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ABSTRACT

Topology Considerations in Hybrid Electric Vehicle Powertrain Architecture Design

by

Alparslan Bayrak

Chair: Panos Y. Papalambros

Optimal system architecture (topology or configuration) design has been a challenging

design problem because of its combinatorial nature. Parametric optimization studies

make design decisions assuming a given architecture but there has been no general

methodology that addresses design decisions on the system architecture itself. The

electrification of vehicles with the introduction of mechatronic devices such as motors

and generators to vehicle powertrains has drawn renewed attention to the automo-

tive powertrain architecture optimization problem. Hybrid Electric Vehicle (HEV)

powertrains allow various architecture alternatives created by connecting the internal

combustion engine, motor/generators and the output shaft in different ways through

planetary gear systems. Addition of clutches to HEV powertrains allows changing the

connection arrangement (configuration) among the powertrain components during the

vehicle operation. Architectures with this capability are referred to as multi-mode ar-

chitectures while architectures with fixed configurations are referred to as single-mode

architectures. Design decisions made on both the powertrain’s component sizes and

its configuration have significant impact on the fuel economy and vehicle performance.

System architecture optimization requires designing the configuration and sizing si-

xiv



multaneously. Additionally, evaluation of an HEV architecture design depends on a

power management (control) strategy that distributes the power demand to the en-

gine and motor/generators. Including this control problem increases the complexity

of the HEV architecture design problem. Methodologies developed specifically for

HEV powertrain architecture design work only when the problem size is significantly

reduced by eliminating many architecture design candidates or target only a small

portion of the design space of architecture alternatives.

This dissertation focuses on a general methodology to make design decisions on

HEV powertrain architecture and component sizes. The representation of the ar-

chitecture design problem is critical to solving this problem. A new general repre-

sentation framework capable of describing all architecture alternatives is introduced.

Using the representation, all feasible configurations are generated to create a new

design space of feasible configurations only. These configurations are used to create

single- and multi-mode HEV architectures. The architecture design alternatives are

evaluated based on fuel economy, vehicle performance and complexity. Three types of

design problems are formulated: (i) single-mode architecture design for given compo-

nent sizes (ii) multi-mode architecture design for given component sizes (iii) architec-

ture design combining the configuration and sizing. Solution strategies for all three

types of design problems are developed. The high complexity of the resulting opti-

mization problem does not allow us to claim true optimality rigorously; therefore, the

terms “promising” or “near-optimal” are more accurate in characterizing the results of

the optimization studies. Case study results show that different architectures must be

designed for different applications. The case studies designing architectures for some

available vehicles from the market find the architectures already implemented in these

vehicles under some design constraints. Alternative architectures that improve these

designs under different design constraints are also demonstrated. Architectures for a

new application that is not available in the market are also designed.
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CHAPTER I

Introduction

A system designer has various alternatives to consider when designing a system

with certain design goals. While these alternatives may share a common architec-

ture consisting of components with different specifications, the same goal can also

be achieved by systems with very different architectures (topologies or configura-

tions). Starting the design process with a “clean sheet”, an effective selection of

architecture design candidates among these alternatives requires a systematic pro-

cess. Parametric optimization studies concentrate on the design decisions assuming

a given architecture. Making the design decisions on the architecture itself is by far

the most challenging design problem. Most often architecture design alternatives are

unknown and must be generated using the designers intuition. Thus, a systematic

approach to both generate and select alternative architectures is desirable.

In this dissertation we investigate the problem of designing hybrid electric pow-

ertrain architectures to maximize the fuel economy with satisfactory vehicle perfor-

mance. We present a systematic way to generate and select promising design candi-

dates for a general hybrid electric architecture design problem. We use a modified

bond graph framework for the architecture representation. Generation and selec-

tion of architecture alternatives is done using an optimization formulation. The high

complexity of the resulting optimization problem does not allow us to claim true

1



optimality rigorously; therefore, the terms “promising” or “near-optimal” are more

accurate in characterizing the results of the optimization studies.

1.1 Problem Definition

1.1.1 Classes of Design Problems

We introduce some terminology to create a common basis for the rest of the

exposition. Snavely et al. (1990) provided some vocabulary to classify design problems

in general that also applies to the problem discussed in this dissertation. Following

the definitions in their work, a system consists of components, a collection of which

forms a catalog. Each component in the catalog is called a catalog entry. Catalog

entries are connected at slots and the configuration, i.e., the connection scheme among

catalog entries defines the topology of the system. Figure 1.1 and Figure 1.2 illustrate

these concepts on an abstract system.

In the design literature, the terms topology, configuration, layout, and architecture

design tend to be used interchangeably to refer to the same design problem. In this

dissertation the terms configuration and architecture that are more common in the

automotive field are used with a subtle difference: Some electrical and mechanical

systems can change the connection schemes among their components during their op-

eration using switching components such as electrical switches or mechanical clutches.

Each of these particular configurations is defined as a different mode of operation of

the system and the combination of these configurations is called the system architec-

ture. If the system does not have the ability to change its configuration, there is no

difference between configuration and architecture.

The system design alternatives achieving a certain objective may have the same

architecture with different catalog entries, which we call different instances of an

architecture, or they might have different architectures while achieving the same
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Figure 1.1: Illustration of design terminology

desired objective. Figure 1.3 shows examples of two DC/DC converters being able

to achieve the same task with different architectures. The catalog entries used in

both of these designs are different. While the half bridge DC/DC converter has

two transistors (Q1 and Q2), the full bridge utilizes four transistors. By applying

different control strategies to these two systems with different architectures, the same

DC voltage input can be converted into the same DC voltage output. However, the

losses in these systems (or in the general case the performance of the systems) are

different.

Optimization is an important tool in the design process since finding the best or

a set of “most promising” designs among the design alternatives is a key task in the

system design process. “Proportional” or “sizing” optimization studies concentrate

Figure 1.2: Topology of an abstract system to achieve a desired output using a catalog
shown on Figure 1.1
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(a) Half Bridge DC/DC Converter

(b) Full Bridge DC/DC Converter

Figure 1.3: Two DC/DC converters of different architectures

on optimizing the design variables associated with the catalog entries for a given

architecture. Except for a small number of fields, such as structural or antenna opti-

mization, the system architecture is considered fixed during optimization. The main

reason for fixing the architecture is our inability to represent multiple architectures

under a single optimization model. This dissertation addresses the problem of design-

ing Hybrid Electric Vehicle (HEV) powertrain architectures considering fuel economy,

vehicle performance and architecture complexity. These concepts are defined later in

the dissertation.
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1.1.2 Hybrid Electric Vehicle Architecture

The introduction of mechatronic devices such as motors and generators to vehicle

powertrains has drawn renewed attention to the powertrain architecture optimization

problem. Increasing demand for higher fuel efficiency places higher expectations on

what can be achieved through powertrain electrification. Available architectures in

the market are designed for specific types of vehicles, and a different vehicle with

different specifications may require a different architecture designed to accommodate

the particular vehicle and driving conditions. For example, an available architecture

designed for a passenger vehicle might not result in satisfactory fuel economy when

implemented in a heavy-duty truck. Architecture design has been shown to have a

significant impact on the fuel economy (Liu, 2007). Hence, effective electrification

requires a systematic approach to identify the appropriate vehicle powertrain archi-

tecture.

The powertrain architecture in a HEV mainly consists of an engine, one or more

motor/generators (MGs), high-voltage and low-voltage batteries, power electronics

(PE) devices, such as inverter and DC/DC converters and a transmission to connect

the propulsion devices to the vehicle power output. We can divide the automotive

architecture into two parts, as electrical and mechanical architectures. Electrical

architecture refers to the configuration of the components on the electrical path, i.e.,

how batteries, PE devices and MGs are connected. Mechanical architecture refers

similarly to the configuration of MGs, engine, transmission and vehicle power output.

In this dissertation the focus is on the mechanical architecture.

Similar to the general definition given before, a mechanical powertrain architecture

may consist of several configurations allowing switching from one configuration to

another during vehicle operation. In an HEV architecture with this capability, each

particular configuration is called a driving mode or simply a mode. In this case, the

HEV architecture can be defined as a combination of driving modes. Having different
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driving modes can be used to achieve better drivability and efficiency under different

driving conditions.

A common way to classify configurations or modes is based on how engine and

electric motors are connected. The following subsections describe three classes of

configurations, namely, series, parallel and power-split.

1.1.2.1 Series Configuration

The series configuration owes its name to the components being connected in a

series manner, see Figure 1.4. An engine is connected to a generator that charges the

battery. The battery is also connected to typically multiple motors that drive the ve-

hicle. This design provides simplicity in the architecture. In this configuration, since

the only purpose of the engine is to charge the battery, the engine runs independently

of the vehicle motive operation. That way the engine can run in its efficient operating

region regardless of the vehicle’s motive operation. However, energy conversion at the

generator and motor stages is a major source of energy loss. Also, at high speeds elec-

tric motors do not run as efficiently as the internal combustion engines which makes

such a design not suitable for highway applications but a good alternative for city

driving. A series hybrid architecture, i.e., an architecture consisting of only a series

hybrid mode has not been implemented in any of the commercially produced hybrid

vehicles but the Chevrolet Volt has a series hybrid mode in addition to other driving

modes; see Conlon et al. (2011).

1.1.2.2 Parallel Configuration

In the parallel configuration, an engine and an MG drive the vehicle together,

properly connected by a transmission. See Figure 1.5. The speeds of the MG and

engine are linked via gearing and torques from both sources are combined to drive

the vehicle. The MG is also used to charge the battery in which case the engine
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Figure 1.4: Series Hybrid Configuration

drives both the vehicle and motor together. In order to obtain a variety of oper-

ating regions a parallel hybrid configuration typically includes either a conventional

automatic transmission or a continuously variable transmission. “The Integrated

Motor-Assist System” developed by Honda Motor Company uses this architecture in

mass-produced vehicles such as the Honda Insight Hybrid (Aoki et al., 2000).

1.1.2.3 Power-split Configuration

A key element of the power-split configuration is the planetary gear (PG) set due

to its versatility and high efficiency. An engine and MGs are connected to one or more

PGs in different configurations driving the vehicle together; see Figure 1.6. A PG set

is composed of a ring gear at the outer surface, a sun gear at the center and pinions

in between. The pinions are connected via a bar, altogether forming the carrier gear

as shown on Figure 1.7.

Depending on the number of PGs in the architecture, there are many possible

ways to connect engine, motors and vehicle output providing many alternative con-

figurations to select from. Power-split configurations that have been proposed in the

literature include 1-PG, 2-PG, and even 3-PG systems, see Table 1.1. Commercial

implementations of this configuration include the Toyota Prius and the Ford C-Max.
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Figure 1.5: Parallel Hybrid Architecture

Also one of the modes of the Chevrolet Volt is a power-split configuration (Conlon

et al., 2011).

Table 1.1: Existing architectures from literature

Number of PGs Reference

1-PG Conlon et al. (2011)
Sasaki (1998)

2-PG Schmidt (1996b)
Schmidt (1996a)

Holmes et al. (2003)
Holmes and Schmidt (2002)

Ai and Anderson (2005)

3-PG Schmidt (1999b)
Raghavan et al. (2007)

The use of PGs allows creation of many architecture alternatives. For example, by

grounding certain gears in the PG set a parallel configuration can be obtained. Due to

the versatility provided by PGs, the main focus in this dissertation is on architectures

obtained by configuring powertrain components with PGs in different ways.

When there is no parametric representation available to define the space of archi-
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Figure 1.6: Power-Split Hybrid Architecture

tecture alternatives, a model capable of representing all the architecture alternatives

is necessary. We developed a new “modified bond graph” representation for this pur-

pose. Chapter III describes this representation in detail and proposes a framework

for generating all configuration alternatives.

1.1.3 HEV Powertrain Control

The availability of the additional MGs compared to the conventional automo-

tive powertrains provides flexibility to distribute the power demand from the vehicle

output shaft among the engine and MGs. A systematic way to perform this power

management requires a control strategy. In the literature, there are some available

control strategies applied to the HEV powertrain control problem that perform this

power distribution optimally, such as Dynamic Programming (Lin et al., 2003; Liu

and Peng , 2006) or Pontryagin’s Minimum Principle (Delprat et al., 2002, 2004; Kim

et al., 2011). In addition, some heuristic methods driven by the Pontryagin’s min-

imum principle were introduced such as the Equivalent Consumption Minimization

Strategy (Paganelli et al., 2002). A detailed description of these strategies is given in
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Figure 1.7: Cross section representation of a PG set

Chapter V. Some rule-based control strategies are also available but they typically

perform much worse than the optimal control strategies.

Addition of this control problem increases the complexity of the HEV architecture

design problem. We cannot separate the design and control problems from each

other since they are coupled and both have significant impact on the fuel economy of

the designs. Solving the control problem inside the design problem adds significant

computation cost to the evaluation of HEV architecture design alternatives and makes

the enumeration of all possible designs intractable except in certain specific cases to be

discussed later in the dissertation. In Chapter IV, we give a more detailed discussion

on the coupling between the design and control problems, and describe the solution

strategy implemented in this dissertation.

Considering an HEV architecture as a combination of multiple modes, finding

promising (“near-optimal”) architectures is a challenge because of the combinatorial

nature of the problem. When the number of architecture alternatives is small, enu-

meration of all possibilities might be used to find the best; but the large number of

alternatives for a hybrid electric vehicle powertrain makes the assessment of all pos-

sible alternatives computationally intractable mainly because of the combined design
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and control problem. Therefore, some form of efficient search is necessary to find

the optimal selection or to reduce the number of alternatives that must be explicitly

evaluated.

True system optimization requires combining both architecture and sizing opti-

mization. Unless the component specifications are fixed by some constraints, two

architectures can only be compared at their best instances. As we will explore in

later chapters, optimizing simultaneously architecture and sizing of their components

is very challenging. An initial approach might be to consider architectures comprised

of fixed components. This approach is taken in Chapters V and VI. The more general

optimization problem in discussed in detail in Chapters IV and VII.

1.2 Related Work

Optimal architecture design has been a taunting problem in design research. There

has been no general approach developed that works for the different types of archi-

tecture problems. The main difficulty is lack of appropriate problem representation.

Creating new design solutions (concepts or configurations) from scratch or by com-

bining existing designs is also referred as design synthesis. Shea and Starling (2003)

and Cagan et al. (2005) describe the design synthesis process in four phases which are

representation, generation, evaluation and guidance. Representation refers to the task

of describing the system of interest with a general enough model capturing form or

function of system. The representation task is usually done by the designer manually

based on the analysis of existing systems. The generation task uses the representation

to create feasible design alternatives. So the generation task must have some rules on

the representation describing feasibility. Evaluation refers to the process of measur-

ing quality of the design in terms of the design criteria. Finally, guidance is feeding

the output of the evaluation task back to the generation in order to find good search

directions for new better alternatives in the design space. The last three phases are
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usually automated and work in a loop until the process converges to promising design

solutions. Representation is the key which determines the computational efficiency of

the generation, evaluation and guidance tasks. A representation allowing the use of

available search methods proven to be effective can help to solve the design problem

in an efficient way.

The design synthesis concept above parallels the standard design optimization pro-

cess. The representation task is the creation of a mathematical optimization model

that will allow exploration of design alternatives using optimization algorithms. Ar-

chitecture design is a challenging problem exactly because such mathematical models

have been proven difficult to create (with few exceptions).

The following subsections describe works in other fields incorporating all these

phases in their design process. A more detailed literature review is given in Chapter

II.

1.2.1 Structural Design Synthesis

Kicinger et al. (2005) classify the structural topology problems into two categories

as continuum and discrete design problems based on the way the design space is rep-

resented. Continuum type topology design, also simply called topology optimization

within its own field is the only type of architecture problem which is addressed in

an efficient and generalized way. In the attempt to find the optimum topology of

structures given some loading conditions, the problem is converted into finding the

optimal material distribution over a domain; see Bendsøe and Kikuchi (1988). What

enables this computationally efficient solution is the continuous representation of the

topology over a design domain. The design domain is discretized into a finite number

of cells where having a design variable value of “1” means existence of material and

“0” otherwise. This problem with binary variables is then represented by a continu-

ous function which penalizes the intermediate values to either “0” or “1”. With the
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help of this continuous representation, the problem can be solved using conventional

optimization techniques applied to a finite element model of the structure. Although

this is classified as a continuum approach, discrete formulations of the same con-

cept have been implemented using Genetic Algorithm (GA) (Sandgren et al., 1990;

Jensen, 1992). This concept has been successfully applied to non-structural domains

from fluid mechanics (Borrvall and Petersson, 2003) to electromagnetics (Kiziltas

et al., 2003) where a field property like material could be distributed in the design

domain and field equation can be used to evaluate system performance for different

distributors.

The second category in structural design is the discrete topology design problems.

This type of formulation starts with a given finite set of elements, i.e., a catalog, and

optimizes the connectivity of the selected catalog entries. Truss and frame structures

are two common applications of discrete topology design problems. The most common

formulations include, location coordinates, sizing of links and connectivity of joints

as design variables. Evolutionary algorithms, GA being the most common one, are

extensively used to solve the resulting optimization problem. As the problem size and

number of constraints in the system increase, evolutionary algorithms have difficulty

in finding feasible design solutions and this impacts computational solution efficiency

significantly (Kicinger et al., 2005).

Design synthesis of kinematic chains is also similar to the structural design synthe-

sis problems. In this type of design problems, topology, size of the linkages, required

torque from the actuators are design variables. Available work in the literature fo-

cused on open and closed kinematic chain design in order to meet the position (Roth,

1967) and force requirements (Raghavan, 1989; Huang and Roth, 1993) from the re-

sultant system.

13



1.2.2 Electrical Circuit Design

Synthesizing electrical circuits that provide a desired output to a given input elec-

trical signal is a problem that has been investigated by Koza et al. (1997); Zebulum

et al. (1998); Lohn and Colombano (1998). The general approach is to start from a

given catalog of circuit elements and explore different ways to connect these elements

until the desired output is obtained. A typical application is filter design where the

desired output is expressed in terms of frequency response of the system. Additional

selection criteria may include the number of catalog entries used, power consumption

and overall space occupied by the design. In these studies, not only the configuration

but also the sizing of the catalog entries are incorporated into the problem formu-

lation. Instead of a continuous representation, sizing variables are allowed to take

only commonly manufactured values. Evolutionary Algorithms (EAs) are extensively

used to solve these problems. A graphical representation or a string representation

of variable length that allows incorporating EA operations are commonly used.

1.2.3 Chemical Structure Design

In the chemistry domain, the architecture design problem corresponds to finding

chemical structures possessing certain chemical properties. A common application

area is the synthesis of new drugs. Desired chemical properties are typically formu-

lated as objectives such as an interaction score or similarity to a known ligand which

are both estimates of the tendency of a molecule to bind to a target protein. In ad-

dition, other considerations such as absorption, distribution, metabolism, excretion

and toxicity may serve as additional objectives or constraints in an optimization for-

mulation (Schneider and Fechner , 2005). Since the number of feasible alternatives is

estimated to be on the order of 10100, enumeration over all feasible candidates is not

possible (Walters et al., 1998). Therefore, evolutionary algorithms combined with

a graphical representation of the molecules are commonly used to search the design
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space efficiently (Schneider et al., 2000; Nicolaou et al., 2009; Weber , 2002).

1.2.4 Automotive Powertrain Configuration Design

An extensive configuration design study for conventional automotive powertrains

was proposed by Kahraman et al. (2004). The goal was to find planetary gear config-

urations giving the desired speed ratios within a range. Speed ratio for a conventional

powertrain is defined as the ratio between input engine speed and vehicle power output

speed. Conventional powertrain architectures are one-Degree Of Freedom (1-DOF)

systems where input and output speeds are linked by a speed ratio. As described

earlier, by changing the connections among the planetary gear sets as well as the

nodes where powertrain components are connected, many configuration alternatives

are possible. Kahraman et al. (2004) formulated some feasibility constraints in terms

of clutch connections, maximum gear and bearing speeds, and forces. These con-

straints are then used in an enumeration framework to eliminate infeasible designs.

All configurations satisfying the constraints and giving the target speed ratios are

selected for further consideration such as efficiency or packaging.

In the case of hybrid electric powertrains, additional MGs in the powertrain make

the 2-DOF systems also useful. The MGs allow engine to operate independent from

the vehicle motive operation,i.e., input and output speeds are not necessarily linked

together. However, this additional degree of freedom increases the problem size com-

pared to the conventional case. Liu (2007) proposed a HEV architecture design frame-

work capable of finding 2-PG power-split system configurations with two modes. Liu

represented a driving mode with a dynamic system matrix explained in further de-

tail in Chapter III, and classified the power split system into three froms: input-split

(one MG is connected to the vehicle output), output-split (one MG is connected to

engine) and compound-split (none of MGs is connected to engine or vehicle output).

Leaving output-split configurations out, Liu found all feasible driving modes using

15



this representation and assuming that the optimal architecture must have an input-

split and a compound-split mode. By applying a set of constrains the number of

feasible mode alternatives was reduced to a small number for the input-split mode

in the architecture. Then, the compound-split modes that can be switched from the

remaining feasible input-split-modes were identified by allowing only two clutches.

Integrating some shifting considerations, the number of input-split alternatives was

further reduced and powertrain component sizing optimization was performed for the

remaining candidates.

1.3 Summary

Finding the promising HEV architecture candidates considering vehicle perfor-

mance, fuel economy and complexity is a challenging task because of the combina-

torial nature of the problem. There is no available methodology that works well for

general system architecture design problems. Available methodologies are limited

to specific domains and cannot be applied to the HEV architecture design problem.

Methodologies developed specifically for HEV architecture design problems either

work only when the problem size is significantly reduced by eliminating many design

candidates through additional constraints or target only a small portion of the design

space to search for architecture alternatives.

The goal of this dissertation is to introduce a more general methodology to iden-

tify promising HEV architectures and gear ratios allowing any number of PGs and

powertrain components to be incorporated into multiple driving modes. Since repre-

sentation is a crucial element to solve this problem efficiently, a general representation

framework capable of describing any HEV powertrain architecture is introduced. Us-

ing the proposed representation, all configuration design alternatives are generated to

create the feasible configuration design space. An evaluation process based on vehi-

cle performance, fuel economy and complexity is then used by a search algorithm to
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identify near-optimal solutions. Different solution strategies are proposed for different

problem types. Three problem types are investigated: (i) single-mode architecture

design for given gear ratios, (ii) multi-mode architecture design for given gear ratios,

(iii) architecture design combining configuration and gear ratios.

1.4 Dissertation Contributions

Three main contributions of this dissertation are as follows

(i) A new representation of hybrid electric vehicle (HEV) architectures is created

based on concepts from bond graphs that is general enough to represent ar-

chitectures with any number of powertrain components connected through any

number of planetary gears (PGs). Using this representation, a general formu-

lation is derived to generate all feasible configurations, i.e., driving modes, for

any given number of powertrain components and PGs.

(ii) A new, combined HEV architecture design and control problem formulation is

derived and solution strategies for single and multi-mode architecture design

problems for given powertrain component sizes and gear ratio selections are

demonstrated.

(iii) A general decomposition-based formulation for the combined HEV architecture

design and control problem is developed for the more general case that includes

component sizing as design decisions. This formulation includes a partitioning

model and a coordination strategy using analytical target cascading.

In order to demonstrate the capabilities of the methods proposed, we will present

the generation results for all feasible power-split type 1-PG, 2-PG and 3-PG driving

modes with one engine, two MGs and one ground. Then, using these feasible driving

modes, we will show the design of 1- and 2-PG single- and multi-mode architectures
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for different vehicle applications by considering fuel economy, vehicle performance and

architecture complexity. Finally, for the design problem of combined architecture and

component sizing, we will present separate decompositions for single and multi-mode

architectures. We will demonstrate this formulation by designing 1- and 2-PG single-

and multi-mode architectures and gear ratios simultaneously for a particular vehicle

application.

