the form of
2.28 that all solutions to Eq. 2.30 are axially symmetric about z, and therefore independent
of ¢, and that each corresponds to the motion of the particles with energy E, orbital angular
momentum [/, and zero projection onto the z-axis, m; = 0. The wave function then takes the

form

Y= Z C1P(cos(0)) Ry, (2.32)

=0

2Note the use of [ here to distinguish the angular momentum associated with the scattering from the
atomic orbital quantum number £.
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where C; are coefficients and F,(cos(f)) are the Legendre functions. In order for ¢ to have

the asymptotic form of Eq. 2.28

1 ‘
Cr=(2+ 1)i'er®) (2.33)
and
2 . Im
Ry, ~ = sin(kr — 5 o (k)), (2.34)

where 0;(k) are the energy- and [-dependent phase shifts of Ry ; relative to the incident wave.
Combining 2.33 and 2.34 for the asymptotic form of the full wave function 2.32; one obtains

the scattering amplitude and corresponding total cross section [75]

F0) = > (21+1)fi(k)Pi(cos(6)) (2.35)
=0
o = ‘%Z(%H)sin?(al(k)), (2.36)

=0

and the [-th partial-wave amplitude f;(k) and corresponding partial cross section

et — 1 1
flk) = —5 ~ keot(0(k)) — ik (2.37)
o = 4n(2l+1)|fi]% (2.38)

In the limit where £ — 0 only the [=0 component contributes, and the elastic cross section
is given by

lim o = 4m A%, (2.39)

where Ay is the zero-energy S-wave scattering length.

2.4.2 Low-energy electron-Rb scattering

The diatomic Rydberg molecules studied in this work result from a low-energy scattering

interaction between a Rydberg electron and a rubidium ground-state atom. Since the Ryd-
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berg electron’s kinetic energy depends on its location within the Coulomb field of the atomic
core and the ground-state atom can in principle reside anywhere within the spatial extend
of the Rydberg-atom wave function, the energy-dependence of the scattering interaction is
important for describing long-range Rydberg molecules. The energy-dependent partial-wave
scattering length for low-energy electron-atom scattering can be expressed as [12, 19]

_tan(él(k))

Ay(k) = L2+1

(2.40)

At increasing interaction energies, [ > 0 partial waves contribute to the interaction. The
contributing partial waves can be determined by comparing the energy of the scattering
particles Ej, to the effective potential energy V.sr. If Fj is small compared to V. ;¢ such that
there is a negligible tunneling probability through the centrifugal barrier, the corresponding
(-th partial wave does not significantly contribute to the scattering interaction and can be
neglected. At low temperature, the thermal motion of the ground-state atom and Rydberg
atom is negligible compared to the kinetic energy of the Rydberg electron, which sets the
interaction energy Ej.2> The kinetic energy of the Rydberg electron as a function of distance
R from the ionic core can be obtained from the semiclassical expression

h2k? Ry e?
20 202 dmeR

(2.41)

For a 34D Rydberg electron at a distance of 2000 a¢ from the atomic core, corresponding
to the outermost lobe of the 34D Rydberg wave function, E;, ~ 1 meV. For electron-Rb

scattering, the scattering potential Vi(r) can be described by the short-range polarization of

3Tt is also instructive to consider the different timescales for the motion of the particles involved in the
scattering interaction. Consider atoms at a temperature T' = 20 pyK, with a corresponding thermal energy
~ h x 200 kHz and average velocity ~ 5 cm/s. An n = 34 Rydberg electron scattering off of an atom in this
sample has a Keppler frequency of 167 GHz. The average distance traveled by the atom over the course of
one Keppler orbit of the Rydberg electron is ~ 2 x 10~ !3m, and hundreds of scattering events can take place
before the atom moves one Bohr radius.
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the ground-state atom by the Coulomb field of the Rydberg electron

62 ARy

Vool = =551
Pl (4meg)? 214

(2.42)

where the polarizability of the rubidium ground-state atom ag, = 319 4+ 6 in atomic units
(= hx0.079440.0015 Hz/(V /cm)? in ST units) [76]. Here, r is the relative coordinate in the
center of mass frame of the ground-state atom and electron system. Figure 2.1 shows V¢ (r)
for [ = 0,1,2, where we see that for [ = 0 the interaction is purely attractive, and for [ = 1
the centrifugal barrier peaks at =~ 40 meV around 16a,. At 1 meV electron energies, the
tunneling probability through the [ = 1 barrier is small. The molecular states investigated in
Chapter IV are associated with these low-energy electron-Rb interactions and are dominated
by S-wave scattering.* P-wave scattering is not entirely suppressed, however, and can have
a substantial effect on the molecular adiabatic potentials at smaller internuclear separations
where the Rydberg electron kinetic energy is higher. The effects of P-wave scattering on the
molecular potentials is investigated in more detail in Chapter V. As a result of the [? scaling
of the centrifugal term, D-wave and higher-order (I > 2) partial waves are nearly entirely
suppressed for the molecular states of interest and are therefore neglected.

Low-energy electron-atom scattering interactions can also exhibit resonances. These
occur at specific energies where the electron and atom remain bound together for a time
exceeding the expected transit time of the electron through the extent of the atom, forming
a negative ion. Two types of resonances are typically distinguished: those at energies below
the asymptotic energy of the non-interacting free electron and atom system, where the
interaction potential is deep enough to support bound states, and those with energies above

this energy, where the centrifugal barrier confines the scattering particle near the target [77].

4The tunneling probability through the [ = 1 barrier can be estimated by considering an incident Ej =
1 meV electron incident on a rectangular barrier with a height V) ~ 40 meV and width a = 20 ag. The
tunneling probability T is given by
Vi sinh?(ga)
4B, (Vo — Ey)

where ¢ = +/2u(Vy — Ex)/k? and p is the reduced mass. For the above parameters T=0.07.
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The latter are known as shape resonances, which require a repulsive potential barrier and
therefore generally only occur for P-wave and higher [ scattering. Low-energy electron-
Rb(59) scattering exhibits a well-known *P-wave shape resonance near 20 meV [1, 16, 19],

which is discussed further below.
200 -
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Figure 2.1: Calculated V,ss of the electron-Rb polarization interaction for [ = 0,1, 2.

For electron-Rb scattering, the energy-dependent S-wave and P-wave phase shifts d;(k)
have been calculated by Khuskivadze et al. [1]. Their calculated scattering phase-shifts
are shown in Fig. 2.2. The scattering of a Rydberg electron from a rubidium atom in its
551/2 ground-state has both S-wave singlet 1S, and triplet *S; scattering channels. These
correspond to a total spin S=0 scattering channel, in which the combined spin of the Rydberg
electron and 551/ electron equals 0, and three total spin S=1 channels, in which their total
spin equals 1, respectively. The P-wave also has singlet 'P; scattering and triplet 3P;

scattering, where J = 0, 1, 2 is the spin-orbit splitting of the triplet P scattering phase shifts.
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In Fig. 2.2, the P-wave shape resonance occurs at an energy where the 3P scattering phase
shift approaches /2, leading to a divergence of the scattering length (Eq. 2.40). Another
interesting feature is the Ramsauer-Townsend zero crossing of the 3S-wave phase shift at an
energy near 42 meV. There, the scattering length goes to zero and the electron and rubidium
atom become non-interacting, essentially passing right through each other. Generally, both of
these scattering features do not immediately affect the low-energy molecular states studied in
this work but do account for distinct features in the molecular adiabatic potentials described

below and in Chapters IV and V.

e-Rb

Phase (radians)

o

0.00 0.05 0.10 0.15 0.20 0.25
Energy (eV)

Figure 2.2: Calculated S-wave and P-wave phase shifts for low-energy electron-Rb scattering
as a function of energy [1].

29



2.4.3 Adiabatic molecular potentials and bound states

The nature of the binding interaction between a Rydberg electron and ground-state
atom was first described by Fermi [10] to help explain pressure-induced energy shifts of
absorption lines of Rydberg atoms in a high-pressure environment [9]. In Fermi’s treatment,
the deBroglie wavelength of the Rydberg electron (position r) is much larger than that of
a heavy ground-state atom (position R) that lies within the Rydberg atom’s volume, and
their interaction is approximated as a low-energy S-wave scattering process. The interaction

can be described using an S-wave Fermi-type potential of the form
Viseudo (r) = 27 A4(k) 6°(r — R), (2.44)

where Ag(k) is the energy-dependent S-wave scattering length for the electron-atom scat-
tering interaction. As was pointed out by Omont and again by Greene et al. [4, 12], for
negative values of A (k) the interaction can lead to bound molecular states. In their models,
they used that fact that for the scattering of a low-energy electron with a polarizable atom
(i.e. for r=* potentials), the scattering length can be expressed in a form independent of the

scattering phase shifts as [7§]

Aico(k) = Ay + ?k +O(k?), (2.45)

where Ay is the zero-energy S-wave scattering length and « is the polarizability of the
perturbing atom. The scattering length depends on the relative spins of the Rydberg electron
and ground-state atom. For S-wave electron-Rb scattering, predicted and measured values
of the triplet scattering length A%, range from —13 to -19.48 ag [16, 17, 18, 20, 29], leading to
attractive interactions. Predicted values for the singlet scattering length A% range from 0.627
to 2.03 ag [16, 17], which are small and positive, giving rise to weak repulsive interactions.

Figure 2.3 shows the adiabatic molecular potential of the 87Rb(34D5/2 + 55; /2) low-
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¢ molecule calculated for the S-wave Fermi-type interaction potential in Eq. 2.44 with
AT, = —14.0a9. The internuclear axis is chosen along R = Z. The interaction results
in oscillatory potential curves that largely mimic the behavior of the Rydberg atom wave
function, with localized potential minima deep enough to sustain weakly-bound vibrational
states. The outermost well of the adiabatic potential curve centered at 2000 ag coincides with
the outermost lobe of the 34D Rydberg wave function. There, the Rydberg electron energy is
small (< 1meV) and the potential is dominated by S-wave scattering. The v = 0 vibrational
ground-state in this potential well is also shown which has a binding energy of about 46 MHz.
Generally, the outermost well of the adiabatic potential curves for low-¢ Rydberg molecules
is little affected by P-wave and higher-order partial waves and the Fermi-type S-wave model
used here suffices to model molecular spectra. At smaller internuclear separations the higher
kinetic energy of the electron causes the inner wells to be substantially modified by P-wave
scattering channels, and for high resolution spectroscopy on molecular states in these inner
potentials the S-wave Fermi-model is insufficient. The effects of P-wave scattering on the
molecular states of interest here are discussed in Chapter V. At and internuclear separation
around 750 ag, one also sees that the molecular potential crosses zero as a consequence of

the Ramsauer-Townsend zero in the *S-wave phase shift.
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Figure 2.3: Calculated S-wave adiabatic potential for the 8"Rb(n.Ds /24 5851/2) molecule with
Ay = —14.0a9 and apg, = 319 a.u., and the v = 0 vibrational wave function.

In addition to their electronic and vibrational structure, diatomic molecules also have
rotational structure. Due to their large internuclear separations and large nuclear masses,
the rotational energies of long-range diatomic Rydberg molecules are small. The rotational
energies of diatomic molecules can be estimated by considering a rigid rotor model with the
Hamiltonian operator [79]

H,, = BJ?, (2.46)

where J is the (dimensionless) angular-momentum operator and the rotational constant
B = h%/2I = h?/2uR?. Here I is the molecule’s moment of inertia, R the average separation
of the two atoms and g their reduced mass. Schrodinger’s equation and the molecular
rotational energies are then given by

h2
21 R?

J(0,0) = Eat(0,0) (2.47)
Eo = BJ(J+1), (2.48)
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where the energy levels are spaced in intervals of 2B. For the 8" Rby long-range Rydberg
molecules investigated here, ;1 = mp,/2 = 43.5 amu and R ~ 2000 a giving B/h = 10.4 kHz.
From this we see that the rotational energies are smaller than the vibrational energies by
more than an order of magnitude. Since the spectroscopic resolution in the experiments
presented here is limited to ~ 1MHz by laser line widths, the rotational level structure

cannot be resolved and is therefore not considered.

2.4.4 Hund’s coupling cases

In Chapters IV and V of this work I investigate the influence of angular-momentum
couplings on the properties of long-range D-type Rydberg molecules. Hund’s coupling
cases [80] are widely used for the classification of angular-momentum couplings in diatomic
molecules [79]. These cases are idealized angular-momentum coupling cases in which specific
coupling terms in the molecular Hamiltonian dominate over other terms. As a result, they
play an important role in the theory underlying the analysis of molecular spectra and in
determining molecular properties. The five Hund’s cases (a) through (e) are traditionally

defined using the following angular momenta of the molecule:

L is the electronic orbital angular momentum

S is the electronic spin

Jo, = L+ S is the total electronic angular momentum

J is the total angular momentum of the molecule

R =J— L — § is the rotational angular momentum of the nuclei

The diatomic long-range Rydberg molecules of interest here exhibit a wide range of Hund’s
coupling cases. Due to the small rotational energies of the molecules in this work, rotational
coupling in long-range Rydberg molecules is not considered and the Hund’s cases used to

describe the molecules are restricted to R = 0 and J = .J,. Hund’s cases (d) and (e) describe
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configurations for dominant couplings with R and therefore the relevant Hund’s cases here
are cases (a), (b), and (c). Figure 2.4 shows vector angular-momentum-coupling diagrams

for these cases.

Hund’s case (a) Hund’s case (b) Hund’s case (c)

Figure 2.4: Vector angular-momentum coupling diagrams for Hund’s cases (a), (b), and (c)
with R = 0.

Hund’s case (a) describes a situation where L and S are decoupled and each is strongly
coupled to the internuclear axis. In the description of diatomic molecules the natural choice
for a quantization axis is the internuclear axis. The projections of L and S onto the inter-
nuclear axis are A and Y, respectively, and their sum Q = A + X. In this case J is not a
good quantum number. Hund’s case (b) describes a configuration where the LS coupling
vanishes due to A = 0 as well as situations where A # 0 but the coupling between S and the
internuclear axis is small. In Fig. 2.4 this case is shown for L. = 0, where the projection of the
total angular momentum onto the internuclear axis reduces to ¥. Hund’s case (c) describes
a situation in which the LS coupling is stronger than the coupling to the internuclear axis,
making J a good quantum number. Here, A and > are not well defined, and €2 denotes the
projection of J onto the internuclear axis.

Hund’s cases are idealized cases and in most diatomic molecules the coupling configura-
tions are intermediate cases. Long-range Rydberg molecules exhibit a broad range of Hund’s
cases which are distinguished by the relative strength of the angular-momentum couplings in
the constituent Rydberg and ground-state atoms compared to the scattering-induced bind-

ing interaction between the Rydberg electron and ground-state atom. This is exemplified in
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rubidium D-type Rydberg molecules which exhibit a transition between Hund’s cases (a) and
(c) as the n of the Rydberg atom is increased and its fine-structure begins to dominate the

scattering-induced binding interaction. The details of this transition behavior are discussed

in Chapters IV and V.
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CHAPTER III

Experimental methods

The preparation of rubidium Rydberg and ground-state atoms at low temperature is
central to the experiments in this dissertation. A common approach to making cold Rydberg
atoms is to first prepare a sample of cold ground-state atoms and then photo-excite the
ground-state atoms to Rydberg states. Because the process of optically exciting ground-
state atoms to Rydberg states is accomplished with minimal energy and momentum transfer
to the atoms, the temperature of the resulting Rydberg atoms is typically limited by how
cold one can make the ground-state atom sample. Using established atom-cooling techniques,
this readily allows the production of Rydberg atoms at uK temperatures and below. In part
of this work, I am specifically interested in interactions between cold Rydberg and ground-
state atoms, and the formation of long-range Rydberg molecules via these interactions. This
requires a sufficiently high density of ground-state atoms such that the average interatomic
separation of ground-state atoms becomes comparable to the size of the Rydberg atom.
The generation of magnetically-trapped ground-state atom samples at low temperature is
also a prerequisite to producing and trapping cold circular state Rydberg atoms by the
technique described in Chapter VI. In this Chapter, I first review the cooling steps used
to prepare low temperature ground-state atom samples at high density in a magnetic trap.
The experimental apparatus, laser systems, and cooling steps used for the experiments have

been described in detail by previous students [2, 81] so the discussion here is kept brief. The

36



photo-excitation, field-ionization and detection of Rydberg atoms and molecules are then
described. In the final section I describe the calibration of electric fields in the experiments

using Stark spectroscopy on high-lying Rydberg states.

3.1 Preparation of cold rubidium ground-state atoms

3.1.1 Laser cooling

A schematic of the experimental apparatus is shown in the left panel of Fig. 3.1. In
all the experiments, 8"Rb atoms are first collected from a background rubidium vapor and
cooled to ~ 150pK in a pyramidal magneto-optical trap (MOT) [82, 83, 84]. The pyramidal
MOT acts as a low-velocity intense source [85] by emitting an effusive atomic beam directed
along y to load a second MOT located 35 cm away in a separate experimental chamber
at ultra-high vacuum (< 2 x 107'* Torr). Both MOTs are operated on the |55, F' =
2) — [5Ps), F = 3) cooling transition [3] with the addition of a repumping laser on the
551 /2, F' = 1) — |5P39, F' = 2) transition. A diagram of the relevant energy-level structure
in 8"Rb is shown in the right panel of Fig. 3.1 with the optical transitions indicated. Over
the course of 10 seconds, ~ 2 x 108 atoms are collected in the second MOT at temperature
T~ 150 uK and density of ~ 10° cm~3. To increase the atom density, the secondary MOT
is then compressed by simultaneously switching off the relatively weak MOT magnetic field
and turning on a high-gradient (=~ 50 G/cm) quadrupole magnetic field over the course of
50 ms using a U-wire configuration [86]. The compressed MOT is on for 20 ms with the
laser frequencies detuned by an additional line width after which the cloud of atoms is about

2 mm in diameter and at a density of ~ 10 cm™3.
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Experimental apparatus 87Rb energy-level diagram
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Figure 3.1: Left: Schematic of the experimental apparatus [2]. Right: 8’Rb hyperfine struc-
ture energy-level diagram. Frequency splittings, Landé g-factors for each level and their
corresponding Zeeman splitting between neighboring magnetic sub-levels are indicated on
the plot. Values are taken from [3].

