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Abstract 

 

Quantitative tissue optical spectroscopy has been considered as a promising method for 

clinical diagnosis, owing to its ability to non-invasively give an objective assessment of 

biological tissues at cellular and sub-cellular levels. In spite of recent advances in optics 

and the computational power, not many quantitative tissue optical sensing technologies 

have been translated into clinical practice. In order to translate this technology in the 

clinics, we need to further improve the technology. To name a few, we need accurate and 

rapid quantification method for a real-time diagnostic feedback. Next, we need 

computational methods for complex tissue-optics problems. Also, we need a novel 

approach in probe design for the inaccessible organs. This dissertation focuses on the 

development, verification and validation of theoretical (mathematical and computational) 

and experimental (instrumental) tool set to promote the translation of quantitative tissue 

optical spectroscopy into clinical diagnostic applications.   

For the mathematical tool, a direct-fit photon tissue interaction (DF-PTI) model that 

could rapidly and accurately extract the parameters associated biophysical features was 

developed and validated to characterize the precursor lesions of pancreatic cancer. A 

rapid scattering model on pancreatic tissue reflectance based on principal components 

analysis (PCA) results was also developed. The diagnostic capability of scattering 

properties obtained was demonstrated on an 18-patient data set using a rigorous statistical 

method, which implied the potential of reflectance spectroscopy for real-time detection of 
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pancreatic cancer. For the computational tool, a ray-traced Monte Carlo (RTMC) 

simulation for the design of fluorescence spectroscopy or imaging system utilizing 

complex optics to probe turbid biological tissues was devised. This new method was 

verified computationally with epithelial tissue models and experimentally using tissue-

simulating optical phantoms. For the instrumental tool, the design and development of 

minimally-invasive diagnostic technologies employing optoelectronic components were 

discussed.  

In this dissertation, we focused on detection of pancreatic cancer, which has the worst 

prognosis among other major cancers. Pancreatic tissues were employed as our model 

system to validate our developed tools. The developed technology and tools can be 

applied to a variety of other human tissue sites to help in the translation of quantitative 

tissue optical sensing in a clinical setting. 
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Chapter 1.                                                                                                                       

Introduction    

1.1 Quantitative Tissue Optical Spectroscopy  

Tissue optical spectroscopy has been considered a promising technique for non-invasive 

assessment of biological tissues in a variety of biomedical applications, including disease 

diagnostics [1] and cellular viability assessment [2]. Essentially, it is analyzing the 

spectral distribution of light that interacts with biological tissues and varies depending on 

tissue morphological (e.g. cellular density/structure), biochemical (e.g. metabolic rate) 

and physiological status (e.g. vascularization/intravascular oxygenation). The main 

sources in the spectral difference are attributed to light scattering or absorption, laser-

induced fluorescence or Raman scattering pattern. Particular instrumental configurations 

for each technique or devices with multi-modal capability [3] have been successfully 

developed and employed to obtain those optical signatures from biological tissues. Not 

only the instrumentation, but also various quantitative methods [4] have been proposed to 

provide a quantitative and objective interpretation of the acquired spectral signal or a 

computational tool for optical probe design.  Compared to the conventional imaging 

techniques currently employed in standard procedure, optical spectroscopy has the 

potential to become a more sensitive tool due to its capability of assessing alteration at a 

cellular and sub-cellular level [5].   

However, even though spectroscopic technologies have been established during the last 

two decades based on recent advances in excitation sources (laser, lamp and LED), fiber 
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optic probes,  sensitive detectors (Intensified Charged Couple Device (ICCD) and  

Electron Multiplying CCD(EMCCD)) and rapid electronics coupled with huge data 

processing capability, they have not been fully translated into clinical practice yet. In this 

dissertation, we focus on developing theoretical and experimental tools to address some 

technical challenges that are a barrier for clinical translation of quantitative optical tissue 

sensing. The developed tool set is intended to provide a comprehensive solution for 

mathematical, computational and instrumental needs in optical tissue sensing techniques 

on in vivo human tissue measurements. Although applications of each developed tool can 

be expanded to a variety of biomedical areas, the developed tools have been verified 

using tissue-simulating optical phantoms and computational epithelial tissue models or 

validated on pancreatic cancer detection from ex vivo human tissue measurements.  

1.2 Basic Principles of Quantitative Tissue Optical Spectroscopy 

1.2.1 Reflectance Spectroscopy 

Reflectance spectroscopy measures the wavelength-dependent intensity of diffusively 

reflected light that undergoes scattering and absorption within biological tissues. An 

incident light on biological tissues is scattered whenever it encounters a mismatch of 

refractive index induced by inhomogeneous cellular structure or extracellular matrix. The 

scattering process is elastic, preserving the energy of the incident light with the same 

frequency; therefore it can occur in a broad wavelength range of incident light. These 

scattering events are also wavelength-dependent; i.e. different cellular or extracellular 

features contribute to the alteration of scattering intensity and angle at a particular 

wavelength range. Thus, the spectral distribution of elastically scattered light indicates 

characteristic features of biological tissues.  
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Absorption events occur when the light is absorbed by endogenous chromophores such as 

oxy- and deoxygenated hemoglobin [6], β-carotine [7] and bilirubin [8] or pigment (e.g. 

melanin) [9]. Each absorber has a unique spectral absorption feature; thus analyzing the 

absorption spectrum enables monitoring of physiological activity and diagnosing of some 

relevant diseases such as jaundice and skin cancer.   

The instrumental setup of reflectance spectroscopy is relatively simple because a broad 

wavelength range can be measured and the intensity of reflectance is much higher than 

other spectroscopic techniques. A halogen lamp is the most commonly used broadband 

light source. An intensified charged-couple device (ICCD) coupled with spectrograph 

[10] or a compact spectrometer device [11] can be used for spectrum recording. As a 

result of recent advances in optoelectronics, white LED has emerged as an alternative, 

small but powerful broadband source [11] and a silicon-photodiode coupled with the 

selected excitation wavelength by monochromator from a broad band lamp source [12] 

has shown the capability of acquiring a wavelength-resolved diffuse reflectance.     

1.2.2 Fluorescence Spectroscopy 

Fluorescence spectroscopy measures fluorescence emitted by specific molecules that 

absorb excitation light. The molecule that absorbs excitation light is activated from the 

ground state to an excited state with a higher electronic energy level. Among a number of 

ways in which the molecules relax to the ground state, fluorescence is the re-emission of 

low energy photons with a longer wavelength than the excitation light. This wavelength 

shift is called the Stokes Shift.  

Fluorescence spectroscopy has been employed to provide biochemical information in 

targeted biological tissues due to its molecular specificity. Molecular specific 



 

4 

 

fluorescence characteristics are the major difference between these and non-

fluorescensing materials. The intrinsic fluorescence is dependent on the concentrations of 

the fluorophores and unique emission spectral characteristics of each fluorophore. The 

measured fluorescence spectrum contains not only this intrinsic fluorescence, but also 

scattering and absorption properties of tissue samples, which can affect fluorescence 

photon propagations. Thus, in order to obtain accurate biochemical information, 

quantitative methods are necessary to uncouple the desired intrinsic fluorescence from 

the measured fluorescence that is a result of mixed events.  

Both endogenous and exogenous fluorophores can be employed in fluorescence 

spectroscopy. Endogenous fluorophores that are naturally fluorescent, include biological 

structures (such as mitochondria and lysosomes), molecules related to a metabolic 

process (such as NAD(P)H and Flavin), extracellular matrix, and proteins (containing 

amino acid, tryptophan and tyrosine) [13]. Targeting these endogenous fluorophores 

enables label-free optical sensing. Exogenous fluorophores are engineered to emit a 

strong fluorescence light with a high quantum yield.  They are commonly used in cell 

imaging to observe spatial localization of specific event. Clinical application of these 

exogenous fluorophores requires a regulatory approval after ensuring clinical safety.   

In a common instrumental setup of fluorescence spectroscopy, a laser source emitting the 

corresponding wavelength to the absorption spectrum of targeted fluorophores is 

employed for excitation. For detection, an optical long- or band- pass filter or a 

monochromater is needed to cut off the excitation laser. Sensitive detectors including, 

ICCDs, EMCCDs, photomultiplier tubes (PMTs) and avalanche photodiodes (APDs) are 

commonly used to capture a relatively weak fluorescence signal with high signal-to-noise 
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ratio.  Optical components are carefully selected such that excitation light does not cause 

the autofluorescence in the optical components that could produce a noise in the target 

fluorescence.   

1.2.3 Quantitative Analysis 

Quantitative analysis of tissue optical spectroscopy aims to uncouple the desired optical 

signal to provide quantitative values of biologically-relevant parameters from the 

undesired background in the measured reflectance and fluorescence. A variety of 

quantitative techniques have been developed to model human tissue reflectance and 

fluorescence, including diffusion approximation (DA) [14], semi-empirical models  [15] 

and Monte Carlo simulations [16]. With a goal to develop theoretical tools for clinical 

translation of tissue optical spectroscopy, this dissertation focuses on advances in the 

semi-empirical model and Monte Carlo simulation.   

Diffusion approximation is an analytical solution to a simplified form of the radiative 

transfer equation (RTE) in a particular situation, in which diffusion can approximate 

overall photon propagations [17]. Although DAs have been commonly used in many 

applications [14, 18, 19], they are inaccurate for tissue interrogation with small source-

detection separation, in which the photon path does not follow a diffusion regime [20]. 

As an alternative approach, forward semi-empirical models have been developed to 

analyze optical spectra obtained by small source-detector separation [15]. Inverse semi-

empirical models have been employed to extract scattering and absorption coefficients in 

media or biophysical parameters [21, 22].  

Monte Carlo simulations are viewed as the “gold standard” method for accurately 

simulating light transport in turbid media such as biological tissues [16, 23]. In MC 
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modeling, light transport is simulated by tracing each photon’s random walk step. Every 

step size, angle and attenuation of individual photons between photon-tissue interactions 

are determined by random sampling based on tissue optical properties. Due to recent 

advances in computing power and speed, MC simulations have been extensively 

employed in various biomedical optics applications to solve both forward and inverse 

problems. In forward problems, optical spectra are estimated [24, 25] and depth-resolved 

optical probes are designed [26, 27]. Inverse models have been used to extract optical 

properties for distinguishing malignant tissue from benign [28, 29] .     

1.3 Clinical Translation of Quantitative Tissue Optical Sensing Technologies 

Not many tissue optical sensing technologies have been successfully commercialized for 

clinical diagnostic applications. The representative example of the device that became a 

standard-of-care in the clinic is the pulse oximeter. The pulse oximeter which is a 

common biophysical monitoring device in the hospital utilizes red and infrared light 

source to non-invasively measure oxygen saturation.  Another example is the 

bilirubinometer, which measures total serum bilirubin level from bilirubin absorption and 

autofluorescence for neonatal jaundice diagnosis [30]. 

Most other technologies have been developed to detect or screen for different types of 

cancers. MelaFind®  (Mela Sciences Inc.) [31] is a FDA- and CE- approved multispectral 

imaging device to aid in detection of early pigmented cutaneous melanoma by providing 

an objective analysis of an irregular mole pattern. VELscope®  (LED Dental Inc.) is also 

a FDA-approved autofluorescence visualization system for oral cancer screening [32]. 

The WavSTAT Optical Biopsy system, developed by Spectra Science Inc., aims to 

become an adjunctive tool to diagnose colon and esophageal cancer during the current 
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endoscopic procedures. The system is based on fluorescence and scattering spectroscopy 

and now has FDA Premarket Approval (PMA). LuViva® , developed by Guided 

Therapeutics, is a multimodal spectroscopic imaging device for cervical cancer screening 

[33] and is currently under FDA PMA review, but is commercially available in other 

countries.  

Some other optical techniques for oral cancer detection are currently undergoing clinical 

trials. The Multispectral Digital Microscopy [34] is a multispectral wide-field 

fluorescence and narrow-band imaging device. The FastEEM4 [35] obtains fluorescence 

spectra excited at different wavelengths, producing fluorescence excitation-emission 

matrices (EEM). 

1.4 Current Technical Challenges 

Accurate and Rapid Quantification Quantitative analysis of the obtained optical signals 

from the designed instrumentation is becoming more essential for clinical diagnostic 

applications. The quantification process can provide an objective assessment compared to 

traditional histology; which can potentially increase diagnostic efficiency and save 

necessary resources required for personnel training. In addition to providing 

diagnostically-relevant information accurately, some applications require a real-time or 

immediate feedback. This ability can maximize the utility of computational quantification 

compared to the traditional histology analysis performed off-site with delayed results    

Computational Tool for More Complex Tissue-Optics Problem Tissue-optics problems in 

quantitative tissue optical sensing can be defined by how the technology obtains a 

targeted diagnostically-relevant parameter in the given tissue optical properties/structure 

and designed optical configuration. Computational modeling based on Monte Carlo 
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simulation plays a critical role in overcoming physical limitations on the actual 

realization of the hardware system and tissue preparation necessary during the tissue-

optics problem solving process. Commercialized devices are handling a relatively simple 

tissue-optics problem that extracts oxy- and deoxy- hemoglobin or bilirubin 

concentrations based on bulk tissue-sensing. In tissue sensing applications for oral, 

cervical, colon and esophageal cancer detection, the model typically builds up two-

layered tissue models consisting of epithelial tissue on top of stroma. However, for some 

clinical applications, tissue-optics problems may be more complex. Thus, there is a 

technical need in the computational tool to address advanced tissue-optics problems.   

Instrumental Innovation for Increasing Accessibility to Confined Areas Most of the 

currently commercially-available techniques introduced in the chapter 1.3 target readily-

accessible sites such as finger, forehead or skin, thus imposing no critical limitation in 

probe design, or sites that can be approached with patients’ cooperation and appropriate 

probe design, such as oral and cervical sites. In case of the WavSTAT Optical Biopsy 

System, the optical probe needs to be delivered via one of the endoscopy working 

channels. Thus, design flexibility is strictly limited to approaches using a fiber-optic 

probe only. Even for some sites allowing only a hollow needle access, such as lung and 

pancreas, single fiber-based spectroscopy and imaging systems [36] compatible with the 

use of a needle have been demonstrated. However, optical fiber technologies have some 

technical drawbacks, including point measurements (lack of spatial information) and 

limited source-detector configurations. 
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1.5 Model System: Pancreatic Cancer  

1.5.1 Background 

The clinical problem for pancreatic cancer is that current diagnostic methods are 

inaccurate and unable to diagnose disease in patients with potentially curable pancreatic 

cancer. Pancreatic adenocarcinoma is the 4th leading cause of cancer deaths in the United 

States. By 2020, pancreatic cancer is projected to become the 2
nd

 leading cause of cancer 

death [37], and over the next 20 years annual deaths from pancreatic cancer are expected 

to increase (the only one of the top five causes of cancer death to do so) until they double 

[38].  

Among the estimated 42,000 patients diagnosed in this country last year, only 7% were 

diagnosed at an early stage [39]. This gives pancreatic cancer the dubious distinction of 

having the highest mortality rate for any solid tumor, with a 5-year survival rate of only 

7%. Among those patients with advanced disease, there are two populations with 

considerable differences in survival. For those with metastatic disease, the 5-year survival 

is 1.8%, compared to 8% for those with localized regional disease (a tumor that is not 

amenable to surgical removal, typically due to involvement of critical blood vessels). 

Since the 5-year survival of patients with surgically resectable (or potentially resectable, 

after neo-adjuvant therapy) disease is 20%, accurate identification of such patients is 

essential to making progress in this disease.   

Current diagnostic methods, including computed tomography (CT), magnetic resonance 

imaging, and endoscopic ultrasound (EUS) have not been able to provide accurate 

diagnosis in early-stage disease, either because of failure identify small lesions or 

inability to accurately differentiate masses as either adenocarcinoma or pancreatitis 
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(inflammation of the pancreas). Intensive efforts to identify and utilize molecular markers 

have not been able to address this diagnostic challenge. 

1.5.2 Key Challenges 

The critical challenge is to provide an accurate tissue diagnosis, which allows rapid 

institution of therapy: either surgery for resectable tumors, neoadjuvant therapy for 

borderline resectable disease, or definitive chemoradiotherapy for patients with localized 

unresectable disease. A recent consensus statement [40] concluded that pretreatment 

tissue diagnosis is mandatory for patients considered for therapy and that the current 

preferred modality for obtaining a tissue diagnosis is endoscopic ultrasound-guided fine-

needle aspiration (EUS-FNA). However, this approach suffers from several limitations as 

discussed below.  

The challenges to accurate characterization of suspect pancreatic neoplasia result from 

the relative inaccessibility of the pancreas given its anatomical location, the non-specific 

nature of symptoms, and the characteristic stromal reaction with intense fibrosis 

associated with both adenocarcinoma and chronic pancreatitis. This similarity 

significantly complicates attempts to differentiate the two similar appearing lesions by 

imaging, even with cytological evaluation of fine-needle aspirates (FNAs). Finding small 

nests of tumor cells in a sea of fibrosis is one major challenge; the differentiation of well-

differentiated cancers from normal tissues, another key challenge is difficult to be 

achieved through cytology. 
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Figure 1.1 Early and accurate diagnosis of potentially curable pancreatic cancer patients 

is impossible in some cases with current diagnostic methods. The key challenge is 

distinguishing cancer from benign tissues, particularly in case of inflammation (chronic 

pancreatitis). Shown here is a clinical image from pancreatic EUS-FNA (endoscopic 

ultrasound-guided fine-needle aspiration), the diagnostic procedure-of-choice for tissue 

acquisition in suspect pancreatic cancer. It illustrates the lack of specific contrast afforded 

by ultrasound sensing alone [41]. The pancreatic mass is difficult to distinguish, and 

classification relies on cytology, which is often non-diagnostic. 

