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ABSTRACT

Robust and Efficient Methods for Bayesian Finite Population Inference

by

Xi Xia

Chair: Professor Michael R. Elliott

Bayesian model-based approaches provide data-driven estimates of population quan-

tity of interest from complex survey data to achieve balance between bias correction

and efficiency. We focus on the issue of accommodating sample weights equal to

the inverse of the probabilities of inclusion. In settings with highly variable weights,

weight “trimming” is often employed in an ad-hoc manner to decrease variance, while

possibly increasing bias. We consider three model-based methods to provide princi-

pled bias-variance tradeoffs.

Weighted estimators can be developed in a model-based framework by including

interactions between the quantity of interest (e.g., mean, regression parameters) and

the weights; weight pooling builds a variable selection model where these interactions

are dropped for differing values of the weights; and estimation proceeds using the

posterior distribution of model averages. The extension considers a weight pooling

linear spline model that uses a linear spline to capture regression coefficient patterns

for all strata, and collapses together the strata with minor differences. Our model

achieves robustness when weights are needed to guard against model misspecification,

and efficiency when weight-coefficient interactions could be ignored. We also model

xiii



the interactions between the weights and the estimators of interest as random effects,

reducing the overall RMSE by shrinking interactions toward zero when such shrinkage

is supported by data (Elliott and Little 2000, Elliott 2007). We adapt a flexible

Laplace prior distribution to gain robustness against model misspecification. We find

that weight smoothing models with Laplace priors approximate unweighted estimates

when weighting is not necessary, and could greatly reduce the RMSE if strong pattern

exists in data in linear model setting. Under logistic regression with same sample

size, the estimates are still robust, but with less gain in efficiency. Finally, we adapt

a Dirichlet process mixture (DPM) model that is capable of approximating highly-

skewed and multimodal distributions, often with small number of components. The

extended weighted DPM version allows the DP prior to be a mixture of DP random

basis measures that is a function of covariates, extends applications to regression,

and creates a natural link to survey weights. We also investigate its application to

inference for quantile regression, providing a new approach for quantile regression

incorporating complex survey design. Simulation results suggest great reduction in

RMSE from weighted DPM method under most of the scenarios.

xiv



CHAPTER I

Introduction

When analyzing data with complex survey design, biasness in estimating the

quantity of interest (population mean, slope, etc.) is often introduced by unequal

probabilities of inclusion, and fully-weighted estimators with weights equal to the

inverse of probabilities of inclusion are the common countermeasure to correct bias-

ness. Obtained by applying weights in score equations and forming pseudo-maximum

likelihood estimators (PMLEs), the fully-weighted estimator is design consistent for

MLEs, either as defined in Cochran (1977) – the estimator equals the population

quantity being estimated when the sample consists of the whole population – or as

defined in Sarndal (1980) – the estimator converges to the target quantity where

samples of increasing size are selected in an identical fashion from infinite replicates

of the population. However, this welcome property can come at the cost of increase

in the variance of estimator. When quantity of interest is not related to weights, or

extreme values of weight exist, the gain in bias-reduction may not compensate the

loss due to increasing variance, leading to an overall larger mean square error (MSE).

To reduce the inflated variance in that situation, various methods have been pro-

posed. One general approach, weight trimming, or winsorization, limits the influence

from extreme weights by capping the weights at some cut point w0, and redistribut-

ing the trimmed values equally among the rest (Alexander et al., 1997; Kish, 1992;

1



Potter , 1990). This leads to various extensions in deciding the cut point w0. Some ex-

amples include the NAEP method by Potter (1988), which set the cutoff point equal√
c
∑

i∈sw
2
i /n, where c is chosen in an ad-hoc manner; the empirical MSE method

by Cox and McGrath (1981) which estimates the cutoff point value by optimizing the

empirical MSE estimated from ˆMSE(θ̂t) = (θ̂t− θ̂w)2− ˆV ar(θ̂t)+2

√
ˆV ar(θ̂t) ˆV ar(θ̂w),

where θ̂w is the fully weighted estimator, and θ̂t, t = 1, ..., T , is the weight trimmed

estimator, with t denoting various trimming levels, from 1 as the unweighted estima-

tor to T as the fully-weighted estimator; and the skewed CDF method by Chowdhury

et al. (2007), which assumes a skewed cumulative distribution (e.g., an exponential

distribution) on the weights, and uses the upper 1% of the fitted distribution as a cut

point for weight trimming. Details of these approaches are summarized in Henry and

Valliant (2012) review.

An Alternative approach we focus on here is the Bayesian model-based approach,

in particular finite population Bayesian inference that provides data-driven estimates

that balance bias and efficiency. The Bayesian approach posits a model, parametric

or nonparametric, as a prior distribution for the fixed and unknown finite population

that depends on unknown parameters. Inference about the quantity of interest as a

function of the population is made by summarizing the posterior predictive distribu-

tion of unobserved observations in the population. It is an attractive feature which

Bayesian model-based approach does not rely on asymptotic arguments.

To account for survey designs with disproportional selection probabilities under a

Bayesian framework, one can create dummy indicators that stratify samples by equal

or approximately equal probabilities of selection. And a fully-weighted data analysis

is equivalent to estimating a model with interactions between stratum indicators and

target model parameters of interest. However, as number of strata increases, the

numbers of interaction terms increase accordingly, reduce efficiency of the interaction

model, or even make it impossible to estimate all parameters under extreme circum-

2



stances. Thus, varies models are proposed that are simpler than the full interaction

model, but still maintain enough flexibility to accommodate different population pat-

terns precisely and yield better inferences. In the following chapters, we study these

models and expand their applications.

In chapter II, we extend the “weight pooling” models of Elliott and Little (2000);

Elliott (2007, 2008) that provides analog of the standard weight trimming method,

adapted to a more principled Bayesian model framework. Note that a fully-weighted

data analysis can be viewed as inference from the posterior predictive distribution

of a population quantity under a model in which interaction terms are presented be-

tween the weight stratum indicators and the underlying model parameters of interest.

Weight pooling drops unnecessary interactions based on different values of weights

in a data-driven manner. Inference is based on averaging all possible weight pooling

models based on their posterior probabilities of being “correct”. The early version in

Elliott and Little(2000) merged together only strata with largest weights, assuming

the underlying data in these combined strata are exchangeable. Later, by consid-

ering the possibility of pooling all contiguous strata, Elliott (2008, 2009) introduced

higher degree of robustness into the model, and protected against ”over-pooling” that

occurred in the earlier version.

To further extend the model’s capability in handling complex association between

strata and quantity of interest, we construct a linear spline model with potential

knots to capture regression coefficient patterns for all strata, and collapse together

strata with minor differences. Also, with large number of knots considered, we apply

a Metropolis step to move around the potential model space, in contrast to previ-

ous approaches that required computing posterior probabilities of all possible pooling

models, and greatly reduce the burden in computing. Furthermore, we apply a Frac-

tional Bayes Factor prior (O’Hagan, 1995) to boost the model’s performance. We

assess our new method in a simulation study that aims at estimating population slope

3



under various data patterns, competing against unweighted estimate, fully weighted

estimate and different weight trimming methods. Bias, RMSE and coverage rate

are recorded, and the results suggest that our method maintains consistent better

performance regarding RMSE.

In chapter III, we study the “weight smoothing” approach that estimates popula-

tion quantity of interest through mixed models that consider interactions between the

weights and the quantities of interest as random effects, shrinking them towards zero

when data provide little evidence of interactions, but keeping strata separated when

data suggest interacting (Elliott , 2007; Elliott and Little, 2000; Ghosh and Meeden,

1986; Lazzeroni and Little, 1998; Little, 1991, 1993; Rizzo, 1992). Elliott (2008, 2009)

extended the application to linear and generalized linear models, and discussed four

different settings for the random effect priors, namely exchangeable, autoregressive,

linear and nonparametric random slopes, and evaluated their performances.

We adapt a more flexible Laplace prior distribution instead of multivariate nor-

mal distribution for the hierarchical Bayesian model in order to achieve more robust-

ness against “oversmoothing” in settings where weights are required to accommodate

model misspecification or non-ignorable sampling. Given the prevailing performance

of Laplace prior in sparse model selection, we expect the hierarchical model to main-

tain high performance, even under simplistic mean and covariance matrix settings

such as exchangeable random priors, therefore reduce the overall complexity of the

model. Again, we test the performance of our proposed model in simulation stud-

ies, under both model misspecification and informative sampling settings, for both

numerical and dichotomous outcomes, and compare it with competing methods. De-

spite some minor decrease in coverage rates, our method performs consistently better

than the competing methods, reducing RMSE by up to 50% in certain settings.

In Chapter IV, we introduce the Dirichlet Process Mixture model (Dunson et al.,

2007) in complex survey data analysis. Depicting interactions between regression pa-
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rameters and probabilities of inclusion by a combination of fixed number of component

distributions, the Gaussian mixture model is known for approximating highly-skewed

and multimodal distributions, often with fairly small number of components. DPM

model relaxes the assumption of pre-determined number of mixture components. The

extended Weighted Dirichlet Process Mixture Model (WDPM meodel) further allows

the DP prior to be a mixture of DP random basis measures that is a function of covari-

ates, granting more flexibility to extend applications to mean of quantile regression

models.

In this manuscript, we investigate the application of the WDPM model in an-

alyzing complex survey design data with small sample sizes, targeting data-driven

inference that captures a wide variety of normal and non-normal distributions, in

a fashion that is sensitive to unequal probability of selection aspects of the sample

design, but also offers increased efficiency when data permit. In additional to the

linear regression setting, we also consider applications to quantile regression. Due

to the fact that the WDPM models are highly flexible and can generate predictive

distributions that are accurate in tails of the distribution, they are a natural choice to

consider for model-based methods to obtain population quantile regression estimates.

To evaluate the performance of the WDPM models, we run a series of simulations

across various mis-specified models and non-normal distributions, under both linear

model and quantile regression settings. The results show considerable improvement

compared to fully weighted methods across all settings tested.

Besides simulations, we also test all three models’ performances with Dioxin

Dataset from NHANES study, focusing on identifying the relationship between log

transformed 2,3,7,8 tetracholorodibenzo-p-dixoin (TCDD), a toxic substance that ac-

cumulates in blood, and demographic factors like gender and age. The fully-weighted

estimates are assumed to be the true values, and bias, RMSE are calculated ac-

cordingly. To evaluate the extended application in generalized linear regression from

5



chapter III, we apply the method on Partner of Child Passenger Safety Dataset from

State farm Insurance database, featuring the status of cars involved in accident, and

the injury status of their children passengers. The outcome variable is a binary in-

jury index, and predictors are various car status. We still observe some improvement

from our proposed methods, but less clearly compared to well-controlled simulation

studies.
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CHAPTER II

Advancements in “Weight Pooling” Approaches to

Reduce Mean Square Error in Weighted

Estimators

2.1 Introduction

When analyzing data for sample designs with unequal probabilities of inclusion,

standard design-based approaches typically use “fully-weighted” estimates of popula-

tion means, totals, regression slopes, etc., where the weights are equal to the inverse

of the probabilities of inclusion (Horvitz and Thompson, 1952). The fully-weighted

estimators of model parameters obtained by using sampling weights in score equations

are sometimes termed “pseudo-maximum likelihood” estimators (PMLEs) (Binder ,

1983; Pfeffermann, 1993) because they are design consistent for MLEs that would

solve the score equations under the data model f(Y | θ) if we had observed data for

the entire population. While design consistency, either in the sense of Cochran (1977)

– the estimator equals the population quantity being estimated when the sample con-

sists of the whole population – or in the asymptotic sense of Sarndal (1980), where

asymptotics are formed from samples selected in an identical fashion from t → ∞

replicates of the population, is an attractive property, bias reduction typically comes

at the cost of increased variance. This increase can overwhelm the reduction in bias,
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so that the mean square error (MSE) actually increases under weighted analysis.

An alternative to standard design-based procedures is to use model-based proce-

dures, in particular finite population Bayesian inference. Design-based inference in

survey data analysis treats the survey outcome variables Y = {Y1, Y2, . . . , YN} for

N subjects in the population as fixed unknown constants; the random process is the

sample design which identifies the n sample subjects in the population. An estimate of

the population quantity Q = Q(Y ) is constructed based on the sample q = q(Yobs), a

function of the sample Yobs = {y1, y2, . . . , yn}. In contrast, Bayesian approaches posit

a model for the population data Y as a function of parameters θ: Y ∼ f(Y | θ, Z),

where Z designates the design variables. This is treated as prior distribution for the

fixed and unknown finite population Y depending on some unknown parameter θ.

This prior distribution can be parametric or nonparametric. Inference about Q(Y ) is

made on the posterior predictive distribution of p(Ynob | Yobs, I, Z), where Ynob consists

of the N − n unobserved quantities in the population Y :

p(Ynob | Yobs, I, Z) =∫ ∫
p(Ynob | Yobs, Z, θ, φ)p(I | Y, Z, θ, φ)p(Yobs | Z, θ)p(θ, φ)dθdφ∫ ∫ ∫
p(Ynob | Yobs, Z, θ, φ)p(I | Y, Z, θ, φ)p(Yobs | Z, θ)p(θ, φ)dθdφYnob

(2.1)

where φ models the inclusion indicator I. If we assume that φ and θ are priori

independent and if the distribution of I is independent of Y |Z, the sampling design

is said to be “unconfounded” or “noninformative”; if the distribution of I depends

only on Yobs|Z, and p(θ, φ) = p(θ)p(φ), then the sampling mechanism is said to be

“ignorable” (Rubin, 1987). Under ignorable sampling designs, p(I | Y, Z, θ, φ) = p(I |

Yobs, Z, φ), and thus (2.1) reduces to

∫
p(Ynob | Yobs, Z, θ)p(Yobs | Z, θ)p(θ)dθ∫ ∫

p(Ynob | Yobs, Z, θ)p(Yobs | Z, θ)p(θ)dθdYnob
= p(Ynob | Yobs, Z),

allowing inference about Q(Y ) to be made without explicitly modeling the sampling
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inclusion parameter I (Ericson, 1969; Holt and Smith, 1979; Little, 1993; Rubin, 1987;

Skinner et al., 1989). Under the Bayesian approach, the posterior distribution – the

conditional distribution of parameters of interest given data – is used for all purposes.

This is an attractive feature of a Bayesian method in that it offers conditional inference

given data and does not rely on asymptotic arguments.

To accommodate disproportional probability-of-selection designs in a Bayesian

framework, case weights can be transformed into dummy variables that stratify by

equal or approximately equal probabilities of inclusion, ordered by the inverse of the

probability of inclusion (Holt and Smith, 1979). Then, a fully-weighted data analysis

estimates the posterior predictive distribution of a population quantity under a model

in which interaction terms are present between weight stratum indicators and under-

lying model parameters of interest. Elliott and Little (2000) and Elliott (2007, 2008,

2009) developed model-based estimators for weight trimming using two broad ap-

proaches: Bayesian hierarchical modeling, or “weight smoothing,” and Bayesian vari-

able selection modeling, or “weight pooling.” “Weight smoothing” models treat the

underlying weight strata as random effects, and induce weight trimming by smooth-

ing strata for which the data provide little evidence of difference, and separating

strata that the data suggest should be separated (Elliott , 2007; Elliott and Little,

2000; Ghosh and Meeden, 1986; Lazzeroni and Little, 1998; Little, 1991, 1993; Rizzo,

1992). “Weight pooling” models collapse together inclusion strata. Collapsing only

the largest valued strata mimics weight trimming by assuming the underlying data

from these combined strata are exchangeable. By averaging over all possible of these

“weight pooling” models, we can compute an estimator of the population parameter

of interest whose bias-variance tradeoff is data-driven. By allowing for all contigu-

ous inclusion strata to be considered for pooling, Elliott (2008, 2009) induced a high

degree of robustness into this model, protecting against ”over-pooling” that simpler

models suffered from Elliott and Little (2000).
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Here we extend the weight-pooling method from Elliott (2008, 2009) in two ways.

First, we borrow from the weight-smoothing approach, constructing a linear spline

model with many potential knots to grant more flexibility to handle non-linear associ-

ations. Second, in contrast to previous approaches that require computing directly the

posterior probabilities of all possible models, we use a Metropolis step to move around

the potential model space, allowing a much larger number of weight strata combina-

tions to be considered. We test the properties of our proposed approach through

simulation, comparing it with competing methods recently proposed for data-driven

weight trimming. We also apply the method to determine the relationship between

dixon blood level and age and gender using data from the 2003-2004 National Health

and Nutrition Examination Survey (NHANES).

This Chapter is organized as follows. In Section 2 we review traditional weight

trimming methods as well as recently proposed model-assisted and model-based meth-

ods, and develop our proposed linear spline model. Section 3 presents the results of

the simulation studies, comparing bias, coverage, and MSE of the proposed method

and the competing methods. In Section 4 we evaluate the method through applica-

tion to the NHANES survey. In section 5 we discuss possible directions for further

study.

2.2 Weight Pooling Method

2.2.1 Weight Trimming

When weights are overly variable, they are commonly trimmed or “winsorized”

so that weights larger than some value w0 are fixed as w0, with the values above w0

distributed among the rest (Alexander et al., 1997; Kish, 1992; Potter , 1990). Some

approaches have been developed that focus on determining the cap value w0 based on
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data. These include the NAEP method by Potter (1988), which determines the cutoff

point as
√
c
∑

i∈sw
2
i /n, where c is empirically chosen according to nw2

i /
∑

i∈sw
2
i . Cox

and McGrath (1981) proposed an empirical MSE approach that relies on optimizing

the empirical MSE of ˆMSE(ȳt) = (ȳt−ȳw)2+ ˆV ar(ȳt)+2

√
ˆV ar(ȳt) ˆV ar(ȳw), t = 1...T ,

where t denotes various trimming level, from 1 as unweighted estimator to T as fully-

weighted estimator. Chowdbury et al. (2007) approached the problem by assuming

the weights follow a skewed cumulative distribution, such as exponential distribution,

and determining the cut point by the upper 1% of the fitted distribution. For more

details of these approaches, see review of design-based weight trimming methods in

Henry (2012).

2.2.2 Weight Prediction

Beaumont (2008) proposed a design-based, model-assisted method, considering

a prediction model of weights using a polynomial form of a response variable and

design variables. Assuming a prediction model for weights, and allowing response

variable and design variables in the model, the predicted weights from the fitted

model tamp down extreme values. To be more specific, denote I = (I1, ...IN)T

as the vector of sample inclusion indicators, i.e. Ii = 1 as ith unit sampled and

Ii = 0 otherwise, Y = (Y1, ...YN)T the vector of survey response variable, and

Z = (Z1, ...ZN)T the vector of design variables. Also it is assumed that the prob-

ability of sampling is noninformative, thus P (I|Z, Y ) = P (I|Z). The smoothed

weights are obtained from w̃i = EM(wi|Ii, zi, yi), where EM(·) denotes expectation

taken with respect to the model for the weight. Beaumont also suggested dropping

dependence on design variables, so that w̃i = EM(wi|Ii, yi). Two estimators are

proposed: a linear model, EM(wi|I, Y ) = HT
i β + v

1/2
i εi, and an exponential model,

EM(wi|I, Y ) = 1 + exp(HT
i β+v

1/2
i εi), where Hi and vi > 0 are known functions of yi.

The latter model prevents the predicted weights from being negative. Two examples
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of H functions are given as well, respectively linear combination of yi and a degree

five polynomial of yi. Once the predicted weights are obtained by fitting the model

to the sampled data, the re-weighted estimator of interest is created.

By including the design variables in the model, Beaumont’s suggested method

incorporates more information and yields improved prediction of weights for the

weighted mean and population estimators. Yet the method does not actually fo-

cus on assessing the degree of uncertainty associated with the relationship between

the probability of selection and the sample statistic of interest. Large degrees of

uncertainty suggest that maintaining such relationships, at least in an unattenuated

form, may add variance in excess of any bias correction. Hence a stronger link be-

tween weights and the covariate effects could be considered, and a more efficient form

of prediction model obtained, which is the approach we pursue in this manuscript.

2.2.3 Weight Pooling

The traditional weight trimming method effectively reduces variance by constrain-

ing weights to certain capped value w0 (often chosen to be 3 or 6 times than mean

weight w̄ = n−1
∑

iwi), and redistributing the extra weights among uncapped ones

by multiplying them by a normalizing constant γ = (N+ −
∑
κiwo)/

∑
(1 − κi)wi,

where κi is an indicator variable for whether or not wi ≥ w0. To put this in a

modeling context, consider a disproportionally stratified design, and focus on the

population mean as the value of interest. The weighted estimator is then defined as

ȳw =
∑
h wh

∑nh
i yhi∑

h nhwh
=
∑

h(Nh/N)ȳh, where wh = Nh/nh is the inverse of the probabil-

ity of selection in stratum h, and nh and Nh correspond to the sample and population

size in stratum h respectively. It is straighforward to show that ȳw is the posterior

mean of Gaussian model that assumes different means for each stratum and a constant
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variance, with non-informative priors (Elliott and Little 2000):

Yhi|µh ∼ N(µh, σ
2)

µh, µl, log σ ∝ const.

The trimmed weight mean estimator is given by

ywt =
l−1∑
h=1

γ
Nh

N+

yh +
H∑
h=l

w0nh
N+

yh =

γ

l−1∑
h=1

Nh

N+

yh +
w0

∑H
h=l nh

N+

y(l)

where γ =
N+−w0

∑H
h=l nh∑l−1

h=1Nh
and y(l) = (1/

∑H
h=l nh)

∑H
h=l nhyh. Choosing w0 =

∑H
h=lNh∑H
h=l nh

yields γ = 1 and ywt =
∑l−1

h=1
Nh
N+
yh+

(
∑H
h=lNh)

N+
y(l); the resulting trimmed weight mean

corresponds to the estimate for a model that assumes distinct stratum means for the

smaller weight strata and a common mean for the larger weight strata above a cut

point l (Elliott and Little 2000):

Yhi|µh ∼ N(µh, σ
2) h < l

Yhi|µl ∼ N(µl, σ
2) h ≥ l

µh, µl, log σ ∝ const

Elliott and Little (2000) proposed a model-based approach, where the cut point l was

no longer a known constant, but a data-driven parameter. The hierarchical model is
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written as following:

Yhi|µh ∼ N(µh, σ
2) h < l

Yhi|µl ∼ N(µl, σ
2) h ≥ l

P (L = l) = 1/H

P (σ2|L = l) = σ−(l+1/2)

P (β|σ2, L = l) = 2π−l

where µ1 = β0, µl = β0 + βl−1, and L indicates the selected pooling model. Via

Bayesian model averaging, a posterior distribution of L is determined, and the esti-

mated mean is obtained by summarizing estimations from all models. By averaging

based on the probability of certain potential pooling model been the true model, the

method avoids the possibility of relying on one single misspecified model, and gains

robustness.

Elliott (2008, 2009) extended the method to a linear and generalized model re-

gression setting of Yi on fixed covariates Xi. By allowing interactions between weights

and the population slope, the model could mimic either a fully-weighted estimator or

an unweighted estimator, depend on whether the full interaction model or minimal

model (all strata share the same slope) been selected. Any model between the two

represents a degree of trimming determined by data. And by allowing any adjacent

strata, rather than strata on the high end only, to collapse, it introduces more flex-

ibility in modeling, thus potentially increasing the robustness. The model is given
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by:

Yhi|xhi, βl, σ2, L = l ∼ N(Zliβl, σ
2)

βl|σ2, L = l ∼ N(β0, σ
2Σ0)

σ2|L = l ∼ Inv − χ2(a, s2)

P (L = l) = 2−(H−1)

where Zli = Dhl⊗xhi and Dhl is a vector of dummy variables indicates the lth pooling

pattern.