Prior to switching on the magnetic trap, the atoms are further cooled by doing a 4 ms
corkscrew optical molasses and then optically pumped to the |F' = 2, mp = +2) ground state
on the |55/, F' = 2) — |5P35, F' = 2) transition (see Fig. 3.1). For optimal transfer of the
laser-cooled atoms into the magnetic trap, the atom cloud and magnetic trapping potential
need to be mode matched. The mode-matched condition requires that the atoms have a
temperature and Gaussian width o; along the i dimension such that the kinetic energy of

the atoms equals its average potential energy in the harmonic trap

kgT o7 1 [kgT
B :meUZ%wi:_ -5 ) (3.1)

2 2 o; m

where w; is the trap frequency along i. For typical parameters of 0;=1 mm, T=50 uK,
and m=87 amu, the mode matched trapping frequency w;=69 Hz. Good transfer efficiency

also requires that the atom cloud and magnetic trap are spatially overlapped so to avoid
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oscillations of the atom cloud after the transfer that both heat the sample and delocalize the
atom cloud during experiments. In practice, the aforementioned laser-cooling and magnetic
trap parameters are adjusted iteratively to optimize the final atom number, density, and

temperature in the magnetic trap.

3.1.2 Magnetic trap and evaporative cooling

The magnetic atom trap is generated using a Z-wire configuration [86], whose location is
shown in the schematic of the experimental chamber in Fig. 3.3 below. A typical magnetic
trapping field is shown in Fig. 3.2. Near the trap minimum, the magnetic trapping field is

nearly harmonic and the trapping frequency along the i = x,y, z direction is given by

(3.2)

where p and m are the magnetic moment and mass of the atom. For 8"Rb atoms prepared
in their |F' = 2, mp = 42) ground-state y = pup and the trapping frequency is determined
by the magnetic trap curvature, which is set by appropriate choices of Z-wire current and
magnetic bias fields. At the loading step, these parameters are chosen to fulfill the mode-
matching condition above. It is also assumed that the atomic spins adiabatically follow
the local magnetic field as the magnetic trapping field is switched on after optical pumping
(i.e. the atoms do not undergo any “Majorana” spin flips into un-trapped or anti-trapped
states)!. In experiments, the magnetic trap is loaded with ~ 107 atoms at a temperature
of <100uK and density of 10!° em™3. For a quantitative characterization of the magnetic
trap, a direct measurement of the magnetic trapping frequencies is made by inducing center
of mass oscillations of the trapped atom sample. This measurement is explained in detail

in Chapter VI Section 6.2, in context with the circular Rydberg atom trapping experiment

1The adiabaticity condition can be expressed as dwy,/dt << w? [87], where wy, is the Larmor frequency,
and is readily satisfied for typical experimental parameters. Consider an |F = 2,mp = 42) atom in a
10 Gauss field with wy, /27 = 14 MHz/Gauss. For a typical magnetic field switching time > 100us, this gives
dwr, /dt/w? <1073, which is well within the adiabatic limit.
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where the magnetic trapping frequency plays an important role.
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Figure 3.2: Counter plots of |B| for three orthogonal planes through the center of the mag-
netic trap located 4 mm from the surface of the Z wire . Scale is 1 (blue) to 15 Gaus (red)
in steps of 1 G; >15 G (hatched).

For the Rydberg molecule experiment, higher ground-state atom densities are needed.
This is accomplished by doing forced radio-frequency (RF) evaporative cooling on the atom
sample. The magnetic trap is adiabatically compressed followed by the application of an RF
frequency ramp over the course of approximately 15 seconds. In the trap, atoms with higher
kinetic energies sample the highest magnetic field strengths. As a result of the position-
dependent Zeeman shifts in the magnetic trap, the RF field selectively transfers the hottest
atoms from the mp = +2 state to high-field seeking states via Am = —1 transitions.
These atoms get ejected from the trap and the remaining atoms re-thermalize at a lower
temperature. The process continues as the RF frequency is ramped down until the desired
temperature and density is reached. A typical frequency ramp starts at 20 MHz and ends at
~1 MHz; the exact stop value of the RF frequency depends on the magnetic field strength

at the bottom of the trap which is varied depending on the experiment.

3.1.3 Absorption imaging

Absorption imaging is used to measure the ground-state atom number, cloud size and
temperature. In absorption imaging, the atom cloud is illuminated by a low intensity laser

pulse resonant with the cooling transition and imaged on a CCD camera. A comparison of
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the intensity of transmitted light with (I) and without (/) the atoms in the trap provides
an image of the atom cloud from which its optical density is determined. The area density

of the atoms along the direction of the imaging beam is given by [84]
1
N, = —In(ly/I) (3.3)
o

with the scattering cross section given by [84]

g0

7T T+ AT+ (I/1w) (3.4)
['hw
og = ZIsat, (35)

where gy is the on-resonance scattering cross section, A is the laser detuning from resonance,
I’ and w are the transition line width and frequency, respectively, and I, is the saturation
intensity of the transition. In our imaging setup, the absorption laser drives the mp =
+2 — myp = £3 cycling transition on resonance, for which I,,; = 1.67 mW/cm? [3]. The
beam intensity is set to & I4,;/10 to avoid saturating the transition and the scattering cross
section 0 = 2.6 x 107 ecm?. Under these conditions, each atom scatters photons at a rate
v = 1.7 x 105571, For a typical laser pulse duration of 30us this results in an average of
~ 50 scattered photons, ensuring negligible Doppler broadening (< 1 MHz) on the probe

transition during the imaging pulse.

3.2 Rydberg excitation and detection

In all the experiments, Rydberg atoms and molecules are optically excited out of the
magnetically-trapped ground-state atom sample using a two-photon transition from the 557 2
ground state using nearly counter-propagating 780 nm and 480 nm laser beams. This is
shown schematically in Fig. 3.3b. Since the entire ground-state atom preparation sequence

(from the initial MOT loading stage to the end of the evaporative cooling) can take up to 30
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seconds, a single magnetically-trapped atom sample is used for multiple Rydberg excitation
and detection sequences (typically 100 to 1000). To minimize loss of phase-space density of
the ground-state atom sample over the course of repeated optical excitations, the 780 nm
laser frequency is fixed 1 GHz off-resonance from the 55,5 to 5P3/,. The 780 nm laser
power is set to ~500 pW and collimated to a full-width half-maximum (FWHM) of 3.5 mm,
corresponding to an intensity of ~ 0.5mW /cm?. Under these conditions the off-resonant
photon scattering rate on the 553 — 5P/, transition is 7, ~ 50571, For a 1 us excitation
pulse this amounts to < 1073 photon scattering events and negligible heating of the atom
sample over the course of one excitation series. With the 780 nm at a fixed frequency, the
480 nm laser frequency is scanned to excite Rydberg levels. The 480 nm beam has a power
of ~35 mW and is focused to a FWHM of 89 + 5 pm into the atom sample. The combined

excitation bandwidth of the 780 nm and 480 nm lasers is ~2 MHz.
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Figure 3.3: Left: Experimental chamber with the Z wire, counter-propagating 480nm and
780nm Rydberg excitation beams, and MCP are labeled. Six gold-coated copper electrodes
(gray) enclose the trapped atom sample to control the electric fields in the experimental
volume. The electrodes labeled “T” and “B” are used for field-ionization of Rydberg atoms
and the electric-field ramp in circular state production (see Chapter VI), respectively. Right:
87 Rb energy-level diagram for off-resonant two-photon excitation through intermediate 5P o
state.

Since the optical absorption cross sections for atomic transitions to Rydberg states are
small, spectroscopy on Rydberg states is typically done by detecting the Rydberg atoms in a
single-atom counting scheme. A common approach takes advantage of the reduced binding
energies (~ n*~2) of the Rydberg electron, which can be ionized by modest electric fields of
tens to hundreds of V/cm. Application of an electric-field pulse after the optical Rydberg
excitation ionizes the Rydberg atom, leaving a free electron and positively-charged ion either
of which can then be detected.

The ionization behavior of Rydberg atoms is generally a complex process that depends

on the rise time and shape of the electric field pulse and the initial Rydberg state [56].
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As the electric field is increased, the initial Rydberg state traverses the Stark map until
it reaches the ionization threshold for the state it is in. In alkali atoms, the Stark states
exhibit avoided crossings due to non-zero quantum defects and the atom can pass through
the avoided crossings adiabatically or diabatically, depending on its size and how fast the
electric field is changing (i.e. its slew rate). As a result, the field-ionization behavior of
low-¢ and high-¢ Rydberg states is generally different. Low-¢ states exhibit relatively large
avoided crossings due to their large quantum defects and tend to field ionize adiabatically
at the classical field ionization threshold

1

Eclassical = .
16n*4

(3.6)

High-¢ states, on the other hand, exhibit much narrower avoided crossings and the field
ionization behavior tends to be more diabatic. In the diabatic limit, the ionization electric

fields of blue-shifted and red-shifted high-¢ states are

1
Epiye 3.7
be = o (3.7
1
Erea = ol (3.8)

A schematic of the anderson.da@gmail.com experimental chamber is shown in the left panel
of Fig. 3.3. For all the experiments in this dissertation, Rydberg atoms are field-ionized by
application of a positive voltage pulse to the “T” electrode located within a few millimeters
from the atom sample. Once ionized, the field extracts the resulting ions into a multichannel
plate (MCP) detector located 10 cm from the excitation region. The MCP detector provides

information on the ion number, arrival time, and spatial distribution of the ion signal.
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3.3 Electric field control

Controlling external electric fields is important in all the experiments described in this
dissertation. In the spectroscopy of long-range Rydberg molecules, the fields need to be
reduced to levels that ensure Stark shifts and broadenings of the atomic Rydberg lines do
not obscure the molecular signals. In the circular state experiment, the electric field plays
an essential role in the crossed-fields method used to generate the circular Rydberg atoms.

In this work, electric fields are controlled using six individually-addressable electrodes
surrounding the experimental region, shown in the left panel of Fig. 3.3. Voltage-to-field
calibration factors for the electrodes and field zeros are obtained by measuring the Stark shifts
of high-lying Rydberg states as a function of voltage applied to the electrodes. Figure 3.4
shows calculated and experimental Stark maps for 90D Rydberg states excited in a trapped
atom sample located ~ 3 mm from the “T” electrode. The Stark maps are plots of the
Rydberg signal as a function of 480 nm laser frequency offset (vertical axis) and electrode
voltage (bottom horizontal axis). A comparison of the experimental and calculated Stark
maps gives the corresponding electric field values (top horizontal axis). The Stark maps are
symmetric about zero electric field, and from the data in Fig. 3.4 and in similar measurements

the field zero is determined to within <30 mV /cm in all three coordinates.
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Figure 3.4: Stark spectroscopy on 90D Rydberg states in rubidium: a) Calculated Stark map,
b-d) Experimental Stark maps for electric fields generated along the X, Y, and Z coordinates.
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CHAPTER IV

Long-range D-type Rydberg molecules

In this chapter I describe an experimental study of long-range rubidium Rydberg molecules
formed between an D-state Rydberg and a 55, 2 ground-state atom . The molecules are pho-
toassociated out of a cold gas of 8"Rb atoms. The vibrational ground-state binding energies
of the Rb(nD + 55} /2) molecules are measured for principal quantum numbers 34< n <40.
The binding energies are found to be larger than those of their *' Rb(nS+5S5]2) counterparts,
showing the dependence of the molecular bond on the angular momentum of the Rydberg
atom. A Fermi model including the triplet S-wave scattering of the Rydberg electron with
the 55/, atom, fine-structure coupling of the Rydberg atom, and hyperfine structure of the
551/2 atom is used to describe the experimentally determined binding energies. Molecular
spectra and calculated binding energies are in good agreement and reveal the transition of
8"Rb(nD + 551 /2) molecules from a molecular-binding-dominant regime at low n [Hund’s
coupling case (a)] to a fine-structure-dominant regime at high n [Hund’s coupling case (c)].

Finally, broadening mechanisms relevant to the experimental spectra are discussed.

4.1 Experiment

This experiment is performed following the methods described in Chapter III. To excite

nD Rydberg molecules we first prepare a sample of ~10° magnetically trapped 8" Rb atoms in
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their | =2, mp=2) ground state at a temperature <17 uK and peak density > 5x 10 cm™3.

Optical excitation to atomic and molecular nD Rydberg states is accomplished via a two-
photon transition from the 55/, ground state using 780 nm and 480 nm laser beams, shown
schematically in Fig. 4.1a. The 780 nm laser frequency is fixed ~1 GHz off-resonance from the
58512 to 5 P39 transition, and the 480 nm laser frequency is scanned to excite either Rydberg
atoms or molecules. The combined excitation bandwidth of the 780 nm and 480 nm lasers
is ~2 MHz. The 780 nm laser has a power of ~500 pW and is collimated to a full-width
half-maximum (FWHM) of 3.5 mm. The 480 nm beam has a power of ~35 mW and is
focused to a FWHM of 89 + 5 pum into the atom sample, which has a FWHM diameter
of 28 pum and an aspect ratio of &~ 1 : 5. The electric field is zeroed in the excitation
region to within <200 mV /cm by Stark spectroscopy on 59D Rydberg states, as described
in Chapter III, which ensures that quadratic Stark shifts of the nD Rydberg levels in the n
range of interest are <2 MHz. A diagram of the experimental timing sequence is shown in
Fig. 4.1b. In a single experiment, the atom sample is illuminated by 2-3 us long laser pulses
followed by electric-field ionization of Rydberg atoms and molecules [56]. The signal ions
are extracted by the ionization field and detected by a micro-channel plate located 10 cm
away. A single ground-state atom sample is used for a series of 55 individual experiments at
a single 480 nm frequency step, ensuring that the density loss during one optical excitation

series is negligible.
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Figure 4.1: a) Schematic of the two-photon excitation to Rydberg and molecular states.
The zoomed in region shows the 34D Rydberg fine structure (FS) states and their associated
adiabatic S-wave molecular potentials. The binding energy W,_q of the v = 0 vibrational
molecular bound-state for each F'S component is defined relative to the dissociation threshold
equal to the respective Rydberg state energy, as labelled; (b) Schematic of the experimental
timing sequence for Rydberg excitation, field-ionization and detection.

4.2 Molecular binding energies

The photoassociation of a Rydberg atom and ground-state atom pair into a bound molec-
ular state occurs when the excitation laser is detuned from the atomic Rydberg line by an
amount equal to the molecular binding energy. This is shown schematically in Fig. 4.1a.
An experimental spectrum in the vicinity of the atomic 35D5/, Rydberg line is shown in
Fig. 4.2. The observed spectral lines are fitted by a Gaussian function to obtain the line
centers and o widths; the errors of the line centers are taken to be equal to the average
long-term frequency drift over one full frequency scan of the 480 nm laser which is measured
separately. In Fig. 4.2, a prominent satellite line emerges at —38 &3 MHz, which is assigned
to the (35D5/5 4+ 551 /2) (v = 0) molecule, where v = 0 denotes the vibrational ground state.
This binding energy is ~ 1.6 times larger than that of the (35512 +5S51,2)(v = 0) molecular

state measured in previous experiments [20, 29]. This increase in the binding energy is a
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direct consequence of the increased ¢. Within the low-¢ class of Rby Rydberg molecules, the
nD ones have the highest binding energies due to the 1/2¢ + 1-scaling of the angular wave
functions Y;"=%(# = 0). On a qualitative level, this can be explained by the more concen-
trated electron probability density of Rydberg D-states at the location of the perturbing

atom compared to that of the Rydberg S-states.
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Figure 4.2: Spectrum centered on the 35D5/, atomic Rydberg line showing the 8TRb(35Ds 2+
551/2)(v = 0) molecular line at —38 &3 MHz. The vertical error bars are the standard error
of 3 sets of 55 individual experiments at each frequency step. The error in the binding energy
is equal to the average long-term frequency drift observed over one full scan.

A series of nDs/; Rydberg spectra for 34 < n < 42 is shown in Fig. 4.3 (right).
The lowermost, red-shifted lines for n=40 and below are assigned to the molecular states.
Molecular lines are not discernable in the n=42 and 41 spectra because the line broadening
due to residual fields and the laser line width exceeds the molecular binding energies for
these states. Additional satellite lines corresponding to other vibrational molecular states

are expected (see section 5.3 in Chapter V), but are likely obscured in the spectra shown in
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Figs. 4.2 and 4.3 by the broadening of the atomic Rydberg lines as well as artificial signals
at £20 MHz due to weak, symmetric side peaks in the 480nm laser spectrum from a Pound-
Drever-Hall stabilization loop. Due to this, the features near —20 MHz are only assigned to

molecular lines if they are significantly stronger than the artificial signal at +20 MHz.
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Figure 4.3: Right: Spectra centered on nDs/, atomic Rydberg lines for the indicated values
of n and identified molecular lines (squares). Left: Selected spectra from plot on right for
states with identified molecular lines. Error bars are obtained as in Fig. 4.2.