 

EUS has emerged as an innovative imaging modality to provide access to the pancreas 

for tissue evaluation and is the current diagnostic procedure-of-choice for tissue 

acquisition in suspected pancreatic cancer (Fig. 1.1).  While EUS imaging remains the 

most sensitive test to identify a pancreatic mass, determining whether the mass is benign 

or malignant remains problematic due to reliance on EUS-guided fine needle aspiration 

(FNA) sampling.  Unfortunately, these FNA cytology samples are often non-diagnostic, 

leading to a negative predictive value of only 50-70%, given the high pre-test likelihood 

for cancer among the patients referred for the procedure [42]. For those patients with a 

strong clinical suspicion of pancreatic cancer, laparotomy to obtain tissue for those with 
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unresectable disease or an unnecessary resection for those with a resectable tumor may be 

performed.  

This failure of accurate tissue characterization causes patients to undergo major surgery 

to reveal only benign or inflammatory disease on pathologic examination. The mortality 

of pancreatic surgery is in the range of 2-5% in experienced centers, with major 

morbidity of 20-25% [43]. In one study, as many as 9% of patients were reported to have 

undergone surgery for suspicion of cancer, only to reveal benign disease [44]. Recently, a 

prospective clinical study found that when chronic pancreatitis was present, EUS-FNA 

detected pancreatic adenocarcinoma with a sensitivity of only 54% [45] and a meta-

analysis of 28 clinical studies concluded that EUS-FNA is an inadequate technique to 

rule out malignancy [42]. 

1.6 Optical Techniques for Pancreatic Disease 

A variety of optical spectroscopic and imaging techniques have been attempted on 

cancerous and precancerous pancreatic tissues in animal models and human patients. 

(Fig. 1.2) Optical Coherence Tomography (OCT) has been employed to investigate the 

lesions of the main pancreatic duct in in vivo dog model [46], ex vivo human [47] and in 

vivo human [48] studies. Because it has a long penetration depth, OCT visualizes a 

layered epithelial structure and identifies characteristic patterns in malignant tissues. 

However, its sensitivity for identifying normal tissues is very low; thus OCT is non-

diagnostic in distinguishing normal tissues from other benign lesions. Since OCT images 

cannot display cellular nuclei and organelles clearly due to insufficient resolution and 

providing only a back-scattered pattern of the layers, additional image interpretation by 

an expert is required for an accurate diagnosis. Needle-based confocal fluorescence 
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microscopy coupled with a cathepsin-activatable near-infrared probe (NIRF) has 

demonstrated that molecular imaging could be a sensitive tool for detecting an early stage 

of pancreatic cancer in an in vivo mice model study [49]. There is a regulatory issue of 

using the exogenous NIRF probe for human patients.  Multi-center clinical trials results 

[50] on the needle based confocal laser endomicroscopy has reported a very low 

sensitivity (~ 58%) to detect pancreatic cystic neoplasms, probably because of the 

necessity of subjective interpretation of low resolution images. Non-linear optical 

microscopy has been proposed as a label-free and real-time method to characterize 

pancreatic histology at a cellular level [51]. However, the bulky and expensive 

instrumentation set up make it difficult to be translated into clinical practice.  Although 

diffuse optical tomography (DOT) has been developed and showed feasibility in porcine 

tissue [52], it is still at the development stage and requires further technical and 

biological validations.   

Optical scattering markers in duodenal mucosa have been investigated to predict the 

malignant changes in the pancreas based on the field effect theory [53]. A recent in vivo 

human study employing polarization gating spectroscopy [54] has revealed the diagnostic 

potential of detecting the increase in blood supply surrounding malignant tissues for 

identifying pancreatic cancer according to the field effect. However, the technology has 

critical limitations in distinguishing normal tissues from inflammatory tissues, which is 

currently the unmet clinical need.  Previous ex vivo studies [22, 55-57] performed in our 

lab have shown that reflectance and fluorescence optical spectroscopy has potential as a 

label-free, rapid, quantitative, compact, cost-effective optical biopsy tool to address 

current clinical needs. None of the optical techniques introduced here except optical 
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spectroscopy are yet ready for clinical translation because of technical immaturity, 

insufficient clinical efficacy, inability to address critical unmet needs in a clinic or 

instrumental/cost limitations. However, many technical issues still remain to be addressed 

in translating optical spectroscopy into in vivo human study. 

 

Figure 1.2 Types of optical techniques developed for pancreatic cancer diagnostics (A) 

left: OCT probe inserted inside Endoscopic retrograde cholangiopancreatography (ERCP) 

[47] right : obtained OCT images for normal (left) and tumor-involved main pancreatic 

duct sections [48]  (B) needle based confocal laser endomicroscopy images on intraductal 

papillary mucinous neoplasm [50] (C) Near infrared probed confocal imaging in mouse 

model [49] (D) Nonlinear optical microscopy images (left) on normal rat pancreas 

compared to hematoxylin and eosin image (right)(E) Polarization gating spectroscopy 

probing duodenal mucosa in endoscopy channel [54] (F) Diffuse optical tomography 

technique in duodenoscope [52] 

 

 

(D)(C)

(A) (B)
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1.7 Dissertation Objectives 

The main objective of this dissertation is to develop theoretical (mathematical and   

computational) and experimental (i.e. instrumental) tools to fill the gap between the 

current technology and the desired technology for human tissue optical sensing. Specific 

Aim 1 is focused on two different mathematical models for rapid and accurate 

quantification of human pancreatic tissue reflectance and fluorescence. Aim 2 involves 

the development of a new computational simulation method to evaluate fluorescence 

spectroscopy or imaging system in turbid media. Aim 3 concerns the instrumental design 

of optoelectronic microprobe that can be inserted into a hollow needle (~ 1 mm diameter) 

for optical sensing in a very limited space which even an endoscopic channel is unable to 

gain access.    

Specific Aim 1: To develop and validate a mathematical model for rapid and 

accurate quantitative analysis of ex vivo human pancreatic tissues. Two different 

mathematical models will be developed to extract parameters associated with biophysical 

features or scattering properties in order to rapidly and accurately assess human 

pancreatic tissues freshly excised during the surgery.  

Specific Aim 2: To devise and verify a computational method for the assessment or 

design of fluorescence spectroscopy or imaging system utilizing complex optics to 

probe turbid biological tissues. A new computational method will be developed by 

combining the conventional optical design software and the gold-standard Monte Carlo 

method, and will be verified computationally and experimentally.   

Specific Aim 3: To design and fabricate a prototype of an optoelectronic microprobe 

for an accurate diagnosis of pancreatic cancer during the EUS-FNA procedure. 

Microfabrication technology will be employed to fabricate a prototype board assembled 
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with miniaturized die-level optoelectronic component, and their overall performance and 

optical sensing feasibility will be tested using the calibrated tissue optical phantoms. 

1.8 Dissertation Overview 

Chapter 2 describes the development and validation of a rapid semi-empirical model, 

called the Direct Fit Photon Tissue Interaction Model (DF-PTI), for quantitative 

characterization of precursor lesions of pancreatic cancer. The DF-PTI model extracts 

parameters associated with morphological and biochemical features from the first-ever 

optical spectroscopic measurement on human pancreatic pre-cancerous tissues. 

Chapter 3 describes the development and validation of a simple scattering model of 

steady-state reflectance to evaluate the potential for real-time cancer detection using 

reflectance spectroscopy. The principal component analysis reveals that reflectance-only 

data has a e diagnostic performance comparable to that of the multi-modal approach. The 

simple and rapid scattering model is employed to analyze steady-state reflectance 

obtained from freshly excised human pancreatic tissues. The diagnostic power of 

scattering properties of pancreatic tissue in distinguishing malignant from non-malignant 

tissues will be evaluated utilizing a rigorous tissue classification algorithm. 

Chapter 4 describes the basic principle of ray-traced Monte Carlo simulation method and 

its verification on computational tissue models and two-layered optical tissue-simulating 

phantoms.   

Chapter 5 describes the design, fabrication, assembly, characterization and feasibility 

tests on the first prototype of an optoelectronic microprobe that is compatible with a 

hollow needle for accurate in vivo pancreatic cancer detection. 
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Chapter 6 summarizes and concludes the dissertation with a statement of its scientific 

contributions and a discussion of future works.  
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Chapter 2.                                                                                                                    

Mathematical Model on Diffuse Reflectance of Pancreatic Pre-Cancerous Tissues 

2.1 Introduction 

Pancreatic adenocarcinoma, the 4
th

 leading cause of cancer death in the United States 

with a five-year survival rate of less than 7%, is often detected at late-stages of 

development when treatment is ineffective [58]. Intraductal papillary mucinous neoplasm 

(IPMN, Fig. 2.1) is a precursor lesion of pancreatic cancer, characterized by an 

intraductal proliferation of neoplastic cells with mucin production [59].  

IPMN diagnosis, which could offer an opportunity to treat patients before they develop a 

potentially incurable pancreatic malignancy, may be challenging; identifying those IPMN 

with progression to malignancy remains an unmet medical need. Of the main imaging 

modalities employed to detect IPMN (computed tomography, endoscopic retrograde 

cholangiopancreatography, magnetic resonance cholangiopancreatography, and 

endoscopic ultrasonography (EUS)), EUS offers the highest resolution [60] and enables a 

cytologic diagnosis of IPMN via fine-needle aspiration (EUS-FNA). However, the 

sensitivity of EUS-FNA cytology diagnosis is low (44-75%) [61, 62] and the technique 

suffers from a steep learning curve and high inter-operator variability [63]. Thus, the 

effectiveness of identifying cancer precursor lesions such as IPMN could be improved by 

developing a more sensitive and quantitative detection method. 
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Figure 2.1 Representative histological images of (A) normal pancreatic ductal tissue 

(BPC: benign pancreatic cell), (B) IPMN (MPC: malignant pancreatic cell with enlarged 

nuclei), and (C) pancreatic adenocarcinoma (AC with enlarged nuclei). The nuclei and 

stroma have been stained purple (hematoxylin stain) and pink (eosin stain), respectively. 

Note that IPMN and AC tissues have similar biophysical features, including nuclear 

enlargement and abundant collagen surrounding cells, relative to normal tissues. These 

features can be analyzed by quantitative multimodal optical spectroscopy. 
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Optical spectroscopy has shown promise as a potential diagnostic tool for pre-cancer 

detection in various human tissues, including the cervix [64], the colon [65] and the 

breast [7]. Advantages of optical spectroscopy compared to current imaging modalities 

(listed above) include quantifying tissue morphological and biochemical alterations 

occurring at the molecular and cellular levels during neoplastic progression [66] and 

clinical compatibility with EUS-FNA procedures [67]. Previously, our group successfully 

distinguished human pancreatic diseases, including pancreatic adenocarcinoma (AC) and 

chronic pancreatitis, from normal tissues with multimodal optical spectroscopy and a 

mathematical photon-tissue interaction (PTI) model [22, 55, 56, 68].  

Here, we report the first, to our knowledge, optical spectroscopic (reflectance and   

fluorescence) measurements from human pancreatic malignant precursor, IPMN. Because 

the study employed tissues obtained surgically, typically from patients with advanced 

disease, the opportunity to study IPMN (a cancer precursor) in patients was limited. For 

freshly excised pancreatic tissues (Fig. 2.1), we developed quantitative tissue-optics 

models to assess the biophysical similarities and differences between normal tissues, 

IPMN, and AC tissues. 

2.2 Experimental methods 

2.2.1 Instrumentation 

A Reflectance and Fluorescence Lifetime Spectrometer (RFLS) [10], was employed to 

obtain reflectance and fluorescence spectra of human pancreatic tissues. A tungsten 

halogen lamp (HL 2000FHSA, Ocean Optics) provided white light (400-750 nm) for 

reflectance measurements; a pulsed laser at 355 nm (PNV001525-140, JDS Uniphase) 

provided fluorescence excitation light. Lamp and laser light was delivered to tissue via 
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two separate optical fibers with core diameters of 600 μm. Tissue reflectance and 

fluorescence light were collected by a third identical fiber and delivered to the detectors. 

Collected light was passed to a spectrograph (MS 125, Oriel Instruments) coupled to an 

intensified charge-coupled device camera (ICCD 2063, Andor Technology) to detect 

tissue reflectance (400-750 nm) and fluorescence (360-700 nm). The RFLS also 

measured time-resolved fluorescence decays, which are not discussed here. Data 

aquisition time for each modality was less than 1 s. All measured spectra were 

background subtracted, corrected, and normalized as in [10].   

2.2.2 Human studies and data set 

The study was approved by the Institutional Review Board of the Univ. of Michigan (U 

of M) Medical Center. Informed written consent was obtained from each patient. Optical 

data were acquired from freshly-excised human pancreas within 30 minutes of resection 

during pancreatic surgery. Measurements were taken at up to 10 sites on each tissue 

specimen, depending on specimen size. At each site, two reflectance and two 

fluorescence spectra were collected. For each tissue site, immediately after optical 

measurements were acquired, the site was biopsied by a clinical pathologist for 

histopathological tissue analysis to confirm diagnosis.   

Table 2.1 Numbers of patients and analyzed tissue sites for each tissue type 

Tissue Type Number of Patients 
Number of Analyzed Tissue Sites  

Reflectance Fluorescence 

Normal 3 11  11  

IPMN 2 8 5  

AC 4 17  17  
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Table 2.1 summarizes the study. Two measurements on each site were averaged for 

analysis. The IPMN diagnoses were “IPMN with moderate dysplasia,” as shown in Fig. 

1. The 22 normal and 33 AC reflectance and fluorescence spectra from 11 and 17 sites, 

respectively, used for comparison with the IPMN data, were reported previously [68]. For 

one IPMN patient, fluorescence spectra were not recorded due to misalignment. Among 

18 measured IPMN reflectance spectra from 9 sites, two spectra from one site were 

excluded by the exclusion criteria R550 nm/R650 nm < 0.1 [12, 14] due to excessive blood 

absorption.  

2.2.3 Direct Fit PTI model for steady-state reflectance and fluorescence  

A PTI model for reflectance and fluorescence spectra was reported [22, 68]. The model 

employed a semi-empirical reflectance equation to extract absorption- and scattering-

related tissue parameters from measured reflectance spectra. The empirical model was 

described as a function of the tissue scattering coefficient (related to the cellular nuclear 

diameter L, nuclear refractive index ns, and cellular density [Cell]) and the tissue 

absorption coefficient (related to a linear combination of oxygenated [oxy-Hb] and 

deoxygenated [deoxy-Hb] hemoglobin concentration). In this model, nuclear diameter, 

total hemoglobin concentration and oxygen saturation were freely varied for fitting with 

remaining variables fixed. 

Here, a Direct Fit PTI (DF-PTI) model was developed and employed with seven main 

modifications to the previous model [12] : 1) to improve fit quality at all wavelengths, the 

semi-empirical model was fit directly to the measured data without a “canonical normal” 

spectrum, 2) the wavelength range for fitting was expanded from 700 nm to 750 nm to 

more accurately account for the effect of cellular nuclear size and refractive index on 
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spectrum shape [69], 3) the cost function was minimized with a nonlinear least-squares 

iterative algorithm, 4) bilirubin [Bilirubin] was added as an absorber [67], 5) collagen 

concentration [Collagen] and cellular density [Cell] were freely varied, 6) nuclear 

refractive index was freely varied, as the refractive index is related to tissue malignancy 

[70], and 7)  the mean vessel radius Rv was freely varied [71]. In the original PTI model, 

mean vessel radius was fixed at 7 µm and the absorption coefficient of whole blood was 

employed for the vessel packaging correction factor. In the DF-PTI model, the blood 

absorption in the capillary network was modeled with a varying vessel radius size and 

blood volume fraction (ρ) [72].  The ranges of varied tissue parameters employed in the 

DF-PTI model are shown in Table 2.2  

Table 2.2 Ranges of all the varied tissue parameters in the DF-PTI reflectance model 

 

For each tissue measurement, the scattering coefficient calculated via the best DF-PTI 

reflectance fit was employed to correct the corresponding fluorescence spectrum for 

attenuation [22]. As measurements were ex vivo and local blood content could vary over 

time, only the extracted scattering, and not absorption, coefficient was employed to 

calculate intrinsic fluorescence, while hemoglobin and bilirubin concentrations were 

varied when calculating intrinsic fluorescence. The resulting intrinsic fluorescence 

spectra were fit to a linear combination of basis spectra of three endogenous tissue 

Parameters L ns [Cell] [Collagen] 
[oxy-Hb] 
[deoxy-
Hb] 

Rv ρ [Bilirubin] 

Min. Value 8 μm 1.37 5.6×10
7 
(/cm

3
) 1.0×10

6 
(/cm

3
) 0 µM 7µm 0 0  µM 

Max. Value 14 μm 1.40 8.4×10
7 
(/cm

3
) 1.0×10

7 
(/cm

3
) 50  µM 20µm 0.15 40  µM 
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fluorophores: nicotinamide adenine dinucleotide (NADH, 450-500 nm emission peak), 

flavin adenine dinucleotide (FAD, 500-600 emission peak ) and collagen (400-450 

emission peak) [22]. The best fit provided the fractional contribution of each fluorophore 

to the intrinsic fluorescence.  

2.3 Results and Discussion 

2.3.1 Comparison between PTI model and DF-PTI model  

Figure 2.2 compares the fitting results of the (A) PTI model and the (B) DF-PTI model. 