2.2.3.1 Weight Pooling Linear Spline Model

The weight pooling method in Elliott (2008) identifies data patterns by either

estimating separately the population statistic of interest in each weight stratum, or

pooling together the strata to estimate the population statistic. Yet if the statistic

follows an approximate linear pattern across these strata, the model may either fail to

identify the pattern, or spend unnecessary degrees of freedom estimating it. To obtain

further flexibility to balance between simple and complex underlying data structures,

we propose a linear spline version of weight pooling, assuming the regression param-

eters themselves follows a linear spline trajectory. This proposed method replaces

the changepoint model above, which treats all regression parameters as being equal

within pooled strata, with a linear spline model that assumes that the regression pa-

rameters themselves follow a linear spline trajectory, with knots {τk} under the lth

knot pattern (Zheng and Little, 2003, 2004, 2005):

E(yi | xi,βl, L = l) =

p∑
j=0

[
βlj0 +

H∗∑
k=1

βljk(h− τk)+

]
xji (2.2)

where x0i ≡ 1 for all i (intercept term), (x)+ = x if x > 0, 0 otherwise, and H∗ is

the number of knots in the lth knot pattern. A generalized linear model (GLM) can
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be obtained by replacing with g(E(yi | xi,βl, L = l)), where g(·) is the GLM link

function. Thus the unweighted analysis is obtained if L = 1 so that τ1 = H:

βlj0 +
H∗∑
k=1

βljk(h− τk)+ = β1
j0 + β1

j1(h−H)+ = β1
j0, i ∈ h = 1, . . . , H

Conversely, the fully weighted analysis is obtained when L = 2H−1 so that τ1 =

1, ..., τH−1 = H − 1 and H∗ = H − 1:

βlj0 +
H−1∑
k=1

βljk(h− τk)+ =



β2H−1

j0 , i ∈ h = 1

β2H−1

j0 + β2H−1

j1 , i ∈ h = 2

...

β2H−1

j0 + (H − 1)β2H−1

j1 + · · ·+ β2H−1

j,H−1, i ∈ h = H

as all interactions between the regression parameters and the weight strata are in-

cluded. Intermediate pooling models provide mean structure under a flexible linear

model, so that, if L = l1(H−2)+ l2 (changepoints at l1, l2, l1 < l2), then H∗ = 2 and:

βlj0 +
2∑

k=1

βljk(h− τk)+ =



βl
∗
j0, i ∈ h = 1, ..., l1 − 1

βl
∗
j0 + βl

∗
j1(h− l1) =

(βl
∗
j0 − βl

∗
j1l1) + βl

∗
j1h, i ∈ h = l1, ..., l2 − 1

βl
∗
j0 + βl

∗
j1(h− l1) + βl

∗
j2(h− l2) =

(βl
∗
j0 − βl

∗
j1l1 − βl

∗
j2l2) + (βl

∗
j1 + βl

∗
j2)h, i ∈ h = l2, ..., H

for l∗ = l1(H − 2) + l2.

We anticipate that this model should reduce the number of changepoints needed to

pick up local non-linearities in the interactions between regression slopes and weights,

while providing a more rapid tradeoff toward variance reduction when bias correction

is unimportant but still retaining robustness. Note that the set of knots {τ1, ..., τH∗}

maps 1-1 with the model index L = l, so the prior on the knots corresponds to p(L).

Also note that, if we denote Zi = xi(1, (h− τ1)+, ..., (h− τH)+)′, and βl = (β0, ...βH),

the expected transformed mean of Yhi|xhi, βl, σ2, L = l can be written as Ziβ, which
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resembles the format in Elliott (2008, 2009) for computation.

Assuming a generalized linear model with link function g(µi) and variance function

V (µi) for E(Yi) = µi, our population quantity of interest B = (B1, . . . , Bp)
T is the

slope that solves the population score equation:

UN(B) =
N∑
i=1

(yi − g−1(µi(B)))xi
V (µi(B))g′(µi(B))

.

The posterior predictive distribution of B is then given by

p(B | y) =
∑
l

∫ ∫
p(B | y,βl, φ, L = l)p(βl, φ | y, L = l)P (L = l | y)dβldφ

Simulations from p(B | y,X) can be obtained by drawing first from P (L = l | y),

then from p(βl, φ | y, L = l), and solving

H∑
h=1

Wh

nh∑
i=1

(ŷhi − g−1(µi(B)))xhi
V (µhi(B))g′(µhi(B))

= 0

where Wh = Nh/nh for the population size Nh, sample size nh in the hth inclusion

stratum, and Z li = Dhl⊗xhi where Dhl is a vector of dummy variables that pool the

appropriate conterminous inclusion strata based on the lth pooling pattern. Since

the computation of the kernel of P (L|y,X) is applicable under conjugate prior, if

H is of moderate size, the factor between kernel and actual distribution could be

achieved by summing up all kernels, and a direct draw from posterior probability

P (L|y,X) is possible. Alternatively, the ratio of P (L|y,X) from two pooling patterns

is always accessible since their distributions share the same constant factor. This

leads to a Metropolis step to approximate the marginal posterior distribution P (L =

l|y,X), and direct draws of other parameters accordingly. The latter approach is

computationally plausible under large H. We provide details of the Markov Chain

Monte Carlo algorithm for the Gaussian linear regression setting in Appendix A.
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2.2.3.2 Fractional Bayes Factor

During the Metropolis step of drawing P (L|y,X), we must compute the Bayes

Factors(BF), comparing weight pooling model l with model l′:

BF (y,X) =
p(L = l|y,X)

p(L = l′|y,X)
=

p(y|L = l, X)p(L = l)

p(y|L = l′, X)p(L = l′)
=

∫
f(y|θl)p(θl)dθlp(L = l)∫
f(y|θl′)p(θl′)dθl′p(L = l′)

.

Under weakly informative priors, the BF is usually quite sensitive to the choice of

p(θl) (Kass and Raftery , 1995). To counter this, we use the fractional Bayes Factor

approach developed by O’Hagan (1995). The approach sets aside a fraction b of data

for a data-based prior for θl, and the relevant fractional Bayes Factor(FBF) is defined

as BFb(y,X) = ql(f, y,X)P (L = l)/ql′(f, y,X)P (L = l′), where

ql(f, y,X) =

∫
p(θl)f(y|θl)dθl∫
p(θl)f(y|θl)bdθl

.

O’Hagan suggested n−1 log n and n−1/2 as increasingly “robust” choices of b. The

former one is smaller, which would make the model sensitive to data structure, while

the latter with larger value leads to more robust model selection against possible

outliers (data generated under a model not in the classes considered).

2.3 Simulation Study

We explore the linear spline weight pooling model in linear regression setting via a

set of simulation studies. We consider two basic settings: one in which the probability

of selection is associated with the linear approximation between the outcome Y and

the predictor of interestX, and one in which the probability of selection is independent

of this linear approximation.
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2.3.1 Association between Probability of Selection and Regression Slope

Here we generate the population under a model similar to Elliott (2008), but

extended to 20 strata:

yi|xi, β, σ2 ∼ N(β0 +
20∑
h=1

βh(xi − h)+, σ
2)

xi ∼ UNI(0, 10), i = 1, ..., N, N = 20, 000.

The sample design is a disproportionally stratified model, with 20 strata where the

probability of selection within each stratum is given by:

P (Ii|Hi) = πi ∝ (1 +Hi/15)Hi

Hi = d2Xie/2.

Note that the probability of selection is related to regression covariate.

The probabilities of inclusion are constructed that the ratio between the maximum

and minimum of weights is around 35, and the sizes of potential strata are greater than

3 to be estimable. A total number of 1000 elements are sampled without replacement

for each simulation. Our target estimator is the best linear approximation of the

linear slope B2 relating Y to X, given by

 B1

B2

 =

(
N∑
i=1

XiX
T
i

)−1 N∑
i=1

Xiyi

where Xi = (1 xi), The number of possible weight pooling models is given by 219 =

524, 288, far too many to be averaged over directly as in Elliott (2008).
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For simulation settings we consider three β patterns:

1.βa = (0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)′

2.βb = (0, 0, 0, 0, 0, 0, .5, .5, .5, .5, 1, 1, 1, 1, 2, 2, 2, 2, 4, 4, 4)′

3.βc = (0, 22,−4,−4,−2,−2,−2,−2,−1,−1,−1,−1,−.5,−.5,−.5,−.5, 0, 0, 0, 0, 0)′

which represent respectively a pure linear model, an increasing curve, and a flattening

curve. Under βa where ordinary linear model is correctly specified, the weights are

not needed for bias correction, so the unweighted estimator should be most efficient.

Under βb, the unweighted estimator is biased, but the most non-linear part of the

model space is the most heavily sampled, somewhat dampening the variance inflation

for fully-weighted estimator. Under βc, correction of bias is also necessary, but the

most non-linear part of the model space is the least sampled, inflating the variance

of the fully-weighted estimator. Population variance σ2 varied as 10l, l = 1.5, 3.5, 5.5,

emphasizing different degrees of bias-variance tradeoff. 200 simulations are generated

under each β and σ2 combination.

We apply data-based priors for the regression parameters, centering them at the

unweighted value with a very inflated variance: β0 = β̂ = (XTX)−1XTy, Σ0 =

cnV ar(β̂) for V ar(β̂) = τ̂ 2(XTX)−1, τ̂ 2 = (n − p)−1(y − Xβ̂)T (y − Xβ̂), where

c = 1000. For the the variance prior, we assume a = s = 10−8. We also consider

Fractional Bayes Factor priors with training fraction of log n/n and n−1/2.

To evaluate the estimation of population slope, we consider a comparison among

an unweighted model (UNWT), a fully weighted model (FWT), the Elliott (2008)

weight pooling method (PWT) and the Fractional Bayesian Factor versions (PWTFBF1

and PWTFBF2 corresponding to b = n−1 log n and b = n−1/2 respectively), the lin-

ear spline version of weight pooling developed in this manuscript (PWTLS), and

their respective Fractional Bayesian Factor versions. We also consider the general-
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Bias RMSE relative to FWT 95% Coverage
Model σ2(log10) Model σ2(log10) Model σ2(log10)

Estimator 1.5 3.5 5.5 1.5 3.5 5.5 1.5 3.5 5.5
UNWT -0.027 0.081 -0.201 0.753 0.701 0.694 0.93 0.96 0.96
FWT -0.018 0.137 0.254 1 1 1 0.96 0.93 0.97
PWT -0.018 0.135 0.243 1.037 1.012 1.004 0.98 0.95 0.98
PWTFBF1 -0.015 0.129 -0.037 0.853 0.811 0.810 1 0.98 0.98
PWTFBF2 -0.015 0.128 0.035 0.946 0.912 0.911 0.99 1 0.99
PWTLS -0.013 0.163 0.031 0.914 0.942 0.917 0.99 0.98 0.98
PWTLSFBF1 -0.016 0.131 -0.372 0.815 0.770 0.793 1 1 1
PWTLSFBF2 -0.014 0.172 -0.165 0.815 0.817 0.849 1 1 1
WT1Y -0.011 0.131 -0.248 0.753 0.708 0.706 0.96 0.98 0.94
WT5Y 0.092 0.391 -0.256 1.374 0.833 0.707 0.71 0.89 0.94
WT5YX 0.071 0.165 -0.153 1.196 0.810 0.795 0.74 0.91 0.92
WT5Y5X -0.018 0.136 -0.241 0.935 0.911 0.928 0.96 0.96 0.98

Table 2.1: Bias, RMSE, and coverage of nominal 95% confidence/credible interval
for linear slope when true model is linear and probability of selection is
associated with slope: unweighted, fully weighted, standard weight pooling
estimator (without and with fractional Bayes Factor priors), linear spline
weight pooling estimator (without and with fractional Bayes Factor priors),
and generalized design-based estimator.

ized design-based estimator from Beaumont (2008) as a competing method, where

the choice of function H varies from y (WT1Y), degree five polynomial of y (WT5Y),

degree 5 polynomial of y plus x (WT5YX), to degree 5 polynomial of y and x sepa-

rately (WT5Y5X). Under each setting, the estimators are compared with respect to

bias, RMSE, and nominal 95% coverage rate, where RMSE is presented as relative

to the fully weighted estimator. Results are provided in Tables 2.1, 2.2, and 2.3.

Under βa, the linear model is correctly specified, all estimators are unbiased, and

as expected the unweighted estimator has the best performance, maintaining ap-

proximately 70% RMSEs comparing to fully-weighted estimator at all values of σ2

considered, together with approximately correct coverage rates. The standard weight

pooling estimator has results that closely parallel to the fully-weighted estimator; it

is substantially improved by applying FBF, reducing RMSEs relative to the fully-

weighted one by approximately 20% for FBF1 and 10% for FBF2 while maintaining
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Bias RMSE relative to FWT 95% Coverage
Model σ2(log10) Model σ2(log10) Model σ2(log10)

Estimator 1.5 3.5 5.5 1.5 3.5 5.5 1.5 3.5 5.5
UNWT 2.514 2.483 2.216 10.474 2.785 0.748 0 0 0.91
FWT -0.011 0.151 0.243 1 1 1 0.98 0.95 0.98
PWT -0.010 0.152 0.304 0.391 0.972 1.002 1 0.94 0.99
PWTFBF1 0.005 0.284 0.875 0.385 0.934 0.871 0.94 0.94 0.95
PWTFBF2 -0.002 0.173 0.319 0.387 0.935 0.934 0.97 0.96 0.99
PWTLS -0.010 0.144 0.544 0.401 0.991 0.962 1 0.96 0.97
PWTFBF1 -0.002 0.231 0.483 0.362 0.887 0.866 0.95 0.98 0.98
PWTFBF2 -0.009 0.238 0.552 0.421 0.893 0.857 0.93 1 1
WT1Y 1.489 2.137 2.094 5.907 2.614 0.734 0 0 0.89
WT5Y 1.453 2.323 2.105 5.923 2.598 0.742 0 0 0.89
WT5YX 0.497 0.681 0.536 2.495 1.185 0.803 0.07 0.54 0.91
WT5Y5X 0.204 0.405 0.037 1.282 0.980 0.945 0.99 0.95 0.98

Table 2.2: Bias, RMSE, and coverage of nominal 95% confidence/credible interval
for linear slope when true model is convex and probability of selection is
associated with slope: unweighted, fully weighted, standard weight pooling
estimator (without and with fractional Bayes Factor priors), linear spline
weight pooling estimator (without and with fractional Bayes Factor priors),
and generalized design-based estimator.

approximately correct or somewhat conservative coverage rates. The linear spline

model of weight pooling, and its FBF versions, maintain a small but consistent im-

provement, about 2% to 5%, over original weight pooling methods. Among different

models of generalized design-based estimators, the simple linear model WT1Y es-

sentially matches the unweighted estimator, while the more complex estimators are

unstable even relative to the fully weighted estimator and have poor coverage when

σ2 = 101.5; for larger values of σ2 the estimators generally perform similar to the

weight pooling estimators with respect to RMSE, with approximately nominal cover-

age, except for the most complex generalized design-based estimator WT5Y5X, which

has only slight RMSE improvements over the fully-weighted estimator.

For scenario βb, the RMSEs of unweighted estimator are greatly inflated due to

bias. The exchangeable weight pooling estimator has bias similar to the fully weighted

estimator except for the FBF1 version in the large variance setting; however the
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reduced variability yields dramatic reductions of over 60% in RMSE in the small

variance setting, and up to 15% in the median and large variance setting, while

retaining approximately nominal coverage. The linear spline model method and its

FBF versions act similar to original weight pooling method when σ2 is small, but

prevail by up to 10% relative to the exchangeable weight pooling estimator in RMSE

when σ2 increases, indicating that, through proper model selection,linear spline model

is more helpful under scenarios in which the data pattern has large variation. The

coverage of linear spline model estimator is generally nominal to conservative, with the

exception of the FPF2 version in the small variance setting, where the data-based prior

may be underestimating variance. The generalized design-based estimators perform

well in the large variance setting but poor with respect to both RMSE and coverage

in the median and small-variance settings, where the indirect weight adjustment is

insufficient to overcome bias. The exception is the most complex WT5Y5X weight

model; however, it has little gain in terms of RMSE over the fully-weighted estimator.

The RMSEs of unweighted estimator are greatly inflated due to bias in the βc

scenario, although to a somewhat lesser degree due to the increased variability of

the fully-weighted estimators than in the βb scenario. The results for the weight

pooling estimators are similar in terms or bias and RMSE to the βb scenario, with

dramatic reductions in RMSE in the low variance setting and smaller reductions in

the medium and large variance settings, and with the linear spline model offering

modest improvements over the exchangeable estimator. Coverages of 95% credible

intervals for the weight pooling estimators are approximately nominal in the medium

and large variance settings, dropping to around 80% in the small variance setting.

The generalized design-based estimators again perform rather poorly with respect to

both RMSE and coverage in the median and small variance settings, although their

biases are less pronounced than in the βb setting; the most complex WT5Y5X weight

model again has similar performance to the fully-weighted estimator.
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Bias RMSE relative to FWT 95% Coverage
Model σ2(log10) Model σ2(log10) Model σ2(log10)

Estimator 1.5 3.5 5.5 1.5 3.5 5.5 1.5 3.5 5.5
UNWT -1.897 -1.771 -2.058 6.417 2.059 0.752 0 0 0.85
FWT -0.030 0.117 0.249 1 1 1 1 1 1
PWT -0.030 0.103 0.227 0.354 0.971 1.001 0.84 0.94 0.99
PWTFBF1 -0.034 -0.039 -0.993 0.355 0.934 0.852 0.84 0.96 0.98
PWTFBF2 -0.033 0.023 -0.287 0.353 0.927 0.925 0.84 0.96 0.97
PWTLS -0.029 0.104 -0.249 0.352 0.987 0.946 0.84 0.95 0.98
PWTFBF1 -0.032 -0.072 -1.413 0.350 0.914 0.833 0.80 0.91 0.94
PWTFBF2 -0.032 0.091 -1.352 0.354 0.893 0.854 0.81 0.94 0.99
WT1Y -0.235 -1.847 -2.011 1.411 1.936 0.748 0.85 0.17 0.83
WT5Y -0.291 -1.153 -2.131 1.339 1.660 0.754 0.95 0.51 0.84
WT5YX -0.158 -0.538 -0.815 1.125 1.042 0.799 0.97 0.77 0.95
WT5Y5X -0.193 -0.061 -0.430 1.168 0.993 0.941 0.98 0.95 0.98

Table 2.3: Bias, RMSE, and coverage of nominal 95% confidence/credible interval
for linear slope when true model is concave and probability of selection is
associated with slope: unweighted, fully weighted, standard weight pooling
estimator (without and with fractional Bayes Factor priors), linear spline
weight pooling estimator (without and with fractional Bayes Factor priors),
and generalized design-based estimator.

2.3.2 No Association between Probability of Selection and Regression

Slope

Similar to Section 2.3.1, a spline model of 20 knots is generated:

yi|xi, β, σ2 ∼ N(β0 +
20∑
h=1

βh(xi − h)+, σ
2)

xi ∼ UNI(0, 10), i = 1, ..., N = 20, 000.

Hi = [2 ∗ UNI(0, 10)]/2

P (Ii|Hi) = πi ∝ (1 +Hi/15)Hi.

In contrast to Section 3.1, the probability of selection is independent from the regres-

sion covariate. The ratio between the maximum and minimum of weights is around

35, and the sizes of potential strata are greater than 3 to be estimable.

24



Average Biasness RMSE relative to FWT True Coverage
Model σ2(log10) Model σ2(log10) Model σ2(log10)

Estimator 1.5 3.5 5.5 1.5 3.5 5.5 1.5 3.5 5.5
UNWT -0.045 0.253 -0.073 0.710 0.732 0.715 0.91 0.94 0.92
FWT -0.009 0.147 0.351 1 1 1 0.90 0.91 0.92
PWT -0.012 0.247 -0.040 0.638 0.712 0.733 0.24 0.91 0.92
PWTFBF1 -0.011 0.271 -0.091 0.633 0.726 0.720 0.24 0.89 0.91
PWTFBF2 -0.011 0.269 -0.090 0.633 0.727 0.725 0.21 0.88 0.90
PWTLS -0.029 0.215 -0.182 0.629 0.723 0.712 0.89 0.94 0.93
PWTLSFBF1 0.004 0.088 -0.277 0.714 0.792 0.769 0.86 0.91 0.93
PWTLSFBF2 0.006 0.114 -0.278 0.749 0.794 0.774 0.85 0.90 0.93
WT1Y -0.027 0.246 -0.071 0.726 0.731 0.715 0.88 0.94 0.94
WT5Y -0.015 0.259 -0.076 0.713 0.731 0.718 0.91 0.91 0.92
WT5YX -0.020 0.264 -0.079 0.725 0.739 0.719 0.88 0.91 0.91
WT5Y5X -0.020 0.257 -0.077 0.731 0.728 0.723 0.88 0.91 0.90

Table 2.4: Bias, RMSE, and coverage of nominal 95% confidence/credible interval
for linear slope when true model is convex and probability of selection
is not associated with slope: unweighted, fully weighted, standard weight
pooling estimator (without and with fractional Bayes Factor priors), linear
spline weight pooling estimator (without and with fractional Bayes Factor
priors), and generalized design-based estimator.

Here we focus on the misspecified model setting only:

1.βb = (0, 0, 0, 0, 0, 0, .5, .5, .5, .5, 1, 1, 1, 1, 2, 2, 2, 2, 4, 4, 4)′

2.βc = (0, 22,−4,−4,−2,−2,−2,−2,−1,−1,−1,−1,−.5,−.5,−.5,−.5, 0, 0, 0, 0, 0)′.

Thus the relationship between Y and X is curved, regardless of strata. The linear

assumption is violated, yet the population slope B remains a meaningful statistics

and is our value of interest. Again a total number of 1000 elements are sampled

without replacement according to inclusion probabilities for each simulation, and a

total 200 simulations are conducted. Results are presented in Tables 2.4 and 2.5.

From Table 2.4 and 2.5 we observe that, as a result of no association between

weight and the X − Y association, none of the unweighted, model based, or model

assisted estimators presents large bias, and all of these estimators have substantial
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Average Biasness RMSE relative to FWT True Coverage
Model σ2(log10) Model σ2(log10) Model σ2(log10)

Estimator 1.5 3.5 5.5 1.5 3.5 5.5 1.5 3.5 5.5
UNWT -0.014 0.171 -0.045 0.651 0.693 0.720 0.96 0.92 0.93
FWT -0.020 0.048 0.372 1 1 1 0.95 0.89 0.93
PWT -0.024 0.134 -0.039 0.602 0.678 0.733 0.33 0.90 0.90
PWTFBF1 -0.024 0.162 -0.068 0.602 0.678 0.720 0.32 0.91 0.92
PWTFBF2 -0.025 0.163 -0.070 0.602 0.680 0.723 0.30 0.93 0.91
PWTLS -0.020 0.125 -0.241 0.573 0.703 0.701 0.91 0.92 0.93
PWTLSFBF1 -0.019 0.127 0.027 0.650 0.771 0.758 0.90 0.89 0.90
PWTLSFBF2 -0.020 0.178 0.033 0.651 0.775 0.789 0.90 0.87 0.91
WT1Y -0.016 0.174 -0.047 0.689 0.695 0.720 0.94 0.93 0.93
WT5Y -0.003 0.193 -0.046 0.701 0.720 0.724 0.94 0.90 0.93
WT5YX -0.003 0.189 -0.044 0.694 0.714 0.724 0.94 0.92 0.93
WT5Y5X -0.012 0.189 -0.048 0.694 0.715 0.727 0.94 0.91 0.93

Table 2.5: Bias, RMSE, and coverage of nominal 95% confidence/credible interval
for linear slope when true model is concave and probability of selection
is not associated with slope: unweighted, fully weighted, standard weight
pooling estimator (without and with fractional Bayes Factor priors), linear
spline weight pooling estimator (without and with fractional Bayes Factor
priors), and generalized design-based estimator.

