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ABSTRACT

Monitoring using Heterogeneous Autonomous Agents

by

Jonathan Las Fargeas

Co-Chairs: Anouck Renee Girard and Pierre Tshimanga Kabamba

This dissertation studies problems involving different types of autonomous

agents observing objects of interests in an area. Three types of agents are

considered: mobile agents, stationary agents, and marsupial agents, i.e., agents

capable of deploying other agents or being deployed themselves. Objects can

be mobile or stationary.

The problem of a mobile agent without fuel constraints revisiting stationary

objects is formulated. Visits to objects are dictated by revisit deadlines, i.e.,

the maximum time that can elapse between two visits to the same object. The

problem is shown to be NP-complete and heuristics are provided to generate

paths for the agent. Almost periodic paths are proven to exist. The efficacy of

the heuristics is shown through simulation. A variant of the problem where the

agent has a finite fuel capacity and purchases fuel is treated. Almost periodic

solutions to this problem are also shown to exist and an algorithm to compute

the minimal cost path is provided.

ix



A problem where mobile and stationary agents cooperate to track a mobile

object is formulated, shown to be NP-hard, and a heuristic is given to com-

pute paths for the mobile agents. Optimal configurations for the stationary

agents are then studied. Several methods are provided to optimally place the

stationary agents; these methods are the maximization of Fisher information,

the minimization of the probability of misclassification, and the minimization

of the penalty incurred by the placement. A method to compute optimal re-

visit deadlines for the stationary agents is given. The placement methods are

compared and their effectiveness shown using numerical results.

The problem of two marsupial agents, one carrier and one passenger, per-

forming a general monitoring task using a constrained optimization formula-

tion is stated. Necessary conditions for optimal paths are provided for cases

accounting for constrained release of the passenger, termination conditions for

the task, as well as retrieval and constrained retrieval of the passenger. A prob-

lem involving two marsupial agents collecting information about a stationary

object while avoiding detection is then formulated. Necessary conditions for

optimal paths are provided and rectilinear motion is demonstrated to be optimal

for both agents.
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CHAPTER 1

Introduction

1.1 Motivation

The use of autonomous vehicles for monitoring missions has grown steadily in recent years.

With the increase in their use, these autonomous vehicles (agents) are tasked with increas-

ingly large and complex missions (e.g., extended duration missions with many objects of

interest and multiple agents available). Such missions include military surveillance mis-

sions performed by unmanned aerial vehicles, monitoring of ocean areas for potential oil

spills using unmanned underwater vehicles, surveillance of radiation levels in a power plant

using unmanned ground vehicles, or weather monitoring spacecraft.

These missions typically involve a number of objects of interest present in an area with

properties that vary over time. The goal of the agents is to monitor the properties of the

objects of interest in the area from which the agents can infer information directly related

to their goal; e.g., measuring temperature and wind velocities to assess weather patterns

in an area. The agents must select their paths and when to visit and gather information

from the objects of interest such that their goal is accomplished. This may be achieved by

observing the properties of the objects of interest while minimizing the mission time, the

fuel consumed, or the risk accumulated by the agents. The agents use an estimate of how

the properties of the objects of interest change over time to make their decisions.

One such problem may be mobile unmanned aerial vehicles cooperating with stationary

1



Figure 1.1: Cooperative surveillance and pursuit problem using mobile and stationary
agents.

unattended ground sensors to track an intruder along a road network (Figure 1.1) or a

mobile unmanned aerial vehicle capable of deploying a smaller unmanned aerial vehicle to

collect information about an object of interest (Figure 1.2).

1.2 Problem statement

The problem for the agents can be stated as follows: given models for the objects of inter-

est, find paths for the agents such that the objects are monitored. From this generalized

problem statement, several questions of interest arise:

• Which paths accomplish the task?

• What properties do these paths have?

• How can these paths be computed?

These broad questions of interest are complex, hence to reduce their scope and inherent

difficulty, the following constraints are applied:

2



Figure 1.2: Cooperative reconnaissance problem using marsupial agents.

• The agents’ movements are modeled using unicycle dynamics.

• The agents travel at a constant velocity.

• The agents possess accurate models of the objects of interest.

• Mobile objects move according to Markov models.

Even with these assumptions, there are many different possible configurations for the

heterogeneous agents. Hence the problem is divided into three subproblems, each treating

a different configuration for the autonomous systems where a configuration constrains the

types of agents considered. In the first case, only mobile agents are considered and thus

the problem is one of path planning. In the second case, both mobile and stationary agents

are considered hence the conjunction of the first case and a sensor placement problem

is studied. A question that arises during the study of problems with stationary and mobile

agents is how could the system be improved if the mobile agents could pick-up and relocate

3



Figure 1.3: Cooperative monitoring problems.

the stationary agents. Hence, the last case studied is one where mobile agents are capable

of deploying other agents (i.e., their relationship is marsupial) which is also a path planning

problem but includes other factors such as releasing and retrieving agents. The following

subquestions corresponding to different agent architectures are treated:

1. Path planning: How can mobile agents cooperate to achieve monitoring tasks?

2. Sensor placement: How can mobile and stationary agents cooperate to achieve mon-

itoring tasks?

3. Marsupial operations: How can mobile marsupial agents cooperate to achieve moni-

toring tasks?

1.3 Generalized problem formulation

The systems considered in this dissertation are agents that can move and gather knowl-

edge, in addition how the agents move affects how the agents gather knowledge. Thus, the

dissertations concerns itself with the link between kinematics and epistemology. The fol-

lowing states and functions are introduced to build a general formulation for the problems

4



considered in this dissertation. Let x(t) be the kinematic states of the agents and e(t) be the

knowledge states of the agents. Let f : x(t)→ R be a function that evaluates the kinematic

states and g : e(t)→R a function that evaluates the knowledge states over the course of the

task. Then the problems considered can be formulated as follows:

min
x(t),∀t

( f (x(t))) subject to g (e(t)) = 0, (1.1)

i.e., an objective function is optimized with respect to the kinematic states subject to con-

straints on the knowledge states.

For example, in Section 3.2 a mobile agent is tasked with satisfying revisit constraints

to monitor stationary objects while minimizing fuel expenditures; for this formulation e(t)

contains the revisit constraint states (these states are called slack times and are introduced

in Section 3.1), f (·) would account for the fuel costs, and g(·) accounts for the satisfaction

of the revisit constraints. Another example is the problem studied in Section 5.2 where

two marsupial agents are tasked with collecting a given amount of information about an

object while minimizing their likelihood of detection; for this problem e(t) contains the

amount of information gathered, f (·) accounts for the likelihood of being detected, and g(·)

checks whether the desired amount of information has been collected. In some problems,

there may not be an objective function in which case we want to find paths for the agents

that satisfy the knowledge requirements for the mission; e.g., the problem considered in

Section 3.1 where a mobile agent is tasked with satisfying revisit constraints to monitor

stationary objects.

1.4 Original contributions

The original contributions of this dissertation are:

• Almost periodic solutions to the persistent visitation problem are shown to exist for

a single mobile agent with or without fuel consumption. Properties of tours that

5



solve the problem are given. Heuristics to compute a path for a single agent without

fuel consumption are provided and an algorithm to generate a cost minimal path for

the agent when accounting for fuel is given. The cooperative surveillance and pursuit

problem is formulated and a heuristic to solve the problem is provided. The problems

are all demonstrated to be intractable.

• Methods for optimal sensor placement in the cooperative surveillance and pursuit

problem using Fisher information, probability of misclassification, or the penaliza-

tion of poor detections for mobile objects moving according to an ergodic Markov

chain are given. An approach to compute the optimal revisit deadlines for the placed

stationary agents using the Markov model of the mobile object is also presented.

• Necessary conditions for the paths of carrier and passenger agents at release and

retrieval for general marsupial monitoring problems are presented. For a problem

involving a single carrier and single passenger collecting information about a single

object of interest, the agents are demonstrated to move rectilinearly.

The demonstration that the paths which solve the persistent visitation problem are peri-

odic is significant because it shows that periodicity occurs without any a priori assumptions

about periodicity unlike much of the literature. This periodicity also reduces the search

space for solutions which is helpful for intractable problems. The algorithm provided for

the computation of cost minimal paths is one valuable use of periodicity.

The heuristic provided for the cooperative surveillance and pursuit problem shows that

pursuit using mobile agents not equipped with sensors is possible when cooperating with

stationary agents equipped with sensors. The approaches given for the optimal configura-

tion of the stationary agents provide potential mission designers with a variety of tools to

best configure the agents.

The necessary conditions for the paths of passenger and carrier agents provide a solid

theoretical foundation on which to study problems using marsupial agents. The proof of

6



rectilinear motion for the passenger agent and carrier agent helps reduce the search space

for the optimal paths of the agents.

1.5 Organization

The remainder of the dissertation is organized as follows. A literature survey relevant

to path planning, sensor placement, and marsupial operations is provided in Chapter 2.

Chapter 2 also contains a short review of theoretical background frequently discussed in

the document, namely complexity classes and intractability.

Persistent monitoring of multiple stationary objects of interest using a single mobile

agent is studied in Chapter 3. Properties of paths for the mobile agent, heuristics to compute

paths for the mobile agent when fuel is neglected, and algorithms to generate paths for the

mobile agent when fuel is considered are presented. A pursuit problem involving multiple

mobile agents tracking a mobile object of interest along a graph is also studied; properties

of the problem are shown and heuristics for the mobile agents’ decision making process are

given. The content of Chapter 3 is based on material presented in [1], [2], and [3].

Approaches for the configuration of stationary agents for monitoring tasks are presented

in Chapter 4. Several methods to place the stationary agents and select their revisit dead-

lines are given, their properties shown, and their merits discussed via simulation results.

Chapter 4 stems from material published in [4].

Analytical and numerical results for the problem of monitoring objects of interest using

marsupial agents are given in Chapter 5. These include necessary conditions of optimal

paths for both agents and properties of optimal paths for a pair of marsupial agents moni-

toring a single object of interest. Chapter 5 originates from material in [5] and [6].

A summary of the dissertation and concluding remarks are provided in Chapter 6.
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CHAPTER 2

Literature survey

As discussed above, the problems being investigated touch upon multiple existing areas of

study. Literature relevant to path planning, sensor placement, and marsupial operations for

autonomous systems is now reviewed.

2.1 Path planning for surveillance

The problem of persistently monitoring a given area with one or more unmanned aerial

vehicles has been studied extensively. In [7], the authors investigate the generation of

optimal paths and cycles such that all the points in a given area are covered by the sensor

footprint. In [8] and [9], the authors investigate how to optimally divide a mission area to

be monitored by multiple unmanned aerial vehicles and how to minimize the time between

visitations to the same region to improve overall surveillance. In [10] and [11], the authors

investigate patrol algorithms and their relation to the frequency of visitation of each cell in

a partitioned mission area.

In [12], the authors present controllers that minimize the accumulation of uncertainty

in the mission space by varying the agent’s velocity along a predetermined path. In [13] the

goal is also to minimize an uncertainty metric in the mission area, but the controllers de-

rived can control the movement of the mobile agents. Path planning for monitoring has also

been studied for a variety of other vehicles, such as ground vehicles, boats, and spacecraft.

In [14], the authors study science-optimal attitude control for a spacecraft in the presence of

8



failures using stochastic dynamic programming. Surveillance using pan-tilt-zoom cameras

is investigated in [15] where the authors provide methods to synthesize control protocols

for the cameras to achieve their surveillance tasks. Monitoring missions can be modeled

a variety of ways, monitoring tasks using ground vehicles are often modeled as vehicle

routing problems.

2.1.1 Vehicle routing problems

The vehicle routing problem and methods to solve it are introduced in [16]. In VRP, a

vehicle is tasked with performing pickup and delivery operations from a depot to a set of

customers in a given area; the goal is to find a path for the vehicle that minimizes a given

metric whether it be time, distance, or cost. In [17], the period vehicle routing problem

(PVRP) is presented where planning is done over a multiple day horizon and each location

must be visited at least once while some require periodic visits (e.g., every other day but

no faster than once a day).

In [18], the vehicle routing problem with time windows (VRPTW) is presented; it is

a variant of VRP where each location to be visited has a time window in which the visit

must occur. In [19], the periodic vehicle routing problem with time windows, which is

the combination of VRPTW and PVRP, is presented. Energy efficient paths for unmanned

aircraft are studied in [20], graphs that account for wind conditions are constructed and

minimum energy paths through this graph are computed using an A∗ heuristic approach.

In [21], the authors generate minimum length Hamiltonian cycles such that the distance

between each target node and the cycle is within a certain threshold. The optimization

criteria for vehicle routing problems are typically the distance traveled or fuel consumed,

however other criteria of interest have included consistency of the schedule of visits from

day to day [22] or minimizing the emissions by the vehicles [23].
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2.1.2 Traveling salesman problems

When the pickup and delivery aspects of VRP are removed, the problem is reduced to

the Traveling-Salesman Problem (TSP). In TSP the goal is to find the shortest tour for a

salesman starting from a given location, visiting each of a specified group of locations, and

then returning to the departure point. For TSP, exact algorithms suffer from computational

complexity that increases as a function of the number of visiting locations. Instead, heuris-

tics provide good solutions within reasonable time, but they do not guarantee an optimal

solution. A review of existing TSP heuristics is provided in [24].

A periodic version of the TSP is studied in [25] and a heuristic to compute solutions

is provided. In [26], the authors study stochastic and dynamic variations of TSP where

the target locations are generated stochastically; the authors then provide algorithms to

compute paths for the vehicles which optimize criteria such as length of the path or the

time between the generation of the target and its observation by the vehicle.

2.1.3 Patrolling

The patrolling problem consists of continuously visiting, with one or more agents, locations

of interest in an area such that the time between visits to the same location is minimized.

In [27], the authors investigate heuristics to solve the patrolling problem given certain

conditions. In [28], the author provides an analysis of a variety of aspects of the patrolling

problem when multiple agents are involved. In [29], the authors investigate a patrolling

problem where incidents occur with a known distribution in time and space; the goal of

the agent is to minimize the expected wait time between the occurrence of an incident and

its detection. The problem of patrolling multiple targets cooperatively is treated in [30]

where the authors provide algorithms to compute trajectories for vehicles that minimize

the weighted refresh time of the targets being visited. A survey of patrolling algorithms for

multiple robots is provided in [31] for a variety of problems, robot types, and constraints.

In [32], a method for a patrolling agent to combat intrusion is given. The authors define
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the problem using a graph, where each node is a potential target and has an intrusion time

indicating how much time it will take an intruder to break into the node. The method de-

rived results in the patrolling agent visiting the nodes perpetually where the time between

consecutive visits for a given node is less than its intrusion time. This work is extended

to multiple patrolling agents in [33]. A problem involving unmanned aerial vehicles pa-

trolling a set of unattended ground sensors, similar to the scenario presented in Figure 1.1,

is studied in [34] where the authors use iterative learning control to select the paths of the

vehicles. The authors allow the unmanned aerial vehicles to communicate with the unat-

tended ground sensors at a distance which allows for more flexibility in the paths compared

to approaches where agents must visit nodes on a graph.

While the current literature examines many implementations of persistent monitoring

scenarios, no approach is constrained by observation rates at a set of locations and holds

no assumptions on the periodicity of solutions. Sections 3.1 and 3.2 address this issue.

2.1.4 Target tracking

In [35], several unmanned aerial vehicles are tasked with monitoring an area with targets;

the vehicles coordinate among themselves to allocate targets by maximizing the expected

time over target for the entire group of vehicles. The operating area is then divided using

Voronoi partitions and within each area the vehicles select time-optimal paths by construct-

ing trajectories that satisfy the dynamic constraints of the vehicles and pass through a set of

waypoints. Target tracking for unmanned aerial vehicles is also studied in [36] where the

vehicles are tasked with tracking a target in an area with obstacles and threats. The authors

provide a path planning algorithm for the vehicles to avoid obstacles with highest priority,

maximize visibility of the target with lower priority, and minimize threat to the vehicles

with lowest priority; these constraints are satisfied through the use of a probability threat

exposure map that accounts for threats and obstacles in the area.

Most of the approaches discussed thus far either compute paths before the mission is
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executed or compute actions during the mission in turns; in some circumstances decisions

may not be made a priori or in turns in which case real-time approaches are needed. One

such approach is provided in [37] where the authors study real-time algorithms for path

planning in the presence of obstacles.

In [38], the problem of tracking an intruder using unattended ground sensors and un-

manned aerial vehicles (similar to the scenario shown in Figure 1.1) is discussed and ap-

proaches to finding paths for the unmanned aerial vehicles that maximize the number of

interceptions are presented. This problem is studied further in [39] and [40] for a single

unmanned aerial vehicle and an intruder that cannot retrace its steps; the authors provide

sufficient conditions for the unmanned aerial vehicle to intercept the target as well as the

corresponding optimal control policy for the unmanned aerial vehicle. In [41], the authors

provide a Bayesian histogram filter to estimate the position of the intruder in the road net-

work. Optimal strategies for the unmanned aerial vehicle and intruder are studied in [42]

where the authors model the problem as a pursuit evasion game on a Manhattan grid and

the intruder cannot retrace its steps.

Improving performance in surveillance and interception missions can also be achieved

by increasing the endurance of the vehicles thus yielding more opportunities for intercep-

tion, one such method is the use of energy optimal paths for aircraft equipped with solar

cells [43]. The problem of estimating a vehicle’s position in a graph given its velocity

distribution and a previous detection at a known location and time is treated in [44]. The

authors use a histogram filter to predict the vehicle’s potential locations in a graph. In [45],

the authors develop control techniques for a single or multiple unmanned aerial vehicles to

monitor a stationary or moving target at a given standoff distance instead of intercepting

the target in a decentralized manner. These techniques rely on Lyapunov vector fields to

control airspeed and heading rate and are proven to be optimal and stable under certain con-

ditions and robust to wind perturbations and uncertainty in the target motion. The approach

used in Section 3.3 of this dissertation coordinates multiple mobile agents in a centralized

12



fashion while handling uncertainty in the target motion.

In many path planning problems, computing actions which remain optimal over the

entire mission duration is not feasible and thus actions which are optimal within a finite

horizon are computed instead. In [46], the authors describe a nonlinear model predictive

control approach for autonomous aircraft by which the dynamics are discretized in a finite

horizon dictated by the plant and the goal is to select discrete parameters which achieve the

given goal. The authors demonstrate this technique for an autonomous parafoil and an au-

tonomous glider tracking a desired heading, pitch, roll, or yaw angle. Communication is an

important aspect of patrolling missions, the problem of integrating sensing and communi-

cation together for information gathering tasks is treated in [47] where the authors provide

a path planning algorithm for unmanned vehicles to acquire information about certain ob-

jects. Their approach utilizes an unscented Kalman filter over a finite horizon to optimize

an information metric which accounts for the quality of communication links between the

agents. Finite horizon approaches are also used for path planning without information

gathering, in [48] a finite horizon suboptimal controller for nonlinear input-affine systems

is described and demonstrated to work in a scenario involving an aircraft landing. These

studies show that control while only considering a finite horizon is effective, thus a finite

horizon approach for decision making is used in Section 3.3 of this dissertation.

Pursuit-evasion games occur on a graph between defenders and an intruder; the defend-

ers win the game if the intruder is caught, otherwise the intruder wins. The defenders and

intruder move in turns and can only travel to adjacent nodes. The problem was initially

studied and conditions on the number of defenders necessary to guarantee capture were

derived in [49], [50], and [51]. Many variations of the problem exist; such as the addition

of constraints on the topology of the graph, the velocities of the defenders or intruders, the

amount of information held by one team about the graph or the other team; a survey of

pursuit-evasion research relevant to mobile robotics is presented in [52]. Security games

introduce targets which the defenders must protect from intruder attacks, in addition the
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intruder can observe the defenders. In [53], the authors study and provide algorithms to

solve security games where the intruder can perform actions during defender movements.

While the current literature examines many variations of patrolling problems and pur-

suit problems, no method treats a framework where the mobile agents fully rely on static

sensors placed on an arbitrary road network to track and intercept intruders and provides a

path planning algorithm for the mobile agents. Section 3.3 of this dissertation concentrates

on this subject. In addition, the lack of assumptions about the topology of the network

enables the handling of cases where the environment does not permit favorable sensor

placement. However, when the environment is favorable and a portion of the agents used

are stationary, the question of path planning for the agents turns into a question of sen-

sor placement for the stationary agents. Literature relevant to sensor placement is now

reviewed.

2.2 Sensor placement

Many methods for sensor placement exist and vary widely depending on the problem con-

sidered. In this dissertation, the methods are grouped into two general categories: graph

theoretic approaches and optimization approaches. An overview of these methods is now

given.

2.2.1 Graph theoretic approaches

In chemical plant flow networks, several important parameters need to be monitored to

observe and control the process taking place. These parameters can be directly or indirectly

measured by sensors placed in the plant. Often multiple sensor configurations to measure

these parameters exist which has led to many investigations into optimal sensor placement

for chemical plants. Conditions for observability in process networks are given in [54]

as well as algorithms to classify observations. In [55], the authors use linear algebraic
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methods to construct sensor configurations which observe all the required parameters.

In [56], the problem of diagnosing faults in graph-based systems is treated and the

author provides a sensor placement scheme to detect a single fault. In [57], the authors

investigate sensor placement approaches for observing a target’s location; the target is as-

sumed to reside in an n-dimensional space modeled as a grid and sensors are placed on

vertices of the grid. Bounds on the number of sensors necessary to be able to observe the

target’s location are provided and methods to determine the placement of the sensors are

provided. Sensor placement is also of interest to the computer vision community where

cameras are to be placed such that objects are observed; in [58] the performance of the

cameras are based on quality of the resulting image of the object. The authors then define

a graph on which the cameras can be placed and use a genetic algorithm to find a sequence

of camera positions which observe all the objects of interest.

2.2.2 Optimization approaches

Optimal sensor placement that satisfies constraints on observing certain targets while min-

imizing a cost function is studied in [59]; the authors survey existing methods in process

networks and provide a method to apply existing search algorithms to the optimal sensor

placement problem being treated.

In [60], the authors develop a genetic algorithm for non-redundant sensor placement

for linear processes and demonstrate its effectiveness. The sensors can be placed along

chords of a spanning tree; cost, accuracy, or reliability of the resulting sensor network are

then used to assess the fitness of a candidate solution. Genetic algorithms have also been

used for other sensor placement problems such as fault diagnosis in structures; in [61] the

authors use genetic algorithms and simulated annealing to place fault detecting sensors.

Sensor placement problems are also of interest for water networks; in [62] the authors

investigate the optimal placement of sensors to detect contaminants in a water network. The

problem is formulated as a mixed-integer program and the authors show the effectiveness
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of the approach with respect to deviations in the probabilities of contamination within the

network.

A genetic algorithm for sensor placement along general graphs is presented in [63],

this approach is then applied to sensor placement in an industrial plant. The algorithm was

tested on an example steam metering network and was able to find a solution within 0.05%

of the optimum. In [64], the authors investigate the optimal placement of sensors for target

tracking; Fisher information is used to assess the quality of the placement and a method

to compute the optimal placement is provided. The authors also treat the case of mobile

sensors and provide an algorithm which can compute new locations for the sensors in a de-

centralized fashion. Sensor placement for the localization of a single target is investigated

in [65]; the authors study the optimality of the sensors’ placement with regards to different

sensor measurements such as range measurements and bearing measurements. The metric

used to assess the quality of the sensor placement is the determinant of the Fisher Informa-

tion matrix. Sensor placement for localization is also studied in [66] where the performance

of the sensors is based on a lower bound of the resulting accuracy of the localization; the

authors use a coordinate descent approach to solve the problem and demonstrate that it

produces better results faster compared to simulated annealing in a majority of scenarios.

The problem of placing sensors to monitor a large space structure is treated in [67], the

sensors are to be placed such that certain structural properties of the large space structure

can be observed while minimizing the amount of sensors placed. The approach limits the

redundancy of the observations received by the sensors by maximizing independent infor-

mation. In [68], the authors use stochastic programming to place sensors in water networks

such that uncertain demand can be handled. Another technique for sensor placement is

effective independence which computes the various possible sensor locations’ contribu-

tion to the overall goal. There are many other design criteria of interest such as sensor

network lifetime or quality of collected information for which other placement techniques

exist. In [69], a dynamic vehicle routing problem is studied where an adversary places
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the demand in a given area and strives to maximize the time between the placement of the

demand and when it is eventually serviced by the vehicle. The authors model the problem

as a complete information zero-sum game and provide the optimal routing policy for the

vehicle and the optimal sensor placement and timing for the adversary.

