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ABSTRACT

Inferring histories of adaptive divergence with gene flow: genetic, demographic and
geographic effects

by

Qixin He

Chair: Professor L. Lacey Knowles

As genomic data is increasingly available even for non-model organisms, the traditional

boundaries among fields such as phylogenetics, phylogeography and genetics of adaptation

are disappearing. This thesis provides a synthetic framework for studying ecological ge-

nomics, which considers selective processes (such as adaptation to new niches) and neutral

processes (such as population size changes due to environmental shifts) simultaneously.

Conventionally, studies that look for targets of selection on a genome assume a simple

demographic model without validations from the species’ ecological or phylogeographic

histories. The work demonstrates that one cannot reliably identify selection unless realis-

tic demographic histories are inferred for the species or even a specific genomic region. In

particular, I investigate the evolutionary history of large polymorphic inversions in Anophe-

les gambiae, which maintains adaptive divergence among ecologically divergent popula-

tions. By modeling the unique origin and introgression histories of each inversion, I am

able to identify target regions of selection within inversions through training discriminant

functions with pure drift versus selection simulations. The thesis also extends the exist-

ing theory of local adaptation model via chromosomal inversions to consider the source

xvii



of inversion variation, as well as evaluates the likelihood of such adaptations under dif-

ferent parameter spaces. The findings are particularly important for understanding mosaic

genomic evolution in the early stages of speciation, where accumulation of divergence is

dampened by gene flow. Finally, I examine how historical events, such as habitat contrac-

tions or recolonization, influence current genetic pattern and the application of spatially-

explicit demographic modeling under Approximate Bayesian Computation statistics to dis-

tinguish different phylogeographic scenarios. The work represents a flexible framework for

researchers to translate dynamic phylogeographic hypotheses into testable coalescent mod-

els by integrating all the available information of the species, such as distribution records,

habitat preference, paleo-climate models, and competition between species. In general,

with the amount of information as well as inherent heterogeneity of genomic data, this the-

sis contributes to the ongoing paradigm shift from studying separate evolutionary processes

towards a holistic analysis of the interactions of selective and neutral processes under a rig-

orous statistical framework.
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CHAPTER 1

Introduction

Technology advances have fostered an exciting era of a burgeoning field: ecological ge-

nomics (Ekblom and Galindo, 2010). Six years ago, most phylogeographic studies relied

on developing microsatellites or mitochondrial DNA for inferring genetic structures and

demographic histories. During the following years, as costs for individual reads plunged

thanks to next-generation sequencing technologies, pioneering studies on developing ge-

nomic sequencing libraries for non-model organisms emerged (Baird et al., 2008; Peterson

et al., 2012). Today, generating genomic libraries has become a common practice for a

doctorate study.

As with the big shift in the magnitudes of data analysis, the traditional boundaries

among fields are also disappearing, in particular, phylogenetics (inter-species evolutionary

relationships) versus population genetics (intra-species evolutionary relationships), phy-

logeography (historical processes that shape contemporary geographical distribution and

relatedness among populations) versus genetics of adaptation (targeting specific genes or

genetic mechanisms that confer local adaptations). Not surprisingly, population genomic

data collected from carefully designed experiments might be able to decipher demographic

history and relatedness among populations/species, test alternative hypotheses of historical

processes and identify loci involved in environmental adaptation at the same time. This

paradigm shift, however, is also required by the complex nature of big data so that these

seemingly separate questions cannot be answered correctly without the consideration of
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each other. Unlike traditional multilocus studies that focus on unlinked neutral genes/re-

gions, genomic data has a much higher heterogeneity in terms of linkage, mutational sce-

narios, and selection, which poses new challenges for data analyses. For example, most

species tree estimation methods assume neutral evolution. A new intra-polymorphism-

aware phylogenetic model (De Maio et al., 2013) using polymorphism and divergence data

together can account for incomplete lineage sorting as well as estimate mutation and fix-

ation biases caused by selection on different genomic regions. Phylogeography is usually

estimated from neutrally-evolving loci (e.g., microsatellites) with independent histories.

Genomic data might violate both assumptions. In extreme cases, signals of genetic struc-

tures might be dominated by SNPs/loci from tightly linked regions (e.g., inversions) that

do not actually correspond to the neutral evolution history (see Chapter 2). On the other

hand, the small portion of loci that are under selection might be of high interest. Without

considering specific demographic histories, genomic scans for detecting loci involved in

ecological adaptation often suffer from high false positive rates (Lotterhos and Whitlock,

2014).

My thesis aims to answer questions regarding ecological genomics with new method-

ologies and theories. In Chapter 2, I developed a new approach to detect selection within

inversions with the aid of inversion-specific demographic histories. In Chapter 3, I de-

veloped a theory to evaluate the importance of standing variation versus new mutations

in adaptive divergence aided by polymorphic inversions. In Chapter 4, I synthesized a

new approach, iDDC, to test support for different phylogeographic scenarios by integrating

distributional, demographic, and coalescent models that generate predictions for species-

specific patterns of genetic variation. In the last chapter, I summarize the basic findings,

limitations of the methods and future directions. Although the thesis may methodologically

oriented, the development of new methods were inspired by the specific research goals of

my study systems, which are briefly introduced in the following sections.
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1.1 Maintenance of adaptation via chromosomal inversions

How fast can adaptive divergence occur upon environmental change or range expan-

sion? Past population genetics studies have thoroughly explored the two most important

factors, sources of variation and the probability of fixation of favorable mutations, theo-

retically (e.g., Ewens, 2004; Fisher, 1930; Kimura, 1983; Orr, 1998) and empirically (e.g.,

Bradshaw et al., 1995; Colosimo et al., 2005; Karasov et al., 2010). These, however, are not

the sole factors because when adaptation requires two or more genes, maintenance of such

haplotypes of favorable alleles will be hard when gene flow is still common at the early

stage of divergence (Nosil et al., 2009). Under such scenario, any mechanism that can pro-

tect the co-adapted genotype from shuffling with maladaptive alleles in recombination will

be preferred in adaptation (Yeaman, 2013; Yeaman and Whitlock, 2011).

Chromosomal inversions are rearrangements of a chromosome segment in which it

is entirely reversed from end to end. This will cause disorder when recombination oc-

curs between heterokaryotypes (i.e., homologous chromosome pairs which have alterna-

tive arrangements) so that recombination is largely suppressed between heterokaryotypes

while it is free between homokaryotypes. The traditional view of chromosomal speci-

ation posits that when different inversions get established in parapatric populations, the

inverted region will become a hotspot for accumulating positively selected genes and spe-

ciation genes (Fig. 1.1a) because recombination inside the region is drastically reduced

between hybrids (Noor et al., 2001; Rieseberg, 2001). A more recent view argues the re-

verse. Inversions can capture alleles that are already locally adapted, but are maladaptive

among populations that inhabit ecologically dissimilar habitats (Fig. 1.1b). In this later

case, the selective advantage of an inversion is generated by recombination load from the

maladapted gene flow (Kirkpatrick and Barton, 2006; Manoukis et al., 2008). This hy-

pothesis (Fig. 1.1b) revived studies of the evolution of chromosomal inversions in recent

years because it has no presumption of peculiar genetic interactions inside inverted regions

and can be readily applied to many common scenarios.
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Figure 1.1: schematic representation of maintenance of inversion polymorphism in pop-
ulations. Direction of red arrowheads indicate alternative chromosomal rearrangements.
a) inversions are fixed in different populations. They become hotspot for accumulation of
adaptive/speciation loci; b) populations accumulated adaptive loci. Upon secondary con-
tact, inversion mutation occurred to protect co-adaptive genotypes.

The local adaptation model for inversions has found support from empirical evidence,

where chromosomal inversions promoted divergence by creating physical linkage among

locally adapted loci that are responsible for alternative complex traits such as wing patterns

in Batesian mimicry (Joron et al., 2011), diapause timing (Feder et al., 2003) and annu-

al/perennial life-history shift (Lowry and Willis, 2010). I used this model as the basis of

Chapter 2 and Chapter 3. In Chapter 2, I developed a new approach to detect adaptive loci

inside inversions that give the selective advantage of inversions. In Chapter 3, I focused

on the sources of inversion variation and the likelihood of such adaptation under different
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genetic or demographic conditions.

1.2 Polymorphic inversions in Anopheles gambiae popula-

tions

Anopheles gambiae is widely distributed across sub-Saharan Africa near human dwelling

sites (Coluzzi et al., 1979; della Torre et al., 2005). The mosquito’s extensive distribution

throughout a heterogeneous environment (Fig. 1.2a) might indicate local divergence and

strong population structures within the species. However, neutral markers (e.g., Lehmann

et al., 1997, 2000) usually showed no apparent population structures or failed to reject sim-

ple isolation-by-distance test, except for the populations distributed across the Great Rift

Valley in East Africa (Lehmann et al., 1998, 1999; Zhong et al., 2006), which acts as a

strong barrier to gene flow. Estimations of effective population size from genetic polymor-

phism data of local demes are usually large (Donnelly et al., 2002; Lehmann et al., 1997),

indicating that gene flow among demes is high and populations within a large area can be

viewed as being panmictic. An. gambiae also shares common genetic variation with the

sister species An. arabiensis (Besansky et al., 1997), and introgression between these two

species is not rare (Donnelly et al., 2004; della Torre et al., 2002). These facts together

indicate that its speciation and subsequent rapid adaptation were fairly recent so that reten-

tion of ancestral polymorphism is prevalent. In contrast, genetic markers that do exhibit

divergence among populations are usually those that reside near polymorphic inversions

or centromere-proximate regions (Lanzaro et al., 1998; Oliveira et al., 2008; Onyabe and

Conn, 2001; Temu and Yan, 2005; Turner, 2005; Turner and Hahn, 2007; White et al.,

2010). Local adaptation to different ecotypes of the species, yet extensive intraspecific

gene flow, produced accentuated divergence in some part of the genome, dubbed ”genomic

islands”, while little differentiation in other parts, which fits the hotly debated ”divergence

with gene flow” model (Nosil et al., 2009).
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Anopheles gambiae giles have a super diverse inversion system. Within An. gambiae

s.s., there are seven major polymorphic inversions (Coluzzi et al., 2002). All of the poly-

morphic inversions are distributed on the second chromosome (Fig. 1.2b). The left arm har-

bors only one large inversion 2La, which had its origin from An. arabiensis (Besansky et al.,

2003). The right arm has six polymorphic inversions (2Rb, 2Rc, 2Ru, 2Rd, 2Rbk, 2Rj),

among which 2Ru, 2Rd and 2Rbk are partially overlapping with each other (Coluzzi et al.,

2002). The ecological role of chromosomal inversions was first documented by Coluzzi

et al. (1985), who observed that the frequency of 2La increases linearly with the aridity

level. Similar trends were observed in 2Rb (Simard et al., 2009). It has been shown that dif-

ferent chromosomal forms do have unique environmental niches based on large association

studies between distribution of chromosomal forms and environmental variables (Bayoh

et al., 2001; Costantini et al., 2009; Simard et al., 2009; Yawson et al., 2007).

Theories have shown that old polymorphic inversions must be maintained by divergent

selection (Guerrero et al., 2012). Therefore, how can we detect adaptive loci in inversions

that show stable clines in An. gambiae? And how prevalent are they in inversions? In

Chapter 2, I analyzed genomic data from wild collected An. gambiae populations to answer

these questions.
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Figure 1.2: Distribution and inversions of Anopheles gambiae.a) distribution of Anopheles
gambiae s.s. (adapted from Sinka et al. 2010); b) polymorphic inversions on chromosome
2 (adapted from George et al. 2010).

1.3 iDDC as a tool for evaluating phylogeographic hypothe-

ses

Population genetic structures can be a representative of contemporary habitat suitabil-

ity and connectivity, a remnant of historical processes or both (Knowles and Alvarado-

7



Serrano, 2010). Thus, regression-based tests (e.g., mantel test, dbRDA, CCA) that directly

correlate genetic divergence among populations or individuals with contemporary environ-

mental factors or geographical barriers may overlook or misidentify the impact of historical

processes, because temporal shifts of habitats (Carnaval et al., 2009) and the demographic

processes of range contraction, expansion and recolonization leave signatures in intraspe-

cific genetic diversity and divergence patterns (Excoffier et al., 2009a). Spatially explicit

demographic modeling, however, can directly model these processes and generate genetic

markers for empirical comparisons (Currat and Excoffier, 2004). This approach is extended

from standard coalescent models (Kingman, 1982) in that all the coalescent events occur

within demes and movements of individuals across demes are tracked based on local car-

rying capacities and migration rates (Fig. 1.3).

Spatially explicit demographic modeling can be used to expand the tradition of intuiting

qualitative phylogeographic hypotheses from ecological niche models, ENMs (reviewed

in Knowles, 2009) to incorporating quantitative information about variation in the habi-

tat suitabilities across space and time. As a consequence, predicted patterns of genetic

variation are species-specific, reflecting the interaction between the physical environment

and biological parameters (e.g., local population sizes and migration rates) that determines

the level and pattern of gene flow across the landscape (see Brown and Knowles, 2012;

Knowles, 2009; Morgan et al., 2011). In Chapter 4, I designed a novel approach, iDDC

modeling, that integrates distributional, demographic, and coalescent models to generate

predictions for species-specific patterns of genetic variation. These simulations can then

be incorporated into a statistical testing framework, Approximate Bayesian Computation

ABC (Beaumont et al., 2002), to select for scenarios that fit empirical data the best. Ad-

ditionally, I assessed the quality of parameter estimates using pseudo-observed datasets

(pods) (see Bertorelle et al., 2010; Robert et al., 2011). The methods proposed here can

be generally applied to different biological systems that have experienced non-static demo-

graphic history.
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Figure 1.3: Spatially explicit coalescent history. Different lineages are indicated by differ-
ent colors. Colors on the 2-D surface represent suitabilities across the landscape, with blue
denoting less suitable and red, more suitable. Lineages travel across demes and coalesce at
different times backward.
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CHAPTER 2

Generating neutral expectations for specific

genomic regions increase the detection of

selection targets and reveal different roles of

polymorphic inversions in local adaptation of

Anopheles gambiae

2.1 Abstract

Chromosomal inversions are important structural changes that may facilitate divergent

selection when they capture co-adaptive loci. However, identifying selection targets within

inversions can be challenging because of their high degree of differentiation between het-

erokaryotypes (hence, reducing the power of detection with methods like FST -based out-

liers). Likewise, neutral expectations built from collinear regions cannot be used when

detecting selection in inversions because of differences in the demographic histories of

inverted compared to collinear regions. Here, we developed a new approach that uses

discriminant functions to classify loci that are under selection (or drift) informed from

inversion-specific demographic histories. We demonstrate that this approach has much

higher power than traditional FST outlier analysis and analyze data we collected in a classic
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Dipteran species with polymorphic inversion clines - Anopheles gambiae s. str, a malaria

vector species from sub-Saharan Africa. Polymorphic inversions within or between popu-

lations in the species are thought to contribute to rapid adaptation to different microhabitats

in this widely distributed species. We collected wild mosquito samples from transitional

ecozones between forest and savanna in Cameroon and identified genome-wide SNPs using

barcoded Rad sequencing. Contrary to minimal geographic structure among populations

in collinear regions, individuals are clustered by SNPs from 2La and 2Rb, two polymor-

phic inversions with inverted chromosomes predominating in dry habitats and the standard

chromosomes in wet habitats. Although both inverted forms were introgressed from a sister

species, Anopheles arabiensis, the two inversions showed very different origin from demo-

graphic reconstruction. The divergence time between the non-inverted and inverted forms

of 2La dated back before the species divergence, whereas 2Rb originated within Anopheles

arabiensis. Predicting the status of selection or drift based on discriminant functions built

from simulated training sets showed that in standard form (2L+a) that associates with wet

habitat exhibits much more selection signatures than inverted form (2La) that associates

with dry habitat.

2.2 Introduction

Detecting the signature of natural selection from molecular data has been a central fo-

cus of geneticists, not only because of the deeper understanding of molecular evolution

it brought, but also because of its potential in revealing important functional information

(Nielsen et al., 2007). With the advances in sequencing technologies, many new meth-

ods for identifying selected sites and regions of the genomes are burgeoning now. These

approaches capture different attributes of the signature of selection, including patterns of

exceptional long haplotypes (Sabeti et al., 2002, 2007; Voight et al., 2006), surges in link-

age desequilibirum LD (Kim and Nielsen, 2004; Wang et al., 2006), skewed site frequency
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spectrums (Carlson et al., 2005); Nielsen et al. (2005); Ronen et al. (2013). But when the

goal is to identify selection under spatially divergent selection among populations, many

studies rely on FST outlier tests (Antao et al., 2008; Beaumont and Balding, 2004; Bon-

homme et al., 2010; Foll and Gaggiotti, 2008; Gunther and Coop, 2013) to scan for regions

with exceptionally high divergence between ecologically divergent populations, especially

when whole genomic resources are not available for detailed estimates of linkage dise-

quilibrium (LD) or haplotypes. However, the power of such methods becomes inherently

limited when adaptive mutations occur in regions with reduced recombination, such as with

chromosomal inversions, which is especially problematic for studying adaptive divergence

given the important role inversions play through the maintenance of co-adaptive genotypes

(Kirkpatrick and Barton, 2006; Yeaman, 2013).

Identifying selection targets within alternative inversions can be challenging because

of two characteristics that distinguish them from collinear regions (i.e., genomic regions

without inversions). First, in genomic regions with inversions there is an overall high di-

vergence between the inverted and non-inverted chromosomal arrangement (e.g., Cheng

et al., 2012), which diminishes the power to detect selection (Beaumont, 2005; Lotter-

hos and Whitlock, 2014). Second, given that the demographic dynamics vary across the

genome - that is, the genome is mosaic, with certain regions for example experiencing more

or less gene flow depending on whether it is captured by an inversion, relying on a single

neutral parameterization (either with simulations under the island-model used in FDIST2

(Beaumont and Nichols, 1996) or the coancestry matrix in FLK (Bonhomme et al., 2010)

will necessarily be a mis-specification for expected patterns of divergence that can further

exacerbate the difficulties with detecting targets of selection.

In this study, we develop a new generic approach for locating a selection signature

when population divergence (or speciation) is promoted by inversions that limit the power

of traditional tests for selection. By first estimating region specific demographic history,

we are able to do demography-adjusted selection tests (see also Rafajlovic et al., 2014).
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We then build a discriminant function using combinations of summary statistics from se-

quences simulated under neutral and selected scenario. Empirical sites were assigned into

neutral or selection scenarios through predictions from the discriminant function. We apply

the newly developed approach to Anopheles gambiae, which like other Dipeteran species,

has a long history of research on inversion polymorphisms (Coluzzi et al., 1979). As a

widespread species with large population size, it lacks in general significant population

structure, except for the geographic structure observed at genomic regions characterized by

seven commonly segregating inversions on the chromosome 2 (Czeher et al., 2010; Lanzaro

et al., 1998; Lehmann et al., 1998). Here we focus on two large inversions, 2La and 2Rb,

that exhibit stable clines, but which defy detection of regions/genes within the genomic re-

gions associated with the inversions because of high LD and FST across the regions (White

et al., 2007a). The high frequency of 2La, which spans 21.4 Mb, in dry geographic areas

(savannas) compared to wet areas (forests) (White et al., 2007b), and a predictable cycle

in the frequency of 2La during dry and wet seasons identifies its role in adaptive diver-

gence. Similar trends observed in 2Rb (Simard et al., 2009), a 7Mb inversion, suggest that

this genomic region also contains sites contributing to adaptive divergence. In addition to

the general difficulties with identifying the targets of selection within inverted regions dis-

cussed above, another potential complication is tied to the origins of these two inversions.

Both inversions are thought to represent examples of introgression from a sister species, An.

arabiensis (Besansky et al., 2003), which is sympatric with An. gambiae in arid savanna

areas (Neafsey et al., 2010; White et al., 2009). This suggests that the inversions might

be old enough to have very different genetic background, which exacerbates the high di-

vergence problem between heterokaryotypes aforementioned. Nevertheless, despite these

challenges, as our analyses demonstrate, we are able to not only identify approximate tar-

gets of selection in the genome, but also to make statistical statements about the selective

history, and specifically what lineage underwent selective divergence with respect to the

ancestral state. We discuss the general applicability of our procedure for tests of selection
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in other taxa and specific genomic regions, even those regions that have vastly different

history than the rest of the genome because of the mosaic nature of the genome.

