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ABSTRACT

Development of Hybrid Deterministic–Statistical Models for Irradiation Induced
Microstructural Evolution

by

Efráın Hernández–Rivera

Chairs: Lumin Wang and Veena Tikare

Ion irradiation holds promise as a cost–effective approach to developing structured

nano–porous and nano–fiberous semiconductors. Irradiation of certain semiconduc-

tors leads to the development of these structures, with exception of the much desired

silicon. Hybrid deterministic–statistical models were developed to better understand

the dominating mechanisms during structuring.

This dissertation focuses on the application of hybrid models to two different ra-

diation damage behavior: (1) precipitate evolution in a binary two–phase system and

(2) void nucleation induced nano–porous structuring. Phenomenological equations

defining the deterministic behavior were formulated by considering the expected ki-

netic and phenomenological behavior. The statistical component of the models is

based on the Potts Monte Carlo (PMC) method. It has been demonstrated that hy-

brid models efficiently simulate microstructural evolution, while retaining the correct

kinetics and physics. The main achievement was the development of computational

methods to simulate radiation induced microstructural evolution and highlight which

processes and materials properties could be essential for nano–structuring.
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Radiation influenced precipitate evolution was modeled by coupling a set of non–

linear partial differential equations to the PMC model. The simulations considered

the effects of dose rate and interfacial energy. Precipitate growth becomes retarded

with increased damage due to diffusion of the radiation defects countering capillarity

driven precipitate growth. The effects of grain boundaries (GB) as sinks was studied

by simulating precipitate growth in an irradiated bi–crystalline matrix. Qualitative

comparison to experimental results suggest that precipitate coverage of the GB is due

to kinetic considerations and increased interfacial energy effects.

Void nucleation induced nano–porous/fiberous structuring was modeled by cou-

pling rate theory equations, kinetic Monte Carlo swelling algorithm and the PMC

model. Point defect (PD) diffusivities were parameterized to study their influence

on nano–structuring. The model showed that PD kinetic considerations are able to

describe the formation of nano–porous structures. As defects diffuse faster, void nu-

cleation becomes limited due to the fast removal of the defects. It was shown that

as the diffusivities’ ratio diverges from unity, the microstructures become statistically

similar and uniform. Consequently, the computational results suggest that nano–pore

structuring require interstitials that are much faster than the slow diffusing vacancies,

which accumulate and cluster into voids.
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CHAPTER I

Introduction and Background

Ion irradiation of materials has been studied for decades, with a vast body of work

focusing on radiation damage of alloys. There are several uses of ion irradiation, which

range from materials processing to accelerated simulation of neutron radiation under

nuclear reactor environments. Use of these techniques lead to the observation of

different types of radiation effects. These effects range in time and spatial scales.

Some of these effects are well understood, e.g. radiation induced segregation, whilst

other are mostly are qualitatively described, e.g. radiation induced nano–porous

structures. This work aims to close this gap by coupling well established theory to

qualitative models.

In recent years, interest on the use of ion beam modifications of semiconductors

has been increasing. Radiation induced nano–structuring promises to be an efficient

and economical tool for the generation of quantum–confined photo–electronics. One

of the most coveted nano–structure is silicon nano–wires, which have been shown to

allow for the tuning of its photonic properties by controlling the structural size. These

structures have been achieved through different methods [1], except ion irradiation.

On the other hand, ion irradiation has been proven to lead to the formation of the

desired nano–structures on germanium and a variety of III–V semiconductors.

Even though this work focuses on radiation effects on semiconductors, radiation
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related physical processes are similar for most materials. Therefore, we begin by

looking at general theory of radiation damage on materials. This chapter also looks

at the different types of radiation induced nano–structures known to happen under

certain irradiation conditions focusing on the formation of nano–porous networks.

Furthermore, the current modeling techniques used to explain the formation of these

types of nano–structures are briefly discussed.

1.1 Radiation Damage Physics

As energized ions travel through a target material, there is a probability that the

ion will physically interact with the target atoms. This probability depends on several

factors, which include ion and target properties. Once the ion interacts with the

material, several types of event and/or processes are possible. Some of these include:

sputtering, radiation–induced segregation (RIS), amorphization and swelling. All of

these processes have a significant influence on microstructural evolution. This section

goes over the essential theory related to these different radiation damage mechanisms.

It has been suggested that several of these mechanisms are critical in the formation

of the desired structures.

1.1.1 Sputtering

Ion beam interaction with materials can lead to surface erosion or removal of

surface and near surface atoms, otherwise known as sputtering. As kinetic energy

is deposited into the target atoms through nuclear collisions, the atoms become dis-

placed from their equilibrium lattice position and can eventually be ejected from the

surface. This phenomena is characterized by the sputtering yield

Y =
average number of emitted atoms

incident particle
. (1.1)
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Figure 1.1: Schematic showing the ion induced sputtering and ion implantation pro-
cesses.

Sputtering is an important radiation effect to consider, especially when dealing with

low to mid–range energetic ions (less than a few tens of keV), where most of the

energy is deposited in the sub–surface region. For these conditions, typical values for

the sputtering yield range between 0.5–20.

The mechanism that leads to sputtering is a complex one that includes several

nuclear collisions within the collision cascade region. A schematic depicting the sput-

tering/implantation process is shown in Figure 1.1. The figure shows a gray shaded

region where there is a high probability that an energized particle–atom collision can

lead to sputtering of the target atoms. This region is usually considered to be a

couple atomic layers. As the ion displaces atoms from their lattice positions, these

can undergo several collision and deflections. It is also possible that some of these

displaced atoms will be backscattered. The backscattered atoms can then be ejected

from the surface if they arrive there with enough energy. These atoms make up most

of the sputtered atoms. On the regime previously described, the sputtering yield is

proportional to the number of displaced target atoms. This is properly described by

Sigmund’s model [2]. This is also known as the linear cascade sputtering regime [3].

The sputtering yield depends on the target material properties, the ion beam

characteristics and the experimental setup. In the linear sputtering regime, for normal
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incidence in a monatomic material, the sputtering yield can be defined as [2]

Y = Λ · FD(E0), (1.2)

where Λ is the material factor and FD(E0) is the amount of energy deposited per unit

length due to nuclear collisions by an ion with E0 initial energy. The material factor

is defined by the target material properties and can be approximated as [4]

Λ ≈ 4.2

NU0

[nm
eV

]
, (1.3)

where N is the atomic density of the target material and U0 is the surface binding

energy. The amount of energy being deposited into the target is dictated by the

experimental setup, e.g. the energized ion, the target material properties and angle

of incidence. It can be calculated by

FD(E0) = αNSn(E0) (1.4)

where α is a correction factor that accounts for the atom–ion mass difference and

the angle of incidence, and Sn(E0) is the nuclear stopping cross–section for an ion

with E0. There have been several derivations for the nuclear stopping cross–section,

which is highly sensitive to both ion and target atom characteristics. A very good

approximation can be achieved by use of the ZBL potential function [5]. The term

NSn describes the amount of energy that is loss by the ion due to nuclear collisions

and can be written as dE0/dx|n. Then, the general equation for the sputtering yield

is given by

Y ≈ 4.2
αSn(E0)

U0

= 4.2α dE0/dx|n︸ ︷︷ ︸
Energy

deposited

(
NU0

)−1︸ ︷︷ ︸
Material

properties

(1.5)
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Figure 1.2: Sputtering yield of Si as a function of: (left) incident ion energy, and
(right) incident ion atomic number (extracted from [6]). The solid circles data is
from Andersen and Bay [7] and the plus signs correspond to SRIM simulations [5].

Figure 1.2 shows the dependence of the sputtering yield on beam characteristics.

For the energy dependence, we see that initially the yield is increased until the ion is

given enough energy to penetrate deep into the target material when the yield begins

to decrease. As for the incident ion type, it can be seen that the yield increases since

larger ions are more efficient at transferring their energy to the lattice atoms. We

see that the sputtering yield increases with the effectiveness to deposit energy in the

surface region.

For targets that have more than one atomic element, the probability of sputtering

a given species is different. The difference in the probability of sputtering arises from

the fact that different atoms’ ability to transfer energy due to nuclear collisions are

very dissimilar, i.e. energy transfer efficiency due to mass ratios. Therefore, we will

have one component being sputtered at a faster rate than the other leading to surface

compositional changes. For an AB alloy, the sputtering yield of the A component is

[8, 9]

YA =
∞∑
n=1

p
(n)
A C

(n)
A (1.6)
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where p
(n)
A is the effective yield of sputtering an A atom from the n− th atomic layer

and C
(n)
A is the concentration of A atoms in the n− th layer. Essentially, the species

specific sputtering yield, i.e. partial sputtering yield, is the probability of sputtering

an atom from a given depth times the probability of finding that species at the given

depth. Since sputtering can be considered to be a phenomena occurring at the few

top atomic layers of the target, we can say that partial sputtering yield is proportional

to the surface concentration, i.e. C
(n)
A = Cs

A. The ratio of sputtering yields is given

by

YA
YB

=
pA
pB
· C

s
A

Cs
B

= r
Cs
A

Cs
B

, (1.7)

where r is the sputtering factor and it accounts for differences in surface binding

energies, sputtering escape depth probability and efficiency of energy transfer within

the collision cascade.

When steady state has been achieved, the ratio of the partial sputtering yields is

required to be the equal to the ratio of the bulk concentrations due to mass conser-

vation

YA(∞)

YB(∞)
=
Cb
A

Cb
B

, (1.8)

which leads to the following equation for the surface concentration ratio

Cs
A(∞)

Cs
B(∞)

=
1

r

Cb
A

Cb
B

. (1.9)

Now, let’s consider a system where A is preferentially sputtered over B, i.e.

YA(0) > YB(0). As we continue to sputter the target atoms, the surface will be-

come B–rich and A–depleted, leading to an increase and decrease in YB and YA,

respectively. This will continue until steady state has been achieved, as shown in

Figure 1.3. This phenomena limits the amount of matter that can be implanted into

the target surface region. For a binary target being irradiated with a beam flux
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Figure 1.3: Evolution of the partial sputtering yields of a PtSi target as a function of
dose [10].

(ion · cm−2 · s−1), the number of sputtered atoms is given by [8, 9]

dN

dt
=
dN sp

A

dt
+
dN sp

B

dt
= (YA + YB)φ. (1.10)

The authors were also able to show that the net change in component concentration

at the surface of the target is given by

dNi

dt
=
(
Cb
i

α

Ωb
− Yi

)
, (1.11)

where i stands for the component i, α is the volume removed per incident ion and Ωb

is the average atomic volume in the bulk.

1.1.2 Radiation Induced Segregation

One can think of point defect diffusion as the positional exchange between a defect

and the atomic species, Figure 1.4. These atoms yield their lattice position allowing

the defects to diffuse until reacting with other defects or reaching a sink. Then, we

can think of a diffusion event as the rate at which an atom and defect species exchange

7



Figure 1.4: In the presence of defects, diffusion can occur by exchange of the defect
and atom site positions.

site. The diffusion rate can be characterized as the probability of being next to an

atom exchange site (concentration) times the rate at which the events are attempted

Dj
i =

λ2

6
νNj (1.12)

where λ is the (jump) distance between species i and j, ν is the frequency with which

an exchange is attempted and Nj is the number of j species neighboring i. Since

radiation events lead to the formation of a wide range of defects, we need to account

for these defects. Considering a lattice that has several types of defects, we can write

an equation for the radiation enhanced diffusion

Drad = DvNv +DiNi +D2vN2v + · · · =
D∑

d=i,v

DdNd (1.13)

where Dd are the diffusion coefficient through the specific mechanisms defined by the

b subscript. As is evident from Equation 1.12, as the amount of defects increase due

to ion irradiation, then the diffusivity will increase correspondingly.

Radiation damage leads to the formation of point defects within the collision

cascade known as interstitials and vacancies. The evolution of the interstitial and

8



vacancy defects are generally described by the rate theory equations developed at

Argonne National Laboratory

∂Ci
∂t

= K0 −KivCiCv −KisCiCs +∇ · (Di∇Ci) (1.14a)

∂Cv
∂t

= K0 −KivCiCv −KvsCvCs +∇ · (Dv∇Cv), (1.14b)

where K0 is the defect production rate, Kiv||vi is the defect recombination rate, Kxs is

the reaction rate between the x–defect and its sinks. Many of the initial point defects

tend to recombine or annihilate at different sinks, but as radiation damage is increased

these will accumulate. They can also become mobile at higher temperatures, which

can lead to enhanced net fluxes away from the concentration gradient.

Accumulation of the point defects created by ion irradiation can lead to the over-

saturation point defects within the target material. This oversaturation can lead to

the formation of larger scale damage by agglomeration of the defects, e.g. disloca-

tions and voids. Furthermore, these point defects diffuse in the opposite direction

to their gradient, which leads to a corresponding chemical component flux, as shown

in Figure 1.5 for a binary system. If we consider each defect diffusion event to be

directly related to an atomic diffusion, we can say that a net vacancy flux is equal

and opposite in direction of the atomic flux through the vacancy mechanism, i.e.

Jv = −JvA − JvB. (1.15)

Similarly, for the interstitial flux and atomic flux through the interstitial mechanism,

we have

Ji = JiA + JiB. (1.16)

Combining these two equations, we can write the following equation for the net atomic
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flux

Ji − Jv = (JiA + JvA) + (JiB + JvB) = JA + JB. (1.17)

Figure 1.5 shows the diffusion of defects toward the defect sink (grain boundary) in a

binary system. We see that the flux of A atoms is larger than the flux of B through

the vacancy mechanism and vice versa through the interstitial mechanism. In other

words, there is a net flux of A away from the sink and of B toward the sink, i.e.

Dv
A > Dv

B and Di
A < Di

B. This leads to enrichment of B around the grain boundary.

Mass conservation relates the concentration evolution to the atomic flux, as stated

by Fick’s second law

∂CA
∂t

= −∇ · JA (1.18a)

∂CB
∂t

= −∇ · JB. (1.18b)

While there could be terms related to more complex defects, e.g. di–vacancies, there

are assumed to be negligible as they are less likely to exist and much slower. To

define the component specific flux, we need to consider all the diffusion mechanisms.

Therefore, the flux for the specific components in the binary system are given by [11]

JA = −χDA∇CA −Di
A∇Ci +Dv

A∇Cv (1.19a)

JB = −χDB∇CB︸ ︷︷ ︸
Chemical

flux

−Di
B∇Ci︸ ︷︷ ︸

Interstitial
flux

+Dv
B∇Cv︸ ︷︷ ︸

Vacancy
flux

(1.19b)

where χ is a term used to account for the difference between the concentration and

chemical potential gradients. Since we are considering a binary system, we can say

that CA + CB = 1, i.e. ∇CA = −∇CB. Then, we can define the total flux of the

10



defect as

Ji = −Ω(Di
A −Di

B)Ciχ∇CA −Di∇Ci (1.20a)

Jv = Ω(Dv
A −Dv

B)Cvχ∇CA −Dv∇Cv (1.20b)

where Ω is the average atomic volume. Implementing the flux equations into the

concentration evolution equations, the radiation induced segregation can be described

as

∂CA
∂t

= −∇ · JA = ∇ ·
[
DAχ∇CA + ΩCA(Di

A∇Ci −Dv
A∇Cv)

]
(1.21a)

∂Ci
∂t

= −∇ · Ji = ∇ ·
[
Di∇Ci + ΩχCi(D

i
A −Di

B)∇CA)
]

+K0 −R (1.21b)

∂Cv
∂t

= −∇ · Jv = ∇ · [Dv∇Cv + ΩχCv(D
v
B −Dv

A)∇CA)] +K0 −R (1.21c)

where R includes all the types of reactions rates at the sinks, e.g. recombination of

point defects. Taking into account that we can directly relate the concentration A

to the concentration of B, we only need a three partial differential equation (PDE)

equation set to fully describe the radiation induced segregation phenomena.

One important aspect of RIS that we must keep in mind is the effect of solute

size to the overall segregation characteristics [12]. To reduce atomic lattice strain

energy, the smaller sized solute atoms will most likely preferentially diffuse through

the interstitial mechanism, while the larger sized atoms will diffuse through the va-

cancy mechanism. All of this can be readily predicted by strain energy considerations

since interstitial sites occupy smaller volumes than vacancy sites. As Frenkel pair are

created, shown in Figure 1.6, we will have diffusion of the defects towards the sinks.

Considering that atoms diffuse in the same and opposite direction of interstitials and

vacancies, respectively, and taking into consideration strain energy reduction, we can

expect enrichment of the smaller and depletion of the larger solute atoms around

11



a) b)

c)

Figure 1.5: Representation of RIS in a binary, 50% A–50%B, system showing (a) the
vacancy concentration profile generated by the flow of vacancies to the grain boundary
due to a counter diffusion of A and B atoms, (b) the interstitial concentration profile
generated by the flow of interstitials to the grain boundary due to diffusion of A and
B atoms through the interstitial sites, and (c) the resulting concentration profiles for
A and B [11].
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the sinks. Table 1.1 shows the effect of solute size on RIS for a variety of materials.

As can be seen, the solute size is a very effective predictor of the direction of solute

segregation with respect to the sink.

Table 1.1: Effect of solute size on RIS [13, 14, 15]
Solute–Solvent Volume Predicted Segregation Observed Segregation

Misfit (%) Direction Direction
Pd–Cu –20 + +
Pd–Fe –27 + +
Pd–Mo –3 + +
Pd–Ni –26 + +
Pd–W –2 + +
Al–Ge –37 + +
Al–Si –45 + +
Al–Zn –19 + +
Fe–Cr +4 – –
Mg–Cd –19 + +
Ti–Al –3 + +
Ti–V –26 + +
Ni–Al +52 – –
Ni–Au +55 – –
Ni–Be –29 + +
Ni–Cr +1 – –
Ni–Ge –5 + +
Ni–Mn +32 – –
Ni–Mo +31 – –
Ni–Sb +21 – –
Ni–Si –16 + +
Ni–Ti +57 – –
Cu–Ag +44 – –
Cu–Be –34 + +
Cu–Fe –8 + +
Cu–Ni –7 + +
*SS–Ni –3 + +
*SS–Cr +5 – –
*SS–Si –3 + +
*SS–C +54 –
*SS–Mn +3 – –
*SS–Mo +36 – –
*SS–Cu +9 –

*SS refers to 316 stainless steel from [14]
Extracted from [11]
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Figure 1.6: Types of lattice defects. (a) Frenkel pair formed on a crystalline lattice,
where the vacancy (square) is in the lattice atom position and the interstitial (gray
circle) is the displaced atom now in the interstitial position. (b) Schottky is a vacancy
defect that retains its stoichiometry, i.e. neutral charge. The defect is formed when
both an anion (black) and cation (gray) leave their respective lattice sites. For non–
ionic crystals it means a simple vacancy.

1.1.3 Radiation Induced Amorphization

Nuclear and electronic interactions between energized ions and target lattice atoms

lead to the formation of different types of lattice defects, e.g. Frenkel pairs and Schot-

tky defects Figure 1.6. These types of defects alter the lattice long range ordering,

which defines the crystallinity of the target. When enough atoms have been displaced

from their ground state lattice positions, the long range periodicity of the crystal be-

comes compromised. An example is shown in Figure 1.7, where a complex crystalline

structure has been bombarded by Kr ions. The lattice disordering in the region where

one or more radiation events, e.g. elastic collisions, took place is evident. Eventually,

enough lattice disordering will cause most of the long range arrangement to be lost

and the material is said to become amorphous.

Several models that describe the formation and evolution of the amorphized lattice

have been developed over the past four decades, at least. The models are based

on two general types: the direct impact and the defect accumulation models. The

former is based on the material’s heterogeneous amorphization within the collision

cascade, while the latter treats amorphization as a homogeneous event when the
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Figure 1.7: HRTEM of a 1.5 MeV Kr+ irradiated Ca2La8(SiO4)6O2 single crystal
showing: (A) undamaged crystalline lattice; (B) a small subcascade damage at the
center of the crystal; and (C) a larger cascade or overlap of subcascade damage
regions [16]

accumulation of local point defects reaches a critical value. Most recent models are a

form of the defect accumulation model that takes into consideration the heterogeneous

amorphization process [16].

An example of the rate of amorphization by direct impact can be expressed as

∂fa
∂t

= σa(1− fa)φ (1.22)

where fa is the fraction of amorphous material, σa is the cross section of amorphization

and φ is the ion flux. A solution to Equation 1.22 gives a function for the amorphous

fraction

fa = 1− exp(−σaDφ) (1.23)

where Dφ ≡f(φ, t) is the ion dose. The defect accumulation model predicts a sigmodial

amorphous fraction function [16]. Another example is for the case of requiring the

overlap of three cascades for the formation of an amorphous region. For such a case,

we have

fa = 1−
[
1 + σtDφ +

(σtDφ)2

2

]
exp(−σtDφ) (1.24)

where σt is the total cross section.

A way to define the onset of complete amorphization of a material is with the crit-
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Figure 1.8: Comparison of experimental measurement of amorphous fraction accu-
mulation as a function of dose with curves fit to various models for radiation induced
amorphization (extracted from [17]).

ical amorphization dose. An important factor to consider when looking at the critical

amorphization dose is temperature, which can cause healing of the radiation induced

defects. Figure 1.9 shows the dependence of the critical dose on temperature. As

the temperature increases the defects become more mobile and are able to heal faster

i.e. annihilate. Hence, the critical amorphization dose increases with temperature to

overcome this healing effect. We can also see that there is a critical temperature, Tc,

at which defect healing is faster than the rate of amorphization, thus amorphization

cannot be achieved. This temperature is sensitive to the projectile ion energy and

mass, and the dose rate. On the other hand, the temperature can be high enough

that it can supplement to the disordering of the lattice by enabling the lattice atoms

to become mobile.

Amorphization has been used as a mechanism to explain the formation of complex

radiation induced nano–structures, discussed in Section 1.3. For example, Wang et

al. [19, 20] have suggested target amorphization as a precursor to the formation of
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Figure 1.9: Critical amorphization dose as a function of temperature for CuTi irra-
diated with 1 MeV electrons and ions, all at a dose rate of 1 × 10−3 dpa/s. The
hatched area represents the conditions where the crystalline and amorphous phases
can coexist (extracted from [18]).
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embedded nano–porous structures. They have shown complete amorphization of a Ge

electron transparent target before the nucleation and growth of the void network. A

three stage transition is suggested where complete amorphization occurs at a fluence

of φa = 1.2 × 1014 ions/cm2, large density of small void nucleation at φvn = 7 ×

1014 ions/cm2 and final formation of a quasi–stable nano–porous structure at φnp =

8.5 × 1015 ions/cm2. Similar behavior has been observed in GaSb [21] and indium

antimonide (InSb) [22, 23]. High resolution transmission electron microscopy reveal

that the highly amorphized fibers indeed contain nano–crystals embedded on the

amorphous matrix. The nano–crystals possibly form from the amorphized matrix

due to ion beam heating and thermal spiking in the material [22]. Another example

is the formation of surface Ga quantum dots from the ion irradiation of a GaAs

target [24]. In–situ observation of the evolution of the self–ordered quantum dots

exhibit a behavior similar to the movement of liquid droplets on top of a surface.

1.1.4 Radiation Swelling

Swelling is the isotropic volumetric increase in an irradiated material due to

void or bubble formation and growth. This phenomena was first observed for fast

breeder reactor under operational conditions, when the stainless steel cladding was

observed to have undergone extreme structural changes. Figure 1.10 shows a cou-

ple of TEM micrographs with nucleated intragranular voids within the stainless steel

grains. Cawthrone and Fulton showed that the swelling was due to the formation of

these intragranular voids [25]. These voids can be observed to grow with an evident

faceted shape. This is clear indication of void nucleation in a crystalline structure.

Ceramics, such as nuclear fuels, have been observed to swell as well. In this case,

most of the swelling is due to the trapping of the fission gas products in bubbles.

This bubble swelling has been shown to happen from the formation of both inter–

and intragranular, Figure 1.11 [26]. More recently, studies have shown that the for-
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Figure 1.10: (top) TEM of two stainless steel grains showing the high dislocation den-
sity in the dark grain and the voids on the light grain [29] and (bottom) micrographs
of voids in stainless steel [30].

mation of porous nano–structures in ion irradiated semiconductors leads to extreme

increase in volume [19, 27, 28].

Many parameters have been shown to enhance or suppress swelling, and some-
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Figure 1.11: SEM of a fuel with burnup of 23 GWd/t after it was annealed. (a)
inter– and intragranular bubbles nucleated and diffused to the grain boundaries, and
(b) close up showing the different distribution of bubbles. It is expected that the
intragranular bubbles migrate to the grain boundaries where they coalesce into the
larger intergranular bubbles [26].
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Figure 1.12: Swelling as a function of temperature on nickel irradiated to a fluence
of 5× 1019 n/cm2 [32].

times both depending on the parameters magnitude. Some of these parameters in-

clude fluence, flux, microstructure, stress, temperature, in. al. [11, 31]. A way of

understanding the dependence swelling has on these parameter is by understanding

how these parameters affect the defects generated in the material. For instance, from

Figure 1.12, we can see that swelling is low and with a positive slope at lower temper-

atures, peaks at intermediate temperatures, and decreases at higher temperatures.

This is a fairly typical depiction of the effect of temperature on swelling in metals.

This can be explained by the fact that at low temperatures vacancies have low mobil-

ity, which means that they can agglomerate and grow voids. As for high temperatures

vacancies are emitted from the voids, shrinking the voids.

Void swelling in crystalline metals has been the subject of study for several

decades. It is understood that voids nucleate by accumulation of point defect va-

cancies and these becoming stable in the lattice sites. They tend to coalesce into

voids in the high energy crystal planes (facets) of the crystalline structure. A recent
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TEM study was able to capture the nucleation and growth of a highly faceted void in

magnesium irradiated by an electron beam [33]. The nucleation and “longitudinal”

growth of the void is shown in Figure 1.13, while the “thickness” growth is shown in

Figure 1.14. They argue that the initial growth in length is dominated by the slow

nucleation kinetics of vacancy layers on basal facets and anisotropic vacancy diffusiv-

ity, while the thickness growth is driven by trying to reduce surface energy. These

mechanisms are believed to be same ones that lead to the formation of the voids

in Figure 1.10. While these mechanisms are able to explain the formation of these

faceted voids in crystalline materials, the precise method by which voids nucleate in

the amorphized semiconductors is still not well understood. Obviously, a completely

different mechanism is to be expected, which leads to the very dissimilar resulting

microstructures.

Of special interest to this work, is the recent studies by Steinbach et. al. where

they irradiated Ge(100) with iodine (I) and gold (Au). The results showed that

the ion species is an important swelling variable. The initial stages of void swelling

are very similar with a linear increase followed by a saturation regime, which yields

comparable nano–porous structures. Then, the I irradiated sample experiences an

abrupt increase in swelling, which the authors attribute to a change in the nano–

structure. They report the formation of a layer of differently distributed pores, which

they term netlike porous structure. They suggest that the difference in swelling

evolution is due to chemical properties of the ion beam. It should be clarified that

similar structures were observed on Au irradiated GaSb as discussed in Section 1.3.1.

1.2 Semiconductor Properties

Semiconductors are those materials that have conductivity properties that are

between those of good conductors (e.g. metals) and insulators. These materials can

22



Figure 1.13: (a) A void (outlined by dashed lines) nucleated near the interstitial
dislocation loop. (b–d) Stage 1 growth of the void, where it grew in length but not
in thickness. The length growth direction is indicated by the yellow arrow. The
specimen is irradiated over a dose range of 0.95–1.17 displacement-per-atom (d.p.a.).
Scale bar, 5 nm. [33].
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Figure 1.14: (a) First vacancy layer nucleates on the top of the (0001) facet as in-
dicated by the yellow arrow. (b) The spreading of the vacancy layer on the (0001)
facet, the size of the vacancy layer is designated by the dashed lines. (c) Vacancy
layer extends over the whole (0001) facet surface. (d) Subsequent nucleation of a new
vacancy layer. Scale bar, 5 nm.
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Figure 1.15: (a) Volume expansion ∆z as a function of the ion fluence Ni for room
temperature irradiated Ge with 380 leV I- and Au-ions under an angle of Θ = 7◦.
The solid lines exemplify the linear dependence whereas the dotted line points to the
general trend. In (b) the influence of the ion rate Φ on the volume expansion is shown
for the irradiation with 380 keV I-ions [28].

also be defined as materials with a narrow band gap, Eg = 0.02 − 2.5 eV , which is

the energy range where no electron states can exist. These unique properties can be

tailored by use of impurities, application of external forces (e.g. electric fields), and

spatial structuring. There has been a recent push on the latter to develop nano–sized

structures, which relates to the quantum confinement phenomena. The main objective

of structuring such materials is the expected increase in efficiency of photo–electronic

devices.

1.2.1 Energy Band Gap

The band gap refers to the energy difference between the valance and conduction

bands in materials, which is the energy required to free an outer shell electron from its

orbit. This electron then becomes a free charge carrier through the material. Matter

with a large band gap are considered insulators, ones with smaller gaps semicon-

ductors, and those with very small or no band gaps are conductors. Therefore, the

energy band gap is the preferred material parameter used to describe the electrical

conductivity properties of a solid.
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Semiconductors have played a crucial role in the recent advances in electronic and

optical modern technologies. Therefore, there is great interest in developing complex

semiconductor material structures, especially intrinsic semiconductors like Ge and Si.

Of these, the latter is the most desirable semiconductor for photoelectronic applica-

tions because of its larger band gap, which enables its uses at room temperatures.

While Ge can and is widely used, the need to provide cooling is restrictive in the

applicability of Ge based devices.

1.2.2 Quantum Confinement

When the semiconductor spatial dimensions are similar to the wavelength of the

electron wave function, the electronic and optical properties of the material deviate

substantially from the bulk material’s properties. This phenomena is known as quan-

tum confinement, and when achieved the energy band gap is increased. This leads to

a blue shift in the optical properties as the size the size of the features decreases. On

a bulk medium, the density of states is a continuum, as the dimensions are decreased

the density changes until it becomes discretized when the particles are quantum–

confined, Figure 1.16. Considering currently developed structures, quantum dots

confine in three dimensions, quantum wires in two dimensions, and quantum wells

in one dimension. This capability to change the material’s properties by control-

ling the spatial dimensions has increased interest on semiconductor self–assembled

structuring. We should keep in mind that ion beam irradiation has been used to

generate some of these structures in a wide range of materials (e.g. Ge [19], gallium

antimonide (GaSb) [34], GaAs [24], in. al.).

1.3 Radiation Induced Nano–Structuring

Ion beam processing has been used to develop complex material structures through

ion beam mixing, ion beam deposition and, more recently, ion beam nano–structuring.
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Figure 1.16: Density of states in one band of a semiconductor as a function of dimen-
sion (reproduced from [35]).