A general sensor placement problem is studied in [70] where the sensor placement is

optimized with respect to a performance metric, the authors focus their study on a convex

relaxation of the problem which alleviates the intractability of the original problem for a

large number of sensors. The authors show the effectiveness of their approach and give

bounds on the optimality of the solutions to the relaxed problem. In [71], a target tracking

problem with a large amount of sensors and multiple targets is studied; the authors demon-

strate the feasibility of solving the problem with convex optimization followed by a local

search algorithm.

When designing wireless sensor networks, multiple candidate sensor network config-

urations often exist with varying benefits and costs and as such optimal sensor placement

is also studied in the wireless sensor networks literature. Surveys of recent research in the

field of wireless sensor networks are provided in [72] and [73]. When deploying large net-

works computational complexity becomes an issue; computationally efficient methods to

deploy wireless sensor networks inside buildings are investigated in [74].

Target tracking using a wireless sensor network is studied in [75]. The sensors are

placed throughout the area and are enabled when the target is close and otherwise disabled

to conserve energy; the authors show that their approach consumes less energy than meth-

ods for these problems and also has less error in its predictions of the target’s location.

Another wireless sensor network problem for target tracking is studied in [76] where the

authors provide methods for multi-point surveillance and demonstrate their effectiveness

with regards to tracking probability.

Network lifetime is a criterion often accounted for when designing wireless sensor net-

works. In [77], the authors optimize the network lifetime scaled by the number of sensors
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and in [78] where the network lifetime is maximized using the artificial bee colony algo-

rithm and particle swarm optimization. Sensor placement for wireless networks can also

account for the topography of the environment, such as in [79] where the authors account

for line of sight coverage.

Communication is a large concern due to the networked nature of the wireless sensors,

in [80] the authors investigate sensor placement configurations which maximize informa-

tion acquired while minimizing the resulting communication cost of the placement. Their

method includes an initial learning stage where probabilistic data on information acquisi-

tion by the sensors and communication links are gathered, this data is then used in con-

junction with a model to predict future sensor quality and communication cost which in

turn enables the optimal placement of the sensors. Communication can also be thought

of as energy dissipation which is another area of concern for wireless sensor networks,

a variety of methods exist to mitigate energy dissipation in the network; [81] contains a

survey of literature addressing energy in wireless sensor networks. These topics include

power management, reducing data to minimize the size of transmissions, or data sampling

in energy-conservative ways. Energy management can also occur after the sensors have

been placed, a heuristic that computes which sensors should be put in a sleep mode to con-

serve energy while the remaining sensors are used to track a number of targets is given

in [82].

While sensor placement has been widely studied in the literature, sensor placement

and timing for the tracking mobile objects using stationary agents that emit alarms has not

been investigated. Chapter 4 of this dissertation provides methods for the selection of the

locations and revisit rates of the stationary agents for a tracking scenario. A variety of

methods to place sensors or stationary agents exist for a multitude of problems, however

the problem of deploying mobile agents requires a different treatment. Literature relevant

to marsupial agents is now reviewed.
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2.3 Marsupial operations

Many mission scenarios with marsupial architectures exist; these include plans by the U.S.

Air Force to release smaller passenger aircraft to fly below cloud cover or trees to gather

intelligence [83], submarines that before firing torpedoes deploy a number of small decoy

vehicles that emit the same signal that a torpedo firing does to minimize the likelihood

of the submarine being identified and located (e.g., the mobile submarine simulator [84]),

and exploration or surveillance tasks using carrier ground vehicles accompanied by aerial

passenger vehicles capable of scouting the terrain ahead quickly [85].

The literature on marsupial operations focuses mostly on novel architectures for marsu-

pial vehicles to accomplish certain tasks, while a minority of the literature focuses on how

the vehicles can optimally accomplish their task(s) once the architecture has been finalized.

These aspects of the marsupial operations literature are now reviewed.

2.3.1 Marsupial architectures

In [86], a variety of marsupial architectures are presented and a survey of the state of the

art at the time in marsupial robotics is presented. The different marsupial architectures are

divided based on the relationship the carrier vehicle has with the passenger vehicle. Several

marsupial robot architectures in urban search and rescue are described in [87], [88], [89],

and [90]. Tethered marsupial vehicles are studied in [91] for a variety of missions includ-

ing search and rescue and the authors provide methods for constructing these marsupial

vehicles such that the tether functions as desired. The problem of energy allocation and

distribution within a group of marsupial vehicles is treated in [92].

In [93], the authors investigate a marsupial architecture involving a carrier underwater

vehicle and passenger underwater vehicle which mimic fish; an algorithm for the passenger

vehicle to track a light source while avoiding obstacles is presented and its effectiveness

shown in a test where the carrier vehicle deploys the passenger vehicle and the passenger
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must subsequently follow the carrier vehicle. A marsupial architecture with a large amount

of passenger vehicles per carrier vehicle is studied in [94]. The authors detail the hardware

of the carrier and passenger vehicles and present a vision system for the docking of the

vehicles. A method to direct the carrier vehicle and passenger vehicles such that a majority

of the vehicles are kept fueled is provided and the effectiveness of the method is illustrated

in a variety of environments. In [95] and [96], the authors describe a docking approach for

the passenger vehicles based on vision. Their approach does not require communications

between the passenger and carrier vehicles and is faster than docking using tele-operation

without a degradation in success rate. A software suite which is capable of simulating a

variety of marsupial robot architectures is presented in [97].

2.3.2 Path planning for marsupial systems

Exploration using marsupial robots is studied in [98], the goal is for the robots to reach

the targets of interest while minimizing the cost of the paths traveled. The paths for the

robots are computed using a temporal symbolic planning approach. In [99], the problem

of path planning for the carrier vehicle is treated. Multiple passenger vehicles are present

throughout a space and the carrier vehicle selects a path such that it is capable of refueling

all the passenger vehicles before their fuel runs out; the computation of the path is achieved

using temporal symbolic planning.

The question of how to dock marsupial vehicles is also studied in [100], the authors

describe several existing approaches to docking and introduce their own method based on

minimizing energy consumed during the docking phase. Optimal dispersion of passenger

vehicles by a carrier vehicle for a search task is studied in [101]. The goal of the passen-

ger vehicles is to search the area as quickly as possible; the dispersion approach involves

dividing the area, the carrier vehicle deploying the passenger vehicles within their respec-

tive areas, and the passenger vehicles searching once they are deployed or receive a certain

signal from the carrier vehicle.

20



A significant portion of the literature relevant to marsupial operations focuses on novel

mission architectures and the hardware necessary for the marsupial vehicles to operate,

dock, and undock; Chapter 5 of this dissertation instead focuses on the path planning

aspect of the marsupial agents for constrained optimization problems and allows for the

enforcement of docking and undocking constraints.

2.4 Intractability

Assuming a problem is well-posed and possesses a solution; the solution must then be

computed. The speed of the computation of the solution will depend on the complexity

of the problem, i.e., the more complex a problem is the longer the computation of the

solution will take. Problems for which the computation of the solution take an impractical

large amount of time are known as intractable problems. In the following subsections,

complexity is formally defined, complexity classes of problems are defined, and methods

of overcoming complexity are discussed. In this section, only complexity with respect to

time will be treated (a review of the complexity of an algorithm with respect to space is

contained in [102]).

2.4.1 Complexity

The complexity of an algorithm quantifies the amount of operations the algorithm must

perform based on its input before completion. It is usually denoted in terms of big O

notation where O stands for order; this notation yields an approximation of the order of

magnitude of the amount of computations the algorithm will require. For example, an

algorithm that reads an entire word would be O = n for a word with n letters, i.e., the

amount of computations required for this algorithm will be of the order n.
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2.4.2 Complexity class

In the previous subsection, the complexity of an algorithm was defined. This is related to

the complexity of a problem in the following manner, the complexity of a problem defines

a lower bound on the complexity of algorithms devised to solve the problem. Before com-

plexity classes for problems can be defined, a model for computation is needed. The Turing

machine is a model for computation in which a tape is read letter by letter and the machine

decides how to process the letter (keep or erase), how to alter its state, and which letter

to read next; [103] contains a more detailed description of a Turing machine. A Turing

machine which reads only and always read to the right can be thought of as a deterministic

finite state automaton. Similarly, if the transitions in state are non-deterministic than the

Turing machine is a non-deterministic Turing machine.

Formal definitions of complexity are given in [104] and [105], what follows is a brief

overview. Problems can be classified based on their complexity, as was discussed earlier

problems are distinguished by the algorithms used to compute their solution. Problems can

be first classified based on the type of order the lower bound complexity algorithm which

solves them is:

• deterministic Polynomial time (P)

• Non-deterministic Polynomial time (NP)

For example, a problem which belongs to the deterministic polynomial-time complexity

class can be solved in polynomial time by a deterministic Turing machine while a problem

which belongs to NP can be solved in polynomial time only by a non-deterministic Tur-

ing machine. The NP class of problems are problems whose solution can be verified in

polynomial-time, which implies a non-deterministic Turing machine to solve the problem

can be constructed by building all the possible solutions and then verifying each with a

deterministic Turing machine.
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Within these classes of problems, there are varying levels of difficulty. To define these

varying levels of difficulty, the satisfiability problem must first be defined: given a set

of clauses, is the conjunction of the given clauses satisfiable? Reducibility must also be

defined, informally problem X is said reducible to problem Y if a mapping exists from

inputs of problem X to inputs of problem Y such that a solution to problem Y with the

mapped inputs implies a solution exists to problem X with the original inputs. Problems for

which the satisfiability problem can be reduced to are considered NP-hard. Problems which

are NP-hard and also in NP are NP-complete. The NP-complete class can be considered

the hardest problems to solve in NP while the NP-hard class can be considered problems

which are as difficult to solve as the hardest problems in NP.

2.4.3 Overcoming complexity

The intractability of a problem is a fundamental property of the problem, that is no efficient

algorithm to solve the problem can be devised. However, heuristics, algorithms for which

no guarantees about the solution are made, can be devised which in practice may yield

good solutions frequently. For example if dealing with an optimization problem where one

desires the best solution; a heuristic may provide a solution that is usually within a certain

range of optimal. One such heuristic is the k-opt heuristic, which takes an initial candidate

solution and searches the solution space which can be reached by making k switches to the

elements of the solutions for a better solution. This process can be iterated a given number

of times or till the solution has converged. The traveling salesman problem is demonstrated

to be in NP-complete in [105]; an implementation of k-opt for TSP is presented in [106]

and the effectiveness of the method is shown.
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2.5 Research directions

The literature survey above shows that much work has been performed on monitoring us-

ing unmanned systems and related topics. However, several questions remain unanswered.

Most of the approaches in the patrolling literature constrain the solutions to be periodic

though the problem statement does not necessarily require it; deadlines between consec-

utive visits to locations lead to increased flexibility in the solution and often satisfy the

problem requirements as well. In the pursuit literature, there exist approaches to pursuing

evaders in graphs however the case of agents fully relying on stationary sensors to pursue

the evaders along arbitrary graphs has not been studied as extensively. While there has

been much work on the hardware issues stemming from agents using a marsupial architec-

ture, little work has been done on optimal path planning for marsupial agents performing

information collection missions . The questions below pertain to the main questions listed

in Section 1 and treat the stated gaps in the literature.

• Which persistent paths for the agents guarantee proper monitoring of the area using

a revisit deadline framework? (Path planning)

– How can these paths be computed?

– How difficult is the computation of these paths?

– When do solutions exist?

• How can mobile agents and stationary agents cooperate to track a mobile object of

interest?

– How can the paths for the mobile agents be computed? (Path planning)

– How should the stationary agents be configured to best track the mobile object?

(Sensor placement)

• How can marsupial agents cooperate when collecting information about objects of

interest? (Marsupial operations)
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– What are the optimal paths for the agents?

– What properties do these paths have?
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CHAPTER 3

Paths for mobile agents

In this chapter, path planning for mobile agents performing monitoring tasks is treated. The

results from this chapter are used to address the path planning question stated in Section 1.2:

how can mobile agents cooperate to achieve monitoring tasks?

First, the problem of a single vehicle without fuel constraints monitoring a number of

objects of interest is studied. Second, the agent consumes fuel and fuel depots that enable

the agent to refuel for a given cost are considered. The problem is then extended to multiple

mobile agents monitoring stationary agents and pursuing a mobile object. The paths that

solve these problems are presented, properties of these paths are shown, and methods to

compute these paths are discussed.

3.1 Monitoring stationary objects with no fuel constraints

In this section, a vehicle that travels without consuming fuel is monitoring multiple station-

ary objects. Paths that monitor the objects successfully are given and their properties are

discussed. Heuristics to compute the vehicle’s path are presented and their effectiveness

illustrated.
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3.1.1 Model

The mobile agent is assumed to be traveling at a constant velocity, v, in a two dimensional

space. There are n objects of interest in the space where each object of interest has Cartesian

coordinates (ξi,ζi) and a finite revisit deadline ri ∈ R. The finite revisit deadline indicates

that the time between consecutive visits to object of interest i must be less than or equal to

ri where ri > 0. Let di, j be the distance between nodes i and j.

3.1.1.1 Revisit deadlines

In persistent intelligence, surveillance, and reconnaissance scenarios, an object of interest’s

properties can change over time and the mission designer is to track these changes. These

properties may be observable by the agent directly or indirectly, in which case an inference

system is required. We assume that the mission designer has an internal model of how the

properties of a given object of interest are expected to change and rates at which they are

expected to change. Based on this knowledge, a revisit deadline can be derived which leads

to tracking of the state of these properties over time. Methods for this derivation are not

discussed in this dissertation: results from sampling in signal processing to reconstruct a

signal can be used such as the Nyquist-Shannon sampling theorem [107].

3.1.1.2 Path planning

The mobile agent’s kinematic model is based on the unicycle vehicle model [26]. The

objects of interest are assumed to be far from one another (isolated) and to be poorly visible

by the mobile agent. Thus, according to Proposition 1 and its corollary in [108], the optimal

flight path of the mobile agent consists of straight lines between the objects of interest. The

path planning problem can thus be treated much like a traveling salesman problem.
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3.1.1.3 State space model

The situation is modeled as follows:

y(k + 1) = f (y(k),u(k)), (3.1)

ẋ(t) = g(t,y(k)), (3.2)

where y(k) ∈ {1,2, ...,n}×R and x(t) ∈ Rn. Specifically,

y(k) =

[
p(k) τ(k)

]T
, (3.3)

where p(k) ∈ {1,2, ...,n} indicates which object of interest the mobile agent is visiting upon

completion of step k, where a step is the act of the mobile agent traveling from one object

of interest to the next, and τ(k) ∈R indicates the total time elapsed upon completion of step

k; and

x(t) =

[
x1(t) · · · xn(t)

]T
, (3.4)

where xi(t),1≤i≤n is the slack time of object of interest i, which indicates how much longer

the mobile agent can wait before a visit to object of interest i is overdue.
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3.1.1.4 Initial conditions

Without loss of generality, we assume that the mobile agent starts at the first object of

interest, i.e.,

p(0) = 1,

τ(0) = 0,

x1(0) = r1,

x2(0) = r2,

...

xn(0) = rn.

(3.5)

3.1.1.5 Dynamics

The dynamics of the visitation schedule p and the total time elapsed τ are modeled as

p(k + 1) :=u(k), (3.6)

u(k) 6=p(k), (3.7)

τ(k + 1) :=τ(k) +
du(k),p(k)

v
, (3.8)

where du(k),p(k) is the distance from the agent’s current location to its next destination and v

is the agent’s velocity. The dynamics of the slack time for object of interest i is given as,

ẋi(t) = −1 +

k∑
j=1

δip( j) · (ri− xi(τ( j))) ·δ(t−τ( j)), t ≤ τ(k),1 ≤ i ≤ n, (3.9)

where δ(t− τ( j)) is the continuous Dirac delta function and δip( j) is the discrete Kronecker

delta function. In (3.9), the slack time of each object decreases with time and is reset to the

revisit deadline when the object is visited.
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3.1.2 Problem formulation

Based on the model above, we formulate the persistent visitation problem as follows: the

mobile agent is to find a sequence u(k), k ∈ N such that under equations (3.5), (3.6), (3.7),

(3.8), (3.9), ∀k,∀i ∈ {1,2, ...,n},∀t ≥ 0, xi(t) ≥ 0.

3.1.3 Solutions & periodicity

3.1.3.1 Solutions

A solution to the persistent visitation problem is defined as an infinite sequence of visita-

tions such that no visitation is ever overdue.

Definition 3.1.1. A cycle is defined as a sequence of visitations starting from one object

of interest and ending at that same object of interest such that all other objects of interest

have been visited.

Thus a solution consists of an infinite sequence of cycles.

3.1.3.2 Existence of almost periodic solutions

Remark 3.1.2. Viewing a solution as an infinite sequence of cycles, the initial slack times

of these cycles belong to the compact set [0,r1]× [0,r2]× ...× [0,rn].

Theorem 3.1.3. If a solution exists, then an almost periodic solution also exists.

Proof. If a solution exists, then an infinite sequence of cycles exists. Each cycle has a set of

initial slack times, hence if a solution exists, there exists an infinite sequence of initial slack

times of cycles. The initial slack times of cycles belong to a compact set (Remark 3.1.2),

thus the sequence of initial slack times of cycles is bounded. The Bolzano-Weierstrass

Theorem states that every bounded sequence has a convergent subsequence [109]. Hence

a convergent subsequence can be extracted from the infinite sequence of initial slack times
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of cycles. Let Ti be the ith cycle in the solution and τend(Ti) be the time at the end of the

cycle Ti, thus

∀ε ∈ R > 0,∃N(ε) ∈ N such that ∀i ≥ N(ε), ||x(τend(Ti))− x(τend(Ti+1))|| < ε. (3.10)

Thus a solution can be constructed consisting of infinite repetitions of the cycle Ti where

i ≥ N. Therefore, an almost periodic solution exists.

3.1.4 Complexity

In this subsection, a proof that the persistent visitation problem belongs to the NP-complete

class of problems is provided.

3.1.4.1 NP

A proof that the persistent visitation problem belongs to the NP class is now provided. The

proof is in the form of providing a deterministic polynomial-time Turing machine verifier

for the persistent visitation problem.

Lemma 3.1.4. The persistent visitation problem belongs to the NP class of problems.

Proof. A language L is in NP if there exists a deterministic polynomial-time Turing ma-

chine VL such that given any w, there exists a string c such that x ∈ L exactly when VL(w,c)

accepts [102]. In this work c is an encoding of a candidate solution path and w is an en-

coding of the weighted digraph G, representing the objects of interest, their transit times,

and the set of revisit deadlines. Solution paths are viewed as sequences of edges, where

the alphabet Σ is the set of directed edges. The machine VL is modeled as a deterministic

finite automaton (DFA), D. The states of the machine, Q, consist of accepting states, F,

that represent all possible combinations of positive slack times for the objects of interest

and a single fail state, R, that represents states with negative slack times. Thus Q = F ∪R.

The initial state q0 ∈ F indicates when all the slack times are equal to their respective revisit
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deadlines, q0 = [r1 r2 ... rn]. Let ∆ contain all the transitions between the states in Q. This

DFA D = (Q,Σ,∆,q0,F) reads a sequence of edges and makes the appropriate transitions in

slack time states. D rejects a sequence if a negative slack time occurs during the processing

of the sequence and accepts it otherwise. D can be generated using Algorithm 1. D is

equivalent to a read-only right moving Turing machine with a polynomial time bound; for

each input x the bound is |x|. Therefore, the persistent visitation problem is NP.

3.1.4.2 NP-complete

A proof that the persistent visitation problem belongs to the NP-complete class of prob-

lems is now provided. We introduce the finite horizon persistent visitation problem and

formulate the problem as follows: given a finite horizon h ∈ R, the mobile agent is to find

a finite sequence u(k), such that τ(|u| − 1) ≤ h, τ(|u|) > h, and under equations (3.5), (3.6),

(3.7), (3.8), (3.9), ∀k,∀i ∈ {1,2, ...,n},h ≥ t ≥ 0, xi(t) ≥ 0.

We make use of the metric traveling salesman problem which is proven to be NP-

complete in [110]. The metric traveling salesman problem is formulated as follows: given

a finite set C = {c1,c2, ...,cn} of cities, a distance metric d(ci,c j) ∈ Z+ for each pair of cities

ci,c j ∈ C, and a bound B ∈ Z+, is there a tour of all the cities in C having total length no

more than B?

Lemma 3.1.5. The finite horizon persistent visitation problem is NP-complete.

Proof. A language L is NP-complete if L ∈ NP and another NP-complete problem is re-

ducible to L [102]. The metric traveling salesman problem can be reduced to the finite

horizon persistent visitation problem as follows: ri = B, h = B, v = 1, and di, j = d(ci,c j).

The first (|u| −1) cities of the solution to such a finite horizon persistent visitation problem

consist of a cycle visiting all cities such that the total distance elapsed is less than or equal

to B. This cycle may contain multiple visits to the same city, however since the distance

function used is a metric it satisfies the triangle inequality and thus any repeat visits in

the cycle can be removed without increasing the distance traveled. Thus if a sequence of
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visits satisfying this finite horizon persistent visitation problem exists then a tour satisfying

the metric traveling salesman problem exists. Hence the finite horizon persistent visitation

problem is NP-hard. In addition, the finite horizon persistent visitation problem belongs to

the NP class of problems (Lemma 3.1.4), therefore the finite horizon persistent visitation

problem is NP-complete.

Theorem 3.1.6. The persistent visitation problem is NP-complete.

Proof. The persistent visitation problems belongs to the NP class of problems (Lemma

3.1.4) and the finite horizon persistent visitation problem is NP-complete (Lemma 3.1.5).

A solution to the persistent visitation problem is a solution to the finite horizon persistent

visitation problem, thus the finite horizon persistent visitation problem is reducible to the

persistent visitation problem. Hence the persistent visitation problem is NP-complete.

3.1.5 Heuristics

The persistent visitation problem is NP-complete, thus efficient algorithms to solve the

problem do not exist. While an algorithm to compute cycles that solve the persistent visita-

tion problem does exist [32], it quickly becomes computationally prohibitive to compute a

solution for large instances of the problem. We thus present heuristics as an alternative that

can be used to find solutions to the persistent visitation problem when searching for cycles

is not a feasible option. While computationally advantageous, heuristics may not be com-

plete, i.e., they are not guaranteed to find a solution even if one exists. The effectiveness of

the heuristics is shown through numerical examples where plots of the slack times of the

stationary objects as a function of time are given. All plots presented in this section use

dimensionless time (scaled by the minimum revisit deadline). These plots are provided for

multiple problem configurations where a problem configuration is comprised of the mobile

agent’s velocity as well as the locations and revisit deadlines of the objects of interest. The

configurations of all the examples used in this section can be viewed in Table 3.1.
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Algorithm 3.1: Generate solution verifier for a persistent visitation problem
Data: Edges: {e1,2,e1,3, ...,e1,n,e2,1, ...,en,n−1}

Revisit deadlines: {r1,r2, ...,rn}

Transit times from node i to node j: ti, j
1 Σ← {e1,2,e1,3, ...,e1,n,e2,1, ...,en,n−1}

2

q0

α

← r1 r2 ... rn

1 1 ... 1


3 F̂← {q0}

4 F← ∅
5 ∆← ∅

6 for q ∈ F̂ do
7 for i← 1 : n do
8 if q(i) = ri then
9 for j← 1 : n , j 6= i do

10 q′← q− ti, j ·α
11 if q′(1) < 0∨q′(2) < 0∨ ...∨q′(n) < 0 then
12 δ′← (q,ei, j,R)
13 ∆← ∆∪{δ′}

14 else
15 q′( j)← r j

16 if {q′}∩F = ∅∧ {q′}∩ F̂ = ∅ then
17 δ′← (q,ei, j,q′)
18 ∆← ∆∪{δ′}

19 F̂← F̂ ∪{q′}

20 F̂← F̂ \ {q}
21 F← F ∪{q}

22 D← {{F ∪R},Σ,∆,q0,F}
Result: Persistent visitation solution verifying DFA: D
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Config. Data Example A Example B Example C

v 6.89411 15.48131 41.69983

(ξ1,ζ1,r1) (50.389,64.681,18.465) (32.757,67.126,26.319) (16.565,60.198,15.778)

(ξ2,ζ2,r2) (13.872,47.557,21.748) (83.35,76.885,10.035) (65.408,68.921,44.889)

(ξ3,ζ3,r3) (78.811,78.03,40.111) (86.198,98.987,30.865) (45.054,8.3821,13.739)

(ξ4,ζ4,r4) (88.428,58.803,9.2851) (91.334,15.238,49.549)

Table 3.1: Configurations of examples used

3.1.5.1 Earliest deadline first

We start by studying a heuristic that does not search ahead, i.e., a heuristic that selects a

destination based on the current state. The earliest deadline first heuristic selects the object

of interest with the minimum slack time as its next destination:

u(k) := argmin
1≤i≤n

{xi(k)}. (3.11)

In classic scheduling problems, the earliest deadline first heuristic is complete (proven

in [111]); however this is not true in the persistent visitation problem. A counterexample

is shown in Figure 3.1; where earliest deadline first fails after six steps while the two step

maximum minimum slack time heuristic (presented in Section 3.1.5.3) is able to satisfy the

revisit deadlines on the same problem configuration.
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Figure 3.1: Failure of earliest deadline first heuristic and success of two step maximum

minimum slack time heuristic on example A.