2.3 Results

We collected genomic data in 259 An. gambiae individuals and 8 An. arabiensis from

six sites in Cameroon along a gradient of wet to dry habitats (see Appendix A materials

for specimen identification results). From individually-barcoded double digest Radseq li-

braries (Peterson et al., 2012), and two lanes of 100bp paired-end sequencing on Illumina

HiSeq2000 platform, 25,966 loci (i.e., RADtag from the genomic prep) were mapped onto

Chromosome 2, 3 and the X, after filtering for ambiguously mapped reads and loci with

low coverage per sample or low presence across samples. Although we recognize that this

represents a small proportion of the genome (about 1%), the goal of this manuscript is to

demonstrate the promise of the approach for detecting approximate targets of selection, as

opposed to providing a full analysis of the proportion of sites under selection within inver-

sions contributing to adaptive divergence, which would require additional sequencing that

is beyond the scope of this study.

Our new approach of targeting specific selection within inversion involves several pro-

cedures (summarized in Fig. 2.1a). First we estimated divergence time and introgression

rate between the two species from collinear regions (Fig. 2.1b) using site frequency spec-

trum (Excoffier et al., 2013). We then estimated inversion specific parameters, such as gene

flux rate between alternative inversions and the age of inversion mutations (Fig. 2.1c). This

framework was then used for tests of selection against neutral expectations that are region

specific by discriminant functions based on summary statistics estimated from empirical

versus simulated data informed from inferred demographic history.
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Figure 2.1: Schematic illustration of study design and population demographic scenarios
of Anopheles gambiae and An. arabiensis. a) procedures involved in detection of targets of
selection; b) in collinear regions, An. gambiae and An. arabiensis diverged from a common
ancestor at time T div with a population size Ne. They experienced recent population
expension at time T exp to the current population size N cur. The two species have constant
gene flow since divergence; c) in regions with alternative arrangements, the arrangement
that were prevalent in An. gambiae (Std) split with the alternative arrangement (Inv) in
An. arabiensis at time T IS; at time T int, Inv introgressed into An. gambiae population.
Alternative arrangements have reduced recombination rate (r). Inv have a similar gene flow
rate with An. arabiensis as collinear region.

2.3.1 Establishing a demographic null model for tests of selection

Principal Components Analysis (PCA) and Discriminant Analysis of Principal Com-

ponents (DAPC) analyses of SNP data showed a lack of population genetic structure in

the species in the collinear regions. Specifically, the PCA showed no apparent geographic

structure among the six sampled populations (Fig. A.3) and one group (K = 1) received

the highest support in the DAPC analysis (see supplementary text for details about tests
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of geographic structure). Therefore individuals were pooled across populations to estimate

a demographic history that could be used to establish a null expectation for patterns of

genomic divergence under a model of drift. Specific demographic histories were inferred

for different genomic regions from the region-specific site frequency spectrum (SFS) un-

der a composite-likelihood approach implemented in fastsimcoal2 (Excoffier et al., 2013).

Specifically, for collinear regions a demographic model was inferred that included param-

eters for the time of species divergence (T div) between An. gambiae and An. arabiensis,

gene flow (m) between the two species, as well as population expansion (N cur, T exp)

(Fig. 2.1b). We used the population size of An. gambiae as a fixed parameter to estimate

other free parameters (Fig. 2.1b, c); this was set to ∼Ne = 750,000 using a mutation rate of

3.5E-9 per base per generation (estimation from Drosophila resequencing, Keightley et al.,

2009) given that An. gambiae was estimated to have a nucleotide diversity (π) of 0.01024±

4.0E-5 from all Radtags. Estimations showed that the two species diverged fairly recently

around 87K years ago (∼1.4Ne generations ago, Table 2.1; assuming 12 generations a year

(Lehmann et al., 1998)) with small but constant genetic exchange (on the order of 1E-7 to

1E-8, which is about exchanging 0.01 to 0.2 individuals per generation).

In contrast to the collinear regions, SNPs from 2La (2L: 20524058-42165532) and 2Rb

(2R: 19023925-26758676) were distributed into one of three clusters in the PCAs (with the

first PC explaining 20.3% and 11.9% of the total variance in 2La and 2Rb, respectively;

Fig. A.4 a,d). The results from the DAPC also supported K=3 as the most likely number of

genetic clusters (Fig. A.4 b, e). Individuals that form the three clusters identified from these

analyses correspond to the three genotypes associated with the inverted genomic region:

namely, the inverted homokaryotypes (referred to as I/I hereafter), the heterokaryotypes

(I/S), and the standard (i.e., non-inverted) homokaryotypes (S/S) based on comparison with

molecular karyotyping results (Fig. A.4c,f). Separate demographic histories were therefore

inferred for the different genomic arrangements (i.e., inverted versus standard chromosomal

regions) for both the 2La and 2Rb regions, with a recombination parameter to accommodate
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Table 2.1: Estimations of population genetic and demographic parameters using region
specific SFS implemented in fastsimcoal2.

Regions Parameters Point estimates Confidence Interval
Collinear current population size (arabiensis) 4,202,600 2,253,300 66,070,400

population size before expansion 677,800 608,700 813,500
introgression rate 1.75E-07 1.52E-08 2.70E-07
expansion time 186,800 136,900 228,700
species divergence time 1,052,500 824,600 1,240,400

2La ancestral population size 1,028,000 1,006,000 1,267,100
Gene flux rate 7.99E-08 9.25E-08 1.08E-07
bottleneck population size 29,900 26,500 101,500
time to bottleneck 339,900 319,600 351,100
bottleneck duration 300 100 3,200
divergence time 2,353,800 2,236,100 2,568,100

2Rb ancestral population size 980,800 1,041,600 1,148,900
Gene flux rate 4.79E-07 4.64E-07 5.15E-07
bottleneck population size 8,400 3,500 29,400
time to bottleneck 552,200 513,700 580,000
bottleneck duration 39,600 19,400 87,700
divergence time 591,800 570,100 625,200

occasional gene flux between alternative karyotypes (Fig. 2.1c).

Inversions were modeled as introgressed from An. arabiensis into An. gambiae after the

species’ divergence time (see demographic model in Fig. 2.1c). The age of inversion mu-

tation and their introgression time will strongly influence the baseline divergence expected

for detecting selection. Interestingly, the coalescent time of S and I (T IS, Fig. 2.1c) of 2La

was around 3Ne generations ago (196K years, Table 2.1), which is much more ancient than

species divergence time (T div). On the contrary, T IS of 2Rb is similar to T div. Despite

being old, 2La was also found to be introgressed more recently (∼0.5 N) into An. gambiae

than 2Rb (∼0.8N), but with shorter and less dramatic bottleneck than 2Rb (Table 2.1).

2.3.2 Signature of selection within inversions

A modified FST outlier scan based on inversion specific demographic history was first

performed. Due to structural constraints of inversions, double recombination rates are
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higher in the center of an inversion versus breaking points. We therefore divided inversion

regions into 150kb segments and adjusted recombination rates from our average estimates

based on local 2Mb FST estimations (details see methods) and then simulated 1000 neutral

cases per region. We found that because the divergence of I and S of 2La was really old,

FST estimations between I and S for neutrally evolved DNA segments can be really high

(see the 95 percentile and 99 percentile of simulation estimates in Fig. 2.2a). The power

of differentiating selection from neutral genes are really impaired for FST estimates be-

cause 95 percentile of the simulations can reach ∼0.8. The distribution of empirical FST

estimates of 2La is fairly flat compared to collinear regions where most FST estimations

are concentrated around 0 (Fig. 2.2c). This is less exacerbated in younger 2Rb (Fig. 2.2b).

Yet, the empirical FST distribution has much longer tail than the collinear FST distribution

(Fig. 2.2d).

Since outlier analysis based solely on FST measures have limited power to differentiate

selection from drift, we designed a new approach to make use of all summary statistics.

1000 simulations of 50kb sequences containing selected locus were ran for each of the three

scenarios: 1) neutral; 2) selection occurs on sites associated with S; 3) selection occurs

on sites associated with I and Anopheles arabiensis (Fig. 2.1a). Discriminant function

(DAPC) were built to differentiate three scenarios from summary statistics (Fig. 2.3a). In

order to minimize random effects from individual Radtags, average summary statistics of

random loci sampled across the simulated 50kb regions at a similar density as empirical

data were calculated to build the discriminant function. The power (true positives) for

three scenarios is above 0.9 (Table 2). Moreover, in contrast to the problems with false

positive of putatively targets of selection, such cases represented a minority of incorrect

assignments (Table 2), making it a more conservative test (i.e., more failures involved the

incorrect assignment of selected sites to neutral sites, rather than the other way around).

Interestingly, heterozygosity (H) and π contributed more of the variation in differentiating

each scenario compared to FST (Fig. 2.3d).
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Figure 2.2: Outlier analysis of inverted region scan. a) and b), dots represent FST measures
of each Radtag locus between Std and Inv chromosomes in An. gambiae populations along
the region. Shades of yellow show quantiles of 25%, 50%, 75%, 95%, 99% respectively, of
simulated values of divergence measures under reconstructed demographic histories with
region-adjusted recombination rate. c) and d) empirical distributions of FST between indi-
viduals with Std and Inv chromosomes on inverted region (green) or collinear region (red).
a) and c), 2La regions; b) and d), 2Rb regions.

After empirical estimates of summary statistics were transformed into discriminant

scores and assignment of scenarios were predicted, we identified regions that were sug-
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Figure 2.3: Candidate loci and regions under selection. All the dots show Radtag loci that
have highest posterior probability to be assigned as either experienced selection in the Std
lineage (red) or Inv lineage (blue). Dots with solid color are the ones with larger than 0.9
assignment posterior probability. Bars show regions that have highest posterior probability
to be assigned as either experienced selection in the Std lineage (red) or Inv lineage (blue).
Width of each bar corresponds to 50kb in our analysis.

Table 2.2: Power of differentiating selection form drift using average summary statistics of
loci in a 5kb segment with/without selected locus inside.

Prediction
Inversion True Scenario Neutral Selection in I and Arab selection in S Correct Assignment % (Power)
2La Neutral 936 31 33 93.6%

Selection in I and Arab 65 927 8 92.7%
selection in S 56 2 942 94.2%

2Rb Neutral 981 9 10 98.1%
Selection in I and Arab 72 927 1 92.7%
selection in S 70 0 930 93.0%
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gestive of under selection (regions shown as bars in Fig 3a, b). We found that on 2Rb,

four regions contain selected sites associated with I (red bars on Fig 3c), while four contain

selection associated with S (blue bars in Fig. 2.3c). These regions span some loci that were

identified as FST outliers, but not all of them. In 2La, we recovered an overwhelmingly

higher number of regions identified as being selected in S compared to those associated

with I (Fig. 2.3b).

The increased power of applying multiple summary stats and converting them into PCs

and transforming into discriminant functions is a good way to detect selection when the

expected changes in different statistics can be verbalized but hard to summarize into one

statistics. For example, loci/region that were identified as under selection in I will have a

lower πI and πArab compared to πS , higher FST between S and I than that of S and Arab,

whereas loci/region that were identified as under selection in S will have a lower π of S

compared to I, but higher FST (S Arab) than FST (S I). By definition, if a single statistic

had been used to detect the signature of selection, clearly some cases of selection would

have been missed because the signature of selection can manifest itself through a diversity

of summary statistics.

2.4 Discussion

In this study, we recovered different demographic histories for collinear and inverted

regions between two largely sympatric species, An. gambiae and An. arabiensis. The

collinear region experienced ongoing introgressive hybridization since the species diver-

gence, as well as the recent population expansion (11K to 19K) after the last glacial max-

imum. In inverted regions, standard arrangements in An. gambiae had limited gene flux

with inverted arrangements, and the divergence time between two arrangements of 2La

dated back before the species divergence. Genomic scan of selection signature based on

neutral simulations showed that the age of inversions played a significant role in the power
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of detection because of the increasing baseline divergence and the of divergence estimators

in neutral sequences in older inversions. Predicting the status of selection or drift based on

discriminant functions built from simulated training sets seems to be much more promising

than traditional genomic scans.

2.4.1 Age of inversions and its influence on FST outlier analysis

Our estimation of the older divergence of 2L+a from 2La corroborates a recent kary-

otype phylogeny for the Anopheles gambiae complex (Kamali et al., 2012) which predicted

that 2L+a evolved in the ancestor of An. gambiae and An. arabiensis and alternative kary-

otypes got fixed in the two species after their divergence. The coalescent time of 2L+a

and 2La is estimated to be around 3Ne, which was predicted to be a good age to detect se-

lection from estimating coalescent time between alternative arrangements (Guerrero et al.,

2012). However, our FST outlier analysis showed much less power in 2La region than

in the younger 2Rb region. The discrepancy might follow from the fact that coadapted

genotypes have evolved after the species divergence and that the introgression age of 2La

from An. arabiensis into An. gambiae is too short compared to its origin time so that gene

flux between heterokaryotypes is not frequent enough to reduce the divergence between

neutrally evolving regions inside inversions. 2Rb, in which the background divergence is

not significantly older than the time of introgression, showed clearer patterns of selection

signals of regions with significantly higher divergence.

2.4.2 Detecting selection in regions with reduced recombination rates

The traditional indexes (FST , DXY) in genomic scan to quantify inter-population dif-

ferentiation are still the most effective way to detect targets of divergent selection in most

cases (e.g., Soria-Carrasco et al. (2014). With the availability of population genomic data,

such genomic scan studies have become a common practice (reviewed in Nosil and Feder

(2012) and many studies reported regions of elevated divergence, termed genomic islands
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(e.g., Harr, 2006; Nadeau et al., 2012; Turner, 2005). While common practice does not

accommodate regions with reduced recombination or different demographic histories, we

tried to circumvent the overall high divergence problem in inversions by generating null

expectations from neutral evolution in selection identification. However, this is not entirely

ideal because the detection power is highly diminished when variability of divergence esti-

mators among neutral sequences increases with the age of divergence.

Our second approach which uses discriminant function to predict selection is simi-

lar to an ABC parameter estimation process, in which simulations close to observations

are retained, and linear functions are built to estimate parameters from PCs transformed

from summary statistics (Beaumont et al., 2002; Wegmann et al., 2009). The difference is

that we are choosing models (neutral or under selection) instead of estimating parameters

because our simulations are fixed with specific parameters estimated from reconstructed

demographic histories. This approach has the great advantage of jointly considering all

summary statistics together across different arrangements/species instead of relying on FST

measures alone. Since radtag sequences are relatively short (∼100bp), simulated sequences

still show a great degree of variation in each scenario (e.g., drift alone, selection in I and se-

lection in S) so that discriminant functions do not differentiate them completely (Fig. 2.3a).

Nevertheless, it still gives ∼0.8 true positive rate in assigning to correct scenarios. We

further filtered out loci that have less than 0.9 posterior probability in the assignment of

selection scenarios to be conservative. With this approach, we identified more loci under

selection in 2La than 2Rb (Fig. 2.3b, c). More interestingly, the signature overwhelmingly

showed more prevalent selection in sites associated with S rather than I. This might not

be surprising given 2La’s origin history. Recent molecular studies have shown that 2La

is the ancestral arrangement that stayed in Anopheles arabiensis (Sharakhov et al., 2006),

from which 2L+a arose and got fixed in Anopheles gambiae. Therefore, during the species

divergence period, 2L+a might have carried co-adaptive genotypes that got preferentially

selected in forest environment and the arrangement got fixed in the species. Later on, when
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the species expanded from forest to savanna (Coluzzi et al., 2002), 2La that conferred

higher fitness in dryer habitat in sympatric An. arabiensis introgressed into An. gambiae.

Our data suggest that the alternative arrangements have each facilitated either wet or dry

habitat adaptation at different stages of the species history. In this study, however, we do not

intend to pinpoint the exact genes that are under selection given the relatively low density

of Radtag markers (∼10kb between adjacent markers).

Currently, local changes in linkage disequilibrium inside inversions are hard to detect

in our data. Yet, LD or extended haplotype tests might be informative with individuals of

same arrangements because although recombination between heterokaryotypes is highly

reduced, it is not reduced within same karyotypes (LDhat (Auton and McVean, 2007) did

not find significant changes in recombination rates within same karyotypes in our data).

Therefore, if individually-barcoded whole genome sequences are available, selection signa-

tures such as changes in linkage disequilibrium within the same karyotype can be detected

(e.g., Lang et al., 2012)). Nevertheless, our demography-informed discriminant analysis

is still powerful for genomic regions with different evolution histories. In addition, this

approach can also be applied to non-model species with no genome reference and sparse

genomic markers.

2.4.3 Adaptation from mosaic genotypes

With the increasing availability of physical maps among different species, the impor-

tant role of chromosomal inversions in maintaining adaptive divergence has been shown

to be prevalent in many systems, such as controlling flowering differences in Mimulus

guttatus between different ecotypes (Lowry and Willis, 2010) and wing patters that form

Batesian mimicry in Heliconius numata (Joron et al., 2011). The unique aspect of adap-

tation via polymorphic inversions in Sub-Saharan mosquito species Anopheles gambiae,

is the prevalent introgression and sharing of inversions among sibling species (Besansky

et al., 2003; Coluzzi et al., 2002), which posed challenges in recovering phylogenetic rela-
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tionships within Anopheles gambiae complex (Besansky et al., 2003, 1994; Bhutkar et al.,

2007; White et al., 2011).

Our study showed how different sets of adaptive loci for different habitat (e.g., dry

vs. wet) can be maintained in alternative rearrangements throughout a widespread species.

The fact that the species complex do not have complete reproductive isolation and that

they ”borrow” pre-adapted inversions from each other while exploring new environments

provide an interesting example of how adaptation leads to mosaic genotypes instead of new

species, especially for species with big populations and high connectivity. This mode of

adaptation coincides with recent theories predicting that when gene flow persists between

populations that are under divergent selection, mechanisms that can reduce or suppress

recombination, or increasing linkage between co-adaptive and maladapted genotypes will

be advantageous because the gene complex can avoid being swapped (Aeschbacher and

Brger, 2014; Barton, 1995; Kirkpatrick and Barton, 2006; Yeaman and Whitlock, 2011).

2.5 Material and Methods

2.5.1 Sample collection and DNA extraction

Mosquitoes were collected indoor at each site using either aspirators or insecticide

spray, and then were individually preserved in 0.5ml tubes containing 100% ethanol. Ethanol

preserved samples were shipped back to our lab in the Ruthven Zoology Museum, Univer-

sity of Michigan. Morphologies of each sample were examined according to Gillies and

Meillon (1968) and Gillies and Coetzee (1987) under dissecting microscope before the

body was grinded for DNA extraction. QIAamp DNA Mini Kit was used to extract DNA,

whose yield ranges from 10-200 ng per sample.

25



2.5.2 Molecular identification of species and karyotypes

The species status within the complex of each sample (gambiae/coluzzi/arabiensis) was

determined by a PCR-RFLP method following (Fanello et al., 2002). Briefly, the species

was identified by the difference in the number of bands and/or fragment length after HhaI

digestion of part of the integenic spacer (IGS) of the ribosomal DNA PCR products. The

presence of inversions were determined by PCR of unique breakpoint regions of alternative

arrangements. For 2La, primers were chosen to amplify a 492 bp region of 2La distal

breakpoint and a 207 bp product from 2L+a proximal breakpoint (White et al., 2007b). For

2Rb, three primers amplify a 429 bp fragment on 2Rb breakpoint and a 630bp fragment on

2R+b breakpoint (Lobo et al., 2010). If only one of the two PCR bands is present on a gel

electrophoresis, then the sample is considered to be homokaryotype of one arrangement;

alternatively, if both bands are present with similar brightness, the sample is considered to

be heterokaryotype.

2.5.3 ddRAD library preparation and sequence analysis

Genomic DNA from each sample was individually barcoded and processed into a re-

duced complexity library for Illumina sequencing using a double digestion Restriction As-

sociated DNA sequencing procedure (ddRADseq; for details see Peterson et al., 2012).