Different semiconductor materials have been observed to self–assemble into different

nano–sized structures depending on the material and the irradiation conditions. Un-

der certain conditions, the size and distribution of the self–assembled nano–structures

can also be controlled. If the nano–structures can be finely tuned by changing the

irradiation conditions, ion beam nano–structuring has the potential to be an effec-

tive and economy way of manufacturing quantum confining structures. On the other

hand, the parameters that lead to the formation of these structures seem to be highly

dependent on the irradiated material. For example, nano–porous structures have

been developed under a wide range of materials [34, 23, 19, 28, 36], but has been

elusive under the much desired silicon. This has been rather puzzling since these

two materials have comparable properties that are usually used to study radiation

damage effects. Hence, we wish to understand the true controlling mechanisms that

lead to the formation of these structures. Lastly, we can divide the different types of

structures into two generic categories: bulk embedded and surface structures. While

we want to focus on the mechanisms that lead to the formation of the nano–porous

networks, we briefly discussed both types for completeness.
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1.3.1 Embedded Nano–Structures

When the incident ion beam has enough energy, ions are able to travel deep into

the target where most of the lattice damage occurs. An intriguing feature observed on

high energy ion irradiated semiconductors, is the formation of extensively interlinked

nano–porous networks. In this section we look at the formation of these volumetric

nano–structures.

1.3.1.1 Nano–porous structure

Nano–porous networks on a Ge TEM specimen was observed by Wang et al.

when trying to study radiation damage tolerance in amorphous structures [19, 20].

The development of radiation resistant materials has been one of the most intriguing

materials challenges, especially in the nuclear energy industry. A way to describe

radiation tolerance is “materials that are able to accommodate excess defects created

during irradiation”. One of the material structures of interest are amorphous or

disordered materials, i.e. materials lacking long range atomic ordering/periodicity. It

was believed that since no long range ordering is present in these materials, irradiation

would not lead to further disordering and defects could be easily accommodated in

the structure.

In order to study the radiation tolerance of amorphous structures, Wang et. al.

irradiated Ge past its critical amorphization dose [19, 20], Figure 1.17. Through in

situ TEM they observed that further irradiation leads to the formation of a highly

porous uniformly distributed nano–structure, Figure 1.18. The resulting porous net-

work suggested that the amorphous structure does not make a good radiation resistant

material as clearly the material’s structural properties have been critically altered.

Soon after the critical amorphization dose is realized nucleated small void–like fea-

tures were observed. It can be expected that they start to nucleate at smaller fluences,

and that they were not observed due to instrument limitations. It should be pointed
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Figure 1.17: The temperature dependence of amorphization dose for 1.5 MeV Kr+

irradiated Ge [20].

out that even though they are referred to as voids, the characteristics of their for-

mation are very likely not equivalent to those of the formation of voids in crystalline

materials. The process followed in the formation of the nano–porous networks can be

easily appreciated by looking the “implant damage map”, Figure 1.19. We can see

that as we increase the ion fluence we must transition through an amorphous region in

order to achieve the nano–porous structure. Therefore, it seems that amorphization

of the material is a precursor for the formation of the nano–porous networks.

Figure 1.18 shows the evolution of the microstructure with increasing irradiation

dose. We can see that initially the small voids grow by absorption of radiation gener-

ated vacancies and coalesce until they lose their circular–like shape. They also report

that once the circular shaped voids have evolved into the more complex porous struc-

ture, no more voids are observed to form and the existing ones simply grow without

coalescing. Further, past a dose of 8.5× 1015 ions cm−2 the microstructure becomes

fairly stable and further irradiation does not change the microstructure significantly.
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Figure 1.18: Radiation–induced nano–porous structure formation in amorphous Ge
after 1.5 MeV Kr+ irradiation at room temperature to doses of: (a) 7.0 × 1014; (b)
3.0×1015; (c) 6.0×1015; (d) 1.0×1016; (e) 2.0×1016; and (f) 2.7×1016 ions cm−2 [19].
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Figure 1.19: Implant damage map for self implants into Ge: threshold dose values are
5.0×1013 cm2 for amorphization, 2.0×1015 cm2 for void formation, and 4.0×1015 cm2

for porous structure formation. Boxed symbol represents crystallinity, filled symbols
represent continuous amorphization, half-filled symbols represent void clustering, and
open symbols represent porous formation. All implants were done at room tempera-
ture. (Figure copied from Darby et al. [37]. The references to the data used are given
by them.)
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This nano–porous network stability is not completely understood, but a likely expla-

nation is that the high porosity allows the ions to freely travel through the target

causing minimum damage to the material. This along the fact that these porous

structures have a very large surface–to–volume ratio can lead to fast healing of the

defects that are created. Recent work on nano–porous Au shows that there are critical

“fiber” diameters at which radiation damage will be readily annealed, Figure 1.20 [38].

Briga et al. argue that if the fibers are too large they will accumulate defects leading

to clustering, e.g. into voids. If they are too small, collision cascades will lead to melt-

ing and breakage of the fibers. Either case leading to unstable microstructures. The

damage tolerance window was computationally calculated from molecular dynamics

simulations and experimentally validated, Figure 1.21. It was suggested that there

is an essential balance between the damaged production and the enhanced annealing

due to the large surface area.

Similar structures have been formed on binary III–V semiconductors like GaSb

[34, 21] and InSb [23]. These high ion energy irradiated materials also lead to the

formation of embedded nano–porous structures. Perez–Bergquist et al. reported the

formation of a “intact” surface layer, Figure 1.22. The formation of distinct nano–

scale porous regions as a function of depth was observed from cross sectional micro-

graphs. First, we can see a uniform surface layer located at the irradiated surface.

This layer deteriorates with increasing dose as the porous region leads to expansion

of the subsurface region[34]. Under this layer there is a nano–porous structure with

uniformly spaced pores and “fibers” that extends most of the damaged region. This

layer thickness is energy and dose dependent, increasing with both of these param-

eters. Lastly, at the end of the porous layer, Figure 1.22(d), there is a nano–porous

network nucleation layer. The pores in this region are much smaller (∼ 20%) than the

pores in the uniform region. This region is referred to as a transition region between

the nano–porous and bulk material.
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Figure 1.20: Window of radiation endurance. Map showing the window of radiation
resistance (triangular area) in terms of the diameter of the foam ligaments and the
dose-rate for the irradiation conditions explored in this work: 45 keV Ne ions into Au
foam target at room temperature [38].

Figure 1.21: Irradiation of nanofoams, experimental results. Nanoporous Au irradi-
ation at 77 K with 45 keV Ne+ to a dose of 4.5 × 1014/cm2 (1.5dpa) at 300 K. (a)
Unirradiated sample, including small area diffraction (SAD) pattern showing that the
ligaments are polycrystalline. (b) Bright-field TEM image of np-Au after irradiation.
(c) Irradiation of nanofoams, computer simulation. Small region of the sample with
45% porosity and a ∼5 nm ligament size, ∼110 ps after a cascade began, melted
and recrystallized the tip of a ligament. Atomic displacements larger than the lattice
parameter a0 are shown with red indicating more than 4a0 [38].
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Figure 1.22: a) Cross–sectional SEM image GaSb nano–porous layer irradiated with
1 MeV Au+ to1 × 1014 ions cm−2. Inserts show b) the surface layer (tilted to 10◦

off axis), c) the presence of fully formed nano–porous region, and d) a transition
regime in which the pores blend into the substrate. e) Same sample at an angled
perspective, showing the incident ion beam direction, surface layer, nano–porous layer,
and crystalline substrate [34].
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It should be mentioned that attempts to generate these nano–porous structures in

Si substrates has proven more challenging. Even though several methods have been

successful in synthesizing Si nano–fibers [1], ion irradiation has not been shown to

generate the desired nano–structure. Perez–Bergquist et al. did show the formation

of porous micron–scale structures, “nano–caves”, by varying the radiation tempera-

ture [27], but were not able to generate nano–porous structures similar to the ones

observed in Ge. Due to the importance of Si in the electronics field, it is of great

interest to understand the mechanisms that enable the formation of said structures

in Ge but not in Si. Lastly, we must acknowledge that it has been suggested that

the formation of these unique structures are due to bubble swelling or sputtering.

Even though the work by Wang was performed with Kr–ion irradiation, the high

energy (range of ∼ 700 nm) and small size of the sample (∼ 100 nm TEM sample)

means that most of the ions traveled through the Ge. In fact, Wang reports that

it is expected that < 1% of Kr was deposited. Furthermore, similar structures have

been observed with a wide range of non–noble gas ion irradiation. As for the case of

sputtering, it is not expected to be able to explain the formation of the nano–porous

structure deep into the bulk of the material. Additionally, GaSb has been observed

to retain an intact surface layer even after a well–defined nano–porous network has

been developed.

1.3.2 Surface Nano–Structures

Several surface nano–structures have been developed through ion beam irradia-

tion. In order to generate these structures, the material needs to be irradiated by

low to mid energy ions. Otherwise the ions would penetrate deep into the mate-

rial depositing most of the ions’ energy away from the surface. The formation of

these structures has been attributed to sputtering and surface diffusion mechanisms,

as discussed in Section 1.4.1. In this section we will look at surface quantum dots,
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nano–cones and nano–wall formation.

1.3.2.1 Quantum dots

Quantum dots are of interest due to their potential applications in transistors,

solar cells and diodes. Ion irradiation has been used to generate them on monatomic

(Si [39] and Ge [40]) and binary (GaAs [24] and GaSb [41]) semiconductors. The size

and spatial distribution of the ion irradiation induced quantum dots is very sensitive

to the irradiation conditions. For instance, Wei et al. showed that GaAs quantum

dots tend to self–assemble into highly periodic hexagonal–like patterns as the ion

beam incidence angle deviates from the surface normal, Figure 1.23. Continuous

bombardment increases the extent of the highly ordered pattern. The highly periodic

patterning is partly attributed to a shadowing effect of the angled ion beam by the

droplets, once these are formed. As the angle and ion bombardment (i.e. dose) in-

creases more energy is deposited in the surface region of the target, which enhances

the nano–structuring phenomena. Furthermore, they show that the quantum dots

formed on top of the GaAs target are arsenic (As)–depleted, Figure 1.24. This could

be explained through sputtering mechanisms, since As has a larger preferential sput-

tering yield, as argued by [24]. Figure 1.25 shows a SRIM Monte Carlo sputtering

calculation [5], which corroborates the expected preferential sputtering of As.

1.3.2.2 Nano–cones

A comparable structure formed during low to mid energy ion irradiation of certain

binary semiconductors are nano–cones. These have been shown to form in InSb [23]

and in GaSb [42]. As can be seen from Figure 1.26, the cones grown in the direction of

the beam. This is in contradiction with predictions of sputtering and surface diffusion

models that predict the formation of nano–ripples [43]. Another interesting feature

is the chemical segregation and depletion of antomony (Sb) in certain regions of the
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Figure 1.23: SEM images of morphological evolution of GaAs at various incident
angles: (a) 0◦; (b) 0◦, viewed from 52◦ to sample normal; (c) 20◦; (d) 25◦; (e) 30◦; (f)
40◦; (g) 50◦; and (h) 60◦. Ion energy 5 keV, flux 1.5×1015 cm−2s−1, bombardment
time 5 mins (scale bar 1 µm) [24].

37



Figure 1.24: (Left) Cross–sectional TEM of a single quantum dot (droplet), and
(right) EDS showing the composition of the quantum dot. Ion energy 5 keV, flux
1.5×1015 cm−2s−1, incidence angle 35◦ [24].

Figure 1.25: SRIM calculation of the species sputtering, as averaged for a given num-
ber of incident ions. We see that the number of ions sputtered deviates significantly,
but the average is consistent with increasing dose. Simulation conditions used were
those that yield quantum dots, given in Figure 1.24.
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Figure 1.26: (a) BF TEM images of the nanocones, inset: zoom on the tip showing
a polycrystalline structure. (b) SEM cross–section images of a surface irradiated at
an incidence angle of 60◦. (c) STEM HAADF images of the nanocones. (d) EELS
spectrum imaging a tip. Ga is represented in green, Sb in blue, and O in red [42].

cones, Figure 1.26(d), which is attributed to the slightly higher preferential sputtering

of Sb. A mechanism for the formation of the segregated cones was suggested by LeRoy

et al. that combines preferential sputtering of Sb and surface diffusion of Ga to the

tip of the cone. The mechanism consist of three stages: (i) preferential sputtering

leading to the formation of gallium (Ga)–rich dots; (ii) a Ga–rich surface leads to the

sputtering of Ga and depression of the region around the dot to form the cones; and

(iii) quasi–equilibrium sputtering of Ga from the Ga–rich tip and the cone walls, and

surface diffusion of Ga from the cone walls to the tip. This surface diffusion provides

a continuous supply of Ga to the tip as this is being sputtered.

1.3.2.3 Nano–walls

In beam ion energy has a great deal of influence in the type of nano–structure

generated during irradiation. Even when irradiating the same materials, the energy

deposition distribution will dictate which type of nano–structure will result. For ex-
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Figure 1.27: Formation of nano–walls due to low (a) energy [44] or (b) low fluence [28].
From the work by Steinbach et al. we can see that the nano–walls degrade as a function
of fluence, which yields a “netlike” nano–porous structure.

ample, as previously discussed, high energy ion (MeV) irradiation of Ge will lead to

the formation of individual fiber–like nano–porous networks, while low to mid-range

energies yield nano–wall like features. Even though the resulting microstructures are

quite different, the general mechanisms leading to these structures are very similar.

Figure 1.28 [36] shows a schematic of the mechanism for the formation of the nano–

walls. As for the nano–porous networks, we first have amorphization of the target,

nucleation and coalescence of the defects and finally extension of the observed struc-

tures. Irradiation fluence also seems to have a similar effect to the energy on the type

of structure that is generated [28]. Energy deposition distributions could once again

explain the differences in the target structuring. It should be pointed out that these

nano–wall could possibly be the precursor structure to the fiber–like nano-porous

structuring, although they do achieve a stable structure. Similar energy deposition

dependence on nano–structuring behavior has been reported for other types of semi-

conductors, e.g. InSb [23].
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Figure 1.28: Schematic representation of the microstructural evolution of Ge with
increasing ion dose; the starting material is single crystal Ge, but with increasing
dose an amorphous layer is formed; as the dose increases further, small clusters of
near-surface pores nucleate; as the dose increases further, the pores cover the whole
surface and elongate into the wafer, forming the nanostructured morphology; as the
dose increases further, the pores elongate further and the material experiences a
large out-of-plane expansion with the nanostructured region existing on top of a
nonporous amorphous layer. In all cases, the surface roughness and roughness of the
amorphous/crystalline interface increase with increasing ion dose. [36]
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1.4 Modeling of Radiation Effects

This work focuses on the development of computational numerical models that

are able to simulate the unique radiation induced microstructural changes previously

discussed. Computational models have been extensively used to model different types

of radiation related changes in materials. In this section, we briefly examine several

models and computational techniques that have been employed in the simulation of

radiation induced effects.

1.4.1 Bradley–Harper Model

Ion irradiation induced sputtering has been suggested as the controlling mecha-

nism for the formation of the nano–structures presented earlier. This is especially

true of the surface nano–structures, Section 1.3.2. These was studied in depth by

Sigmund [45], when he developed a theory to explain how the surface local curva-

ture influences the total sputtering yield. Basing their model on Sigmund’s theory,

Bradley–Harper (BH) developed a model that accounts for both sputtering and sur-

face diffusion as the main mechanisms for the formation of radiation induced surface

structures. According to Sigmund’s theory, regions down the slope in the valley have

a larger energy deposition than regions close to the peak, Figure 1.29. Therefore,

as detailed in Section 1.1.1, since the sputtering yield is proportional to the energy

deposited by the ion, the sputtering yield at the valley is larger than at the peak.

This leads to an enhancement of any small intrinsic roughness that may be present.

Bradley–Harper showed that during low energy ion irradiation, the target is sub-

jected to surface instability mechanisms where sputtering and surface diffusion lead to

roughening and smoothening of the surface, respectively. BH developed a continuum
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Figure 1.29: Schematic of an undulated surface being irradiated from the top. The
shaded regions represent the energy being deposited, which can be assumed to be
Gaussian shaped. This initial undulation of the surface is due to the natural material
roughness and the stochasticity of the radiation damage processes [46].

PDE for the surface height, z = h(x, t), to model radiation induced nano–ripples,

∂h

∂t
≈ −v0(θ) + v′0(θ)

∂h

∂x
+
fa

n
Y0(θ)

[
Γ1(θ)

∂2h

∂x2
+ Γ2(θ)

∂2h

∂y2

]
︸ ︷︷ ︸

Sputtering

−B∇2∇2h︸ ︷︷ ︸
Surface
Diffision

(1.25)

where v0 is the rate of erosion of the planar surface, f is the ion flux, a is the average

depth of energy deposition, n is the atomic density, Y0 is the sputtering yield, Γ1,2 are

geometric curvature dependent coefficients, and B is a surface diffusion coefficient.

The terms grouped under sputtering lead to surface instability, while the terms under

surface diffusion stabilize the surface. This model has been useful in describing surface

ripple formation during the initial linear stages.

Lastly, we should point out that recently Madi et al. argued that the mechanism

that control the surface evolution is the mass redistribution of the atoms not sput-

tered [47]. Fitting of grazing incidence small angle X–ray scattering experimental

data to curvature coefficients derived from the BH and mass redistribution models

seem to agree with their assertions, Figure 1.30. A reasonable explanation to why
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Figure 1.30: Dependence of the best-fit quadratic coefficient SX(θ) and theoretical
curves SX(θ) = Seros.X (θ)+Sredist.X (θ) on deviation from normal ion incidence. Seros.X (θ)
is from BH theory modified by the Yamamura correction function with no free pa-
rameters. Sredist.X (θ) is our implementation of the Yamamura correction on the CV
redistributive model with a single free parameter as discussed in the text. [47].

mass redistribution could cause such surface nano–structuring is due to lattice mis-

matching of the reordered atoms. This mismatch increases the local elastic strain

energy. To offset this strain energy, quantum dots could form on the surface, which

in turn increases the surface energy. This has been proven as the controling mech-

anism for the formation of quantum dots (or islands) during heteroepitaxial growth

[48, 49]. This process is known as Stranski–Krastanov growth.

1.4.2 Monte Carlo Modeling

One of the most widely used modeling techniques for simulating microstructural

evolution consists of random sampling of the different allowable ensembles, i.e. con-

figurations, otherwise known as Monte Carlo (MC) methods. MC methods have been

applied to several material’s microstructural (grain growth [50, 51], texture evolu-

tion [51], heteroepitaxial growth [52]), intragranular bubble swelling [53], as well as

wide range of radiation damage parameters [5], inter alia. In general, Monte Carlo

methods are a computational tool that relies on the stochastic nature of certain pro-
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cesses in order to model them.

One of the most employed variant of the MC methods is known as the Potts,

or Q−state, MC method [54], which was developed as a generalized extension of the

Ising model [55]. Each one of these qi−states can be a representation of the material’s

local phase, grain orientation, inter alia [56]. The Potts model is a discrete statistical

model, which has been extensively applied to grain growth kinetics [50, 57]. For the

standard implementation, the Hamiltonian of the system is given by the equation of

state

H = Egb

N∑
i=1

n∑
j=1

(1− δqiqj) (1.26)

where Egb is a measure of the grain boundary/interface energy, N is the number of

particles in the system, n is the number of neighbors surrounding site i and δqiqj is

the Kronecker delta which is given by

δij =

 1, i = j

0, i 6= j
(1.27)

The equation of state has been adapted to include several types of energetic contri-

butions suitable for different applications, e.g. strain energy and bulk free energy [53]

and polycrystal plasticity energy [58]. The system energy allows us to determine if a

certain ensemble is favorable, i.e. if a transition is likely to occur. An example would

be grain growth where site i attempts to change states to that of site j, qi → qj. To

determine whether the change will be allowed, the standard Metropolis algorithm can

be employed. Therefore, the probability that this particular exchange will happen is

given by following the Boltzmann statistics, such that

Pqi→qj =

 1, ∆H ≤ 0

exp
(
− ∆H
kBT

)
, ∆H > 0

(1.28)
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where ∆H is the change in the energy of the system before and after the exchange,

kB is the Boltzmann constant and T is the absolute temperature. The temperature

parameter T does not represent the actual experimental temperature, but a parameter

of the probability of transition between states. The transition probability is then

compared to a uniformly distributed random number, RN = [0, 1), to determine the

transition acceptance

kac =

 accept RN < Pqi→qj

reject RN ≥ Pqi→qj

(1.29)

1.4.3 Phase Field Modeling

The phase field method has also been used to simulate many of the same phenom-

ena as the MC methods, e.g. grain growth [59, 60]. The main difference between the

two techniques is the way that they achieve a solution to the system: MC is based

on stochastic sampling of ensembles by use of discrete fields and phase field solves

sets of PDEs that describe the evolution of continuum fields deterministically. The

fundamental idea of this method is to define smoothly varying fields that describe the

state of the system.

Each parameter of interest will be defined by its own order parameter (field),

such that the set of order parameters are able to describe the phenomena of interest,

e.g. microstructural evolution. For example, let’s consider an order parameter that

represent the actual phase of the material, q composed of a precipitates within a

matrix. Then the order parameter is q = 0, q = 1 and 0 < q < 1 for the precipitate,

matrix and interfaces, respectively. This is schematically shown in Figure 1.31 for the

interface between the matrix and precipitate. This particular order parameter can be

considered to be like the plot shown in Figure 1.31(b), which is known as a diffuse

interface. In other words, the transition between the precipitate and the matrix is
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Figure 1.31: Drawing of two different types of interfaces: a) sharp, and b) diffuse.
The red region represents a precipitate and the blue the matrix

not sharp, but continuous and characterized by the interface width, wint.

1.4.3.1 Cahn–Hilliard Equation

An important implementation of the phase field model was developed by Cahn–

Hilliard to study spinodal decomposition. They derived the Cahn–Hilliard equation

to describe the evolution of the concentration field, which is driven by the chemical

potential [61, 62, 63, 64]. This model was later extended by Allen and Cahn to couple

the concentration and phase fields to describe microstructural evolution [65]. The

Cahn−Hilliard equation has been very useful for material scientists in simulating a

wide variety of phenomena.

The Cahn–Hilliard model has been also applied to the modeling of the formation

of the porous nano–structures, discussed in Section 1.3.1.1 [44, 66]. This is, to the best

of the author’s knowledge, the first and only attempt at modeling the formation of

the porous nano–structures. There have been other Cahn–Hilliard models developed

to model bubble [67] and void [68, 69, 70] swelling of metals, but not the formation

of the extended microstructures previously discussed. Li et al. implemented an

adapted Cahn–Hilliard equation, which includes terms for the defect creation (ξ0),
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recombination (ξrc) and re–deposition (ξrd) rates

∂φ

∂t
= ξ0 − ξrc(1− φ)− ξrdφ︸ ︷︷ ︸

Radiation damage

+
M

N2
∇2

(
∂g

∂φ
− 2k∇2φ

)
︸ ︷︷ ︸

Cahn–Hilliard

(1.30)

where φ is the order parameter, M is the mobility, N is the number of atomic sites

per unit volume, k is the gradient energy coefficient and g(φ) is given by the regular

solution equation

g(φ) = gvφ+ ga(1− φ) + kBNT [φ lnφ+ (1− φ) ln(1− φ)] + ΩNφ(1− φ). (1.31)

Li et al. were able to produce very elegant results, Figure 1.32, but they had signif-

icant shortcomings like the lack of a physical connection between the experimental

parameters and the computational ones. This is true of most models, but no clear rela-

tionships could be established between the kinetics controlling rates and the physicals

processes. Furthermore, Li’s model essentially is solving the spinodal decomposition

of a two well system, much too similar as many other spinodal decomposition mod-

els. Hence, while the results yield very interesting microstructures it is complicated

to attribute the resemblance to the adaptation of the Cahn–Hilliard model.

1.5 Comments on the Formation of Nano–porous Structures

The mechanisms that lead to the formation of the porous nano–structure have

been debated ever since they were first observed. Due to their initial spherical shape

and since krypton was used as the irradiating projectile of the Ge, it was suggested

that the nano–pores were Kr nano–bubbles. As Wang explained, the ion range of

Kr in Ge under the experimental conditions is ∼ 700 nm. They also point out that

the irradiated sample was electron transparent, i.e. with a thickness of < 100 nm.

Therefore, it is expected that most of the ions travel through the transparent target.
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Figure 1.32: Formation and evolution, in arbritary time units, of nanowalls under a
medium ion energy irradiation as calculated by Eq. 1.30. [44].

More recently, metallic ions have been used to generate similar structures, which seem

to discredit the notion that the nano–porous structures are a result of gases nucleating

nano–bubbles.

Another mechanism suggested is that of extreme sputtering. This argument can

be invalidated by the recent observation of the embedded nano–pores under an intact

surface layer. Also, the nano–porous region has been observed to grown in thickness

deeper into the target with irradiation dose and energy. Hence, even if there was

sputtering at the end of the ion range, it would be redeposited into the surrounding

fibers. Perhaps working as a mechanism to grow the fibers, which has not been

observed.

1.5.1 Qualitative Models

From all the qualitative descriptions of the phenomena that leads to the formation

of the nano–porous structures, Nitta et al. [71] presented the most compelling one. As

the material is irradiated, mobile point defects are created within the target matrix.

The interstitials that survive recombination rapidly diffuse to the free surface (sink)

where they are annihilated. Meanwhile, the vacancies remain in close vicinity to
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Figure 1.33: Qualitative model describing the formation of the nano–structures. (i)
The point defects are created by ion implantation, with the more mobile interstitials
migrating. (ii) Voids nucleation during the early stage of irradiation. (iii) Surviving
interstitial atoms migrate and aggregate under the walls, increasing their height. (iv)
The voids grow perpendicular to the surface until they burst.

where they were created, where they can nucleate into voids. Vacancy annihilation at

the void surface then leads to the growth of the void in the downward direction, while

interstitial diffusion along the walls separating the voids leads to the walls increasing

their height. In their description, these two mechanisms lead to the formation of

the columnar features shown in Figure 1.33. The model describes the formation of

the nano–walls discussed in Section 1.3.2.3. Perez–Bergquist et al. [34] extended this

qualitative model to include the formation of the embedded nano–porous networks

and the nucleation of the transition zone, as discussed in Section 1.3.1.1. Figure 1.34

shows a schematic of Perez–Bergquist’s qualitative model.
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Figure 1.34: Adaptation of the Nitta model by Perez–Bergquist to explain the for-
mation of a “transition layer” and a quasi–stable intact surface layer. The transition
layer is formed as the ions are able to penetrate deeper into the highly porous target.
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CHAPTER II

Development of the Hybrid Model

Ion irradiation induced nano–structuring is a multi–scale multi–physics phenom-

ena that cannot be trivially explained. This is especially true for the embedded nano–

porous structures, which has different types of features that span several orders of

magnitude. There have been attempts at modeling these phenomena as explained in

Section 1.4.3.1 [72, 44, 66]. Unfortunately, these models lack elements that are able

to properly couple and describe these physical processes. In order to enhance the

previous attempts at modeling these phenomena, a multi-scale model that combines

deterministic and statistical methods has been developed. The motivation for using

a deterministic–statistical hybrid model is trying to draw from the advantages that

each of these computational approaches provide. This chapter discusses the devel-

opment of the computational model that aims at properly approximately describing

these multi–scale processes.

2.1 Microstructural Representation

The hybrid model can be executed in rectangular (2D) or cuboid (3D) geometries,

as defined by SPPARKS (discussed in Section 2.8). These geometries are digitized

into a voxelated mesh, where each voxel’s state is defined by a set of continuum and

discretized fields. The correct description of the microstructure is given by these
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fields which can be representative of: atomic and defect composition (continuum),

and phase, spin or feature (discrete). Each mesh voxel within the simulation domain

has a corresponding set of different fields describing its particular state, as discussed

in the next sections. These parameters are tailored for each model and discussed for

each individual simulation.

2.1.1 Spin

The spin order parameter (s) is an integer discrete value that is assigned to each

voxel and it identifies the site’s “energetic state” level. It can be representative of

different state characteristics like grain orientation, texture, inter alia. Therefore,

the model is able to simulate single, polycrystalline materials and amorphous (or

materials lacking long range crystallinity), depending on the simulation specifics.

Figure 2.1 shows a polycrystalline microstructure where each color represents a given

grain orientation. Interfaces, in this example a grain boundary, are identified by

the interface between two differently colored voxels. One of the main uses for this

parameter is for grain growth calculation using the Potts Monte Carlo model.

2.1.2 Phase

The phase order parameter (q), much like the spin, is an integer discrete value

that describes the voxel’s thermodynamic state. Therefore, it is essential for the re-

spective thermodynamic calculations. One main difference between spins and phases

is that while a phase can have several grain orientations (spins), a single crystal will

be composed of a single phase. This field must be carefully defined for each partic-

ular simulation, especially when employing models that make use of the free energy

functionals, e.g. Cahn–Hilliard model. Furthermore, it should be pointed out that

this field could be used to define different types of features. For instance, we could

define a void to be a particular phase in a swelling model. Other features which have
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Figure 2.1: Schematic of a polycrystalline material as defined by its grain ID, phase
and concentration and represented by a digitized voxelated microstructure. a) Rep-
resentation of the grain ID, where each color defines a particular grain orientation.
b) The phase of each particular grain is visualized for this α(blue)–β(red) system. c)
The smoothly varying concentration field of the binary system. If looking at the con-
centration from left to right we go from a high concentration of A (Ca → 1, Cb → 0)
to a low concentration (Ca → 0, Cb → 1) with a smooth variation in between.
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been used in the past include: bubbles, defect clusters, and precipitates.

2.1.3 Concentration

Depending on the model, we can have multiple order parameters to represent the

concentration of a variety of elements, e.g. binary systems, or chemical and defect

concentration. These are continuous fields that represent the fraction of a given

component

Ci =
ni∑N
i=1 ni

∈ R : (0 ≤ Ci ≤ 1). (2.1)

where ni is the number of the n−field which relates to the i component and N is the

total number of components associated to the n−field. The evolution of these fields

are driven by diffusional forces, and are directly coupled with the discrete fields pre-

viously discussed. These fields are intrinsically linked to the systems’ energy through

the equation of state (EoS).

2.2 Radiation Damage

One of the difficulties of being able to physically describe the formation of the

nano–porous structures is that processes that occur at the atomistic scale have such

a pronounced effect on the morphological evolution. In other words, the radiation

damage caused at the atomistic scale leads to effects that are evident at the meso–

scale, e.g. RIS. Several computational models and/or techniques have been developed

to simulate these type of atomic scale events. Some of these techniques include: binary

collision approximations [5, 73], molecular dynamics [74] and kinetic Monte Carlo [75].

Our model incorporates the use of SRIM to obtain general description of the radiation

damage generated from collision events. For instance, SRIM calculates the number

of defects generated by binary collision approximations.
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Figure 2.2: Illustration of a Monte Carlo BCA (SRIM) calculated Ga+ ion tracks as
they travel through a Ge substrate after entering through the surface, depth = 0 Å.
Each colored dotted line represents a particular path for the given colored ion.

2.2.1 Binary Collision Approximation

The binary collision approximation (BCA) is a computational technique used to

efficiently simulate ion range and defect production in materials, Figure 2.2. BCA

models have been developed for crystalline targets, e.g. MARLOWE [76], which share

similarities to molecular dynamics in that specific collision events can only happen

in well defined sites. By including crystallinity we can incorporate phenomena like

channeling, which will influence important radiation damage characteristics like the

range of ions. The other type of BCA model is for materials lacking long range or-

dering, i.e. amorphous materials. Simply, no long range atomic ordering is accounted

for, which by default leads to the assumption of an amorphous material. These type

of BCAs employ stochastic methods to determine the collision properties, e.g. Monte

Carlo models. For both variations, the ion trajectory is approximated to be a straight

path with deflections due to binary (ion–target atom) collisions.