Analyzed reflectance spectra were collected from a tissue site confirmed to be IPMN 

with moderate-grade dysplasia. In the wavelength range 450–530 nm, which is related to 

nuclei scattering [55], the DF-PTI showed improved fit accuracy compared to the PTI 

model. In the Soret (400 – 420 nm) and alpha/beta bands (500 – 540 nm) of hemoglobin 

absorption, the DF-PTI showed improved fit accuracy compared to the PTI model. In the 

slope after 620 nm (attributed to tissue scattering) [67], the DF-PTI showed improved fit 

accuracy compared to the PTI model.  The mean percent error of the DF-PTI model was 

less than 2 %, which showed a better accuracy than the PTI (~8%). The execution time 

for DF-PTI model fitting procedure on each site was less than 2 seconds, reduced from > 

30 seconds for the PTI model. 
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Figure 2.2 Representative model fitting results on measured IPMN reflectance spectra 

using (A) the original PTI model, and (B) the developed DF-PTI model.  Solid green 

lines indicate measurement IPMN reflectance and dotted red lines indicate each model 

fit. 

2.3.2 Reflectance analysis  

Figure 2.3 (A) shows the average of all normalized reflectance spectra from human 

pancreatic tissues: normal, IPMN with moderate dysplasia, and AC tissues. The features 

in the 400-440 nm and 540-580 nm ranges were attributed mainly to hemoglobin 

absorption. The higher reflectance in the 450-530 nm range in IPMN and AC sites was 

attributed to the cellular density and nuclear size [22, 68]. Figure 2.3 (B) shows 

wavelength-dependent standard errors of the mean spectra for each tissue type. It is noted 

that standard errors are greatest in the wavelength range related hemoglobin absorption. 

Figure 2.3 (C) shows a representative PTI model fit to IPMN reflectance. Mean percent 

error between measured data and fit for all the measurements was less than 5% in the 

range 450-750 nm. The mean values of extracted nuclear diameters and refractive indices 

from IPMN measurements were larger than those from normal tissues (Table 2.3) 
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Figure 2.3 Quantitative analysis of measured reflectance spectra can distinguish IPMN 

and AC from normal pancreas. (A) Mean of normalized reflectance spectra obtained from 

human pancreatic normal tissues, IPMN with moderate dysplasia, and AC. (B) 

Wavelength-dependent standard error bars of mean measured spectra for each tissue type. 

(C) Representative PTI model fit for IPMN reflectance. 

 



 

27 

 

The mean extracted nuclear sizes are consistent with histology (Fig. 2.1), indicating 

nuclear enlargement both in IPMN and AC relative to normal pancreas. Additionally, the 

ratio of the extracted nuclear size of AC to normal tissue (11.64/8.89 = 1.30) is consistent 

with the previously reported nuclear dilation factor L/L0 (1.27 ± 0.01) [68]. The result for 

mean extracted refractive index of normal pancreas (1.372) was consistent with previous 

reports [22, 68]. The extracted nuclear refractive indices of IPMN and AC were larger 

than that of normal pancreas. This finding is consistent with studies reporting that 

dysplastic cell nuclei have larger refractive indices than normal nuclei due to the higher 

DNA content and concentrations of nucleic acids in dysplastic cells relative to normal 

cells [70, 73].    

 Here, variations in local tissue blood content arising from the experimental protocol 

(tissue dissection prior to optical measurement) preclude the reporting of tissue 

absorption-related parameters. We note that mean estimated vessel radii were 11 to 13 

µm for all tissue types. Larger estimated vessel radius (compared to previously employed 

7 µm), with the inclusion of fractional blood volume, produced more accurate fits within 

the Soret absorption band. 

Table 2.3 Extracted parameters related to tissue scattering for each tissue type 

Tissue Type Nuclear diameter  Refractive index  Cell Density  Collagen Density 

Normal 8.89 ± 0.13 μm 1.372 ± 0.002 8.07 ± 0.12 ×10
7
/cm

3
 1.28 ± 0.16 ×10

6
/cm

3
 

IPMN 11.50 ± 0.88 μm 1.394 ± 0.004 7.15 ± 0.09 ×10
7
/cm

3
 6.15 ± 1.56 ×10

6
/cm

3
 

AC 11.64 ± 0.37 μm 1.396 ± 0.002 7.21 ± 0.09 ×10
7
/cm

3
 8.58 ± 0.62 ×10

6
/cm

3
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Figure 2.4 Quantitative analysis of measured fluorescence spectra can distinguish IPMN 

and AC from normal pancreas. (A) Mean of normalized fluorescence spectra obtained 

from human pancreatic normal tissues, IPMN with moderate dysplasia, and AC. (B) 

Wavelength-dependent standard error of mean spectra for each tissue type. (C) 

Representative PTI model fit for IPMN intrinsic fluorescence 
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2.3.3 Fluorescence analysis  

Figure 2.4 (A) shows the average of all normalized fluorescence spectra from human 

pancreatic normal, IPMN, and AC tissues. Fluorescence spectra included contributions 

from intracellular NADH and FAD, and from stromal collagen, with emission peaks 

around 470 nm, 540 nm, and 430 nm, respectively. Although measured fluorescence 

spectra were attenuated by hemoglobin absorption, notable spectral differences between 

normal and diseased pancreas were apparent. Figure 2.4 (B) shows the wavelength-

dependant standard error of the mean spectra for each tissue type, with higher variation in 

the wavelength band attributed to hemoglobin absorption. Intrinsic fluorescence was 

calculated from measured fluorescence (Fig. 2.4 (C)). Mean percent error of fitting 

intrinsic fluorescence in the range 400-550 nm was under 7%.  

The extracted percentage contribution from collagen emission to the intrinsic 

fluorescence for normal, IPMN, and AC tissues were 45.4 ± 7.3 %, 92.2 ± 3.4 % and 76.1 

± 5.4 %, respectively. The collagen contribution to the intrinsic tissue fluorescence was 

greater for IPMN and AC tissues than for normal pancreas. This result is consistent with 

histological findings (Fig. 2.1), which indicate a collagen-rich stroma in IPMN and AC 

relative to normal pancreas. The increase of extracellular collagen content in IPMN and 

AC relative to normal pancreas arises from a fibrotic response during disease 

development, with collagen surrounding IPMN being more mature and with denser 

organization, since it is formed more slowly than collagen surrounding pancreatic AC, 

which is immature and newly formed in the process of tumor-induced desmoplasia 

(abundant fibrotic stroma) [74]. 
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2.4 Conclusion 

The DF-PTI model was developed and employed to quantitatively analyze reflectance 

spectra from pre-cancerous human pancreatic tissues. The DF-PTI model is faster and fits 

measured data more accurately (over a wider wavelength range) than previously-reported 

models.  

The analysis results suggest that multimodal tissue optical spectroscopy coupled with 

quantitative tissue-optics models can characterize intraductal papillary mucinous 

neoplasm (IPMN), a cancer precursor in human pancreatic tissues. The analysis 

developed here assessed parameters associated with cellular nuclear size, nuclear 

refractive index, and tissue collagen content, and the results were consistent with known 

histopathology for these tissues. 

Parameters extracted from model fits to reflectance and fluorescence data distinguished 

IPMN tissues from normal pancreas and closely associated IPMN tissues with pancreatic 

cancers. Thus, optical characterization of IPMN tissues, which have similar optical 

scattering properties to adenocarcinoma, could enable early clinical intervention, 

including follow-up examinations to monitor progression to malignancy with the goal to 

intervene prior to development of an incurable pancreatic cancer.  
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Chapter 3.                                                                                                                             

Quantitative Analysis for Real-time Pancreatic Cancer Detection 

3.1  Introduction  

For a minimally-invasive and accurate diagnostic tool for pancreatic cancer detection, a 

multimodal optical spectroscopy was previously developed to demonstrate the first 

optical spectroscopic assessment on a mouse xenograft model and freshly excised human 

pancreatic tissues [55]. Also, a mathematical model called photon tissue interaction (PTI) 

model based on a semi-empirical model was previously developed to provide the first 

quantitative link between pancreatic tissues histology and the obtained reflectance and 

fluorescence spectra [22]. For accurate diagnostics, tissue classification algorithm based 

on a linear discriminant analysis employing the spectral area and ratio, was created on the 

dataset of nine patients consisting of 96 fluorescence and reflectance measurements: 33 

measurements from 17 adenocarcinoma sites, 41 from 22 pancreatitis sites and 22 from 

11 normal sites [56]. The PTI model has been validated on the same dataset to reveal that 

the extracted biophysically-relevant parameters such as nuclear enlargement factor and 

collagen fluorescence contribution can distinguish adenocarcinoma from pancreatitis and 

normal tissue with statistical significance [57].  

However, the previous studies suffer from a limited patient population, which made it 

difficult to draw a convincing conclusion about the diagnostic accuracy of optical 

spectroscopy. Furthermore, multiple sites were measured per patient, leading to intra-

patient correlation. Thus, a more statistically-rigorous classification algorithm is required 
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on a larger patient number to more accurately assess the diagnostic accuracy. Using that 

tissue classification algorithm, a different analysis model could be tested for accurate and 

rapid quantification method for real-time pancreatic detection. In this chapter, we present 

tissue classification results employing a principal component analysis on both reflectance 

and fluorescence data obtained from 18 patients. The results show that reflectance data 

only has the classification performance comparable to the combination of the reflectance 

and fluorescence spectroscopy. Based on this finding, we further introduce the scattering 

model to analyze pancreatic tissue reflectance and describe the diagnostic capabilities of 

scattering properties of human pancreatic tissues.   

3.2 Materials and Methods  

3.2.1 Instrumentation 

A clinically-compatible reflectance spectroscopy and fluorescence system [10] was 

employed in the study. In this work, we have focused on characterizing pancreatic tissue 

via reflectance spectroscopy. Also, the detailed descriptions about a setup for 

fluorescence spectroscopy and data processing can be found in the literature [75].     

With our focus on reflectance, the instrumental set up for reflectance measurements 

consisted of a tungsten-halogen lamp (HL 2000FHSA, Ocean Optics, Dunedin, FL) as a 

broadband light source, a spectrograph (MS 125, Oriel Instruments, Stratford, CT) 

coupled with an ICCD (2063 Andor Technology, Belfast, Northern Ireland) for recording 

spectrum, and a hand-held optical probe to deliver and collect light to and from 

pancreatic tissues (Fig 3.1 (a))[55]. The probe had two multi-mode optical fibers for 

source and detector (600 µm core diameter and 660 µm center-to-center spacing). Spectra 
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were collected in the range from 460 nm to 760 nm with 0.7 nm spectral resolution. 

Acquisition time for one spectrum was less than 0.5 seconds.   

To correct measured tissue reflectance for instrument artifacts, measured spectrum 

RTISSUE_meas(λ) was background-subtracted and calibrated for spectral response of the 

system. The dark background RBG_meas(λ), was measured prior to every reflectance 

acquisition. The spectral response, RREF_meas(λ) was acquired by placing a probe at fixed 

distance (6 mm) from a 50% diffuse reflectance Spectralon standard (SRS-50-010, 

Labsphere, North Sutton, NH) before the surgery began. Known reflectance of the diffuse 

standard, RREF_known(λ), was multiplied to the corrected spectrum, generating a relative 

tissue reflectance to the standard, RTISSUE (λ) (Eg.3.1) .  

_ _

_

_ _

( ) ( )
( ) ( )

( ) ( )

TISSUE meas BG meas

TISSUE REF known

REF meas BG meas

R R
R R

R R

 
 

 

 
  

  
        Equation 3.1 

 

Figure 3.1 (A) Schematic of the fiber-optic-based instrument and its advantages for 

clinical usage. The instrument has a compact configuration inside a clinically-compatible 

mobile cart. Acquisition time is less than 0.5 s, enabling real-time analysis without 

patients’ motion artifact. Unlike aspiration cytology, non-invasive optical measurement 

enables to examine intact tissues with the interrogation volume of 1 mm
3
, which is a 

typical FNA volume. Smaller fiber optic probe can be employed to be compatible with 

the EUS-FNA needle. All technical feature makes reflectance spectroscopy suitable for a 
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real-time optical biopsy tool (B) Mean measured reflectance spectra (solid- colored lines, 

left y-axis) for three pancreatic tissue types using the instrument and molar extinction 

coefficients of oxygenated and deoxygenated hemoglobin (solid-gray and dashed-gray, 

right y axis). Error bars for the mean spectra represent the standard error. Blue-shaded 

region indicates a wavelength window (> 630 nm) that is relatively independent from 

tissue absorption (mainly due to hemoglobin) and show a distinctive difference between 

pancreatic tissue types. Thus, this wavelength range is of our interest for tissue scattering 

analysis. 

3.2.2 Human Study  

Reflectance data was collected from 18 patients who underwent pancreatic surgery (age 

36 to 79, mean ± SD = 62.9 ± 11.3; 5 males and 13 females). Study was approved by the 

Institutional Review Board of University of Michigan and consent was acquired from the 

patients prior to all measurements. Within 30 minutes after pancreas was excision, a 

pathologist accessed pancreatic tissue sites for optical measurement. The end of the fiber 

optic probe was placed in contact with the tissues sites and two measurements were 

performed sequentially. Depending on the sample, up to 10 sites were measured. 

Immediately after data acquisition, the pathologist collected a biopsy from the same site. 

Biopsied tissue was approximately 3-5 mm in diameter which corresponds to optical 

interrogation volume of ~ 1 mm
3
 in this study. Obtained biopsies were fixed in formalin, 

paraffin-embedded, sectioned and stained with hematoxylin and eosin for histologic 

examination.  Histology confirmed 39 normal sites from 9 patients, 34 pancreatitis sites 

from 9 patient and 32 adenocarcinoma sites from 8 patients were analyzed. Some 

different tissue types were measured from the same patient. Of the total of 117 sites, 12 

sites were excluded due to excessive blood content or low SNR. 

3.2.3 Principal Component Analysis  

To investigate the diagnostic capability of reflectance and florescence data for classifying 

malignant tissue from non-malignant tissues, a Principle Component Analysis (PCA) 
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model was employed to extract the principal components from each reflectance and 

fluorescence spectrum. The inputs to the PCA code were the corrected and normalized 

reflectance and fluorescence spectra. The PCA code was written in MATLAB using a 

native MATLAB function.  

3.2.4 Rapid and Simple Scattering Model for Reflectance Analysis 

Although the reflectance spectra were acquired in the wavelength range from 460 to 760 

nm, only the range from 630 to 760 nm was analyzed to extract tissue scattering 

parameters. It’s because that the absorption by major chromophores in human tissues is 

negligible and the acquired spectra of each pancreatic tissue type showed a distinctive 

difference (Fig. 3.1(b)) in this range. Without absorption, it was observed there was a 

linear relationship between the reflectance and the reduced scattering coefficient [15]. 

Thus, tissue reflectance was simply modeled using (Eq. 3.2).  

0'TISSUE sR a a 
                                                                                     Equation 3.2 

 Here, the coefficients of a and a0 values were obtained by a linear fitting of measured 

reflectance values on manufactured tissue-simulating phantoms described in detail in Fig. 

3.2. The reduced scattering coefficients of manufactured phantoms ranged from 5 to 20 

cm
-1

 within a typical range for human tissues [76]. The wavelength-resolved reduced 

scattering coefficient was modeled using power law dependence on the wavelength (Eq 

3.3), which is widely accepted in biomedical optics [76, 77].     

0 0' ( ) ' ( )( / )s s

      
                                                                     Equation 3.3 

µ’s(λ0) was the reduced scattering coefficient value at the reference wavelength, 630nm 

and the exponent γ was defined as scattering power, which was known to be related to 
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average scatterer size [78, 79]. This simple scattering model based on power law 

dependence fitted the corrected tissue reflectance to extract two scattering parameters 

µ’s(630) and γ.  The fitting range of µ’s(630 nm) was limited to a typical value of human 

tissues and the scattering power γ was 0.2 < γ <4.0 from theoretical [80] and 

experimental [81] results. A nonlinear least squares algorithm was employed for rapid 

fitting procedures and the process time per one spectrum was less than a hundred 

milliseconds. 

3.2.5 Phantom Calibration  

Solid phantoms were made using an agarose (161-3101, Bio-Rad Laboratories, Hercules, 

CA) according to the literature published recipe [76]. Briefly, 0.2 g of agarose powder 

was added to boiling DI water (20mL) and dissolved. The, the mixture was cooled at 

room temperature until ~ 80 ˚C. Before reaching 60 ˚C, either 0.4, 0.8, 1.2 and 1.6 mLs 

of 20% Intralipid (I141, Sigma-Aldrich, St. Louis, MO) were added to different agarose 

solutions as a scattering agent and thoroughly stirred until the solution was homogeneous. 

At 40 ˚C, the mixed solution was transferred into a glass beaker to solidify, which took 

about two hours. Resulting phantom is a solid cylinder with a diameter of 40 cm and a 

depth of 3 cm.  
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Figure 3.2 Linear relationship (R
2
 = 0.99) between the measured relative reflectance and 

reduced scattering coefficients of the scattering phantoms with no absorbers. Error bars 

present standard deviation. The range of reduced scattering coefficients, from 10 to 20 

cm
-1

 is relevant to human pancreatic tissues. 