1.5 Dissertation Overview

The rest of the dissertation is organized as follows: In Chapter II an analysis of

the relevant literature and a discussion on the gap in the literature to address the

problem investigated in the present dissertation is given. Chapter III describes a

new general HEV architecture representation followed by an automated framework

that generates the feasible driving modes relying on this representation. Chapter IV

formulates the general HEV architecture optimization problem for different scenarios

and gives an overview of the solution strategies. Chapter V describes the architecture

evaluation method based on vehicle performance and fuel economy. The solution

method for single-mode HEV architecture design problem with given gear ratios and

vehicle parameters is also describe in that chapter. Chapter VI defines a complexity

measure to be used for multi-mode architecture evaluation and describes the solution

strategy to find promising architectures in terms of fuel economy, vehicle performance

and complexity for given gear ratios and vehicle parameters. Chapter VII discusses

the combined configuration and gear ratio design problem for single and multi-mode

architectures and presents a decomposition-based formulation to solve the combined

problem. Chapter VIII gives a discussion on the results, contributions of the disserta-

tion work and some future directions to improve and extend the proposed methods.
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CHAPTER II

Literature Review

In Chapter I we gave a brief overview of some existing work on architecture design

in different domains. In this chapter we discuss a more detailed architecture design

literature review specific to automotive powertrains. Since in this dissertation, we

use a bond graph based representation for HEV architecture, we also give a review

on similar approaches from other fields. The purpose is to point to gaps in the

literature for solving the general problem posed in Chapter I. In this chapter we

take a more detailed look at the HEV architecture design problem and describe the

available approaches from the automotive design literature as well as some useful

tools introduced in electrical and mechatronic system design.

2.1 Automotive Powertrain Architecture Design

We group the automotive architecture design literature into two categories; auto-

matic transmission configuration design, and hybrid powertrain configuration design.

Both design problems use PG sets as the key elements to connect the powertrain com-

ponents. In the case of automatic transmission design, the components to connect are

input shaft (engine), grounds and output shaft (vehicle power output). For hybrid

vehicles, the powertrain components to connect include a prime mover, a secondary

mover, grounds and vehicle output. Primary mover is usually an internal combustion
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engine but the secondary mover varies depending on the application. For instance,

hybrid electric powertrains use electric motor/generators as secondary movers and

hydraulic hybrids use hydraulic pump/motors. The common problem for both au-

tomatic transmission and hybrid powertrain configuration design is to find the gear

ratios and connection arrangement of PGs and powertrain components satisfying the

design goals. Since the number of possible configurations is typically a large number,

a systematic method to search among these configurations is necessary. Sections 2.1.1

and 2.1.2 describe the existing approaches used to address these problems.

2.1.1 Automatic Transmission Design for Gasoline Vehicles

For automatic transmission design, since there is only one (primary) mover which

is the internal combustion engine, the interest is to design a 1-DOF system where

only one independent variable is enough to determine all other states. In a 1-DOF

system, the input shaft connected to the engine and the output shaft connected to

the wheel shaft are linked via gearing. When designing an automatic transmission

for a given application, i.e., for a given set of vehicle parameters and drive cycles,

some target speed ratios can be determined to match the vehicle power requirements

considering engine characteristics (Kahraman et al., 2004). The design problem then

becomes finding the PG configurations with the necessary clutches and PG ratios

achieving these design targets.

As discussed in Chapter I, representation is the key challenge in design synthesis

problems. Using graphical representations to synthesize geared kinematic chains is

addressed in early work by Buchsbaum and Freudenstein (1970). We will refer to this

representation as conventional graph representation. In this representation, the links

between components are represented by vertices and the joints are represented by

edges. Joints representing the gear pairs are represented by thick edges and revolute

joints are represented by thin edges. Figure 2.1 shows an example.
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(a) An example 2-PG system

(b) Conventional graph representa-
tion

(c) Canonical graph representation

Figure 2.1: An example 2-PG system and its conventional and canonical representa-
tions given by Chatterjee and Tsai (1996)

Two important aspects to consider when representing PG systems using graphs are

identifying isomorphism and pseudo-isomorphism. In a graphical representation, as-

signment of node and edge labels to the physical components is arbitrary. By changing

these labels the same configuration can be represented by “different-looking” graphs.

Such graphs with different labels are called isomorphic graphs. Isomorphic graphs

have different adjacency matrices representing the connections among the nodes in

the graph. Isomorphism always exist in any graphical representation. However, they

can be identified and eliminated before evaluating the systems.
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Gear train systems that have coaxial links can be reconfigured to result in the

same kinematic relationships. After reconfiguration, although there is a different

non-isomorphic graph to represent the reconfigured system, it gives the same set of

kinematic equations to be used in the evaluation of the configuration. Such a case is

referred as pseudo-isomorphism. Examples of pseudo-isomorphism can be found in

Chatterjee and Tsai (1996).

The conventional graph representation of PG systems offered by Buchsbaum and

Freudenstein (1970) eliminates isomorphic graphs but cannot identify pseudo-isomorphism.

For some applications, keeping pseudo-isomorphic graphs can be useful. For instance,

when connecting gear mechanisms together, among the pseudo-isomorphic pairs, the

one that allows connection in the simplest way can be preferred. A discussion on

pseudo-isomorphic graphs in line with the goals of the present dissertation will be

given in Chapter VI.

For applications where these pseudo-isomorphic graphs are not desired, Chatter-

jee and Tsai (1996) introduced a canonical graph representation of PG systems. By

imposing some rules on the canonical graph representation, they obtained a unique

graph representation for kinematically equivalent mechanisms. Once there is a good

representation which allows generating different gear configurations, evaluating these

configurations is not computationally expensive for automatic transmission designs.

As discussed earlier in this section, the goal of the automatic transmission designs

is to find configurations resulting in the desired speed ratios. Speed ratio analysis

does not have any dynamic component and it can be extracted from a graph repre-

sentation instantly with the present computational power. The same idea applies to

the steady-state speed and torque analysis. Several methodologies linking the graph

representation to static and kinematic analysis have been introduced. For instance,

Freudenstein and Yang (1972) introduced the concept of fundamental circuits to per-

form the static torque and kinematic analysis of the PG systems from a conventional
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graph representation. Also, Hsieh and Tsai (1996a) used another concept, namely,

fundamental geared entities to perform similar analysis for the canonical graph rep-

resentation. The low computational cost of these analyses allows enumeration of

possible designs to search for configurations meeting the design targets.

Hsieh and Tsai (1996b) used their canonical graph representation combined with

the fundamental geared entities concept to enumerate the most efficient clutching

sequences for three and four-speed transmission designs. Kahraman et al. (2004) per-

formed a larger enumeration study to find all 2-PG systems and clutching sequences

for a 6-speed transmission satisfying the design targets.

2.1.2 Hybrid Architecture Design

In the case of hybrid powertrains, in addition to the prime mover, there are sec-

ondary movers that aid the prime mover to propel the vehicle as well as recovering

some of the braking energy. Having multiple movers makes 2-DOF configurations

feasible for hybrid powertrains. As described in Chapter I, series and parallel config-

urations are still 1-DOF configurations (excluding the degree of freedom coming from

additional transmission) but power-split configurations that allow a variety of con-

figurations can be 1-DOF, 2-DOF or 3-DOF systems depending on how many nodes

are grounded in the configuration. Available implementations of power-split configu-

ration are 2-DOF systems. When discussing the hybrid powertrain control strategies

later in this dissertation, we will show that 2-DOF systems offer some flexibility in

control as opposed to 1-DOF systems. 3-DOF systems offer more flexibility in control

but require more sophisticated control methods.

One of the most extensive studies to design 2-PG hybrid electric power-split ar-

chitectures with two modes was done by Liu (2007). A matrix representation was

used to model the dynamic behaviour of the configurations. Liu classified the power-

split configurations into three types: input-split (one MG is connected to the vehicle
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output), output-split (one MG is connected to engine) and compound-split (none of

MGs is connected to engine or vehicle output). Using this representation and leaving

output-split configurations out, 1152 possible hybrid modes were generated. Assum-

ing certain gear ratios and vehicle parameters, a filtering process to eliminate the

designs failing to satisfy the driveability constraints resulted in 17 input-split feasi-

ble configurations assuming that an optimal two-mode hybrid electric architecture

must have an input-split and a compound-split mode. For the remaining input-split

configuration candidates, the compound-split configurations that require only two

clutches were generated. Among the generated two-mode architectures, considering

some shifting mechanics, infeasible architectures are eliminated further and only two

design candidates remained for further sizing optimization.

Although a similar problem to the one posed in Chapter I was investigated, the

work by Liu (2007) is limited with respect to our present scope for the following rea-

sons: (1) The representation is not general enough to generate architectures with any

number of PGs and any number of modes. (2) Not all configuration possibilities are

included in the analysis. For instance configurations having engine and motor con-

nected to the same gear (referred to as output-split) are excluded from the analysis.

Also the representation is limited to hybrid configurations only, i.e., a pure EV con-

figuration cannot be generated. (3) An initial filtering of configurations is performed

assuming some gear ratio values. However, each configuration should be evaluated

with the best set of gear ratios (with respect to the chosen design objective), unless

the gear ratios are fixed by some other constrains. (4) The vehicle parameters such as

battery size, motor sizes etc. are selected such that only a handful of configurations

pass the filtering process. This work cannot be applied to the problems with many

feasible configurations passing the filtering process.

Another study on the design of multi-mode hybrid electric architectures was done

by Zhang et al. (2012). Given some vehicle parameters, they investigated the benefit
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of designing additional modes to the existing hybrid power-split configurations of the

Toyota Prius (input-split) and the Chevy Volt (output-split). They enumerated all

possible clutches that can be added to these two configurations and analyzed every

possible mode obtained from the enumeration to identify promising designs in terms

of fuel economy. They performed the same analysis for other possible 1-PG input

and output-split configurations but concluded that only existing configurations give

promising results. They then proposed one additional pure electric mode for both

the Toyota Prius and the Chevy Volt hybrid configurations. They also showed that

one of the existing pure EV modes and the series hybrdi mode in the Chevrolet Volt

do not provide any significant benefit to the vehicle in terms of fuel economy.

The work by Zhang et al. (2012) is limited to 1-PG configurations with given

gear ratios. Also, only two-mode systems are investigated in that study. As we will

discuss in Chapter V for 1-PG systems, since the number of architecture possibilities

is limited, enumeration over all architectures is possible when all the gear ratios are

fixed. As the number of PGs in the architecture increases and if gear ratios are

taken as design variables, the enumeration is not computationally feasible anymore.

A generalized systematic method becomes necessary.

A hybrid configuration design framework including gear ratios as part of the prob-

lem was proposed by Cheong et al. (2011) for hydraulic hybrid powertrains. They

used the kinematic relationship matrix to represent the hybrid configuration. Details

of that representation will be explained in Chapter III in detail. One key contribu-

tion of that work was to show that any kinematic matrix can be realized by using a

specific 2-PG configuration where there was an extra gear in front of each powertrain

component and in-between PG sets. When all possible kinematic matrices are possi-

ble to realize, they were able to use the elements of this matrix as design variables to

optimize the fuel economy.

One important limitation of their study is that the proposed methodology is valid

25



only for the configuration proposed in their study. Extra gears connected to the

powertrain components and in-between PG sets adds extra complexity to their archi-

tecture, which might not be desired. A 1-PG configuration or a 2-PG configuration

without additional gears cannot be designed since all possible kinematic matrices are

not possible to realize anymore. Also creating multiple modes by adding clutches in

between PG sets cannot be considered in that design framework.

A hybrid configuration design method that can be generalized to any number of

PGs, allowing any number of modes and including gear ratios in an overall optimiza-

tion formulation seems to be unavailable in the literature. The key contribution of

this dissertation to propose such a design methodology.

2.2 System Architecture Design Using Evolutionary Algo-

rithms

Graphical tools that allow generation of design alternatives are common repre-

sentations of configurations. The graphical representations commonly used in the

automotive literature, such as canonical graphs, represent the geometrical arrange-

ment of the components in the configuration. In this section we will discuss one more

example from the electrical domain using a netlist representation based on the geo-

metric arrangement of circuit components. In addition, we will also discuss the use of

alternative representation tools, namely, bond graphs (Karnopp et al., 2012) that are

based on the power flow among the components. bond graphs, details of which are

given in Chapter III, are extensively used in this dissertation to model and generate

HEV configurations.

Because of the discrete nature of the graphical representations, using optimization

algorithms to design graphical structures in a computationally efficient way is a chal-

lenging task. Especially when there are many feasibility constraints on the graphical
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structures, e.g., only certain connections are allowed and these constraints form a

disjoint set where feasible designs are dispersed in the design domain, the available

derivative-free algorithms fail to find feasible designs. One way to overcome such

difficulties is to use enumeration, if possible as in the case of automatic transmission

designs, to generate and evaluate all feasible configurations.

There are some examples from the literature that do not suffer from a highly-

constrained design space and therefore successfully implement derivative-free methods

for configuration design. One example is from Koza et al. (1997). They modeled elec-

trical circuits using a netlist representation and applied Genetic Programming (GP)

that evolved the netlist to find circuit configurations giving the desired behavior. A

netlist is a graphical representation of a circuit containing information about the type

and value of each components, the nodes which each component is connected to. They

start with a given catalog of circuit components consisting of capacitors, resistors, in-

ductors, transistors, voltage sources and grounds. Starting from an initial fixed set

of components from the catalog that must exist in every circuit configuration, they

define “’component-creating functions” that add a new component from the catalog

to the circuit, “arithmetic-performing functions” that assign the component values,

“topology-modifying functions” that modify the layout of the existing components

and “automatically defined functions” that enables reuse of certain structures of the

circuit. Then, a GP was used to evolve the netlist by utilizing these four types of

functions until the desired functionality is obtained from the evolved circuit. Using

that design framework Koza et al. (1997) designed circuit configurations for filters,

measurement circuits, amplifiers, and circuit performing arithmetic operations.

Genetic Programming worked well in this example mainly because there were not

constraints in the problem. For instance, there were no constraints on the connections

among components and any component from the catalog was allowed to be connected

to any other. The only mechanism to identify bad connections was to evaluate the
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design and compare the output with the desired behavior. In such a case finding

feasible designs is not a difficult task for the evolutionary algorithm.

Another work by Fan et al. (2001) on circuit configuration design uses a bond

graph representation, which is not based on a geometric arrangement but on the

power flow among the circuit components. An example circuit and its bond graph

representation is given on Figure 2.2. An advantage of this representation is the ability

to identify some bad designs, referred as “singular designs”, using causality rules even

before evaluating them. Such singularities correspond to “derivative causalities” in

the bond graph representation which can be detected by checking the causalities of

the capacitor and inductors easily. Using this representation, similar to Koza et al.

(1997), they defined some functions to add or modify components and junctions to be

used by a GP-based design framework. Starting from a simple initial design, referred

as“embryo design”, they generated more complex circuit configurations for analog

filters having the desired frequency response.

Since bond graphs are general modeling tools which can be used to model dynamic

systems from different domains, a similar idea applies to the general system designs

with similar design goals. For instance, a generalized capacitance can both be used to

model an idealized capacitor in an electrical circuit and an ideal spring in a mechanical

system. The work from Fan et al. (2001) was extended to the mechatronic system

design by Seo et al. (2003). The frequency response targets in the electrical domain

correspond to the eigenvalue targets in the mechatronic system design. Starting from

a simple embryo design, they applied the same methodology to find more complex

designs satisfying the design targets.

An important commonality between the works from Fan et al. (2001) and Seo et al.

(2003) is that all bond graph outputs from GP can be realized by some elementary

electrical or mechanical components such as resistors, capacitors, inductors or springs,

mass elements and dampers. Their work cannot be applied to the systems where
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(a) An example circuit

(b) Bond Graph representation

Figure 2.2: An example circuit and its bond graph representation given by Fan et al.
(2001)

there some restrictions the bond graph output to make the realization possible. An

example for such restrictions can be given from PG based systems. As explained in

Chapter III in detail, the bond graph of a PG system must have certain properties

related to the transformer moduli or number and type of junctions. If such restrictions

form a highly-constrained feasible space with dispersed elements in the feasible space,

evolutionary algorithms cannot find any feasible designs other than an initial set of

designs provided.
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2.3 Summary

In this chapter we reviewed some PG system configuration design studies for both

conventional and hybrid vehicles. We argued that the enumeration-based approaches

proposed for automatic transmission designs cannot be applied to the general hybrid

architecture design problem. In the remainder of the dissertation we will describe

cases where the enumeration of all configurations is possible but also discuss larger

design problems that make enumeration computationally intractable. We also re-

viewed some hybrid configuration studies and described their limitations.

Additionally, we showed the application of alternative graphical representation

method to electrical and mechatronic configuration designs. Among these alternative

representation methods, bond graphs are used to model and generate hybrid archi-

tectures. The next chapter describes these representation and generation processes

in detail.
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CHAPTER III

Hybrid Electric Vehicle Architecture

Representation

As discussed in Chapter I, a design synthesis process can be described as composed

of four phases as representation, generation, evaluation and guidance. In this chapter,

we will discuss the representation and generation phases of the HEV architecture

design process that will be used by the evaluation and guidance phases to search for

good design selections.

In order to find promising architecture candidates among all possible designs, an

architecture representation framework that allows the generation of architecture al-

ternatives is necessary. In this chapter, we introduce such a graphical representation.

Then, by using the representation we propose a method to generate all feasible driv-

ing modes for some given powertrain components. These modes can either form a

single-mode HEV architecture alone or can be combined to create multi-mode HEV

architectures.

3.1 Means of Architecture Representation

The representation method selected to design the HEV architecture must allow

having multiple modes in the architecture. Otherwise the design framework becomes
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limited to single-mode architectures only. Some available HEV architecture represen-

tations show all the modes exist in the architecture. Examples are given later in this

section. Since it is possible to perform separate analyses for different modes in the

architecture, the representations that only represent a single-mode at a time can still

be used for multi-mode architecture design. However, such representations require

some extra steps to combine modes in the same architecture.

Another requirement for an HEV architecture representation is the ability to be

generalized to any degree of complexity. For instance, representation of a 1-PG ar-

chitecture should easily be extended to any number of PGs. Also the representation

should not be limited by the number or type of powertrain components used in the

architecture.

In the remainder of this section, we give a brief overview of available representa-

tions used for HEV architectures. Four representation methods of interest are given

below in the order of level of abstraction.

3.1.1 Stick Diagram

A stick diagram is the closest representation to the actual realization of the ar-

chitecture. The diagram is usually drawn as symmetric to its centerline providing

some understanding of how shafts are routed in the architecture. The components

in the architecture are represented by special icons and the connections by the lines.

It is possible to see all different modes in the architecture on the stick diagram rep-

resentation. Figure 3.1 shows the stick diagram representations of the GM-Allison

compound split hybrid architecture (Holmes and Schmidt , 2002) and the Toyota Prius

architecture. By looking at Figure 3.1(a), one can see that the engine is connected to

the ring gear of PG1 via Clutch (CL) 1 and MG1 is connected to the sun gear of the

same PG set. MG2 is connected to the sun gear of the PG2 where vehicle shaft is

connected to the carrier gear. Both PG sets are connected at the carrier gears. CL2
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controls the connection between sun and ring gears of PG1 and PG2, respectively

and CL3 grounds or releases the ring gear of PG2. However, there is no information

about the gear ratios; therefore, it is not possible to derive the kinematic relationship

among powertrain components. So, this representation is useful to describe how the

architecture looks in reality but it does not give much information about how the

architecture works.

(a) GM-Allison architecture

(b) Toyota Prius Architecture

Figure 3.1: Stick diagram representation of two architectures

3.1.2 Lever Analogy

The analogy between geometric properties of a lever and speed/torque relation-

ships between different gears on a PG was first introduced by Benford and Leising

(1981). In summary, ring, carrier and sun gears on a PG set are represented as three
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nodes on a lever as shown in Figure 3.2. On a conventional PG set, the ratio of the

vertical distance from carrier to sun and the distance from ring to carrier nodes are

equal to the ratio of the number of teeth on the ring gear to sun gear.

(a) (b)

Figure 3.2: Lever analogy to analyze a PG set

There are two analogies. First, the kinematic relationship among ring, carrier and

sun gears is equivalent to the geometric relationship among the horizontal distance

of each node on an inclined lever away from a vertical line. Figure 3.2(a) depicts that

relationship where R, C and S denote ring, carrier and sun gears, respectively. Also

ωR, ωR, ωR denote the speeds and NR, NC , NS denote the radii of each respective

gear. The second analogy is related to the torque relationships. As Figure 3.2(b)

shows, steady-state torques on each gear, TR, TC , TS can be related by performing a

“moment” analysis over torques. Note that, here,“moment” does not correspond to

any physical quantity but the analogy is used just to make analysis easier.

Since every PG set can be modeled by a lever, the stick diagram can be converted

into a lever diagram by replacing the PG boxes by the corresponding lever. As a

result all available modes can be shown on the lever diagram as well. Figure 3.3

shows the lever representation of two example architectures.

If multiple PGs are connected in the architecture, the lever analogy allows com-

bining levers to simplify the representation in which case the lever is called compound

lever. Examples of such cases can be found in Benford and Leising (1981). In such
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(a) Lever diagram of the GM-Allison architecture shown on Figure 3.1(a)

(b) Lever diagram of the Toyota Prius architecture

Figure 3.3: Architecture examples

cases, it is not straightforward to visualize the stick diagram from the lever repre-

sentation. The lever diagram is a higher level architecture abstraction than the stick

diagram.

3.1.3 Bond Graphs

Bond graphs are graphical modeling tools to represent the power flow in a dynamic

system (Karnopp et al., 2012; Rosenberg and Karnopp, 1972; Rosenberg , 1971). They

are used as an additional representation method to the usual equations for dynamic

system modeling. In bond graphs, power flow is represented by a bond between two

nodes and power is modeled by two quantities: flow and effort. Since these are generic

terms to model a system, the meaning of flow and effort vary depending on the domain

of analysis. For instance, in an electrical system, flow corresponds to current and effort
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to voltage. In a mechanical system, specifically in rotational systems, flow and effort

mean angular speed and torque, respectively. The direction of a bond indicated by a

half arrow at one end is used to determine the sign convention. Positive power flows

towards the direction of the bond. The causality strokes indicated by a line at one

end of the bond are used to model the direction of the flow and effort. Flow on a

bond is always pointing away from a causality stroke while effort points the opposite

direction.

Two types of power sources, namely, flow source and effort source, supply energy

to the system. There are generalized capacitor (C) and inductor (I) elements modeling

the energy storage while a generalized resistor (R) element models energy dissipation.

Transformer (TF) blocks relate flows and efforts at both ports by a transformer

modulus, keeping power equality at two ports. Similarly, a gyrator (GY) relates

efforts to flows and vise versa by a gyrator modulus. Also, two types of junctions,

which are simply the connection points of the bonds, define certain relationships

among flow and efforts around them. At a 0-junction, the sum of the flows is zero

while efforts are the same; at a 1-junction, the sum of the efforts is zero and flows

remain the same. More details of this modeling tool can be found in Karnopp et al.

(2012).

This graphical modeling tool can be used to represent HEV architectures, as well.

As an example, Figure 3.4 depicts a bond graph representation of the Toyota Prius

architecture given on Figure 3.3(b) ignoring gear losses and inertias. Note that only

a single mode is modeled in this representation. Separate bond graph models must

be built for different modes in a multi-mode architecture.

3.1.4 System of Equations

The most common representation of a system is a set of equations. In the conven-

tional way, in order to describe the system by equations, one needs to break down the
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Figure 3.4: Bond graph representation of Toyota Prius architecture with ring to sun
gear ratio of ρ ignoring the gear inertias and losses

system into its elements, draw free body diagrams for each element and combine the

equations of motion obtained from each element. Note that it is possible to extract

a system of equations from a bond graph model. The details of the link between

a system of equations and the bond graph model are given later in Section 3.2.4.

The following subsections build the dynamic and static model of the Toyota Prius

architecture shown on Figure 3.3(b)

3.1.4.1 Dynamic model

Details of the free body diagrams are omitted here. Three equations are written

for ring, sun and carrier gears accounting for the torques coming from engine, MGs

and vehicle body (resistive torque) as well as the internal force on the gear set. A

fourth equation that relates the speed of each gear to each other yields the following
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model.