The collision parameters for a BCA model influencing deflection of the projectiles
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are determined by solving the scattering integral, or general orbital equation, between

colliding particles,

θ = π − b
∞∫

rmin

dr

r2

√
1−

(
b
r

)2 − V (r)
ηE0

(2.2)

where b is the impact parameter, r is the distance between the colliding particles,

V (r) is the interatomic potential, η is an ion–atom mass parameter and E0 is the ion

incoming energy. The solution to the scattering integral gives us information about

the scattering angle and the amount of energy that is lost by the ion to the target.

The Monte Carlo BCA randomly determines the collision and scattering conditions

for the next target atom, considering only the material density. This random choice

of collision parameters in effect treats the target material as amorphous.

2.2.1.1 Stopping and Range of Ions in Matter

SRIM is a suite of programs, which include a Monte Carlo BCA algorithm. It in-

cludes the Transport of ions in matter (TRIM) code, which is one of the most widely

known and used software for the calculation of radiation damage to a first approxi-

mation [5]. This software uses Monte Carlo methods, alongside target properties like

the density, to determine the impact parameter, which yields information about how

much radiation damage can be expected on average.

The TRIM program makes use of the of the Ziegler–Biersack–Littmark (ZBL)

universal interatomic potential

VZBL(R) =
z1z2e

2

aR
ΦU(R) (2.3)

where z1,2 are the atomic number for the ion and atom, respectively, e is the electronic

charge, a is the screening radius, R is the reduced interatomic separation (R ≡ r/a),
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Table 2.1: Constant values which define the ZBL screening function.
n An Bn

1 0.18180 3.2000
2 0.50990 0.9423
3 0.28020 0.4029
4 0.02817 0.2016

and Φ(R) is the universal screening function, given by

ΦU(R) =
4∑
i=1

Ai exp(−Bi ·R) (2.4)

where the fitting constant values Ai and Bi were obtained from averaging of approx-

imate potentials for randomly selected atomic pairs and are given in Table 2.1.

One of the main advantages to the TRIM code, is the use of the “MAGIC” formula

to determine the uniformly random distribution of scattering angles [77, 78]. The

MAGIC formula is defined as

cos

(
θ

2

)
=
B +Rc + ∆

R0 +Rc

(2.5)

where B = b/a, Rc = ρ/a and ρ is the radii of curvature, R0 = r0/a and r0 is

the sum of the distance of closest approach, and ∆ = δ/a and δ is the sum of the

correction terms. The MAGIC formula is the essential component that made TRIM

a viable tool to approximate radiation damage by allowing a semi–analytical solution

to the scattering angle equation [5]. By obtaining the scattering angle with use of the

MAGIC formula, instead of solving Equation 2.2, computing speeds are increased by

up to 50×.

We should note that the stochastic nature of TRIM’s solution to the scattering

integral fundamentally treats the target material as amorphous. Hence, instead of

having periodic positions where events can happen we allow a statistical distribution

of such probable positions. This makes TRIM a good tool to approximate the char-
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Figure 2.3: TRIM simulation of 1 MeV Kr+ irradiation on amorphous Ge. (green)
Curves correspond to the left axis and were obtained from the damage event file, and
(blue) Curve corresponds to the right axis and was obtained from the energy to recoil
file.

acteristics of the radiation damage in the nano–porous networks since amorphization

has been established as a precursor to the formation of these structures.

2.2.1.2 SRIM Calculated Damage

TRIM calculations can give us a first order approximation of the amount of damage

that is introduced as a function of dose. After a large TRIM simulation, i.e. enough

MC runs to obtain a smooth damage profile distribution, we obtain a suitable average

to the amount of radiation damage. Figure 2.3 shows a TRIM simulation of 30,000

Kr ions irradiating an amorphous Ge substrate. We are mainly interested in two of

the TRIM calculations: damage event and energy to recoil. These calculations are

used to determine the extent of damage introduced into the microstructure.

These radiation damage distributions represent an average of the radiation effects

at a given depth. For example, at a depth of ∼ 300 nm, on average, each Kr+−ion

will deposit about 1.6 keV/nm. These distributions can be nicely fitted by Gaussian
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distributions

Υ(z) = Υ0 · exp

(
−
[
z − z̄√

2σ

]2
)

(2.6)

where Υ(z) is either the damage or energy deposited at depth z, Υ0 is a parameter to

define the distribution’s “amplitude”, z̄ is the average depth at which the distribution

peaks and σ is the standard deviation. In this way we could model the radiation

damage in our system by using carefully defined Gaussian distributions. While the

approach used by Li et al. in his adapted Cahn–Hilliard model is based in similar

fundamental thinking, in their work all defects are introduced spontaneously at the

beginning of the simulation.

The rate at which atoms are displaced by atom–ion interactions can be given by

Rd ≡ N

Ê∫
Ĕ

φ(E0)σD(E0)dE0 (2.7)

where N is the atomic density, Ĕ and Ê are the minimum and maximum ion energies,

φ(E0) is the energy dependent ion flux, and σD(E0) is the energy dependent displace-

ment cross section. This rate gives us the probability that a projectile with some

energy will interact with the lattice atoms cause radiation damage. Instead of solving

this type of equation, we approximate the probability of collision to be proportional

to TRIM’s damage calculation, or more accurately to the normal distribution used

to simulate the damage distribution

pd(x) =p0
d · exp

(
−
[

x− x̄

σ

]2
)

=p0
d · exp

(
−
[
x− x̄
σ

]2
)

exp

(
−
[
y − ȳ
σ

]2
)

exp

(
−
[
z − z̄
σ

]2
)
.

(2.8)

where p0
d is a normalized peak probability of a radiation event taking place located

near the ion range and x is the Cartesian coordinate. While technically TRIM’s
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damage calculation provides the number of defects that were created at a certain

depth, we assume that this is directly proportional to the probability of collision.

There is an inherent stochasticity to the radiation processes, and the process de-

scribed for calculating the probability of collision is deterministically, to some extent.

To account for the aleatory nature of the radiation processes, we can “randomize”

the energy deposited distribution. This approach is better understood by examining

Figure2.4. The TRIM calculation gives us a distribution profile for the amount of

energy deposited by ion as a function of depth, Edep(x). We then perform a Gaussian

fit to this distribution, which gives us a maximum energy deposited threshold. This

threshold is used to calculate the amount of energy deposited during the simulation

by multiplying by a uniformly distributed random number

Esim
dep = RN · EGaus

dep (2.9)

where RN ∈ R : [0, 1) is the random number. Using these distributions, we are able

to simulate the creation of defects within our model. For example, on Figure2.4, the

TRIM calculated data is fitted to a Gaussian distribution shown in green and blue,

respectively. The fitted distribution is then used to determine how much energy was

deposited at a particular depth by randomly choosing an amount of energy bounded

by the fitted curve, shown as stars. These values are then used to calculate the

number of radiation defects introduced in our model. While this could add to the

link between the model and the physical processes, it does not significantly change

the simulation results.

Lastly, it should be noted that most of the created defects calculated by the TRIM

simulation arise from the recoil atoms, instead of the projectile ion. This is clearly

shown in Figure 2.3, where the recoil curve is orders of magnitude larger than the ion

curve. Therefore, in this work we will only consider defect generation from the recoil
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Figure 2.4: Representation of fitting and randomization of the recoil energy deposited
under the same condition as in 2.3. The stars represent the random deposited energy
at depths z = (120, 320, 600) nm.

atoms. Furthermore, while this concept of randomizing average calculated values,

SRIM could be used to obtain ion paths similar to the ones shown in Figure 2.2.

These paths could then be sampled by use of a kinetic Monte Carlo algorithm. This

would give an even more accurate simulation of the radiation damage.

2.2.1.3 Shortcomings to the BCA Model

TRIM is widely used to describe the radiation damage characteristics, especially

by experimentalist as a first order approximation. Recent comparative studies be-

tween BCA and molecular dynamics (MD) [79, 80], suggest that there are some

shortcomings with the crystal and Monte Carlo BCA models. One clear shortcoming

arises from amorphization mechanisms, which BCA models are not able to simulate.

Bukonte et.al. also showed that BCA models are not capable of accurately capturing

small displacements in both crystalline and amorphous materials, when compared to

MD models. They also suggest that the Monte Carlo BCA model better describes

crystalline material irradiation that it does amorphous material irradiation Figure 2.5.
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Figure 2.5: (Atom displacement statistics for single 1 keV Ar+ impact on (left)
amorphous and (right) crystalline Si at 50◦ incidence angle MD and BCA. [80]

Even though BCA models might be fundamentally flawed, we incorporate them in

the calculation of radiation damage in our model as they do provide acceptable ap-

proximations.

2.2.2 Defect Survivability

For non–diffusive/reactive defects, as the ones calculated by TRIM, we need to ap-

proximate how many of the created defects survive the collision cascade and quenching

stages. Before determining how many defects survive the highly unstable cascades

and go on to modify the microstructure at larger scales, we need be able to approxi-

mate how many instantaneous defects are created. From TRIM we obtain the amount

of energy that was transferred, through nuclear collisions, from the ion or primary

knock–on atom to the lattice atoms. As these atoms are displaced, we generate a wide

range of point defects, which we calculate by use of the Kinchin–Pease model [81]

η(ET ) =



0, ET < Ed

1, Ed < ET ≤ 2Ed

ET

2Ed
, 2Ed < ET < Ec

Ec

2Ed
, ET ≥ Ec

(2.10)
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where η(ET ) is the number of defects created when ET energy was transferred, Ed is

the threshold displacement energy and Ec is the cut-off energy associated to electronic

energy loss. This is the most basic model, and many other adaptations have been

developed [11]. Nevertheless, it is the standard approach followed by TRIM and we

implement it as a first order approximation.

The Kinchin–Pease model we can approximate how many defects were created

during the radiation event. The model does not account for the evolving microstruc-

ture nor does it retain memory of any previous event. Therefore, it does not account

for defect reactions like recombination or annihilation at sinks. As can be expected

from such a simple model, Kinchin–Pease overestimates the number of defects present

after the quenching stage. In order to properly account for the recombined point de-

fects, we use the approach described by Hobler [82]. Let’s consider two defects that

are separated by a distance dij. The probability of these defects “seeing” each other

to then recombine is dependent on the magnitude of their separation distance. If this

distance is less or equal than the capture radius (rcap) we assume that the defects are

able to recombine. Work on what this capture radius is and how it is implemented to a

cumulative damage model has yielded consistent trends [83, 84]. Following approach

outlined by Hobler et al., the number of defects surviving the cascade quenching

period is given by

ηsurv(ET ) = η(ET ) · frec · fpre (2.11)

where η is the Kinchin–Pease calculated number of Frenkel pairs, fpre is the prob-

ability of a newly created defect annihilating itself with a pre–existing defect, and

frec is the fraction of defects that survive recombination during the collision cascade.

The η(ET ) can be calculated from the TRIM results as discussed in Section 2.2.1.2.

The fraction of defects remaining after recombining with pre–existing defects is pro-

portional to the recombination probability (prec). To obtain a relationship between

these two parameters, let’s consider the four probable events which the defects can
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undergo and how they affect the Frenkel pairs.

• Both defects recombine with a pre–existing defect, which leads to a net change

of one less Frenkel pair. This event will have a probability of p−FP = prec ·prec =

p2
rec.

• Both defects survive the quenching stage, leading to a net increase of one Frenkel

pair. Since the probability of not recombining is (1− prec), this event will have

a probability of p+FP = (1− prec)(1− prec) = (1− prec)2.

• Either the interstitial or the vacancy defect recombines, while the other defect

survives. This leads to no change in the number of Frenkel pairs and has a

probability of p0 = prec(1− prec).

Taking these processes into consideration, we can express the parameter fpre as

fpre =
4∑
i=1

pi ·∆FPi

=(+1) · p2
rec + (−1) · (1− prec)2 + 2 · (0) · prec(1− prec)

=(1− 2prec)

(2.12)

where ∆FPi is the net change of number of Frenkel pairs and pi is the probability of

that change taking place. The recombination probability is given by

prec ≡
Ni +Nv

4Nsat

≈ Nv

2Nsat

(2.13)

where Ni and Nv are the local concentration densities of pre–existing interstitials

and vacancies defects, and Nsat is point defect saturation concentration density. For

simplicity, here we have made the approximation, as Hobler et al., that Ni ≈ Nv

since they are created in equal numbers. With this assumption, the probability of

recombining and not recombining will be identical, which leads to prec = (1− prec) =
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Figure 2.6: Comparison of an experimental SIMS profile of boron implanted into
silicon with profiles simulated using capture and CPU intensive process of keeping
track of the point radius values of 0.22a, 0.43a, 0.50a and 0.85a for an energy defects
created by all cascades, and yet, within the error of 15 keV, tilt angle of 0◦, and
rotation angle of 0◦ [83].

0.5 and Nv = Nsat. This saturation parameter is defined by the capture radius

Nsat =
1

2

(
4πr3

cap

3

)−1

=
3

8πr3
cap

(2.14)

where the 1/2 terms stems from the fact that at saturation the probability of re-

combining is equal to the probability of surviving. The capture radius describes the

critical distance between defects at which they are able to recombine. Studies on B+

irradiated crystalline Si suggests that the capture radius can be defined as

rcap = f · a0 (2.15)

where a0 is the lattice constant and f is a correction factor that ranges between 0.22–

0.5, Figure 2.6 [83]. They implemented the cumulative model to the MARLOWE

program obtaining fairly good agreement for a capture radius of rcap = 0.43s0. By
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Figure 2.7: Comparison of experimental SIMS profiles of boron implanted into silicon
at doses of 1×1013, 5×1014, 2×1015, and 8×1015 cm−2 with profiles simulated with
the damage model for (a) an energy of 15 keV, tilt angle of 0◦, and rotation angle of
0◦, and (b) an energy of 35 keV, tilt angle of 7◦, and rotation angle of 30◦. [83].
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combining Equations 2.11 and 2.12, we get the defect survivability

ηsurv(ET ) = η(ET ) · frec · (1− 2prec) (2.16)

which is the number of expected surviving defects that will influence how the mi-

crostructure evolves at the mesoscales. This parameter is then incorporated into the

defect evolution equations, as detailed in the next sections. While this approach was

developed for crystalline materials, it is assumed that it will be an acceptable approx-

imation for both crystalline and amorphous materials. Perhaps adapting the different

correctional constants could be an appropriate way of tailoring the model for amor-

phous materials. Furthermore, we need to keep in mind that by definition amorphous

materials do not have periodic lattice sites which accommodate point defects. In fact,

to the best of my knowledge, there is no consensus on how to define point defects on

amorphous structures. Therefore, we treat these defects as concentration densities.

2.3 Conventional Formulation

As outlined in Section 1.1.2, the creation of radiation defects can lead to chemical

changes in the target material. We incorporate a similar model to the one detailed in

the previous chapter, but we adapt the set of governing equation to include driving

forces that are based on thermodynamics. A clear distinction between our model and

the one previously developed by Wiedersich et al. is the use of chemical potentials,

which drives the atomic chemical solubility to a thermodynamic equilibrium.

We can define the system such that the concentration for each individual com-

ponent i is the fraction of said component present and adding all the individual

components equals one, i.e.
N∑
i=1

Ci = 1. (2.17)

Then, we can rewrite this equation in a way that one component becomes dependent
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on the rest

CN = 1−
N−1∑
i=1

Ci (2.18)

where we have reduced the number of elements that we need to explicitly track. Using

this relationship, we can define the compositional evolution of the system by a set of

N −1 PDEs describing the diffusional evolution. Each one of these equations has the

general form

∂Ci
∂t

= −∇ · Ji (2.19)

where Ji is the flux vector for the i−component. A well accepted definition to the

flux is given by Fick’s first law

Ji = Dij∇Ci (2.20)

where Dij is the diffusion coefficient of element i through the j mechanism. However,

this ignores all the driving forces exerted on the i−component by all the other compo-

nents present on the system. These cannot be ignored as they are intrinsically linked

as evident from Equation 2.18. Following the work by Balluffi et al. [85], the next

section gives a general description of the proper treatment of the evolution equations.

2.3.1 Flux in a Multi–Component System

The manner in which an element will diffuse on a generic system depends on the

driving forces acting upon it, as described by the flux. The fluxes can be convention-

ally defined as a function of all the different driving forces

Ji = f(Fi,Fi+1, . . . ,FN), (2.21)
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such that all components have an influence on the flux of i, and vice versa. By

performing a first order Taylor expansion, we get a generalized equation for the flux

Ji =
N∑
j=1

LijFj (2.22)

where Lij = ∂Ji/∂Fj is evaluated at equilibrium and is often termed the Onsager

matrix of phenomenological coefficients. In this model, the driving force (F) can be

the concentration and/or chemical potential gradient. For a volume fixed frame of

reference, we can set
N∑
j=1

LijFj =
N∑
j=1

Jj = 0, (2.23)

where Jj1 is the flux related to the j−component driving force. Rewriting Equa-

tion 2.23, we get

JN = −
N−1∑
j=1

Jj (2.24)

This approach allows us to reduce the set of equations by removing N th flux as

dependent. As outlined by Balluffi et al., the entropy production rate, given by

Equation 6.5 from [85], is proportional to the scalar product of all fluxes and the

gradient of a thermodynamic potential. In other words, each flux can be multiplied

by it’s conjugate force in order to obtain the entropy rate. Then, using Equation2.24,

we get

T Ṡ = −
N∑
j=i

Jj · ∇ψj = −
N−1∑
j=1

Jj · ∇(ψj − ψN) (2.25)

where the conjugate force is

Fj = −∇(ψj − ψN). (2.26)

1The vector notation was omitted for nomenclature convenience.
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Therefore, Equation 2.19 can be rewritten as

∂Ci
∂t

= ∇ ·

(
N−1∑
j=1

Lij∇(ψj − ψN)

)
(2.27)

where the conjugate forces can be chemical potential or concentration gradients, de-

pending on the particular simulation, and the Onsager coefficients (Lij) can be diffu-

sivities or mobilities. This is equivalent to Fick’s second law, but here we explicitly

account for the forces that all elements exert on element i, which contribute to its

evolution.

2.4 Chemical Potential Definition

One of the major misunderstood concepts of the phenomenological evolution equa-

tions is that the driving force can be simply defined as the slope of the free energy

curves. While under certain arrangements this turns out to be true when setting the

chemical potential as the driving force, we need to understand the conceptually accu-

rate definition of the chemical potential. On a multi–component multi–phase system,

we need to use the true definition of the chemical potential to describe the correct

thermodynamics of the system. The following derivation is based on the work done

by Lupis [86].

If we define the Gibbs bulk free energy of the system as a function of the molar

components, we get

fG = nf̃G ≡
N∑
i=1

nif̃G,i (2.28)

where f̃G,i is the molar Gibbs free energy and ni is the number of moles of the i–

component. Then, the chemical potential can be defined as the partial derivative of
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the Gibbs energy with respect to the number of moles

µi =
∂fG
∂ni

= f̃G

(
∂n

∂ni

)
nk 6=i

+ n

(
∂f̃G
∂ni

)
nk 6=i

(2.29)

As shown in Appendix A, this equation can be rewritten in terms of the concentration

as

µi = f̃G +
N−1∑
j=1

(δij − Ci)

(
∂f̃G
∂Cj

)
n,CN

(2.30)

where δij is the Kronecker delta and Ci is the concentration (in molar fraction) of

i. This definition is also known as the partial molar Gibbs free energy and it is

convenient to define the chemical potential this way since bulk free energies are usually

experimentally measured in molar terms. As an example, let’s consider a quaternary

system, i.e. a system defined by the presence of four elemental components. Using

Equation 2.30, and setting C4 = 1− C1 − C2 − C3, we have

µ1 = f̃G + (1− C1)
∂f̃G
∂C1

− C2
∂f̃G
∂C2

− C3
∂f̃G
∂C3

(2.31a)

µ2 = f̃G − C1
∂f̃G
∂C1

+ (1− C2)
∂f̃G
∂C2

− C3
∂f̃G
∂C3

(2.31b)

µ3 = f̃G − C1
∂f̃G
∂C1

− C2
∂f̃G
∂C2

+ (1− C3)
∂f̃G
∂C3

(2.31c)

µ4 = f̃G − C1
∂f̃G
∂C1

− C2
∂f̃G
∂C2

− C3
∂f̃G
∂C3

(2.31d)

where the chemical potential µi is the conjugate variable for element i.

2.4.1 Equilibrium of a Multi–Phase System

The chemical potential of a material at a given concentration is often obtained

by the method of intercepts. For a multi–phase material, thermodynamics want to

drive the system to an equilibrium, which determines the concentration for material

of each particular phase. This equilibrium concentration can be determined by the
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Figure 2.8: Use of the common tangent construction rule to determine the state that
yields equilibrium conditions.

method of intercepts. This can be graphically represented by the common tangent

construction, Figure 2.8. The equilibrium state for the αβ system is achieved when

the conditions

µαA = µβA

and

µαB = µβB

are met. Under these conditions, the equilibrium system wants to drive the respective

phases to their equilibrium concentration, given by the intercept of the common

tangent to the phase curve. If the phases were thermodynamically influenced by

other forces, e.g. hydrostatic pressures, the thermodynamic state of the system will

change. This would then change the equilibrium conditions, and give a different set

of equilibrium concentrations.
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2.5 Free Energy Functional

Apart from the need to understand the driving mechanisms that lead to the for-

mation of the radiation induced nanostructures, this work was motivated by the phase

field work done by Li et al. [72, 44, 66]. In their work, to describe the thermodynamic

state they use the regular solution, which has a double well in the concentration field.

In essence, they provide a given defect density distribution and allow basic spinodal

decomposition to drive the system into a porous looking microstructure. While ba-

sic spinodal decomposition drives the evolution, the adapted model does account for

different mechanisms directly related to radiation damage. To some extent, this mis-

represents many of the real processes taking place. Nonetheless, they showed that

their approach may be capturing some fundamental thermodynamical behavior as

they are able to produce structures that resemble the ones observed xperimentally.

The free energy functional gives us the amount of energy that is stored within the

system for a given state, where the state is defined by the order parameters discussed

earlier in the chapter. A commonly used definition for the free energy functional in

phase field simulations is the one given by Cahn–Hilliard [61, 62, 63]

FCH =

∫
V

(
f0 +

γ

2
|∇C|2

)
dV (2.32)

where f0 is the bulk chemical free energy, γ is the interfacial energy gradient coefficient

and C is the order parameter that characterizes the interface. The γ–term also gives

a measure of the thickness of the diffuse interface. Li et al. used the regular solution

equation as the bulk chemical free energy. Due to the intriguing similarities between

the experimental results and Li’s computational simulations, their thermodynamic

description should be examined in models simulating the formation of the nano–

porous structures. In fact, similar double well equations have been used to simulate

bubble and void swelling [70, 67]. It should be noted that this functional could be
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easily adapted to incorporate other energetic terms depending on the forces that

might influence the system thermodynamics.

2.6 Phenomenological Equations for a Quaternary System

To illustrate the implementation of the true chemical potentials into the evolution

equations, let’s work an example for a quaternary system. This corresponds to a

simple binary system where we treat the interstitial and vacancy defects as inherent

“atomic” components

CA + CB + Ci + Cv = 1

where the interstitial and vacancy terms include both atomic components, i.e. Ci =

CA
i +CB

i . Using this relationship, we can describe the evolution of the system by the

use of N − 1 = 3 equations. From Equation 2.27 and using the chemical potential as

the conjugate force, we have

∂CA
∂t

= ∇ · [MAA∇(µA − µB) +MAi∇(µi − µB) +MAv∇(µv − µB)] (2.33a)

∂Ci
∂t

= ∇ · [Mii∇(µi − µB) +MiA∇(µA − µB) +Miv∇(µv − µB)] (2.33b)

∂Cv
∂t

= ∇ · [Mvv∇(µv − µB) +MvA∇(µv − µB) +Mvi∇(µv − µB)] (2.33c)

where µi is the chemical potential of component i and Mij is the mobility of the j

component through the imechanism. By employing the true definition of the chemical
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potential, Equation 2.31a, we have

∂CA
∂t

= ∇ ·

[
MAA∇

(
∂F̃

∂CA

)
+MAi∇

(
∂F̃

∂Ci

)
+MAv∇

(
∂F̃

∂Cv

)]
(2.34a)

∂Ci
∂t

= ∇ ·

[
Mii∇

(
∂F̃

∂Ci

)
+MiA∇

(
∂F̃

∂CA

)
+Miv∇

(
∂F̃

∂Cv

)]
(2.34b)

∂Cv
∂t

= ∇ ·

[
Mvv∇

(
∂F̃

∂Cv

)
+MvA∇

(
∂F̃

∂CA

)
+Mvi∇

(
∂F̃

∂Ci

)]
(2.34c)

where F̃ is the bulk molar free energy functional. For convenience, we can rewrite

this set of equations as

∂CA
∂t

= ∇ · [MAA∇µ̂A +MAi∇µ̂i +MAv∇µ̂v] (2.35a)

∂Ci
∂t

= ∇ · [Mii∇µ̂i +MiA∇µ̂A +Miv∇µ̂v] (2.35b)

∂Cv
∂t

= ∇ · [Mvv∇µ̂v +MvA∇µ̂A +Mvi∇µ̂i] (2.35c)

where we set µ̂i ≡ ∂F̃ /∂Ci for nomenclature convenience. It should be noted that

is we set the mixed diffusion terms to zero, i.e. Mi 6=j = 0, we obtain the customary

definition of the phenomenological equations. Numerically solving these equations we

can model the compositional changes of each individual component, keeping in mind

that CB can be obtained as a function of these three components.

2.6.1 Surface Migration, Grain Growth and Phase Transformation

Microstructural evolution is a complex and multi–stage process, which can sel-

domly be described by a single type of event. Some events being considered through-

out this work include: surface migration, and grain and/or phase changes. The surface

migration event can occur when a void voxel (white) is located next to a matter voxel

(blue). An exchange of voxel values occurs such that the corresponding order pa-

rameter is conserved Figure 2.9. On the other hand, feature growth does lead to a
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non–conserved equilibrium where one feature grows at the expense of the other Fig-

ure 2.10. Both cases lead to a minimization energy ensemble, i.e. smoother surfaces.

The energy is minimized by means of the standard Metropolis algorithm [87]. Hence,

for sites that have been identified as having a likelihood for change the Maxwell–

Boltzmann distribution is assumed to describe the probability of these changes tak-

ing place. Therefore, these changes are accepted by following Maxwell–Boltzmann

statistics, which can be derived from statistical mechanical thermodynamics consid-

erations. These events will be discussed with more detail as implemented. Now, the

probability of an event taking place, is a function of the ensemble’s energy before and

after the event. If the free energy functional (F ) describes the energetic state of the

ensemble, the probability that the event will be accepted is

Pevent =

 1, ∆F ≤ 0

exp
(
− ∆F
kBT

)
, ∆F > 0

(2.36)

where ∆F is the change in energy before and after the event, kB is the Boltzmann

constant and T is the absolute temperature. Proper coupling of all these processes

will describe the complete microstructural evolution.

2.7 Coupling of the Deterministic and Statistical Models

One of the main objectives of this work is the improvement on the model developed

by Li. The approach used to achieve this is by coupling deterministic and statistical

methods in order to describe microstructural evolution. The model presented here

was inspired by the hybrid Potts–phase field (hPPF) model developed by Homer et

al., Figure 2.11 [88, 89, 90]. While they are able to individually capture the correct

kinetics and physics related to microstructural evolution, we attempt to leverage

on their respective computational advantages and weaknesses through the hybrid
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Figure 2.9: Representation of a surface diffusion event where a void voxel (white)
exchanges location with a matter voxel (blue). We can see the ensembles (a) before
and (b) after the exchange. It is evident that the new configuration has a lower overall
energy, i.e. decreased interface. The dots identify the voxels of interest.

Figure 2.10: Representation of a feature growth event where a feature 1 voxel (white)
grows at the expense of the feature 2 voxel (blue). We can see the ensembles (a)
before and (b) after the change. It is evident that the new configuration has a lower
overall energy, i.e. decreased interface. The dots identify the voxels of interest.
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Potts Monte Carlo 

• Statistical-Mechanical Model 
• Microstructure/nucleation & growth 

Combined Model 

• Enable simulation of new materials processes 
• Balance resolution / efficiency 

Phase-Field 

• Deterministic Continuum Model 
• Composition/phase transformations 

Figure 2.11: The main advantages of each computational approach are exploited in
order to develop a hybrid model that is able to efficiently model microstructural
evolution, with the added benefits of being robust and retaining the correct kinetics
and physics.

model, Table 2.2. Homer et al. demonstrated that the hybrid model efficiently and

accurately simulates complex microstructural evolution problems by capitalizing each

methods’ strengths, e.g. grain growth by capillarity. The coupling consists of allowing

the PMC model to simulate generic microstructural evolution like grain growth, while

the phase field model handles the evolution of the smoothly varying continuum fields

like concentrations. The latter is achieved by numerically solving the corresponding

PDEs. Therefore, the set of PDEs normally required by the phase field model can

be greatly reduced as the generic microstructure can be represented as discretized

elements. A pseudo-code describing the flow of the model is shown in Appendix D.

This approach provides a more robust method to modeling certain behavior which

might be stochastic and/or deterministic in nature.

2.7.1 Advantage Over Conventional Models

The model presented here combines a Potts Monte Carlo model and a phase field

model to create the hybrid model. Both of these have been extensively used for sim-

ulating microstructural changes [50, 57, 59]. Although very useful, both models do

have some shortcomings. While Potts Monte Carlo has been shown to accurately

simulate grain growth kinetics, it is quite difficult to model the evolution of con-
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Table 2.2: General characteristics of the Potts kinetic Monte Carlo (PMC) and the
phase field models.

CON’s PRO’s
Continuum Model: PF

◦ Finer space and time grids for compli-
cated energy functionals

◦ Readily available time dependent evolu-
tion equations

◦ Developing functionals that couple all
parameters is challenging

◦ Relatively easy to construct energy func-
tionals

Statistical Model: PMC
◦ Poor simulating continuum fields ◦ Can incorporate the kinetics, thermody-

namics and topological characteristics

◦ Simple, intuitive and easy to code

tinuous fields. On the other hand, phase field models are excellent simulating such

behavior, but can become prohibitively expensive as we introduce order parameters,

e.g. different grain orientations. To simulate these, this method requires large sets of

PDEs to fully describe realistic microstructures. Furthermore, to accurately model

the continuous field evolution across interfaces, the phase field models need high res-

olution meshing to simulate the diffuse interfaces. This can substantially increase

the computational expenses. Therefore, by correctly coupling both models we take

advantage of each model’s strength. By coupling these models we can improve the

computational efficiency while producing very accurate solutions.

