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ABSTRACT

The recent discovery of topological insulators has led to a tremendous interest in the exploration of
topological phases of matter which do not fit into Landau’s symmetry breaking paradigm. Numer-
ous exotic topological materials are theoretically predicted. Some of them have been experimen-
tally reported, but many remain not. In this thesis, we explore topological phases of matter from

three aspects: their classification, realization and application.

We first review some basic classification theories, which provide us a "big picture" and lay the
foundation for the rest of the thesis. We then move on to propose a systematic method based on
quaternion algebra to construct toy tight-binding Hamiltonians for all the exotic phases in a recently
developed periodic table for topological insulators and superconductors. We also introduce two
peculiar families of topological phases that are beyond the table—the Hopf and four-dimensional
topological insulators without time reversal symmetry. Prototypical Hamiltonians are constructed

and their topological properties, such as robust edge states, are numerically studied.

Motivated by rapid experimental progress in engineering spin-orbit coupling and artificial gauge
field, we continue the thesis by proposing a feasible experimental scheme to realize a three-
dimensional chiral topological insulator with cold fermionic atoms in an optical lattice. To un-
ambiguously probe topological phases for cold atoms, we also bring forth systematic and generic

methods to measure the characteristic topological invariants, for both free and strongly interacting

XV



systems. Moreover, we demonstrate that a kaleidoscope of knot and link structures is encoded in
the spin texture of Hopf insulators and show how to observe different knots and links in cold atoms

via time-of-flight images.

The last part of the thesis is about the application of topological materials. After a demonstration
of how to create, braid and detect Majorana fermions with cold atoms, we put forward a proposal
to construct a self-test quantum random number generator by using Majorana fermions. Majorana
random number generators are able to generate certifiable true random numbers with unconditional
security. They offer a new perspective to the utilization of topological materials and may have vital

applications in cryptography and related areas.

XVi



CHAPTER 1

Introduction

1.1 Background

In condensed matter physics, a central task is to find out how many distinct states of matter (phases)
can exist in nature. It is well known that atoms and electrons can be organized in different ways to
form different states of matter, such as liquid, solid, gas, superfluid, magnet, superconductor, etc. A
remarkable theory developed in the last century, which classifies these distinct phases, is Landau’s
symmetry-breaking theory [1-3]. According to this theory, different phases correspond to differ-
ent symmetries in the organization of the constituent building blocks. As a material goes from one
phase to another (i.e., undergoes a phase transition), the underlying symmetries change accord-
ingly. For instance, a liquid has a continuous translational symmetry. It can turn into a crystal
after a phase transition. The corresponding symmetry then changes from continuous translational
symmetry to discrete translational symmetry. Thus, the essential difference between a liquid and a
crystal is the fact that they have different symmetries in the organization of the constituent atoms,
and the phase transition is essentially a transition of symmetries (symmetry breaking). Moreover, a
order parameter can be established from the pattern of symmetry-breaking. It identifies the corre-

sponding phase with a nonvanishing expectation value. Based on the order parameter, an effective



field theory (generally called Landau-Ginzburg theory) can be formulated to give a universal de-

scription of states of matter [1-3].

Landau’s symmetry-breaking theory is very successful. For a long time, people believed that it
can describe all possible phases of matter and all possible continuous phase transitions. However,
this belief was gradually changed in the 1980s. Thanks to the discovery of integer and fractional
quantum Hall effects [5, 6], physicists became to realize that symmetry alone was not sufficient
to characterize all different phases. In the quantum Hall states, the bulk of the two-dimensional
sample is insulating but the edge carries chiral dissipationless current with a precisely quantized
Hall conductance. Different Hall states with different quantized conductance belong to different
phases but have exactly the same symmetry. Thus both the integer and fractional quantum Hall
state cannot be fit into Landau’s paradigm and a new theory has to be established to understand

these exotic phases and their transitions.

In recent years, remarkable progress has been made along this direction. Besides quantum Hall
liquid, many other topological phases, such as topological band insulators and superconductors
[7-9], have been theoretically predicted [10—13] and experimentally observed [14—16]. All these
phases escape Landau’s paradigm and we still lack a systematic understanding of them. Motivated
by all these progresses and problems, this thesis studies several important aspects of topological

phases.

1.2 Outline of the dissertation

As indicated by the title, this thesis is all about topological phases of matter. We will focus on three
important aspects: the classification, simulation and application of topological phases of matter. In

chapter II, we introduce the concepts of symmetry protected and enriched topological phases. We
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then briefly review two approaches to the classifications of these phases, one for interacting bosons
and the other for free fermions. For strongly interacting bosonic systems, we mainly introduce the
group cohomology approach developed by Wen et. al [17,18]. For free fermionic systems, we
present the periodic table for topological insulators (TIs) and superconductors (T'SCs) discovered

by Kitaev [19] and Schnyder et. al [20,21].

Chapter III continues the discussion of the periodic table, but now centers on constructing prototyp-
ical tight-binding Hamiltonians for each nontrivial phase predicted by the table. We first introduce
a general and systematic method based on the quaternion algebra [22]. Then, as examples, we use
this method to construct tight-binding Hamiltonians for all the 3D topological phases in the peri-
odic table with arbitrary integer topological invariants. These examples include spin-singlet TSCs
in symmetry class CI, spin-triplet TSCs in class DIII, chiral TIs in class AIIl, and Hopf insulators

in class A.

In chapter IV, we introduce two classes of topological phases that are outside of the periodic table.
The first class is the so called Hopf insulators in symmetry class A. We explain why Hopf insulators
exist and demonstrate, based on a generalized Hopf map, how to construct a family of tight-binding
Hamiltonians which realize all kinds of Hopf insulators with arbitrary integer Hopf index [23]. A
geometric picture is given to analytically obtain the topological invariants for each Hamiltonian.
Hopf insulator phases have topologically protected surface states and we numerically demonstrate
the robustness of these topologically protected states under general random perturbations. The
other class is the Z; topological insulators in four dimensions. Based on the homotopy group
theory, we explain why this exception exists and show how to construct a model Hamiltonian for

the nontrivial phase through the suspension technique.

After we introduce the basic classification theory, we move on to discuss how to realize and detect

the predicted different topological phases in chapter V=VII. To be more specific, in chapter V, we
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present our result on how to implement and detect three-dimensional (3D) chiral topological insu-
lators with cold fermionic atoms in optical lattices [24]. Unlike the conventional Z, TIs protected
by time reversal symmetry, the chiral TIs considered here are protected by the chiral (also known
as sublattice) symmetry and belong to the symmetry class AIIl with a Z classification. Chapter
VI is dedicated to measuring topological invariants in cold atom systems [25]. This chapter can
be divided into two parts. The first part deals with a general method on how to directly measure
the topological invariants of Bloch bands for free fermionic systems. The second part introduces
a versatile scheme to detect various topological invariants for strongly interacting systems, where
the concept of Bloch bands does not apply. In chapter VII, we explore the topological proper-
ties of topological materials from a new perspective. We first show that the spin textures of Hopf
insulators are highly twisted with kaleidoscopic knot and link structures encoded. Moreover, we
also propose an experiment to realize Hopf insulators with ultracold fermions in optical lattices
and show how to extract the Hopf invariant and the knotted spin textures form the time-of-flight

imaging data.