Jout + JMG2 0 0 −NR

0 Jeng 0 NR +NS

0 0 JMG1 −NS

−NR NR +NS −NS 0





ω̇R

ω̇C

ω̇S

F


=



TMG2 − Tres

Teng

TMG1

0


(3.1)

where Jeng, JMG1, JMG2 and Teng, TMG1, TMG2 denote the inertias and torques of

engine and MGs, respectively. Also, Jout denotes the inertia term coming from the

vehicle output and final drive, and Tres is sum of the resistive terms from the vehicle

body. Finally the term F is the internal force on the planetary gear set and usually

not of importance in powertrain simulations.

3.1.4.2 Quasi-static model

In that approach, instead of drawing the free body diagrams, the formulation starts

by writing down the kinematic relationship among the gears as shown in Equation

(3.2).

(NR +NS)ωC = NRωR +NSωS (3.2)

Denoting NR/NS = ρ and substituting the carrier, ring and sun gear speeds by

engine, MG2 (also equal to the output speed) and MG1 speeds give the relationship

in Equation (3.3)

1 + ρ −ρ

0 1


ωeng

ωout

 =

ωMG1

ωMG2

 (3.3)

The 2x2 matrix on the left is a mode-specific kinematic matrix. In the rest of this

section, that matrix will be denoted as Cmode. At steady state, assuming a lossless

gear set, the following power relationship must hold.
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Peng + PMG1 + PMG2 = Pout, (3.4)

where Peng, PMG1 and PMG2 are the powers from engine and MGs, and Pout is the

total driving power applied on the vehicle output. Substituting each power term by

the corresponding T · ω expression, the following relationship can be obtained.

Teng · ωeng + TMG1 · ωMG1 + TMG2 · ωMG2 = Tout · ωout (3.5)

Since the relationship among the speeds is known from Equation (3.3), it is pos-

sible to obtain a relationship among the torques:

−C−Tmode

 Teng

−Tout

 =

TMG1

TMG2

 . (3.6)

In the dissertation, as part of the hybrid powertrain architecture design process, we

use a “modified bond graph” representation to generate architecture alternatives, and

quasi-static system of equations are used to evaluate an architecture. The details of

the modified bond graph representation is given in Section 3.2. The quasi-static model

that describes the steady state behavior of the system requires very small simulation

(computation) time while sacrificing the system transients. In an HEV powertrain,

since the time constants of the engine and MG inertias are small compared to the time

constant of the vehicle output shaft, the engine and motor transients fade quickly. As

a result, if the purpose of the analysis is to calculate fuel and battery consumption,

these transients have only little impact on the final results.

As it is seen in Equations (3.3) and (3.6), in the quasi-static model the kinematic

matrix alone gives all the information needed to evaluate the system. This important

fact is extensively used in the HEV architecture design process. Another important

observation is the number of degrees of freedom (dof) being equal to two for a hybrid
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mode, i.e., only two independent variables are needed to determine the other variables

in the system. This is useful especially in the supervisory control of the HEV pow-

ertrain described in Chapter V. When a drive cycle is given, the state of the vehicle

output shaft following the drive cycle are determined by the driver model. In a 2-dof

hybrid mode the engine state remains as the control variable. In a 3-dof hybrid sys-

tem one of the motor states becomes also a control variable but such systems would

require sophisticated control methods. 1-dof hybrid systems such as parallel hybrids

exist in the market but since engine state is dependent on the state of the vehicle

output shaft, there is less room for control. They require an additional transmission

in order to provide a range of operating points for the engine to select from.

A similar argument can be made for pure electric modes. A kinematic matrix

describing the relationship between electric motors and vehicle power output is used to

evaluate the design. 1 and 2-dof pure electric modes are considered in this dissertation.

The next section explains the use of these tools to generate architecture alterna-

tives.

3.2 Representation and Generation of Architectures

A key contribution of this dissertation is the creation of architecture representa-

tion tools that allow generation of architecture alternatives where an architecture is

created by combining driving modes. For instance, the architecture shown in Figure

3.3(a) can be obtained by combining the modes shown in Figure 3.5. Given some

external components and the number of PGs to use, the number of possible driving

modes is limited and the modes can be enumerated. However, the number of archi-

tecture alternatives for a multi-mode architecture increases exponentially with the

number of modes, i.e., combining M possible driving modes in an architecture with

Nmode number of modes yields MNmode architecture alternatives that is usually a large

number. Thus, an exhaustive enumeration of all possible architectures is not a com-

40



putationally efficient effort. However, the number possible driving modes is relatively

small and they can be enumerated. Then a smart method to combine the driving

modes in the same architecture can be used to design a multi-mode architecture.

One can argue that a derivative-free search algorithm could be applied to a given

representation in order to find promising architectures. However, as it will be de-

scribed later in this section, there are many design constraints to ensure a graphical

representation corresponds to an actual mode. These constraints define not only a

small but also a highly-dispersed feasible space. For such problems, the available

derivative free methods cannot find feasible designs other than any initial feasible

designs provided. Hence, we propose the enumeration of feasible driving modes to

create a new design space consisting of feasible designs only.

(a) Low-speed mode

(b) High-speed mode

Figure 3.5: Two modes of the architecture shown on Figure 3.3(a). CL1 is only used
to obtain a neutral gear instead of a new mode.
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Figure 3.6: Modified bond graph representation of Toyota Prius architecture

In this section, a method to enumerate possible driving modes is introduced while

the evaluation of these modes in a single-mode architecture is given in Chapter V and

in a multi-mode architecture is given in Chapter VI. Both hybrid modes, referred to as

HEV modes, and pure electric modes, referred to as EV modes, are considered in this

section. In an HEV mode both engine and MGs are actively running while in a pure

EV mode the engine is not active. Engine can be deactivated by either disconnecting

the engine from the architecture or connecting engine to a ground node.

To start with, we introduce some simplifications to the bond graph representation.

First, it is possible to group the fixed components that appear in every design. Since

the connections to the power sources and vehicle output are the same at every possible

design candidate, they can be represented as a box left out of the design domain. Also

TF blocks can be represented as weights on the bonds to make visualization simpler.

If there is no transformer block between two junctions, a default bond weight of 1

is assigned. Table 3.1 summarizes those simplifications and Figure 3.6 shows the

“modified bond graph” representation of the Toyota Prius architecture model on

Figure 3.4.

After these simplifications, we refer to the junctions connected to the external

components as external junctions and the rest of the junctions we call internal junc-

tions. External components can be engine, MGs, vehicle output or grounds. The

number of external junctions is equal to the number of external components since

every external component is assumed to be connected to a unique external junction.
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Table 3.1: List of Bond Graph simplifications

Actual Model Simplified

The number of internal junctions in the bond graph representation of a driving mode

depends on the existence of a ground connection, the number of external junctions

and the number of PGs considered in the design.

In order to generate all possible modified bond graphs corresponding to feasible

driving modes, all possible simple, connected, undirected graphs are generated first.

Then, junction types and causalities are assigned to convert the undirected graphs

to bond graphs. Finally, the graph weights are assigned to the bonds in order to

represent a PG system. Once a modified bond graph structure corresponding to a

driving mode is created, the quasi-static system of equations is extracted to be able

to evaluate the designs within a vehicle model. The following subsections elaborate

on each of these steps. Our references to bond graphs relate to the modified bond
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graph described in this section.

3.2.1 Graph Enumeration

This section discusses the enumeration of all undirected graphs for external junc-

tions and internal junctions. We introduce some graph properties, first.

Bond Graph Property 1. A valid bond graph must be simple and connected.

A simple graph does not have more than one bond between any pair of junctions

and contains no loops around a single junction, i.e., a junction is not directly con-

nected to itself. Figure 3.7 shows those two cases. Also, on a connected graph no

junction remains disconnected. Therefore, each external junction is connected to an

internal junction, representing some power flow from (or to) the sources to (or from)

the architecture.

Figure 3.7: Violation of simple graph assumption

In a general bond graph representation, a junction can have any number of bonds

connected to it. However, in this study, the number of bonds is restricted to three for

an internal junction and to one for an external junction for simpler implementation.

The following property shows that such a restriction does not limit any modeling

capabilities.

Bond Graph Property 2. A junction with n > 3 bonds can equivalently be replaced

by n− 2 junctions of the same type with 3 bonds for each.
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Figure 3.8: A junction with 5 bonds is equivalently replaced by 3 junctions with 3
bonds each

Figure 3.8 explains this property for a 1-junction with 5 bonds. As it can be seen

in the figure, in a chain of bonds both first and last junctions will have 2 bonds from

the original model, leaving n−4 bonds for the remaining junctions. Each intermediate

junction can only have 1 bond from the original model, since 2 junctions are needed

to connect to other junctions. In total 2 + (n − 4) = n − 2 junctions are needed

to represent the original model. Addition of these intermediate junctions and bonds

does not change the overall system of equations.

Using the two properties given before, a new property related to the number of

junctions in a bond graph representation of a mode can be obtained as follows.

Bond Graph Property 3. A bond graph must have an even number of junctions if

each internal junction has three bonds and each external one has one bond.

From the Bond Graph Properties 1 and 2, a bond graph with Jext external junc-

tions and J internal junctions has (3J − Jext)/2 + Jext bonds. Since the number of

bonds has to be an integer, J + Jext must be even.

Recall that the external junctions are connected to the external components and

the number of external components is usually small. In a typical hybrid powertrain,

the external components are an engine, two MGs, one vehicle output and a ground.

For these external components, Table 3.2 summarizes the number of junctions needed

for 1-PG, 2-PG and 3-PG systems. Modes are classified in four types and examples
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of each type is given on Figure 3.12. With an additional bond graph property to be

discussed later this table can be extended to any number of PGs and any number of

external components. However, it is unlikely to consider designs with more than three

PGs and more than six external components as the cost and packaging constraints

make them impractical.

Table 3.2: Number of junctions needed for different types of modes

Number HEV Mode HEV Mode Pure EV Mode Pure EV Mode
of PGs without Ground with Ground with Engine without Engine

1-PG Jext = 4, − Jext = 5, Jext = 3,
J = 2 − J = 3 J = 1

2-PG Jext = 4, Jext = 5, Jext = 5, Jext = 3,
J = 4 J = 3 J = 3 or 5 J = 3

3-PG Jext = 4, Jext = 5, Jext = 5, Jext = 3,
J = 6 J = 5 J = 5 or 7 J = 5

With this background information, we can discuss the process to enumerate all

possible graphs for a given number of PGs. Let G(Jext+J)×(Jext+J) = [0 A; AT B] be

the adjacency matrix representing a graph where AJext×J and BJ×J are binary matri-

ces. The matrix A represents the connections between external and internal junctions

and B represents the connections among internal junctions. The corresponding value

in the matrix is 1 when there is a connection between two junctions and 0 otherwise.

As a result, the following two observations can be made:

(i) If the junctions i and j are connected, Bij = Bji = 1. Then, the matrix B is

symmetric.

(ii) A 0Jext×Jext block prevents any direct connection among external junctions.

However, it does not restrict any indirect connections among external junctions.

For instance, both engine and MG1 can be connected to the same gear in a PG.

The designs of the matrices A and B determine the graph under the following
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constraints:

(i) An external junction must have only one bond:

J∑
j=1

Aij = 1, ∀i = 1, 2, 3, ..., Jext (3.7)

(ii) Each internal junction must have exactly 3 bonds:

Jext∑
i=1

Aij +
J∑

i=1

Bij = 3, ∀j = 1, 2, 3, ..., J (3.8)

In order to enumerate all possible graphs satisfying the constraints given by Equa-

tion (3.7) and Equation (3.8), all possible As are generated from Equation (3.7) and

for each generated A, all possible Bs are found from Equation (3.8). Since Jext and

J do not take large values, the computational cost of this process is small.

The enumeration process described above might create replicated graphs with

different ordering of junctions. Figure 3.9 shows such a case. By changing the order

of the junctions, the same systems can be obtained from each other. This well-known

phenomenon is referred as graph isomorphism in graph theory (Read and Corneil ,

1977). Isomorphism exists in any graphical representation and must be identified to

eliminate the replicates. Mathematically, two graphs represented by their adjacency

matrices G1 and G2 are considered to be the isomorphic if and only if there is a

permutation matrix P which satisfies the following:

G2 = P G1 P
T (3.9)

In other words, the adjacency matrices of isomorphic graphs can be obtained by

reordering the rows and columns simultaneously. It has been known that two non-

isomorphic graphs have distinct eigenvalues but the converse is not true (Harary
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Figure 3.9: Two replicates generated from the enumeration process. Both graphs
result in the same equation sets after assigning the junction type and
bond weights

et al., 1971). It is possible to find non-isomorphic graphs with the same eigenvalues.

It is called cospectral non-isomorphism. So, if the eigenvalues are used alone to

detect isomorphism, some non-isomorphic graphs could alos be filtered in the process.

There are some algorithms introduced in the literature to identify graph isomorphism

(Fortin, 1996; McKay et al., 1981). We use the implementation from MATLAB (2014)

to filter the isomorphic graphs.

3.2.2 Junction Type and Causality Assignment

After the enumeration of all undirected graphs with no replicates, it is necessary

to assign 0 and 1-junctions. This assignment process requires special attention to

the causality stroke assignment since the causality restricts the junction assignment.

The process starts with the external junction assignment. All external junctions are

assigned to be 1-junctions. We also need to assign causalities to the external junctions.

It can be seen from Figure 3.6 that for a hybrid mode the causality stroke is on the

internal junction side for MG1 and MG2, and on the external junction side for engine,

vehicle output. These assignments are done considering how the control strategies

work. The details of the control strategies used for HEV vehicles are given in Chapter
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V. We assume that the vehicle speed is imposed by the drive cycle and the causality

is assigned to be on the external junction side. We find the best engine speed which

gives the best fuel consumption and engine imposes this best speed determined by the

controller. The speeds of the MGs are imposed by the kinematic relationship. The

causality of the ground is always on the external junction side since ground always

impose the zero speed.

For a pure electric modes the causality assignment of the engine (if exists) is op-

posite since the engine is grounded. The ground imposes the zero speed to the engine.

The causality of one of MGs is also flipped as necessary to make the assignment con-

sistent, i.e. the speed of one of the MGs is freely determined by the controller if the

MG is not grounded. For instance, pure EV modes if causality of MGs are both on

the external junction side we obtain 1-dof EV modes. If the causality of one the MGs

is on the internal junction side, we obtain 2-dof EV modes. When engine connected

to the grounded gear, we can obtain both 1-dof and 2-dof modes but when engine

is removed from the external junctions, only 1-dof modes give feasible bond graph

structures. Both 1-dof and 2-dof EV modes are included in this dissertation. (Note

that in this dissertation, dof is used in a kinematic sense. 1-dof mode means that

resultant PG system has only one independent speed to determine all other speed

values in the system.)

The causality assignment employed here restricts some of the configurations. For

instance, since engine and vehicle output have the same causality, they can never

be connected to the same gear of a PG set directly. However, such a configuration

links the engine speed to the vehicle speed directly, leaving no possibility to control

engine speed. Thus, such less efficient designs are not considered in this configuration

generation stage. When the designs of interest include parallel configurations, engine

must be allowed to be connected to the same node of PG set by flipping the causality

of the engine. Recall that, in order to allow some variety of speed ratios, this design
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requires an additional transmission at the vehicle output.

Some definitions are necessary before explaining the assignment process further.

Let β = (3J − Jext)/2 denote the number of bonds connecting the internal junctions

to each other. Also denote the junction type for the junction j as tj. Let tj = 1 when

the junction type is 1 and tj = −1 when the junction type is 0. This assignment is

useful when formulating the junction type assignment problem. Denote the causality

on the bond connecting the junctions j1 and j2 as cj1j2 and assign cj1j2 = 1 if the

stroke is on the junction j1 side, implying cj2j1 = −1. In With these definitions and

according to the bond graph rules, the following equation is stated:

−tj1 +
∑

j2|Gj1j2
=1

cj1j2 = 0, ∀j1 = 1, 2, 3, ..., J. (3.10)

Since the total number of equations is J and the number of unknowns to be determined

is β + J , multiple solutions exist.

One last property of the bond graphs we introduce helps to list all the solutions

to the Equation (3.10).

Bond Graph Property 4. The number of 0-junctions is equal to the number of

PGs in the system.

Let J0 and J1 denote the number of 0 and 1 junctions where J0+J1 = J . Summing

all the equations from Equation (3.10) gives:

J∑
j1=1

(−tj1 +
∑

j2|Gj1j2
=1

cj1j2) = 0. (3.11)

The sum of all causalities between internal junctions is zero since for every cj1j2

there exists a cj2j1 such that cj1j2 + cj2j1 = 0. Also, the causalities on the bonds from

the engine and vehicle output cancel the ones from MG1 and MG2. If there is a
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ground engaged in the mode, a causality of −1 remains. As a result, the following

two cases appear:

(i) If ground is not engaged, then

J∑
j1=1

tj1 = 0 (3.12)

From the definition of tj, it can be concluded that J0 = J1 in this case.

(ii) If a ground is engaged, then
J∑

j1=1

tj1 = −1 (3.13)

In this case J0 = J1 + 1.

The number of junctions for different types of modes obtained using all the bond

graph properties are given in Table 3.2. It can be seen that there is no feasible mode

obtained for 1-PG hybrid system with a ground. Since there are only three nodes on

a single PG, using one engine, two motor generators, one vehicle output and a ground

it is not possible to obtain meaningful 2-dof hybrid design. Also for pure EV modes

with engine connected to the grounded gear, the number of internal junctions can

take two different values. It is mainly due to the causality assignment of the MGs.

If one of the MGs is assigned to impose flow on the system, we need less internal

junctions to make the bond graph feasible.

3.2.3 Bond Weight Assignment

In order to complete the modified bond graph enumeration process, the proper

bond weights (weights for the TF blocks) need to be assigned. Let ρ be the ring to

sun PG ratio. As Figure 3.4 also shows, a PG set is modeled with 0 and 1-junctions

together, with weights around a 0-junction being 1, ρ and 1 + ρ, and the rest of the
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Figure 3.10: All possible six combinations for the bond weight assignment around a
0 junction

Figure 3.11: Bond weight scaling for a 0 to 0 junction connection

bond weights are 1. Figure 3.10 shows all possible six combinations for the bond

weight assignment around a 0-junction.

Implementation of these six combinations must not result in any inconsistency

with the bond weights. When connecting two 0-junctions together, scaling of the

bond weights might be necessary to prevent such inconsistencies. Figure 3.11 shows

an example for a 0-to-0 junction connection when scaling is needed.
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3.2.4 Equation Generation

Once the enumeration process is complete, the link between the graph represen-

tation and the system equations need to be formed in order to evaluate the designs.

This section describes how to extract the necessary equations from a modified bond

graph. Recall from Section 3.1.4 that only the matrix Cmode that defines the kinematic

relationship among the components is needed to analyze a mode.

Let ωext be the vector of speeds from external components. Define also ω as the

β×1 vector of speeds on the bonds connecting internal junctions. Following the bond

graph rules for 0-junctions and 1-junctions, i.e., speeds around a 0-junction sum up

to 0 and speeds around a 1-junction are the same, the following system of equations

can be written,

W0ω
ext + Wω = 0 (3.14)

where W0 and W are the matrices containing the bond weights from the graph.Recall

that J0 and J1 are the number of 0-junctions and 1-junctions, respectively. Then, W is

a matrix of the size (J0+2J1)×β since a 0-junction defines a single relationship for the

speeds and 1-junction defines two. Bond Graph Property 4 implies that J0 +2J1 > β.

So W has more rows than columns. When W has the rank β, Equation (3.14) can

be rewritten as,

ω = −(WTW)−1WTW0ω
ext (3.15)

Substituting Equation (3.15) into Equation (3.14) gives the following equation.

(W0 −W(WTW)−1WTW0)ωext = 0 (3.16)

Call W̃ = (W0 −W(WTW)−1WTW0). This matrix of size (J0 + 2J1) × Jext
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contains all the linear kinematic equations relating all external components. The rank

of W̃ that determines the dof of the PG system is ranging from 1 to 3. As pointed

out earlier, only 1 and 2-dof systems are of interest in this study. After this step,

separate analyses need to be performed for hybrid and pure electric modes.

(i) For hybrid modes, in order to obtain the kinematic relationship matrix men-

tioned in Section 3.1.4.2 from Equation (3.16), a rearrangement is necessary.

Consider a specific case with ωext = [ω1, ω2, ω3, ω4] being the vector of speeds

from engine, vehicle output, MG1 and MG2. Let [W̃1,W̃2] = W̃ where both

W̃1 and W̃2 are of the size (J0 + 2J1)× 2. When both W̃T
2 W̃1 and W̃T

2 W̃2 are

invertible, rearrangement on Equation (3.16) gives,

ω3

ω4

 = −(W̃T
2 W̃2)

−1(W̃T
2 W̃1)

ω1

ω2

 (3.17)

where the kinematic relationship matrix is Cmode = −(W̃T
2 W̃2)

−1(W̃T
2 W̃1).

In the case where ωext contains speeds from ground nodes, the same idea holds

after an additional step. Since the speed of a ground node is always zero, columns

of the matrix W̃ to be multiplied by the ground speed can be removed. In that

case, the definition of W̃1 and W̃2 must be modified as [W̃1,W̃2,W̃gnd] = W̃

where W̃gnd are the columns to be removed. With that definition, Equation

(3.17) holds for the cases including ground nodes.

(ii) For pure electric modes, if engine exists in the mode, the following definitions

can be made [W̃eng,W̃1,W̃gnd] = W̃ where W̃ is the column multiplied by

engine speed. Since engine is always grounded in a pure electric mode, i.e. it

is always at zero speed, both W̃eng and W̃gnd can be removed. Then linearly

independent rows of W̃1 are used to model the kinematic relationship of pure

electric modes. Since we are only interested in kinematically 1-dof and 2-dof
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modes, only W̃1 matrices with rank 1 and 2 are used. For a 1-dof mode, the

kinematic relationship matrix is defined as:

1

0

ω2 = Cmode

ω3

ω4

 . (3.18)

Similarly, for a 2-dof mode, the same kinematic matrix becomes:

ω2 = Cmode

ω3

ω4

 . (3.19)

3.3 Results

The formulation presented in this chapter can be used to generate all possible

driving modes for systems with any number of PGs and any number of external

components. In addition to the HEV modes, by removing the engine from the external

components or connecting the engine and ground to the same gear, pure EV modes

can be generated.

As discussed earlier, 2-dof HEV modes and 1-dof and 2-dof EV modes are the

main focus of interest. A common practice in hybrid vehicle design is to use two MGs

in addition to the engine, and some designs include an optional ground. We classify

the HEV and EV modes in four groups. HEV modes are grouped into two based on

the existence of a ground or not and EV modes are also grouped into two based on

the existence of the engine or not. Figure 3.12 shows lever representation of 4 samples

from these groups for 2-PG systems.

The process described above results in 52 unique feasible graphs of driving modes

with one PG. Among the 52 modes,16 of them are HEV modes and 36 are pure EV

modes. These results include some available designs from the market such as the

Toyota Prius mode shown in Figure 3.3(b) as well as hybrid and pure EV modes of
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(a) HEV mode without ground (b) HEV mode with ground

(c) Pure EV mode with engine grounded (d) Pure EV mode without engine

Figure 3.12: Four samples among all possible 2-PG driving modes

the Chevrolet Volt shown in Figure 3.13.

The number of feasible graphs for 2-PG systems is 3420 where 2124 of them are

HEV and 1296 of them are pure EV modes. Among these 2-PG configurations, there

some designs which look different but give the same kinematic relationship. Their

graph representations are not isomorphic but they are kinematically equivalent. Such

a case is called pseudo-isomorphism (Hsieh and Tsai , 1996a). When the gear ratio of

the 2 PGs are both equal to 2, these 2124 HEV modes will have 1178 unique kinematic

matrices for instance. We keep these kinematically equivalent designs as they can be

useful for multi-mode architecture designs. More detailed discussion with examples

are given Chapter VI. Also some of the configurations are only feasible when PG

ratios are different. For instance, 36 of all 2-PG configurations fall into this category.

When PG ratios of the two PGs are the same, these configurations given non-invertible

Cmode matrices.