3.1.5.2 One step heuristics

In this section, we present heuristics that search one step ahead. We introduce the following

intermediate variable, A, representing the time spent in transit during the step:

A(k, i) =
dp(k),i

v
. (3.12)
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Figure 3.2 illustrates that the one step heuristics presented are incomplete; in this ex-

ample earliest deadline first could solve the problem but the one step heuristics failed.

Maximum minimum slack time: The maximum minimum slack time heuristic selects

as its next destination the object of interest that maximizes the minimum slack time:

u(k) := argmax
1≤i≤n,i 6=p(k)

{ min
1≤ j≤n

{x j(k)−A(k, i)}}. (3.13)

Maximum sum of slack times: The maximum sum of slack times heuristic selects as its

next destination the object of interest that maximizes the sum of the slack times:

u(k) := argmax
1≤i≤n,i6=p(k)

{

n∑
j=1

(x j(k)−A(k, i))}. (3.14)
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Figure 3.2: Earliest deadline first success and failure of one step heuristics on example B.
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3.1.5.3 Two step heuristics

In this section, we present heuristics that search two steps ahead. We introduce the fol-

lowing intermediate variable, B, representing the time spent in transit during the second

step:

B(i, l) =
di,l

v
. (3.15)

The two step heuristics presented are shown to be incomplete in Figure 3.3, where

they fail on a problem instance which earliest deadline first could solve (illustrated in Fig-

ure 3.2).

Maximum minimum slack time: This heuristic searches for the path that maximizes the

minimum slack time across the two steps and selects the first step in the resulting path as

its next destination:

u(k) := argmax
1≤i,l≤n,i 6=p(k),l 6=i

{
min

1≤ j≤n

(
{x j(k)−A(k, i)}, {ri−B(i, l)}, {x j(k)−A(k, i)−B(i, l), j 6= i}

)}
.

(3.16)

Maximum sum of slack times: This heuristic searches for the path that has the maximum

sum of slack times at the end of the two steps; it selects the first step in that path as its next

destination:

u(k) := argmax
1≤i,l≤n,i 6=p(k),l 6=i

{
ri−B(i, l) +

n∑
j=1, j 6=i

(
x j(k)−A(k, i)−B(i, l)

)}
. (3.17)
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Figure 3.3: Failure of two step heuristics on example B.

3.1.5.4 K-step heuristics

The maximum minimum slack time and maximum sum of slack times heuristics can be ex-

tended to search depths greater than two. However, increasing the depth of the heuristics’

search increases the computation time. The heuristics presented above are all incomplete.

While this remains true for earliest deadline first, the search depth of the maximum mini-

mum slack time and maximum sum of slack time heuristics affects their completeness.

In [32], the authors prove that if there exists a cycle that solves the persistent visitation
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problem then there exists a cycle with an upper bound on its temporal length that can solve

the problem. Once the heuristics are searching a number of steps equivalent to that upper

bound in time, the algorithm in [32] can solve the problem with similar computational

complexity. This upper bound on temporal length is max(ri), thus k-step search ahead

heuristics are complete if k > v·max(ri)
min(di, j)

.

3.1.6 Simulations

The different heuristics presented highlight the fact that multiple solutions exist to the same

problem (illustrated in Figure 3.4). The distinct goals of the heuristics lead to different

characteristics in their solutions. The earliest deadline first heuristic goes to the object of

interest with the minimum slack time; this can be seen by observing the minimum slack

time and the next object visited. The maximum minimum slack time heuristic raises the

minimum slack time which in this example leads to a solution similar to that of the earliest

deadline first heuristic. The maximum sum of slack times heuristic’s goal is to raise the

sum of the slack times and thus this heuristic visits the objects more often than the other

heuristics.
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Figure 3.4: Performance of zero and one step heuristics on example C.
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The solutions in Figure 3.4 illustrate that the slack times settle into a periodic regime as

predicted in Theorem 3.1.3. This behavior is not unique to the problem configuration used

for Figure 3.4 but has been observed in all solutions obtained from the heuristics presented.

However problem instances with aperiodic solutions were also found.

3.2 Monitoring stationary objects with fuel considerations

In the previous section, a single vehicle that does not consume fuel is tasked with monitor-

ing a number of stationary objects. In this section, the vehicle now consumes fuel at a finite

rate. Fuel depots are present in the area, where the vehicle can refuel at a cost. Different

fuel depots may have different refueling costs, hence the problem is now to find a path for

the vehicle that still monitors the stationary objects but also minimizes the expenditures on

fuel over the duration of the mission. Properties of paths are discussed later in this section

and an algorithm to compute the optimal path is presented.

3.2.1 Model

In this subsection, the modeling for this problem is discussed. The model used when treat-

ing this problem is a variant of the model used when treating the problem for a single

vehicle without fuel constraints (see Section 3.1.1). The vehicle has a finite fuel capacity,

F, and consumes fuel at a finite constant rate of ḟc where ḟc > 0; the vehicle endurance

is thus r f = (F/ ḟc). There are q fuel depots, each with Cartesian coordinates (ξi, ζi), and

a finite constant positive fuel cost ci ∈ R,n < i ≤ n + q. The fuel depots store an infinite

amount of fuel. The vehicle can select how much fuel to purchase when visiting a fuel

depot. Refueling is assumed to have a negligible duration in comparison to the time spent

in transit.
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3.2.1.1 State space model

A fuel state, f (t) ∈ R, which is the amount of fuel the vehicle is carrying at time t ∈ R, is

added. An extra state, the mission state m(t) ∈ Rn+1, is created that contain all the continu-

ous states, i.e., the slack times and fuel state:

m(t) =

[
x1(t) x2(t) · · · xn(t) f (t)

]T
. (3.18)

The input for this problem also changes because the amount of fuel purchased needs to

be accounted for. The input is now u(k) ∈ {1,2, · · · ,n + q} ×R; it contains which customer

or depot the vehicle visits next and how much fuel the vehicle purchases if the next visit is

a depot visit (k again indicates the step at which this input is applied). A second index, l ∈

{1,2}, is introduced to indicate the specific input: l = 1 indicates that u(k, l) ∈ {1,2, · · · ,n+q}

corresponds to the visiting location and l = 2 indicates that u(k, l) ∈ R corresponds to the

fuel amount being purchased. Fuel can only be purchased at fuel depots thus:

u(k,1) ≤ n⇒ u(k,2) = 0. (3.19)
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3.2.1.2 Initial conditions

The initial conditions for the state space model introduced in the previous subsection are as

follows:

p(0) = u(1,1),

τ(0) = 0,

x1(0) = r1,

x2(0) = r2, (3.20)

xn(0) = rn,

f (0) = f0.

The amount of fuel the vehicle carries initially, f0, is an additional input to the model.

3.2.2 Dynamics

The dynamics of the total time elapsed, τ(k), and the slack times, xi(t), remain the same for

this problem (see (3.8) and (3.9) respectively). The dynamics of the visitation schedule, p,

are:

p(k + 1) :=u(k,1), (3.21)

u(k,1) 6=p(k). (3.22)

The dynamics of the fuel carried by the vehicle are:

ḟ (t) = − ḟc +

k∑
j=1

u( j,2) ·δ(t−τ( j)), t ≤ τ(k). (3.23)
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3.2.3 Periodicity

In Section 3.1, where the problem without fuel considerations is treated, almost periodic

paths are demonstrated to exist. In this subsection, we show that this property also holds

when considering fuel.

A path is defined as an infinite sequence of visitations such that no stationary object

visitation is ever overdue and the vehicle’s fuel is always bounded by zero and the fuel tank

size.

Definition 3.2.1. A tour is defined as a sequence of visitations starting from one stationary

object and ending at that same stationary object such that all other stationary objects have

been visited.

A path can thus be expressed as an infinite sequence of tours. The following remark

and lemmas are used to prove the existence of almost periodic paths.

Remark 3.2.2. Viewing a path as an infinite sequence of tours, the initial mission state of

these tours belongs to the compact set [0,r1]× [0,r2]× · · ·× [0,rn]× [0,r f ].

Lemma 3.2.3. If a path exists, then a path with an almost periodic mission state exists.

Proof. If a path exists, then an infinite sequence of tours exists. Each tour has an initial

mission state; hence if a path exists, there exists an infinite sequence of initial mission states

of tours. The initial mission state of tours belongs to a compact set (Remark 3.2.2), thus the

sequence of initial mission states of tours is bounded. The Bolzano-Weierstrass Theorem

states that every bounded sequence has a convergent subsequence. Hence a convergent

subsequence can be extracted from the infinite sequence of initial mission states of tours.

Let τi be the ith tour in the path, thus

∀ε ∈ Rn+1 > 0,∃N(ε) ∈ N : ∀i ≥ N(ε), ||m f inalτi
−m f inalτi+1

|| < ε. (3.24)
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Thus a path can be constructed consisting of infinite repetitions of the tour where . There-

fore, a path with an almost periodic mission state exists.

Lemma 3.2.4. If no depot or stationary object is equidistant to two other depots, then there

exists a unique sequence of visitations describing the mission state on [t0, t1] where at least

one visit to a stationary object occurs in [t0, t1].

Proof. Impulses in a slack time in the mission state are uniquely described by visits to the

stationary object the slack time represents. Thus visits to stationary objects can be extracted

from the impulses slack times in the mission state; this is called labeling. Thus all slack

time impulses can be labeled directly. Impulses in the amount of fuel in the mission state

are not uniquely described by visits to a certain fuel depot as multiple depots exist thus

they cannot be uniquely labeled directly. Because no stationary object is equidistant to two

depots, the time in transit from any stationary object to a depot is unique. Thus the time

between an impulse in a slack time and an adjacent impulse in the amount of fuel uniquely

determines which depot visit caused the impulse in the amount of fuel. Thus impulses

in the amount of fuel adjacent to an impulse in a slack time can be labeled. No depot is

equidistant to two other depots, thus the time in transit from a depot to another is unique.

Therefore, an impulse in the amount of fuel adjacent to a labeled impulse in the amount of

fuel can be labeled. Hence all impulses occurring in the elements of the mission state on a

given time interval can be labeled if at least one slack time impulse occurs within the time

interval.

Theorem 3.2.5. If a path exists and no depot or stationary object is equidistant to two

other depots, then an almost periodic path exists.

Proof. If a path exists, then according to Lemma 3.2.3, a path with an almost periodic

mission state exists. Let P(t) be the mission state during a period. In P(t) at least one visit to

a stationary object occurs since for a slack time to return to a higher value an impulse must

occur, and no depot or stationary object is equidistant to two other depots, thus according to
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Lemma 3.2.4 P(t) is described by a unique sequence of visitations. Therefore, the sequence

of visitations of the path with an almost periodic mission state is almost periodic.

Depots can be moved by infinitesimal amounts to circumvent the issue of equidistant

depots or stationary objects and guarantee the existence of tours. So far the existence of

tours that keep mission states within their bounds has been shown; now the quantity of such

tours is discussed.

Theorem 3.2.6. There exists a finite number of tours that start at stationary objects that if

infinitely repeated maintain the mission states within their bounds.

Proof. The time in transit from one location to another is finite, thus a finite sequence of

visitations takes finite time to complete. The duration of a tour that starts at a stationary

object is constrained by the revisit deadline of the starting stationary object. There are a

finite number of combinations of visits that can be achieved within a finite time interval.

Thus the number of tours starting from a given stationary object that can solve the problem

is finite. There are a finite number of stationary objects, hence there exist a finite number of

tours that start at stationary objects and solve the persistent visitation problem if infinitely

repeated.

3.2.4 Problem formulation

The goal of the agent in the persistent visitation problem with fuel constraints is to find

the tour that minimizes the cost per unit time while satisfying the fuel and slack time con-

straints. Thus, the tour needs to satisfy continuity constraints for the slack times and the

fuel. The time in transit between consecutive visits to a stationary object must be less than

or equal to that stationary object’s revisit deadline. The fuel consumed in transit between

consecutive visits to fuel depots must be less than or equal to the vehicle fuel capacity. In

addition, infinite repetitions of this tour must form a solution. Thus, the tour must satisfy

closure properties. The time in transit between the last visit and the first visit to a stationary
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object must be less than that stationary object’s revisit deadline and the fuel consumed be-

tween the last depot visit and the first depot visit must be less than the vehicle fuel capacity.

Let T (k), k ∈ N be a tour of length L. Let O be the matrix of visitation indices, O has

n + 1 rows where the first n rows correspond to visits to stationary objects and the last row

corresponds to visits to fuel depots. Oi(k) is the index of the kth visit to stationary object

i in the tour and On+1(k) is the index of the kth visit to a fuel depot in the tour. Let li be

the length of Oi, ln+1 be the length of On+1. For example, if O(2) contains {2,5,7} then

stationary object 2 was visited at steps 2, 5, and 7, equivalently T (2) = T (5) = T (7) = 2. If

there are four stationary objects, then O(5) = {3,4,6} means that fuel depots were visited

at steps 3, 4, and 6, equivalently T (3) > 4, T (4) > 4, and T (6) > 4 (since there are four

stationary objects the fuel depots are represented by integers higher than 4). Let h(i, j) be

the distance between location i and location j.

Based on the model above, we formulate the problem as follows: the vehicle is to find a

tour T such that the total fuel cost per unit time is minimized and the following conditions

on continuity and closure of slack times and fuel hold:

Oi(k+1)−1∑
j=Oi(k)

h(T ( j),T ( j + 1))
v

≤ ri,1 ≤ i ≤ n,1 ≤ k ≤ li−1, (3.25)

On+1(k+1)−1∑
j=On=1(k)

h(T ( j),T ( j + 1))
v

≤ r f ,1 ≤ k ≤ li−1, (3.26)

L−1∑
j=Oi(li)

h(T ( j),T ( j + 1))
v

+

Oi(1)−1∑
j=1

h(T ( j),T ( j + 1))
v

≤ ri,1 ≤ i ≤ n, (3.27)

L−1∑
On+1(ln+1)

h(T ( j),T ( j + 1))
v

+

On+1(1)−1∑
j=1

h(T ( j),T ( j + 1))
v

≤ r f . (3.28)

The first two equations are the continuity constraints and the last two equations are the

closure constraints. The slack time continuity and closure constraints are equivalent to the

intrusion time constraints used in [32].
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3.2.5 Solution

A multiple step approach to finding the tour that solves the stated problem is now presented.

The first step consists of Algorithm 2, which finds all tours that satisfy the slack time

constraints and can satisfy the fuel constraint without solving for the amounts of fuel to be

purchased; it uses the functions presented in Algorithm 3 and Algorithm 4 for constraint

verification. The next step in the approach is to solve a constrained minimization problem

for each tour to calculate the amounts of fuel to be purchased that satisfy the fuel constraint

and minimize the total cost spent on fuel during the tour. The final step of the approach

selects the tour with the minimum total cost divided by the time length, thus choosing the

tour with the minimum cost per unit time.

3.2.5.1 Algorithm to find tours

This algorithm finds all tours that can solve the problem and start from stationary objects.

The algorithm uses three main variables in its computation: T is the sequence of visitations

of the current tour, O is the matrix of visitation indices, and Π is the set of valid tours.

The recursive algorithm used is presented in Algorithm 2. The algorithm iterates

through the possible locations to be visited, appends a visit to the current tour, and checks

whether the current sequence satisfies the continuity and closure conditions. Specific steps

proceed as follows; lines 2-14 consist of the loop for potential next visits. Line 3 forces

tours to start at stationary objects and does not allow consecutive visits to the same loca-

tion. Lines 6-9 add an index to the matrix of visitation indices for the new visit. Line 8

checks the continuity conditions of the mission state, step 9 checks whether the tour has

completed, and line 10 checks the closure conditions of the mission state if the tour has

completed. In lines 10-12, if the continuity conditions of the mission state are satisfied, the

tour has completed, and the closure conditions of the mission state for the completed tour

are satisfied then the tour is added to the set of valid tours; while if the tour satisfies the

continuity conditions and is incomplete, the search on that tour is continued as indicated in
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Algorithm 3.2: The f indTours() algorithm to find all valid tours starting from sta-
tionary objects.

Data: T,O,Π
1 L← length(T )
2 for l← 2 to m do
3 if (L 6= 0∨ i ≤ n)∧ (L = 0∨ i 6= T (end)) then
4 T ′← T.add(i)
5 O′← O
6 if i ≤ n then
7 O′(i)← O′(i).add(L + 1)
8 else
9 O′(n + 1)← O′(n + 1).add(L + 1)

10 if missionStateContinuity(T ′,O′)∧T ′(1) = T ′(end)
11 ∧missionStateClosure(T ′,O′) then
12 add T ′ to Π

13 else if missionStateContinuity(T ′,O′)∧T ′(1) 6= T ′(end) then
14 Π = f indTours(T ′,O′,Π)

Result: Π

lines 13-14; otherwise the tour is rejected.

Algorithm 2 calls two other functions to check the continuity and closure conditions

of the mission state. These functions implement the restrictions in (3.25)-(3.28) and are

presented in Algorithm 3 and Algorithm 4 respectively.

The mission state continuity function, Algorithm 3, first verifies the continuity condi-

tions for the fuel and then verifies the continuity conditions for all the slack times. From

one iteration in Algorithm 2 to the next, the length of the sequence can be changed by zero

or one thus there is no need to verify that the continuity constraints in (3.25) and (3.26) are

satisfied; instead this function verifies the last two visits to stationary objects and depots.

The fuel continuity verification is achieved by checking that the time between the last two

depot visits and the time between the last depot visit and the current step are less than the

vehicle endurance. The slack time continuity verification is achieved by checking that the

slack time for stationary object i between the last two visits to stationary object i and the

time elapsed from the last visit to stationary object i and the current step are less than the
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Algorithm 3.3: The missionStateContinuity() function to verify continuity of mission
states.

Data: T,O
1 L← length(T ), K← length(O(n + 1))
2 if K = 0 then
3 ν1, ν2← 1

4 else if K = 1 then
5 ν1← 1, ν2← O(n + 1)

6 else
7 ν1, ν2← last two entries in O(n + 1)

8 if
∑ν2−1

i=ν1

locations(T (i)).distance(locations(T (i+1)))
v > r f then

9 return f alse

10 if
∑L−1

i=ν2

locations(T (i)).distance(locations(T (i+1)))
v > r f then

11 return f alse

12 for i← 1 to n do
13 if length(O(i)) = 0 then
14 ν1, ν2← 1

15 else if length(O(i)) = 1 then
16 ν1← 1, ν2← O(i)

17 else
18 ν1, ν2← last two entries in O(i)

19 if
∑ν2−1

i=ν1

locations(T (i)).distance(locations(T (i+1)))
v > ri then

20 return f alse

21 if
∑L−1

i=ν2

locations(T (i)).distance(locations(T (i+1)))
v > ri then

22 return f alse

23 return true
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Algorithm 3.4: The missionStateClosure() function to verify closure of mission
states.

Data: T,O
1 L← length(T )
2 ν1← last entry in O(n + 1), ν2← first entry in O(n + 1)
3 t =

∑L−1
i=ν1

locations(T (i)).distance(locations(T (i+1)))
v +

∑ν2−1
i=1

locations(T (i)).distance(locations(T (i+1)))
v

4 if t > F
ḟc

then
5 return f alse

6 for i← 1 to n do
7 ν1← last entry in O(i), ν2← first entry in O(i)
8 t =∑L−1

i=ν1

locations(T (i)).distance(locations(T (i+1)))
v +

∑ν2−1
i=1

locations(T (i)).distance(locations(T (i+1)))
v

9 if t > ri then
10 return f alse

11 return true

revisit deadline for stationary object i.

Similarly, the mission state closure function, Algorithm 4, checks that the time elapsed

between the last fuel depot visit and the first is less than the vehicle endurance and that

the time elapsed between the last visit to stationary object i and the first visit to stationary

object i is less than the revisit deadline for stationary object i.

3.2.5.2 Tour fuel cost minimization

For each tour, a constrained minimization problem is solved to calculate the fuel to be

purchased at each depot such that the total cost of fuel is minimized. Let T be a tour; the

sequence of fuel depot visits, D, can be extracted from T : D = {d1,d2, · · · ,dm} where di is

the ith depot visited. We define ∆ti,1 ≤ i ≤ m−1 as the time spent traveling between di and

di+1; ∆tm is the time in transit between dm and d1. Let ∆ fi be the amount of fuel purchased

by the vehicle when visiting di.

During the tour, the fuel the vehicle is carrying must always be bounded by zero and

the vehicle fuel capacity. Thus the amount of fuel purchased at a given step must be large

enough for the vehicle to reach the next depot but small enough as to not surpass the fuel
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capacity. This requirement results in the following constraints on the amount of fuel pur-

chased:

ḟc ·∆t1 ≤ ∆ f1 ≤ F, (3.29)

ḟc · (∆t1 +∆t2) ≤ ∆ f1 +∆ f2 ≤ F + ḟc ·∆t1, (3.30)

ḟc ·
m∑

i=1

∆ti ≤
m∑

i=1

∆ fi ≤ F + ḟc ·
m−1∑
i=1

∆ti. (3.31)

These constraints can be restated in the following matrix inequality form:



−1 0 · · · 0

−1 −1 · · · 0
...

... . . . ...

1 1 · · · 1

1 0 · · · 0

1 1 · · · 0
...

... . . . ...

1 1 · · · 1



·



∆ f1

∆ f2
...

∆ fm


≤



− ḟc ·∆t1

− ḟc · (∆t1 +∆t2)
...

− ḟc ·
∑m

i=1 ∆ti

F

F + ḟc ·∆t1
...

F + ḟc ·
∑m−1

i=1 ∆ti



. (3.32)

In addition, the amount of fuel purchased must always be greater than or equal to zero

and less than or equal to the fuel capacity:

0 ≤ ∆ fi ≤ F,1 ≤ i ≤ m. (3.33)

The goal of the vehicle is to minimize the cost per unit time. Since the duration of the

tour is already, it can be ignored, thus the minimization is expressed as follows:

min
∆ fi,1≤i≤m

 m∑
j=1

∆ f j · cd j

 . (3.34)

Equations (3.32), (3.33), and (3.34) form a constrained minimization problem which
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can be solved using linear programming methods.

3.2.5.3 Minimum cost per unit time tour

The third part of the algorithm selects the tour that results in the path with minimum cost

per unit time:

Tbest := min
T∈Π


∑m(T )

j=1 ∆ f j(T ) · cd j(T )

τ(L(T ))

 . (3.35)

The initial conditions for the path generated by infinite repetitions of a tour are as stated

in (3.20) where f0 = f (τ(L(Tbest))).

3.2.6 Algorithm correctness, completeness, and complexity

The tour finding algorithm verifies that slack time and fuel continuity are satisfied whenever

a visitation is added; in addition slack time and fuel closure are verified before a tour is

admitted, and thus the tour finding portion of the algorithm is correct. The tour fuel cost

minimization portion of the algorithm ensures that the amount of fuel purchased at each

depot is such that the amount of fuel the vehicle is carrying is always positive and less than

or equal to the fuel capacity. Hence the tour fuel cost minimization portion of the algorithm

is correct. Therefore, the algorithm is correct.

The tour finding algorithm searches for all possible combinations of visits within the

search depth set by the revisit deadline of the starting stationary object and returns tours

that satisfy the slack time and fuel constraints. As such, the algorithm is complete by

exhaustion. Because of this search methodology, the algorithm’s performance at worst is

of the order (n+q−1)n+1. However, the slack time and fuel constraints mean that in reality

the algorithm rejects a sequence of visitations that violates a constraint before searching

the maximum depth.

The algorithm can be extended to allow tours to start at depots as well as stationary

objects; however a finite number of tours would no longer be guaranteed, thus additional
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constraints to guarantee termination might be required. In addition, if this extension were

implemented the algorithm would no longer be complete since there would be no limit to

the length of solutions.

3.3 Pursuing mobile objects

In the previous sections, a single agent (with or without fuel considerations) is tasked with

monitoring a number of stationary objects. This problem is now extended by considering

multiple mobile agents and a number of stationary agents that cooperate to pursue a mobile

object along a road network.

In this problem, the goal of the mobile agents is to intercept and capture an image of

a mobile object along a road network modeled as a graph. The mobile agents do not pos-

sess sensors capable of detecting the mobile object, hence they rely on stationary agents

placed at certain locations in the graph. These stationary agents are capable of detect-

ing the presence of the mobile object and communicate this information to nearby mobile

agents to assist in the interception task. The restricted capability of the mobile agents is

motivated by small unmanned aerial systems that possess limited on board processing re-

sources and electro-optical or infrared sensors incapable of ascertaining the presence of an

intruder [112].