 

Reduced scattering coefficient of each phantom was determined by an integrating sphere 

(RT-60-SF, Labsphere, North Sutton, NH) setup and an inverse adding-doubling 

algorithm [82]. Reduced scattering coefficients at 630nm of four phantoms were 

calculated to be 3.6, 6.7, 12.0 and 19.2 cm
-1

, respectively. Manufactured phantoms were 

also measured by reflectance spectroscopy. Four sites were measured on each phantom. 

Measured phantom spectra were background-subtracted and calibrated. Linear regression 

was performed on reflectance data with the corresponding reduced scattering coefficients 

to determine the coefficients of a and a0 

3.2.6 Statistical Analysis and Performance Metrics  

For the initial comparison, a two-sided Wilcoxon rank sum test was performed to assess 

the ability of each scattering parameter to discriminate three tissue types. To evaluate 

their classification ability in a more statistically-rigorous way, a multinomial logistic 
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regression using Generalized Estimating Equations (GEE) model [83, 84] was employed 

in a “leave-two-patients-out” cross-validation method.  The GEE accounted for the 

correlation among sites measured from the same patients [85, 86]. In the cross validation, 

dataset was split into 9 training sets and testing sets including 16 patients and 2 patients, 

respectively. The classification algorithm was run for each of the 9 training and testing 

sets. In each run, multinomial logistic regression was carried out on the training set to 

obtain fit coefficients using tissue type information determined by histopathology. Those 

fit coefficients were used as inputs for GEE. Optical diagnosis probabilities were 

calculated by using fit coefficients and scattering parameters from the testing set.  

A threshold was then applied to these probabilities to determine sensitivity and specificity 

for all different classifications including malignant vs. benign (normal and pancreatitis), 

which is considered a current clinical need, disease (adenocarcinoma and pancreatitis) vs. 

normal, adenocarcinoma vs. normal, adenocarcinoma vs. pancreatitis and pancreatitis vs. 

normal.  Confidence intervals for sensitivity and specificity were calculated using Wilson 

score interval with continuity correction [87]. Receiver operator characteristics (ROC) 

analysis curves also evaluated the classification ability of scattering parameters along 

with the area under curve (AUC) values. 

3.3 Results  

3.3.1 PCA Analysis and Classification Results  

The first three reflectance and fluorescence principal components, their scores, and their 

statistical significance for distinguishing between the tissue types are displayed in Fig. 

3.3. The first reflectance principal component score (RPC1) and the first fluorescence 

principal component score (FPC1) were the most statistically significant (p < 0.01) for 
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distinguishing adenocarcinoma from normal pancreatic tissue, distinguishing 

adenocarcinoma from chronic pancreatitis, and distinguishing chronic pancreatitis from 

normal pancreas.  

 

Figure 3.3 (A, B) First three principal components (accounting for 95% of the spectral 

variation) of the reflectance (A) and fluorescence (B) data sets. (C, D) Parameters 

extracted from principal component analysis (PCA) of tissue optical spectra, shown with 

their statistical significance for tissue classification. (C) The first reflectance principal 

component score was statistically significant for distinguishing adenocarcinoma from 

normal pancreatic tissue (p < 1x10
-4

), distinguishing adenocarcinoma from chronic 

pancreatitis (p < 9x10
-3

), and distinguishing chronic pancreatitis from normal pancreatic 

tissue (p < 2x10
-3

). (D) The first fluorescence principal component score was also 

statistically significant for distinguishing adenocarcinoma from normal pancreatic tissue 

(p < 1x10
-4

), distinguishing adenocarcinoma from chronic pancreatitis (p < 3x10
-3

), and 

distinguishing chronic pancreatitis from normal pancreatic tissue (p < 5x10
-3

). To remove 

negative values for ease of display, an offset of 4 was added to all principal component 

scores before they were plotted on the bar graph. 
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Variables from the PCA model were input into the tissue classification algorithm to 

distinguish between adenocarcinoma, chronic pancreatitis, and normal pancreas. The 

outputs of the classification algorithm were the optical diagnosis probabilities P(N), 

P(CP), and P(A) of each tissue site being normal, chronic pancreatitis, or 

adenocarcinoma, respectively. Ternary plots of the optical diagnosis probabilities P(N), 

P(CP), and P(A) were created for classification procedures that used both reflectance and 

fluorescence (Fig. 3.4), as well as reflectance only and fluorescence only (Fig. 3.5).  

 

Figure 3.4 Ternary plot of optical diagnosis probabilities (probability P(N) that a tissue 

site is normal; probability P(CP) that the site is chronic pancreatitis; probability P(A) that 

the site is adenocarcinoma), as determined by principal component analysis. The tissue 

sites are color-coded according to histopathological diagnosis. Shown alongside the 

ternary plot are the sensitivity, specificity, positive predictive value (PPV), and negative 

predictive value (NPV) for distinguishing malignant (adenocarcinoma) tissue sites from 

non-malignant (normal and chronic pancreatitis) tissue sites. Parameters from reflectance 

(first three principal component scores) and fluorescence (first principal component 

score) were both used in this method, and one threshold (P(A) > 0.3; red line) was 

employed to achieve the shown classification accuracy. 
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The resulting sensitivity, specificity, PPV, and NPV for distinguishing adenocarcinoma 

from non-cancerous tissues (Table 3.1) were calculated using cross-validation to be 91%, 

82%, 69%, and 95%, respectively.  The corresponding area under the ROC curve was 

0.89 for the algorithm including both reflectance and fluorescence PCA parameters. 

These results show the high diagnostic accuracy of the optical method employing both 

reflectance and fluorescence, as described in this report. Additional variations of the 

classification algorithm were run to compare the results obtained by using only 

reflectance variables (RPC1, RPC2, RPC3) and only fluorescence variables (FPC1, 

FPC2) with those obtained by using a combination of reflectance and fluorescence 

variables (RPC1, RPC2, RPC3, FPC1). For these comparisons, thresholds were manually 

selected such that the resulting sensitivity was the same (91%) for all three algorithms, 

and then the corresponding specificity, PPV, and NPV of the three algorithms were 

compared.  

 

Figure 3.5 Ternary plots of optical diagnosis probabilities (probability P(N) that a site is 

normal; probability P(CP) that the site is chronic pancreatitis; probability P(A) that the 

site is adenocarcinoma), as determined by optical spectroscopy with principal component 

analysis, using reflectance data only (A) and fluorescence data only (B). The tissue sites 

are color-coded according to histopathological diagnosis 
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Using only reflectance variables, and choosing the threshold of P(A) > 0.20 for cancer 

diagnosis, the sensitivity, specificity, PPV, and NPV for distinguishing adenocarcinoma 

from non-cancerous tissues were 91%, 84%, 71%, and 95% (Table 3.1). The area under 

the ROC curve was 0.89 when only reflectance variables were employed (Fig. 3.6). 

Using only fluorescence variables, and choosing the threshold of P(A) > 0.22 for cancer 

diagnosis, the sensitivity, specificity, PPV, and NPV for distinguishing adenocarcinoma 

from non-cancerous tissues were 91%, 78%, 65%, and 95% (Table 3.1). The area under 

the ROC curve was 0.86 when only fluorescence variables were employed (Fig. 3.6).  

 

Figure 3.6 Receiver operating characteristic (ROC) curves for distinguishing malignant 

(adenocarcinoma) tissue sites from non-malignant (normal and chronic pancreatitis) 

tissue sites using PCA parameters from both reflectance and fluorescence data (solid blue 

line), PCA parameters from only reflectance data (dashed red line), and PCA parameters 

from only fluorescence data (dashed green line). The ROC curves were generated by 

applying a threshold to the optical diagnosis probability of adenocarcinoma. The area 

under the ROC curve was 0.89 for combined reflectance and fluorescence parameters, 

0.89 for only reflectance parameters, and 0.86 for only fluorescence parameters. 
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These results show that optical spectroscopy accurately classify pancreatic disease from 

normal tissues. Interestingly, for distinguishing between the tissue types measured in this 

study, using reflectance alone performed as well as diagnostic accuracy of the reflectance 

and fluorescence parameters (Table 3.1). This is a significant finding, as an optical device 

that used only reflectance would be less expensive, more compact, and faster when 

performing measurements. 

 

Table 3.1 Sensitivity, specificity, positive predictive value, negative predictive value, and 

area under the receiver operating characteristic curve of optical spectroscopy for 

distinguishing between pancreatic adenocarcinoma (A), chronic pancreatitis (CP), and 

normal pancreatic tissue (N). 

 

 

 

 

Method Classification Sensitivity Specificity

Positive 

Predictive 

Value

Negative 

Predictive

Value

Area 

Under 

Curve

Reflectance 

&Fluorescence 

A vs. (CP and N) 91% 82% 69% 95% 0.89

(A and CP) vs. N 83% 87% 92% 76% 0.90

A vs. N 97% 90% 89% 97% 0.96

A vs. CP 91% 71% 74% 89% 0.81

CP vs. N 77% 82% 79% 80% 0.84

Reflectance A vs. (CP and N) 91% 84% 71% 95% 0.89

(A and CP) vs. N 82% 87% 92% 74% 0.89

A vs. N 94% 95% 94% 95% 0.97

A vs. CP 91% 68% 73% 89% 0.81

CP vs. N 71% 87% 83% 77% 0.83

Fluorescence A vs. (CP and N) 91% 78% 65% 95% 0.86

(A and CP) vs. N 76% 87% 91% 68% 0.81

A vs. N 94% 90% 88% 94% 0.91

A vs. CP 81% 77% 77% 81% 0.78

CP vs. N 68% 85% 79% 75% 0.73
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3.3.2 Scattering Analysis and Classification Results  

Figure 3.7 (A) shows representative reflectance spectra from 630 to 760 nm, measured on 

three sites of each tissue type. Each of 9 spectra comes from all different patients.  At a 

glance, it is observed that the reflectance from adenocarcinoma sites is lower than those 

from normal and pancreatitis sites. Goodness of fit in Fig. 3.7 (A) suggests the employed 

rapid and simple scattering model well describes wavelength-resolved reflectance above 

630 nm. Given a linear relationship between the reflectance and the reduced scattering 

coefficients, mean wavelength- resolved reduced scattering coefficient for normal sites is 

higher than pancreatitis and adenocarcinoma (Fig. 3.7 (B)). Range (4 ~ 20 cm
-1

) of the 

extracted reduced scattering coefficient is consistent with typical human tissues [76]. 

Reduced scattering coefficients at several discrete wavelengths for each tissue type were 

listed in Table 3.2.   

 

Table 3.2 Scattering Power and Reduced Scattering Coefficients (mean ± SE)  

 SP µ’s(630 nm) 
cm

-1
 

µ’s(700 nm) 
cm

-1
 

µ’s(750 nm) 
cm

-1
 

Normal (39 sites) 0.21 ± 0.01 15.96 ± 0.36 15.61 ± 0.35 15.38 ± 0.35 

Chronic Pancreatitis 
(34 sites) 0.51 ± 0.06 12.66 ± 0.42 12.02 ± 0.43 11.63 ± 0.43 

Adenocarcinoma 
(32 sites) 0.77 ± 0.06 10.53 ± 0.43 9.70 ± 0.40 9.19 ± 0.38 
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Figure 3.7 Representative measured reflectance spectra (gray-dashed lines) and their fits 

(colored-solid lines) from different types of pancreatic tissues including normal (blue), 

chronic pancreatitis (green) and adenocarcinoma (red). Reflectance intensity and slop 

show a distinct difference between three pancreatic tissue types (B) Mean of estimated 

wavelength-dependent reduced scattering coefficients for three pancreatic tissue types 

(39 sites for normal, 34 sites for chronic pancreatitis and 32 sites for adenocarcinoma). 

(C) Extracted reduced scattering coefficients at 630 nm for three pancreatic tissue types. 

The reduced scattering coefficients at 630 nm are significantly different for all 

comparisons (N vs. CP, N vs. A, and CP vs. A) with p < 0.001. (D) Extracted scattering 

power from three tissue types. The scattering powers are also significantly different for 

all comparison with p < 0.001.  Error bars in (B),(C) and (D) represent the standard error. 

 

Figure 3.7 (C) and (D) display bar plots of the estimated µ’s(630 nm) and scattering 

power γ of three tissue types. Compared to normal and pancreatitis sites, µ’s(630 nm) of 

adenocarcinoma is significantly lower (p < 0.001). In contrast, scattering power of 
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adenocarcinoma is significantly higher than normal and pancreatitis tissues (P < 0.001). It 

is noted that scattering powers of almost all normal sites converges to 0.2, which is the 

experimental minimum value [81].  According to Mie theory [79, 88], large scatterer (> 1 

µm) such as nuclei are likely to be the major scattering source in normal pancreatic 

tissues.    

Using tissue classification algorithm, two scattering parameters, µ’s(630) and scattering 

power γ  distinguish adenocarcinoma from benign tissues with the sensitivity of 94% and 

specificity of 75%. The result suggests that pancreatic tissue scattering property is 

diagnostically useful for separating adenocarcinoma in the setting of pancreatitis. 

Sensitivity and specificity for other classifications are listed in Table 3.3.  ROC analysis 

also demonstrates the diagnostic ability of tissue scattering parameters in discriminating 

each pancreatic tissue type, as shown in Figure 3.8. The area under the curve (AUC) is 

0.89 and 0.97 for distinguishing malignancy from benign and adenocarcinoma from 

normal, respectively.   

 

Table 3.3 Sensitivity and Specificity for different classification (Confidence Interval with 

α = 0.05) 
 Sensitivity  Specificity 

Malignant (A) vs. Benign (CP & N) 94 (78 – 99) % 75 (64 – 84) % 

All Pathology (A & CP) vs. N 88 (77 – 94) % 90 (75 – 97) % 

A vs. N  94  (78 – 99) % 95 (81 – 99) % 

A vs. CP  81 (63 – 92) % 71 (52 – 84) % 

CP vs. N 88 (72 – 96) % 80 (63 – 90) % 
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Figure 3.8 The receiver operating curves (ROCs) for different classifications with the 

area under curve (AUC). 

 

3.4 Discussion 

In this pilot study, the clinically-compatible reflectance spectroscopy and the rapid 

scattering model were employed to investigate the diagnostic potential of pancreatic 

tissue scattering properties in freshly excised pancreas.   

Reflectance Only Dataset In this study, tissue classification employing only reflectance 

provided nearly identical results to those obtained with a combination of reflectance and 

fluorescence. This finding can possibly be attributed to an overlap between the 

information encoded in the reflectance and fluorescence principal components. The 

reflectance data is known to contain notable information about tissue scattering, which is 

partially due to collagen in the tissue. However, collagen is also a prominent endogenous 

fluorophore in human pancreatic tissue, so the information about collagen is also found in 
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the fluorescence spectra. Therefore, it is to be expected that the reflectance and 

fluorescence principal components would include overlapping information.  

In Figure 3.3 (B), the first fluorescence principal component contains a spectral feature 

near the peak emission wavelength (~400 nm) of collagen fluorescence, which was 

previously shown to distinguish between these tissue types in our previous work [68] . 

Fig. 3.3 (A) shows that the second and third reflectance principal components display 

spectral features similar to those of hemoglobin absorption, which has a distinctive Soret 

peak near 420 nm and secondary peaks near 545 nm and 575 nm. Since absorption (from 

hemoglobin) and scattering (from tissue components including collagen) play prominent 

roles in determining the measured reflectance spectrum, we can reasonably attribute that 

the first reflectance principal component to primarily collagen scattering and the second 

and third reflectance principal components could to hemoglobin absorption. Since the 

fluorescence spectrum also contains prominent information about collagen, as well as 

artifacts of hemoglobin absorption, it is quite possible that the fluorescence data is not 

providing a significant amount of diagnostic information that is different from that 

provided by the reflectance. 

Discussion on scattering In our study, the wavelength-resolved reduced scattering 

coefficient and scattering power of human pancreatic tissue have been estimated based on 

calibration using a set of synthetic tissue-simulating phantoms. Although tissue scattering 

signal reveals tissue morphology or micro-architecture, detailed mechanism on how 

intracellular components (such as nuclei, mitochondria and membrane) and extracellular 

matrix (collagen) contribute to the entire scattering is very complex and is not well 

understood.  In previous work [78, 79] attempting to explain power law dependence with 
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Mie theory, it was found that the scattering power is related to average scatterer size. Our 

study shows that the scattering power for adenocarcinoma and chronic pancreatitis is 

larger than that of normal tissues, suggesting an increased contribution of small-size 

scatterer. According to Mie theory, scattering power does not significantly change below 

0.37 if scatterer size is larger than a certain size (~1  µm), implying that relatively large 

intracellular components such as nuclei (a typical size of normal nuclei is known to be 

around 9 µm) and mitochondria could be major scatterers in normal pancreatic tissues. 

Since collagen content is reported to increase in adenocarcinoma and pancreatitis due to 

stromal fibrosis, the increase of scattering power is possibly attributed to an increase of 

collagen content. In contrast, the scattering amplitude of adenocarcinoma decreases from 

normal to pancreatitis, which is an opposite trend to some of the other tissue types.   

Study Limitations A key limitation of this work is a small number of patients due to 

difficulties in frequent attendance to a suitable surgical case. Thus, our study needs to be 

considered a pilot study that assesses potential of reflectance spectroscopy for real-time 

pancreatic cancer detection.  One potential problem that occurs in a statistical analysis 

evaluating multiple sites measured from a single patient (i.e. intra-patient correlation) is 

addressed by employing GEE method in tissue classification algorithm. GEE has been 

previously developed to account for the intra-patient correlation in medical physics 

studies, including ophthalmologic studies that investigate two eyes in a single patient 

[89].  