Chapter VIII remains on the simulations of topological phases with cold atoms, but is now focused
on 2D topological superconductors which can host Majorana fermions. Roughly speaking, this
chapter is about how to create, braid, and detect Majorana fermions with cold atoms in optical
lattices [26]. We demonstrate that the Majorana-Shockley fermions associated with line defects
can be braided with non-Abelian statistics through adiabatic shift of the local chemical potentials.
We also demonstate robustness of the braiding operation against practical noise and propose a

scheme to measure the topological qubits using local measurement of the atom number.

In chapter IX, we propose a new possible practical application of topological phases of matter.
We show that the topological manipulation of Majorana fermions alone can provide the full set of

operations required to generate certified random numbers [27]. Thus a fault-tolerant quantum ran-

4



dom number generator might be constructed using Majorana fermions. Unlike traditional random
number generators that only produce unsafe pseudo-random numbers, Majorana random number
generators are able to generate certifiable true random numbers that are private and secure against

even quantum adversaries. We conclude the thesis in chapter X with several future directions.



CHAPTER 11

Classification of topological phases

2.1 Introduction

Topological phases of matter, such as topological insulators and superconductors [7-14, 16, 28—
45], are quantum phases of matter beyond the Landau-Ginzburg symmetry-breaking paradigm.
They are gapped in the bulk but have robust gapless edge states at surfaces protected by the bulk

topology.

In general, topological phases of matter may be divided into two classes: the intrinsic ones and
the symmetry-protected ones. Symmetry-protected topological (SPT) phases are gapped quan-
tum phases that are protected by system symmetries and cannot be smoothly connected to the
trivial phases under perturbations that respect the same kind of symmetries. They are short-range-
entangled quantum phases [17, 18]. When the corresponding symmetry is broken, all these phases
are smoothly connected to the trivial phase of product states. Remarkable examples of SPT phases
include the Haldane phase of the spin-1 chain which is protected by the SO(3) spin rotation sym-
metry [46,47], and topological insulators and superconductors which are protected by the time
reversal symmetry [7, 8]. For interacting bosonic systems with on-site symmetry G, distinct SPT

phases can be systematically classified by H+![G, Ur(1)], the Borel (d + 1)-group cohomology
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of G over the G-module Ur (1) [17,18]. While, for free fermions, the SPT phases can be system-
atically described by the K-theory or homotopy group theory [48], which lead to the well known
periodic table for topological insulators and superconductors [19-21]. For interacting fermionic
systems, a large class of SPT phases can be described by the group supercohomology theory [49]
and Chern-Simons field theory [50].

Intrinsic topological (IT) phases, on the other hand, are gapped long-range-entangled phases that
cannot be smoothly connected to the trivial phase even we break the symmetry. Fractional quantum
Hall states [5,51] and spin liquids [52—-56] are prominent examples of this family. Unlike the
SPT case, which is trivial in the bulk, intrinsic topologically ordered phases may have fractional
excitations bearing fractional statistics or even non-Ablelian quasiparticles bearing non-Abelian
statistics in the bulk [57]. Another distinction between SPT phases and IT phases concerns the
robustness of their gapless edge states to different local perturbations. Edge states of SPT phases
are only robust to local perturbations that respect the system symmetries. Nevertheless, edge states
of IT phases are robust to any local perturbations that maintain the bulk energy gap. Intrinsic
topological phases may be further classified according to the system symmetries, leading to the so
called symmetry enriched topological (SRT) phases [58—61]. Recently, projective symmetry group

was introduced to describe the SRT phases [58,62], but a systematic understanding is still lacking.

In this chapter, we briefly review several classification theories of topological phases to intro-
duce the general background for the whole thesis. First, we will introduce the group cohomol-
ogy approach to classify interacting bosons based on Ref. [17, 18]. We then move on to the free
fermionic system. The periodic table for topological insulators and superconductors discovered by
Kitaev [19] and Schnyder et. al [20,21] will be introduced here. For interacting fermionic systems,

the classification is very challenging and a systematic method is still under study.



2.2 Bosonic systems

To start with, let us first introduce the concept of local unitary (LU) transformation and the def-
inition of quantum phases. A LU transformation with depth M is a product of piecewise LU
operators [17, 18]:

U, = mul),

where U;S? =11 jUj@ is a piecewise LU operator with {UJ@} a set of unitary operators that act
locally on nonoverlapping regions. We define that two gapped quantum states belong to the same
quantum phase if and only if they can transform to each other through a LU transformation. With-
out any symmetry, quantum phases of gapped systems can be divided into two classes: short range
entangled (SRE) states which can be transformed into direct product states through a LU transfor-
mation, and long range entangled (LRE) states which cannot. As all SRE states can be transformed
into each other via LU transformation, they belong to the same quantum phase. However, many
LRE states cannot be transformed into each other and they represent different phases. In fact, these

LRE phases are nothing but the intrinsic topological phases mentioned previously.

When certain symmetry is considered, only the LU transformations that respect the symmetry
can be used to connect states. In this case, even SRE states with the same symmetry can belong
to different phases, leading to the so called symmetry protected topological phases. In order to
classify all SPT phases, let us consider a d dimensional system with an on-site symmetry group
G. We can always change a SPT state via a symmetric LU transformation to a symmetric tensor-

network state of the canonical form [17, 18]. In the canonical form, the symmetry transformation



should keep the SRE state | Psrg) invariant, leading to the following equation:
®iUj|¥Wsre) = [¥srE), (2.2.1)

where Uj forms a linear representation of the group G which generates the symmetry transforma-
tion on the effective site-j. Thus the task of classifying SPT phases reduces to the task of finding
out all the equivalent classes of pairs (Uj, [¥srg)) that satisfy Eq. (2.2.1). However, for a general
many-body system, Eq. (2.2.1) is not solvable. In Ref. [17, 18], Chen, Gu, Liu, and Wen’s basic
idea is, rather than to solve the above equation and find all the representative solutions directly, to
explicitly construct as general as possible the solutions of this equation by using cocycles from the
corresponding group cohomology H¢*! [G, Ur(1)]. Here, we only reproduce parts of their results

in Table 2.1.

While this table contains these well-known SPT phases such as the Haldane phase, it is worthwhile
to point out that the above classification based on group cohomology is incomplete [63]. There

exist other SPT phases that are beyond this classification [64—66].