The mobile agents visit the stationary agents using a revisit deadline framework similar

to the one presented in Sections 3.1 and 3.2. A visualization of this scenario is shown in

Figure 1.1. The method for the pursuit of the mobile object is presented, the problem is for-

mulated, a heuristic to select actions for the mobile agents is provided, and the effectiveness

of the heuristic is shown through simulation.
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3.3.1 Model of agents

There are n stationary agents placed in a planar area along a road network with Cartesian

coordinates (ξi, ζi), 1 ≤ i ≤ n. The stationary agents and the roads the mobile object can use

to travel between them are modeled as a graph G(N,E) where ei, j ∈ E if there exists a road

connecting stationary agents i and j. Let di, j be the length of road ei, j. The road network

and stationary agents placement is assumed to remain the same over the duration of the

mission.

In addition, m mobile agents are patrolling the area, each with constant velocity v, finite

fuel capacity F, and fuel consumption rate ḟc. There is a single base that is capable of

refueling the mobile agents located at (ξn+1, ζn+1). The stationary agents are assumed to

be distant from one another, thus the mobile agents’ limited turn radius is not taken into

account and the mobile agents are modeled as point masses moving in straight lines [108].

If straight line travel cannot be assumed then curvature must be accounted for; this can

be done using results from [113] where the authors describe methods to convert paths on

a graph with straight line edges to paths on a graph with edges that satisfy the turning

constraints of the mobile agents.

The mobile agents are equipped with a long-range communication device, which en-

ables communication with a central authority, and a short-range communication device,

which enables the mobile agents to query the status of a stationary agent directly below.

The mobile agents, stationary agents, and central authority are assumed to possess synchro-

nized clocks; this can be achieved by calibration before the mission and periodic stationary

agent clock synchronization during mobile agent visits.

Once a mobile agent obtains information from a stationary agent, it is immediately

relayed to the central authority. The central authority decides which nodes the mobile

agents are to visit next once their respective destinations are reached. There is no benefit

from allowing multiple mobile agents to visit the same stationary agents simultaneously

since a detection is shared immediately and only a single mobile agent is required to capture
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an image; hence a stationary agent can only be visited by a single mobile agent at a time.

3.3.1.1 Revisit deadlines

Each stationary agent has a revisit deadline, ri > 0,1 ≤ i ≤ n, set by the mission designer,

which under ideal conditions is the maximum time that can elapse between two visits to the

stationary agent by the mobile agents. The revisit deadlines are used as a method to keep

the defenders’ knowledge of intrusions up to date. The revisit deadlines are also used to

indicate the relative importance of the various stationary agents such that the mobile agents

can prioritize their actions accordingly.

3.3.1.2 Initial conditions

The initial time is set to zero, the initial set of arrival times is initialized to the empty set,

without loss of generality the mobile agents are assumed to start at the base with full fuel

capacity, and the slack time for each stationary agent is initialized to its respective revisit
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deadline, i.e.,

τ(0) = 0,

Ω(0) = ∅,

p1(0) = n + 1,

(ξ1
′(0), ζ1

′(0)) = (ξn+1, ζn+1),

p2(0) = n + 1,

(ξ2
′(0), ζ2

′(0)) = (ξn+1, ζn+1),

...

pm(0) = n + 1,

(ξm
′(0), ζm

′(0)) = (ξn+1, ζn+1), (3.36)

f1(0) = F,

f2(0) = F,

...

fm(0) = F,

x1(0) = r1,

x2(0) = r2,

...

xn(0) = rn.

3.3.1.3 Dynamics

Let q j(i,k) be the Euclidean distance between mobile agent j and stationary agent i at step

k. When a mobile agent arrives at its destination, its next destination is set by the input and
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the travel time to that destination is added to the set of arrival times:

if q j(p j(k),k) = 0,


p j(k + 1) := u j(k)

Ω(k) := {q j(u j(k),k)
v }∪Ω(k),

else p j(k + 1) := p j(k). (3.37)

The time of the next step is set by the minimum mobile agent arrival time in Ω(k); that

time is then removed from Ω(k):

τ(k + 1) := min(Ω(k)), (3.38)

Ω(k + 1) := Ω(k) \ {τ(k + 1)}. (3.39)

The amount of fuel onboard a mobile agent decreases as dictated by the fuel consumption

rate and is reset to full capacity whenever a visit to the base occurs:

ḟ j(t) = − ḟc +

k−1∑
l=1

ḟc · (1−δp j(l)p j(l+1) ·δ(n+1)p j(l)) ·H(t−τ(l)) ·H(τ(l + 1)− t)

+

k∑
l=1

δ(n+1)p j(l) · (F − f j(τ(l))) ·δ(t−τ(l)), t ≤ τ(k) , 1 ≤ j ≤ m (3.40)

where δi j is the discrete Kronecker delta function, H(t−τ(l)) is the Heaviside step function,

and δ(t− τ( j)) is the continuous Dirac delta function. The slack time of a given stationary

agent decreases linearly in time and is reset to its revisit deadline whenever it is visited by

a mobile agent:

ẋi(t) = −1 +

k−1∑
l=1

m∑
j=1

(1−δp j(l)p j(l+1) ·δip j(l)) ·H(t−τ(l)) ·H(τ(l + 1)− t)

+

k∑
l=1

m∑
j=1

δip j(l) · (ri− xi(τ(l))) ·δ(t−τ(l)), t ≤ τ(k) , 1 ≤ j ≤ m (3.41)
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3.3.2 Mobile object model

A single mobile object is traveling on the road network at a time; but there may be multiple

mobile objects over the course of the mission. The mobile objects move inside their ad-

versary’s territory and suspect they are under observation. Thus, the mobile objects move

stochastically to reduce the predictability of their actions. However, the mobile objects

do not know how they are being observed and cannot perceive the mobile agents flying

above [40]. If the mobile objects can detect the mobile agents in the area, then a differ-

ent mobile object model is needed, e.g., using results from the pursuit-evasion literature or

Stackelberg games.

The mobile object moves from one node to the next in the graph according to a first

order Markov process, i.e., the next location it visits only depends on its current loca-

tion. The central authority is assumed to possess the Markov model for the mobile object’s

movement; this model could have been obtained through intelligence or deduced from prior

observation. The mobile object enters the graph at a random node according to the initial

distribution of the Markov model. Since the mobile object’s movement is memoryless, the

mobile agents and central authority only use the most recent mobile object detection for

their computations and do not keep track of the trail of stationary agents’ detections left by

the mobile object.

The distance traveled by the mobile object at time t is modeled as the process Xt:

X0 = 0,

Xt −Xρ = N (µv · (t−ρ),σ2
v · (t−ρ)2), t > ρ > 0,

(3.42)

where µv > 0,σv > 0. The fuel consumption of the mobile object’s vehicle is assumed to be

negligible.
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3.3.3 Mobile object interception

To direct the mobile agents such that interception is likely to occur, the probability of the

mobile object passing by a stationary agent that a mobile agent is loitering above must be

calculated.

3.3.3.1 Probability of mobile object passing a stationary agent in a given time win-

dow

Given a path s of stationary agents where s(i) indicates the ith stationary agent visited and

the fact that the mobile object passed s(1) at time 0, the probability of the mobile object

passing s(2) between times ti and t f (where ti > 0 and t f > ti) is:

Pint(s(2), s, ti, t f ) =

∫ t f

ti
P[Xρ = ds(1),s(2)]dρ. (3.43)

The probability of the mobile object passing s(3) between times ti and t f is:

Pint(s(3), s, ti, t f ) =

∫ t f

ti
P[Xρ = ds(1),s(2) + ds(2),s(3)]dρ. (3.44)

The probability of the mobile object passing s(b + 1) between times ti and t f is:

Pint(s(b + 1), s, ti, t f ) =

∫ t f

ti
P[Xρ =

b∑
f =1

ds( f ),s( f +1)]dρ. (3.45)

Generalizing, the probability of the mobile object passing stationary agent j (while travel-

ing along the path s) between times ti and t f is:

Pint( j, s, ti, t f ) =

|s|−1∑
b=1

δs(b+1), j

∫ t f

ti
P[Xρ =

b∑
f =1

ds( f ),s( f +1)]dρ. (3.46)
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The probability that the mobile object passes stationary agent j between times ti and t f

before reaching the base is:

Pint( j, s, ti, t f ) =

|s|−1∑
b=1

(1−1s(1:b)(n + 1))δs(b+1), j

∫ t f

ti
P[Xρ =

b∑
f =1

ds( f ),s( f +1)]dρ, (3.47)

where 1s(1:b)(n + 1) is the indicator function.

A set of paths S is introduced, where S (a) indicates the ath path within the set and

S (a, f ) indicates the f th node visited in the ath path within the set. P(S (a)) is the probability

of the ath path occurring in the set where
∑|S |

a=1 P(S (a)) = 1; P(S (a)) is computed using the

Markov model for the mobile object’s motion along the road network. Thus the probability

that the mobile object passes stationary agent j between times ti and t f before reaching the

base given a set of paths S is:

Pint( j,S , ti, t f ) =

|S |∑
a=1

P(S (a)) ·
|S (a)|−1∑

b=1

(1−1S (a,1:b)(n + 1)) ·δS (a,b+1), j ·

∫ t f

ti
P[Xρ =

b∑
f =1

dS (a, f ),S (a, f +1)]dρ.

(3.48)

3.3.3.2 Probability of mobile object interception

Let gi( j,k) be the Euclidean distance between the positions of mobile agent i at steps j and

k. Given the probability of a mobile object passing a stationary agent during a certain time

window, the probability of mobile object interception can be calculated by accounting for

the mobile agent locations:

Pcapture(S ,y(l),y(l + 1)) =

m∑
j=1

α j ·Pint(p j(l + 1),S , τ(l), τ(l + 1)), (3.49)
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where α j =


1 if g j(l, l + 1)=0,

0 otherwise.

This equation consists of a sum over all the mobile agents, where j indicates the mobile

agent index. α j is only 1 when mobile agent j is loitering over a stationary agent during the

step, in which case the probability of a mobile object passing the stationary agent where

the mobile agent is located during the time window of the step is added.

3.3.4 Problem formulation

Using the models for the agents and mobile objects presented in the previous subsection,

the problem is now formulated. Given the mobile agent states at the current step, stationary

agents’ revisit deadlines, and results from stationary agents’ queries, the mobile agents are

to find paths that satisfy the revisit deadlines and maximize the probability of intercepting

the mobile object. This revisit deadline satisfaction version of the problem does not allow

for missing any revisit deadline and hence limits the mobile agents’ ability to pursue the

mobile object.

Thus, a revisit deadline optimization version problem is formulated to give the mobile

agents flexibility in meeting revisit deadlines and pursuing the mobile object. Instead of

satisfying the revisit deadlines, the amount by which revisit deadlines are missed is mini-

mized. Let tmission be the duration of the mobile agents’ base defense mission. Let S l be

the set of possible mobile object paths given the most recent mobile object detection at

step l. Let bhc(u, t) indicate the smallest step in sequence u of mobile agent actions where

τ(bhc(u, t)) ≥ t. Let x̃i(t) and x˜i(t) respectively be the slack time left and the slack time

overdue for stationary agent i at time t,

x̃i(t) =
(|xi(t)|+ xi(t))

2
, (3.50)

x˜i(t) =
(|xi(t)| − xi(t))

2
. (3.51)
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Let β be the cost of not capturing the mobile object and let γ be the cost associated with

missing a deadline, where β > 0 and γ > 0. Let C(l) be the cost of the mobile agent actions

taken at step l,

C(l) =β · (τ(l + 1)−τ(l)) ·
(
1−Pcapture(S l,y(l),y(l + 1)

)
+
γ

n
·

n∑
i=1

(τ(l + 1)−τ(l)− x̃i(τ(l))) ·
x˜i(τ(l + 1)) + x˜i(τ(l))

2
. (3.52)

The first component of the cost penalizes the mobile agents for not intercepting the mobile

object over the course of the step. The second component of the cost penalizes revisit

deadlines that are overdue by adding the integral of the slack time missed over the course

of the step.

Based on the cost function above, the revisit deadline optimization version of the prob-

lem is formulated as follows: the central authority is to find a sequence u j(k),1 ≤ j ≤m,k ∈

N such that under (3.36)- (3.41),
∑bhc(u,tmission)

k=1 C(k) is minimized and 0 ≤ t ≤ tmission,1 ≤ j ≤

m, f j(t) ≥ 0.

3.3.4.1 Problem complexity

Proposition 3.3.1. The revisit deadline satisfaction version problem of cooperative surveil-

lance and pursuit is NP-hard.

Proof. If no mobile objects are present in the road network then an optimal solution is one

where the slack times are kept positive. The problem of keeping slack times positive for a

single mobile agent is the persistent visitation problem and is proven to be NP-complete in

Section 3.1. The persistent visitation problem can be reduced to the problem of cooperative

surveillance and pursuit by selecting one mobile agent to patrol the same graph with the

same revisit deadlines without mobile objects present. Thus the problem of cooperative

surveillance and pursuit is NP-hard.

Corollary 3.3.2. The revisit deadline optimization version problem of cooperative surveil-
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Algorithm 3.5: System for the cooperative surveillance and pursuit problem.
Data: G(N,E),r,d,m,v,F, ḟc,tmission,tsearch,tstale

1 k← 0; t← 0
2 (y(k), f (t), x(t))← (Eq. 3.36)
3 tD← ∅;nD← ∅;TU ← ∅; NU ← ∅

4 while τ(k) < tmission do
5 (S k,P(S k))← paths(nD,1, tD, tD,TU ,NU , τ(k) + tsearch,∅,∅)
6 u(k)← mobileAgentsAction(y(k), f (·), x(·), tsearch,S k,P(S k))
7 (y(k + 1), f (·), x(·))← (Eq. 3.37−3.41),y(k),u(k)
8 k← k + 1; t← τ(k + 1)
9 for (detection) ∈ queries(k) do

10 if (detection).t > tD then
11 (tD,nD)← (detection)

12 if tD + tstale < τ(k) then
13 tD← ∅;nD← ∅;TU ← ∅; NU ← ∅

14 for (tU ,nU) ∈ (TU ,NU) do
15 if tU ≤ (τ(k)− tstale) then
16 (TU ,NU)← (TU ,NU) \ (tU ,nU)

17 for (¬detection) ∈ queries(k) do
18 (TU ,NU)← (TU ,NU)∪ (¬detection)

Result: u j(·)

lance and pursuit is NP-hard.

3.3.5 Mobile agent path selection

The problem is NP-hard, hence a heuristic algorithm is used to select the paths of the

mobile agents. This algorithm searches ahead for a sequence of mobile agent actions that

minimizes the cost function within a certain time window and executes the first set of

mobile agent actions in the sequence.

3.3.5.1 System structure

The algorithm used to simulate the defenders’ system for a cooperative surveillance and

pursuit problem is provided in Algorithm 5. The states are first initialized (lines 1-3);

then at each step the possible mobile object paths within tsearch are computed (line 5),
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Algorithm 3.6: The paths() algorithm to find possible mobile object paths.
Data: s,p,tmin,tmax,TU ,NU ,t f ,S ,P(S )

1 Γ← ad jacentNodes(s(|s|),G)); l← |Γ|
2 while l > 0 do
3 T ′max(l)← tmax +

ds(|s|),Γ(l)
min(vint)

4 for (tU ,nU) ∈ (TU ,NU) do
5 if Γ(l) = nU then
6 if T ′max(l) ≤ tU then
7 Γ← Γ \ {Γ(l)}
8 T ′max← T ′max \ {T

′
max(l)}

9 break

10 l← (l−1)

11 for l← 1 to |Γ| do
12 s′← [s Γ(l)]; p′← p · 1

|Γ|

13 t′min← tmin +
ds(|s|),Γ(l)
max(vint)

14 if t′min ≥ t f then
15 S ← S ∪{s′}; P(S = s′)← p′

16 else
17 (S ,P(S ))← paths(s′, p′, t′min,T

′
max(l),TU ,NU , t f ,S ,P(S ))

Result: S ,P(S )

followed by the computation of the minimal cost action for the mobile agents within the

same time horizon using the possible mobile object paths (line 6). In addition, at each step

k, new detections are added from the stationary agent queries (lines 9-11), stale queries

are rejected (lines 12-16), and stationary agent queries without detections are added (lines

17-18). A stationary agent query is characterized by the status of the stationary agent, the

time of the detection if one occurred (otherwise the time of the query), and the index of

the queried stationary agent. The resulting data from querying the stationary agents is used

in the mobile object path generation process in the next time step. This process of finding

mobile object paths, selecting mobile agent actions, and gathering stationary agents queries

is repeated until the mission completion time is reached (line 4).
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3.3.5.2 Mobile object path generation

Possible mobile object paths are generated using the information from stationary agents

queries. The central authority stores the time and stationary agent index of the most recent

mobile object detection. It also stores the times and stationary agent indices of recent sta-

tionary agents queries without detections. This information is used to generate the potential

mobile object paths at each step using a recursive breadth first search methodology. If a

detection is too stale then it is ignored. In simulations, the threshold for a detection to be

considered stale was selected to be half the mean mobile object travel time between the two

stationary agents most distant from one another.

A recursive algorithm is used to compute the possible mobile object paths (Algorithm

6); this algorithm is used by the heuristic to assist in its decision making process. The input

of the algorithm is the current candidate path for the mobile object (which at the start of

the algorithm’s execution is the most recent detection). At each iteration in the search, the

nodes adjacent to the last node of the current working path, s, are obtained (line 1). Possible

travel times to these adjacent nodes are then computed using the mobile object’s velocity

probability distribution. If any of the visits to the adjacent nodes violates the constraints

set by recent stationary agent queries without detections then they are removed (lines 2-

10). Valid adjacent nodes are then appended to the current working path (lines 11-12).

If the minimum travel time of the new path is larger than the search depth then the path

is admitted to the set of possible paths (lines 14-15), otherwise the search continues for

that path (lines 16-17). When all the candidate paths reach the search depth, the algorithm

terminates and returns the possible mobile object paths. These possible mobile object paths

are then used to select the actions of the mobile agents.

3.3.5.3 Selection of mobile agents’ actions

The following algorithm is used by the heuristic to make its decisions. The algorithm starts

by searching for all possible sequences of actions for the team of UAVs within the search
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horizon tsearch. For each sequence of actions available to the team of mobile agents, ũ, it

then assesses the cost using the following equation:

bhc(ũ,tsearch)∑
l=k

C(l), (3.53)

where k is the current step. The cost calculations use the mobile object paths generated

earlier.

The algorithm starts by using the current state of the mobile agents to compute feasible

actions; the action is then applied and the corresponding mobile agent states and costs are

computed. These actions, states, and costs are then added to sets of candidate sequences

of actions, candidate states of the mobile agents after the application of the corresponding

sequence of actions, and candidate costs after the application of the corresponding sequence

of actions. The algorithm then proceeds to iterate over the set of candidate sequences of

actions for the mobile agents.

The procedure for computing potential sequences of actions and their costs is described

in Algorithm 7. Several intermediate variables are used: Ũ is the working set of sequences

of mobile agent actions, W is the corresponding set of states after the sequences of actions

in Ũ have been applied, and Θ is the set of costs for the sequences of actions. u is the current

minimal cost sequence of actions and φ is the current minimal cost. These variables are

initialized (lines 1-2); the algorithm then proceeds to loop over the working set of sequences

of mobile agent actions until none remain (line 3). At each iteration, the first elements in

the working sets of states, sequences of actions, and costs are obtained and removed from

their parent sets (lines 4-5). The set of possible actions, Z, given the current working state

w ∈ W is then computed (lines 6-14). For each possible action for the team of mobile

agents, z ∈ Z, the next state, λ, is computed (line 15). If λ results in positive fuel for all the

mobile agents and has reached the search depth then its cost is computed (lines 16-17); if

that cost is smaller than the current minimal cost then the current minimal cost sequence
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of actions is set to the sequence of actions that resulted in λ (lines 18-19). If λ results in

positive fuel for all the mobile agents without reaching the search depth then the working

state, sequence of actions, and cost are added to the corresponding parent working sets

(lines 20-24). The algorithm terminates when the set of candidate sequences of mobile

agent actions is empty (i.e., all feasible actions in the search horizon have been considered)

and returns the minimal cost sequence of actions.

The heuristic directs the mobile agents to take the first step in the minimal cost se-

quence of actions; this step results in the mobile agents visiting or loitering above certain

stationary agents, thereby obtaining new information from the stationary agents and pos-

sibly intercepting the mobile object. The possibility of interception exists when a mobile

agent is loitering a stationary agent; interception occurs when the stationary agent which

the mobile agent is loitering detects the mobile object.

3.3.5.4 Algorithm completeness

The search depth for the mobile agent actions affects the existence of solutions; if the

search depth is less than the endurance of the mobile agents, tsearch < (F/ ḟc), then there

is no guarantee that the generated paths lead to the satisfaction of the mobile agents’ fuel

constraints. If tsearch ≥ tmission then the heuristic is complete, i.e., the heuristic finds a

solution if one exists.

3.3.5.5 Algorithm complexity

The topology of the road network, the number of mobile agents, the mobile agents’ velocity,

the mean mobile object velocity, and tsearch affect the algorithm complexity. Let d̄ be the

mean distance between any two stationary agents. By inspection, the time complexity of

the heuristic per step is

O

|E| tsearch·µv
d̄ +

(
n!

m!(n−m)!

) tsearch·v
d̄

 . (3.54)
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Algorithm 3.7: The mobileAgentsAction() heuristic to find the minimal cost action
for the mobile agents within a given search horizon.

Data: y(k), f (·),x(·),S ,P(S )
1 W ← {(y(k), f (·), x(·))}
2 Ũ ← ∅;Θ← ∅;u← ∅;φ←∞
3 while |W | > 0 do
4 w←W(1); ũ← Ũ(1);θ← Θ(1)
5 W ←W \ {w}; Ũ ← Ũ \ {ũ};Θ← Θ \ {θ}
6 Z← ∅
7 if q1(w.p1) = 0 then
8 Z← N ∪{n + 1}

9 for l← 2 to m do
10 if ql(w.pl) = 0 then
11 Z← Z×{N ∪{n + 1}}
12 else
13 Z← Z×∅

14 for z ∈ Z do
15 λ← (Eq. 3.37−3.41),w,z
16 if (∀ j,λ. f j(λ.τ) ≥ 0)∧ (λ.τ ≥ τ(k) + tsearch) then
17 θ′← θ+ (Eq. 3.52),S ,P(S ),w,λ
18 if θ′ < φ then
19 u← [ũ z];φ← θ′

20 else if ∀ j,λ. f j(κ.τ) ≥ 0 then
21 θ′← θ+ (Eq. 3.52),S ,P(S ),w,λ
22 if θ′ < φ then
23 W ←W ∪{λ}; Ũ ← Ũ ∪ [ũ z]
24 Θ← Θ∪{θ′}

Result: u
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The complexity increases polynomially with respect to the number of stationary agents

and number of roads, increases exponentially with respect to the vehicle velocities and the

search depth, and decreases exponentially with respect to the mean distance between any

two stationary agents.

3.3.6 Local search heuristic

For comparison, a local search heuristic is also implemented to solve this problem (Algo-

rithm 8). At each step, the algorithm randomly generates a feasible sequence of actions of

a given depth (line 3) and computes possible intruder paths that can occur in the same time

window (line 4). The k-neighborhood of the initial sequence of actions is then computed

(line 6) for k = 2, and the possible intruder paths are extended due to the increased time

window (line 7). For each sequence of actions, the corresponding cost is computed using

the intruder paths (line 8), and the minimum cost sequence of actions is extracted (line 9).

This procedure of generating a k-neighborhood and selecting the optimal sequence is re-

peated until convergence of the minimal cost sequence of actions or a number of iterations,

searchiter, is reached (lines 10–21). The overall procedure can also be repeated for multiple

initial random feasible sequences of actions to further increase the search space. searchinit

indicates the number of these initial guesses. For the search to continue until convergence,

searchiter is indicated as zero. The simulations shown in this paper use searchinit = 5 and

searchiter = 0.

3.3.7 Simulations

To illustrate the performance of the mobileAgentsAction() heuristic, several simulations

with varying configurations are shown. The local search heuristic, described in Section

3.3.6, is used as a baseline comparison to the mobileAgentsAction() heuristic developed in

Section 3.3.5.

Four scenarios are considered: scenario A2 occurs in area A with a mobile agent to
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Algorithm 3.8: The localSearch() heuristic to find a local minimal cost action for the
UAVs.

