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ABSTRACT 

 

 

Nuclear reactor simulation is a complex multiphysics process which involves solution to 

equations describing the neutronic, thermal-hydraulic, and fuel thermo-mechanical behavior of 

the core components. Typically in current generation reactor physics analysis these three 

component areas are given separate consideration or are at best loosely coupled. Within this 

work, a methodology for tightly coupling the core neutronics code PARCS, thermal-hydraulics 

code PATHS, and fuel rod simulator code FRAPCON was developed. This coupled code 

package, referred to as FRAPARCS, was applied to two fuel depletion problems: a pin cell and a 

5x5 assembly mini-core. The results of the depletion calculations indicate that standalone 

PARCS does not adequately capture the evolution of fuel rod behavior which influences the 

Doppler fuel temperature used in cross section evaluation, and as a result significant differences 

in computed core performance can be seen. In particular, the behavior of the fuel-cladding gap 

and associated temperature drop was found to be important. 

FRAPARCS was then applied to the pin cell calculation to evaluate the uncertainty and 

sensitivity of the nuclear performance of the core due to the influence of fuel thermo-mechanical 

models available for manipulation in FRAPCON. A sensitivity study was conducted to 

determine which fuel models were influential on the neutronics outputs; we determined that fuel 

thermal conductivity, fuel thermal expansion, cladding creep, and fuel swelling had an important 

influence on the core Doppler temperature and reactivity. Additionally, the heat transfer 

coefficient was found to be important. Then, FRAPARCS was integrated within the DAKOTA 

uncertainty package. Two varieties of sampling-based methods (Random and Latin Hypercube 

Sampling) and two stochastic expansion methods (Polynomial Chaos Expansion (PCE) and 

Stochastic Collocation SC)) were used to evaluate the uncertainty in the nuclear parameters 

throughout core depletion. We found that the uncertainty in the core reactivity relative to the 

unbiased case was approximately 60 pcm at the beginning of depletion, reducing to 

approximately 15 pcm by the end of life, due to the dampening effect of plutonium buildup
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reducing the importance of fuel uncertainty on high-burnup fuel. We found that the response 

statistics could be well-estimated by a first-order tensor-product PCE expansion, only requiring 

32 calculations. 

 Using variance-based decomposition, we found that initially the most important models 

contributing to nuclear variance were the thermal conductivity and fuel thermal expansion 

models. Once the fuel-clad gap closes, however, fuel thermal conductivity uncertainty dominates 

the overall variance in the output. We also found that the importance of input interactions on 

overall variance is negligible; at worst case, interaction  effects contribute ~3% of the overall 

variance in both Doppler temperature and reactivity. 
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CHAPTER 1 

 

 

Introduction 

 

 

1.1 Motivation 

Nuclear reactor core analysis requires accurate, reliable and efficient simulation software 

to predict the behavior of reactor systems under normal operation and transient scenarios. This 

need exists because the expense, regulatory hurdles, and inherent potential safety issues that exist 

in the construction and operation of nuclear facilities preclude the ability to construct full-scale 

experimental facilities to evaluate system behavior under the full range of postulated conditions. 

In the nuclear industry, computer simulations are used (validated with smaller-scale separate and 

integral effects tests subject to applicability and scaling analysis) to quantify the behavior of 

nuclear systems and the margins that exist to failure under all plausible scenarios. 

The purpose of this research is to investigate methods to quantify the uncertainty in 

nuclear design computations that arise from uncertainties in fuel performance during the 

depletion of the reactor fuel. One of the primary goals of this research is to provide these 

estimates using current-generation reactor design and analysis tools rather than some of the more 

advanced methods currently under development (for example, consider the suite of methods 

being developed under the auspices of the Department of Energy’s CASL program [1]). The 

primary reason for not using advanced codes is they do not yet have as extensive validation base 

as the current generation of codes. Furthermore, current generation codes are fast running, which 

is advantageous for performing uncertainty analysis. 

The principal problem being addressed in this work is core depletion, in which the 

coupled neutron/nuclide field in the core is evaluated as the fuel undergoes irradiation in the 

power production process. There are both economic and safety requirements that must be met by
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the core throughout the depletion cycle. The economic requirements include energy production 

over a specified time period and efficient fuel utilization are examples; while the safety 

requirements include maintaining the required shutdown margin as well as thermal and material 

limits within regulatory criteria. By far the most common tool used in the nuclear industry to 

compute such quantities is a two energy group, nodal diffusion-based core simulator which 

includes neutronics modules, depletion modules, and simplified thermal-hydraulics modules. 

Common examples of such software include PARCS, SIMULATE, and ANC ([2], [3], [4], 

respectively).  

The following codes will be used in the work to evaluate the effect of the thermo-

mechanical fuel performance parameters on the fuel during depletion: 

 

 FRAPCON-3.4 is used to evaluate the evolution of nuclear fuel rods throughout the 

depletion process, including the computation of temperature distribution and mechanical 

and chemical changes within the fuel pellets and cladding [5]. 

 PARCS is used to compute the neutronics performance of the core, including core 

reactivity and power distributions throughout the fuel burnup cycle [2]. 

 PATHS is used to obtain the thermal-hydraulic behavior of the coolant within the reactor 

core [6]. 

 The DAKOTA code package is used to perform uncertainty analysis, including estimates  

of correlation parameters between the fuel performance input and core 

neutronics/thermal-hydraulics output [7]. 

 

The physics codes above were developed under contract for the US Nuclear Regulatory 

Commission (NRC) and are representative of methods currently used by the nuclear industry for 

licensing basis design calculations. PATHS is provided as a library within PARCS and is the 

default method for computing the thermal hydraulics of the core during depletion. The first step 

in the completion of this thesis was to develop a method to couple FRAPCON to 

PARCS/PATHS which was achieved using the scripting tool Python [8]. Then, the coupled 

codes (referred to as FRAPARCS) were implemented within the DAKOTA framework, and a 

number of different uncertainty approaches available in the code package were used to 

investigate the range of correlation between the fuel parameters and the resulting 

neutronics/thermal-hydraulics output.  Further details are provided in the appropriate chapters. 

The purpose of this introductory Chapter is to provide a brief description of the ways that 

nuclear reactors are modeled and to provide a demonstration of the impact of fuel performance 

on reactor depletion to help establish the motivation for the research here.  This was achieved by 
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depleting a core model of a Pressurized Water Reactor (PWR) using PARCS/PATHS over a 

range of possible gap conductances.  The differences in core reactivity, fuel temperatures, and 

power distribution are then discussed. Finally, the introductory chapter ends with an outline and 

discussion of the rest of the thesis. 

 

1.2 Reactor Analysis Methods 

A principal challenge in relying on computer simulations for reasonable assurance that 

nuclear power plants are operated safely (e.g. there is no release of fission products from the fuel 

rods) is that reactor simulation is a complex multi-physics problem.  Thus, methods have been 

developed over the last several decades of reactor analysis to simplify the equations and methods 

in order to insure that calculations are tractable on the computer resources available at the time, 

while simultaneously maintaining assurance that the accuracy of simulation results was still 

“acceptable.” In the past, one of the key methods used to reduce the complexity of the models is 

to perform operator splitting, in which the different classes of physics that represent reactor 

behavior are divided and simulated individually, with simplified feedback between them [9]. 

With appropriately conservative treatment of these interactions, margin between failure criteria 

and the simulation results is assured.  The downside is that excessive conservatism can lead to 

inefficient plant operation and economic penalties. As noted below, advanced methods are 

currently under development to remove some of the conservatism. 

1.2.1 Simulation Needs and Approaches 

There are at least three classes of physics that are important in modeling the behavior of a 

reactor core: the neutronics, which is concerned with determining the distribution of neutrons 

and nuclides within the core, which therefore determines the power source; the thermal-

hydraulics, which is concerned with the mass, momentum, and energy distribution of the reactor 

coolant, providing the sink for energy generated within the core; and the reactor fuel thermo-

mechanics, which is concerned with the temperature distribution within the reactor fuel rods and 

the mechanical and chemical changes that are induced within it under irradiation. There is some 

overlap between these different areas; the power distribution obtained from the neutronics 

solution drives the temperature and material changes in the fuel thermo-mechanics and the fluid 

conditions computed by the thermal-hydraulics, which then in turn influence the temperatures 
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used in cross section evaluations to determine the power distribution and reactivity. For the sake 

of simplicity, these interactions are often simplified or treated conservatively; however, this 

treatment can introduce unwelcome ambiguity depending on the particular situation being 

evaluated. 

 To illustrate this point, consider that within the reactor core analysis process, the first 

step might be to generate power distributions using the core simulator with very limited 

treatment of fuel changes with burnup. The range of power distributions experienced by all the 

rods in the reactor core might then be passed to a fuel thermo-mechanical code to evaluate their 

behavior against the design criteria. There are two primary competing effects driving fuel 

temperature changes with burnup: first, the cladding creeps down and the fuel swells, which 

eventually causes contact between the fuel and cladding and tends to drive the fuel temperature 

down; however, the fuel thermal conductivity degrades with burnup, which for a fixed power 

level would tend to drive the fuel temperature up. In either case, by imposing a power 

distribution computed by a code with limited knowledge of these effects in the thermo-

mechanical calculation, the actual fuel temperatures computed may be either higher (which 

would be conservative) or lower (which would be non-conservative) than what would be actually 

experienced. In either case, neglecting this interaction can result in fuel temperatures which are 

not consistent between the different codes used to model the same physical system. This 

ambiguity is understandably undesirable. 

Each of these physics classes provides its own unique set of challenges. For example, 

within the neutronics domain there has been considerable research over the last 50 years which 

has established confidence in the predictions of the coupled neutron/nuclide field.  However, the 

material structure and complexity of the energy dependence of the cross sections involved make 

detailed full core calculations extremely expensive. The challenges within the thermal-hydraulics 

area are primarily the representation of the stress tensor within the Navier-Stokes equations, as 

well as the inherent non-linearity of the fluid field equations. In the thermo-mechanical domain, 

the material models used are often empirical or semi-empirical due to the complexity of 

representing material behavior under irradiation; it is very difficult to represent material behavior 

at a macro-scale based entirely on first principles.  

For Light Water Reactors (LWRs), the common method for dealing with the material and 

cross section complexity in neutronics calculations is to perform the analysis in multiple stages: 
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the process begins with cross section library generation at the pin cell level, which is very basic 

in spatial detail and very fine in energy detail in order to reduce some of the explicit energy 

dependence while still maintaining its effects. Then, lattice physics calculations are performed at 

the fuel assembly lattice level to generate few (usually two) group cross sections that spatially 

homogenize the detailed assembly geometry. The spatial and angular dependence of the neutron 

flux at the lattice physics stage is computed using detailed transport theory. These few group 

cross sections are generated at a number of reactor conditions for use within the core simulator to 

cover the operating range. The core simulator, then, typically uses some low order neutron 

transport approximation such as diffusion theory with these pre-computed cross sections to 

calculate the reactor power distribution and criticality. A summary work which describes this 

process can be found in [10]. 

The process described above requires considerable computation on the front end to 

generate few group cross sections over the anticipated range of temperature and fluid conditions, 

but once computed, reactor core depletion can be simulated in a matter of minutes to a few hours 

using a core simulator such as PARCS. Despite the fact that detailed assembly geometry is 

“smeared” or homogenized into uniform blocks during the calculation, detailed pin-level 

information can be extracted using pin-power reconstruction methods, should this be of interest 

in a particular analysis. Because it is well-understood, relatively inexpensive, and sufficiently 

accurate for economical operation, power reactors in the United States all use some variation of 

this design process to perform their depletion calculations. 

As computer resources have grown in capability, there has been a commensurate growth 

in the complexity of the models (removal of approximations and therefore a more faithful 

representation of the physics involved) and a decrease in the acceptable difference between the 

computed result and the failure criteria (the closer the reactor is operated to the margins, the 

more productive and efficient it is). An illustration of the first point is contained within the DOE 

CASL program; one of the program’s goals is to develop integrated methods that can 

simultaneously simulate a full reactor core with pin-level, transport-based neutronics, detailed, 

finite-element based fuel performance, and subchannel-level thermal-hydraulics [11]. This is an 

enormous problem with billions of degrees of freedom, but with a sufficiently large number of 

computer processors, it is technically feasible. However, the number of facilities across the world 

that have access to such computational resources is very limited, and therefore for the types of 
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routine design calculations performed regularly in the commercial industry, the current methods 

will continue to be used for the foreseeable future. 

1.2.2 Uncertainty Analysis and Multiphysics Simulation 

Related to the advancement of the state of knowledge within reactor technology and the 

desire to recover lost margin in reactor operation has been the movement towards analysis 

methods based on a best-estimate, rather than conservative, approach. The traditional approach, 

particularly for thermal analysis, was to treat uncertainty in particular parameters by biasing 

initial conditions and models in the worst possible direction in order to maximize the 

consequences of a given scenario. The classic example of this philosophy is Appendix K Loss of 

Coolant Accident (LOCA) analysis [12], which dates from the early days of commercial nuclear 

power. The “bounding” approach was based on the belief that, if a reactor simulation predicted 

acceptable results even for this worst case of conditions, then it would survive any potential 

scenario that might be encountered during actual operation. This was the accepted state of the art 

in the nuclear industry for many years. 

The primary difficulty with the bounding approach is that, while in general (but not 

always) adequate margin is assured to failure criteria, it can lead to excessive margin, resulting in 

economic penalties with little real additional safety benefit. Therefore, as the understanding of 

the underlying physics of nuclear power plants and the complexity of the analysis methods has 

improved, more sophisticated “best estimate” methods for margin evaluation were developed. 

The NRC provided guidance to the nuclear industry for the development of best-estimate 

methods for LOCA analysis in the late 1980’s ([13], [14]), which then led to nuclear fuel 

suppliers receiving approval for the use of such methods for licensing analysis [15], [16]. The 

availability of these techniques played a large role in the implementation of thermal power 

uprates for power reactors from the 1990’s through today. 

Since the best-estimate LOCA methodologies matured and were implemented in 

licensing-basis calculations, there have been efforts both to provide for more complete physics 

representation in nuclear reactor system analysis and to better quantify the margins which exist 

within these methods. Beginning in the late 1990’s, the Nuclear Energy Agency (NEA) of the 

Organisation for Economic Cooperation and Development (OECD) sponsored efforts to couple 

system-level thermal-hydraulics codes with transient core simulators for realistic Main Steam 
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Line Break (MSLB) accident analysis [17]. OECD/NEA has also been active in the area of 

neutronics margin quantification, as evidenced by their support of the Light Water Reactor 

Uncertainty Analysis in Modeling (LWR UAM) benchmark problems [18]. Part of this 

benchmarking effort is devoted to determining the influence of fuel thermo-mechanics on 

neutronics behavior (Phase II Part 1), which is one area where the research here intends to make 

a contribution. 

 

1.3 Demonstration Case: PWR Depletion 

In order to assess the potential effect that fuel performance can have on PWR core 

depletion, a full-core depletion was analyzed, based on a model developed to validate PARCS 

against measurements taken during the first cycle of depletion for Surry Power Station Unit 1 

([19], [20]). 

1.3.1 PARCS Model Description 

The base model described the Surry nuclear reactor with parameters consistent with 

measured values at different points throughout the cycle. Surry is a 157 assembly, 3-loop 

Westinghouse PWR operating in Southern Virginia. For the initial cycle, it used a 15x15 fuel 

assembly design and operated at a thermal power of 2441 MW. The core layout including initial 

assembly enrichments is given in Figure 1.3.1: 

 

 

Figure 1.3.1: Surry cycle 1 core map (red: 3.117 wt/o; yellow: 2.572 wt/o; green: 1.868 wt/o) 
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For this sensitivity study, the following simplifications were made in order to provide a 

full-core model that simulated the effect of depletion for a time period characteristic of fresh-to-

fully burned fuel: 

 

 The number of timesteps was modified from values taken from the measurements to 47 

one-month intervals, in order to simulate the effect of depleting the fuel out near its 

licensing limit (allowable peak nodal burnup is 62 GWd/MTU) 

 The core power throughout each depletion step was set to 100%, rather than the measured 

values 

 The boron concentration used through each depletion step was set to zero, because the  

interest for this case was to generate core reactivity vs. time curves, rather than matching 

measured reactivities.  Also, the control rods bank positions were modified to be 

consistent with their full power values reported in [19] 

 The core inlet temperature and flow rate was set to the full power values reported in [19] 

 

In PARCS, the fuel treatment is simplified with material properties and dimensions taken 

as their fresh, beginning-of-cycle values. In addition, the gap conductance (which captures the 

value of the temperature drop across the fuel-cladding gap) is considered to be fixed across the 

core for each assembly type throughout the depletion. This value can have a strong influence on 

the calculated fuel temperatures, which are then used in the PARCS cross section lookup 

routines during calculation of the neutron flux shape. The limitation in the current PARCS 

treatment of fuel behavior is that it treats as static many quantities (such as fuel thermal 

conductivity) that in fact evolve considerably over the course of depletion. This could therefore 

have a significant impact on the prediction of fuel temperatures, which could result in a 

misprediction of the core power shape or core reactivity. The direct evaluation of these effects is 

precluded with standalone PARCS, however, so for the demonstration problem, the only fuel 

thermo-mechanically-related parameter easily available to the user (the gap conductance) was 

used.  