2.3 Fermionic systems

The classification of topological phases for fermionic systems is still under intense investigation.
For free fermions, a remarkable periodic table for topological insulators and superconductors has
been developed recently by Kitaev [19] and Schnyder et. al [20,21]. This table has included
most of the familiar topological phases as its special elements. For strongly interacting fermionic
systems, Gu and Wen have shown that a large class of interacting fermionic SPT phases can be

systematically described by group supercohomology theory [49]. It is also found that there exist



| Symm. groupG | d=0 | d=1 | d=2 | d=3 |
Zy Z, 0 Zy 0
zr 0 7 0 Z
Z, %7} Z, Zy X Zo ) Z0 L xZh
Zy X7y LxZony | Zow | D2XZonXZn | Zh,
Z,xZ1 Zow | L2XZpp Z0 X Zf
Zy X Zom Zy X Zom Znm) Zn X Ziym) X Zm Z(zmm)
Dyx 71 75 Z3 78 Z
U(l) Z 0 Z 0
SU(2) 0 0 Z 0
S0(3) 0 Z Z 0
U(1) x Trn V4 V4 72 A
U(l)=xZI Z 7> 7> vz
U(1) x ZF x Trn 0 z; Z3 Z)
U(1)xZI x Trn Z ZxZ, ZxZ3 ZxZ8
SO(3) x Trn 0 7 Zx7Z3 Z3x 73
U(1) x ZF x Trn 0 73 Z Z)?

Table 2.1: Classification of bosonic SPT phases. SPT phases in d dimension with a on-site sym-
metry group G are classified by the cohomology group HY™[G, Ur(1)]. Here ZI denotes the
time reversal symmetry, “Trn” represents translation symmetry, and (m,n) is the greatest common
divisor of m and n [17, 18].

10



six interacting electronic topological insulators that have no noninteracting counterpart [67]. Here,
we only briefly review the discovery of the periodic table, which will be repeatedly mentioned

throughout the thesis.

The periodic table is developed in terms of the system symmetry and dimensionality. There are
three generic symmetries relevant for any system, namely the time-reversal (7"), particle-hole
(charge conjugation C), and chiral (S = TC) symmetry. Let us specify the definition of these
symmetries. A Hamiltonian is represented by a finite matrix .77 (k) in the k space (kernel of the

Hamiltonian). It has the time reversal symmetry if there exists a unitary matrix 7;, such that

T (K)T, ' = (k). (2.3.1)

Similarly, ¢ (k) has the particle-hole symmetry if there is a unitary matrix C,, such that

Cn " (K)C,' = — 7 (—K). (2.3.2)

The anti-unitary nature of the time reversal and the particle-hole symmetries is manifested in the
complex conjugate .7#*(Kk) in Egs. (2.3.1) and (2.3.2). Finally, as S = TC, the chiral symmetry is

unitary and represented by (S,, = T7,,C;,)

S (K)S, ' = — A (k). (2.3.3)

Pertaining to the presence or absence of these symmetries, ten classes of single-particle Hamiltoni-
ans can be specified, which is intimately related to the classification of random matrices by Altland
and Zirnbauer (AZ) [68]. Based on these ten symmetry classes, a periodic table for topological

insulators and superconductors can be developed by the K-theory [19] or homotopy theory [20,21].
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|AZ | T | C |[S|1D|2D[3D 4D |5D | 6D [ 7D | 8D |

A - -!/-10Z |0 |Z |0 |Z| 0| Z

Wigner-Dyson | AL [ +1| - |- O | O | O | Z |0 |Zy|Zy| Z
All | -1 - |- 0 |Zy|Zy| Z | O | O | O | Z

Aoy oo 4(1,zZ,0,%Z\|0\|%Z\|0|Z]|O0

Chiral BDI | +1|+1|1| Z | O | O | O | Z | 0 |Zy| Z

cn | -1|-1(1|Z |0 |Zy |Zo| Z | O | O | O
D - |+l |-|1Zy| Z | O | O | O | Z | 0 |Z

BdG C - | =1/-10|Z |0 |Zy|Zp| Z | O | O

Dl | -1 |+1 (1| %y |Zy, | Z | O | O | O | Z | O

Ccl |[+1|—-1|1] 0|0 | Z |0 |Zy|Zo| Z | O

Table 2.2: Periodic table for topological insulators and superconductors [19-21]. AZ denotes
the ten symmetry classes. We denote by “-” if certain symmetry is absent, and by “+£1” if this
symmetry is present and its corresponding operator squares to 1. The symbols Z and Z; imply
that the topological phases within the given symmetry class are classified by the integer (Z) or
cyclic (Z,) group. The symbol “0” means that there exists no nontrivial topological phases in the
given symmetry class and dimension.

Here, we reproduce this table in Table 2.2.

In order to catch a basic understanding of how this table is obtained, let us consider a generic
free Hamiltonian .77’ (Kk) in the momentum space. The energy spectrum is obtained by solving the

Schrodinger equation

A (K)|up(k)) = Ep (k) up(K)),

where b denotes the Bloch band index. Without loss of generality, we assume that m bands are

filled and n bands are empty. For every momentum Kk in the Brillouin zone (BZ), let us define the
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projector onto the filled Bloch bands [20]

filled

Pk) = §,|”b(k)><”b(k>|

and a (m+n) x (m+n) “Q matrix”

The Hermitian matrix Q(K) captures the essential information of the Hamiltonian .7#’(k). Thus,
the classification of .7#’(k) reduces to the classification of Q(k). Without additional symmetry, the
set of m + n eigenvectors forms a unitary matrix, i.e., an element of U(m+ n). Also, there is a
“gauge symmetry”: the system is unchanged if one relabels the filled and empty bands amongst
themselves. Thus, Q(K) is actually an element of Grassmannian manifold Q(k) € G, i =U (m+
n)/[U(m) x U(n)]. Noting that k runs over the Brillouin zone, Q(k) can also be regarded as a map
from the Brillouin zone to the Grassmannian Q : BZ — G, ,+,. Mathematically, distinct maps can
be topologically classified by the homotopy group. It is well known in the mathematical literature

that for large enough m and n

0 ifdisodd
ﬂd(Gm,ern) -
Z, if d is even

As a result, for the symmetry class A in the table, we have only trivial phase in odd dimensions

and an integer Z classification in even dimensions.

When additional symmetry is considered, extra conditions are imposed on Q(k). This puts certain

restrictions on the Grassmannian and changes the classification. Taking the symmetry class AIIl
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for example, it has a chiral symmetry. This symmetry requires that Q(k) can be brought into a

block off-diagonal form through basis changing

where g(k) € U(m) is a unitary m x m matrix. As a result, Q(k) lives only in a subspace of the

Grassmannian and the relevant homotopy group changes to

Z ifdisodd
ma[U(m)] =

0 ifdiseven

This implies that in symmetry class Alll, all phases are topologically trivial in even dimensions but
we have infinitely many distinct topological phases in odd dimensions. Similarly, one can obtain
the results for all other symmetry classes by adding extra conditions on Q(k) and considering the

homotopy group of the resulting subspace.