Briefly, DNA was digested with the two most frequent restriction enzymes, MluCI and

MseI, to maximize the number of unique short fragments. The digested products were

then ligated by part of Illumina adaptor sequences and unique barcodes. Ligation products

were pooled among samples and size-selected between 340 and 420 base pairs (excluding

adaptor lengths) using a Pippin Prep (Sage Science) machine. The targeted-size ligation

products were amplified by iProofTM High-Fidelity DNA Polymerase (BIO-RAD) with 12

cycles to add complete Illumina adaptors. The library was sequenced in two lanes on the

Illumina HiSeq2000 platform to generate paired-end 100 base pair reads. Sequences were

identified to each sample based on the barcodes. Only reads with an average quality score
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of at least 30 (Phred) and an unambiguous barcode and restriction cut site were retained.

After filtering, sequences were mapped to the Anopheles gambiae reference genome

AGam30 (Holt et al., 2002) using bwa-mem algorithm in bwa with default settings (Li and

Durbin, 2009) and mappings were retained with quality scores above 10 using samtools (Li,

software no pub). SNPs were called from mapped contigs and genotypes were assigned us-

ing a maximum-likelihood statistical model (Catchen et al., 2011; Hohenlohe et al., 2012)

with the Stacks v1.03 pipeline (Catchen et al., 2013); default settings were used except

where noted below. Specifically, loci (termed as “stacks” in the program) were identified

from genomic locations with mappings of at least 5 copies of RAD sequences in each indi-

vidual using the PSTACKS program, to ensure credible calling of heterozygous SNPs in an

individual (Catchen et al., 2013). A catalog of loci were built with the CSTACKS program

from the PSTACKS output files across individuals to check the presence or absence of a

particular locus at a genomic location. We retained loci which are present in at least 50%

of all the samples and no more than two haplotypes per locus within each sample.

2.5.4 Population genetic structure of collinear and inverted regions

Geographic structure of An. gambiae populations were examined by measuring popu-

lation divergence and performing principal component analysis principle component anal-

yses (PCA). We performed separate analyses on collinear regions and inverted regions of

each chromosome. Weir and Cockerham’s FST 1984 and nucleotide diversity (π) were es-

timated on a per-site basis and windowed basis (150kb per window, 50kb step) along the

genome using the POPULATIONS program in the Stacks pipeline (Catchen et al., 2013).

SNPs were thinned to be at least 1000bp apart on the genome and imported into adegenet

1.4-1 package (Jombart, 2008) in R (2011) for PCA analyses. Only SNPs that are present

in all populations and at least 80% of all individuals were included in the study. Missing

genotype were filled with the average value. Based on PCA results, discriminant analysis

of principal components (DAPC; Jombart et al., 2010) were run to determine genetic clus-
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ters within the species without prior assumptions on the model of population subdivision.

DAPC runs K-means clustering on the transformed PCs to identify groups of individuals

that maximizes between-group genetic variation while minimizes within-group variation.

Best supported number of clusters is then determined by the comparison of model likeli-

hoods through Bayesian Information Criterion (BIC) similar to the program STRUCTURE

(Falush et al., 2003; Pritchard et al., 2000). The agreement between genetic clusters in-

ferred from inverted regions and molecular karyotyping assignment was also checked to

assess the reliability of PCR identification methods.

2.5.5 Demographic history of collinear and inverted regions

Inference of demographic history implemented in fastsimcoal2 (Excoffier et al., 2013)

calculates composite-likelihood of joint-SFS across populations under user-specified de-

mographic scenario by parameterized simulations sampled from priors and optimizes the

parameter estimation through a conditional maximization algorithm (ECM). The derived

and ancestral states of the SNPs were inferred from the comparison of four species in

the An. gambiae complex: An. gambiae s.s., An. arabiensis, A. quadriannulatus, and

A. merus. Whole genome scaffolds of the latter three species were mapped to gambiae

genome using MUMmer 3.23 (Delcher et al., 1999, 2002) and unique alignments were

kept. Majority state of the diallelic SNP among four species was considered ancestral and

multi-states SNPs were filtered. In order to maximize the number of SNPs included and

ensure reasonable running time for each scenario, we excluded individuals with less com-

plete sequencing coverage and down sampled SNPs in each case to infer region specific

demographic histories. Confidence intervals of parameter estimation were obtained by 100

parametric bootstrapping runs from the point estimations.

28



2.5.6 Coalescent history between An. gambiae and An. arabiensis in

collinear regions

We first estimated the divergence time, introgression rate and recent population expan-

sion of An. gambiae and An. arabiensis using joint-SFS built from Chromosome 3 as

proxies for collinear regions (X chromosome has a different effective population size and

different selection regime). SNPs were down sampled to 40 copies in An. gambiae and 6

in An. arabiensis. We fixed the population size effective population size (Ne) of An. gam-

biae through nucleotide diversity estimations from Radtag and used one variable SNP per

Radtag (if there is) to estimate the other parameters relative to Ne because selecting ran-

dom sites from Radtags to include invariable sites would result in too less variable SNPs

to inform the demographic model correctly (see also Excoffier et al., 2013). Unsure of

the magnitude and timing of introgression between the two species, we performed test runs

to choose the most likely scenario of introgression: 1) there was a onetime introgression

from An. arabiensis into An. gambiae after their ancestors’ divergence; 2) gene flow has

continued after their ancestors diverged into two species (Fig. 2.1b). The first scenario

was proposed based on the hypotheses that both 2La and 2Rb were introgressed from An.

arabiensis into An. gambiae (Besansky et al., 2003). However, results showed that the

first scenario is significantly less likely than the second scenario because of unlikely pa-

rameter estimations and lower likelihood. Therefore, in the following analyses we assume

continued gene flow between the two species.

2.5.7 Coalescent history between An. gambiae and An. arabiensis in

regions with inversion polymorphisms

We fixed the parameters that have been estimated from collinear region models and fo-

cused on inversion specific parameters because collinear regions have a larger SNP dataset.

After the introgression of inversions from An. arabiensis to An. gambiae, individuals of
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An. gambiae with the inversion (abbreviated as I in the following description) can freely

recombine with An. arabiensis, which implies that the introgression rate estimated from

collinear regions also applies. However, recombination is severely reduced between in-

dividuals of An. gambiae with standard chromosomes (abbreviated as S in the following

description) and I (Fig. 2.1c). We estimated the divergence time between standard chromo-

somes and inverted chromosomes, time of introgression for inversions, and recombination

rates between alternative rearrangements using joint-SFS built from 2La or 2Rb regions

while fixing other parameters that were estimated from the collinear region. SNPs were

down sampled to 20 copies in I and S, and 6 in An. arabiensis.

2.5.8 Selection signature in inversion regions

Based on reconstructed demographic histories for inversion regions, we obtained neu-

tral expectations of population genomic measures through simulations. These measures

can then be compared against empirical data to detect selection. We first applied an out-

lier analyses similar to traditional approaches. One difficulty lies in the heterogeneity of

recombination rates inside inversions between heterokaryotypes (i.e., recombination rates

are higher in the center and decrease sharply towards the breaking point region, Navarro

et al., 1997), whereas the recombination rates estimated from SFS demographic modeling

was an average. In order to make neutral simulations more realistic, we adjusted the recom-

bination rate to be higher in the center region and lower on the two sides. First, empirical

2Mb FST windows with 150kb-step were calculated and fed into a smooth spline function

in R to get fitted values for each 150kb segment. Recombination rate was adjusted for each

segment to the value that generates the fitted FST value. 1000 demographic simulations

were carried out using estimated parameters for each segment to generate 100bp DNA se-

quences. Two population divergence measures between I and S were estimated for the

sequences, FST and DXY. Lastly, empirical measures of each loci were compared against

the range of values from simulations to identify outliers.

30



Our second approach is to utilize sets of summary statistics to detect selection. Three

scenarios were run for 1000 replications under the current demographic model using msms

(Ewing and Hermisson, 2010) : a) pure neutral evolution; b) selection occurred on the

branch of An. arabiensis and inverted chromosomes (I); c) selection occurred on the

branch of An. gambiae and continued in standard chromosomes. Selection started from

the time when the two species diverged with selection coefficient ranging from 0.01 to

0.0001 (Fig. 2.2c). Selected locus is located in the center of a 50kb-long simulated region.

We tested two ways of building discriminant functions: 1) based on summary statistics of

one neutral locus that is close to the selected locus; 2) based on an average of summary

statistics across several neutral loci of a region that contains selected locus. For the first

approach, we sampled 100bp long sequences that are located 5Kb away from the selected

locus (an average distance between empirical adjacent Radtags in our data). 12 summary

statistics, including heterozygozity, theta pi of each population, FST and DXY, were calcu-

lated for each simulated sequence. For the second approach, we sampled random sets of

100bp short sequences across the entire 50kb according empirical Radtag distributions and

calculated an average of these summary statistics. In both cases, discriminant functions

using principle components transformed from summary statistics (DAPC; Jombart et al.,

2010) were built based on the simulated training sets to differentiate three scenarios. We

then used the discriminant function to predict which scenario each loci belonged to based

on their empirical estimations of summary statistics.
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CHAPTER 3

Rapid adaptation with gene flow via a reservoir

of chromosomal inversion variation?

3.1 Abstract

The increased recognition of frequent divergence with gene flow has renewed inter-

est in chromosomal inversions as a source for promoting adaptive divergence. Inversions

can suppress recombination between heterokaryotypes so that local adapted inversions will

be protected from introgression with the migrants. However, we do not have a clear un-

derstanding of the conditions for which adaptive divergence is more or less likely to be

promoted by inversions when the availability of inversion variation is considered. Standing

genetic variation, as opposed to new mutations, could offer a quick way to respond to sud-

den environmental changes, making it a likely avenue for rapid adaptation. For a scenario

of secondary contact between locally-adapted populations, we might intuit that standing

inversion variation would predominate over new inversion mutations in maintaining local

divergence. Our results show that this is not always the case. Maladaptive gene flow, as

both a demographic parameter and the cause for selection that favors locally-adapted inver-

sions, differentiates the dynamics of standing inversion variation from that of segregating

point mutations. Counterintuitively, in general, standing inversion variation will be less im-

portant to the adaptation than new inversions under the demographic and genetic conditions

that are more conducive to adaptive divergence via inversions.
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3.2 Introduction

Allopatric populations usually accumulate locally adaptive alleles after a period of envi-

ronmental change (Nosil et al., 2009; Papadopulos et al., 2011). How fast can the adaptive

divergence occur?The two most important factors, sources of variation and the probability

of fixation of favorable mutations, have been thoroughly discussed from classical popula-

tion genetic theories (e.g., Ewens, 2004; Fisher, 1930; Kimura, 1983; Orr, 1998) to em-

pirical data on patterns of genetic variation (e.g., Bradshaw et al., 1995; Colosimo et al.,

2005; Karasov et al., 2010). Less is clear about the mechanisms that maintain these adap-

tive loci in the face of maladaptive gene flow after secondary contact, which is common

at the early stage of adaptive divergence (Nosil et al., 2009). Specifically, gene flow from

ecologically dissimilar populations will dilute locally-adapted loci and disrupt the combi-

nations of alleles by recombination. Under such scenario, any mechanism that can lower

the effective gene flow rate or protect the good combination of alleles from shuffling with

bad alleles in recombination will be preferred in adaptation (Yeaman and Whitlock, 2011).

Rearrangements in chromosomes-inversions-can serve as such a mechanism because they

can suppress recombination between heterokaryotypes so that local chromosomes carrying

the adaptive alleles within an inversion will be protected from introgression of the mal-

adapted genes carried by the migrants (Kirkpatrick, 2011; Kirkpatrick and Barton, 2006;

Manoukis et al., 2008; Navarro and Barton, 2003; Noor et al., 2001; Rieseberg, 2001).

Empirical evidence has shown that many adaptive loci are associated with inversions,

especially complex traits such as wing patterns (Joron et al., 2011), diapause timing (Feder

et al., 2003) and annual/perennial life-history shift (Lowry and Willis, 2010). However,

it is not clear whether these inversions become established in the population because of

the maladaptive gene flow. Although theoretically possible, and despite the appeal of such

a hypothesis, we do not have a clear understanding of the conditions (genetic or demo-

graphic) for which adaptive divergence is more or less likely to be promoted by inversions.

Similar to adaptive point mutations, the rate of adaptation via locally-adapted inversions is
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determined by the availability of inversion variation (i.e., either new inversion mutations

or pre-exisiting standing variation of inversions) and the probability of establishment of

favorable inversions. Both aspects were modeled or simulated separately in several studies

(Feder et al., 2011; Kirkpatrick and Barton, 2006; Manoukis et al., 2008). What is missing

for evaluating the contribution of inversions to adaptation is critical information on the rate

of adaptation that considers the probability of inversions capturing a locally-adapted geno-

type, as well as the likely contribution of standing inversion variation versus new inversion

mutations.

Here we develop a theory for rapid local adaptation under gene flow via chromosomal

inversions such that we are able to predict when (i.e., genetic or demographic conditions)

the rate of adaptation by inversions will be higher. Moreover, we can evaluate the like-

lihood of standing inversion variation contributing to adaptive divergence. By expanding

the repertoire of models of local adaptation, our work contributes to a growing body of

work for predicting when different mechanisms are likely to promote rapid evolution (e.g.,

Hermisson and Pennings, 2005; Kirkpatrick and Barton, 2006; Przeworski et al., 2005;

Scoville and Pfrender, 2010). Moreover, by focusing on the potential contribution of new

mutational input versus standing genetic variation, the general rules derived from the de-

veloped theory takes on special significance given the difficulty for such distinctions based

on empirical evaluations of molecular data (reviewed in Barrett and Schluter, 2008).

Similar to standing variation of point mutations that facilitate rapid adaptation under

sudden environmental change (Orr and Betancourt, 2001; Przeworski et al., 2005) and bot-

tlenecks (Hermisson and Pennings, 2005; Orr and Unckless, 2008), standing inversion vari-

ation can be readily established in the population without a prolonged waiting time for the

occurrence of an inversion and will suffer less random loss compared to new inversions if

the mean frequency is larger than 1/2N. However, unlike point mutations, inversions do not

confer a fitness difference directly. Instead, they reduce recombination cost and create link-

age disequilibrium among selected loci. Therefore, the chance of local adaptation from a
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new inversion through indirect selection might be very low considering that the probability

of an inversion mutation capturing coadapted genotypes would be smaller after the onset of

gene flow, let alone the possible stochastic loss of the single mutation. This contrasts with

standing inversion variation (i.e., inversions that captures good combinations of alleles be-

fore the onset of gene flow). Moreover, standing inversion variation will have less chance

of harboring deleterious mutations because they have been under purifying selection before

the onset of gene flow. These factors might enhance the importance of standing inversion

variation in the scenario of secondary contact.

Our key finding is that when inversions facilitate divergence with gene flow, higher

gene flow increases the contribution from standing inversion variation. Yet, under the

demographic and genetic conditions that are more conducive to adaptive divergence via

inversions, new inversions become a more important source. We discuss how this counter-

intuitive result (and one that differs from a recent study; Feder et al., 2011) can only be

understood by explicitly considering the dynamics of adaptation from inversion variation,

highlighting the importance and utility of analytical models for studying adaptation. By

considering a broad range of selective values of alleles, instead of assuming weak selection

(Kirkpatrick and Barton, 2006), our model and simulation also include predictions about

(i) the characteristics of inversions contributing to adaptation (e.g., the selective benefit of

alleles and its relationship with migration and number of loci involved) and (ii) conditions

when the relative importance of standing inversion variation as a source of maintaining

adaptive divergence might be increased.

3.3 Models and Methods

Consider a situation in which a peripheral population is receiving maladaptive gene

flow from the central population across a heterogeneous environment such that alleles at

two (or more) loci confer a selective benefit in the peripheral population but are maladap-
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tive in the central population (Fig. 3.1). If the genetics of local adaptation is based on

more than one locus, the maintenance of adapted alleles in the gene flow will depend not

only on the selective benefit of an allele, but also on whether recombination will break up

coadapted alleles (i.e., produce genotypes with a combination of adaptive and maladaptive

alleles). If a chromosomal inversion captures the locally adapted alleles, with the intro-

duction of maladapted alleles by gene flow (Fig. 3.1), there is a selective advantage to

adapted alleles captured in an inversion because of suppressed recombination, whereas in

the standard (i.e., non-inverted) chromosome locally adapted alleles can freely recombine

with maladapted migrant alleles in heterokaryotypes, thereby breaking up locally adapted

genotypes (Kirkpatrick and Barton, 2006).

Based on the scenario described above, we focus on comparing the dynamics and prob-

abilities of maintenance of divergence from new inversions and standing inversion varia-

tion. Consider the simplest scenario of a single inversion mutation that captures locally

coadapted alleles of two loci in a diploid population, where alleles A and B each have a ho-

mozygous fitness advantage (s) with dominance coefficient(h) over the maladapted alleles

a and b from a different population (Fig. 3.1A). The two loci are linked on the same chro-

mosome with recombination fraction r (Fig. 3.1A). These loci have independent influence

on the individual fitness (i.e., multiplicative fitness is assumed, meaning no epistasis, Ta-

ble 3.1). Before onset of migration, the populations are monomorphic with haplotype AB.

With migration, maladapted alleles (ab, shown in black) replace m proportion of the locally

adapted AB individuals each generation, and form recombinants (Ab, aB) with homokary-

otes (i.e., with the standard, non-inverted chromosome). We define inversions mutations

that capture the coadapted genotype and occur after gene flow started as new inversions

(NI, Fig. 3.1B), and the ones that segregate in the population before gene flow as standing

inversion variation (SIV, Fig. 3.1C). The standing inversion variations are selectively neu-

tral until the start of gene flow because individual fitness is determined only by the alleles.

Denoted as AB*, recombination between inversions and other standard karyotypes is sup-
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Figure 3.1: Illustration of the processes involved in adaptation from inversions under di-
vergence with gene flow. (A) For two loci (shown by a square and a circle), alleles A and B
(shown in grey) are locally adapted compared with the maladapted alleles, a and b (shown
in black); the two loci are linked on the same chromosome with a recombination fraction, r.
(B) Adaptation from new inversion and (C) standing inversion variation when divergence
occurs with gene flow. See method section for the explanation of the process.

pressed. Because migrants can only form recombinants with standard chromosomes, the

inversion AB* will become more advantageous (if it survives the initial stochastic loss) as
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Table 3.1: Fitness of offspring from different parental genotypes, where the haplotype
AB is locally adapted (see Fig. 3.1) assuming loci have independent fitness effects (i.e.,
multiplicative fitness, or no epistasis).

BB Bb bb
AA w1,1 = (1 + s)2 w1,2 = (1 + s)(1 + hs) w2,2 = (1 + hs)2

Aa w1,3 = (1 + s)(1 + hs) w1,4 = w2,3 = (1 + s) w2,3 = (1 + hs)
aa w3,3 = (1 + hs)2 w3,4 = (1 + hs) w4,4 = 1

the proportion of recombinants, Ab and aB, is built up. When adaptation from inversions is

successful, all the other genotypes, AB, Ab, aB, will be replaced by AB* with ab left in the

population if gene flow continues (in this study this stage is referred to as establishment of

the inversion).

The rate of spreading of an inversion depends upon the following parameters in a de-

terministic model: gene flow rates, allele effect sizes, number of locally-adapted loci and

rate of recombination between them. When the allele effect size is small (i.e., s � 1), it

can be omitted from the analytical approximation (see Eq 1. in Kirkpatrick and Barton,

2006). However, if allele effect size is not negligible, linkage disequilibrium (LD) between

adapted loci needs to be considered to calculate the frequency of genotypes. Here we re-

laxed the assumption, and derived analytical approximations to examine the relationship

between gene flow (m) and allele effect size (s) in determining the rate of adaptation via

inversions. Comparisons between the probabilities of adaptation from new inversions with

that from standing inversion variation are also evaluated in the context of the availability of

these two sources under different parameter spaces.