Fig. 4.4a shows the molecular binding energies measured in Fig. 4.3 versus n. One may
expect these binding energies to be proportional to the probability density of the Rydberg
electron wave function, which scales as the inverse of its volume ~ n=%. An allometric fit to
the data in Fig. 4.4a (black curve) qualitatively supports this expectation over the displayed

range of n.
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Figure 4.4: (a) Binding energies obtained from Gaussian fits to the molecular lines identified

in Fig. 4.3 vs n. An allometric fit (solid curve) to the experimental binding energies yields a

n~ 5904 gcaling. Also shown are theoretical binding energies for the 8"Rb(nDs 2 +551 ) (v =

0) molecular states with Aso=—14 ao (hollow circles and dotted curve). (b) Peak number
of detected ions on the nDj5/, atomic Rydberg line (solid diamonds, left axis) and ratio of
molecular and atomic line strengths (hollow diamonds, right axis) vs n.

As shown in Fig. 4.4b, the ratio of molecular and atomic line strengths ranges from
~ 1 — 5%. Taking the peak atomic density in the experiment into consideration, this
agrees quite well with the relative signal strengths of previous experiments with S-type
molecules [20, 29]. Qualitatively, one may expect the molecule-Rydberg atom signal strenth
ratio to scale with the probability of finding a 557/, atom within the Rydberg-atom volume
(which scales as n%), corresponding to an increase of about a factor of 2.5 over the n-range in
Fig. 4.4b. The observed increase, however, is significantly larger, namely by about a factor of
5. This enhancement is likely due to a Rydberg excitation blockade caused by electrostatic
Rydberg-atom interactions [68, 70], which suppresses the atomic line [67]. Since the block-

ade’s effectiveness increases with n, the molecular-signal ratio scales faster than n®. This
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interpretation is corroborated by the atomic-signal strength, which drops by a factor of 4
over the n-range in Fig. 4.4b. In the absence of an excitation blockade, the atomic signal
would drop as n=3, i.e. by only a factor of 2 in Fig. 4.4b. The suppression of the Rydberg
line due to the blockade prevents a direct measurement of excitation probabilities to the

molecular states from the relative signal strengths in Fig. 4.4b.

4.3 An S-wave Fermi model

For a quantitative description of the experimental data, the binding energies are cal-
culated using a Fermi-type model that includes the S-wave triplet scattering between the
Rydberg electron and ground-state atom, the fine-structure coupling of the Rydberg atom,
and the hyperfine structure of the ground-state atom. The Rydberg atom’s fine structure and
the perturber’s hyperfine structure are included because they are on the same order or larger
than the molecular binding. For low Rydberg electron momenta, k, the S-wave triplet scat-
tering length is taken to first order in k as Al (k) ~ Ay + Sk [12], where Ay = AL (k = 0)
is the zero-energy scattering length and « is the polarizability of the perturbing Rb 5572
atom. The P-wave scattering interaction strongly influences the inner part of the molecular
potentials [19] but leaves the outermost well, where the bound states relevant to this work
are found, largely unaffected. It is therefore not included in the model at this time. The
P-wave interaction is included in the theoretical study presented in Chapter V where its
effects on the molecular potentials and properties are discussed. For the 55,5 atom located

at R = Zz, the Hamiltonian is
. . . 3 o
HO + 27TAZ(]{?(’I"))(S3(I' - ZZ)(Sl : Sg + Z) + A82 . IQ (41)

where the unperturbed Hamiltonian H, includes Rydberg quantum defects and fine struc-
ture [56]. The operators S; and S, are the spins of the Rydberg electron and 55/, atom,

respectively. The Rb 55, 5 atom has £ = 0, a nuclear spin Iy with I, = 3/2, and a hyperfine
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parameter A = hx 6.8 GHz/F- = hx 3.4 GHz (in SI units). The projector S - SQ"’% has the
eigenvalue one (zero) for the triplet (singlet) states of S; and S,, enabling only triplet scatter-

ing (for a derivation and detailed description of these these spin projectors see Appendix B.1).

In the classically allowed range of the Rydberg electron k& = \/ —1/(Nefr 1 Netr2) + 2/7 (in
atomic units), and k = 0 elsewhere. There, neg 1 and neg o are the effective quantum numbers
of the Rydberg states coupled by the scattering term. In the calculation we include config-
uration mixing [88] with neighboring Rydberg manifolds. For this we choose a basis that
includes levels that are within £4.9n.4 quantum numbers from the target level. Since only
states with my; = 0 are non-vanishing on the internuclear axis in the S-wave limit, the rele-
vant Hilbert space is restricted to {|n, {1, j1, mj1 = £1/2,ms = £1/2,m;y = £1/2,£3/2)}.
The Hamiltonian in Eq. 4.1 conserves my, := mj; + mg + m;2 and the space breaks up into
separated sub-spaces with my = +5/2, £3/2, £1/2, where the scattering term couples states
with the same mj; 4+ mge, while the hyperfine term couples states with the same mgo + 5.

The Hamiltonian in Eq. 4.1 is diagonalized, resulting in adiabatic potential surfaces
Vaai(Z) and associated adiabatic states W,q;(Z). Here i is an arbitrary label assigned to
a potential V,4(Z). The permanent electric dipole moment associated with the adiabatic
states are also obtained using d;(Z) = (V4ai(Z2)|Z|Vea:(Z)). The molecular vibrational
states W;,, and their wave functions ¥, ,(Z) are obtained by solving Schrédinger’s equation
with the potential V,4,;(Z) and a reduced mass of 87 amu/2. The electric dipole moment
of each vibrational state is obtained by integrating over the dipole moment of the adiabatic
state weighted by the local molecular state probability density as d;, = [ |¥;,(2)|?d;(Z)dZ.
The magnetic moments p;(Z) of the molecular states are obtained analogously using pu;, =
SV Z)Prs(Z)dZ.

Figures 4.5a and b show all calculated potentials V,4(Z) associated with the 35D5/,
and 3503/, Rydberg states that connect to the F' = 2 hyperfine level of the 55/, atom.
The vibrational ground and first-excited states (v = 0, 1) of the deep potentials for both fine

structure components are also plotted. The deep potentials arise from pure triplet scattering
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channels while the shallow potentials are due to hyperfine-induced spin-mixing between the
electronic singlet and a triplet state. The deep and shallow potentials and their states have
degeneracies of 6 and 4, respectively. In Fig. 4.5¢ and d the calculated vibrational energies

W, for v = 0,1 are plotted over a range of n for both the nDs/; + 551/, and nDs/5 + 5512

molecules.
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Figure 4.5: (a) and (b): Deep (solid) and shallow (dashed) potentials for 35D3/5 and 35D5 /o-
type molecules, for Ay = —14 ag, and vibrational wave functions for v = 0,1 in the deep
potentials. (c¢) and (d): Energy levels for v = 0,1 in the deep (triangles) and shallow (circles)
potentials vs n.

In the experiment we excite molecules below the F' = 2 dissociation limit, for which the
states in the deep potential V,4(Z) have the larger degeneracy and are easier to observe due
to their larger binding energies. In the model, the Rydberg wave functions are defined by

quantum defects [56] and the polarizability of the perturbing Rb 55/, atom «, leaving the
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zero-energy S-wave scattering length Ay as the only free parameter. Hence, we adjust Ay
so that the energies of the v = 0 levels in the deep V,4(Z) match the experimental data
in Fig. 4.3 and obtain a value of A,y = (—14 + 0.5) ag. The calculated binding energies
are plotted in gray in Fig. 4.4a with the experimentally measured binding energies. The
uncertainty in the value of Ayg is obtained from the fit and is set by the uncertainty in the
experimentally measured binding energies. (For 37D5/, the v = 0 binding energy increases
by about 4 MHz when changing Ay from —13.5 to —14.5 ag.) This value of Ay lies within
the range of published values —13 to -19.48 a4 [16, 17, 18, 20, 29].

4.4 Transition between Hund’s cases (a) and (c)

As a result of their relatively weak bonds and large internuclear separations, long-range
diatomic Rydberg molecules exhibit properties that are largely dictated by the properties of
their constituent atoms. It follows that the angular-momentum coupling configurations and
Hund’s cases in Rydberg molecules are linked directly to the angular-momentum couplings
of the individual Rydberg and ground-state atoms. For the D-type Rydberg molecules
considered here, the fine-structure of the Rydberg atom is comparable to the scattering-
induced binding interaction between the Rydberg electron and ground-state atom. This
results in the nD; + 55/, molecular states exhibiting a transition between Hund’s case (a)
at low n where the scattering-induced binding interaction exceeds the Rydberg atom fine
structure coupling, and Hund’s case (c) at high n where the fine structure dominates the
scattering interaction.

The effects of the Rydberg atom fine-structure on the molecular binding in Hund’s case
(c) for low-¢ long-range Rydberg molecules can be understood using the Fermi-type model
in Eq. 4.1 considering the triplet S-wave scattering interaction term evaluated in the fine

structure basis of the Rydberg atom. For a Rydberg electron in a state |n, ¢, j, m;), the part
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of the scattering interaction that depends on the Rydberg levels is given by

2 A(k)(n', 0, 5", m|n, €, 5, my), (4.2)

where the unprimed and primed state vectors represent the initial and final Rydberg states
evaluated at the location of the perturbing atom, respectively. Following the rules for ad-
dition of angular momenta (A.5), the coupled |n,/, j,m;) states can be expressed as linear
combinations of the uncoupled |n, ¢, m,, m,) basis states, where for the two fine-structure

components j = ¢+ 1/2 and j = ¢ — 1/2 of the Rydberg atom we have (see pages 212-214

in [75))
1 {+1 ‘
j=0+ = (4.3)
1 (+1 [/
3
1 14 (+1
j=t-3 (4.4)
1 4 (41

/

In the S-wave limit, only m, = 0 components of the Rydberg wave function are non-
zero in their projection onto the internuclear axis, and only the first terms in Equations 4.3
and 4.4 (highlighted boxes) couple via the S-wave scattering interaction. The interaction
strength in this case is fine-structure dependent with factors of ¢/(2¢ 4 1) for j = ¢ —1/2
and ((+1)/(20+1) for j = ¢+ 1/2. As a result, the depth ratio of the adiabatic molecular
potentials for the j = /—1/2 and j = ¢+1/2 components is £/({+1). For Rydberg molecules
formed by a D-state Rydberg atom, ¢ = 2 and the depth ratio of the adiabatic molecular
potentials for the two j = 3/2 and j = 5/2 components is 2/3.

From this it follows that in Hund’s case (c¢) (high n) the v = 0 binding-energy ratio for
nD; + 551/, j = 3/2 and 5/2 molecules should also be about 2/3. This is seen in Fig. 4.6a
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which shows the calculated W,_y binding energies for both of the fine structure molecules
(from Figs. 4.5¢ and d) over a range of n, with the Rydberg D-state fine-structure coupling
also plotted for reference. In the high-n limit in Fig. 4.6a the » = 0 binding-energy ratio
for D35 and Ds/, approaches 2/3, as expected for Hund’s case (c), and both sets of binding
energies approximately scale inversely with the atomic volume (i.e., as nf)). At low n, the
system transitions into Hund’s case (a) where the scattering interaction becomes larger than
the fine structure coupling and the binding-energy ratio changes from 2/3 to > 1. The v =0
binding energies for the lower Ds/5 fine structure level in this limit exceed the fine structure
coupling and keep scaling as ne_f? , while those for the D5/, level approach the fine structure

splitting and its scaling (n_7).
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Figure 4.6: (a) v = 0 binding energies in the deep molecular potentials for nDs/, (filled
triangles), nDs/, (open triangles), and the D fine structure splitting (dashed line), vs effective
quantum number. Solid lines are fits. The Ds /5 energies are fit well by 84.2 GHz/n%{*. The
D55 energies do not exhibit a global scaling; at low n they tend to scale as 23 MHz/n2$. (b)
Electric dipole moments for v = 0 vs n for the deep (triangles) and shallow (circles) Voq(2)

for j = 3/2 (open) and j = 5/2 (filled). (c¢) Magnetic dipole moments for the same states as
in (b).
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Given these trends, the v = 0 binding energy ratio for the j = 3/2 and j = 5/2 molecules
is a convenient experimental measure to characterize the system. Figure 4.7 shows spectra
of the two fine structure components of 37D. Molecular peaks are present for both j = 3/2
and 5/2, with respective binding energies of 24 + 3 MHz and 26 + 3 MHz, corresponding to
a ratio of 0.92 £ 0.15. Since this is significantly larger than 2/3, for n = 37 the system is in

the transition regime between Hund’s case (a) and (c).
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Figure 4.7: Experimental spectra centered on the 37D, atomic Rydberg lines for j = 3/2
(left) and j = 5/2 (right; same as in Fig. 4.3). ¥Rb(37D; + 551 /2)(v = 0) molecular signals
are indicted by vertical dashed lines and squares.

4.5 Molecular line broadening

The lifetimes of long-range Rydberg molecules is generally an interesting topic due to
the peculiar nature of the binding interaction. Because the molecular states arise via an
electron-atom scattering interaction, the bound molecular states can be characterized as
metastable scattering resonances with line widths determined by tunneling rates out of the
local scattering potential. A calculation and discussion of the quasi-bound molecular states

for D-type molecules and their tunneling-limited lifetimes is given in section 5.3 of Chapter V.
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The calculated line widths range from pHz for the v = 0 vibrational states of interest here
to ~MHz for higher-lying states. In the molecular spectra shown in Figs. 4.3 and 4.7 several
broadening mechanisms contribute to the observed line widths.

The resolution in photoassociation spectroscopy is itself limited by several factors includ-
ing the transition line width, laser line widths and temperature of the atomic sample [21]. To
achieve high resolution, the kinetic energy of the colliding atoms needs to be comparable to or
less than the transition line width. The transition line width is dominated by the laser exci-
tation bandwidth ~ 2 MHz, which exceeds the Doppler broadened 55 — 35D transition line
width Avpeppier = 319 kHz FWHM. At T= 17uK, we have kg x 17uK/h = 354 kHz< 2 MHz,
readily satisfying this condition and setting the resolution limit of the photoassociation spec-
troscopy equal to the laser bandwidth.

Residual fields in the experiment also contribute to the observed line widths. Figure 4.6b
and ¢ show calculated electric and magnetic dipole moments for D-type molecules. These are
discussed in more detail in section 5.5 of Chapter V. Noting that d,—y < 0.25 eag and that the
stray electric field in the experiment is < 200 mV/cm, the experimental permanent-electric-
dipole shift is well below 1 MHz and therefore not expected to contribute significantly.
Similarly, the Stark shifts of the atomic lines are small. The atomic and molecular lines
experience more substantial energy shifts due to the local < 1 Gauss magnetic trapping
field. In this field, the maximum Zeeman shifts of the atomic m; states are < 8 MHz, which
is much less than the measured molecular binding energy. The individual atomic m; states
are not distinguishable in the spectra, contributing only to the observed broadening of the
atomic lines.! The calculated magnetic moments of the molecules are given in Fig. 4.6c. In
the magnetic field of the atom trap, the molecular lines are expected to be broadened over a
range < 4 MHz, compared to the < 8 MHz of the atomic lines. These estimates agree well

with the line widths observed in the experimental spectra.

!The Zeeman shift is given by AEp = upgm;B, where up=1.4 MHz/Gauss, the g factors are (m; =
1/2,3/2,5/2) = (—2,1.33,1.2) for the D states, and B=1 Gauss. The shift is -1.4 MHz for m; = +1/2,
2.8 MHz for m; = +3/2, and 4.2 MHz for m; = +5/2. The largest shift is that of the m; = +5/2 level and
the maximum field-induced broadening =2 x 4.2 MHz~8 MHz.
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Since the PA experiments are necessarily performed in relatively high density ground-
state atom samples, broadening due to the polarization interaction between the Rydberg
electron and nearby ground-state atoms is also considered. This can be estimated for a

given density n of the ground-state atom sample from [10]

2

ae
Ay = 17.5———n*/3. 4.5
pol 2(47T€0)2n ( )

For the ground-state atom density used in the experiment this amounts to a A,, < 60 Hz,

which is negligible compared to the laser line widths and field-induced shifts discussed above.?

4.6 Summary

In this Chapter I described an experimental study of ¥’Rb(nD;+551 ) Rydberg molecules.
The binding energies of the molecular states were found to be larger than those of previously
observed 87Rb(n51 12+ 551 /2) molecules, in agreement with the expected \/W—scaling of
the angular wave functions Y;"=%( = 0). The transition of rubidium D-type molecules be-
tween Hund’s case (a) at low n, where the scattering-induced binding interaction exceeds the
Rydberg-atom fine structure, to Hund’s case (c) at high n where the fine structure dominates
was investigated and probed experimentally. Molecular and atomic line broadenings were
discussed, and the observed line broadenings found to be consistent with laser line widths
and Zeeman shifts due to the magnetic trapping field.