The table will repeat itself in higher dimensions. Mathematically, the symmetry classes A and AIII
correspond to two types of complex Clifford algebra and have a periodicity of 2 in dimensions.
The rest of the classes corresponds to eight types of real Clifford algebras and have a periodicity
of 8 [19]. The 2 and 8 periodicity are known as Bott periodicity in K-theory. Yet, it is important to
clarify that these regular patterns only appears in the stable homotopy range, where the dimension
of the classifying space is large enough (here simply means that m and n are large enough). For low
dimensional classifying space, accidental exceptions will occur. The 3D Hopf insulators and 4D
Z, insulators in class A are such exceptions. We will discuss in more details about these exceptions

in the following chapters.
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CHAPTER III

Tight-binding Hamiltonians for the periodic table

3.1 Introduction

Topological insulators (TIs) and superconductors (TSCs) are symmetry protected topological phases
of non-interacting fermions described by quadratic Hamiltonians [7, 8], which have robust gap-

less boundary modes protected by the system symmetry [18]. These protected boundary modes

have exotic properties and in some cases are characterized as anyons with fractional statistics

[57], which could be used for the realization of topological quantum computation [69]. No-

table examples of TIs include the integer quantum Hall states [70] and the recently discovered

two-dimensional (2D) quantum spin Hall states [10, 14] and the three-dimensional (3D) Z;, TIs

[11,16,36,40]. Examples of TSCs include the 2D p +ip superconductors of spinless fermions [71]

and the Helium superfluid B-phase [19,21].

It turns out that the above TI/TSC examples are just a part of a larger scheme: they sit inside
a periodic table for TIs/TSCs developed according to symmetry and dimensionality of the system

[19-21]. The periodic table predicts possible existence of a number of new topological phases, and
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it is of great interest to search for these new phases in nature. However, the periodic table does not
tell where to look for or how to realize these phases. To physically realize these exotic phases and
study their properties, it is of critical importance to construct tight-binding Hamiltonians so that
they could be realized in real quantum materials such as optical lattice systems [72]. So far, some
clever example Hamiltonians have been found for a few new topological phases [20,41, 73, 74],
typically with the topological invariant I" = £ 1, but we lack a systematic method to construct tight-

binding Hamiltonians for generic topological phases with arbitrary integer topological invariants.

In this chapter, we propose a general and systematic method to construct tight binding Hamil-
tonians for new topological phases based on the use of quaternion algebra. By this method, we
construct the tight-binding Hamiltonians for all the 3D topological phases in the periodic table
with arbitrary integer topological invariants, which include the spin-singlet and the spin-triplet
TSCs, the chiral and the Hopf TIs as prototypical examples. For each class, the topological in-
variant is explicitly calculated for the constructed Hamiltonian, using both geometric analysis and
numerical simulation, which confirm that we indeed realize all the topologically distinct phases in
the corresponding class characterized by a topological invariant of arbitrary integer values. The
construction method proposed here should also work for the 2D and 1D cases, and we believe its
direct generalization to Clifford algebra should provide a powerful tool to construct tight-binding

Hamiltonians for all the integer topological phases in the periodic table.

3.2 Quaternion algebra approach

Before showing the method, let us first briefly introduce the quaternion algebra H, which is a gen-
eralization of the familiar complex algebra, with the imaginary basis-vectors extended from one (2)

to three (2,7, k). The basis-vectors (¢, 7, k) multiply according to the following non-commutative

16



product table [48]:

2= 2=k =1, ij = —ji=k,

jk=—kj=1i, ki=—ik=j. (3.2.1)

Any element of H can be expanded as ¢ = qo + g1t + q27 + g3k, where g; (i = 0,1,2,3) are real

numbers. Quaternion has been used recently as a tool to analyze the 3D Landau levels [75,76].

For our purpose, it is more convenient to write ¢ in the polar-like coordinate with ¢ = p(cos 0 +

asin0), where p = |g| = \/q% +q% —|—q% +q§ is the norm of ¢, 6 is the angle, and 4 = a4+ dyj +
dsk with d% + d% + d% =1 is a unity vector denoting the direction in the imaginary space. From the

definition, we immediately get

q" = p"(cosn6 +asinnb). (3.2.2)

To construct tight-binding lattice Hamiltonians for the TIs or TSCs, we typically work in the
momentum space. The Hamiltonian coefficients are taken as components ¢; of a quaternion
¢, which in general depend on the momentum through the notation ¢;(k). In a d-dimensional
(d =1,2,3) space, the momentum k takes values from the Brillouin zone (BZ) characterized by a
d-dimensional torus T¢. The norm |g| of the quaternion ¢ characterizes the energy scale (energy
gap) of the Hamiltonian, which can be taken as 1 (the energy unit) without loss of generality, and
the topological space of g is thus characterized by the sphere S?. The Hamiltonian with ¢;(k) as
the coefficients can be considered as a map from the space T¢ to S?. If this map is topologically
nontrivial characterized by a topological invariant (usually taken as the winding number or Chern

number) I' = 1, geometrically (in the sense of homotopy) it means that the space T¢ wraps around
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S? one time through the map. Now consider a Hamiltonian where the coefficients are taken as
the components of ¢" (k). From the geometric representation of ¢" in the polar coordinate in Eq.
(3.2.2), if the space T¢ wraps around S? one time through the map k —¢(k) with T" = 1, it will
wrap S? n times through the map k —¢" (k) with ' = n. So, by this quaternion-power mapping, we
can construct Hamiltonians for topologically distinct new phases with arbitrary integer topological
invariants. This serves as our physical intuition to construct tight-binding Hamiltonians for new
topological phases. In the following, we apply this method to construction of the Hamiltonians
for all the 3D topological phases in the periodic table characterized by the integer group Z, which

include the spin-singlet and the spin-triplet TSCs, the chiral and the Hopf TIs.

3.3 Examples

3.3.1 Spin-singlet TSC (class CI)

Spin singlet TSC is described by a Bogoliubov-de-Gennes (BdG) type of mean-field Hamiltonian
and belongs to the symmetry class CI in the periodic table, which means the BAG Hamiltonian has
both T and C symmetries with 72 = 1 and C?> = —1. The topological phase is characterized by
a topological invariant I'cy, which takes values from 27 (even integers). Ref. [77] has proposed
a Hamiltonian in a diamond lattice which realizes a special instance of the CI TSC with I'c; =
+2. Here, we construct tight binding Hamiltonians which can realize all the topologically distinct
phases for the CI TSC with arbitrary even integer ['cr in a simple cubic lattice. The simplified

lattice geometry could be important for an experimental implementation.