All analytical equations were tested using time-forward simulations (Mathematica and

Matlab code available upon request). At each generation, with a population of N diploid

hermaphrodically reproducing individuals (Ne = 5000), migration (m) occurs first, fol-

lowed by selection of individuals according to their fitnesses (Table 3.1); recombination

occurs at rate r as gametes are formed meiotically, and then the next generation of dipoloids

is randomly drawn from the pool of gametes. Each individual in a population is represented

as two linear chromosomes of n loci with same allele effect (s) and no dominance (h =0.5).
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Recombination is suppressed in heterokaryotypes. Free recombination is assumed between

loci (i.e., r = 0.5), except for simulations that explore the effects of specific parameter val-

ues. In new inversion case, migration is allowed to occur until the population reaches

migration-selection-drift balance. New chromosomal inversions are introduced at a muta-

tion rate, µ, of 10−7 per gamete per generation in a population at migration-selection-drift

balance. The inversion is tracked and generation time is recorded until when the inversion

either goes extinct or replaces all the other adapted genotypes (i.e., selected loci in non-

inverted chromosomes). In the standing inversion variation case, the starting frequency of

the standing inversion variation for each simulation is selected at random from the expected

distribution of neutral segregating inversions under the same demographic settings (gener-

ated by forward simulation with over 10,000 generations). The inversions are again tracked

until either their loss or establishment. To determine whether new inversions or standing

inversion variation is more likely to contribute to rapid adaptation, a population allowed

for both new inversions and standing inversion variation is generated (as described above).

The proportion of simulations in which each of the two sources of adaptive variation are

either lost or established is quantified. 10,000 replicates were run for each set of parameter

values.

3.4 Results

3.4.1 Selective advantage of a new inversion.

In the simplest scenario of a single inversion mutation that captures locally coadap-

tive alleles of two loci in a diploid population (Fig. 3.1), gametes AB, Ab, aB and ab

have the genotype frequencies x1,x2,x3,x4. The change of gametic frequencies will be

∆xi = (1 −m)(xi
Wi

W̄
− ρi) − xi (Li and Nei, 1974), where ρi is the change in frequency

of xi attributable to recombination with either locally coadapted or maladaptive alleles.

It is defined as ρi = (−1)|i−2.5|+0.5w1,4rD

W̄
(Lewontin and Kojima, 1960), where w1,4 is
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the fitness of double heterozygotes A /a B /b (Table 3.1) and D is the coefficient of LD,

x1x4 − x2x3. At migration-selection balance, where ∆xi = 0, ρ̂i can be expressed as

ρ̂i = x̂i

(
Ŵi
ˆ̄W
− 1

1−m

)
.

When an inversion captures coadapted alleles, denoted as AB* (Fig. 3.1), its frequency

will increase in the next generation as a function of λ = (1 − m)W̄I
ˆ̄W

(Kirkpatrick and

Barton, 2006), where W̄I is the average fitness of individuals with an inverted chromosome

andˆ̄W is the average fitness of the population at equilibrium, which is determined by the

frequencies of the four gametes and the fitness of each genotype (Table 3.1). The initial

increase in the frequency of a new inversion, λ, is therefore proportional to the decrease of

the frequency of the coadapted genotype attributed to recombination scaled by gene flow,

λ = (1−m)
W̄I

ˆ̄W
= (1−m)

Ŵ1∑
x̂iŴi

= 1 + (1−m)
ρ̂1

x̂1

(3.1)

where Ŵi =
∑
j

x̂jwi,j . The inversion will always be favored by selection (i.e., ρ̂1 will be

positive) as long as s is large enough such that locally adapted alleles A and B can withstand

the swamping effect of migration of maladapted alleles a and b (i.e., s > m/(1 −m) for

s� 1; there is no simple approximation if s is larger). Adaptation occurs by the increase

in the frequency of the inversion, which will reduce the effective gene flow rate and elevate

the mean fitness of the population.

3.4.2 Probability of establishment of a new adaptive inversion.

The probability of establishment of a new adaptive inversion (fNI) is determined by

its selective advantage in the first few generations. Using a branching process approach,

classical work showed that it is approximately twice its initial selective advantage weighted

by the reproductive variance (i.e., 2(λ− 1)/λ, Haldane, 1927; Kimura, 1957). Hence, a
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new adaptive inversion will be established in the population with the probability

fNI =
2(1−m)ρ̂1

(1−m)ρ̂1 + x̂1

(3.2)

assuming the number of offspring per parent is Poisson distributed (such that the repro-

ductive variance of inversions equals λ) under a Wright-Fisher model. Using numerical

approximations to explore the establishment probability of AB* under different combina-

tions of m and s (Fig. 3.2A), we show that it is not just the rate of migration (Kirkpatrick

and Barton, 2006), but that the allele effect size is also important. The greatest probability

of establishment of a new inversion, fNI , occurs when allele effect size is the smallest. This

can be intuitively understood by considering that when locally coadapted alleles are cap-

tured by an inversion, they never suffer the disadvantage of being found with maladapted

immigrant alleles because of suppressed recombination. However, the selective advantage

of inversions decreases as the allele effect sizes increase because x̂1, the frequency of the

coadapted genotype AB on the standard (i.e., non-inverted) chromosome also increases

when the allele effect size increases (Eq. 3.1). Overall, the migration rate, m, is the primary

determinant of the probability of establishment of a new inversion (Fig. 3.2A), having a

larger effect on the probability of establishment of the new inversion than the allele effect

size. Nevertheless, there is a limit to which migration can facilitate the adaptation from

inversions and this limit is determined by the effect size associated with the contained alle-

les. Specifically, we show that the equilibrium frequency of inversions,ŷ,decreases at high

gene flow rates,

ŷ = 1− m

(1 + s)n − (1 + hs)n
−m+O[m]2 (3.3)

where n is the number of adaptive loci in inversion, which is opposite of the effect of m

on the probability of establishment of a new inversion (see also Kirkpatrick and Barton,

2006).
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Figure 3.2: Comparison between establishment probability of new mutations versus that
from standing inversion variation. (A) Establishment probability of a single new mutation
of inversion in the marginal population at migration-selection balance for a population size
(2N) of 10,000 under different orders of gene flow rate (m) and allele effect size (s). (B)
Establishment probability of standing inversion variations (solid lines) compared with that
from a single inversion mutation (dashed lines). Lines are theoretical predictions while
solid circles are simulation results with 95% confidence levels shown as error bars.

3.4.3 Probability of establishment of adaptive standing inversion vari-

ation.

Now let us consider an adaptive inversion, AB*, that is segregating in a population at

frequency y (Fig. 3.1C). When gene flow starts, with regards to the rate of increase in the

frequency of the inversion, Eq. 3.1 still holds, except that the frequencies of genotypes are

not in equilibrium. Therefore, the rate of change of the inversion frequency becomes

λt = (1−m)
WI(t)

W̄ (t)
= (1−m)

W1(t)∑
xi(t)Wi(t) + y(t)WI(t)

= 1+
∆x1(t)

x1(t)
+(1−m)

ρ1(t)

x1(t)

(3.4)

Somewhat surprisingly, following the influx of maladapted genotypes with the initiation of

migration between the populations, our results show that the frequency of the inversion will

actually decrease for a few generations (λt < 1). This is because gene flow will initially de-

crease the frequency of x1 (i.e., ∆x1 is negative), and with low frequencies of recombinants
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(Ab or aB) ρ1(t) is small (i.e., there is a small change in the frequency of x1 attributable

to recombination with either locally coadapted or maladaptive alleles at time t). However,

as the frequency of recombinants increases, the selective advantage of an inversion is re-

alized when divergence occurs with gene flow. Thus, the probability that any single copy

of segregating inversion surviving till generation t, Ut, can be determined by integration of

the changes in λ of each generation using a time heterogeneous branching process (Ohta

and Kojima, 1968),Ut = 1 − Exp {λ0(· · ·λt−3(Exp{λt−2(Exp{−λt−1} − 1)} − 1) · · ·}.

The probability of establishment of a segregating inversion for a given frequency y is

just the probability that at least one copy of the inversion survives stochastic loss, Πy =

1− (1− U∞)2Ny. Since the segregating inversion can be viewed as neutral mutations prior

to the onset of migration (Fig. 3.1C), the probability of observing k copies of inversions

in a population 2N at the time when gene flow starts can be approximated as f(k) = C0
1
k
,

where C0 = 1/
2N∑
k=1

1/k (Ewens, 2004), assuming no back mutation. Thus, the probability

of establishment from standing inversion variation becomes

PSIV (N |k > 0) = C0

2N∑
k=1

1

k
Πk/2N (3.5)

Considering a range of allele effect sizes, we show that the highest probability of establish-

ment of segregating inversion variation occurs when selection is an order higher than the

migration rate (Fig. 3.2B). Compared to the establishment probability of a new inversion,

the probability of establishment of a segregating inversion (i.e., k > 0) depends much more

weakly on the migration rate m than in the case of new mutations (i.e., the establishment

probability is logarithmically, not linearly, related to m; Fig. 3.2B).
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3.4.4 Comparison of the probability of adaptation from two sources

of inversion variation.

To determine the conditions under which adaptation from new mutations versus stand-

ing inversion variation is more probable, we have to consider not only the probability of

establishment of the inversion (as discussed in the previous section), but also the availabil-

ity of inversions. For new inversions, the relevant factors determining the availability of

inversions is mutational input, whereas for standing genetic variation, the key parameter is

the frequency distribution of segregating inversion variation upon the start of gene flow.

The input of new inversion mutations can be approximated as θ = 2NeµIx1, where x1

is the frequency of coadapted genotype AB in the population and µI is the mutation rate of

inversions per gamete per generation that encompass the region of the chromosome where

adaptive loci are located. Therefore, the probability of adaptation from a new inversion

mutation within T generations is

PNI = 1− Exp {θfNIT} (3.6)

Similar to the establishment probability (fNI) for a new inversion mutation conditioned

on the availability of a new mutation, PNI also increases along with m (Fig. 3.3A). The

ratio of s relative to m, rather than exact values of s, is key to determining PNI given same

m. While fNI is greatest at low values of s (Fig. 3.2A), when the waiting time for a new

inversion mutation is taken into account, the probability of adaptation, PNI , is actually

improbable at lower range of s/m (Fig. 3.3A). This is because when alleles are under weak

selection, the frequency of the adaptive genotype AB is so low that it is unlikely for a new

inversion mutation to capture it. Instead, the highest probability of adaptation is maximized

at a moderate ratio of s/m because of the tradeoff between the rate of establishment and

inversion availability (Fig. 3.3A).

Below we derive the probability of adaptation from standing inversion variation by
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integrating over the availability of the inversion and its establishment probability,

PSIV (N,µ) =

1∫
0

ρI(y)Πydy (3.7)

where the frequency spectrum of segregating inversions in the population at mutation-drift

balance before the onset of migration can be derived (see Ewens, 2004; Hermisson and

Pennings, 2005) as ρI(y) = C0y
4NeµI−1(1−y1−4NeµI )

1−y ≈ 4NeµIy
4NeµI−1, where C0 is a con-

stant of integration. The shape of PSIV (N,µ)and PSIV (N |k > 0) for different values

of m and s are similar (Fig. 3.2B, 3.3A), but PSIV (N,µ) scales with the availability of

inversions, NeµI . This means the chance of observing standing inversion variation at a

given time in the population is proportional to the mutation rate. In contrast with the es-

tablishment probability, which is always higher for standing inversion variation compared

to new inversions, when the availability of the inversion is also considered, the probability

of adaptation via standing inversion variation is not necessarily going to be higher than the

probability of adaptation by new inversions.

3.4.5 Contribution of standing inversion variation to adaptive diver-

gence.

For rapid adaptation via inversions under a divergence with gene flow model, how im-

portant is standing inversion variation relative to new inversion mutations as the likely

source? This question can be evaluated by calculating the relative contribution of standing

inversion variation to adaptive divergence, as derived by a combination of Eq. 3.6 and 3.7,

RSIV =
PSIV
PADP

=
PSIV

PSIV + (1− PSIV )PNI
(3.8)

following Hermisson and Pennings (2005). As PNI increases with time, if time allowed

for inversions to occur is long enough, PNI will eventually surpass PSIV regardless of the
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scenario. However, in this paper we are interested in rapid rescuing effect from inversions

after secondary contact, we only simulate the situation when the time allowed for adapta-

tion is short (i.e., 0.2 Ne generations) so that source of inversion variation is highly relevant

to the probability of adaptation.

There are several parameter regions where the relative contribution from standing inver-

sion variation is particularly important (Fig. 3.3B), specifically, when s is at the same order

of m so that s is too small to withstand the gene flow (see m = 0.2, s = 0.5 on Fig. 3.3A), or

when allele effect sizes are large enough compared to migration (s � m). These regions,

however, all correspond to situations where adaptation via inversions are less to probable to

occur. Plotting RSIV against PNI (Fig. 3.3C), we can see that as adaptation via new inver-

sions becomes more probable (higher PNI), contribution from standing inversion variation

quickly drops.
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Figure 3.3: Probability of adaptation and relative contribution from standing variation. (A)
Comparison between adaptation from new inversions (PNI ; dashed lines) and adaptation
from both sources (PADP ; solid lines) given new input of mutations persisting for G =
0.2Ne generations after the initiation of maladaptive alleles (see Fig.1) for a population size
(2N) of 10,000 under different orders of m and s. Mutation rate, µ = 10−7. 95% confidence
levels of each simulation are showed on error bars of the squares (PADP ) or circles (PNI).
Note that the probability of adaptation is plotted against s/m. (B, C) Relative contribution
of standing inversion variation to rapid divergence (i.e., within 0.2 N generations). (B) is
plotted against s, (C) is plotted against PADP .
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3.5 Discussion

Both standing genetic variation and chromosomal inversions have become central foci

as mechanisms to facilitate rapid adaptation (Barrett and Schluter, 2008). By developing

an analytical model that makes explicit the factors governing the dynamics of rapid adap-

tation based on inversion variation, we show that when adaptive divergence via inversions

with gene flow is more likely, new mutational input (i.e., new inversion variation) becomes

a more probable genetic source than standing inversion variation. By considering a broad

range of selective values of alleles (instead of assuming weak selection, Kirkpatrick and

Barton, 2006), we also use our model and simulation to predict (i) the characteristics of in-

versions contributing to adaptation (e.g., the selective benefit of alleles and its relationship

with migration and number of loci involved) and (ii) conditions when the relative impor-

tance of segregating inversion variation as a source of rapid adaptation might be increased.

3.5.1 Implications of results for the genetics of adaptation

Inversions are more likely to facilitate local adaption under higher gene flow rates (Fig

2; see also Kirkpatrick and Barton 2006). Consequently, we can identify how the genes

contained within the inversion are likely to be involved in adaptation because of their im-

pact on the effective gene flow rate. The ratio between allele effect size and gene flow,

rather than the absolute value of the effect size, determines the likelihood of this sce-

nario. The highest probability of adaptation is maximized at a moderate ratio because of

the tradeoff between the rate of establishment and inversion availability (Fig. 3.3A). This

finding predicts the genomic profile of adaptation, that is, whether divergence is achieved

through multifarious selection on many genes or through linked regions within genetic is-

lands (Nosil and Feder, 2012; Nosil et al., 2009) with inversions involved. The allele effect

sizes of selected loci that can benefit the most from being captured in inversions will differ

given different levels of gene flow. Under adaptation with strong gene flow (i.e., when pop-
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ulation migration rate, 2Nm, is much larger than 1; Wright (1931)), multifarious selection

on many small effect genes cannot resist gene flow effectively, leading to clustering of few

genes with larger effects in freely recombining region (Yeaman and Whitlock, 2011) (see

Fig. 3.2 for increasing minimum s to withstand gene flow at higher m). In this case, it is

beneficial for selected loci with even big allele effect sizes to be captured in inversions. On

the other hand, under adaptation with weak gene flow, multifarious selection can be seen

more often in freely recombining region. In this case, much smaller effect alleles would be

found more often within inversions.

Although it is widely recognized that either increasing the recombination rate between

loci, r, or number of adaptive loci, n, will affect the probability of adaptation (Table B.1 and

Eq. 2, 3 in Kirkpatrick and Barton 2006), their interaction generates different expectations

for the genetics of adaptation, because r and n are usually negatively correlated for a given

length of inversion. In other words, capturing more adaptive loci within the same length of

an inversion will continuously increase its selective advantage until the point when all of

the fitness-related loci are tightly linked (Fig. B.1). Therefore, the length of an inversion

influences its fitness because longer inversions can capture more adaptive loci without tight

linkage while shorter inversions are less likely to be advantageous. This result helps to

explain the observed size distribution of inversions in natural populations. For example,

in Anopheles gambiae, while rare chromosomal inversions were found to vary randomly

in length (Pombi et al., 2008), common inversions which are more widely spread in the

populations tend to be long.

3.5.2 Contribution of standing inversion variation versus new inver-

sions to adaptation

High initial frequency and the immediacy of standing genetic variation are frequently

cited as reasons why it is a more probable source for rapid adaptation than new mutations

(Barrett and Schluter, 2008). As with adaptation via new point mutation versus standing
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genetic variation (see Innan and Kim, 2004; Orr and Unckless, 2008; Przeworski et al.,

2005), standing inversion variation also has a significantly higher establishment probabil-

ity (Fig. 3.2) by virtue of a higher segregating frequency in a population (i.e., they are not

as sensitive to stochastic loss by genetic drift compared with new inversions). However,

consideration of the establishment probability alone (e.g., Feder et al., 2011; Kirkpatrick

and Barton, 2006) is not sufficient for understanding the contribution of standing inversion

variation relative to new inversions. As modeled here, the availability of inversions is criti-

cal for evaluating whether adaptation is actually probable (Fig. 3.3A). For point mutations,

their availability is only determined by the effective population size and mutation rate,

whereas it is more complicated for inversions. Therefore, the impact of the immediacy of

segregating inversions on the relative contribution of standing inversion variation and new

inversions to adaptive divergence varies under different scenarios (i.e., combinations of m

and s).

Our results show that higher gene flow rates result in greater contributions of adapta-

tion from standing inversion variation if probability of adaptation (PNI) is controlled for

(Fig. 3.3C). This can be understood by considering that an inversion does not confer a

fitness difference directly, in contrast with point mutations that facilitate rapid adaptation

under sudden environmental change (Orr and Betancourt, 2001; Przeworski et al., 2005),

bottlenecks (Hermisson and Pennings, 2005; Orr and Unckless, 2008) or domestication

events(Innan and Kim, 2004). For inversions, the sudden influx of maladaptive alleles from

migrants gives inversions an advantage over non-inverted chromosomes. Gene flow is not

only the driving force of adaptation via inversions (i.e., the level of gene flow determines the

selective advantage of inversions), but it also impacts the availability of inversions. Higher

gene flow will lower the population size of favorable genotypes, making it less likely that

inversion mutations will capture adaptive alleles. Under this scenario, using an available

pool of standing inversion variation that already captured good genotypes becomes more

important.
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We also find the expected contribution of standing inversion variation to adaptive di-

vergence decreases as the conditions become more favorable to adaptation via inversions

(i.e., PNI increases; Fig. 3.3C). This is mainly because the probability for adaptation from

standing inversion variation increases slower than that via new inversions when conditions

become favorable (compare solid lines with dotted lines in Fig. 3.3A), such that standing

inversion variation can only compensate for unfavorable situations (i.e., increase the proba-

bility of adaptation relative to new mutation when adaptive divergence is not likely), but not

outcompete new inversions under favorable situations (see also Hermisson and Pennings,

2005). The reasons are two-fold. First, the advantage of a higher initial frequency of stand-

ing variation levels off when the probability of establishment from a single copy increases

with higher gene flow and moderate allele effect size, the very conditions when adaptive

divergence via inversions is actually likely. Second, the selective advantage of segregating

inversions gradually builds up as the frequency of favorable genotypes drops and recom-

binants are accumulated (λ changing from negative to positive in Eq. 3.4). In contrast, a

new inversion in a population at migration-selection balance realizes its maximum selective

advantage, giving it a higher survival rate compared to a pre-existing inversion.

3.5.3 If adaptation occurs from standing inversion variation, what can

we infer about the process of adaptation?

Although for the conditions explored here, standing inversion variation is less impor-

tant overall when conditions are favorable for adaptation via inversions, this finding does

not eliminate the potential importance of standing inversion variation. With an understand-

ing of the relevant factors impacting the probability of adaptation from standing inversion

variation, we can identify the evolutionary context where standing inversion variation is

predicted to contribute to adaptation, as illustrated by the specific scenarios discussed be-

low.