1.3.2 Gap Conductance Calculation with FRAPCON 

In order to perform a sensitivity study on gap conductance a FRAPCON calculation was 

first performed for a pin at core-average conditions (i.e., core-average Linear Heat Generation 

Rate (LHGR) and channel inlet mass flow rate and temperature) and axial power distributions 

representative of a PWR during a 60 GWd/MTU depletion. In this calculation, 9 axial nodes 

were used to represent the fuel rod, which was deemed sufficient for the scoping computation 
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performed here. One of the many outputs from such a calculation is the nodal gap conductance (a 

heat transfer coefficient-like quantity that represents the heat flow out of the fuel region into the 

cladding). Figure 1.3.2 shows the variation of gap conductance from this calculation for each of 

the 9 axial nodes during the irradiation of the fuel: 

 

Figure 1.3.2: FRAPCON prediction of nodal gap conductance for Surry-1 depletion 

 

From this figure, the behavior of the gap is clearly evident. Early in life (prior to about 

200 days), the gap is open between the fuel and cladding for all nodes; this corresponds with a 

gap conductance on the order of 5000 W/m
2
-K. As burnup accrues, the fuel begins to swell 

outward and the cladding creeps down onto the fuel; this causes the gap to close and the 

conductance to increase by several orders of magnitude (up to around 200,000 W/m
2
-K), staying 

there for a large portion of the depletion. The oscillation seen for certain nodes is due to the 

evolution of the axial power shape with depletion, which causes the fuel and cladding to strain in 

and out of contact. At approximately 800 days, the gap conductance begins to drop, and by end 

of life is roughly half of the maximum; this is due to fission gas release late in life, which 

reduces the gas gap conductivity (xenon and krypton, in particular, have a much lower 

conductivity than the helium gas fuel rods are initially filled with) and causes a resulting decline 

in the gap conductance. This figure provides the possible ranges of gap conductance that can be 

experienced by the fuel during depletion, and thus provides a basis for the following sensitivity 

study. 
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1.3.3 Neutronic Behavior as a Function of Gap Conductance 

Using the results of the FRAPCON calculation as a reference, a range of gap 

conductances between the beginning-of-cycle minimum value of roughly 5000 W/m
2
-K through 

the middle-of-cycle maximum value of 200000 W/m
2
-K were input into PARCS and used to 

represent the gap conductance for the entire core throughout the whole 47 month fuel depletion 

history. Of interest were the following neutronic quantities: 

 

 Core average Doppler temperature 

 Reactivity (keff) 

 Axial peaking factor Fz 

 Radial peaking factor Fxy 

 Total peaking factor Fq 

 

It is important to keep in mind that, in this sensitivity study, the gap conductance was 

used as a surrogate, easily controllable quantity to represent a range of fuel-related effects. 

During an actual reactor depletion, each node in the core will have a distinct gap conductivity 

(and other fuel-related quantities) based on its individual power and exposure history. The 

treatment used here is very coarse with the purpose of showing that there is a noticeable impact 

on the neutronic quantities when there are significant variations in the thermo-mechanical 

properties, therefore justifying development of more explicit fuel representation in depletion 

analysis. 

With this in mind, the results of the sensitivity study for the Doppler temperature is 

presented in Figure 1.3.3. The differences in core reactivity and peaking factors are computed 

relative to the outputs of the Beginning of Cycle (BOC) gap conductance case (using 5000 

W/m
2
-K) and are presented in Figure 1.3.4(a)-(d). 
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Figure 1.3.3: Doppler temperatures from gap conductance sensitivity study 

 

It is clear from this figure that the gap conductance has a direct, inverse relationship to 

the Doppler temperature; as expected, the higher the gap conductance, the lower the fuel 

temperature becomes. Over the range of gap conductances considered, the difference can be as 

much as 140 K; also evident is an asymptotic convergence to the value at 200,000 W/m
2
-K. The 

interpretation of this is that at a certain point, the gap conductance’s effect on (at the very least) 

core average Doppler temperature becomes fairly small (i.e., the difference in gap temperature 

drop computed between a calculation run with, for example, 5000 W/m
2
-K and 7000 W/m

2
-K 

would be much greater than the difference in a calculation run with 150,000 W/m
2
-K and 

152,000 W/m
2
-K).The reason for this is that when the fuel and cladding are in sufficient contact, 

the temperature drop across the gap becomes small enough that the impact of changing the value 

on the fuel surface temperature of the gap conductance becomes vanishingly small, which (in the 

absence of consideration of fuel thermal property changes with burnup) results in a decreasingly 

small impact on the overall Doppler temperature. It is important to keep in mind here that the 

value under comparison is the core average Doppler temperature which is an integral quantity 

that characterizes the whole core behavior. Local temperatures may show much greater variation 

depending on the conditions that each individual node experiences. 

The impact of the differences in Doppler temperature on the reactor physics parameters 

are presented in the following Figure: 
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(a) Reactivity 

 

(b) Fz 

 

(c) Fxy  

 

(d) Fq  

 

Figure 1.3.4: Neutronics outputs relative to 5000 W/m
2
-K 

 

From Figure 1.3.4(a), we see that the difference in core reactivity relative to the BOC gap 

conductance, presented in 10
-5

 Δk (i.e., pcm), can be significant. Because of the lower Doppler 

temperatures, the core k-effective predicted by PARCS is several hundred pcm higher using the 

best estimate FRAPCON gap conductances. The difference in approximately 140 K in Doppler 

temperature translates to a reactivity difference of approximately 425 pcm at the initial point in 

cycle, decreasing as the core is burned and plutonium buildup in the hotter cases contributes to 

decrease the difference. As a point of comparison, the reactivity insertion required to render a 

pure uranium system prompt supercritical is approximately 640 pcm; therefore, these results 
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show that the reactivity differences can be quite significant. As expected, at some point fractional 

changes on gap conductance start to have an asymptotically small impact on core criticality; this 

is because the fractional changes in core average temperature become very small. Even from this 

simplified analysis, it is evident that there can be a non-negligible impact (order of hundreds of 

pcm) on the reactivity resulting directly from the fuel temperature variations that are observed.   

This is  particularly evident for gap conductances that characterize low-burnup fuel. 

The effect of the gap conductance on the various peaking factors is shown in Figure 

1.3.4(b)-(d). It is evident that early on, the gap conductance changes do cause somewhat 

significant differences, particularly in the axial direction (of magnitude ~4%), but as the core 

burns through the initial portion of the cycle the power shape smooths out and the differences 

become less substantial (< 1%). Given the local nature of peaking factors, and the global nature 

of how the gap conductances were applied to each of the different depletion calculations, it is 

difficult to draw a great deal of physics-based insight into the behavior of the system. What is 

clear, however, is that modifying fuel thermal properties can have a measurable impact on these 

parameters, and further study with a more detailed model is warranted to fully understand the 

phenomena. 

1.3.4 Sensitivity Study Conclusions 

In this section, a preliminary sensitivity study was performed of the various neutronics 

behavior to the fuel gap conductance. A core-average fuel rod computation using the fuel 

thermo-mechanical code FRAPCON was performed and used to provide the variation in the gap 

conductivity to PARCS.   A full core PWR model was then depleted in PARCS over a 47 month 

period, and the resulting changes in the neutronic parameters relative to a beginning of life value 

of gap conductivity were tabulated. The conclusions from this preliminary study were that the 

core can show noticeable changes in both integral (core-averaged Doppler and k-effective) and 

local (peaking factor) parameters depending on how the fuel is represented, but the exact extent 

of those changes is still unclear because gap conductivity (and other fuel properties) are 

fundamentally local phenomena, and the changes were applied on a global (core-wide) basis. 

That being said, it is clear that the effects can be significant, and further exploration of 

their natures using a more detailed approach is warranted. This forms the basis for the 

development of a coupled PARCS/PATHS/FRAPCON tool that can be used to investigate the 
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importance of representing the fuel properties (and therefore temperatures) more accurately on a 

local level that can accommodate the heterogeneous burnup distribution in the fuel that evolves 

during the burnup cycle. 

 

1.4 Outline of Thesis 

The purpose of this introductory chapter was simply to provide the overall context for the 

research performed in this thesis. The remainder of the thesis is organized as follows:  In Chapter 

2, a literature review is presented to provide background for this work within the framework of 

current reactor analysis methods. In Chapter 3, a detailed description of FRAPCON and 

PARCS/PATHS is provided, as well as the algorithm modifications and coupling methodology. 

The process of integrating the coupled code package FRAPARCS within the DAKOTA 

uncertainty framework is also discussed. In Chapter 4, the results are presented of a pin cell 

neutronics model and a mini-core for depletion to demonstrate the effectiveness and impact of 

the coupled code system relative to executing them in the traditional sequential mode. In Chapter 

5, the theoretical basis is presented for the uncertainty and sensitivity analysis methods employed 

to characterize specific fuel parameters which are important to neutronics depletion calculations. 

In Chapter 6, the implementation of these methods using the coupled code system and the 

DAKOTA package is described. Finally, in Chapter 7, overall conclusions and suggestions for 

further work are provided. 
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CHAPTER 2 

 

 

Review of Literature 

 

 

2.1 Introduction 

This chapter reviews the state of the art in coupled fuel mechanical/neutronics/thermal-

hydraulics calculations, and provides a context for the research described in this research.  First, 

an overview of the different codes available for fuel thermo-mechanical calculations is 

presented. Then, a description of the codes and methods available for reactor depletion 

calculations is given. There are two parts to this description: first, the methods used in 

“traditional” reactor analysis (i.e., lattice physics transport to generate assembly cross sections, 

which then provide input to diffusion-based core calculations) are discussed. Second, the more 

modern, full core transport methods are described. Following the discussion of the codes and 

methods for individual fields, an overview of multiphysics calculations within nuclear 

engineering will be provided. Finally, a discussion of methods available for sensitivity and 

uncertainty analysis is presented, followed by a description of relevant nuclear applications. 

 

2.2 Fuel Performance Analysis Codes 

During depletion nuclear fuel undergoes many thermo-mechanical changes as a result of 

exposure to the temperature, pressure and radiation fields present within the reactor while 

operating. In order to predict the magnitude of these changes, and to have reasonable assurance 

that fuel rods will maintain their integrity during operation, a number of computer codes have 

been developed by various entities over the years. Fuel modeling is a very complex process, and 
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each code uses a number of approximations and adjustments to capture the physics appropriately. 

Rashid, et al, provide an overview of the history of fuel performance modeling, as well as the 

current plans for the immediate future [21]. They present a history of fuel performance codes, a 

description of the material and mechanical models typically embedded within with codes,  and 

describe the need to develop fully three-dimensional, more mechanistic- (as opposed to 

empirically-) based constitutive materials. Figure 2.2.1 illustrates the complexity of fuel 

modeling by demonstrating the inter-connectivity of all the relevant physics. 

 

 

Figure 2.2.1: Complexity of fuel performance modeling (taken from [21]) 

 

Any nuclear fuel rod performance code must have models, correlations, and 

computational structure to account for each of these phenomena in order to accurately predict the 

integral behavior of the fuel. Below is a discussion of several of the fuel rod performance codes 

that are currently under development and used within the international community for LWR 

analysis. For the purposes of this work, the NRC code FRAPCON is used; however, there are 

many other fuel codes with different methods and degrees of fidelity to the basic physics used in 

the codes. For the sake of completeness, brief descriptions of the other available tools and some 

of their applications are included. 
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2.2.1 FRAPCON 

FRAPCON-3.4 is the steady-state fuel rod performance code with development 

sponsored by the U.S. NRC and which is currently maintained by Pacific Northwest National 

Laboratory [5]. It is capable of simulating steady-state (depletion) and slow transient (on the 

order of minutes to hours) fuel behavior. The modeling approach is considered “one and half” 

dimensional, in that the coolant temperature distribution is computed up the subchannel 

surrounding the fuel rods. The heat conduction solution is radial, but the stacked nodes are 

coupled through the coolant temperature distribution and the computed axial elongation of each 

node. FRAPCON-3.4 models the following phenomena/behavior: conduction of heat generated 

in the fuel through the fuel, fuel-cladding gap, cladding, and into the coolant; plastic and elastic 

deformation of the fuel pellet and cladding; fuel-cladding mechanical interaction (FCMI); fission 

gas generation and release into the gap and fuel rod plenum; and cladding oxidation and 

hydrogen uptake. Detailed descriptions of these calculations will be provided in the next chapter; 

here we provide a brief summary. 

NRC/PNNL have published numerous reports describing the methods within FRAPCON, 

comparisons of FRAPCON predictions to experimental data, and applications of FRAPCON to 

fuel licensing efforts. For example, FRAPCON-3.4 was used to support the design certification 

of Westinghouse’s AP-1000 [22], General Electric’s ESBWR [23], and Mitsubishi’s US-APWR 

[24]. It has also been used for power uprates [25] and new fuel designs [26]. 

There are numerous additional applications and modifications to FRAPCON described in 

the literature. FRAPCON-3.3 was used by Herranz, et al, in a code-to-code comparison study of 

power ramp scenarios within the SCIP program (along with FALCON-PSI, ALCYONE-V1.1 

and STAV-7.3) [27]. The comparisons included prediction of cladding oxidation, diameter, and 

elongation for four high-burnup fuel segments that underwent ramp tests in the Studvik R2 

reactor. In general, FRAPCON-3.3 did not perform as well as the other codes investigated in 

predicting the phenomenon investigated; as the authors pointed out, the type of ramps simulated 

were well outside the user guidance for maximum allowable local power change within a time 

step. Additionally, there were limitations in the mechanical models within FRAPCON-3.3 that 

only considered data from the 1970’s and 1980’s. The version of FRAPCON used within this 

thesis (FRAPCON-3.4) includes modifications that have addressed some of these concerns [28]. 
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FRAPCON has also been modified for more advanced fuel applications. For example, 

Karahan, et al, extended FRAPCON into FRAPCON-EP for high temperature and high burnup 

applications [29]. Feng, et al, then extended and applied FRAPCON-EP to model the behavior of 

uranium nitride fuel [30]. FRAPCON has also been modified to model thorium oxide based fuel 

(Loewen, et al [31]; Long, et al [32]). Furthermore, Vega et al modified FRAPCON to utilize 

atomistic UO2 thermal conductivity and thermal expansion models; they found that, while radial 

temperature profiles were well-predicted, the pellet surface displacement was not. The 

shortcomings were likely due to shortcomings in capturing the fuel inter-atomic potential [33]. 

A study using FRAPCON/FRAPTRAN that is of particular interest in this work was 

conducted by Geelhood et al [28], in which the models and correlations in FRAPCON-3.3 and 

FRAPTRAN-1.3 were investigated for conservative bias and compared with the most recently 

available data within the open literature. The models that required modification to better capture 

their intended phenomena were updated in the FRAPCON-3.4 and FRAPTRAN-1.4 code 

releases (in 2011). In addition, a sensitivity study of various manufacturing and modeling 

parameters was carried out to determine the models and input data that had the most influence 

over the outputs of regulatory interest (such as oxide thickness, cladding hydrogen content, 

maximum cladding strain, peak rod internal pressure and maximum fuel temperature). The 

results of this study lead to the inclusion of eight additional “uncertainty parameter” inputs in 

FRAPCON-3.4 which allow the user to modify certain models within the computational scheme 

(for example, allowing the user to bias the fuel thermal conductivity up or down a given 

amount). Using these additional inputs, it is possible to perform a statistical evaluation of fuel 

rod performance and to determine distributions and confidence intervals on possible outputs. 

This capability will be employed within the work described in the subsequent chapters. 