Data: y(k), f (·),x(·),S ,P(S ), searchinit, searchiter
1 Ũ ← ∅;u← ∅;φ←∞
2 for l← 1 to searchinit do
3 κ← Generate a feasible sequence of actions of a given depth
4 S ,P(S )← Compute possible intruder paths for the duration of the sequence of

actions
5 i←−1
6 Ũ ← Compute the k-neighborhood of the sequence of actions
7 S ,P(S )← Extend possible intruder paths to the maximum end time of the

k-neighborhood
8 Ũ.cost← Compute costs for all actions
9 κ2← min

ũ∈Ũ
(ũ.cost)

10 while κ2 6= κ∧ i < searchiter do
11 κ← κ2
12 Ũ ← Compute the k-neighborhood of the sequence of actions
13 S ,P(S )← Extend possible intruder paths to the maximum end time of the

k-neighborhood
14 Ũ.cost← Compute costs for all actions
15 κ2← min

ũ∈Ũ
(ũ.cost)

16 if searchiter > 0∧ i < 0 then
17 i← i + 2

18 else if searchiter > 0 then
19 i← i + 1

20 if κ2.cost < φ then
21 u← κ2

Result: u
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mobile object velocity ratio of 2, scenario A3 occurs in area A with a mobile agent to

mobile object velocity ratio of 3, scenario B1 occurs in area B with a mobile agent to mobile

object velocity ratio of 1, and scenario B2 occurs in area B with a mobile agent to mobile

object velocity ratio of 2. Two mobile agents are operating in area A while three mobile

agents are operating in area B; mobile agent fuel consumption is not accounted for in these

simulations. Visualizations of areas A and B are shown in Figure 3.5 and Figure 3.6.

Detailed parameters for the scenarios are given in Tables 3.2 and 3.3; these tables contain

the locations of the base and stationary agents, revisit deadlines for the stationary agents,

and velocity for the mobile agents and mobile objects.

The metric used to assess the performance of the approaches is the capture index. The

capture index is the number of mobile objects whose image was captured subtracted by

the number of mobile objects that reached the base divided by the total number of mobile

objects over the course of the mission. Three cost configurations, indicated by (β,γ), are

considered: (1, tmission), (tmission,1), (t2mission,1) where the mission time, tmission, is 30 in

the simulations. Missing revisit deadlines is weighted heavily in the first cost configuration

while not capturing an image of the mobile object is weighted heavily in the last cost config-

uration. Eighty simulations were run per search depth per scenario per cost configuration;

Figures 3.7-3.10 show the average intruder capture index (represented on the ordinate) for

these 80 simulations for the three different cost configurations (represented by the three

different line styles) as a function of search depth for Scenarios A and B (represented on

the abscissa).

In the left subfigures of Figures 3.7-3.10, where mobileAgentsAction() is used, the cap-

ture index increases as a function of search depth for all cost functions. The capture index

for localS earch() (right subfigures of Figures 3.7-3.10) does not increase significantly with

larger search depth. While mobileAgentsAction() and localS earch() perform similarly for

short search depths, mobileAgentsAction() performs better than localS earch() for larger

search depths.
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Table 3.2: Base and stationary agents parameters for scenarios A and B.

Scenarios A Scenarios B
ξi ζi ri ξi ζi ri

Base 6 6 6 6
Stationary agent 1 94.66 70.33 11.4 150.03 56.21 8.1
Stationary agent 2 117.05 109.94 12.4 162.18 124.23 10.7
Stationary agent 3 57.17 151.44 10.5 37.41 72.06 3.0
Stationary agent 4 70.00 100.00 2.6 117.54 131.08 8.4
Stationary agent 5 10.79 106.16 10.8 19.65 110.68 9.5
Stationary agent 6 186.80 25.98 8.3 44.29 4.66 7.1
Stationary agent 7 93.88 2.38 5.6 148.70 107.66 12.6
Stationary agent 8 40.00 50.00 7.0
Stationary agent 9 140.00 42.00 11.0

For scenarios A2, A3, and B2 (Figures 3.7, 3.8, and 3.10), weighting mobile object cap-

ture heavily when using mobileAgentsAction() resulted in more captures for large search

depths while only a marginal difference between cost configurations is seen for small search

depths. In scenario B1 (Figure 3.9), weighting missed revisit deadlines more heavily for

mobileAgentsAction() resulted in more captures for search depths less than 0.9% of the

mission completion time. The performance of localS earch() is not significantly affected

by different cost configurations.

In scenario A, an optimal search depth is seen for both velocity advantages at 1.05%

of the mission completion time for mobileAgentsAction(). An optimal search depth is not

seen in scenario B, however it may occur at a search depth greater than performed in the

simulations. As expected, the mobile object capture indices in scenario A3 are larger than

in scenario A2, i.e., the mobile agents perform better when they are faster. This trait is

also seen when comparing scenario B2 to scenario B1. The mobile agents do not perform

well when they do not have a velocity advantage (Figure 3.9) even when they are more

numerous. When the mobile agents are faster than the mobile object and the topography is

advantageous, as is the case in scenario B, they can perform very well (Figure 3.10).

The performance of mobileAgentsAction() largely depends on the problem instance as
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Figure 3.5: Visualization of base, stationary agents, and roads for scenario A.

Table 3.3: Vehicle parameters for scenarios A and B.

Scenario A2 Scenario A3 Scenario B1 Scenario B2
µv σv µv σv µv σv µv σv

Mobile object 37.5 1.57 25 1.57 25 2.33 25 2.33
Mobile agents 75 0 75 0 25 0 50 0
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Figure 3.6: Visualization of base, stationary agents, and roads for scenario B.
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Figure 3.7: Capture index for scenario A2 using mobileAgentsAction() (top)
and localS earch() (bottom).
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Figure 3.8: Capture index for scenario A3 using mobileAgentsAction() (top)
and localS earch() (bottom).

79



Figure 3.9: Capture index for scenario B1 using mobileAgentsAction() (top)
and localS earch() (bottom).
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Figure 3.10: Capture index for scenario B2 using mobileAgentsAction() (top)
and localS earch() (bottom).
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can be seen from the differences in results from the scenarios presented. Problem instances

with bottlenecks in the road network topology lead to better performance since the mobile

agents’ pursuit and interception of the mobile object is simplified. Topologies with highly

connected nodes close together lead to poorer performance since the mobile agents cannot

adequately pursue the mobile object. The effect of the topology on the performance of the

heuristic highlights the importance of the selection of stationary agents’ locations.

3.4 Summary

In this chapter, path planning for mobile agents monitoring stationary objects or pursuing

mobile agents is studied. Using a problem formulation with revisit deadlines, almost pe-

riodic paths for a single vehicle monitoring stationary objects are demonstrated to exist.

The problems are shown to be intractable and heuristics as well as algorithms are provided

to compute the paths for the agents. The complexity and completeness of the heuristics

and algorithms are discussed; the effectiveness of the heuristics is shown using numerical

results.
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CHAPTER 4

Configurations for stationary agents

In the previous chapter, path planning for mobile agents was studied and in Section 3.3

the mobile agents interacted with stationary agents. In this chapter, optimal configurations

for stationary agents performing monitoring tasks are investigated. The results from this

chapter are used to address the sensor placement question stated in Section 1.2: how can

mobile and stationary agents cooperate to achieve monitoring tasks?

In this chapter, the problem of monitoring a single mobile object on an arbitrary graph

using stationary agents is studied. The stationary agents detect the presence of the object

by measuring a certain property of the object. The stationary agents are to be configured for

optimal monitoring, i.e., their locations and revisit deadlines (the maximum time that can

elapse between consecutive visits by a mobile agent) are selected to optimize monitoring.

The models used for the mobile object and the stationary agents are presented. The

problem is then explicitly formulated and a variety of methods for the placement of sta-

tionary agents observing the object are given. A method to select revisit deadlines for

the stationary agents is also provided. Properties of the approaches are shown and their

characteristics illustrated through numerical examples.

4.1 Model

Let G = (N,E,L) be a weighted digraph representing the area in which the mobile object

can move, where N is the set of nodes and n = |N|, E is the set of directed edges in the
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graph, and L is the set of weights associated with the set E (e.g., the lengths of the edges).

Location in this chapter means an edge or a node. The models used for the agents and

object are now introduced.

4.1.1 Revisit deadlines

The stationary agents must be visited repeatedly for the mobile agents to maintain recent

knowledge of the detections in the graph. Instead of using revisit periods for each stationary

agent a revisit deadline is used, where a revisit deadline is the maximum time that can

elapse between consecutive visits to a stationary agent. Revisit deadlines lead to increased

flexibility in the mission planning process due to the larger number of paths available.

However, that increased flexibility can come at the cost of additional required computation

time. Methods to compute paths for mobile agents to meet revisit deadlines are given in

Chapter 3.

4.1.2 Mobile object motion in graph

Let p be the probability of the mobile object’s motion in the graph, where pi, j = p(Ei, j)

is the likelihood of the mobile object traveling along the edge from node i to node j and∑n
j=1 pi, j = 1. If there is no directed edge from node i to node j then pi, j = 0. The proba-

bilities can be computed from existing knowledge about the mobile object or derived from

a red team exercise simulating the mobile object’s actions towards a given objective, e.g.,

using game theoretic approaches.

The probability distribution of the mobile object’s location among the nodes can be de-

rived from the model of the mobile object’s movements in the network. Because the mobile

object’s movements are modeled as a finite order ergodic Markov process, the probability

distribution of the mobile object’s location is obtained by computing the stationary dis-

tribution of the Markov process. Let P be the matrix containing the probabilities of the
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movements of the mobile object along the graph,

P =



0 p1,2 · · · p1,n

p2,1 0 · · · p2,n

... . . . ...

pn,1 pn,2 · · · 0


, (4.1)

then,

π ·P = π, (4.2)

where π contains the stationary probabilities for the individual nodes in the graph.

A stationary agent is capable of detecting a mobile object (e.g., a security camera

searching for a specific object) and registers the time of the detection. A wide variety

of measurements can be used by stationary agents to perform their detections. In addition,

the stationary agent’s sensors can be perfect or noisy in which case some detections may be

false or the stationary agent may miss detections. In this work, each stationary agent pos-

sesses a sensor and a classifier; each stationary agent measures a continuous variable and

makes a classification decision based on the measurement value. The sensors carried by

the stationary agents may be identical or different, in which case their noise characteristics

may be dependent or independent.

The stationary agents measure a distinguishing property (e.g., weight) of the mobile

object (e.g., ground vehicle) to perform their classification decision. Let w be the value

of the property of the mobile object, q j ∼N (µ j,σ
2
j) be the noise from stationary agent j’s

measurement, and z indicate the stationary agent’s measurement:

z j = w + q j. (4.3)

The sensors are assumed to be calibrated hence µ j = 0,∀ j, thus the probability density
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function for the noise of stationary agent j’s sensor is:

fq j(q j) =
1

σ j
√

2π
e

−q2
j

2σ2
j ,1 ≤ j ≤ g. (4.4)

When stationary agents are colocated, their measurements can be fused to generate a

better estimate of the mobile object’s property. This estimation is done differently depend-

ing on what is known about the mobile object’s property, i.e., either the exact value of the

parameter is known or its statistical properties are known.

4.1.2.1 Colocated stationary agents with known mobile object parameter

The mobile object’s parameter w is assumed to be known, i.e., w = w̄; and without loss of

generality it is assumed that w̄ > 0. When multiple stationary agents (each with a sensor

reading z j) are placed at the same location and the mobile object parameter is known, the

maximum likelihood estimate of the sensors, z̄, is used to generate a single measurement:

z̄ = argmax
x

(p(~z|x)) = argmax
x

(
f~q(~z− ~x)

)
, (4.5)

where ~z contains the measurements for the individual colocated sensors, x is a candidate

estimate, ~x is a vector of the same size as ~z containing the value of the candidate estimate

at each entry, R is the covariance matrix for the multiple colocated sensors, and

f~q =
1

√
2πdet(R)

e−
1
2~q

T R−1~q (4.6)
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is the probability density function for the combined noise of the sensors. The maximum

likelihood estimate is

z̄ = argmax
x

(
1

√
2πdet(R)

e−
1
2 (~z−~x)T R−1(~z−~x)

)
= argmin

x

(
1
2

(~z− ~x)T R−1(~z− ~x)
)

= argmin
x

(
1
2

h(x)
)
. (4.7)

where h(x) = (~z− ~x)T R−1(~z− ~x). For x to satisfy (4.7):

∂h(x)
∂x

= 0 (4.8)

and
∂2h(x)
∂x2 = 2 ·1T R−11 > 0, (4.9)

where 1 is a column vector of ones of the appropriate size.

Equation (4.8) results in an expression with z̄ linear in the elements of ~z hence the

maximum likelihood estimate is a linear function of ~z and can be written as

z̄ = Λ ·~z. (4.10)

where Λ ∈ R1×|~z| contains the coefficients of the linear relationship between z̄ and ~z found

in (4.8).

~z is jointly Gaussian thus z̄ is also Gaussian:

z̄ = N (0,σ2
z̄ ), (4.11)
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where

σ2
z̄ = ΛRΛT . (4.12)

The variance of the maximum likelihood estimate of the sensors of the colocated sta-

tionary agents, σ2
z̄ , can be used to model the colocated stationary agents as a single com-

bined stationary agent. While the maximum likelihood estimate is used in this work, other

estimators can be used for computing z̄ such as a least squares estimator.

Independent sensors If the sensors are independent, i.e., their measurements are statis-

tically independent, then (4.8) becomes

∂h(x)
∂x

= −

|~z|∑
j=1

(z j− x)

σ2
j

= 0. (4.13)

Hence,

z̄ =
1∑|~z|

i=1
1
σ2

i

·

|~z|∑
j=1

z j

σ2
j

=
1T R−1

tr(R−1)
·~z. (4.14)

Comparing (4.10) and (4.14),

Λ =
1T R−1

tr(R−1)
, (4.15)
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thus

σ2
z̄ = ΛRΛT

=
1T R−1

tr(R−1)
R

(R−1)T

tr(R−1)
1

=
1

tr2(R−1)
1T R−11

=
1

tr(R−1)
. (4.16)

4.1.2.2 Colocated stationary agents with random mobile object parameter

The case of placing multiple stationary agents at the same location with a random mobile

object parameter is now studied. It is assumed that the mobile object parameter w is Gaus-

sian with mean w̄ and variance σ2
w. A variety of estimators exist to estimate a random

parameter such as the maximum a posteriori estimator or the minimum mean square er-

ror estimator, in this work the maximum a posteriori estimator is used. The maximum a

posteriori estimate of the sensors of the stationary agents, z̄, is:

z̄ = argmax
x

(p(~z|x) · p(x))

= argmax
x

 1
2πσw det(R)

e
−

(~z−~x)T R−1(~z−~x)
2 −

(x−w̄)2

2σ2
w


= argmin

x

(
(~z− ~x)T R−1(~z− ~x)

2
+

(x− w̄)2

2σ2
w

)
. (4.17)
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Independent sensors If the sensors carried by the stationary agents are independent,

then (4.17) becomes

z̄ = argmin
x

 (x− w̄)2

σ2
w

+

|~z|∑
j=1

(z j− x)2

σ2
j


= argmin

x

x2

 1
σ2

w
+

|~z|∑
j=1

1
σ2

j

−2x

 w̄
σ2

w
+

|~z|∑
j=1

z j

σ2
j

+
w̄2

σ2
w

+

|~z|∑
j=1

z2
j

σ2
j


= argmin

x

(
x2

(
1 +σ2

w tr(R−1)
σ2

w

)
−2x

(
w̄
σ2

w
+ 1T R−1~z

)
+

w̄
σ2

w
+ 1T R−1 ~z2

)

= argmin
x


x−

w̄ +σ2
w1T R−1~z

1 +σ2
w tr(R−1)

2

+
w̄2 +σ2

w1T R−1 ~z2

1 +σ2
w tr(R−1)

−

(
w̄ +σ2

w1T R−1~z
)2(

1 +σ2
w tr(R−1)

)2


= argmin

x

x−
w̄ +σ2

w1T R−1z

1 +σ2
w tr(R−1)

2

. (4.18)

Hence,

z̄ =
w̄ +σ2

w1T R−1z

1 +σ2
w tr(R−1)

=

[
1

1+σ2
w tr(R−1)

σ2
w1T R−1

1+σ2
w tr(R−1)

] w̄z
 = Λ

w̄z
 , (4.19)

where Λ =

[
1

1+σ2
w tr(R−1)

σ2
w1T R−1

1+σ2
w tr(R−1)

]
. Thus the maximum a posteriori estimate is also Gaus-

sian:

z̄ = N
(

w̄
1 +σ2

w tr(R−1)
,σ2

z̄

)
, (4.20)

where

σ2
z̄ = ΛR̃ΛT (4.21)

and

R̃ =

σ
2
w 0

0 R

 . (4.22)
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Therefore, the variance of the maximum a posteriori estimate is

σ2
z̄ =

1
(1 +σ2

wtr(R−1))2

[
1 σ2

w1T R−1
]
R̃

 1

σ2
wR−11


=

σ2
w

1 +σ2
w tr(R−1)

. (4.23)

4.2 Problem formulation

Let g be the number of stationary agents available, where 1 ≤ g ≤ n2. The location of the

stationary agents and the revisit deadline of the stationary agents, ri, can be selected.

The problems of stationary agent placement and stationary agent visit timing are for-

mulated as follows:

1. Given a directed graph, a Markov model of the mobile object’s movement on the

graph, and a set of stationary agents; select the locations of the stationary agents

such that

(a) Fisher information is maximized, or

(b) probability of misclassification is minimized, or

(c) penalty incurred by poor detections resulting from the placement is minimized.

2. Given a directed graph, a Markov model of the mobile object’s movement on the

graph, and a set of placed stationary agents; select the revisit deadlines for mobile

agents visiting such that the amount of time a vehicle visit to a sensor precedes a

phenomenon visit and the time elapsed before a detection from a sensor is acquired

by a visiting vehicle are minimized.
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4.3 Stationary agent placement

In this section, the problem of placing the stationary agents is treated. Let U be a binary

matrix of size g×n2 representing a configuration of stationary agents along the graph where

a 1 in the (i, j)th entry indicates that stationary agent i has been placed at location j in the

network. Let Ui indicate the ith row of U corresponding to the location of stationary agent

i. Several methods to place stationary agents are now introduced.

4.3.1 Background

Several properties of functions used for the placement of stationary agents are now intro-

duced. Let f be a function defined over the set Ω where f : 2Ω→R. Let Γ and Ψ be subsets

of Ω such that Γ ⊆ Ψ ⊆Ω.

4.3.1.1 Monotonicity

f is monotonic if

f (Γ) ≤ f (Ψ). (4.24)

If f is the function describing the utility of a sensor placement, then f being monotonic

implies placing more sensors is never detrimental.

4.3.1.2 Submodularity

f is submodular if

∀x ∈Ω \Ψ, f (Γ∪{x})− f (Γ) ≥ f (Ψ∪{x})− f (Ψ). (4.25)

If f is the function describing the utility of a sensor placement, then f being monotonic

and submodular indicates that using a greedy algorithm yields a solution which is close to

optimal.
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4.3.2 Fisher information

Fisher information is the expected value of the information an observable variable z gives

about an unknown variable y:

F = E

( ∂∂z
log f (y;z)

)2

|z

 (4.26)

where f (y;z) is the conditional probability density function.

It is often used as an objective function in sensor placement problems or more generally

optimal experimental design since it allows designers to quantify the information acquired

through a sensor placement or experimental design without having to perform experiments.

A related notion to Fisher information is the Cramer-Rao lower bound which is the lower

bound of the variance of the error in the measurement; under certain conditions the Cramer-

Rao lower bound is the inverse of Fisher information. Thus maximizing Fisher information

is equivalent to minimizing the lower bound of the variance of the estimation.

To formulate Fisher information, a number of variables and functions are introduced.

Let P̄ = P + I where I is the identity matrix and p̄i, j are elements in P̄ . The likelihood of a

sensor j located at (i1, i2) detecting a phenomenon currently located at node k is

f
(
z(i1,i2)

j ;w(k)
)

=
p̄k,i1 · p̄i1,i2

σ j
√

2π
· e
−

(z−w)2

2σ2
j ; (4.27)

if i1 = i2 then the location of the sensor is node i1, otherwise it is a directed edge from node

i1 to node i2.
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The corresponding Fisher information for stationary agent j placed at (i1, i2) is then:

Fi1,i2(U) = −E

( ∂∂w
log f

(
z(i1,i2)

j ;w(k)
))2 ,

= −E


∂ f

(
z(i1,i2)

j ;w(k)
)

∂w
1

f
(
z(i1,i2)

j ;w(k)
)

2 ,
= −

n∑
k=1

πk

∫ ∂ f
(
z(i1,i2)

j ;w(k)
)

∂w


2

1

f
(
z(i1,i2)

j ;w(k)
)dw, (4.28)

where
∂ f

(
z(i1,i2)

( j) ;w(k)
)

∂w
=

p̄k,i1 · p̄i1,i2

σ j
√

2π
·
−2w + 2z

2σ2
j

· e
−(z−w)2

2σ2
j . (4.29)

Then (4.28) becomes,

Fi1,i2(U) = −

n∑
k=1

πk

∫  p̄k,i1 · p̄i1,i2

σ j
√

2π
·
−2w + 2z

2σ2
j

· e
−(z−w)2

2σ2
j


2

·
σ j
√

2π

p̄k,i1 · p̄i1,i2 · e
−(z−w)2

2σ2
j

dw

= −

n∑
k=1

πk

∫ p̄2
k,i1
· p̄2

i1,i2

σ2
j2π

·
(z−w)2

σ4
j

· e
−2(z−w)2

2σ2
j · e

(z−w)2

2σ2
j

σ j
√

2π
p̄k,i1 · p̄i1,i2

dw

= −

n∑
k=1

πk

∫
p̄k,i1 · p̄i1,i2

σ5
j

√
2π
· (z−w)2e

−(z−w)2

2σ2
j dw. (4.30)
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Let x = z−w, where dx = −dw, then

Fi1,i2(U) =

n∑
k=1

πk

∫
p̄k,i1 · p̄i1,i2

σ5
j

√
2π
· x2 · e

−(x)2

2σ2
j dx

=

n∑
k=1

πk ·
p̄k,i1 · p̄i1,i2

σ4
j

∫
x2

σ j
√

2π
· e
−(x)2

2σ2
j dx

=

n∑
k=1

πk ·
p̄k,i1 · p̄i1,i2

σ4
j

·σ2
j

=

n∑
k=1

πk ·
p̄k,i1 · p̄i1,i2

σ2
j

=
1
σ2

j

n∑
k=1

πk · p̄k,i1 · p̄i1,i2 . (4.31)

From the definition of π,

n∑
k=1

πk · p̄k,i = πi +

n∑
k=1

πk · pk,i,

= πi +πi = 2πi. (4.32)

Then,

Fi1,i2(U) =
2πi1 · p̄i1,i2

σ2
j

. (4.33)

It is important to note in (4.33) that Fi1,i2(U) ≥ 0. When no stationary agent is present at

location i1, i2, Fi1,i2(U) = 0. Placing stationary agents using Fisher information is thus

max
U

 n∑
i1=1

n∑
i2=1

Fi1,i2(U)

s.t. Uk ·1 ∈ {0,1},1 ≤ k ≤ g, (4.34)

where Uk is the kth row in U.

95



4.3.3 Probability of misclassification

The probability of misclassification quantifies the rates of false positives and false negatives

for a classifier. To describe the probability of misclassification, a model for classification

is first needed. Thresholding is used as the method for classification in this work and let

β j be the threshold for stationary agent j’s sensor. If z j ≥ β j then a detection takes place,

otherwise no detection occurs.