The work presented here motivates a number of studies on long-range D-type Rydberg
molecules. With improved spectroscopic resolution the electric and magnetic dipole moments
of the D-type molecular states could be measured, as well as their higher-lying vibrational
levels in the deep potentials in Fig. 4.5 and in the shallow potentials. The transition be-

havior of the molecular dipole moments and between Hund’s cases (a) and (c) could also

2The pre-factor in Eq. 4.5 reflects the statistical distribution of ground-state atoms surrounding the
Rydberg electron. The value of 17.5 is the most probable value of > 7 calculated by G.C. Wick [89],

where 7; is the distance of atom 4 from the Rydberg electron [10].
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be directly probed. As is discussed in more detail in Chapter V, inclusion of the P-wave
scattering interaction strongly modifies the adiabatic potentials at smaller interatomic sepa-
rations. This results in additional bound vibrational states as well as unexpectedly long-lived
resonances near the dissociation threshold, which should also be observable in experiments.
The lifetimes and decay processes of these molecular states could be investigated in future

work.
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CHAPTER V

Angular-momentum couplings in long-range Rydberg

molecules

In addition to the electron-atom scattering interaction, the molecular potentials and prop-
erties of long-range Rydberg molecules are dependent on the Rydberg-atom wave function as
well as the angular-momentum couplings of the Rydberg- and ground-state constituents. Ry-
dberg molecules can exhibit a broad range of different angular momentum coupling schemes.
For low-¢ Rydberg molecules (¢ < 2 in rubidium), the angular-momentum coupling con-
figurations span three Hund’s cases [(a), (b), and (c)], dictated by the relative strength of
the Rydberg atom’s fine structure coupling compared to that of the e + 55/, scattering
interaction. The Rb(nD; 4 554 /2) molecules are unique among the low-¢ molecules because
their Rydberg fine-structure couplings are comparable to the scattering interaction strength,
and they fall anywhere between two Hund’s cases (a) and (c) by a mere change in principal
quantum number n. For high-¢ Rydberg molecules, the molecular binding interaction is
stronger than the fine structure coupling, and is comparable to the hyperfine coupling of the
ground-state perturber. In this work we predict the existence of new spin-mixed potentials
and molecular states that arise from the hyperfine structure coupling of the ground-state
atom. Inclusion of the 5S; /5 hyperfine coupling in the Fermi model generates additional adi-
abatic potentials of mixed triplet and singlet character for both high- and low-¢ molecules,

that are deep enough to sustain bound states.
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In this chapter I present a theoretical study of the influence of angular-momentum cou-
plings on the properties of long-range Rydberg molecules. I first describe a Fermi model
for Rydberg molecules with all the relevant interactions and angular-momentum couplings
including S-wave and P-wave singlet and triplet scattering of the Rydberg electron with
the 5S;/, atom, along with the fine structure coupling of the Rydberg atom and hyperfine
structure coupling of the 5S;/, atom. By selectively enabling the different interactions in
the model, the effects of each of the individual interactions on the adiabatic molecular po-
tentials are revealed. Typical vibrational-state wave functions, molecular binding energies,
lifetimes, and dipole moments are calculated and discussed with an emphasis on the role of
angular-momentum couplings. In the final section I describe the effects of the ground-state
atom hyperfine coupling on the relatively deeply bound trilobite Rydberg molecules formed

by a Rydberg atom in a degenerate high-¢ state.

5.1 The complete Fermi model

The Fermi model [10, 12] used here to describe diatomic Rydberg molecules takes into
account the angular-momentum couplings in the Rydberg atom and perturbing ground-state
atom system whose strengths are comparable to the Rydberg e™+perturber interaction. A
schematic of the relevant couplings is shown in Fig. 5.1a. The perturbing 8"Rb 55, /2 atom is
located at a position Z from the ionic core of the Rydberg atom, which is fixed at the origin.
The internuclear axis is along z. The orbital and spin angular momenta of the Rydberg atom
are denoted by L; and S, respectively. For L; < 2 and within the n-range of interest, the
Rydberg-atom fine structure is of the same order as the e~ + 557 scattering interaction and
is therefore included. The hyperfine coupling of the electron spin Sy and nuclear spin I of
the perturbing 55,/ ground-state atom is also included, because it is several GHz and is, in
most cases, stronger than the Rydberg electron’s fine structure coupling and the e™ 4 557 /2
scattering interaction. The orbital angular momentum of the 55/, atom is Ly = 0. The

Rydberg atom’s hyperfine structure decreases as n—?; for the lowest S-states relevant to our
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work it does not exceed several MHz [90, 91], and it is much lower for higher-¢ states [92].

The Rydberg atom’s hyperfine structure is therefore not included.

b) my = +1/2 diagonal
1 Mo Mo AO | Al | H
13/2 +1/2 -3/2 X X

H| ]
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Figure 5.1: a) Angular momentum coupling scheme for diatomic ¥ Rb(nD; + 55 /2, F) Ry-
dberg molecules. The relevant interactions are circled. Here, A0 and Al denote e~ + 55,2
scattering interactions involving the m;; = 0 (S-wave and P-wave) and the |m;;| = 1 (P-wave
only) components of the Rydberg electron’s state, respectively, and H denotes the hyper-
fine interaction of the 557/, atom. F'S denotes the fine structure coupling. b) States in the
my, = mj1 + Mg + Mz = +1/2 subspace and their relevant interactions. In the left column,
horizontal gray bars are placed between (mj; mss) or (ms m;s) for states in neighboring
rows that are coupled by either the scattering or the hyperfine interaction. The Xs in the
right column indicate the interactions that have diagonal terms in (mj; mge my2).

For a Rydberg atom with its ionic core at the origin and the Rydberg electron located

at r, and with a 55/ atom located at R = Zz, the Hamiltonian is written as

H(r,Z)=Hy+ Y _ 2rAL(k)5(xr — Z2)I, (5.1)
i=S,T
+ 3 Al (k) - Zz)V V1,
i=S,T
+ AS, -1,
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In the unperturbed Rydberg Hamiltonian Hy we use published quantum defects [56],
which account for core penetration and fine structure. For ¢ > 5 we use the fine structure
correction of hydrogen as well as a small quantum defect to account for core polarization,
8¢ = 0.75ap /0" [56], with a dipolar polarizability for Rb™ of ap = 9.023 atomic units [62].
The energy-dependent S-wave (I = 0) and P-wave (I = 1) scattering lengths (A; and A,
respectively) have the general form A;(k) = —tand;/k**!, where ¢, is the I- and energy-
dependent scattering phase shift. For our calculations the non-relativistic scattering phase
shifts d;—¢ and d;—; were provided by I. I. Fabrikant based on [1] (see Fig. 2.2 in Chapter II).
The electron momentum is given by k = \/—1/n¢2 + 2/r (atomic units) in the classically
allowed range of the Rydberg electron and k£ = 0 elsewhere. Here, ng is the effective Rydberg
quantum number of the level of interest. To account for configuration interactions, we
employ basis sets {|n, L1, Ji, m;1) ® |ms2, mi2) } that include all Rydberg levels with effective
quantum numbers |[n* — ng| < 2.5. For the Rydberg atom, all Ly, J; and m;; are included
(as in [88]), and for the perturber atom all mg and m;s are included. The singlet (S) and
triplet (T') channels of the e~ + 55, scattering interaction include projectors ﬁ( sy, defined
as Ip = S; - Sy + 3. which has an eigenvalue of one (zero) for the triplet (singlet) states,
and ﬁs =1 ﬁT. The operators Sl and Sg are the spins of the Rydberg electron and 55/,
atom, respectively, and [ is the identity operator. The last term in Eq. 5.1 accounts for the
hyperfine interaction of the perturber. The 8"Rb(5S5,; /2) perturber atom has nuclear spin L
with Iy = 3/2, and hyperfine levels F. = 1 and F. = 2, with a hyperfine coupling parameter
A =h x 3.4 GHz.

Only levels with my; = 0,41 components have non-vanishing wave functions or wave
function gradients on the internuclear axis. The S-wave interactions couple Rydberg states
with my; = 0 components. The P-wave interactions couple states with my; = 0 components
through the radial derivative of the Rydberg wave function and states with my, = =£1
components through the polar-angle derivative of the wave function. The electron scattering

term in Eq. 5.1 conserves m;; + ms 2, while the hyperfine term conserves 1o 4+ m;o. The full
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Hamiltonian conserves my, := mj; + mg + mys. Hence, the Hilbert space can be broken up
into subspaces of fixed quantum number my. As an example, the subspace for m; = +1/2
and its couplings via the S-wave, P-wave, and hyperfine interactions is shown in Fig. 5.1b.
The gray bars in Fig. 5.1b illustrate that the couplings are organized in a block-diagonal
structure in the magnetic quantum numbers. Since the couplings via the scattering terms

require [mj;| < 3/2, the 3’Rby Rydberg molecules have |my| < 7/2.

5.2 Adiabatic molecular potentials

Adiabatic molecular potentials V;(Z) (i is an arbitrary label) are obtained by diagonaliz-
ing the Hamiltonian in Eq. 5.1 for a grid of perturber atom positions, Z, through the extent
of the Rydberg wave function. To highlight the effects of the different terms in Eq. 5.1
on V;(Z), in Figs. 5.2 and 5.3 we show adiabatic potentials calculated for D-type Rydberg
molecules with the different interaction terms in Eq. 5.1 selectively turned on.

First, we consider adiabatic potentials without hyperfine coupling. Figure 5.2a shows
adiabatic potentials for the 31D + 55/, molecule with only the 3S interaction turned on
and no fine structure coupling. This results in three degenerate oscillatory potentials, one
corresponding to each triplet state, and a flat potential corresponding to the singlet state
(which has no 3S interaction). The triplet potential curves are similar to those calculated
in [4], in which the S-wave scattering length — tan d,/k is taken to first order in the electron
momentum [12]. With an appropriate choice of the zero-energy S-wave scattering length, the
3S interaction reproduces measured binding energies of vibrational ground states of S-type
Rydberg molecules [20]. Similarly, the 3S interaction with the addition of the fine structure
reproduces vibrational ground states of D-type Rydberg molecules [25]. The effect of the

fine structure coupling on the molecules is discussed further below.
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Figure 5.2: Adiabatic potentials for the 31D + 55, 2 molecule with the following interaction
terms in Eq. 5.1 selectively turned on (without the hyperfine interaction): a) ®S scattering,
b) 35S, 1S, 3P, and 'P scattering, and c) 3S, 'S, P, and 'P scattering with fine structure
coupling.

Figure 5.2b shows adiabatic potentials resulting from the 3S, 'S, 3P, and 'P scattering in-
teractions turned on and no fine structure coupling. At smaller internuclear separations, the
influence of P-wave scattering becomes more significant due to higher electron energies closer
to the Rydberg atom’s ionic core (and therewith larger wave function gradients). The effect
of the 3P scattering interaction is evident in Fig. 5.2b, where the inner wells become notably
deeper, while the outermost well remains relatively unaffected. The increasing contribution
of P-wave scattering at smaller Z generates deep molecular potentials. The repulsive 'S
and attractive 'P scattering interactions turn the flat singlet potential in Fig. 5.2a into an

oscillatory singlet potential with maxima above and wells below the dissociation threshold,
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as seen in Fig. 5.2b.

Figure 5.2c¢ shows adiabatic potentials resulting from the the addition of the fine structure
coupling of the Rydberg atom to the 3S, 'S, P, and P scattering interactions. The top and
bottom plots show 31D; + 55/, potentials for the j = 5/2 and 3/2 fine structure states,
respectively. Qualitatively, the fine-structure coupling splits the molecular bonding strength
(adiabatic-potential depth) of the fine-structure-free case between the two fine-structure
levels, resulting in less deep potentials. The splitting ratio depends on which Hund’s case is

more relevant (see Sec. 5.4).
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Figure 5.3: Binding adiabatic potentials for the *'Rb(30Ds/2 + 5512, F = 1,2) molecules
with fine and hyperfine structure included, with 3S scattering only (top row) and with 3S, 'S,
3P, and P scattering (bottom row). The hyperfine coupling leads to the shallow adiabatic
potentials. The shallow potentials are different for the ' = 1 and F' = 2 hyperfine levels.
The deep potentials do not depend on the hyperfine structure.
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The hyperfine interaction of the ground-state perturber in Eq. 5.1 mixes the singlet and
some triplet scattering channels, resulting in the replacement of the pure singlet potentials in
Fig. 5.2 with shallow adiabatic potentials of mixed singlet-triplet character. As an example,
in Fig 5.3 we show the adiabatic potentials for the 30D3/,+551 2, F' = 1,2 molecules including
the hyperfine interaction. The deep adiabatic potentials are of pure triplet character and
are unaffected by the hyperfine interaction of the 5S;/, atom. The F' = 1 shallow, mixed

singlet-triplet potentials are always deeper than the F' = 2 shallow potentials. The shallow
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potentials can typically sustain a few bound states that should be observable in experiments.

5.3 Quasi-bound molecular states and lifetimes

Due to the lack of an inner potential barrier, the molecular vibrational states have the
character of metastable scattering resonances in potentials that are unbound on the inside.
Figure 5.4 shows the (deep) adiabatic potential for the ¥ Rb(31Ds5/5+ 551 /2, F = 2) molecule
and its quasi-bound states. These are qualitatively similar to those of S-type molecules [29].
The molecular wave functions consist of low-amplitude standing waves formed by outgoing
and reflected ingoing waves in the region Z < 1000 ag, and a high-amplitude, resonantly en-
hanced portion in the outer adiabatic-potential wells at Z ~ 1500 ag. The latter are identified
with quasi-bound molecular vibrational states that are metastable against tunneling-induced
decay (decay into the region Z < 1000 ay).

The resonances are found by computing the wave function phase at a fixed location in the
unbound region (we use Z = 300 ag) as a function of energy W. The phase and its derivative
are plotted as a function of energy in the right and middle panels of Fig. 5.4, respectively. The
quasi-bound molecular states occur at energies at which the phase undergoes sudden changes
of A® = 7. The quasi-bound molecular states are centered at energies at which the derivative
of the phase is maximal (circles in the middle panel of Fig. 5.4). The resonances obey a
single-level Breit-Wigner formula with frequency linewidths of the quasi-bound molecular
states given by I'), = 2/(h x d®/dW) [75], corresponding to lifetimes of 7 = (h/2)d®/dW .
The lifetimes scale as the Wigner tunneling time delay [93]. Resonances with larger slopes
d®/dW in Fig. 5.4 correspond to longer-lived quasi-bound states. In addition to the sharp
resonances there are three broad resonances, as indicated by hatched regions in the middle
panel of Fig. 5.4. While the broad resonances are not likely to cause observable effects in
molecular spectra, they add to the total phase change over an energy range. For instance,
within the energy range displayed in Fig. 5.4 the broad resonances account for a phase

change of 37 and the quasi-bound molecular states for a change of 117, corresponding to a
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total change of 147. The distinction between broad and narrow resonances may, in practice,
depend on experimental parameters such as excitation bandwidth and atom temperature

(which affects Frank-Condon factors).
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Figure 5.4: (Left) Adiabatic potential of the ¥ Rb(31Ds5 + 5512, F' = 2) Rydberg molecule
and vibrational wave functions. FEach wave function corresponds to a narrow scattering
resonance, characterized by a sudden change in the wave function phase by 7 in the unbound,
inner region of the potential. (Right) Wave function phase at location Z = 300 ay. (Middle)
The maxima of d®/dW, indicated by circles, are used to determine resonance widths and
lifetimes. Several broad resonances (hatched regions) are spread out over the displayed
energy range.

72



Table 5.1: For the "Rb(31D3/, + 5512, F' = 2) Rydberg molecule, we show the vibrational
quantum number v, binding energy, linewidth I',,, decay time, and bond length.

v Energy Linewidth Decay time <7>
(MHz) (MHz) (1) (a0)
0 -100.52 1.79E-11 8.89E9 1647.5
1 -83.59 2.18E-2 7.30 1160.0
2 -68.03 6.00E-8 2.65E6 1655.3
3 -56.27 2.37E-2 6.72 1324.0
4 -45.24 1.48E-1 1.08 1413.0
5 -41.58 1.87E-1 0.85 1527.9
6 -36.91 1.01E+0 0.16 1169.3
7 -26.58 1.28E-1 1.24 1428.4
8 -18.48 9.99E-2 1.59 1467.0
9 -9.14 7.78E-2 2.05 1481.8
10 -1.48 3.71E-2 4.29 1697.0

In Table 5.1 we give the binding energies, linewidths, decay times, and average inter-
nuclear separation of the scattering resonances shown in Fig. 5.4. Each quasi-bound state
is assigned a vibrational quantum number v, sequentially increasing from 0 for the most
strongly bound state in the outermost well to 10 for the most weakly bound state. Gener-
ally, one expects bound states furthest from the dissociation threshold to have the longest
lifetimes. Here, the ground and first excited states of the outermost potential well (labeled
v=0 and 2, respectively) are well-confined and have lifetimes in the range of hours and sec-
onds, respectively. These lifetimes only reflect tunneling-induced decay. The actual lifetimes
of these molecular states are, in fact, much shorter due to additional decay mechanisms, such

as radiative decay of the Rydberg state and collisions with ground-state atoms [94]. An early
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dissociation process via the energy exchange between the Rydberg electron and ground-state
atom has also been used to explain shorter molecular lifetimes observed in experiments [95].
Nevertheless, the relatively long lifetimes and large Frank-Condon factors associated with
these outermost states make them the easiest to isolate experimentally [20, 25, 30]. There
are also several resonances in the inner potential wells (v=1 and 3) with lifetimes on the
order of that of the Rydberg atom (which for 8Rb 31Dj /2 is about 20 us in a 300 K black-
body radiation field). The resonances at higher energies (v = 4 — 6) exhibit shorter lifetimes
because of the smaller potential barrier through which they more readily tunnel inward.
Surprisingly, above these short-lived resonances additional resonances with longer lifetimes
appear (v = 7—10). Here, the inner oscillatory wells act like an aperiodic Bragg reflector of
the molecular wave functions, resulting in unexpectedly long-lived resonances near the dis-
sociation threshold. The lifetime of these states is largest when a Bragg reflection condition
is met. This occurs in a range of Rydberg principal quantum numbers n at which the peri-
odicity of the vibrational wave function approximately equals that of the Rydberg-electron
wave function. This Bragg-reflection has previously been described as an internal quantum

reflection process in S-type molecules [29].