Among the 2-PG designs generated there are some available designs from literature

such as those by Ai and Anderson (2005) given in Figure 3.14 and Schmidt (1999a),

given in Figure 3.15.
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(a) The Chevrolet Volt EV mode with
engine grounded

(b) The Chevrolet Volt EV mode with
engine disconnected

(c) The Chevrolet Volt HEV mode

Figure 3.13: Three modes of the Chevrolet Volt generated by the process

(a) (b)

Figure 3.14: All modes of the dual-mode architecture by Ai and Anderson (2005)

In addition, it possible to find 2-PG modes with the similar kinematic matrix as

1-PG designs. We refer to them as 2-PG equivalence of 1-PG designs. For example,

the second mode of the architecture from Ai and Anderson (2005) shown in Figure

3.14(b) is the 2-PG equivalence of the 1-PG hybrid mode of the Chevrolet Volt. The

mode given in Figure 3.16(b) can also be seen as the 2-PG equivalence of the hybrid

mode of the Chevrolet Volt with an additional final drive, since the second PG only

adds an extra gear ratio before the vehicle output shaft. Figure 3.16(a) shows 2-PG

equivalence of the Toyota Prius mode.
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(a) (b)

Figure 3.15: All modes of the dual-mode architecture by Schmidt (1999a)

(a) Toyota Prius-like 2-PG mode (b) Chevy Volt-like 2-PG mode, the PG on
the right serves as an extra final drive

Figure 3.16: 2-PG modes equivalent to the Toyota Prius and the Chevrolet Volt (with
extra final drive)

Appendix A shows all 1-PG designs and Appendix B shows some selected 2-PG

modes generated by the process.

3.4 Summary

In this section we reviewed some available representations used for HEV archi-

tectures. Among these representations, we introduced a modified bond graph rep-

resentation based on the concepts from bond graphs in our study and introduced a

systematic process to generate all possible modes for given set of external compo-

nents. The main focus of this chapter was the power-split type of modes since only

this type of mode allows a variety of configuration possibilities. Parallel and series

type of modes can be configured in a single way and do not provide any room for

configuration design. If such modes are of interest, they can be included manually in

the analysis.
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The generation process was general enough to be extended to any number of

external components and any number of planetary gears. In our representation, we

can capture both HEV and EV modes. The use of these modes in the design process

is described later in this dissertation.
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CHAPTER IV

Hybrid Electric Vehicle Architecture Design

Optimization

Chapter III described the generation and representation phases of the design pro-

cess introduced in Chapter I for the HEV architecture design problem. In order to

discuss the last two phases of the design process, namely evaluation and guidance, the

design problem formulation must be discussed, first. This chapter defines the general

HEV architecture optimization problem formally, including component sizing design,

and discusses the solution strategies for different cases based on whether component

sizing is part of the design problem or not. The details of each case will be discussed

later in the dissertation in Chapters V, VI, VII.

4.1 General Problem Formulation

The general HEV architecture optimization problem can be defined formally as:
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General HEV Architecture Problem

min fcons(xc(Nmode),xs, ψ(t,xc(Nmode),xs,p))

with respect to (w.r.t.) {xc(Nmode), xs, ψ(t,xc(Nmode),xs,p)}

subject to (s.t.) gperf (xc(Nmode),xs, ψ(t,xc(Nmode),xs,p)) ≤ 0

gcomplex(xc(Nmode)) ≤ 0

ψ(t,xc(Nmode),xs,p) is attainable

lb ≤ xs ≤ ub

Nmode ∈ {1, 2, 3, 4, ...}

xc is feasible

(4.1)

where the objective to minimize, denoted by fcons, is the fuel consumption of the

vehicle under a given set of drive cycles. This objective depends on the configuration

described by a vector xc, the number of modes in the architecture denoted by Nmode,

the size of the powertrain components including gear ratios xs, the supervisory control

policy ψ which distributes the demanded power to engine and MGs, and the vehicle

parameters p such as vehicle mass, wheel inertia, vehicle frontal area, aerodynamic

drag, and so on.

The first set of constraints denoted by gperf describes all the performance con-

straints expected to be satisfied by the powertrain architecture. These constraints

may include gradeability, 0-60 Miles Per Hour (MPH) time, 30-50 MPH time, tow-

ing capability or top speed (Freyermuth et al., 2008; Nelson et al., 2007; Whitefoot

et al., 2010). The second set of constraints denoted by gcomplex limits the maximum

complexity of the architecture. A formal definition of a complexity measure for HEV

architectures is given in Chapter VI. The constraint on the ψ comes from the limita-

tions of the powertrain components. For instance, engine and MGs have both speed
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and torque limits and batteries used in HEVs are limited to work in a predefined

range of state of charge (SOC) values determined by the manufacturer. Since battery

hybrid electric vehicle are not charged by an external source, another constraint on

ψ may be imposed as sustaining the final battery SOC at the initial charge level.

The final sets of constraints are on the design variables. Variables xs have lower

and upper bounds denoted by lb and ub, respectively; Nmode which is the number

of driving modes in the architecture can only be integer. Typically the maximum

number of driving modes is limited by the complexity constraint on the architecture;

xc which is the vector describing the configurations of all driving modes in the ar-

chitecture must correspond to feasible configurations. As described in Chapter III,

if the modified bond graph representation is used to define the configuration, only

simple and connected graphs, obeying the causality rules of bond graphs with the

bond weights describing the kinematic relationship of the PG set are considered as

feasible. In addition to these constraints, no vehicle and ground connection is allowed

and the number of dof the system is constrained to two.

4.2 Solution Strategies

In this section, we discuss the solution strategies for the problem given in Equation

(4.1). The objective function and performance constraints in the problem formulation

depend both on design and control decisions. Section 4.2.1 gives a brief description of

available approaches to solve combined design and control problems. Then, in Section

4.2.2, we discuss the solution strategies of the overall problem under two scenarios:

(i) design of the architecture when the component sizes and gear ratios are given; (ii)

simultaneous design of architecture and component sizing.
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4.2.1 Combined Design and Control Problem

The problem given in Equation (4.1) is a combined design and control problem,

where the objective and some constraints depend on both design and control decisions.

Multiple strategies have been developed to address this type of problems. Fathy et al.

(2001) gives a review of four strategies shown in Figure 4.1. The first method discussed

in that work is the sequential approach which assumes the design and control problems

are fully separable. In this approach, the design problem is solved first assuming an

initial control strategy. Then, based on the optimal solution of the design problem, the

controller is optimized. Since, generally design and control problems are coupled, this

strategy finds non-optimal solutions. Peters et al. (2010) give a detailed discussion

on the coupling between the pant and controller design.

The methods accounting for the coupling between design and control are com-

monly referred to as co-design. The iterative approach is one step forward from the

sequential approach to consider the design and control coupling. This method solves

the design and control problem multiple times in a sequential way until convergence.

As discussed by Fathy et al. (2001), this method does not necessarily converge to the

true optimum. The next co-design method is the nested approach which solves the

control problem in an inner loop within the design problem. So in the outer loop,

each design is evaluated with its best control strategy. This method is also referred

to as bi-level solution strategy. If the combined problem is convergent, this method

is guaranteed to converge to an optimal combined design and control solution. The

final strategy is the simultaneous design and control strategy where the design and

control variables are optimized together in a single formulation. This method also

finds the true optimum.

Sequential and iterative approaches are not used in this dissertation because of

their inability to find the optimum of the combined problem. While simultaneous

approach can find the true optimum, it requires sophisticated methods to solve the
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(a) Sequential (b) Iterative (c) Nested (d) Simultaneous

Figure 4.1: Strategies for combined plant (design) and controller optimization

combined problem. In the literature, there are available HEV optimal control methods

developed for a given design (Lin et al., 2003; Delprat et al., 2002; Kim et al., 2011;

Paganelli et al., 2002). Since the nested approach can benefit from these available

control methods, it is preferred in this dissertation for practical reasons. In the nested

approach, the design (upper loop) problem becomes:

min fcons(xc(Nmode),xs, ψ
∗(t,xc(Nmode),xs,p))

w.r.t. {xc(Nmode), xs}

s.t. gperf (xc(Nmode),xs, ψ
∗(t,xc(Nmode),xs,p)) ≤ 0

gcomplex(xc(Nmode)) ≤ 0

lb ≤ xs ≤ ub

Nmode ∈ {1, 2, 3, 4, ...}

xc is feasible

(4.2)

where ψ∗ is the optimal control strategy obtained by the nested control problem

solution for a given design. The variables of the upper loop are xc and xs only. The

control (inner loop) problem can be given as:
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min fcons(xc(Nmode),xs, ψ(t,xc(Nmode),xs,p))

w.r.t. {ψ(t,xc(Nmode),xs,p)}

s.t. gperf (xc(Nmode),xs, ψ(t,xc(Nmode),xs,p)) ≤ 0

ψ(t,xc(Nmode),xs,p) is attainable

(4.3)

Here, since xc and xs are given from the design problem, only ψ is the variable. The

optimal HEV control methods to solve this problem are given in Chapter V. The next

section elaborates on the solution strategies for the design problem under different

cases while the control problem is solved in the same way for all the cases.

4.2.2 HEV Architecture and Sizing Problem

Given the control problem nested in the design problem formulation, we provide

separate solution strategies to solve the problem given in Equation (4.1) depending on

whether the sizing variables xs are fixed or not. For each case design of single-mode

and multi-mode architectures are discussed.

4.2.2.1 HEV Architecture Design with Fixed Sizing

The sizing variables may be fixed by other constraints or good initial values for

these variables might be provided beforehand. When the component sizes are given,

they are included in the parameter set p and are no longer part of the design variable

set. In the case of single-mode architecture design, assuming that the control problem

is solved in a nested formulation, the problem given in Equation (4.1) is reduced to
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the following form:

Single-mode HEV Architecture Problem with Fixed Component Sizes

min fcons(xc, ψ
∗(t,xc,p))

w.r.t. {xc}

s.t. gperf (xc, ψ
∗(t,xc,p)) ≤ 0

xc is feasible

(4.4)

In the single-mode architecture design, complexity is not part of the formulation,

since complexity, as will be defined in Chapter VI, is the same for all configurations

generated in the previous chapter. In formulation of Equation (5.1), xc defining

the configuration is the only design variable vector which can be represented by a

modified bond graph as shown in Chapter III. Using this representation we showed

that the number of feasible hybrid configurations is 16 for a 1-PG system, 2124 for

a 2-PG system. So, if a computationally efficient control algorithm is used in the

nested problem, we do not need to use an optimization algorithm to design xc since

enumeration over these finite choices is possible. Chapter V elaborates on this problem

and finds solutions for some vehicles currently available in the market.

In the case of a multi-mode architecture design with given sizes, the problem

formulation includes a larger xc, the size of which depends on Nmode, defining the

configurations for all the modes in the architecture as design variables. More formally,
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the formulation becomes:

Muti-mode HEV Architecture Problem with Fixed Component Sizes

min fcons(xc(Nmode), ψ
∗(t,xc(Nmode),p))

w.r.t. {xc(Nmode)}

s.t. gperf (xc(Nmode), ψ
∗(t,xc(Nmode),p)) ≤ 0

gcomplex(xc(Nmode)) ≤ 0

Nmode ∈ {1, 2, 3, 4, ...}

xc(Nmode) is feasible

(4.5)

Note that since combining modes in the same architecture might result in high com-

plexity, a constraint on the maximum complexity has to be part of the consideration

here. In a multi-mode hybrid architecture, one of the modes has to be a hybrid mode

in order to be able to charge the battery without any need for an external charger

while the other modes can be either hybrid or pure electric modes. Including pure

electric modes, the number of possible Nmode architectures is 16× 52Nmode−1 for 1-PG

systems, 2124 × 3420Nmode−1 for 2-PG systems and so on. As opposed to the single-

mode architecture design, even though a computationally efficient control method is

used, enumeration over all possible configurations is only possible for 1-PG systems.

For a general multi-mode design, an optimization method is necessary to design xc

by searching in the design space efficiently. Assuming a Bond Graph representation is

used, available derivative-free methods such as Genetic Algorithm or Pattern Search

fail to find feasible configurations satisfying the feasibility constraints described in

Chapter III. An alternative heuristic approach searching only in the feasible design

space is proposed and details are given in Chapter VI.
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4.2.2.2 Simultaneous HEV Architecture and Sizing Design

Finding good initial values for the sizing variables is not possible all the time. In

that case, the problem formulation given in Section 4.2.2.1 either needs to be solved

multiple times with different sizing parameters or the sizing problem needs to be

solved as a nested problem problem. The former is called an iterative approach and

the latter is called All-In-One (AIO). Both of the approaches are not computationally

feasible efforts considering the problem size. An alternative AIO formulation can be

solving the configuration and sizing problem simultaneously keeping both xc and xs

design variables for a common objective. This approach suffers from the same problem

mentioned in the previous section. Since there are many feasibility constraints on xc,

the available derivative-free algorithms fail to find feasible designs. In order to address

this combined sizing and configuration problem, a decomposition-based formulation

is proposed in the present dissertation.

As descried in Chapter III, a 2 × 2 Cmode matrix which is a function of the

configuration xc and PG ratios ρ can be used to evaluate a configuration in a vehicle

model. However, designing this Cmode matrix alone does not necessarily yield feasible

configurations, i.e., not every Cmode can be realized by a feasible configuration. So,

feasibility of the Cmode has to be considered in the optimization formulation.

Considering only PG ratios ρ and final drive ratio FR as the sizing variables, the

proposed decomposition for a single-mode architecture design is depicted on Figure

4.2. A new configuration matrix combining Cmode and FR is defined as:

Cconf (xc,ρ, FR) =


Cmode ·

1 0

0 FR

 if hybrid mode

Cmode · 1/FR if pure electric mode,

(4.6)

In the proposed decomposition, elements of the Cconf matrix is optimized at the

68



Figure 4.2: Decomposition of combined single-mode architecture and gear ratio de-
sign

system-level to minimize the fuel consumption with performance constraints ignoring

the feasibility of Cconf . Then, the optimized Cconf is sent to the subsystem as a

target to meet. The subsystem designs ρ and FR for all feasible configurations to

the target as close as possible.Then, the subsystem sends the Cconf that matches the

target closest to the system level. Then the system-level problem is optimized again

based on that response. A penalty on the difference between target and response is

added to the objective of the system-level problem. The process continues until the

target from the upper system is met.

The formulation implementing this idea for the system-level problem becomes:

min fcons(C
U
conf , ψ

∗(t,CU
conf ,p)) + φ(CU

conf −CL
conf )

w.r.t. [C11, C12, C21, C22], where CU
conf =

C11 C12

C21 C22


s.t. gperf (CU

conf , ψ
∗(t,CU

conf ,p)) ≤ 0

lb ≤ CU
conf ≤ ub

|det(CU
conf )| > 0

(4.7)
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Figure 4.3: Decomposition of combined multi-mode architecture and gear ratio design

where φ is the augmented Lagrangian penalty function (Tosserams et al., 2006).

Superscripts (·)U and (·)L indicate upper and lower system variables, respectively.

Also the subsystem problem is formulated as:

min φ(CU
conf −CL

conf )

w.r.t. x = [xc,xs], where xs = [ρ, FR]

s.t. lb ≤ xs ≤ ub

xc is feasible

where CL
conf = fconf (x)

(4.8)

Here fconf is the function that calculates the Cconf given the configuration, PG ratios

and final drive ratio. Details of the solution strategy using Analytical Target Cas-

cading (Kim, 2001; Michelena et al., 2003) for this decomposed problem is given in

Chapter VII.

In case of a multi-mode architecture design, the main idea behind decomposition

remains the same. However, the system- and subsystem-level formulations slightly

differ from the single-mode design. The decomposition is depicted in Figure 4.3.

In the proposed decomposition, the number of subsystems is equal to the number
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of modes communicating with a single system. Sizing variables are shared among

subsystems since the PG ratios and final drive ratio must be the same among all

the modes in a multi-mode architecture. The variables of the system-level problem

are the elements of Cconf matrix of all the modes in the architecture and the shared

variables of the subsystems. Due to these shared variables among subsystems, an

additional penalty on the difference between the shared variables from the subsystems

is part of the system objective in addition to the fuel consumption and the difference

between Cconf targets and responses from the subsystems. The subsystems try to

meet the Cconf and gear ratio targets coming from the system. There is an additional

complexity constraint in the subsystems, which requires sharing the configurations xc

in order to calculate the complexity. The mathematical formulation for the system-

level problem can be given as:

min fcons(C
U
conf,i, ψ

∗(t,CU
conf,i,p)) +

Nmode∑
i=1

φ(CU
conf,i −CL

conf,i) + φ(xU
s − xL

s,i)

w.r.t. [C11,i, C12,i, C21,i, C22,i,x
U
s ], where CU

conf,i =

C11,i C12,i

C21,i C22,i

 ∀i ∈ {1, ...Nmode}

s.t. gperf (CU
conf,i, ψ

∗(t,CU
conf,i,p)) ≤ 0

lbi ≤ CU
conf,i ≤ ubi

|det(CU
conf,i)| > 0i

(4.9)

where the subscript (·)·,i denotes each mode.
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Also the formulation for a subsystem i becomes:

min φ(CU
conf,i −CL

conf,i) + φ(xU
s − xL

s,i)

w.r.t. xi = [xc,i,x
L
s,i], where xL

s,i = [ρi, FRi]

s.t. gcomp(xc,i,xc,j) ≤ 0 ∀j ∈ {1, ...Nmode|j 6= i}

lbi ≤ xL
s,i ≤ ubi

xc,i is feasible

where CL
conf,i = fconf (xi)

(4.10)

where xs are the shared variables.

4.3 Summary

We gave an overview of the different intances of the general HEV architecture

problem. We described general approaches to solve the combined design and control

problems and proposed to use the nested formulation in order to be able to benefit

from the existing HEV control strategies. We provided separate formulations for

the HEV architecture design problems with single and multiple modes when the

component sizes are given. Chapter V will describe the solution strategy for the

single-mode architecture design problem with fixed component sizes and Chapter VI

will discuss the multi-mode architecture design problem with the same assumptions

for the component sizes.

Also we proposed a decomposition-based formulation to solve the combined con-

figuration and component sizing design decisions simultaneously. Chapter VII will

elaborate more on this formulation.
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CHAPTER V

Single-mode Hybrid Electric Vehicle Architecture

Design with Fixed Sizing

Chapter III demonstrated the representation of HEV architectures based on bond

graphs and described a generation framework to find all feasible configurations (driv-

ing modes) given some powertrain components. Chapter IV formulated the general

single and multi-mode HEV architecture design problems for fixed and variable com-

ponent sizing. In this chapter we will discuss the solution of the single-mode HEV

architecture design problem with given component sizes.

First we will describe the evaluation of the design alternatives in a general vehicle

model. As discussed in Chapter IV, the evaluation of an architecture requires an

optimal control strategy. We will use a nested formulation to solve the optimal control

problem, i.e., each design candidate will be evaluated with the best control strategy.

Then based on the evaluation of each design, we will select the best architecture

design and perform a parametric study to show the effect of some key parameters on

the design selection.
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5.1 Problem Formulation

A formal mathematical formulation of the general architecture design problem was

given in Chapter IV. The general formulation reduces down to the following from for

the single-mode architecture design with given powertrain component sizes:

min fcons(xc, ψ
∗(t,xc,p))

w.r.t. {xc}

s.t. gperf (xc, ψ
∗(t,xc,p)) ≤ 0

xc is feasible

(5.1)

where fcons is the fuel consumption of the vehicle under some given drive cycles, gperf

is the set of vehicle performance constraints which can be gradeability, top speed

or acceleration requirements. xc denotes the configuration, i.e., driving mode that

should be selected from the feasible modes generated in Chapter III. p is the vector

of vehicle parameters. Note that, since powertrain component sizes, xs are assumed

to be given in this chapter, they are also included in this vector of parameters. ψ is

the supervisory control strategy that distributes the power demand from the driver

to the powertrain components. Since we use a nested formulation to solve the control

problem, the available optimal control strategies developed for a given design can be

used. Section 5.3 describes these strategies in detail. φ∗ denotes the optimal control

strategy obtained in such a nested formulation.

Selection of feasible configuration from the generated designs for the single-mode

architecture can be done using enumeration that is computationally feasible when the

component sizes are given. We will present three case studies in Section 5.4 solving

this design problem by evaluating each feasible design candidate separately.
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5.2 Vehicle Model

We will describe a general vehicle model to evaluate an HEV configuration in

terms of fuel consumption and vehicle performance under given vehicle parameters.

A drive cycle, which is defined by a speed and road grade profile over a time horizon,

is necessary to calculate the fuel consumption of a configuration. In civilian vehicle

design, the road profile is usually assumed to be flat while in military applications

both speed and road grade profile are included in the drive cycle. In HEV simulations,

the fuel consumption calculation has to accommodate both engine consumption and

battery consumption.

The model described here assumes that a drive cycle is given a priori and the

vehicle follows the cycle exactly. Under that assumption, the rotational speed ωreq

required from the transmission for the vehicle to follow the cycle is calculated as

follows:

ωreq =
Vcycle
Rwheel

FR, (5.2)

where Rwheel is the wheel radius, FR is the final drive ratio and Vcycle is the speed of

the vehicle following a drive cycle. In addition, the required torque Treq is given by

Treq = (Facc + Faero + Froll)
Rwheel

ηtrans FR
, (5.3)

where ηtrans is the transmission efficiency. In this equation, the rolling friction Froll

is calculated as

Froll = Mveh g(µstat + µdynVcycle). (5.4)

Here, µstat and µdyn are static and dynamic rolling friction coefficients, respectively;

Mveh is the vehicle mass and g is the gravitational acceleration. The aerodynamic
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drag force Faero is given by:

Faero = 0.5 ρair Cd Afront V
2
cycle, (5.5)

where ρair is the air density, Cd is aerodynamic drag coefficient and Afront is the

frontal area of the vehicle. Finally, the force required to accelerate, Facc is simply,

Facc = (Mveh + 4 Jwheel/R
2
wheel)acycle. (5.6)

This equation also accounts for the wheel inertia Jwheel. Here, acycle is the acceleration

of the vehicle following a given drive cycle.

Given ωreq and Treq, a supervisory control strategy can determine the engine op-

erating points, i.e., ωeng and Teng minimizing the fuel consumption. The details of

the control strategies are discussed in Section 5.3. In the model here, a quasi-static

approach described in Section 3.1.4.2 is utilized to calculate the speed and torque re-

lationships among vehicle output, MGs and the engine. In summary, the relationships

for a 2-dof hybrid mode with two MGs and an engine are as follows.

ωMG1

ωMG2

 = Cmode

ωeng

ωreq

 (5.7)

TMG1

TMG2

 = −C−Tmode

 Teng

−Treq

 (5.8)

In the case of pure electric modes, Cmode,ev matrix relates the MG speeds to vehicle

output speed as follows:
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Cmode,ev


ωreq

ωMG1

ωMG2

 = 0 (5.9)

The torque relationship for pure electric modes depends on the number of dof.

Let [C1,C2,C3] = Cmode,ev. Then, for a 2-dof pure electric mode quasi-static torque

relationship becomes:

−CT
1

[
C2 C3

]−T TMG1

TMG2

 = Treq (5.10)

For a 1-dof pure electric mode the same torque relationship becomes:

TMG1

TMG2

 = −
[
C2 C3

]
C−11 Treq (5.11)

Note that a detailed mode switching model is not implemented in this vehicle

model. Modes are switched by switching the speed and torque relatioships with the

corresponding Cmode matrices. In order to prevent frequent switching, a penalty is

imposed by the supervisory control strategy.

With ωeng and Teng given by the supervisory control strategy, the engine fuel con-

sumption rate ṁf (ωeng, Teng) can be looked up from an engine fuel consumption map.

In order to calculate the battery consumption, the current demand from the battery

needs to be calculated first. The model here, assumes a fixed battery DC voltage,

Vbatt and efficiency ηbatt, for simplicity. However, this assumption can be relaxed and

battery can also be modeled dynamically where the output voltage becomes a func-

tion of battery state of charge (SOC) and current demand. In the model here, the

current demand by the ith MG, IMGi, is given by:
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IMGi =
TMGi ωMGi

Vbatt
ηKi
MGi ∀i = 1, 2, (5.12)

where ηMGi = f(ωMGi, TMGi) denotes the efficiency of each MG which is looked up

from an MG map and Ki is 1 when the corresponding MG is working as a generator

and -1 when as a motor. Using the current demands from the MGs, the battery

current Ibatt, and battery power Pbatt, are calculated as:

Ibatt =
IMG1 + IMG2

ηbatt
, (5.13)

Pbatt = Ibatt Vbatt. (5.14)

Finally, the SOC of a battery with capacity Cbatt can be calculated by the following

differential equation:

˙SOC = −Ibatt/Cbatt. (5.15)

The general vehicle model described here can be implemented in a simulation over

discrete time steps until the end of the time horizon.