The probability of misclassification for stationary agent j placed at (i1, i2) detecting a

mobile object currently located at node k is

Pmi1,i2
(U) =

 n∑
k=1

πk p̄k,i1 p̄i1,i2

 ·P (
z j = q j + w < β j

)
+

1− n∑
k=1

πk p̄k,i1 p̄i1,i2

 ·P (
z j = q j ≥ β j

)
=

(
2πi1 p̄i1,i2

)
·P

(
q j < β j−w) + (1−2πi1 p̄i1,i2

)
·P

(
q j ≥ β j

)
=

(
2πi1 p̄i1,i2

)
·

1
2

+
1
2

erf

β j−w
√

2σ j

+
(
1−2πi1 p̄i1,i2

)
·

1
2
−

1
2

erf

 β j
√

2σ j

 .
(4.35)

Let ρi1,i2 indicate the prior probability for location (i1, i2) where ρi1,i2 := 2πi1 p̄i1,i2 . The

optimal threshold is computed by minimizing the probability of misclassification (theory

and examples of thresholding for classification can be found in [114]),

∂Pmi1,i2
(U)

∂β j
= 0

ρi1,i2
√
π
· exp(−

(β j−w)2

2σ2
j

) =
1−ρi1,i2
√
π
· exp(−

β2
j

2σ2
j

)

log(ρi1,i2)−
(β j−w)2

2σ2
j

= log(1−ρi1,i2)−
β2

j

2σ2
j

2β jw−w2 + 2σ2
j · log(

ρi1,i2

1−ρi1,i2
) = 0

β j =
w
2
−
σ2

j

w
· log(

ρi1,i2

1−ρi1,i2
). (4.36)
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The second order condition for a minimum is indeed satisfied:

∂2Pmi1,i2
(U)

∂β2
j

=
−ρi1,i2
√
πσ2

j

(β j−w) · exp

− (β j−w)2

2σ2
j

+β j · exp

− β2
j

2σ2
j

+
β j
√
πσ2

j

· exp

− β2
j

2σ2
j




=
w ·

√
ρi1,i2(1−ρi1,i2)
√
πσ2

j

· exp

− w2

8σ2
j

−
σ2

j

2w2 ·

(
log

(
ρi1,i2

1−ρi1,i2

))2


≥ 0. (4.37)

The probability of misclassification score for an entire placement is computed by taking

the sum of the probability of misclassification across all nodes and edges in the graph (the

probability of misclassification for a location without a stationary agent is the prior proba-

bility for that location). Placing stationary agents using the probability of misclassification

score is thus

min
U

 n∑
i1=1

n∑
i2=1

Pmi1,i2
(U)

s.t. Uk ·1 = {0,1},1 ≤ k ≤ g. (4.38)

4.3.4 Penalty incurred

When placing stationary agents at nodes and along edges, the quality of the ensuing detec-

tion should be accounted for (i.e., how well the mobile agent’s position can be predicted

from the detection or if the detection is redundant). The penalty of a placement of station-

ary agents is thus minimized. Penalty is defined here as the product of the quality of the

detection and the probability of the stationary agent missing a detection or falsely triggering

a detection. Nodes and edges yield different types of detections. A detection from a node

occurs more often than a detection along a connected edge, but only gives an estimate of

where the mobile object’s next location is (for example, the solid highlighted area around

node 3 in Figure 4.1). A detection from an edge occurs less often than a detection from its

source node, however it gives the exact location of the mobile object for a certain amount

of time (for example, the dashed highlighted edge from node 2 to node 4 in Figure 4.1).

The penalty function for node i, Vi,i(U), is a weighted sum of the product of the uncov-
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Figure 4.1: Quality of detections from nodes and edges.

ered connected edge lengths, the likelihood of the mobile object visiting the node, and the

probability of missed detections and false alarms for the node. An uncovered location is a

location without a stationary agent. An intermediate variable is introduced to simplify the

notation in the formula for Vi,i(U). Let φi be the number of uncovered outgoing edges from

node i:

φi =

n∑
k=1
k 6=i

pi,k>0

(
1−Ui,k

)
. (4.39)

Then the penalty for sensor j at node i can be found using the following equation:

Vi,i(U) =
(
P
(
q j < β j−w

)
+ P

(
q j ≥ β j

))
·πi ·

n∑
j=1

Li, j ·
(
pi, j

)φi
. (4.40)

It is important to note that the penalty of a node depends on the placement of other station-
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ary agents in the network. The penalty function for stationary agent j placed at edge (i1, i2)

is the length of the edge scaled by the probability of the mobile object traveling along that

edge and the probability of missed detections and false alarms for the edge:

Vi1,i2(U) =
(
P
(
q j < β j−w

)
+ P

(
q j ≥ β j

))
·πi1 · pi1,i2 ·Li1,i2 . (4.41)

The goal for the placement is to minimize the overall penalty, i.e.,

min
U

 n∑
i1=1

n∑
i2=1

Vi1,i2(U)

s.t. Uk ·1 = {0,1},1 ≤ k ≤ g. (4.42)

4.4 Special cases

In this section, characteristics of placements using the aforementioned metrics under certain

cases are discussed.

4.4.1 No combined stationary agents

Characteristics of the different stationary agent placement schemes when stationary agents

are not colocated are described here.

4.4.1.1 Monotonicity and submodularity using Fisher information

Let Γ and Ψ be sets of alarm sensors such that Γ ⊆Ψ. Let F be the total Fisher information

for a given sensor placement, e.g., F(Γ) =
∑n

i1=1
∑n

i2=1 Fi1,i2,(U,Γ) where the argument Γ

indicates that the sensor parameters come from the set of sensors Γ.

Proposition 4.4.1. Sensor placement using Fisher information when sensors are not colo-

cated is monotonic.

Proof. Γ ⊆ Ψ hence F(Ψ) = F(Γ) +F(Ψ \Γ). However, (4.33) indicates that Fi1,i2(U) ≥ 0,

thus F(Ψ\Γ) =
∑n

i1=1
∑n

i2=1 Fi1,i2,(U,Ψ\Γ)≥ 0. Hence, F(Γ)≤F(Ψ), i.e., sensor placement
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using Fisher information when sensors are not colocated is monotonic (as defined in (4.24)).

Proposition 4.4.2. Sensor placement using Fisher information when sensors are not colo-

cated is submodular.

Proof. Let x be a sensor that does not belong to the sets Γ or Ψ, i.e., {x} ∩Ψ = ∅. Let

ρ? be a vector containing the prior probabilities in descending magnitude, σΓ be a vector

containing the sensor standard deviations for the set of sensors Γ in ascending magnitude,

and σΨ be a vector containing the sensor standard deviations for the set of sensors Ψ in

ascending magnitude. According to (4.34), F(Γ) =
∑|Γ|

i=1
ρ?i

σΓ
i

2 and F(Ψ) =
∑|Ψ|

i=1
ρ?i

σΨ
i

2 . Let σx

be the standard deviation of sensor x, then

F(Γ∪{x})−F(Γ) =
ρ?
|Γ|+1

σx2 (4.43)

and

F(Ψ∪{x})−F(Ψ) =
ρ?
|Ψ|+1

σx2 . (4.44)

However, Γ ⊆Ψ, hence |Γ| ≤ |Ψ| and ρ?
|Γ|+1 ≥ ρ

?
|Ψ|+1. Thus, F(Γ∪{x})−F(Γ) ≥F(Ψ∪{x})−

F(Ψ), i.e., sensor placement using Fisher information when sensors are not colocated is

submodular (as defined in (4.25)).

4.4.1.2 Single stationary agent

Stationary agent placement using a single stationary agent is studied here.

Lemma 4.4.3. When placing a single stationary agent, the set of optimal Fisher informa-

tion placements is obtained by maximizing the prior probability.

Proof. For a single stationary agent with variance σ2, the placement that maximizes Fisher

information is

max
i1,i2

(
ρi1,i2

σ2 ), (4.45)
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which is equivalent to maximizing the prior probability.

Theorem 4.4.4. When placing a single stationary agent, the set of optimal Fisher informa-

tion placements is a subset of the optimal probability of misclassification score placements.

Proof. The prior probability is assumed to be continuous and is now indicated by ρ, the

sensor noise is q with standard deviation σ, and the sensor’s classification threshold is β.

The probability of misclassification score is:

P̄m =

n∑
i1=1

n∑
i2=1

Pmi1,i2
(U)

= ρ ·P (q < β− w̄) + (1−ρ) · (1 + P (q > β))

= ρ ·

(
1
2

+
1
2

erf
(
(β(ρ)− w̄)
√

2σ

))
+ (1−ρ) ·

(
3
2
−

1
2

erf
(
β(ρ)
√

2σ

))
. (4.46)

Using (4.36) in (4.46),

P̄m = ρ ·

(
1
2

+
1
2

erf
(
−

w

2
√

2σ
−

σ
√

2w
· log

(
ρ

(1−ρ)

)))
+ (1−ρ) ·

(
3
2
−

1
2

erf
(

w

2
√

2σ
−

σ
√

2w
· log

(
ρ

(1−ρ)

)))
, (4.47)
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which yields,

∂P̄m

∂ρ
=

1
2

erf
(

w̄

2
√

2σ
−

σ
√

2w̄
log

(
ρ

1−ρ

))
−

1
2

erf
(

w̄

2
√

2σ
+

σ
√

2w̄
log

(
ρ

1−ρ

))
−

σ

(1−ρ)
√

2πw̄
· exp

 −1
2σ2

(
w̄
2

+
σ2

w̄
log

(
ρ

1−ρ

))2
+

σ

ρ
√

2πw̄
· exp

 −1
2σ2

(
w̄
2
−
σ2

w̄
log

(
ρ

1−ρ

))2−1

=
1
2

erf
(

w̄

2
√

2σ
−

σ
√

2w̄
log

(
ρ

1−ρ

))
−

1
2

erf
(

w̄

2
√

2σ
+

σ
√

2w̄
log

(
ρ

1−ρ

))
+

σ
√

2πw̄
· exp

− w̄2

8σ2 −
σ2

2w̄2

(
log

(
ρ

1−ρ

))2 · − 1√
1−ρ
√
ρ

+
1

√
ρ
√

1−ρ

−1

=
1
2

erf
(

w̄

2
√

2σ
−

σ
√

2w̄
log

(
ρ

1−ρ

))
−

1
2

erf
(

w̄

2
√

2σ
+

σ
√

2w̄
log

(
ρ

1−ρ

))
−1. (4.48)

We can rewrite this expression as

∂P̄m

∂ρ
=

1
2

erf(ξ)−
1
2

erf(ζ)−1, (4.49)

where ξ ∈R and ζ ∈R are the corresponding large expressions in the equation above. Note

that −1 ≤ erf(·) ≤ 1 hence,

−1 ≤
erf(ξ)− erf(ζ)

2
≤ 1. (4.50)

Thus,
∂P̄m

∂ρ
=

1
2

erf(ξ)−
1
2

erf(ζ)−1 ≤ 0, (4.51)

which means that when placing a single stationary agent maximizing the prior probability

minimizes the probability of misclassification score. The optimal Fisher placements for a

single stationary agent are obtained by maximizing the prior probability (Lemma 4.4.3).

Therefore, for a given problem the set of optimal Fisher placements is a subset of the set of

optimal misclassification score placements.
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The penalty incurred objective function depends on the length of the edges, hence sim-

ilar behavior is not witnessed when placing stationary agents using penalty incurred.

4.4.2 Computational complexity

Computational aspects of placing the stationary agents are described here. There are

(n+|E|)!
(n+|E|−g)! candidate solutions, thus performing an exhaustive search quickly becomes in-

feasible for large problems. Instead of performing an exhaustive search, a k-opt approach

can be used by switching 0s and 1s in a given candidate solution U; e.g., for k = 2 a sta-

tionary agent is moved from a covered location to a previously uncovered location while

the rest of the placement remains the same. The number of candidate solutions for k-opt

is g!
(g−k)! ×

(n+|E|−g)!
(n+|E|−g−k)! which can be less than the total number of candidate solutions for

certain k.

To use k-opt an initial candidate solution is needed; this candidate solution can be se-

lected or obtained by generating a random solution. A good initial candidate solution for

Fisher information is the solution when stationary agents are not permitted to be colocated.

The optimal solution is either this solution or a solution with a few switches to place multi-

ple stationary agents on locations of more importance. In addition, Fisher placement when

stationary agents are not permitted to be colocated is monotonic and submodular (Sec-

tion 4.4.1.1), thus this initial candidate solution can be computed quickly using a greedy

algorithm., e.g., place the sensor with the smallest variance on the most visited location and

repeat this procedure until all sensors have been placed.

4.5 Stationary agent timing

In the previous section, the placement of stationary agents was discussed. However, it is

still unclear how often mobile agents should visit the stationary agents. A method to select

revisit deadlines for the placed stationary agents is now presented.

103



A stale stationary agent detection is less valuable than a recent stationary agent detec-

tion; as such when selecting revisit deadlines for stationary agents, they should be selected

such that the time between a detection and its acquisition by a mobile agent is minimized.

Let ei(t) be the age of a detection (not yet acquired by the mobile agents) at stationary agent

i at time t. The maximum age of a detection is the revisit deadline of the stationary agent

from which the detection came,

ei(t) ≤ ri,∀t,1 ≤ i ≤ g. (4.52)

4.5.1 Lower bound

To maintain the most accurate information possible about mobile object movements, the

age of a detection at time of acquisition should be zero. This can only be guaranteed by

setting all the stationary agents’ revisit deadlines to zero,

ri = 0⇒ ei(t) = 0,∀t,1 ≤ i ≤ g. (4.53)

Let m be the number of mobile agents, ri = 0,1 ≤ i ≤ g if and only if m = g. However, it

remains unclear how the revisit deadlines should be selected when m < g.

4.5.2 Feasibility of revisit deadlines

It is desirable that the set of revisit deadlines selected be feasible, i.e., paths for the mobile

agents such that all revisit deadlines are met exist. Assessing the feasibility of a set of

revisit deadlines for multiple mobile agents is NP-hard according to Proposition 3.3.1. As

such, finding constraints that guarantee the existence of paths for a given set of revisit

deadlines is difficult and thus feasibility of a set of revisit deadlines is not addressed when

they are selected (heuristics such as the ones presented in Chapter 3 can be used by the

mobile agents to satisfy the revisit deadlines or minimize the amount by which they are
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missed).

4.5.3 Selecting revisit deadlines

Let bi be the expected recurrence time for the mobile object at stationary agent i, i.e., the

expected time between two consecutive visits to the stationary agent by the mobile object

(a method to compute expected recurrence times is given in Section 4.5.3.1). We want to

minimize the expected age of a detection at stationary agent i, ei = bi− ri,

min
ri

(bi− ri), (4.54)

and the expected amount of time by which a mobile agent visit pre-empts a mobile object

visit,

min
ri

(ri−bi). (4.55)

This is equivalent to maximizing the reward and minimizing wasted resources for the mo-

bile agents or minimizing the lead and lag time of mobile agent visits to mobile object

visits. The Pareto optimal solution for the minimizations in (4.54) and (4.55) is

ri = bi. (4.56)

4.5.3.1 Expected mobile object recurrence time

Let bi be the expected mobile object recurrence time at node i. Intermediate variables are

needed to compute bi. s j,i is introduced: the expected time for the mobile object to travel

from node j to node i (where s j,i = 0 when j = i). Let ti, j be the time it takes the mobile

object to move from node i to node j; then bi can be written as follows,

bi =

n∑
j=1

pi, j ·
(
ti, j + s j,i

)
,1 ≤ i ≤ n. (4.57)
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s j,i must satisfy the following equation:

s j,i =

n∑
k=1

p j,k ·
(
t j,k + sk,i

)
,1 ≤ i, j ≤ n, j 6= i. (4.58)

Equation (4.58) can be rewritten as a matrix equation, for example if i = 1 then



1 −p2,3 · · · −p2,n

−p3,2 1 · · · −p3,n

...
... . . . ...

−pn,2 pn,3 · · · 1





s2,1

s3,1

...

sn,1


=



∑n
k=1 p2,kt2,k∑n
k=1 p3,kt3,k

...∑n
k=1 pn,ktn,k


. (4.59)

Let Po be a submatrix of the transition matrix where the oth row and oth column have

been removed. The vector c contains the weighted sums of transition times in (4.58),

c =



∑n
k=1 p1,kt1,k∑n
k=1 p2,kt2,k

...∑n
k=1 pn,ktn,k


, (4.60)

and co is a subvector of c with the oth element removed. Let so be a vector containing s j,o

for 1 ≤ j ≤ n, j 6= o. Equation (4.59) can then be rewritten for any i as

(I−Po) · so = co. (4.61)

Equation (4.61) can be used to compute so for 1 ≤ o ≤ n which can then be used to

compute the recurrence times for nodes using (4.57).

The recurrence time for an edge (i, j), bi, j, can be computed by using the recurrence
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time for the source node i and the likelihood of moving from i to j, as follows,

bi, j =
bi

pi, j
. (4.62)

4.6 Simulations

Three methods to place stationary agents were introduced in Section 4.3: the maximization

of Fisher information (4.34), the minimization of the probability of misclassification (4.38),

and the minimization of the penalty incurred by the placement (4.42); and a method to se-

lect stationary agent revisit deadlines (4.56) was introduced in Section 4.5. In this section,

the resulting placements and revisit deadlines of these three placement schemes are com-

pared. Several terms are now introduced to aid in this comparison: stationary agent place-

ments are identical if the same combination of stationary agents covers the same locations

in the graph, stationary agent placements are similar if different combinations of stationary

agents cover the same locations in the graph, and stationary agent placements are distinct

if they are neither identical nor similar.

Example stationary agent placements for two different scenarios are shown in Fig-

ures 4.2 and 4.3 on a graph with 5 nodes, 20 edges, and 3 stationary agents with indepen-

dent sensors. A letter and a subscript at a given location indicate that a stationary agent has

been placed at that location; the letter indicates the stationary agent placement scheme (F:

Fisher, M: Misclassification, P: Penalty) and the subscript indicates which stationary agent.

The data used to generate these figures is provided in Section 4.6.3. The scenarios used in

Figures 4.2 and 4.3 differ only in the transition matrix of the mobile object’s motion and

probability distribution of the mobile object’s property. In Figure 4.2, the placements using

the probability of misclassification and the penalty of the placement are identical while the

placements using the probability of misclassification and Fisher information are similar.

In Figure 4.3, the placements using Fisher information and the probability of misclassifi-
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cation are similar while the placements using Fisher information and the penalty incurred

by the placement are distinct (in this case minimizing the penalty resulted in placing two

stationary agents at the same location).

P
C

5

3

1

4
2MC

F
B

PA

M
A

FC

PB

MB

FA

Figure 4.2: Example of identical and similar placements.

In these examples the stationary agents are placed on nodes; this feature is common for

stationary agent placements because the likelihood of the mobile object visiting a node is

often larger than that of visiting an edge. In addition, the stationary agents are placed on

the most frequented nodes which is also common for stationary agents placements; since

these nodes are weighted more heavily, they impact the optimization more significantly.

These figures also show that different problem parameters (e.g., the transition matrix of the

mobile object’s motion or the probability distribution of the mobile object’s property) result

in different solutions which highlights the sensitivity of the stationary agent placements
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P
B

MBFA

Figure 4.3: Example of similar and distinct placements.

with respect to the a priori knowledge about the mobile agent.

4.6.1 Comparison of stationary agent placements

The frequencies of occurrence of identical, similar, and distinct placements using Fisher

information, probability of misclassification, and the penalty of a placement when using

independent sensors are shown in Tables 4.1 and 4.2. These frequencies are computed

using Monte Carlo simulations by holding the number of nodes, the number of available

stationary agents, and the type of estimator constant while varying the stationary agents’

sensor variances, the elements of the transition matrix of the mobile object, the lengths of

the edges in the graph, and the parameters of the probability distribution of the mobile ob-

ject’s property. The 95% confidence intervals for the frequencies are shown in Tables 4.1
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and 4.2 (indicated by the ± symbol). The elements of the transition matrix are generated

using U(0,1) and scaled to ensure that each column sums up to one; the lengths of the edges

in the graph are generated using U(0,15), while the sensor variances and parameters of the

probability distribution of the mobile object’s property are generated using U(0,100). In

the simulations, the mobile object is assumed to travel with unit velocity. Table 4.1 con-

tains a comparison of all three stationary agent placement schemes simultaneously while

Table 4.2 contains pairwise comparisons of the stationary agent placement schemes. In the

tables, ‘MLE’ indicates maximum likelihood estimator and ‘MAP’ indicates maximum a

posteriori estimator.

n g Estimator Simulations Identical Similar Distinct

3 1 MLE 1092861 83.88%,±.07% 0% 16.12%,±.07%

3 1 MAP 1187295 89.67%,±.06% 0% 10.33%,±.06%

3 2 MLE 1561495 0% 0% 100%

3 2 MAP 1528106 11.83%,±.05% 75.72%,±.07% 12.45%,±.05%

3 3 MLE 299248 0% 0% 100%

3 3 MAP 300572 3.32%,±.06% 85.93%,±.12% 10.75%,±.11%

4 1 MLE 5896614 91.37%,±.02% 0% 8.63%,±.02%

4 1 MAP 6401624 94.49%,±.02% 0% 5.51%,±.02%

4 2 MLE 481414 0% 0% 100%

4 2 MAP 471840 12.29%,±.09% 78.85%,±.12% 8.86%,±.08%

4 3 MLE 32126 0% 0% 100%

4 3 MAP 31309 3.48%,±.20% 83.52%,±.41% 13%,±.37%

Table 4.1: Comparison of all stationary agent placements schemes.

As predicted by Theorem 4.4.4, stationary agent placements using Fisher information

and probability of misclassification are identical when placing a single stationary agent as
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shown in Table 4.2. In addition, a majority of the three stationary agent placements are

identical when placing a single stationary agent. In a minority of cases the placement using

penalty incurred differs from those using Fisher information and probability of misclassifi-

cation. Note that the placement using Fisher information when placing multiple stationary

agents and using the maximum likelihood estimator is always distinct with respect to the

probability of misclassification and penalty placements. This is because the maximization

of Fisher information (4.34) subject to the use of a maximum likelihood estimator (4.16)

leads to placing all the available stationary agents on the location most visited by the mobile

object while the other two placement schemes do not share this feature.

4.6.2 Qualitative comparison of stationary agent placements

Several performance metrics are used to compare the quality of the stationary agent place-

ments when using independent sensors: the percentage of false alarms emitted out of all

possible false alarms emissions, the percentage of detections that are missed, and the mean

detection age (i.e., the time between the detection and the next revisit deadline for the cor-

responding stationary agent) which quantifies the delay in the retrieval of the detection by

the mobile agent. The first two quantities assess the performance of the detection and clas-

sification process while the latter quantity assesses the quality of the detection after it has

occurred (accounting for the revisit deadlines). Results from Monte Carlo simulations are

shown in Table 4.3. These simulations are performed in the same manner as in the pre-

vious subsection with the addition of simulating a roaming mobile object over the graph

for 1000 steps. In Table 4.3, F, M, and P again indicate Fisher information, probability

of misclassification, and penalty incurred, respectively. For each of the three metrics used

for comparison, Table 4.3 shows the percentage of cases in which Fisher information, the

probability of misclassification, and the penalty incurred obtained the minima for a given

metric. The table also shows the percentage of cases where the three placements achieved

the same value of a given metric. For example, in the first line of Table 4.3 the item under
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the column ‘Rate of false alarms’ and subcolumn ‘F<M,P’ shows that Fisher information

obtained the minimum rate of false alarms (when compared to the probability of misclas-

sification and penalty incurred placements) in 51.1% of simulations performed for placing

two stationary agents on a graph with three nodes using a maximum likelihood estimator.

Due to the large number of entries in Table 4.3, the 95% confidence intervals are not shown,

they are all bounded between 0.195% and 3.099%.

When the property of the mobile object used for classification is known and thus the

maximum likelihood estimator is used, it can be seen in Table 4.3 that stationary agent

placement and timing using Fisher information achieve a minimum rate of false alarms,

rate of missed detections, and mean detection age. In addition the rate at which Fisher

information is the minimum is at least an order of magnitude larger than the other two

placement schemes. Fisher information is the dominant stationary agent placement scheme

in this case and thus should be used if false alarm rate, missed detection rate, and mean

detection age are of importance.

When the property of the mobile object used for classification is not known and the

maximum a posteriori estimator is used, Fisher information is no longer the dominant sta-

tionary agent placement scheme. In this case, the stationary agent placement schemes’

performance with respect to the three metrics are much closer (the differences are not in

orders of magnitude). However, the penalty incurred scheme performs better than Fisher

information and the probability of misclassification schemes in a majority of cases. Inter-

estingly for both estimators, the probability of misclassification placement scheme rarely

performs better than its peers using these three metrics for comparison.
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4.6.3 Example data

L =



0 110.5 46.1 130.1 117.5

110.5 0 113.2 132.4 215.4

46.1 113.2 0 170.8 154.4

130.1 132.4 170.8 0 152

117.5 215.4 154.4 152 0,


(4.63)

[
σ2

A σ2
B σ2

C

]
=

[
50.68 32.81 75.35

]
. (4.64)

4.6.3.1 Figure 4.2 [
w̄ σ2

w

]
=

[
83.6 25.37

]
, (4.65)

P =



0 0.335 0.39 0.002 0.273

0.328 0 0.122 0.408 0.142

0.017 0.057 0 0.49 0.436

0.346 0.275 0.364 0 0.015

0.201 0.124 0.238 0.437 0


. (4.66)

4.6.3.2 Figure 4.3 [
w̄ σ2

w

]
=

[
2.676 42.53

]
, (4.67)

P =



0 0.17 0.11 0.343 0.377

0.038 0 0.297 0.237 0.428

0.084 0.361 0 0.262 0.293

0.205 0.257 0.058 0 0.48

0.209 0.314 0.342 0.135 0


. (4.68)
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4.7 Summary

In this chapter, a stationary agent placement and timing problem is formulated where the

stationary agent configuration is optimized to monitor a mobile object moving on an arbi-

trary graph modeled as an ergodic Markov chain.