Time until establishment. Whether adaptation can occur rapidly may determine the
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likelihood of evolution change (Hermisson and Pennings, 2005; Lynch, 2010). Establish-

ment times are consistently shorter for standing inversion variation as compared to new

inversions (compare circles to squares in Fig. 3.4). This discrepancy will be even larger

if the waiting time for a new mutation to occur is included. Consequently, given an equal

probability of adaptation for new inversions and standing inversions (PNI = PSIV ), a faster

establishment rate (shorter establishment time) of standing inversion variation alone will be

highly likely to lead to rapid local adaptations. This was empirically supported by the case

of Drosophila subobscura, which has an establishment time for standing inversion variation

as short as 25 years to reach a similar latitudinal cline of adaptive inversion polymorphism

seen in the old world after introduction into New World in the early 1980s (Balanya et al.,

2003). These inversions are shown to harbor favorable combinations of alleles (Rego et al.,

2010; Santos, 2009).

When and how standing inversion variation is introduced. While our findings hold

when inversion variation evolves de novo within a focal population (where mutation rate

sets the waiting time for new inversions as well as the chance of having segregating in-

versions), adaptive inversions introduced from populations located in similar environments

could alleviate the recombination load that would accumulate in a population experienc-

ing an influx of maladapted alleles from populations in dissimilar environments. Likewise,

introgression from closely-related species is also a possible source of standing inversion

variation. For example, the origin of the 2La and 2Rb inversions associated with dry en-

vironments in Anopheles gambiae (Coluzzi et al., 2002; White et al., 2007b) trace back

to an introgression event with Anopheles arabiensis (Besansky et al., 2003, 1994). In

another example of gene flow of adaptive inversions between populations, northerly dis-

tributed Rhagoletis pomonella gained inversion polymorphisms from Mexican populations

that were strongly associated with the length of overwintering pupal diapauses, which fa-

cilitated a host shift (Feder et al., 2003).

Genetic background. In our theoretical model, we assume that segregating inversions
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Figure 3.4: Average establishment time of inversions for new mutations versus standing
variation calculated from runs with established inversions. Circles are waiting time for new
inversions while squares are that for standing variations. Standard errors are shown as bars.

and new inversion mutations have the same fitness-that is, we do not consider the genetic

background upon which the inversion occurs. Each new inversion mutation or segregating

inversion can have a range of fitness values based on the genes they captured (Nei et al.,

1967). Standing inversion variation may, in general, represent a more likely source of

adaptive divergence because it will have already been exposed to purifying selection. The

pre-filtering process would greatly decrease the frequency of inversions that capture genes

with large fitness costs or have a direct fitness cost through meiotic problems. In other

words, inversions with a lower fitness cost will segregate at a higher frequency, in contrast
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Figure 3.5: The relationship between probability of adaptation from new inversion and
relative contribution from standing inversion variation (Ne = 500, G=1Ne) for different
parameter settings (m, s, r, n) under two demographic scenarios: a constant population (N
= Ne = 500) and cyclic population (N(t) = 2525 + 2475 sin(2π(t+ 6.5)/10)). New input
of mutations lasts for 500 generations (G = 1N), with two levels of mutation rate, 10−6

and 10−5. 5,000 realizations in each scenario were run to observe the impact of different
combination of parameters on the proportion of contribution from standing variation to
the success of establishment of inversions. Blue colored and red colored circles denote
different level of mutation rate, 10−6 and 10−5, respectively. Open circles are simulation
results from cyclic population while filled circles are from constant population realizations.

to new inversion variants, which have yet to pass through the selection gauntlet.

Demographic histories. Adaptive divergence in empirical populations may of course

occur under conditions other than the constant population sizes modeled here. For example,
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population sizes may fluctuate, especially in response to shifts in climatic or ecological fac-

tors. Such changes in population sizes are relevant because they will not only influence the

amount of mutational input but also the relative contribution of new inversions versus stand-

ing inversion variation to adaptive divergence (Hermisson and Pennings, 2005; Kimura and

Crow., 1970; Orr and Unckless, 2008; Otto and Whitlock, 1997). To compare the relative

contributions of new inversions versus standing inversion variation with fluctuating popu-

lation sizes, we considered a scenario involving cyclic dynamics (such as those observed

in mosquito populations) where population sizes differ depending on climatic conditions

(e.g., wet/dry or warm/cold). We did forward-time simulations using parameters selected

from empirical studies of Anopheles gambiae populations (Manoukis et al., 2008), which

are characterized by multiple inversion polymorphisms. We show that when the probabil-

ity of adaptation becomes larger under different combinations of m, s, r, and n, the relative

importance of standing inversion variation also decreases with fluctuating population sizes

(Fig. 3.5), which is similar to what has been demonstrated under theoretical predictions

(Fig. 3.3C). However, population fluctuations affect the steepness of the negative relation-

ship between probability of adaptation and contribution from standing variation. When

a population is cyclic, contribution from standing inversion variation is higher (Fig. 3.5).

This is contingent on the assumption that the onset of gene flow occurs at the time when

population size is increasing, in order to mimic the situation where populations begin to

multiply and migrate when the wet season begins. Therefore, if inversions are pre-existing,

they have much less chance to be lost by drift. The situation will be reversed when gene

flow occurs in a shrinking population. However, the first situation is more probable under

the context of secondary contact. In either case, the proportional contribution from stand-

ing inversion variation should be boosted or decreased by a factor of N/Ne according to

Otto and Whitlock (1997).
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CHAPTER 4

Integrative testing of how environments from the

past to the present shape genetic structure across

landscapes

4.1 Abstract

Tests of the genetic structure of empirical populations typically focus on the correlative

relationships between population connectivity and geographic and/or environmental fac-

tors in landscape genetics. However, such tests may overlook or misidentify the impact of

such factors on genetic structure, especially when connectivity patterns differ between past

and present populations because of shifting environmental conditions over time. Here we

account for the underlying demographic component of population connectivity associated

with a temporarily dynamic landscape in tests of the factors structuring population genetic

variation in an Australian lizard, Lerista lineopunctulata, from 24 nuclear loci. Correlative

tests didn’t support significant effect from factors associated with a static contemporary

landscape. However, spatially explicit demographic modeling of genetic differentiation

shows that changes in environmental conditions (as estimated from paleoclimatic data), and

corresponding distributional shifts from the past to present landscape, significantly struc-

ture genetic variation. Results from model-based inference (i.e., from an integrative model-

ing approach that generates spatially explicit expectations that are tested with Approximate
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Bayesian Computation) contrasts with those from correlative analyses, highlighting the im-

portance of expanding the landscape genetic perspective to tests the links between pattern

and process, revealing how factors shape patterns of genetic variation within species.

4.2 Introduction

Although temporal scale is one of the primary distinguishing factors of landscape ge-

netic and phylogeographic study, such a distinction is not only unnecessary, but also po-

tentially problematic. For example, landscape genetics studies how contemporary habitat

suitability and connectivity influence population genetic structures spatially (Manel et al.,

2003; Storfer et al., 2007). Phylogeography typically focuses on historical processes that

generated the patterns of genetic variation (Avise et al., 1987; Knowles, 2009). There may

certainly be cases in which one of the two processes predominates (e.g., Hull et al., 2008;

Knowles and Carstens, 2007; Mendez et al., 2010; Perrier et al., 2011; Xu et al., 2009).

Yet, because such studies are often pursued under one of the two perspectives, their joint

influence can be overlooked, risking the misidentification of factors structuring patterns of

genetic variation. As both landscape genetics and phylogeography shift towards the analy-

sis of multilocus data, and specifically as next-generation sequencing technologies become

widely applied (e.g., Gompert et al., 2010; Thomson et al., 2010), concerns over molec-

ular markers as a distinguishing factor between landscape genetics and phylogeography

(e.g., Wang, 2010) will certainly diminish. Likewise, the greater power and resolution

provided by such datasets opens up new possibilities for expanding methodologies that

can test causation of, as opposed to seeking associations with, the underlying patterns of

genetic variation.

The melding of disciplines is represented in the approach advocated here, which we

illustrate with an empirical example-specifically, a test aimed at revealing how geography

and the environment shape patterns of genetic variation in a lizard, Lerista lineopunctulata.
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This lizard is distributed along the southwestern Australian coastal sand plains or dunes

(Fig. 4.1) (Cogger, 2000; Wilson and Swan, 2008). Sea level changes in glacial and inter-

glacial periods expanded or contracted suitable costal sand habitats for the species (Hock-

ing et al., 1987; Storr and Harold, 1978). Consequently, it is conceivable that population

divergence could reflect the contemporary habitat configuration, which limits migration

among the small geographically isolated populations (Excoffier et al., 2009a), or colo-

nization associated with historical shifts in the species distribution (Zellmer and Knowles,

2009), given that a habitat specialist would track climate-induced habitat shifts. We first

conduct both individual and population-level correlative tests to identify potential factors

structuring genetic variation, including geography, climatic and soil characteristics (see

also Edwards et al., 2012). We then move beyond these traditional descriptive landscape

genetic analyses (Legendre and Fortin, 2010) with an approach that provides quantitative

species-specific predictions that account for the interaction between abiotic and biotic fac-

tors (i.e., the environmental factors and the life history characteristics of taxa that mediate

the impact of these factors on survival and movement patterns; see Knowles and Alvarado-

Serrano 2009; Brown and Knowles 2012). Specifically, we generated a large multilocus

dataset to test whether the current genetic structure reflects (i) the geographic configuration

of populations, (ii) the contemporary environment, or (iii) the dynamic history of shifting

environmental characteristics since the last glacial maximum.

Our work highlights the potential synergy between traditional landscape genetic ap-

proaches and model-based inferences by translating hypotheses identified from correlative

analyses into a suite of alternative demographic processes that can be formulated as mod-

els (see also Brown and Knowles, 2012; Bruggeman et al., 2010; Epperson et al., 2010;

Landguth et al., 2010; Morgan et al., 2011; Shirk et al., 2012). Our approach contrasts

with the tradition of intuiting qualitative phylogeographic hypotheses from ecological niche

models, ENMs (reviewed in Knowles, 2009). Here quantitative information about varia-

tion in the habitat suitabilities across space and time is used to inform a spatially explicit
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demographic model whose parameters are then used for coalescent simulations. As a con-

sequence, predicted patterns of genetic variation are species-specific, reflecting the inter-

action between the physical environment and biological parameters (e.g., local population

sizes and migration rates) that determines the level and pattern of gene flow across the land-

scape (see Brown and Knowles, 2012; Knowles, 2009; Morgan et al., 2011). Additionally,

we rigorously test these models using approximate Bayesian computation, ABC (Beau-

mont et al., 2002), and assess the quality of parameter estimates using pseudo-observed

datasets, pods (see Bertorelle et al., 2010; Robert et al., 2011).

With reference to the empirical study of L. lineopunctulata, we highlight how extrapo-

lating causation from descriptive correlates of genetic variation with the environment and

geography would be misleading (see also Meirmans, 2012), but was avoided by applying

model-based inference with an expanded repertoire of models (i.e., not only isolation-by-

distance, IBD, but also models that include additional environmental factors, and temporal

shifts in habitats across the landscape). This approach, iDDC modeling, integrates distri-

butional, demographic, and coalescent models to generate predictions for species-specific

patterns of genetic variation. With the intent that the methods proposed here can be gen-

erally applied to different biological systems that had experienced non-static demographic

history, we include a discussion of not just the promise of iDDC modeling (see approaches

described in Neuenschwander et al., 2008; Ray et al., 2005), but also the limitations.

4.3 Methods

4.3.1 Sampling and molecular data

Lerista lineopunctulata tissue samples (N = 89) were field collected or obtained from

the Western Australian Museum and Australian Biological Tissue Collections (South Aus-

tralian Museum) (Table C.1) for full geographic coverage of the species, with multiple

individuals sampled from each of the delimited populations (see Edwards et al., 2012,
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for details about population assignment). Note that the southern populations, formerly as-

signed to L. lineopunctulata, are considered a separate species under taxonomic revision

(Edwards, Doughty and Keogh, unpublished data) and have not been included in this study

(see also Edwards et al., 2012). Also note that the number of loci in this study was ex-

panded considerably from 3 to 24 (a prerequisite for testing hypotheses, as opposed to

describing genetic variation, as in Edwards et al. 2012).

Anonymous nuclear loci were developed from a Roche 454 sequencing run (procedures

similar to Bertozzi et al., 2012), and supplemented with sequences for loci from published

primers (see Table C.2). Marker development from a 454 run used one individual of the fo-

cal taxon, L. lineopunctulata, and one individual of L. praepedita. Note that L. praepedita

was used to identify variable markers while avoiding ascertainment bias that results from

using intraspecific screening sets (Carstens and Knowles, 2006, see ). Details regarding

preparation of DNA samples for developing markers are given in Gompert et al. (2010).

This entailed the construction of a reduced representation library for each species from ge-

nomic DNA digested with EcoRI and Mse1 enzymes. Unique barcodes were ligated for

each species and size-selected fragments in equimolar concentrations were used for the

Roche 454 sequencing. The sequences were trimmed and quality filtered using custom perl

scripts and assembled using the NGen sequence assembler v2.0 (DNASTAR); settings used

in the assembly are provided in Supplemental Table 4.3. Contig consensus sequences were

screened against BLAST to ensure loci were not mtDNA or transposable elements and did

not belong to known gene families. Primers were designed for amplifying and sequenc-

ing fragments between 150-700bp using traditional Sanger-sequencing at the University of

Michigan DNA core facility.

A total of 24 nuclear loci were sequenced in both directions in each individual (Gen-

Bank KC545970-KC549439), although there were some missing data due to PCR failures

(Table C.4). Eighteen loci were identified from the 454 run that produced clear bands, with

single copy sequences and contained at least one variable site between the two species (L.
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lineopunctulata and L. praepedita). In addition, we sequenced six loci using published

primers (see Table C.2 for references). PCR reactions were run in 20ul volumes with 2l

10x reaction buffer, 0.8-2.5l 50mM MgCl2, 1l 10mM dNTPs, 0.4l Bovine Serum Albumin,

0.8l of each 10M primer, 1U Taq polymerase, 100ng gDNA and the volume made up to 20l

with ultra pure H20. PCR cycles were 95C 1min; 30 cycles of 95C 30sec, 59-65C 20sec,

72C 45sec; 72C 4min (see Table C.2 for specific conditions and exceptions). Haplotype

phase was determined using PHASE (Scheet and Stephens, 2006).

4.3.2 Species Ecological Niche Modeling (ENMs)

In addition to our collected samples, occurrence data of L. lineopunctulata were col-

lated from OZCAM (www.ozcam.org.au) and geo-referenced (see Edwards et al., 2012).

Projections of current species distributions based on habitat suitability was estimated from

19 current climate layers from the WorldClim global climate database (www.worldclim.org).

The ENMs were generated with MaxEnt v3.3.3k (Phillips et al., 2006) from 10 cross-

validation runs, which accurately predicted the species distribution (area-under-the-curve,

AUC, value of 0.971). The model was also used to predict the past distribution of the

species at the Last Glacier Maximum (LGM) using the same 19 climate layers from the

Community Climate System Model derived from PMIP2 database available on WorldClim

database (Hijmans et al., 2005).

4.3.3 Tests of associations with genetic structure

The potential impact of environmental factors on genetic structures was tested at both

the individual and population level. Distance-based redundancy analysis, or dbRDA (Leg-

endre and Anderson, 1999), was used to test for the relationship between individual pair-

wise genetic distances and corresponding climatic and soil variables (i.e., the score at the

sampling site where the individual was collected), conditioned on geographic distances

(i.e., removing the effect of geographic distance separating individuals). dbRDA is a mul-
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tivariate technique for testing a distance based matrix (in this study, the matrix of pair-

wise genetic distances) against rectangular predicting variables, in which the relationship

between the principal coordinates of the distance matrix and the variables are then ana-

lyzed. For analyses of an association between environmental factors and population-level

genetic structure, pairwise FST-values were calculated among populations using Arlequin

3.5 (Excoffier and Lischer, 2010) and the environmental differences among populations

were summarized for an isolation by resistance test (detailed below).

Individual pairwise genetic distances were calculated in Arlequin 3.5 with Tajima and

Nei’s correction (Tajima and Nei, 1984). For this analysis, the multilocus data were con-

densed into two haplotypes per individual by concatenating one of the two alleles (selected

randomly) for each locus across loci. Positions with more than 60% missing data (across

individuals) were not included in the calculation of individual pairwise genetic distances.

Calculations of environmental distances were conducted on the principal component 1

(PC1) from a principal component analysis (PCA) of the 19 climate layers extracted from

ArcGIS10 due to correlation across climatic layers (Hirzel et al., 2002; Manel et al., 2001;

Peterson et al., 2011). We performed PCA directly on the climate layers instead of values

extracted from sampling points because we want to capture the variation in the environment

but avoid any bias in the sampling points. This climate PC1 explained 90% of the varia-

tion in the climatic data. We also characterized the spatial variation in soil characteristics.

Soil properties were derived from the soil type data in the Atlas of Australian Soils (North-

cote et al., 1968) from the Australia Soil Information System (http://www.asris.csiro.au)

and interpreted following McKenzie et al. (2000) as 13 measurements of the soil profiles

including percentage of clay, thickness, water flow, nutrients (see Table C.5), which were

summarized with a PCA. This soil PC1 explained 85% of the total variation in the soil

data and was retained for analysis with dbRDA. Pairwise Euclidean geographic distances

among all individuals were calculated in ArcGIS 10. Because dbRDA only relates a matrix

to rectangular predictors, the geographic Euclidean distance matrix was transformed into
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continuous rectangular vectors via principal coordinates analyses using the pcnm function

of the Vegan package (Oksanen et al., 2012) in R (Team, 2012). Each of the three po-

tential predictors (geographic distance, climate-PC1, and soil-PC1) were tested separately

against genetic distance using the capscale function in the Vegan package, as well as tests

of climate-PC1 and soil-PC1 conditioned on geographic distance (i.e., partitioning out the

effect of geographic distances).

For the analyses of isolation by resistance (McRae, 2006) used in the population-level

tests of association between environmental factors and genetic variation, the average resis-

tance among populations was estimated in Circuitscape v3.5.8 (Shah and McRae, 2008)

using habitat suitability score as per-cell conductance. Specifically, for each population,

a convex hull (i.e., a polygon) that encompassed the minimum population area from sam-

pling localities was used to define the region from which Circuitscape calculated resistance

scores to represent the connectivity among populations. Isolation by resistance was tested

using Mantel and partial Mantel tests in IBDWS v3.23 (Jensen et al., 2005) for population-

level associations of genetic variation and environmental factors by considering the habitat

suitabilities modeled from contemporary climatic variables, as well as the average habitat

suitability of the current and past climatic conditions (i.e., an intermediate landscape shown

in Fig. 4.2). We chose to use partial Mantel tests because all the explanatory factors are

distance-based matrices (Legendre and Fortin, 2010) and the primary interest here is on the

change in correlations between the predictor matrix and the genetic distance, and therefore

the issues surrounding the interpretation of P-values with partial Mantel tests (Raufaste and

Rousset, 2001) and reduced power in detecting relationships compared to dbRDA (Legen-

dre and Fortin, 2010) is not a critical problem as applied here.
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4.3.4 Incorporating spatially explicit demographic history into model

tests with ABC analyses

We apply the iDDC-modeling approach so that we can examine if correlations between

environmental factors or historical shifts in distributions might (or might not) reflect causal

relationships with the processes governing population genetic structure. Specifically, with

iDDC-modeling a population demographic model is used to make explicit predictions for

patterns of genetic variation (Currat and Excoffier, 2004; Sork et al., 2010; Wegmann et al.,

2006), where the population demography is informed by the underlying environment (i.e.,

it takes into account spatial and temporal heterogeneity of the environment in a species-

specific manner; see details in Brown and Knowles 2012; Knowles and Alvarado-Serrano

2010). To test whether the current genetic structure results from (a) the geographic config-

uration of populations, (b) the contemporary environment, and (c) the dynamic history of

shifting environmental characteristics associated with the differences between the present

and the last glacial maximum, we constructed three corresponding demographic models

and used coalescent simulations to predict genetic variations. In contrast with the studies

to date utilizing iDDC-modeling, we then use these simulations for identifying the most

probable model and estimating parameters using Approximate Bayesian Computation, or

ABC (see Beaumont et al., 2002, for an overview of ABC).