In order to calculate the fuel economy a control algorithm is necessary. As de-

scribed in Chapter IV the control problem is solved in a nested formulation in this

dissertation. The nested formulation provides the advantage of using the available

control strategies developed for given HEV designs. The next section describes some

of these available control strategies in detail.

5.3 Supervisory Control

The general control problem of finding the optimal engine operating points over

a given drive cycle is formulated as follows:

78



min J =

tf∫
t0

ṁf · dt

subject to ωmin ≤ ωeng ≤ ωmax

Tmin ≤ Teng ≤ Tmax

SOCmin ≤ SOC(t) ≤ SOCmax

(5.16)

The objective is to minimize the total fuel consumption J measured from the begin-

ning of the drive cycle t0 to the end tf . The constraints are the bounds on the engine

speed denoted by ωmin and ωmax, on the engine torque denoted by Tmin and Tmax,

and on the battery SOC denoted by SOCmin and SOCmax. In battery hybrid electric

vehicle simulations where the vehicle has no external source to charge the battery, the

fuel consumption is measured by the fuel consumption of the vehicle with initial and

final battery SOC being the same. This is also called a charge-sustaining constraint:

SOC(tf ) = SOC(t0). (5.17)

The computational effort to solve this problem can be reduced by performing some

of the calculations offline, namely, before starting the solution process. For an HEV

mode, if the drive cycle is known a priori, at any time step all engine operating points

and the corresponding MG operating points satisfying the drive cycle demand can

be calculated offline. When these operating points are mapped to the 2D space of

fuel consumption rate and battery power, the points minimizing the both the fuel

consumption rate and battery power form a Pareto frontier as shown on Figure 5.1.

Only these Pareto points along with the corresponding engine and motor operating

points need to be saved for further use. The online simulation will use these Pareto

curves as “lookup tables”. When solving the control problem given in Equation (5.16)

and Equation (5.17), the mapping between ṁf and Pbatt on the Pareto frontier is used
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Figure 5.1: All engine and MG operating points satisfying the demand from the drive
cycle form a Pareto surface on the space of ṁf and Pbatt

to reduce the number of independent variables to one for searching the optimal MG

and engine operating points on the Pareto frontier.

In a pure-EV mode, since there is no engine, the offline calculation is performed

for all possible MG operating points satisfying the drive cycle demand. In that case,

since ṁf = 0, the Pareto frontier has only one point.

Three methods which can be used to solve this control problem given in Equa-

tion (5.16) and Equation (5.17) are (Dynamic Programming, Pontryagin’s Minimum

Principle and Equivalent Consumption Minimization Strategy). These methods are

described in the subsequent sections.

5.3.1 Dynamic Programming

Dynamic Programming (DP) was first introduced by Bellman (1954). The for-

mulation addresses a multi-stage decision problems described by a set of state and

decision variables. Bellman’s principle of optimality is an optimal decision policy at

every stage based on the current state information only. The decision process works
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in a recursive way. The process of backward induction works as follows: Let sn and

dn denote the state and decision variables at stage n and cn(sn, dn) be the resultant

cost of that decision. Assume that the goal is to minimize the cost of going from state

s0 to sN . If νn+1(sn+1) is the minimum cost of going from state sn+1 to sN , then the

decision at the state sn is made as follows:

νn(sn) = min{cn(sn, dn) + νn+1(sn+1)} (5.18)

The value of ν0(s0) obtained by this recursive process gives the minimum cost.

Dijkstra (1959) applied dynamic programming to finding the shortest path tree

between two nodes in the most computationally efficient way. Dijkstra’s algorithm

has a computational cost on the order of O(|E| + |V |log|V |) where |E| denotes the

number of edges (decision variables) and |V | the number of vertices (state variables)

in the graph.

DP has been applied to the HEV supervisory control problems before (Lin et al.,

2003; Liu and Peng , 2006). An analogy between the shortest path problem and the

HEV supervisory control problem with a given drive cycle can be made. Let SOC

describe the states and t describe the stages with a certain discretization. Considering

the linear relationship between ˙SOC and Pbatt described in Section 5.2, ∆SOC which

is the discretized version of ˙SOC can be used as the only control variable in this

formulation. If possible SOC values are represented by vertices on a graph and

∆SOC values by edges, the fuel consumption corresponding to each decision becomes

the cost on the edges. These costs can be calculated using the mapping described

by the Pareto curves calculated offline. Figure 5.2 depicts this idea for a simplified

problem with three possible SOC values at every stage with three possible ∆SOC

decisions. In the figure, the problem starts with the state s00 denoting the SOC value

of s0 at the time t0. Due to the charge sustaining constraint the SOC at the time

tN has to be s0 which is denoted by s0N . The engine fuel consumption required to
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Figure 5.2: Representation of a fictitious control problem with an analogy to the
shortest path problem starting with state s00 and ending with s0N

move from one state to another is indicated by the cost variable c on the edges. With

that representation, finding the shortest path problem between the nodes s00 and s0N

is equivalent to the finding the minimum consumption starting and ending with the

SOC level of s0 between the times t0 and tN .

For a multi-mode HEV control problem, there is an additional state variable for

the current mode and a decision variable for mode shifting. In that case the total

number of states and decision variables is multiplied by the number of modes in the

architecture. In addition to the cost of fuel, there is also an additional cost of shifting

the mode in the multi-mode HEV control problem. A more detailed discussion on

handling the mode shifting is given in Section 5.3.3.

Solution of the HEV control problem with DP starts with creating the above-

mentioned graph first. Then, the recursive decision process of finding the minimum

fuel consumption with a charge-sustaining constraint can be solved using Dijkstra’s

algorithm. As discussed by Kim et al. (2011) DP has been shown to find the global

optimal control policy with a given discretization at the expense of a significant
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computational burden. The computational cost of the solution increases exponentially

with the dimension of the problem. This issue makes DP a practically infeasible effort

in a design process involving evaluations of a large number architecture alternatives

as in the present dissertation.

5.3.2 Pontryagin’s Minimum Principle

Pontryagin’s Minimum Principle (PMP) was first introduced in 1956 by L. S.

Pontryagin to provide necessary conditions for optimal control problems (Pontrya-

gin, 1987). It has also been used for HEV control problems as an alternative to

the computationally expensive dynamic programming method (Delprat et al., 2002,

2004; Kim et al., 2011). Considering the problem formulation given by Equation

(5.16) where ṁf is made a function of Pbatt with offline calculations, the Hamiltonian

function is defined as:

H(SOC,Pbatt, t) = ṁf (Pbatt, t) + λ(t) · f(SOC(t), Pbatt(t)) (5.19)

where SOC is the state and λ is the co-state. Necessary conditions for optimal P ∗batt

is such that Hamiltonian is minimized for all t as well as the following two equalities:

˙SOC
∗
(t) =

∂H(SOC∗, P ∗batt, t)

∂λ
= f(SOC∗(t), Pbatt(t))

λ̇∗(t) = −∂H(SOC∗, P ∗batt, t)

∂SOC
= −λ∗(t)∂f(SOC∗(t), Pbatt(t))

∂SOC

(5.20)

Note that the optimal co-state is not necessarily constant. However, if ˙SOC does

not depend on SOC, then λ̇∗(t) = 0 meaning that the optimal co-state remains

constant. Kim et al. (2011) proved that under this assumption a globally optimal

control policy can be obtained with PMP.
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5.3.3 Equivalent Consumption Minimization Strategy

Equivalent Consumption Minimization Strategy (ECMS) was initially proposed

as a heuristic method to minimize the sum of engine fuel consumption and fuel con-

sumption equivalence of battery power (Paganelli et al., 2002). If λ is a conversion

factor from the battery power to fuel rate, the equivalent fuel consumption denoted

by EFC is defined as:

EFC = ṁf + λ Pbatt (5.21)

Given a conversion factor, this strategy minimizes EFC subject to the same

constraints given by (5.16) and (5.17) at every time step throughout the simulation.

As a result of the offline calculations, similar to DP, ∆SOC that is a discretized version

of ˙SOC can be used as the only control variable to minimize the EFC. Available

implementations of ECMS vary slightly in different applications. For instance, some

formulations include an extra term in the objective to penalize the SOC going beyond

the limits given in Equation (5.17). However, if the SOC window is not too narrow,

the chances of hitting the SOC bounds are quite low which makes the extra term

inactive throughout the simulation. Variations also include using multiple conversion

factors for charging and depleting the battery or using a conversion factor as a function

of battery SOC (Serrao et al., 2009; Liu and Peng , 2008). In this section, we follow

the implementation given by Ahn et al. (2008).

In a multi-mode architecture, each mode yields a different EFC value at a given

point on the drive cycle. In that case, the mode with minimum EFC is preferred.

However, this strategy typically results in frequent mode shifting that is not desired for

driveability. A common approach to solve this problem involves assigning a penalty

to shifting a mode. Lin et al. (2003) offer an example to such an approach. With the

penalty term added, the modified objective becomes:
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ẼFC = ṁf + λ Pbatt + γ δmode (5.22)

where γ is the penalty coefficient and δmode = 1 when mode is shifted or δmode = 0

otherwise. The value of γ impacts the mode shifting frequency and hence the fuel

consumption. Deviation from optimality increases with γ. For the implementation

used in the present dissertation, a value of γ is tuned experimentally and the same

value is used for all architectures. A parametric study on the value of this coefficient

is desirable future work.

In a multi-mode architecture problem, two control variables become ∆SOC and

δmode while the states are SOC, driving mode and time. During the simulation, given

the states, by using pre-calculated Pareto curves the two control variables minimizing

ẼFC can be calculated. The value of λ in Equation (5.22) affects the fuel consumption

and SOC trajectory significantly. For every architecture and drive cycle, the value

of λ satisfying the charge-sustaining constraint is given by Equation (5.17). The

relationship between λ and final SOC is nonlinear. Therefore, a solver for λ equalizing

initial and final SOCs needs to be implemented within the controller. The secant

method can be used to find a solution in a few iterations. Figure 5.3 shows an

iteration of the secant method. The implementation starts with two initial guesses

for λ, say, λ1 and λ2 and the corresponding final SOC values are calculated by solving

the control problem using ECMS. Then, the final SOC is approximated as a linear

function and solved for the λnew corresponding to the target SOC. λnew and the λ

with the final SOC closer to the target from the previous iteration are passed to the

next iteration. The same process continues until an SOC within an ε window of the

target SOC is obtained.

As discussed by Kim et al. (2011) and Serrao et al. (2009), although ECMS is not

an optimal control strategy for a generic model, it can provide results close to the

PMP under the following conditions:
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Figure 5.3: One iteration of the secant method to find the conversion factor corre-
sponding to the target SOC

(i) The window of SOCmin and SOCmax is small such that the rate of change in

the co-state is negligible.

(ii) The relationship between ˙SOC and Pbatt is close to linear.

Both conditions hold exactly for the model presented in Section 5.2 making ECMS

and PMP solution equivalent. However, even if the modeling assumptions change

in order to increase the model fidelity, this control algorithm can be favored when

the computational burden of the solution becomes significant. In an optimal system

design framework, a true optimality claim cannot be made with a non-optimal control

decision. However, if the resultant control policy approximates the optimal control

well enough, the design process can still identify promising design candidates, even if

not necessarily the optimal one. For practical purposes, especially in combinatorial

design problems such as studied here, identifying promising designs quickly rather

than finding the optimum in a computationally expensive way can be preferred.
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5.4 Design Selection

In Chapter III we described the generation of all power-split type 1-PG, 2-PG

and 3-PG mode candidates in a systematic way using the bond graph representa-

tion. In this section we will discuss the mode selection for a single-mode architecture

design given the mode alternatives and the design evaluation method described in

the previous section in order to solve the problem formulated in Equation (5.1). We

will discuss three case studies. In the first case study, we will design a 1-PG and a

2-PG single mode architecture for a Toyota Prius type of vehicle. In the second case

study, we will perform the same for a Chevrolet Volt type of vehicle. In the third

case study, we discuss the single-mode architecture design for a heavy-duty vehicle.

For all cases, we assume that all powertrain component specifications, final drive and

PG ratios are given beforehand. We calculate the fuel consumption by averaging the

fuel consumption on city (UUDS) and highway (HWFET) cycles.

If the goal is to design a single-mode architecture (with given gear ratios), since the

number of design alternatives is limited to a number that allows enumeration, we can

evaluate each mode separately and select the best design among them. An advantage

of enumeration based design search is the parallel computing capability. Since each

design evaluation is independent from each other, as opposed to the algorithmic search

methods, we can evaluate different design in parallel to reduce the computation time.

For a 1-PG design, it is not necessary since there is only 16 design alternatives but

since this number is larger for 2-PG and 3-PG architecture designs, we can benefit

from parallelization significantly.

When we move from single-mode design to multi-mode design or include gear

ratios in the design process, enumeration over all possible candidates is not possible

any more. We need a smart way to search in the space in such cases. We will

discuss multi-mode architecture design with given gear sizes in Chapter VI and the

simultaneous configuration and gear size design in Chapter VII.
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5.4.1 Illustration Case Study 1

The vehicle specifications used for this case study is given in Table 5.1. These

specifications are similar to the Toyota Prius. Let’s assume that PG ratio and fi-

nal drive ratio to be used in the architecture is also the same as the Toyota Prius.

Therefore, let ρ = 2.6 and FR = 3.95.

Table 5.1: Vehicle specifications used for Case Study 1

Specification Value

Vehicle Body Mass 1400 [kg]
Tire Radius 0.3 [m]

Aerodynamic Drag Coefficient 0.29
Frontal Area 2 [m2]

Battery Voltage 350 [V]
Battery Efficiency 92 [%]
Battery Capacity 6.5 [Ah]

Rated MG1 Power 42 [kW]
Rated MG2 Power 60 [kW]

Max MG1 / MG2 Speed 12000 [rpm]
Max MG1 / MG2 Torque 200 [Nm]

Rated Engine Power 43 [kW]
Max Engine Torque 102 [Nm]

Engine Displacement Size 1.5 [L]

In this case study we will two performance constraints that are 0-60 mph acceler-

ation time and top speed of the vehicle requirements. 0-60 mph acceleration time of

a vehicle is related to the maximum output torque capability of the architecture and

top speed is related to the maximum speed the architecture can provide at the vehicle

output shaft. We set these two constraints to 12 seconds and 105 mph, respectively.

These values are set considering the true specifications of the Toyota Prius vehicle.

By evaluating each 16 1-PG configurations separately with ρ = 2.6 and FR = 3.95

we obtain the results shown on Figure 5.4. We sort the designs based on the feasibility

and fuel consumptions. Feasible designs are indicated by black, the designs violating

the 0-60 mph time constraint are by blue, the designs violating top speed constraint
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Figure 5.4: Simulation results for all 1-PG modes with ρ = 2.6 and FR = 3.95 using
the vehicle specifications given in Table 5.1

are by green and the designs violating both are by red. As seen on the figure, only

two modes are feasible and among them only one has a reasonable fuel economy. This

design is shown on Figure 5.5. A 0 mpg fuel economy means that the design cannot

sustain the battery charge at the initial SOC level while following the drive cycle.

Even without the constraints, this design achieves the best average fuel consumption

on city and highway cycles with 56.49 mpg. This is the architecture implemented in

the Toyota Prius (Sasaki , 1998).

The detailed results of for the architecture given in Figure 5.5 is shown in Table

5.2.

A more interesting study can be designing a single-mode 2-PG architecture for

the same vehicle. Assuming both PG ratios are the same, i.e., ρ =

2.6

2.6

 2124

possible 2-PG hybrid configurations give 1214 unique Cmode matrices to select from.

As discussed Chapter III, some distinct configurations might give the same kinematic

89



Figure 5.5: Optimal configuration obtained for the vehicle specifications given in Ta-
ble 5.1 by enumerating all 1-PG designs

Table 5.2: Simulation results for the best 1-PG architecture designed for Case Study
1

Given Optimal Optimal Fuel Top 0-60 mph
xs Cmode Cconf Consumption Speed time

ρ = 2.6
FR = 3.95

[
3.6 −2.6
0 1

] [
3.6 −10.27
0 3.95

]
56.49 mpg 109 mph 11.66 sec

matrix for given PG ratios. By evaluating each unique Cmode with FR = 3.95 we

obtain the results shown on Figure 5.6. We performed a similar sorting in this case,

too.

The top 3 designs are shown on Figure 5.7 and detailed simulation results are

given on Table 5.3. As seen on Table 5.3, the Cmode matrices of the top three 2-PG

designs are close to each other. Cmode matrix of the third best design is the same as

the best 1-PG design. We call such designs as “2-PG equivalents” of 1-PG designs.

In other words, the design space of 2-PG designs include both Cmode matrices which

can be realized by 1-PG configurations and “2-PG exclusive” Cmode matrices. Cmode

matrices of top 2 configurations cannot be realized by any 1-PG configuration, for

instance.

The improvement from the best 1-PG design to best 2-PG design in this particular

case is 2.37% in fuel economy. Increasing number of PGs in the architecture provides

the opportunity to improve the fuel economy but it also increases the cost and volume
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Figure 5.6: Simulation results for all 2-PG modes with ρ = [2.6; 2.6] and FR = 3.95
using the vehicle specifications given in Table 5.1

Table 5.3: Simulation results for the top three 2-PG architectures designed for Case
Study 1

Given Optimal Optimal Fuel Top 0-60 mph
xs Cmode Cconf Consumption Speed time

ρ1 = 2.6
ρ2 = 2.6
FR = 3.95

[
3.6 −2.6
−0.38 1.38

] [
3.6 −10.27
−0.38 5.47

]
57.83 mpg 107 mph 11.81 sec

ρ1 = 2.6
ρ2 = 2.6
FR = 3.95

[
3.6 −2.6
0 1.38

] [
3.6 −10.27
0 5.47

]
57.22 mpg 105 mph 9.75 sec

ρ1 = 2.6
ρ2 = 2.6
FR = 3.95

[
3.6 −2.6
0 1

] [
3.6 −10.27
0 3.95

]
56.49 mpg 109 mph 11.66 sec

occupied by the PG system in the powertrain. The decision on the number of PGs

to use should be made including such considerations, as well.

The effect of gear ratios on these optimal results will be discussed in Section 5.4.4.

Also among 2-PG modes, there are some designs which perform better than top
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(a) The best configuration (b) Second best configuration

(c) Third best configuration

Figure 5.7: Top three configurations obtained for the vehicle specifications given in
Table 5.1 by enumerating all 2-PG designs

three modes in terms of fuel economy but violate the top speed and 0-60 mph time

constraints. Such modes are not useful for single-mode architecture designs but can

be useful when designing a multi-mode architecture. For instance, a design that does

not satisfy the 0-60 mph time constraint but achieve a good fuel economy can be used

together with a mode that has a good acceleration performance. A similar argument

can be made for modes that do not satisfy the top speed constraint. They can be used

as low-speed modes in addition to the modes that can achieve high speeds. Examples

of such cases will be given in Chapter VI.

5.4.2 Illustration Case Study 2

In the second case study, we assume a vehicle with similar specifications to the

Chevrolet Volt. The specifications are given in Table 5.4. The differences between

previous case study are the vehicle weight and MG specifications. In this case study

we also assume that the gear ratios are given as ρ = 2.24 and FR = 2.16. We design

single-mode 1-PG and 2-PG architectures for this vehicle in the same way.
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Table 5.4: Vehicle specifications used for Case Study 2

Specification Value

Vehicle Body Mass 1700 [kg]
Tire Radius 0.3 [m]

Aerodynamic Drag Coefficient 0.29
Frontal Area 2 [m2]

Battery Voltage 350 [V]
Battery Efficiency 92 [%]
Battery Capacity 6.5 [Ah]

Rated MG1 Power 55 [kW]
Rated MG2 Power 110 [kW]
Max MG1 Speed 6000 [rpm]
Max MG2 Speed 9500 [rpm]
Max MG1 Torque 200 [Nm]
Max MG2 Torque 370 [Nm]

Rated Engine Power 43 [kW]
Max Engine Torque 102 [Nm]

Engine Displacement Size 1.5 [L]

Evaluating all 1-PG designs by enumeration using the same 0-60mph time and

top speed constraints of 12 seconds and 105 mph, respectively gives only one feasible

design with a fuel economy of 39.23 mpg. Th results of the enumeration is given

in Figure 5.8. The next two designs achieve 51.29 mpg and 50.42 mpg, respectively

but they violate 0-60 mph time constraint. Figure 5.9 shows all three designs and

Table 5.5. The mode shown in 5.14(b) is the hybrid mode used in the Chevrolet Volt.

It is expected for this design to violate the 0-60 mph time constraint because the

Chevrolet Volt was designed with a multi-mode architecture. As mentioned briefly in

the previous section, in a multi-mode architecture not all the modes have to perform

well under all driving conditions. While one mode can be used for acceleration,

another mode can be used to save fuel after the vehicle accelerates. In other words,

multi-mode architectures can benefit from the “division of labor” among the modes.

The powertrain components and gear ratios in the Chevrolet Volt was designed to

accelerate using pure EV modes in the architecture and save fuel in hybrid mode in
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Figure 5.8: Simulation results for all 1-PG modes with ρ = 2.24 and FR = 2.16 using
the vehicle specifications given in Table 5.4

highway speeds. So the mode in 5.14(b) was not designed to accelerate the vehicle.

Table 5.5: Simulation results for the top three 1-PG architectures designed for Case
Study 2

Given Optimal Optimal Fuel Top 0-60 mph
xs Cmode Cconf Consumption Speed time

ρ = 2.24
FR = 2.16

[
0 1

−0.45 1.44

] [
0 2.16

−0.45 3.13

]
39.23 mpg 140 mph 10.65 sec

ρ = 2.24
FR = 2.16

[
1 0

−2.24 3.24

] [
1 0

−2.24 7.00

]
47.35 mpg 139 mph 15.72 sec

ρ = 2.24
FR = 2.16

[
−2.24 3.24

1 0

] [
−2.24 7.00

1 0

]
46.52 mpg 138 mph 16.40 sec

When we perform the same analysis among 2-PG designs we obtain the results

on Figure 5.10. In this case we have more designs satisfying the constraints. Main

reason is that we have more variety of Cmode matrices available among 2-PG modes.

Detailed results of the top three designs, which are shown in Figure 5.11, are given
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(a) The best configuration (b) Second best configuration (violates accel-
eration constraint)

(c) Third best configuration (violates accel-
eration constraint)

Figure 5.9: Top three configurations obtained for the vehicle specifications given in
Table 5.4 by enumerating all 1-PG designs

in Table 5.6.

Table 5.6: Simulation results for the top three 2-PG architectures designed for Case
Study 2

Given Optimal Optimal Fuel Top 0-60 mph
xs Cmode Cconf Consumption Speed time

ρ1 = 2.24
ρ2 = 2.24
FR = 2.16

[
−2.24 3.24
−2.24 0

] [
−2.24 7.00
−2.24 0

]
51.95 mpg 134 mph 9.33 sec

ρ1 = 2.24
ρ2 = 2.24
FR = 2.16

[
−2.24 3.24
3.24 0

] [
−2.24 7.00
3.24 0

]
50.73 mpg 122 mph 7.88 sec

ρ1 = 2.24
ρ2 = 2.24
FR = 2.16

[
0 −2.24

0.69 −0.69

] [
0 −4.84

0.69 −1.49

]
49.92 mpg 117 mph 7.76 sec
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Figure 5.10: Simulation results for all 2-PG modes with ρ = [2.24; 2.24] and FR =
2.16 using the vehicle specifications given in Table 5.4

As seen in the top three designs, addition of a ground node to the designs usually

increases the acceleration performance. Engine torque limit is generally the limiting

factor during acceleration. In the acceleration test, the goal is to obtain maximum

torque value at the vehicle output shaft. Having a ground node in the architecture

allows larger torque output values in the vehicle shaft while staying within the torque

limits of the engine. As will be discussed in Chapter VI grounding engine itself also

increases the acceleration performance since we do not need to account for the engine

torque limits in such as case.