2.2.2 FRAPTRAN 

FRAPTRAN-1.4 is the transient companion code to FRAPCON, which is used to predict 

fuel rod performance under rapid transient conditions (i.e., on the order of seconds to minutes) 

[34]. It computes the temperature and deformation history of a fuel rod undergoing rapid changes 

in flow conditions and/or power level. The phenomena modeled by FRAPTRAN includes: heat 

conduction; heat transfer from cladding to coolant; elastic and plastic fuel and cladding 

deformation; cladding high temperature oxidation; fission gas release; and fuel rod gas pressure. 
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FRAPCON is designed to be used as an initialization tool to provide high-burnup initialization 

for transient FRAPTRAN calculations. 

One application of FRAPTRAN in the literature is Geelhood and Beyer using the code to 

develop a best-estimate failure criterion for enthalpy deposition during a Reactivity Initiated 

Accident (RIA) [35]. Related to this effort was a study undertaken by Pagani and Apostolakis to 

generate a probability distribution of fuel failure due to enthalpy deposition for high-burnup fuel 

using FRAPCON and FRAPTRAN [36]. This example is of particular note because it includes 

consideration of spallation of the cladding material (i.e., for highly corroded fuel rods a layer of 

oxide breaks away from the base material) and it provides for an explicit (Monte Carlo-based) 

statistical treatment for determining the failure threshold. Their conclusions were that the 

threshold to failure tended to decrease with burnup, and that spallation was an important 

phenomenon to consider. A final example of not here is the use of FRAPTRAN to model the fuel 

behavior during power oscillations during a BWR instability event [37]; in this work Hu and 

Kazimi showed that under the conditions of the particular oscillations considered, both the stress-

strain and the fatigue limits of the cladding would be easily met. 

FRAPTRAN is not used implemented in the current work, but it is possible that in the 

future transient simulations using it coupled to the PARCS code for power information, 

initialized to a specified burnup with the FRAPARCS system, could be developed. 

2.2.3 FALCON 

The industry counterpart to the NRC’s FRAPCON/FRAPTRAN codes is the Electric 

Power Research Institute code FALCON [38]. FALCON combined the steady-state and transient 

capabilities of their previous codes ESCORE and FREY, respectively, to give finite-element 

based fuel performance predictions on a unified framework. It is capable of either 1 or 2-

dimensional (R-Z or R-θ) geometry, and uses material properties from MATPRO [39] (which is 

also the source of many of the material properties in FRAPCON/FRAPTRAN) augmented with 

additional models from the open literature or from the Nuclear Fuel Research Institute program.  

FALCON’s primary user community exists within the nuclear utilities, but there are some 

examples in the scientific literature describing applications. For example, Mai, et al, used 

FALCON to evaluate the UO2 fuel creep model currently included in the MATPRO database 

[40]. The determination was that, based upon comparisons with data, a modified fuel creep 
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model provided closer agreement with experiments and captures the fuel creep phenomenon 

more accurately. Other work includes the work of Khvostov, et al, implementing the GRSW-A 

model for high-burnup fission gas release in the FALCON code, which led to greatly improved 

prediction of FGR phenomena compared with experimental results [41], and other work by 

Khvostov et al in conjunction with the Halden Reactor Project examining the importance of axial 

redistribution of fission gas during LOCA events [42], and the implementation of the two-

dimensional capabilities to evaluate cladding failure from pellet-cladding interaction (PCI) due 

to missing pellet surface [43]. 

2.2.4 INTERPIN 

Another code that is used within the nuclear industry to model fuel pin performance is 

INTERPIN, which is a subcode within the CASMO/SIMULATE core design suite developed by 

Studsvik [44]. INTERPIN is used both at the lattice level during cross section generation with 

CASMO to automatically adjust fuel pin dimensions based on the user-input temperature 

conditions and at the core simulator level to generate gap conductance vs. burnup and linear 

power rating tables used by the core simulator SIMULATE to improve prediction of Doppler 

temperature. The range of fuel pin modeling within INTERPIN is limited, and does not consider 

many of the fuel phenomena that are important in the temperature calculation (particularly 

microstructure changes and plastic deformation/creep). However, Grandi and Hagrmann recently 

reported improvements to INTERPIN that include modifications for high-burnup and mixed-

oxide fuels (including updating of fuel thermal conductivity, waterside corrosion, intra-pellet 

power distribution, and gaseous gap conductance) that allow it to match measurements of core 

critical power and axial offset during coastdown of cycle 18 of the Ringhalls Unit 4 PWR [45]. 

This work demonstrated the importance of fuel thermal-mechanical behavior in core simulation. 

2.2.5 Advanced Fuel Codes 

There are two advanced fuel performance codes currently under development by the 

national laboratories which will be briefly mentioned here. First, BISON is the fuel rod code 

developed by the Idaho National Laboratory [46]. Relative to codes like FRAPCON and 

FALCON, it is very advanced, capable of full three-dimensional finite element simulations of 

nuclear fuel rod behavior. The code is capable of simulating each fuel pellet within the rod 

individually. Like other fuel codes, BISON currently employs many empirically-based models to 
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capture individual fuel phenomena, but the framework is in place to include additional, more 

first-principles-based (i.e., meso-scale) modeling using the MARMOT code [47]. BISON has 

been applied to several practical LWR phenomena such as Pellet-Clad Mechanical Interaction 

(PCMI) [48]. 

The final code that will be discussed to describe the breadth of fuel modeling tools 

currently available is the Advanced Multi-Physics (AMP) fuel performance code developed at 

Oak Ridge National Laboratory (ORNL) [49]. This code is similar in capability to BISON, with 

the additional ability to employ the ORIGEN-S depletion code to track the isotopics within the 

fuel pellets as they undergo irradiation. AMP has been compared to the IFA-432 experiment 

carried out at the Halden test reactor and has demonstrated results within the experimental 

uncertainty. Currently development is underway to include internal neutronics and thermal 

hydraulics directly within the code rather than rely on empirical models and external boundary 

conditions. 

The previous discussion provides a brief overview of the different codes and methods 

currently in either widespread use or under development to model nuclear fuel rod behavior. The 

following section will review the methods currently in use or under development to perform the 

neutronics solution for reactor core simulation.   

 

2.3 Neutronics Analysis Codes and Methods 

In order to evaluate the depletion of a nuclear reactor, it is important to accurately 

determine the neutron distribution within the reactor in order to predict reaction rates, which then 

allow for accurate prediction of local power and fuel depletion. In order to perform this 

evaluation, the Boltzmann Transport Equation is solved in space, energy, angle, and time.   The 

Bateman equation is then solved to determine the change of the nuclide densities in space and 

time. In principle, these are relatively simple equations to solve; unfortunately, due to the 

complex spectral behavior of nuclear cross sections and the high degree of spatial non-

uniformity in the reactor design itself, full core solutions of the transport equation is very 

difficult and in order to make depletion calculations feasible, a number of approximate strategies 

such as diffusion theory have been developed.    In this section, we discuss some of the more 

popular codes and methods available to perform these computations. Also, with the advent of 
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massively parallel computer systems and highly efficient software, some of the full core 

problems that were infeasible over the first several decades of nuclear analysis now may be 

solved with more direct methods.   Although these advanced methodologies are not used in this 

work, for the sake of completeness some of them are described. 

2.3.1 Generation of Cross Section Libraries for Lattice Calculations 

As discussed in Chapter 1, neutronics calculations of nuclear reactors are greatly 

complicated by the material heterogeneity of the structure and the spectral complexity of the 

cross sections which describe the interaction between neutrons and the host material. Therefore, 

from the early days of nuclear technology through today, methods have been developed to 

simplify the geometrical and spectral representation of the reactors while attempting to maintain 

the detailed physics implicitly embedded within. The general approach has been to collapse in 

energy (from point-wise cross sections to fine-group to broad group) and to homogenize in space 

(for example, replace an array of fuel pins with a uniform block that is neutronically equivalent) 

through a series of steps. Classic texts describing this process were written by Stamm’ler and 

Abbate [11] and Duderstadt and Hamilton [50]; the following discussion is a brief overview of 

the content within those books that is applicable to the methods used in the research here.  

The initial step of generating fine-group cross sections from point-wise data is undertaken 

with a library processing code like AMPX [51] or NJOY [52], which often employ an infinite-

medium approach with dilution parameters that allow for consideration of self-shielding in 

subsequent steps. This reduces the neutron spectral dependence from essentially a continuum to 

perhaps hundreds of discrete bins (referred to as energy groups). Once these fine-group cross 

sections have been generated, a lattice level code is employed to generate broad-group cross 

sections for a core simulator. The following two subsections describe first a selection of lattice 

codes in common use for cross section generation, and then a few core simulators that are also 

currently used for reactor analysis. 

2.3.2 Lattice Codes 

Once a fine-group library is generated, it is used by lattice codes to generate broad-group 

cross section libraries for use in core simulators. The lattice code usually represents the detailed 

geometry of a fuel assembly and solves for the spatial and energy dependence of the neutron flux 

within the fine-group structure. Using this detailed spatial- and energy-dependent flux, energy 
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condensation and spatial homogenization is employed to produce broad (for LWRs usually two) 

group cross sections for use in a diffusion-based core simulator. The collapsing of cross sections 

is based on the preservation of reaction rates at the detailed level, so that a neutronics calculation 

at the broad group level will maintain the characteristics of the lattice calculation. Cross sections 

are typically evaluated at a number of fixed fuel temperatures, moderator temperatures and 

densities, control rod states, and/or soluble poison concentrations, out to a specified burnup, in 

order to envelope all possible states the reactor core might experience during depletion. The key 

approximation here is that each lattice calculation is usually performed assuming reflective 

boundary conditions (i.e., the assembly is depleted within an infinite sea of itself). At the core 

level, of course, this is not the case; assemblies of different types may be adjacent to one another, 

and reactor cores are not infinite in extent. That being said, the cross section generation process 

as described here has proven to be very effective in enabling tractable, sufficiently accurate 

reactor performance analysis and prediction. 

The first lattice code discussed is HELIOS [53], a two-dimensional particle transport 

code based on the current-coupling collision probability method developed and maintained by 

Studsvik Scandpower. HELIOS allows considerable flexibility in the geometric representation 

and material characteristics of the particular nuclear system being studied, as well as a large 

variety of available output options depending on the specific aspects of the study in question. 

This flexibility has led to HELIOS being used for many applications, including light water 

reactor analysis ([54], [55]), high temperature gas reactors [56], CANDU lattice design [57], 

small thorium-fuel core cross section generation [58], and RBMK calculations [59]. 

In contrast to the generalized nature of HELIOS, CASMO is a lattice physics tool 

developed by Studsvik that is primarily geared towards LWR assembly analysis [60]. By 

tailoring the input structure for such lattices and making heavy use of Studsvik-recommended 

defaults, cross sections can be generated relatively easily and quickly for core calculations. There 

are many examples of CASMO usage across the industry, including licensing-basis core analysis 

for operating reactors ([61], [62]), generation of multigroup libraries for MOX lattices [63], and 

as part of a computational scheme to perform reactor pressure vessel fluence predictions [64].  

A third cross section generation tool commonly employed is the TRITON sequence from 

the SCALE neutronics code package developed by Oak Ridge National Laboratory (ORNL)  

[65]. SCALE (Standardized Computer Analysis for Licensing Evaluation) is a suite of 
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computational methods developed by ORNL under Department of Energy (DOE) and NRC 

funding to perform a number of different neutronics evaluation, most notably spent fuel pool 

criticality evaluation (using the CSAS modules), shielding analysis (using the MAVRIC 

sequence) and reactor physics analysis (using the TRITON module). TRITON is actually a 

sequence of calls to subcodes within SCALE; for resonance processing (i.e., generating fine-

group cross sections for the assembly level transport calculation), the code CENTRM is called. 

Then, the deterministic transport code NEWT is employed to compute the assembly flux 

distribution. NEWT is based on the Extended Step Characteristics (ESC) method to perform the 

spatial component of the flux calculation. Unlike HELIOS or CASMO, which explicitly support 

curvilinear geometries (such as fuel pins), cylindrical components in NEWT are represented by 

polygons. When TRITON is executed in depletion mode, a predictor-corrector scheme is used 

with NEWT in conjunction with ORIGEN-S to perform isotopics within each region in the 

lattice model based on the local flux. TRITON has been used for LWR lattice cross section 

generation, HTGR cross section, and spent fuel characterization [66]. 

There are many other lattice-level codes available for cross section generation (such as 

WIMS [67], PARAGON [68], or TGBLA [69], but the three detailed above give a representative 

picture of the methods and applications commonly employed. Within the context of this work, 

HELIOS is used to generate the cross sections employed in the test problems. Next, an overview 

of core simulators is provided. 

2.3.3 Core Neutronics Simulators 

The purpose of the core simulator is to use the collapsed cross sections generated at the 

lattice level to simulate the core at a macroscopic level, evaluating the reactivity, power 

distribution, and nuclide density distribution under nominal steady-state or transient operation. 

The general approach to simulating an LWR core is to divide it into a Cartesian mesh (typically, 

each assembly is represented by 2 nodes in each of the radial (x- and y-) directions and 

approximately 6-inch long nodes in the axial (z-) direction). The two-group neutron diffusion 

equation is then solved on this node structure, with the fuel and fluid conditions within each node 

determined based on the power distribution. Typically this is solved via an iterative process, 

because the nuclear parameters (and thus power distribution) within each node depend on its 

temperatures and densities, and the temperatures and densities are determined by the power 
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distribution. The collapsed cross sections generated by the lattice code are interpolated upon to 

produce their appropriate values based on the conditions actually computed by the core 

simulator. Typically, simulators will have simplified thermal-hydraulics and conduction and 

convection solvers contained within them in order to determine the temperature and density 

conditions. 

There are a number of different codes available to perform these evaluations. The code 

that is used within the context of this work is PARCS, developed at the University of Michigan 

for the NRC [2]. PARCS solves the two-group neutron diffusion equation to perform steady-state 

and transient simulation of nuclear reactor cores. The neutronics methods are based on the 

coarse-mesh finite difference scheme, with nodal updates to correct for node-to-node leakages. 

The nodal calculations can be carried out with either the Analytic Nodal Method (ANM) or the 

Nodal Expansion Method (NEM), depending on the nature of the problem to be solved. As with 

FRAPCON, further details on the specifics of PARCS’s schemes will be provided in Chapter 3.  

PARCS has been used throughout the international community for reactor physics 

analysis, particularly for coupled neutronics/thermal-hydraulics transient and accident 

evaluations, which will be discussed in subsequent sections. Some examples of applications of 

stand-alone PARCS include Demaziére, et al, evaluating PARCS predictions against in-core 

measurements taken at the Ringhals-3 PWR and the Forsmark-2 BWR [70]. The conclusions of 

this work indicated that in both the PWR and BWR cases, the axial power distribution was 

predicted quite well by PARCS. However, for the PWR, while the radial power distribution was 

generally predicted accurately, there was a tendency for PARCS to overpredict power in the 

center of the core at beginning of life, and underpredict core power in the center at end of life. 

With respect to the BWR measurements, the radial power distribution was not captured nearly as 

well as with the PWR, particularly in the regions nearest to control blades. This may have been 

due to limitations with the representation of multiple composition control rods. 

 PARCS was also assessed by Hursin et al [71] using a more advanced full-core transport 

code DeCART for a rod ejection accident. The object of the study was to quantify the differences 

in local pin power computed by a reactor analysis tool based on the traditional approach against a 

higher-fidelity model. The comparisons indicate that the solution provided by PARCS was in 

excellent agreement with the DeCART results, except in the prediction of the control rod worth; 

PARCS slightly overpredicted worth relative to DeCART, and therefore predicted a slightly 
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more severe transient. Other assessments of PARCS include work by Diamond, et al, who 

compared PARCS solutions to a rod ejection with the BARS and CHRONOS codes [72]. BARS 

employs a Greens function based approach and explicitly models each fuel pin in the radial 

plane, whereas CRONOS employs a nodal representation of the core similar to PARCS. The 

conclusion from this study was that all codes were in very close agreement (within 3%) of 

pinwise enthalpy deposition. There are other examples of PARCS use in the literature, but this 

listing serves to illustrate some of the applications of the code. 

There are other core simulators in common use within academia, including the NESTLE 

code developed for DOE by North Carolina State University [73]. NESTLE is also a nodal 

diffusion code which can used in two or four energy groups. The final core simulator mentioned 

here is the Studsvik code SIMULATE, which (like their lattice code CASMO) has found 

widespread use in the nuclear industry [3]. A kinetics version is commonly used for reactivity 

accident analysis [74]. 

The above discussion highlights methods in use for neutronics analysis in the nuclear 

community that characterize the traditional, multi-step staged approach used for core simulation. 