RMSE improvements over the the fully-weighted estimator. The exchangeable weight

pooling methods provide estimators with RMSEs close to, or smaller than, the un-

weighted estimator, but have extremely low coverage rates when σ2 is small. The

linear spline model and its FBF versions provide more robust results, which have

slightly larger RMSEs than those from original weight pooling, but maintain only

somewhat less than nominal coverage rates. The generalized design-based estimators

provide results resembling the un-weighted estimator under all situations.

2.4 Application: Estimating Associations between Blood Lev-

els of Dioxin and Age and Gender

To evaluate the proposed linear spline weight pooling model in application, we

apply our method on the dioxin dataset from the National Health and Nutrition Ex-
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amination Survey (NHANES). The outcome variable of interest is the amount of blood

dioxin, an organic compound formed through incomplete combustion, and primarily

generated by trash incineration, paper and plastics manufacturing, and smoking. The

goal is to determine relationship between log scale of 2,3,7,8-tetrachlorodibenzo-p-

dioxin (TCDD) in the blood and age and gender using data from 1,250 representative

adult subjects interviewed during the 2003-2004 NHANES survey. The survey design

consists of 25 strata, with 2 Masked Variance Units (MVU’s) within each stratum

to accommodate the (confidential) primary sampling units, in addition to sampling

weights to account for unequal probabilities of selection, and nonresponse and post-

stratification adjustment. Using the method developed in Chen et al. (2010), 674

below limit-of-detection cases are imputed, and five multiply-imputed data sets are

created. Rubin’s formula (Rubin, 1987) is used to summarize information from all

imputed data sets.

Four different models are fit: TCDD on age, TCDD on gender, TCDD on age

and gender, and TCDD on age, gender and their interaction. All prior distribu-

tions of parameters are defined as in the simulation. Since the population slope is

unknown, we assume that the fully-weighted model provides an unbiased estima-

tor, and calculate the relative bias accordingly. As pointed out in Kish (1992), the

fully weighted estimator β̂w is unbiased only in expectation, and the true estimated

square bias of a regression coefficient β̂ is given by max((β̂ − β̂w)2 − V̂01, 0), where

V̂01 = ˆV ar(β̂) + ˆV ar(β̂w) − 2 ˆCov(β̂, β̂w). To fully account for the design feature,

all variance/covariance estimates are calculated via jackknife, that is, ˆV ar(β̂w) =∑
h

kh−1
kh

kh∑
i=1

(β̂w(hi)
− β̂w)2, β̂w(hi)

= (X ′W(hi)X)−1XW(hi)y, where β̂w(hi)
denotes the

weighted β estimater from sample excluding ith MVU in hth stratum, and W(hi) is a

diagonal matrix consisting of case weight wj for all elements j /∈ h, j /∈ i, kh
kh−1

wj for

all elements j ∈ h, j /∈ i, and 0 for elements j ∈ h, j ∈ i. ˆV ar(β̂) and ˆCov(β̂w, β̂) are

calculated accordingly, and estimates from five imputed replicate datasets are com-
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Model Est(×10−2) Bias(×10−3) Var(×10−6) RMSE(×10−3)
UNWT 3.296 -1.352 1.046 1.858
WT 3.431 0 1.456 1.207
PWT 3.310 -1.215 1.014 1.237
PWTLS 3.377 -0.540 1.104 1.050
PWTLSFBF1 3.422 -0.090 1.208 1.099
PWTLSFBF2 3.413 -0.186 1.208 1.099

Table 2.6: Bias and RMSE for linear slope estimated for age: unweighted, fully
weighted, standard weight pooling estimator, and linear spline weight
pooling estimator (without and with fractional Bayes Factor priors).Units
present in parenthesis.

Model Est(×10−1) Bias(×10−2) Var(×10−3) RMSE(×10−1)
UNWT 1.585 -8.800 1.802 1.003
WT 2.465 0 2.163 0.465
PWT 2.486 0.203 3.537 0.595
PWTLS 2.425 -0.406 3.439 0.586
PWTLSFBF1 2.416 -0.049 3.736 0.611
PWTLSFBF2 2.435 -0.304 3.548 0.596

Table 2.7: Bias and RMSE for linear slope estimated for gender: unweighted, fully
weighted, standard weight pooling estimator, and linear spline weight
pooling estimator (without and with fractional Bayes Factor priors).Units
present in parenthesis.

bined with Rubin’s formula. The resulting estimated bias and RMSE are summarized

in Tables 2.6-2.9.

For the regression model of log TCDD on gender, the unweighted model is biased.

The original weight pooling method is also biased, but the reduction in variance

yields slightly improved RMSEs comparing to unweighted model. The linear spline

model, plus two FBF versions, all greatly reduce the bias relative to the original

weight pooling method, and lead to substantially improved RMSEs over the weighted

model.

In the second model estimating the age effect on log TCDD, the unweighted model

suffers from severe bias for not considering the weights. All weight pooling models

manage the trade-off between bias and variance inflation, achieving overall RMSE

somewhat higher than the weighted model.
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Age
Model Est(×10−2) Bias(×10−4) Var(×10−6) RMSE(×10−3)
UNWT 3.347 -9.757 1.033 1.603
WT 3.445 0 1.478 1.216
PWT 3.350 -9.449 0.729 0.854
PWTLS 3.426 -1.922 0.986 0.993
PWTLSFBF1 3.438 -0.663 1.138 1.067
PWTLSFBF2 3.430 -1.492 1.170 1.082

Gender
Model Est(×10−1) Bias(×10−2) Var(×10−3) RMSE(10−2)
UNWT 2.648 -0.158 1.043 3.297
WT 2.663 0 2.147 4.634
PWT 2.651 -0.121 1.628 4.035
PWTLS 2.535 -0.128 2.623 5.121
PWTLSFBF1 2.667 0.346 2.818 5.309
PWTLSFBF2 2.663 -0.046 3.034 5.508

Table 2.8: Bias and RMSE for linear slope estimated for age and gender: unweighted,
fully weighted, standard weight pooling estimator, and linear spline weight
pooling estimator (without and with fractional Bayes Factor priors).Units
present in parenthesis.

For the third model with both age and gender, the original weight pooling method

has the smallest RMSE, although the linear spline weight pooling estimator has im-

proved bias reduction while besting the fully weighted estimator RMSE for age, and

lagging it somewhat for gender.

And for the last model, we introduce the age and gender interaction in the model.

The results are somewhat similar to the third model, with the linear spline model

performing better than the fully weighted model with respect to RMSE for the main

effects but slightly worse for the interaction, and better than the original weight

pooling model with respect to bias.

2.5 Discussion

Weighted estimators whose weights are derived from the inverse of selection prob-

abilities inflate the variance of estimators; weights derived from non-response adjust-
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Age
Model Bias(×10−4) RMSE(×10−3)
UNWT -3.330 1.889
WT 0 1.909
PWT -3.099 1.386
PWTLS -4.010 1.663
PWTLSFBF1 -4.298 1.618
PWTLSFBF2 -2.991 1.727

Gender
Model Bias(×10−2) RMSE(×10−1)
UNWT 4.613 1.074
WT 0 1.122
PWT 4.727 0.911
PWTLS -0.955 1.097
PWTLSFBF1 -1.090 1.069
PWTLSFBF2 -0.795 1.108

Interaction
Model Bias(×10−3) RMSE(×10−3)
UNWT -1.371 2.269
WT 0 2.039
PWT -1.392 1.876
PWTLS 0.074 2.224
PWTLSFBF1 0.096 2.174
PWTLSFBF2 0.039 2.279

Table 2.9: Bias and RMSE for linear slope estimated for age, gender and interaction:
unweighted, fully weighted, standard weight pooling estimator, and linear
spline weight pooling estimator (without and with fractional Bayes Factor
priors).Units present in parenthesis.

30



ment or poststratification may reduce variance as well as bias, but this is often not

the case in practice. This variance inflation could be countered by a prediction esti-

mation process that accounts for the unequal probability of selection. First a mean

structure for sampled observations y is proposed, such as a linear combination includ-

ing another covariate Xβ. Then one could fit the proposed model, draw parameters

from their estimated distributions, or posterior distributions in case under a Bayesian

framework, and create the predicted y based on drawn parameters. Generating a

posterior predictive distribution of the population under this model allows estimation

of the posterior predictive distribution of the population quantity of interest, such

as a mean or regression parameter. Generating from a model that accommodates

interactions between the probability of selection and the subpopulation quantity of

interest corresponding to the population quantity of interest among subjects with

similar probabilities of selection mimics the design-based, fully-weighted estimator

and helps to account for any discrepancies between the model population quantity of

interest and the true model generating the population data or non-ignorable selection

models, but at the same time can inflate noise when selection is ignorable and model

specification is approximately correct. “Weight pooling” models rely on Bayesian

model averaging to generate predictive estimators that collapse interaction terms to

the degree when data suggest they are not needed in the model.

The linear spline weight pooling model we presented provides an advantage in

three ways over a preliminary weight pooling model developed in Elliott (2008, 2009)

when considered in a linear regression framework. First, it may eliminate the need for

the fractional Bayes factor prior that is necessary to induce sufficient pooling over the

fully-weighted estimator. Second, in settings where there is no association between

the probability of selection and the regression slope, the previous weight pooling

model tends to have credible intervals that are far too narrow, leading to severe

undercoverage, whereas the linear spline weight pooling estimator has only slight
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undercoverage. All forms of the weight pooling estimator either match the efficiency

of the fully weighted estimator when the unweighted estimator is substantially biased

due to model misspecification, or have substantially increased efficiencies over the

fully weighted estimator when model misspecification is modest or non-existent. The

proposed linear spline weight pooling estimator tends to be somewhat more efficient

than the original weight pooling estimator in the latter settings. The application

results are more mixed, but it must be kept in mind that estimating bias and RMSE

requires the fully weighted estimator to be unbiased, which is typically not the case

in small sample settings, especially for non-linear population statistics such as the

regression coefficients considered.

A variety of extensions are possible to the work proposed here. It is expected

that any estimator from pooling model functions as a shrinkage estimator between

estimation from unweighted model and fully weighted model, representing a trade-off

between bias and variance. While the above assumption remains correct, however, in

application the selected pooling model may perform worse than both unweighted and

fully-weighted ones. One example is that where use of weights is not required for bias

correction, small weight strata may pooled together, but large weight strata remain

separate, leading to unnecessary variance inflation comparing to fully weighted model,

while the ideal result is a weight pooling model collapse all large weight strata together

to perform a variance reduction similar to weight trimming. Thus instead of using

non-informative prior, more specific prior encouraging the collapse of large weight

strata could help achieve better results, and may be of value to explore further here.

Second, in this chapter we present weight strata ordered by inclusion probabilities.

In general, the order of weight strata could be either based on inclusion probabilities,

or some other natural ordering. For example, if probabilities of inclusion vary by

age, it is appropriate to define weight strata by individuals with close ages. Also, our

analysis assumes that the weights are not available to the analyst for the non-sampled
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elements of the population. Finite population Bayesian approaches that incorporate

weights or other design variables directly into prediction if they are available for the

non sampled population are considered in Zheng and Little (2003, 2004, 2005) and

Chen et al. (2010, 2012).

Though the Bayesian approach has been in vogue for several decades, it has re-

ceived less attention in practice in survey settings for at least two reasons. First, it

is well known that unless the variables Z used in formulating the design are unre-

lated to the survey outcomes, model-based estimates which ignore the sample design

features can be biased (Little, 1983). It was believed that conceptualizing a model

that incorporates all design features such as unequal probabilities of selection, clus-

tering and stratification was too difficult (Hansen et al., 1983) and even if one was

to conceptualize such a model, its implementation in practice would be computation-

ally impossible. But with the advent of powerful computers and modern Bayesian

computational methods, it is now possible to develop and implement realistic models

to address complex design features, nonresponse, coverage and measurement errors

in developing both population level and subpopulation level estimates, leading to

new approaches to improve over existing design-based approaches in many practical

settings. Our results in this manuscript we believe contribute to this effort.
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CHAPTER III

Weight Smoothing for Generalized Linear Models

Using a Laplace Prior

3.1 Introduction

Studies based on data sampled with unequal inclusion probabilities typically ap-

ply case weights equal to the inverse of probabilities of inclusion to reduce or remove

the bias in estimators of population quantities of descriptive interest, such as means

or totals (Horvitz and Thompson, 1952). This “fully weighted” approach can be ex-

tended to estimate analytical quantities that focus on association between risk factors

and outcomes, such as population slopes in linear and generalized linear models, by

applying sampling weights to score equations, and solving for the resulting “pseudo-

maximum likelihood” estimators (PMLEs) (Binder , 1983; Pfeffermann, 1993). Un-

weighted and weighted estimators generally correspond when the underlying model

(either implicit or explicit) is correctly specified and the sampling scheme is nonin-

formative. When the model is misspecified or the sampling scheme is informative,

weighted estimators typically have reduced bias, often (although not always) at the

cost of increased variance. As model assumptions improve and/or sampling better

approximates noninformativeness, the increase in variance from weighted analysis

could overwhelm the reduction in bias, and lead to an overall larger mean square
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error (MSE) than would be the case if the weights are ignored or at least controlled

in some fashion.

Weight trimming, or “winsorization,” is used to control the variation in weights, or

more precisely, to cap the weights at some value w0, and redistribute the values above

w0 among the rest (Alexander et al., 1997; Kish, 1992; Potter , 1990). Various ap-

proaches have been developed in creating different criteria to determine the cap value

based on data. Some example includes NAEP method by Potter (1988), which set the

cutoff point equal
√
c
∑

i∈sw
2
i /n, where c was chosen in an ad-hoc manner. Cox and

McGrath (1981) approached it by estimating the cutoff point value which optimized

the empirical MSE estimated by ˆMSE(θ̂t) = (θ̂t−θ̂w)2− ˆV ar(θ̂t)+2

√
ˆV ar(θ̂t) ˆV ar(θ̂w),

where θ̂w was the fully weighted estimator, and θ̂t, t = 1, ..., T , was the weight trimmed

estimator, with t denoting various trimming levels, from 1 as the unweighted estima-

tor to T as the fully-weighted estimator. Chowdbury et al. (2007) suggested treating

weights as coming from a skewed cumulative distribution (e.g., an exponential distri-

bution), and using the upper 1% of the fitted distribution as a cut point for weight

trimming. Beaumont (2008) proposed a generalized design-based method, replac-

ing the actual weights with values predicted on some form of response and design

variables. Details of these design-based approaches are summarized in (Henry 2012).

An alternative to standard design-based weighted estimation is a model-based

approach that accommodates disproportional probability-of-selection design in a fi-

nite population Bayesian inference setting. By creating dummy variables stratified

by equal or approximately equal case weights, a fully weighted data analysis can

be obtained by building a model that contains indicators for weight strata together

with interaction terms between weight stratum indicators and model parameters of

interest, then obtaining inference about the population quantity of interest from its

posterior predictive distribution. Elliott and Little (2000) established two model-

based approaches for weight-trimming: model averaging, or “weight pooling”, and

35



hierarchical modeling, or “weight smoothing”. A weight pooling model collapses

strata with similar weights together with their associated interaction terms, mimick-

ing a data-driven weight trimming process. Weight smoothing treats the underlying

weight strata as random effects, and achieves a balance between fully weighted and

unweighted estimates using a shrinkage estimator: thus the strata are smoothed if

data provide little evidence of difference between them, and are separated if data

suggest that interactions with strata are present. Under a Bayesian framework, a

two-level model is implemented, assigning a multivariate normal prior for the ran-

dom effects, with inference obtained from the posterior predictive distribution of the

population parameter of interest. Elliott (2008, 2009) extended the application to

linear and generalized linear models, and discussed different settings for the random

effect priors, namely exchangeable, autoregressive, linear and nonparametric random

slopes, and evaluated their performances.

In this chapter we consider extending the weight smoothing approach by the use

of Laplace priors for the random effect weight strata and interaction terms instead of

multivariate normal priors, in order to achieve more robustness against “oversmooth-

ing” in settings where weights are required to accommodate model misspecification

or non-ignorable sampling. In addition, considering the prevailing performance of

Laplace prior in sparse model selection, we expect the hierarchical model to properly

smooth the strata when data provide no evidence in difference among strata, even

under simple mean and covariance matrix settings such as exchangeable random pri-

ors, while maintaining its bias-reduction feature when it is needed. We evaluate the

performance of our proposed model in a simulation study, under both model misspeci-

fication and informative sampling, for both numerical and dichotomous outcomes, and

compare it with competing methods. This chapter is organized as follows. In Section

2 we review the theory of model smoothing together with recently proposes model-

assisted methods, and develop our model with Laplace priors. Section 3 provides
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a simulation study, and compares bias, coverage and MSE of the proposed method

with competing methods. Section 4 demonstrates the method’s performance for both

linear and logistic scenarios by applications on Dioxin Dataset from NHANES and

Partner of Child Passenger Safety Dataset. Section 5 provides a summary discussion.

3.2 Weight Smoothing Methodology

3.2.1 Finite Bayesian Population Inference

For finite Bayesian population inference, we model the the population data Y :

Y ∼ f(Y |θ, Z), where Z are variables associated with the sample design (probabilities

of selection, cluster indicators, stratum variables). Note that the parametric model

f can either be highly parametric with a low dimension θ (e.g., a normal model

with common mean and variance), or have a more semi-parametric or non-parametric

flavor with a high-dimension θ (such as a spline or Dirichlet process model). Inference

about some population quantity of interest Q(Y ) is based on the posterior predictive

distribution of

p(Ynob | Yobs, I, Z) =∫ ∫
p(Ynob | Yobs, Z, θ, φ)p(I | Y, Z, θ, φ)p(Yobs | Z, θ)p(θ, φ)dθdφ∫ ∫ ∫
p(Ynob | Yobs, Z, θ, φ)p(I | Y, Z, θ, φ)p(Yobs | Z, θ)p(θ, φ)dθdφYnob

(3.1)

where Ynob consists of the N−n unobserved cases in the population, and φ models the

inclusion indicator I. Assuming that φ and θ have independent priors, the sampling

mechanism is said to be “noninformative” if the distribution of I is independent

of Y |Z, or “ignorable” if the distribution of I only depends on Yobs|Z. When the

sampling design is ignorable, p(I | Y, Z, θ, φ) = p(I | Yobs, Z, φ), and thus (3.1) reduces

to ∫
p(Ynob | Yobs, Z, θ)p(Yobs | Z, θ)p(θ)dθ∫ ∫

p(Ynob | Yobs, Z, θ)p(Yobs | Z, θ)p(θ)dθdYnob
= p(Ynob | Yobs, Z),
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allowing inference about Q(Y ) to be made without explicitly modeling the sampling

inclusion parameter I (Ericson, 1969; Holt and Smith, 1979; Little, 1993; Rubin, 1987;

Skinner et al., 1989). Notice that if inference about quantities Q(Y |X) involving

covariates X is desired (e.g., regression slope), noninformative or ignorable sample

designs can be relaxed to have distribution of I depend on X.

3.2.2 Weight Prediction

Beaumont (2008) proposed a model-assisted method, tamping down the extreme

values in weights by replacing them with their predicted values from a prediction

model of weights regressed on response and design variables. Denote I = (I1, ...IN)T

as the vector of sample inclusion indicators, i.e. Ii = 1 as ith unit sampled and

Ii = 0 otherwise, Y = (Y1, ...YN)T the vector of survey response variable, and

Z = (Z1, ...ZN)T the vector of design variables. Assuming a noninformative sam-

pling design, thus P (I|Z, Y ) = P (I|Z), the predicted weights are obtained by w̃i =

EM(wi|Ii = 1, zi, yi), or sometimes reduced to w̃i = EM(wi|Ii = 1, yi). Beaumont

(2008) discussed two estimators, the linear form EM(wi|I, Y ) = HT
i β + v

1/2
i εi, and

the exponential form, EM(wi|I, Y ) = 1 + exp(HT
i β + v

1/2
i εi), where Hi and vi > 0

were known functions of yi. (The exponential form prevents the predicted weights

from being negative.) He presented two examples of HT
i β, one-degree polynomial

and five-degree polynomial of yi. The predicted weights are obtained by fitting the

(unweighted) model on sampled data, then the re-weighted estimator of the survey

response variable of interest is obtained using the predicted weights.

3.2.3 Weight Smoothing

In general, weight smoothing stratifies data by inclusion probabilities, and applies

a hierarchical model treating strata means as random effects, thus achieves trim-

ming via shrinkage. Considering the population mean as the quantity of interest, an
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example weight smoothing model is as following:

Yhi
iid∼ N(µh, σ

2)

µ ∼ NH(φ,G)

where µ = (µ1, ...µH), φ = (φ1, ...φH), and h = 1, ..., H indexes different “weight

strata” defined, e.g., by same or similar inclusion probabilities. We assume φ, D,

and σ2 all have weak or non-informative priors. Notice that the weight strata are

not necessarily ordered by inclusion probabilities, but could be in a more natural

ordering, for example, if the weight strata represent a disproportionately stratified

sample by age. Based on this model, the posterior mean of the population mean is

derived as:

E(Ȳ |y) =
H∑
h=1

[nhȳh + (Nh − nh)µ̂h]/N

where µ̂h = E(µh|y). Various assumptions can be made for the prior distribution of

µ, such as:

Exchangeable random effect (XRE): φh = φ0 for all h, G = τ 2IH ;

Autoregressive (AR1): φh = φ0 for all h, G = τ 2A, Ajk = ρ|j−k|, j, k = 1, ..., H;

Linear (LIN): φh = φ0 + φ′ ∗ h, G = τ 2IH ;

Nonparametric (NPAR): φh = g(h), G = 0 where g is an unspecified, twice-differentiable

function.

See Elliott and Little (2000) for a detailed review.

The weight smoothing mechanism can be easily intuited in the simplest case of

the exchangeable random effect (XRE) model (Holt and Smith, 1979; Ghosh and

Meeden, 1986; Little, 1991; Lazzeroni and Little, 1998), where φh = µ for all h, and

G = τ 2IH . The estimation of µ̂h is now a shrinkage estimator as µ̂h = whȳh+(1−wh)ỹ,

for wh = τ 2nh/(τ
2nh + σ2) and ỹ = (

∑
h nh/(nhτ

2 + σ2))−1
∑

h nh/(nhτ
2 + σ2)ȳh. As
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τ 2 →∞, wh → 1, and E(Ȳ |y) =
∑H

h=1[nhȳh+(Nh−nh)ȳh]/N =
∑H

h=1(Nh/N)ȳh, the

fully-weighted estimator. On the other hand, as τ 2 → 0, wh → 0, and the estimation

shrinks toward the unweighted mean: since ỹ =
∑
h nhȳh/σ

2∑
h nh/σ

2 = ȳ if τ 2 = 0, E(Ȳ |y) =∑H
h=1[nhȳh + (Nh − nh)ȳ]/N = (n/N)ȳ + ȳ(1− n/N) = ȳ if τ 2 = 0. Since τ 2 is itself

estimated from the data, and is a measure of the information available to distinguish

how the population means within a weight stratum differ, the weight smoothing

model achieves a “data-driven” compromise between the weighted estimator, which

is design consistent but may be highly inefficient, and unweighted estimator, which is

fully efficient when the assumption of independent between inclusion probability and

mean of Y holds, but is likely biased otherwise.