5.4 Hund’s cases for nD Rydberg molecules revisited

Low-¢ diatomic Rydberg molecules (¢ < 2 in rubidium) exhibit a variety of Hund’s
coupling cases, determined by the relative strength of the Rydberg atom’s fine structure
coupling to the e”+perturber scattering interaction. For ¥ Rb(nD; +5S51/2) molecules the fine
structure coupling is comparable to the scattering interaction strength. Due to this, D-type
molecules trend from Hund’s case (c) at large n, where the fine structure coupling exceeds the
scattering interaction strength, to Hund’s case (a) for n < 35, where the scattering interaction
strength exceeds the fine structure coupling. In the previous chapter (IV), ®Rb(nD; +
5512, F' = 2)(v = 0) molecules were observed in transition between the two Hund’s coupling

cases (a) and (c) [25]. In this section, the focus is on the molecular potentials and quasi-bound
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states of the ¥ Rb(nD; +551,2), j = 3/2 and 5/2 molecules in the two limiting Hund’s cases
and in the transition regime. It should be noted that the Hund’s case behavior discussed
is not dependent on the additional interaction terms in the Fermi model used here (P-wave
and hyperfine coupling), but only dependent on the Rydberg wave functions. Nevertheless,
inclusion of these interactions results in more accurate potential curves and also provides
insight into the Hund’s case behavior of the hyperfine potentials and molecular states.
Figure 5.5a shows V;(Z) for the j=3/2 and 5/2 (22D, + 55 2) molecules (left) and j=3/2
and 5/2 (40D; + 5S51/2) molecules (right) calculated with all interaction terms in Eq. 5.1,
excluding hyperfine-structure coupling. At high n, the molecules trend towards Hund’s case
(c), where the dominant adiabatic molecular potentials are reduced by the product of two
Clebsch-Gordan coefficients of the type (my = 0,my = £1/2|j,m; = £1/2). This leads to
adiabatic potentials whose depths carry spin-dependent factors ¢/(2¢ + 1) for j = ¢ —1/2
and (( +1)/(2¢ + 1) for j = ¢+ 1/2 [75]. For nD (¢ = 2) molecules at high n, the depth
ratio of the potentials for j = 3/2 and j = 5/2 approaches 2/3. This is seen in the depths
of the outermost wells of the high-n j = 3/2 and 5/2 (40D; + 554 /2) molecular potentials in
Fig. 5.5a. For decreasing n, the fine structure splitting increases as n~2 while the scattering
interaction strength increases as n=¢, and the molecules tend towards Hund’s case (a). The
Jj=3/2and 5/2 (22D; + 551 /2) molecular potentials in Fig. 5.5 exhibit this case, where the
scattering interaction strength is large compared to the fine structure splitting. In the low-n

limit, the j = 3/2 potential becomes notably deeper than the j = 5/2 potential.
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Figure 5.5: a) Adiabatic potentials for ¥Rb(22D; + 55;,2) (left) and 8"Rb(40D; + 55 2)
(right) with 35,1 .S;3 P! P interactions and no hyperfine interaction. b) Binding energies for
the v = 0 ground vibrational state of the nDs/, 4 55} /2 (blue squares) and nDs/s + 5512

(red triangles) molecular potentials versus n. The D fine-structure splitting is also plotted
(black circles).
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The binding energies of the vibrational ground states in the outermost potential wells,
Wi =0, closely track the depth of those wells and therefore mirror the transition of the
molecule between the two Hund’s cases. In Fig. 5.5b, we plot W; ,—, for the j = 3/2 and 5/2
(nD; 4 551/2) molecules for a range of n from Hund’s case (a) (low-n) to Hund’s case (c)
(high-n). In the high-n limit, the molecular binding energies W;,—o for both fine structure

6

levels approximately scale as n™°, inversely with the atomic volume. In the low-n limit, the

lowest binding energy for the lower fine-structure level (j = 3/2) is larger and continues to
scale as ~ n~% while that of the upper fine structure level (j = 5/2) trends towards a ~ n™>
scaling, approaching the scaling of the fine structure splitting. For the Rb(nD; + 55 s)
molecules, the binding energies of the vibrational ground states in the outermost potential
wells for j = 3/2 and j = 5/2 are approximately equal at n = 34 (see Fig. 5.5b). Further,
due to the described Hund’s case behavior, at sufficiently low n the inner wells of adiabatic
potentials of the nDs/5 + 557 /2 molecule become deep enough to support vibrational states

that are more deeply-bound and long-lived than the ground states of the outermost well of

the nDs/o + 551 /2 potentials.

5.5 Electric and magnetic dipole moments

Rydberg molecules present the only known case of homonuclear molecules with perma-
nent electric dipole moments [4, 28]. For high-¢ Rydberg molecules dipole moments on the
order of 103 eqq are predicted to exist [4]. Smaller permanent dipole moments arise in low-/
S-, P-, and D-type molecules from fractional admixing of high-¢ state character. Permanent
electric dipole moments of ~ 0.5 eag have previously been measured in rubidium S-type
Rydberg molecules [28]. Dipolar cesium Rydberg molecules with electric dipole moments of
~ 5 — 50 eay [22] have also been prepared. In this section we calculate both the electric and
magnetic dipole moments for nD Rydberg molecules, with all terms in the Hamiltonian in

Eq. 1 included.
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Hollow: shallow, mixed singlet-triplet potentials. These are different for F' =1 and F = 2.

Black squares: j = 5/2. Red circles: j = 3/2.

Large size: |my| = 1/2. Medium size: |my| = 3/2. Small size: |mg| = 5/2.
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Figure 5.6: a) Binding energies for v = 0 in the outermost potential wells vs n, with all terms
in Eq. 1 included. The nD; fine structure splitting is plotted for reference. Numbers indicate
degeneracies summed over all my. b) Representative adiabatic potentials and wave functions
for Rb(29D;4551 )2, F = 1,2)(v = 0), for j = 5/2 (left column) and j = 3/2 (right column).
The pure triplet potentials are the same for F' = 1 and F' = 2 (top row), while the mixed
singlet /triplet potentials are generally shallow and different for F' = 1 (middle row) and F=2
(bottom row). The gray bars on the right indicate binding energy, to visualize that the deep
potentials are closer to Hund’s case (a) (j = 3/2 potential deeper than j = 5/2 potential)
than the shallow ones (7 = 5/2 potentials deeper than j = 3/2 potentials). c¢) Electric
dipole moments d; , for v = 0 in the outermost potential wells vs n, with all terms in Eq. 1
included. The blue line through the data for the deep j = 3/2 potentials is an allometric fit
with exponent -2.4. d) Magnetic dipole moments p;, for v = 0 in the outermost potential
wells vs n, with all terms in Eq. 1 included. We only show data for positive m;, (results for
negative my, are the same with flipped sign). There are no degeneracies in p; ,—.

We obtain the adiabatic electric [d;.(Z)] and magnetic [u;.(Z)] dipole moments in the
diagonalization of Eq. 5.1. The dipole moments of a molecular state v follow from the

expectation values of d; ,(Z) and p; .(Z) over the vibrational wave function densities,

di, = / U, (2)|?d; .(2)dZ

o = [ D 202 (5.2)

Electric dipole moments for the ground vibrational states of the j=3/2 and 5/2 " Rb(nD; +
5512, F' = 1,2) deep (pure triplet) and shallow (mixed singlet/triplet) molecular potentials
are shown in Fig. 5.6. In Figs. 5.6a and b we show the binding energies and representative
potentials with wave functions, respectively, for all angular-momentum coupling cases that
arise from Eq. 1. We note that for ¥Rb(nD; 4+ 5512, F = 1,2) molecules the hyperfine
quantum numbers F' are well-defined because the hyperfine coupling is much larger than the
molecular binding. As seen in Figs. 5.6a and b, the delineation between Hund’s cases (a)
and (c) is shifted to lower n for the shallow potentials (which are due to hyperfine-induced
mixing of singlet and triplet states at the 55/, atom). Essentially, the generally weaker

scattering interaction associated with the mixed singlet/triplet cases pushes those molecules
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more towards Hund’s case (c).

The electric dipole moments of the deep molecular potentials are 8-fold degenerate when
summed over all my, and those of the shallow potentials are 4-fold degenerate (see Fig. 5.6¢).
It is noted that with decreasing n the degeneracies in energy and electric dipole moment
become increasingly lifted. This may be attributed to a stronger configuration mixing at low
n caused by the relative increase of the e~ +perturber scattering term in Eq. 1. The only
case in which the dipole moments of the 8’Rb(nD; + 551/2, F = 1,2) molecules exhibit a
clear scaling behavior in n is for the j = 3/2 deep potentials (which are the same for F' =1

24 gcaling, similar to

and F' = 2). A fit to the top-most data set in Fig. 5.6¢c gives an n~
a result found previously for 8Rby S-type Rydberg molecules [28]. Here, the scattering-
induced mixing between the atomic Rydberg levels gives rise to a significant change in the
electric dipole moments as a function of n. In the range n = 30, the electric dipole moments
for both types of shallow potentials of ¥Rb(nDs/5+ 5512, F' = 1, 2) also approximately scale
as n~24. The electric dipole moments for the upper fine structure component j = 5/2 have
less clear scaling trends (squares in Fig. 5.6¢). In particular, the electric dipole moments for
the deep 8"Rb(nDs /2 + 5512, F' = 1,2) potentials do not exhibit a clear scaling behavior.
This is likely a result of the transition from Hund’s case (a) to Hund’s case (c).

The magnetic moments for the molecular states are shown in Fig. 5.6d. The magnetic
moments are non-degenerate due to the different g-factors of the involved types of spins. The
n-dependence again reflects the transition in angular-momentum coupling behavior between
the two Hund’s cases (a) and (c). We expect that experiments in weak electric and magnetic
fields can reveal the electric and magnetic dipole moments of the vibrational states. The
dipole moments computed in this work are for the weak-field limit, i.e. results are expected

to be accurate as long as molecular Zeeman and Stark shifts are smaller than other relevant

energy scales (such as the energy splitting between adjacent vibrational states).
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5.6 Hyperfine-structure effects in deep 3S- and *P-dominated po-

tentials
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Figure 5.7: High-¢ adiabatic potentials near n = 30 of *Rby, Rydberg + 5S;,, molecules
a) without and b) with hyperfine structure included. The plots indicate the trilobite po-
tentials [4], the dominant types of scattering interactions leading to deep potentials, the
asmyptotic states of the potentials, the regions where bound trilobite molecules may be
found (gray areas), and the intersections between trilobite potentials and F' (¢ = 3) lines
(dashed circles).
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The trilobite molecules [4] generated by the ®S interaction are long-range and on the order of
10 GHz deep, which is on the same order as the hyperfine interaction of the 55/, perturber.
It is therefore of interest to explore hyperfine effects on the trilobite adiabatic potentials. In
Figs. 7Ta and b we show these potentials without and with hyperfine coupling for n = 30, for
all relevant values of m;; +mg and my = mji +mg +m; e, respectively. While the hyperfine
interaction does not affect the general shape and depth of the “trilobite” potentials, with
hyperfine structure included there are three instead of only one. Since the number of 3P
potential curves also triples, the crossing pattern between 3S and 3P potentials becomes
considerably more complex, as seen in Fig. 5.6. Considering that the modulations near the
bottom of the “trilobite” potentials are several 100 MHz deep, which is sufficient to support
individual bound vibrational states, the hyperfine structure is expected to have profound
effects on the detailed vibrational level structure of these molecules. In Fig. 7b, one may
expect to find long-lived 3S-dominated states in the gray regions. Further, as indicated by the
circles in Fig. 7b, the crossing locations and the detailed coupling behavior of /=3 Rydberg
levels (which are optically accessible form low-lying atomic states) to molecular states in the
long-range potentials also strongly depend on the hyperfine structure of the system under

investigation.

5.7 Summary

In this chapter we systematically explored the role of fine-structure and hyperfine angular-
momentum couplings in 8"Rb, molecules formed between Rydberg and 5S; /2 ground-state
atoms. As has been done extensively in previous work, we have treated the electron-5S;/;
scattering with a Fermi model that includes S-wave and P-wave singlet and triplet scat-
tering. The fine structure mostly influences the behavior of low-¢ Rydberg molecules. We
have explored in detail how 8"Rb(nD + 55)/2) molecules realize Hund’s cases (a) and (c).
The hyperfine structure originates in the perturber atom and therefore has consequences

for all types (low-¢ and high-f) of Rydberg molecules. In the case of ¥ Rb(nD + 551,)
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molecules, mixing of singlet and triplet potentials results in a set of shallow adiabatic po-
tentials, whose quasi-bound states should be experimentally observable (in addition to those
in the hyperfine-independent pure triplet potentials). We have obtained electric and mag-
netic dipole moments, which could, in future work, be measured spectroscopically in weak
electric and magnetic fields. The hyperfine structure has also been seen to alter the deep,
3S-scattering-induced trilobite potentials as well as their crossing behavior with /=3 Ryd-
berg states; experimental spectroscopic studies should reveal these details. We expect the
hyperfine structure to have a particularly significant effect on Cs, trilobite potentials and
molecules [96], where the trilobite potentials intersect and strongly mix with the low-¢ n.S
potentials. (In Cs the fractional part of the n.S quantum defect is small, g = 4.05 [97, 98],
making the S-states energetically close to the degenerate high-¢ manifold.) Since molecular
level energies and properties are very sensitive to the scattering phase shifts used in the
Fermi model, we expect that spectroscopy of Rydberg molecules can serve as a sensitive
tool to provide measurement-based input to future theoretical studies in low-energy electron

scattering.
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CHAPTER VI

Production and trapping of cold circular Rydberg

atoms

This chapter constitutes the second part of the dissertation. Here I move away from molecules
formed by Rydberg and ground-state atom interactions and focus on the production, trap-
ping, and dynamics of single Rydberg atoms in extreme angular-momentum or circular
states. In the system described, collisional effects between cold circular Rydberg atoms and
ground-state atoms nevertheless play an important role, inspiring future work looking for
molecular formation in these systems.

Circular Rydberg states correspond to highly-excited, Bohr-like electron trajectories with
maximal orbital angular momenta [31]. Circular-state (CS) atoms exhibit a unique com-
bination of properties including long radiative lifetimes ~ n®, large magnetic moments
lm| = ¢ = n — 1, zero linear and small quadratic Stark shits. Several of these fea-
tures have made CS atoms model quantum systems for a variety of precision measure-
ments [45, 46, 47], which benefit from the reduced nuclear and QED perturbations of these
high-angular-momentum states as a result of the small overlap of their torus-like wave func-
tions with the atomic core. Transitions between circular and near-circular states provide
a near-perfect two-level system for probing atom-cavity interactions, a feature exploited in
landmark cavity-QED experiments [39, 40], a body of work recognized by the 2012 Nobel

prize in physics shared by David Wineland and Serge Haroche [42]. A number of proposed
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measurements require CS atoms at low temperature. These include an on-going effort to-
wards a high-precision measurement of the Rydberg constant [48] using a shallow optical
lattice modulation technique to drive transitions between circular states [49], for which gen-
erating circular atoms at low-temperature is a prerequisite. Cold circular Rydberg states
have also recently been proposed for use in quantum information processing [50]. The re-
alization of cold high-¢ Rydberg atoms also enables studied of low-temperature interactions
involving high-¢ Rydberg atoms. These include low-energy collision experiments with circu-
lar and high-¢ states, a regime which has not been explored to date.

In addition to realizing Rydberg atoms at low temperature, many studies and applications
require Rydberg atoms to be trapped. For this reason Rydberg atom trapping has been
a topic of general interest in recent years, and significant progress has already been made
in developing and realizing a variety of trapping techniques. Optical, electro-static and
high-gradient magnetic trapping methods for Rydberg atoms have all been considered the-
oretically [99, 100, 101] and demonstrated in experiments [102, 103, 104, 105]. These have
all involved the trapping of atoms in low-¢ Rydberg states, which can be readily accessed by
direct optical excitation in experiments. In addition, the trapping of Rydberg atoms with
magnetic fields has also previously only been achieved for mixtures of Rydberg states [105]
and not for well-defined quantum states.

In this chapter I describe and demonstrate a technique for producing and magnetically
trapping cold circular Rydberg atoms. I begin with an overview of the approach starting with
a description of the adiabatic crossed-fields method [5] for producing circular Rydberg atoms.
The experiment is then described, including a characterization of the ground-state magnetic
trap used and the implementation of the adiabatic crossed-fields method for the production
of circular state atoms in the cold ground-state atom sample. The large magnetic moment of
a trapped near-circular state atom is measured and its magnetic trapping is characterized by
direct spatial imaging of ion distributions, ion counting and state-selective field ionization. A

classical model is described and used to determine collision cross sections between circular-
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state and ground-state atoms which is found to be in good qualitative agreement with the
observed loss rate. The internal-state evolution of circular state atoms in the magnetic trap
in a 300 Kelvin background is also probed and found to be in good qualitative agreement

with calculated thermally-induced transition rates and internal-state redistribution.

6.1 Adiabatic crossed-fields method for circular state production

Circular Rydberg atoms are in a maximal angular momentum state and therefore cannot
be generated by direct optical excitation. In this work cold circular Rydberg atoms are
generated using the adiabatic crossed-fields method [5, 36]. This method is well estab-
lished [37, 106] and is chosen here over others [31, 107] largely due to its relative experi-
mental simplicity, requiring a single optical excitation to a high-lying Stark state and the
switching of one external electric field in the presence of a perpendicular magnetic field.
Qualitatively, the time-dependent switching of external electric and magnetic fields imparts
angular momentum into the atom which results in the circular state. The method is particu-
larly well suited for magnetically trapping circular atoms since the magnetic field required in
their production can be provided by the local magnetic trapping field of an already trapped
ground-state atom sample. Using this method the circular Rydberg atoms can therefore be
generated locally inside a magnetic trap with high spatial resolution, afforded by the initial
optical excitation.
The preparation of a circular state by the crossed-fields method is shown schematically in
Fig. 6.1. First, a ground-state atom is excited to the upper-most Rydberg Stark state in the
hydrogenic manifold of a given n in a large electric field E and small perpendicular magnetic
field B. Here, the field strengths are chosen such that the system is in a Stark-dominated
3nE

regime, where the Stark frequency wg = =57 exceeds the Larmor frequency wy =

eB
2me *

This is followed by a reduction of the electric field to zero such that wg < wy, during which
the Rydberg atom remains in a well-defined state as it is transferred from a Stark-dominated

regime to a Zeeman-dominated regime. Provided the electric field is switched slowly enough,
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maintaining adiabaticity, the initial Rydberg Stark state is transferred with high efficiency

to the highest level of the Zeeman manifold, which is the circular state with m =n — 1.