For the sake of completeness, a brief discussion follows of some more advanced, explicitly 

transport-based methods for core simulation. 

2.3.4 Advanced Neutronics Codes 

The primary motivation for developing the multi-step reactor analysis procedure 

described above was the computational cost of directly evaluating the Boltzmann equation in a 

reactor core with the full level of spatial and spectral detail; early computers simply did not have 

the processing power to generate transport solutions, and therefore approximate methods were 

necessary. With the advent of high performance computing and massively parallel computers, it 

has become feasible to perform full-core transport calculations with pin resolved detail. The 

following discussion highlights one of the tools currently under development under the auspices 

of the CASL program [75]. 

The MPACT [76] code has been under development at the University of Michigan to 

provide detailed pin resolved neutronics solutions for full core problems.  MPACT uses two-

dimensional Method of Characteristics (MOC) in the radial (planar) direction, coupled with an 

lower order axial solver. It is capable of  both steady-state and depletion calculations, and several 
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recent applications of this code system to typical PWR problems has demonstrated a factor of at 

least a factor of 2 improvement in the accuracy of predicting the pin-wise power distribution and 

critical condition of the core [77] compared to the current generation of nodal core simulators.    

This code typically request thousands of processors for the core calculation, and obviously this 

kind of computational machinery is unavailable for the vast majority of the neutronics 

community.   However, MPACT does provide a demonstration of what may be possible in the 

future. 

In this section, both the traditional, multi-step, and more advanced, transport-based core 

simulation approaches and tools were described. Within the context of this work, the 

HELIOS/PARCS sequence will be used to provide neutronic information during depletion 

calculations. In the next section, we highlight the methods that have been developed to perform 

multiphysics simulation of reactor processes. 

 

2.4 Multiphysics Calculations 

Now that the capabilities available within individual code systems have been described, 

the next topic relevant to this thesis research is the use of computer codes to represent various 

physics simultaneously. In the past, the physics represented within individual codes was often 

limited to a particular class in order to maintain a reasonable level of complexity in the equations 

and solution methods for the computational resources available at the time of their development. 

This separation of physics is referred to as “operator splitting” and is very common within codes 

in use today [10].  

As computational resources improved and nuclear plant operators were motivated to 

remove some of the conservatisms that are required to ensure safety margin when using operator-

split methods, research began on how to incorporate a tighter coupling between the different 

fields present in a nuclear system.  The move towards multiphysics evaluations gained 

international attention in the mid- to late-1990s with the establishment of a PWR Main Steam 

Line Break (MSLB) benchmark problem with IAEA/NEA [17]. Following that benchmark 

problem, there were specifications for a PWR Rod Ejection Accident (RIA) benchmark [78], as 

well as BWR Turbine Trip (TT) benchmark [79]. Most of these efforts involved the coupling of 

a core simulator with a system-level thermal hydraulics code such as RELAP5 [80] or TRACE 
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[81], but with the advancement of methods and techniques coupling principles have been applied 

to a variety of problems beyond these. In the following sections, a survey of some of these 

multiphysics methods and applications will be discussed. First there will be descriptions of some 

of the general approaches to coupled code calculations. Then, some applications in coupled 

neutronics/thermal-hydraulics work are discussed, and finally some description of efforts within 

neutronics/fuel thermal-mechanics is presented. 

2.4.1 General Approaches 

As stated above, the first wide-spread multiphysics approaches were developed for 

application to certain classes of safety analysis in which the interaction between the core power 

distribution and the fluid and thermal conditions within the reactor system were deemed to be 

important. Most of these coupling strategies fundamentally consisted of the core simulator and 

the thermal-hydraulic code executed in parallel, with a data transfer architecture that allowed for 

information to be shared between the two codes via either file transfer or a message passing 

interface [82]. Alternatively, as has been done with TRACE and PARCS, one of the codes can be 

embedded as a library within the other. In any case, in explicit code coupling one code serves as 

the “master,” driving the calculation (usually the code that required the smaller timesteps for 

convergence) while the other serves as the “slave.” Figure 2.2 (Figure 1.7 from [10]) provides an 

illustration of this process. 

 

 

Figure 2.4.1: Illustration of master/slave code coupling arrangement 

 

As outlined by Zerkak et al [10], it was upon this framework that many of the initial code 

coupling efforts were based. This was primarily due to the relative ease in which coupling could 
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be achieved, since modifications to the respective source codes (i.e., their intrinsic solution 

methods) could be minimized, thereby leveraging existing technology. However, there are some 

limitations to this method, particularly with respect to properly resolving the non-linearity that 

exist within the two (or more) fields represented by the codes, which leads to fundamental 

limitations on the accuracy of the methods. To address this, one could employ either a staggered 

time grid (as illustrated in Figure 2.3 (taken from [10]), or one could employ a Fixed Point 

Iteration (FPI) scheme which supports iteration within each timestep to resolve the non-

linearities explicitly. As will be discussed in Chapter 3, the FPI approach is used to couple 

FRAPCON and PARCS. 

 

Figure 2.4.2: Staggered time grid method of external code coupling (adapted from [10], v and u 

represent fields computed by codes 1 and 2, respectively) 

 

An alternative to performing multiphysics analysis by coupling external codes is to solve 

all fields simultaneously within the framework of one code [10]. The basic idea is to formulate a 

large system of non-linear equations considering all the fields of interest. Then, the equations are 

linearized and Newton’s method is employed to find the solution (i.e., forming the Jacobian 

matrix derived from the system equations and finding the roots). At this point, one could use 

standard linear solvers to accomplish the Newton iteration; however, the approach most often 

employed is the Jacobi-Free Newton-Krylov (JFNK) method, which has gained a significant 

amount of traction over the past few years (consider, for example, [83], [84], and [85]). The 

basic idea is to project the update vector within the Newton iteration on a Krylov subspace and 

use a Krylov subspace iterative method (such as GMRES or BiCGSTAB) to generate 

increasingly accurate approximations to the update vector. The basic advantage to using JFNK is 
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that it does not actually require the formation of the Jacobian matrix (which can be 

computationally expensive and memory-intensive); instead, only the action of the Jacobian on 

the update vector is required. Therefore, the storage requirements can be kept to reasonable 

levels, even for large systems. The downside is, as with all Krylov subspace methods, that 

preconditioning is required to obtain convergence within a reasonable number of iterations.  

However, on the whole it can be said that JFNK methods are powerful tools for solving 

multiphysics problems, and are very likely to serve as the basis for such computational tools of 

the future. 

To summarize, there are two basic approaches to performing multiphysics computations: 

coupling external codes which solve fields individually and exchanging data between them, or 

developing methods which solve all fields simultaneously with advanced numerical methods. 

There are benefits and drawbacks to each approach, and both will likely be used for the 

foreseeable future. In order to leverage the existing capabilities of PARCS/PATHS and 

FRAPCON, we use the former approach in this thesis. In the next section, we will detail some of 

the efforts that have been undertaken for multiphysics calculations in the nuclear community. 

2.4.2 Neutronics/Thermal-Hydraulics 

First, we will discuss some of the work that has been accomplished in the coupling of 

thermal-hydraulics and neutronics codes. To begin, we discuss some of the results obtained from 

external coupling of thermal-hydraulics codes and neutronics codes. As discussed above, much 

of the work from the international benchmark specifications led to the application of coupled 

RELAP5/PARCS or TRACE/PARCS to solving these problems. For example, Kozlowski, et al, 

published a number of papers describing the application of both coupled code systems to the 

OECD/NEA MSLB benchmark problem ([86], [87]). Some of the conclusions from this work 

were that the point kinetics models for MSLB were indeed overly conservative in their prediction 

of return-to-power scenarios, and that the three-dimensional core power distribution was an 

important contributor to calculating the correct reactivity feedback. Lee, et al, used the TRAC-

M/PARCS code to simulate the Peach Bottom Turbine Trip measurements [88], and found that 

the coupled code system predicted measured results quite well. The coupled code system was 

also exercised for more extreme scenarios (i.e., turbine trips coupled with the failure of different 

mitigation systems) and it was found that direct moderator heating had a strong influence on the 
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resulting transient. The TRACE/PARCS system has also been used to evaluate BWR instability 

events [89], Anticipated Transients Without Scram (ATWS) ([90], [91]) and has been 

benchmarked against the SPERT tests from the 1960’s for rod ejection analysis [92]. There are 

many other examples of explicit code coupling; this listing simply details some applications 

using the neutronics code employed in this work. 

In addition to these explicit coupling examples, there are several approaches under 

development for fully implicit multiphysics simulation of neutronics/thermal-hydraulics 

problems, some of which are based on JFNK methods. One of the primary contributing authors 

in this area is Mousseau, who developed a second-order accurate fully-implicit model for fluid 

mechanics, heat transfer, and nuclear feedback using the thermal-hydraulics methods from 

RELAP5 [83]. Within this work, JFNK with physics-based preconditioning was used, and the 

results for a rod ejection test problem were compared with the traditional operator-splitting 

method. Based on his work, the JFNK method showed superior convergence in time, allowing 

for the same accuracy to be gained with larger timesteps relative to the traditional methods. 

Using this information, Watson adapted a fully-implicit neutron kinetics-thermal hydraulics 

solution scheme in the TRACE/PARCS framework ([93], [94]), albeit with direct Newton 

iteration rather than using the JFNK method to solve the fully-coupled nonlinear system. Due to 

the problem size, one-dimensional test problems representative of BWR and PWR transient 

scenarios demonstrated the scheme’s feasibility, although it was acknowledged that more 

advanced numerical methods would need to be implemented in order to achieve full-scale reactor 

simulations. Likewise, a fully-implicit scheme for modeling high-temperature gas reactors was 

developed by Ward [95]; in this case, both direct Newton and JFNK methods of various types 

were tested for effectiveness of solution. The conclusions were that the solution of the coupled 

fields showed improvement in convergence relative to the operator split case, and that for the 

thermo-fluids equations, the JNFK methods did not perform substantially better than the direct 

Newton method. The final example discussed here of advanced multiphysics frameworks is the 

Idaho National Laboratory’s MOOSE framework [96], which is designed as a generic tool for 

solving coupled non-linear equations on an adaptive finite-elements basis using the JFNK 

method. The specific physics solvers are incorporated as modules that can be chosen depending 

on the application in question; problems as diverse as pin-level modeling of a nuclear fuel rod, 
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neutronics/thermal solution of a sodium-cooled fast reactor, or predictions of pebble bed gas 

reactors can all be achieved through one framework. 

This section has discussed a sampling of methods and applications of coupled 

neutronics/thermal-hydraulics; the next section will highlight some of the efforts that have been 

employed for multiphysics solution of neutronics/fuel thermal-mechanical problems.   

2.4.3 Neutronics/Fuel Thermal-Mechanics 

Compared with coupled neutronic/thermal-hydraulic calculations, there are relatively few 

efforts in the neutronics/fuel thermal-mechanical area. The most prominent example of current 

methods employed in this area is the INTERPIN code used within Studsvik’s core design suite 

(referenced above); however, within the context of CASMO/SIMULATE, INTERPIN is used a 

priori to generate gap conductivities parameterized against burnup and local linear heat 

generation rate, rather than a true simultaneous solution. An example of one-way coupling using 

more advanced methods was performed by Hursin et al [97] with DeCART and FALCON (both 

discussed above) to model a rod ejection transient in a PWR. A pin-by-pin rod ejection transient 

was simulated with DeCART, and the resulting powers and coolant temperatures were exported 

to FALCON as boundary conditions. FALCON was then used to determine the cladding 

response in terms of Strain Energy Density (SED). The results of the high-fidelity neutronics 

solution were compared with those from a PARCS solution using the traditional, two-step 

approach to generating two-group cross sections. The results indicated that the differences in the 

energy deposition and SED computed by FALCON were largely due to the differences in 

reactivity worth of the rods computed by the neutronics codes. Further, there was a significant 

difference in the mechanical behavior of the fuel rods when azimuthal variation in power 

distribution within the rod was computed with DeCART as opposed to the azimuthally-averaged 

treatment that results from pin power reconstruction methods available in PARCS (up to 20% 

difference in predicted SED, which roughly corresponds with the uncertainty in stored energy 

computed by FALCON). The authors conclude that this phenomenon should be taken into 

account in REA analysis, particularly for high-burnup fuel. 

In addition to the one-way coupling described above, there are also some examples of 

two-way external code coupling in the literature. For example, the BISON code is currently 

being coupled with DeCART to give three-dimensional fuel performance predictions at the fuel 
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pellet level [98]. Another example is the coupling of the Swedish fuel performance code 

ENIGMA with the Monte Carlo-based neutronics evaluator SERPENT [99]. The authors 

performed a single-pin evaluation of coupled fuel behavior out to 52 GWd/MTU burnup in order 

to study the effect of fixing a priori the fuel temperature and geometry (representative of current 

depletion methods) as opposed to allowing them to vary with irradiation (which is more 

realistic). The result indicate that both geometry and temperature changes with burnup are 

important; relative to the static case, the differences in k-effective were on the order of hundreds 

of pcm; differences in one-group collapsed fission and capture cross sections were roughly 2-3%. 

The conclusion that the authors made based on this information was that the effects were, while 

relatively minor, certainly non-negligible, and worthy of further study. Another notable factor 

was that the pin-level computation (especially with a Monte Carlo based method) took several 

days to accomplish. 

In this section, the basics approaches for multiphysics computations were discussed, and 

some applications within the nuclear community were described. It should be clear from this 

discussion that multiphysics calculations have reached a degree of maturity, particularly with 

respect to external code coupling of neutronics and thermal-hydraulics codes. Less work has 

been performed to date on coupling neutronics and fuel thermal-mechanical behavior, and the 

methods employed for this purpose are generally of an “advanced” nature. Therefore, one of the 

unique aspects of this work is achieving coupled simulation with current-generation tools. In the 

next section, methods to quantify the uncertainty and sensitivity of engineering calculations will 

be highlighted. 

 

2.5 Sensitivity and Uncertainty Methods 

This section will review the research in the final topic relevant to the work performed in 

this thesis, which is sensitivity and uncertainty analysis methods (S/UA). These are two related 

but distinct ideas; in sensitivity analysis, the objective is to characterize the influence that the 

input parameters have on code output, whereas in uncertainty analysis, the goal is to characterize 

the range of possible output behavior due to uncertainty in the input data. In order to minimize 

the uncertainty in the output, it is necessary to reduce the uncertainty in the input; sensitivity 

analysis allows for the identification of those parameters which will have the greatest influence 
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on the computed results, and guide the gatherers of data to where additional knowledge (for 

example, new measurements) will be most beneficial towards increasing confidence in the 

simulations. 

As discussed in Chapter 1, in the early days of nuclear power, uncertainties were dealt 

with via conservatism; the input parameters were biased in the “worst” direction depending on 

the output of interest. This approach, while generally justifiable from a safety standpoint, does 

not lend itself to economical operation of the power plants, nor does it allow for a precise 

quantification of the margins that exist to the safety criteria. In order to enable more realistic 

evaluation of the margins that exist in nuclear reactors (particularly for LOCA evaluation), the 

Department of Energy and the Nuclear Regulatory Commission embarked on a large data 

collection effort throughout the late 1970’s into the 1980’s, sponsoring a series of tests all 

designed to improve the state of knowledge regarding some of the phenomena that were critical 

in reactor simulation [100]. One result of this effort was the eventual publication of the Code 

Scaling, Applicability, and Uncertainty Evaluation (CSAU) approach to performing LOCA 

analysis [13]; within the context of CSAU, a response surface approach was employed, in which 

the input parameters were ranged in such a way as to create an algebraic structure (the response 

surface) that represented how the simulation output (in this case, Peak Clad Temperature (PCT)) 

behaved from variations in the input. Then, Monte Carlo sampling of that response surface 

enabled construction of the upper bound on PCT at the desired probability and confidence level. 

Nuclear fuel vendors adopted this, and other, approaches to perform licensing-basis LOCA 

analyses, which directly contributed to several power uprates over the last two decades [101]. 

This fact demonstrates just how important the insights gained from uncertainty analysis can be at 

the applied level; an excellent overview of the applications of this class of methods within the 

reactor licensing arena can be found in [102]. 

In this section, some of the general frameworks for S/UA in common use within the 

nuclear community will be discussed, followed by a sampling of the applications of said methods 

present in the literature. Cacuci and Ionescu-Bujor provided a general overview of deterministic- 

and statistics-based S/UA methods in use in the nuclear community ([103] and [104], 

respectively); here a summary of the most common methods is provided. 