3.2.4 Weight Smoothing for Linear and Generalized Linear Regression

Models

Generalized linear regression models (McCullagh and Nelder , 1989) postulate a

likelihood for yi of the form

f(yi|θi, φ) = exp

[
yiθi − b(θi)
ai(φ)

+ c(yi, φ)

]
where ai(φ) is a known function of (nuisance) scale parameter φ, and the mean of yi

given by µi = b′(θi) is based on a linear combination of fixed covariates xi through

some link function g() such that E(yi|θi) = µi, and g(µi) = g(b′(θi)) = ηi = xTi β. In

the meantime, V ar(yi|θi) = ai(φ)V (µi), where V (µi) = b′′(θi); thus the variance is

usually a function of the mean, with the exception of normal distribution, for which

b′′(θi) = 1. The link is considered canonical if θi = ηi, with simplified results that

V (µi) = 1/g′(µi). Some examples include Gaussian (linear) regression, where ai(φ) =

σ2 and the canonical link g(µi) = µi; logistic regression, where ai(φ) = n−1
i and the

canonical link g(µi) = log(µi/(1− µi)), and Poisson regression, where ai(φ) = 1 and

the canonical link g(µi) = log(µi).
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When considering weighted estimators, we index by the inclusion stratum h, thus

g(E[yhi|βh]) = xThiβh. For weight smoothing models, the hierarchical structure is

(βT1 , ...β
T
H)T |β∗, G ∼ NHP (β∗, G)

where β∗ is an unknown vector of mean values for the regression coefficients and G

is an unknown covariance matrix. Our interest is to estimate the target population

quantity B = (B1, ...Bp)
T , which is the slope that solves the population score equation

UN(B) = 0 where

UN(β) =
N∑
i=1

∂

∂β
logf(yi; β) =

H∑
h=1

Nh∑
i=1

yhi − g−1(µi(β))xhi
V (µhi(β))g′(µhi(β))

.

Notice that the quantity B that satisfies U(B) = 0 is always a meaningful population

quantity even if the model is moderately misspecified, since it is a linear approxi-

mation of xi to ηi. A first-order approximation of E(B|y,X) is given based on B̂

where

H∑
h=1

Wh

nh∑
i=1

(ŷhi − g−1(µi(B̂)))xhi

V (µhi(B̂))g′(µhi(B̂))
= 0

where Wh = Nh/nh, ŷhi = g−1(xThiβ̂h), and β̂h = E(βh|y,X). For linear regression,

where V (µi) = σ2 and g′(µi) = 1,

B̂ =E(B|y,X)

=[
∑
h

Wh

nh∑
i=1

xhix
′
hi]
−1[
∑
h

Wh(

nh∑
i=1

xhix
′
hi)β̂h]
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In case of logistic regression, V (µi) = µi(1−µi) and g′(µi) = µ−1
i (1−µi)−1, E(B|y,X)

is obtained by solving the weighted score equation for population regression parameter

β

H∑
h=1

Wh

nh∑
i=1

xhi

(
expit(x′hiβ)− expit(x′hiβ̂h)

)
= 0

where expit(.) = exp(.)/(1 + exp(.)). In practice, approximate posterior distributions

of B can be obtained by replacing the observed yhi with predicted values g(x′hiβ̂h) for

each draw of β̂h and obtaining the pseudo-MLE for the chosen regression model.

3.2.5 Laplace Prior for Weight Smoothing

Instead of using a multivariate normal distribution as the prior of βs, we propose

using a multivariate Laplace distribution. Unlike normal distribution prior which

restricts the variation between random effect term and prior mean in an L2 manner,

Laplace prior measures by the L1 distance. According to Eltoft et al.(2006), the

general form of Multivariate Laplace distribution is given by:

pY (y) =
1

(2π)d/2
2

λ

K(d/2)−1(
√

2
λ
q(y))

(
√

2
λ
q(y))(d/2)−1

where y is a d-dimensional random variables y = (y1, ..., yd); Km(x) denotes the

modified Bessel function of the second kind and order m, evaluated at x; q(y) =

(y − µ)tΓ−1(y − µ); Γ = {γjk}, j, k = 1, ..., d is a d × d matrix defining the internal

covariance structure of the variable Y , µ = (µ1, ..., µd) is the vector of means, and λ

an overall scale parameter. However, such a format is inconvenient for application.

The alternative approach is to represent Laplace distribution as a scale mixture of

normals with an exponential mixing density. By creating a set of latent mixing
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variables Dτ = diag(τ 2
1 , ..., τ

2
Hp), and applying exchangeable random slope (XRS)

setting, we reach the two level hierarchical form of Laplace Prior for β:

(βT1 , ..., β
T
H)T |β∗h, Dτ , σ

2 ∼MVN(β∗h, σ
2Dτh)

β∗h|σ2
0 ∼MVN(0, σ2

0Ip)

Dτh = diag(τ 2
h1, ..., τ

2
hp)

σ2, τ 2
1 , ...τ

2
Hp ∼ 1/σ2

Hp∏
j=1

λ2

2
e−λ

2τ2j /2

λ2 ∼ Gamma(r, δ).

The first level of the model depends on the distribution assumption of the generalized

linear model used. In this paper, we take linear regression and logistic regression as

examples, and provide the full hierarchical Bayesian model and related Gibbs Sampler

algorithm.

For linear regression, Y conditional on all other parameters follows a normal dis-

tribution. Assuming that the residual variance σ2 is independent from the latent

mixing variables τi, the hierarchical model is as follows:

yhi|xhi, βh, σ2 ∼ N(xThiβh, σ
2)

(βT1 , ..., β
T
H)T |β∗h, Dτ , σ

2 ∼MVN(β∗h, σ
2Dτh)

β∗h|σ2
0 ∼MVN(0, σ2

0Ip)

Dτh = diag(τ 2
h1, ..., τ

2
hp)

σ2, τ 2
1 , ...τ

2
Hp ∼ 1/σ2

Hp∏
j=1

λ2

2
e−λ

2τ2j /2

λ2 ∼ Gamma(γ = 1, δ = 1.78).

Following the deduction in Park & Casella (2008), the analytical forms of all fully
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conditional distributions of β, σ2 etc are achievable, and the posterior predictive dis-

tribution could be obtained through a Gibbs Sampler as below. A detailed derivation

is attached in the Appendix B.1.

βh|rest ∼MVN(A−1(XT
h Yh +D−1

τh β
∗
h), σ

2A−1), A = XT
hXh +D−1

τh

β∗h|rest ∼MVN((σ2Dτh)
−1((σ2Dτh)

−1 + (σ2
0I)−1)−1βh, ((σ

2Dτh)
−1 + (σ2

0I)−1)−1)

σ2|rest ∼ InvGamma((n+Hp)/2,
1

2
[
H∑
h=1

(Yh −Xhβh)
T (Yh −Xhβh)+

H∑
h=1

(βh − β∗h)T (Dτh)
−1(βh − β∗h)])

1/τ 2
hi|rest ∼ InvGaussian(

√
λ2σ2

(βh − β∗h)2
, λ2)

λ2 ∼ Gamma(Hp+ γ,
1

2

H∑
h=1

p∑
i=1

τ 2
hi + δ).

For logistic regression, the model is similar to that for linear regression, except

that Y follows a binomial distribution, and estimation of σ2 is no longer necessary:

yhi|xhi, βh, ∼
H∏
h=1

nh∏
i=1

(
exp(xhiβh)

1 + exp(xhiβh)

)yhi ( 1

1 + exp(xhiβh)

)1−yhi

(βT1 , ..., β
T
H)T |β∗h, Dτ , ∼MVN(β∗h, Dτh)

β∗h|σ2
0 ∼MVN(0, σ2

0Ip)

Dτh = diag(τ 2
h1, ..., τ

2
hp)

τ 2
1 , ...τ

2
Hp ∼

Hp∏
j=1

λ2

2
e−λ

2τ2j /2

λ2 ∼ Gamma(r = 1, δ = 1.78).

When the first level is not normally distributed, the full conditional distribution of
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β does not belong to any known distributions, and thus direct sampling is impos-

sible. Instead we apply Metropolis method, and the proposed βh is drawn from

Np(β
′
h, cβDβ), for Dβ = (V −1

βh + D−1
τh )−1, where β′h is the ML estimate of the logistic

regression of y on Z from strata h, and Vβh the associated covariance matrix ob-

tained from the expected information matrix evaluated at β′h. The proposed βh is

accepted with probability r = max[1, {fβ(βprop)}/{fβ(β)}],where fβ is the posterior

distribution of β proportional to p(βh)
nh∏
i=1

f(yhi|βh). All other parameters follow pre-

vious Gibbs Sampler algorithm, and are directly drawn from their fully conditional

distributions as below: (full derivation in Appendix B.2)

β∗h|rest ∼MVN((Dτh)
−1((Dτh)

−1 + (σ2
0I)−1)−1βh, ((Dτh)

−1 + (σ2
0I)−1)−1)

1/τ 2
hi|rest ∼ InvGaussian(

√
λ2

(βh − β∗h)2
, λ2)

λ2 ∼ Gamma(Hp+ γ,
1

2

H∑
h=1

p∑
i=1

τ 2
hi + δ)

3.3 Simulation Study

To evaluate the performance of weight smoothing models using Laplace priors, we

create two scenarios for ordinary linear regression and logistic regression, generating

separate populations with normally distributed outcome and dichotomise outcome

accordingly. The target of interest is the population slope. In addition to our Laplace

prior estimator, we consider an unweighted estimator, a fully-weighted estimator, a

normal-prior (exchangable) estimator (Elliott and Little, 2000; Elliott , 2007), and

several variations of the model-assisted estimator proposed by Beaumont (2008). For

each scenario and estimator, we compute bias, square root of mean square error

(RMSE) and coverage of 95% confidence or credible intervals.
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3.3.1 Hierarchical Weight Smoothing Model for Ordinary Linear Regres-

sion

We generate a population of N = 20, 000 for ordinary linear regression. The

predictor X is uniformly distributed on the interval from 0 to 10, and is equally

divided into 20 strata with a range of 0.5 each. The response variable Y is then

generated as a spline function of X with cutpoints between strata as knots. Three

sets of coefficients are applied separately, so the pattern of Y | X varies from straight

slope to increasing curve and decreasing curve.

Yi|Xi, β, σ
2 ∼ N(β0 +

20∑
h=1

βh(xi − h)+, σ
2)

Xi ∼ UNI(0, 10), i = 1, ..., N = 20, 000

βa = (0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

βb = (0, 0, 0, 0, 0, 0, 0, .5, .5, .5, .5, 1, 1, 1, 1, 2, 2, 2, 2, 4, 4)

βc = (0, 11,−4,−4,−2,−2,−2,−2,−1,−1,−1,−1,−0.5,−0.5,−0.5,−0.5, 0, 0, 0, 0, 0)

From the population, a sample of n = 1000 is selected without replacement, according

to inclusion probabilities equal to πi = (1 + i/30) ∗ i/2 for the ith stratum. Thus the

ratio between the maximum and minimum of weights is about 35, and the sample

size of each stratum is always greater than three. Z is created as Z = I ⊗X,where

I = c(I1, ..., Ih) is an indicator vector stating if the current observation belongs to

ith stratum. Z is centered within each column with respect to each stratum(for

computation convenience), and used as predictor in the simulations.

Our inferential target is B = (
∑N

i=1 X̃iX̃
′
i)
−1
∑N

i=1 X̃iYi for X̃i = (1 Xi)
′, the least-

squares linear approximation of Y to X. Under βb and βc, weights correct bias from

model misspecification. Under βa, the model is correctly specified, suggesting that

the unweighted estimator may be most efficient. Population variance σ2 varies among

10, 103 and 105, creating varying level of variance influence compared to possible bias;
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note that under βb, the curvature is largest where the data are most densely sampled,

while the reverse is true under βc, suggesting that varying degrees of trimming will

be required to optimize the bias-variance tradeoff.

For the hyperprior parameters, σ2
0 is arbitrarily defined as 1000 to approximate

a non-informative prior; the prior for λ follows a gamma hyperprior with parameter

r = 1 and δ = 1.78, as suggested by Park and Casella (2008). All other parame-

ters in simulation are initialized at zero, except for variance estimator σ2, which is

initialized at one. A Gibbs Sampler method is applied, that is, for each iteration,

all parameters are sequentially drawn from the full conditional distribution. Then to

obtain the estimate from posterior predictive distribution, the unobserved Y are gen-

erated based on sampled parameters from each iteration, and the target population

slope B is obtained by fully weighted regression on observed and predicted Y . The

process iterates 10000 times, with a burn-in of 2000. Diagnostic plots are generated

to assure the algorithm’s convergence. Bias, RMSE and 95% coverage are recorded

for comparison. Overall 200 samples are generated from each population to provide

the empirical distribution for the repeated measures properties.

We compare the properties of our Laplace model (HWS) with major competi-

tors, including the unweighted model (UNWT), fully weighted model (FWT), weight

smoothing model with normal prior and exchangeable random slope assumption

(XRS), and four variations of the model-assisted estimators from Beaumont (2008):

predicted weights on y only (PREDY); predicted weights on degree 5 polynomial of

y (PREDY5); predicted weights on y and x (PREDYX) and predicted weights on

degree 5 polynomial of y, together with x (PREDYX5). Bias and nominal 95% cov-

erage are recorded directly, while RMSE is rescaled according to the fully weighted

estimator. Results are provided in Table 3.1, 3.2 and 3.3.

Under βa, where the model is correctly specified, all methods yield unbiased re-

sults, and the unweighted estimator maintains the best efficiency, with an approxi-
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σ2 = 101.5 σ2 = 103.5 σ2 = 105.5

Bias RMSE cover Bias RMSE cover Bias RMSE cover
UNWT -0.013 0.730 0.95 0.009 0.693 0.95 -0.766 0.713 0.96
FWT -0.006 1 0.94 -0.012 1 0.93 -1.253 1 0.96
HWS -0.006 1.047 0.96 -0.019 0.978 0.95 -1.107 0.768 0.99
XRS -0.001 1.489 1 0.016 0.720 0.96 -0.765 0.716 0.96
PREDY -0.014 0.805 0.96 0.025 0.698 0.95 -0.781 0.711 0.97
PREDY5 0.108 1.511 0.52 0.104 0.756 0.95 -0.785 0.717 0.97
PREDYX -0.005 0.803 0.97 -0.016 0.783 0.94 -1.145 0.796 0.95
PREDYX5 -0.005 0.978 0.94 -0.019 0.953 0.94 -1.540 0.983 0.95

Table 3.1: Comparison of various estimators of slope B1 under βa linear spline setting.
Bias and RMSE under populations with residual variance 101.5, 103.5 and
105.5 from following model: unweighted, fully weighted, hierarchical weight
smoothing, exchangeable random effect and weight prediction by y, degree
5 polynomial of y, linear combination of x and y, and degree 5 polynomial
of x,y.

σ2 = 101.5 σ2 = 103.5 σ2 = 105.5

Bias RMSE cover Bias RMSE cover Bias RMSE cover
UNWT 1.980 10.201 0 1.993 2.441 0.02 1.204 0.726 0.95
FWT -0.006 1 1 -0.005 1 0.92 -1.252 1 0.96
HWS -0.006 0.453 0.97 -0.042 0.947 0.96 -1.354 0.774 0.99
XRS -0.103 1.008 0.95 1.769 2.213 0.04 1.203 0.729 0.94
PREDY 0.963 4.977 0 1.794 2.228 0.03 1.174 0.722 0.94
PREDY5 1.059 5.466 0 1.791 2.212 0.03 1.184 0.730 0.95
PREDYX 0.368 2.050 0.32 0.385 0.919 0.90 -0.746 0.792 0.95
PREDYX5 0.018 1.000 1 0.012 0.955 0.96 -1.515 0.983 0.96

Table 3.2: Comparison of various estimators of slope B1 under βb linear spline setting.
Bias and RMSE under populations with residual variance 101.5, 103.5 and
105.5 from following model: unweighted, fully weighted, hierarchical weight
smoothing, exchangeable random effect and weight prediction by y, degree
5 polynomial of y, linear combination of x and y, and degree 5 polynomial
of x,y.
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σ2 = 101.5 σ2 = 103.5 σ2 = 105.5

Bias RMSE cover Bias RMSE cover Bias RMSE cover
UNWT -1.874 6.227 0 -1.836 2.177 0.01 -2.611 0.758 0.9
FWT -0.006 1 1 -0.020 1 0.97 -1.257 1 0.95
HWS -0.005 0.337 0.85 0.069 0.937 0.96 -0.772 0.772 0.99
XRS -0.549 1.872 0.06 -1.721 2.052 0.01 -2.609 0.761 0.91
PREDY -0.009 1.258 0.97 -1.738 2.075 0.01 -2.627 0.756 0.90
PREDY5 -0.167 1.131 0.99 -1.256 1.757 0.37 -2.593 0.761 0.88
PREDYX -0.327 1.416 0.75 -0.729 1.091 0.75 -1.861 0.809 0.93
PREDYX5 -0.020 1.019 1 -0.055 0.965 0.96 -1.557 0.983 0.95

Table 3.3: Comparison of various estimators of slope B1 under βc linear spline setting.
Bias and RMSE under populations with residual variance 101.5, 103.5 and
105.5 from following model: unweighted, fully weighted, hierarchical weight
smoothing, exchangeable random effect and weight prediction by y, degree
5 polynomial of y, linear combination of x and y, and degree 5 polynomial
of x,y.

mate 30% decrease in RMSEs comparing to fully weighted estimator. The original

weight smoothing method under XRS tends to provide unstable results, inflating the

variance when population signal is strong, but achieving similar RMSEs as the un-

weighted estimator when the population signal is weak relative to the noise. Our

model, under the same XRS assumption but with a Laplace prior, gives more stable

results that resemble the fully weighted estimator when variance is low, but increases

in efficiency as population variance increases. Both the XRS and HWS estimators

have correct to somewhat conservative coverage when the linear model is correctly

specified. Most model-assisted estimators have improved RMSEs comparing to the

fully weighted estimator, with the exception of PREDY5, which has unstable results

and poor nominal coverage when σ2 = 101.5.

For scenarios under βb and βc, the unweighted estimator of B is biased, and the

fully weighted estimator strongly prevails over unweighted estimator with respect to

both RMSE and coverage for small to moderate levels of residual variances. The

weight smoothing method under XRS remains biased at moderate levels of variance

for βb and βc, and also at small levels of variance for βc, raising RMSE relative to
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FWT and destroying nominal coverage, suggesting that the exchangable random slope

structure is not sophisticated enough to capture the relation in mean and variance

among strata. The weight smoothing estimator with Laplace prior has limited bias

similar to that of the fully weighted estimator, but very substantially reduced RMSE,

though it suffers a moderate drop in coverage under βc and σ2 = 101.5. Most of the

model-assisted estimators are insufficiently structured to reduce bias in the small-

to-medium residual variance settings, except for PREDYX5, which mimics the fully

weighted estimator and thus has little savings in relative RMSEs under any of the

scenarios.

3.3.2 Hierarchical Weight Smoothing Model for Logistic Regression

Following Elliott (2007), we set up population in two approaches: model mis-

specification and informative sampling. For model misspecification, the population

is equally divided into 20 strata, and the predictor X is uniformly distributed within

each stratum on an interval ranging from 0.5(h − 1) to 0.5h. The binary response

variable is generated as following:

P (Yi = 1|Xi) ∼ BER(expit(1.5− .75Xi + C ∗X2
i )),

Xhi ∼ UNI(0.5 ∗ (h− 1), 0.5 ∗ h), h = 1, .., 20, i = 1, ..., 1000

Our inferential target is B = (B0 B1)′, the value of β = (β0 β1)′ that solves the

score equation U(β) =
∑N

i=1 X̃i(Yi − expit(X̃ ′iβ)), corresponding to the best linear

approximation to Xi and log
(

E(Yi|Xi)
1−E(Yi|Xi)

)
. For C, we consider values of 0, .027, .045,

.061, .080, corresponding to increasing levels of model misspecification. The selection

probability for each observation remains the same within each stratum, and increases

linearly along strata, with a ratio between maximum and minimum probabilities

equals to 20.
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For the informative sampling setting, we follow the same formula of

P (Yi = 1|Xi) ∼ BER(expit(1.5− .75Xi + C ∗X2
i )),

Xhi ∼ UNI(0.5 ∗ (h− 1), 0.5 ∗ h), h = 1, .., 20, i = 1, ..., 1000

but fix C = 0, so the model is correctly specified. We also create a vector of binary

value Z∗i such that Cor(Yi, Z
∗
i ) = r, and r range from 0.05 to 0.95 to represent

different level of correlation with Y . Then we let Zi = Z∗i Ui + (1 − Z∗i )Xi, where

Ui ∼ U(0, 10) independent of Xi, and the selection probability is proportional to Zi.

Thus whether the selection probability is related to X or not is determined by the

value of Z∗, which is correlated with Y to some level. The process results in a ratio

of roughly 30 between maximum weight and minimum weight, and the correlation

between selection probability and Y varies from 0 to 30 % as the correlation between

Z∗ and Y increases from .05 to .95. 20 strata of equal size are created by pooling

observations with similar selection probabilities together.

From this population, samples with n = 1000 are selected without replacement,

with the selection probability stated above. We create weight strata using the values

of h. A total of 200 samples are generated to create the empirical distribution for

inference. A single MCMC chain is built for each data set, and for each iteration

in the algorithm, all parameters are sequentially drawn from the full conditional

distribution, except for β, which is proposed from a normal distribution centered at

MLE with inverse expected information as covariance matrix, and accepted according

to likelihood ratio times prior distribution. Then the predicted Y is calculated based

on drawn parameters, and the target population slope is obtained by fully weighted

logistic regression. The initial values of parameters are assigned the same as linear

regression setting, and the process iterates 10000 times, with a burn-in of 2000.

We compare the properties of our Laplace model (HWS) with same major com-

petitors as in the linear regression setting, with the exception of (PREDY5): since Y
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c = 0 c = .45 c = .80
Bias RMSE Cover Bias RMSE Cover Bias RMSE Cover

UNWT 0.014 0.697 0.96 0.063 1.151 0.47 0.132 2.819 0
FWT 0.006 1 0.84 -0.015 1 0.82 -0.014 1 0.94
HWS 0.011 0.915 0.84 -0.014 0.909 0.82 -0.013 0.860 0.88
XRS 0.038 1.125 1 0.078 1.696 0.94 0.042 1.644 0.98
PREDY 0.014 0.765 0.95 0.082 1.614 0.27 0.136 3.115 0
PREDYX 0.003 0.791 0.96 0.021 0.903 0.92 0.038 1.123 0.79
PREDYX5 -0.004 0.962 0.93 -0.005 0.965 0.94 -0.001 0.967 0.98

Table 3.4: Comparison under model misspecification. Bias and RMSE under popula-
tions with underlying model quadratic coefficient 0, .45 and .80 from fol-
lowing model: unweighted, fully weighted, hierarchical weight smoothing,
exchangeable random effect and weight prediction by y, degree 5 poly-
nomial of y, linear combination of x and y, and degree 5 polynomial of
x,y.

is a binary variable, higher-order polynomials are not relevant. Bias and nominal 95%

coverage are recorded directly, while RMSE is rescaled according to fully weighted

estimator. Results are provided in Table 3.4 and 3.5.