2.8 Stochastic Parallel PARticle Kinetic Simulator

SPPARKS [91, 92] is a C++ Monte Carlo framework developed at Sandia National

Laboratories that provides several types of kinetic Monte Carlo algorithms. These

have been implemented to simulate a wide range of microstructural evolution behav-

ior as showcased in, e.g. fission gas transport in fuels [92]. The models developed

have been implemented such that they are compatible with SPPARKS’ framework

in order to take advantage of its scalability. In general, the models developed make
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use of the on–lattice rejection kinetic Monte Carlo algorithm. SPPARKS handles the

generation of the simulation space/sites, and the manner in which particular voxel

is sampled. The scalability and portability afforded by SPPARKS were the main

motivations to developed these models under the framework. While many of the

simulations were performed on a 12–core Mac Pro desktop, the larger simulations

were performed on Sandia’s cluster facilities. All codes are written as to allow either

two or three dimensional simulations. Furthermore, it can be run as a single process

or as massively parallel processes using a message passing interface (MPI), where

SPPARKS is solely responsible for managing the communication aspects. However,

it should be pointed out that for the more elaborate models, extra communication

across processor boundaries was needed to be applied.
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CHAPTER III

Research Mission Statement

While a large body of work has been produced experimentally studying mi-

crostructural evolution of ion irradiation induced nano–structures, the same cannot

be said of computational efforts. This is due in part to the fact that the controlling

mechanisms that lead to the formation of these structures are not well understood.

Although there are well established theories that do provide some insight on the

development of such structures, these are mostly focused on crystalline materials.

Therefore, models developed need to be adapted such that the lack of long range

atomic ordering is taken into consideration. Hybrid deterministic–statistical models

have been developed in order to address some of these issues. Such models have

not been applied to radiation induced microstructural evolution until these works.

Computational models allow for an economical approach to better understand the

mechanisms that lead to the formation of nano–structures of interests. Hence, they

are very useful in the search of the controlling mechanisms that lead to the formation

of the desired microstructures.

The main objectives of this thesis is to develop a model that can help us understand

how different radiation related processes influence the formation of the nano–porous

networks. By developing these hybrid models, it is expected to have an efficient

and flexible approach to study these processes. Here are the steps taken in order to
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developed and test the numerical models:

• The implementation of the hybrid Potts–phase field (hPPF) to a sharp interface

microstructure. The original hPPF model was adapted to use the discrete sharp

interfaces to account for interfacial energies. The model implements a discrete

curvature, which is able to describe interfacial energy. To demonstrate the

adapted model, grain growth by capillarity was simulated and it was compared

to the original hybrid model. The adatped hPPF was found to be robust and

to retain the correct kinetics and physics [93]. This exercise was performed in

order to familiarize myself with deterministic–statistical models and obtain a

direct method to calculate the thermodynamic state of a sharp interface.

• The application of the hybrid deterministic–statistical model to a radiation in-

duced microstructural evolution test problem. This model incorporates rate

theory, phase field and Potts Monte Carlo to simulate the behavior of precipi-

tates within a matrix. To test the hybrid model with radiation defect formation

as discussed in Section 2.2.1.2, it was applied to a generic phase precipitation

and growth kinetics case. The details of this model are found on Chapter V.

The model simulates the effects that radiation induced defects and subsequent

RIS has on the precipitation evolution kinetics.

• The coupling of rate theory equations to a kinetic Monte Carlo volumetric void

swelling. This model implements rate theory equations to govern the behav-

ior of the radiation defects, which in turn are used to nucleate void lattices.

This type of model where the actual volume change can be simulated enables

us to generate nano–porous microstructures. A general case was simulated to

generate highly porous microstructures where the behavior described in Sec-

tion 1.3.1.1 can be observed. The details of this model and its implementation

can be found in Chapter VI.
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CHAPTER IV

Mathematical Concepts and Numerical Methods

The main mathematical concepts and techniques used in this work are discussed

in this chapter. In order to solve the complex non–linear fourth order PDEs used to

describe the system’s evolution, we need to rely on numerical methods since unique

and exact solutions are not readily available. Although analytical solutions have been

suggested, e.g. Ugurlu et al. [94], these equations are still of major interests amongst

mathematicians and physical scientists.

4.1 Taylor Expansion

The Taylor series is one of the most important mathematical techniques used in

the field of numerical methods. This series can be used to approximate the value

of a function at a point, given the function’s and its derivatives’ values at another

point [95]. It is a series expansion of a function f(x) centered around a point x = a,

which has infinite number of derivatives and we can find them all about x = a. For

an infinite number of terms and centering around xi, we have

f(xi + h) = f(xi+1) =
∞∑
n=0

f (n)(xi)

n!
hn ≈

N∑
n=0

f (n)(xi)

n!
hn +Rn (4.1)
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where h = xi+1 − xi is the step size, N is the n − th number of terms used for the

approximation of f and Rn is the remainder term and defined as

Rn =
f (n+1)(ξ)

(n+ 1)!
hn+1 = O(hn+1) (4.2)

where ξ is a value for x that lies between xi and xi+1 and O(hn+1) is known as the

truncation error. As evident from Equation 4.1, Taylor expansion gives the exact

value of f(xi+1) for a summation of an infinite number of derivatives. Further, the

accuracy of the approximation will be improved as we increase the number of terms

(N) that are included on the series. Hence, for a finite number of summation terms,

Taylor expansion provides an approximation to the desired value. On the other hand,

for most cases, a few terms will result in a reasonable approximation. Furthermore, we

have some control over the accuracy of the approximation. For instance, by making

h smaller, according Equation 4.2, the remainder should become smaller.

As evident from Equation 4.1, there is an inherit error that will be present for

all Taylor expansions since an infinite sum is unpractical, which is related to the

remainder term Equation 4.2. As previously mentioned, we can tailor this error by

increasing or decreasing the spatial step size, h, and the number of terms in the

summation chosen. For example, say that we chose n − th terms such that we get

either O(h) or O(h2) truncation errors. Then, halfing the step size will reduce the

error by a half or a quarter, respectively. Furthermore, by properly manipulating the

Taylor series, we are able to derive the finite difference equations used in this work to

approximate solutions to the set of PDEs.

4.2 Finite Difference Methods

Non–linear partial differential equations, as the Cahn–Hilliard equation, are usu-

ally very strenuous to solve analytically if at all possible, hence numerical methods
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are employed. A simple approach commonly used is known as the finite difference

methods (FDM), which has been applied to a wide range of engineering and scientific

problems [96, 97]. This is a relatively straightforward and intuitive approach, but

careful considerations must be taken as to obtain accurate approximations. In a way,

FDM is in part an applied art form [98], which employs scientific computing princi-

ples to approximate differential equation. The phenomenological equations derived

in Section 2.3 are approximately solved using this mathematical technique. While

these equations are representative of a general formulation, the same concepts can be

applied to other PDEs used on the different models developed.

As mentioned before, FDM is a scientific art form such that many types of approx-

imations can be derived. The approximation chosen will depend on computational

limitations, desired accuracy, inter alia. Some more common schemes include the

forward difference method, also known as the Euler forward method,

∆fi ≡ fi+1 − fi, (4.3)

the backward difference scheme

∆fi ≡ fi − fi−1, (4.4)

and the centered difference scheme

∆fi ≡ fi+1 − fi−1, (4.5)

all of which can be used to approximate first order derivatives. Figure 4.1 shows

a graphical representation of these schemes applied to a first order derivative on a

1D three point system. The proper points of interest for all schemes can be easily

identified, which tell us the site’s whose value are needed in order to approximate the
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forward backward centered

fi+1 − fi fi − fi−1 fi+1 − fi−1

Figure 4.1: Representation of different type of FDM schemes. Each scheme shows
the respective points that need to be sampled in order to approximate a first order
derivative.

solution.

The Taylor series can be manipulated in different ways such that we can derive

the schemes described with their corresponding truncation errors. For instance, let

us consider the first order derivative of y

y
′
=
dy

dx
. (4.6)

The different schemes can be derived by expanding Equation 4.1, for the forward

(+h) case

y(xi + h) = y(xi) + hy
′
+O(h). (4.7)

Rearranging for the derivative of interest, we have

y
′

=
y(xi + h)− y(xi)

h
+O(h), (4.8)

and for the backward (−h) scheme

y
′

=
y(xi)− y(xi − h)

h
+O(h). (4.9)

For the centered case we need to extend in both directions (±h) and then combine
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both equations, which gives

y
′
=
y(xi + h)− y(xi − h)

2h
+O(h2). (4.10)

From the discussion in Section 4.1, we expect the centered scheme to provide a more

accurate approximation to y
′
. This is graphically represented in Figure 4.2, where the

approximation is shown as the slope between the points of interest, Figure 4.1. We can

graphically appreciate that the centered scheme yields a more accurate approximation

for the true derivative (slope), as expected from the Taylor expansion analysis.

4.2.1 Approximation of the Diffusion Equation

The PDEs that describe the compositional evolution of the different continuum

order parameters discussed earlier are differentiated with respect to time and space.

A generally used scheme to numerically solve similar equations, e.g. the heat equa-

tion, is the forward–time central–space (FTCS), which has been successfully applied

to diffusional equations problems [88, 89, 99, 49]. Hence, the phenomenological equa-

tions derived in Section 2.6 where numerically solved by using the FTCS scheme.

This scheme couples the forward and centered schemes in such a way that we get a

O(∆t, h2) order accurate solution. Let’s consider a basic diffusional equation with

constant mobilities and interfacial energy defined by the Cahn–Hilliard equation,

∂f

∂t
= M

[
∇2∂f0

∂f
+ γ∇4f

]
. (4.11)

Here we have three distinct orders of differential equations which were solved using

the FTCS scheme. Let’s examine each one individually and for simplicity let’s assume

a one dimensional case. The biharmonic equation of f requires the Taylor expansion

with several spatial considerations, i.e. nh where n = [−2, 2]. More clearly, for

the centered scheme we need to perform four Taylor expansions about xi to obtain
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Figure 4.2: Graphical depiction of (a) forward, (b) backward, and (c) centered finite–
divided–difference approximations of the first derivative [95].
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an approximation to the biharmonic equation. This set of expansions can then be

combined in a way that yields an error order of O(h2). The resulting approximation

is

∇4
xf =

∂4f

∂x4
≈ fi+2 − 4fi+1 + 6fi − 4fi−1 + fi−2

h4
+O(h2) (4.12)

where the nomenclature has been simplified, f(x± nh) = f(xi±n) = fi±n. Similarly,

for the Laplacian of f , using n = [−1, 1] we have

∇2
x

(
∂f0

∂f

)
= ∇2

xµ̂ =
∂2µ̂

∂x2
≈ µ̂i+1 − 2µ̂i + µ̂i−1

h2
+O(h2) (4.13)

where µ̂ ≡ ∂f0/∂f as described earlier. Finally, combining Euler’s equation for the

temporal differentiation with the approximations given by Equations 4.12 and 4.13,

we can approximate the value of f at i for the next time step as

fn+1
i ≈ fni + ∆nM

[
γ

(
fi+2 − 4fi+1 + 6fi − 4fi−1 + fi−2

h4

)
+
µ̂i+1 − 2µ̂i + µ̂i−1

h2

]
+O(∆n, h2).

(4.14)

As can be appreciated, we need the values of the four nearest neighbors in any given

Cartesian direction in order to approximate the next time step value. The form of

the approximation shown here is valid for a system with periodic boundary condition.

This solution to the PDE system is implemented through explicit methods. One

advantage of using explicit methods is that we can achieve really accurate solutions, as

long as we choose proper discretization parameters, i.e. (∆n, h). Even though implicit

methods have been used to numerically solve similar systems of equations, it has been

observed that the explicit FTCS approach is better at handling discontinuities (or

shocks) to the continuum fields [99]. Since we are continuously adding defects (or

shocking the continuum order parameter), we rely on the use of the explicit solution.

Due to the way in which connectivity is defined by the SPPARKS framework,
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cmap[5] cmap[3] cmap[6]

cmap[0] i cmap[1]

cmap[4] cmap[2] cmap[7]

Figure 4.3: Cell map defined for computational convenience. The summation in
Equation 4.15 follows the logic represented by this map.

Figure 4.3, and considering a three dimensional space, we can re–write this equation

for simplicity when coding as

fn+1
i ≈ fni +

∆nM

h2

D∑
d=1

1∑
j=−1

[
(µ̂id+j − µ̂i) +

γ

h2
(fid+2j − 4fid+j + 3fi)

]
(4.15)

= fni +
∆nM

h2

D∑
d=1

1∑
j=−1

Ĵdj (4.16)

where D is the simulation space dimension, Ĵdj is defined for nomenclature conve-

nience as the flux between the site and its neighbors, i.e. terms within the bracket,

and the id nomenclature stands for the site in the dimensional direction d. This

approach could be introducing an extra error that arises from the approximation of

the Laplacian of the chemical potential. As explained in Appendix C, depending on

the definition of f0, there may be terms that have been dropped from the differenti-

ation for computational ease. The omission of these terms has been observed to not

influence the stability and/or final solution of the microstructural evolution.

For simulations with non–periodic boundary conditions, i.e. free surfaces, we need

to account for the respective boundary conditions. Figure 4.4 shows a free surface,

which is defined as the interface between a void region (green outline) and a matter
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region (blue outline). The sites whose information is required to approximate the

biharmonic are outlined in maize. One of the more evident boundary conditions

across a void–matter interface is that of no diffusion. Therefore, the flux across the

domain boundary is set to zero

n · J = 0 ∂Ω (4.17)

where Ω is the domain space. This boundary condition will lead to a modification

of the way we discretized the PDEs, Equation 4.15. For an arrangement as the one

shown in Figure 4.4(a), there will be diffusion only between sites on the
−−→
ixip1,

−−−→
ixim1

and
−−→
iyim1 directions. For this case it is fairly straightforward how to set the flux in

the
−−→
iyip1 direction to zero, i.e. Ĵyip1 = 0 → µ̂i = µ̂yip1 and fyip2 = fyip1 = fi. On the

other hand, correctly setting the flux for the case shown in Figure 4.4(b) is not as

trivial. This is because of the biharmonic contribution in the +y direction. While

there is a contribution from the yip1 site, the fact that yip2 is a void means that it

cannot contribute to diffusion. Hence, this needs to be accounted for numerically. If

not properly set, the continuum order parameters were found not to be conserved.

4.3 Capillarity Driven Flux

The models developed throughout this thesis have made use of sharp interface

to define grain boundaries and free surfaces. While the original hPPF model was

shown to accurately simulate grain growth kinetics driven by Ostwald ripening mech-

anisms [100], Figure 4.5, a direct approach to handle sharp interfaces was needed.

This is especially true for the cases where we have free surfaces since we treat these

as being 100% void, i.e. they have no concentration. In order to achieve this, the

phenomenological equations were adapted as to replace the Cahn–Hilliard diffuse in-

terfacial energy with a discrete sharp interfacial energy [93]. The sharp interfacial
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(a) (b)

Figure 4.4: Diagram of a digitized free surface, defined as the interface between a void
(green) and matter (blue) space. Two arrangements where the presence of a surface
will influence the flux equation as shown. This finite difference stencil yields a second
order error, ′(h2). Careful consideration must be applied when choosing how to set
up the no flux conditions where needed.

energy is shown to be related to the curvature

δF

δC
= γ

δS

δC
= γ

δV

δC

δS

δV
= γΩ

8πRδr

4πR2δr
=

2γΩ

R
≡ γΩκ (4.18)

where S is the surface area, γ is the surface energy, Ω is the molar volume change and

κ is the curvature. The development of the discrete interfacial energy hPPF can be

found in Appendix E. While the contribution here are made through the development

of the sharp interfacial energy method, let’s look at common methods used to define

and treat curvature.

4.3.1 Mathematical Treatment of the Curvature

Whenever you have a continuum field defining surface, e.g. level set theory [102,

103], the curvature can be defined in terms of the continuum field. In fact, if we

consider the Cahn–Hilliard interfacial energy term to be analogous to a curvature

measure, we can see that as we move away from the interface it should approach zero
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Figure 4.5: Basic schematic of the Ostwald ripening process. Due to their larger
curvature, the smaller features are less thermodynamically stable, which leads to
their dissolution and growth of the larger features. (Taken and adapted from [101].)

since the equal–phase region should have the same concentration

lim
d→∞
∇2C = 0. (4.19)

Let’s consider that the concentration defines the a curved surface (s) which is

used to identify interfaces. The curvature can then be defined as the divergence of

the normal vector,

n̂ =
∇C
|∇C|

, (4.20)

at any point in that in the curve, which gives

κ = ∇ · n̂ = ∇ ·
(
∇C
|∇C|

)
. (4.21)

Applying the chain rule to expand this definition of the curvature, we get

κ =
∇2C

|∇C|
−
{y,z}∑
i=x

∇iC

|∇iC|3

∇iC∇iiC +

{y,z}∑
j=x

(1− δij)∇jC∇ijC

 (4.22)
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where

∇i =
∂

∂i
(4.23a)

∇ij =
∂2

∂i∂j
(4.23b)

This definition of the curvature is fairly complex and finding a numerical approxima-

tion could present challenges. From Appendix E, we see that the rate change of the

concentration is proportional to the Laplacian of the curvature, i.e. Ċ ∝ ∇2κ. There-

fore, an even more intricate expression would need to be numerically solved. This

could become computationally expensive, especially as we add order parameters. A

detailed derivation of these equations can be found in Appendix B.

4.3.2 Discrete Approximation of the Curvature

A discrete curvature equation was developed in order to use the sharp interface

defining the boundary between different features, Appendix E. Analogous definitions

to the discrete curvature have been applied to cellular automata simulations of solid-

ification processes [104]. The discrete curvature is defined as

κi =

∑ns

j=1(1− δqiqj)− nbase
ns

(4.24)

where qi is the phase of site i, ns is a normalizing parameter which can be the number

of surrounding neighbors being considered on the curvature calculation and nbase is

the reference state that yields a curvature of zero for a flat surface. Even though

this looks similar to the Potts interfacial energy, an important distinction is that we

consider unlike phase sites. This is so that each phase is able to find its corresponding

equilibrium concentration. As an example, if we look at Figure 4.6, the dark blue cell

is a free surface site with 17 unlike phase surrounding sites (not shown). This value

would replace the sum term from the discretized curvature equation. This definition
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Figure 4.6: Representation of a 3D voxelated surface where the void voxels are not
shown and the voxels shown represent a single phase. Each voxel has 26 neighbors
surrounding it which can contribute to the curvature approximation.

of the curvature allows for more accurate approximations by allowing a larger number

of surrounding sites to be sampled, as discussed in Appendix E.

Its important to note that even for the sharp interfaces employed by our models,

we can still apply the complex curvature equations shown earlier. This could be done

by calculating the normal of the sharp interface [105]

n̂d =
ns∑
j=1

(1− δij)dij
|(1− δij)dij|

(4.25)

where dij is the distance vector between sites i and its neighbor j

dij =
D∑
d=1

(xd,j − xd,i) · ed (4.26)

where xd,i is the position of site i in the d direction and ei is the unit vector in the d

direction. Hence, for the ensemble shown in Figure 4.6 the unit normal vector points

upwards.
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4.4 Euler–Lagrange

The literature often shows the Cahn–Hilliard equation and the resulting phe-

nomenological equation with seldom mention of how one leads to the other. For

clarity, the derivation is discussed here. Starting from the Cahn–Hilliard free energy

functional,

F =

∫
Ω

(
f0 + γ |∇Ci|2

)
dV =

∫
Ω

f (x, f0, Ci,∇Ci) dV, (4.27)

and arriving to the well know Cahn–Hilliard phenomenological equation, Equation 4.11,

is not trivial. In fact, Cahn–Hilliard employed the Euler–Lagrange equation to obtain

the variational change of the free energy functional with respect to the concentration.

Let’s consider the free energy functional to be the system’s total Gibbs free energy.

The chemical potential of component i is

µi =
∂G

∂Ci
≡ δF

δCi
(4.28)

where we have defined the chemical potential to be equivalent to the variational

derivative of F with respect to Ci. This is consistent with the definition of the

chemical potential and thermodynamic principles since we are minimizing the free

energy of the system. Applying the Euler–Lagrange equation gives

δF

δCi
=

∂I

∂Ci
− d

dx

∂I

∂∇Ci
(4.29)

where I is the integrand of the free energy functional, Equation 4.27. For simplicity,

let’s consider a 1 dimensional space. Combining Equations 4.27 and 4.29, we obtain

δF

δCi
=

∂

∂Ci

[
f0 + γ

(
∂Ci
∂x

)2
]
− d

dx

(
∂

∂Ci/∂x

[
f0 + γ

(
∂Ci
∂x

)2
])

(4.30)
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and by performing the respective operations, the right hand side results in

∂f0

∂Ci
+
�
��

�
��

��*
0

γ
∂

∂Ci

(
∂Ci
∂x

)2

− d

dx


�
�
�
��>

0
∂f0

∂C/∂x
+ 2γ

∂Ci
∂x

 =
∂f0

∂Ci
− 2

d

dx

(
γ
∂Ci
∂x

)
(4.31)

where the two terms cancel to zero since the gradient of Ci is independent of the

concentration and the bulk volumetric energy (f0) is independent of the concentration

gradient, respectively. Assuming that the surface energy is constant, this yields the

more recognizable Cahn–Hilliard equation

δF

δCi
=
∂f0

∂Ci
− 2γ

∂2Ci
∂x2

. (4.32)

The solution of this PDE will result in the composition profile with stationary values,

i.e. maxima, minima or saddle points [61].

A recent derivation provides an easier way to articulate the final result of the

derivation just shown [106]

F =

∫
Ω

G (x, C,∇C) dΩ =

∫
Ω

G (xi, · · · , xn, C, Cx1 , · · · , Cxn) dΩ (4.33)

where Cxi = ∂C/∂xi. Again, using the Euler–Lagrange equation, they arrive to the

expression

δF

δC
=
∂G

∂C
−

n∑
i=1

∂

∂xi

∂G

∂Cxi
=
∂G

∂C
−∇ · ∂G

∇C
, (4.34)

which provides “cleaner” nomenclature and perhaps a straightforward way of under-

standing the resulting derivation. More importantly, it could be easily applied to any

free energy functional of their particular form, Equation 4.33. If the same integrands

are chosen, this equation yields the same result as the one shown.
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CHAPTER V

Numerical Simulation of Radation Induced

Segregation: Influence on Precipitate Kinetics

Irradiation of materials has been shown to lead to accelerated and/or non thermo-

dynamically driven microstructural changes. This behavior is driven by the radiation

induced defects. These changes in microstructural evolution present themselves as

nucleation of phases away from thermodynamic equilibrium [107, 108] and/or abnor-

mal crystallization kinetics [109]. It is important to understand how microstructures

evolve as a function of radiation damage as microstructural characteristics are related

to the materials’ macroscopic properties. This is especially true in the nuclear energy

industry where one of the main limiting factors of reactor performance are due to

material degradation. This chapter focuses on the development and implementation

of a hybrid model that incorporates the radiation–induced segregation (RIS) rate the-

ory formulation. A brief introduction to the problem followed by model specifics and

results discussion are presented.

5.1 Introduction

Radiation damage of materials has been a subject of interest for many decades,

which spans several fields including outer space satellite application [110] and the
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energy sector [11, 31]. Models like the one developed by Wiedersich et al. have been

used to interpret experimentally observed behavior like RIS [111, 112]. In fact, the

RIS model has been used to qualitatively explain the observed formation of ther-

modynamically unstable phases on irradiated NiSi systems [113]. The RIS model

postulates that as materials are irradiated the created defects diffuse towards different

types of sinks and can be annihilated at different rates, e.g. interstitial and vacancy

removal at the free surfaces. The difference in the atomic diffusivities then leads to

a net depletion or enrichment of a given atomic component around the sinks. For

instance, a binary (AB) alloy where the B atoms diffuse faster through the interstitial

mechanism will lead to enrichment of B in the vicinity of the sinks. Possibly leading

to precipitation of non–thermodynamically stable phases.

Models like Wiedersich’s have proven effective at simulating the chemical evolu-

tion of materials under irradiation. However, it fails to capture other complex and

synergistic effects related to the overall microstructural evolution, e.g. grain and/or

precipitate evolution. To address this gap, a new type of hybrid model was devel-

oped where these phenomena can be more easily computationally implemented. This

hybrid deterministic–statistical model couples a set of non–linear partial differential

equations (PDE) to a Potts Monte Carlo model. The set of PDEs uses phase field

and rate theory models to simulate the chemical evolution of the atomic components

and point defects, repectively. The Potts Monte Carlo model is used to simulate

phase and precipitate growth kinetics. This hybrid model was applied to a generic

binary (AB) system by studying how the microstructural evolution is affected by dif-

ferent radiation conditions. The hybrid model’s deterministic and statistical methods

efficiently model the synergistic processes taking place due to the radiation damage

being produced. It should be noted that understanding irradiation affects microstruc-

tures evolution is very important to areas like reactor safety and integrity. Improving

these has implications on our ability to reach the much needed manageable, safe and
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reliable energy production levels required for the future.

5.2 Model Framework

A chemically binary (AB) system with thermodynamic characteristics that define

a two–phase material are studied. Radiation damage is introduced in the form of

point defects densities, i.e. interstitial and vacancy concentration. To simulate the

evolution of these components, a set of deterministic PDEs was derived. The PDEs

link the diffusion of the atomic and defect components, and how the behavior of a

given component affects others. The processes modeled that lead to microstructural

evolution include: diffusion of the atomic (A and B) and defect (i and v) components;

precipitate growth and phase transformation. The model is based on the diffuse in-

terfacial hybrid Potts–phase field model Homer et al. [88, 89, 90], but is further

developed to simulate radiation damage and its effects on diffusion. While the simu-

lation could be easily extended to 3–dimensions, the work presented here was carried

out on a 2–dimensional simulation mesh.

5.2.1 Microstructural and Compositional Representation

As it was described in Section 2.1, the model uses both continuum and discrete or-

der parameters to describe the complete microstructure. The set of continuum order

parameters are the atomic (Ca and Cb) and point defect (Ci and Cv) concentrations,

which are defined by Equation 2.1. The discrete order parameters represent the grain

ID/orientation (s) and phases (q), i.e. distinct features. Furthermore, simulations

considering irradiation of an exposed free surface, both of the discrete order parame-

ters are set to an identical value that represents a vacuum. These order parameters

enable the full description of the microstructural evolution.

Simulations without free surfaces have periodic boundary conditions (PBC), while

the ones with free surfaces have PBC on the horizontal–direction only, i.e. the direc-
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tion that does not have a free surface. This makes the latter case’s simulation space

a semi–infinite solid with an irradiated free surface in direct contact with a vacuum.

This boundary is included for computational reasons, allowing simpler implementa-

tion of the discretized equations as discussed in Section 4.2.1.

5.2.2 Radiation Damage

Radiation damage is introduced into the system in the form of radiation induced

point defects. The amount of defects which contribute to the microstructural evo-

lution are calculated in a two step process. First, a probability of collision, pcoll, is

calculated and compared to a random number (RN ∼ U [0, 1) : {RN |0 ≤ RN < 1}).

Depending on the particular simulation, this probability will have a uniform (constant

probability) or Gaussian–like profile. The particular distribution will be discussed for

each respective simulation. To determine the amount of energy being deposited on av-

erage per pixel at a given location, is given by a depth dependent normal distribution

ET (x) = E0 · En exp

(
−
[

x− x̄

σ

]2
)

(5.1)

where x = x · î + y · ĵ + z · ẑ is the position vector for a given pixel, ET is energy

deposited at z–depth, E0 is the ion beam energy, En is a parameter to define the

distribution’s “amplitude”, x̄ is the average range of the ions traveling through the

irradiated target and σ is the standard deviation. A more realistic damage profile

could be implemented by using the SRIM BCA model, Section 2.2.1, to calculate the

expected distribution of the created defects [5]. These distributions could then be

fitted to Equation 5.1. From the amount of energy deposited, the number of defects

created at a given depth are approximated. The Kinchin–Pease model [81] is used

to calculate the number of defects being created by a given collision cascade and its

resulting energy deposition. These defects are assumed to be created in Frenkel pairs,

i.e. each collision creates an equal number of interstitials and vacancies. The defects
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created by the collision cascade are mostly very unstable and annihilated during the

collision cascade collapse. Therefore, the defects of interest are the ones that survive

past the quenching stage. The defect survivability is given by Equation 2.11. These are

the defects that directly contribute to the microstructural evolution. The procedure

of how these are calculated has been outlined in detail on Section 2.2.1.2.

5.2.3 Phenomenological Behavior

Radiation induced segregation models have been developed to explain the be-

havior of irradiated alloys that show chemical depletion/enrichment at generic sinks,

e.g. grain boundaries. Figure 5.1 shows a schematic of this type of behavior. As

irradiation induced defects are created, these want to diffuse towards the respective

sinks. In this case, the main sink being the α−β phase interface. Assuming that the

predominant diffusion mechanism is a site exchange mechanism, the defect diffusion

behavior will be closely linked to an atomic diffusion. These phenomena can be math-

ematically described by fully coupling the phenomenological diffusional behavior. An

approach similar to Wiedersich’s, and outlined in Section 1.1.2, is employed in the

development of the phenomenological partial differential equations. Considering the

chemical diffusion of the system, the evolution of the system is defined by the different

fluxes

Jai + J bi = Ji (5.2a)

Jav + J bv = −Jv (5.2b)

Ja + Jb = Ji − Jv (5.2c)

where Jyx stands for the flux of defect x through y’s site. An important point that

these equations communicate that the atomic components migrate in the same and

opposite directions as the interstitials and vacancies, respectively. Therefore, let’s say
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Figure 5.1: Diagram showing the expected growth behavior of β–precipitates on
an irradiated α–matrix material. As the generated point defects diffuse to the sinks
(phase boundaries), an associated atomic flux will influence microstructural evolution
behavior.

that A atoms preferentially diffuse through the vacancy mechanism and the B atoms

through the interstitial mechanism. As defects diffuse towards the interface, the A

atoms migrate away from the interface and the B atoms towards the interface. Thus,

there is a net depletion of A and enrichment of B around the interface, which leads

to growth of the β phase precipitates, as shown in Figure 5.1.

5.2.4 Thermodynamics of the System

The model deterministically drives the system towards an equilibrium state as

dictated by the equation of state (EoS), which is given by the Ginzburg–Landau

equation, also known as the Cahn–Hilliard’s free energy functional,

FEoS =

∫
V

(
G+ γ|∇Cb|2

)
dV (5.3)

where V is a bounded domain in an infinite medium, G is the bulk free chemical

energy and γ is the interfacial gradient energy coefficient. The interfacial energy is

given by the diffuse interfaces across distinct phases, which are defined by gradient

of the atomic concentration across the interface. Radiation damage is an extremely

complicated parameter to measure and quantify for modeling purposes. Therefore,
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the energetic contribution associated to radiation damage is incorporated as point

defect density terms [108]. The bulk free chemical energy is given by entropic and

phase dependent enthalpic energetic components. The enthalpic energy terms are

characterized by a phase dependent polynomial equation of the form

Gq = k0(Cb − C0)2 + k1(Cb − C1)2 +

 kα(Cb − Cα)2 q = α

kβ(Cb − Cβ)2 q = β
(5.4)

where q denotes the pixel’s phase and the k’s are parameterization variables with

units of energy. The values used for the parameterization variables are shown in

Table 5.1. Figure 5.2 shows the polynomial curves used during this work. These

polynomial equations were designed as to yield a system that is comparable to a

bulk matrix with ∼12.7 at.%Si and precipitates with ∼ 25at.%Si, Figure 5.3. These

concentrations were chosen from the experimental work by Potter et al. For the

entropic term, the ideal solution of mixing equation for a quaternary system is used

Gm = Ef
i Ci + Ef

vCv + ωabCaCb + kBT [Ca lnCa + Cb lnCb

+ Ci lnCi + Cv lnCv]

(5.5)

where Ef
i is the energy of formation for the i defect, ωab is the interaction parameter

between A and B atoms, kB is the Boltzmann constant, T is the absolute temperature

and Ca = 1 − Cb. The increase of energy to the system due to the radiation energy

deposited to the target is indirectly incorporated through this equation. The bulk

free chemical energy is then given by adding Equations 5.4 and 5.5. Parameterization

variables values were chosen as to yield a microstructure that simulates Ostwald

ripening precipitate evolution.
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Table 5.1: Numerical values of the parameterization variables for the energetic con-
figuration. The values used are separated into enthalpic and entropic sections. The
values shown here are technically the non–dimensionalized values as defined in Sec-
tion 5.2.5.2.