To construct the BAG Hamiltonian in the momentum space, first we define a quaternion g with the
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following dependence on the momentum k
g = tcosky — 2(sink, + sinky, +sink;) + j cosk, + kcosk,, (3.3.1)

where ¢ is a dimensionless parameter. A family of the BdG Hamiltonians can be constructed
on the 3D cubic lattice with the form Hcr = Y ‘Pli%”cl(k)‘l’k in the momentum space, where
Wi = (akt, ka,aik ybik i)T denotes the fermionic mode operators with spin 7, ] and momentum
k. The 4 x 4 Hamiltonian matrix reads

. W |
A= | ™7 R (332)

(¢")3l; —m-o

where m = ((¢")o, (¢")1,(¢")2) with (¢"); denoting the ith-components of the quaternion ¢", I, is
the 2 x 2 identity matrix, and o = (6%, 6", 6%) are the Pauli matrices. Expressed in the real space,
the Hamiltonian Hcy contains spin-singlet d-wave pairing described by the quaternion component
(¢")3, and has local hopping and pairing terms up to the nth neighboring sites. One can check that
s¢1(k) indeed has both T and C symmetries (and thus also the chiral symmetry S = TC) with
T? = 1 and C*> = —1 (see the Appendix A for an explicit check).

Now we show that the Hamiltonian Hcy has topologically distinct phases depending on the param-
eters n and ¢. For this purpose, we need to calculate the topological invariant I'cy for Hcy. Direct
diagonalization of the Hamiltonian Hcy leads to the energy spectrum Ey (k) = +|¢"| = £p" =
+[t% cos? ky + cos? ky + cos? k; + (sink, + sink, + sink,)?]"/2. 1t is always gapped if r # 0 and has
a twofold degeneracy for each k. To calculate the topological index I'cy, we first flatten the bands

of Hcr (which is a continuous transformation that does not change its topological property) by
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introducing the Q matrix,
O(k)=1-2P(k), P(k)=} |up(k))(us(k)], (3.3.3)
f

where P(K) is the projector onto the filled Bloch bands (with energy E_(k) and wave-vectors

lug(k)) from the diagonalization of .7¢y). With the chiral symmetry, the Q matrix can be brought

0 bk
into the block off-diagonal form Q(k) = () by a unitary transformation, with
b'(k) O

blI) = (q")3—ilg")2 —i(g")o—(g")1 I (0 334)

—i(g")o+ (g (¢")3+i(g")2
for the Hamiltonian Hcy. With the matrix b(k), the topological index I'¢y is defined by the follow-

ing winding number [21]:

Lo dk "PATr[(b~" dub) (b~ 9pb) (b~ 94b)], (3.3.5)

- 2472 Jpz

where P4 is the antisymmetric Levi-Civita symbol and Jub = Jy,,b(k). When n = 1, the integral
in [y can be calculated analytically and we find I'cy (n = 1) = 2sign(¢) = 2. In general cases,

due to the geometric interpretation of the map 4", we immediately get
Cci[ A1) = 2nsign(t) = +2n. (3.3.6)

This result is confirmed through direct numerical calculations. We integrate Eq. (3.3.5) numerically
through discretization of the Brillouin zone. The calculation results for different n are shown in

Fig. 1(a), which quickly converge to the exact results in Eq. (3.3.6) as the number of integration
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grids increases. As one varies n, it is evident from Eq. (3.3.6) that we can realize all the spin-singlet
TSC phases in the CI class through our constructed Hamiltonian Hcy with the topological index

I'cr taking arbitrary even integers.

3.3.2 Spin-triplet TSC (class DIII)

Spin triplet TSCs are described by the BAG Hamiltonians that have both 7 and C symmetries with
T? = —1and C? = 1. It belongs to the symmetry class DIII in the periodic table. The *He superfluid
B phase is a well known example in this class [19,21], but it is not described by a simple lattice
model. Tight-binding lattice Hamiltonians have been constructed for the DIII-class spin triplet
TSCs with the topological index I'pyp = +1 [38,78,79]. Here, we use the quaternion method
to construct tight-binding Hamiltonians for the DIII-class TSCs with arbitrary integer topological

indices ['pyyr in a simple cubic lattice.

To construct the Hamiltonian, we define a quaternion ¢ (k) with the following dependence on k
q = h+cosky +cosky +cosk; +itsinky + j sink, + ksink,. (3.3.7)

with ¢,k being dimensionless parameters. We will use this form of ¢ (k) for all our following
examples. We construct a four-band BAG Hamiltonian with the form Hppp = ) fblt%m(k)cbk,

with the fermionic mode operators ®x = (akt, ax|, aT_kT, aT_k i)T and the 4 x 4 Hamiltonian matrix
tbm(k) =u-T, (3.3.8)

where u = ((")1,(¢")2, (¢")3, (¢")0)s T = (7,272, 1'%, —ir"¥%), and ¥ denote the standard

Dirac matrices with the explicit expressions given in the Appendix. This Hamiltonian has spin
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triplet pairing with the energy spectrum E, (k) = + [u(k)| = £ |g(k)|", which is fully gapped when
|h| # 1,3 and t # 0.
The DIII class TSC has the chiral symmetry, so its Q matrix for the Hamiltonian can be brought into

the block off-diagonal form (see Appendix A) and the topological index I'pyyy 1s also characterized

by the winding number in Eq. (3.3.5). We find

(

—2nsign(r) || <1

Ipm[#bum] = | nsign(r) 1< |h|<3- (3.3.9)

0 \h| >3

It is evident that the topological index I'ppp can take arbitrary integer values for our constructed
Hamiltonian depending on the parameters n,¢,h. In the particular case with n = = 1, the Hamil-

tonian reduces to the model Hamiltonian introduced in Ref. [20,21], which has I'pyp = 1 or —2.

3.3.3 Chiral TI (class AIILI)

Chiral TIs do not have time-reversal or particle-hole symmetry (thus 7 = C = 0), but they possess
chiral symmetry with S = 1 and belongs to the symmetry class AIll in the periodic table. Tight-
binding Hamiltonians have been constructed for the chiral TIs with the topological index I'any =
+1 [80]. Here, we use the quaternion method to construct Hamiltonians with arbitrary integer
I'amr. We consider a three-band Hamiltonian with the following form Happ = Yk élj S (K) &k,

where the fermionic mode operators & = (ax, b, ck)T and the 3 x 3 Hamiltonian matrix

Soam(k) =u-9. (3.3.10)
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In A1, u denotes the same quaternion coefficients as defined below Eq. (3.3.8) and 4 = (A4, A5, A6, A7)
are the four Gell-Mann matrices with the explicit form given in the Appendix. The Hamiltonian
Haqy is gapped when |h| # 1,3 and ¢t # 0 and has a perfectly flat middle band with a macroscopic
number of zero-energy modes due to the chiral symmetry [80]. A topological invariant classifying

this family of Hamiltonians can be defined as [80]

1 1

We have calculated this invariant and found that
FAIII[%HI] = nsign(t) = :l:fl, (1 < ’h‘ < 3) (3.3.12)

for our constructed Happ. This analytic result is confirmed with direct numerical calculations
as shown in Fig. 1(b). In the particular case with n = 1, the Hamiltonian Hay reduces to the
model Hamiltonian constructed in Ref. [80]. Through the quaternion power, we extend the model

Hamiltonian and realize the chiral TIs with the topological index taking arbitrary integer values.