While comparing different models under model misspecification setting, the un-

weighted model has increased bias since the population model is less correctly speci-

fied, resulting in a change from efficient estimate to a poor estimate (Relative RMSEs

range from 69.7% to 281.9% of FWT’s as C increases) and poor coverage as misspec-

ification increases. The exchangeable random slope model estimator is not robust,

with bias similar to unweighted model, and larger RMSEs than the fully-weighted es-

timator, although coverage is conservative. The hierarchical weight smoothing model

with Laplace prior provides a more robust estimator, with minimal bias, and RMSE

reduced by up to 14% compared to the FWT estimator, although coverage suffers to a

moderate degree. The weight prediction models PREDY and PREDYX perform sim-

ilar to unweighted estimate, gaining efficiency when models are correctly specified,

and suffering when misspecification increases. PREDYX5, which predicts weights

with a degree five polynomial of both x and y, essentially mimics the fully-weighted

estimator.
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r = .05 r = .50 r = .95
Bias RMSE Cover Bias RMSE Cover Bias RMSE Cover

UNWT 0.057 0.990 0.76 0.069 1.155 0.52 0.053 0.914 0.64
FWT 0.023 1 0.94 0.009 1 0.88 0.001 1 1
HWS 0.022 0.906 0.82 0.009 0.914 0.84 0.001 0.875 0.96
XRS 0.067 1.417 1 0.071 1.463 0.98 0.059 1.272 1
PREDY 0.055 1.034 0.70 0.071 1.233 0.54 0.062 1.079 0.64
PREDYX 0.021 0.832 0.94 0.023 0.859 0.91 0.031 0.880 0.93
PREDYX5 0.004 0.977 0.94 0.002 0.969 0.95 0.007 0.997 0.97

Table 3.5: Comparison under informative sampling. Bias and RMSE under popula-
tions with correlation between Z and Y equal to .05, .50 and .95 from fol-
lowing model: unweighted, fully weighted, hierarchical weight smoothing,
exchangeable random effect and weight prediction by y, degree 5 poly-
nomial of y, linear combination of x and y, and degree 5 polynomial of
x,y.

Under informative sampling, the unweighted estimator has only slightly larger

RMSEs than the fully weighted estimator, but is substantially biased with poor cov-

erage. The exchangeable random effect model has a similar degree of bias compared to

the unweighted estimator, but has increased variability that, while providing conserva-

tive coverage, yields substantially increased RMSE over the fully-weighted estimator.

The hierarchical weight smoothing model with Laplace prior again provides a more

robust estimator, with minimal bias, and RMSE reduced by up to 12% compared to

the FWT estimator, although coverages suffer to a moderate degree except when the

sampling is highly informative. PREDY is modestly biased but has poor coverage

(perhaps not surprising given that Y is binary), while PREDYX improves RMSE by

up to 17% while having only slight undercoverage. PREDYX5 again mimics the fully

weighted model.
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3.4 Application

3.4.1 Application on Dioxin Data from NHANES

To demonstrate the performance of our method in linear regression setting, we

consider its application on the dioxin dataset from the National Health and Nutrition

Examination Survey (NHANES). During the 2003-2004 survey, 1250 representative

adult subjects were selected under a probability sample of the US, and had their

blood biomarkers measured, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD),

a compound usually formed through incomplete combustion such as incineration,

paper and plastics manufacturing, and smoking. Other demographic variables like

age and gender are also available from the survey. The sampled data are stratified

into 25 strata, within each consists of 2 Masked Variance Units (MVU’s) for proper

variance estimation procedure, with survey weights provided as well. Due to technical

limit, 674 readings are below limit of detection, and are imputed through multiple

imputation using the model described in Chen et al. (2010), resulting in 5 replicate

data sets. Both survey structure and imputation are incorporated in analysis using

a jackknife method and Rubin’s formula (Rubin, 1987).

To determine the connection between log of TCDD level and individual demo-

graphic information, four linear regression models are fitted as log TCDD on age,

log TCDD on gender, log TCDD on age and gender, and log TCDD on age, gen-

der and interaction. The hierarchical model is built as described before, with same

initial values of parameters as those in the simulation. For each model setting, the

unweighted (UNWT), fully-weighted (FWT), and the hierarchical weight smoothing

(HWS) estimators are obtained (exchangeable random slope model fails to converge

and is removed from the result). To estimate mean square error, the fully weighted

version is treated as unbiased. Note that the fully weighted estimator is unbiased

only in expectation, leading to the true estimated square bias of regression coefficient
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Model Bias(×10−3) RMSE(×10−3)
UNWT -1.262 3.265
WT 0 3.888
HWT -0.086 1.214

Table 3.6: Regression of log TCDD on Age. Bias and RMSE for linear slope estimated
for age: unweighted, fully weighted and hierarchical weight smoothing.

Model Bias(×10−2) RMSE(×10−1)
UNWT -8.219 1.248
WT 0 0.637
HWT 0.589 0.607

Table 3.7: Regression of log TCDD on Gender. Bias and RMSE for linear slope
estimated for gender: unweighted, fully weighted and hierarchical weight
smoothing.

β̂ given by max((β̂ − β̂w)2)− V̂01, where V̂01 = ˆV ar(β̂) + ˆV ar(β̂w)− 2 ˆCov(β̂, β̂w). To

fully account for the design feature, all variance/covariance estimates are calculated

via jackknife as ˆV ar(β̂w) =
∑
h

kh−1
kh

kh∑
i=1

(β̂w(hi)
− β̂w)2, β̂w(hi)

= (X ′W(hi)X)−1XW(hi)y,

where β̂w(hi)
denotes the weighted β estimater from sample excluding ith MVU in hth

stratum, and W(hi) is a diagonal matrix consisting of case weight wj for all elements

j /∈ h, j /∈ i, kh
kh−1

wj for all elements j ∈ h, j /∈ i, and 0 for elements j ∈ h, j ∈ i.

ˆV ar(β̂) and ˆCov(β̂w, β̂) are calculated accordingly, and estimates from five imputed

replicate datasets are combined with Rubin’s formula. The results are based on 10000

iterations with first 2000 draws discarded as burn-in. And the resulting Biases and

RMSEs are summarized in Tables 3.6-3.9.

For the first two models of log TCDD on age and gender separately, the estima-

Age Gender
Model Bias(×10−4) RMSE(×10−3) Bias(×10−2) RMSE(×10−2)
UNWT -9.067 3.296 -0.159 9.017
WT 0 3.895 0 6.161
HWS -0.841 1.227 1.058 5.659

Table 3.8: Regression of log TCDD on age and gender. Bias and RMSE for linear
slope estimated for age and gender: unweighted, fully weighted and hier-
archical weight smoothing.
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Age Gender Interaction
Model Bias RMSE Bias RMSE Bias RMSE

(×10−4) (×10−3) (×10−2) (×10−1) (×10−3) (×10−3)
UNWT -5.063 3.758 2.882 1.591 -0.880 3.285
WT 0 2.661 0 3.259 0 7.335
HWS -9.142 2.048 -6.530 1.282 1.646 2.667

Table 3.9: Regression of log TCDD on age and gender, and interaction between age
and gender. Bias and RMSE for linear slope estimated for age, gender and
interaction: unweighted, fully weighted and hierarchical weight smoothing.

tions of the single predictor from unweighted model appear to be biased comparing

to fully weighted model, resulting in estimated biases about 40% and 70% of RMSEs.

However, the weighted model also fails to provide a efficient estimate for effect on

age, supported by a RMSE of 3.888, larger than 3.265 from the unweighted model.

Meanwhile, the hierarchical weight smoothing model shows its ability to improve ef-

ficiency, both reducing the biases comparing to unweighted model, and maintaining

RMSEs similar to or smaller than fully weighted model depend on the severity of

variance inflation.

As more predictors enter the model, the estimated bias rapidly decreases in scale,

leading to a scenario that both bias and inflation in variance could dominate the

overall RMSEs, and neither unweighted model nor fully weighted model prevails in

estimating all predictors. Hence the hierarchical weight smoothing model cannot

reduce bias further, yet it succeeds in reducing variance, resulting in overall smaller

RMSEs comparing to either unweighted estimator or fully weighted estimator.

3.4.2 Application on Partner for Child Passenger Safety Data

In this section, we use Partners for Child Passenger Safety dataset to demon-

strate our method’s performance under logistic regression setting. Unit observations

in the dataset are damaged vehicles disproportionally sampled from State Farm claim

records between December 1998 and December 2005, when at least one child occupant

less than 15 years of age gets involved in a model year 1990 or newer State Farm-
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insured vehicle. The focus of the study is children’s consequential injuries, defined by

either facial lacerations or other injuries rated 2 or more on the Abbreviated Injury

Scale (AIS) (Association for the Advancement of Automotive Medicine 1990). Due to

the rare occurrence of the injury among all claims, to improve accuracy of the corre-

sponding estimation on this rare outcome, the overall population is divided into three

strata based on injury status – vehicles with at least one child occupant screened posi-

tive for injury, vehicles with all child occupants reported receiving medical treatment

but screened negative for injury, and vehicles with no occupant receiving medical

treatment – and is crossed with two strata defined by whether the vehicle is drive-

able or not. Since the stratification is associated with risk of injury, and cannot be

fully explained by other auxiliary variable, the sampling design is informative, with

weights varying from 1 to 50, and 9% of weights lying outside 3 times their standard

deviations.

As determined by Winston, Kallan, Elliott, Menon and Durbin (2002), children

rear-seated in compacted extended cab pickups are at greater risk of consequen-

tial injuries than children rear-seated in other vehicles. To strengthen the conclu-

sion, two models are applied, the unadjusted logistic model of injury status on car

type(compacted extended cab pickups or others), and adjusted logistic model adapt-

ing control variables including child age (years), use of restraint (Y/N), intrusion into

the passenger cabin in accident (Y/N), tow-away after accident (Y/N), direction of

impact (front/side/rear/other), and weight of the vehicle (pounds). The logistic hi-

erarchical weight smoothing model is set up as stated in previous section, then the

Gibbs sampler is executed for 10,000 iterations with 2,000 burn-in, and odds ratios

are compared with unweighted and fully weighted model.

The estimated odds ratios for compacted extended cab pickups indicator don’t

vary much from unadjusted model to fully adjusted model, while unweighted regres-

sion and fully weighted regression lead to quite different result, from a OR of 3.534
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OR
Unadjusted Adjusted

UNWT 3.534(2.003,6.234) 3.448(1.850,6.430)

FWT 11.317(2.737,46.784) 13.890(3.176,60.760)

HWS 10.559(3.731,29.876) 13.268(7.919,22.232)

XRS 8.681(2.790,27.007) 6.725(2.162,20.922)

Table 3.10: Odds ratio and relevant 95% confidence interval for estimated effect on
injury from compacted extended cab pickups: unweighted, fully weighted,
hierarchical weight smoothing and exchangeable random effect.

to 11.317 for unadjusted model, and from 3.448 to 13.890 when all other control

variables are included. Both hierarchical weight smoothing model and exchangeable

random effect model provide estimates lying in between the unweighted and weighted

estimates, although estimation from HWS model tends to match estimation from

fully weighted model. It is also worth noting that with similar point estimates, HWS

model provides a considerable reduction in estimated standard deviation, leads to a

smaller 95% confidence interval comparing to fully weighted model, an characteristic

also presented in simulation study before.

3.5 Discussion

Generally, most methods for weight trimming, both design based and model based,

handle sampling weights by achieving a balance between bias and variance, result-

ing in estimates usually lying between those from the unweighted model and fully

weighted model. However, the weight smoothing model with Laplace prior shows the

potential to provide a more efficient estimate than either unweighted model or fully

weighted model at same time. This occurs especially when the model is misspecified,

and population variance is small so the weight smoothing model is able to model

the underlying data structure precisely, and yield an estimate with greatly reduced

RMSE. However, this aggressive estimation comes at the cost of robustness, that is,

the overly reduced variance could lead to poor coverage rate. As presented in the sim-
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ulation, the HWS model suffers a moderate drop in coverage rate when population

variance is small. It is worth exploring in future the model’s mechanism in reduc-

ing the overall RMSE, and the limit of the scenarios under which it still maintains

reasonable coverage.

Comparing the results of the Laplace prior weight smoothing models with the

model-assisted estimators of Beaumont (2008), we find that the Laplace estimators

offer the promise of relatively simple estimators that can approximate fully weighted

estimators when weights are required for bias correction, but improve over weighted

estimators in terms of variability while maintaining approximately correct nominal

coverage of credible intervals. In contrast, the model-assisted estimators can in some

settings “oversmooth” weights when bias correction is needed and yield unstable

estimates when the weight prediction is weak. The predicted weights in the model-

assisted approach incorporate information from design variables, thus yield better

predictions for weighted mean and population total estimates than unweighted esti-

mators. However, in some settings even a degree five polynomial may fail to correctly

approximate the relationship between the inverse of the probability of selection and

the sample statistics of interest. Perhaps even more importantly, highly structured

models for weight prediction such as high degree polynomials may result in unstable

estimates of weights, adding unnecessary variance rather than dampening it. Ulti-

mately we find attempts to model weights rather than data misguided, as it focuses

on design factors on which we should be conditioning, rather than assessing uncer-

tainties in the data that may be fertile ground for mean square error reduction while

preserving approximate nominal coverage: i.e., calibrated Bayes estimators (Little,

2011).
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CHAPTER IV

Weighted Dirichlet Process Mixture Model to

Accommodate Complex Sample Designs for Linear

and Quantile Regression

4.1 Introduction

When estimating certain population quantities of interest from observations sam-

pled with disproportional selection probabilities, the standard design-based inference

approach considers population values as fixed, sampling indicators as random, and fo-

cuses on developing an estimator that is at least approximately unbiased with respect

to the repeated sampling distribution. One example is the Horvitz and Thompson

(H-T) estimator (Horvitz and Thompson, 1952) that targets population totals and

means. The design-based approach does not make distributional assumptions (at

least explicitly – the H-T estimator can be derived from a particular projection es-

timator of the population mean or total assuming a no-intercept linear relationship

between the mean of the outcome and sampling probability, with the standard devia-

tion of the residual proportional to the sample probability (Zheng and Little, 2003)).

However, the design-based approach could be very inefficient under certain scenarios,

such as when the sample size is small, the weights are highly variable, and/or the

relationship between the quantity of interest and the probability of selection is weak.
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For example, if one is interested in a population-level linear or generalized linear

regression parameter, given the model is correctly specified, incorporating sampling

weights in estimation is unnecessary for bias correction and will likely inflate vari-

ance (although if the errors are heteroscedastic and proportional to the probability

of selection, a correct model will typically lead to fully weighted estimators). How-

ever, misspecified models and/or designs with non-ignorable inclusion mechanisms

can lead to settings where weights are required for bias correction. Since “all models

are wrong, but some are useful” (e.g., a linear approximation may be reasonable at

a population level, but an unweighted estimator may enhance a modest quadratic

trend), and since non-response or other features of the sample design not fully cap-

tured by design variables available to the analyst can lead to non-ignorable inclusion

mechanisms, sampling weights are often used in estimating model parameters. For ex-

ample, pseudo-maximum likelihood estimators use case weights in score equations and

associated robust or “sandwich” estimators of variance to obtain inference (Binder ,

1983).

An alternative approach uses Bayesian finite population inference, a model-based

method that assumes a model for the observed data. The unobserved elements of

the population are treated as missing data, and posterior predictive distributions of

the population are generated by repeatedly imputing the unobserved elements of the

population using draws from the posterior distribution of the parameters governing

the data model. In the model-based setting, accounting for design elements in the

model adds robustness to the inference. For example, if a linear relationship is as-

sumed between a continuous covariate X and the (possibly transformed) mean of

an outcome Y , unequal probabilities of selection associated with X can diminish or

enhance non-linearities in the relationship between X and E(Y | X) in the sampled

data, leading to bias in estimating the population level linear approximation between

X and E(Y | X). One method to accommodate weights in a regression model setting
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is to create dummy variables stratified by equal or approximately equal case weights

and include indicators for weights strata and interactions between the covariates of

interest and the weight strata in the regression model. Inference is made based on

the posterior predictive distribution of the population level regression model of in-

terest, which no longer needs to explicitly include the weight interactions, since they

have been used to construct the posterior predictive distribution of the population to

which the regression model of interest is fitted. This approach also suggest the pos-

sibility of developing models that retain the level of structure needed to incorporate

the design features when necessary, but to default back to simpler models that ignore

these features and are more efficient when the data suggest that they are not needed.

Thus a carefully proposed model could provide an efficient estimator while maintains

reasonable bias reduction.

For this purpose we investigate mixture models, which are able to model interac-

tion between regression parameters and probabilities of inclusion by a combination

of fixed number of component distributions. Mixtures of Gaussian distributions are

often able to capture a large variety of skewed and overdispersed distributional forms

(McLachlan and Peel , 2000), either directly for continuous data, or at a latent vari-

able scale for binary, multinomial, or ordinal data. Dirichlet Process Mixture models

(Blackwell and MacQueen, 1973; MacEachern, 1994) loosen the assumption of pre-

determined number of mixture components, and adapt a convenient mechanism to

add or remove components from the model. Dunson, Pillai, and Park (2007) pro-

posed a weighted Dirichlet Process Mixture Model, expanding the field to regression

models, and adding extra flexibility by assigning weights to locations in population

domain, which, in our application, create a natural link to weights from the complex

sample design.

Quantile regression, although dating back to 1760 by Roger Boscovich (Stigler ,

1984), has recently come into more widespread use in statistics (Koenker , 2004). In-
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stead of modeling the conditional mean of an outcome as a linear function of given

covariate values, quantile regression extends the concept to estimate the conditional

median or various quantiles of outcome as linear functions of covariates, allowing

for more detailed and robust inference, especially for situations in which common

assumptions for linear regression are violated. Yu K and Moyeed (2001) success-

fully embeded quantile regression in Bayesian setting by an analogue of asymmetric

Laplace distribution with non-informative prior, making it possible to tackle quantile

regression problem with MCMC methods. While quantile regression is commonly

used with population survey data, methodological exploration in the complex sample

setting has been somewhat limited, and little if any work has explored the effect of

weight trimming in the quantile regression setting.

In this study we develop a Weighted Dirichlet Process Mixture Model (WDPM

model) to estimate quantity of interest from complex survey design data, in order to

build data-driven inference that captures a wide variety of normal and non-normal

distributions in a fashion that is sensitive to unequal probability of selection aspects of

the sample design, but also offers increased efficiency when data permit. In addition

to the linear regression setting, we also consider applications to quantile regression.

Because the WDPM models are highly flexible and can generate predictive distri-

butions that are accurate in tails of the distribution, they are a natural choice to

consider for model-based methods to obtain population quantile regression estimates.

The chapter is organized as follows. In Section 2 we review the theory of Bayesian

finite population inference, quantile regression, finite mixture models, and Dirichlet

Process mixture models. Section 3 reviews the Weighted Dirichlet Process Mixture

model, and extends the WDPM model to incorporate survey weights. Section 4 pro-

vides a simulation study, and compares bias, coverage and RMSE of the proposed

method with standard methods, under both linear model and quantile regression set-

tings. Section 5 demonstrates the method’s performance by applications on Dioxin
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Dataset from NHANES. Section 6 provides a summary discussion.

4.2 Background Methodology

4.2.1 Bayesian Finite Population Inference

To introduce Bayesian finite population inference, we denote the sample design

variables (selection probabilities, cluster indicator, stratum variables) by Z, and the

population data Y is modeled as Y ∼ f(Y |θ, Z). The distribution f could be either

highly parametric, with a low dimension θ, or semi-parametric or “non-parametric”

model with a high-dimension θ. An example of the former would be a normal model

with common mean and variance, while an example of the latter would be a spline

or Dirichlet Process Model. Let N be the number of elements in the population, Yobs

consist of the n observed data elements, and Ynob consist of the N − n unobserved

cases in the population. Considering Ynob as missing data, their posterior predictive

distribution is given by:

p(Ynob | Yobs, I, Z) =∫ ∫
p(Ynob | Yobs, Z, θ, φ)p(I | Y, Z, θ, φ)p(Yobs | Z, θ)p(θ, φ)dθdφ∫ ∫ ∫
p(Ynob | Yobs, Z, θ, φ)p(I | Y, Z, θ, φ)p(Yobs | Z, θ)p(θ, φ)dθdφYnobs

(4.1)

where φ models the inclusion indicator I. If φ and θ have independent priors, and

the sampling design is ignorable, that is, I only depends on Yobs|Z, the formula of

predictive posterior distribution reduces to

p(Ynob | Yobs, Z) =

∫
p(Ynob | Yobs, Z, θ)p(Yobs | Z, θ)p(θ)dθ∫ ∫

p(Ynob | Yobs, Z, θ)p(Yobs | Z, θ)p(θ)dθdYnobs
,

allowing inference about Q(Y ) to be made without explicitly modeling the sampling

inclusion parameter I (Ericson, 1969; Holt and Smith, 1979; Little, 1993; Rubin, 1987;

Skinner et al., 1989). This approach can be extended to build inferences on a function
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of the population data, say Q(Y ).

4.2.2 Quantile Regression

Quantile regression is a general class of linear models that focuses on estimating

either the median or other quantiles of the response variable conditional on covari-

ates. Consider a real valued random variable Y with cumulative distribution function

FY (y) = P (Y ≤ y). Then for any τ ∈ [0, 1], the τ -th quantile of Y is defined by:

QY (τ) = F−1
Y (τ) = inf{y : FY (y) ≥ τ}.

Thus QY (1/2) refers to median, QY (1/4) refers to first quartile (25th percentile), and

so forth. The quantile function provides a complete characterization of Y with various

values of τ . To solve for the τ -th quantile numerically, we define the piecewise linear

loss function

ρτ (y) = y(τ − I(y < 0))

where I equals one if y < 0 is satisfied, and zero otherwise. The τ -th quantile of Y ,

namely u, is calculated by minimizing the expected loss of Y − u

min
u
E(ρτ (Y − u)) = min

u
(τ − 1)

u∫
−∞

(y − u)dFY (y) + τ

∞∫
u

(y − u)dFY (y).

Thus

û = argmin
u∈R

E(ρτ (Y − u))

Assuming a random sample of Y , yi, i = 1, ...n, the sample analogue of τth-quantile

is attained by solving the following minimization problem:

û = argmin
u∈R

n∑
i=1

(ρτ (yi − u))

Now we extend to regression setting. Let xi, i = 1, ...n be a p×1 vector of regressors.

The τ -th conditional quantile function is then given by QYi|Xi(τ) = XT
i βτ , and one
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can obtain βτ by solving:

β̂τ = argmin
β∈Rp

E(ρτ (Yi −Xiβ)).