Parameterization
Values

Variable

C0 1.00× 10−1

C1 2.75× 10−1

Cα 5.00× 10−2

Cβ 3.00× 10−1

k0 3.00
k1 3.00
kα 5.00
kβ 5.00

Ef
i 8.00

Ef
v 5.00

ωab 8.00× 10−1

J 2.15× 10−2

Figure 5.2: Composition dependent bulk free energy functional for the binary two–
phase system. These curves were chosen as to be comparable to the NiSi system for
C̄Si ∼ 0.13, T < 900 K.
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Figure 5.3: NiSi phase diagram (from Massalski [114]).

5.2.5 Phenomenological Equations

Since the point defects are treated as atomic entities, it can be argued that the

model simulates a quaternary system,

Ca + Cb + Ci + Cv = 1.

But, since it can be assumed that Ca,b � Ci,v, this relationship can be approximated

as

Ca + Cb = 1. (5.6)

where the Ca and Cb are the A and B atomic conserved concentration, respectively.

The defect concentrations are not conserved, as they can be created and annihilated

theough different mechanisms. In fact, the average defect concentration is expected to

increase until a steady state is achieved [11, 109]. By coupling the evolution equations

for the atomic and defect components, the model can simulate the microstructural

evolution of the system by solving the set of three phenomenological equations. Set-
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ting the chemical potential as the driving force, the chemical evolution of each atomic

component in a system containing n = i, j, . . . , nt components is given by

∂Ci
∂t

= ∇ · Ji = ∇ ·

[
nt−1∑
j=1

Mij∇µ̂j

]
(5.7)

where the Mij terms are the mobilities of the each atomic component through the

different diffusion mechanisms and

µ̂j ≡ µj − µnt =
∂F

∂Ci
(5.8)

is the true driving force, Section 2.6. This can be shown by using the true definition

of the chemical potential for a multi–phase multi–component system [86]

µi = F +
nt−1∑
j=1

(δij − Cj)
∂F

∂Cj
(5.9)

where F can be set to be the EoS and δij is the Kronecker delta.

The RIS model developed by Wiedersich similarly couples a set of rate theory

equations to simulate atomic and defect compositional evolution. However, this hy-

brid model uses the chemical potential gradient as the driving force for the chemical

components, instead of the compositional gradient. This allows the respective phases

to be driven to their appropriate thermodynamic equilibrium concentrations, as op-

posed to continually deplete or enrich the regions around sinks [115]. It should be

noted that the RIS work does suggest the implementation of a parameter that ac-

counts for the difference between the chemical potential and concentration gradients.

This was not further explored in this work. Adapting Equation 5.7 to include radia-
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tion damage related events as in Wiedersich, we have

∂Ci
∂t

=
ηs
∆t

+∇ · (Dii∇Ci +Dib∇Cb)− kivCiCv −
ns
i∑

j=1

Si,j (5.10a)

∂Cv
∂t

=
ηs
∆t

+∇ · (Dvv∇Cv −Dvb∇Cb)− kivCiCv −
ns
v∑

j=1

Sv,j (5.10b)

∂Cb
∂t

= ∇ ·
(
Mbb∇

[
µ̂b − γ∇2Cb

]
+Dbi∇Ci −Dbv∇Cv

)
(5.10c)

where ηs(∆t) is the concentration of surviving defects during irradiation time ∆t, the

Dij are the diffusion coefficients, kiv = kvi is the point defect recombination rate and

the sums are the rate of defect removal at the different S sinks. The work presented

here considers the free surface and the α−β interface to be the only sinks. These sinks

are incorporated by setting a boundary condition of constant defect concentration at

the interfaces

Ci,v(x = interface) = Ceq
i,v. (5.11)

Furthermore, a zero flux boundary condition is applied to the pixels at the interface

between the free surface and vacuum, i.e. no flux between the irradiated target and

voided space

J · n = 0 on ∂V (5.12)

where n is the surface unit normal.

5.2.5.1 Comments on Diffusion and Mobility Parameters

An important distinction between this model and Wiedersich’s is that this work

sets the chemical potential to be the driving force of the chemical evolution equation.

It is quite common for the diffusivity and mobility to be related by M = CD/kBT ,

which is only true for dertain systems. By applying the chain rule to the flux’ driving
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force, we have

Mij∇µ̂j = Mij
∂µ̂j
∂Cj
∇Cj = ΘjMij∇Cj = Dij∇Cj (5.13)

where µ̂ is the difference in the true chemical potentials as defined in Equation 5.8.

For simplicity, the mobility scaling parameter (Θj) has been defined in order to con-

veniently compare the diffusivity and mobility. Note that if the chemical potential

is defined by the regular solution equation in a monatomic single phase material,

µ = µ0 + kBT lnC, the commonly used relationship between Dij and Mij is obtained

by this method.

From Equation 5.10, it can be appreciated that the model includes the use of a

variety of diffusion coefficients, Dij. These are termed: self–diffusion (i = j) and

inter–diffusion (i 6= j) coefficients. The inter–diffusion coefficient, i.e. diffusion of a

given component assisted by the diffusion of another component, is given by

Dij = pn=i ·
ωλ2

2 · D
= CiDj (5.14)

where pn=i is the probability that an adjacent site n is occupied by an i type com-

ponent, ω is the frequency at which an exchange is attempted, λ is the average jump

distance and D is the system’s dimensionality. This standard definition was adapted

by allowing the probability to be equivalent to the concentration Ci (= pn=i) times the

diffusivity constant parameter (often called the pre–exponential), which includes the

remaining terms. For self–diffusion, the diffusion coefficient is simply set to Dii = Di.

5.2.5.2 Non–dimensionalization and Scales

For computational convenience, the standard approach to non–dimensionalizing

the Cahn–Hilliard equation is employed. A set of normalizing parameters are defined

such that they allow the non–dimensionalization of Equations 5.10 and scale the
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different driving forces with simple scalar(s). The normalizing parameters are, for

energy

E = kBT, (5.15)

and length

l =

√
γ

E
=

√
γ

kBT
(5.16)

where the interfacial energy constant, γ, has units of length2 · energy giving l units

of length. Finally, using the standard approach and Equation 5.13, the normalized

time is

τ =
l2

MbbE
=

Θbl
2

DbbE
(5.17)

where the mobility, Mbb, has units of length2/(energy · time) and Θb has units of

energy giving the time normalization parameter units of time. By using these pa-

rameters to non–dimensionalize the energy, spatial and time units correspondingly,

the Equations 5.10 can be re–written in their non–dimensional forms

∂Ci

∂t̃
=

ηs

∆t̃
+ Θ̃b∇̃ ·

(
Di

Db

∇̃Ci + Ci∇̃Cb
)
− k̃ivCiCv − S̃fs − S̃αβ (5.18a)

∂Cv

∂t̃
=

ηs

∆t̃
+ Θ̃b∇̃ ·

(
Dv

Db

∇̃Cv − Cv∇̃Cb
)
− k̃ivCiCv − S̃fs − S̃αβ (5.18b)

∂Cb

∂t̃
= ∇̃ ·

(
∇̃

[
∂G̃

∂Cb
− ∇̃2Cb

]
+ Θ̃bCb

[
Di

Db

∇̃Ci −
Dv

Db

∇̃Cv
])

(5.18c)

where the non–dimensional parameters are identified by a “tilde” and given by t̃ =

t/τ , k̃iv = τkiv, Θ̃b = Θb/E , G̃ = G/E , ∇̃ = l∇ and S̃ = τS.

5.2.6 Discretization of the Phenomenological Equations

Due to the complexity of finding an exact solution to the set of PDEs described

above, the hybrid model is numerically approximated by discretizing the equations.
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Table 5.2: Values for the non–dimensionalized phenomenological and Potts’ interfacial
energy variables.

Non–dimensional
Value

Variable

Di/Db 9.50× 10−1

Dv/Db 9.50× 10−2

Θ̃b 3.72× 101

k̃iv 1.00× 10−3

S̃fs BC (C = Ceq)

S̃αβ S̃fs

This is achieved by employing finite difference methods, more precisely the FTCS

scheme, Section 4.2.1. Further, explicit methods are used to solve the complex set of

PDEs’. The amount of energy stored within each digitized pixel is given by the free

energy functional, Equation 5.3, which can be written as

F =
N∑
i=1

Fi =
N∑
i=1

(
Gq,i +Gm,i + γ|∇Cb,i|2

)
(5.19)

where N is the number of pixel sites in the simulation space. Considering events

that lead to phase transformations, the Cahn–Hilliard term does not accurately mea-

sure the interfacial energy change. This is due to the Cahn–Hilliard equation only

considering the continuum order parameter while the phase change is characterized

by a discrete instantaneous order parameter change. Therefore, for the sole purpose

of comparing the thermodynamic state change during such events, the Potts Monte

Carlo method is used to measure interfacial energy. By using the PMC interfacial

energy, Equation 5.19 can be re–written as

Fd =
N∑
i=1

Fd,i =
N∑
i=1

(
Gq,i +Gm,i + J

n∑
j=1

[
1− δs(i)s(j)

])
(5.20)

where n is the number of surrounding neighbors and J is the adjacent element inter-

action energy.
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Applying the standard FTCS finite difference scheme to Equations 5.10, results

in an approximation for the concentration value for the next time step

Ct+1
i = Ct

i +
∆t̃

h̃2
·

2·D∑
i=1

Jn�i (5.21)

where D is the simulation space dimensionality and Jn�i is the net flux across the

digitized boundary (pixel edge for 2D and voxel face for 3D) between sites n and i.

The net flux equation, as apparent from examining Equation 5.10, for each compo-

nents’ discretized form will be slightly different to match the corresponding driving

forces. Therefore, as a generic example, let’s consider Equation 5.10c. The net flux

across the boundary for this case is

Jn�i =

[(
∂G̃

∂Cb,n
− ∂G̃

∂Cb,i

)
−
(
Cb,2n − 4Cb,n + 3Cb,i

h̃2

)]

+ Θ̃b,iC̄b

[
Di

Db

(Ci,n − Ci,i)−
Dv

Db

(Cv,n − Cv,i)
] (5.22)

where C̄b = (Cb,n + Cb,i)/2 is the average concentration of B, and the i, n and 2n

subscripts stand for the different sites of interest: self, first neighbors and second

neighbors, respectively. The sites constituting the calculation’s “sites of interest”

are shown in Figure 4.4. The regular second order centered approximations in space

(O(h2)) of the Laplacian and the biharmonic operators are attained when performing

the sum over 2 · D, Equation 5.21. Adaptations to the term in large square brackets

in Equation 5.22 were employed for instances where the second neighbor is a void

site as to reflect the no flux boundary condition between the vacuum and target

regions. This allows for conservation of the continuum order parameters which define

the atomic components.
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5.2.7 Phase Transformations

The change in the chemical bulk free energy with sharp interfacial energy, Equa-

tion 5.20, dictates whether a transition between thermodynamic states will take place.

The energetic contribution of the radiation damage is incorporated in the form of ex-

cess point defects. In addition, the radiation induced depletion/enrichment of the

different chemical components in the irradiated region can be considered another in-

direct energetic component arising from the radiation damage. The precipitates are

allowed to grow and shrink by minimizing the EoS by means of the standard Metropo-

lis algorithm. For a site i, a neighboring site n is randomly selected and it’s grain ID

and phase are adopted. Following Boltzmann statistics, the probability of accepting

the configurational change is given by

Pi =

 1, ∆Fd,i ≤ 0

exp
(
−∆Fd,i

kBT

)
, ∆Fd,i > 0

(5.23)

where ∆Fd,i = F trial
d,i −F initial

d,i is the change in bulk free energy of the system between

the attempted (trial) and the initial configurations. The sharp interfacial energy

EoS is given by Equation 5.20. When the trial configuration is accepted, the phase

transformation events are accompanied by an instantaneous removal of excess point

defects. This simulates the decrease in energy as the microstructure “relaxes” to a

more stable microstructure.

5.3 Results and Discussion

To test the model, several irradiation conditions are simulated on bulk and surface

irradiated materials. The different radiation conditions can be defined as uniform and

non–uniform. Uniform irradiation assumes that the ion range is much deeper into the

target than the domain being simulated, Figure 5.4. The non–uniform cases consider

114



irradiation of a surface with medium and high energy irradiation profiles, as relative

to each other. Generally, the simulations look at irradiation of an α–matrix with an

initial density (ρβ0 ) of β–precipitates. These configurations are meant to be analogous

to the thermodynamic state for a Ni 12.7 at.%Si system at elevated temperatures,

T > 700 K.

These simulations were performed on the SPPARKS framework to take advan-

tage of the massive parallel features [91, 92]. The simulation space is digitized into a

static pixelated uniform mesh. Each pixel is defined to be ∼ 4 nm2, which translates

into precipitates with initial diameter of ∼ 6 nm. These parameters were chosen

to be comparable to the micrographs shown in [113]. The mesh has full PBC for

Sections 5.3.1 and 5.3.2. For Section 5.3.3 the mesh has semi–infinite conditions,

i.e. PBC in the x−direction, but no flux boundary conditions on the z−direction.

This simulates irradiation of the target from a voided region through the free surface.

General kinetic and thermodynamic conditions used were such that Di/Dv ∼ 10 and

Ef
i > Ef

v , meaning that interstitials are faster and less thermodynamically able to

form than vacancies. Further, another consideration taken into choosing the param-

eterization variables values was such that Ostwald ripening kinetics resulted for the

non–irradiated case.

Lastly, even though thermodynamic characteristics similar to NiSi were used in

the implementation of the model, actual material properties corresponding to this

system were not used. Hence, evolution of the irradiated NiSi system is not being

claimed.

5.3.1 Effects of Radiation Defect on Precipitate Growth

Tangible effects on the kinetics of microstructural evolution behavior are to be

expected due to the presence of irradiation induced point defects. These defects will

influence the atomic diffusion mechanisms. To get a general idea on the influence that

115



Figure 5.4: Schematic of a high energy ion damage distribution, e.g. swift ions. Since
the ion is highly energized, it travels through a large section of the target producing
slightly gradual radiation damage. If the simulation is only interested in a region (blue
square) away from the peak damage and surface, radiation damage can be assumed
to be uniform through the simulation domain.

radiation damage has on microstructural evolution, the results of a non–irradiated

and uniform irradiation distribution simulations are compared, Figure 5.6. These sim-

ulations contain an initial ∼ 2% density of β precipitates sites. Figure 5.6 shows par-

ticular feature phases, clearly identifying the sharp interfaces between the respective

phases (α =blue and β=red). From visual inspection the resulting microstructure, it

is clear that accounting for radiation induced defects has an important role on the

shape and distribution of the β precipitates. The desnsity of β precipitates present

in the matrix at the end of the simulation is proportional to the radiation dose. This

is due to the fact that increasing the number of point defects in the system leads

to a departure from Ostwald ripening capillarity driven kinetics to radiation defect

diffusion controlled kinetics. In other words, B atoms diffuse to both high and low

curvature interfaces due to the introduced point defect gradients. These mechanisms

are schematically represented in Figure 5.5. For high dose simulations, the precip-
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Figure 5.5: Schematic representation of the radiation influenced precipitate growth.
As radiation induced mobile B atoms move towards the α − β interfaces, Ostwald
ripening is suppressed, leading to slower precipitate growth kinetics.

itates are much more asymmetrical. These were observed to lead to detachment of

very small clusters (∼3 pixels) in the vicinity of larger precipitates. These form due

to an increase in the local energy from the creation of defects in the vicinity of the

precipitates.

To better appreciate the effect that radiation has on the precipitate growth ki-

netics, several simulations for different dose rates were performed. The precipitate

growth curves for these are shown in Figure 5.7. It is clear that as radiation dose

rate increases, precipitate growth becomes suppressed. The suppression stems from

having the excess defects diffuse towards the α−β interfaces. Therefore, smaller pre-

cipitates are able to grow at the expense of depletion of the α matrix. Further, this

is influenced by the formation of smaller precipitates, which arises from detachment

of the irregularly shaped larger precipitates and/or nucleation. These smaller precip-

itates also lead to the increasing deviation from the average radius, as evidenced by

the larger error bars. Assuming that the growth behavior follows scaling growth with

allometry, these curves can be fitted to the generic grain growth equation

〈R〉n − 〈Ri〉n = kt (5.24)
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1 MCS

100 MCS

1000 MCS

10000 MCS

Figure 5.6: Microstructural evolution of the β precipitates (red) as a function of
time for the unirradiated and high irradiation dose simulations. Radiation leads to
appreciable changes in the grain size, shape and distribution. The feature phase order
parameter is shown. (Time units are in Monte Carlo steps.)
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Table 5.3: Fitted grain growth exponential value, Rn − Rn
0 = kt, for the different

cases studied. A growth exponential of n = 3 is indicative of Ostwald ripening
kinetics [99, 100].

Dose [#/(MCS · px)] 0 ∼ 10−1 ∼ 100 ∼ 101

n 3.04 3.35 3.62 4.21

where 〈R〉 is the average grain radius, 〈Ri〉 is the initial average grain radius, n is the

grain growth exponential, k is a temperature and radiation sensitive constant and t is

time. Fitting resulting values where n, k and 〈Ri〉 are fitting constants, is summarized

in Table 5.3. It’s clear that the exponential value increases with increasing irradiation

dose, meaning that precipitate growth was suppressed.

5.3.1.1 Discussion on the Dependence to Radiation Damage

A more rigorous approach to describe the evolution of the precipitates was devel-

oped by Nelson, Hudson and Mazey, i.e. the NHM model [116],

dR

dt
= −ξK0Ω +

3DC

4πRCp
−R2Dρ (5.25)

where ξK0 gives the displacement rate planar density (dpa per unit area per second),

Ω is the atomic volume, D is the diffusivity, C is the total amount of solute (=

Cp +Cm) in the system and ρ is the precipitate density. This equation suggests that

the growth rate is expected to decrease linearly with increasing irradiation damage

rate. The common representation of precipitate growth curves, in a log–log plot,

clearly shows behavior of scaling growth with allometry. Therefore, the precipitate

growth exponentionals were plotted as a function of the dose rate. From Figure 5.7,

the slope of the log–log curves gives the inverse grain growth exponential. This can

119



Figure 5.7: Precipitate growth curves for the unirradiated and irradiated cases. It is
evident that radiation leads to the presence of smaller precipitates at longer times.
The radiation damage units mean approximate average number of defects created per
time unit on each pixel.
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be mathematically expressed as

〈R〉n ∝ t→ n ln 〈R〉 ∝ ln t ∴
1

n
≡ ∆ ln 〈R〉

∆ ln t

where the values of n have been tabulated, Table 5.3. Taking the derivative with

respect to time,

∆ ln 〈R〉
∆ ln t

≡ ∂ ln 〈R〉
∂ ln t

=
t

R

∂ 〈R〉
∂t
≡ 1

n
, (5.26)

which suggests that the precipitate growth inverse exponential is proportional to the

damage rate planar density, −ξK0Ω. Since the micriostructure is constantly evolving,

the best representation of this can be obtained by plotting the inverse exponential

as a function of the damage rate, Figure 5.8. It is clear that increasing damage

rate, the rate at which precipitates grow is lessened. This figure could be interpreted

as a representation of precipitate growth evolution deviation from Ostwald ripening

kinetics as a function of damage rate, i.e.

lim
φ→0

n→ nOst = 3

as expected.

5.3.1.2 Point Defect Behavior and Concentration Profile

The radiation characteristical regime can be studied by looking at the average

defect concentration in the microstructure, Figure 5.9. Each of the irradiation cases

(color coded) has upper and lower curves corresponding to the vacancy and interstitial

average concentration, respectively. These curves behave as expected for a material

irradiated at low temperature and intermediate sink density [11, 109]. This entails

that the simulations follows: (i) a linear defect build up regime, (ii) followed by

annihilation of the faster interstitials as they arrive to the sinks, and lastly (iii)
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Figure 5.8: The inverse of the precipitate growth exponential decreases with increas-
ing radiation damage rate. This reveals how the system’s evolution goes from pure
Ostwald ripening to radiation retarded kinetics. Interestingly, the data fits nicely to
an equation of the 1/n = a ·K1/nOst

0 +b form. This indicates that inverse exponentials
scale with the inverse exponential for Ostwald ripening.
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Figure 5.9: Average concentration of point defects as a function of time for the
irradiated cases. The top curves correspond to the vacancy concentration (C̄v) and
the bottom curves correspond to the interstitial concentration (C̄i).

reaching steady state as vacancies reach the sinks at which point defect densities

saturate. This behavior is more evident from the low irradiation dose case. For the

high irradiation dose case, too many defects are initially created, which are highly

unstable leading to an initial decrease in defect concentration. It is possible that such

a high dose is not realistically sustainable, and other type of damage needs to be

incorporated to properly simulate very high dose effects, e.g. ion beam milling.

Plotting the solute concentration along the center of the simulation space, Fig-

ure 5.10, shows that quasi–equilibrium concentrations depend on the damage rate.

Nonetheless, equivalent behavior of matrix and precipitate phases reaching an equi-

librium concentration is shown for all the different simulations. The precipitate con-

cetration varies more noticeably between the non–irradiated (Ostwald ripening) and
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higher damage rate cases. However, there is a notable differences between the non–

irradiated and low dose cases, Figure 5.10(b). For the irradiated cases, the matrix and

precipitate have quasi–equilibrium concentrations that are well below thermodynamic

equilibrium, as given by the common tangent rule. This is due to: a) irradiation pro-

vides mechanisms where smaller β−precipitates are quasi–stable leading to a larger

precipitate density; and b) the system is assumed to conserve mass. Analytical models

have been developed where the precipitate solute concentration is found to increase

with damage rate, e.g. Wilkes’ model [117]. The reason why this differs from the

observed computational results is that the hybrid model accounts for the chemical

potential as a driving force, leading to a comstrained and conserved system. A previ-

ous iteration of the model [115] which relied on the concentration gradients to serve

as driving forces for microstructural evolution, as in Wilkes’ work, does show un-

constrained compositional evolution of the precipitated phases. A way of countering

this computational artifact is to include a solute infinite source. This is equivalent

to having solute diffuse from a region away from the high radiation damage, to a

reduced extent.

5.3.2 Uniform Irradiation of Polycrystalline Matrix

Radiation damage has been observed to induce nucleation and growth of stable

secondary–phase films near surface sinks [15]. How these nucleated phases behave

depends on different parameters, like the thermal history and pre–irradiation mi-

crostructure. This is well demonstrated on the work by Potter et al., where a Ni-12.7

at.%Si was heat treated and irradiated. To study the role of grain boundaries in an

irradiated microstructure, an irradiated bi–crystalline (two grain microstructure) α–

matrix with ∼ 4% β–precipitates density randomly distributed was simulated. Fig-

ure 5.11 shows the microstructural (grain ID) and compositional evolution results.

The two large grains, dark and light blue squares, correspond to the α–hase, while
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Figure 5.10: Solute concentration profiles for the different cases simulated. It is clear
that the radiation induced quasi–stability of smaller precipitates has an influence
on the equilibrium cobcentrations. Hence, with higher damage, more of the smaller
precipitates grow and/or persist.
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the smaller features are the β–precipitates. The β–phase can be easily identified

by looking at the “Cb”–column, which shows the equilibrium chemical concentra-

tion under irradiation conditions, and the last column shows the interstitial defect

concentration. Sharp interfacial boundaries can be distinguished for the abrupt con-

centration decrease (darker blue curves) since boundaries behave as infinite defect

sinks. Only the interstitial defects concentration are shown since all boundaries are

treated equally and have the same sink strength for either defect, Figure 5.11(Ci).

During the initial stages many of the precipitates in the vicinity of the α − α

grain boundary get “trapped” by the grain boundary due to thermodynamics (sur-

face tension). These grow and coalesce forming a β film along the grain boundary,

while the precipitates in the matrix bulk grow similarly to the precipitates discussed

in Section 5.3.1. An interesting effect observed was that in order to achieve complete

coverage of a precipitated film along the grain boundary, the element (surface) inter-

action energy needed to be increased by ∼ 40%. When lower interfacial energy were

used similar trapping and coverage along the grain boundary with elongated (lentic-

ular shaped) β–features were observed, but the film did not result in a continuous

feature. It is reasonable to expect the surface energy to increase by this amount, and

has been shown to do so on ion irradiated polymers [118] and laser irradiated copper

[119]. This increase in surface energy can be attributed to the fact that these inter-

faces act as damage sinks, which leads to less thermodynamically stable structures in

the surface region. This dependence on increased surface energies for complete cover-

age suggests that RIS is only partially responsible for the observed film precipitation

on irradiated NiSi.

5.3.3 Medium and High Energy Irradiation

Another important aspect that needs to be considered is related to the damage

probability distributions described in Section 5.2.2. This is studied by looking at cases
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Grain ID Cb Ci

τ = 10 MCS

100 MCS

1000 MCS

6000 MCS

10000 MCS

Figure 5.11: Growth of the β film along the α matrix grain boundary. By simulating
irradiation of a bi–crystal α matrix with a random distribution of β precipitates,
the development and growth of the secondary phase is observed. The grain ID, and
concentration distributions of B atoms and interstitials are shown.
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Figure 5.12: Shape of the deposited energy distributions used in the low (green) and
high (blue) ion energy simulations. The ions with higher energy have a larger range,
meaning that they deposit most of their energy deeper into the target. The surface
is located at zero depth, d = 0 · L.

where the ion range is close and far from the exposed free surface. This is analogous

to having low and high ion energy irradiation. These conditions are handled by

employing energy deposition distributions that peak at depths of x(Epeak
T ) ∼ 0.25L

and ∼ 0.75L for low and high ion energy, respectively. The parameter L is the vertical

length (depth)

x = {(x, z) : 0 ≤ x ≤ H, 0 ≤ z ≤ L} (5.27)

where the simulation has been defined in a 2 dimensional space with maximum di-

mensions of H and L. The distributions have general Gaussian shapes as shown in

Figure 5.12. As before, the initial microstructure consists of β–precipitates within

an α–matrix. Note that the probability of collision was remained unchanged and the

energy deposition was the only parameter adjusted. Therefore, the defects formation

behavior is the main controlling parameter being studied.

The results shown correspond to the final microstructure after 10,000 MCS, as

the goal is to compare the two resulting microstructures. Both cases have a very
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similar microstructure, but with features that align with their corresponding energy

deposition distribution. These features are: a continuous β–film and circular precip-

itates away from the damaged region that evolved by Ostwald ripening. Away from

the peak dose region, the damage rate is negligible, which leads to capillarity driven

precipitate growth behavior as discussed in Section 5.3.1. One interesting difference

between the two damage profiles is that the isolated precipitates for the high ion en-

ergy simulation are slightly larger (54.33±16.39 px) than the ones for the low energy

case (48.36±12.81 px)1. This is due to diffusion of the solute atoms as the point defect

diffuse away from the high defect concentration gradient towards the free surface sink.

There is a net solute diffusion away from the peak damage region, i.e. precipitated

film, for both cases. However, the high energy case has the added effect of having

two “forces” attracting the excess defects, instead of one: (1) the circular precipitate

interfaces and (2) the exposed surface. This extra attractive force enhances solute

diffusion from the matrix, which resulted in the slightly larger circular precipitates.

The concentration distributions illustrate that there seems to be a significant

difference between the film and precipitate’s equilibrium concentrations. Therefore,

the concentration profile for both simulations is plotted, Figure 5.15. It is evident

that precipitates for both cases have a slightly higher equilibbrium concentration than

the continuous films. This can be explained by the fact that the system is conserving

mass, i.e. there is a finite amount of B that can be supplied to the β–phase. Hence, as

more β–phase is precipitated in a narrow region, B becomes depleted in the immediate

vicinity in order to reach a quasi–equilibrium. Therefore, the area surrounding the

radiation induced film has a precipitate density, Aβ/Aα, too large to satisfy true

thermodynamic equilibrium. This is equivalent to the observed dependence on dose

rate previously discussed.

1While these are statistically equivalent precipitate average sizes, the differences are likely a real
result arising from the differnce in damage distributions that needs to be examined further.
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Grain ID Ci Cb

Figure 5.13: Microstructure of an irradiated target after 10,000 MCS for a low energy
ion beam. The simulated target is being irradiated through the surface, the “top” of
the image.
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Grain ID Ci Cb

Figure 5.14: Microstructure of an irradiated target after 10,000 MCS for a high energy
ion beam. The simulated target is being irradiated through the surface, the “top” of
the image.
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Figure 5.15: Concentration distribution profile across the microstructure for the low
and high ion beam energy cases. The films and precipitates can be distinguished by
the width of the “step”–like higher concentration. The irradiated surface is located
at 1500 px (top).
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CHAPTER VI

Numerical Simulation of the Formation of

Nano–Porous Networks

The main goal of this dissertation is the development of a computational model

that is able to capture the multi–physical processes that lead to the formation of

the nano–porous structures observed in irradiated amorphized–Ge. A deterministic–

statistical hybrid model was developed in order to achieve this goal. This hybrid

model couples a set of rate theory equations to a Potts Monte Carlo driven mi-

crostructural evolution model and a kinetic Monte Carlo (kMC) algorithm previously

developed to simulate inter–granular bubble swelling Section 6.2. The hybrid model

uses the set of partial differential equations to describe the evolution of the radiation

induced point defects and Pott’s energetics to drive mechanisms like void migration

and surface smoothing. The kMC swelling model, while straightforward, is able to

generate intricate microstructures, and simulate volume expansion of the simulation

domain. These characteristics are well suited to the nano–porous network forma-

tion. Therefore, it makes a natural selection in the implementation of the coupled

hybrid models. These advanced models are tested by simulating inter–granular bub-

ble swelling (Section 6.2) and void swelling nano—porous structuring (Section 6.3).

This chapter discusses the development and coupling of these models.
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6.1 Introduction

The formation of the highly interlinked nano–porous networks is fairly convoluted

with many mechanisms influencing the evolution of the microstructure. Experimental

undertakings suggest that the mechanism leading to the structuring of the nano–

pores can be considered as a series of radiation induced effects stages. As described

in Section 1.3.1, the nano–structuring process as a function of irradiation dose (time

with constant flux) goes as follows:

• amorphization of the target and continued damage build up,

• nucleation of small uniform voids,

• growth and coalescence of the smaller voids,

• and growth by surface migration leading to the formation of the stable nano–

porous networks.

As expected from the formation of the highly porous structure, this is accompanied

by substantial volumetric expansion. While swelling in crystalline materials has been

extensively studied, the knowledge gained from these works is not immediately ap-

plicable to the nano–porous structuring phenomena since these were developed in

amorphized semiconductors. This is a result of the amorphization of the target as a

precursor for the formation of the nano–porous networks.

Several (qualitative and quantitative) models have been proposed in an attempt

to describe the processes that lead to the formation of the complex porous networks.