The general procedure involves translating the habitat suitability scores from an ENM

into spatially explicit population parameters for demographic simulations, which are then

used for a spatially explicit coalescent simulation to generate expected patterns of genetic

variation (for details about the procedures see Brown and Knowles, 2012; Knowles and

Alvarado-Serrano, 2010). This flow of information provides direct links between process

and pattern. Specifically for this study, we statistically downscaled the maps from the

ENMs for the current and past climatic conditions to 0.1 decimal degree ( 121Km2 per cell)

to have a tractable number of demes for demographic simulation. All spatially explicit de-

mographic simulations were performed in SPLATCHE2 (Currat and Excoffier, 2004), with
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population carrying capacities scaled proportionally to the local habitat suitability score

(i.e., the relative values per grid cell differed depending on the predicted habitat suitability

derived from the ENM generated with MaxEnt). Patterns of genetic diversity were then

generated from coalescent simulations based on the specific demographic simulation (i.e.,

genetic variation differed across the landscape depending on the probability of coalescence

and migration across demes)(Currat and Excoffier, 2004; Excoffier et al., 2000). We ran

24 coalescent simulations for each demographic history corresponding to each of the 24

separate loci in the empirical dataset (see Appendix C tables), such that these independent

realizations of the coalescent process generated genealogies for simulating sequence data

for each locus, where the sampled individuals from the simulated data sets matched those

in the empirical data. DNA sequence data were also simulated according to the empiri-

cal DNA sampling conditions (e.g., the same gene length and amounts of missing data).

Relative mutation rates among loci matched those from empirical estimations (Table C.6).

The three models tested here were selected to test hypotheses motivated by the cor-

relative analyses described above (Fig. 4.2). Specifically, the hypotheses tested were that

patterns of genetic variation reflect: (i) genetic drift associated with the geographic con-

figuration of habitats C tested using a model of isolation-by-distance, or IBD, (ii) genetic

drift associated not only with the geographic configuration of habitats, but also differences

in local population sizes and the amounts of gene flow as defined by the suitabilities of

contemporary environment C tested using a model of the contemporary ENM, or cENM,

and (iii) genetic drift associated with distributional shifts caused by changes in environ-

mental conditions C tested using a dynamic ENM model, or dENM. These models again

differ with respect to input layers used for the demographic simulations (see Fig. 4.2). Note

that the cENM model considers the impact of habitat heterogeneity on patterns of genetic

variation, whereas the IBD model only considers the influence of geographic distance, but

both of these models are static models in that the layer informing the demographic model

does not change over time. In contrast, the dENM also considers how a shifting distri-
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bution, and the accompanying colonization process, impacts patterns of genetic variation

(Fig. 4.2). Temporal variation in habitat suitability was modeled in a step-wise fashion (i.e.,

using the habitat suitability scores from three period specific ENMs) (see also Brown and

Knowles 2012). Specifics regarding the simulation details for all the models are given in

the Supplemental methods. Note that each generation during the demographic simulation,

m proportion of the population migrates out of the local deme; migration occurs to the adja-

cent four cells (north, south, west, east) and the allocation to different directions are defined

by the friction score (see Supplemental methods); after exchange of individuals, popula-

tions grow logistically at the rate of 1 regulated by the carrying capacity inferred from

habitat suitability. ENM maps and the settings for demographic modeling in Splatche2 are

deposited in Dryad (to be added when we get the manuscript ID).

Model selection and parameter estimation were conducted using Approximate Bayesian

Computation with ABCestimator in ABCtoolbox (Wegmann and Excoffier, 2010). We per-

formed 1,000,000 simulations for each model under a standard ABC rejection sampling

approach (Beaumont et al., 2002; Tavare et al., 1997). In addition to comparisons of the

performances of different models, we also estimated four critical demographic/mutation

parameters: maximum carrying capacity (Kmax), migration rate (m), ancestral population

size prior to expansion (NAnc) and average mutation rate (µ), because each model would

have different estimates of these parameters that generate simulated data closest to empir-

ical ones. The ABC inference was based on a total of 34 summary statistics calculated

within, between, and across all populations using Arlequin (see Table C.7 for the full list of

summary statistics). They include segregating sites S for each population and across pop-

ulations, private segregating sites for each population PrS, the mean number of pairwise

genetic differences of each population , and pairwise population FST (Weir and Cocker-

ham, 1984). In order to remove the effects of interactions between summary statistics, as

well as reduce ”the curse of dimensionality” (i.e., when too many statistics are included, the

distance between the simulated and empirical values systematically increases, reducing the
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accuracy of parameter estimates and making it more difficult to distinguish among models),

partial least squares components (PLSs, Boulesteix and Strimmer, 2007) were extracted

from all predictor variables. This treatment extracts orthogonal components from data with

high dimensionality while maximizing the covariance of summary statistics and the pa-

rameters of interests (Wegmann and Excoffier, 2010; Wegmann et al., 2009). PLS were

calculated in the ”PLS” package (Mevik and Wehrens, 2007) with boxcox treatment (Box

and Cox, 1964) in R for the first 10,000 runs for each model. The Root Mean Squared Error

(RMSE) prediction of each parameter was examined before deciding upon the number of

PLS components to be used (see Fig. C.1).

Five thousand simulations (0.5%) that were closest to the empirical observation were

retained from each model for model selection. Post sampling regression adjustments were

applied using the ABC-GLM function (Leuenberger and Wegmann, 2010) to obtain pos-

terior distributions of the parameters, which assumes the accepted PLSs are produced by

a General Linear Model from the parameters. We use Bayes factors for model selection,

which is the ratio between marginal densities of two models. The higher the ratio is, the

high the support for the first model is. Under the GLM model, the likelihood of the em-

pirical data (i.e., the observation) can be evaluated and compared with the likelihoods of

other retained simulations. The fraction of simulations that have a smaller likelihood than

the empirical data was shown as P-value to check if the model is capable of generating

the observed data. Very small P-values indicate that a model is highly unlikely (Wegmann

and Excoffier, 2010). The coefficient of variation (R2) of each parameter explained by the

6 used PLSs was computed as an indicator of the power of estimation (Neuenschwander

et al., 2008). After selecting the highest supported model, we validated the accuracy of pa-

rameter estimation in the most supported model. 1000 pseudo observations were generated

from prior distributions of the parameters. If the estimation of the parameters is unbiased,

posterior quantiles of the parameters from pseudo runs should be uniformly distributed in

[0,1] (Cook et al., 2006; Wegmann and Excoffier, 2010). The posterior quantiles of true
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parameters for each pseudo run were also calculated based on the posterior distribution of

the regression adjusted 5000 simulations closest to the pseudo observation. Average Root

Mean Squared Error (RMSE) of the mode estimates for parameters of pseudo observations

was calculated to check for the accuracy of estimation.

4.4 Results

The anonymous nuclear markers were all variable (see Table C.6 for summaries of

molecular variation), but differed in the mutation rates (θπ ranges from 0.009 to 0.1). These

per-locus differences were incorporated into all correlative tests and simulations used to test

hypotheses about the link between patterns and process with ABC (see below).

4.4.1 Associations between patterns of genetic divergence and envi-

ronmental factors

A significant association between geographic distance and genetic differentiation was

detected with both individual-level and population-level analyses (i.e., results from dbRDA

and FST-analyses, respectively). Specifically, tests of isolation-by-distance with dbRDA

explained 59% of the genetic variation among individuals (Table 4.1). A strong geographic

signal was also evident from the regression of linearized FST -values against pairwise Eu-

clidean distances between populations (Fig. 4.3a).

Contemporary climatic differences are also significantly associated with patterns of

genetic divergence; however, when conditioned on the geographic distances between in-

dividuals (i.e., controlling for the effects of geographic isolation), the effects are not sig-

nificant (Table 4.1). For example, although PC1 of the climatic variables was significant

when tested alone, when conditioned on the geographic distance separating individuals, it

was not, and the proportion of genetic variation explained decreased from 9% to 2% (Ta-

ble 4.1). SoilPC1 was not significant irrespective of conditioning on geography. For tests
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Table 4.1: Tests of an association between genetic distances with geographic distance
and/or environmental differences (as captured by two sets of environmental predictors,
climate-PC1 and soil-PC1) among sampling sites of individuals using dbRDA (see Fig. 4.1
for a map of sampling sites). Results are given for each geographic and environmental vari-
able separately (i.e., the marginal tests), as well as conditioned on the effects of geographic
distance (i.e., the relationship between the predictor and the response matrix controlling
for geographic distance as a covariate) (see text for details). Shown are the multivariate F -
statistics, associated P-values, and the percentage of variance explained by each variable;
significant P-values are shown in bold.

Marginal Tests Conditional Tests
Variable F P-value % variance F P-value % variance
distance 2.876 0.005 58.554
climate-PC1 8.430 0.010 9.120 1.173 0.230 2.061
soil-PC1 1.981 0.160 2.304 0.736 0.550 1.293

of associations between population-level divergences and environmental differences sep-

arating populations as measured by an analysis of isolation-by-resistance (McRae, 2006)

from habitat suitability scores for per-cell conductance, a significant association is detected

(Fig. 4.3b, c). However, when controlling for geography with a partial Mantel tests (Ta-

ble 4.2), the genetic differentiation actually shows an inverse relationship, as measured

by the resistance from the current ENM alone, where genetic differentiation was greater

for lower resistance (rather than a positive relationship between genetic differentiation and

levels of resistance). We discuss this enigmatic pattern below, but further analyses suggest

it could reflect the confounding influence of past environmental conditions. For exam-

ple, when pairwise FST -values are regressed against pairwise resistance-scores calculated

from a composite ENM map (i.e., the average habitat suitability scores from the ENMs

of past and current climatic conditions; see Fig. 4.2), correlation coefficients are much

higher than when only the current climate is considered (r = 0.84 versus r = 0.46; see

Table 4.2), and remain significant if controlling for the effect from current climatic condi-

tions (Table 4.2) using a partial mantel test. However, the highest correlation is with the

average pairwise Euclidean geographic distances separating populations (Table 4.2), and

the effect of the averaged habitat suitability over time (i.e., from past and current ENM) is
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Figure 4.1: Predicted contemporary and past distribution of Lerista lineopunctulata in
southwest Australia (see inset for location in continent) based on climatic and paleocli-
matic variables, respectively (see text for details). Habitat suitability scores are shown as
ranging from the lowest (lightest) to the highest (darkest) suitability. Dashed lines sepa-
rate populations (as determined from barriers associated with breaks in suitable habitat; see
Edwards et al. 2012) and population names along with sample sizes (in parentheses) are
shown with dots that mark sampling sites. In contrast to the linearly distribution of suitable
habitat along the coast today, refugial areas for the species 21kya were more circumscribed
and extended westward of current populations SB and P (dashed outline marks the cur-
rent coast line), given the emergence of vast areas of coastal sand habitats during glacial
maximum (Hocking et al. 1987;Mory et al. 2003).

not significant after controlling for the influence of Euclidean geographic distances. Yet,

it would seem highly unlikely that the Euclidean geographic distance among individuals

or populations reflect dispersal patterns given the shape of the coastline and the distribu-

tion of species (i.e., the animals would have to traverse inhospitable habitat, including the
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Table 4.2: Results of isolation by resistance as calculated using Mantel and partial Mantel
tests (with geography and the current ENM as covariates) between the pairwise FST-values
with geographic distances and resistance matrices (i.e., rescaled geographic distances ac-
cording to the suitability of habitats) separating populations (see also Fig 4.3). Two resis-
tance matrices are tested: the first is calculated from current habitat suitability score, and
the second from the average of past and current suitability. Correlation coefficients (r) and
the P-values from 1000 permutation tests are shown. In partial Mantel tests, covariates are
listed on the second row; significant tests are shown in bold.

Mantel Tests Partial Mantel Tests
geography current ENM

Matrices r P-value r P-value r P-value
average pairwise Euclidean distance 0.868 0.005 - - - -
resistance-values calculated from
a map of habitat suitabilities
from the current ENM

0.460 0.050 -0.729 0.007 - -

resistance-values calculated from
a composite map of habitat
suitabilities from current and past ENMs

0.839 0.010 0.024 0.499 0.892 0.008

ocean, especially for populations P and SB; Fig. 4.1). This raises the question of whether

the association of geography and genetic divergence actually arose under an isolation-by-

distance model? Secondly, would a model of the population demography produce patterns

of genetic variation that are likely to have arisen under isolation-by-distance? Lastly, even

though the isolation by resistance takes into account possible paths (McRae, 2006), it does

not take into account the demographic consequences of moving through the habitat. Con-

sequently, could environmental factors (either present or past) actually impact patterns of

genetic variation, but go undetected with correlative tests? The answers to these questions,

which again are motivated by the aforementioned correlative analyses, are discussed in the

following section.

4.4.2 Tests of the links between pattern and process

For the ABC analyses, we selected the first six PLSs for calculating the distance be-

tween simulations and the empirical observation because RMSE of the four parameters in

four models does not decrease significantly with additional PLSs (see Fig. C.1). Based
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Figure 4.2: Schematic of the three spatially explicit models used in the demographic sim-
ulations to evaluate how environmental factors, as well as changing environmental condi-
tions associated with the Pleistocene glaciation, might be causality related to patterns of
genetic variation. For each model, variation in the underlying environmental components
used for the demographic simulations is shown (see Knowles and Alvarado-Serrano 2010).
The respective models are: (i) isolation-by-distance, or IBD, (ii) contemporary ENM, or
cENM, and (iii) dynamic ENM, or dENM (as described in detail in the text); shown for each
model is the spatially-explicit layer that formed the basis for the demographic simulations.
Note that both the IBD and cENM models are static in the sense that the habitat suitability
scores used for the demographic modeling were the same across generations, whereas with
the dENM model is dynamic with habitat suitability scores changing over time from the
last glacial maximum to the present in a step-wise fashion, as shown (see supplemental ma-
terial for details). After each forward-time demographic simulation, coalescent simulations
were run for sampled individuals backward in time.
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Figure 4.3: Plots of linearized FST against (a) pairwise population Eulidean geographic
distance, and pairwise population resistance calculated from (b) contemporary habitat suit-
ability, and (c) the composite suitability of past and present habitats (see text for details).
Fitted line of the points and its R2 are also shown.

on the marginal density for each model calculated from the 5000 closest simulations for

each model, the dENM model, the model of the colonization history under dynamic ENMs

(Fig. 4.2, best explains the patterns of genetic divergence observed within L. lineopunctu-

lata. The two static models that only consider aspects of the current landscape, the IBD and

cENM, have significantly lower marginal densities. For example, even though the cENM

has much higher support than the IBD model, the difference in Bayes factors between the

cENM and dENM is more than 300 (a substantial difference;(suggested by Jeffreys, 1961).

Moreover, the dENM model has a high P-value suggesting a significant correspondence be-

tween the observed empirical data and the simulated data under this models, whereas the

P-values for the cENM and IBD model are close to zero (Table 4.3). Based on these model

comparisons, we may conclude that 1) demographic models that include dispersal regulated

by habitat suitability produce models that explain the genetic divergence patterns within L.

lineopunctulata (e.g., comparing the cENM and dENM to the unlikely IBD model); and 2)

a demographic model that involves habitat shifts is much more likely to explain intraspe-

cific divergence within L. lineopunctulata than static landscape models (e.g., comparing

the dENM to the cENM) (Table 4.3).

Given the dENM best explains the data, analyses were conducted to validate the ac-
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Table 4.3: Properties of models and the prior and posterior distributions of estimated pa-
rameters. Bayes factor is the ratio between the highest marginal density among models
and that of each model. Kmax, carrying capacity of the deme with highest suitability; m,
migration rate per deme per generation; µ, average mutation rate; NAnc, ancestral popu-
lation size before expansion from the refugia. The logarithms of all priors are uniformly
distributed and have the same prior ranges across models. R2, the coefficient of determina-
tion between a parameter and the 6 used PLS components, shows the power of estimating
certain parameters. HPDI 50 and 90 are the interval of 50% and 90% parameter regions
with the highest posterior density respectively.

Models Marginal Density Bayes Factor Parameters Prior R2 Posterior
(p-value) [min, max] mode HPDI 50 HPDI 90

IBD 2.14× 10−14 9.12× 108 log10(Kmax) [3, 5.3] 0.080 3.465 [3.256,3.697] [3.000,4.301]
(0.0002) log10(m) [-4, -0.3] 0.012 -3.290 [-3.701,-2.767] [-4.000,-1.832]

log10(µ) [-8, -6] 0.223 -6.040 [-6.061,-6.000] [-6.162,-6.000]
log10(NAnc) [3, 5] 0.546 3.848 [3.768,3.929] [3.626,4.071]

cENM 5.82× 10−8 334.72 log10(Kmax) [3, 5.3] 0.145 3.000 [3.000,3.116] [3.000,3.279]
(0.0216) log10(m) [-4, -0.3] 0.045 -3.851 [-4.000,-3.589] [-4.000,-3.028]

log10(µ) [-8, -6] 0.910 -6.000 [-6.061,-6.000] [-6.061,-6.000]
log10(NAnc) [3, 5] 0.744 3.929 [3.849,4.030] [3.667,4.192]

dENM 1.95× 10−5 - log10(Kmax) [3, 5.3] 0.046 4.975 [4.487,5.230] [3.604,5.300]
(0.1514) log10(m) [-4, -0.3] 0.541 -1.571 [-1.870,-1.309] [-2.243,-0.898]

log10(µ) [-8, -6] 0.915 -6.242 [-6.343,-6.142] [-6.505,-6.020]
log10(NAnc) [3, 5] 0.737 4.414 [4.293,4.535] [4.131,4.717]

curacy of the dENM. The estimation accuracy of the four parameters differs significantly

(Table 4.3, Fig. 4.4). The posterior probability of maximum carrying capacity (Kmax) is

much flatter than that for the other three parameters (notice the density of the highest peak;

Fig. 4.4) and there is limited power to estimate carrying capacity, as indicated by a R2 =

0.046 (Table 4.3) and RMSE plot (Supplemental Fig. 4.1). Testing of estimation bias of the

parameters shows that the posterior distribution of K is too narrow and that of µ is too wide

(Fig. 4.5, histograms of the posterior quantiles significantly deviate from a uniform distri-

bution after Bonferoni correction for multiple testing, P − value < 0.01). The other two

parameters are more or less uniformly distributed so that migration rates (m) and ancestral

population size (NAnc) before expansion are the better estimated parameters from the set

of four parameters. The ancestral population of the species is estimated to be about 26,000

(Fig. 4.4), and the mode of the migration rate is about 0.0.027 per 10 years per deme ( 121

km2), that is, about 3% of the population per deme emigrates in 10 years.
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Figure 4.4: Posterior distribution (shown as dark line) and mode (i.e., the vertical line) of
parameter estimates for the most probable model - the dENM - based on an GLM regres-
sion adjustment of the 5000 closest simulations (see text for detail). The distribution of
retained simulations (shown as dashed line) and the prior (shown as grey line) are given to
highlight: (i) the improvement the GLM procedure introduced on the parameter estimates
(i.e., comparing the dashed and solid dark lines), and (ii) that the data contained information
relevant to estimating the parameters (i.e., contrast the solid dark and grey lines).
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Figure 4.5: Distribution of posterior quantiles of parameters for the most probable model
- the dENM - for evaluating potential bias in the parameter estimates, as measured by
a departure from a uniform distribution using a Kolmogorov-Smirnov test; analyses are
based on 1000 pseudo-observations. Estimation of m and NAnc seem to be unbiased while
posterior distribution of K is too narrow and that of µ is too wide
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4.5 Discussion

Detecting spatial structure and identifying correlates of patterns of spatial structure are

themselves arguably important endeavors and have received enormous attention in land-

scape genetics (Guillot et al., 2009; Storfer et al., 2007, 2010). What has yet to be fully

explored, and remains under-developed, are statistical frameworks for exploring the links

between such patterns and the processes that capture biological phenomena critical to ad-

dressing issues such as how the environment shapes patterns of genetic variation within

species (Balkenhol and Landguth, 2011; Cushman and Landguth, 2010; Shirk et al., 2012)

through the modeling of expected patterns of genetic variation.