 

 



34 

 

2.5.1 S/UA Frameworks 

The classic framework for S/UA within the neutronics field is adjoint-based perturbation 

theory. The basic ideas from this subject area stemmed from the need to perform sensitivity 

analysis (i.e., estimate the effect of a small system configuration change) without entirely 

recalculating the system state. The classic example is the estimate of static control rod worth. 

Suppose it is desired to determine the reactivity effect of removing a control rod some amount 

from a reactor core. Rather than performing a full neutronics calculation with the control rod 

inserted and then removed and directly comparing the difference in reactivities to determine the 

rod worth, the adjoint function of the unperturbed state can be employed, in conjunction with the 

change in the migration operator resulting from the configuration change (which is known a 

priori), to estimate to the first order what the rod worth is. A full discussion of this particular 

problem is contained within [105]. 

The key aspect of perturbation theory is the use of the adjoint function. The solution of 

the base neutronics problem from the particle balance equations (whether diffusion or transport) 

is referred to as the “forward” solution, and the operators in the balance equation and the source 

term are referred to as “forward” operators and the “forward” source. The adjoint solution and 

operator on the other hand, are chosen in such a way as to satisfy the following inner product:  

 

 〈𝑓∗𝐴𝑓〉 = 〈𝑓𝐴∗𝑓∗〉 (2.1) 

 

where f, A, f*, and A* are the forward solution, forward operator, adjoint solution, and adjoint 

operator, respectively. By utilizing this definition and a linear Taylor series expansion, the 

neutron balance equations can be manipulated to provide a first-order accurate estimate of the 

reactivity change between a base and a perturbed system that only depends on the change in the 

balance operator and the unperturbed system forward and adjoint solutions. Therefore, explicit 

evaluation of the perturbed system balance equation (which can be computationally expensive) is 

not needed. As demonstrated exhaustively by Lewins [106], the adjoint can be interpreted as an 

“importance” function whose magnitude is related to how significant a region in phase space 

(space, angle, or energy for transport problems; space or energy for diffusion problems) is to the 

output of interest. 
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An excellent survey of perturbation theory as applied to nuclear reactor analysis was 

given by Williams [107]. Within this work, different approaches for arriving at the adjoint 

equations are given, and the standard problem to be analyzed (reactivity changes due to small 

system changes) is discussed thoroughly. From this work, however, the perturbation theory 

approach is extended to beyond simply reactivity differences; it can be employed to estimate the 

changes in any arbitrary system output (for example, reaction rates or peaking factors) due to 

small changes in any input parameter, depending on the particular formulation of the problem in 

question. Furthermore, perturbation theory is not limited to simply neutronics problems; 

applications exist within, for example, thermal-hydraulics [108], or any arbitrary framework 

[109]. This generalization of perturbation theory is referred to as Generalized Perturbation 

Theory (GPT). Cacuci developed the Forward Sensitivity Analysis Procedure (FSAP) to 

generalize the forward approach to sensitivity analysis (i.e., recalculation of the system states) 

and the Adjoint Sensitivity Analysis Procedure (ASAP) to generalize the use of the adjoint in 

sensitivity calculations [110]. 

While the adjoint approach can be very powerful, and can give precise values for the 

sensitivity of output parameters to inputs, it has two main limitations: first, in its most usual 

form, GPT is formulated as first-order accurate. This means that if the system is highly non-

linear, or if the perturbations become large, that the answers it produces can be substantially in 

error. To deal with this, higher-order approaches have been implemented which keep terms 

beyond the linear [107]; unfortunately, this approach often requires the solution of additional 

adjoint equations, which can become computationally expensive. The other limitation to 

perturbation theory is particularly present within multiphysics analysis; that is, the formulation of 

the required adjoint equations requires manipulation of at times extremely complex equations. 

Depending on the specific phenomena involved, it may prove to be intractably difficult (if not 

impossible) to properly formulate the problem. 

An alternative to adjoint-based methods with the benefit of not being conceptually 

complex are random sampling methods (also referred to as Monte Carlo methods). A general, 

excellent introduction to the concepts of the sampling approach is contained within [111]. The 

general idea with these methods is that every input parameter (whether it be model, correlation, 

or initial condition) has an associated distribution that characterizes the range of its possible 

values, rather than a fixed value. Each of these parameters has some impact on how the outputs 
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will behave. In basic Random Sampling (RS), each of these inputs is sampled according to its 

assigned distribution, and a calculation run. The resulting outputs are tabulated. This process is 

repeated for a number of realizations, depending on the confidence with which the analyst 

wishes to characterize the output distributions. After constructing an adequate number of 

possible outputs, statistical analysis is performed to both assign an uncertainty distribution to the 

output and to determine the sensitivity of the output to each of the studied input variables. 

The benefit to RS is that it is simple to understand and explain, and relatively easy to 

implement. The drawbacks, on the other hand, are what motivated the development of adjoint-

based methods in the first place; that is, depending on the problem, it can be extremely 

computationally expensive. Since all values of input variables are chosen randomly, a large 

number of realizations must be performed to ensure adequate coverage of the possible parameter 

space; the number of required samples for adequate confidence in the results can become 

intractably large. In order to combat these issues, two modifications to RS have been proposed 

and developed ([111], [112]): importance sampling and Latin Hypercube Sampling (LHS). The 

first, importance sampling, is based on the division of the sample space into “strata” from which 

the samples are taken. These strata can be defined so as to emphasize particular areas within the 

sample space which are considered to be important to the outcomes of interest. The benefit to 

this approach is that adequate coverage of the sample space can be ensured; the downsides are 

that, first, it is often not clear a priori which regions of the sample space should be emphasized, 

and second, the raw estimates obtained of the output distributions are not unbiased; the way in 

which the strata were defined must be accounted for in the analysis of the output. A more 

straightforward (and popular) modification to random sampling is LHS; within this approach, the 

range of each random input variable is divided into a predetermined number of equal-probability 

bins. Then, from each bin one value is sampled at random. The resulting collection of sampled 

variables are randomly combined to create sets of random variables for each realization that (a) 

adequately cover the sample space and (b) produces unbiased estimated for means and 

distribution functions of the output. More detailed discussion of RS and LHS is given in Chapter 

5. 

Another uncertainty analysis technique is the Response Surface Method (RSM), which 

was the basis for the best-estimate LOCA methodology demonstration presented by Boyack, et al 

[13]. The classic text summarizing the basis and applications of RSM was composed by Myers in 
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[113], although here the applications described are primarily for optimization problems based on 

analysis of experimental data; regardless, the basic ideas have been demonstrated to be very 

applicable to the types of analysis of interest in the simulation community. 

The general philosophy of RSM is to approximate the complex non-linear response of a 

system by a fitted surface, which can then be used as a surrogate for the “true” response in 

subsequent analysis, whether it be optimization (selection of operating point which maximizes 

the desired output) or determination of the likely limits of system behavior. As described in 

[114], the procedure of RSM can be summarized by the following steps: 

1. Select a number of model parameters thought to be important in the analysis. 

Determine the ranges within which these model parameters may vary. 

2. Select a “design point” (usually the nominal values of the parameters) about which 

the response of the system is of interest. Compute the response at this design point. 

3. Recalculate the response of the system over the ranges of the model parameters 

identified in (1). 

4. Using the recalculated results, construct a response surface that approximates the true 

functional form of the response about the design point. Usually, some sort of 

regression fit is employed. 

5. Use the response surface in place of the original model in subsequent statistical 

studies to evaluate sensitivities and uncertainties of the response due to the input 

parameters. 

The difference between RSM and sampling-based methods is that there is an intermediate 

step between the actual physics evaluations (which can be expensive) and the subsequent 

statistical analysis which gives estimates for the sensitivity and uncertainties in the response. 

Presumably, the construction of the response surface requires significantly fewer evaluations 

than a more brute-force sampling strategy for the same level of confidence in the results of 

interest. As with any method, there are limitations of RSM; first, it is better suited to problems in 

which there are a limited number of important parameters under consideration. Second, it 

requires a priori identification of those parameters which are most important in the system 

response, and since (depending on the specific application) this may not be known in advance, 

the potential exists to miss important effects. Finally, as with sampling-based methods, the 

uncertainties and sensitivities of the output are statistical estimates, but not computed exactly 

(which is an additional advantage to more deterministic methods). 

Related methods to RSM are stochastic expansion methods, of which Polynomial Chaos 

Expansion (PCE) and Stochastic Collocation (SC) are the primary approaches available ([115] 
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and [116], respectively). In both cases, similar to RSM, a functional expression of the response 

in terms of the uncertain input variables is sought. The difference is that, rather than use a 

regression fit, in these approaches the response is expressed as an expansion either in orthogonal 

polynomials related to the input probability density functions (pdfs), in the case of PCE, or on 

Lagrange interpolants, in the case of SC. The benefit to using these methods, as will be discussed 

in detail in Chapter 5, is that sensitivity information can be directly accessed from the 

coefficients of the expansion (for PCE) or from easily-computed integrals of the response 

expansion using quadrature rules (for SC). Further discussion of these methods is presented in 

Chapter 5. 

In this section, four general approaches to S/UA were presented: the perturbation theory 

approach, which employs the adjoint solution; sampling based methods, which evaluate the 

forward solution a number of times with randomly sampled input parameters; response surface 

methods, which construct a surrogate model upon which statistical methods can be applied; and 

stochastic expansion methods, which express the response as a linear combination of expansion 

polynomials. The DAKOTA package [7] allows users to easily implement any of these methods. 

Within the past few decades other approaches have been developed, but most of them have their 

roots in one (or more) of these three methods ([117], [118], [119]). In the next section, some 

applications of S/UA in the literature are described. 

2.5.2 Applications 

As discussed previously, some of the most prominent applications of S/UA methods are 

in the thermal-hydraulics area, particularly within LOCA analysis. The nuclear fuel vendors 

Westinghouse and AREVA have both developed best-estimate methods for Large Break LOCA 

predictions. Westinghouse was the first with the development of the response-surface-based 

CQD methodology [120]; CQD was applied to the AP600 nuclear reactor design and 

demonstrated the effectiveness of the advanced passive core cooling features that are the unique 

features of that design [121]. They then developed a LHS-based method (referred to as 

ASTRUM) [122] that has been applied to a number of operating PWRs seeking power uprates 

([123], [124]). AREVA’s methodology is also based on the random sampling method [125], and 

has been applied to operating PWRs [126] as well as the proposed EPR [127]. In addition to the 

methods developed by the vendors, there are applications of best-estimate methods elsewhere. 
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For example, Trevidi et al compared Wilkes’ [128], RSM, and random sampling with LHS 

methods as applied to the pressurized heavy water reactor for LBLOCA analysis [129]; they 

found that the LHS method was superior due to  the manageable number of computations 

required, and the unbiased estimates of cladding peak clad temperature (PCT) that it returned. 

Finally, some more advanced methodologies for best-estimate LOCA analysis have been 

explored; for example, Fynen et al explored the use of Unscented Transform (UT) within the 

context of a sampling-based method for PCT evaluation [130]. The goal of UT is to improve 

estimates of the mean and variance of the output variables using fewer computer runs. They 

compared the UT method with a response surface technique and determined that UT can 

comparable results in a fraction of the necessary calculations required to construct the response 

surface. 

Another subject area where S/UA methods have been commonly applied is within the 

neutronics domain. As discussed above, many adjoint-based sensitivity analysis methods were 

developed specifically for neutronics evaluation. For example, Williams developed a depletion 

perturbation theory that coupled the solution of the transport equation with the Bateman equation 

(which tracks nuclide densities) for depletion calculations ([131], [132]). By developing the 

adjoint equations for the coupled field applied quasistatically (i.e., during each depletion 

timestep the neutron flux was assumed to be constant), he was able to produce a method that is 

capable of estimating the response of a system which has undergone burnup to the initial 

conditions without requiring the depletion to be explicitly recalculated. This approach was 

extended by Yang and Downar with the addition of using an improved flux estimate within the 

depletion steps [133]. They applied their method to the test problem employed in [132] and 

found it gave significantly different results; the method was also applied to a full-scale Liquid 

Metal Reactor problem and the sensitivities they computed to breeding ratio agreed well with 

exact calculations. 

An additional area of S/UA within the nuclear realm is the propagation of nuclear data 

uncertainties through the reactor design process. The fundamental cross section data that is the 

starting point for all nuclear analysis, being derived from measurements, have uncertainties 

associated with them; moreover, the uncertainties in each of the specific types of measured cross 

sections may be correlated to one another. An international benchmark specification promulgated 

by OECD/NEA (Uncertainty in Analysis and Modeling – LWR (UAM-LWR)) [18] is an effort 
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by the international community to systematically address these issues and better quantify the 

margins that exist in LWRs. Part of this benchmark effort is to address the uncertainties that exist 

in two group cross sections as the result of the uncertainty in the cross section libraries used at 

the lattice level to generate them. In order to evaluate this impact, Yankov et al ([134], [135]) 

investigated two approaches using the SCALE code package: the first approach was using the 

XSUSA method [136] which employs a sampling-based approach to calculate cross section 

libraries; for every perturbed cross section set that is used in the core analysis, a corresponding 

transport calculation at the lattice level must be performed. The second was a “two-step” 

approach which employs GPT at the lattice level and uses the resulting sensitivities to generate 

perturbed two-group cross section sets without needing to perform numerous transport 

calculations. Both a lattice cell and the Three Mile Island core specified in the benchmark 

problem were investigated for the methods’ relative performance. The results indicate that both 

methods produce similar results, and even though the XSUSA method requires far more 

transport calculations, with the use of parallel computing the amount of time required to perform 

the analysis can be equivalent. The two-step method performed well for the problems 

considered, but some concern about the applicability of GPT-generated data for more 

heterogeneous problems (such as MOX cores specified in the benchmark) may make sampling 

based methods like XSUSA more robust. 

The final area where some applications of S/UA methods are relevant to this work is in 

fuel performance evaluations. RSM was employed by Kerrigan and Coleman to evaluate the 

uncertainty in stored energy calculations for PWR fuels using FRAPCON’s predecessor code 

FRAP-S3 [137]; nineteen input parameters were varied to create a response surface based on 79 

FRAP-S3 runs for sensitivity and uncertainty calculations. Stored energy for beginning, middle 

and end of cycle cores were all considered in the analysis. The conclusions of the study found 

that stored energy was most influenced by the fuel thermal conductivity, with rod average power 

and fuel density also being important. The methods described in the paper gave a basis for 

judging the conservatism in fuel vendor stored energy calculations performed at the time. 

Another application of S/UA was presented by Kim [138]; in this work, a hybrid LHS-

RSM method was employed to evaluate the 95% confidence upper bound on Rod Internal 

Pressure (RIP) calculations, and compared with a more simplified statistical methodology based 

on the system moment method. The hybrid approach involved generating the response surface 
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with LHS sampling rather than parametric calculations, and then Monte Carlo sampling the 

response surface. In the simplified methodology, limiting rod power histories were identified a 

priori and used to estimate mean RIP values and the sensitivity of RIP to the input parameters. 

The results of the study indicated good agreement in the expected value of RIP between the 

sophisticated and simplified method; however, the output RIP distribution from the simplified 

method was broader (indicating more variance in the output) and therefore the estimated 95% 

upper bound was higher.  

A further example of S/UA in fuel modeling was published by Bouloré et al [139]. In this 

work, LHS was used to propagate uncertainties in fuel thermal conductivity, linear heat rate, 

fuel-clad heat transfer, pellet geometry, and pellet radial power distribution through fuel 

centerline temperature calculations using the fuel performance code METEOR V2 within the 

URANIE framework (an uncertainty framework comparable to DAKOTA), and the sensitivities 

were estimated using Sobol’ indices of first order. In order to provide a physical basis, two 

experiments were used as the basis for the evaluations: the GRIMOX2 experiment was used to 

evaluate temperature behavior for UO2 fuel at low burnup, and the REMORA2 experiment was 

used to evaluate high burnup. The results of the comparisons indicate that the uncertainty in fuel 

centerline temperature is much less in the low burnup case (15 K vs. 80 K), which is to be 

expected, and that the majority of the uncertainty came from uncertainty in the linear heat rate; 

the other prime contributor was the fuel thermal conductivity.  