Another limitation is that the study is restricted to ex vivo measurements from freshly-

excised surgical specimen. Given the study focuses only on tissue scattering properties, it 

is unlikely that scattering properties significantly change within 30 minutes after 
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excision. The analyzed wavelength range (630 to 760nm) is also independent from blood 

absorption that could significantly alter either by a drain of internal blood after excision 

or remaining hemorrhage even after clean up when site is cut for optical interrogation. A 

preliminary study demonstrating technical feasibility of in vivo optical measurement on 

pancreas showed that ex vivo and in vivo reflectance spectrum acquired from the same 

site were almost identical with a minor discrepancy in the main blood absorption 

wavelength (420 and 550 nm).  The advantage of ex vivo study is to obtain the gold-

standard histopathology, which is impossible via a current standard diagnostic procedure 

for pancreatic cancer, unlike other type of cancers where core biopsy is available on 

intact tissues. The gold-standard histology is essential to establish an accurate tissue 

classification algorithm and is expected to play an important role to expand this technique 

to a future in vivo studies employing endoscopic-compatible fiber optic probe.    

3.5 Conclusion  

This pilot study revealed that pancreatic tissue scattering properties estimated by 

reflectance spectroscopy coupled with a simple scattering model, had a diagnostic power 

to distinguish malignant tissues from non-malignant tissues. Reflectance spectroscopy is 

suitable for clinical translations because of its rapid acquisition and processing time, and 

compactness and cost-effectiveness of the device.  
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Chapter 4.                                                                                                                        

Ray-traced Monte Carlo Simulation for Fluorescence Measurements in Turbid 

Media 

4.1 Introduction 

Fluorescence spectroscopy and imaging have become invaluable tools in biology and 

biomedicine fields due to their ability to differentiate cells and sub-cellular components which 

emit fluorescence with a high specificity from a background with no fluorescence [90]. In both 

fluorescence spectroscopy and imaging system, sample scattering is always a technical issue to 

address for an accurate analysis of the sample fluorescence. For spectroscopy, intrinsic 

fluorescence signal or spectrum needs to be recovered from the measured fluorescence that 

detects the re-emitted fluorescence undergoing absorption and scattering in turbid media. In the 

imaging system, scattering is the main source of a signal distortion and determination of 

penetration depth.     

As a quantitative method, Monte Carlo (MC) simulation has been employed to evaluate the 

performance and design the optics in the optical spectroscopic or imaging systems probing turbid 

biological tissues. Reflectance confocal imaging techniques in turbid media have been assessed 

using an embedded Monte Carlo function in the commercialized ray-tracing software (ASAP) 

[91, 92]. Fluorescence collection efficiency in multiphoton microscopy has also been investigated 

[93], but only fluorescence emission has been modeled. Probably, due to the incomplete 

implementation and limitations of Monte Carlo function in the software for fluorescence 

occurrence and propagations, there have not been any previous studies that report the full 

fluorescence path modeling in turbid media with fluorescence imaging system.          
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For fluorescence spectroscopic system, Monte Carlo (MC) simulation code [16, 94] has been 

developed to accurately model fluorescence photon propagation in biological tissues. The code 

has been extensively employed to design the depth-sensitive fiber-optic probes using different    

source-detection separations [95], angled fiber [96], ball lens [97], or combined beveled fiber with 

a ball lens [98]. However, MC simulation code has a limitation in incorporating complex 

mathematical equations for ray-tracing through the specialized lenses such as graded-index 

(GRIN) lens and aspherical lens, or compound lenses and series of different lenses.    

Thus, the idea of combining ray-tracing software and MC codes could be an effective and useful 

way to address technical needs in simulation methods for both spectroscopic and imaging 

applications. In this paper, we introduce a ray-traced MC (RTMC) simulation method to combine 

ZEMAX®  ray tracing software and MC simulation code to model a complete path of 

fluorescence excitation, propagation and detection on turbid media by optical spectroscopy or 

imaging system. We verified the RTMC simulations both computationally and experimentally. 

4.2 Basic Concept of RTMC Simulation 

 The RTMC simulation works in a complementary way such that ZEMAX®  traces rays through 

the optical system including a source, lenses, and detector, and MC simulation models photon 

propagation inside the turbid media. (Fig. 4.1) In detail, the non-sequential mode of ZEMAX®  

launches a maximum of 10
6 

rays from a virtual source for the excitation path tracing. The 

launched rays pass through the optical components and contact a virtual detector that locates at 

the surface of targeted samples. When each ray meets the detector, ZEMAX®  ray tracing mode 

exports the array file that contains the geometrical information of the incident rays, including 

incident positions (x,y and z coordinates), angle (cos α, cos β and cos γ) and intensity.  
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Figure 4.1 Basic concept of the RTMC simulation. ZEMAX®  performs ray tracing 

through optical components from source to media, and from media to detector. Once the 

ray enters the media, Monte Carlo code simulates fluorescence occurrence and 

propagation. While the embedded Monte Carlo function in ZEMAX®  is able to model 

diffuse reflectance including scattering and absorption, it has limitations to simulate 

fluorescence propagation. In the MC code, complex ray tracing equations have to be built 

manually, which restricts employing a variety of optical components. RTMC method 

combines these two methods in a complimentary way to enable complete fluorescence 

ray tracking through optics and turbid samples. 

   

Exported array file from ZEMAX®  is imported as the initial photon distribution for MC 

simulation that is modified from the original code [99]. During simulating fluorescence 

occurrence and propagation inside turbid media, the geometrical and spectral information of the 

photons exiting the surface is saved in compatible file format with ZEMAX®  source object. 

Second ZEMAX®  ray tracing mode employs this array file as a source object to trace the emitted 

fluorescence signal from the sample surface to the detector via optical components. Detector in 

ZEMAX®  can display both 2-D graphical distribution of detected ray and the spectroscopic data.  
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4.3 Computational Verification 

To prove the accuracy of interfacing ZEMAX®  and MC code via the ray data array file, RTMC 

simulation was computationally verified with reflectance and fluorescence measurements 

simulations. The simulations were performed on optical tissue models using two flat-ended 

optical fibers for light delivery. Simulated reflectance and fluorescence with RTMC simulations 

were compared with those simulated by the previously developed MC code in MATLAB[100]. 

Epithelial colon tissue models were employed as two-layered optical model, which consists of a 

mucosa layer with finite thickness atop a semi-infinite submucosal layer (Table 4.1) Optical 

transport properties (scattering coefficient, absorption coefficient and anisotropy) at fluorescence 

excitation and emission wavelength, and fluorophore properties (absorption coefficient and 

quantum yield) were employed from the previous study [101]. Three different types of models 

depending on disease status were employed. Tissue 1 was normal colon, tissue 2 was 

adenomatous tissue having different optical transport properties in mucosal layer, and tissue 3 

was also adenomatous model with the same optical properties with tissue 2,  but with thicker 

submucosal layer [101]. 

Table 4.1 Optical Properties of the Three Epithelial Tissue Models  

Wavelength, 

λ (nm) 

Layer 1 (n1 = 1.35 g1 = 0.9) Layer 2 (n2 = 1.38 g2 = 0.95) 

µa (cm
-1
) µs (cm

-1
) µaf (cm

-1
) z (µm) µa (cm

-1
) µs (cm

-1
) µaf (cm

-1
) 

Tissue 1 

(Normal) 

355 (Excitation) 12 200 
0.5 500 

12 200 
1.5 

550 (Emission) 3 90 3 9 

Tissue 2 

(Adenoma) 

355 (Excitation) 20 120 
0.5 500 

12 200 
1.0 

550 (Emission) 10 70 3 90 

Tissue 3 

(Adenoma) 

355 (Excitation) 20 120 
0.5 700 

12 200 
1.0 

550 (Emission) 10 70 3 90 
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Figure 4.2 Comparison of MC and RTMC simulation results for reflectance and 

fluorescence measurements using fiber-optic probe on epithelial tissue model 1 (a), 

model 2 (b) and model 3 (c) at different source-detector separations. 

 

Excitation light from a source was delivered to the tissue samples via an optical fiber 

with the core diameter of 600 µm and 0.22 NA. The identical fiber delivered the   emitted 

reflectance and fluorescence from the sample. Source-detection separations (ρ) were 0, 

300, 600, 900, 1200, 1500 and 1800 µm. In the RTMC simulation, optical fibers were 

created using two concentric cylinder volume objects with inner and outer radius of 300 

and 310 µm respectively from the ZEMAX®  library. Refractive indices of inner and 

outer cylinders were set as 1.450 and 1.433 respectively to create a total internal 

reflection with 0.22 NA. A total of 1×10
6
 photons were launched from the source for 

each simulation method. 

Figure 4.2 shows the comparison of MC and RTMC simulation on three different tissue 

computational models. Average percent errors between two methods for all the source 

and detection separations and tissue types are 3.5% and 7.1% for reflectance and 

fluorescence, respectively. It is noted that accuracy was consistent over a wide range of 
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detected photon intensities with an order of 10
4
, indicating the interface between 

ZEMAX®  and MC code using a geometrical photon array file works as expected. 

4.4 Experimental Verification  

Experimental verification of the RT-MC simulation was performed on depth-sensitive 

fluorescence measurement of two-layered optical phantoms as shown in Fig. 4.3. The 

depth-sensitive optical setup was designed by employing an aspherical lens with high NA 

as an objective lens, which has not been employed in any previous MC simulation 

studies, to the best of our knowledge.   

4.4.1 Depth-Sensitive Fluorescence Spectroscopy 

The depth-sensitive fluorescence measurement system utilized a 355 nm pulsed laser 

(PNV001525-140, JDS Uniphase, San Jose, CA) for excitation (Fig. 4.3). Laser light 

emitted from the multi-mode fiber (core diameter = 100 µm) was collimated by a plano-

convex lens (LA4936-UV, Thorlabs, Newton, NJ). This collimated beam was reflected 

by a dichroic mirror (FF365-Di01, Semrock, Rochester, NY) and then focused by an 

aspherical lens (49-587, Edmund Optics, Barrington, NJ) with NA = 0.5 and working 

distance of 15 mm.  Emitted fluorescence signal from the phantoms was collected by the 

same aspherical lens, passed through the dichroic mirror and a long pass filter (LP02-

355RS, Semrock), and then focused into a detection multi-mode detection fiber with 0.22 

of NA and 600 µm of core diameter by another plano-convex lens (LA1131-A, 

Thorlabs). The collected fluorescence signal was transmitted to a spectrograph (MS 125, 

Oriel Instruments, Stratford, CT) coupled ICCD (ICCD 2063, Andor Technology, 

Belfast, UK) for spectra acquisition with 1 nm resolution. All the employed lenses and 
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fibers were modeled in the ZEMAX®  non-sequential mode with the downloaded 

components provided from the manufacturer’s website.  

 

Figure 4.3 Schematic of experimental depth-sensitive fluorescence spectroscopy system 

setup for tissue-simulating phantom verification 

 

4.4.2 Two-layered Fluorescence Phantom Fabrication and Characterization 

Two-layered fluorescence phantoms were constructed with a solid agarose-based top 

layer and a solid polydimethylsiloxane (PDMS)-based bottom layer. Hydrophobic 

property of PDMS prevented diffusion of fluorophore from the hydrophilic top layer, 

eliminating a need of any sheet between two layers, which could have unknown optical 

effects.  Thicknesses of top and bottom layers were 1 mm and 10 mm, respectively. The 

lateral size of both layers was 60 mm in diameter to ensure a semi-infinite medium. 

Standard fluorophores, Rhodamine 6G (R4127, Sigma Aldrich, St. Louis, MO) and 

POPOP (P3754, Sigma Aldrich) were added to the top and bottom layers respectively for 

spectral separation in measured spectra. An agarose powder (161-3101, Bio-Rad 

Laboratories, Hercules, CA) was mixed in boiled DI (de-ionized) water with 2% 
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concentration, and thoroughly dissolved to obtain a homogeneous solution. When the 

mixture was cooled to 60~70 ˚C, pre-calculated volume of Intralipid (I141, Sigma 

Aldrich) was added to mimic the scattering coefficients of biological tissues. 1mM of 

Rhodamine 6G solution in DI water was added to the mixture to be diluted to 0.5 µM. 

When the temperature of the mixture reached 40 ˚C, a pre-calculated volume of the 

mixture was transferred into a petri dish to create a top layer of specified thicknesses (1 

mm) and then cured for 1 hour in a cool, dark enclosure. 

The PDMS-based bottom layer was fabricated according to a previously described recipe 

[102]. Briefly, a specific weight of titanium oxide (TiO2) powder (Ti-602, Atlantic 

Equipment Engineers, Upper Saddle River, NJ) was added as scatterers in PDMS curing 

agent to mimic biological tissue scattering. To dissolve TiO2 completely, the mixture was 

placed in an ultrasonic bath for 20 minute and stirred manually every 5 minutes. Then, 

the mixture and PDMS (Sylgard 184, Dow Corning, Midland, MI) were mixed with 1:10 

ratio. A pre-calculated volume of 1 mM POPOP solution in cyclohaxane was added to 

this mixture to create 10 µM concentrations. The mixture was   transferred to a petri dish, 

placed in a vacuum chamber for the de-gassing process for 30 minutes, and cured for 24 

hours at room temperature. 

The absorption coefficients (µa) and scattering coefficients (µ s) of all fabricated layers 

were determined by the integrating sphere (RT-060-SF, Labsphere, North Sutton, NH) 

measurements and estimation using an inverse adding-doubling (IAD) algorithm. 

Detailed setup and procedure has been described previously [82]. The fluorescence 

absorption coefficients were calculated from the transmission measurement of the 

spectrophotometer (DU800, Beckman Coulter, Fullerton, CA) using a 1cm path-length 
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cuvette. Input parameters for optical properties of the manufactured phantoms are shown 

in Table 4.2. Refractive indices were set to 1.33 and 1.4 for the top and bottom layers 

respectively, and anisotropy was set to 0.9 in both layers. Two different phantoms were 

additionally manufactured and measured to add variations in the experimental 

verification. In the second phantom, Intralipid concentration was three times higher than 

the first phantom with other properties being the same. The third phantom had only 

variation of a 0.5 mm-thick top layer compared to the first phantom.  

Table 4.2 Optical Properties and Thickness of the Top and Bottom layer for Two-layered 

Phantoms (µ s: scattering coefficient, µafx: fluorescence absorption coefficient, z = 

thickness) 

 

4.4.3 Depth-Sensitive Fluorescence Measurements  

For depth-sensitive fluorescence measurements, a focal point was scanned in z-direction 

from the surface to 1 mm deep, in step sizes of 250 μm, using a micro linear actuator 

(LTA-HS, Newport, Irvine, CA). Excitation laser intensity was set to make sure of no 

photo-bleaching. Acquisition time per one depth was around 2 seconds. Recorded 

fluorescence spectra were background subtracted and corrected with ICCD spectral 

response [75]. Figure 4.4 displays fluorescence emission spectra at different focal depth, 

showing a distinct separation of peak emission wavelength between POPOP (420 nm) 

and Rhodamine 6G (550 nm). As the focal point goes deeper, fluorescence emission 
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intensity of Rhodamine 6G increases with a corresponding decrease in POPOP intensity.  

Top layer sensitivity was defined as Rhodamine 6G emission intensity (that is the 

integrated intensity from 520 to 630 nm) divided by the sum of Rhodamine 6G and 

POPOP emission intensity (from 360 to 480 nm).    

 

Figure 4.4 Fluorescence emission spectra variation of two-layered optical phantom at 

different focal depths. As the focal point goes deeper, a relative intensity of the top layer 

(Rhodamine 6G, 560 nm peak emission) decreases while the one of the bottom layer 

increases (POPOP, 420 nm peak emission)    

 

4.4.4 Comparison between simulation and the actual measurement   

Figure 4.5 shows the top layer sensitivity at each focal depth estimated from RTMC 

simulations and calculated from the actual measurements for three different phantoms. 

For all phantoms, top layer sensitivity reduces as the focal point goes deeper and closer to 

the bottom layer. Overall, the RTMC simulation predictions and the experimental 

measurements are well agreed in terms of a decreasing trend over the scanning depth 
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range and the absolute values of top layer sensitivity in all three different phantoms. 

Mean percent error for all depth points is less than 15%. In particular, RTMC simulation 

estimates the top layer sensitivity at the surface accurately.  

 

Figure 4.5 Experimental verification results on three manufactured two-layered 

phantoms (a) phantom 1 (b) phantom 2 and (c) phantom 3. Top layer sensitivity is 

compared between measurements and simulations by 0.25 mm step size of focal point 

until 1.00 mm. Solid lines with solid circles indicate actual measurements and empty 

rectangles indicates RTMC simulation results. In the measurements, error bars present 

the standard deviations 

 

The simulation and experiments well predicts an understandable variation of the top layer 

sensitivity in three phantoms as intended in phantom design. The top layer sensitivity of 

the second phantom is higher than the first phantom due to higher scattering coefficients 

of the top layer causing more fluorescence photons to scatter, which increases a chance of 

detection. The lower top layer sensitivity of the third phantom is attributed to a thin top 

layer with less amount of Rhodamine 6G fluorophore amount and more interference of 

POPOP fluorescence from the bottom layer.     

Difference between the simulations and experiments is observed at deeper focal points 

(between 0.75 and 1 mm) in all three phantoms. This could be attributed to either 
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experimental or computational errors. The decreasing slope of the top layer sensitivity is 

relevant to the overall depth sensitivity of the device. The gradual slope in the 

experimental results compared to the one from the simulations would indicate the 

imperfection of optics alignment in the instrument set up. In the RTMC model, the fixed 

values of anisotropy, which is likely to be wavelength-dependent, also could cause some 

incomplete tracking of photon propagations.  