Our study highlights the need for expanding the traditional perspective and foci of land-

scape genetics (as discussed below), while also presenting one approach for establishing

and testing the links between pattern and process. As such, the study represents a promising

new direction for expanding landscape genetics studies. Nevertheless, we also recognize

aspects of such complex models that would greatly benefit from further attention. These are

discussed with the intention of motivating future development, but also of drawing attention

to aspects of the analyses that should be interpreted cautiously.

4.5.1 Importance of exploring the links between genetic patterns and

process in landscape genetics

Different demographic processes may lead to the same genetic patterns (Csillery et al.,

2010). As a consequence, an explicit model that can generate explicit patterns of genetic

variation under different scenarios is critical (Knowles, 2008, 2009). For example, pat-

terns of shared polymorphism may not necessarily reflect recent hybridization (Green et al.,

2010), but instead be a case of incomplete lineage sorting, especially if ancient population

structure contributes to longer coalescent times (Eriksson and Manica, 2012). Likewise,

although geographic barriers might generate substantial genetic differentiation among pop-
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ulations (Knowles, 2001), such a pattern might be generated without geographic isolation

through the colonization process associated with climate-induced habitat shifts (Knowles

and Alvarado-Serrano, 2010, e.g., ). With explicit modeling, a spectrum of factors capa-

ble of producing the observed genetic patterns can be explored, thereby cautioning against

interpretations without considering alternative processes.

As this study demonstrates, the essential importance of modeling the link between ge-

netic pattern and process also extends to interpretations of the role of the environment in

shaping patterns of genetic variation. This is perhaps exemplified best by contrasting the

conclusions that might have been drawn from the descriptive association between genetic

and geographic distance with the actual likelihood of an isolation-by-distance as the most

probable model explaining the data. Specifically, a highly significant association is de-

tected with both individual and population level analyses between genetic and geographic

distances (see Fig. 4.3 and Tables 1 and 2). Moreover, the effects of environmental vari-

ables, whether measured from current or past climatic variables, become inconsequential

after controlling for the effect of geography, reinforcing that geography may indeed be the

primary determinant of patterns of genetic variation, rather than aspects of the environment.

Yet, the ABC tests clearly show that genetic drift associated with geographic distance alone

(i.e., the IBD model; Fig. 4.2), is significantly less likely than models that consider varying

aspects of population connectivity as impacted by environmental variables (i.e., the cENM

and dENM are both more probable; see Bayes factors in Table 4.3), with the dENM that

takes into account shifting habitat suitabilites over time as the most probable. So what ex-

plains this apparent contradiction between the conclusions that might be drawn from the

descriptive patterns of genetic variation (see also Edwards et al., 2012) versus the models

of the actual processes involved? Could such discrepancies reflect problems with the mod-

eling procedure, such as biases in parameter estimates? These issues and their relevance in

terms of the biological implications for L. lineopunctulata are discussed below.
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4.5.2 Demographic modeling as a tool for evaluating and interpreting

genetic correlations

Many statistical analysis tools have been developed to examine the correlation between

genetic variation and geographic and/or environmental factors (e.g., Adriaensen et al.,

2003; ter Braak and Verdonschot, 1995; Epperson and Li, 1996; Lee and Mitchell-Olds,

2011; Legendre and Anderson, 1999; Legendre et al., 2002; Mantel, 1967; McRae, 2006;

Smouse et al., 1986; Wang et al., 2012). Although these approaches differ with respect to

their statistical power to detect important factors (Legendre and Fortin, 2010), none actually

models the underlying processes generating the patterns (Balkenhol et al., 2009; Meirmans,

2012). Although a virtue in some respects (e.g., such approaches are generally broadly

applicable and are not particularly computationally demanding), there are also inherent

limitations with respect to (i) evaluating how such factors might produce patterns of genetic

variation, or (ii) distinguishing among alternative hypotheses about the putative factors

underlying patterns of genetic variation.

The merit of model-based inferences has become widely accepted in studies of genetic

data (Knowles, 2009; Knowles and Carstens, 2007), especially with increased knowledge

about the high variance of mutational and coalescent processes (Hudson, 2002). As compu-

tational constraints are overcome algorithmically and with improved computing resources,

the incorporation of biological realities has become feasible. For example, methods that

model genetic diversity and divergence at the same time and regress against environmen-

tal factors (Faubet and Gaggiotti, 2008; Foll and Gaggiotti, 2006) can be used to evaluate

which environmental factors (if any) might influence genetic divergence; although such

models cannot control for spatial autocorrelation among factors (in contrast to the approach

used here). Moreover, the flexibility and versatility of tools for evaluating and interpreting

models (Itan et al., 2009; Jaquiry et al., 2011; Neuenschwander et al., 2008, e.g., with ABC:

) can expand the repertoire of biological models that might be considered. This includes the

incorporation of factors that are typically overlooked in descriptive correlative approaches
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(e.g., dbRDA, PCA, MDS), such as changes in population size and/or distribution, because

of difficulties with their incorporation.

This later point, we argue, may underlie some of the apparent discrepancies in the rel-

ative importance of geography compared to environmental factors in the descriptive versus

model-based approach applied here. Specifically, even rescaled distances that incorporate

aspects of the environment for testing for an association between environmental differences

and genetic variation make a number of implicit simplifying assumptions. For example,

even though a method like McRaes (2006) isolation-by-resistance considers multiple pos-

sible paths (as opposed to the least-cost path (Adriaensen et al., 2003), and gives a weighted

average of the connectivity between the populations, this approach is only valid when land-

scape does not change over time. However, when a habitat is less stable over time, the level

of population connectivity changes depending on the impact of habitat shifts on dispersal

dynamics and population sizes (see Brown and Knowles 2012). These demographic conse-

quences that are a direct extension of the underlying environment would necessarily impact

patterns of genetic variation (i.e., changes in migration probabilities and local population

sizes would impact the relative probabilities of gene lineage coalescence within demes and

the times to coalescence, Excoffier et al., 2009a).

Consequently, when we actually model the demographic process of population move-

ments across a landscape, whether it follows an IBD model where the environment does

not impact population demographic patterns or one of the alternative models in which the

environment does influence migration rates and deme sizes (e.g., the cENM and dENM;

Fig. 4.2), it is perhaps not surprising that the results from the ABC analyses (Table 4.3) and

the descriptive correlative analyses (Tables 4.1 and 4.2) do not match up. However, can the

results from the model-based tests be trusted justifying the tradeoff between the simplicity

of correlative analyses and the complexity of process-based models?
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4.5.3 Model interpretation, validation, and implications for the fac-

tors structuring genetic variation

Model validation is very important in ABC given that ABC approximates the likeli-

hood of models with summary statistics (Beaumont et al., 2002; Pritchard et al., 1999),

unlike full likelihood based models that use all of the data (Beerli and Felsenstein, 2001;

Hey, 2004, 2010; Hey and Nielsen, 2007; Kuhner, 2006; Kuhner et al., 1998; Nielsen and

Beaumont, 2009). Post-sampling adjustment, such as regression (Beaumont et al., 2002)

or GLM (Leuenberger and Wegmann, 2010), can pose problems when the relationship be-

tween parameters and summary statistics is extrapolated beyond the region of the observed

dataset. Moreover, ABC can always produce posterior distributions even if the model is

wrong (Bertorelle et al., 2010).

Given the model complexity, one of the concerns was whether the data would be suf-

ficient to discriminate among probable and relatively improbable models, as well as give

unbiased parameter estimates. Nevertheless, the several approaches used to validate the

models in this study suggest that the results are generally robust.

Our primary objective is to test alternative demographic models (as opposed to a focus

on specific parameter values), therefore, we used a standard rejection sampling scheme

(Beaumont et al., 2002). Although the method requires a longer computational time than

other methods, such as ABC-MCMC, population Monte Carlo (PMC), and adaptive PMC

(Beaumont et al., 2009; Moral et al., 2012; Wegmann et al., 2009), it does not create bias

among models since performance of Monte Carlo methods are sensitive to the choice of

tolerance level and proposal range (Wegmann et al., 2009). To show the support of the

models, comparison of marginal densities of each model, as measured by Bayes factor

alone is not enough. Rather, the P-value of observed data under the GLM model also needs

to be checked to examine the percentage of the simulated data that match the empirical

data. IBD and cENM models can be easily rejected based on the Bayes Factor (Table 4.3).

In addition, the dENM has a higher probability of generating simulations with smaller or

81



equal likelihood than the empirical observation, compared to the cENM (see P-value in

Table 4.3). In other words, even though some idiosyncratic combination of parameters

can produce datasets that match the data under the cENM, the dENM has much wider

parameter regions that generate data close to the observation, which is the prerequisite

for accurate parameter estimations. Posterior distributions of the parameters in the two

models only differ significantly in the estimation of Kmax. However, Kmax has the least

power to be informed by the PLSs in the ABC analyses (see R2 < 0.1 in Table 4.3). The

estimation of maximum carrying capacity Kmax and average mutation rate µ show some

level of bias in estimation based on the tests of uniformity of posterior quantile distributions

from pseudo-observations (Fig. 4.5) in that posterior distribution of K is too narrow and

that of µ is too wide. Because both of the two parameters are hyper priors that control

the change of a series of local parameters, it might be harder to estimate them accurately

(Wegmann and Excoffier, 2010). This contrasts with the two parameters, migration and

ancestral population size, that are estimated well with low average RMSE of mode (0.19

and 0.15 respectively) and not biased (Fig. 4.5).

We acknowledge that the models informed by the ENMs may not capture all the poten-

tial historical scenarios that might be tested. However, this is a huge improvement over sim-

ple generic models that limit biological insights (Bertorelle et al., 2010; Knowles, 2009).

Moreover, the class of models generated from the iDDC approach, especially the incor-

poration of information from past distributions, permits tests of hypotheses that could not

otherwise be identified (e.g., the impact of climate-induced distributional shifts on patterns

of genetic variation) (see also Hugall et al., 2002; Knowles and Alvarado-Serrano, 2010;

Moussalli et al., 2009; Strasburg et al., 2007). There may also certainly be other aspects

of ENMs that introduce error into projected species distributions (see Arajo and Guisan,

2006; Graham et al., 2004; Lozier et al., 2009; Phillips et al., 2006; Stockwell and Peterson,

2002), this is an active area of research and the field of ENMs will no doubt see significant

advances in the near future. Again, despite these sources of errors, we argue the potential
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gains outweigh the negatives (which again we note, should become minimized with the

advances in ENMs). With respect to L. lineopunctulata specifically, this includes avoid-

ing the misleading conclusions that would have resulted from extrapolating causation from

descriptive correlates (i.e., only geography was consistently identified as a primary factor

structuring variation; Tables 1 and 2) or considering a limited sphere of models (i.e., IBD

was the least probable model, which was only apparent with the inclusion of the additional

ENM-based models; Table 4.3).

Lastly, despite the aforementioned caveats regarding the models and estimation of pa-

rameters, the iDDC modeling procedure which infuses the coupled ENM and coalescent

models (Knowles and Carstens, 2007; Richards et al., 2007) with ABC represents an in-

triguing new advance beyond past applications (Balkenhol and Landguth, 2011; Brown

and Knowles, 2012; Cushman and Landguth, 2010; Heckel et al., 2005; Knowles and

Alvarado-Serrano, 2010; Morgan et al., 2011; Shirk et al., 2012). Moreover, what this

study highlights is the synergy between more traditional landscape genetic approaches and

these model-based inferences for addressing the critical issue in model-based inference

C how to identify models to be tested (Knowles, 2009). Our study shows the intriguing

possibilities of using the descriptive approaches from landscape genetics, which detect as-

sociations between genetic and environmental factors, for developing suites of alternative

hypotheses that can be translated into models for testing with ABC.

4.5.4 Biological implications and the importance of integrating histor-

ical and contemporary environments

With limited information from the lack of ecological study of L. lineopunctulata, this

study can provide important biological insights. It is noteworthy that because of the ABC

framework, we can evaluate the probability of fairly contrasting views on the population

demography of this lizard species. Specifically, with endemism along the coast (Fig. 4.1),

the relatively high FST -values (i.e., values above 0.095, Table C.8, except for the compari-
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son between the two historically stable regions, P and SB; (see also Carnaval et al., 2009)

could be explained by different combinations of parameter. The high divergence level

could reflect the lack of migration with small population sizes (the expected pattern under

an IBD model), restricted migration due to barriers associated with the contemporary habi-

tat configuration, or colonization associated with a shifting species distribution, as a habitat

specialist would track climate-induced habitat shifts. All are plausible hypotheses for L.

lineopunctulata, an abundant subterranean lizard restricted to sandplain and dune habitats

of coastal southwestern Australia, a region subject to pronounced climate shifts during the

Pleistocene (Fig. 4.1). The genetic data suggests that L. lineopunctulata exhibits fairly

strong habitat specialization such that (i) not only is the IBD model unlikely compared

to those incorporating an environmental component, but (ii) that the species most likely

tracked shifts in their habitat as climate changed from the last glacial maximum (i.e., the

dENM model is more probable than the cENM). Because the dynamic model that accounts

for shifting species distributions (dENM) is more probable than a static model of the con-

temporary landscape (the cENM), the population parameter estimates from the ABC anal-

yses also suggest that L. lineopunctulata has higher ancestral population size (∼26,000)

and much higher migration rate (∼0.03 per 10 years) than if only the contemporary land-

scape had been considered (contrast estimates for dENM and cENM in Table 4.3). This

could have ramifications for developing effective conservation management plans, sup-

porting initiatives for preserving the processes contributing to genetic divergence (Moritz

and Faith, 1998).

As a recognized biological hotspot (Cincotta et al., 2000; Myers et al., 2000), our find-

ings provide some valuable perspective on not only the factors promoting divergence within

the focal species, but perhaps also those promoting diversification. A combination of an ex-

panded sandplain habitat caused by late-Quaternary sea level fluctuations, local geological

activity, and climate-induced distributional shifts are postulated to have driven diversifi-

cation of the southwest Australian herpetofaua (Edwards, 2007; Hopper and Gioia, 2004;
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Melville et al., 2008; Rabosky et al., 2004; Storr and Harold, 1978, 1980). Yet, the lack

of detailed spatially and temporally explicit hypotheses have made it difficult to generalize

how the SW Australian fauna would have been impacted by past geologic and climatic

factors. Within the geographic area of study are a number of other endemic lizard species,

many of which are co-distributed with L. lineopunctulata, but also show a variety of eco-

logical preferences, despite occupying similar habitats (Cogger, 2000). This raises the

question of whether this lizard community has responded similarly to past climatic events,

or whether species-specific responses have predominated (Edwards et al., 2012). It may

be that L. lineopunctulata has a higher dispersal ability compared to other Lerista species,

for example, which lack both forelimbs and hind limbs (Bush, 2007; Cogger, 2000; Wilson

and Swan, 2008). The iDDC approach applied here could be expanded into a comparative

analysis, where species-specific characteristics (e.g., differing degrees of habitat special-

ization or vagility) can be taken into account when testing sets of biologically informed

models for landscape genetic study.
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CHAPTER 5

Conclusions and Future Directions

This thesis provides a synthetic framework for studying ecological genomics, which

considers selective processes (such as adaptation to new niches) and neutral processes

(such as population size changes due to environmental shifts) simultaneously. Convention-

ally, studies that look for targets of selection on a genome assume a simple demographic

model without validations from the species’ ecological or phylogeographic histories (Beau-

mont and Balding, 2004). I demonstrate that one cannot reliably identify selection unless

realistic demographic histories are inferred for the species or even a specific genomic re-

gion (Chapter 2). The thesis also extends predictions on the sources of adaptive alleles

and mechanisms for maintaining adaptive changes (Chapter 2 and 3). The findings are

particularly important for understanding mosaic genomic evolution in the early stages of

speciation where accumulation of divergence is dampened by gene flow (Nosil and Feder,

2012). The work described in the thesis represents a flexible framework for researchers to

translate dynamic phylogeographic hypotheses into testable coalescent models by integrat-

ing all available information of the species, such as distribution records, habitat preference,

paleo-climate models, and competition between species (see iDDC modeling in Chapter

4). The approach will be useful for examining the influence of historical events on current

population genetic structures (He et al., 2013). In general, with the amount of information

as well as inherent heterogeneity of genomic data, this thesis contributes to the ongoing

paradigm shift from studying separate evolutionary processes towards a holistic analysis
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of the interactions of selective and neutral processes under a rigorous statistical framework

(Excoffier et al., 2013; Ronen et al., 2013; Yang et al., 2012). Below, I summarize how my

work provides new knowledge on the following questions. In addition, I discuss limitations

of my approaches as well as future directions.

• How do we infer selection when underlying demographic histories vary for different

genomic regions? Why is it important to identify selection within inversions?

• What is the most important source of adaptive variation: new mutations, standing

variation or adaptive introgression? Can we distinguish the genetic signature left by

different sources?

• How do we model and test spatially-explicit demographic histories? What are the

signals of range expansion and contraction in genetic data?

5.1 Detecting selection with the consideration of varying

demographic histories

Study of selection is a classic, yet active, theme in evolutionary biology (Nielsen et al.,

2007). With the widespread availability of genomic data, an approach that detects pu-

tatively selected loci by comparison to background levels of differentiation (termed FST

outlier analyses) has gained popularity (Beaumont and Balding, 2004). Specifically, such

approaches are frequently applied when populations inhabiting different environments are

under divergent selection (Nosil et al., 2009). It is to be expected that between ecologically

heterogeneous populations, loci that presumably contribute to adaptive divergence will ex-

hibit levels of differentiation much higher than the background level of differentiation gen-

erated by genetic drift of geographic isolation. Therefore, generating correct expectations

for background levels of differentiation is critical to a reliable detection of ”causative”

alleles. Existing methods, however, either have an inherent assumption for a simple demo-
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graphic model which might not capture the characteristics of the species’ history (Beau-

mont and Nichols, 1996) or treat the genome as a homogenous pool evolving neutrally

under a single common demographic history (Excoffier et al., 2009b; Foll and Gaggiotti,

2008). These problems may contribute to a preponderance of false positives that may pro-

vide misleading results about the target of selection and the prevalence of loci involved in

adaptive divergence. In Chapter 2, I designed new approaches to identify selection within

inversion regions, which usually evolve under very different demographic histories com-

pared to the collinear regions, with the intent to lower false positive rate as well as increase

detection power. The innovation of my method is three fold. First, separate demographic

histories are inferred for inversion and collinear regions to generate region-specific back-

ground levels of differentiation. Second, genetic measures other than differentiations, such

as haplotype and genetic diversity, are also included in the analyses to increase the power of

distinguishing adaptive alleles from neutral ones. Third, discriminant functions are used to

predict selection instead of an outlier approach by using training datasets from neutral ver-

sus selection simulations. By modeling genomic regions with varying demographic histo-

ries, my approach allows for identifying targets of selection through discriminant function

analyses trained with a suite of genetic measures, where traditional FST outlier analysis

is not accurate. Growing evidence supports the prevalent role of inversions in facilitat-

ing adaptive divergence by reducing recombination among co-adaptive alleles (see details

in Chapter 1.1) (Kirkpatrick, 2011). It is, therefore, important to identify adaptive alleles

within inversions. Yet, inversions, acting as a supergene, represent hindrance to detection

of selection using conventional methods (Thompson and Jiggins, 2014). On one hand, the

functional importance of inversions is usually easily detected through natural clines (Bal-

anya et al., 2003), alternative phenotypes (Joron et al., 2011) or experiments (Gray et al.,

2009). On the other hand, due to the high linkage disequilibrium within inversions, the

background differentiation is elevated across all genes within inversions as compared to

other parts of the genome (Cheng et al., 2012). Thus, adaptive alleles cannot be easily
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distinguished from neutral ones. In addition, coalescent patterns of neutral genes within

inversions are different from counterparts in collinear regions in that recombination is free

within the same karyotypes but suppressed to a different degree among different karyotypes

depending on the distance of marker’s location to the breakpoints (Guerrero et al., 2012).

Our study is the first attempt to identify selection signature in an empirical system using

inversion-specific coalescent expectations (Chapter 2). My study also highlights the need

for a more advanced coalescent simulator for inversions. Peischl et al. (2013) developed

a coalescent simulator for inversions restricted to specific scenarios with limited number

of individuals. In my future research, I will extend the simulator to be able to incorporate

arbitrary histories and generate SNPs or other markers for genetic diversity comparisons.