These have not been able to directly simulate the stages listed above. The present

work approaches the problem by coupling two intrinsically different computational

techniques. The model presented couples an exclusively kinetic Monte Carlo (kMC)

model developed to simulate inter–granular bubble swelling and a set of partial dif-

ferential equations similar to the ones developed by Wiedersich et al. This coupled
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hybrid deterministic–statistical is able to leverage on each others’ inherit computa-

tional capabilities to sensibly evolve the microstructure. Since the kMC model drives

the microstructural evolution, its application to the bubble swelling simulations is

discussed first as an individual model.

6.2 Inter–granular Bubble Swelling

During service, neutron irradiation of nuclear fuel materials leads to the creation

of fission gases. These gases can follow several “paths” before finding a stable arrange-

ment, e.g. direct release, resolution into the matrix, and nucleation and/or growth

of gas bubbles. Unfortunately, fission gases have very low solubility in the UO2 fuel

matrix causing these gases to form intra– and/or inter–granular bubbles. This can in

turn cause the fuel to swell, i.e. volumetric expansion. Examples of these are shown

in Figure 6.1. Furthermore, these bubbles can interlink along the grain boundaries

trijunctions and eventually reach the free surfaces. This is expected to cause the

fission gas to be release by percolation from the fuel matrix into the fuel–clad gap.

This can lead to several failure mechanisms, e.g. cladding ballooning and burst [120].

More importantly, it is desired for the fission gases to remain trapped within the

fuel as a safeguard to releasing the toxic fission gases. Therefore, understanding the

mechanisms that lead to the formation, evolution and interaction of these bubbles,

and eventual release of its fission gas is of great interest.

The model presented here was based on the work developed by Tikare et al. [122]

and extended by incorporating methods similar to those developed by Garcia et al.

[123]. The main adaptation presented here is that the simulated microstructure is

allowed to increase in volume, i.e. swell. In their work, Tikare et al. were able to

study parameters like time for percolation, bubble evolution and distributions. An

important observation was that at the time for percolation, ∼ 0.5 bubble coverage of

the grain boundaries, about 0.057 of the gas in the inter–granular bubbles is expected
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Figure 6.1: Micrographs showing inter– and intra–granular bubbles. (a) SEM frac-
tographs of the fuel with burnup of 23 GWd/t after annealing at 1800◦ C × 5 h [26].
(b) Advanced development of grain-boundary porosity: this fuel was ramped under
similar conditions to that in Fig. 4 (of White) but maintained at 1800◦C for 30 min
[121].

to be released by percolation. This is particularly significant since current codes

assume that all the fission gas is released upon percolation.

6.2.1 Model Framework

As with the sharp interface models discussed in Appendix E, the model considers

a digitized 3 dimensional domain with sharp interfaces, Figure 2.1(a). The simula-

tion space is digitized into a voxelated mesh, i.e. “volumetric pixels”. The order

parameters being considered on this model are exclusively discrete features. These

are differentiated by assigning “colors” (integer values) to each voxel. Essentially han-

dling the microstructure as a standard Monte Carlo simulation space. The discrete

features can represent: grain orientations, bubbles, vacuum/void or a frame. These

features are used to define the system’s thermodynamic state and spatial confines.
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6.2.1.1 Microstructural Representation

Unlike the models previously described, the models presented in this chapter ap-

ply non–periodic boundary conditions (nPBC) to the simulation domain. This is to

allow the microstructure to undergo volumetric expansion (swelling). Since the sim-

ulations are performed within SPPARKS’ static mesh, the simulation domain needs

to accommodate this change in volume. Therefore, “extra empty” simulation space

is allocated to serve as a vacuum space. These different regions that make up the

simulation domain are termed the microstructural and vacuum domains. This are

clearly observed in Figure 6.2. The microstructural domain is encased by the vac-

uum domain which is surrounded by a larger (blue) box, which defines the actual

simulation space dimensions

x = {(x, y, z) : 0 ≤ x ≤ L1, 0 ≤ y ≤ L2, 0 ≤ z ≤ L3}. (6.1)

The blue box represents a one voxel thick layer termed the frame. This domain

serves as a computational spatial boundary that contains the simulation domain.

The vacuum domain, which rests between the other two domains, is the empty space

that allows the microstructure to swell.

The grain boundaries are important features since they are designated as the sole

bubble nucleation sites, Table 6.1. They are represented by the interface between

two differently colored grains, i.e. neighboring voxels with different colors. While

grain boundaries could be defined as its own feature, Tikare found that this sharp

interface definition is able to capture important kinetics and physics affiliated to

inter–granular bubble swelling. It needs to be noted that intra–granular bubble could

be easily incorporated in the model. However, Tikare found that not much is gained

from this, other than prolonged temporal behavior. Therefore, this work only treats

grain boundary sites as bubble nucleation sites.
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Figure 6.2: Simulation space showing the frame (blue outer box), microstructural
domain (polycrystalline material) and empty space in between these two regions. The
empty space, i.e. vacuum domain, allows swelling of the microstructural domain.
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Table 6.1: Comparison of real life and computational modeling of fission gas behavior.
These characteristics describe the fission gas generation and transport (based of [122]).

Reality Model

◦ Generated proportionally to fission
events

◦ Same as reality

◦ Diffuse until precipitating in bubbles ◦ Random walk with D(T,Φ, C, . . . )

◦ Intra– and inter–granular bubbles
◦ Only inter–granular bubble nucle-
ation simulated

◦ Precipitate on trapping sites (irra-
diation defects) to form nano–sized
intra–granular bubbles

◦ Precipitate on trapping sites (sta-
tionary nucleation sites) diffusing
along the surface

◦ Nucleation and evolution of bubbles
is complex and depends on gas concen-
tration

◦ Nucleation is a random event with a
given frequency

6.2.1.2 Thermodynamics of the System

The kinetic evolution of the microstructure, e.g. surface migration, is dictated by

the equation of state (EoS)

FEoS =
N∑
i=1

(
Di=ts +Gi=dg

)
︸ ︷︷ ︸

Volumetric
energy terms

+J
N∑
i=1

n∑
j=1

(
1− δij

)
︸ ︷︷ ︸

Interfacial
energy terms

(6.2)

where N is the number of sites in the microstructural domain, the volumetric terms

include intrinsic energy from trapping sites (ts) and the dissolved gases (dg), and the

interfacial energy is the Potts Monte Carlo energy. Since the volumetric term does

not contribute to the behavior of the inter–granular bubbles kinetics, the interfacial

energy is the only component accounted for in evaluating statistical changes of the

microstructural configurations. The microstructural evolution is simulated by sta-
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tistical rearrangements of the microstructural domain. The probability of accepting

an attempted arrangement follows Boltzmann statistics where the EoS’ interfacial

energy drives the system to equilibrium.

6.2.1.3 Bubble Nucleation and Migration Mechanism

The generation of fission gases that are unable to escape or dissolve into the

matrix will inevitably lead to the formation of inter– and intra–granular bubbles.

Since this model focuses on the potential release of fission gases, the main feature

of interest are the inter–granular bubbles. These are believed to be the more likely

release mechanism of the gas encapsulated within the fuel matrix. Inter–granular

bubble evolution is a complex multi–step process. Initially, intra–granular bubbles

nucleate and grow by coalescence as the more mobile smaller bubbles diffuse. They

also grow as fission gases are continuously supplied to the bubbles. They eventu-

ally migrate towards the grain boundaries where they become trapped and form the

inter–granular bubble network. Although this multi–step process can be easily sim-

ulated with this model, Tikare found that allowing direct nucleation of the bubbles

at the grain boundary yielded equivalent results, while saving computational over-

head. Therefore, this model implements a direct inter–granular bubble nucleation

mechanism by setting grain boundaries as nucleation sites. Another way of interpret-

ing this is that the model assumes that intra–granular bubbles were nucleated and

immediately migrated towards the trapping sites.

Bubbles nucleation is assumed to develop at a given frequency, which is related

to the bubble nucleation probability. For site i, the probability of being sampled and

that the site is a grain boundary site is

pi,gb = pi · pm · pgb =

 Nm/N
2,

∑n
j=1(1− δsisj) > 0

0, otherwise
(6.3)
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where Nm and n are the number of sites that make up the microstructural domain

and surrounding site i, respectively. Once a grain boundary site is found, a bubble

nucleation is attempted following standard Monte Carlo Metropolis methods

pnuc =

 1, if ωnuc > RN

0, otherwise
(6.4)

where RN is a random uniformly distributed number between 0 and 1. For example,

Figure 6.3 shows a polycrystalline material with inter–granular bubble clusters and an

isolated bubble (circled). This isolated bubble will migrate along the grain boundary

until it becomes trapped by a larger bubble cluster. Migration takes place by ex-

changing sites with the surrounding grain boundary sites as described in Section 2.9.

The bubble migration velocity can be defined as

vb = ωmig exp

(
−∆F

kBT

)
(6.5)

where ωp is the frequency of attempting a migration event and F is defined by Equa-

tion 6.2.

Another interesting characteristic shown in Figure 6.3 is the population of the

larger bubbles in the tri–junctions (quadra–junctions in 3D). These configurations

are attained by the deterministic migration of the bubbles along the grain bound-

aries. Further, the bubbles migrate along the grain boundaries’ edges forming lentic-

ularly shaped (elongated) bubbles. This shapes self–arrange due to surface energy

considerations.

6.2.1.4 Microstructural Swelling Algorithm

Fission gas bubbles nucleation is known to cause swelling of ceramic fuels in order

to accommodate the volume occupied by the bubbles. The model treats each bubble
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Figure 6.3: Microstructural representation of a bubble nucleation and coalescence in
a polycrystalline material. Bubbles are nucleated along grain boundaries where they
diffuse and form the interlinked bubble networks.

nucleation event as directly linked to a corresponding swelling event, i.e. each nucle-

ated bubble will lead to a microstructural volumetric change. The algorithm used to

simulate the swelling is based on the sintering model developed by Garcia–Cardona

et al. [123]. In fact, the swelling algorithm can be in some ways considered a reverse

sintering mechanism.

Swelling is simulated by a site exchange mechanism where at the end of the ex-

change sequence a bubble site is introduced at the grain boundary. Once a bubble

has been nucleated, a random direction in 4π space is calculated

p = px · î+ py · ĵ + pz · k̂ = (cosφ sin θ, sinφ sin θ, cos θ) (6.6)

determining in which direction the microstructure swells. This is illustrated in Fig-

ure 6.4 where the random direction is identified by the white arrow. While the

exchange mechanism is shown to take place one voxel length at a time, the exchange

length can be larger depending on the random direction.

Even though these models rely on SPPARKS to perform the message passing
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Figure 6.4: Schematic of the swelling algorithm. (left) A grain boundary site is flagged
to undergo a swelling event, leading to the calculation of the random swelling direc-
tion. (right) The step–wise site exchange that leads to the swollen microstructure.

through processor interfaces, extra communication was required in order to commu-

nicate information when the swelling exchanges take place. This enables exchange

between voxels that are not within the neighborhood of the exchanging site. In other

words, not part of the processor’s ghost sites. The additional communication is is

especially important when the exchange distance is larger than a voxel length. This is

discussed in detail for the sintering algorithm [123], which is the basis of the developed

the swelling algorithm.

6.2.2 Results and Discussion

The model was tested by simulating bubble swelling in a generic polycrystalline

microstructure. The main objective was to study the microstructural and percolating

bubble evolution. Three kinetic processes were incorporated into the model: bubble

nucleation, pore migration and grain growth. The frequency at which each process

occurs is given by

ωi =
νi∑3
i=1 νi

(6.7)
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Table 6.2: Parameterization values used for the inter–granular bubble swelling sim-
ulation. The parameters correspond to nucleation, pore migration and grain growth
rates, as identified.

Process
Parameterization

Value
Variable

Nucleation νnuc 1.25× 10−3

Migration νmig 8.00× 10−1

Grain Growth νgg 1.00× 10−1

where νi is a parameterization value and the sum is performed over the three pro-

cesses just defined. The parameterization values used for this simulation are given in

Table 6.2.

The different features of a swollen microstructure are shown in Figure 6.5. The

microstructure is shown at the time for percolation (a, c–d) or at an advanced swelling

stage (b). The advanced swelling stage shows a particular view of a set of grains

at a time much longer than the time for percolation. It qualitatively matches the

micrographs shown in Figure 6.1, where we can identify bubbles along the grain

boundaries and grain detachment. Further, the grain faces can be seen to be very

porous and rough. Bubble networks can be observed in the grain faces, as in Kashibe’s

work, which are expected to contribute to the fission gas release paths. By examining

the microstructural domain, it is evident that the domain has undergone uniform

volumetric expansion. To the best of my knowledge, this is the first implementation

of a kMC model that can genuinely show 3D swelling of the microstructural domain.

The bubble microstructure shows a highly complex and interlinked network of inter–

granular bubbles. It was found that at the time for percolation, the bubble density

within the microstructural domain was ρb ∼ 3%. The percolating bubble was found

to contain ∼ 30% of the bubble network volume. This was slightly larger than the

volume fraction observed by Tikare et al. on their static microstructural domain

simulation. The slightly larger percolating bubble could be due to the moving free
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surfaces as the material swells. In other words, the bubble would need to grow further

as to reach the advancing free surface. An interesting feature of the percolating bubble

is that the bubbles interlink along the grain edges (trijunctions) forming a network of

lenticular–shape bubbles. It should be noted, that even though the bubble is larger

than the case of Tikare, the majority of the fission gases are still expected to remain

trapped within the fuel matrix.

Since the volume of the microstructural domain is allowed to grow, swelling can

be calculated by directly measuring the microstructural domain volumetric expansion

from the simulation results. This was done by measuring the average distance between

the surface grain voxels in any one direction of every plane and taking the average of

all the distances

∆V

V
=

(
∆x

L1 − 2Lb,1

)
·
(

∆y

L2 − 2Lb,2

)
·
(

∆z

L3 − 2Lb,3

)
(6.8)

where the Lb’s are the symmetric border thickness for the vacuum domain in the

respective directions. The measured swelling as a function of time is shown in Fig-

ure 6.6. From Olander [31], swelling by inter–granular bubbles can be calculated as

∆V

V
=

2(Rgb/a)(Rgb/R)2

1− 2(Rgb/a)(Rgb/R)2
(6.9)

where Rgb is the spherical gas bubble radius, a is the grain radius and (Rgb/R)2 is the

fraction of the grain boundary occupied by bubbles. By applying the respective pa-

rameters from the simulation results to Equation 6.9, it is observed that the simulated

swelling is much lower than expected. This could be explained by the fact that the

equation assumes that the bubbles are spherical. Kagana and Rest [124] showed that

when accounting for the lenticular shape of the bubbles, swelling calculations yield

results that are ∼ 0.86 lower than expected for percolation. Multiplying Equation 6.9

by 0.17 (0.83 reduction) the calculated and measured swelling give more comparable
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Figure 6.5: Microstructure after undergoing irradiation induced bubble swelling. (a)
3D swollen microstructure at time for percolation, (b) select view of grains showing
advanced stage (well past percolation) swelling, (c) all the inter–granular bubbles
present within the microstructural domain and (d) percolating bubble at time for
percolation.
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Figure 6.6: Measured swelling from the expanding microstructural domain dimensions
as a function of time. The blue data represents the measured swelling and the green
represents an 83% reduction in the calculated swelling times.

results.

Another parameter of interest when studying nuclear fuels is the microstructure

initial porosity. Due to currect fuel manufacturing practices, all fuels will have some

amount of pores as a result of the sintering processes. A material with some initial

porosity is expected to have a significant effect on the gas release kinetics. This was

studied by comparing the previous results to a simulation of an equivalent microstruc-

ture (grain size and distribution), but with an initial density of ρ = 0.95 (i.e. 5%

porous). Figure 6.7 shows that by having an initial porosity of just 5% leads to a

large reduction in the time for percolation

tρ=95%
perc

tρ=100%
perc

≈ 33%.

Further, in order to achieve percolation, the percolating bubble volume is significantly

reduced to be about half of the fully dense microstructure

Vρ=95%(tperc) ≈ 0.5Vρ=100%(tperc).
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Figure 6.7: Comparison of the time for percolation between microstructures with
initial porosities of 0% and 5%. The abrupt increase of largest the bubble volume
(number of voxels) marked by the vertical lines denote the time for percolation.

Looking at the bubble size distributions, Figure 6.8, it is evident that the initially

porous case requires a bubble content much lower than the perfectly dense case. It

also shows that, as before, the vast majority of the bubble content is retained within

the fuel matrix.

The implementation of the swelling algorithm to the study of inter–granular bub-

ble swelling was able to corroborate several results reported by Tikare. More im-

portantly, it is the first time that direct measurement of a swollen microstructural

domain has been reported for a kinetic Monte Carlo model. This type of model could

be applied to more realistic cases in order to better understand the fission gas be-

havior and trapping within inter– and intra–granular bubbles leading to improved

performance of nuclear fuels.

6.3 Nano–porous Network Formation and Swelling

Ion irradiation of several semiconductors has lead to the formation of intricate

nano–porous networks. Some examples were presented in Section 1.3.1.1. These net-
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Figure 6.8: Bubble size distribution for the two cases simulated. It is evident that a
much lower bubble content is needed for percolation to take place for the ρ = 95%
case. The inserts refer to bubbles that were larger than 500 voxels.
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works have been deemed desirable due to their promising application to quantum–

confined photoelectronic devices. While these structures have been easily developed

and widely studied for ion irradiated of amorphized Ge, the controlling mechanisms

are not wholly understood. Therefore, computational studies that elucidate the pro-

cesses that lead to the formation of these structures are needed.

There have been attempts at modeling the formation of these nano–porous net-

works through the use of phase field models [72]. While they were able to generate

structures that resemble the general shape of the networks developed experimentally,

these models lack a direct link between the physical processes taking place and the

ones being modeled. Therefore, a hybrid deterministic–statistical model has been

developed that aims to capture real physical processes and implement them into ir-

radiation simulations. This hybrid model employs rate theory and kinetic Monte

Carlo methods to simulate point defect evolution and microstructural swelling of an

irradiated material. Additionally, by not defining any properties pertinent to crys-

talline structure, the model virtually treats the irradiated microstructural domain as

an amorphous material. This section outlines the model framework, development and

generic simulation aspects.

6.3.1 Model Framework

This model employs much of the same microstructural characteristics as defined for

the previously discussed RIS models. Hence, for convenience and to avoid redundancy,

the microstructural aspects for this model will be briefly considered. A noticeable

difference is that a single valued microstructural domain is defined as a homogeneous

target. This is because the irradiated material is assumed to be amorphized and the

amorphous phase is treated as a uniform phase/state. As before, the simulation space

is digitized into a 3D voxelated mesh. Further, it uses both continuum and discrete

order parameters to fully describe the microstructure. The latter is very similar to
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the microstructural framework discussed in Section 5.2.

6.3.1.1 Microstructural and Compositional Representation

The microstructure requires the definition of both continuum and discrete order

parameters. The continuum order parameters include the radiation generated point

defects, i.e. interstitials (Ci) and vacancies (Cv). These components are defined

in term of compositional concentrations as defined in Chapter V. The continuum

fields are not conserved as they are created by radiation collisions and reduced by

recombination and annihilation at the sinks. Point defects in amorphous materials

are an oxymoron as the definition of an amourphous material does not allow for their

existence. Nonetheless, these defect density definitions are employed as computational

approximations for radiation damage.

The discrete order parameter could be thought of as a homogeneous phase. Each

voxel is assigned an integer value that describes its “type”. Similar to the bubble

swelling model, these are: frame, void and matter. The main difference between

the models’ microstructures is the lack of a reference to crystallinity, e.g. grain ori-

entations. This is due to the fact that materials that have been shown to develop

the nano–porous structures were amorphized by the time that void nucleation and

swelling was observed. This has been repeatedly corroborated by work on several

types of semiconductors, as discussed in Section 1.3.1. Another distinction is that

evolution of the microstructural domain dirctly depends on the coupling of the order

parameters. The discrete parameters strictly depend on the evolution of the contin-

uum parameters and changes on the discrete microstructure will influence the how

the continuum parameters diffuse. In other words, they are mutually dependent on

defining the evolution of the system.
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6.3.1.2 Thermodynamics of the System

While the thermodynamics of the system have been defined for this simulation,

they do not drive the compositional evolution. The driving force is defined by the

concentration gradients, as opposed to the chemical potential in Chapter V. However,

the thermodynamics of the system does influence the microstructural kinetics as de-

scribed in Section 6.2.1.3. The model is set up to use the same free energy functional

as described in Section 5.2.4. The simplified EoS that solely uses the Pott’s interfa-

cial energy defines the systems thermodynamics, Equation 6.2. If the void nucleation

mechanism is replaced by a more rigorous approach, e.g. Boltzmann statistics, the

EoS should be replaced by a free energy functional similar to the one discussed in

Chapter V.

6.3.1.3 Void Nucleation and Migration Mechanism

Qualitative models have suggested that the nano–porous networks form due to

the accumulation of the less mobile point defects, i.e. vacancies. These concepts are

applied to the nucleation mechanism incorporated in this model. This means that the

microstructural evolution needs to be directly linked to the compositional evolution

of the point defects. Therefore, the kinetic Monte Carlo algorithm is driven by the

evolution of the continuum order parameters.

In order to understand the nucleation of voids, it is important to discuss the

point defect evolution. As detailed in Sections 5.2.2 and 2.2.1.2, point defects are

introduced to the microstructure as a result of radiation damage. These defects are

“removed” by allowing them to recombine and diffuse towards different sinks, e.g.

free surface. Nonetheless, radiation processes lead to a net increase of defects until

a steady state is reached. The presence of these oversaturated point defects lead to

unstable microstructural configurations. It is to be expected that if the local defect

concentration is too high, the system will try to find a more stable configuration by
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nucleating features, e.g. dislocation loops and/or voids. Further, it is known that

interstitials are usually faster and less thermodynamically probable than vacancies,

as a general rule. This understanding is applied to the void nucleation mechanism.

The model assumes that there will be a net over saturation of vacancies which

cause the local region to become “voided”. These are assumed to cluster into voids

when a threshold concentration is surpassed. The nucletion of a void will lead defects

to diffuse towards it’s surface, which then can cause the void growth by surface

migration. Since it is expected for sites around a void (surface sites) to “nucleate”

at a faster rate than bulk sites, the nucleation thresholds for these two types of sites

is different. This assumption arises from the understanding that it is easier to grow

a void as it consumes vacancies than to nucleate a new void within the bulk of the

matrix. Then, the probability of nucleating a void is

pnuc =


1, if bulk site and ∆Cd(i) ≥ Cthres

nuc,b

1, if surface site and ∆Cd(i) ≥ Cthres
nuc,s

0, otherwise

(6.10)

where ∆Cd ≡ Cv − Ci is the change in defect concentration Cthres
nuc,b > Cthres

nuc,s . These

conditions are applied to reflect the expectation that voids prefer to grow around

existing voids than nucleate at the bulk.

It should be acknowledged that the exchange mechanism leads to an exchange of

all the order parameters, i.e. concentrations and spin. Since this could become very

unstable for crossing paths, whenever a swelling path becomes altered by an external

swelling event it gets discarded and no void is nucleated. Further, a more realistic

nucleation mechanism could be implemented by employing statistical methods, e.g.

Boltzmann statistics. If this approach were applied, the EoS should be properly

adapted as to capture the different contributing thermodynamic factors that could

lead to a void nucleation.
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6.3.1.4 Rate Theory Equations

The rate theory framework was used to simulate the evolution of the point de-

fects. Similar to the work presented by Wiedersich et al., different kinetic mechanisms

influencing point defects are considered. The accumulation of point defects are mod-

eled as described for the radiation–induced segregation hybrid model, but this model

considers three atomic species: atoms (Ca), interstitials (Ci) and vacancies (Cv)

Ca + Ci + Cv = 1. (6.11)

The simulations are applicable to a monatomic material (A), which applies to ion

irradiation of amorphized Ge. While this relationship suggests that the defects are

conserved, this is not true. The number of lattice sites is conserved, hence, the Ca

parameter can be considered to be the concentration of A atoms in its lowest energy

configuration site. Since the materials are expected to be fully amorphized, these

“lattice sites” do not correspond to atomic crystalline sites.

Once defects are created, they are assumed to undergo several types of kinetic

reactions. The ones included in the model are: diffusion down the concentration

gradient, recombination with dissimilar defects and annihilation at the void–matter

interfaces. This can be mathematically expressed as

∂Ni

∂t
=∇[Di∇Ni]−KisNi(N −Ni −Nv)−KivNiNv (6.12a)

∂Nv

∂t
=∇[Dv∇Nv]−KvsNv(N −Ni −Nv)−KivNiNv (6.12b)

where Di is the diffusion coefficient for defect i, Kis is the annihilation rate of defect i

at the sink (surface) and Kiv is the rate at which interstitials and vacancies recombine.

The model implements a simple adaptation where the rate of annihilation at the sink

is proportional to number of atom sites on the surface. This assumes that the defects
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reaching the surface will be removed either by a vacancy allowing an atom to take

its place or an interstitial settling down on the thermodynamic stable atom “lattice”

position at the surface.

For simplicity, it is desirable to relate the rate constants to the diffusion coeffi-

cients. Based on the work outlined by Was [11], the rate constants for recombination

can be defined as

Kiv =
zivΩ(Dv +Di)

a2
(6.13)

and the rate constant for defect annihilation at the sink is, assuming a spherical sink,

Kis =
4πR2Di

a
(6.14)

where ziv is the combinatorial factor, Ω is the atomic volume, R is the radius of the

sink and a is the lattice constant. Let’s keep in mind that the system is assumed

to have been amorphized, thein the a parameter is taken to be the average jump

distance for defect annihilation. The latter rate is obtained by considering the amount

of surface area available for a defect to annihilate.

Considering that the model’s free surface is represented as a flat voxel face, the

number of “lattice” sites at the void–matter interface is given by

Nl =
voxel face area

a2
=
a2
vx ·
∑n

j=1(1− δsi,sj)
a2

where avx is an assigned voxel–to–real dimension parameter, n is the number of

surrounding voxel neighbors and a is the “lattice” constant. Then, the reaction rate

coefficients between the defects and the void surface can be rewritten as

Kis = zisNlΩDi =
zisa

2
vxΩ

∑n
j=1(1− δsi,sj)Di

a4
(6.15a)

Kvs = zvsNlΩDv =
zvsa

2
vxΩ

∑n
j=1(1− δsi,sj)Dv

a4
(6.15b)
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Figure 6.9: Schematic of a voxelated surface showing the difference in free surface
area between two surface voxels. Site a will have a lower surface area, meaning that
the more defects will be annihilated by site b. The arrangement shown indicates that
voxel a and b have 3 and 5 free faces.

where zxs are the combinatorial factors between the defects and the sinks. This

concept of making the sink strength proportional to the surface area can be better

understood by looking at Figure 6.9. Two voxel configurations are being considered:

an agglomerated and isolated voxels. It is evident that the isolated voxel will have

a larger surface area (highlighted in maize) exposed to the vacuum domain where

defects can be annihilated.

As was done for the previous models, the evolution of the concentration is a more

convenient parameter to study than the number density. Multiplying Equation 6.12

by the atomic volume and applying the definitions for the rate constants, we have

Ω
∂Ni

∂t
=Ω∇[Di∇Ni]−

zisa
2
vxΩ

2Di

a4
Ni(N −Ni −Nv)

n∑
j=1

(1− δsi,sj)

− zivΩ
2(Di +Dv)

a2
NiNv (6.16a)

Ω
∂Nv

∂t
=Ω∇[Dv∇Nv]−

zvsa
2
vxΩ

2Dv

a4
Nv(N −Ni −Nv)

n∑
j=1

(1− δsi,sj)

− zivΩ
2(Di +Dv)

a2
NiNv (6.16b)

where the Kronecker delta (δsi,sj) compares neighboring voxels’ spin values. For the
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simulation presented, the spin value is equivalent to the phase, i.e. s = q = n. If

the microstructural domain is redefined to include several phases and/or polycrystals

these equations should be adapted accordingly. In other words, the need to have

different combinatorial factors for the different sinks should be considered. Lastly,

since the concentration and the particle number density can be related by

N ≡ C

Ω
,

and assuming that the atomic volume can be approximated by the jump distance,

Ω ∼ a3, Equations 6.16 can be re–written as

∂Ci
∂t

=∇[Di∇Ci]−
zisa

2
vxDi

a
Ci(1− Ci − Cv)

n∑
j=1

(1− δsi,sj)

− ziva(Di +Dv)CiCv (6.17a)

∂Cv
∂t

=∇[Dv∇Cv]−
zvsa

2
vxDv

a
Cv(1− Ci − Cv)

n∑
j=1

(1− δsi,sj)

− ziva(Di +Dv)CiCv (6.17b)

It should be noted that if removal rates are much higher than the defect creation

rate, the system will be driven to an un–physical configuration, e.g. defect concen-

tration much lower than their thermal equilibrium concentration. This is commonly

handled by bounding the concentrations, i.e. resetting to an assigned value if the

order parameter strays from these bounds. The approach implemented in the model

allows it to “self regulate” about the equilibrium concentrations. This is done by

replacing the C’s with C − Ceq for the removal kinetics, e.g.

KivCiCv → Kiv(Ci − Ceq
i )(Cv − Ceq

v ).

It should be noted that this approach does have its own flows. For instance, if the
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defect concentration goes under the thermal equilibrium concentration, the system

will be required to create point defects such that thermal equilibrium is achieved.

On the other hand, this is not expected to happen as defects are created faster than

removed during irradiation.

6.3.1.5 Void Swelling Algorithm

The algorithm that manages the actual volumetric expansion is very similar to the

voxel exchange mechanism outlined in Section 6.2.1.4. In fact, the main difference

between the models’ swelling mechanism is the set of rules followed that dictate fea-

ture nucleation. Further, this model couples the swelling algorithm to the rate theory

model, as just discussed. The rules for void nucleation are discussed in Section 6.3.1.3.

The staged processes that lead to void swelling are sketched in Figure 6.10. Initially,

the amorphized target undergoes defect accumulation in a random manner, as shown

by the slightly different shades of the squares, Figure 6.10(a). The random distribu-

tion is due to the stochastic nature of radiation damage. Eventually enough damage

builds up that a void is nucleated as defined by Equation 6.10. With the nucleation,

a swelling event evolves the microstructure into a porous structure, Figure 6.10(b).

The newly established internal free surface will act as a sink for defects in the sur-

roundings and the void will tend to grow as more excess defects diffuse toward it,

Figure 6.10(c-d). It is supposed that the equations will lead the smaller voids to grow

into the convoluted large porous network experimentally observed.

6.3.2 Results and Discussion

The coupled hybrid swelling model was tested by considering the effects of the

diffusivities and radiation damage profiles. The study of the former was done by

changing both the defect diffusivities’ ratio (Di/Dv) and changing the magnitudes

while keeping the ratio fixed. The purpose of the simulations is to represent the
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Figure 6.10: Example of the void swelling mechanism showing defect accumulation
and volumetric expansion. As the material is irradiated, the defect density is increased
as shown by the different shades of blue (lighter = more vacancies). Eventually enough
defects are accumulated that a void is nucleated (white). Defects will then diffuse
towards the newly created surface regions.
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Table 6.3: Numerical values of the parameterization variables for the rate theory and
kinetic equations. The units of the parameters have been set to represent cm and s.