3.3.4 Hopf insulators (class A)

The Hamiltonians in class A do not have any symmetry (7', C, or S) except the particle number
conservation. Generically, this class of Hamiltonians have no topologically nontrivial phase in 3D,
but there is a peculiar exception, called the Hopf insulator, which occurs when the Hamiltonian has
just two bands due to existence of the topologically nontrivial Hopf map from S3 to S? [23,41].
To understand why Hopf insulators exist, note that the space of all 3D band Hamiltonians with

m filled and n empty bands is topologically equivalent to the Grassmannian manifold G, .+, and
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can be classified by the homotopy group of this Grassmannian [20]. Since 73(G, 44m) = 0 for all
(m,n) # (1,1), no nontrivial topological phase exists in general. However, whenm =n =1, G »
is topologically equivalent to 2-sphere S? and 73(Gyy pm) = 73(S?) = Z. This explains why the
Hopf insulators may exist in 3D. The Hopf insulators are characterized by the topological Hopf
index I'y, which takes values from the integer set Z. A model Hamiltonian has been constructed
for the Hopf insulator with I'y = £1 in Ref. [41] based on the Hopf map [81]. This method was
extended in Ref. [23] to construct Hamiltonians for general Hopf insulators with arbitrary integer
I'y based on the generalized Hopf map encountered in mathematics but not in physics literature.
Here, with the quaternion algebra, we use only the simple Hopf map but still can construct tight-

binding Hamiltonians for the Hopf insulators with arbitrary integer I'y.

To construct the Hamiltonian, we define two complex variables n = (14,7 i)T from the quaternion
M = (¢")1+i(q")2, N, = (¢")3 +i(¢")o, where ¢ (k) is defined by Eq. (3.3.7). The Hopf map is
defined as v = n7on, which is a quadratic map from S* — S? up to normalization. The two-band

Hamiltonians can then be constructed as Hyopr = Yk WE%—IOPf(k) Vic with Y = (akq, ax i)T and
Hiopt(K) = V- 0. (3.3.13)
The Hopf insulators are characterized by the topological Hopf index, define as
L[ Aiopt] = — BZF A d°Kk, (3.3.14)

where F is the Berry curvature with F), = %e‘“wv- (dyv x drv) and A is the associated Berry
connection which satisfies V x A = F [23,41]. From this definition and our geometric interpretation
of ¢", we find

Th[iopt) = nsign(t) = £n, (1 < |h| <3) (3.3.15)
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AZ Symmetry Numerical results for different n

class |7 |C| S 1 2 3 4 5
Al [0 ]o |1 [1000(1)]1.999(2)[2.997(3) [3.993(4) | 4.986 (5)
CI | 1 |-1]1]1.999(2)]3.998(4)]5.992(6)]7.984(8)]9.972(10)
DII |-1]1 |1 [1.000(1)]1.999(2)]2.997(3)|3.993(4) | 4.986(5)
AMHIs)[0]0]07]0.999(1)[1.994(2)[2.9793) [3.951(4) | 4.910(5)

Table 3.3: Numerical results of the corresponding topological invariants for the constructed Hamil-
tonians in different symmetry classes. The symmetry property of each class is also indicated. The
presence of time reversal symmetry 7', particle-hole symmetry C, and chiral symmetry S is denoted
by %1, with 41 specifying the values of 72 and C?. The absence of these symmetries is denoted by
0. The parameters for the corresponding Hamiltonians are chosen as (7,4) = (1,2). The number of
grid points 18 Ngriqg = 320 for all the cases. The integer numbers in the parentheses are theoretical
values for the corresponding topological invariants.

This analytical expression is also confirmed with direct numerical calculations. Some numerical

results for the topological indices are listed in Table (3.3) for different classes of TIs and TSCs,

which agree very well with our analytical expressions.

It is noteworthy to point out that although the geometric picture is intuitive, it is not a mathemat-
ically rigorous proof. We therefore have done substantial numerical calculations to support our
conclusion and parts of our results are shown in Table (3.3). All results are in line with the ge-
ometric argument and the topological invariants indeed have values proportional to the power n
of the quaternions. Another subtlety to note is that we did not define the same quaternion for all
four examples. This has its root in the parity restriction for each component of the quaternion. In

the construction of L%”C(I" )

(k), the symmetries require three components of the quaternion ¢ to have
even parity under the exchange k — —k and the remaining component odd parity. However, for
Q%”D(ﬁ)l(k) three components should be odd and the other even. As a result, different quaternions are
chosen for these two classes. We wish to underline the important fact that g"* preserves the parity

property of g defined above. This crucial property of quaternion algebra enables us to write down

a unified expression for Hamiltonians of each symmetry class with arbitrary integer topological
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index.

3.4 Discussion and conclusion

Before ending this chapter, we briefly remark that the quaternion tool proposed here can be ex-
tended straightforwardly to the 1D and 2D cases although our focus in this chapter is on the 3D
topological phases. We can set one (two) of the quaternion components to zero for the 2D (1D)
case and observe that the map ¢ — ¢" always preserves the subspace of H spanned by {1,%,5})
({1,2}). With the power mapping ¢" which preserve the symmetry of the Hamiltonian, starting
from one particular example of topological Hamiltonians with the topological index I' = 41, we
can always construct a family of Hamiltonians which realize all the topological phases with ar-
bitrary integer I'. Another interesting topic is to study the application of our quaternion toolkit
in interacting systems and how interaction will affect our constructed Hamiltonians. In the small
interaction limit, our constructions should not be affected because of the finite energy gap in the

constructed Hamiltonians.

In summary, we have proposed a powerful tool based on the quaternion algebra to systematically
construct tight-binding Hamiltonians for all the topological phases in the periodic table that are
characterized by arbitrary integer topological indices. The constructed Hamiltonians make the
basis for further studies of properties of these topological phases and phase transitions and provide

an important step for future experimental realization.
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CHAPTER 1V

Hopf insulators

4.1 Introduction

Three-dimensional (3D) topological insulators in general need to be protected by certain kinds of
symmetries other than the presumed U (1) charge conservation. A peculiar exception is the Hopf
insulators which are 3D topological insulators characterized by an integer Hopf index. To demon-
strate the existence and physical relevance of the Hopf insulators, in Sec. 4.2, we construct a class
of tight-binding model Hamiltonians which realize all kinds of Hopf insulators with arbitrary in-
teger Hopf index. These Hopf insulator phases have topologically protected surface states and we
numerically demonstrate the robustness of these topologically protected states under general ran-
dom perturbations without any symmetry other than the U (1) charge conservation that is implicit

in all kinds of topological insulators.