This will facilitate the theoretical predictions and empirical testing on inversions.

5.2 The source of adaptive variation

When species explore new niches, the adaptation usually involves genetic changes.

Facing the challenges of new environments, species can utilize different sources of genetic

variation - that is, new mutations, standing variation (existing rare variants), or ”borrowed”

alleles from other species (i.e., adaptive introgression). It is not clear, however, how differ-

ent sources of adaptive variation determine the rate and success of such adaptations under

different scenarios (Barrett and Schluter, 2008).

Chapters 2 and 3 provide new insights on the conditions under which each of these

sources is more likely to contribute to adaptive changes. Previous studies (Hermisson and

Pennings, 2005) and my work (Chapter 3) have shown that adaptation from standing vari-

ation, if present, is faster and more likely compared to that from new mutations because of

no waiting time and higher initial frequency of standing variation. However, standing vari-

ation does not dominate the source of adaptation in all scenarios. In Chapter 3, I showed

that, counterintuitively, new mutations become a more important source when the selection
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for such adaptation is higher. This is because the strength of selection on the adaptive alle-

les is more important for their survival than the initial frequencies. Thus, this work implies

that additional benefits must be associated with standing variation compared to new mu-

tations when empirical examples of adaptation from standing variation are observed. One

advantage of standing variation is that such variation has been pretested by selection in the

genetic background of the species. This contrasts with new mutations, which may interact

negatively on the genetic background of the individual where the mutation arises, making

them less likely to contribute to adaptation.

Adaptive introgression, formerly overlooked in animals, is gaining more attention, es-

pecially with new molecular and analytical methods that are able to distinguish the origins

of adaptive alleles (Hedrick, 2013). Not surprisingly, adaptive introgression often occurs

when one species is expanding into the range of another locally-adapted species. Envi-

ronmental adaptations often require multiple changes in one gene or several genes. The

waiting time for multiple new mutations is exceptionally long. Pre-existence of such stand-

ing variations is also rare unless the species had experienced similar selection in the past.

In this case, ”borrowing” alleles from the locally-adapted species that have accumulated

multiple genes for the specific adaptation becomes more likely.

As one of the most severe malarial vectors, Anopheles gambiae, has a large effec-

tive population size and short generation times, so that new mutations are not limiting in

the species. This raises the question of why chromosomal inversions that capture locally-

adapted genotypes appear to be shared among species (i.e., why is adaptive introgression

so prevalent in the group)? My work suggests that a key to understanding this apparent

conundrum is what appears to be high gene flow among populations. As I showed in

Chapter 2, geographic structuring in the species’ collinear regions is minimal. This demo-

graphic setting makes it difficult for co-adaptive genotypes to be retained - that is, locally

adaptive alleles will be swamped by an influx of non-adaptive alleles under different envi-

ronmental/ecological conditions. The introgression of inversions from the arid-adapted An.
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arabiensis to An. gambiae (Besansky et al., 2003) brought not only adaptive alleles, but

also the genetic mechanism to keep them together and reduce the loss via the mixing with

non-adaptive combinations of alleles.

Thanks to years of karyotyping studies and molecular sequencing of inversion break-

points (Coluzzi et al., 1979; Sharakhov et al., 2006), we are able to determine the origin

of inversions in An. gambiae. However, for many adaptive loci, it is usually hard to dis-

tinguish whether they are retention of ancestral polymorphism, introgression or convergent

evolution of new mutations. The heterogenic nature of genomic evolution of many non-

model organisms is yet to be discovered with the increasing amount of genomic data. As

a future direction, new statistical tests or coalescent models can provide answers to these

questions that is more broadly applicable to any species for which there is some basic

knowledge about the phylogenetic history of the taxa.

5.3 Spatially-explicit demographic inference

Past climatic cycles result in range expansion, contraction, and recolonization in species

that track specific environmental niches (Excoffier et al., 2009a). Whether different ge-

nomic regions preserve signatures of these events depends on their evolutionary rates. Fast

evolving markers may only display patterns of recent migration-drift equilibrium in popula-

tions, while slow evolving markers retain signatures of the deep past. With the inclusion of

a spectrum of markers across the genome, we can infer very complex demographic histories

with greater accuracy. Given these vast and complex data, how can we generate testable hy-

potheses to specifically estimate the influence of historical events on the current population

genetic pattern? In Chapter 4, I developed iDDC (integrative Distributional Demographic

Coalescent) modeling (see details in Chapter 1.3), a flexible framework to generate more

realistic evolutionary models by integrating all available information of the species, such

as distribution records, habitat preference, paleoclimate models, and competition between
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species. In addition, instead of using full likelihood models (e.g., IM program; Hey, 2010),

I conduct model selections through Approximate Bayesian Computation (ABC) (Beaumont

et al., 2002). Analytic formula of the likelihood function is infeasible for complex models,

while ABC methods approximate the likelihood through simulations.

Therefore, the biggest advantage of iDDC modeling is its flexibility, with the intent of

generating species-specific phylogeographic models. The application is very wide in phy-

logeography, population history and conservation genetics. The approach highlights the

importance to have a good knowledge of the ecology of the taxa in order to build reliable

distributional/connectivity models. We demonstrated the success of this methodology to

identify the importance of p temporarily dynamic landscape during Pleistocene in structur-

ing the genetic variation of an Australian lizard, Lerista lineopunctulata, in Chapter 4.

As future work, with the spatial and temporal explicit features of iDDC modeling, I

will apply this method to identify important determinants of disease vectors’ spatial demo-

graphic history. As Anopheles mosquitoes are highly associated with human settlements

and agriculture fields, it is of interest to test the contribution of environmental factors ver-

sus anthropogenic forces in shaping the current genetic patterns of Anopheles species. Re-

searchers have long suspected that the genus experienced pronounced demographic and

range expansion from late Pleistocene to Holocene (Ayala and Coluzzi, 2005). However,

it is not clear whether rapid increase in human land use (agriculture and pasture) around

4000 years ago in Africa (and earlier in Asia) resulted in similar demographic/range ex-

pansion time and magnitude across different Anopheles species. Using iDDC modeling,

range expansion through environmental and/or land-use changes will be built as spatially-

explicit coalescent models, compared with summary statistics from empirical genetic data

and selected in an ABC framework.

Several important questions related to Anopheles vector ecology can be answered by a

comparative phylogegraphy study of Anopheles species using iDDC: 1) whether the con-

tribution of human land use change is correlated with the species’ affinity for feeding on
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human blood (Zahar, 1990)? 2) Whether the stability of the species environmental niche

(i.e., if there is big range shifts or contraction from the last glacial maximum) influences

the current prevalence of the species (Carnaval et al., 2009)? 3) The results can also inform

which environmental factors or land use intensities are good predictors for the projection

of future distributions of Anopheles species under global warming scenarios (Sinka et al.,

2010). Thus, by studying past demographic histories in a comparative and spatially and

temporally-explicit framework, we can not only understand the vectors’ habitat adaptation

histories but also predict their regional epidemiological significance in the future. Prelimi-

nary results showed that climatically suitable areas did not go through dramatic expansion

or contraction based on niche modeling reconstruction in Anopheles gambiae and Anophe-

les dirus complex during the last glacial maximum, while the land use model predicted that

suitable areas dramatically increased from 3000 years ago (Fig. 5.1), with the magnitude

high in Africa than Asia. A comparison of range expansion signals in empirical genetic

data will elucidate whether the species tracked the environmental or land-use changes.

To conclude, the thesis aimed to identify processes that generated patterns with the

inclusion of biological realism. The thesis took advantage of the increasing availability of

large genomic data, advancement in statistical methods as well as integrated information

from cytology, ecology, paleo-climatology, and anthropology. As I stated in the thesis

introduction, in the era of ecological genomics, this work is only the beginning of a new

methodological burst.
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Figure 5.1: Habitat reconstruction of Anopheles species based on Ecological Niche Mod-
eling (ENM) and Human land use changes. (a) Current and future predictions of species’
distribution using MaxEnt model (Phillips et al. 2008) based on habitat suitability. (b) folds
of increase in land use (i.e., pristine habitats converted into agriculture and pasture lands)
in climatically suitable regions for Anopheles gambiae and An. dirus.
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APPENDIX A

Supplementary material of Chapter 2

A.1 Supplementary results

Population genetic structures on collinear and inverted regions 667 Anopheles gam-

biae complex mosquito samples were collected at six sites in Cameroon (Fig. A.1, coor-

dinates listed in Table A.1). They represent gradient changes in habitats (from forest, wet

to dry savanna), which boast the highest diversity of polymorphic inversions within the

species (previous collection data from PopI database: https://grassi2.ucdavis.edu/). Molec-

ular identification showed that proportions of An. arabiensis increase from south to north.

Only 6 An. colluzzi were found (Coetzee et al., 2013, previously known as the M form of

An. gambiae; [[) in Mbe, while the rest were An. gambiae (previously known as the S form

of An. gambiae). We selected 259 An. gambiae individuals (40-60 individuals with good

DNA qualities per population except for Bankim, Table A.1) and 8 An. arabiensis, prepared

individually-barcoded double digest Radseq libraries (Peterson et al., 2012), and generated

two lanes of 100bp paired-end sequencing reads on Illumina HiSeq2000 platform.

After filtering for unmapped or ambiguously mapped reads and loci with low coverage

per sample or low presence across samples, a total of 25,966 loci were mapped onto Chro-

mosome 2, 3 and X. An. gambiae has a nucleotide diversity (π) of 0.01024 4.0E-5, while

π of An. arabiensis is 0.00888 4.7E-5. One SNP per locus with at least 1000bp between

them were selected for PCA analysis to detect population genetic structure of the species.

95



Table A.1: Collection sites, coordinates and sampling sizes of Anopheles gambiae.

Population Latitude Longitude Sample size
MBE 7.78 13.55 89
NGOUNDERE 7.48 13.55 74
MEIGANGA 6.55 14.26 60
MBAKAOU 6.37 12.76 63
BANKIM 6.05 11.40 4
BAFOUSSAM 5.48 10.59 106

When PCA were performed on all individuals in collinear regions, we found three clusters

of individuals consistently across all chromosomes: 1) one big cluster of individuals from

all populations; 2) one cluster of individuals from subset of Mbakaou (blue dots in A.2);

3) An. gambiae as a separate cluster (red dots in Fig. A.2). When the latter two clusters of

individuals were excluded, PCA showed no apparent geographic structures among any pop-

ulations (Fig. A.3) and DAPC analysis had highest support for one group (K = 1) of all in-

dividuals. It is intriguing to find a very distinctive population within molecularly-identified

An. gambiae individuals in Mbakaou. However, since our goal is to identify inversion

associated selected regions rather than population specific effects, we excluded these in-

dividuals for the following analysis. Contrary to collinear regions, when individuals are

clustered by SNPs from 2La (2L: 20524058-42165532) or 2Rb (2R: 19023925-26758676)

regions, three clusters of individuals can be seen from first PCs (explaining 20.3% and

11.9% of the total variance respectively, Fig. A.4a, d). DAPC results supported K=3 as the

most likely number of genetic clusters (Fig. A.4b, e). When compared to molecular kary-

otyping results, the three clusters match nicely to inverted homokaryotypes (I/I hereafter),

heterokaryotypes (I/S) and standard homokaryotypes (S/S) (Fig. A.4c, f).
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Figure A.1: Sampling locations and species composition of Anopheles gambiae species
complex. The area of each pie chart correspond to the sample size. Map color from blue to
red stands for humid to dry areas.
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(a)   2L-collinear (b)     2R-collinear

(c)   3L (d)     3R (e)    X

Figure A.2: Principle component analyses using SNPs in different collinear genomic re-
gions. Color of the dots represent different populations. Red dots are individuals of An.
arabiensis.
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(a)   2L-collinear (b)     2R-collinear

(c)   3L (d)     3R (e)    X

Figure A.3: Principle component analyses of An. gambiae using SNPs in different collinear
genomic regions.
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Figure A.4: Principle component analyses of An. gambiae using SNPs from 2La and 2Rb.
Left and Right panels are the result for 2La and 2Rb, respectively. Top panel is the result
for PCA clustering of individuals from different populations. Middle panel finds the best
number of clusters based on BIC scores. The bottom panel shows how divergent each
cluster is from each other on the discriminant function space.
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APPENDIX B

Supplementary material of Chapter 3

Figure B.1: Relationship between number of adaptive alleles, n, and selective advantage of
inversion, λ−1 based on Eq. 3 in Kirkpatrick and Barton (2006). Each line represents a set
genetic length (from 0.01 cM to 10 cM). Alleles are assumed to be evenly spaced between
each other, so that the recombination rate between each pair of loci, r, can be estimated
using Kosambi’s map function.
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APPENDIX C

Supplementary material of Chapter 4

Figure C.1: Root Mean Square Error (RMSE) of parameter estimation against number of
PLSs included under four demographic models: a) IBD, b) cENM, and c) dENM.
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Table C.3: Settings for NGen sequence assembler (DNASTAR) used for the 454 dataset in
the discovery of polymorphic loci.

Categories Parameters Settings
Repeat Max Mer Gap 10
Repeat Match Size 17
Repeat Min End Flag Len 25
Repeat Min Flag Length 50
Repeat Min Mer Match 2
Quality End Region 5
Quality Maximum uncalled bases 2
Quality Minimum Average High Quality 22
Quality Minimum Average Low Quality 20
Quality Minimum End Basepair Quality 15
Quality NTrimWinLength 7
Quality Window Length 30
Alignment Fixed Coverage 20
Alignment Default Quality 15
Alignment Gap Penalty 75
Alignment Genome Length 10000000
Alignment HaploidSNP FALSE
Alignment HaploidThreshold 0
Alignment LowCoverageThreshold 0
Alignment Match Score 10
Alignment Match Window Length 50
Alignment Match Repeat Percent 150
Alignment Max Gap 15
Alignment Max Usable Count 25
Alignment Match Size 19
Alignment Match Spacing 20
Alignment Minimum Match Percent 85
Alignment Mismatch Penalty 15
Alignment Skip Realign FALSE
Alignment SNP Match Percentage 90
Alignment SNP Passes 2
Alignment Split False Joins FALSE
Alignment Split Template Contigs FALSE
Alignment Template Default Quality 500
Alignment Use Repeat Handling TRUE
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Table C.4: Length of each locus and sampling per populations for each locus.

Populations
Gene Length CB C P SB ZU SM Total Genbank Accession No.
ATP 490 16 40 40 28 24 26 174 KC545970 - KC546143
BACH1 1218 16 40 32 24 18 22 152 KC546144 - KC546295
GAPD 630 12 30 22 19 12 20 115 KC546296 - KC546411
L17 178 16 40 40 28 24 26 174 KC546412 - KC546585
L25 276 16 38 40 28 26 26 174 KC546586 - KC546759
L37 234 14 28 16 16 24 22 120 KC546760 - KC546879
L74 265 14 34 34 24 22 26 154 KC546880 - KC547035
L101 367 6 12 12 14 8 22 74 KC547036 - KC547109
L110 378 14 24 18 14 16 16 102 KC547110 - KC547211
L115 543 14 38 40 26 22 24 164 KC547212 - KC547375
L145 259 14 26 20 24 14 14 112 KC547376 - KC547487
L169 587 14 36 36 18 14 18 136 KC547488 - KC547623
L218 180 6 20 18 6 18 26 94 KC547624 - KC547717
L269 302 14 36 26 20 22 20 138 KC547718 - KC547855
L272 212 12 38 42 28 20 16 156 KC547856 - KC548011
L308 369 14 34 28 22 22 22 142 KC548012 - KC548153
L323 341 16 36 38 26 18 26 160 KC548154 - KC548313
L426 154 16 34 28 26 24 26 154 KC548314 - KC548467
L907 222 16 40 40 24 18 24 162 KC548468 - KC548629
L926 169 16 38 36 28 26 26 170 KC548630 - KC548799
L1088 179 16 40 42 28 26 26 178 KC548800 - KC548977
NTF3 656 14 30 32 20 20 20 136 KC548978 - KC549113
PRLR 557 14 38 34 28 22 26 162 KC549114 - KC549275
PTPN12 865 16 40 34 26 22 26 164 KC549276 - KC549439
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Table C.5: Soil properties used in the construction of soil layers for the PCA analyses (for
detailed description see McKenzie et al. 2000.

Variable Type Description
Aclay50 integer median A horizon clay %
Bclay50 integer median B horizon clay %
Athick50 numeric median A horizon thickness (m)
Bthick50 numeric median B horizon thickness (m)

Solumthick50 numeric median solum thickness (m)
Astruct50 integer median A horizon grade of pedality
Bstruct50 integer median B horizon grade of pedality

A Ks integer
A horizon log10

(saturated hydraulic conductivity mm/hr)
- 50th percentile

AKserror integer log10(A Ks) error

B Ks integer
B horizon log10

(saturated hydraulic conductivity mm/hr)
- 50th percentile

BKserror integer log10(B Ks) error

Calcrete Boolean
absence (0) or presence (1) of
calcrete in or below the profile

Nutrients integer
nutrient status low (1), moderate

(2) and high (3)
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Table C.7: List of summary statistics used in ABC analyses.

Summary Statistics Description Number
STOT segregating sites in the species 1

S segregating sites in each population 6
PrS private segregating sites 6
p pairwise genetic differences within each population 6

FST pairwise FSTvalues among populations 15
total 34

Table C.8: Pairwise Fst of the six populations ordered from north to south (lower triangle)
and the significance (upper triangle). Haplotype distances between individuals are calcu-
lated using Tajima and Nei’s correction. Significance of each Fst is assessed with 1023
permutations. +, significant (P < 0.05); −, non-significant. Note that Fst between P and
SB is the only non-significant one.

CB C P SB ZU SM
CB + + + + +
C 0.298 + + + +
P 0.247 0.095 − + +
SB 0.291 0.097 0.020 + +
ZU 0.425 0.262 0.178 0.237 +
SM 0.550 0.392 0.355 0.421 0.219
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C.1 Supplemental methods:

Conditions used for simulation under each of the models tested with ABC:

(i) IBD model: simulations are started from the current distribution. Migration and

population growth are allowed each generation, but there is no suitability differences among

demes (i.e., the carrying capacity remains the same across grid cells). In other words,

the population densities and the number of emigrants from a specific deme that migrated

into the surrounding cells were uniform across surrounding cells (i.e., they did not differ

according to cell-specific suitabilities).

(ii) cENM model: expansion of populations start at current distributions as with the

IBD model. However, the suitability of each cell follows the current ENM. Consequently,

the local carrying capacity of a cell is proportional to its suitability score, as is the number

of emigrants.

(iii) dENM model: populations start expansion at the LGM refugia areas (i.e., areas

with highest suitability) predicted from ENM based on paleoclimatic data from the LGM

21thousand years ago. Maps of population carrying capacities change overtime (see Brown

and Knowles, 2012), with the demographic simulations informed during the first and last

1/3 of the generations from the ENM from the past and present, respectively, and a compos-

ite map (i.e., the average habitat suitabilities from the past and present ENMs) informing

the demographic simulations for the intervening generations.

Given that the species lives in coastal sand plain or dunes, it is very unlikely for the

species to migrate to majority of the inland area. Thus, we coded areas with predicted

suitability less than 0.01 to be inhabitable in all models. The number of generations for

expansion and migrations in the models were as follows: 7000 years before the present for

the IBD, cENM, and the last third of the dENM. The dENM model was run for a total of

21,000 years before the present to account for the shifting distributions associated with the

last glacial maximum (as detailed above). We used one generation per 10 years as a gener-

ation time to reduce the length of the time forward simulations (i.e., the demographic simu-
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lations conducted in SPLATCHE2; Currat and Excoffier, 2004). The maximum coalescent

time (a parameter in the program Splatch2 that specifies when gene lineage coalescence

across patches must occur) was set to be much greater than 4N for all models to avoid the

forced coalescence to a single common ancestor.

We note that any biological interpretation of absolute parameter values of the mutation

rate and migration rate would therefore need to be scaled according to realistic generational

times for L. lineopuntulata, although this has not been studied empirically.
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