Parameterization
Values

Variable

Di 7.50× 10−4

Dv 3.50× 10−4

Kiv 1.00× 10−5

zis 1.00× 101

zvs 1.00× 101

avx 2.00× 10−7

a 7.43× 10−8

Ceq
i 2.00× 10−6

Ceq
v 2.00× 10−5

Cthres
nuc,b 5.00× 10−4

Cthres
nuc,s 5.00× 10−3

J 1.00× 100

behavior of different materials (change in ratio) or the increase in temperature (pro-

portional increase in magnitude). These simulations were subjected to the same

uniform radiation conditions. As for the radiation damage profiles, a uniform radi-

ation probability was compared to a (planar) probability distribution that peaked

around the center of the target. A qualitative representation of the profiles used are

shown in Figure 6.11. The uniform distribution translates into a uniform probability

of damage, or a uniform distribution of defects being created on each voxel within the

microstructural domain. The planar distribution defines a system where sites within

any xy–plane have the same probability of damage. Hence, it only depends on the

depth which peaks at the center of the microstructural domain, Figure 6.11(right).

These simulations were performed as to show the general capabilities of the model

and study the influence of certain parameterization variables. The parameters used

for the simulations presented here are shown in Table 6.3. This section first considers

the former of the damage profiles.
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Figure 6.11: Qualitative representation of the radiation damage profiles used to as-
sess the coupled swelling model. The uniform case considers an equal probability of
damage and energy deposition regardless of the voxel location. The planar case sets
a distribution that peaks at the center of the target in the depth direction, where
z = Ll3 or z = Lh3 is the irradiated surface. The figure on the right helps visualizing
the distribution along the xz− or yz−planes.

6.3.2.1 General Features of the Swollen Microstructures

Generic features shared by the different simulations of the nano–porous structuring

processes is studied by considering the simplest case of uniform irradiation. The values

used for the parameterization variables for this simulation are given in Table 6.3. The

uniform radiation case treats each voxel as having the same likelihood of experiencing

a collision event and leading to the creation of the same number of defects. This

is analogous to a domain in the vicinity of a free surface irradiated by swift ions

(high energy). Therefore, randomly distributed collision events lead to a random

uniformly distributed radiation damage profile. Ultimately, after enough radiation

events take place, the defect concentrations average into smooth profiles. The average

defect concentration profile can be seen on Figure 6.12, which shows the average

concentration for the vacancies (green) and the interstitials (blue). The profiles show

a regime of linear defect build up, followed by a stabilization (saturation) of the
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Figure 6.12: Average concentration for the point defects as a function of time. The
green curve corresponds to the vacancy concentration (C̄v) and the blue curve corre-
spond to the interstitial concentration (C̄i).

defects. After this regime, the microstructure is said to have reached a steady state.

It is evident that these curves follow extremely similar trends with the vacancies

being slightly higher. The similarity in these two distributions is due to the small

differences between the sink strengths. Therefore, both defects will diffuse towards

the sinks (free surfaces) and become annihilated at similar rates.

As in Section 6.2.2, each void nucleation event is followed by a swelling event.

The resulting bulk microstructure is shown in Figure 6.13. Void nucleation within

the microstructural domain starts at τ ∼ 90 MCS, at which time enough damage has

been built up. The microstructure quickly and uniformly expands in all directions

until the microstructure starts transitioning into the saturation regime. Once the

microstructure is within the steady state saturated regime, it becomes fairly stable

with negligible swelling taking place. This can be better appreciated by looking at

the interior cross section of the microstructure domain, Figure 6.14.

While the bulk outline of the microstructural domain shows swelling over the whole

domain, looking at a cross section provides better insight as to the microstructural
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τ = 168 MCS 2, 784 MCS 10, 001 MCS

Figure 6.13: Evolution of the bulk microstructural domain at the onset of swelling,
an intermediate time and at steady state. The microstructure seems to arrange into
a stable configuration that remains generally unchanged for the last 4,000 MCS.

evolution. Figure 6.14 shows the formation of a complex interlinked nano–porous

network. This starts with the onset of void nucleation and terminates with the for-

mation of a stable porous microstructure. The initial stages show the nucleation of

single site (voxel) voids that swell the microstructural domain. As more of these voids

nucleate, the voids tend to cluster into larger uniform pseudo–spherical voids. The

smaller mobile voids diffuse towards the stationary larger ones. These types of larger

voids are the ones believed to have been initially observed by Wang et al. during

their in–situ ion irradiation of amorphized Ge. The microstructure then continues to

evolve into a highly intertwined porous network as these immobile voids keep growing

by “consuming” the smaller voids. Furthermore, they grow due to defect diffusion

towards the voids’ free surface. Eventually, the microstructure becomes very stable

and negligible changes to the microstructure are observed, mostly surface diffusion.

This stable microstructure self–assembles as the point defects reach a steady state

saturation concentration. This is an important observation as the experiments have

shown that further irradiation has a negligible effect on the generated nano–porous
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structures.

A general idea of how this nano–porous structure evolves can be obtained by study-

ing the void size distribution. Figure 6.15 shows these distributions for experimental

work by Romano et al. [125] and the uniform radiation simulation. The experimental

case measures the void’s radial distribution while the simulation presents the void vol-

ume in number of voxels. The volume distribution shows that initially there are few

and mostly very small void clusters, V < 10 voxels. As more voids are nucleated and

pre–existing voids grow, the distribution starts “shifting” to the right. This leads

to the void volume distribution to start taking the form of a normal distribution.

Eventually, as the porous network becomes interlinked, a very large void forms and

quickly overtakes the void volume as the whole network becomes interlinked. This

behavior is not observed from the experimental measurements, and if present cannot

be easily measured. This could be due to the manner in which the measurements

were performed. Experimental measurements only consider cross sectional sections

of the nano–porous structure where the complete complexity of the network cannot

be appreciated.

6.3.2.2 Role of the Diffusivities

Parameterization studies on the diffusivities were performed to better understand

their influence on microstructural evolution. Two relationships were considered: in-

creased diffusivity magnitude with constant ratio (Di/Dv) and variation in the dif-

fusivity ratio. Reaction rate constants shown in Equation 6.17 depend on multiple

parameters, including the diffusivities. Hence, these parameterization studies do ex-

amine their influence to a lesser extent.

The diffusivity ratio was initially considered to be relatively close to unity, Di/Dv ∼

2, to avoid a particular defect type from dominating the microstructural evolution.

Interstitials were generally assumed to diffuse faster as they are usually considered
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τ = 168 MCS 601 MCS

1, 001 MCS 2, 784 MCS

5, 996 MCS 10, 001 MCS

Figure 6.14: Cross sectional view of the microstructural evolution showing the devel-
opment of the porous network. The stabilization of the porous network can be better
appreciated from these views.
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Figure 6.15: Void size distribution for (top) experimentally measured pore sizes [125],
and (bottom) the uniform radiation simulation. The simulation distributions are able
to capture the interlinkage between the individual voids while the is not straightfor-
ward for the experimental measurements. Notice that the experimental and compu-
tational distributions measure different parameters. Further, the simulations have
“flexible” axes to allow for visualization of the data.
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to be the more mobile defect, especially at higher temperatures. The magnitude of

the diffusivities were then increased by orders of magnitude, which is equivalent to

increasing the temperature. The resulting porous microstructures are shown in Fig-

ure 6.16. Visual comparison of these two cases shows that the porosity is largely

reduced by increasing the diffusivities’ magnitude. A simple quantitative approach

of comparing the microstructural evolution is by plotting the porosity of the irradi-

ated materials. The porosity is calculated by counting the number of voids within a

fixed volume embedded in the bulk of the microstructural domain. The volume being

considered is centered about

xc =

(
L1

2
,
L2

2
,
L3

2

)
.

These calculations are measured from a fixed volume of ∼10% of the fully dense

microstructure. Then, the porosity is calculated as

% =
Np −Nm

Np

=
Nv

Np

=

Np∑
i=1

δs(i),0
Np

(6.18)

where Nv and Nm are the number of void and matter voxels within the fixed volume

and Np is the total number of sites accounted for during the porosity calculation

Np = Nm +Nv.

The porosity evolution for three different magnitudes is shown in Figure 6.17. Several

feature in commonality can be observed as the diffusivities are increased, which is

equivalent to increasing the temperature. First, there is exponential build up of

pores as point defects are accumulated. Then, after saturation of the point defects

is achieved, the porosity start to plateau. This means that the microstructure has

achieved a stable configuration after which continued irradiation has minimal effect
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τ = 216 MCS 1, 001 MCS 10, 001 MCS
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Figure 6.16: Single frame cross sectional views of the microstructural evolution of
the void nucleated nano–porous structure. The simulations show the effects of the
diffusivity magnitude. The three views represent different structuring stages: early
initial void nucleation (left); preceding time step to reaching a stable configuration
(center); and final configuration where steady state has been achieved (right).
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Figure 6.17: Porosity evolution for the different magnitude cases, identified by the
order of magnitude of the given value. As the defects diffuse faster, a less porous
stable microstructure is achieved. This is due to defects being removed faster and
restraining void nucleation.

on the microstructural arrangement, as discussed in the previous section. The figure

also shows that the microstructures’ stable states are less porous and reached faster as

the diffusivities are increased. This is explained by the fact that defects diffusing and

reacting faster will mean that they are removed faster. Hence, defects will not have

time to cluster and nucleate voids. This becomes accentuated as voids are nucleated,

increasing the surface area.

The maximum (plateaued) porosity can be plotted as a function of interstitial

diffusity. This yields an obvious trend, as shown in Figure 6.18. This representa-

tion of the microstructural evolution enables the “mapping” of the expected wall

size that separates pores, i.e. fibers. It should be noted that this approach could

yield misleading interpretations. For instance, if the voids are not very mobile, as in

these simulations, high porosity represents a complex microstructure. On the other
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Figure 6.18: Porosity of the stable configuration as a function of the interstitial
diffusivity. With less mobile defects, the microstructure is able to nucleate and grow
more voids leading to a more porous configuration.

hand, if the individual voids are highly mobile they will diffuse and coaslesce gen-

erating a highly porous microstructure consisting of a very large void. Nonetheless,

this measurement does show that there is a clear relationship between the stable

miscrostructure and the defect diffusivity.

Increasing the diffusivities’ ratio has a less pronounced effect on the extent of

the porosity as shown in Figure 6.19. This is especially true for cases where the

interstitials are much faster than vacancies, i.e. Di/Dv ≥ 10. Figure 6.20 clearly

shows this by comparing the porosity evolution for three different ratios ranging over

several orders of magnitude. One of the simulations assumes the vacancies to be

faster as this has been shown to be true for Si under certain conditions [126]. While

all three simulations retain the usual evolution characteristics previously discussed,

it is interesting to see that the case for faster vacancies leads to a more porous

structure. A larger vacancy diffusivity means that they will reach the free surfaces
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Figure 6.19: Single frame cross sectional views of the microstructural evolution of
the void nucleated nano–porous structure. The simulations show the effects of the
diffusivities’ ratio. The three views represent different structuring stages: early initial
void nucleation (left); preceding time step to reaching a stable configuration (center);
and final configuration where steady state has been achieved (right).
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Figure 6.20: Porosity evolution for the varying diffusivities’ ratio cases. The reference
point used corresponds to the simulation that leads to the most porous microstruc-
ture for the diffusivity magnitude study, i.e. Di → 10−4. It’s interesting that while
making the interstitials increasingly faster than vacancies barely influences the mi-
crostructural evolution, the case of faster vacancies has a very noticeable effect on the
microstructure.

before interstitials. Hence, the nucleation threshold criteria will be attained less

frequently in the bulk of the microstructure. On the other hand, as vacancies reach

the surface before interstitials, the correct conditions for nucleation will be attained

around free surfaces. Therefore, the void growth by surface migration mechanism is

particularly important when the vacancies diffuse faster. Further, visual inspection

of the cross sectional frames reveal that the faster diffusing vacancies case leads to

thicker more interlinked nano–porous microstructures.

6.3.2.3 Qualitative Comparison to Experiments

One of the criteria to show the predictiveness of a computational model is its

ability to recreate experimental results. The coupled hybrid model developed in this
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dissertation does not claim to be modeling any physical system as it does not use

specific material properties. Nonetheless, it is still useful to compare the simulated

microstructural evolution to experimental results. The computational results corre-

spond to the different parameterization studies. For the change in magnitude case,

the diffusivities’ ratio is about two, Di/Dv ∼ 2.1. Whereas for the change in ratio

case, the Di → 10−3 condition is employed. In order to qualitatively compare these,

TEM images from Wang’s work [19] were filtered and compared to the simulation

results previously discussed. These are shown in Figure 6.21, where the columns refer

to:

• Early stage: soon after void nucleation has started.

• Preceding steady state: just before the steady state porous microstructure is

attained

• Steady state: final stable configuration that barely changes with increased irra-

diation.

The three results yield very comparable microstructures during the first two stages

where small voids are shown to have nucleated, and eventually grown and coalesced

into complex pores. Hoewever, it is clear that the diffusivities’ ratio is important in

the development of the stable microstructural arrangement. Visual inspection of the

steady state configurations show that the higher ratio case shares more similarities

with the experimental results, e.g. voids spaced more uniformly, higher density of

convoluted shaped voids, inter alia. Therefore, it is essential to have slow enough

defects that lead to void nucleation and relatively faster interstitials to help achieve

a more morphologically accurate nano–porous structures.
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Figure 6.21: Qualitative comparison of the experimental [19] and the computational
results (this dissertation). Visual inspection reveals that slow diffusing defects with
slightly faster interstitials yield to a more sensitive and proper stable configuration.
The computational results are from single frame cross sectional views of the pre-
viously discussed simulations. Notice that the experimental results were analyzed
(computationally filtered) in order to obtain a sharper image that proviedes a more
accurate description of a single frame cross sectional view.
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6.3.2.4 Case of the Planar Damage Distribution

To study the influence of radiation damage distribution on the microstructural

evolution, a planar radiation damage profile was simulated. The profile peaks at a

depth of xpeak ∼ (x, y, 0.5(Lh3−Ll3)) where the microstructural domain is bounded by

x = {(x, y, z) : Ll1 ≤ x ≤ Lh1 , L
l
2 ≤ y ≤ Lh2 , L

l
3 ≤ z ≤ Lh3)}.

This would be equivalent to low energy ion irradiation of a relatively small target

with exposed free surfaces. Figures 6.22 and 6.23 show tilted cross sectional views

of the microstructural and vacancy concentration evolution, respectively. Since it

was shown that the average concentrations of the defects behave similarly, only the

vacancy distribution evolution is shown. The microstructural evolution, Figure 6.22,

shows several peculiarities when compared to the uniform radiation damage case.

First, in the initial stage of void nucleation, voids only nucleate in the peak radiation

damage region. This is to be expected since the majority of the point defects have

been created in this region. As voids nucleate and coalesce, this region starts to

transform into an interlinked porous network. Interestingly, it appears as if this

region experiences preferential swelling in the xy–plane directions, Figure 6.24. The

model is able to capture this minute difference on the volumetric expansion inherently.

This is a welcomed result as the volumetric expansion direction is randomly selected

as discussed in Section 6.2.1.4. Ultimately, a quasi–stable porous network is formed in

the peak dose region, which is accompanied by the formation of porous networks in the

vicinity of the free surfaces. These form as defect created just off the porous region

diffuse towards the free surfaces. This is more readilty identifiable by examining

the defect concentration distribution, Figure 6.23. These regions extend towards

the center of the target where they eventually converge with the expansion of the

first developed porous network. Thus forming a large interlinked porous network.
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It should be noted that unlike the uniform radiation damage case, a wholly stable

microstructure was not observed for up to 10,000 MCS.

The planar view across the target depth, Figure 6.24, clearly shows the particu-

lar swelling characteristics for this simulation. The microstructural domain initially

swells faster perpendicular to the xz– and yz–planes where most of the point defects

are created. Eventually, the onset of void nucleation in the regions near the exposed

surfaces lead to a uniformly swollen microstructure. Its clear that once swelling in

these regions initiates, swelling in the peak damage region seems to stall. Another

interesting feature is the difference in roughness of the surfaces for the xy–plane and

the xz/yz–planes. This translates into the generation of smooth surfaces for high

energy ion irradiation. This has been shown in GaSb where, an “intact” surface is

reported [21]. Under the appropriate radiation conditions, the simulation is expected

to form a stable smooth surface.

Lastly, the two simulated damage profiles are compared by looking at the internal

porosity of the bulk microstructural domain. Again, these calculations employ a fixed

volume of ∼10% of the fully dense microstructure. This fixed volume focuses on the

region receiving the most damage for the “planar” damage distribution case. All

other parameterization variables have the same values. The porosity evolution for

both simulated cases is shown in Figure 6.25. The difference in the evolution is very

noticeable. Firstly, the uniform radiation case leads to a slightly steeper increase in

porosity than the planar case. This could be due to more net defects being created

within the fixed volume under consideration. More importantly, at ∼ 4, 000 MCS,

the uniform irradiated microstructure is observed to find an equilibrium configuration.

This was discussed when examining the microstructural evolution for the uniform

damage case and observed to only experience minimal surface migration changes in

the later stages of the simulation. Interestingly, the planar radiation damage case

does not appear to have reached an equilibrium configuration after 10,000 MCS,
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τ = 168 MCS 601 MCS

1, 001 MCS 2, 784 MCS

5, 996 MCS 10, 001 MCS

Figure 6.22: Cross sectional views of the microstructural evolution showing the devel-
opment of the porous network. It is clear that the interlinked porous network forms
in stages depending on the evolution of the defect concentration.
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τ = 168 MCS 601 MCS

1, 001 MCS 2, 784 MCS

5, 996 MCS 10, 001 MCS

Figure 6.23: Cross sectional views of the microstructural evolution showing the va-
cancy compositional distribution. Since the average defect concentrations were shown
to behave similarly for the uniform case, only the vacancy distribution is displayed.
The defect distribution closely aligns with the radiation damage profile.
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τ = 1, 001 MCS 2, 784 MCS

5, 996 MCS 10, 001 MCS

Figure 6.24: Planar views of the damaged microstructures exhibits a peculiar swelling
behavior where expansion is faster in the region where the porous network forms. As
the porous networks extend to the remaining region, the microstructural domain
seems to reach a uniformly swollen configuration. The dashed box is fixed in location
and size to compare the dimensional changes over time.
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Figure 6.25: Porosity evolution is sensitive to the radiation damage distribution. An
interesting observation is that while the uniform radiation seems to reach a stable
configuration relatively quickly, the planar distribution does not achieve a stable
microstructural arrangement.

Figure 6.25. While its increase in porosity is steadily dampened, an increase can still

be measure up to 10,000 MCS. This can be attributed to the stage–like swelling

behavior observed. These stages are: formation of a porous layer in the peak damage

region; building of porous networks along the exposed surfaces; and extension of the

porous regions in the low defect concentration layers.
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CHAPTER VII

Summary

Several hybrid deterministic–statistical models were developed and applied to

the study of different radiation influenced microstructural evolution in the nano–

scale. These models help close the gap between the vast body of experimental work

amassed on microstructural evolution of amorphized semiconductors and the short-

comings of the computational and theoretical counterparts. Developing models that

are able to accurately account for the influence of radiation induced point defects

on microstructural evolution presents many challenges. These range from solution

stability to correctly interpreting the defects’ kinetic behavior. This is especially true

for the amorphized structures considered in this dissertation where, by their nature,

point defects are not well defined. The work presented herein addresses this by cou-

pling deterministic and statistical computational techniques that treat these defects

as “radiation defect densities”. The developed models were tested by simulating two

particular radiation influenced behavior: precipitate evolution and void swelling.

The main objective of this dissertation is the development of a model that effi-

ciently simulates the formation of nano–porous networks. Ion irradiation of semicon-

ductors shows that the formation of these complex structures follow a staged process:

(i) amorphization of the irradiated matrix, (ii) nucleation and growth of uniform

spherical voids, and (iii) coalescence of the smaller voids until (iv) growth by surface
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migration takes over generating the stable nano–porous networks. There have been

previous attempts to simulate the microstructural evolution behavior presented in

this dissertation, but these have been unable to capture the detailed staged transi-

tions that lead to the nano–porous structure. The ability to capture these stages was

explicitly addressed in this dissertation.

The simulation results clearly show that radiation induced point defects will influ-

ence the way in which microstructures evolve. These effects are shown and discussed

for two types of radiation damage behavior:

• Chapter V: Irradiation of a binary two–phase material was simulated under dif-

ferent radiation damage distributions and dose rates. Precipitate growth kinet-

ics was found to become dampened as the radiation dose rates increased. This is

due to diffusion of radiation point defects towards the sinks (phase interfaces),

which serves as a countering mechanism to capillarity driven precipitate growth.

Therefore, it was shown that with increasing dose rate the system moved away

from Ostwald ripening kinetics. An important observation was that in order to

form full coverage of the grain boundary by the precipitated phase, the interfa-

cial energy must be increased. This study demonstrates that radiation induced

segregation is only partially responsible for the formation of precipitated films

along the grain boundaries, unlike previously suggested. Furthermore, there is

experimental precedent that show interfacial energy increases as a function of

dose, with increases in energies comparable to the one used in the simulation.

• Chapter VI: Nano–porous structuring of a homogeneous amorphized phase is

simulated. Parameterization studies of the radiation point defect diffusivities

and damage distributions were performed to understand its influence in the

nano–structuring behavior. Diffusivities’ magnitude and ratio was shown to be

of importance in the microstructural arrangement and degree of porosity. Faster

diffusing defects lead to a less porous structure as these become annihilated
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before they are able to accumulate and nucleate voids. Hence, once some voids

are nucleated, the newly surviving defects will more likely become annihilated

at the internal and/or external free surfaces than cluster into newer voids. The

damage distribution profile was shown to influence the swelling behavior and

microstructural stability. The uniform irradiation damage cases were found

to reach stable configurations in relatively short times, while the non–uniform

case was not observed to reach a true stable microstructure. Further, the non–

uniform radiation damage case leads to a staged swelling behavior where the

damage peak region swells first, followed by swelling of the exposed surfaces and

ending with swelling of the complete microstructure. This is attributed to the

high densities of defects in the high damage zone and diffusion of these defects

towards the free surfaces once a quasi–stable microstructure is reached in the

peak damage region.

The main achievement of this dissertation was the development of hybrid mod-

els that are able to simulate different aspects of radiation influenced microstructural

evolution. These models are able to capture evolution of the microstructures and

highlight the importance of some computational parameters that influence the final

stable configurations. Several irradiation parameters were explored and approaches

to quantifying their influence on the microstructural evolution were demonstrated.

Nonetheless, more detailed parameterization studies would be beneficial to under-

standing the full capabilities of these model. Finally, it should be noted that the

computational techniques developed in this dissertation could be implemented into

existing models to enhance their efficiency and improve generally them.
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7.1 Future Work

The developed hybrid models were shown to capture important aspects that en-

able the formation of the complex radiation influenced microstructures. However,

the simulations were performed in order to demonstrate their general capabilities.

Therefore, the models should be further studied and qualitatively correlated to direct

experimental results to verify the validity of the models. Furthermore, the porous net-

work structuring model can benefit from the implementation of the phase field model

developed to study precipitate kinetics. Some suggested future work to enhance these

models are:

• Validation: Any computational model is only as valuable as it is able to ac-

curately simulate real physical phenomena. These models should be validate

against experimental results by applying physical parameters that correspond

to true material properties, as well as the exact experimental parameters. This

presents several challenges that range from lack of material properties for the

amorphized semiconductors to appropriate measurements of the complex mi-

crostructures. For the former, the irradiated semiconductors’ properties have

been extensively studied in their crystalline state, the same does not hold true

for the amorphized counterparts. For now, the crystalline properties could work

as a first–order approximation. Regarding direct comparison between experi-

mental and computational results, two methods have been suggested: void size

distribution and porosity level, which should be further explored. These issues

need to be address in order to achieve a fully comprehensive model. For exam-

ple, the model fails to describe the main difference observed between irradiated

Ge and Si.

• Statistical Void Nucleation: The void swelling model uses a simplified threshold

mechanism to simulate void nucleation that might need to be revisited. Use of
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free energy functionals, of similar form to the ones implemented on Chapter V,

to describe the evolution of the system might provide a more sensitive approach

to nucleating the voids. Employing a thermodynamic description will enable

the use of Boltzmann statistics to drive void nucleation. This would result in a

more thermodynamically rigorous nucleation scheme.

• Sharp Interfacial Energy: By their nature, the types of microstructures dis-

cussed in this work are often better described by sharp interfaces. The sharp

interfacial energy driven flux developed and presented in Appendix E could

be used to better simulate diffusional processes. As shown in Appendix E, this

sharp interface description is able to properly simulate grain growth by capillar-

ity. The need for sharp interfaces is more definite for systems with voids and/or

free surfaces where the diffuse order parameters become discontinuous. Fur-

ther, the more mathematically rigorous definition of the curvature, Appendix

B, should be implemented.

• Accuracy of Radiation Damage: Radiation damage is simulated by applying

Gaussian–like distributions that represent the probability of colliding and/or

the average expected amount of energy deposited per collision at a given depth.

An approach that would simulate a more physically analogous process could be

implemented by using pre–calculated collision paths. The SRIM software could

be used to tabulate a statistically significant number of BCA paths, which would

then be sampled to better simulate radiation damage. This could enhance the

comprehensiveness of the model as more collision relevant properties would be

directly linked to the modeled radiation processes.

The models developed for this dissertation represent the first time that we have

been able to computationally capture the influence of some of the kinetic parameters

have on irradiated microstructural evolution, e.g. staged nucleation of nano–porous
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networks in an amorphous material. Regardless, there is always room for improve-

ment. The suggested future work would lead to improved simulations that are able

to simulate the processes in a more sensible fashion. Further, implementation of the

phase field approach to the void swelling model could enable the addition of other

thermodynamically relevant parameters that influence the kinetics of the system. Per-

haps, being able to address the question of how to manipulate Si into generating the

nano–porous networks.
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APPENDIX A

Evolution Equations for a Quaternary System

Several of the thermodynamic concepts utilized in the development of the models

presented in this thesis arrive from mathematical and/or physical principles. This

appendix shows the full derivation of some of the more important concepts that lead

to the derivation of important equations that describe behavior like the phenomeno-

logical equations. These have been developed for a quaternary system.

A.1 Regular Solution Equation for a Ternary System

One of the more common thermodynamical descriptions for the energy of mixing is

given by the regular solution equation. This is an equation that moderately deviates

from the ideal solution. Furthermore, it is used in the development of radiation–

induced segregation model’s entropic energy term. Defining the entropy as

∆S = kB lnZ (A.1)
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where the partition function is dependent on all the species present Z = f(N1, N2, N3, N4)

and N = N1 +N2 +N3 +N4. The partition function is given by

Z =
N !

N1!N2!N3!N4!
=

N !

N1!N2!N3!(N −N1 −N2 −N3)!
(A.2)

which gives

∆S = kB
[

lnN !− lnN1!− lnN2!− lnN3!− ln(N −N1 −N2 −N3)!
]

(A.3)

Using the approximation ln x! ≈ x lnx− x and rearranging the parameters, we have

∆S =kB
[
N lnN −N −N1 lnN1 +N1 −N2 lnN2 +N2 −N3 lnN3 +N3

− (N −N1 −N2 −N3) ln(N −N1 −N2 −N3) + (N −N1 −N2 −N3)
]

=− kBN
[
N1

N
ln

(
N1

N

)
+
N2

N
ln

(
N2

N

)
+
N3

N
ln

(
N3

N

)
+
N −N1 −N2 −N3

N
ln

(
N −N1 −N2 −N3

N

)]
(A.4)

Since the concentration can be defined as the fraction of a species present in the

system,

Ci =
Ni

N

and the entropy can be rewriten as

∆S = −kBN
[
C1 lnC1 + C2 lnC2 + C3 lnC3

+ (1− C1 − C2 − C3) ln(1− C1 − C2 − C3)
] (A.5)

For a binary system where the interstitials and vacancies are considered to be atomic

entities, this definition of the entropy can be used for the Gibbs free energy, which
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gives

∆G = ∆H − T∆S

=
(
Ef
i Ci + Ef

vCv + CaCbωab
)

+ TkBN
[
Ci lnCi + Cv lnCv + Cb lnCb

+ (1− Ci − Cv − Cb) ln(1− Ci − Cv − Cn)
] (A.6)

where Ef is the formation energy, ωab is the interaction parameter between A and B

atoms and

Ca = 1− Ci − Cv − Cb.

This equation can then be mployed in the calculation of the equation of state as

shown in Chapter V.

A.2 Derivation of the True Chemical Potential

Usually one can find in the literature that the chemical potential is defined simply

as the slope of the bulk free chemical energy, i.e. µ = ∂G/∂C. Under conditions

where the system consists of multiple components and phases, this definition does

not fully describe the driving force of the system. The derivation presened here is

based on the derivation by Lupis [86]. If the system has a total of N =
∑n

i=1Ni

moles, the total free energy is defined by the molar free energy

G = NGm. (A.7)

For convenience, it is desired to change the molar free energy definition into molar

fraction terms since materials properties are generally analyzed as such

Gm ≡ Gm(Ni, Nj, · · · , Nn) ≡ Gm(N,Ci, · · · , Cn−1) (A.8)
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where the Ci’s are molar fractions of each i component. Applying the true thermo-

dynamic definition of the chemical potential, we have

µi =
∂G

∂Ni

= Gm

(
∂N

∂Ni

)
Nn

+N

(
∂Gm

∂Ni

)
Nn

(A.9)

where ∂N/∂Ni = 1 and Ni 6= Nn. The second term on the right hand side of

Equation A.9 clearly will depend on the number of species n present. As an example,

let’s consider the quaternary system from before

Gm = Gm(N,Ci, Cv, Cb). (A.10)

Employing the chain rule, the last term of the right hand side of Equation A.9 can

be rewritten in generic terms (here shown for intestitials)

(
∂Gm

∂Ni

)
Nv ,Nb

=

(
∂Gm

∂Ci

)
N,Cv ,Cb

(
∂Ci
∂Ni

)
Nv ,Nb

+

(
∂Gm

∂Cv

)
n,Ci,Cb

(
∂Cv
∂Ni

)
Nv ,Nb

+

(
∂Gm

∂Cb

)
N,Ci,Cv

(
∂Cb
∂Ni

)
Nv ,Nb

+

(
∂Gm

∂N

)
Ci,Cv ,Cb

(
∂N

∂Ni

)
Nv ,Nb

(A.11)

Combining Equations A.9 and A.11, and since Gm only depend on the concentration

and not the system size, i.e. ∂Gm/∂N = 0, and recognizing that

(
∂Cj
∂Ni

)
Nk

=
∂

∂Ni

(
Nj

N

)
=
δijN −Nj

N2
=
δij − Cj
N

, (A.12)

the chemical potential of species i can be written in a general form as

µi = Gm +
n−1∑
j=1

(δij − Cj)
(
∂Gm

∂Cj

)
N,Ck

(A.13)

where δij is the Kronecker delta and Ck stands for all the species’ concentrations that

are being held constant. For the quaternary system, the true chemical potential for
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each species is given by

µi = Gm + (1− Ci)
(
∂Gm

∂Ci

)
N,Cv ,Cb

− Cv
(
∂Gm

∂Cv

)
N,Ci,Cb

− Cb
(
∂Gm

∂Cb

)
N,Ci,Cv

(A.14a)

µv = Gm − Ci
(
∂Gm

∂Ci

)
N,Cv ,Cb

+ (1− Cv)
(
∂Gm

∂Cv

)
N,Ci,Cb

− Cb
(
∂Gm

∂Cb

)
N,Ci,Cv

(A.14b)

µb = Gm − Ci
(
∂Gm

∂Ci

)
N,Cv ,Cb

− Cv
(
∂Gm

∂Cv

)
N,Ci,Cb

+ (1− Cb)
(
∂Gm

∂Cb

)
N,Ci,Cv

(A.14c)

µa = Gm − Ci
(
∂Gm

∂Ci

)
N,Cv ,Cb

− Cv
(
∂Gm

∂Cv

)
N,Ci,Cb

− Cb
(
∂Gm

∂Cb

)
N,Ci,Cv

(A.14d)

where the dependent species has set as n = a.