Moreover, the 4D topological phases in symmetry class A generally have a Z classification accord-
ing to the periodic table for topological insulators and supercondutors. However, in Sec. 4.3, we

show that there exists also an accidental Z, classification when the Hamiltonian has only two effec-
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tive bands. We construct explicitly a model Hamiltonian for the nontrivial phase and numerically

show that the edge states are robust to random perturbations.

4.2 Hopf insulators with arbitrary Z index

Topological phases of matter may be divided into two classes: the intrinsic ones and the symmetry
protected ones [17]. Symmetry protected topological (SPT) phases are gapped quantum phases
that are protected by symmetries of the Hamiltonian and cannot be smoothly connected to the
trivial phases under perturbations that respect the same kind of symmetries. Intrinsic topological
(IT) phases, on the other hand, do not require symmetry protection and are topologically stable
under arbitrary perturbations. Unlike SPT phases, IT phases may have exotic excitations bearing
fractional or even non-abelian statistics in the bulk [57]. Fractional [5, 51] quantum Hall states
and spin liquids [52-56] belong to these IT phases. Remarkable examples of the SPT phases
include the well known 2D and 3D topological insulators and superconductors protected by time
reversal symmetry [7,8,11,16,36,40], and the Haldane phase of the spin-1 chain protected by the
SO(3) spin rotational symmetry [46,47]. For interacting bosonic systems with on-site symmetry G,
distinct SPT phases can be systematically classified by group cohomology of G [17], while for free
fermions, the SPT phases can be systematically described by K-theory or homotopy group theory
[48], which leads to the well known periodic table for topological insulators and superconductors

[19,20].

Most 3D topological insulators have to be protected by some other symmetries [19,20], such as
time reversal, particle hole or chrial symmetry, and the U (1) charge conservation symmetry [82].
A peculiar exception occurs when the Hamiltonian has just two effective bands. In this case, in-

teresting topological phases, the so-called Hopf insulators [41], may exist. These Hopf insulator
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phases have no symmetry other than the prerequisite U (1) charge conservation. To elucidate why
this happens, let us consider a generic band Hamiltonian in 3D with m filled bands and n empty
bands. Without symmetry constraint, the space of such Hamiltonians is topologically equivalent
to the Grassmannian manifold G, 4., and can be classified by the homotopy group of this Grass-
mannian [20]. Since the homotopy group 73(Gy, smtn) = {0} for all (m,n) # (1,1), there exists no
nontrivial topological phase in general. However, when m =n = 1, G 3 is topologically equivalent
to S? and the well-known Hopf map in mathematics shows that 713(G 2) = 713(S?) = Z [48]. This
explains why the Hopf insulators may exist only for Hamiltonians with two effective bands. The
classification theory shows that the peculiar Hopf insulators may exist in 3D, but it does not tell
us which Hamiltonian can realize such phases. It is even a valid question whether these phases
can appear at all in physically relevant Hamiltonians. Moore, Ran, and Wen made a significant
advance in this direction by constructing a Hamiltonian that realizes a special Hopf insulator with

the Hopf index y =1 [41].

In this section, we construct a class of tight-binding Hamiltonians that realize arbitrary Hopf in-
sulator phases with any integer Hopf index ). The Hamiltonians depend on two parameters and
contain spin-dependent and spin-flip hopping terms. We map out the complete phase diagram and
show that all the Hopf insulators can be realized with this type of Hamiltonians. We numerically
calculate the surface states for these Hamiltonians and show that they have zero energy modes that
are topologically protected and robust to arbitrary random perturbations with no other than the

U (1) symmetry constraint.

To begin with, let us notice that any two-band Hamiltonian in 3D with one filled band can be

expanded in the momentum space with three Pauli matrices o = (0*, 67, 6%) as

(k) =u(k) o, (4.2.1)



where we have ignored the trivial energy-shifting term uo(k)I, with I, being the 2 x 2 iden-

tity matrix. By diagonalizing 7 (k), we have the energy dispersion E(k) = £|u(k)|, where

lu(k)| = \/ u? (k) 4 u? (k) 4 u2 (k). The Hamiltonian is gapped if [u(k)| > O for all k. For the con-
venience of discussion of topological properties, we denote u(k) = |u(k)|(x(k),y(k),z(k)) with
x*(K) +y?(k) +z?(k) = 1. Topologically, the Hamiltonian (1) can be considered as a map from
the momentum space k = (ky, ky, k;) characterized by the Brillouin zone T3 (T denotes a circle and
T3 is the 3D torus) to the parameter space u(k) o (x(k),y(k),z(k)) characterized by the Grass-
mannian G, = S?. Topologically distinct band insulators correspond to different classes of maps

from T3 — S2.

The classification of all the maps from T3 — S? is related to the torus homotopy group 73(S?) [83].
To construct non-trivial maps form T> — S?, we take two steps, first from S® — S? and then
from T3 — S3. We make use of the following generalized Hopf map f : S> — S? known in the

mathematical literature [81]
x+iy=22n{A], 2= Al =, ), (4.2.2)

where p, g are integers prime to each other and 14, 1 are complex coordinates for R* satisfying
1n+/% + |ny|> = 1 with the normalization A = 1/(|n4|*” + |n;|*). Equation (2) maps the coordi-
nates (Re[ny],Im[n:],Re[n,],Im[n;]) of S? to the coordinates (x,y,z) of S* with x> + y* 4+ 7> = 1.
The Hopf index for the map f is known to be +pg with the sign determined by the orientation

of S [81]. We then construct another map g : ™ > §? (up to a normalization), defined by the
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Figure 4.2.1: (Color online) Plot of the Hopf index and the Chern number in z-direction for differ-
ent (p,q). The Hopf index and the Chern number converge rapidly as the number of grids increases
in discretization. The parameters ¢ and & are chosen as (z,h) = (1, 1.5).

following equation

m(k) = sink,+itsink,,

Ny (k) = sink;+i(cosk,+cosk,+cosk, +h), (4.2.3)

where ¢ and £ are constant parameters. The composite map f o g from T3 — S? then defines the
parameters u(k) o< (x(k),y(k),z(k)) in the Hamiltonian as a function of the momentum k. From
Egs. (7.2.1) and (4.2.3), we have u(k) = (Re[2n{n{],Im[2n{A]], [|[m]* — |, [*9]), with [u(k)| =
ﬁ. The Hamiltonian 7 (k) = u(k) - o is (p + ¢)th order polynomials of sin (k) and cos (k),
which corresponds to a tight-binding model when expressed in the real space. The Hamiltonian

contains spin-orbital coupling with spin-dependent hopping terms. When we choose p =g =1

and (¢,h) = (1,—3/2), the Hamiltonian (4.2.1) reduces to the special case studied in Ref. [41].