In spite of these small errors, the good agreement between the RTMC simulations and 

experiments verifies that RTMC simulation is a computational tool to provide an accurate 

estimation of fluorescence excitation and detection by optical spectroscopy system, as 

well as a transport inside by-layered turbid media model. 

4.5 Conclusion 

In this chapter, RTMC simulation method was proposed and developed with an aim to fill 

a technical gap of current computational tools by providing an accurate modeling of a 

complete path of fluorescence excitation, detection and propagation through optical 

system and turbid media. Applications of RTMC are not limited to employing a 

traditional optical component such as lens and filter. Due to flexibility and ongoing-

update of a huge ZEMAX library, the RTMC has a potential to computationally model an 

optical fluorescence sensing in turbid media by optoelectronic devices such as light-

emitting diode, laser diode and photodiode, which have not been employed in the 

previous simulation works.  
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Chapter 5.                                                                                                                     

Prototype Design of Optoelectronic Microprobe 

5.1 Introduction 

5.1.1 Motivation 

Optical diagnostics have made considerable advancements in recent years as a method to 

provide non-invasive, quantitative, and rapid sample/tissue analysis in a clinical setting. 

In cell biology alone, numerous advancements have been enabled through the 

development of fluorescence-based analysis methods. Furthermore, biomedical studies 

(including studies involving cancer and other diseases) have been transformed through 

commercial technology for whole body animal imaging (e.g., Caliper Life Sciences IVIS 

imaging system). In more clinical settings, optical FDA approved technologies are 

routinely employed (such as the pulse oximeter, Philips BiliChek bilirubinometer, the 

DentalEZ Identafi oral cancer screening system, and MELA Sciences MelaFind system 

for early melanoma detection).  

For many clinical applications, including those discussed above, optical technologies are 

not subject to a confined space because the studied tissue is readily accessible from 

outside the body (i.e., oral cavity or skin). Therefore, developed technologies are 

typically large footprint instruments, including robust and expansive 

spectroscopy/imaging systems that access human tissue via remote fiber-optic probes. 

Reports in recent literature describe numerous technologies developed with fiber-optic 

probes [97, 103-107], employed because they are easy-to-use, reliable, and enable remote 

sample sensing (i.e., away from equipment). Critical limitations to such approaches 
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include the relative rigidity of fiber-optic probes (inability to undergo tight bends) and 

inability of fiber-optic probes to enable volumetric mapping within a confined space. 

Here, we consider the clinical application of needle-based clinical methodologies, 

including for tissue diagnostics and drug/treatment delivery. Needle-based methodologies 

have numerous applications, including fine-needle aspiration for cancer detection 

(employed for breast [104, 108], lung [36, 109, 110], prostate [111, 112], and pancreatic 

cancers [22, 55-57] diagnosis) as well as for nerve block treatments (researched by 

Philips) [113-115]. There are two common approaches for needle-based analysis of 

tissues: imaging and spectroscopy. Imaging through a hollow needle has been 

demonstrated with the development of the needle-based confocal imaging system 

Cellvizio [50, 116, 117], commercialized by Mauna Kea. Limitations to imaging based 

systems include their small field-of-view and complicated/time expensive requirement 

for real-time quantitative image analysis. Such applications employing fiber-optic probes 

are limited by their rigidity, lack of volumetric mapping, and/or constrained center-to-

center spacing between source and detectors. 

We proposed to develop an optoelectronic microprobe, constrained within a hollow 

needle (including common 19, 22, and 25 gauge needles), for quantitative volumetric 

optical mapping within tissues. Primary advantages, compared to fiber-optic based 

technologies, include the robustness of miniature microelectromechanical systems 

(precisely manufactured to dimensions < 1 mm) and their compactness (provide ability to 

withstand tight bending radii). Furthermore, optical modules were designed to preserve 

center-to-center spacing (utilizing long axis of the needle) of optical sources and 

detectors typical of fiber-optic probe-based measurements [55], critical for accurate tissue 
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diagnostics by increasing the tissue volume studied. Additionally, the optoelectronic 

microprobes can be manufactured with numerous probe geometries to enable volumetric 

mapping that is impossible with current fiber-based approaches. 

5.1.2 Scientific Background 

EUS-compatible optoelectronic sensing technology provides additional diagnostic 

information to supplement cytology based diagnosis and overcome its limitations, either 

by providing independent diagnosis of the pancreatic abnormality or by guiding the 

endoscopist performing EUS to select the most likely areas to obtain diagnostically 

relevant cytological material.  

Preliminary studies in the human pancreas including works in the chapter 3, have shown 

that optical sensing can provide a new source of contrast for the detection of pancreatic 

cancer (Fig. 5.1) [22, 55-57]. The interaction of light with tissue can be measured and 

analyzed to obtain diagnostic information in vivo [7, 66, 90, 94, 101]. In the pancreas, 

histopathological analysis shows enlarged cell nuclei and abundant collagen in 

adenocarcinoma, which can be accurately detected by tissue optical sensing, thereby 

providing an opportunity to improve pancreatic neoplasia diagnosis [22, 55-57].  
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Figure 5.1 Results are presented from a clinical pilot study from freshly-excised 

pancreatic tissues from 18 patients. (A) Averaged reflectance spectra revealed significant 

differences between normal, chronic pancreatitis, and pancreatic adenocarcinoma. 

(Normalized spectra of Figure 3.1 in the chapter 3). Dotted vertical lines identify two 

wavelength bands (centered at 470 and 630 nm) proposed for the optoelectronic 

microprobe. (B) The ratio of summed intensities within each wavelength band accurately 

distinguished among the three most prevalent pancreatic tissues. All error bars represent 

standard error.  

 

5.1.3 Basic Concept 

Based on the strong preliminary results, we believe optical diagnostics will enhance the 

technical capability of the endoscopist to provide a more accurate diagnosis and 

dramatically alter clinical practice by improved triage of patients to appropriate therapy 

(surgery or not). In addition to the enhanced accuracy of diagnosis, the technology 

outlined here (see microprobe technology compatible with commercially-available FNA 

needles in Figure 5. 2) will provide volumetrically mapped tissue assessment by rapidly 

measuring multiple tissue sites, unlike EUS-FNA, which requires multiple needle passes 

into tissue for a single aspirate collection. Thus, the proposed approach has the potential 

to address the important unmet need of pancreatic neoplasia diagnosis (low negative 
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predictive value of cytology) by improving the diagnostic capability of EUS, thereby 

leading to improved triage of patients to appropriate therapy. 

 

Figure 5.2 The optoelectronic microprobe is compatible with commercially-available 

EUS-FNA technology. Specifically, we have designed our microprobe to be compatible 

with FNA needles similar to the Cook Medical EchoTip® ProCore™ needles. (top) The 

EUS-FNA needle is compatible with current standard-of-care endoscopes employed for 

pancreatic procedures. The ProCore™ needle has a ~4mm window opening that will 

allow optical interrogation of tissue. (bottom) The microprobe electronics will be exposed 

when the protection sheath is removed to expose the needle tip. Once the sheath exposes 

~2 cm of needle, the microprobe will be ready for optical measurements 

 

5.1.4 Innovation 

Using optical contrast for clinical tissue diagnostics is not a new idea [66, 90]. However, 

due to the challenges associated with accessing this internal organ, relatively little 

research in biomedical optics has been conducted in the human pancreas. Field effect 
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analysis [53, 118] of duodenal tissues adjacent to the pancreas and limited optical 

coherence tomography [119, 120] studies in the pancreas do not address the targeted 

clinical problem discussed here. Recent studies have established only feasibility for 

needle-based confocal laser endomicroscopy [116, 121, 122], as diagnostic utility has 

proven elusive even in large clinical studies [50, 121, 123]. 

In this chapter, we report optical-fiber-based technology to obtain the first optical 

spectroscopy data during pancreatic EUS-FNA procedures, based on the success of 

optical spectroscopy on freshly excised human pancreatic tissues [55] and corresponding 

pancreatic tissue classification algorithms using such optical data as inputs [22, 56, 57]. 

Our ex vivo data set has grown considerably and enabled the first robust analysis of the 

potential of optical spectroscopy to differentiate between malignant and non-malignant 

pancreatic tissues (Fig. 5.1).  

Technically, the novel design of microfabricated optoelectronic components proposed 

here promises to revolutionize minimally-invasive tissue optical spectroscopy. To the 

best of our knowledge, this is the first-ever development of an integrated optoelectronic 

system for EUS-FNA compatible tissue diagnosis. Compared to the optical-fiber-based 

system we developed previously [10, 55], the proposed technology dramatically reduces 

cost (~ 20x) and instrumentation footprint (~100x) with comparable (and sometimes 

superior) optical performance including source power and detector sensitivity[12], and 

durability. Further, the proposed concept (Fig. 5.3) enables rapid volumetric mapping of 

pancreatic tissues to interrogate larger tissue volumes than those aspirated by EUS-FNA. 
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Figure 5.3 The optoelectronic microprobe is inserted through the hollow needle 

employed for EUS-FNA and rapidly interrogates tissue with pulses of light, providing 

real-time guidance for FNA (thereby improving sensitivity) or classifying tissue for 

diagnosis (proving the absence or presence of malignant disease). Shown are two source-

detector sub-units to illustrate the technology’s volumetric mapping capabilities with 

linear translation. Future designs could incorporate multiple repeated sub-units for tissue 

assessment over an extended tissue volume. 

 

5.1.5 Design Concept and Requirement  

To estimate a reflectance ratio at multiple points, the microprobe has two source-detector 

sub-units that consist of two LEDs (470 nm and 630nm) and one phototransistor (Fig. 

5.4). The source-detector modules are arranged on a fabricated printed circuit board with 

contact pads and patterned electrical interconnections for all probe wiring. Measurements 

will be collected from both sub-units simultaneously, enabling real-time volumetric 

optical mapping of pancreatic neoplasia. Within each sub-unit, the two LEDs will be 

fired sequentially to avoid detector cross-talk. 
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Figure 5.4 Illustration of proposed microprobe. The microprobe will be guided to the 

tissue site within a retractable protective sheath in the EUS hollow needle. Prior to 

measurement, the protective sheath will be retracted from the optical sensing window 

which is encapsulated with a transparent biocompatible epoxy to protect optoelectronics 

and electrical connections. The 5 mm long sensing window is created within a 19 Gauge 

EUS-FNA needle.   

 

Successful integration with EUS-FNA requires the fabricated optoelectronic sensor 

(including optical sources, detectors, wiring, and connections) to fit within a hollow 19 

Gauge [36, 50, 124] needle with a 0.85 mm inner diameter. For reflectance optical 

sensing, the diffused reflectance at multiple wavelengths must be measured with a high 

SNR. In particular, optical sensing must not be distorted by blood absorption, which has 

been demonstrated by our in vivo study on pancreatic surgery patients [125]. To correctly 

interrogate tissue sites, the probe must be moisture-proof. Heat dissipation from the 

optoelectronic components must be minimized to neither damage nor alter the optical 

properties of the target tissues. To minimize the error due to patient motion artifacts, the 
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optoelectronic probe must provide a real-time data analysis. Mechanically, the system 

must withstand endoscopic delivery. Critical design requirements and specification are 

described in Table 5.1. 

Table 5.1 Design Requirements and Specifications of the Proposed Optoelectronic 

Microprobe compatible with a 19G hollow needle 

 

5.1.6 Objective and Design Scope  

In this chapter, we describe the first prototype of optoelectronic microprobe. First, we 

fabricated a relatively large-scale printed circuit board with metal patterns to test 

assembly process and to characterize the performance of each optoelectronic component. 

The microfabricated board also has different designs on source-detection separations in 

the assumption of tissue optical sensing inside a 19G hollow needle in order to test the 

feasibility of reflectance and fluorescence sensing.  

 

 

 

 

Design Requirements Specifications 

Fit within 19G Needle Diameter  < 850 µm; 
Length  < 5 mm 

Multi-Spectral Sensing SNR > 25 for 460 nm and 650 nm 

Real-Time Analysis < 1 s 

Waterproof No performance degradation in water during 5 
minutes 

Low Heat Generation Temperature increase < 1°C 

Mechanically  Durable No breakage or performance degradation 
during insertion 
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5.2 Methods  

5.2.1 Engineering Analysis - Optical Simulation  

Based on our preliminary surgical studies on human pancreatic tissues [55-57, 126], the 

die-level LED chips were selected for wavelengths of 460 nm (460DA3547, Cree, 

Durham, NC) and 650 nm (C4L 12T5, Chip4Light, Germany) because of their sufficient 

optical power with relatively low electrical power consumptions [11]. Furthermore, a 

suitable die-level chip detector for visible wavelengths (LA PD23HP1, Light Avenue, 

Germany) has a high radiant detection efficiency with adequate sensitivity [106]. Optical 

design feasibility was further demonstrated by Monte Carlo (MC) photon propagation 

simulations embedded in the commercially-available optical design software 

(ZEMAX® )[127] (Fig. 5.5 (a). Simulations employed performance specifications of the 

chosen components and optical tissue properties from ex vivo human tissue studies [57, 

126]. Simulations predicted that when the LED emitted 0.5 mW of angularly distributed 

power, the phototransistor detected a power of > 3 mW/cm
2
, generating a photocurrent of  

> 50 µA, which can be detected with high SNRs.  

In addition, the ZEMAX®  MC simulation results display the propagation paths of an 

individual photon that is detected by a photodetector (Fig.5.5 (b)).  The distribution of 

these paths shows an optical interrogation volume of the optoelectronic microprobe.  The 

depth of the optical sensing is approximately 500 µm. The assumption that the shape of 

this interrogation area is a hemisphere, results in a total volume of ~ 0.25 mm
3 

for this 

arrangement, which is comparable to the volume simulated with a geometry of our 

previously adoped fiber optic probe. 
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Figure 5.5 (a) ZEMAX®  Monte-Carlo simulations were employed to assess the optical 

performance of the selected LED and PD. The LED is modeled as a source with the 

parameters of intensity, angular distribution and wavelength. The PD is modeled as a 

detector with the specific active area and angular acceptance angle. Launched photons 

from the LED propagate inside tissues according to pancreas-simulating tissue optical 

properties, including scattering and absorption coefficients. The mean pathlength and 

transmission are calculated from the tissue scattering and absorption coefficients. The 

angle of each scattering step is determined by a Henyey-Greenstein phase function. 

Photons reaching the active area of the phototransistor within the acceptance angle were 

detected. (b) Photon path visulization. The simulation result displays the propagation 

paths of the photons that are detected by the photodetector. The background histology 

image of an invasive adenocacinoma has the same scale bar with the photon path image 

to represent the areas that photon paths can cover when compared to a tissue structure.  
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The feasibility of the microprobe in distinguishing three different tissue types was also 

simulated. As the inputs for bulk scattering models in ZEMAX® , the mean pathlength 

and transmission for normal pancreatic tissues, chronic pancreatitis and adenocarcinoma 

were calculated from the estimated reduced scattering coefficients and absorption 

coeffficients obtained in the previous study (Table 5.2) [68]. The LED light intensities 

were 0.6 mW and 0.5 mW for the Blue and Red LEDs, respectively, according to their 

specifications.  

The resulting intensity ratios R460/R630 of detected photons are 0.76, 0.91 and 1.21 for 

normal, chronic pancreatits and adenocarcinoma respectively. To account for the 

difference in excitation intensity of two LEDs, the ratio of adenocarcinoma is scaled 

down to 0.71 (the averaged ratio from the experiments shown in the Figure 5.1 B) which 

makes the ratio of normal tissues and chronic pancreatitis 0.44 and 0.53, respectively, 

which are consistent with the ratios obtained from the experiments. This result reveals 

that optoelectronic microprobe employing reflectance intensity ratio at specific narrow 

wavelengths has potential to differentiate adenocarcinoma from normal and chronic 

pancreatits. 

Table 5.2 Mean pathlength and transmission of three pancreatic tissue types  

 Normal Pancreas Chronic 
Pancreatitis Adenocarcinoma 

 460 nm 630 nm 460 nm 630 nm 460 nm 630 nm 

Mean 
Pathlength 

(1/mm) 
0.113 0.076 0.080 0.063 0.049 0.061 

Transmission 0.9933 0.9994 0.9958 0.9998 0.9974 0.9999 
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5.2.2 Engineering Analysis - Heat Simulation  

Energy dissipation resulting from conversion of electrical power to optical power in 

emitting LEDs generates heat. Ensuring that no tissue is damaged by this heat is another 

important factor to be considered while designing devices that are to be inserted into the 

human body for in vivo sensing.  

The ANSYS software is employed to simulate temparature changes around the pancreatic 

tissues when the microprobe is working. A human pancreatic head was modeled as a 

cube with an edge of 3 cm [128]. For the microprobe, two LEDs were located 1.2 mm 

apart from each other on a 150 µm-thick silicon wafer that was attached onto a steel 

stylet shaped in a half cylinder (Fig. 5.6 (a)). The properties related to heat tranfer, 

including  heat capacity, density and thermal conductivity, of the pancreatic head, silicon 

wafer and steel stylet were inputs to the model for both steady-state and time-transient 

simlulations (Table 5.3) [129-131]. Because of the symetrical structure of the model, the 

simulation was perfomed only on one half of the model. Around 230,00 nodes were used 

to analyze this model. Specially finer sized elements were meshed around LEDs and 

silicon wafer since more significnat temperature variations exist in these areas. The 

power of heat was determined by equating it to the electrical power of 10 mW, which is 

necessary to emit the required optical power of  ~ 1mW, estimated from the previous 

optical simulations. An initial temperature of the pancreas was set to 36.5 ˚C. 