A.3 Fully Coupled Diffusional Equations

With the true definition of the chemical potential, the true driving forces can

be derived. This detailed derivation is especially important when a material with

multiple phases is being simulated. As show by Balluffi, Allen and Craig Carter [127]

for a generic framework, the flux for a given species is given as a function of all the

driving forces

Ji = Ji(Fi, Fj, F1, . . . , Fn) (A.15)

where the i and j subscripts stand for different type of non–atomic entities and the

numbered subscripts denote atomic types from 1 to n for the conjugate forces, Fi. If

the system is near equilibrium and the driving forces are small, Equation A.15 can

be expanded in a Taylor series to a first order approximation,

Ji(Fi, F j, F1, . . . , Fn) = Fi
∂Ji
∂Fi

+ Fj
∂Ji
∂Fj

+ F1
∂Ji
∂F1

+ · · ·+ Fn
∂Ji
∂Fn

(A.16)
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and the complete system evolution is described by a coupled set of partial differen-

tial equations formed of equations identical to Equation A.16 for each component.

By setting the conjugate force to be given by the negative gradient of the chemical

potential, we have

Ji = −
n∑
j−1

∂Ji
∂Fj

Fj = −
n∑
j=1

Mij∇µj. (A.17)

Balluffi et al. show that from rate of entropy production considerations and if the

sum of the fluxes is set to be equal to zero (conservation), Equation A.17 can be

restated as

Ji = −
n−1∑
j=1

Mij∇(µj − µn) (A.18)

where µi are the true chemical potentials for species i as described in Section A.2.

From Fick’s second law, the diffusion rate of a species i can be related to it’s flux as

∂Ci
∂t

= −∇ · Ji. (A.19)

Then, combining Equations A.18 and A.19 leads to the phenomenological equations

∂Ci
∂t

= ∇ ·

[
n−1∑
j=1

Mij∇ (µj − µn)

]
(A.20)

Using the true definition of the chemical potential for the quaternary system, Equa-

tion A.14, and defining the difference in chemical potentials as the effective chemical

potential,

µ̂i ≡ µi − µa = δGm/δCi,
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a set of PDE’s that define the compositional evolution of the quaternary system can

be defined as

∂Ci
∂t

=∇ · [Mii∇µ̂i +Miv∇µ̂v +Mib∇µ̂b] (A.21a)

∂Cv
∂t

=∇ · [Mvi∇µ̂i +Mvv∇µ̂v +Mvb∇µ̂b] (A.21b)

∂Cb
∂t

=∇ · [Mbi∇µ̂i +Mbv∇µ̂v +Mbb∇µ̂b] (A.21c)

where the inter–diffusion mobilities are symmetrical, i.e. Mij = Mji.

A.3.1 Comments on the Driving Force

A common misconception is that the mobility and diffusion coefficient are simply

related by

M =
CD

kBT
.

This is true for a very specific system, but not quite applicable to multi–phase multi–

component systems. Therefore, it is of interest to obtain the appropriate relationship

between these parameters. For convenience, the concentration gradient and the ef-

fective chemical potential are set as the driving forces

J = −D∇C = −M∇µ

Applying the chain rule to the effective chemical potential to change parameters and

working in 1D for simplicity, the relationship between the two driving force conjugates

gives

∇µ̂i =
∂µ̂i
∂x

=
∂µ̂i
∂Ci

∂Ci
∂x

=
∂2Gm

∂C2
i

∇Ci, (A.22)
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By using Fick’s second law,

∂Ci
∂t

= ∇ ·

[
N−1∑
j=1

Dij∇Cj

]
(A.23)

and comparing Equations A.20, A.22 and A.23, the accurate relationship between the

diffusivities and mobilities is found to be

Dij =
∂2Gm

∂C2
j

Mij. (A.24)

It should be noted that for the free energy functional

G = g0 + kBTC lnC,

the two parameters can be related by the simple equation M = CD/kBT .
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APPENDIX B

Mathematical Formulation of a Continuum Surface’s

Curvature

Capillarity influenced microstructural evolution can be modeled by using the cur-

vature as a driving force. While the work presented in this dissertation uses the

anslogous Cahn–Hilliard equation, it has been shown that a discrete definition of the

curvature can be employed to obtain equivalent results [93]. A more accurate def-

inition can be used to describe the microstructural evolution. The main goal is to

obtain a full description of the curvature as a driving force in terms of the curved

surface. The derivation of the required equation to achieve this are presented here.

From level set theory, the curvature of a continuum curved surface can be defined

as

κs = ∇ · n̂ = ∇ ·

(
∇s∣∣∇s∣∣

)
(B.1)
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where n̂ is the surface normal at the location where the curvature is calculated and

s is the curved surface. Applying the chain rule, the curvature is given by

κs = ∇ ·

(
∇s∣∣∇s∣∣

)

=
|∇s|∇ · ∇s−∇s∇ · |∇s|

|∇s|2

=
∇2s

|∇s|
− ∇s
|∇s|2

(
∂

∂x
î+

∂

∂y
ĵ +

∂

∂z
k̂

)
·

√(
∂s

∂x

)2

+

(
∂s

∂y

)2

+

(
∂s

∂z

)2

(B.2)

For simplicity, let’s consider a 1D framework, e.g. x→ ∇x,

∂

∂x

√(∂s
∂x

)2

+

(
∂s

∂y

)2

+

(
∂s

∂z

)2
 î =

1

2|∇s|
(
2∇xs∇xxs+ 2∇ys∇xys+ 2∇zs∇xzs

)̂
i,

(B.3)

and extended into a 3D space results in,

κs =
∇2s

|∇s|
− 1

|∇s|3
[
(∇xs)

2∇xxs+ (∇ys)
2∇yys+ (∇zs)

2∇zzs

+ 2
(
∇xs∇ys∇xys+∇xs∇zs∇xzs+∇ys∇zs∇yzs

)] (B.4)

where the gradient nomenclature is

∇i =
∂

∂i
(B.5a)

(∇i)
2 =

(
∂

∂i

)2

=

(
∂

∂i

)
·
(
∂

∂i

)
(B.5b)

∇ij =
∂

∂i

(
∂

∂j

)
(B.5c)

The conjugate driving force has been shown to be proportional to the gradient of the

curvature

Fi ∝ ∇sκs
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where the gradient ∇s is the gradient along a free surfacei

∇s = ∇− n̂(n̂ · ∇).

This should result in a more accurate calculation of the curvature [103]. Peforming

the mathematical operations,

∇sκs = ∇κs − n̂
(
n̂ · ∇κs

)
=
(
∇xî+∇y ĵ +∇zk̂

)
κs −

(
nxî+ ny ĵ + nzk̂

)(
nx∇x + ny∇y + nz∇z

)
κs

= Aî+Bĵ + Ck̂

(B.6)

where

A = ∇xκs − nx
(
nx∇xκs + ny∇yκs + nz∇zκs

)
B = ∇yκs − ny

(
nx∇xκs + ny∇yκs + nz∇zκs

)
C = ∇zκs − nz

(
nx∇xκs + ny∇yκs + nz∇zκs

)
Finally, since the compositional evolution is proportional to the divergence of the

conjugate force

∂Ci
∂t
∝ ∇ · Fi ∝ ∇2κs,

which results in

∇2
sκs = ∇s · ∇sκs =

[
∇− n̂

(
n̂ · ∇

)]
·
[
Aî+Bĵ + Ck̂

]
=
[(
∇x − nx

[
nx∇x + ny∇y + nz∇z

])̂
i+
(
∇y − ny

[
nx∇x + ny∇y + nz∇z

])
ĵ

+
(
∇z − nz

[
nx∇x + ny∇y + nz∇z

])
k̂
]
·
[
Aî+Bĵ + Ck̂

]
= ∇xA+∇yB +∇zC −

[
nx
(
nx∇xA+ ny∇yA+ nz∇zA

)
+ ny

(
nx∇xB + ny∇yB + nz∇zB

)
+ nz

(
nx∇xC + ny∇yC + nz∇zC

)]
(B.7)
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andi where the derivatives of the A,B and C parameters

∇iA = ∇ixκs −∇inx
(
nx∇xκs + ny∇yκs + nz∇zκs

)
− nx

(
∇inx∇xκs + nx∇ixκs +∇iny∇yκs + ny∇iyκs +∇inz∇zκs + nz∇izκs

)

∇iB = ∇iyκs −∇iny
(
nx∇xκs + ny∇yκs + nz∇zκs

)
− ny

(
∇inx∇xκs + nx∇ixκs +∇iny∇yκs + ny∇iyκs +∇inz∇zκs + nz∇izκs

)

∇iC = ∇izκs −∇inz
(
nx∇xκs + ny∇yκs + nz∇zκs

)
− nz

(
∇inx∇xκs + nx∇ixκs +∇iny∇yκs + ny∇iyκs +∇inz∇zκs + nz∇izκs

)
.

From examining these equations, there are three general operators to consider: ∇i, ∇ii =

∇2
i and ∇ij. These can be numerically approximated by

∇if =
∂f

∂i
=
f(i)− f(i−∆i)

∆i

∇iif =
∂2f

∂i2
=
f(i)− 2f(i−∆i) + f(i− 2∆i)

(∆i)2

∇ijf =
∂2f

∂i∂j
=
f(i±∆i, j ±∆j)− f(i±∆i, j)− f(i, j ±∆j) + f(i, j)

(±∆i) · (±∆j)

where all of these haveO(h). These approximations are considered since at the surface

the continuum parameter s would become discontinued in at least one direction. For

example, the x–component of the normal could be approximated as

nx =
∇xs√

(∇xs)2 − (∇ys)2 + (∇zs)2

=
si − si−1√

(si − si−1)2 + (sj − sj−1)2 + (sk − sk−1)2

(B.8)
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APPENDIX C

Comments on Numerical Approximation to the

Phenomenological Equations

The models developed in this dissertation that incorporate diffusion due to a

chemical potential force make use of a computational approximation. Instead of

using the complete differentiation of the free energy functionals, an approximation is

used where the individual slopes are considered. Hence, the phase dependence is only

approximated by taking the slope of each curve into consideration. This approach was

found to yield comparable results and slightly improve the computational efficiency.

Nonetheless, the full derivation of the phase dependent chemical potentials is shown

here for completeness.

Let’s consider a phase dependent free energy functional that is defined by the

Cahn–Hilliard equation as

F =

∫
V

(
G+

γ

2
|∇C|2

)
dV (C.1)

where G is a function of both the concentration, f(C), and the thermodynamic phase,

g(q). A general description of the concentration and phase dependent free energy is
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given by

G =
N∑
i=1

f(Ci)g(qi) =
N∑
i=1

figi (C.2)

where fi is the energy stored within a voxel and gi is the thermodynamic state corre-

sponding to site i. From Appendix A, it is clear that the compositional evolution is

given by the effective chemical potential, which is related to the change in free energy

as a function of concentration. Hence, applying concepts from variational calculus,

we have

∂C

∂t
= ∇ ·

[
M∇

(
δF

δC

)]
= ∇ ·

[
M∇(g(q) · f ′

(C)− γ∇2C)
]

(C.3)

where F is the free energy functional and f
′
(C) ≡ f

′ ≡ δf(C)/δC is the variational

derivative of f with respect to C. Applying the chain rule and assuming a constant

mobility and interfacial gradient energy parameters, we get

∂C

∂t
= M

[
g∇2f

′
+ 2∇f ′ · ∇g + f

′∇2g − γ∇4C
]

(C.4)

where both the free energy and phase are dependeent on the simulation space. It is

obvious that the actual evolution of the concentration does depend on the gradients

of both concentration and phase order parameter. However, as mentioned before

and corroborated by the different implementation presented in this dissertation, the

diffusion equations can be approximated by ommiting the phase gradients. This does

introduce an error by propagating the original truncation error, but this error seems

to be negligible. For the sake of completeness, the full discretization of this equation

has been worked out.

For simplicity, let’s re–write Equation C.4 in a one–dimensional form

∂C

∂t
= M

[
g
∂2f

′

∂x2
+ 2

∂f
′

∂x

∂g

∂x
+ f

′ ∂2g

∂x2
− γ ∂

4C

∂x4

]
. (C.5)
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As outlined in Section 4.2, we can use the FTCS scheme to numerically solve this

equation, which gives

Ct+1
i − Ct

i

∆t
= M

[
gti
f

′t
i+1 − 2f

′t
i + f

′t
i−1

h2
+ 2

f
′t
i+1 − f

′t
i−1

2h
·
gti+1 − gti−1

2h

+ f
′t
i

gti+1 − 2gti + gti−1

h2
− γ

Ct
i+2 − 4Ct

i+1 + 6Ct
i − 4Ct

i−1 + Ct
i−2

h4

] (C.6)

For programming purposes, a convenient approach to rearranging this equation is to

consider “fluxes” across the digtized element interfaces, i.e. 4 edges for 2D pixels and

6 faces for 3D voxels. Therefore, in a similar way to the one shown in Section 4.2.1,

a net flux is defined as

Jn�i = Jn − Ji (C.7)

where the J ’s are the flux contribution from the neighbor (n) or the site of interst

(i). For example, in the model implementation presented in Chapter V, these J ’s are

taken to be the slope of the polynomial curves. Applying this idea to Equation C.6,

it can be re–written in the form of sums with some changes in notation for clarity,

which can be directly applied to the computational algorithm

Ct+1
i − Ct

i

∆t
=
M

h2

D∑
i=1

[ {−1,1}∑
∆

(
gti(f

′t
i+∆ − f

′t
i ) +

f
′t
i+∆ · gti+∆ − f

′t
i+∆ · gti−∆

2

+ f
′t
i (gti+∆ − gti)− γ

Ct
i+2∆ − 4Ct

i+∆ + 3Ct
i

h2

)] (C.8)

where D is the dimension and ∆ is the discretization direction with a value of ±1.

This discretization is a suggested approach that has been found to be very efficient,

but there are many other ways that these complex equations could be discretized.
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APPENDIX D

Pseudocode and Output Data Layout

This section shows the a general idea of the C++ algorithms that were employed

in the simulation of the radiation damage effects. The algorithms are implemented

on the SPPARKS framework as run alone applications. The main algorithm for the

hybrid Potts–phase field (hPPF) model is presented here. Similar variations run the

other models developed under this dissertation.

The most important output file are known as “dump” files. These files provide

importan data like the spin (i1), phase (i2) and concentrations (ds). These files can

be altered to output the different types of SPPARKS’ defined arrays. An example is

shown in Table D.1. It should be noted that when run as a parallel process the data

does not necessarily output sequentially for the ID parameter.
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Algorithm 1 Basic algorithm of the hybrid Potts–phase field model showing the
general operations followed.

BEGIN
while t < tend do

for i:=1 to N do
if RN < ωgg then

Adopt random neighbor spin
if ∆F ≤ 0 then

Accept
else if T > 0 then

Following Boltzmann statistics
if RN < exp(−∆F/kBT ) then

Accept
end if

else
Reject

end if
else

Continue
end if

end for
for i:=1 to N do

Calculate new C
Cnew ←forward–time central–space solution

end for
for i:=1 to N do

Update C
Ct+1 ← Cnew

end for
end while
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Table D.1: Typical dump output file. This dump file outputs data showing the site
ID, x, y and z position, spin, and vacancies and interstitials concentrations for a
SPPARKS’ time of ∼ 168 MCS. The values correspond to the frame region.

ITEM: TIMESTEP
15 168.42
ITEM: NUMBER OF ATOMS
1000000
ITEM: BOX BOUNDS
0 100
0 100
0 100
ITEM: ATOMS id x y z i1 d1 d2

1 0 0 0 -1 0 0
2 1 0 0 -1 0 0
3 2 0 0 -1 0 0
4 3 0 0 -1 0 0
5 4 0 0 -1 0 0
6 5 0 0 -1 0 0
7 6 0 0 -1 0 0
8 7 0 0 -1 0 0
9 8 0 0 -1 0 0

10 9 0 0 -1 0 0
...

...
...

...
...

...
...
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APPENDIX E

Sharp Interface hybrid Potts–phase field

This appendix presents the development of a hybrid model for sharp interfacial

driven microstructural evolution. Capillarity driven diffusion is simulated with the

implementation of a discrete curvature parameter developed. The full description

and development of the model is presented here and appeared in the journal Scripta

Materialia [93]. In fact, the description provided here is more detailed than the one

presented in the journal.

E.1 Scripta Materialia: Manuscript

Many microstructural evolution processes have been simulated by the Cahn–

Hilliard (CH) based phase field model. The Cahn–Hilliard equation was originally

developed to model spinodal decomposition [64] of glass with interfacial energy intro-

duced by a gradient in the composition of the glass. Since then, many have adapted

this to simulate a wide range of microstructural evolution mechanisms with “or-

der parameters” introduced by Khachaturyan [59] to represent many other materials

characteristics, such as grains and precipitates with a gradient in the parameters rep-

resenting the interfaces. Recently, Homer et. al. [88, 89, 90] introduced a hybrid

Potts–Phase field (hPPF) model, which uses both the Cahn–Hilliard (CH) smoothly
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varying interfacial energy and the Potts sharp interfacial energy terms to calculate

the interfacial energy. In this work, we show that the CH−interfacial energy term can

be eliminated; we can determine the interfacial energy the sharp interface between

discrete particle and the bulk free energy by the compositional field. We will com-

pare our results to those of the hPPF model, which has been extensively studied. The

benefit of such a model is that it affords direct control over the thermodynamics of

interfaces. The interfaces between microstructural features is a sharp interface with

the associated interfacial energy, γS. Then, the bulk energy equation is a function of

phase and composition.

Several types of computational techniques have been used to model the evolu-

tion of microstructures, e.g. Potts Monte Carlo (PMC) and phase field (PF) models.

The former uses a discretized ensemble of particles, while the latter uses continuum

fields, or order parameters, to define the microstructure. Hence, the PMC and PF

models have sharp and diffuse interfaces, respectively. While these models have been

extensively used for different types of microstructural evolution, both have intrinsic

drawbacks. The PMC model struggles to simulate smoothly varying continuous fields

like concentrations. While, in order to accurately capture diffuse interface evolution,

the PF model requires a large set of coupled partial differential equations with suffi-

ciently refined meshes. These issues can easily become prohibitively computationally

expensive. Therefore, Homer et. al. developed the hPPF model that enables effi-

cient and accurate simulation of microstructural evolution where microstructure is

characterized by both continuous fields and discrete particles.

Many applications of the PF model uses the Cahn–Hilliard equation [64, 61, 62,

63], where the interfacial energy is a function of the gradients in the continuous fields.

The hybrid model developed by Homer et al., incorporates both this interfacial energy

and the Potts interfacial energy. In this work, we implement a simpler, yet robust,

approach to calculating the interfacial energy with more direct control over its charac-
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teristics. An added benefit is the slight improvement in computational efficiency over

the hPPF model under certain conditions, which itself was an improvement over the

conventional PF models. In essence, our model uses a discretized curvature, where

the digitized microstructure is used to calculate the interfacial energy, as opposed to

gradients on the concentration field.

Our model runs in a digitized voxelated mesh with a continuum concentration field

overlaid on it. The voxels are populated by an ensemble representing grain orientation

and phase. The microstructure is represented by a set of discrete fields, grain id

(s) and phase (q), and a continuum field, concentration (C). The concentration,

C ∈ R : 0 ≤ C ≤ 1, defines the fraction of component A at a point in the continuum

field. The grain id and phase are integer discrete values that represent the particular

type of microstructural feature. We have a two–phase binary system where each

phase is allowed a set of grain orientations.

The thermodynamic state of the system is given by an equation of state (EoS),

which has volumetric and interfacial terms. The hPPF model uses a free energy func-

tional that incorporates the gradient in composition term used by the CH equation

and the Potts term, i.e. total number of dissimilar neighboring voxels,

F =

∫
V

f0dV +

∫
S

γdS =

∫
V

f0dV +
γCH

2

∫
V

|∇C|2dV + γPotts

∫
S

dS (E.1)

where f0 is the bulk chemical free energy and the γ’s are the interfacial or surface

energy. The CH term goes to zero as we move away from the interface

lim
dint→∞

∇C = 0 (E.2)

where dint is the distance to the sharp interface. Our model only uses the Potts term

to account for the interfacial energy induced by the curved surface (curvature), which
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gives us

F =

∫
V

f0dV + γPotts

∫
S

dS (E.3)

We use polynomial (quadratic) equations to describe the bulk chemical free energies

f =

∫
f0dV =

N∑
i=1

fi(qi) (E.4)

where N is the total number of sites (voxels) in the simulation system and each site

i with q–phase stores energy

fi =

 λ0

[
(C − C1)2 + (C − C2)2

]
+ λ1(C − C3)2, q = α

λ0

[
(C − C1)2 + (C − C2)2

]
+ λ1(C − C4)2, q = β

(E.5)

where fi is the bulk free energy for the α− and β−phases, and the λ’s and Ci’s

constants are the parameterization variables chosen to match the work by Homer,

Table E.1.

The general microstructural evolution for multi–state systems has been simulated

by the Potts Monte Carlo model [50], which we incorporate to calculate the sharp

interfacial energy, given by

∫
S

γPottsdS ≡ J
n∑
j=1

(1− δs(i)s(j)) (E.6)

where J is the interaction energy between adjacent elements, N is the number of

surrounding particles, δ is the Kronecker delta, and s(i) and s(j) are the grain id for

the i and j sites. Then, introducing Equations E.5 and E.6 to Equations E.1 and E.3,

we get the following discretized equations of state

FCH,i =
N∑
i=1

(
f0(qi, Ci) +

γ

2
|∇Ci|2 + J

n∑
j=1

(1− δs(i)s(j))

)
(E.7)
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FdC,i =
N∑
i=1

(
f0(qi, Ci) +

n∑
j=1

(1− δs(i)s(j))

)
(E.8)

where N is the number of particles (voxels) in the simulation system.

To simulate grain growth and phase coarsening, we minimize the EoS by means

of the standard Metropolis algorithm. For each site i, we choose a neighboring, site

j at random, and adopt its grain id and phase. Following Boltzmann statistics, the

probability of accepting the microstructural change is given by

Pi =

 1, ∆Fi ≤ 0

exp
(
−∆Fi

kBT

)
, ∆Fi > 0

(E.9)

where ∆Fi is the change of energy for the event calculated using Equations E.7 or E.8,

kB is the Boltzmann constant and T is the absolute simulation temperature. For the

concentration evolution, we use the phenomenological equation

∂C

∂t
= ∇ · (M∇µ) (E.10)

where µ is the chemical potential and M is the mobility. The chemical potential is

the defined as µ ≡ δF/δC. Incorporating Equations E.1 and E.3 into Equation E.10

and non–dimensionalizing, for the hPPF model we get

∂C

∂t̃
= ∇̃ ·

[
∇̃

(
∂f̃0

∂C
− ∇̃2C

)]
(E.11)

where t̃, ∇̃ and f̃0 are the non–dimensionalized time, spatial gradient and bulk chem-

ical free energy, respectively. Then, for the discrete curvature model we get

∂C

∂t̃
= ∇̃ ·

[
∇̃

(
∂f̃0

∂C
+ κ̃

)]
(E.12)
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where κ̃ is the non–dimensionalized surface curvature 1.

Curvature of a continuous field is commonly defined as the divergence of the unit

normal to the surface, κ = ∇ · n̄. We should note that if we define the Cahn–Hilliard

interfacial energy term as γCH = −1/|∇C|, we get κ = ∇2C, which is consistent

with the common curvature definition. We define a discrete curvature that is given

directly by the digitized microstructural features. The discrete curvature is defined

as

κi =

∑ns

j=1(1− δq(i)q(j))− nbase
ns

(E.13)

where ns is the number of surrounding neighbors being considered on the curvature

calculation 2 and nbase is the reference state that yields a curvature of zero for a flat

surface

nbase = N (1 + 2N )D−1 (E.14)

where N is the number of neighbors “shells” and D is the simulation dimension.

Similar definitions for the discretized curvature have been extensively used by Potts

Monte Carlo simulations. This concept of “neighbor shells” can be explained by the

sketch in Figure E.1. In this example, we have N = 2, hence we look at two shells

of surrounding neighbors. Then, the sum of all unlike phase neighbors gives the

curvature of site i.

1If the energy associated to a curved surface is given by F = γS, the variational energy is given
by

δF

δC
= γ

δS

δC
.

Adding mass to the surface leads to a change in volume, δV = 4πRδr, and in surface area, δS = 4πδr.
Defining the amount of volume added per change in concentration as δV/δC = Ω and applying the
chain rule, we have

δF

δC
= γΩ

4πδr

4πRδr
=
γΩ

R
≡ γΩκ.

We should also point out that in order to accurately compare the two models, we scaled the nor-
malized curvature by 1/10 as to obtain comparable interfacial kinetics.

2The number of sites accounted for the curvature calculation can be computed by

ns = (1 + 2N )D − 1.
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To test our model, we compare its performance to that of the hPPF model. The

first tests consist of computing the compositional evolution of an initially stoichio-

metric matrix–precipitate system, and compare our model to the hPPF model. We

do not allow growth or shrinkage of the precipitate such that the effect of interfacial

(curvature) energy on compositional evolution can be evaluated. Figure E.3 shows

the concentration profile after the system reaches equilibrium under these conditions.

As we can see, the discretized curvature is able to accurately simulate the composi-

tional evolution and is comparable to the hPPF model. We should point out that

under these conditions, the hPPF model is identical to a single order parameter CH

model.

We performed a more complex simulation of grain growth controlled by diffusion–

limited kinetics in order to verify that the model maintains it’s accuracy as the mi-

crostructural evolution scales in complexity. The simulations were run at a finite

temperature, kBT = 0.3 to avoid grain growth pinning effects. The microstructural

evolution can be easily appreciated from Figure E.4 where we illustrate both grain

growth and compositional evolution. Grain growth curves obtained from the hPPF

model are compared to those from our model for shells N = 1 and 2 in Figure E.5.

The grain growth is virtually identical for all three cases. By fitting the data to the

grain growth equation, R̄ = (mt + Rn
0 )1/n, we obtained a grain growth exponent of

n = 3 for all three simulations, as shown in Table E.2. This grain growth exponent

n = 3 is characteristic of diffusion–controlled Ostwald ripening–like grain growth

kinetics. Since N = 1 and N = 2 give virtually identical results, the additional

computational expense of considering more neighbors for the curvature calculations

is not necessary.

Finally, we also simulated the evolution of a polycrystalline material in a 3D sys-

tem. Figure E.6 shows the concentration and microstructural (grain orientation) evo-

lution of an initially randomly oriented microstructure. It is evident that our method
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is able to simulate this type of realistic microstructural evolution while preserving the

correct physics and kinetics of the system.

Conclusion

We have shown that using the discretized curvature approach with continuum

thermodynamic description of the bulk energy is accurate and robust for simulation

of microstructural evolution. It has been successfully applied to continuum thermody-

namic and kinetic equations to simulate microstructural evolution by capillarity. The

implementation of the discretized curvature to the deterministic–statistical hybrid

model is able to improve the computational efficiency slightly without compromising

the physics. When compared to the hPPF model, and it was shown to yield some

computational savings while retaining the correct kinetics and physics, especially for

the N = 1 case. More importantly, we showed that the discretized curvature ap-

proach grants us a direct method for calculating the thermodynamic state, rather

than using the CH, which was originally developed for spinodal decomposition. Fur-

thermore, a limit to the efficiency enhancement and applicability was shown to depend

on the microstructural physics. Lastly, we showed that the model is robust and can

be extended to a 3D scheme and more complex microstructural evolution scenarios.
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Figure E.1: Sketch illustrating methodology used to calculate discrete curvature. The
lower–left white dot shows the concept of neighbor shells, where each color surrounds
the neighbors considered for a given N−shell: red corresponds to 8 neighbors (N =
1), green to 24 (N = 2) and yellow to 48 (N = 3). For N = 2, the curvature of the
upper–right white dot is proportional to 16, which gives κ = 0.25 calculated using
Equation E.13.

Figure E.2: Free energy curves for the minimum curvature configuration. As the
curvature changes, these curves move and the solubility changes (insert for N = 2)
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Table E.1: Numerical values of the model’s parameterization variables used in the
presented simulations.

Parameterization
C1 C2 C3 C4 λ0 λ1Variable

Values 0.25 0.75 0.05 0.95 0.3 0.5

Table E.2: Summary of the grain growth exponential inverse, 1/n, for the hPPF
model and a series of discrete curvature calculations with varying N .

hPPF
N N3D = 1

1 2
0.350 0.337 0.345 0.386

Figure E.3: Concentration profile for the matrix–precipitate (insert) system after
equilibrium has been reached. The concentration is taken across the center of the
precipitate, as shown by the white line in the insert. The concentration at the in-
terfaces for all cases are very similar and is highlighted by the high resolution of the
y–axis.
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Figure E.4: Microstructural evolution showing grain growth on the left, and con-
centration evolution and coarsening of the α (blue) and β (red) phases on the right
for the N = 1 case. We show the spin and concentration distributions for: (top to
bottom) t = 464, 4640 and 46416 MCS.
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Figure E.5: Grain growth curves for hPPF and our simplified model with shellsN = 1
and 2. We can see that all three curves are virtually identical.
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Figure E.6: 3D simulation of a polycrystalline microstructural evolution using the
discrete curvature definition (N3D = 1). The top figures show the concentration
evolution, while the bottom shows the microstructural (grain id) evolution. The grain
growth exponential was found to be in good agreement with the 2D cases, Table E.2.
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APPENDIX F

Comments on the Dependence of Fiber Diameter on

Diffusivity

This section compares the self diffusivities of semiconductors that are know to

generate nano–porous/fiberous structures when irradiated by high energy ions.

From Perez–Bergquist’s dissertation [27], Figure F.1, the size for several experi-

mental results are plotted as a function of fluence. A clear trend observed is that the

Ge samples resulted in slightly smaller fibers/walls. If we consider the diffusivities of

Ge and GaSb, Figure F.2, we can see that Ge self diffusion is expected to be much

slower than diffusion in GaSb. Figure F.2 shows the calculated self diffusivities for a

wide range of temperatures. These were plotted assuming that the diffusivities fol-

low the Arrhenius equation and with data from [128]. This qualitatively agrees with

the computational results as it was shown that slower diffusion is needed in order to

create the nano–porous structures.

Lastly, it must be noted that these diffusivities correspond to crystalline materials,

which likely do not apply to the amorphized states. Nonetheless, due to lack of the

amorphized state data, these values can be used as a first order approximations.
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Figure F.1: Fiber or cell wall thickness as a function of ion fluence for InSb, GaSb,
and Ge irradiated with 1 MeV Au+ ions.

Figure F.2: Self diffusivities for crystalline Ge and GaSb as a function of temperature.
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