A final example that will be detailed here is the application of a non-parametric order 

statistics-based Monte Carlo method to provide a 95/95 confidence limit on fuel rod performance 

parameters for licensing analysis [140]. This method is similar to the methods described above 

by nuclear fuel vendors for best-estimate LOCA calculations; within this work, a demonstration 

using a simplified transfer function to stand in for an actual fuel rod code is presented. In 

addition to steady-state evaluation, the effect of potential Anticipated Operational Occurrences 

(AOOs) (i.e., postulated transients that significantly increase the rod linear power) was also 

considered within the methodology. The conclusions of the paper were that the methodology 

presented a well-defined method for allowing more realistic fuel performance evaluations while 

maintaining to a high degree of confidence the safety margins to fuel failure that are necessary 

for licensing analysis. 
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2.6 Conclusions 

In this Chapter, basic approaches to fuel thermal-mechanical and neutronic modeling 

were introduced, and methods for performing multiphysics calculations using some of these 

methods were discussed. Several techniques for S/UA were also described, and some of the 

applications within the context of this thesis were presented. From the literature search presented 

here, it appears that the specific coupling fuel performance and core simulator codes has not yet 

been published, and that an uncertainty analysis of that coupled framework as it relates to 

depletion would be a significant and original contribution to the field. In the following chapters, 

the methodology for coupling FRAPCON and PARCS/PATHS will be described, and the use of 

that coupling to generate information about the relationship between neutronic and fuel thermal-

mechanical performance will be investigated. 
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CHAPTER 3 

 

 

FRAPCON/PARCS/PATHS Coupling Methodology 

 

 

3.1 Introduction 

In order to assess the sensitivity and uncertainty in core depletion calculations due to fuel 

performance parameters, it is first necessary to develop a tool that couples the requisite fields. As 

stated previously, the tools that will be used to effect this coupling are the NRC fuel performance 

code FRAPCON and the core simulator package PARCS/PATHS. The coupled tool is referred to 

as FRAPARCS. The linkage of the coupled codes to the DAKOTA uncertainty analysis package 

will also be discussed. 

This chapter provides the overview of the methods utilized by FRAPCON and 

PARCS/PATHS to solve the physics they represent. First, the current algorithms used within the 

respective codes are discussed, and then, the overall flow of the code coupling is reviewed. The 

modifications which were made to each code are then described which includes a detailed 

description of the coupling algorithms and their impact on overall convergence. Finally, the 

process by which the coupled code system is integrated within the DAKOTA framework is 

explained. 

 

3.2 Fuel Performance Modeling with FRAPCON 

FRAPCON-3.4 models the behavior of oxide fuel rods with zirconium-based cladding 

alloys under steady-state and slow (order of minutes) transient conditions. Each FRAPCON 

calculation models a single fuel rod. As discussed in the previous chapter, the process of 

modeling nuclear fuel performance requires the solution to a system of complex, non-linear 
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equations. There are many approaches to solving such systems; FRAPCON-3.4 decomposes the 

system by the class of physics and utilizes an iterative approach to converge all the dependent 

variables in the analysis. An illustration of the geometry of a FRAPCON calculation is presented 

in Figure 3.2.1.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2.1: Geometry of a FRAPCON calculation – fuel pin axial and radial regions 

 

This section first provides details of the FRAPCON-3.4 computational scheme as 

described in [5]. The discussion here sets the framework for the discussion in Section 3.4.2, 

which describes the algorithm modifications that were performed in order to couple FRAPCON 

with PARCS. Also in this section, an uncertainty analysis package developed at PNNL for 

FRAPCON-3.4 (known as ARM-FRAPCON) is discussed. As part of this discussion, the eight 

model parameters identified as most important for fuel rod uncertainty calculations [28] are 

presented. 

3.2.1 FRAPCON Computational Scheme 

The two major classes of physics solved by FRAPCON are the fuel thermal response and 

the mechanical response. Other physics represented in the code are primarily captured by means 

of semi-empirical or empirical relationships which are strongly dependent upon the temperatures 

and stresses/strains computed by the heat and mechanical response modules. In order to aid the 

following discussion, a FRAPCON-3.4 simplified flowchart (taken from [5]) is presented in 

Figure 3.2.2. 
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Figure 3.2.2: Simplified FRAPCON-3.4 flowchart (Figure 2.1 from [5]) 

 

In the iterative method used by FRAPCON first, the input data, including fuel rod design 

information (dimensions and materials), time history of the power level and shape, and thermal-

hydraulic conditions, are processed by the code. The calculation then proceeds in time, with two 

major levels of iteration. First, the temperatures of the fuel and cladding are computed using the 

input power shapes and thermal-hydraulic conditions. Then, the fuel rod mechanical response 

(i.e., stresses and strains in the fuel and cladding) are computed. Iteration between the thermal 

response and the mechanical response continues until the temperature drop across the fuel-clad 

gap is converged to within 1% from the previous iteration. Using the temperatures and strains, 

the fission gas release, void volume, and gas pressure is then computed. A second level of 

iteration is used to compute the internal gas pressure; the updated pressure is compared with the 

previous iterate, and if the difference is greater than the convergence tolerance (again, 1% 

difference from the previous iteration is used), then the temperature/mechanical iteration is 

repeated using the new pressure. Once the gap temperature drop and the gas pressure are 

sufficiently converged, the calculation moves on to the next time step. 

Some additional detail on each component of the fuel performance simulation is provided 

in the following subsections. This discussion is not meant to be comprehensive, but rather to 

highlight specific topics which are important within the coupling methodology. The primary 
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feedback between the fuel performance calculation and the neutronic depletion calculation is 

through the fuel temperatures used to evaluate nodal cross sections (i.e., the Doppler 

temperature); therefore, the models and methods specifically relating to this calculation are 

discussed. More detail on all the methods in FRAPCON can be sought from the theory manual 

[5]. 

3.2.1.1 Thermal Response 

In order to compute the temperature distribution within the fuel rod, FRAPCON-3.4 

implements an outside-in approach that begins with the computation of the rod surface 

temperature. At the beginning of the timestep, the fuel rod axial power distribution is known. If 

FRAPCON’s internal heat transfer modules are used, a closed-channel energy balance is solved 

to compute the coolant axial temperature profile. Using this information, the appropriate heat 

transfer coefficient is computed (Dittus-Boelter for forced convection, Jens-Lottes for nucleate 

boiling), which is then used to compute the cladding surface temperature. Alternatively, the user 

can specify a cladding outer surface temperature axial distribution. The latter approach is used in 

this work, in order to leverage the more sophisticated thermal-hydraulics methods in PATHS. 

Once the rod outer temperature is computed, the temperature drop across crud, oxide, and 

cladding materials are computed using the analytic solution to the one-dimensional radial heat 

conduction equation using the thermal conductivity at the region-averaged temperature. The gap 

temperature drop (and therefore gap conductance) is computed considering radiation from fuel to 

clad, conductance through the gap gas, and direct conductance through points of contact from 

fuel to cladding. The fuel surface temperature is thus obtained by adding the gap temperature 

drop to the previously computed clad inner surface temperature. 

Once the fuel surface temperature is obtained, the solution to the heat conduction 

equation is obtained for the nodal radial fuel temperature profile. Axial conductivity is 

considered negligible compared with radial conduction; therefore, within each axial node the 

one-dimensional heat conduction equation in radial cylindrical geometry is solved. The radial 

burnup distribution and resulting power profile within each node is computed using the 

TUBRNP subroutine developed in [141]. This routine tracks the radial concentrations of uranium 

and plutonium isotopes based on the burnup history of each axial node, and uses a one-group 

diffusion based analytical solution to compute the resulting radial power profile. The coefficients 

used within the routine have been adjusted to match plutonium and uranium measurements with 
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burnup in order to capture the “rim effect” (i.e., power peaking on the periphery of the pellet due 

to the buildup of plutonium isotopes there). Once the nodal radial power and burnup profiles are 

known, the finite-difference approach is used to solve the conduction equation for the resulting 

temperature distribution within the pellet considering the temperature and burnup dependence of 

the fuel thermal conductivity.  

The important elements of the thermal solution considered in this work for uncertainty 

analysis are the fuel thermal conductivity and cladding corrosion. Also important for thermal 

evaluation is the heat transfer coefficient, the uncertainty in which is applied through PATHS, 

since the fixed outer temperature option in FRAPCON is implemented here. 

3.2.1.2 Mechanical Response 

In order to compute the mechanical response of the fuel rod, FRAPCON-3.4 has two 

options: the default model is called FRACAS-I, and solves the deformation equations assuming a 

small displacement and a rigid pellet model. The mechanical simulation of the fuel rod includes 

separate consideration of the stresses, strains and displacements of the fuel and the cladding. The 

rod is assumed to maintain its cylindrical geometry throughout the calculation. The general 

theory of elastic-plastic deformation is implemented, using the method of successive 

substitutions, to converge upon the computed strains. In summary, this process involves iteration 

on strain through the successive solution of mechanical equilibrium, stress-strain, compatibility, 

plasticity, and Prandtl-Reuss flow relations. 

In order to simplify the analysis, the fuel pellet is assumed to be rigid, in that it does not 

deform in response to the cladding. Fuel pellet deformation is restricted to be the result of 

thermal changes, swelling due to fission product accumulation, and densification. The cladding 

initially deforms as a thin shell with induced strains and stresses from the internal gas pressure 

and the external system pressure, until the fuel sufficiently swells to make contact with the 

cladding (i.e., prior to fuel-cladding contact, the gap is assumed open). Once the fuel-clad gap 

closes, the clad responds to the fuel’s continued swelling by taking the fuel-clad contact pressure 

into account. In addition, the distinction is drawn between “soft contact,” which is the result of 

the fuel tending to crack and fall against the cladding due to thermal stresses from coming up to 

operating temperatures, and “hard contact,” when the fuel is actually exerting pressure against 

the cladding. Both the fuel and cladding deforms in both the axial and radial dimension. Under 

hard contact, it is assumed that there is no axial slip between the fuel surface and the cladding, 
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and therefore the clad follows the axial expansion/swelling of the fuel. This is an appropriate 

assumption because the clad (as a ductile metal) is much softer than the ceramic cladding. 

In addition to the instantaneous elastic and plastic deformations of the fuel rod materials, 

there is consideration of thermal- and irradiation-induced creep. In summary, creep is constant-

volume deformation as a result of loading over time. It is a stress-driven process that requires 

additional, empirically-based relations for thermal (due to temperature) and irradiation (due to 

accumulated neutron fluence) creep. The same elastic-plastic algorithms for mechanical 

calculations used in FRACAS-I are adapted to perform the creep calculations. 

Some of the mechanical models have been found to be important contributors to 

uncertainty in fuel performance calculations, and have thus have been included in the uncertainty 

evaluations presented below. These models include fuel thermal expansion, fuel swelling, and 

cladding creep. Specific implementation of the uncertainties in these models will be provided in 

succeeding sections. 

3.2.1.3 Pressure Calculation 

The fuel rod plenum pressure is considered to be a figure of merit in many mechanical 

calculations, because it provides a driving outward pressure on the fuel rod clad. This could 

potentially result in cladding rupture, which would provide a release path for fission products 

into the coolant. Therefore, FRAPCON-3.4 is provided with models that allow for accurate 

calculation of such a force. Fission gas release is a related phenomenon; gaseous fission products 

are generated in the fission process but are largely retained within the fuel material matrix.  

However, under certain conditions they may be released into the free volume of the fuel rod 

which would provide additional gas inventory and thus potentially increase the plenum pressure. 

The release rate of these fission products is itself a function of the pressure within the rod. 

Therefore, in order to accurately calculate the overall fuel rod pressure, the release of fission 

gases must also be accurately predicted (and vice versa). 

The pressure calculation in FRAPCON-3.4 is relatively simple in concept: 

fundamentally, it is assumed that the ideal gas law holds for fission gases. The free volume of the 

fuel rod is tracked and used in the calculation, which includes the plenum volume (taking into 

account the spring which holds the pellets in place), pellet porosity, fuel-clad gaps, fuel pellet 

cracks, dishes, and surface roughness, and their associated temperatures. Also the gas inventory 

of the free volume in the fuel rod is required and it is assumed that the fission gas released from 
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the pellets uniformly mixes with the existing gas (for example, helium fill gas). Once the 

volumes and region temperatures are obtained, the pressure is a simple calculation. 

One of the obvious keys to the accuracy of the pressure calculation is the fission gas 

release (FGR) model. In its essence, the goal is to predict the amount of generated fission gas 

that is released from the fuel matrix into the free space within the fuel rod. In order to 

accomplish this, it is necessary to track the fission gas source term (which is given by the 

burnup), and then to evaluate the diffusion process of the gas through the fuel grains to the 

granular boundary, where gas bubbles collect and can either be released or be reabsorbed. There 

are three models available in FRAPCON-3.4 to predict this phenomenon: the ANS-5.4 standard, 

a modified Massih-Forsberg model, and the FRAPFGR model. Per PNNL recommendation for 

standard depletion calculations, the Massih-Forsberg model will be used in this work. 

Uncertainty in the Massih-Forsberg model as it relates to neutronics performance is given 

consideration in Chapter 4. 

This concludes the overview of FRAPCON-3.4’s computational flow and modeled 

phenomena. To summarize, FRAPCON implements an iterative strategy to solve the fuel rod 

thermal and mechanical behavior based upon input power distributions and coolant inlet 

conditions. Additional empirically-based models are implemented to account for material 

changes (such as cladding corrosion) due to operation at temperature.  As background for the 

research performed here, the existing uncertainty capabilities embedded within the FRAPCON 

code and some current capabilities to perform stand-alone (i.e., uncoupled) uncertainty and 

sensitivity analysis are discussed. 

3.2.2 Uncertainty Calculations with FRAPCON 

As we have discussed in Chapter 2, the industry has moved towards more best-estimate 

approaches to evaluate the performance of nuclear reactor systems in order to more precisely 

quantify the margins they have available and to maximize component performance while 

maintaining safe operation. In order to allow the NRC to respond to such a change in philosophy 

and to independently verify the results of industry analysis, new model inputs were included in 

FRAPCON-3.4 that allow for evaluation of the impact of the uncertainty of several key model 

parameters on the results of interest. From a fuel performance standpoint, these are the outputs 

that relate to ensuring fuel rod integrity: peak rod pressure, maximum nodal burnup, fission gas 
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release fraction, maximum cladding strain, and cladding corrosion thickness and hydrogen 

concentration. Eight key models were chosen from a comprehensive study of the sensitivity of 

fuel performance to various parameters [28]. Some of these models also relate to the nuclear 

performance of the reactor system through their contribution to the Doppler temperature; in 

Chapter 4, we provide evaluations which establish the important factors from this standpoint. For 

the sake of completeness in the present discussion, however, we will briefly describe all eight 

parameters available for manipulation. The functional forms and implementation of all of these 

models are given in Appendix A. 

3.2.2.1 Uncertainty Models 

Four of the uncertainty models relate to the properties of the uranium oxide fuel material. 

First, we consider fuel thermal conductivity. This is a basic material property which describes a 

material’s ability to conduct heat. Within a non-metallic material (such as uranium oxide), 

energy is primarily transmitted by means of phonons generated by the vibrations of atoms within 

their lattice. The conductivity of UO2 is known to degrade with burnup for two reasons: first, 

solid fission products become embedded within the fuel matrix, which tends to interrupt phonon 

transport within the lattice structure; and second, because the fuel develops cracks and solid-to-

solid contact is diminished. At higher temperatures, energy transport due to free electrons also 

becomes important. The FRAPCON model takes into account these phenomena semi-

empirically, as is shown in the model presented in Appendix A. As will be seen in subsequent 

analyses, fuel thermal conductivity is an important contributor to fuel temperature evaluation. 

The second model is fuel thermal expansion. This is related to the differential change in 

volume due to temperature change; as temperature is increased, the average energy of the atoms 

within the material also increases, which leads to greater average atom-to-atom separation. 

Within FRAPCON, the fuel is subdivided into radial rings within each axial node, and the 

dimension change of each of these rings is calculated based on its temperature. This property is 

important in the evaluation of the fuel-cladding gap width (and thus gap conductance), at least up 

to the point where the fuel and cladding come into thermal contact. 

The third model is fuel swelling, which is caused by the accumulation of solid fission 

products within the fuel lattice as a result of the fission process. At first, solid fission products 

tend to fill whatever residual porosity of the fuel may be left as a result of the manufacturing 

process, but at a certain burnup (in FRAPCON the value is taken to be 6 GWd/MTU) they begin 
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accumulating in interstitial locations. This causes the fuel lattice as a whole to swell in size, 

which, like thermal expansion, can impact the fuel-clad gap. 