Stark state Circular state
$ $ $
B
B
A E

Figure 6.1: Schematic of the adiabatic crossed-fields method for circular state production
adapted from [5]. The top row shows the structure of the hydrogenic manifold in the Stark
(left), Zeeman (right), and intermediate (middle) regimes. The bottom row shows the classi-
cal electron trajectories associated with the upper most state of the corresponding hydrogenic
manifold.

An important part of this method is that the initial high-¢ Rydberg Stark state can be
accessed optically. In rubidium and other hydrogen-like atoms, at a sufficiently large electric
field the non-degenerate low-/ states intersect and mix with the high-¢ hydrogenic manifolds,
making the hydrogenic states optically accessible from low-lying states. The left panel in
Fig. 6.2 is a calculated Stark map (with zero magnetic field) in the vicinity of the n =
57 hydrogenic manifold in rubidium and its intersection with the 60P states. At their
intersections, the red-shifted 60 P Stark states and blue-shifted hydrogenic Stark states couple
due to their overlap at the finite-sized ionic core and exhibit avoided crossings.! At the

avoided crossings, which are seen more clearly in the right panel of Fig. 6.2, the most high-

LChapter 6 in [56].
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lying state of the hydrogenic manifold carries enough S and D character at the intersection
with the 60P states, and can be optically accessed from low-lying S and P states.

To ensure efficient transfer into the circular state, the initial hydrogenic Stark state must
evolve adiabatically during the electric field sweep. The 60P; /; avoided crossing in Fig. 6.2
is a good candidate for the initial excitation in this region because it is the first to connect to
the upper-most hydrogenic Stark level which then does not cross with other states at lower
electric fields. Since the initial excitation is at an avoided crossing, the initially excited Stark
state contains a significant amount of low-¢ character. Here, the electric field must be ramped
down adiabatically away from the avoided crossing so to avoid diabatic transitions from this
initially excited state into states in proximity of the avoided crossing, and in particular into
the nearby red-shifted 60, Stark state, which connects to the 60P; /, state at zero electric

field instead of the circular state.
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Figure 6.2: Left: Calculated Stark map for rubidium of m; = 0.5 states in the vicinity of the
60P and n = 57 manifold intersection. Right: High resolution plot of the 60P and n = 57
manifold intersection indicated in the left panel.

The probability of a diabatic transition into the red-shifted 60F,/, Stark state during the
onset of the electric field sweep can be estimated using the Landau-Zener formula for the
tunneling probability between the most blue-shifted Stark state of the manifold and the red-
shifted 60P; , Stark state for an electric field sweep through their avoided crossing. If the
unperturbed energy-level separation W = Wy — W of the two states involved varies linearly

with time, the Landau-Zener probability P of a diabatic transition from state |1) to state

|2) is given by [108]

P = 6727TF
|a?
r = ———— 6.1
h(dW/dt)’ (6.1)
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where a is the coupling matrix element connecting two states (in units of energy) and
dW/dt = dE/dt(dWy/dE — dW,/dE) = dE/dt A(dW/dE). The probability of a diabatic
transfer from the initial state into the final state depends on their coupling strength, the slew
rate of the electric field sweep and the dipole moments of the unperturbed atomic states. For
the avoided crossing at the intersection of the 60 o and n = 57 hydrogenic states shown in
the right panel of Fig. 6.2, we have a ~ h x 10 M Hz (equal to half the width of the avoided
crossing), and AdW/dE ~ hx GHz/(V/em). Choosing a slew rate of dE/dt =1V /em/us,
the diabatic transition probability P< 1072 (27 & 4) and the evolution from the initial
state into the upper most hydrogenic Stark state is well in the adiabatic limit. Here, the
slew rate was chosen such that the full electric-field sweep time is less than the relevant Ryd-
berg state lifetimes, which ensures circularization before thermal and radiative decays begin
to dominate, and such that the sweep could be realistically implemented in experiments.

Exciting the upper-most hydrogenic Stark state is essential for the efficient production of
high-n circular Rydberg states by the crossed fields method so it is important to consider
the n-dependence of I' in Eq. 6.1 when determining experimental parameters. It can be
shown that the coupling strength a between intersecting Rydberg Stark states of similar n
with |m| << n scales approximately as n~* [56], contributing an n~8-dependence to I'. This
rapid decrease of the coupling strength with n imposes an additional requirement that the
excitation bandwidth be less than a/h in order to selectively excite the appropriate level at
the avoided crossing. The dipole moments, as discussed previously, scale with the atom size
~ n?, which results in an overall scaling of I' &~ n~1°. This is significant. Using the avoided
crossing at n ~ 60 in Fig. 6.2 as an example, the same intersection at n = 65 (An = +5)
would result in about an order of magnitude increase in the diabatic transition probability
for the same electric field slew rate. The choice of the electric field ramp in the vicinity
of the avoided crossing therefore largely dictates the efficiency of reaching the upper-most
hydrogenic Stark state and ultimately the efficiency of producing circular Rydberg atoms by

this method.
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Once in the upper-most hydrogenic Stark state, the electric field is decreased within the fixed
perpendicular magnetic field such that the atom evolves into the circular state as wy > wg.
In the transition from the Stark- to Zeeman-dominated regime, the adiabatic condition on

the electric field slew rate is given by [5, 36, 37]

dE eh B?

— << .
dt 6m2ay n

(6.2)

For the slew rate dE/dt ~ 1 V/cm/pus considered above, a transverse magnetic field greater
than a few Gauss is required. Generally, from Eqs. 6.1 and 6.2 we see that the adiabatic
conditions for efficient circular Rydberg state production by the crossed fields method become
more stringent at higher n but can be readily satisfied in most experiments with modest

magnetic field strengths and electric field ramp speeds.

6.2 Ground-state magnetic trap

The experiment to produce and magnetically trap cold circular Rydberg atoms begins with
a sample of 107 8"Rb atoms prepared and magnetically trapped in the |F'=2, mr=2) ground
state at a temperature of ~100 pK and density of ~ 10 cm™3. This is done following the
methods described in Chapter III. The trap parameters relevant to the CS experiment are
the ground-state trap oscillation frequencies, to which the CS oscillations are later compared,
and the magnetic trap field strength at the location of the optical excitation, which provides

the magnetic field required in the CS production by the crossed-fields method.
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Figure 6.3: Left: schematic of the experiment. Six gold-coated copper electrodes enclose a
magnetically trapped atom sample to control the electric fields at the excitation location.
An MCP is used for ion detection. The location of the Z-wire and the counter-propagating
480nm and 780nm beams for excitation to Rydberg states are also shown. Right: plot of
the magnetic field strength in the zy-plane through the center of the trap. The linear gray-
scale ranges from |B|=5.5 G (white) to 9.5 G (black) in steps of 0.5 G. The hatched region
indicates |B|>10 G.

A cross section of the magnetic trapping field used in this experiment is shown in Fig. 6.3.
The w, and w, ground-state atom trap frequencies are measured by initiating center-of-
mass (COM) oscillations of a small, trapped ground-state atom sample and tracking its
COM displacement in the trap over time. The ground-state atom sample is first cooled by
forced radio-frequency evaporation to a temperature < 30K resulting in a cloud size with a
diameter of ~ 100 pum along the radial trap axis (cross section in the y'z’-plane at 2'=0). To
measure w,, oscillations are induced by shifting the magnetic trap minimum in y by ~ 250um
and back to its original position by applying a 500 us-long 0.5 Gauss magnetic field pulse in

the z direction. This trap displacement time is chosen to be less than the expected oscillation
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period to ensure the atom sample does not adiabatically follow the trap minimum. The top
of Fig. 6.4 shows a sequence of absorption images taken of the atom sample with the imaging
axis along x’ at increasing time delays after the initial displacement. The trap frequencies
are independent of the imaging angle so the measurement is unaffected by the choice of
primed and non-primed coordinate systems for the imaging axis (see Fig. 6.3). A plot of
the atom cloud COM positions as a function of delay time after the initial displacement is
shown in the bottom of Fig. 6.4. A sinusoidal fit gives a 3’ COM oscillation frequency of
Wy =2mx39.6£0.1 Hz.

Displacement (um)
<

-300 - T T T T T T T T T T T T T T T T T T T T T
0 10 20 30 40

Time (ms)

Figure 6.4: Center-of-mass oscillations of the magnetically-trapped ground-state atom cloud
along 3/. Top: Sequence of absorption images of the oscillating atom cloud in 2 ms time
intervals from 2 ms to 40 ms (left to right) after the initial trap displacement. Bottom:
Center-of-mass positions from the top image sequence as a function of delay time after the

initial displacement (black circles). The sinusoid fit (red curve) gives an oscillation frequency
Wy =27x39.61+0.1 Hz.

To measure w,, the atom sample itself is displaced away from the trap minimum by imparting
momentum to the COM of the atom cloud with a resonant optical pulse. This is done instead
of a displacement of the trap minimum in z’ because such a displacement cannot be achieved

by the application of a single external bias field with a Z-wire magnetic trap configuration.
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The evaporatively-cooled atom sample is illuminated for 100 us by a laser beam tuned to
resonance with the 8’Rb 5252 — 5Py transition at an intensity of I, /5, directed mostly
along the 2’ direction of the elongated atom trap, and whose size is large enough to ensure a
near-uniform intensity distribution across the entire atom cloud. This intensity corresponds
to a photon scattering rate of 3.1 x 10° s~! and an average COM momentum transfer to the
atom sample of mgy x 3.1 x 10° 571 X 100 118 X Vyecoit = & Mgy X 2 m /s, where the photon recoil
velocity Upeco=5.88 mm/s [3] and mg; is the rubidium atom mass. The atom sample COM
then becomes initially displaced along the z’ direction by ~ 180 pm from the trap minimum.
The pulse duration is much less than the expected oscillation period which again ensures a
non-adiabatic displacement of the atom sample from the minimum of the trap. The pulse
area is chosen such that the number of photons scattered does not cause substantial heating
and diffusion of the atom cloud during its subsequent oscillations. The COM motion along
2’ is tracked by taking absorption images of the atom sample at increasing delay times from
the initial optical pulse. The imaging axis and initial COM velocity component deviate from
the z’-axis of the magnetic trap by a small angle, allowing low amplitude oscillations to be
observed in the absorption images. A sinudoidal fit to the observed COM displacements over
time (not shown) gives an ' COM oscillation frequency of w, =27x7.94£0.3 Hz.

Having measured the relevant ground-state magnetic trap frequencies, we next measure the
magnetic field strength at the center of the ground-state atom trap used in the circular
state production by the cross-field method. The magnetic field at the bottom of the ground-
state atom trap is measured by taking advantage of the position-dependent Zeeman shifts of
ground-state magnetic sub-levels in the magnetic trapping potential. Atoms in the trap that
are located at the trapping-field minimum |By| experience the smallest trap-induced Zeeman
shifts and can be selectively probed using the RF evaporative cooling sequence described
in section 3.1.2 to measure the value of |By|. Here, the number of atoms remaining in the

. . . . t
trap after one evaporation sequence is monitored as a function of RF stop frequency u;;p .

The V?;p at which all of the atoms are removed from the trap corresponds to the Zeeman
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splitting at the minimum trapping field strength, which is given by

stop

v
Bo| = o 6.3
[Bol 700 kHz/Gauss’ (6:3)

where 700 kHz/Gauss is the Zeeman splitting between adjacent mp sub-levels of the
5512, F' = 2) atoms [3]. The field minimum for the trap in Fig. 6.3 is measured to be
5.740.6 G, where the uncertainty is given by the 10% shot-to-shot fluctuation in the atom

number measurements.

6.3 Production of circular states by the adiabatic crossed-fields

method

The production of circular state Rydberg atoms is accomplished using the crossed-field
method described in section 6.1. As discussed, good control of electric fields is important
when producing circular states using this method. To selectively excite the initial Stark
state, the electric field needs to be homogeneous enough to not broaden the lines at the
Stark 60P and n = 57 manifold intersection such that the states are distinguishable at the
avoided crossings. The electric field also needs to be controlled to a level such that for a
given transverse magnetic field the condition wg < wy is satisfied at the end of the electric
field ramp. In this experiment, the magnetic trapping region is enclosed by an electrode
structure consisting of six individually-addressable electrodes, shown in Fig. 6.3, with which
the electric fields are controlled to an accuracy of <30 mV/cm in all coordinates by Stark
spectroscopy on high-lying Rydberg states on 85D Rydberg states, following the methods
described in chapter III. The electrode labeled “T” is used for Rydberg-atom field ionization
and the electrode labeled “B” produces the electric field ramp required for the CS produc-
tion. The MCP located 10 cm from the excitation region is used for ion detection, which in
this case includes spatial imaging of the ion distributions and time of flight information as

well as ion counting.
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Figure 6.5: Left: Schematic of the two-photon excitation to Rydberg states. Right:
Schematic of the experimental timing sequence for Rydberg excitation, field-ionization and
detection.

A schematic of the experimental timing sequence is shown in Fig. 6.5b. Circular Rydberg
atoms with principal quantum number n=>57 are generated by first optically exciting, in the
presence of an electric field E = — EZ generated by applying a voltage to the B-electrode, into
the highest-lying Stark state of the n=>57 hydrogenic manifold. This is done by a two-photon
excitation with 480 nm and 780 nm laser beams as shown in Fig. 6.5a, which are pulsed on
simultaneously as shown in Fig. 6.5b. The frequency of the 780 nm laser is fixed 1 GHz
off-resonance from the 551/, — 5P3/; transition to minimize heating of the ground-state
atom sample over a series of excitations in a single ground-state atom sample. The 480 nm
laser is frequency tunable to excite Rydberg levels. The 480 nm beam is focused to a waist
of wpy=50 pm and the 780 nm beam is collimated to wy=1.5 mm, with powers of 35 mW
and 2 mW, respectively. Both beams are linearly polarized perpendicular to the axis of the

applied electric field. As seen in Fig. 6.2, at a field of 1.8 V /cm the 60P states intersect with
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the n=57 hydrogenic states. Experimental and calculated two-photon excitation spectra of
this region are shown in Fig. 6.6a and b, respectively. In the experimental spectrum, we
see the hydrogenic states appear only in regions where they intersect with 60P states due
to field-induced state mixing of S and D character into the P Rydberg states. The coupling
between the 60P and high-¢ hydrogenic Stark states is evident at their intersections, which
are avoided crossings with splittings of 20 MHz or more. These features are reproduced in the
calculated spectra in Fig. 6.6b, which shows calculated energy-levels with the small 5.7 Gauss
perpendicular magnetic field from the magnetic trap taken into account, as well as the two-
photon excitation rates for the experimental parameters used. The calculated two-photon
excitation rates take into account the effects of laser line widths and inhomogeneous field
broadening evident in the experimental spectrum. A detailed description of the two-photon
excitation rate calculations is given in Appendix C. For the initial step in the CS production
we excite to regions labeled I and I7 in Fig. 6.6a. Regions labeled IV are avoided crossings
with state crossings at lower electric-field values and are therefore not chosen for the initial
excitation in the circular state production. Region labeled 11/ marks the red-shifted 60

Stark state away from its avoided crossing with the upper-most hydrogenic Stark state.
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Figure 6.6: (a) Experimental Stark spectrum showing the intersection of 60P with the n=57
hydrogenic manifold. Plotted are average counts per excitation pulse (linear scale ranging
from 0 (white) to >3.5 (black)) as a function of applied electric field and frequency offset
of the 480 nm laser from an arbitrary reference frequency. Each data point is an average
of 50 excitation pulses. The electric field axis is scaled by a factor of 0.98 to match the
calculation in (b). Minor deviations in frequency between (a) and (b) are attributed to
long-term excitation-laser drifts. (b) Energy levels (solid lines) and excitation rates per
atom calculated for our laser polarizations and intensities (overlay; linear gray-scale from
0 to 150 s71). In the excitation-rate calculation we assume Gaussian distributions for the
excitation frequency and electric field, with FWHM of 5 MHz and 50 mV /cm, respectively.

After a 15 us excitation pulse to region I, the electric field is ramped down over 40 us from its
initial value of 1.76 V/cm to 0 V/cm, within the residual electric-field uncertainty. This ramp
speed is slow enough to ensure adiabatic evolution of the Rydberg atoms within the avoided
crossings in Fig. 6.6. (This is 40x slower than the adiabatic ramp described in section 6.1

for the states of interest and well within the adiabatic transfer limit given by 6.1). To avoid
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abrupt changes in field during switching, the ramp is also designed with some curvature in
its initial and final sections, as shown in Fig. 6.5b. Here, the 5.7 G magnetic field at the
bottom of the atom trap is always on and is perpendicular to the ramped electric field. At
the beginning of the electric field ramp the Stark frequency wg ~ 27 x 200 MHz is much
larger the fixed Larmor frequency wy,=27x8 MHz. At the end of the ramp, the residual
Stark frequency wg < 2wx3 MHz, which is less than the Larmor frequency in the magnetic
field of the trap. In the adiabatic sweep from the Stark-dominated (wg > wy) to the Zeeman-
dominated regime (ws < wy) the atoms initially prepared into region I in Fig. 6.6a evolve
with near unity probability into the |n=57, =56, m,=56, m,=+0.5) CS. The CS has good
quantum numbers m, and mg because in high-¢ states the Zeeman effect dominates their
small fine structure coupling (see sections 2.2 and 2.3). The magnetic field stabilizes the CS
by lifting its degeneracy with any other hydrogenic state. Here, the angular momentum of
the trapped CS atom is parallel to the magnetic field at the trap minimum, which points
along x’ in Fig. 6.3. This CS is low-field seeking. The complementary |n=>57, (=56, my=—56,
ms=-0.5) CS is connected to the red-most shifted hydrogenic Stark state in the Stark limit
(see left panel of Fig. 6.2), and is unsuitable for magnetic atom trapping because it is a

high-magnetic-field seeking state.