The sample analogue:

β̂τ = argmin
β∈Rp

n∑
i=1

ρτ (yi − xiβ) (4.2)

is usually solved by the simplex method (Murty , 1983).

Yu and Moyeed (2001) suggest a likelihood form based on the asymmetric Laplace

distribution:

fτ (u) = τ(1− τ) exp{−ρτ (u)}

where ρτ (u) has the same form of the loss function stated above. Thus the likelihood

function could be written as:

L(y|β) = τn(1− τ)n exp{−
∑
i

ρτ (yi − xTi β)}.

Differentiating L(y|β) yields the objective function given in (4.2).

Finally, to apply quantile regression in unequal probability of selection survey

designs, we introduce a weighted likelihood. That is, given survey weight wi, i =

1, ...n, βτ is solved from the following pseudo-likelihood:

Lw(y|β) = τ Ñ(1− τ)Ñ exp{−
∑
i

wiρτ (yi − xTi β)}

where Ñ =
∑
i

wi.

66



4.2.3 Finite Gaussian Mixture Model

The general form of Finite Gaussian Mixture Model is:

Yi|Ci = c, µc, σ
2
c ∼ N(µc, σ

2
c ) c = 1, ...K

Ci = c|pi1, ...pik ∼MULTI(1; pi1, ...pik)

log(
pic
pi1

) = g(αc, wi, zi, xi)

where Ci is the class membership identifying the mixture component for each ob-

servation. The probability of class membership is assumed to be a function of the

sampling weight wi, and possibly other observed covariates xi as well.

This approach can easily be adapted in regression models, applying sampling

weights wi in a cumulative logit model form:

Yi|Ci = c, µc, σ
2
c ∼ N(µc, σ

2
c ) c = 1, ...K

Ci = c|pi1, ...pik ∼MULTI(1; pi1, ...pik)

ηij = Φ(γj − f(wi, α)), for ηij =

j∑
k=1

pik, j = 1, ...K − 1.

Given a sufficiently large K, a finite Gaussian mixture model can maintain robust-

ness in the presence of regression model misspecification, as well as skewness and

overdispersion in the residual error term. Yet when the data permit, fitting a sim-

pler model with a small value of K could lead to increased efficiency. In addition,

f(wi, α) could take the form of a simple parametric model (e.g., linear in wi), or

semi-parametric(e.g., linear P-splines) for further flexibility.

4.2.4 Dirichlet Process Mixture Model

The Finite Gaussian Mixture Model can be written in a more general form of

f(yi|xi) =

∫
N(yi|φi)Gxi(φi)
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where Gxi is multinomial. An alternative approach defines Gx as an element in an

uncountable collection of probability measures Gx ∼ DP (αG0), where DP denotes

a Dirichlet Process (Ferguson, 1973) centered at base measure G0 with precision α.

This leads to standard DP mixture models (MacEachern, 1994) and avoids explicitly

specifying number of components K in advance.

Expressing the Dirichlet process in ”stick-breaking” form leads to:

G =
∞∑
h=1

phδθh ,
ph∏h−1
l=1 ph

∼ BETA(1, α)

where δθh degenerate at θ, and {θh} are atoms generated from G0. Use of a Polya

urn scheme (Blackwell and MacQueen, 1973) integrates out the infinite dimensional

G and provides an easier form for simulation:

φi|φ(i), α ∼ α

a+ n− 1
G0 +

1

a+ n− 1

∑
j 6=i

δφj .

That is, a new draw of observation i could be from the same component as a existing

observation with probability 1/(α+n− 1), or initiate a new draw from base measure

G0 with probability α/(α + n− 1).

The drawback of standard DP mixture emerges in regression setting where the

posterior predictive distribution of yi|xi at a given draw of φh = (βh, σ
2
h) is generated

from α
α+n

N(yi|xi, β0, σ
2
0)+

K∑
h=1

nh
α+n

N(yi|xi, βh, σ2
h), K and S denoting the configuration

of φ into K distinct values, nh as the number of observations assigned to component

h, and β0 and σ2
0 as further independent draws from G0. The conditional posterior

predictive distribution of y takes a linear form of x:

E(yrepi |xi, β0, ...βK , σ
2
0, ...σ

2
K , K, S) =

K∑
h=1

nk
α + n

xiβh = xiβ̄

where β̄ =
K∑
h=1

nk
α+n

βh. This restricts the model’s ability to capture non-linear patterns

in data.
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4.3 Weighted Dirichlet Process Mixture Model

The weighted Dirichlet Process Mixture Model (Dunson et al. 2007) is a more

flexible extension of standard DP mixture model, that allows the DP prior itself to

be a mixture of DP random basis measures.

Assuming G∗Xj ∼ DP (αG0), j = 1, ...n random basis measures at each distinct

covariate value, the actual DP prior is built as a mixture model of G∗Xj :

Gx =
n∑
j=1

bj(x)G∗xj

bj(x) =
γj exp(−ψ‖x− xj‖)∑n
l γl exp(−ψ‖x− xl‖)

The form of bx grants high weights in Gx to subjects with xj closer to x, encourage

clustering of subjects that are near to each other in the covariate space. Weight γ

is designed to add extra “weight” at specific locations where data tend to make a

larger impact. The smoothing parameter ψ is included to control the degree to which

Gx loads across multiple draws from DP (αG0). Note that the standard DP mixture

model is a special case of the weighted DP mixture model, where bj(x) = 1/n for all

j.

To obtain values of γj and ψ in a data-driven manner, ψ is assigned a truncated

log-normal hyperprior, ψ ∼ log−N(µψ, σ
2
ψ), ψ ∈ (0, 5). The choice for weight γ is

more subtle to avoid either single dominating weight or uniformly distributed weights

equivalent to a standard DP mixture model. Here we consider the hyperprior γj ∼

gamma(αγ, βγ) which favors a few dominant locations.

To complete the Bayesian specification of the linear regression model for N(yi|φi)
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with φi = (βi, σ
2
i ) and βi = (βi1...βip), we assume:

βi ∼ N(β, σ2
i Σβ)

τi = σ−2
i ∼ Gamma(aτ , bτ )

β ∼ N(β0, Vβ0)

Σ−1
β ∼ Wishart((υ0Σ0)−1, υ0)

bτ ∼ Gamma(a0, b0)

To make inference on quantities of interest, e.g., the population regression parameters,

we apply the data augmentation method. First, using the analytical form of all

conditional probabilities outlined in Dunson et al. (2007), we obtain draws from the

posterior distribution of parameters from the WDPM model using Gibbs Sampler. We

then obtain a draw of yrepi , the posterior predictive distribution of yi at xi conditional

on a draw of all other parameters as

wi0N(yrepi ;xTi β0, σ
2
0 + xTi Σβxi) +

K∑
h=1

wihN(yrepi ;xTi βh, σ
2
h)

where wi0(xi) =
∑n

j=1
αbj(xi)

α+
∑
l 6=i I(Csi=j)

, wih(xi) =
bCh (xi)

∑
m 6=i I(Sm=h)

α+
∑
l 6=i I(Csi=Ch)

for S = (S1, ...Sn)

mapping n subjects into K distinct clusters and C(C1, ...CK) denoting the K cluster

themselves. A draw from the posterior distribution of the population regression slope

is then obtained from a multivariate normal with mean (XTW ∗X)−1XTW ∗ỹ with ỹ =
K∑
h=0

wihx
T
i βh, and variance (XTW ∗X)−1{

∑
l

w∗i xi(
K∑
h=0

wihσ
2
h+w

2
i0x

T
i Σβxi)x

T
i }(XTW ∗X)−1,

where w∗i are the sample weights and W ∗ is a diagonal matrix of the w∗i . If the sam-

pling fraction is non-trivial, the predictive regression slope can be obtained by joining

the predicted and observed outcomes in the finite mixture setting. The detailed Gibbs

Sampler steps are in Appendix C. Efficiency is gained when K is small, leading to a

linear prediction unaffected by survey weights. Large values of K can accommodate

non-linearities that lead to bias if the survey weights are ignored.
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4.4 Simulation Study

In this section we evaluate the application of Weighted Dirichlet Process Mixture

Model in complex survey design in two scenarios: ordinary linear regression and

quantile regression settings. For each setting, the target of interest is the population

slope. The competing methods are the unweighted estimator, the fully-weighted

estimator and weight trimming estimator with cutpoint set at three times standard

deviation. Biasness, relative root of mean square error (RMSE) and coverage of 95%

confidence or credible intervals are calculated to assess the performance.

4.4.1 Weighted Dirichlet Mixture Model for Ordinary Linear Regression

For ordinal linear regression setting, a population of N = 20, 000 is generated.

The predictor X is evenly distributed into 10 strata on the interval from 0 to 10, each

with a range of 1. And within each stratum X is uniformly distributed. Then the

response variable Y is created from a spline function of X, with cutpoints between

strata as knots. Three sets of coefficients are considered to represent different models

setting of Y | X, including convex curve, concave curve and straight slope:

Yi|Xi, β, σ
2 ∼ N(β0 +

10∑
h=1

βh(xi − h)+, σ
2)

Xi ∼ UNI(0, 10), i = 1, ..., N = 20, 000

βa = c(0, 0, 0, 0, .5, .5, 1, 1, 2, 2, 4)

βb = c(0, 11,−4,−2,−2,−1,−1,−0.5,−0.5, 0, 0)

βc = c(0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0).

Under βa and βb, linear model assumption is misspecified, and weights are neces-

sary to correct the corresponding biasness. Under βc, the model is correctly specified,

and it would be most efficient to ignore the sample weight.
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Figure 4.1: Scatter plot of generated population vs covariate. Population are marked
grey in background and sample in blue cross. From left to right, σ2 =
101.5, 103.5, 105.5; from top to bottom, setting βa, βb, βc.

Population variance σ2 varies among 101.5, 103.5 and 105.5, creating varying level

of variance influence from revealing a moderate curving pattern, to completely over-

whelming the local difference in the population slope. Also note that slope in setting

βa changes more dramatically where data are most densely sampled, while the reverse

happens in βb, suggesting that a complex model is needed to correctly capture the

two different scenarios.

Altogether 200 samples are repeatedly drawn from the population. Each sample

consists of 200 observations that are sampled with selection probabilities proportional

to πi = (1+ i)∗ i for ith stratum. This guarantees that the maximum weight is about

55 times than the minimum weight. Different settings of populations and samples are

presented in Figure 4.1.

The target quantity of interest is B = (
∑N

i=1 X̃iX̃
′
i)
−1
∑N

i=1 X̃iYi for X̃i = (1Xi)
′,

the least-squares linear approximation of the population slope.
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The hyperprior parameters are pre-specified as follows. For the prior on weight

functions, we let aγ = 0.01, bγ = 2, and ξ = 0.01. For hyper-priors on basis distribu-

tion parameters, we have β0 = 0, Vβ0 = 1000×Ip, υ0 = 1, Σ0 = Ip, aτ = 0.1, a0 = 0.1,

b0 = 0.1, µψ = log(30) and σψ = 0.5. In application, we also restrict the value of ψ

in a range from zero to five.

A Gibbs Sampler as previously described is applied, that is, the new distribution

of S, DP weights, number of atom distributions and parameters within each atom are

drawn sequentially from the full conditional distributions. The unobserved Y are then

generated by re-creating the missing population from mean of all components, and the

estimate target population slope is obtained by fully weighted regression on observed

and predicted Y . All slope and variance parameters for different components in the

Gibbs sample are initialized using estimated global beta coefficients and variance to

achieve faster convergence. The first 5000 iterations are dropped as burn-in, and the

following 10000 iterations are kept to form the distribution of estimated parameters.

Diagnostic plots are generated to assure the algorithm’s convergence. The process

repeats for all 200 samples to provide the empirical distribution for the repeated

measures properties.

We compare the properties of our Weighted Dirichlet Process Mixture model

(WDPM) with major competitors, including the unweighted model (UNWT), fully

weighted model (FWT) and a standard ad-hoc weight trimming method with thresh-

old at three times standard deviation of the weights(WT3). Biases and nominal 95%

coverages are recorded directly, while RMSEs are rescaled according to fully weighted

estimator. Results are provided in Table 4.1, 4.2, and 4.3.

For the first two scenarios, the model is misspecified as linear, and the unweighted

method tends to be biased, leads to an overall larger RMSE and lower coverage rate

comparing to fully weighted model. However, as residual variance increases, the gain

in efficiency gradually overcomes the loss in accuracy, and at large variance level,
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σ2 = 101.5 σ2 = 103.5 σ2 = 105.5

Bias RMSE cover Bias RMSE cover Bias RMSE cover
UNWT 1.184 2.499 0 1.120 0.692 0.87 0.475 0.599 0.93
FWT -0.355 1 0.72 -0.297 1 0.92 0.289 1 0.91
WT3 -0.024 0.531 0.98 -0.039 0.748 0.94 -0.185 0.751 0.94
WDPM -0.297 0.702 0.98 -0.258 0.490 0.99 -0.723 0.431 0.92

Table 4.1: Comparison of various estimators of slope B1 under βa linear spline setting.
Bias and relative RMSE under populations with residual variance 101.5,
103.5 and 105.5 from following model: Unweighted, Fully Weighted, Weight
Trimming and weighted Dirichlet Process Mixture Model.

σ2 = 101.5 σ2 = 103.5 σ2 = 105.5

Bias RMSE cover Bias RMSE cover Bias RMSE cover
UNWT -0.973 1.464 0 -1.047 0.665 0.87 -1.692 0.600 0.93
FWT 0.559 1 0.67 0.629 1 0.90 1.214 1 0.91
WT3 0.085 0.434 0.99 0.070 0.736 0.92 -0.076 0.750 0.94
WDPM 0.203 0.532 1 0.205 0.326 0.98 -0.601 0.418 0.90

Table 4.2: Comparison of various estimators of slope B1 under βb linear spline setting.
Bias and relative RMSE under populations with residual variance 101.5,
103.5 and 105.5 from following model: Unweighted, Fully Weighted, Weight
Trimming and weighted Dirichlet Process Mixture Model.

σ2 = 101.5 σ2 = 103.5 σ2 = 105.5

Bias RMSE cover Bias RMSE cover Bias RMSE cover
UNWT -0.007 0.599 0.93 -0.072 0.599 0.93 -0.717 0.599 0.93
FWT 0.007 1 0.91 0.065 1 0.91 0.650 1 0.91
WT3 -0.002 0.751 0.94 -0.016 0.751 0.94 -0.162 0.751 0.94
WDPM -0.035 0.503 1 -0.128 0.456 1 -1.733 0.393 0.90

Table 4.3: Comparison of various estimators of slope B1 under βc linear spline setting.
Bias and relative RMSE under populations with residual variance 101.5,
103.5 and 105.5 from following model: Unweighted, Fully Weighted, Weight
Trimming and weighted Dirichlet Process Mixture Model.
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unweighted method results have better RMSEs comparing to fully weighted method,

suggesting that the model misspecification could be ignored. The weight trimming

method has an overall better performance comparing to fully weighted method, main-

taining the necessary bias-correction while improving the efficiency and 95% coverage.

However, the weighted Dirichlet Process Mixture estimator demonstrates a dominat-

ing performance across all settings, maintaining more than 50% reduction in RMSE

comparing to fully weighted model. And when the residual variance is large, it leads

to more efficient estimates than unweighted estimates.

Under βc, where the model is correctly specified, all methods yield unbiased re-

sults. The biases for σ2 = 105.5 are due to simulation error, enhancing the instability

in the estimating. Here the WDPM method yields the maximum reduction in RMSE,

reducing RMSE by 50-60% over the fully weighted method, while the unweighted es-

timator consistently reduces RMSE by about 40% over the fully weighted method,

and weight trimming method reduces by 20%. The UNWT, FWT, and WT3 coverage

rates are a little low due to the instability caused by small sample size. Meanwhile, the

WDPM estimator provides conservative coverage across all residual variance settings.

4.4.2 Weighted Dirichlet Mixture Model for Quantile Regression

To assess the performance of the WDPM method in quantile regression, we con-

sider heavy tailed, skewed, and bimodal distributions. As in the linear regression

setting, a population of 20000 is generated, and samples of 200 are drawn from the

population. All covariates X are uniformly distributed on interval of (0, 10). Our in-

ferential target is the linear population slope of X on first quartile (25th percentile),

median and third quartile (75th percentile) of Y : argminβ0τ ,β1τ
N∑
i=1

pτ (yi − β0τ −

β1τxi), for τ = .25, .5, .75. We estimate bias, RMSE, and coverage from 200

independent simulations.

For the long tail setting, we consider a non-central t distribution with five degree

75



of freedom, and selection probabilities πi related to covariate X:

Xi ∼ Uniform(0, 10)

Yi|Xi ∼ T (µ = xi, df = 5)

πi ∝ (1 + dxie)× dxie

i = 1, ..., N = 20, 000.

For skewed distributed setting, we consider a Gamma distribution, and selection

probabilities related to covariate X:

Xi ∼ Uniform(0, 10)

Yi|Xi ∼ Gamma(k = x1.5
i /5 + 1, θ = 2)

πi ∝ (1 + dxie)× dxie

i = 1, ..., N = 20, 000.

For bimodal distribution, we consider the following mixture with weight αi related

to xi:

Xi ∼ Uniform(0, 10)

Yi|Xi, αi ∼ αiN(xi, 16) + (1− αi)N(−5, 16)

αi ∼ Bernoulli(xi/10)

πi ∝ (1 + dxie)× dxie

i = 1, ..., N = 20, 000.

Under first scenario, the linear model is correctly specified, with an over-dispersed

residual. Thus we expect all estimates to be unbiased, with unweighted method
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Figure 4.2: Plot of quantile regression simulation settings. Population as grey in
background and sample in blue cross. From left to right: t distribution,
exponential distribution and bimodal distribution; From top to bottom:
Scatter plot, Histogram of Y at X=0, 5, and 10.

gaining efficiency, and WDPM model correcting the coverage rate. For the other

two scenarios, biases from unweighted estimate are introduced due to non-linearity

in xi combined with sampling probabilities that are a function of xi, and we expect

WDPM estimates obtain similar performance as fully weighted estimates. Detailed

population settings and samples are also demonstrated in Figure 4.2.

The hyperprior parameters are pre-specified as in the linear regression setting:

aγ = 0.01, bγ = 2, and ξ = 0.01. For hyper-priors on basis distribution parameters,

we have β0 = 0, Vβ0 = 1000 × Ip, υ0 = 1, Σ0 = Ip, aτ = 0.1, a0 = 0.1, b0 = 0.1,

µψ = log(30) and σψ = 0.5. .
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First Quartile Median Third Quartile
Bias RMSE cover Bias RMSE cover Bias RMSE cover

UNWT -0.002 0.504 0.98 0.005 0.502 0.96 -0.009 0.469 0.98
FWT -0.022 1 0.91 -0.007 1 0.93 0.001 1 0.91
WT3 -0.012 0.718 0.99 -0.003 0.692 1 -0.007 0.656 1
WDPM 0.016 0.510 0.98 0.004 0.495 0.98 -0.008 0.455 0.98

Table 4.4: Comparison across various estimators of slope B1 under non central T
distribution. Bias and relative RMSE of estimates for 1st quartile, me-
dian and 3rd quartile of the outcome from following model: Unweighted,
Fully Weighted, Weight Trimming and weighted Dirichlet Process Mixture
Model.

First Quartile Median Third Quartile
Bias RMSE cover Bias RMSE cover Bias RMSE cover

UNWT 0.235 1.971 0.53 0.202 1.315 0.71 0.212 1.052 0.81
FWT 0.010 1 0.94 0.006 1 0.97 0.050 1 0.93
WT3 0.092 1.100 0.78 0.082 0.887 0.92 0.092 0.855 0.96
WDPM 0.154 1.299 0.82 0.078 0.665 0.93 0.061 0.555 0.93

Table 4.5: Comparison across various estimators of slope B1 under Gamma dis-
tribution. Bias and relative RMSE of estimates for 1st quartile, me-
dian and 3rd quartile of the outcome from following model: Unweighted,
Fully Weighted, Weight Trimming and weighted Dirichlet Process Mixture
Model.

Similar to the simulation with ordinary linear regression, the Gibbs sampler is

used to generate the posterior predictive distribution of the population. After gen-

erating the population from predictive posterior distribution, quantile regression is

used to obtain the population slope of xi on the median, first and third quartile

of the outcome. Within each simulation there are 15000 iterations, with the first

5000 dropped as burn-in. Diagnostic plots are generated to assure the algorithm’s

convergence. Results are provided in Table 4.4, 4.5 and 4.6.

For the population created from a long-tail T distribution, the unweighted method

has the best performances across all quantile estimates, prevailing in both efficiency

and coverage, since bias-reduction from weighting could be ignored in this scenario.

The fully weighted method has somewhat reduced coverage due to the instability

caused by the small sample size. And weight trimming method shows major improve-
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First Quartile Median Third Quartile
Bias RMSE cover Bias RMSE cover Bias RMSE cover

UNWT 0.638 1.545 0.41 0.248 0.875 0.87 0.009 0.538 0.96
FWT -0.038 1 0.94 0.030 1 0.96 0.051 1 0.92
WT3 0.203 0.943 0.73 0.128 0.764 0.97 0.065 0.724 0.99
WDPM -0.098 0.652 0.97 -0.131 0.626 0.97 -0.148 0.540 0.94

Table 4.6: Comparison across various estimators of slope B1 under Bimodal dis-
tribution. Bias and relative RMSE of estimates for 1st quartile, me-
dian and 3rd quartile of the outcome from following model: Unweighted,
Fully Weighted, Weight Trimming and weighted Dirichlet Process Mixture
Model.

ment RMSE and obtains conservative coverage rate. Meanwhile, the WDPM method

maintains stable results across median, first and third quartiles, provides about 45%

reductions in RMSEs comparing to fully weighted method or 20% comparin to weight

trimming method, with conservative coverage rates.

In second scenario, where skewed population distribution and model misspeci-

fication both occur, weighting becomes necessary, and the fully weighted method

has better performances with respect to bias at lower quartiles, as anticipated. The

unweighted method fails to correct the biasness, and has poor coverage and larger

RMSE for all except 3rd quartile, where the impact of biases is offset by the reduction

in variance. The weight trimming method has improved performance in median and

third quartile comparing to fully weighted method, but suffers minor drop in coverage

rate in first quartile. The WDPM model has smaller RMSE than any other model

for the 50th and 75th percentile, with approximately correct coverage. For the 25th

percentile, the WDPM model suffers from some reduction in coverages plus increase

in biases and RMSEs due to the model’s inability to completely capture the behavior

of the low percentile of the outcome for small values of x due to extremely small

sample size, see Figure 4.2.

In the bimodal setting, bias reduction is required for estimation in first quartile

and median, but not in third quartile, since it closely approximates a pure linear
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model. The fully weighted method successfully reduces biases and performs better

with respect to RMSE than unweighted one in first quartile and median, but loses in

efficiency in third quartile. Weight trimming method acts as a upgraded version of

fully weighted method, showing better result in all but the coverage of first quartile.

The WDPM model provides a large improvement comparing to fully weighted model

in first quartile and median, reducing RMSE by about 30% to 40% RMSE. It also

maintains the improvement even comparing to weight trimming method. When the

unweighted model has better RMSE in third quartile, WDPM model closely follows

its performance. Both fully weighted method and WDPM model have satisfactory

coverage rates.