5.4.3 Illustration Case Study 3

In this case study we design a single-mode power-split architecture for military

type of vehicle. The vehicle and powertrain specifications for this case are given

in Table 5.7. Military vehicles are usually tested on special drive cycles which also

include road grade profiles in addition to the speed profiles (Masrur et al., 2012).
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(a) The best configuration (b) Second best configuration

(c) Third best configuration

Figure 5.11: Top three configurations obtained for the vehicle specifications given in
Table 5.4 by enumerating all 2-PG designs

However, for the sake of being consistent with the previous case studies, we will use

the same city and highway cycles when selecting the architectures. Since there are no

power-split type military examples in mass production, we assume some rough sizes

for gear ratios. Let ρ = 2 and FR = 5.

Table 5.7: Vehicle specifications used for Case Study 3

Specification Value

Vehicle Body Mass 2400[kg]
Tire Radius 0.4[m]

Aerodynamic Drag Coefficient 0.45
Frontal Area 3.2[m2]

Battery Voltage 350[V ]
Battery Efficiency 92[%]
Battery Capacity 13.8[Ah]

Rated MG1 / MG2 Power 75[kW ]
Max MG1 / MG2 Torque 300[Nm]

Rated Engine Power 140[kW ]
Max Engine Torque 470 [Nm]

Engine Displacement Size 6.5[L]
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Figure 5.12: Simulation results for all 1-PG modes with ρ = 2 and FR = 5 using the
vehicle specifications given in Table 5.7

Performing the same analysis we did for Case Study 1 and 2 using 1-PG modes

gives the results shown in Figure 5.12. Only two 1-PG architectures are feasible and

have the same fuel economy. This is mainly because we use two identical MGs and

flipping the locations of the motors do not affect the fuel consumption. So the best

1-PG architecture is the same as the best 1-PG architecture for Case Study 1 which

is given in Figure 5.5. The details of these two designs are given in Table 5.8.

Table 5.8: Simulation results for the two feasible 1-PG architectures designed for Case
Study 3

Given Optimal Optimal Fuel Top 0-60 mph
xs Cmode Cconf Consumption Speed time

ρ = 2
FR = 5

[
3 −2
0 1

] [
3 −10
0 5

]
29.60 mpg 130 mph 9.40 sec

ρ = 2
FR = 5

[
0 1
3 −2

] [
0 5
3 −10

]
29.60 mpg 130 mph 9.40 sec
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Figure 5.13: Simulation results for all 2-PG modes with ρ = [2; 2] and FR = 5 using
the vehicle specifications given in Table 5.7

Enumeration over 2-PG designs gives the results in Figure 5.13. Similar to the

1-PG modes, since we use identical MGs, the designs appear in pairs having the same

fuel economy and performance. Considering only one of the designs from each pair,

top three designs are shown in Figure 5.14. Also the deatiled results for these three

designs are given in Table 5.9.

Note that these architectures should be taken as reference to design an architecture

for a military vehicle. As mentioned earlier, military vehicles should be tested on

special drive cycles and a larger variety of mission scenarios. There should also

be additional performance criteria from the architecture such as terrain capability,

gradeability etc. The purpose here is to show that for different applications, different

architectures need to be designed. One architecture designed for one application does

not necessarily be optimal for another application. Also another observation to be

made is the improvement in fuel economy from 1-PG designs to 2-PG designs.

In this chapter, we assumed some given gear ratios and powertrain component
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(a) The best configuration (b) Second best configuration

(c) Third best configuration

Figure 5.14: Top three configurations obtained for the vehicle specifications given in
Table 5.7 by enumerating all 2-PG designs

Table 5.9: Simulation results for the top three 2-PG architectures designed for Case
Study 3

Given Optimal Optimal Fuel Top 0-60 mph
xs Cmode Cconf Consumption Speed time

ρ1 = 2
ρ2 = 2
FR = 5

[
0 1.5

1.5 −0.75

] [
0 7.5

1.5 −3.75

]
34.00 mpg 112 mph 8.89 sec

ρ1 = 2
ρ2 = 2
FR = 5

[
0 1

4.5 −2

] [
0 5

4.5 −10

]
33.94 mpg 113 mph 11.12 sec

ρ1 = 2
ρ2 = 2
FR = 5

[
0 −2
3 −2

] [
0 −10
3 −10

]
33.86 mpg 111 mph 7.74 sec

specifications before the design process. Powertrain components may be sized con-

sidering the power requirements from the architecture but gear ratio sizes are not

available all the time, as it is the in the present case study. In the next section,

we will show the effect of gear ratios on the fuel consumption with a parametric
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study. Also military vehicles should be designed considering different loading scenar-

ios. They might carry payloads as heavy as the vehicle weight. The effect of vehicle

weight will also be discussed in the next section.

5.4.4 Discussion

We showed the single-mode architecture design for three case studies assuming

some gear ratios. We showed that different vehicle classes and powertrain component

sizes require different architectures. We can also take a look at the effect of the gear

ratio selections on the fuel economy with a parametric study. In order to show the

significance of these values we choose the best 2-PG designed obtained in Case Study

3. Three parameters we can vary are ρ1, ρ2, FR. We vary only one parameter at a

time. Figure 5.15 shows the effect of all three parameters on fuel economy, top speed

and 0-60 mph acceleration time. The horizontal axis is the normalized parameter

value where “1” represents the original values we used in the previous section which

were ρ1 = 2, ρ2 = 2 and FR = 5. From the figure, we see that all these param-

eters have a significant impact on both the fuel economy and vehicle performance.

Although our initial selection of gear ratios provide good fuel economy, there is some

potential to further improve the fuel economy (for example, by using a larger ρ1). An

important point to be noted is that optimal gear ratios vary from one configuration

to another. In that sense, evaluating all configurations with the same gear ratios

is not a fair comparison unless the gear ratios are fixed by some tight constraints.

Optimization of gear ratios can be performed for a particular configuration using a

gradient-based algorithm such as Sequential Quadratic Programming. However, in

order to make a fair comparison, optimizing the gear ratios for all configurations is

not computationally tractable for systems with more than one PG. Chapter VII pro-

poses an alternative formulation in order to make the configuration and gear ratio

design decisions simultaneously.
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(a) Effect of gear ratios on performance constraints

(b) Effect of gear ratios on fuel economy

Figure 5.15: Effects of the parameters on the simulation results obtained for the archi-
tecture in Figure 5.14(a), where“1” represents the original values ρ1 = 2,
ρ2 = 2 and FR = 5.

However, such an approach require a different solution process that will be dis-

cussed in Chapter VII.

5.5 Summary

In this chapter we formulated the single-mode HEV architecture design problem

with fixed component sizes. We presented a general vehicle model which can be used

to evaluate the fuel consumption and performance of both single-mode and multi-

mode architectures. The same models will also be used in Chapters VI and VII. Also
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a review of the supervisory control algorithms was given and ECMS was selected

among them because of the computational efficiency. We described the advantages

and limitations of this control strategy. Given the vehicle model and control strategy,

we presented three case studies with different parameters and selected 1 and 2-PG

architectures for each vehicle using enumeration.

In order to identify the key parameters, we performed a parametric study on gear

ratios and final drive ratio. Since they have a significant impact on the fuel con-

sumption, a better design study should include them as design variables. However,

adding these design variables to the problem poses new challenges since the enumer-

ation of all possible design will not be possible any more. Chapter VII proposes a

decomposition-based formulation in order to design the configuration and component

sizes simultaneously.
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CHAPTER VI

Multi-mode Hybrid Electric Vehicle Architecture

Design with Fixed Sizing

In Chapter III we presented a modified bond graph representation for HEV ar-

chitectures and described a systematic process to generate all feasible configurations,

i.e., driving modes, for any given set powertrain components connected through any

number of planetary gears (PGs). Chapter IV described the general mathematical

formulation of HEV architecture design problems for different scenarios utilizing the

feasible driving modes we generated. In Chapter V we solved the architecture de-

sign problem for single-mode architectures for given powertrain component sizes and

gear ratio selections. In this chapter we will solve the multi-mode architecture design

problem with the same assumptions on the component sizes and gear ratios.

The main motivation to design multi-mode architectures is to benefit from the

a variety of “specialized” modes each of which operate efficiently under different

driving conditions. For instance, a mode that is designed to operate at highway

driving conditions does not have to operate well for city driving conditions. However,

it generally operates better than a mode designed considering all driving conditions.

The design of multiple modes in the same architecture poses new challenges. The

difference between single-mode and multi-mode architecture mainly comes from the

number of possible design alternatives. While the number of alternatives is small
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enough to allow for enumeration over all possible designs for a single-mode architec-

ture design study, the same explicit enumeration cannot be applied to multi-mode

architectures since the number of design alternatives is much larger. In this chapter

we propose a different search method utilizing implicit enumeration. Additionally,

when starting from the driving modes to create architecture which can be considered

as a bottom-up approach, we need to consider the how to combine the modes in

the same architecture. The connection differences between the modes to combine,

require clutches that allow switching from one configuration to another. The modes

that have very different connections require many clutches in order to be combined

together. We penalize such cases by defining a complexity constraint for the design

of multi-mode architectures.

6.1 Problem Formulation

A mathematical formulation for the general architecture design problem including

component sizing as design decisions was given in Chapter IV. When the powertrain

component sizes are given, this general formulation is reduced to a simpler form as

follows:

min fcons(xc(Nmode), ψ
∗(t,xc(Nmode),p))

w.r.t. {xc(Nmode)}

s.t. gperf (xc(Nmode, ψ
∗(t,xc(Nmode),p)),p) ≤ 0

gcomplex(xc(Nmode)) ≤ 0

Nmode ∈ {1, 2, 3, 4, ...}

xc(Nmode) is feasible

(6.1)

where fcons is the fuel consumption calculated using the optimal control policy ψ∗ in a

nested formulation. We gave an overview of the control strategies developed for HEV
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powertrains in Chapter V. Also, gperf is the vector of vehicle performance constraints

such as acceleration time, top speed, gradeability etc.; xc is the vector representing

the configuration of all modes in the architecture and the size of this vector depends

on the number of modes, Nmode, in the architecture. The configurations must be

selected from the feasible set of driving modes generated earlier. The given compo-

nent sizes including the gear ratios and other vehicle parameters are represented by

the parameter vector p. Additionally, in the multi-mode architecture design, gcomp

denotes the complexity constraint which is defined in Section 6.2.

At least one of the modes in a multi-mode HEV architecture must be a hybrid

mode in order to be able to charge the battery to the initial state of charge (SOC)

level at the end of the drive cycle and the other modes can be either hybrid or pure

electric modes. Therefore, the number of possible multi-mode architecture design

alternatives is M ×MNmode−1 where M denotes the number of feasible configurations

to select from for a given number of PGs and a set of powertrain components. This

number is much larger compared to the single-mode architecture design possibilities

and explicit enumeration cannot be used to solve the problem in given in Equation

(6.1). Section 6.3 describes the solution strategy we propose in this dissertation.

6.2 Architecture Complexity

A multi-mode architecture is created by combining two or more driving modes

under a single arrangement of its components. Having multiple modes in the archi-

tecture provides flexibility to switch component connectivity during vehicle operation

resulting in better performance and fuel efficiency under different driving conditions.

An example for a commercially available architecture with multiple modes was given

in Figure 3.1(a). Switching among the modes is achieved by engaging or disengaging

clutches. A change in connectivity among the driving modes in the architecture re-

quires one or more clutches, and a systematic way to evaluate the required clutches
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Figure 6.1: Example of a modified bond graph representation and its connectivity
table

is a crucial element in the architecture design process. Having too many clutches in

the architecture is not desired since it would result in increased complexity in clutch

control, efficiency losses and cost. So, the number of clutches in an architecture can

be used as a measure of complexity of the architecture. In this section, we adopt

this measure of complexity and we describe the process to calculate the number of

clutches needed to combine any given two modes. We then generalize the process

to any Nmode modes. This complexity measure will be used as an additional design

criterion in the proposed architecture design framework.

We start by introducing a binary connectivity table representing the connections

among external components and PG nodes that is extracted from our modified bond

graph representation. An example is given in Figure 6.1 that shows both the modified

bond graph and connectivity table of the 1-PG Toyota Prius mode. For a general

case, say n-PG mode with Jext number of external components, the size of the con-

nectivity table is (Jext+3n)×3n where the upper Jext rows correspond to the external

components and the remaining 3n rows and columns correspond to the sun, ring and

carrier gears of each PG. Given a modified bond graph representing a driving mode,
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a table entry will have “1” when the corresponding two components or gears are con-

nected and “0” otherwise. Also the connectivity table might have multiple “1”s in

a row when an external component is connected a gear of a PG set and that gear is

connected to another gear of a different PG set.

We explain the process of extracting this information from the modified bond

graph using a color analogy. The weights around a 0-junction represents the kinematic

relationships among sun, ring and carrier gears and every bond around 0-junction can

be assigned to a different color representing each of these respective gears. In Figure

6.1, the edge weights representing sun, ring and carrier gear are colored by red,

green and blue, respectively. As seen in this figure, since a 1-junction keep the same

kinematic relationship, i.e. the speeds around the 1-junction are the same, the same

coloring is kept around a 1-junction. When this process is repeated for all bonds we

can see the connection information of each external component by checking the color

of the bond connecting an external component to its corresponding external junction.

In case of a 2-PG mode, we need 6 colors; for 3-PG modes we need 9 colors and so

on. When multiple 0-junctions impose different colors on a bond, i.e. when colors

are mixed on a bond, it means this bond is connected to multiple PGs. Such color

mixtures give information on the internal connections among PGs.

Once the connectivity table is extracted from the modified bond graph, one can

calculate the number of clutches needed by comparing the connectivity tables of the

driving modes to be combined. Basically adding or removing a connection requires

one clutch and changing a connection of an external component from one gear to

another requires two. First let’s look at the case where we have two modes to be

combined. Figure 6.2 shows a simple example that compares connectivity tables of

two 1-PG modes and identify the clutches required. In the figure, Mode B has an

additional ground connected to the carrier that doesn’t exist in Mode A. Adding this

ground connection requires one clutch at the carrier gear. Also MG2 is connected to
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Figure 6.2: Two sample connectivity tables and the corresponding clutching solution
indicated by red boxes

the ring gear in Mode A and connected to carrier gear in Mode B. Disconnecting MG2

from ring requires a clutch at the ring and connecting it to the carrier requires another

clutch at the carrier gear. This process of comparing the tables can be automated.

When MGs used in the architecture are identical an extra step is necessary. In

such a case, since the numbering of the MGs is arbitrary, multiple clutching solutions

are possible. Figure 6.3 shows an example for a 2-PG system with an engine, two

MGs and a ground. By swapping the definitions of MGs, a simpler and more preferred

clutching solution can be found as shown on Figure 6.3(d). In terms of connectivity

table, swapping the rows corresponding to the MGs will represent this solution as

shown on Figure 6.4.

A similar idea applies to the case when the PGs used in the system are identical,

i.e. have the same gear ratio. In that case, the rows and columns corresponding to

the PGs should be swapped to check if a simpler clutching solution is possible.

In the general case with Nmode > 2 number of modes to be combined, the process

described above can be applied sequentially. The connectivity tables of the modes

can be compared pairwise and the union of the clutches found gives the final clutching

109



(a) Example Mode 1 (b) Example Mode 2

(c) Clutching Solution 1 (d) Clutching Solution 2

Figure 6.3: Multiple clutching solutions exist when MG1 and MG2 are identical

Figure 6.4: Connectivity tables for the example modes in Figure 6.3. The minimum
number of clutches required is 3, when the two MGs are identical.
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Figure 6.5: Three sample connectivity tables and the corresponding clutching solution
indicated by red boxes

solution. Figure 6.5 shows an example case with 3 modes. In order to shift from Mode

A to Mode B, three clutches are required: the first one is between MG2 and ring gear,

the second one is between MG2 and carrier gear, and the third one is between ground

and carrier gear. In order to shift from Mode B to Mode C, two clutches are required:

the first one is between ground and carrier gear, and the second one is between engine

and carrier gear. When take the union these clutches, we obtain four clutches since

we count the clutch between ground and carrier gear twice. Note that this solution is

independent from the order of the modes. If we follow the same steps switching from

Mode A to Mode C and from Mode C to Mode B, we obtain the same set of clutches,

for instance.

Finally, given the definition of architecture complexity measured by the number

of clutches in the system and calculated by the process described above, a complexity

design characteristic for an architecture can be formally defined. This characteristic

should be minimized for each architecture, i.e., the simplest clutching solution should

be selected and it should be bounded above in the architecture design optimization

framework to eliminate designs beyond the desired complexity.
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6.3 Architecture Search

Chapter III described an enumeration process to generate all possible driving

modes given the external components. If the designs of interest are single-mode

architectures only and all other parameters such as component sizes and gear ratios are

fixed, all architecture alternatives can be evaluated one by one without any need for a

sophisticated search method. However, in the case of multiple modes the architecture

alternatives increase exponentially. For instance, the case reported in Chapter III had

3420 possible modes. A 2-mode hybrid architecture has approximately 7.2 million

alternatives making explicit enumeration intractable. As a result, a search method

capable of identifying promising multi-mode architectures is necessary.

This section describes a multi-mode architecture design framework shown in Fig-

ure 6.6. First, a general vehicle model is described. Next, power management strate-

gies available in the literature for distributing the power demand among engine and

MGs are explained. Finally, a search method to explore the design space of multi-

mode architectures is shown.

6.3.1 Search Algorithm

For an n-mode architecture design, the goal of the search algorithm is to maximize

the fuel economy by selecting the feasible n modes from the generated design space.

Feasibility of a mode selection is defined by three criteria:

(i) At least one of the modes must satisfy the speed and torque requirements to

follow the drive cycle at all time steps.

(ii) The architecture must have a charge-sustaining capability.

(iii) The complexity of the architecture must be less than a specified threshold.

The first criterion is a very conservative requirement. If the architecture cannot

supply the demand even at a single time step, it is considered infeasible. The second
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Figure 6.6: Flowchart of the dual-mode architecture design process

criterion simply constrains pure EV architectures: At least one engine is required in

order to satisfy the charge-sustaining requirement as described in the previous section.

This requirement can be relaxed if the designs of interest are pure EV architectures.

The last criterion puts an upper bound on the number of clutches required to combine

the modes. It is a practicality constraint as a large number of clutches in a system

imposes additional complexity in the mode switching mechanism and cost.

The method proposed to search the design space of n modes is an application of the

so-called taxi cab method. In this method, given an initial point in an n-dimensional

space represented by n basis vectors, the next point is searched along one basis vector

per iteration. The basis vector representing the search direction is switched at every

iteration. In most engineering problems, the search in a direction starts from a point

and continues until the objective stops improving. However, in the case of searching

for modes, the search has to be performed over all elements in a direction since the

modes are not ordered in a meaningful way.
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More specifically, the search for an n-mode architecture starts with an initial set

of n modes, M0 = {M1,M2, ...,Mn−1,Mn}. In the first iteration, keeping the first

n − 1 modes fixed, an nth mode is searched among all feasible modes to maximize

the fuel economy. When the search for the nth mode is complete and the mode set

is updated as M1, a search for (n − 1)th mode starts keeping all other modes fixed.

Since the mode set M1 is among the alternatives evaluated in this iteration, the fuel

economy has to improve or remain the same as in the previous iteration. The search

algorithm terminates when the same set of modes is selected (i.e., no improvement in

the fuel economy) in two consecutive iterations. Since there is a finite number of mode

selections, the algorithm is guaranteed to converge in a finite number of iterations.

The findings of the method depend on the initial mode selection. So, different initial

points should be tested to get reliable results. For demonstration purpose only, Figure

6.7 visually depicts the iterations of the search algorithm for a fictitious case with two

modes with 9 possible modes. In the figure, the search starts with the mode selection

M0 = {8, 1} and searches in the direction of the second mode. At the end of the first

iteration it finds M1 = {8, 7} and starting from that point, it searches in the direction

of the first mode. Second iteration finds M2 = {3, 7}. Searching the direction of the

second mode again, gives M3 = {3, 4}. Searching in the direction of the first mode

does not improve the result giving the same mode selection M4 = {3, 4} and the

search terminates.

6.4 Case Study Illustration Results

This section gives the architecture design results for three case studies in order to

demonstrate the capability of the process described in Section 6.3. For demonstration,

we use the same three applications we discussed in Chapter V.

In addition to these specifications, the controller initial battery SOC is set to 60%

and SOC is allowed to vary between 40% and 80%. In the multi-mode HEV control,
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Figure 6.7: Iterations of the search algorithm for a fictitious problem starting with
M0 = {8, 1} and converging to M4 = {3, 4} in four iterations. Minimum
of each iteration is denoted by a square

Table 6.1: Architecture specifications for all three case studies

Specification Value

Number of PGs 1 or 2
External components 1 Engine

2 MGs
Vehicle output

1 (optional) ground
Mode type Hybrid or pure-EV

Number of modes 2
Max. number of clutches 2

the mode shifting is managed using a shifting penalty as described in Chapter V. The

mode shifting penalty is experimentally tuned to 0.1 in order to obtain a reasonable

mode shifting strategy and it is fixed for all architecture alternatives. Clutch and

gear losses are not included in the model.

The objective of the case studies is to maximize the fuel economy with vehicle

performance constraints in addition to the complexity as described in the previous
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(a) Ring mode (b) Carrier mode

(c) Sun mode

Figure 6.8: Initial modes for 1-PG architecture design studies

section. The design variables are the selections of feasible modes with 1 or 2 PGs

connecting an engine, 2 MGs, a vehicle output and an optional ground. Table 6.1

summarizes the specifications of the architecture alternatives considered. The design

process described in Section 6.3 requires initial modes to start the search. We assume

that the output shaft remains fixed, i.e., we do not allow any clutch to be connected

to the vehicle output shaft. In order to search different types of modes where the

vehicle output shaft is connected to different gears of the PG sets, we choose three

initial designs for both 1-PG and 2-PG design studies. The same initial modes are

used for three case studies and they are given on Figures 6.8 and 6.9.

For each case study a different set of fixed gear ratios are used and we assume

that these values are given beforehand.
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(a) Ring mode (b) Carrier mode

(c) Sun mode

Figure 6.9: Initial modes for 2-PG architecture design studies

6.5 Case Study 1

The vehicle and powertrain component specifications used for this case study is

given in Tabletbl:ch6case1specs.

Table 6.2: Vehicle specifications used for Case Study 1

Specification Value

Vehicle Body Mass 1400 [kg]
Tire Radius 0.3 [m]

Aerodynamic Drag Coefficient 0.29
Frontal Area 2 [m2]

Battery Voltage 350 [V]
Battery Efficiency 92 [%]
Battery Capacity 6.5 [Ah]

Rated MG1 Power 42 [kW]
Rated MG2 Power 60 [kW]

Max MG1 / MG2 Speed 12000 [rpm]
Max MG1 / MG2 Torque 200 [Nm]

Rated Engine Power 43 [kW]
Max Engine Torque 102 [Nm]

Engine Displacement Size 1.5 [L]
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(a) Hybrid Mode (b) Pure Electric Mode

(c) Combined Architecture

Figure 6.10: Best 1-PG architecture found for Case Study 1

For the 1-PG architecture design study we assume that the gear ratios are given as

ρ = 2.6 and FR = 3.95. Starting from the three initial designs given in Figure 6.8 we

obtain the 3 different dual-mode architectures with fuel economies of 58.13 mpg, 57.69

mpg, and 52.64 mpg. The design with the best fuel economy is obtained with starting

from the mode shown in Figure 6.8(a) and the best architecture obtained is shown

in Figure 6.10. As it is seen the initial hybrid mode and the hybrid mode in the best

design are the same. Since there are only 16 hybrid configurations and 36 pure electric

configurations, there are not many good options to change the initial design. Recall

from Chapter V that this mode is the best configuration selected for the single-mode

architecture design for this case study. This is also the mode implemented in the

Toyota Prius. The detailed results for this multi-mode architecture is given in Table

6.3. The search method finds an additional pure electric mode that improves the single

mode architecture capabilities. For instance, by adding this pure electric mode to the

single-mode architecture of Chapter V, the fuel economy improved from 57.83 mpg to
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(a) Hybrid Mode (b) Pure Electric Mode

(c) Combined Architecture

Figure 6.11: Best 2-PG architecture found for Case Study 1

59.50 mpg. A similar conclusion was made by Zhang et al. (2012). Additionally, the

0-60 mph acceleration time dropped from 11.81 seconds to 7.6 seconds in this case.