Table 5.3 Hear transfer properties of three components   

 Pancreas Silicon Wafer Stylet (steel) 

Thermal Conductivity 
(W/m˚C) 0.54 130 60.5 

Heat Capacity (J/g˚C) 3.16 0.70 0.43 

Density (g/cm3) 1.09 2.33 7.85 
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Simulation results show that the maximum temperature increases up to 37.4 ˚C, a second 

after both LEDs are switched on (Fig. 5.6 (c)). One second is our expected optical 

sensing time for a real-time feedback. While the maximum temperature shown in the 

graph occurs inside the LED bodies, the maximum temperature of the surrounding 

pancreatic tissues is found to be around 37.0˚C, which shows a less than an 1˚C increase.  

Even at a time point of 10 seconds when the temperature reaches near the steady-state 

point, the maximum temperature of the model is 38.1 ˚C and the maximum tissue 

temperature is about 37. 6˚C (Fig. 5.6 (d)).  It is also noted that the area with temperature 

changes is limited to within 5 mm around the microprobe. These results demonstrate that 

the optical sensing of the microprobe would not damage assessed tissues and adjacent 

tissue area. Without the assumption of a perfect contact between LEDs and the 

surrounding tissues, indicating no thermal contact resistance, the maximum tissue 

temperature would reduce a bit more.  
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Figure 5.6 (a) 3D model of each component in the optoelectronic microprobe that affects 

heat distribution inside a tissue block ( 3 × 3 × 3 cm ) mimiking the heat properties of 

human pancreas. The LED size is 300 × 300 × 200 µm (W × D × H) and legnthes of the 

silicon board and the stylet are both 17 mm (b) A transient curve shows that the 

maximum temperature increases by time. The maximum temperature reaches the steady-

state in almost 10 second. (c) 3D temperature distribution 1 second after LED emission 

and 2D zoomed-in images of the heat distribution surrounding the microprobe. Colored 

bar indicates different temperatures for both images. (d) 3D temperature distribution 10 

seconds after LED emission and 2D zoomed-in images of the heat distribution 

surrounding the microprobe. Although the area with the increased temperature become 

wider, it is only limited to about 5 mm around the microprobe, and the maximum 

temperature occurs only inside the LED bodies and is 1.5 ˚C higher than the initial 

temperature. 
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5.2.3 Fabrication  

A prototype board for the optoelectronic microprobe was fabricated on a silicon wafer 

with 500 µm thickness (2 µm-thick oxide layer on the top for insulation) based on the 

well-established microfabrication procedures illustrated in Fig. 5.7. Cr/Pt/Au and In/Au 

layers were patterned by lift-off process for pad contacts of the light emitting diode 

(LED) and the photodiode (PD), and interconnections to external electrodes. Detailed 

steps are listed as follows.  

 

a) A silicon wafer with 500 µm thickness was used 

b) Photoresist (PR, SPR220 3.0, Microchem, Westborough, MA) was spin-coated and 

then patterned by a photolithography technique  

c) Cr/Pt/Au (200/300/2500Å ) were deposited onto the patterned photoresist by an 

electron beam (E-beam) evaporator (Enerjet Evaporator)  

d) Then, the PR with undesired Au/Cr layer was lifted away to leave Cr/Au pattern  

e) To bond the bottom side (Au) of the red LED (C4L 12T5, Chip4Light, Germany) and 

PD (LA PD23HP1, Light Avenue, Germany), Indium (In)-Au eutectic bonding process 

was chosen [132, 133]. Thus, In pads were defined within Cr/Au pattern by the second 

lift-off process. To pattern thick (6 µm) In pads, liftoff resist (LOR, LOR 30B, 

Microchem) was coated as an under-cut layer in a bi-layer lift-off process  

f) The PR was coated onto the LOR. PR and LOR were developed by the 

photolithography  

g) E-beam evaporator (Cooke Vacuum Products, South Norwalk, CT) deposited Au/In 

(1 nm/6 µm)  
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h) Lift-off process followed by soaking the device in the positive resist stripper (PRS 

2000, Philipsburg, NJ) in 85°C for 20 minutes and sonication until the pattern was 

completely defined  

  

 

Figure 5.7 Prototype Fabrication Process  
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5.2.4 Assembly and Packaging  

Prior to assembly, the fabricated bare board was rinsed by being immersed in acetone for 

10 minutes and then in isopropyl alcohol (IPA) for 5 minutes.  Assembly process 

consisted of four steps (Fig.5.8 (a)) First, In-Au eutectic bonding was performed by 

employing customized recipes to bond the bottom side of PD and Red LED onto the 

defined In pads. Temperature profile was programmed to provide the optimal temperature 

in the rapid thermal process tool (Jetfirst-100, Jipelec, Montpellier, France). 250 °C was 

maintained for 5 minutes to provoke In-Au eutectic bonding. Then, since the bottom side 

metal of the blue LED die (460DA3547, Cree, Durham, NC) was Au-Sn alloy (solder), 

which was known to a eutectic alloy, the temperature was up to 280 °C in 5 second based 

on the recommended flux eutectic reflow process [134]. Higher temperatures (290°C and 

300°C) were additionally attempted to find the optical condition. Once the eutectic 

bonding was formed between Au and In, higher temperature for Au-Sn eutectic bonding 

(~ 280˚C) than the eutectic temperature for In-Au (250 °C) did not affect the bonding 

status [133]. The cathode pad on the top of the PD and Red LED were wire-bonded to the 

interconnections at the bottom of the board via 0.007 inch-thick Au wire. An optically 

transparent epoxy (NOR-61, Norland, Cranbury, NJ) encapsulated the bonded 

components (Fig. 5.8 (c)). A 30G-needle (Becton Dickinson, Franklin Lakes, NJ) 

delivered a drop of the epoxy to confine the volume covering all the three components. 

The epoxy was cured by 365 nm UV light exposure for 10 seconds.  The fabricated 

prototype board was further cut to demonstrate the size of the optoelectronic probe that 

can be compatible with the inner diameter of a 19G hollow needle in comparison with a 

US dime (Fig. 5.8 (d)). 



 

81 

 

 

Figure 5.8 (a) Assembly process. (b) Assembled LEDs and PD on a large-scale 

fabricated prototype board (c) Zoomed-in image of eutectic bonded LEDs and PD, and 

epoxy encapsulation to protect the wire bonding and components. (d) Size comparison 

between the optoelectronic microprobe and a US dime.  
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5.2.5 System Controller Design  

A custom electronic control module was designed and developed to drive two LED 

sources, read a current generated by detected photons on the PD. (Fig. 5.9) A 

microcontroller unit based on a 32-bit ARM core (ST32F405OE, STMicroelectronics, 

Geneva, Switzerland) was employed to sequence two LEDs, set the gain on a 

programmable gain amplifier (PGA), read the analog-to-digital converted (ADC) values 

and send the data to PC via a serial communication.  

A single supply low noise LED current driver was implemented by employing a current 

output digital-analog converter (AD5452, Analog Device, Norwood, MA)[135]. A trans-

impedance amplifier (TIA) was designed to convert the phototransistor current to a 

voltage signal with an amplification of 10
5
 and 1

st
 order low-pass filter characteristics 

(cut-off frequency: 1 kHz). A programmable gain amplifier (LTC6910, Linear 

Technology, Milpitas, CA) enabled an additional gain adjustment via digital control, 

providing a high dynamic range [136]. The amplified voltage was subsequently filtered to 

yield a high SNR signal. A 16-bit analog-digital-converter (ADS1115, Texas 

Instruments, Dallas, TX) read the resulting voltage at 50 kHz. 

 

Figure 5.9 A. Block diagram of the custom electronic module (GUI: graphical user 

interface, µC: microcontroller, DAC: digital-analog converter, ADC: analog-digital 

converter, LPF: low pass filter, PGA: programmable gain amplifier, TIA: Trans-

impedance amplifier) B. 3D rendered image of the designed signal conditioning module 
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5.2.6 Components Characterization  

5.2.6.1 LED Characterization  

If-Vf curves for both LEDs were obtained by adjusting the forward voltage in a 0.1 V step 

size using a digital power supply (E3631A, Keysight Technology, Santa Clara, CA), and 

recording the corresponding forward current flowing through the LEDs. For the blue 

LEDs, If-Vf curves of three different sets according to different bonding temperatures 

(280, 290 and 300 °C) were measured to find the best bonding tempereture. For the red 

LEDs, to investigate the effect of the second eutectic bonding of the blue LEDs, two sets 

of the red LEDs were measured before and after the eutectic bonding for the blue LEDs.  

Optical powers of the emitted beam were measured using an integrating sphere coupled 

with a photodetector (3A-IS-V1, Ophir-Spiricon, North Logan, UT) to account for the 

diverging emission of both LEDs. The emission wavelength was recorded by an optical 

spectrometer (HR2000, Ocean Optics). Forward voltages were also varied for each LED 

to check for potential wavelength shift.  

5.2.6.2 PD Characterization  

The linearity between the detected optical power and the PD output was assessed by 

emitting blue and red LEDs, which were characterized with If-optical power curves in the 

chapter 5.2.5.1, towards the PD at a specific distance. The blue LED was located 45 mm 

away from the PD and driven with the forward voltage varying from 2.9 V to 3.5 in 0.1 V 

step. The output voltage at the TIA coupled with the PGA was read by an oscilloscope 

(TDS220, Tektronics, Beaverton, OR). The resistance determining a gain in the TIA was 

100 K to provide the gain of 10
5
. With the gain of the PGA set to 100, the total gain of 

the system was 10
7
. The distances between PD and LEDs were determined to make the 
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output voltage swing from 0 to 5V, which was a supply voltage of the TIA and PGA. The 

red LED located 60 mm away from the PD because the sensitivity of the PD in 630 nm 

was higher than in 460 nm. The same measurement was performed on the red LEDs.     

5.2.6.3 Feasibility on Reflectance Sensing   

To test the feasibility of reflectance sensing of the fabricated prototype, optical tissue-

simulating phantoms were created. The phantoms comprised Intralipid (I141, Sigma 

Aldrich, St. Louis, MO) as a scatterer in an agar-based matrix. Specifically, a set of 

optical phantoms with three different IL concentrations (0.4, 0.8 and 1.2 mL of IL in 20 

mL of de-ionized water) were manufactured to investigate the relationship between 

scatterer concentration and detected reflectance at the given geometry and angular 

sensitivity of source and detector. The phantoms were prepared in the petri dish with a 

diameter of 60 mm and a height of 15 mm, and placed on the black holder to prevent the 

reflectance from the bottom. The prototype sensing module was placed onto the solid 

phantom and slightly pushed to make sure the LED and PD contact the surface (Fig. 

5.10). The probe interrogated three spots on the phantoms and the measured voltages 

accounted for ambient voltage background.  

 

Figure 5.10 Reflectance sensing on tissue simulating optical phantoms with (a) 460 nm 

and (b) 650 nm.  

 

(a) (b)
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5.2.6.4 Feasibility Test for Fluorescence Sensing 

The feasibility of fluorescence sensing of the developed microprobe was assessed using 

standard fluorescence solutions. For tests, a small and thin long pass filter passing only 

fluorescence to the detector was not available. Thus, two microprobe modules were 

employed, one each for 460 nm blue LED emission and PD detection, respectively (Fig. 

5.11 (a)). The blue LED in one device excited 10 µM Rhodamine B in a cuvette with a 

1cm-pathlength, and an off-the-shelf long pass filter with a 488 nm cutting wavelength 

(FF01-488/LP, Semrock, Rochester, NY) (Fig. 5.11 (b)) blocked 460 nm excitation light 

and passed only fluorescence emission (peak emission was around 580 nm) towards the 

PD in another device. The forward voltage of the LED increased and the corresponding 

voltages on the TIA were obtained.  

 

Figure 5.11 (a) Fluorescence Measurements Setup (b) A long pass filter (LP) with 488 

nm cutting wavelength was set up very closely to the PD so that only light passed the LP 

can be detected by the PD 

 

5.3 Results  

5.3.1 Characterization of the Assembled Components 

5.3.1.1 Blue LED - Cree DA460  

460nm 

Blue LED

10 µM 

Rhodamine B

488 nm LP

PD
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Figure 5.12 (a) shows If-Vf characteristics of assembled blue LEDs depending on 

different temperatures applied for the eutectic bonding process. At the temperature higher 

than 280 °C, If-Vf performance is deteriorated and inconsistent. Measured If-Optical 

power curves show a good linear relationship and consistency between three samples 

(Fig. 5. 12 (b)). Peak emission wavelength is 457 nm with a full-width-half-maximum of 

around 30 nm (Fig. 5. 12 (c)). No prominent wavelength shift depending on the forward 

voltage is observed (Fig. 5. 12 (d)).   

 

Figure 5.12 (a) Vf-If curves of bonded blue LED depending on different bonding 

temperatures (b) Measured optical power versus the forward current on three different 

samples (c) Emission spectrum depending on Vf (d) Zoomed-in spectrum at the peak 

emission wavelength  
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5.3.1.2 C4L Red LED  

The bonded red LEDs after the eutectic bonding of blue LEDs shows the same 

performance as the LEDs before the bonding (Fig. 5.13 (a)). This indicates the second 

eutectic bonding does not affect the results of the first eutectic bonding. Measured optical 

powers are proportional to the applied forward voltages with consistency between three 

samples. At a regular forward current of 50 mA, the optical power is 22.5mW. The 

measured peak emission wavelength is around 650 nm with a FWHM of 20 nm. The 

wavelength is shifted at 1/15 nm/mA rate.  

 

Figure 5.13 (a) Vf-If curves of bonded red LED before (Green) and after (Red) the 

second eutectic bonding. Each set has three samples (b) Measured optical power versus 

the forward current on three different samples (c) Emission spectrum depending on Vf (d) 

Zoomed-in spectrum at the peak emission wavelength  
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5.3.1.3 Photodiode   

Figure 5.14 displays a linear relationship between the forward current of the sources 

(optical powers detected on the PD) and detection voltage (current flowing in the PD) at 

the TIA output in two PDs at both wavelengths. Given the total gain is 10
7
, the dark 

current of the PD can be calculated as ~1V/10
7
 (A/V) = 0.1 µA. Two PDs show the 

consistent performance in the red wavelength, as indicated by the same slope only with a 

slight difference in dark voltages. However, the PD sample #2 shows a higher slope in 

the blue wavelength. 

 

Figure 5.14 Voltage at the TIA output according to the forward currents on (a) blue 

LEDs and (b) red LEDs  

 

5.3.2 Characterization of Reflectance Sensing on Tissue Simulating Phantoms  

For reflectance sensing, the total gain of TIA was set to 10
5
 and the forward currents 

were 2 mA and 6 mA for red and blue LED, respectively in order to avoid the saturation 

in the TIA output voltage by the direct detection of the emission light. With gain of 10
5
, 

the dark voltage was 0.1 mV. The voltages measured by the direct detection were 0.23 

mV in 460 nm and 0.39 mV in 650 nm, respectively. The detection voltages increased in 

I
f
 (mA) 

0 20 40 60

D
e
te

c
te

d
 V

o
lt
a
g

e
 (

V
)

0

1

2

3

4

5

PD S#1

PD S#2

I
f
 (mA)

0 20 40 60

D
e
te

c
te

d
 V

o
lt
a
g

e
 (

V
)

0

1

2

3

4

5

PD S#1

PD S#2

(a) (b)



 

89 

 

higher concentrations of Intralipid, indicating the reflectance sensing is feasible (Fig. 

5.15). Larger error bar in 460 nm sensing probably indicates that 460 nm sensing could 

be more sensitive than 650 nm sensing setup. 

 

Figure 5.15 Reflectance sensing results on optical phantom with different scatterer 

concentrations at (a) 460 nm and (b) 650 nm. Error bar presents the standard deviation.  

 

5.3.3 Fluorescence Feasibility Test  

With a total gain of 5×10
6
 and a forward current of 40 mA on blue LED, the PD detection 

voltage was 0.10 V without a fluorescence sample, close to the dark voltage of 0.09 V 

ensuring the block of 460 nm emission light by the 488 nm LP filter. When the sample is 

placed in the excitation and detection path, the fluorescence detection voltage is up to 

1.31 V (Fig. 5. 16 (a,b)).  Fluorescence detection voltage increases as the excitation 

power increases. (Fig. 5.16 (c)) 
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Figure 5.16 (a) Rhodamine B fluorescence emission excited by 460DA3547 blue LED 

(b) Oscilloscope screen shows the voltage at the TIA output increases when a cuvette 

containing 10 µM of Rhodamine B solution is placed between the blue LED and PD. (c) 

Detection voltages corresponding to different forward currents on blue LED. 

Fluorescence emission increased linearly to the excitation intensity.   

  

5.4 Conclusion 

The first prototype optoelectronic microprobe prototype was successfully fabricated and 

assembled.  Along with the characterization of optoelectronic components, the results of 

the feasibility tests on reflectance and fluorescence sensing demonstrate that the 

optoelectronic microprobe has the potential to non-invasively assess human tissues 

located at the sites with a constrained geometry.  
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Chapter 6.                                                                                                                       

Conclusion and Future Direction 

6.1 Summary and conclusions  

The primary goal of this dissertation was to develop (a) mathematical (b) computational 

and (c) instrumental tools to address technical needs to promote the clinical translation of 

quantitative tissue optical sensing.   