6.4 Circular-state trapping and center-of-mass oscillations

Due to their large magnetic moments, CS atoms in a magnetic trap experience signif-
icantly deeper confining potentials than ground-state atoms. The magnetically trapped
|F=2, mp=2) atoms (Landé¢ factor gp=1) have a magnetic moment of one Bohr magneton,
tgs = —pp. The CS atoms described above have a magnetic moment ucs=—pug(me +
gsms)=—bTup, where g ~ 2. In a harmonic magnetic trap, the CS atom experiences a
potential increase, ch:(%)UGS:WUGS, and a corresponding trap frequency increase,
wcg:\/ﬁwgg, where Ugg and Ugg are the CS and ground-state magnetic potentials, and

wes and wgg are the CS and ground-state trap frequencies, respectively.
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The minimum of the ground-state trap is substantially shifted due to gravity, while in the
much stronger CS trap gravity can be ignored. This is illustrated in Fig. 6.7. The displace-
ment vector pointing from the minimum of the ground-state trap to the minimum of the
CS trap is calculated to be dr = (dz, 0y, dz) = (710,290, 0) pm, which is determined using
calculated force constants and the 1240.2 degree tilt of the trap with respect to gravity (see
Fig. 6.3). This displacement of the trap minimum allows us to initiate sloshing-mode oscil-
lations of trapped CS atoms in the x” and y’ directions by doing the initial optical excitation

and production of the CS at the center of the ground-state magnetic trap.

Gravity

CS oy
GS

>

<
Y

Figure 6.7: Illustration of the circular Rydberg atom magnetic trap displacement from the
ground-state atom magnetic trap along y.

To observe these oscillations the |C'S — 1) = |n=57, (=56, my;=55, m;=+0.5) near-CS is
generated by an initial excitation to region I7 in Fig. 6.6. Excitation to region I is chosen
because it provides a stronger experimental signal than I; both regions result in high-¢

states that exhibit quantitatively similar trapping behavior. The expected trap period for

the near-CS is Tcg_lzf%, which equals 16.9 ms and 3.4 ms in x’ and y’, respectively.
Since the excitation and circularization time interval of 55 us is much smaller than Tog_1,
the atoms are prepared on the side of their trapping potential Usg_1, at the location -dr. A
fast field-ionization pulse is applied at varying time-delays, ¢4, from the end of the |C'S — 1)

production, as shown in Fig. 6.5b. The ion positions are projected onto the MCP, where

they generate spatially-resolved light pulses on a phosphor screen, which is imaged by a CCD
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camera. The center-of-mass (COM) coordinates of the ion distributions in the MCP plane
are obtained from sums of 2000 images at each t;. Plots of the x and y COM coordinates as
a function of ¢4 are shown in Fig. 6.8. The y COM data (Fig. 6.8a) is fit to a sinusoid out to
4 ms which gives an oscillation period of 3.4£0.1 ms. This is in excellent agreement with the
predicted value. The y COM data is only considered out to 4 ms because of distortions in
the ion trajectories thereafter, as suggested by the x COM data. Since dx =~ 2.5y, a larger
COM oscillation amplitude in x is expected. The x COM coordinate plotted in Fig. 6.8b
develops a large displacement over about 4 ms. At t;=4 ms there is an apparent reversal in
the direction of motion of the x COM coordinate, which occurs about a factor of two earlier
than expected. A possible explanation for this is that the x COM oscillation amplitude is
so large that it brings the ions produced by field-ionization far enough off of the ion-imaging
axis causing distortion and obstruction (see Fig. 6.8c and discussion below). This prevents
a direct measurement of the x COM oscillation period, as well as the y COM oscillation
period after 4 ms. A video of a time-series of composite images showing the evolution of the
ion distribution as a function of ¢4 can be found in online supplemental material at http:

//journals.aps.org/pra/abstract/10.1103/PhysRevA.88.031401#supplemental [53].
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Figure 6.8: (color online). (a) Experimental center-of-mass (COM) displacement in y vs
tq (circles) in the MCP plane (left axis) with a fit to a sinusoid out to 4 ms (solid curve).
The RMS spread of the data about the fit is 0.05 mm, indicated by the representative error
bar. The simulated COM displacement in y vs t; in the object plane (right axis) is shown
out to 10 ms (dashed curve). A linear offset is subtracted to match the experimental data,
accounting for ion-imaging abberations. (b) Experimental COM displacement in x vs t4. (c)
Fraction of detected atoms remaining vs t4;. Based on the variance of the data points, we
estimate an uncertainty shown by the representative error bar.

To model the system, we perform Monte Carlo simulations of the internal-state evolution of a
sample initially in the state |C'S —1) in a T=300 K radiation background. Atom trajectories
inside the magnetic trapping field are computed classically using a Runge-Kutta method.
The simulations account for all radiative transitions, including thermal photoionization, but
do not account for collisions. During its evolution in the trap, a typical circular atom

undergoes many thermally-driven state transitions. The internal-state evolution changes m,
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which in turn changes the COM motion of the atom sample in the magnetic trap. The
internal-state evolution and trajectories are therefore coupled by the m quantum number.

L corresponding

The calculated rate of thermally-induced transitions per atom is 6x10% s~
to about 60 thermal transitions over the 10 ms observation time in the COM measurement
in Fig. 6.8. (For comparison, in a T=4 K cryogenic enclosure the thermal transition rate
would be 0.1x10% s™1, corresponding to 1 thermal transition over 10 ms.) The rapid state
evolution from the |C'S — 1) due to the 300 K thermal radiation results in n-, ¢- and m-
redistribution of the initially prepared sample, leading to a time dependence of the average
magnetic dipole force as well as a diffusive component of that force. The change in average
m amounts to less than 1% over the 10 ms observation time. The corresponding change
in average oscillation frequency is too small to be seen in the experiment. The diffusive
component of the m evolution is more significant, reaching an RMS spread of +15% about
the average m over 10 ms. This is large enough that some damping effect on the COM
oscillations is expected. From the simulations we obtain COM trapping frequencies and
decay constants of 16.5 ms and 36.2 ms in x’ and 3.4 ms and 10.2 ms in y’, respectively.
In Fig. 6.8a the simulated y COM oscillation is plotted with a linear offset subtracted to
match the experiment, accounting for ion-imaging abberations. In the simulation, we test
the importance of thermally-driven m-state diffusion by turning off all radiative transitions,
leaving trap anharmonicity-induced dephasing as the sole source of damping. We find that
m diffusion and trap anharmonicity contribute in approximately equal parts to the decay of

the COM oscillations over 10 ms.

6.5 Circular-state trap lifetime

To measure the magnetic trapping time, the number of detected Rydberg atoms is plotted as
a function of t4. Figure 6.8c shows the fraction of Rydberg atoms detected relative to t;=0.
As much as 70% of the initially prepared sample is found to remain in the trap after 6 ms. If

any 60P atoms remained after the circularization sequence, our simulations show that only
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a ~ 5 x 107° fraction of them would survive after 6 ms. From this we conclude that the
crossed-fields circularization procedure implemented in the experiment is very efficient. In
Fig. 6.8c one also sees that between 7 and 13 ms there is a rapid drop in ion signal, as well as
a significant resurgence of ion signal at about 16 ms. The rapid drop is likely due to atoms
moving out of the ion imaging field-of-view in the x direction, while the resurgence occurs
because of atoms moving back into view along this axis at later times in their oscillation.
This scenario is consistent with both the expected x oscillation period (16.5 ms) as well as
the early reversal of the x COM evident in Fig. 6.8b.

From Fig. 6.8c we estimate an overall loss rate of >50 s™! for the trapped CS population.
Collisions between Rydberg atoms are not expected to be significant given the low Rydberg
atom densities used here, which are typically a few x10% cm™3 after optical excitation, and
therefore unlikely to contribute to the observed loss. Our simulations of the state evolution
show a loss rate of about 0.5 s7!, (again at 300 K and accounting for all non-collisional
loss channels), which is negligible in comparison to the measured loss rate. The observed
loss rate is consistent with collisions between Rydberg and ground-state atoms being the
primary loss mechanism, which is not unexpected given the long time the CS atom spends
oscillating through the sample of trapped ground-state atoms. This loss rate is estimated
from collisional cross sections between Rb low-¢ Rydberg and ground-state atoms provided
in [56].2 However, the loss rate cannot be fully explained at a quantitative level because low-
velocity CS atoms have not been produced in the lab until now and data on their collision

cross sections are not available.

6.6 A model for collisions between circular Rydberg and ground-

state atoms

Due to their large sizes, Rydberg atoms exhibit properties that are both quantum and

classical in nature [109]. The classical view of the properties of Rydberg atoms follows from

2Depopulation cross sections are given on page 221 in [56]
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the correspondence principle, which dictates that quantum mechanics in the limit of large
quantum numbers must reproduce classical physics. Accordingly, classical simulations of
Rydberg atom trajectories are often used to describe the dynamics and behavior of Rydberg
atoms [110, 111]. It stands to reason, then, that a description of the collision behavior of
Rydberg atoms may also be approached using a classical model.

In this section, the scattering cross sections for low-energy collisions between circular Ryd-
berg and ground-state atoms are calculated using a classical model in which the ground-state
atoms are treated as point-like particles impinging on the much larger circular Rydberg atom.
A schematic is shown in Fig 6.9. In the model, a collision between the two atoms occurs
with unity probability when the ground-state atom hits a classically allowed region within
the Rydberg-atom wave function, 1, and with zero probability if the ground-state atom
passes through a classically forbidden region. The probability of a collision between the two
atoms is therefore determined entirely by the spatial extent of 1. For a given orientation
of 1 during a collision event, the effective scattering cross section, o.s¢, is defined by the
area projection of |1|? for the classically allowed regions of 1) onto the plane whose normal
vector lies along the direction of motion of the ground-state atom (corresponding to the drop
shadow on the plane in Fig. 6.9). The classical nature of the model rests upon the fact that
the effective collision cross section is defined by the area projection of a well-defined classical
object in three-dimensional space. Averaging over the full solid angle gives the total collision

cross section,

47
1

g = E/aeff(ﬁ,qﬁ)dﬁ. (64)

0

The azimuthal symmetry of |n,¢ = m) hydrogenic wave functions simplifies Eq. 6.4 for the
circular state (¢ = m = n — 1) by requiring an integration only over all # interaction angles.
Rydberg states with ¢ # m are not symmetric about ¢ and require an integration over both

6 and ¢.
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Figure 6.9: Schematic of the classical model for collisions between circular Rydberg atoms
and ground-state atoms.

Classical turning points

For a quantum particle in an external potential, the classical turning points separate the
classically-allowed and classically-forbidden regions of the particle wave function 1. With
increasing particle energy, the particle’s probability density becomes concentrated around
these turning points where the kinetic energy and the potential energy are equal. It follows
from Eq. 2.1 that the curvature of v is identically zero at the classical turning points.
Due to the separability of the Schrodinger equation in spherical coordinates (see sec. 2.1),
the classical turning points of the hydrogenic states under consideration are determined
independently for the radial and angular components of .

The classical turning points of the radial wave function w, ¢(r) are determined by finding
the values of r where the wave function has an inflection point, or equivalently where the
bound-state energy of the electron (F,) equals the effective potential energy (Vig(r)) in the
radial wave equation (Eq. 2.6). We have

pca? L0+ 1)h? e?
on  2ur? deqr’

(6.5)
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which, when multiplying through by 2r?, rearranging and converting into atomic units (let-
ting p = 1) gives

1

ﬁrz — 2+l +1)=0, (6.6)

The roots of this quadratic equation give the classical turning points

L = n(n—/n2— (L +1)) (6.7)
ros = n(n+/n2—L0L+1)). (6.8)

Figure 6.10a shows a plot of Egs. 6.7 and 6.8 for the circular states (¢ = n — 1) from n=1
to 65. Allometric fits show an n-scaling of ~ n'% and ~ n*% for r&% and rits, respectively,
deviating slightly from the n? scaling of their average value (not shown). The gray-shaded
area indicates the classically-allowed region. The difference of the two turning points (r9%-
rin.) gives the classical width of the circular state wave function along its radial dimension.
This is also shown in Fig. 6.10a, with an allometric fit giving the ~ n%? scaling expected
from the difference of Eqs. 6.8 and 6.7 for / =n — 1.

The classical turning points of the angular wave function Yy, (6, ¢) are obtained by finding
the angular coordinates at which its curvature equals zero. Due to the ¢ symmetry of the
circular state (and all other / = m states), only the 6 coordinate needs to be considered.
Following from Eq. 2.5, the inflection point is the obtained by solving

82

Derivatives of the associated Legendre functions for arbitrary ¢ and m can readily be com-
puted numerically (see, for example, methods to compute the derivatives of the associated

Legendre function in Ref. [112]). In the present context, the solutions to Eq. 6.9 simplify
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significantly for ¢ = m states and the turning points are given by the expression

1
Orp = £ arccos(:l:%). (6.10)

Classical turning points of the angular wave function for the |n,¢ = m = n — 1) circular

states are plotted in Fig. 6.10b up to n = 65 with classically-allowed regions shaded in gray.
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Figure 6.10: Classical turning points for the |n,¢ = m = n—1) circular state as a function of
principal quantum number n. (a) Inner and outer classical turning points of the radial wave
function R,,(r) (black circles) and their difference (hollow circles). The n-dependence of
each is obtained by an allometric fit (solid lines) and are indicated on the plot. (b) Classical
turning points of the angular wave function Y, (0, ¢) (black circles). In both (a) and (b)
the classically-allowed region is shaded in gray.

Cross sections

Collision cross sections are calculated from Eq. 6.4 by evaluating the electron probability
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density of the CS wave function from Eq. 2.2 in the classically allowed regions defined by
Egs. 6.7, 6.8, and 6.10 on a 200 x 200 x 200 grid and numerically integrating its projection
onto the xy plane (i.e. o.sf) over all §. Figure 6.11 shows the calculated CS-ground atom
cross sections over a range of n. The geometric cross sections given by n*a? are also plotted

for reference. An allometric fit to the CS cross sections gives a scaling of ~ n’/2, consistent

with the area projection of the CS wave function as a torus with radius ~n? and width
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Figure 6.11: Cross sections for the |n,f = m = n — 1) circular-state (hollow circles) as a
function of principal quantum number n. The corresponding geometric cross sections are
also plotted (solid circles). The n-dependence of the cross sections are obtained by allometric
fits (solid lines) and indicated on the plot.

Here we obtain a collision cross section for the n = 57 circular Rydberg and ground-state
atom of o = 1.7 x 107 a2. Taking into account the density of the ground-state atom sam-

ple used in the experiment n ~ 10° cm™ and the average collision velocity of the two
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atoms during the circular state atom’s oscillation through the ground-state atom sample
v &~ 50 cm/s, we find a collision rate v = nov ~ 300 s~1.3 This agrees qualitatively with
the loss rate estimated from the data in Fig. 6.8c and cross sections extrapolated from [56].
Considering the inherent limitation of this classical model to account for quantum effects
in the low-energy collision between the two atoms, this close agreement between the calcu-
lated cross section and experimental observations is quite remarkable and suggestive of the

quasi-classical nature of Rydberg atoms.

6.7 Internal-state evolution in a 300 K thermal radiation back-

ground

Given the influence of the internal-state dynamics on the trapping behavior, the internal-state
evolution is probed in the experiment by performing state-selective field ionization (SSFI)
on the trapped Rydberg atom sample. The near-linear SSFI ramp shown in Fig. 6.12a is
applied reaching a field of >120 V/cm over the course of 50 s (slew rate 2 2.4 V/cm/us).
Different Rydberg states ionize at different points on the ramp, and can be distinguished by
arrival time at the detector. Figure 6.12a shows SSFT traces for excitation to region I/1] in
Fig. 6.6, where only 60P;/, atoms are excited. In this case, the electric field ramp in the
circularization procedure fails to populate any atoms in the CS; all atoms remain in 60P; ;.
Figure 6.12b shows SSFT traces for excitation to region [ in Fig. 6.6, where the CS generation
procedure is expected to circularize most of the atoms. In both cases we obtain SSFI traces
for t4=0 and 1 ms (thin and thick traces in Fig. 6.12, respectively). First, the total ion signal
for both cases is compared by integrating the SSFI curves. Excitation to region I produces a
long-lived signal (0.59 remaining fraction), while excitation to /71 does not (0.09 remaining

fraction). This reaffirms the high yield of long-lived CS atoms.

SHere U = \/Dég + Vig, Where Ucg = 0.5 m/s is the circular-state atom velocity obtained from the data
in Fig. 6.8a and vgs = 0.14 m/s is the most probable velocity in a 100 uK 37 Rb atom sample.
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Figure 6.12: SSFT traces for an initial excitation into two different regions in Fig. 6.6: (a) into
II1, the 60P,, state and (b) into I, the first anti-crossing at the 60P-manifold intersection
to generate the CS after the circularization procedure. In both (a) and (b) the thin and thick
traces correspond to t;=0 and 1 ms, respectively. Each trace is a sum of 2x10* experiments.
The data are normalized such that for ;=0 ms the curves integrate to the same value. The
dashed curve in (a) shows the field-ionization ramp used in both experiments.