The fourth model related to the fuel material is fission gas release. Some of the fission 

products (such as Xenon and Krypton) are released in gaseous form. These gas atoms tend to 

diffuse to the surface of fuel grains, where they collect as bubbles. These intergranular bubbles 

collect until a certain saturation concentration is reached, at which point the gases may be 

released from the fuel matrix into the free space available within the fuel rod. As discussed 

above, additional gaseous inventory within the rod free space can contribute to an increase in 

internal pressure, which can influence the fuel rod’s mechanical response. The diffusion of gas 

within the grains is largely a temperature dependent phenomenon. Some athermal release occurs, 

particularly for fission events which occur near the boundary of a grain, where the initial velocity 

of a gaseous fission product is sufficient to liberate it directly into the free space. But for most 

fission events occurring within the fuel matrix, the movement of gas is strongly temperature 

dependent; the higher the temperature, the greater the gaseous diffusion. Depending on the gas 

release model in question, the cutoff temperatures for thermally-driven diffusion and release are 

specified. See Appendix A for details on the Massih-Forsberg model used in this work. 

The remaining four models relate to the behavior of the cladding material. Of these, we 

first discuss cladding creep. Creep is a constant-volume, stress-driven deformation process that 

occurs over time at temperature. Although there are many creep mechanisms, the most important 

for cladding materials is dislocation-driven creep, caused at temperature by the climb of 

dislocations across obstacles and to the grain boundary. This causes a macroscopic elongation of 

the material over time, which is important in fuel performance calculations. In addition to this 

thermal creep, irradiation creep must be taken into account; the effect of bombarding the 

cladding material under stress at temperature with neutrons is to exacerbate the creep which is  

occurring due to temperature alone, due to additional atoms being dislocated. Both thermally-

driven and irradiation creep are considered in this work. 

Axial growth is also a cladding property given consideration. Unlike creep, growth 

occurs due only to irradiation; it can be a product of the manufacturing process. If, in the 

manufacturing process, narrow metal grains are formed whose long direction is parallel to the 

direction of the cladding tube, then we can see preferential movement under irradiation of 

dislocated atoms towards the tips of the grains and their corresponding vacancies towards the 
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sides. This causes the tube to elongate along its axis. Depending on the cladding material, this 

effect may or may not be significant; but it is considered here. 

The final two cladding models important for uncertainty consideration are cladding 

corrosion and hydrogen pickup. These are discussed together since hydrogen pickup is related to 

the corrosion rate. In the presence of oxygen (such as is present in water reactor coolant), 

zirconium metals corrode. This produces zirconium oxide, which tends to accumulate as a layer 

on the surface of the fuel rod, and free hydrogen. The corrosion layer has two effects: first, since 

the thermal conductivity of zirconium oxide is significantly less than that of the base cladding 

metal, it contributes to temperature increases within the fuel rod. Second, zirconium oxide 

behaves as a ceramic, rather than a metal, it contributes to embrittlement of the cladding tube. 

This means that, should the corrosion layer become too thick, the cladding may crack rather than 

deform as the result of thermal changes, releasing fission products into the coolant. Thus, it is 

important to calculate the thickness of the oxidation layer within the fuel cladding. 

Most of the free hydrogen released in the oxidation process is swept away by the coolant. 

However, depending on the specific cladding material, some is absorbed into the base metal. In 

sufficient quantities, the hydrogen within the cladding can combine with the zirconium base 

metal to create zirconium hydride precipitates. These can also serve to embrittle the cladding, 

and therefore hydrogen concentrations must be evaluated. In FRAPCON, the amount of 

hydrogen absorbed is modeled as a cladding-dependent fraction of hydrogen released in 

corrosion. 

This concludes the presentation of the eight models considered to be key contributors to 

uncertainty in fuel rod performance calculations. Of course, there are other factors (for example, 

uncertainties due to manufacturing tolerances) that are also frequently considered, but these are 

the primary models of importance with respect to the physics that a fuel code like FRAPCON 

represents. Next, we describe a statistical approach developed at PNNL for the NRC to 

incorporate uncertainties in the fuel rod design process and develop realistic upper bounds on 

performance parameters and margin quantification. 

3.2.2.2 FRAPCON Statistical Wrapper Package ARM 

In order to perform uncertainty evaluation of fuel rod performance taking into account 

the uncertainties in the models described above, the ARM package was developed [142]. ARM is 

a tool that takes as input a nominal FRAPCON-3.4 input deck and an input file that contains a 
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description of how each parameter is to be varied. In addition to providing distributions on the 

eight models described above, the user can specify distributions to use on the manufacturing 

parameters (for example, fuel rod dimensions) and the power used for the calculation. With this 

input, the user provides the number of calculations to be run. ARM then spawns this number of 

unique FRAPCON-3.4 input decks that adjust the input according to the input distributions on 

each of the parameters. Once each deck has been run, the statistics software package R is used to 

generate correlation plots and quantify the output distributions based on the values of the input 

parameters.  

The ARM-FRAPCON package has been used by NRC staff in licensing reviews [143]. It 

is certainly an improvement over standard nominal single FRAPCON calculations in that both 

the mean and the standard deviation of the output parameters due to the uncertainty in the input 

parameters are now estimated. However, since the method is not well-documented in the open 

literature, and because the package is limited at present to using simple Random Sampling, an 

alternative was sought. 

A more general uncertainty evaluation package in common use today within the nuclear 

community is DAKOTA, developed by Sandia National Laboratories [7]. This package allows 

the user to implement a number of distinct uncertainty quantification techniques, all the while 

requiring very little modification to the driver analysis code. The specific implementation of 

DAKOTA within the context of this work will be discussed in Section 3.5. 

Within this section, the methods behind FRAPCON-3.4 were discussed, along with the 

specific models in the code regarded as important for fuel sensitivity and uncertainty 

calculations. Additionally, the statistical wrapper package ARM-FRAPCON was described, 

which has been used by NRC staff to perform estimates of the code uncertainty for licensing 

evaluations. In the next section, the capabilities and methods of the core simulator package 

PARCS/PATHS are described. 

 

3.3 Reactor Core Simulation with PARCS/PATHS 

Now that the methods and relevant models in the fuel performance code have been 

described, the methods will be described which will be used to compute the nuclear and thermal-

hydraulic behavior of the reactor during depletion. As described in Chapter 2, there are many 
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methods available for these calculations; within this work, the PARCS code is used for 

neutronics evaluation, with the PATHS sub-code providing the thermal-hydraulic state of the 

core during each depletion step. In this section the specific approaches encompassed within these 

codes are described. 

3.3.1 PARCS Methods 

The purpose of PARCS is to evaluate core criticality and neutron flux distribution. For 

LWR analysis, this is accomplished by using a nodal approximation to solve the two-group 

neutron diffusion equations. PARCS is capable of both steady-state (eigenvalue) and transient 

neutronics evaluations; for the purposes of this work, the steady-state methods will be used in the 

fuel depletion analysis. Although depletion is a time-dependent process, the changes in flux and 

nodal nuclide densities are sufficiently slow that a quasi-static method is employed (i.e., a 

sequence of steady-state flux calculations). 

To facilitate the discussion of the methods in PARCS, a flowchart of the computational 

logic is presented in Figure 3.3.1. The specific details on the implementation of the methods used 

in PARCS can be found in the theory manual [2], but here an overview of the process is 

provided. In order to understand the PARCS flux solution methodology, it is necessary to note 

that the code performs this flux calculation at two levels: the “global” flux solution is provided 

by a coarse-mesh finite difference (CMFD) method. However, it is well established that the 

accuracy of the finite difference method using node sizes typical of core simulators is 

inadequate; therefore, the CMFD calculation is supplemented periodically with local nodal 

calculations at each of the nodal interfaces (the default is to use a hybrid Analytic Nodal Method 

(ANM)/Nodal Expansion Method (NEM) approach) to correct for node-to-node leakages with a 

much higher order of accuracy than CMFD alone. This method allows for both the efficiency of 

CMFD and the accuracy of the nodal methods while limiting the drawbacks of both. 

The computational flow of PARCS for steady-state calculations is as follows: First, the 

input is read and the data structures prepared. If PATHS is used as the thermal solver, initial fuel 

temperature and coolant temperature and density estimates are obtained by assuming axially and 

radially flat power distribution. Then, the initial linear system is built based on a CMFD 

discretization of the two-group diffusion equations. Since the resulting linear system can be quite 

large (for example, a large BWR may have on the order of 1000 assemblies, each divided into 4  
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Figure 3.3.1: Steady-state computational flow in PARCS (from [2]) 

 

radial nodes and 25 axial nodes, with two energy groups, which results in ~200,000 unknowns), 

a Krylov method (for PARCS, the default is BiGCStab, with the option to use GMRES) is used 

to solve for the nodal fast and thermal fluxes. When the iteration has converged, a Weilandt shift 

of the k-eigenvalue is performed to accelerate convergence of the outer iterations. Then, if 

needed, local nodal calculations are performed (generating Corrective Nodal Coupling 

Coefficients (CNCC), which correct the assembly-to-assembly leakage), along with a critical 

boron search if required. Following the nodal and boron update, the thermal-hydraulics 

calculation is repeated with updated power distribution to obtain updated fuel temperature and 

coolant temperature and density distributions. Then, the nodal cross sections are updated, the 

linear system rebuilt, and if sufficient convergence of the eigenvalue and local and global fission 
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sources have not been obtained, the process is repeated. For depletion calculations, once the 

converged power distribution for a state in time has been obtained, the local power density and 

nodal fuel mass is used in conjunction with the user-specified time step length to compute the 

core burnup distribution at the beginning of the next time step. 

The coupling algorithm described below in Section 3.4 does not impact the 

computational flow of the neutronics solution described in Figure 3.3.1; rather, the interaction of 

the depletion and fuel performance calculations occurs within the thermal-hydraulics solution 

performed by PATHS. In the next section, the methods within PATHS to generate coolant and 

fuel temperature and density distributions are described. 

3.3.2 PATHS Methods 

In the initial development of PARCS, a simplified thermal hydraulics treatment based on 

a closed-channel energy balance in the coolant and a heat conduction solution in the fuel was 

included to provide the nodal temperature distributions required for cross section evaluation. 

While this method proved sufficient for PWRs (in which the coolant remains subcooled, single 

phase liquid), it was not able to provide an axial void distribution which was required for BWR 

depletion calculations [144]. Therefore, a new steady-state thermal hydraulics solver based on 

the four equation “drift flux” model was developed to provide an efficient and accurate means to 

compute nodal flow conditions. 

In general, simulating fluid flow and heat transfer involves the solution to mass, 

momentum, and energy conservation equations. In reactor modeling, two-phase water flow is 

often represented by a six equation model with separate representations of the fluid and vapor 

phases which interact through the source and sink terms (ex. TRACE, RELAP5). While this 

approach is effective and commonly employed in transient simulations, it would be 

computationally expensive to perform “null transients” at each burnup step to perform core 

depletion analysis. Thus, to perform depletion calculations, the PATHS code was developed 

based on Ishii’s 4-equation drift flux model [6]. Within this framework, mass continuity, 

momentum, and energy equations are solved for the liquid-vapor mixture (rather than the phases 

individually), with the effects of phase separation accounted for with closure models based on 

the flow conditions. The computational flow of PATHS is shown in Figure 3.3.2: 
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Figure 3.3.2: PATHS computational flow (from [6]) 

 

Within PATHS, an iterative process is used within each state point to resolve the fluid 

profile up each coolant channel. Within a calculation, first, velocity and pressure fields are 

assumed in the channels. The mixture energy equation is then solved to give an initial estimate of 

the enthalpy distribution. Then, the mixture mass and momentum equations are solved 

simultaneously using the Krylov-based Bi-Conjugate Gradient-Stabilized (BiCGStab) algorithm. 

Using the pressure and velocity fields resulting from this calculation, the energy equation is 

solved again to update the enthalpy distribution. This process is continued until the pressure, 

velocity, and density fields have converged. Once the fluid solution has been obtained, the heat 

transfer coefficient for each node is determined based on the flow conditions, and the 

temperature drop from the coolant to the cladding surface is determined. Then, the temperature 

drop across the clad and the fuel-clad gap are calculated, followed by a conduction solve to 

obtain the temperature distribution within the fuel pellet. This information is used to compute the 

effective Doppler temperature in the node. 
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3.3.3 PARCS/PATHS Coupling 

Within PARCS, PATHS is called as a subroutine to provide coolant temperature and 

density and fuel temperature for nodal cross section evaluation. The flow chart which details 

PATHS’s place within this sequence is presented in Figure 3.3.3: 

 

 

Figure 3.3.3: Coupled PARCS/PATHS program flow (from [6]) 

 

Within the context of a depletion calculation, PARCS and PATHS iterate within a 

depletion step until the temperatures, densities, and neutronic unknowns (power distribution and 

criticality) are converged.  In this section, the methods currently in PARCS/PATHS for depletion 

calculations were described. In the next section, the scheme to couple PARCS/PATHS with 

FRAPCON and the algorithm modifications necessary to achieve the coupling will be described.  

 

3.4 Algorithm Modifications for Coupling FRAPCON and PARCS/PATHS 

In order to achieve coupling between FRAPCON and PARCS/PATHS, modifications 

were necessary to the algorithms employed by both codes. The overarching philosophy of this 

effort was to minimize the invasiveness of the required modifications; the goal was to couple the 

codes with as few source code modifications as necessary in order to ensure preservation of the 

physics represented within them. In this section, the implemented coupling scheme is described, 
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by first describing the overarching coupling philosophy. Then, the specific modifications to 

FRAPCON and PARCS/PATHS to achieve the coupling are discussed. Finally, the FRAPARCS 

driver script which implements the modified code versions is described. 

3.4.1 Overview of Coupling Scheme 

There have been many methods used over the previous two decades to couple different 

engineering software. For the purposes of this work, primarily due to expediency and simplicity, 

a simple file transfer technique was implemented. This means that the codes communicate by 

printing data files which contain information which is read and processed by the other code. The 

primary information required by PARCS/PATHS for its neutronics calculations are the nodal 

fuel temperatures used in the cross section evaluation. The primary information required by 

FRAPCON for its fuel performance calculations are the fuel rod surface temperature and axial 

power distribution. PARCS and PATHS themselves communicate, with PARCS providing 

PATHS the power distribution and PATHS returning to PARCS the nodal moderator 

temperature and densities, again for cross section evaluation. Figure 3.4.1 graphically illustrates 

the information sharing between the codes. 

 

 

 

 

 

 

 

 

 

Figure 3.4.1: Information exchange during execution 

 

Generally in coupled calculations, one code is chosen as the “master” to control the 

execution flow. In this work, PARCS/PATHS is the master, and FRAPCON is the slave. The 

reason for this is simple: within a calculation, there is one core neutronics calculation, whereas 

there may be many separate FRAPCON executions, one for each fuel rod explicitly simulated. 

Therefore, it is logical to allow PARCS/PATHS to read the output from each of the individual 
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FRAPCON runs, process them, and decide whether convergence is sufficient to move on to the 

next depletion step. This flow is illustrated in Figure 3.4.2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4.2: Computational flow of coupled FRAPCON/PARCS/PATHS 

 

The overall coupling strategy is summarized in the following: 

 

1. First, for a given problem there will be only one PARCS calculation, but potentially 

several FRAPCON calculations. Thus, we define PARCS to be the “master” code in the 

coupling strategy (i.e., it will be the code driving the progression through time), and 

FRAPCON to be the “slave.” In order to control execution and coordinate data transfer, a 

Python script called FRAPARCS is implemented. 

2. Within each timestep, PARCS will accept the Doppler temperature for each node 

computed by FRAPCON by a weighted average of the pellet centerline and surface 

temperature. Using these temperatures, it will execute in concert with PATHS, and 

generate a file containing the axial power distribution and the fuel cladding surface 

temperature for each fuel rod modeled. 
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3. Each FRAPCON run will be assigned a unique file identifier (an 8 digit number), which 

will be associated with each of the files to be transferred back between PARCS and 

FRAPCON. The format of this identifier comes from the following: 

 The first two digits refer to cycle number (of use in multicycle depletions) 

 The second three digits refer to an assembly (in this context, PATHS channel) 

identifier 

 The final three digits refer to the position of the fuel rod within the assembly. The 

rod that provides the nodal Doppler temperature used in the cross section 

evaluation is provided from PARCS the assembly-averaged linear heat generation 

rate and axial power distribution and is denoted with the identifier ‘999.’ 

4. Within a timestep, PARCS and each FRAPCON run will iterate until convergence 

between successive computations of power distribution and temperatures is achieved. 

The testing of this convergence will be carried out within PARCS; when it occurs, a flag 

is generated for the script driving the calculation to advance FRAPCON to the next 

timestep. 