In Chapter 2, we developed the Direct Fit Photon Tissue Interaction (DF-PTI) model to 

rapidly and quantitatively analyze reflectance spectra obtained from human tissues.  The 

new DF-PTI model showed increased rapidity and accuracy in fitting the acquired tissue 

reflectance than the previously developed PTI model because of the adoption of a non-

linear least mean square algorithm.  Additionally, the DF-PTI model extracted the more 

numbers of biophysically-relevant parameters such as blood vessel size and nuclear 

refractive index, which are fixed in the original model, and did not require a priori 

information like “the canonical normal” to scale the spectra of unknown tissue types.  

The developed DF-PTI model was employed to assess Intraductal Papillary Mucinous 

Neoplasia (IPMN), a common precursor lesion of pancreatic cancer. With difficulties in 

data acquisition, this pilot study investigated 8 IPMN sites in the freshly excised pancreas 

specimen from 2 patients and compared the analysis results to normal and 

adenocarcinoma. The extracted parameters associated with cellular nuclear size and 

refractive index of IMPN were higher than normal and similar to those associated with 

adenocarcinoma, which is consistent with pancreatic tissue histology and the previous 

studies reporting the refractive index in neoplastic tissues.  The extracted parameters 
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associated with collagen fluorescence contribution were also higher in IPMN and 

adenocarcinoma than in normal. The higher collagen contribution was attributed to 

abundant fibrotic stroma. The results demonstrated the potential of optical spectroscopy 

coupled with an analytical model for characterizing pre-cancerous neoplasms in human 

pancreatic tissues. 

In Chapter 3, we proposed a simple and rapid scattering analysis model to evaluate the 

potential of real-time cancer detection in the pancreas using reflectance spectroscopy. 

Clinically-compatible reflectance and fluorescence spectrometer was employed to 

interrogate the freshly excised pancreas during the surgery. In total, 105 sites from 18 

patients, including 39 normal, 32 chronic pancreatitis and 34 adenocarcinoma sites, were 

analyzed. Prior to employing the scattering model, a Principal Component Analysis 

(PCA) was performed on both fluorescence and reflectance, and a tissue classification 

algorithm employing PCA parameters revealed that the reflectance-only dataset showed 

the classification performance comparable to the performance of hybrid approach 

(reflectance and fluorescence), which provide a scientific rationale for the following 

reflectance analysis.  

The simple scattering model was employed to accurately extract the reduced scattering 

coefficients and scattering power from the obtained reflectance spectra. The estimated 

reduced scattering coefficient of adenocarcinoma (10.53 ± 0.43 cm
-1

, mean ± SE) was 

statistically lower than normal (15.96 ± 0.36 cm
-1

) and chronic pancreatitis (12.66 ± 0.42 

cm
-1

), while the scattering power increased in adenocarcinoma (0.77 ± 0.05, mean ± SE), 

compared to normal (0.21 ± 0.01) and chronic pancreatitis (0.51 ± 0.06).  The 

classification algorithm employing these two scattering parameters distinguished 
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malignant tissues (adenocarcinoma) from non-malignant tissues (normal and chronic 

pancreatitis) with 94% sensitivity and 75% specificity. Because of its compact/cost-

effective instrument, rapid data acquisition and quantitative analysis, and the diagnostic 

power of scattering parameters, diffuse reflectance spectroscopy has the potential to 

become real-time optical biopsy compatible with current clinical procedures. 

In Chapter 4, we devised the Ray-Traced Monte Carlo simulation method to 

computationally model fluorescence excitation and detection by optical spectroscopy and 

imaging systems on turbid media. The RTMC combined the optical design software, 

ZEMAX®  for ray-tracing through optical systems and Monte Carlo simulation for 

modeling photon propagations inside turbid samples. The developed RTMC method was 

first verified computationally on epithelial tissue models mimicking colon cancer. The 

source-detection configurations employing fiber optic probes with flat-ended tip were 

modeled by both RTMC method and the original gold-standard MC code, and the 

simulation results were compared. The percent errors between the MC and RTMC were 

3.5 % and 7.4 % for reflectance and fluorescence, respectively. Additionally, the RTMC 

method was experimentally verified on optical phantom measurements with a depth-

sensitive fluorescence spectroscopy system. Two-layered solid phantoms were fabricated 

with a top agarose-based layer with Rhodamine 6G on top of the PDMS-based bottom 

layer with POPOP.  Depth-sensitive spectroscopy measurements were performed by 

scanning a focal point in the z-direction up to 1 mm. Top layer sensitivity was calculated 

from the measured fluorescence spectra and compared with results of the RTMC 

simulation that optically modeled phantoms and optical systems. The simulation results 

predicted the actually measurements within 15%, indicating that the RTMC was able to 
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accurately model fluorescence excitation and detection on turbid media by 

spectroscopy/imaging systems that employ complex optical components. The verification 

results suggested that the developed RTMC method has potential as an efficient and 

useful computational tool for designing or assessing fluorescence detection systems in 

turbid media.   

In Chapter 5, we designed and developed a prototype of the optoelectronic microprobe 

for volumetric optical sensing during the EUS-FNA procedure with an aim of more 

accurate diagnosis of pancreatic neoplasia. Die-level optoelectronic components (two 

LEDs at 460 nm and 650 nm and one PD) were selected to meet the mechanical, 

electrical and optical requirements.  The prototype board was fabricated based on 

standardized microfabrication technology, including photolithography and a lift-off 

process. LEDs and PD were bonded onto the fabricated board via two consecutive 

eutectic bonding processes, and wire-bonding followed to connect the top electrodes of 

the LED and PD to the bottom pads. The low-noise LED driver and trans-impedance 

amplifier coupled with the programmable gain amplifier were designed and implemented 

for controlling the optical sensing and monitoring.  

The assembled LEDs were characterized by obtaining If-Vf curves, If-Power curves and 

emission wavelength, and the PD was characterized by measuring dark current and the 

detected optical power-IPD curve, to ensure that the assembly process did not affect the 

performance of the chips. The feasibility of reflectance sensing was tested on tissue 

scattering phantoms with different concentrations of Intralipid, and the results showed a 

linear relationship between the scattering properties and the detected reflectance. For 

fluorescence, a 10 µM Rhodamine B solution was excited by the 460 nm LED and the 
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fluorescence was able to be detected by the PD coupled with a long-pass filter that cut 

excitation wavelength. These test results demonstrated that the optical sensing module 

employing micro-optoelectronic chips was feasible. Further characterization and 

upgrading of the board design to make it compatible with a 19G needle will be the next 

step for this project.    

             

The major contribution of this dissertation can be summarized as follows:  

 We developed an improved mathematical model called DF-PTI that can rapidly 

extract the parameters associated with nuclei size, refractive index, blood vessel 

size and collagen contribution in human tissues without a need of a priori 

information.    

 We reported the first-ever optical spectroscopic analysis on a precursor lesion of 

pancreatic cancer, IPMN.  

 We revealed that reflectance spectroscopy alone could be as useful as the 

multimodal approach in terms of an accurate diagnosis of pancreatic cancer, 

representing the potential of real-time optical biopsy resulting from its 

compactness, cost-effectiveness and speed of analysis.   

  We made the first estimation of the reduced scattering coefficient and scattering 

power at a specific wavelength range in human pancreatic tissues. This estimation 

was based on tissue-simulating scattering phantoms.  

 We presented the first-ever assessment of pancreatic tissue scattering properties as 

an optical biomarker for pancreatic cancer diagnosis by employing a novel tissue 
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classification algorithm constructed with GEE that accounts for he intra-patient 

correlation.  

 We created the first-ever ray-traced Monte Carlo (RTMC) computational method 

to model a complete ray path on fluorescence excitation and detection in turbid 

media.  

 We manufactured the first two-layered optical phantom, in which both layers are 

solid; an agar-based top layer containing Rhodamine 6G and Intralipid and a 

PDMS-based bottom layer mixed with titanium oxide and POPOP. This phantom 

required no additional sheet which could potentially have an unknown impact on 

the optical measurement between the two layers because of the hydrophilic and 

hydrophobic properties of top and bottom layer, respectively.  

 We designed and developed the first-ever prototype of an optoelectronic 

microprobe including micro-sized die-level chip LEDs and PD, which will fit 

within a 19G hollow needle and potentially provide the flexibility of source-

detector configurations for adjustment of optical interrogation volumes.          

 We evaluated the performance of assembled components in the prototype, and 

tested the feasibility of reflectance sensing on tissue-simulating scattering 

phantoms and fluorescence sensing on standard fluorophores.  
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6.2 Future Research Direction  

6.2.1 Optical Detection of Pancreatic Cancer   

The reflectance spectroscopic technique reported in Chapter 2 and 3 is potentially 

compatible with the current EUS-FNA procedure. FNA-needle compatible fiber-optic 

spectroscopy has been demonstrated to be capable of characterizing lymph node 

physiology in vivo [36, 67]. A single channel fiber optic (600 µm) was employed in this 

study coupled with a mathematical model to evaluate physiological parameters related to 

blood content. Although the same dimension of optical fiber with the mathematical 

model may possibly be employed for future in vivo pancreas studies, a dual channel with 

smaller diameter (~ 300 µm) would also appear to be feasible, considering the internal 

diameter of conventional FNA needles.    

Because of its great classification performance for distinguishing adenocarcinoma sites 

from normal tissues, (sensitivity 94% and specificity 95%), reflectance spectroscopy can 

be employed for surgical margin detection during the surgery. The rapid acquisition and 

analysis of one reflectance spectrum could potentially enable an advanced design for a 

scattering imaging system by incorporating 2-dimensional scanning in order to provide 

spatial information [137]. 

6.2.2 Ray-Traced Monte Carlo Simulation  

Upgrade for time-resolved fluorescence model  

The current RTMC method enables steady-state fluorescence only simulations. However, 

time-resolved fluorescence simulation could be achieved by adopting lifetime 

determination methods commonly employed for a time-gated fluorescence lifetime 

imaging (FLIM) system. Inside the current MC codes, an internal function records the 
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traveling time of each individual fluorescence photons. A virtual gating could be 

implemented in the code to collect all the fluorescence photons exiting the sample surface 

within a specific time range and then export them as one geometrical distribution file that 

can be fed into a ZEMAX®  detection model. For the four-gate model, four geometrical 

distribution files will be generated, and the ZEMAX®  detection model will run four 

times with the corresponding distribution files as a source, resulting in the simulated 

gated-fluorescence intensity. A ZEMAX®  macro program could automate this repetitive 

process. The four intensity values detected by ZEMAX®  would be employed in an 

analytical least square lifetime determination based on equation 6. 1 
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N t t
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                           Equation 6.1 

where τ is the lifetime, Ii is the gated intensity at the gate i, ti is the gate delay of the gate 

i, and N is the number of gates. All sums are over i.  

Further Validation of the design of a confocal fluorescence probe in the Tissue 

Engineering Field  

To evaluate the applicability of the developed RTMC method, it could be validated on 

the design of a confocal fluorescence probe to assess the viability of manufactured tissue-

engineered constructs for oral or skin grafts in functional tissue recovery. The viability 

can be assessed by measurement of the endogenous fluorescence of metabolic co-factors 

such as NAD(P)H and FAD. However, selectively measuring the fluorescence from the 

thin cell layer is very challenging to because of high scattering in the top keratin layer 

and the abundant collagen fluorescence from a bottom dermal equivalent of the 

constructs. Compared to previously implemented fiber-optic system, the confocal 
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fluorescence probe is capable of finer resolution depth-sectioning that effectively 

suppresses the strong keratin and collagen fluorescence and extracts only the epithelial 

fluorescence.  

An example of the preliminary design is shown as Figure 6.1.All the selected lenses are 

commercially-available and have small footprints (diameter < 5 mm), which would 

enable a future probe to access the various human sites. RTMC simulation could be 

employed to determine the optimal design parameters.  The optical probe system could be 

modeled in the non-sequential mode of ZEMAX®  and fluorescence emission and 

propagation inside the constructs could be simulated via MC codes based on the optical 

properties of the constructs. 

 

 

Figure 6.1 (a) Optical ray trace of the preliminary design of the future hand-held probe 

for non-invasive sensing of implanted tissue-engineered constructs in human. An 

aspherical lens was employed for an objective lens and two achromatic lenses for higher 

resolution via further magnification without chromatic aberration. (b) Design of non-

miniaturized proof-of-concept system proposed here, based on 30 mm- cage optical 

mounts. Model names for commercially-available lenses and mounts are labeled
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6.2.3 Optoelectronic Microprobe 

2
nd

 Prototype Design and Fabrication 

The next version of the prototype will have a physical dimension that fits within the inner 

diameter of a 19G needle (~850 µm). While the current prototype was developed on 500 

µm-thick wafer, the bottom side of the next version could be etched to a ~ 100 µm for 

needle integration. Relative position of two LEDs to PD could be changed to increase an 

overlapping area of the optical detection path of each source-detection module. In the 

current version, the blue LED is located on the other side across the PD, which separates 

optical detection path of two LEDs (Fig 6.2 (a)). The red LED could be located on the 

other side of Blue LED as shown in Fig. 6.2 (b). The effect of a prolonged optical path 

for the red LED (> 600 µm) could be simulated by the developed RTMC simulation.        

 

Figure 6.2 (a) Current configuration of the PD and LEDs in the prototype assumes the 

homogeneity of the sample (~ 1mm
3
) interrogated by optical path (which is shaped like 

“banana pattern”) of detected photons in each Blue LED-PD and Red LED-PD module 

although each path separates. The optical sampling volume is comparable to a biopsy 

volume acquired by EUS-FAN procedure. (a) However, if Red LED is moved to the next 

to Blue LED, the interrogation volume could be reduced and overlapping area of the 

optical path could increase, thus increasing the overall resolution of optical sensing.   

 

 

(a) (b)

Blue LED PD Red LED

Sampling 

volume

2 mm 1.5 mm
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In vivo Validation on Mouse Model  

Once the second prototype is developed and fully verified, the prototype could be 

integrated with the 19G needle (EchoTip ProCore
TM

 19G, Cook Medical) and tested on in 

vivo mouse model. Since the measured reflectance from human pancreatic xenografts in 

mice with immunodeficiency showed the similarity of human study [55], the same 

xenograft model could be employed. Genetically-engineered mouse model [138] 

mimicking pancreatic tumorigensis developed by Magliano Group in the University of 

Michigan could help to investigate the potential of microprobe in staging the 

carcinogenesis, as well as the effect of fibroinflammatory stroma along with changes in 

cellular structures of pancreatic tissues.  

Quantification on Quasi-Spectral Sensing  

Besides a simple ratio metric the current prototype can provide as diagnostic parameter, 

adding more LEDs with different wavelengths could enable a quantitative analysis based 

on quasi-spectral information. In our preliminary study, mathematical models on human 

pancreatic reflectance spectra with only four wavelengths could extract almost the same 

scattering parameters with the ones from full-wavelength spectrum (176 discrete 

wavelengths). The optimal selection of those wavelength and arrangement of each LED 

will need to be further investigated.   

Realization of fluorescence sensing  

To realize fluorescence sensing in the microprobe, a micro-sized long-pass filter must be 

fabricated. The feasibility of fabrication has been demonstrated by staking layers of TiO2 

and SiO2 based on Fabri-Perot thin-film optical resonator [139]. The performance (e.g. 

quantum yield and low dark current) of the current silicon photodiode will need to be 
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more thoroughly evaluated that it is capable of high-SNR fluorescence measurements. 

Alternatively, a silicon photo-multiplier [140] could be employed if the dimension is 

compatible with a needle.  

Testing Mechanical Integrity 

A mechanical break down of the microprobe during the procedure will cause a serious 

problem to the patient. Thus, a complete packaging of the device is essential and 

thorough mechanical tests must be performed prior to being inserted inside the needle for 

in vivo measurements. In particular, the fabricated microprobe must endure the acute 

curvature that the end of an endoscope and a needle elevation form together to reach the 

pancreas. To test the mechanical integrity of the fabricated microprobe, the Erlangen 

Active Simulator for Interventional Endoscopy (EASIE™), a clinical endoscopic training 

simulator will be employed (Fig. 6.3). The FNA hollow needle, containing the 

microprobe, will be inserted through the instrument channel of the endoscope, protruded 

through the swine stomach, and into the pancreas-simulating phantom. The microprobe 

will be removed from the endoscope and reinserted. Optoelectronic performance will be 

assessed by acquiring optical data pre- and post-insertion. Mechanical integrity will be 

verified via microscopic visual examination and electronic testing. 
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Figure 6.3 Erlanger Active Simulator for Interventional Endoscopy (EASIE™). 

Mechanical performance of the miniaturized optoelectronic probe will be validated by 

passing a needle containing the microprobe through the working channel of an EUS 

scope, placed into the model stomach to simulate the human procedure. Once the EUS 

scope is within the stomach, a tissue-simulating phantom will be placed in the position of 

the pancreas outside the stomach to validate the optical performance when the needle is 

manipulated as in the clinical exam [141] The FNA needle with microprobe will be 

protruded into the phantom for measurements; baseline measurements will be acquired 

immediately prior to the procedure.  Measurements will occur from both optical modules 

at 5 locations in the homogeneous phantom, yielding ten optical measurements. 

Measurements will be compared to each other and baselines. 

 

In case that a continuous or chronic monitoring is necessary, hermetic sealing can be 

carried out to provide superior integrity and protection against the device degradation. A 

glass cap would be bonded on the Indium pattern surrounding the optoelectronic 

components using a proper temperature and pressure [142].   
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