4.4.3 Weighted Dirichlet Mixture Model for Quantile Regression with

Binary Covariate

In this subsection, we conduct a simulation study expanding the application of

the weighted Dirichlet Mixture Model to quantile regression with a binary covari-

ate. To be more specific, we focus on the bimodal population setting, assessing

performance differences between unweighted quantile regression, weighted quantile

regression, weight trimming estimate and WDPM model, to help in understanding

the result from application on Dioxin data in the next section.
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First Quartile Median Third Quartile
Bias RMSE cover Bias RMSE cover Bias RMSE cover

UNWT 0.046 0.978 0.98 -0.012 0.968 0.98 0.004 1.023 0.94
FWT 0.049 1 0.98 0.012 1 0.98 0.007 1 0.96
WT3 0.044 0.995 1 0.001 0.999 1 0.013 0.987 0.98
WDPM -0.052 0.608 0.98 0.038 0.117 1 0.073 0.703 0.96

Table 4.7: Comparison across various estimators of slope B1 under Bimodal distribu-
tion with Binary covariates. Bias and RMSE of estimates for 1st quartile,
median and 3rd quartile of the outcome from following model: Unweighted,
Fully Weighted, Weight trimming by 3 SD and weighted Dirichlet Process
Mixture Model.

The bimodal distributed population is created as follows:

Xi ∼ Bernoulli(0.5)

αi ∼ Bernoulli(0.5)

Yi|Xi, αi ∼ N(0.5 ∗Xi + 5 ∗ αi, sd = 1)

πi ∝ 15 ∗Xi +N(0, 1) + 7

i = 1, ..., N = 20, 000.

Here π usually ranges from 2.5 to 26, resulting in a ratio of approximately 9

between the maximum and minimum selection probabilities. Fifty samples with size

of 200 are drawn from the population with various probabilities of selection defined

above. Simulations on each sample consist of 10000 iterations, with first 5000 dropped

as burn-in. Bias, RMSE and coverage are assessed with 50 independent simulations,

and results are displayed in Table 4.7.

The population setting introduces no potential biasness through varies probabil-

ities of selection. And the result suggests that all models provide consistent results

with good coverage in first quartile and third quartile, while WDPM reduces the

overall RMSEs by 30%. However, when estimating population slope for the median,

the true RMSEs from unweighted, weighted and weight trimming models are greatly
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Figure 4.3: Figure of biases of estimated population slope for median from all three
methods. Biasness of point estimates from each simulation are plotted
sequentially. Blue circles mark the unweighted quantile regression, black
crosses mark the fully weighted quantile regression, and red circles mark
WDPM estimates.

increased, indicating unstable estimation.

To explore these results further, Figure 4.3 plots bias for all three approaches

for fifty simulations. This suggests that under certain situation, both unweighted

method and weighted method often provide similar estimates far away from true

value. WDPM is more robust for those situations, providing stable estimates.

4.5 Application on Dioxin data from NHANES

We apply the weighted Dirichlet Process prior to an analysis relating age and gen-

der to the blood level of dioxin in a representative sample of US adult. We use data

from the 2003-2004 National Health and Nutrition Examination Survey (NHANES)

dataset. The 2013-2014 NHANES is a multi-stage, unequality probability-of-selection
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survey, consisting of 25 strata and 2 masked PSU per stratum. Survey weights adjust

for oversample of race/ethnic minority older subjects, as well as non-response adjust-

ments at both the first stage of recruitment and the second stage of biomarker collec-

tion. Both blood bio-markers and demographic information are collected and included

in the model. The bio-marker we are interested in is 2,3,7,8-tetracholorodibenzo-p-

dixoin (TCDD), usually a compound resulting from incomplete combustion in in-

cineration, paper and plastics manufacturing and smoking. More than half TCDD

readings are below limit of detection, and are imputed five times through multiple

imputation described in Chen et al. (2010b). A jackknife method is used to compute

variances to fully account for sample design features, and Rubin’s formula (Rubin,

1987) is used to combine inferences from each of the multiply-imputed datasets.

4.5.1 Linear Regression Setting

We fit four linear regression models to assess the impact of age, gender, and

their interactions on log transformed blood TCDD. Hyper-priors are set the same

as in the simulation study, and unweighted, fully weighted and weighted Dirichlet

Process Mixture estimates are compared in bias and RMSE, where the fully weighted

version is treated as the ”true” value in corresponding calculation. Note that there

exists correlations between the weighted estimator and other estimators, with the

true estimated square bias of regression coefficient β̂ given by max((β̂ − β̂w)2)− V̂01,

where V̂01 = ˆV ar(β̂) + ˆV ar(β̂w) − 2 ˆCov(β̂, β̂w). And to fully account for all design

feature, all variance/covariance estimates are calculated via jackknife as ˆV ar(β̂w) =∑
h

kh−1
kh

kh∑
i=1

(β̂(hi)−β̂)2, where β̂(hi) denotes the β estimator by excluding the ith MVU in

hth stratum, and the case weights utilized in the fully-weighted and WDPM analysis
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Model Est(10−2) Bias(10−3) RMSE(10−3) 95%CI(10−2)
UNWT 3.309 -1.262 3.265 (2.827,3.790)
FWT 3.435 0 3.888 (2.669,4.201)
WT3 3.435 -0.002 5.495 (2.669,4.2)
WDPM 3.351 -0.835 0.658 (3.222,3.481)

Table 4.8: Regression of log TCDD on Age. Bias, RMSE and 95% CI for linear slope
estimated for age in unweighted, fully weighted, weight trimming by 3 SD
and weighted Dirichlet Process Mixture models.

Model Est(10−1) Bias(10−1) RMSE(10−1) 95%CI(10−1)
UNWT 1.539 -0.822 1.248 (0.028,3.051)
FWT 2.361 0 0.637 (1.107,3.616)
WT3 2.367 0.006 0.900 (1.113,3.621)
WDPM 0.674 1.248 1.565 (0.578,0.771)

Table 4.9: Regression of log TCDD on Gender. Bias, RMSE and 95% CI for linear
slope estimated for gender in unweighted, fully weighted, weight trimming
by 3 SD and weighted Dirichlet Process Mixture models.

are given by:

w∗j =


wj if j /∈ h, j ∈ i

kh−1
kh

if j ∈ h, j /∈ i

0 if j ∈ h, j ∈ i


ˆV ar(β̂) and ˆCov(β̂w, β̂) are calculated accordingly, and estimates from five im-

puted replicate datasets are combined with Rubin’s formula. The result in the WDPM

estimate was based on 10000 iterations after discarding 2000 draws as burn-in. The

resulting estimates, biases, RMSEs and 95% confidence intervals are summarized in

the Tables 4.9-4.11, where the fully weighted estimator is treated as unbiased. Dioxin

levels are positively associated with age plus being male, with the age association

being stronger among males, although the interaction is significant only for the un-

weighted model.

In general, the survey weights have less impact on estimating the effect of age,

but play a crucial role in estimating the effect of gender, thus usually unweighted
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Age Est(10−2) Bias(10−3) RMSE(10−3) 95%CI(10−2)
UNWT 3.356 -0.907 3.296 (2.860,3.851)
FWT 3.446 0 3.895 (2.679,4.214)
WT3 3.446 -0.001 5.505 (2.679,4.213)
WDPM 3.295 -1.520 0.993 (3.099,3.490)
Gender Est(10−1) Bias(10−1) RMSE(10−1) 95%CI(10−1)
UNWT 2.556 0.016 0.902 (1.084,4.028)
FWT 2.540 0 0.616 (1.326,3.754)
WT3 2.546 0.006 0.87 (1.333,3.758)
WDPM 1.064 -1.476 1.373 (0.066,1.469)

Table 4.10: Regression of log TCDD on Age and Gender. Bias, RMSE and 95% CI for
linear slope estimated for age and gender in unweighted, fully weighted,
weight trimming by 3 SD and weighted Dirichlet Process Mixture models.

Age Est(10−2) Bias(10−4) RMSE(10−3) 95%CI(10−2)
UNWT 2.842 -5.063 3.758 (2.261,3.423)
WT 2.893 0 2.661 (2.368,3.417)
WT3 2.893 -0.001 3.764 (2.368,3.417)
WDPM 2.847 -4.577 2.444 (2.365,3.328)
Gender Est(10−1) Bias(10−2) RMSE(10−1) 95%CI(10−1)
UNWT -1.946 2.882 1.591 (-5.081,1.189)
WT -2.234 0 3.259 (-8.655,4.186)
WT3 -2.229 0.006 4.606 (-8.645,4.188)
WDPM -1.482 7.526 2.758 (-6.915,3.952)
Interaction Est(10−2) Bias(10−3) RMSE(10−3) 95%CI(10−2)
UNWT 0.963 -0.880 3.285 (0.316,1.610)
WT 1.051 0 7.335 (-0.394,2.496)
WT3 1.051 0 10.367 (-0.393,2.495)
WDPM 0.874 -1.769 7.093 (-0.523,2.271)

Table 4.11: Regression of log TCDD on Age, Gender and Interaction. Bias, RMSE
and 95% CI for linear slope estimated for age, gender and interaction
in unweighted, fully weighted, weight trimming by 3 SD and weighted
Dirichlet Process Mixture models.
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estimates have smaller RMSEs in estimated coefficient of age, and fully weighted and

weight trimming estimates have smaller RMSEs in estimated coefficient of gender.

Consequently the WDPM model has much better performance than the weighted and

weight trimming, and even than the unweighted model, when estimating the effect

of age on dioxin blood levels. The effect of gender appears to be biased toward the

null, lead to larger RMSE increase than other models except in the joint age×gender

model.

4.5.2 Quantile Regression Setting

In this section we evaluate the performance of WDPM estimator in the quantile

regression setting based on the same dioxin dataset from the NHANES study. We

again focus on the impact of age on the first quartile, median and third quartile of

log blood TCDD. While estimating bias and RMSE, results from weighted quantile

regression are considered as unbiased, and jackknife and Rubin’s formula are applied

for complex survey scheme and multiple imputation. The result for the WDPM

estimator is based on 10000 iterations after discarding 2000 draws as burn-in. The

resulting biasness and RMSE are summarized in Tables 4.12-4.15. The scatter plot of

the sample and linear slope for first quartile, median and third quartile of logTCDD

by age are presented in Figure 4.4. The impact of age (older ages have higher TCDD

level) and gender (males having higher TCDD levels) is greater at median levels than

at the first and third quartiles, wheres interactions (stronger age association among

males than females) are greater in the first and third quartile than in the median.
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Figure 4.4: Quantile regression of log TCDD on age. Sample presented as background
dots, color represents weighting in log form, and lines from top to bottom
are linear slope for first quartile, median and third quartile, black for
WDPM, blue for fully-weighted .

First Quartile
Est(10−2) Bias(10−3) RMSE(10−3) 95% CI(10−2)

UNWT 2.780 7.123 3.507 (2.089,3.471)
FWT 2.708 0 6.762 (1.376,4.041)
WT3 2.709 0.080 9.557 (1.378,4.041)
WDPM 2.772 6.321 0.866 (2.601,2.942)

Median
Est(10−2) Bias(10−3) RMSE(10−3) 95% CI(10−2)

UNWT 3.983 -2.758 5.489 (3.247,4.719)
FWT 4.259 0 4.702 (3.332,5.185)
WT3 4.258 -0.012 6.648 (3.331,5.184)
WDPM 4.157 -1.018 0.495 (4.059,4.255)

Third Quartile
Est(10−2) Bias(10−3) RMSE(10−3) 95% CI(10−2)

UNWT 3.400 -1.276 3.428 (2.872,3.927)
FWT 3.527 0 3.967 (2.746,4.309)
WT3 3.526 -0.011 5.586 (2.747,4.305)
WDPM 3.546 0.188 0.537 (3.440,3.652)

Table 4.12: Quantile regression of log TCDD on age. Bias, RMSE and 95%CI for
linear slope estimated for age in unweighted, fully weighted, weight trim-
ming by 3 SD and weighted Dirichlet Process Mixture models.
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First Quartile
Est(10−1) Bias(10−1) RMSE(10−1) 95% CI(10−1)

UNWT 0.550 -0.599 2.384 (-3.131,4.231)
FWT 1.149 0 1.497 (-1.801,4.099)
WT3 1.154 0.005 2.121 (-1.803,4.11)
WDPM 0.147 -1.002 0.061 (0.026,0.267)

Median
Est(10−1) Bias(10−1) RMSE(10−1) 95% CI(10−1)

UNWT 2.949 -0.470 2.372 (-1.094,6.991)
FWT 3.418 0 2.029 (-0.578,7.414)
WT3 3.424 0.006 2.870 (-0.578,7.426)
WDPM 0.884 -2.534 1.537 (0.728,1.040)

Third Quartile
Est(10−1) Bias(10−1) RMSE(10−1) 95% CI(10−1)

UNWT 1.792 -0.865 1.082 (0.216,3.367)
FWT 2.657 0 0.798 (1.085,4.229)
WT3 2.657 0 1.092 (1.132,4.182)
WDPM 1.100 -1.557 1.339 (0.992,1.208)

Table 4.13: Quantile regression of log TCDD on gender. Bias, RMSE and 95% CI for
linear slope estimated for gender in: unweighted, fully weighted, weight
trimming by 3 SD and weighted Dirichlet Process Mixture model.
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First Quartile
Age Est(10−2) Bias(10−3) RMSE(10−3) 95% CI(10−2)
UNWT 3.142 1.131 6.396 (1.882,4.402)
FWT 3.029 0 12.424 (0.582,5.477)
WT3 3.029 0.004 17.627 (0.574,5.485)
WDPM 2.713 -3.161 1.293 (2.458,2.968)
Gender Est(10−1) Bias(10−1) RMSE(10−1) 95% CI(10−1)
UNWT 3.574 0.662 2.291 (-0.099,7.248)
FWT 2.913 0 1.116 (0.713,5.112)
WT3 2.918 0.005 1.563 (0.735,5.1)
WDPM 1.089 -1.824 1.459 (0.706,1.471)

Median
Age Est(10−2) Bias(10−3) RMSE(10−3) 95% CI(10−2)
UNWT 3.964 -1.657 3.140 (3.450,4.478)
FWT 4.130 0 3.678 (3.405,4.855)
WT3 4.129 -0.01 5.182 (3.407,4.851)
WDPM 4.083 -0.469 0.862 (3.913,4.253)
Gender Est(10−1) Bias(10−1) RMSE(10−1) 95% CI(10−1)
UNWT 3.109 -0.280 0.807 (1.518,4.699)
FWT 3.388 0 2.225 (-0.995,7.772)
WT3 3.412 0.024 3.157 (-0.99,7.815)
WDPM 1.135 -2.253 0.525 (0.615,1.655)

Third Quartile
Age Est(10−2) Bias(10−3) RMSE(10−3) 95% CI(10−2)
UNWT 3.438 -1.291 5.483 (2.641,4.235)
FWT 3.567 0 4.588 (2.663,4.471)
WT3 3.566 -0.008 6.47 (2.664,4.468)
WDPM 3.465 -1.015 0.898 (3.289,3.642)
Gender Est(10−1) Bias(10−1) RMSE(10−1) 95% CI(10−1)
UNWT 1.652 -0.279 0.649 (0.539,2.764)
FWT 1.931 0 0.648 (0.655,3.207)
WT3 1.926 -0.005 0.906 (0.659,3.192)
WDPM 0.802 -1.129 0.936 (0.500,1.105)

Table 4.14: Quantile regression of log TCDD on age and gender. Bias, RMSE and
95% CI for linear slope estimated for age and gender in unweighted,
fully weighted, weight trimming by 3 SD and weighted Dirichlet Process
Mixture models.
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First Quartile
Age Est(10−2) Bias(10−3) RMSE(10−3) 95% CI(10−2)
UNWT 1.938 0.328 7.505 (0.459,3.417)
FWT 1.905 0 11.843 (-0.428,4.238)
WT3 1.905 -0.005 16.689 (-0.421,4.23)
WDPM 2.083 1.774 6.574 (0.787,3.378)
Gender Est(10−1) Bias(10−1) RMSE(10−1) 95% CI(10−1)
UNWT -6.287 1.292 5.91 (-17.93,5.356)
FWT -7.579 0 8.869 (-25.051,9.893)
WT3 -7.577 0.003 12.51 (-25.008,9.855)
WDPM -5.893 1.686 4.814 (-15.377,3.59)
Interaction Est(10−2) Bias(10−3) RMSE(10−2) 95% CI(10−2)
UNWT 2.394 -1.609 1.003 (0.418,4.369)
FWT 2.555 0 1.923 (-1.233,6.343)
WT3 2.556 0.012 2.707 (-1.217,6.329)
WDPM 1.951 -6.035 1.108 (-0.231,4.134)

Median
Age Est(10−2) Bias(10−3) RMSE(10−3) 95% CI(10−2)
UNWT 3.499 -0.67 2.05 (3.095,3.902)
FWT 3.566 0 3.157 (2.944,4.187)
WT3 3.564 -0.011 4.458 (2.942,4.187)
WDPM 3.397 -1.686 3.067 (2.793,4.001)
Gender Est(10−1) Bias(10−1) RMSE(10−1) 95% CI(10−1)
UNWT -0.227 0.539 1.912 (-3.993,3.539)
FWT -0.765 0 6.058 (-12.7,11.169)
WT3 -0.765 0.001 8.555 (-12.685,11.156)
WDPM -1.486 -0.721 1.948 (-5.325,2.352)
Interaction Est(10−2) Bias(10−3) RMSE(10−3) 95% CI(10−2)
UNWT 0.723 -1.703 2.797 (0.171,1.274)
FWT 0.893 0 9.05 (-0.89,2.676)
WT3 0.894 0.011 12.763 (-0.885,2.673)
WDPM 0.937 0.445 4.682 (0.015,1.86)

Third Quartile
Age Est(10−2) Bias(10−3) RMSE(10−3) 95% CI(10−2)
UNWT 3.313 -2.318 5.311 (2.514,4.112)
FWT 3.545 0 5.468 (2.467,4.622)
WT3 3.543 -0.015 7.718 (2.467,4.62)
WDPM 3.461 -0.840 2.822 (2.905,4.017)
Gender Est(10−1) Bias(10−1) RMSE(10−1) 95% CI(10−1)
UNWT 0.297 -1.383 1.818 (-3.284,3.877)
FWT 1.679 0 2.449 (-3.146,6.505)
WT3 1.666 -0.013 3.453 (-3.157,6.489)
WDPM 1.292 -0.387 6.363 (-11.244,13.828)

Continued on next page
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Table 4.15 – continued from previous page
Interaction Est(10−1) Bias(10−1) RMSE(10−1) 95% CI(10−1)
UNWT 2.474 1.943 2.961 (-0.336,0.831)
FWT 0.531 0 3.989 (-0.733,0.839)
WT3 0.546 0.015 5.595 (-0.727,0.836)
WDPM 3.034 2.503 8.392 (-1.35,1.957)

Table 4.15: Quantile regression of log TCDD on age, gender and interaction. Bias,

RMSE and 95% CI for linear slope estimated for age, gender and interaction in

unweighted, fully weighted, weight trimming by 3 SD and weighted Dirichlet Process

Mixture model.

The patterns for quantile regression applied on NHANES study are not consistent

across different quartiles. In general, when estimating the population slope of age in

the first quartile of outcomes, the unweighted method is clearly more efficient than

the fully-weighted one, reducing the RMSE by almost 50%. The performance of the

unweighted and fully weighted estimators of the median and third quartile of outcomes

are much closer between the two methods, usually within less than 15% differences in

RMSEs, and with no one method besting the other across all locations and settings.

When dealing with gender, the fully weighted estimate is usually favored in the main-

effect only model with respect to RMSE. However, in the two-way interaction model,

weights have less impact, and efficiency again becomes the dominating factor in the

overall performance, leading the unweighted models to be favored. Since very few

weights actually fall out the range of mean plus or minus three standard deviation,

the weight trimming method makes little modification, closely resembles the fully

weighted method results and obtains larger RMSEs due to the way they are calculated.

The WDPM method always provides estimates with smaller variance. For age, the

differences between the WDPM estimates and the fully-weighted estimates are small,

this reduction in variability leads to large reduction in RMSE across all quartiles.
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For gender, the WDPM results are quite different from the other methods’ results,

which are more similar to each other. This is consistent with our simulation finding

that both the unweighted and full weighted estimator of linear trends can be highly

biased in this setting, while the WDPM approach yields nearly unbiased estimates.

Hence we do not fully trust the bias estimates for gender, although we cannot know

the truth in this setting.

4.6 Discussion

Generally, fully weighted estimators are applied when sampling weights are in-

volved and bias correction is a primary concern. However, when the sample scheme

and weights are unrelated to quantity of interest, these estimators can introduce extra

variance and lead to substantial losses in efficiency. Other design based methods like

ad-hoc weight trimming usually target a tradeoff between accuracy and efficiency.

Meanwhile, by proposing a robust model on for the population distribution, finite

population Bayesian inference has the potential to develop estimators that have re-

duced RMSE relative to both unweighted and weighted estimates. Here we adapt a

weighted Dirichlet Process Mixture model to capture underlying data structures, and

prevent issues like “over-smoothing” that simpler models can suffer from. For certain

simulations considered, WDPM estimates provided a 70% reduction in RMSE com-

paring to fully weighted estimates, with approximate nominal 95% interval coverage

rates. Similar reductions are also observed in application, particularly with respect

to gender-adjusted effects of age on dioxin in NHANES study.

In addition, the weighted Dirichlet Process Mixture model can be used to model

more than just means and/or slopes within subgroups of population. By including

parameters for differing variances among components, our model provides a flexible

method capable of precisely replicating non-normal population distributions, enabling

inference on population quantiles or coefficients from quantile regression. Our simu-
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lations also show promising results in quantile regression settings, suggesting overall

reduction in RMSEs with sufficient nominal coverage rates.

Our approach could be extended in a number of ways. We have focused on contin-

uous outcomes, but extensions to binary or multinomial models are straightforward

by modeling latent variables under a weighted DPM frame. Also, highly skewed dis-

tributions could be modeled using alternative skewed shape measures such as gamma

distribution to further reduce number of components required and simply the model,

although with heavily skewed populations and/or very small number of sampled ob-

servations in certain areas of the prediction space, the WDPM model may provide

“over-smoothed” fits leading to poor coverage. It is crucial to test and understand

those boundaries before we consider WDPM as a routine method in handling complex

survey data.

A final aspect of the method is that the improvement in overall RMSE from com-

plex Bayesian model is based on intensive computation. Based on current available

computation facilities, results for small samples with hundreds of observations could

be obtained in a reasonable amount of time, but when sample size escalates beyond

several thousand cases, or the target quantity of interest has complicated form, the

computing time quickly raises to an intolerable scale. (This is also a factor in our

limiting simulations to 200 per scenario, even with access to a large number of com-

puting cores.) We expect that with the fast development of hardware as well as

parallel processing, we could soon put WDPM into application, analyzing data with

large sample size.
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CHAPTER V

Conclusion

Comparing to traditional design-based approaches, finite population Bayesian in-

ference provides an alternative perspective in analyzing data from complex survey

design. By assuming that the data follows certain distribution models conditioned

on some unknown parameters, we can make inference based on posterior predictive

distributions conditioned on samples and weights. By using models flexible enough

to capture various patterns from data, we expect the estimates to achieve a balance

between bias-correction and efficiency in a data-driven manner.