When we perform the same search for 2-PG designs using the initial modes given

in Figure 6.9 we converge to another three different designs with fuel consumptions

of 60.81 mpg, 58.85 mpg and 52.63 mpg, respectively. We select the best one which

was obtained starting from the design in Figure 6.9(a). No the difference between

initial and final hybrid modes. It shows that the method can modify the initial design

to improve the results. However, this capability is problem dependent. A counter

example is given in Case Study 2. The detailed results for this architecture is given

in Table 6.3.

The improvement in all three specifications going from 1-PG to 2-PG multi-mode

design can be observed on the table. These results might further be improved by

testing multiple initial points.
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Table 6.3: Simulation results of the selected designs for Case Study 1

Given Optimal Fuel Top 0-60 mph
xs Design Consumption Speed time

ρ = 2.6
FR = 3.95

Figure 6.10 58.13 mpg 109 mph 7.6 sec

ρ1 = 2.6
ρ2 = 2.6
FR = 3.95

Figure 6.11 60.81 mpg 127 mph 6.8 sec

6.6 Case Study 2

We test the design framework in another case study with the following specifica-

tions:

Table 6.4: Vehicle specifications used for Case Study 2

Specification Value

Vehicle Body Mass 1700 [kg]
Tire Radius 0.3 [m]

Aerodynamic Drag Coefficient 0.29
Frontal Area 2 [m2]

Battery Voltage 350 [V]
Battery Efficiency 92 [%]
Battery Capacity 6.5 [Ah]

Rated MG1 Power 55 [kW]
Rated MG2 Power 110 [kW]
Max MG1 Speed 6000 [rpm]
Max MG2 Speed 9500 [rpm]
Max MG1 Torque 200 [Nm]
Max MG2 Torque 370 [Nm]

Rated Engine Power 43 [kW]
Max Engine Torque 102 [Nm]

Engine Displacement Size 1.5 [L]

Using the same 1-PG initial designs as we used in Case Study 1, we obtain three

architectures with the fuel economies of 46.57 mpg, 48.35 mpg and 40.39 mpg, respec-

tively. The design with the best fuel economy is shown in Figure 6.10. This design

120



(a) Hybrid Mode (b) Pure Electric Mode

(c) Combined Architecture

Figure 6.12: Best 1-PG architecture found for Case Study 2

consists of two modes of the Chevrolet Volt architecture. Recall that Chevrolet Volt

has one more pure electric mode and one more series hybrid mode. Also comparing

this result with the single-mode architecture results, we can see that the hybrid mode

we have found for the multi-mode architecture appeared to be an infeasible design due

to the 0-60 mph time constraint. However, in this multi-mode architecture, the addi-

tional pure electric mode is used to accelerate vehicle and the hybrid mode becomes

useful to improve the fuel economy.

Similarly when the same design problem is solved for 2-PG multi-mode architec-

tures, the three architectures we converge have the fuel economy of 46.57 mpg, 48.35

mpg, 40.50 mpg. The best design is obtained by starting from the design in Figure

6.9(b) and depicted in Figure 6.13. As it is seen in the figure, the hybrid mode is

the same as the initial hybrid mode selected. In this problem, the performance con-

straints prevent the method to modify the initial design and converges to the same
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Table 6.5: Simulation results of the selected designs for Case Study 2

Given Optimal Fuel Top 0-60 mph
xs Design Consumption Speed time

ρ = 2.24
FR = 2.16

Figure 6.12 48.35 mpg 139 mph 7.67 sec

ρ1 = 2.24
ρ2 = 2.24
FR = 2.16

Figure 6.13 48.35 mpg 139 mph 7.67 sec

hybrid mode with an additional pure EV mode. This design is the 2-PG equivalent

of the design shown in Figure 6.12. The performance results for this design is given

in Table 6.5.

As it was pointed in the previous section, these results can be improved by testing

more initial points.

6.7 Case Study 3

The specifications of the vehicle used for this case study is given on Table 6.6.

Table 6.6: Vehicle specifications used for Case Study 3

Specification Value

Vehicle Body Mass 2400[kg]
Tire Radius 0.4[m]

Aerodynamic Drag Coefficient 0.45
Frontal Area 3.2[m2]

Battery Voltage 350[V ]
Battery Efficiency 92[%]
Battery Capacity 13.8[Ah]

Rated MG1 / MG2 Power 75[kW ]
Max MG1 / MG2 Torque 300[Nm]

Rated Engine Power 140[kW ]
Max Engine Torque 470 [Nm]

Engine Displacement Size 6.5[L]

Following the same methodology used for Case Study 1 and 2, when we solve
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(a) Hybrid Mode (b) Pure Electric Mode

(c) Combined Architecture

Figure 6.13: Best 2-PG architecture found for Case Study 2

the problem for 1-PG configurations starting from the same initial points as before,

only the first test starting from the configuration shown in Figure 6.9(a) converges

to an architecture satisfying the performance constraints. This architecture with fuel

economy of 34.2 mpg is shown in Figure 6.10. Note that this is the same design we

found for Case Study 1. Recall from Chapter V that the same case study had only

two feasible hybrid configurations. So difficulty in finding feasible designs in this case

study was an expected outcome.

Table 6.7: Simulation results of the selected designs for Case Study 3

Given Optimal Fuel Top 0-60 mph
xs Design Consumption Speed time

ρ = 2
FR = 5

Figure 6.10 34.2 mpg 130 mph 7.5 sec

ρ1 = 2
ρ2 = 2
FR = 5

Figure 6.14 35.1 mpg 111 mph 11.52 sec
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(a) Hybrid Mode (b) Pure Electric Mode

(c) Combined Architecture

Figure 6.14: Best 2-PG architecture found for Case Study 3

When we solve the same problem for 2-PG configurations where we have more

alternative configurations, three architectures we find starting from the initial config-

urations given in Figure 6.9, have fuel economies of 34.2 mpg, 35.1 mpg, 33.5 mpg.

The best design is given in Figure 6.14. The results for the best 1-PG and 2-PG

architecture designs are also shown in Table 6.7.

The main challenge with this type architecture design problems is the combina-

torial nature. In order to provide more efficient solutions to this type of problems,

a continuous representation of the problem needs to be found. Chapter VII includes

the gear ratio design to the problem and proposes a continuous problem formulation

that can be addressed by the available optimization algorithms in a more efficient

way.
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6.8 Summary

In this chapter, we discussed the design of multi-mode HEV architectures with

given component sizes. We created multi-mode architectures by combining two or

more modes using the configurations we generated in Chapter III. When combining

modes, in order to prevent the use of a large number of clutches we defined an

architecture complexity design characteristic measured by the minimum number of

clutches needed to combine the modes. We showed how to calculate this complexity

measure with examples. In the design process we constrained the complexity to filter

the designs with many clutches. As opposed to the single-mode design, the number of

architecture alternatives was large enough to make the enumeration computationally

intractable. The results from the search method we introduced highly depends on

the initial mode selection and it needs to be tested with many initial designs in order

to find the global optimum. However, if the purpose is to improve a given design the

method was shown to be useful.

We showed case studies designing dual-mode architectures. However, the methods

described in Sections 6.3 and 6.2 are general enough to account for larger number of

modes as well.

The same comment about fixed component sizing that we made for single-mode

architecture design can be made here, too. There is some more potential to improve

the results by making configuration and component sizing design decisions simulta-

neously. However, such an approach requires a new methodology. Chapter VII gives

a mathematical formulation and proposes a partitioning and coordination strategy to

solve this combined problem.
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CHAPTER VII

Simultaneous Architecture and Sizing Design

In Chapters V and VI, the HEV architecture design problems for fixed gear ratios

were introduced and solution strategies were provided using the representation and

generation framework proposed in Chapter III. In this chapter we extend the problem

to the case where component design, specifically gear ratios, are also part of the design

problem definition. We formulate the combined configuration and component design

problem and propose a decomposition-based solution approach for this combined

problem.

When there are no tight constraints on the values of gear ratios and no good

values are known for them to treat gear ratios as parameters, the gear ratios must

be treated as decisions (design variables) in the problem formulation. Solving the

configuration and gear ratio design problems separately as proposed by Liu (2007)

ignores the coupling between them. Gear ratio selection and configuration decisions

are coupled and have significant impact on the fuel economy. Solving the gear ratio

design as a nested problem within the configuration design (for example, through a

parametric optimization for each configuration) is only possible when the number of

configurations is small such as 1-PG configurations. When the designs of interest are

2-PG and 3-PG systems, a new methodology to handle configuration and gear ratio

design simultaneously is necessary.
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7.1 Problem Formulation

In Chapter IV we provided an overview of the general HEV powertrain architecture

design problem under different scenarios. A simplified problem when the component

sizes and gear ratio selections are given was discussed in Chapters V and VI. In

this section we revisit the general formulation and propose a solution strategy to the

problem combining the configuration and component design decisions denoted by xc

and xs, respectively. The general mathematical formulation can be given as follows:

min fcons(xc(Nmode),xs, ψ
∗(t,xc(Nmode),xs,p))

w.r.t. {xc(Nmode), xs}

s.t. gperf (xc(Nmode),xs, ψ
∗(t,xc(Nmode),xs,p)) ≤ 0

gcomplex(xc(Nmode)) ≤ 0

lb ≤ xs ≤ ub

Nmode ∈ {1, 2, 3, 4, ...}

xc is feasible

(7.1)

where fcons is the fuel consumption, gperf is the vector of vehicle performance con-

straints and gcomplex is the architecture complexity function defined in Chapter VI

which applies only to multi-mode architectures. Note that in xs only PG ratios ρ

and final ratio FR are considered as sizing variables in this study. Further, xc is a

function of Nmode (modes in the architecture). Also p denotes the vehicle and other

powertrain parameters which are assumed to be given a priori. This formulation

solves the HEV supervisory control problem in a nested formulation. Therefore ψ∗

denotes the optimal control strategy obtained by the nested control problem solution

for a given design. A review of available control strategies to compute ψ∗ was given

Chapter V.

Assume that xc is represented by a modified bond graph, i.e., a vector consisting
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of elements of the adjacency matrix, junction types, causalities and bond weights.

One way to approach this problem is to define elements of xc as integer design vari-

ables together with xs as continuous design variables and solve the problem using a

derivative-free algorithm. However, not all modified bond graphs correspond to feasi-

ble HEV configurations. This is the reason for including the feasibility constraints on

xc in the formulation given by Equation (7.1). These constraints were described in

detail in Chapter III. The feasibility constraints define not only a small design space

but also a very dispersed (disjoint) one. In such a case, derivative-free algorithms

have difficulty even finding feasible designs, let alone optimizing. Therefore, they

cannot be used with this formulation.

Another way to approach the problem given in Equation (7.1) is to enumerate the

feasible xc and solve the optimization problem with respect to xs for all feasible xc.

This approach is possible only when the number of feasible xc is small. For instance

for 1-PG designs, the number of feasible configurations is 16 and enumeration is

possible in this case. However, for 2-PG systems the number of feasible configurations

becomes 2244 and even larger for more PGs. Since fuel consumption calculations that

require solving a nested control problem are computationally expensive, optimizing

each configuration one by one with respect to xs is not computationally tractable.

An alternative approach is to use another representation that consists of contin-

uous variables combining both configuration and gear ratios as proposed by Cheong

et al. (2011). In Chapters III and V the use of a 2 × 2 kinematic matrix Cmode was

described in detail. This kinematic matrix used in vehicle simulations depends on

both configuration and PG ratios but is independent of the final drive ratio. In order
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to include the final drive ratio as well, we define the following new matrix:

Cconf (xc,xs) =


Cmode ·

1 0

0 FR

 if hybrid mode

Cmode · 1/FR if pure electric mode,

(7.2)

Here Cconf is a function of xc and xs where xs =

 ρ

FR

. The elements of Cconf could

be optimized to maximize fuel economy subject to vehicle performance constraints.

However, contrary to the case discussed in the study by Cheong et al. (2011) not

every Cconf can be realized as a feasible configuration in real design. For instance,

Figure 7.1 shows the projections of the 4-dimensional feasible design space of Cconf

which can be obtained by 16 1-PG configurations.

As seen in Figure 7.1, there are many disjoint feasible regions in the design

space. When designing this Cconf matrix, such feasibility constraints must be taken

into account. Expressing the feasibility constraints on Cconf becomes more compli-

cated as the number of PGs in the system increases. In what follows, we propose a

decomposition-based strategy to design Cconf taking these feasibility constraints into

account. The next section elaborates on this decomposition-based strategy.

7.2 Decomposition-Based Solution Strategy

Decomposition-based design optimization methods have been developed for prob-

lems consisting of several subproblems interacting with each other. Solving the overall

problem all together as a single problem is referred to as All-In-One (AIO) approach.

When AIO is possible, then it should be preferred. However, in large scale problems

or problems already decomposed into subproblems each of which can come from dif-

ferent disciplines, a single optimization method may not be capable of solving the
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(a) C11 vs C12 (or C21 vs C22)

(b) C11 vs C21 (or C12 vs C22)

Figure 7.1: Projection of the 4D feasible region to 2D planes

overall problem. In such cases a coordination strategy accounting for the interactions

among subsystems is necessary. Partitioning and coordination techniques to for such

systems have been studied in Multidisciplinary Design Optimization (MDO) area.

Martins and Lambe (2013) give a through review of recent available MDO methods.

As an MDO strategy, Analytical Target Cascading (ATC) was introduced by Kim

(2001) and Michelena et al. (2003). ATC translates the system-level targets to the

subsystem specifications preserving consistency at the system level. The theoreti-
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cal convergence of this method was shown by Michelena et al. (2003) when all the

subproblems are convex. Augmented Lagrangian penalty function was applied by

Tosserams et al. (2006) to extend its applicability to a larger variety of problems.

Available implementations of ATC to problems from several disciplines are given by

Kang et al. (2012); Li et al. (2008); Allison et al. (2006); Choudhary et al. (2005);

Kokkolaras et al. (2004); Blouin et al. (2004); Kim et al. (2003a,b, 2002).

Since an AIO formulation of the problem given in Equation (7.1) is difficult to

solve, we propose to decompose the problem into two levels using the ATC framework.

The system-level problem optimizes both configuration and sizing using the Cconf as

the representation without considering feasibility. The system-level objectives are fuel

consumption and (desirable) subsystem responses while the constraints are the vehicle

performance requirements. The optimized Cconf values are sent to the subsystem as

targets to be met. The subsystem tries to achieve these targets by designing the gear

ratios for each feasible configuration and sends to the upper level the Cconf response

matching the targets as close as possible. The process continues until subsystem

responses system-determined targets match within a tolerance error.

An important point that needs to be noted is that optimizing the gear ratios in

each feasible configuration one by one for minimum fuel consumption is computa-

tionally expensive and generally not feasible for systems having more than 1 PG.

However, same optimization is possible if the objective is to meet the system level

Cconf targets because the computational cost of calculating the Cconf given a configu-

ration and gear ratios is much smaller compared to the fuel consumption calculations.

This is what makes the decomposition-based approach attractive.

We apply this formulation to a single-mode architecture design and a multi-mode

architecture design separately. Sections 7.2.1 and 7.2.2 give the mathematical formu-

lations for the decomposed problems for these two cases.
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Figure 7.2: Decomposition of combined single-mode architecture and gear ratio de-
sign

7.2.1 Single-mode HEV Architecture Design Problem

The general problem formulation given in Equation (7.1) is reformulated in two

levels for a single mode architecture design using Cconf as the representation of the

mode. Figure 7.2 depicts the two levels of the decomposition. The system-level

formulation is as follows:

min fcons(C
U
conf , ψ

∗(t,CU
conf ,p)) + φ(CU

conf −CL
conf )

w.r.t. [C11, C12, C21, C22], where CU
conf =

C11 C12

C21 C22


s.t. gperf (CU

conf , ψ
∗(t,CU

conf ,p)) ≤ 0

lb ≤ CU
conf ≤ ub

|det(CU
conf )| > 0

(7.3)

where φ is the augmented Lagrangian penalty function (Tosserams et al., 2005).

Superscripts (·)U and (·)L indicate upper and lower system variables, respectively.

In this formulation, the elements of Cconf are continuous design variables and all

invertible Cconf are assumed to be feasible. If Cconf is singular, it does not correspond
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to any 2-dof design. So we include invertibility as constraint at the system level. When

an optimal set of design variables is found, they are passed to the subsystem level as

targets. The subsystem problem addresses feasibility of Cconf based on the feasible

configurations we generated earlier. The subsystem problem is stated as follows:

min φ(CU
conf −CL

conf )

w.r.t. x = [xc,xs], where xs = [ρ, FR]

s.t. lb ≤ xs ≤ ub

xc is feasible

where CL
conf = fconf (x)

(7.4)

Here fconf is the function that calculates Cconf given the configuration xc, PG ratios

ρ and final drive ratio FR. This subsystem problem can be optimized with respect

to xs for each feasible xc separately. As discussed earlier, since evaluation of fconf

is almost instantaneous, enumeration over all feasible configurations does not have a

large computational cost. Once the problem is solved for all feasible configurations,

the Cconf that matches the target closest is sent back to the system level.

An important aspect of this formulation is its applicability to any number of PGs

without requiring much modification. Any 2-dof hybrid system can be represented by

2×2 Cconf matrix. Therefore, the system-level problem is exactly the same regardless

of the number of PGs in the architecture. The subsystem-level problem has a different

numbers of feasible xc for different number of PGs used in the architecture. The size

of xc also increases with the number of PGs but the formulation and the solution

strategy remain the same. In Section 7.3 two case studies are presented to show the

implementation of this idea.
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Figure 7.3: Decomposition of combined multi-mode architecture and gear ratio design

7.2.2 Multi-mode HEV Architecture Design Problem

When there are multiple modes in the architecture, both system level and subsys-

tem level formulations differ from the single-mode architecture design formulation.

There are multiple ways to decompose the problem in this case. For brevity, only

one formulation is given in this section and alternative approaches are briefly men-

tioned. One decomposition is given in Figure 7.3. In this situation, there is a single

system and as many subsystems as the number of modes in the architecture. If there

are Nmode modes in the architecture, an Nmode number of Cconf matrices must be

designed at the system level. Also the PG ratios and final drive ratios cannot be

different for different modes in the same architecture. Hence, ρ and FR must be

shared variables among the subsystems and they appear as design variables in the

system-level formulation.

In the muti-mode architecture design, there is also an additional complexity con-

straint which was described in Chapter VI. This constraint that depends only on xc

is taken into account in the subsystem where we design each individual configuration.
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The formulation at the system level is given as follows:

min fcons(C
U
conf,i, ψ

∗(t,CU
conf,i,p)) +

Nmode∑
i=1

φ(CU
conf,i −CL

conf,i) + φ(xU
s − xL

s,i)

w.r.t. [C11,i, C12,i, C21,i, C22,i,x
U
s ], where CU

conf,i =

C11,i C12,i

C21,i C22,i

 ∀i ∈ {1, ...Nmode}

s.t. gperf (CU
conf,i, ψ

∗(t,CU
conf,i,p)) ≤ 0

lbi ≤ CU
conf,i ≤ ubi

|det(CU
conf,i)| > 0i

(7.5)

where the subscript (·)·,i denotes each individual mode in the architecture. Each

Cconf,i optimized at the system level is sent as target to the corresponding subsystems.

Also the same xs is sent to every subsystem as it is the vector of shared variables.

The formulation for a subsystem i becomes:

min φ(CU
conf,i −CL

conf,i) + φ(xU
s − xL

s,i)

w.r.t. xi = [xc,i,x
L
s,i], where xL

s,i = [ρi, FRi]

s.t. gcomp(xc,i,xc,j) ≤ 0 ∀j ∈ {1, ...Nmode|j 6= i}

lbi ≤ xL
s,i ≤ ubi

xc,i is feasible

where CL
conf,i = fconf (xi)

(7.6)

Recall that we use the number of clutches in the architecture as a measure of complex-

ity. Here gcomp calculates the number of clutches necessary to combine two modes.

Instead of constraining the total number of clutches in the architecture, we can restrict

the clutches needed to shift from one mode to another. Such a constraint requires

only xc from the next subsystem, and the order of the subsystems becomes impor-

tant. As mentioned earlier, there are multiple ways to define the design problem for
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multi-mode architectures. The total number of clutches can also be constrained, but

in that case each individual subsystem requires xc from all subsystems.

An alternative formulation can define all subsystems as a single subsystem. In

that case the system-level problem does not include the shared variables as there is

only one subsystem. The design variables become only the elements of Cconf,i for

all modes in the architecture. Only the optimized Cconf,i matrices are passed to the

subsystem. The subsystem tries to meet all the targets at once by designing xc,i, ρ

and FR. There are pros and cons of this approach compared to the one described

earlier. In the former approach the problem at the subsystem level is simpler but

the coordination of the shared variables make the overall ATC problem challenging.

In the latter approach, the overall ATC problem is very similar to the single mode-

architecture design problem but the subsystem level problem is much bigger as the

number of feasible configurations increases exponentially with the number of modes.

A more detailed analysis of the alternative formulations is left as future work.

7.3 Results

In this section we present two case studies to design a single-mode architecture

with 1 and 2 PGs. Both case studies use the same vehicle and powertrain compo-

nents, similar to the Toyota Prius. Key specifications for the vehicle and powertrain

components are given in Table 7.1.

In both case studies fuel consumption is calculated as the average of city (UDDS)

and highway (HWFET) cycle consumptions. The HEV supervisory control problem

is solved with a nested formulation using ECMS as described in Chapter V. In

both case studies, 0-60 mph acceleration time, t60mph and top speed, Vtop are used as

performance requirements. While 0-60 mph time is related to the maximum torque

capability of the architecture, top speed is set by the maximum rotary speed of the

powertrain components.
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Table 7.1: Vehicle specifications used for the case studies

Specification Value

Vehicle Body Mass 1400[kg]
Tire Radius 0.3[m]

Aerodynamic Drag Coefficient 0.29
Frontal Area 2[m2]

Battery Voltage 350[V ]
Battery Efficiency 92[%]
Battery Capacity 6.5[Ah]

Rated MG1 Power 42[kW ]
Rated MG2 Power 60[kW ]

Max MG Speed 12000 [rpm]
Max MG Torque 200 [Nm]

Rated Engine Power 43[kW ]
Max Engine Torque 102[Nm]

Engine Displacement Size 1.5[L]

In the case studies, the top speed requirement is set to be at least 105 miles per

hour while 0-60 mph time is required to be less than 12 seconds. The PG ratios are

allowed to vary between 2 and 4 and the final drive ratio between 1 and 10.

7.3.1 Single-mode 1-PG Architecture Design

For 1-PG systems, since there are only 16 feasible hybrid configurations, we can

optimize each configuration with respect to PG ratios and final ratio to maximize

the fuel economy subject to vehicle performance constraints. Recall that such an

approach is not computationally feasible for a larger number of PGs. We use Se-

quential Quadratic Programming (SQP) with multiple initial points to solve this

problem. After solving the problem with four different initial points, among 16 con-

figurations, only six of them converged to feasible design solutions, i.e. satisfied the

vehicle performance constraints. We select the feasible configuration with the best

fuel consumption as the solution. All of four tests converged to the same configuration

with similar design variable values. Table 7.2 shows the optimal solutions with their
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Figure 7.4: Optimal 1-PG architecture obtained by ATC. This is the architecture
used in the Toyota Prius

corresponding fuel consumption and performance values. The optimal configuration

is the same as the Toyota Prius power-split configuration shown in Figure 7.4.