The stationary agents are placed by maximizing Fisher information, minimizing the

probability of misclassification, or minimizing the penalty incurred by the placement. The

stationary agents are timed (i.e., their revisit deadlines selected) by matching the revisit

deadlines with the mobile object recurrence times at the stationary agent locations. The

fusion of measurements from multiple colocated stationary agents on the graph is allowed

to improve performance using a maximum likelihood estimator or a maximum a poste-

riori estimator. Properties of the stationary agent placement schemes are shown: when

stationary agents are not colocated, placement using Fisher information is submodular and

when placing a single stationary agent the set of optimal Fisher information placements is

a subset of the optimal probability of misclassification placements.

The methods presented in this chapter can be used in the problem treated in Section 3.3

to allow for the stationary agents to optimally cooperate with mobile agents in the monitor-

ing of a mobile object.

A question that arises once the stationary agents have been configured is whether the

configuration is still optimal if the model of the object’s motion changes. This question

was studied in collaboration with Moritz Niendorf in [115]. Stability regions, i.e., the sets

of perturbations to the problem data for which the current solution remains optimal, are

derived for optimization problems where the problem data are in terms of Markov mod-

els. These stability regions are provided for problems with objective functions linear with

respect to the initial distribution, the transition matrix, or the stationary distribution of the

Markov model. This collaboration was continued in [116] where stability regions for objec-

tive functions linear in the product of the transition matrix and the stationary distribution,

similar to the penalty incurred metric, are provided and criticality measures that assess the
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sensitivity of the objective function to perturbations in the problem data are given.
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CHAPTER 5

Paths for marsupial agents

In the previous chapters, path planning for mobile agents and configurations for stationary

agents were discussed. The stability and sensitivity of the configuration of stationary agents

was also briefly described. If the stability analysis shows that a current configuration of

stationary agents is sub-optimal, then a question that arises is whether the configuration can

be re-optimized. This can be achieved by mobile agents relocating the stationary agents.

This is an instance of a task with marsupial vehicles, i.e., vehicles that can deploy and

retrieve other vehicles.

A marsupial system involves agents that can deploy and retrieve other agents (carrier

agents) as well as agents that can be deployed and retrieved by others (passenger agents).

Nested marsupial systems, i.e., passenger agents that are also carrier agents, are not treated

in this dissertation.

In this chapter, path planning for marsupial agents is investigated. The results from this

chapter are used to address the marsupial operations question stated in Section 1.2: how can

mobile marsupial agents cooperate to achieve monitoring tasks? A general problem for-

mulation is given and properties of optimal paths are provided. A problem involving a pair

of marsupial agents observing a single stationary object while minimizing their likelihood

of being detected is then treated and the optimal paths for the agents are provided.
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5.1 Optimal control for marsupial agents

Optimal control for a pair of marsupial agents monitoring objects is studied using a con-

strained optimization formulation. The objective function and termination constraints in

this generalized study account for the proper monitoring of the objects.

5.1.1 Generic marsupial path planning problem formulation

Here a generic path planning problem for two marsupial agents to optimize some functional

J is formulated. The two marsupial agents consist of a carrier agent and a passenger agent.

Variables and conditions are introduced for the problem as well as functions defined over

time t, where t0 and t f are the mission start and end time respectively. Let xc(t) and vc(t) be

the position and velocity vectors of the carrier agent where t ∈ [t0, t f ]. The passenger agent

is released at time α and has position and velocity vectors, xp(t) and vp(t) respectively,

where t ∈ [α, t f ]. The combined state vector for both agents is indicated by x(t) where

x(t) =


[
xc(t) vc(t)

]T

, t ∈ [t0,α[,[
xc(t) xp(t) vc(t) vp(t)

]T

, t ∈ [α, t f ].
(5.1)

The boundary conditions for the agents are as follows:

xc(t0) = xc0, (5.2)

vc(t0) = vc0, (5.3)

xc(t f ) = xc f , (5.4)

xp(t f ) = xp f . (5.5)
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The agents must be colocated at release:

xp(α) = xc(α). (5.6)

The dynamics of the carrier agent are

ẋc(t)

v̇c(t)

 =

 vc(t)

fc(xc,vc,uc, t)

 , t ∈ [t0, t f ], (5.7)

where uc(t) is the control variable for the carrier agent and uc(t) ∈ Uc. Similarly, the dy-

namics of the passenger agent are

ẋp(t)

v̇p(t)

 =

 vp(t)

fp(xp,vp,up, t)

 , t ∈ [α, t f ], (5.8)

where up(t) is the control variable for the passenger agent and up(t) ∈ Up.

Let u(t) be the combined control vector for both agents:

u(t) =


uc(t) , t ∈ [t0,α[,[
uc(t) up(t)

]T

, t ∈ [α, t f ].
(5.9)

The objective function is

J[x,u, t, x0, t0, x f , t f ] = K(x0, t0, x f , t f ) +

∫ α

t0
Lc(x(t),u(t), t)dt +

∫ t f

α
Lc+p(x(t),v(t),u(t), t)dt

(5.10)

= K(x0, t0, x f , t f ) + J1[x,u, t] + J2[x,u, t]. (5.11)

Given the variables, functions, and boundary conditions introduced above, we seek to

find the control u for which J[x] has a weak extremum.
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5.1.2 Costates and Hamiltonian

The Hamiltonian H is:

H(x, p,u, t) =



[
pxc pvc

] 
vc

fc

−Lc(x,u, t) , t ∈ [t0,α[,

[
pxc pxp pvc pvp

]


vc

vp

fc

fp


−Lc+p(x,u, t) , t ∈ [α, t f ],

(5.12)

where the costates, p =


[
pxc pvc

]T

, t ∈ [t0,α[,[
pxc pxp pvc pvp

]T

, t ∈ [α, t f ],
can be found using:

ṗxc(t) = −
∂H(x, p,u, t)

∂xc
, t ∈ [t0, t f ], (5.13)

ṗvc(t) = −
∂H(x, p,u, t)

∂vc
, t ∈ [t0, t f ], (5.14)

ṗxp(t) = −
∂H(x, p,u, t)

∂xp
, t ∈ [α, t f ], (5.15)

and

ṗvp(t) = −
∂H(x, p,u, t)

∂vp
, t ∈ [α, t f ]. (5.16)
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5.1.3 Optimal control

The optimal control u can be found using Pontryagin’s maximum principle:

u = argmax
v∈U

(H(x, p,v, t)) . (5.17)

5.1.4 Natural boundary conditions

The agents’ paths must satisfy the boundary conditions given in (5.2)-(5.5).

5.1.5 Transversality conditions

The transversality conditions for this problem are now studied. We study the first variation

of the functionals as indicated in (9.69) of [117],

δJ = δK + [pTδx−Hδt]t f
t0 . (5.18)

We take first variation of J1:

δJ1 = [pTδx−Hδt]t=α
t0 (5.19)

= pxc

∣∣∣∣∣
t=α−

δxcα+ pvc

∣∣∣∣∣
t=α−

δvcα−H
∣∣∣∣∣
t=α−

δα− pxc

∣∣∣∣∣
t=t0

δxc0− pvc

∣∣∣∣∣
t=t0

δvc0 + H
∣∣∣∣∣
t=t0

δt0.

(5.20)

The initial time t0 is fixed and xc,vc are fully constrained at t0 hence

δJ1 = pxc

∣∣∣∣∣
t=α−

δxcα+ pvc

∣∣∣∣∣
t=α−

δvcα−H
∣∣∣∣∣
t=α−

δα. (5.21)
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The first variation of J2 is

δJ2 = [pTδx−Hδt]t f
α (5.22)

= pxc

∣∣∣∣∣
t=t f

δxc f + pxp

∣∣∣∣∣
t=t f

δxp f + pvc

∣∣∣∣∣
t=t f

δvc f + pvp

∣∣∣∣∣
t=t f

δvp f −H
∣∣∣∣∣
t=t f

δt f

− pxc

∣∣∣∣∣
t=α+

δxcα− pxp

∣∣∣∣∣
t=α+

δxpα− pvc

∣∣∣∣∣
t=α+

δvcα− pvp

∣∣∣∣∣
t=α+

δvpα+ H
∣∣∣∣∣
t=α+

δα. (5.23)

Recall that xc(α) = xp(α), hence δxcα = δxpα. Thus, (5.22) can be rewritten as

δJ2 = pxc

∣∣∣∣∣
t=t f

δxc f + pxp

∣∣∣∣∣
t=t f

δxp f + pvc

∣∣∣∣∣
t=t f

δvc f + pvp

∣∣∣∣∣
t=t f

δvp f −H
∣∣∣∣∣
t=t f

δt f

− (pxc + pxp)
∣∣∣∣∣
t=α+

δxcα− pvc

∣∣∣∣∣
t=α+

δvcα− pvp

∣∣∣∣∣
t=α+

δvpα+ H
∣∣∣∣∣
t=α+

δα. (5.24)

The first variation of K is

δK =
∂K
∂xc0

δxc0 +
∂K
∂vc0

δvc0 +
∂K
∂t0

δt0 +
∂K
∂xc f

δxc f +
∂K
∂xp f

δxp f +
∂K
∂vc f

δvc f

+
∂K
∂vp f

δvp f +
∂K
∂t f

δt f . (5.25)

The initial conditions t0, xc0,vc0 are fixed hence

δK =
∂K
∂xc f

δxc f +
∂K
∂xp f

δxp f +
∂K
∂vc f

δvc f +
∂K
∂vp f

δvp f +
∂K
∂t f

δt f . (5.26)
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The transversality conditions are

δJ = δK +δJ1 +δJ2 = 0

=

(
H

∣∣∣∣∣
t=α+
−H

∣∣∣∣∣
t=α−

)
δα+

(
pxc

∣∣∣∣∣
t=α−
−

(
pxc + pxp

)∣∣∣∣∣
t=α+

)
δxcα+

(
pvc

∣∣∣∣∣
t=α−
− pvc

∣∣∣∣∣
t=α+

)
δvcα

+

(
−pvp

∣∣∣∣∣
t=α+

)
δvpα+

(
∂K
∂t f
−H

∣∣∣∣∣
t=t f

)
δt f +

(
pxc

∣∣∣∣∣
t=t f

+
∂K
∂xc f

)
δxc f +

pxp

∣∣∣∣∣
t=t f

+
∂K
∂xp f

δxp f

+

(
pvc

∣∣∣∣∣
t=t f

+
∂K
∂vc f

)
δvc f +

pvp

∣∣∣∣∣
t=t f

+
∂K
∂vp f

δvp f = 0 (5.27)

for all admissible variations.

There are 9 transversality conditions in (5.27) and 9 free variables for this problem (α,

xcα, vcα, vpα, t f , xc f , xp f , vc f , vp f ), hence the system is determined.

In the following subsections, a variety of related problems with additional constraints

or conditions are considered. The expressions for the costates, the Hamiltonian, and the

optimal control remain the same thus only the transversality conditions are given.

5.1.5.1 Constrained initial and final time and positions

The initial and final positions as well as final time are constrained, i.e., xc f , xp f , t f are

fixed, hence the first variation of the functionals are:

δJ1 = pxc

∣∣∣∣∣
t=α−

δxcα+ pvc

∣∣∣∣∣
t=α−

δvcα−H
∣∣∣∣∣
t=α−

δα, (5.28)

δJ2 = pvc

∣∣∣∣∣
t=t f

δvc f + pvp

∣∣∣∣∣
t=t f

δvp f − (pxc + pxp)
∣∣∣∣∣
t=α+

δxcα− pvc

∣∣∣∣∣
t=α+

δvcα

− pvp

∣∣∣∣∣
t=α+

δvpα+ H
∣∣∣∣∣
t=α+

δα, (5.29)
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and

δK =
∂K
∂vc f

δvc f +
∂K
∂vp f

δvp f . (5.30)

The following transversality conditions are thus obtained:

δJ = δK +δJ1 +δJ2 = 0

=

(
H

∣∣∣∣∣
t=α+
−H

∣∣∣∣∣
t=α−

)
δα+

(
pxc

∣∣∣∣∣
t=α−
−

(
pxc + pxp

)∣∣∣∣∣
t=α+

)
δxcα+

(
pvc

∣∣∣∣∣
t=α−
− pvc

∣∣∣∣∣
t=α+

)
δvcα

+

(
−pvp

∣∣∣∣∣
t=α+

)
δvpα+

(
pvc

∣∣∣∣∣
t=t f

+
∂K
∂vc f

)
δvc f +

pvp

∣∣∣∣∣
t=t f

+
∂K
∂vp f

δvp f = 0. (5.31)

for all admissible variations.

There are 6 transversality conditions in (5.31) and 6 free variables for this problem (α,

xcα, vcα, vpα, vc f , vp f ), hence the system is determined.

5.1.5.2 Termination conditions

Let g(x f , t f ) = 0 be termination conditions where g(x f , t f ) ∈Rm. Using the results on target

sets in [117], these conditions alter the transversality conditions at the final time and states

as follows:

∂K
∂xc f

+ pxc

∣∣∣∣∣
t=t f

−
∂g
∂xc f

µ = 0, (5.32)

∂K
∂xp f

+ pxp

∣∣∣∣∣
t=t f

−
∂g
∂xp f

µ = 0, (5.33)

∂K
∂vc f

+ pvc

∣∣∣∣∣
t=t f

−
∂g
∂vc f

µ = 0, (5.34)

∂K
∂vp f

+ pvp

∣∣∣∣∣
t=t f

−
∂g
∂vp f

µ = 0, (5.35)

∂K
∂t f
−H

∣∣∣∣∣
t=t f

−
∂g
∂t f

µ = 0, (5.36)

where µ ∈ Rm.
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The transversality conditions are

δJ = δK +δJ1 +δJ2 = 0

=

(
H

∣∣∣∣∣
t=α+
−H

∣∣∣∣∣
t=α−

)
δα+

(
pxc

∣∣∣∣∣
t=α−
−

(
pxc + pxp

)∣∣∣∣∣
t=α+

)
δxcα+

(
pvc

∣∣∣∣∣
t=α−
− pvc

∣∣∣∣∣
t=α+

)
δvcα

+

(
−pvp

∣∣∣∣∣
t=α+

)
δvpα+

(
∂K
∂t f
−H

∣∣∣∣∣
t=t f

−
∂g
∂t f

µ

)
δt f +

(
pxc

∣∣∣∣∣
t=t f

+
∂K
∂xc f

−
∂g
∂xc f

µ

)
δxc f

+

pxp

∣∣∣∣∣
t=t f

+
∂K
∂xp f

−
∂g
∂xp f

µ

δxp f +

(
pvc

∣∣∣∣∣
t=t f

+
∂K
∂vc f

−
∂g
∂vc f

µ

)
δvc f

+

pvp

∣∣∣∣∣
t=t f

+
∂K
∂vp f

−
∂g
∂vp f

µ

δvp f = 0 (5.37)

for all admissible variations and

g(x f , t f ) = 0. (5.38)

There are 9 transversality conditions in (5.37), m termination conditions in (5.38), and

(9 + m) free variables in this problem (α, xcα, vcα, vpα, t f , xc f , xp f , vc f , vp f , µ). Thus, the

system is determined.

5.1.5.3 Release occurs on a locus of points

The release may need to occur on a locus of points, l(xc,α) = 0. Using the results on target

sets in [117], this condition alters the transversality conditions at release as follows:

pxc

∣∣∣∣∣
t=α−
−

(
pxc + pxp

)∣∣∣∣∣
t=α+
−

∂l
∂xcα

µ = 0, (5.39)

H
∣∣∣∣∣
t=α+
−H

∣∣∣∣∣
t=α−
−
∂l
∂α
µ = 0, (5.40)

where µ ∈ R.
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The transversality conditions are

δJ = δK +δJ1 +δJ2 = 0

=

(
H

∣∣∣∣∣
t=α+
−H

∣∣∣∣∣
t=α−
−
∂l
∂α
µ

)
δα+

(
pxc

∣∣∣∣∣
t=α−
−

(
pxc + pxp

)∣∣∣∣∣
t=α+
−

∂l
∂xcα

µ

)
δxcα

+

(
pvc

∣∣∣∣∣
t=α−
− pvc

∣∣∣∣∣
t=α+

)
δvcα+

(
−pvp

∣∣∣∣∣
t=α+

)
δvpα+

(
∂K
∂t f
−H

∣∣∣∣∣
t=t f

)
δt f

+

(
pxc

∣∣∣∣∣
t=t f

+
∂K
∂xc f

)
δxc f +

pxp

∣∣∣∣∣
t=t f

+
∂K
∂xp f

δxp f +

(
pvc

∣∣∣∣∣
t=t f

+
∂K
∂vc f

)
δvc f

+

pvp

∣∣∣∣∣
t=t f

+
∂K
∂vp f

δvp f = 0 (5.41)

for all admissible variations and

l(xc,α) = 0. (5.42)

There are 9 transversality conditions in (5.41), one release condition in (5.42), and 10

free variables in this problem (α, xcα, vcα, vpα, t f , xc f , xp f , vc f , vp f , µ). Thus, the system

of equations is determined.

5.1.5.4 Including recovery

When accounting for the recovery of the passenger agent, a retrieval time β is added where

xp(β) = xc(β), (5.43)

vp(β) = vc(β). (5.44)

The objective function is

J[x,u, t, x0, t0, x f , t f ] = K(x0, t0, x f , t f ) +

∫ α

t0
Lc(x(t),u(t), t)dt +

∫ β

α
Lc+p(x(t),v(t),u(t), t)dt

+

∫ t f

β
Lc(x(t),u(t), t)dt (5.45)

= K(x0, t0, x f , t f ) + J1[x,u, t] + J2[x,u, t] + J3[x,u, t]. (5.46)
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The Hamiltonian H is:

H(x, p,u, t) =



[
pxc pvc

] 
vc

fc

−Lc(x,u, t) , t ∈ [t0,α[,

[
pxc pxp pvc pvp

]


vc

vp

fc

fp


−Lc+p(x,u, t) , t ∈ [α,β],

[
pxc pvc

] 
vc

fc

−Lc(x,u, t) , t ∈]β, t f ],

(5.47)

where the costates, p =



[
pxc pvc

]T

, t ∈ [t0,α[,[
pxc pxp pvc pvp

]T

, t ∈ [α,β],[
pxc pvc

]T

, t ∈]β, t f ],

can be found using:

p = −
∂H
∂x

(x, p,u, t). (5.48)

The variation of J1 is

δJ1 = [pTδx−Hδt]t=α
t0 (5.49)

= pxc

∣∣∣∣∣
t=α−

δxcα+ pvc

∣∣∣∣∣
t=α−

δvcα−H
∣∣∣∣∣
t=α−

δα− pxc

∣∣∣∣∣
t=t0

δxc0− pvc

∣∣∣∣∣
t=t0

δvc0 + H
∣∣∣∣∣
t=t0

δt0.

(5.50)
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The initial time t0 is fixed and xc,vc are fully constrained at t0, hence

δJ1 = pxc

∣∣∣∣∣
t=α−

δxcα+ pvc

∣∣∣∣∣
t=α−

δvcα−H
∣∣∣∣∣
t=α−

δα. (5.51)

The first variation of J2 is

δJ2 = [pTδx−Hδt]βα (5.52)

= pxc

∣∣∣∣∣
t=β−

δxcβ+ pxp

∣∣∣∣∣
t=β−

δxpβ+ pvc

∣∣∣∣∣
t=β−

δvcβ+ pvp

∣∣∣∣∣
t=β−

δvpβ−H
∣∣∣∣∣
t=β−

δβ

− pxc

∣∣∣∣∣
t=α+

δxcα− pxp

∣∣∣∣∣
t=α+

δxpα− pvc

∣∣∣∣∣
t=α+

δvcα− pvp

∣∣∣∣∣
t=α+

δvpα+ H
∣∣∣∣∣
t=α+

δα. (5.53)

Recall the release constraint xc(α) = xp(α), hence δxcα = δxpα. Similarly, the retrieval

constraints xc(β) = xp(β) and vc(β) = vp(β) imply δxcβ = δxpβ and δvcβ = δvpβ. Thus, (5.52)

can be rewritten as

δJ2 = [pTδx−Hδt]βα (5.54)

=
(
pxc + pxp

)∣∣∣∣∣
t=β−

δxcβ+
(
pvc + pvp

)∣∣∣∣∣
t=β−

δvcβ−H
∣∣∣∣∣
t=β−

δβ

−
(
pxc + pxp

)∣∣∣∣∣
t=α+

δxcα− pvc

∣∣∣∣∣
t=α+

δvcα− pvp

∣∣∣∣∣
t=α+

δvpα+ H
∣∣∣∣∣
t=α+

δα. (5.55)

The first variation of J3 is

δJ3 = [pTδx−Hδt]t f
β (5.56)

= pxc

∣∣∣∣∣
t=t f

δxc f + pvc

∣∣∣∣∣
t=t f

δvc f −H
∣∣∣∣∣
t=t f

δt f − pxc

∣∣∣∣∣
t=β+

δxcβ− pvc

∣∣∣∣∣
t=β+

δvcβ+ H
∣∣∣∣∣
t=β+

δβ.

(5.57)

The first variation of K is

δK =
∂K
∂xc0

δxc0 +
∂K
∂vc0

δvc0 +
∂K
∂t0

δt0 +
∂K
∂xc f

δxc f +
∂K
∂vc f

δvc f +
∂K
∂t f

δt f . (5.58)
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The initial conditions t0, xc0,vc0 are fixed, hence

δK =
∂K
∂xc f

δxc f +
∂K
∂vc f

δvc f +
∂K
∂t f

δt f . (5.59)

The transversality conditions are

δJ = δK +δJ1 +δJ2 +δJ3 = 0

=

(
H

∣∣∣∣∣
t=α+
−H

∣∣∣∣∣
t=α−

)
δα+

(
pxc

∣∣∣∣∣
t=α−
−

(
pxc + pxp

)∣∣∣∣∣
t=α+

)
δxcα+

(
pvc

∣∣∣∣∣
t=α−
− pvc

∣∣∣∣∣
t=α+

)
δvcα

+

(
−pvp

∣∣∣∣∣
t=α+

)
δvpα+

(
H

∣∣∣∣∣
t=β+
−H

∣∣∣∣∣
t=β−

)
δβ+

((
pxc + pxp

)∣∣∣∣∣
t=β−
− pxc

∣∣∣∣∣
t=β+

)
δxcβ

+

((
pvc + pvp

)∣∣∣∣∣
t=β−
− pvc

∣∣∣∣∣
t=β+

)
δvcβ+

(
∂K
∂t f
−H

∣∣∣∣∣
t=t f

)
δt f +

(
pxc

∣∣∣∣∣
t=t f

+
∂K
∂xc f

)
δxc f

+

(
pvc

∣∣∣∣∣
t=t f

+
∂K
∂vc f

)
δvc f = 0 (5.60)

for all admissible variations.

There are 10 transversality conditions in (5.60) and 10 free variables (α, xcα, vcα, vpα,

β, xcβ, vcβ, t f , xc f , vc f ) for this problem; hence this system is determined.

5.1.5.5 Release and recovery on loci of points

The release occurs on a locus of points lα(xc,α) = 0 and pick-up occurs on a locus of

points lβ(xc,β) = 0. Using the results on target sets in [117], these conditions alter the

transversality conditions at release and pick-up as follows:

pxc

∣∣∣∣∣
t=α−
−

(
pxc + pxp

)∣∣∣∣∣
t=α+
−
∂lα
∂xcα

µα = 0, (5.61)

H
∣∣∣∣∣
t=α+
−H

∣∣∣∣∣
t=α−
−
∂lα
∂α

µα = 0, (5.62)(
pxc + pxp

)∣∣∣∣∣
t=β−
− pxc

∣∣∣∣∣
t=β+
−
∂lβ
∂xcβ

µβ = 0, (5.63)

H
∣∣∣∣∣
t=β+
−H

∣∣∣∣∣
t=β−
−
∂lβ
∂β
µβ = 0, (5.64)
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where µα ∈ R and µβ ∈ R.