When the Hamiltonian is gapped with |u(k)| > 0, one can define a direction on the unit sphere

(k) = (uc(k),uy(k),u;(k)) /|lu(k)| = (x(k),y(k),z(k)). From ti(k), we define the Berry curva-
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ture Fy, = SLﬂthﬁ (vl x drli), where €,y is the Levi-Civita symbol and a summation over the
same indices is implied. A 3D torus T has three orthogonal cross sections perpendicular to the
axis x,y,z, respectively. For each cross section of space T2, one can introduce a Chern number
Cu= [ dkpdk) Fy, where L = x,y,z and p, A denote directions orthogonal to u. To classify
the maps from T? — S? represented by ti(k), a topological index, the so-called Hopf index, was
introduced by Pontryagin [84], who showed that the Hopf index takes values in the finite group
ZZGCD(CX,C_V,CZ) when the Chern numbers C,; are nonzero [84], where GCD denotes the greatest
common divisor. If the Chern numbers C,; = 0 in all three directions, the Hopf index takes all

integer values Z and has a simple integral expression [81,85]

x(@)=— [ F-Adk, (4.2.4)
BZ

where A is the Berry connection (or called the gauge field) which satisfies V x A = F. The Hopf
index y (@) is gauge invariant although its expression depends on A. As we will analytically prove
in the Appendix B, the Chern numbers C,, = 0 for the map @i(k) defined above in this chapter in the
gapped phase, so we can use the integral expression of Eq. (4) to calculate the Hopf index x ().
The index x (@) can be calculated numerically through discretization of the torus T> [41]. Using
this method, we have numerically computed the Hopf index ) (1) for the Hamiltonian 7 (k)
with various p and ¢, and the results are shown in Fig. 4.2.1. As the grid number increases in
discretization, we see that the Chern numbers quickly drop to zero and the Hopf index approaches
the integer values +pq or +2pq depending on the parameters 7,. Based on the numerical results
of x (1), we construct the phase diagrams of the Hamiltonian (1) for various p, ¢ in Fig. 4.2.2. The
phase boundaries are determined from the gapless condition. The phase diagrams exhibit regular

patterns: they are mirror symmetric with respect to the axis 7 = 0 and anti-symmetric with respect
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Figure 4.2.2: (Color online) Phase diagrams of the Hamiltonian for different (p,q). The values of
(p,q) in (a), (b), (c), and (d) are chosen to be (1,1), (1,2), (3,1), and (2,3), respectively.

to the axis r = 0. When |h| > 3, we only have a topologically trivial phase with y (i) = 0. From
the result, we see that x (i) has an analytic expression with y (@) = £pg when 1 < |h| < 3 and

x (6) = £2pq when |h| < 1.

To understand this result, we note that @(k) is a composition of two maps (k) = f o g(k). The
generalized Hopf maps f from S — S? has a known Hopf index +pq [81]. The maps g from
T3 — S can be classified by the torus homotopy group 73(S*) and a topological invariant has been

introduced to describe this classification [80], which has an integral expression

1
I'(g) dKkegpyp Euvey M umpdvnydinp,

- 1272 Jgz
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where 7 = (Re[n4],Im[n;],Re[n,],Im[n,]). Direct calculation of I'(g) leads to the following result:

(

0, |h|>3
I(¢)=91, 1<|h<3andr>0

-2, |h|<landz>0.

Consequently, we have (@) = I'(g)x(f) = £pql'(g), which is exactly the result shown in the
phase diagrams in Fig. 4.2.2. A geometric interpretation is that I'(g) counts how many times
T3 wraps around S? under the map g, and x(f) describes how many times S* wraps around S?
under the generalized Hopf map f. Their composition gives the Hopf index y (). A sign flip of
t changes the orientation of the sphere S®, which induces a sign flip in x (@) and produces the
anti-symmetric phase diagram with respect to the axis r = 0. As (p,q) are arbitrary coprime
integers, x (@) apparently can take any integer value depending on the values of p,q and ¢, h.
As a consequence, the Hamiltonian 7 (k) constructed in this chapter can realize arbitrary Hopf

insulator phases.

Similar to the cases of quantum Hall states [86] and topological insulators, the nontrivial topo-
logical invariant of the Hopf insulators guarantees the existence of gapless surface states at the
boundaries. To study this property, we numerically computed the midgap surface state energy and
wave-function induced by abrupt boundaries in the (001) direction (see Appendix B). The results
are summarized in Fig. 4.2.3. From the figure, surface states and localized zero-energy modes
are prominent. These surface states are topologically protected and robust under arbitrary random
perturbations that only respect the prerequisite U (1) symmetry. This can be clearly seen from Fig.
4.2.3: while the wave functions of the bulk states change dramatically under random perturba-

tions, the wave functions of the surface states remain stable and are always sharply peaked at the
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Figure 4.2.3: (Color online) Surface states and zero-energy modes in the (001) direction for a 200-
site-thick slab. The parameters ¢ and & are chosen as (¢,h) = (1,1.5) for all the figures. We have
(p,q) = (1,2) for (a,b) and (p,q) = (1,3) for (c,d). In Fig. (b,d), we add random perturbations to
the Hamiltonian, but otherwise keep the same parameters as (a,c). The left diagrams in (a,b,c,d)
plot the energy spectrum of all 400 states at a fixed (ky,k,) = (0.72,0.72) for easy visualization.
The points inside the gap represent the energies of the surface states. There are four (six) surface
states in (a,b) ((c,d)), respectively. The right diagrams in in (a,b,c,d) show the wave functions of a
surface state (upper one) and a bulk state (lower one).
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boundary. This verifies that the Hopf insulators are indeed 3D topological phases. Besides the
results shown in Fig. 4.2.3, we have calculated the surface states for a number of different choices
of parameters (p,q) and (,h), and the results consistently demonstrate that the surface states and
zero energy modes are always present and robust even to substantial perturbations unless the bulk
gap closes. Moreover, we roughly have more surfaces states when the absolute value of the Hopf
index becomes larger. However, this is not always true. A direct correspondence between the Hopf
index and the total winding number of surface states may exist and should be investigated [87].

We left this topic for future works.

An important and intriguing question is how to realize these Hopf insulators in experiments. Laser
assisted hopping of ultracold atoms in an optical lattice offers a powerful tool to engineer vari-
ous kinds of spin-dependent tunneling terms [72, 88, 89], and thus provides a good candidate for
their realizations although the details still need to be worked out. Dipole interaction between
polar molecules in optical lattices also offers possibilities to realize effective spin-dependent hop-
ping [90-92]. As argued in Ref. [41], frustrated magnetic compounds such as X,Mo,07 with X
being a rare earth ion are other potential candidates. In addition, Hopf insulators may be realized
in 3D quantum walks [93-96], where various hopping terms are implemented by varying the walk-
ing distance and direction in each spin-dependent translation and the robust surface states can be

observed with split-step schemes [96].

In conclusion, we have introduced a class of tight-binding Hamiltonians that realize arbitrary Hopf
insulators. The topologically protected surface states and zero-energy modes in these exotic phases
are robust to random perturbations that only respect the U (1) charge conservation symmetry. They
are 3D topological phases and sit outside of the periodic t