Next the structures of the SSFI curves are compared. In both Fig. 6.12a and b at ¢;=0,
there are two distinct peaks: an early (22 us) peak, attributed to adiabatic field-ionization
events that occur at lower electric fields, and a later (29 us) diabatic, high-field-ionizing
peak [56, 113]. Observation of both adiabatic and diabatic field ionization signals is not
unexpected given the SSFI ramp used here has a slew rate that is not much higher than that of
the adiabatic field ramp used to produce the circular states. In Fig. 6.12b, the diabatic peak
for t;=1 ms arrives earlier than for t;=0 ms, and is substantially broadened. This indicates
a reduced average ionization field for the trapped sample at later times (corresponding to a
higher average n) and rapid state diffusion, respectively. Here, an additional peak emerges
at an even earlier arrival time (18 us). This peak is attributed to atoms accumulating in

extremely high-n Rydberg states which ionize at much lower electric fields. The trends in
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Fig. 6.12 are in qualitative agreement with our simulations, which also show a thermally-
driven redistribution of population to longer-lived, very high-n states. For experimental
reasons the field ionization is performed in crossed electric and magnetic fields, which further
complicates the field ionization behavior. A detailed modeling of the SSFI curves in Fig. 6.12
is beyond the scope of this work. To gain more insight into the internal-state evolution of
the magnetically-trapped cold CS atoms in the 300 K environment, one would want to
experimentally distinguish between adiabatic and diabatic ionization events. This could be
achieved by applying a fast field-ionization pulse to ensure only diabatic ionization events
and varying the peak ionization field to selectively ionize Rydberg states of different n. By
recording the ion signal as a function of maximum ionization field for each time delay one
could map out the evolution of the n-distribution in the sample over time. In principle,
m-selectivity could also be achieved with a Stern-Gerlach-type measurement by switching
on an inhomogeneous magnetic field prior to field ionization. This would separate the m
components which could be spatially resolved at the MCP upon ionization and extraction,
from which their relative signal strengths could be obtained. These state-selective trap
diagnostics could provide a tool for studying high-¢ and circular Rydberg atom low-energy
collisional processes, which might manifest as deviations of the measured state distributions

from the expected thermally-driven n and m distributions.

6.8 Summary

In this chapter I described the experimental realization of a room-temperature magnetic
trap for cold CS Rydberg atoms. The circular states were produced out of a cold atom
sample using the adiabatic crossed-fields method, a method generally well-suited for localized
CS generation in magnetically-trapped ground-state atom samples due to the high spatial
resolution afforded by the optical excitation and the presence of the local magnetic trapping
field. The circular state trap oscillation frequency and trapping time were measured and

found to be in excellent agreement with predicted values and detailed simulations. The
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internal-state evolution of the atom sample was probed, showing the effect of the 300 K
black body radiation background on the n distribution in the trap. The method described
and demonstrated here to produce and trap cold circular Rydberg atoms provides a means
to perform low-temperature studies with Rydberg atoms in high-angular-momentum states.
This trapping method could, for example, be employed in a 4 K cryogenic environment
to suppress thermal transitions and provide a source of long-lived CS atoms for precision
measurements [45, 46], which is of direct relevance to on-going efforts toward a new precision
measurement of the Rydberg constant using high-n circular Rydberg atoms [48]. Low-energy
interactions involving high-¢ Rydberg states could also be investigated, for which interaction
and collision processes are still unexplored. The highly anisotropic collision cross sections
expected for thermal circular Rydberg atoms [? | could be studied at low temperature. At
sufficiently high ground-state atom density, high-¢ long-range Rydberg molecules [4] may
also be produced in the generation of the CS. Due to their increased mass, these molecules
might manifest as trailing signals in the COM oscillations of the CS in a magnetic trap such

as the one described above.
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CHAPTER VII

Conclusion

In the first part of this dissertation I experimentally and theoretically investigated the influ-
ence of angular momentum and angular-momentum couplings on the properties of long-range
87Rb, D-type Rydberg molecules. Due to their relatively recent discovery, experimental work
on long-range Rydberg molecules is still in its infancy. To date only homonuclear Rydberg
molecules have been studied (and only in Rb and Cs). Diatomic Rydberg molecules formed
between non-alkali atoms could be investigated. The nature of the scattering-induced binding
interaction also lends itself to the study of larger, more complex molecules. The interaction
of a Rydberg electron with a polar molecule, for example, has been predicted to give rise to
dipolar polyatomic long-range Rydberg molecules [114].

In the second part of this dissertation I described a technique for producing and trapping
cold circular Rydberg atoms. The technique provides a means to perform low-temperature
experiments with circular Rydberg atoms. Using this method one could study low-energy
interactions involving high-angular-momentum Rydberg atoms, for which interaction pro-
cesses and collision dynamics are still unknown. The proposed benefit of using high-¢ and
circular Rydberg atoms in quantum information relies on the long radiative lifetimes of these
states [50]. In practice, collisions can limit the Rydberg lifetime thereby eliminating the ben-
efit provided by these long-lived states. Systematic studies of collision-induced decoherence

could be performed which may lend insight into how one might mitigate these effects.
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APPENDIX A

Angular momentum

In this Appendix I review the quantum treatment of angular momentum and the addition

of angular momenta.

A.1 Angular momentum

The quantum formalism for angular momentum applies to both orbital angular momentum
and spin, with the distinction that the orbital angular momentum of a particle is restricted
to integer values of h, which is a consequence of the uniqueness of the angular wave functions
(see Eq. 2.5 and discussion in section 2.1), while its spin takes on either integer or half integer
values of A. The quantum operator for a general angular momentum J is a vector whose

components (jx, jy, jz) obey the commutation relations

A ~

(o, J,) =ih,, [, J =ihd,, ], J.] = ihJ,. (A1)

From these it follows, as a consequence of an uncertainty relation for angular momentum, that
any two components are incompatible observables and cannot be measured simultaneously
(excluding the special case where J, = jy — J. = 0). From the relations in Eq. A.1 one can

A~

construct an operator for the magnitude of the angular momentum as J2 = J2 + jﬁ + J2,
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which commutes with all three components ([j“jZ] = 0 for i = z,y,z). For a quantum
state |7, m) with angular momentum quantum number j and its projection m along a chosen

quantization axis, we then have
Jlj,m) = B2j(j + 1)|j,m), (A.2)

where for each value of j there are 25 4+ 1 possible projections m = —j,—j7 +1,...,5 — 1, 7.

Choosing the quantization axis to be along z, each m is then an eigenvalue of the J, operator

For two particles with angular momenta J, and Js, each obeying the commutation relations
in Eq. A.1, the total angular momentum of the system is given by their sum J=J,+ jg,

which also obeys the commutation relations in Eqs. A.1. Writing J2 we then have
32:(jl+jg)2:j?+j%+2j1®jg, (A4)

which commutes with the squares of the individual angular momenta ([J2, J2] = [J2,J2] = 0)
as does its projection .J, ([.J.,J?] = [J,,J%] = 0). For the combined two-particle system, J?
and J, then have eigenvalues h%j(j + 1) and hm, respectively, as in Egs. A.2 and A.3, where
here 7 and m are the quantum numbers for the system’s total angular momentum and its
projection.

It follows that the system of two angular momenta can be described in either one of two
basis representations: a composite (uncoupled) basis |71, 1) |2, m2) or a combined (coupled)
basis |j, m). The combined basis can be written as a linear combination of composite basis

states as

Gomg) = D O ma) o ma), (A.5)

mi1+moa=m;

forming a complete orthonormal set with (27; + 1) X (2j, + 1) states, where the weighting
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Cﬂ'nl IM2,m;

factors are the Clebsch-Gordon coefficients 1 rin] = (j1, M1, j2, malj,m;) = C = C*,

which are non-zero for m; 4+ my = m; and satisfy

> CrC = (i myli,mg) = 6 Omy m,- (A.6)

mi,ma2
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APPENDIX B

Spin operators in the Fermi model for long-range

Rydberg molecules

In this Appendix I derive the triplet and singlet spin projectors in the Hamiltonian of Eq. 5.1
in Chapters IV and II that account for the spin-dependent scattering channels in the inter-

action between the Rydberg electron and 55/, electron of the ground-state atom.

B.1 Spin projectors

In this section we are interested in the coupling of electron spins in the scattering interaction
between a Rydberg electron and the 557/, electron in a ground-state rubidium atom. In
this two-electron system each electron is described by a spin wave function |s;, ms,), where
s; = 1/2 is its spin and m; = £1/2 is its projection (spin up | 1 ) or spin down | | })
along a chosen quantization axis. We can form the composite basis set for the two-electron
system as {|s1,mq1) |51, Ms2) } = {]51,Ms1) ® |52, Ms2) }, where the Rydberg electron and 554/
electron are denoted by subscripts 1 and 2, respectively. Following section A.1, the combined
spin state of the system with total spin s and projection m, along the quantization axis is

expressed as

S, Mg1)|S, Ms2), (B.1)

_ Ms1,Ms2,Ms
|37ms> = E : 05175278

Mms1+mMs2=ms
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forming a complete set with (2s; + 1) x (2s2 + 1) = 4 states. Here, the Clebsch-Gordon

coefficients are only non-zero for my; + my = m, and satisfy

> CC = 6g56mym. (B.2)

Ms1,Ms2

This basis set spans a four-dimensional space consisting of a triplet with s = 1 and a singlet

with s =0 .
11 =)
1
L0)= (M) s (B.3)
1-1) = | 1) J
1
0, 0) = (1) = | 4)) } =0 (B.4)

The delta-function interaction terms in the Hamiltonian in Eq. 5.1 conserve the total electron
spin of the system and its projection according to Eq. B.2, and the singlet and triplet
scattering channels each have their associated [- and energy-dependent scattering phase shifts
;. To account for the spin-dependent scattering channels we generate singlet (S) and triplet
(T) spin projectors ]AI(S,T) to selectively enable the corresponding scattering interaction terms
in the Hamiltonian. Considering first the single spin operators S; and S, for the Rydberg
electron and 55/, electron, respectively, we can write the total spin measurement operator
as §2 = (S1 +S,)? = S2 4+ 82+ 25, ® S,. Rearranging into the more convenient form
Si®8S, = %(S2 — 82 — S2) and applying this operator to the combined spin state of the

system |s, my) gives

2 +1h%s,m,) for s =1 (triplet)

. . I} 3
S1 ® Sals,my) = E(s(s +1)— Z)|s,ms> = (B.5)
—3h%s,m,) for s =0 (singlet)

where following Eq. A.2 we have used SZZ|S¢, mg) = h?s;(s; + 1)|s;, my;) for a spin system 1.
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The operator S; ® S, can be expressed in matrix form using
~ N A oA 1 ~ - A oA
S1 ® Se = S51.Ss, + §(S1+S2— +S:1-Ss4),
where the z-component spin operator S,. for each electron i = 1, 2 satisfies

Siz|si, Mai) = himg|si, M),

and S, are the raising and lowering operators defined as

Sii\si,msﬁ = FL\/(SZ F msi)(si + Me; + 1)|si,msi + 1>
Evaluating Eq. B.6 in the composite basis we then obtain

DD

T 0 0 0
11

§1®32:h2 A
1 1

0 5 —3 0

0 0 0 }l

(B.6)

(B.7)

(B.9)

(B.10)

which has eigenvalues +1h? (3x) and —3k? (1x), consistent with Eq. B.5. With this, the

triplet projector is defined as Ir =S ®8S, + %EQ . ]T, where 1 is the identity operator. In

matrix form this is

1000
. 0o L 19
Ip=r*| %~
! 0o L 1
2 2
00 01
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which has an eigenvalue of h* (zero) for the triplet (singlet) states. Similarly, the singlet

projector is defined as [=1-Ir=-S,®S, + %1 . ﬁ, written in matrix form as

A

Ig = h?

N

N |—=

o=

N =

o o o O

(B.12)

which conversely has an eigenvalue of h? (zero) for the singlet (triplet) states. Note that the

Hamiltonians in chapters [IVand V and these spin projection operators therein are written

in atomic units where h = 1.
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APPENDIX C

Two-photon optical excitation rates of hydrogenic

Stark states in the adiabatic crossed-fields method

In this Appendix I describe the calculation of two-photon excitation rates of linear Stark
states for the production of circular Rydberg atoms using the adiabatic crossed-fields method

described in Chapter VI.

C.1 Two-photon optical excitation rates of linear Stark states

If the initial population of a quantum system is in a well-defined ground state |i) and the
optical excitation is fast compared to the lifetime of the target state |f), we can calculate
the transition rate [115] between |i) and |f) using a two-step optical excitation with Fermi’s
Golden Rule

] = ZTUSVE PO(Ey — Fi — hwy — o). (1)

Here, V is the perturbation between |i) and |f) and the Dirac delta function 6(E; — E; —
fuwy — Iuwy) ensures energy conservation, where Ey, E;, w; and w, are the final-state energy,
initial state energy and first and second laser frequencies, respectively. Since |f) is part of a

continuum of states (finite target-state lifetimes and spectral width of lasers) we weigh the
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transition rate by a density of states p(AFE), where AE = E' — E — hws — hwy, and integrate

over all AF:

R/ = / I (AE)p(AE)dAE
e (C.2)
27
|

(fIVIDIPp(AE)

This transition rate is in units of s—!.

We are concerned with the transition rate for an
off-resonant two-photon excitation from |i) to |f) through all intermediate states |m). To
do this we write the perturbation as

(vl 30 ViR el 710 (C3)

m

where ¢E; - 7 and eE, - 7 are the electric dipole energies of the first and second step in the
excitation, respectively, and 0 is the detuning from the intermediate states in units of energy.
Note that in (C.3) we calculate a coherent sum over all m because we are concerned with
a two-photon transition that is significantly off-resonance from the intermediate state |m)
(0 > hI';,, where Iy, is the linewidth of state |m)). Denoting the Rabi frequencies in terms

of the matrix elements as

<f|eﬁ2 - 7lm)

2 (C.4)

Qs =

and
(ml|eEy - 7li)

Qmi =
h

(C.5)

in units of rads/second and taking the ¢ outside of the sum in (3) (which is a valid approxi-
mation as long as the external fields are not large enough to cause significant energy shifts

of the m; sub-levels of the intermediate |m) states) we write the full transition rate as

f 27Th3 2
Rl = 20551 S Pp(AB). (C.6)
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The spectral width of the excitation lasers is typically much larger than the linewidth of
target Rydberg states so we model the density of states by a Gaussian distribution (this is

consistent with experimentally observed Rydberg lines):

V81n2 —AE2/20'2

p(AE) = oo P

(C.7)

|4

with 0 = \/glﬁ’ where v is the FWHM of the experimentally determined Rydberg line in

units of Hz, and satisfying the normalization condition

/ p(AE)AE = 1, (C.8)

—0o0

Inserting (C.7) into (C.6) we obtain

j | Z Qf |2 V 811’1 AE2/20'2
z 852 m» éma \/_]/h .

(C.9)

Next, we calculate the two-photon matrix elements for the transition 551/, — 5P5/ — |R >.

We write the target Rydberg state as

> Cosgmyn, €, §,my) (C.10)
n,0,j,m;
Where Cy4jm, is the complex amplitude for a state |n, ¢, j,m;) with principal quantum
number n, orbital quantum number /¢, total angular momentum j and magnetic quantum
number m;. We then write the 557/, ground-state with its two possible spin components
(—3 and 3) as
iy=" > Cssjm,l5.5 5,m) (C.11)

.1 11
J=3Mj=—"35,5
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and the intermediate 5P/, state as

m) =2 Cspjm, 15 P.5im) (C.12)

_3
J=73,Mj

where the sum is over all intermediate m; projections of the j = 3/2 state. We describe
the laser fields with linear polarization vectors (z,y, z) = x& + yy + 2% and amplitudes E;
and Fy. To simplify the evaluation of the matrix elements (C.4) and (C.5), we perform
the transformation (z,y,z) — (z — iy)S, + Tz + iy)S_ + zS,, with S, S_ and S, [ref
p.253 of Bethe and Salpeter|, and define (z,y,2) = >, Sofa, where a € [+, —, 2] and f, =

s(z —1iy), f- = i(x +iy), f. = z. The operators for steps 1 and 2 then become

E1)  Sufan (C.13)
and
By Sofan (C.14)

Putting this all together the two-photon matrix elements become

ea .
(?O)QEZLEQ Z ane’j,mjAn,K,j,mj

nvgvjvmj

(C.15)

where ag is the Bohr radius, C} are the Rydberg-state amplitudes of state |f), and

7Z7j7mj

Anvémjvm]’ -

<n,€,j,mj| Z gafa,2|57paj7mj>x
a,b,j,m;

(C.16)
<57 P7j7 mj|Sbfb,1X

Z O5,S,m]-,mj|5asa mjvmj>'
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Note that Ay jm, is a single value for a set of laser fields, polarizations and ground-state
wave function.

In this work, we consider dipole-allowed transitions (Am = 0, £1) in rubidium. The diagrams
in Fig. C.1 show all transitions from the 55}/, ground state to a Rydberg state with positive
m; through the intermediate 5P/, states. Generally, the ground state is in a superposition
of | 1) and | {), resulting in a total of 2 x (1 4+ 3 + 5) = 18 terms interfering in the sums
of equation (C.16). The factor of 2 comes from including the transitions to negative m;

Rydberg states, which are not shown in Fig. C.1.
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|IR>
§+f+,2
|5P;/,>
S\‘+f+,1
/ \ I 551/2>
mj = 52 -3/2 -1/2 +1/2 +3/2 +5/2
) |R>
S.f +2 S:f z2
|5P3/,>
3‘+f+,1
{\ |5S,/,>
m;= 5.2 -3/2 -1/2 +1/2 +3/2 +5/2
)
|R>
AAN
/7 1
/1A
4 1 \
/, ! '
\
~ ,: 7 |5P;/,>
1\ 71 /
5,4v /3,2 /1
AV ’
N V4
1, 1y
1/ Ny
i i\/ |5S,,,>
m;= 52 -3/2 -1/2 +1/2 +3/2 +5/2

Figure C.1: (color online). Dipole-allowed, two-photon transitions from the 55/, ground
state to all positive m Rydberg states through the intermediate 5P/, state. Dipole operators
are labeled. Transitions from the well-defined, 55,/ m = +1/2 ground-state to (a) m; =
+2.5, (b) m; = +1.5 and (¢) m; = +0.5 Rydberg states are indicated.
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