Table 7.2: Results for for single-mode 1-PG architecture design by optimizing each
configuration separately

Initial Optimal Optimal Fuel Top 0-60 mph
xs xs Cconf Consumption Speed time

ρ0 = 2
FR0 = 1.5

ρ∗ = 2.01
FR∗ = 4.27

[
3.01 −8.59

0 4.27

]
56.81 mpg 108 mph 11.66 sec

ρ0 = 2.5
FR0 = 2.5

ρ∗ = 2.00
FR∗ = 4.25

[
3.00 −8.50

0 4.29

]
56.80 mpg 108 mph 11.74 sec

ρ0 = 2.5
FR0 = 4.5

ρ∗ = 2.00
FR∗ = 4.15

[
3.00 −8.30

0 4.15

]
56.77 mpg 107 mph 11.99 sec

ρ0 = 3
FR0 = 3.5

ρ∗ = 2.00
FR∗ = 4.29

[
3.00 −8.57

0 4.29

]
56.87 mpg 108 mph 11.64 sec

The results shown on Table 7.2 are very similar to each other. Some of them

hit the lower bound of the PG ratio which makes this bound an active constraint.

Although there is some potential to improve the fuel consumption results by relaxing

the bound, we are limited by the practicality constraints on the PG designs. The

smallest pinion gear size limits the PG ratio to 2 (Antony and Pantelides , 2006).

We take these optimal results as a reference point in order to evaluate the solutions

obtained by ATC.
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ATC formulation allows us to use different solution algorithms for the system-

and subsystem-level problems. This flexibility offers the opportunity to test multiple

optimization solvers and find the suitable one for each problem. The combined config-

uration and sizing problem at the system level is highly non-linear. On the contrary,

the subsystem-level problem for each configuration can be expressed analytically by

extracting the Cconf matrices from the modified bond graph representation. The

subsystem-level problem can be successfully solved using SQP. For the system-level

problem we tested SQP, interior point method, and GA. The results of these tests

are given in Tables 7.3, 7.4 and 7.5, respectively.

Using the bounds on ρ and FR we can calculate some reasonable upper and lower

bounds on the system-level design variables as it can be seen on Figure 7.1.

Table 7.3: ATC results for single-mode 1-PG architecture design using SQP for the
system level problem

Initial Optimal Optimal Fuel Top 0-60 mph
Cconf Cconf xs Consumption Speed time[

3.9 −12.2
0 4.2

] [
3.51 −11.07

0 4.40

]
ρ∗ = 2.51
FR∗ = 4.4

56.40 mpg 111 mph 10.67 sec[
0 4
−0.4 5.6

] [
1.00 0
−0.25 4.08

]
ρ∗ = 4

FR∗ = 3.26
48.7 mpg 94 mph 16.38 sec[

0 3
−2.2 9.6

] [
0 2.33
−2 7.00

]
ρ∗ = 2

FR∗ = 2.33
48.36 mpg 111 mph 15.78 sec[

−0.5 5.7
0 3.8

] [
−0.25 7.82

0 6.26

]
ρ∗ = 4

FR∗ = 6.26
0 mpg 80 mph 6.71 sec[

−2.2 9.6
0 3

] [
−0.35 4.63

0 3.41

]
ρ∗ = 2.79
FR∗ = 3.41

0 mpg 109 mph 8.68 sec

From Table 7.3, the differences between initial and optimal Cconf values are small.

Also 3 out of 5 cases converge to infeasible designs in terms of vehicle performance

and one case satisfying the vehicle performance requirements cannot recharge the

battery at the initial SOC level while following the drive cycle. Violated constraints
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are highlighted in bold in the table. Also the designs that cannot follow the drive

cycle or cannot sustain the battery charge at the end of the cycle are assigned to 0

mph.

Table 7.4: ATC results for single-mode 1-PG architecture design using interior point
method for the system level problem

Initial Optimal Optimal Fuel Top 0-60 mph
Cconf Cconf xs Consumption Speed time[

3.9 −12.2
0 4.2

] [
3.48 −10.53

0 4.23

]
ρ∗ = 2.48
FR∗ = 4.23

56.53 mpg 110 mph 11.08 sec[
0 4
−0.4 5.6

] [
−0.29 5.32

0 4.13

]
ρ∗ = 3.45
FR∗ = 4.12

0 mpg 101 mph 7.7 sec[
0 3
−2.2 9.6

] [
0 3.07

−2.06 9.38

]
ρ∗ = 2.06
FR∗ = 3.07

51.37 mpg 123 mph 11.92 sec[
−0.5 5.7

0 3.8

] [
−0.49 6.02

0 4.04

]
ρ∗ = 2.04
FR∗ = 4.04

33.97 mpg 105 mph 7.63 sec[
−2.2 9.6

0 3

] [
−2 9.63
0 3.21

]
ρ∗ = 2

FR∗ = 3.2
51.37 mpg 120 mph 11.51 sec

We further tested another gradient-based method, interior point (Byrd et al., 1999,

2000), using the same initial points to solve the system level problem. The results for

this test are shown on Table 7.4. Similar to the results with SQP, the solution changes

the changes the initial designs by a small amount. These methods give results similar

to the ones we obtained by optimizing each configuration separately only when we

start from a very similar initial point. In order to ensure the reliability of the results

we need to test these methods with several initial points.

An alternative idea is to use a method which utilizes multiple initial points such

as GA. If we don’t provide any initial designs, GA randomly generates an initial

population. However, this approach is not useful since the random population will

mostly have infeasible designs. A better approach is to generate some feasible designs

to provide as initial population to GA. A variety in the initial population help us
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to make the results more reliable. Since we have only 16 configuration possibilities,

we can generate some feasible designs from each configuration and randomly select

some feasible designs from each configuration to provide some variety to the initial

population. As noted earlier, evaluating the 0-60mph time and the top speed of a

given design is much faster than evaluating the fuel consumption over a drive cycle

since these performance measures do not require solving a nested optimal control

problem. This way we can find feasible designs from only 6 configurations out of 16

that satisfy the vehicle performance requirements. Randomly selecting 100 designs

in total from each of 6 configurations and setting the generation number to 5 gives

the results shown in Table 7.5.

Table 7.5: ATC results for single-mode 1-PG architecture design using GA with 5
generations for the system level problem

Optimal Optimal Fuel Top 0-60 mph
Cconf xs Consumption Speed time[

3.67 −11.46
0 4.28

]
ρ∗ = 2.67
FR∗ = 4.28

56.37 mpg 111 mph 10.73 sec[
3.84 −12.00

0 4.21

]
ρ∗ = 2.85
FR∗ = 4.21

56.24 mpg 111 mph 11.98 sec[
4.07 −11.58

0 3.77

]
ρ∗ = 3.07
FR∗ = 3.77

56.35 mpg 109 mph 11.57 sec

The configurations for these results are all the same as the one shown in Figure

7.4. The results from using this specially-seeded GA for the system-level problem are

more consistent and close to the results obtained from optimizing each configuration

one by one. Both approaches converge to the same configuration with some difference

in the gear ratios. After the ATC process, we can use a local search on the gear ratios

using the final configuration to fine tune the results. This will decrease the difference

between the gear ratios obtained from both approaches.

The consistency in ATC comes mainly from the variety in the initial population.
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As long as the initial population contains designs from different configurations, GA

is expected to find similar results. In a 1-PG system, since the number of feasible

configurations is small, it is not challenging to select the initial population.

In the next section, another case study where we have more than 100 configura-

tions containing feasible designs is discussed.

7.3.2 Single-mode 2-PG Architecture Design

In the previous section we described how SQP, interior point and a specially-

designed GA perform to solve the system-level problem. When we increase the num-

ber of PGs in the architecture, the system-level problem does not change but the

subsystem problem has more design variables and more configurations to search. In

a 2-PG architecture design, we select the GA approach again, as it provides the most

reliable results. Unfortunately, in this case study it is not possible to optimize each

configuration one by one to maximize the fuel economy with performance constraints

because of the computational cost. However, we can use the lessons learned from the

1-PG case study to increase the chance of finding good designs.

We already discussed that we need to provide a variety of designs in the initial

population of GA. In the case of 2-PG configurations, we have 2124 possible choices

and more than 100 of them have feasible designs. In this case we can group the

designs based on the sign of the elements of Cconf matrix. Since this matrix has four

elements and each element can be either positive, negative or zero, we can have 81

possible types of Cconf matrices. Regardless of the number of PGs in the system,

the number of types of the elements cannot be more than 81. In addition, not all 81

groups have feasible designs in them because most of these groups will correspond to

non-invertible matrices. For instance, a group which has both C11 and C12 being zero

is always non-invertible and cannot correspond to meaningful designs.

For this specific case study, only 15 groups have feasible designs. By selecting
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Figure 7.5: Optimal 2-PG architecture obtained by ATC

random 100 designs in total from each of these groups we tested 3 initial populations

with 5 generations. The results are shown in Table 7.6. As it is seen in the table,

the results consistently converged to similar optimal designs. The configuration that

realizes these Cconf is shown in Figure 7.5.

Table 7.6: ATC results for single-mode 2-PG architecture design using GA with 5
generations for the system level problem

Optimal Optimal Fuel Top 0-60 mph
Cconf xs Consumption Speed time[

4.33 −11.48
0 4.62

] ρ∗1 = 3.33
ρ∗2 = 2.94
FR∗ = 3.44

57.56 mpg 105 mph 11.44 sec

[
4.56 −11.94

0 4.5

] ρ∗1 = 3.55
ρ∗2 = 2.94
FR∗ = 3.35

57.51 mpg 105 mph 11.52 sec

[
3.98 −11.28

0 5.33

] ρ∗1 = 2.45
ρ∗2 = 2.98
FR∗ = 3.78

57.81 mpg 105 mph 10.65 sec

In order to see the effect of the generation number on the results, we increase it to

10. Table 7.7 shows the results with the same initial populations to the previous test.

By comparing Table 7.6 and Table 7.7 we can see that the effect of the generation

number on the optimal fuel consumption is small.
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Table 7.7: ATC results for single-mode 2-PG architecture design using GA with 10
generations for the system level problem

Optimal Optimal Fuel Top 0-60 mph
Cconf xs Consumption Speed time[

4.29 −11.38
0 4.73

] ρ∗1 = 2.71
ρ∗2 = 3.29
FR∗ = 3.46

57.69 mpg 105 mph 11.31 sec

[
4.27 −11.54

0 4.93

] ρ∗1 = 3.27
ρ∗2 = 2.53
FR∗ = 3.53

57.75 mpg 105 mph 11.01 sec

[
4.35 −11.67

0 4.84

] ρ∗1 = 2.55
ρ∗2 = 3.36
FR∗ = 3.47

57.74 mpg 105 mph 11.11 sec

7.3.3 Multi-mode 1-PG Architecture Design

In this section, we demonstrate the decomposition-based design framework for a

dual-mode architecture design. The general problem formulation given in Equations

(7.5) and (7.5) is solved for 1-PG designs using the same solution strategy described

in Sections 7.3.1 and 7.3.2. System-level problem is solved using GA with a special

seeding of feasible configurations and subsystem-level problems are solved using SQP.

The optimal dual-mode architecture obtained in this case is shown in Figure 7.6. Note

that this is the same architecture obtained for Case Study 1 in Chapter VI. Also note

that this dual-mode architecture is obtained by adding a pure-electric mode to the

optimal architecture we found for single-mode 1-PG design example. The detailed

results for this case with three different initial populations are given in Table 7.8.

Similar to the single-mode design cases, the results from three initial populations

are similar to each other.
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Figure 7.6: Optimal dual-mode 1-PG architecture obtained by ATC

Table 7.8: ATC results for dual-mode 1-PG architecture design using GA with 5 gen-
erations for the system level problem

Optimal Optimal Optimal Fuel Top 0-60 mph
Cconf,1 Cconf,2 xs Consumption Speed time[

3.00 −9.37
0 4.68

] [
0 −0.21

0.21 0.43

]
ρ∗ = 2.00
FR∗ = 4.68

58.46 [mpg] 110 [mph] 7.09 [sec][
3.08 −10.25

0 4.92

] [
0 −0.20

0.20 0.41

]
ρ∗ = 2.08
FR∗ = 4.93

59.97 [mpg] 112 [mph] 7.04 [sec][
3.03 −9.60

0 4.72

] [
0 −0.21

0.21 0.43

]
ρ∗ = 2.03
FR∗ = 4.72

58.83 [mpg] 111 [mph] 7.11 [sec]

7.3.4 Multi-mode 2-PG Architecture Design

Similar to the previous section, here, we design a dual-mode architecture for the

same vehicle application using 2-PG configurations. A similar special seeding strategy

for GA is followed in this example with a small difference. If we follow the same Cconf

grouping strategy to select feasible designs for initial population, we have 81 × 81

groups for dual-mode architectures. In this case, 100 initial population is not enough

to ensure variety. We run the three optimization studies with 300 initial population

and the results are given in Table 7.9.

As seen in the table, the first two runs converged to the same architecture while

the third run converged to an infeasible design with a different architecture. The
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Figure 7.7: Optimal dual-mode 2-PG architecture obtained by ATC

Table 7.9: ATC results for dual-mode 2-PG architecture design using GA with 5 gen-
erations for the system level problem

Optimal Optimal Optimal Fuel Top 0-60 mph
Cconf,1 Cconf,2 xs Consumption Speed time[

−0.50 5.63
−0.34 5.04

] [
0 −0.20

0.26 −0.30

] ρ∗1 = 2.17
ρ∗2 = 2.00
FR∗ = 3.75

75.22 [mpg] 108 [mph] 7.12 [sec]

[
−0.60 5.91
−0.40 5.16

] [
0 −0.18

0.27 −0.31

] ρ∗1 = 2.48
ρ∗2 = 2.00
FR∗ = 3.68

73.79 [mpg] 106 [mph] 6.87 [sec]

[
−2.79 6.77
7.40 −11.44

] [
0 0.09

0.56 0.33

] ρ∗1 = 2.65
ρ2∗ = 2.79
FR∗ = 1.78

56.38 [mpg] 117 [mph] 27.81 [sec]

best architecture obtained in the first two runs is shown in Figure 7.7. Optimality

of these results are questionable due to the dependency on the initial population. A

discussion on these results are given in Section 7.3.5.

7.3.5 Discussion

In general, since we use GA to solve the system-level problem, we rely on some

random processes, and so every time we run the optimization we get slightly differ-

ent results. However, the difference among different tests in both 1-PG and 2-PG

architecture design cases is only in the gear ratios while the converged configuration
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remains the same. As mentioned earlier, after obtaining the configuration and gear

ratio results from ATC, we can use a local search method to obtain more precise gear

ratios to further improve the results.

Comparing the best results of 1-PG and 2-PG architecture optimization from

Tables 7.5 and 7.7, the similarity between the optimal Cconf values should be noted.

Since the system level problems are the same in both cases, the true system-level

optimal without considering feasibility must be the same. The subsystems try to

meet this system-level optimal Cconf targets during the iterations of ATC. 1-PG

and 2-PG subsystems have different responses but the goal is to come close to the

system-level optimal as close as possible. This is the underlying reason to have similar

Cconf results in the end. Also in this particular case, there is 2.55% improvement in

fuel consumption by going from 1 PG to 2 PGs. It is expected to improve the fuel

consumption further by increasing the number of PGs in the architecture as more

various Cconf become feasible with more PGs. However, additional PGs increase the

production cost as well as the space required for the HEV powertrain. Depending

the cost constraints and available space, a choice on 1-PG or 2-PG design might be

preferable.

Comparing Tables 7.5 and 7.8 we can see that adding a pure-electric mode to

the single-mode architecture improves, both fuel economy and 0-60 mph acceleration

performance. Also, the optimal gear ratio values are different for single-mode and

multi-mode architectures. It shows the necessity to design component sizes for single-

mode and multi-mode architectures separately. Using the gear ratios of a single-mode

architecture in a multi-mode architecture even for the same vehicle application is not

optimal as seen in this example.

The results for the dual-mode 2-PG architecture design show that this case is

more sensitive to the initial population selection. Considering the number of possible

architecture candidates for this case, it is expected outcome. Also one can argue that
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some of the good designs might not be included in any of the initial populations,

resulting in only local optimal results. The dependency of the results on the initial

population can be reduced by increasing the initial population size and generation

number further. That way more reliable results and possibly better architectures can

be obtained in the design process. These results also give some idea of the challenges

for designing architectures with higher number of modes. Such analyses are left to a

future study.

7.4 Summary

In this chapter we discussed the solution of the combined configuration and sizing

problem where only gear ratios are considered as sizing variables. We proposed a

decomposition-based approach using ATC. The main reason to decompose the prob-

lem is the difficulty in solving the all-in-one formulation. Separate decomposition

strategies were given for the single-mode and multi-mode architecture design prob-

lems. The single-mode and multi-mode architecture design problems were solved

using ATC for case studies with a different number of PGs in order to show the

versatility of the formulation.

In the case studies, results using only GA for the system level problem and SQP

for the subsystem-level problem were presented. While the subsystem problem is

simple enough to be solved by SQP, the system-level problem is challenging due to

high non-linearity. A better approach to solve the system-level problem can be a

combination of global and local search methods.

Although only gear ratios were included as sizing variables, the sizing of the pow-

ertrain components can also be included in the system level problem as long as para-

metric models for the powertrain components are available. Sizing variables of the

powertrain components do not affect the subsystem formulation because the sub-

system checks the feasibility of the configuration only. As discussed in Section 7.3,
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the system-level problem is highly non-linear in its present form. Addition of the

powertrain component sizing to the problem will pose further solution challenges.
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CHAPTER VIII

Conclusions

8.1 Summary

Planetary gear systems have been widely used in the design of HEV architectures

since they provide a variety of speed ratios that increases the overall efficiency of the

powertrain without requiring an additional transmission. These systems also provide

many architecture alternatives to select from. The architecture design alternatives

include single-mode architectures that are in a fixed configuration, and multi-mode

architectures that changes the configuration during the vehicle operation. Multi-

mode architectures provide additional efficiency and performance compared to the

single-mode architecture designs since they include multiple configurations each of

which performs well under different driving conditions. Multi-mode architectures

also introduce additional complexity and cost to the design. Based on the design

constraints on the cost and available space for the powertrain a single-mode or a

multi-mode architecture might be preferred.

For a given vehicle application, selection of a good single-mode or multi-mode

architecture accounting for the fuel economy and vehicle performance is a challenging

problem because of its combinatorial nature. It is also a combined design and control

problem where evaluation of each architecture design alternative under a drive cycle

requires a control strategy to calculate the fuel consumption. Including the powertrain
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component design decision to the configuration selection problem poses additional

challenges as it adds new continuous variables to the discrete problem. The goal of

this dissertation was to solve this problem in a computationally tractable way.

In Chapter III, we introduced a modified bond graph representation of HEV archi-

tectures that was general enough to account for any given set powertrain components

and PGs. Using the proposed representation, we formulated the problem of generat-

ing all feasible configurations in a general way. As an advantage of using a graphical

representation mainly based on the concepts from bond graphs, the kinematic rela-

tionships among the powertrain components can be extracted from our representa-

tion. These equations were used in the evaluation of fuel economy and performance

of the architectures. The configurations generated can be used alone in a single mode

architecture or they can be combined together in a multi-mode architecture.

In Chapter IV we gave an overview of different aspects of the general HEV ar-

chitecture design problem. We described the mathematical formulations and the

proposed solution strategies for the case where the component sizes were given and

for the case that includes component sizes as design decisions. We also discussed the

solution of the combined design and control problem and proposed to use the nested

formulation that solves the control problem for each design alternative considered

during the design process. This approach can utilize the available control strategies

developed for any given HEV design.

Chapter V described the design of a single-mode architecture design for given

component sizes. Since the number of design alternatives was small enough to allow

evaluation of all feasible alternatives separately, we preferred to use enumeration. We

also identified the PG ratios and final drive ratio as the significant contributors of the

fuel consumption and vehicle performance.

In Chapter VI we addressed the multi-mode architecture design problem with the

same assumptions on the component sizes. A multi-mode architecture was created
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by combining two or more configurations in the same architecture. In order to switch

from one configuration to another, we needed to add a certain number of clutches to

the architecture. However, adding clutches to the architecture introduces additional

complexity in the clutch control and as well as additional cost. In order to prevent

an undesired number of clutches in the architecture, we introduced a complexity con-

straint measured by the number of clutches required to combine the selected modes.

In the multi-mode architecture design, enumeration of all feasible designs was not

computationally tractable and we introduced a search method capable of identifying

good design alternatives.

In Chapter VII we extended the design problem to the case that includes the

components sizes as design decisions. In Chapter V, we already showed the effect of

gear ratio selections on the fuel economy and vehicle performance. If there was no

tight constraints on the values of the gear ratios or no good values were available,

the gear ratios should be designed together with the configuration. We proposed a

decomposition-based formulation in order to solve the combined problem.

8.2 Contributions

Three major contributions of this dissertation are as follows

(i) A new representation of hybrid electric vehicle (HEV) architectures was created

based on bond graphs that is general enough to represent architectures with any

number of powertrain components connected through any number of planetary

gears (PGs). Using this representation, a general formulation was derived to

generate all feasible configurations, i.e., driving modes, for any given number of

powertrain components and PGs.

(ii) A new, combined HEV architecture design and control problem formulation was

derived and solution strategies for single and multi-mode architecture design
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problems for given powertrain component sizes and gear ratio selections were

demonstrated.

(iii) A general decomposition-based formulation for the combined HEV architec-

ture design and control problem was developed for the more general case that

included component sizing as design decisions. This formulation included a par-

titioning model and a coordination strategy using analytical target cascading.

In order to demonstrate the capabilities of the methods proposed, we presented

the generation results for all feasible power-split type 1-PG, 2-PG and 3-PG driving

modes with one engine, two MGs and one ground. Then, using these feasible driving

modes, we showed the design of 1 and 2-PG single and multi-mode architectures for

different vehicle applications by considering fuel economy, vehicle performance and

architecture complexity. Finally, for the design process of combined architecture and

component sizing, we presented separate decompositions for single and multi-mode

architectures. We demonstrated the capability by designing 1 and 2-PG single-mode

and multi-mode architectures and gear ratios simultaneously for a particular vehicle

application.

8.3 Limitations and Future Work

In this dissertation, we omitted the series and parallel type of configurations and

considered only 2-dof power-split types as they provide the largest variety of architec-

ture design alternatives. Series hybrid configurations have a very limited number of

applications and generally a power-split configuration provides most of the function-

ality that a series hybrid configuration offer. For instance, Zhang et al. (2012) showed

that removing the series hybrid mode together with one of the EV modes from the

Chevrolet Volt design does not reduce the fuel economy significantly.

A parallel type configuration can be obtained by flipping the causality of the
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engine and considering kinematically 1-dof power-split type configurations (i.e. only

one independent node in the PG system) during the configuration generation process.

However, these designs do not provide any variety in terms of speed ratio and have to

rely on an additional transmission. A comparison of the parallel configurations and

power-split types can be made as a future study.

The search algorithm we introduced in Chapter VI was not robust enough and has

to be tested with many initial designs. A better tractable method which can search

the design space effectively requiring less human input should be studied.

The problem formulation given in Chapter VII was solved considering only gear

ratios as component sizing decisions. The formulation is general enough to account for

all powertrain component sizes. However, adding these variables poses new challenges

with the solution of the decomposed problem. The solution of this more general

problem is necessary since fixing sizes of the powertrain components might favor

some of the configurations during the design process. Also additional design freedom

in the general problem gives the opportunity to improve the optimal results further.

These considerations should be investigated as a future study.

Since the modified bond graphs used in this dissertation are general tools that can

also be used to model and represent other types of systems besides automotive power-

train configurations, there is some potential to apply the proposed design framework

to mechatronic system designs. In a general case, similar to the automotive power-

train architecture design, the first step is the generation all feasible configurations

using the modified bond graph representation before the design process. Then, a

system matrix consisting of continuous elements that define the configuration and

component sizes must be created. A system level formulation designing the elements

of this matrix and a subsystem level formulation that includes the feasibility based

on previously generated configurations can be used to design general mechatronic

systems. Such possible generalizations of the proposed methods to other types of
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systems will be investigated as future study.
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APPENDIX A

1-PG Hybrid and Pure Electric Modes
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APPENDIX B

Selected 2-PG Hybrid and Pure Electric Modes

The following are the top 15 feasible 2-PG hybrid modes selected from Case Study

3 in Chapter V. The remaining are the pure electric modes which can be combined

with the first 15 hybrid modes using at most two clutches.
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