The transversality conditions are

δJ = δK +δJ1 +δJ2 +δJ3 = 0

=

(
H

∣∣∣∣∣
t=α+
−H

∣∣∣∣∣
t=α−
−
∂lα
∂α

µα

)
δα+

(
pxc

∣∣∣∣∣
t=α−
−

(
pxc + pxp

)∣∣∣∣∣
t=α+
−
∂lα
∂xcα

µα

)
δxcα

+

(
pvc

∣∣∣∣∣
t=α−
− pvc

∣∣∣∣∣
t=α+

)
δvcα+

(
−pvp

∣∣∣∣∣
t=α+

)
δvpα+

(
H

∣∣∣∣∣
t=β+
−H

∣∣∣∣∣
t=β−
−
∂lβ
∂β
µβ

)
δβ

+

((
pxc + pxp

)∣∣∣∣∣
t=β−
− pxc

∣∣∣∣∣
t=β+
−
∂lβ
∂xcβ

µβ

)
δxcβ+

((
pvc + pvp

)∣∣∣∣∣
t=β−
− pvc

∣∣∣∣∣
t=β+

)
δvcβ

+

(
∂K
∂t f
−H

∣∣∣∣∣
t=t f

)
δt f +

(
pxc

∣∣∣∣∣
t=t f

+
∂K
∂xc f

)
δxc f +

(
pvc

∣∣∣∣∣
t=t f

+
∂K
∂vc f

)
δvc f = 0 (5.65)

for all admissible variations and

lα(xc,α) = 0, (5.66)

lβ(xc,β) = 0. (5.67)

There are 10 transversality conditions in (5.65), one release constraint in (5.66), one

retrieval constraint in (5.67), and 12 free variables (α, xcα, vcα, vpα, β, xcβ, vcβ, t f , xc f , vc f ,

µα, µβ). Thus the system of equations is determined.

5.2 Pair of marsupial agents observing a stationary object

In this problem two marsupial agents are tasked with acquiring a given amount of infor-

mation about a stationary object while minimizing their signal returned to an opponent’s

sensor in the area. An instance of such a problem is an intelligence gathering mission in an

adversary’s territory [83].
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5.2.1 Model

The models for the agents and the opponent’s sensor are given in this section.

5.2.1.1 Agents

The carrier and passenger agents travel in a plane at constant velocity, vc > 0 and vp > 0

respectively, and can turn instantaneously. The carrier agent is assumed to start at an initial

location xc(0)

yc(0)

 =

xc0

yc0

 , (5.68)

where xc and yc are the coordinates of the carrier agent along the two axes in the plane. The

passenger agent is released at time α and

xp(α)

yp(α)

 =

xc(α)

yc(α)

 , (5.69)

where xp and yp are the coordinates of the passenger agent along the two axes in the plane.

The dynamics for the carrier agent are

ẋc(t)

ẏc(t)

 =

vc · cos(uc(t))

vc · sin(uc(t))

 , (5.70)

where uc is the control (heading) for the carrier agent. The dynamics for the passenger

agent are

ẋp(t)

ẏp(t)

 =

vp · cos(up(t))

vp · sin(up(t))

 , (5.71)

where up is the control (heading) for the passenger agent. Both control variables are con-

tained in ~u.
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The stationary object and opponent sensor are assumed to be colocated and without loss

of generality placed at the origin of the plane. The distance of the carrier agent from the

stationary object and opponent sensor is

rc(t) =

√
xc(t)2 + yc(t)2 (5.72)

and the distance of the passenger agent from the stationary object and opponent sensor is

rp(t) =

√
xp(t)2 + yp(t)2. (5.73)

The stationary object has a constant reflectivity k > 0, the quality of the carrier agent’s

sensor is wc > 0, and the quality of the passenger agent’s sensor is wp > 0. The agents use

vision sensors, hence the signal to noise ratio for the sensors is proportional to 1
r . The total

information accumulated by the agents at time t is I(t); the rate of information acquisition

for the agents is

İ(t) =


wck
rc(t) , t ∈ [0,α[,

wck
rc(t) +

wpk
rp(t) , t ∈ [α, t f ],

(5.74)

where t f , the mission end time, is defined as follows

I(t f ) = I f , (5.75)

where I f is the desired amount of information about the stationary object. Without loss

of generality, the agents are assumed to start the mission with no information about the

stationary object:

I(0) = 0. (5.76)
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5.2.1.2 Opponent sensor

The signal returned to the opponent’s sensor by the carrier agent is

Pc(t) =
γsc

rc(t)
(5.77)

where γ > 0 is a constant accounting for the sensor properties and the constant sc > 0 is the

sensor signature of the carrier agent. Similarly, the signal returned to the opponent’s sensor

by the passenger agent is

Pp(t) =
γsp

rp(t)
(5.78)

where the constant sp > 0 is the sensor signature of the passenger agent.

The accumulated signal returned to the opponent’s sensor by both agents over the course

of the mission is

J[~x] =

∫ α

0
γ

sc

rc(t)
dt +

∫ t f

α
γ

(
sc

rc(t)
+

sp

rp(t)

)
dt, (5.79)

where ~x is a vector containing all the agent states.

5.2.2 Problem formulation

The goal of the agents is to find a path that minimizes the accumulated signal returned to the

opponent’s sensor and obtains the desired amount of information about the stationary ob-

ject. The problem can be formulated as follows: given (5.68), (5.69), (5.70), (5.71), (5.74),

(5.76), find xc(t), yc(t), xp(t), yp(t), 0 ≤ t ≤ t f , such that (5.75) is satisfied and (5.79) is

minimized.

5.2.3 Technical approach

The approach to solve the stated problem is now presented, in addition, characteristics of

solutions are discussed. Necessary conditions for a solution to the problem are obtained

using standard optimal control techniques, such as those found in [117] and [118].
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5.2.3.1 Study of Hamiltonian and co-states

The costates for the problem are defined as follows:

~p =


[
pxc(t) pyc(t) pI(t)

]T

, t ∈ [0,α[,[
pxc(t) pyc(t) pxp(t) pyp(t) pI(t)

]T

, t ∈ [α, t f ].
(5.80)

The Hamiltonian is:

H(~x, ~p,~u) =

pxc(t) · vc cos(uc(t)) + pyc(t) · vc sin(uc(t)) + pI(t) ·
wck
rc(t) −

scγ
rc(t) , t ∈ [0,α[,

pxc(t) · vc cos(uc(t)) + pyc(t) · vc sin(uc(t)) + pxp(t) · vp cos(up(t)) + pyp(t) · vp sin(up(t))

+pI(t) · k ·
(

wc
rc(t) +

wp
rp(t)

)
−γ ·

(
sc

rc(t) +
sp

rp(t)

)
, t ∈ [α, t f ].

(5.81)

The costate dynamics are derived from the Hamiltonian as follows:

ṗI(t) = −
∂H
∂I

= 0,∀t, (5.82)

ṗxc(t) = −
∂H
∂xc

=
(scγ− pIwck)xc

r3
c (t)

,∀t, (5.83)

ṗyc(t) = −
∂H
∂yc

=
(scγ− pIwck)yc

r3
c (t)

,∀t, (5.84)

˙pxp(t) = −
∂H
∂xp

=
(spγ− pIwpk)xp

r3
p(t)

, t ∈ [α, t f ], (5.85)

ṗyp(t) = −
∂H
∂yp

=
(spγ− pIwpk)yp

r3
p(t)

, t ∈ [α, t f ]. (5.86)
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5.2.3.2 Transversality conditions

The transversality conditions for a solution to the problem are

δJ =

(
H(t)

∣∣∣∣∣
t=α+
−H(t)

∣∣∣∣∣
t=α−

)
δα+

(
H(t)

∣∣∣∣∣
t=t f

)
δt f +

(
pI(t)

∣∣∣∣∣
t=α−
− pI(t)

∣∣∣∣∣
t=α+

)
δIα

+

(
pxc(t)

∣∣∣∣∣
t=α−
−

(
pxc(t) + pxp(t)

)∣∣∣∣∣
t=α+

)
δxcα+

(
pyc(t)

∣∣∣∣∣
t=α−
−

(
pyc(t) + pyp(t)

)∣∣∣∣∣
t=α+

)
δycα

+

(
pxc(t)

∣∣∣∣∣
t=t f

)
δxc f +

(
pyc(t)

∣∣∣∣∣
t=t f

)
δyc f +

(
pxp(t)

∣∣∣∣∣
t=t f

)
δxp f +

(
pyp(t)

)∣∣∣∣∣
t=t f

δyp f = 0 (5.87)

for all admissible variations.

The nine transversality conditions in (5.87) and the termination condition (5.75) are

used to compute the ten free constants in the problem: α, I(α), xcα , ycα , t f , I(t f ), xc f , yc f ,

xp f , yp f where xc f , yc f , xp f , yp f are the final positions of the carrier and the passenger

agent.

From the pI(t) costate dynamics, we see that pI(t) is constant before release and after

release. The transversality condition for δIα, pI(t)
∣∣∣∣∣
t=α−

= pI(t)
∣∣∣∣∣
t=α+

, indicates that pI(t) is

constant for the entire mission, i.e., pI(t) = pI ,∀t. pI can be computed using the transver-

sality conditions, starting with the transversality condition for δt f ,

0 = H(t)
∣∣∣∣∣
t=t f

(5.88)

0 = pxc(t) · vc cos(uc(t))
∣∣∣∣∣
t=t f

+ pyc(t) · vc sin(uc(t))
∣∣∣∣∣
t=t f

+ pxp(t) · vp cos(up(t))
∣∣∣∣∣
t=t f

+ pyp(t) · vp sin(up(t))
∣∣∣∣∣
t=t f

+ pI(t) · k ·
(

wc

rc(t)
+

wp

rp(t)

) ∣∣∣∣∣
t=t f

−γ ·

(
sc

rc(t)
+

sp

rp(t)

∣∣∣∣∣
t=t f

)
. (5.89)

Using the transversality conditions for δxc f , δyc f , δxp f , and δyp f , (5.88) can be reduced to

pI =

γ
(

sc
rc f

+
sp

rp f

)
k
(

wc
rc f

+
wp
rp f

) , (5.90)
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where rc f and rp f are the distances from the carrier agent and passenger agent to the object

of interest at the end of the mission.

5.2.3.3 Extremals

The optimal control ~u can be found using Pontryagin’s maximum principle:

~u = argmax
~v

(
H(~x, ~p,~v, t)

)
. (5.91)

Thus, the following equations need to be satisfied for uc(t) and up(t):

pxc(t) · sin(uc(t)) = pyc(t) · cos(uc(t)), (5.92)

pxp(t) · sin(up(t)) = pyp(t) · cos(up(t)). (5.93)

The control is singular for uc(t) when pxc(t) = 0, ṗxc(t) = 0, pyc(t) = 0, ṗyc(t) = 0 which

can only occur at the origin. Similarly, the control up(t) is singular when pxp(t) = 0, ṗxp(t) =

0,pyp = 0, ṗyp(t) = 0 which can also only occur at the origin.

The optimal control uc(t) is thus

uc(t) =



π
2 ,−

π
2 , pxc(t) = 0∧ pyc(t) 6= 0,

0,π , pxc(t) 6= 0∧ pyc(t) = 0,

tan−1
(

pyc (t)
pxc (t)

)
, pxc(t) 6= 0∧ pyc(t) 6= 0.

(5.94)

Similarly, the optimal control up(t) is

up(t) =



π
2 ,−

π
2 , pxp(t) = 0∧ pyp(t) 6= 0,

0,π , pxp(t) 6= 0∧ pyp(t) = 0,

tan−1
(

pyp (t)
pxp (t)

)
, pxp(t) 6= 0∧ pyp(t) 6= 0.

(5.95)
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5.2.3.4 Rectilinear motion

In simulations, the optimal paths traveled by the carrier and passenger agents are on a

line. In this subsection, we investigate the conditions under which linear motion occurs.

For the carrier agent or the passenger agent to travel on a line, the respective inputs to their

dynamics need to be constant, i.e., u̇c(t) = 0 or u̇p(t) = 0 respectively where t ∈ [0, t f ]. Using

the results from Pontryagin’s maximum principle in the previous section:

u(t) = tan−1
(

py(t)
px(t)

)
, (5.96)

d
dt

(
py(t)
px(t)

)
= 0⇒ u̇(t) = 0. (5.97)

We now show that the necessary conditions for optimality imply linear motion. In the

following development, the c and p subscripts indicating carrier and passenger respectively

are dropped as the equations hold for both.

Lemma 5.2.1. ∃τ s.t. y(τ)
x(τ) =

py(τ)
px(τ) ⇒

d
dt

( y(t)
x(t)

)
= 0∧ d

dt

(
py(t)
px(t)

)
= 0, t ∈ [0, t f ].

Proof. The time derivative of the ratio of states at time τ is zero:

d
dt

(
y(τ)
x(τ)

)
=

ẋ(τ)y(τ)− ẏ(τ)x(τ)
x2(τ)

(5.98)

=

v ·
(
cos

(
tan−1

(
py(τ)
px(τ)

))
· y(τ)− sin

(
tan−1

(
py(τ)
px(τ)

))
· x(τ)

)
x2(τ)

(5.99)

=

v · cos
(
tan−1

(
py(τ)
px(τ)

))
x2(τ)

·

(
y(τ)−

py(τ)
px(τ)

x(τ)
)

(5.100)

=

v · cos
(
tan−1

(
py(τ)
px(τ)

))
x2(τ)

·

(
y(τ)−

y(τ)
x(τ)

x(τ)
)

(5.101)

= 0. (5.102)
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The time derivative of the ratio of the costates at time τ is zero:

d
dt

(
py(τ)
px(τ)

)
=

ṗx(τ)py(τ)− ṗy(τ)px(τ)

p2
x(τ)

(5.103)

=
(sγ− pIwk)
r3(τ)p2

x(τ)
·
(
x(τ)py(τ)− y(τ)px(τ)

)
(5.104)

=
(sγ− pIwk) · x(τ)

r3(τ)p2
x(τ)

·

(
py(τ)−

y(τ)
x(τ)

px(τ)
)

(5.105)

= 0. (5.106)

Then,

d
dt

(
y(τ)
x(τ)

)
= 0⇒

y(τ−)
x(τ−)

=
y(τ)
x(τ)

=
y(τ+)
x(τ+)

(5.107)

and

d
dt

(
py(τ)
px(τ)

)
= 0⇒

py(τ−)
px(τ−)

=
py(τ)
px(τ)

=
py(τ+)
px(τ+)

. (5.108)

The results from time τ can be applied to times τ− and τ+; continuing this development

until the time bounds are reached shows that

y(t)
x(t)

=
py(t)
px(t)

= c1, c1 ∈ R, t ∈ [0, t f ]. (5.109)

We now show that such a τ exists in this problem.

Lemma 5.2.2. For optimal solutions, ∃τ s.t. y(τ)
x(τ) =

py(τ)
px(τ) .

Proof. The costates px and py at the instant before the completion of the mission are stud-
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ied:

px(t)
∣∣∣∣∣
t=t f

= px(t)
∣∣∣∣∣
t=t−f

+ ṗx(t)
∣∣∣∣∣
t=t−f

· ε, (5.110)

where ε is an infinitesimal increment in time. Recall from the transversality conditions

(5.87) that px(t)
∣∣∣∣∣
t=t f

= 0, hence

px(t)
∣∣∣∣∣
t=t−f

= −
(sγ− pIwk) · x(t−f )

r3(t−f )
· ε. (5.111)

Similarly,

py(t)
∣∣∣∣∣
t=t f

= py(t)
∣∣∣∣∣
t=t−f

+ ṗy(t)
∣∣∣∣∣
t=t−f

· ε (5.112)

= −
(sγ− pIwk) · y(t−f )

r3(t−f )
· ε. (5.113)

Thus,

py(t)
px(t)

∣∣∣∣∣
t=t−f

=
y(t−f )

x(t−f )
. (5.114)

Theorem 5.2.3. The necessary conditions for optimality imply rectilinear motion for both

agents along a line passing through the origin.

Proof. Lemmas 5.2.2 and 5.2.1⇒ d
dt

( y(t)
x(t)

)
= 0, t ∈ [0, t f ]⇒

y(t)
x(t)

=
y(α)
x(α)

=
yc(α)
xc(α)

=
yc(0)
xc(0)

=
yc0

xc0

, t ∈ [0, t f ]. (5.115)

It is important to note that while Theorem 5.2.3 states that the agents travel along a
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Table 5.1: Simulation parameters.

Scenario (xc0 ,yc0) γ k I f
vc
vp

wc
wp

sc
sp

A1 (-5,20) 1 1 0.35 2 0.5 2
A2 (-40,10) 1 1 0.35 2 0.5 2
A3 (-60,50) 1 1 0.35 2 0.5 2
A4 (-25,30) 1 1 0.35 2 0.5 2
B1 (-5,20) 1 1 0.35 2 2 2
B2 (-40,10) 1 1 0.35 2 2 2
B3 (-60,50) 1 1 0.35 2 2 2
B4 (-25,30) 1 1 0.35 2 2 2
C1 (-5,20) 1 1 0.35 0.5 0.5 2
C2 (-40,10) 1 1 0.35 0.5 0.5 2
C3 (-60,50) 1 1 0.35 0.5 0.5 2
C4 (-25,30) 1 1 0.35 0.5 0.5 2

straight line, it does not describe how the agents move along that line.

5.2.4 Simulations

In this section, several simulations illustrating the results from the previous section are

shown. The parameters for the simulations discussed in this section are shown in Table 5.1;

the scenario letter dictates the agent and opponent sensor parameters and the number after

the letter dictates the initial condition for the carrier agent. Figures 5.1-5.3 illustrate the

optimal paths for the agents, the release point, and the stationary object location at the

origin; the arrows indicate the agent’s position and direction at the end of the mission.

The optimal paths are computed by generating a number of candidate solutions, running

MATLAB’s fmincon function for each of these candidates, and storing the best result.

In scenario A, the carrier agent is faster and has a larger signature than the passenger

agent but the passenger agent possesses better sensors. The paths of the carrier and pas-

senger agents for scenario A are illustrated in Figure 5.1 for multiple initial locations. For

all initial locations, the carrier agent immediately deploys the passenger agent. The carrier

agent moves away from the stationary object while the passenger agent moves towards the
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stationary object. The distances traveled by the agents vary with differing initial carrier

agent location.

In scenario B, the carrier agent is faster, possesses better sensors, and returns a larger

signal to the opponent’s sensor than the passenger agent. The agents’ paths for the different

initial conditions are shown in Figure 5.2. For all problem instances, the passenger agent is

not deployed and the carrier agent moves away from the object of interest.

In scenario C, the carrier agent is slower than the passenger agent while the passenger

agent carries sensors of a higher quality and has a smaller radar signature. The passenger

agent is released immediately and moves towards the object of interest while the carrier

agent moves away from the object of interest. The deployment and direction of the agents’

motion is the same as in scenario A. The only difference between scenarios A and C is the

velocity ratio of the agents; this simulation suggests that the velocity of the agents does not

affect the deployment and direction of the vehicles.

These simulations confirm rectilinear motion for both agents as predicted in Theo-

rem 5.2.3. In addition, the passenger is not always released, but when release occurs,

α = 0. The fact that the passenger agent is deployed for all initial conditions in scenarios

A and C but never deployed in scenario B suggests that the deployment of the passenger

depends on the configuration of the agents and not the initial position of the carrier agent.

5.3 Summary

In this chapter, optimal control for a pair of marsupial agents performing monitoring tasks

was studied and necessary conditions for optimal paths of the two marsupial agents were

provided. The cases treated accounted for constrained initial positions for the carrier agent,

constrained final positions for both agents, termination conditions for the agents, con-

strained release of the passenger agent, recovery of the passenger agent, or constrained

release and recovery of the passenger agent.
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Figure 5.1: Carrier and passenger optimal paths for different initial conditions in scenario
A.

A path planning problem for a pair of marsupial agents acquiring information about a

stationary object while avoiding detection is also considered. A constrained optimization

problem is formulated and the necessary conditions for optimal solutions to this problem

are provided. We demonstrate that to satisfy the necessary conditions for optimality, each

agent’s motion must be linear (along a line passing through the stationary object). This

result is illustrated in several simulations.
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Figure 5.2: Carrier and passenger optimal paths for different initial conditions in scenario
B.
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Figure 5.3: Carrier and passenger optimal paths for different initial conditions in scenario
C.
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CHAPTER 6

Conclusions

Autonomous agents, both mobile and stationary, are used for a widespread set of tasks and

their usage is only to increase in the future. With their increased usage, the tasks to which

they are assigned are more complex. Because the tasks are complex, cooperation between

autonomous agents is often required. In addition, cooperation may need to occur between

autonomous agents of different types. This dissertation studies how monitoring tasks, e.g.,

collecting information or pursuing objects of interest in an area, can be accomplished using

multiple heterogeneous autonomous agents.

6.1 Summary

The dissertation treats the problem differently depending on the types of agents and objects

in the monitoring task. Mobile, stationary, and marsupial agents as well as mobile and sta-

tionary objects are considered. In Chapter 1, the work is motivated and a general problem

statement for agents monitoring objects is given. Literature relevant to path planning for

autonomous vehicles, optimal sensor configurations, and marsupial vehicle operations is

reviewed in Chapter 2. The main body of the dissertation is divided into three chapters,

each treating a different type of agent: mobile, stationary, and marsupial.

In Chapter 3, the first set of problems is treated; they involve a mobile agent and multi-

ple stationary objects that need to be revisited. Almost periodic paths that solve the prob-

lems are demonstrated to exist. Heuristics to compute paths for a mobile agent without fuel
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concerns are given and an algorithm that minimizes refueling costs when fuel is accounted

for is provided. A pursuit problem involving mobile agents and stationary agents pursuing

a mobile object is then treated. The problem is shown to be NP-hard and a heuristic to

compute paths for the mobile agents that meet revisit deadlines to the stationary agents and

pursue the object is provided.

In Chapter 4 the pursuit problem is further studied, methods to optimally place the

stationary agents in this problem are provided and their effectiveness compared. These

methods are the minimization of the probability of misclassification, the penalty incurred

by the placement, and the maximization of Fisher information. A method to select revisit

deadlines for the stationary agents using the model of the mobile object’s motion is also

given; the method selects the revisit deadline of a stationary agent by matching the mo-

bile agent’s recurrence time to the same object. Methods to fuse the measurements from

colocated stationary agents are also presented.

In Chapter 5, problems involving a pair of marsupial agents, one carrier and one pas-

senger, are studied and necessary conditions for optimal paths under a variety of constraints

are given. A problem where two marsupial agents gather information about an object while

avoiding detection is then formulated, necessary conditions for optimal paths for the agents

are provided, and the optimal paths of the agents are demonstrated to be rectilinear.

6.2 Concluding remarks

There exist numerous applications for autonomous agents performing monitoring tasks.

These different applications share key aspects which can be leveraged to formulate similar

problems; in turn these similar problems are used to generate common solutions. The

contents of this dissertation can be used to plan the paths and configurations for the agents

performing certain tasks. The original contribution of proving revisit deadlines constraints

result in the existence of almost periodic paths can be leveraged to find solutions faster by

147



safely reducing the search space. The algorithm provided to compute the minimal fuel cost

path is one instance of leveraging periodicity. The original contribution of proving most of

the problems treated are intractable validates the use of heuristics.

The contributions regarding methods to place stationary agents, select the revisit dead-

lines of stationary agents, and plan the mobile agents’ paths for the pursuit task can be used

to best allocate the agents before and during the tracking task. The necessary conditions

for optimal paths of marsupial agents can be utilized to find optimal solutions or reject

sub-optimal solutions faster. In addition, the proof that rectilinear motion is optimal for

marsupial agents collecting information while avoid detection in the case studied further

reduces the search space and accelerates the computation of solutions.

While this dissertation does not treat every known monitoring problem using heteroge-

neous agents, it does provide methods to compute solutions or compute solutions faster for

persistent visitation problems, pursuit problems using stationary and mobile agents, and

monitoring problems using a pair of marsupial agents.

6.3 Future directions

Several future directions exist for the work presented in this dissertation, they are listed

below;

• Alternative heuristics: Investigate different heuristics for the selection of paths for

the pursuit of a mobile object using mobile agents and stationary agents. These

heuristics could also use the time spent in flight to pre-compute future paths for the

agents or anticipate potential mobile object paths; these paths could then be used for

an accelerated selection of the optimal action once new information is obtained.

• Degraded communications: Investigate methods to handle degraded communica-

tions between agents in Chapters 3 and 5. For the pursuit problem with multiple

mobile agents treated in Section 3.1, one way to handle degraded communications
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between the mobile agents and/or the central authority is to partition the area and

assign agents to each area. Short communications regarding detections or the lack

thereof could be transmitted by leaving messages at stationary agents on the borders

of the partitions.

• Multiple carrier and passenger marsupial operations: Study optimal paths when

multiple carriers and passengers are involved. The carriers may not necessarily all

carry the same number or type of passengers.

• Discrete marsupial operations: Investigate marsupial operations in discrete spaces

such as graphs and compare to the results obtained in the pursuit problem with mobile

and stationary agents.

• Nested marsupial operations: Investigate optimal paths when marsupial agents are

nested, i.e., a passenger agent may also be a carrier agent. To treat this problem, a

formulation and theory different than that presented in Chapter 5 is likely needed. In

addition, complexity problems may arise when considering many marsupial agents

and large levels of nesting.
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