In this manuscript, we study three types of candidate Bayesian models for com-

plex sample survey analysis: linear spline models combined with variable selection

and Fractional Bayes Factor that mimic “weight-trimming”; hierarchical “weight-

smoothing” models using Laplace prior that treat interactions between weight strata

and quantity of interest as random effects and form shrinkage type estimators; and

Weighted Dirichlet Process Mixture Model using advanced mixture model known to

approximate skewed or multimodal distributions with small sample sizes. Both sim-

ulations and applications are conducted to assess their performances against compet-

ing methods in estimating population slope under various population settings. Bias,

RMSE and 95% confidence interval coverage rate are used to make the comparison.

In general, we observe considerable improvement in overall RMSE comparing to
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our proposed methods comparing with traditional competing methods like weight

trimming, etc. The Bayesian methods approximate the unweighted method when

data suggest no evidence of difference among strata, but correct the bias when it is

necessary, successfully provide estimates that are self-tuned in a data-driven man-

ner as we expected. More interestingly, finite population Bayesian inference often

provides estimates with better RMSEs that outperform both unweighted and fully

weighted estimates, given that clear non-linear trends between outcome and covariate

are observed. The detailed mechanism that causes this feature is to be investigated

in future work.

We also learn the limitations of Bayesian Inference from the simulation studies,

mainly appearing as overfitting and unstable modeling. Due to the ”model-based”

nature of these methods, fitting the Bayesian model correctly and precisely on the

given data is crucial to obtaining excellent estimates. With sophisticated models like

we proposed, it could often correct the issue of over-smoothing (under-fitting and

closely resembling unweighted estimates), which is common among simpler models.

However, it is potentially risky that the Bayesian models could by mistake identify

noise in the sample as pattern, overfit to the sample and leads to biased result and low

coverage rate. This happens in the simulation study when strong non-linear curves are

observed in the sampled dataset. Also, unstable estimates could appear when sampled

observations are severely unevenly distributed. With few or no observations within

certain area, the Bayesian model cannot correctly estimate underlying parameters

responsible for that area, and create heavily biased estimate when target quantity of

interest is heavily rely on those poorly estimated parameters. In simulation studies,

population settings with very low probabilities of selection in certain range of the

covariate often result in increased biases in estimates. Further studies for a deeper

understanding on these limits are also an important next step.

Another obstacle that limits the application of Bayesian inference methods is the
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computational burden. The model flexibility in adapting various data patterns is

somewhat equivalent to model complexity, and their solutions rely on MCMC-type

method like Gibbs Sampler and Metropolis Steps which are computation intensive

algorithms. According to our simulations, with sample size under 5000 for ”weight-

pooling” or ”weight-smoothing” model, or under 500 for WDPM model, the algo-

rithms take from merely minutes to acceptably few hours. However, as sample size

increases, the computing time quickly becomes unbearable, limits their application on

large datasets or target quantities of interest as more complicated functions of pop-

ulation. So currently, we focus on models’ applications in obtaining highly efficient

estimates from small samples, and hope that in the near further, we can extend their

use to larger samples with the rapid development of computer hardware and parallel

processing methods.
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APPENDIX A

Metropolis Algorithm For Advanced Weight

Pooling Method

A.1 Metropolis Algorithm for Advanced Weight Pooling Method

To identify different pooling pattern, we sort the data in ascending order by

weights, and create H potential strata of equal size by identifying H − 1 cut points,

namely τ1, ...τH−1. A vector V of H − 1 dichotomous elements v1, v2, ...vH−1, is also

created to mark each of the cut points. That is, if the adjacent strata are pooled

together, thus the cut point in between is ignored, the corresponding element in the

vector should be coded as 0, otherwise 1. So a complete pooling model would result

in V consisting of all 0s, and no pooling model as a V of all 1s. Using binary coding,

the unique ID of each pooling pattern is obtained by letting l =
∑H−1

i=1 (2i−1vi). The

Metropolis algorithm starts with V contains all 0s.

Step 1:

Propose a new l′ by first randomly selecting one element in V , namely the jth element,

and let V ′ = (v1, v2, ..., vj−1, 1−vj, vj+1...). Then l′ is calculated as l′ =
∑H−1

i=1 (2i−1v′i).
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Notice that the process is equivalent for all elements, thus p(L = l) = 1/2H−1 for all l,

meaning that all models have equal probability of been proposed. The corresponding

design matrix Zl′ is also calculated so that the ith row Zl′i = xi(1, (h − τ1)+, ...(h −

τH−1)+)′

Step 2:

To determine the acceptance of the proposed model, the ratio of p(L = l′|y,X)/p(L =

l|y,X) = p(y|L = l′, X)/p(y|L = l, X), is calculated where p(y|L = l, X) ∝ |Ψl|1/2[∆l−

θTl Ψlθl]
−(n+a)/2,

for

ψl = ((ZT
l Zl) + Σ0)−1,

θl = (ZT
l Zl)b+ Σ0β0,

∆l = bT (ZT
l Zl)b+ βT0 Σ−1

0 β0 +Q2
l + as2,

b = (ZT
l Zl)

−1ZT
l y,

Q2
l = yT (IpH∗ −Hl)y,

Hl = Zl(Z
T
l Zl)

−1ZT
l .

p(y|L = l′, X) is calculated similarly by replacing Zl with Zl′ .

Step 3:

Accept the new pooling model l′ with probability min(1, p(L = l′|y,X)/p(L =

l|y,X)), otherwise, stay at L = l.

Step 4:

Under current model selection l′, full conditional distribution of parameter βs and σ2

are available for direct draws:

Draw σ2 from σ2|L = l, y,X ∼ Inv2
χ(n+ a,∆ + l − θTl ψlθl)

Draw βl from βl|σ2, y,X ∼ N(ΓlAl, σ
2Γl),Al = ZT

l y + Σ−1
0 β0,Γl = [Σ−1

0 + (ZT
l Zl)]

−1

Step 5:
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To assess the posterior predictive distribution of population slope, P (B|Y ), the point

estimate can be obtained by first creating the predicted ys on sampled parameters as

Zlβl, then estimating B from fully weighted regression model on predicted Y s.

Repeated step 1 to step 5 until the estimated B is stable. The pooled estimated

B is a sample of its posterior predictive distribution, on which the inference on pop-

ulation slope B is based.
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APPENDIX B

Gibbs Sampler For Weight Smoothing Model

B.1 Full Conditional Distribution for Linear Model

To derive the fully conditional distribution of the linear model for Gibbs sampler,

first we start with the hierarchical model:

Yh ∼MVN(Xhβh, σ
2Inh)

βh = (βh1, ..., βhp)
T , h = 1, ...H

βh ∼MVN(β∗h, σ
2Dτh)

β∗h ∼MVN(0p, σ
2
0Ip)

Dτh = diag(τ 2
h1, ..., τ

2
hp)

σ2 ∼ 1/σ2

τ 2
hi ∼

λ2

2
e−λ

2τ2hi/2

λ2 ∼ Gamma(γ, δ)
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Ignoring all constants, we reduce the formula to the kernel of likelihood of y, and all

other conditional probabilities:

p(Y |β, σ2) ∝ (σ2)−n/2
H∏
h=1

exp{−1

2
(Yh −Xhβh)

T (σ2Inh)−1(Yh −Xhβh)}

p(β|β∗, σ2, Dτ ) ∝ (σ2)−Hp/2
H∏
h=1

|Dτh|−1/2 exp{−1

2
(βh − β∗h)T (σ2Dτh)

−1(βh − β∗h)}

f(β∗) ∝
H∏
h=1

exp{−1

2
β∗h

T (σ2
0Ip)

−1β∗h}

f(σ2) ∝ 1/σ2

f(τ 2|λ2) ∝ (λ2)Hp
H∏
h=1

p∏
i=1

exp(−λ2τ 2
hi/2)

f(λ2) ∝ (λ2)γ−1 exp(−δλ2)

Since βhs from different strata are independent, we write separately the kernel of

posterior distribution of βh, which is proportional to the product of likelihood of y

and βh prior.

p(βh|rest) ∝ exp{− 1

2σ2
[(Yh −Xhβh)

T (Yh −Xhβh) + (βh − β∗h)TD−1
τh (βh − β∗h)]}

∝ exp{− 1

2σ2
[βThX

T
hXhβh − 2Y T

h Xhβh + βThD
−1
τh βh − 2β∗h

TD−1
τh βh]}

= exp{− 1

2σ2
[βTh (XT

hXh +D−1
τh )βh − 2(Y T

h Xh + β∗h
TD−1

τh )βh]}

∝ exp{− 1

2σ2
[(βh − (XT

hXh +D−1
τh )−1(Y T

h Xh +D−1
τh β

∗
h))

T (XT
hXh +Dτh)

−1

(βh − (XT
hXh +D−1

τh )−1(Y T
h Xh +D−1

τh β
∗
h))]}

Which suggests that βh|rest ∼ MVN(A−1(XT
h Yh + D−1

τh β
∗
h), σ

2A−1), A = XT
hXh +

D−1
τh .

Similarly, we derive the kernel of fully conditional distribution of other parameters as
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follows:

p(β∗h|rest) ∝ exp{−1

2
[(β∗h − βh)T (σ2Dτh)

−1(β∗h − βh) + β∗h
T (σ2

0I)−1β∗h]}

∝ exp{−1

2
[β∗h

T ((σ2Dτh)
−1 + (σ2

0I)−1)β∗h − 2βTh (σ2Dτh)
−1β∗h]}

∝ exp{−1

2
(β∗h − ((σ2Dτh)

−1 + (σ2
0I)−1)−1(σ2Dτh)

−1βh)
T ((σ2Dτh)

−1 + (σ2
0I)−1)

(β∗h − ((σ2Dτh)
−1 + (σ2

0I)−1)−1(σ2Dτh)
−1βh)}

β∗h|rest ∼MVN((σ2Dτh)
−1((σ2Dτh)

−1 + (σ2
0I)−1)−1βh, ((σ

2Dτh)
−1 + (σ2

0I)−1)−1)

p(σ2|rest) ∝(σ2)−n/2 exp{−1

2
(σ2)−1

H∑
h=1

(Yh −Xhβh)
T (Yh −Xhβh)}∗

(σ2)−Hp/2 exp{−1

2
(σ2)−1

H∑
h=1

(βh − β∗h)T (Dτh)
−1(βh − β∗h)} ∗ (σ2)−1

=(σ2)−(n/2+Hp/2)−1 exp{−1

2
(σ2)−1[

H∑
h=1

(Yh −Xhβh)
T (Yh −Xhβh)+

H∑
h=1

(βh − β∗h)T (Dτh)
−1(βh − β∗h)]}

σ2|rest ∼InvGamma((n+Hp)/2,
1

2
[
H∑
h=1

(Yh −Xhβh)
T (Yh −Xhβh)+

H∑
h=1

(βh − β∗h)T (Dτh)
−1(βh − β∗h)])

p(1/τ 2
hi|rest) ∝(τ 2

hi)
− 1

2 exp(−1

2

(βhi − β∗hi)2

σ2τ 2
hi

) ∗ exp(−λ
2τ 2
hi

2
) ∗ d(τ 2

hi)

∝(1/τ 2
hi)

1
2 exp[−1

2
(
(βhi − β∗hi)2(1/τ 2

hi)

σ2
+

λ2

1/τ 2
hi

)] ∗ (1/τ 2
hi)
−2

=(1/τ 2
hi)
− 3

2 exp[−1

2
(
(βhi − β∗hi)2(1/τ 2

hi)
2 + λ2σ2

σ2(1/τ 2
hi)

)]

∝(1/τ 2
hi)
− 3

2 exp[−1

2

((1/τ 2
hi)−

√
λ2σ2/(βhi − β∗hi)2)2

(βhi − β∗hi)−2σ2(1/τ 2
hi)

]

1/τ 2
hi|rest ∼InvGaussian(

√
λ2σ2

(βh − β∗h)2
, λ2)
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p(λ2|rest) ∝(λ2)Hp exp(−1

2
λ2

H∑
h=1

p∑
i=1

τ 2
hi) ∗ (λ2)γ−1 exp(−δλ2)

=(λ2)Hp+γ−1 exp[−λ2(
1

2

H∑
h=1

p∑
i=1

τ 2
hi + δ)]

λ2 ∼Gamma(Hp+ γ,
1

2

H∑
h=1

p∑
i=1

τ 2
hi + δ)

B.2 Full Conditional Distribution for Logistic Model

yhi|Xhi, βh, ∼ Binomial(p = logit(xhiβh))

βh = (βh1, ..., βhp)
T , h = 1, ...H

βh ∼MVN(β∗h, σ
2Dτh)

β∗h ∼MVN(0p, σ
2
0Ip)

Dτh = diag(τ 2
h1, ..., τ

2
hp)

τ 2
hi ∼

λ2

2
e−λ

2τ2hi/2

λ2 ∼ Gamma(γ, δ)

Similarly, we start with the hierarchical model, derive the kernel of the posterior

distribution of all parameters, and reveal that they belongs to some known distri-

bution families. The full conditional distribution of βh doesn’t below to any known

104



distribution family, and the rest of parameters are presented below:

p(Y |β) =
H∏
h=1

nh∏
i=1

(
exp(xhiβh)

1 + exp(xhiβh)

)yhi ( 1

1 + exp(xhiβh)

)1−yhi

p(β|β∗, Dτ ) ∝
H∏
h=1

|Dτh|−1/2 exp{−1

2
(βh − β∗h)T (Dτh)

−1(βh − β∗h)}

f(β∗) ∝
H∏
h=1

exp{−1

2
β∗h

T (σ2
0Ip)

−1β∗h}

f(τ 2|λ2) ∝ (λ2)Hp
H∏
h=1

p∏
i=1

exp(−λ2τ 2
hi/2)

f(λ2) ∝ (λ2)γ−1 exp(−δλ2)

p(β∗h|rest) ∝ exp{−1

2
[(β∗h − βh)TD−1

τh (β∗h − βh) + β∗h
T (σ2

0I)−1β∗h]}

∝ exp{−1

2
[β∗h

T (D−1
τh + (σ2

0I)−1)β∗h − 2βThD
−1
τh β

∗
h]}

∝ exp{−1

2
(β∗h − (D−1

τh + (σ2
0I)−1)−1D−1

τh βh)
T (D−1

τh + (σ2
0I)−1)

(β∗h − (D−1
τh + (σ2

0I)−1)−1D−1
τh βh)}

β∗h|rest ∼MVN((Dτh)
−1((Dτh)

−1 + (σ2
0I)−1)−1βh, ((Dτh)

−1 + (σ2
0I)−1)−1)

p(1/τ 2
hi|rest) ∝(τ 2

hi)
− 1

2 exp(−1

2

(βhi − β∗hi)2

τ 2
hi

) ∗ exp(−λ
2τ 2
hi

2
) ∗ d(τ 2

hi)

∝(1/τ 2
hi)

1
2 exp[−1

2
((βhi − β∗hi)2(1/τ 2

hi) +
λ2

1/τ 2
hi

)] ∗ (1/τ 2
hi)
−2

=(1/τ 2
hi)
− 3

2 exp[−1

2
(
(βhi − β∗hi)2(1/τ 2

hi)
2 + λ2

(1/τ 2
hi)

)]

∝(1/τ 2
hi)
− 3

2 exp[−1

2

((1/τ 2
hi)−

√
λ2/(βhi − β∗hi)2)2

(βhi − β∗hi)−2(1/τ 2
hi)

]

1/τ 2
hi|rest ∼InvGaussian(

√
λ2

(βh − β∗h)2
, λ2)
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p(λ2|rest) ∝(λ2)Hp exp(−1

2
λ2

H∑
h=1

p∑
i=1

τ 2
hi) ∗ (λ2)γ−1 exp(−δλ2)

=(λ2)Hp+γ−1 exp[−λ2(
1

2

H∑
h=1

p∑
i=1

τ 2
hi + δ)]

λ2 ∼Gamma(Hp+ γ,
1

2

H∑
h=1

p∑
i=1

τ 2
hi + δ)
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APPENDIX C

Gibbs Sampler for Weighted Dirichlet Process

Mixture Model with Survey Weights

C.1 Gibbs Sampler for Linear Regression

Let S = (S1, ...Sn), Si = h, h ∈ (1, k) denote the configuration of ith observation

to hth component.

Let θh denote the distinct parameters for hth component.

And let C = (C1, ...Ck), Ch = j denote that θh is an atom from jth basis distribution.
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Step 1: Update Si

Si|rest ∼Multinomial(0, 1, 2...k)

Pr(Si = h) ∝
b
i,C

(i)
h

∑
m 6=i

1(S
(i)
m = h)

α +
∑
l 6=i

1(C
(i)

S
(i)
l

= Ch)
f(yi|xi, θh)

Pr(Si = 0) ∝
n∑
j=1

αbij

α +
∑
l 6=i

1(C
(i)

S
(i)
l

= j)

∫
f(yi|xi, φ)dG0(φ)

yi|xi, θh ∼ N(xiβh, σ
2
h)∫

f(yi|xi, φ)dG0(φ) =
Np(0; β0,Σβ)N(0; yi, ατ/βτ )

Np(0; β̂i, V̂βi)

β̂h = V̂βh(Σ−1
β β + σ−2

i xiyi)

V̂βh = (Σ−1
β + σ−2

i xix
′
i)
−1

θh for new component is drawn similar to step 2 below.

Step 2: Update θh = (βh, σ
2
h)

σ−2
h |rest ∼ Gamma{aτ +

nh
2
, bτ +

1

2
(yty + βTΣ−1

β β − β∗hΣ∗β
−1β∗h)}

β∗h = (XT
hXh + Σ−1

β )−1(Σ−1
β β +XT

h y)

Σ∗h = (XT
hXh + Σ−1

β )−1

βh|rest ∼ Np(β
∗
h, σ

2
hΣ
∗
h)

bτ Gamma(a0 + kaτ , b0 +
k∑
j=1

τj)

Step 3: Update Ch

Ch|rest ∼Multinomial(1, 2...n)

Pr(Ch = j|rest) =

∏
i:Si=h

bijΨ(yi − xiβh)

n∑
l=1

∏
i:Si=h

bil
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Step 4: Update γj

Let K∗ij = Kij/
∑

l 6=j γlKil,the conditional likelihood for γj is

L(γj) =
n∏
i=1

(
γjK

∗
ij

1 + γjK∗ij
)1(CSi=j)(

1

1 + γjK∗ij
)1(CSi 6=j)

This can be obtained by using 1(CSi = j) = 1(Z∗ij > 0), and following the Gibbs

Steps:

(a) Z∗ij ∼ Poisson(γjξijK
∗
ij)1(Z∗ij > 0) if CSi = j, 0 otherwise.

(b) ξij ∼ Gamma(1 + Z∗ij, 1 + γjK
∗
ij)

(c) γj ∼ Gamma(aγ +
n∑
i=1

Z∗ij, bγ + ξijK
∗
ij)

Step 5: Update ψ

ψ ∼ log−N(µψ, σ
2
ψ)

Pr(y|ψ) =
n∑
i=1

n∏
j=1

bijΦ((yi − xiβSj)/σ2
Sj

)

The posterior distribution is not in any known analytical form, and can be obtained

from Metropolis Algorithm.

Step 6: Obtain draws of estimated population slope B

Obtain draws of estimated population slope B from posterior predictive distribution:

P (B|y, x) =

∫
p(B|y, x, φk)dG0(φk)

This is achieved by first recreate the population through obtaining the predicted Y s

from

yrepi ∼ wi0(xi)N(xTi β0, ατ/βτ + xTi Σβxi) +
k∑

h=1

wih(xi)N(xTi βh, σ
2
h)
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then performing linear regression on predicted population to estimate population

slope.

Step 7: Repeated Step 1 to 6.

The inference is based on the pooled draws from step 6 after certain burn-in period.

C.2 Gibbs Sampler for Quantile Regression

Let S = (S1, ...Sn), Si = h, h ∈ (1, k) denote the configuration of ith observation

to hth component.

Let θh denote the distinct parameters for hth component.

And let C = (C1, ...Ck), Ch = j denote that θh is an atom from jth basis distribution.

Step 1: Update Si

Si|rest ∼Multinomial(0, 1, 2...k)

Pr(Si = h) ∝
b
i,C

(i)
h

∑
m 6=i

1(S
(i)
m = h)

α +
∑
l 6=i

1(C
(i)

S
(i)
l

= Ch)
f(yi|xi, θh)

Pr(Si = 0) ∝
n∑
j=1

αbij

α +
∑
l 6=i

1(C
(i)

S
(i)
l

= j)

∫
f(yi|xi, φ)dG0(φ)

yi|xi, θh ∼ N(xiβh, σ
2
h)∫

f(yi|xi, φ)dG0(φ) =
Np(0; β0,Σβ)N(0; yi, ατ/βτ )

Np(0; β̂i, V̂βi)

β̂h = V̂βh(Σ−1
β β + σ−2

i xiyi)

V̂βh = (Σ−1
β + σ−2

i xix
′
i)
−1
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θh for new component is drawn similar to step 2 below.

Step 2: Update θh = (βh, σ
2
h)

σ−2
h |rest ∼ Gamma{aτ +

nh
2
, bτ +

1

2
(yty + βTΣ−1

β β − β∗hΣ∗β
−1β∗h)}

β∗h = (XT
hXh + Σ−1

β )−1(Σ−1
β β +XT

h y)

Σ∗h = (XT
hXh + Σ−1

β )−1

βh|rest ∼ Np(β
∗
h, σ

2
hΣ
∗
h)

bτ Gamma(a0 + kaτ , b0 +
k∑
j=1

τj)

Step 3: Update Ch

Ch|rest ∼Multinomial(1, 2...n)

Pr(Ch = j|rest) =

∏
i:Si=h

bijΨ(yi − xiβh)

n∑
l=1

∏
i:Si=h

bil

Step 4: Update γj

Let K∗ij = Kij/
∑

l 6=j γlKil,the conditional likelihood for γj is

L(γj) =
n∏
i=1

(
γjK

∗
ij

1 + γjK∗ij
)1(CSi=j)(

1

1 + γjK∗ij
)1(CSi 6=j)

This can be obtained by using 1(CSi = j) = 1(Z∗ij > 0), and following the Gibbs

Steps:

(a) Z∗ij ∼ Poisson(γjξijK
∗
ij)1(Z∗ij > 0) if CSi = j, 0 otherwise.

(b) ξij ∼ Gamma(1 + Z∗ij, 1 + γjK
∗
ij)

(c) γj ∼ Gamma(aγ +
n∑
i=1

Z∗ij, bγ + ξijK
∗
ij)

Step 5: Update ψ
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ψ ∼ log−N(µψ, σ
2
ψ)

Pr(y|ψ) =
n∑
i=1

n∏
j=1

bijΦ((yi − xiβSj)/σ2
Sj

)

The posterior distribution is not in any known analytical form, and can be obtained

from Metropolis Algorithm.

Step 6: Obtain draws of estimated population slope B

Obtain draws of estimated population slope B from posterior predictive distribution:

P (B|y, x) =

∫
p(B|y, x, φk)dG0(φk)

This is achieved by first recreate the population through obtaining the predicted Y s

from

yrepi ∼ wi0(xi)N(xTi β0, ατ/βτ + xTi Σβxi) +
k∑

h=1

wih(xi)N(xTi βh, σ
2
h)

then applying quantile regression on predicted population to estimate population

slope for specific quartile/percentile of outcome.

Step 7: Repeated Step 1 to 6.

The inference is based on the pooled draws from step 6 after certain burn-in period.
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