 

It should be noted at this point that there is a difference between the spatial levels at 

which FRAPCON and PARCS perform calculations. As stated above, FRAPCON models the 

evolution under given power and thermal-hydraulic conditions of a single fuel rod. However, 

PARCS/PATHS calculates the neutron fluxes at the nodal level, which means that the individual 

fuel rods have been homogenized into blocks which form the mesh for solution of the nodal 

diffusion equations in PARCS.. In order to provide the necessary single Doppler temperature for 

each node, each assembly has an associated FRAPCON calculation representing an average rod 

(i.e., radially averaged). If detailed individual pin histories are required, then pin power 

reconstruction methods are available in PARCS/PATHS which could allow individual fuel rod 

powers to be computed and sent to FRAPCON. These individual pin histories do not influence 

the neutronics calculation. Further details regarding how this process works are described in 

subsequent sections. 

Within the PARCS/PATHS calculation, each assembly (and the fuel rods modeled within 

the assembly) is assigned an eight-digit integer identifier. All the data that is passed between the 

codes for that specific fuel rod is contained within data files that have that identifier. This 

identifier is also used as a new input to the FRAPCON calculation for that specific fuel rod. This 

strategy ensures that each individual FRAPCON simulation is provided with the power shapes 

and cladding surface temperatures that characterize the region in the PARCS/PATHS core model 
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that they represent. The following sections describe the modifications to the individual codes that 

were required to implement the coupling mechanism described in this section. 

3.4.2 FRAPCON Modifications 

In order to achieve coupling, modifications were necessary to the FRAPCON source 

code. Before discussing the specific changes that were implemented, it should be noted that 

while the current FRAPCON release is version 3.4, the version used as the base platform for this 

work is an advance version of FRAPCON-3.5 which was obtained from the NRC FRAPCON 

code manager [145]. FRAPCON-3.5 is structurally and algorithmically equivalent to 

FRAPCON-3.4; the primary differences are: 

 

 Fixed sized arrays were increased in size to accommodate larger problems. For example, 

the maximum number of time steps was increased from 400 to 1000, and the maximum 

number of axial nodes available was increased from 18 to 150. 

 Variably-sized axial nodalization was included. 

 Axially zoned fuel enrichment capability was included to model fuel rods with blanket 

regions on the upper and lower ends. 

 The cladding creep model was updated to better reflect current publically-available data. 

 

As stated above, in order to preserve the integrity of the methods in FRAPCON, the 

modifications made in order to enable coupling with PARCS were designed to be as minimally 

invasive as possible. Therefore, the modifications were in the processing of input and output 

data, rather than the methods used to obtain the solution itself. As stated above, FRAPCON 

requires axial power distribution and cladding surface temperature from PARCS/PATHS, and 

returns the nodal Doppler temperature to PATHS/PARCS. The modifications to the algorithm 

enable this data transfer. 

The input modifications were as follows: 

 

 Added a flag to FRAPCON indicating that a coupled calculation was taking place 

 With this flag on, add option to allow FRAPCON to directly read nodal relative powers. 

In the base FRAPCON, the axial power distribution at each time step is read as a table 

requiring values specified at the rod bottom (z = 0) and rod top (z = L) with an arbitrary 

number of points in between; the code then performs internal manipulations to convert 

the input shape into a histogram. This modification allows for FRAPCON to directly read 

the histogram shape calculated by PARCS. 
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The output modification was simply to create a file at the end of the FRAPCON 

calculation which contains nodal Doppler temperatures to be read by PARCS and used in the 

cross section evaluation subroutine. Each PATHS channel is modeled by a separate FRAPCON 

calculation, so within a depletion step, if there are, for example, 25 PATHS channels, then there 

will be 25 FRAPCON outputs containing the axial Doppler temperature distribution that must be 

read and processed by PARCS/PATHS. Further details on the functionality of this approach will 

be provided in a subsequent section. 

3.4.3 PARCS/PATHS Modifications 

PARCS/PATHS also required modification to enable coupling. As stated in a previous 

section, the PARCS physics subroutines were unaffected by the coupling; most of the coupling 

logic is contained within the PATHS subroutine. The only modification to PARCS was the 

modification of the input reading routines that turned the fuel thermo-mechanical flag on and 

specified a time limit for each FRAPCON/PARCS/PATHS iteration. The method in which the 

PATHS solution is performed within a depletion step was presented in Figure 3.3.3; in summary, 

the steps are as follows: 

 

1. Axial power distributions for all PATHS channels updated from PARCS 

2. PATHS computes fluids solution to obtain temperature and density distribution within 

the channels 

3. PATHS uses the fluids solution to compute heat transfer coefficients in each node to 

obtain nodal fuel clad surface temperatures 

4. PATHS uses the surface temperatures in a conduction solve to compute nodal Doppler 

temperatures 

5. Doppler temperatures and coolant temperature and density are passed back to PARCS for 

cross section evaluation 

 

In order to accommodate the coupling strategy, the control logic was modified as follows: 

 

1. Axial power distributions for all PATHS channels updated from PARCS 

2. PATHS computes fluids solution to obtain temperature and density distributions within 

the channels. 

3. PATHS uses the fluids solution to compute heat transfer coefficients and clad outer 

surface temperatures 
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4. PATHS writes a file for each PATHS channel containing the channel axially-averaged 

linear heat generation rate, normalized nodal power density, and rod surface temperature 

distribution. Once all of these files have been printed, PATHS writes a flag to the 

working directory which tells the FRAPARCS script that all PARCS-to-FRAPCON data 

files have been written. 

5. PATHS waits for a flag from the script informing it that FRAPCON has evaluated current 

iterate Doppler temperatures 

6. Once a flag is found, loop through all PATHS channels reading in nodal Doppler 

distributions written by FRAPCON 

7. Doppler temperatures and coolant temperature and density are passed back to PARCS for 

cross section evaluation. 

 

From the PARCS/PATHS point of view, the FRAPCON calculation essentially replaces 

the conduction solve which provides the Doppler temperature distribution. This allows the 

coupled calculation to take into account the changing state of the fuel and its effect on the 

neutronic performance of the core. Within a depletion step, PARCS remains the decision-maker 

regarding neutronic and thermal-hydraulic (including Doppler temperature) convergence. The 

convergence criteria that PARCS uses are fractional changes from the previous iteration in keff, 

local fission source, global fission source, Doppler temperature, and PATHS fluids solution 

residual. Once all these parameters are within the tolerance specified by the user, the depletion 

step is considered converged and the calculation moves to the next step. If one or more of the 

parameters are not within user-specified tolerance, then PARCS/PATHS writes a flag file to the 

script indicating that the depletion step will be repeated with updated power shape and coolant 

temperature distributions for FRAPCON. 

 In addition to modifications required to enable coupling, subcooled water properties 

were added to PATHS. As stated above, PATHS was originally developed to provide coolant 

conditions for BWR depletion calculations and therefore some modifications were made to 

PARCS v0.42 specifically for the PWR depletion analysis performed as part of this work.      

BWRs primarily operate as boiling systems, and therefore the fluid properties included in the 

base version are at saturation. In order to model PWR conditions, subcooled water properties at a 

range of applicable temperatures and pressures were included as functions in PATHS. The 

properties required were: 

 

 Density (kg/m
3
) 

 Viscosity (Pa-s) 
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 Specific heat at constant pressure (J/g-K) 

 Thermal conductivity (W/m-K) 

 

In order to implement these properties, data was obtained from the National Institute of 

Standards and Technology’s (NIST’s) chemistry webbook [146] in the form of tables at 

pressures from 15.0 MPa to 16.2 MPa at 0.2 MPa increments, and temperatures from 550 K to 

617 K at 2.5 K increments. A graphical presentation of the included properties is displayed in 

Figure 3.4.3. 
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(b) Specific Heat 
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Figure 3.4.3: Subcooled properties included in PATHS 

 

Functions for each of the properties were constructed and embedded in PATHS, along 

with a bilinear interpolation function. The calling routine requests the value of the property at a 

given temperature and pressure, which is returned by the property function. As is clear from 

these figures, there are some pressure/temperature combinations in the range chosen which 

correspond to superheated vapor; if such conditions are calculated in PATHS, the program will 

stop execution. This is to ensure that only subcooled flow conditions are calculated. Within 

PATHS, where appropriate, the sections of source code that called for the original, saturated 
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properties were supplemented with an “IF” statement which calls the subcooled properties 

instead if the local pressure is indicative of PWR-like conditions (i.e., greater than 15 MPa). This 

included: 

 

 Density update after the momentum/continuity solve and before the energy solve 

 Reynolds number calculation for friction coefficient 

 Reynolds and Prandtl number calculation for heat transfer coefficient 

 

The calculation of void fraction was unaffected because, for the test problems considered, 

the power/core inlet temperature combination was selected such that boiling would not happen in 

the core, and therefore the two-phase models would not be activated. Likewise, the user option to 

set the two-phase friction multiplier to unity was implemented so that non-physical pressure drop 

was not calculated.   

Finally, in order to support investigation into the potential impact of single-phase heat 

transfer coefficient uncertainty on the depletion calculation, an input to provide a multiplier on 

heat transfer coefficient was added to PARCS/PATHS. Additional detail on the basis for this 

choice will be described in Chapter 4.  

With that, the description of the algorithm modifications required to couple 

PARCS/PATHS and FRAPCON is complete. In the next section, the driver script FRAPARCS 

which controls the computational sequence is described. 

3.4.4 FRAPARCS Driver Script 

Each depletion calculation requires coordination between PARCS/PATHS and 

potentially very many FRAPCON calculations depending on the size of the core. To ensure that 

the data is transferred in an effective manner and that each process progresses through the 

calculation in synch, the Python driver script FRAPARCS was developed. FRAPARCS 

implements the basic coupling algorithm described in Section 3.4.1. A flowchart detailing the 

algorithm and examples of the FRAPARCS script for a pin cell depletion problem and a multi -

assembly multi-cycle model are included in Appendix B. 

A coupled calculation begins with FRAPARCS first interpreting the input data. This 

includes the FRAPCON case identifiers (i.e., the 8-digit numbers described in section 3.4.1), 

axial nodalization of the FRAPCON cases, the name of the FRAPCON input template file which 

is used to spawn the cases which are actually executed in the calculation, and the enrichments 
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used. FRAPARCS is built assuming a user-defined number of depletion cycles, and will shuffle 

the fuel between each cycle in accordance with a shuffling map provided in the input. Once the 

initial FRAPCON cases have been spawned, FRAPARCS begins the depletion sequence. 

 

 PARCS/PATHS begins execution for the current cycle as defined in a PARCS input deck 

 The script begins the within-step iteration sequence: 

o If PARCS/PATHS has determined that the step is converged, it writes a flag file 

to the directory telling the script to advance to the next depletion step. The 

FRAPCON inputs are updated by saving the current step’s power level, shape and 

cladding outer temperature distribution. 

o If PARCS/PATHS has determined that an additional iteration step is required, it 

writes a flag file telling the script to repeat the current time step. The data from 

PARCS/PATHS required by FRAPCON has been written to data files containing 

each PATHS channel’s LHGR, normalized nodal power shape, and outer cladding 

temperature distribution. Using Python’s text manipulation capabilities, for each 

PARCS channel the corresponding FRAPCON input deck has this information 

inserted into it, and the case is run. For each channel, FRAPCON writes a file 

containing nodal Doppler temperatures which are read and used by 

PARCS/PATHS for cross section evaluation 

o If neither flag is present, PARCS/PATHS is still undergoing its 

neutronic/thermal-hydraulic solution process, and the script will wait before 

checking for a flag file. 

 Once all the depletion steps of the current cycle have been calculated, the script 

determines if another cycle is requested. 

o If no further cycle is required, the calculation is terminated 

o If another cycle is required, then the input files for fuel to be discharged are 

moved into a discharge directory. The burned fuel which is remaining in the core 

is shuffled via file name change to its new location based on a shuffling map 

provided in the script input section. Then, new FRAPCON inputs for the fresh 

fuel locations are spawned. Finally, a shuffler program written in FORTRAN is 

used to generate a PARCS/PATHS restart file based on the previous cycle’s final 

core state. The fuel assemblies’ end of cycle burnup, fuel temperature histories, 

and either coolant temperature or void histories are shuffled to their new location 

at the beginning of the next cycle, with the fresh assembles represented by the 

default values for these data. Then, the next cycle’s calculation commences. 

 

As stated above, the FRAPCON side of the coupling process is input-driven; this means 

that, rather than exchanging information with PARCS/PATHS while FRAPCON is executing 

concurrently, information from PARCS/PATHS is inserted into FRAPCON input files during the 
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depletion calculation, and the calculations are re-run from the beginning up to the current time 

step. FRAPCON input files used by FRAPARCS have placeholders for each time step and each 

piece of required information preceded by an exclamation mark (which is interpreted as a 

comment by FRAPCON and ignored). For example, the LHGR for step 6 in the FRAPCON file 

would be represented as !pw006; when the depletion cycle reaches step 6, the script reads the 

LHGR computed by PARCS/PATHS from the PARCS-to-FRAPCON transfer file and inserts it 

into the FRAPCON input deck in the place of the placeholder. The FRAPCON calculation for 

that channel is run, and a FRAPCON-to-PARCS transfer file containing the Doppler 

temperatures for that channel is written. As the calculation progresses in time, the converged 

LHGRs, power shapes and cladding outer temperature distributions are accumulated in each 

FRAPCON input file. 

Clearly this approach is not optimized; substantial computational drag is introduced by 

requiring each FRAPCON calculation to restart from the beginning during every iteration. There 

are several reasons why this method was implemented: 

1. The architecture and programming of FRAPCON are not conducive to modification 

which would allow FRAPCON to run strictly concurrently with PARCS/PATHS. This 

approach was investigated, but due to difficulties in comprehensively resetting all internal 

variables back to the previous time step values when a time step was repeated, a 

consistently repeatable calculation could not be achieved. 

2. As stated above, there are individual FRAPCON input decks for each PARCS/PATHS 

assembly/channel begin modeled. Depending on the problem size, this could create an 

issue for the computer upon which the calculation was run; for example, a 4-loop PWR 

contains 193 fuel assemblies. If FRAPCON and PARCS/PATHS were to run as 

simultaneous processes for the duration of the calculation, this would create 194 

processes that would need to be managed by the operating system. While certainly not 

impossible on large-scale computing frameworks, it would be unwieldy in a desktop 

environment. 

3. The chosen method, while not trivial in its logic or construction, was relatively 

straightforward to implement within the timeframe necessary for this dissertation. A more 

efficient implementation may be to embed FRAPCON as a library within 

PARCS/PATHS, but attempting this carries the same issues as described in (1), in 

addition to the overhead required to develop an internal PARCS/PATHS-to-FRAPCON 

interface.  

4. Fundamentally, the reason the implemented method is feasible is because, relatively 

speaking, PARCS/PATHS and FRAPCON calculations are inexpensive. Because of this, 

even an inefficient coupling strategy can be effectively applied to problems of interest.  
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In this section, the modifications to PARCS/PATHS and FRAPCON to enable data 

communication were described, and a comprehensive description of the FRAPARCS algorithm 

to achieve coupled neutronics/thermal-hydraulics/fuel performance depletion calculations was 

presented. In the next section, an introduction to the DAKOTA framework for sensitivity and 

uncertainty analysis, and the methods by which FRAPARCS has been integrated into the 

DAKOTA environment. 

 

3.5 Sensitivity and Uncertainty Evaluation with DAKOTA 

As stated previously, DAKOTA is a framework developed by Sandia National 

Laboratories for design evaluation, optimization, sensitivity evaluation and uncertainty analysis 

[7]. The general idea behind DAKOTA is to package commonly used analysis techniques of the 

preceding types into a convenient repository from which they can be easily implemented by 

engineers over a broad range of applications. Engineers and software developers can utilize 

DAKOTA in a variety of ways, up to and including integration of their codes into the tool kit at a 

source code level; however, for many applications (such as this one), this is not necessary, since 

the S/UA treatments are contained within program inputs. Therefore, the method of 

incorporation chosen for this work is the “black box” approach, where the engineering software 

is treated as a stand-alone model to be called by DAKOTA to generate data for uncertainty 

analysis.  A flowchart detailing the interaction between DAKOTA and engineering software is 

presented in Figure 3.5.1: 
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Figure 3.5.1: DAKOTA program flow for “black box” implementation (from [7]) 

 

The user specifies in a DAKOTA input file the type of analysis desired, the name and 

location of the “analysis driver” (usually a script which executes the physics simulator in 

question) and the parameters of the analysis and how they are to be varied. Within the context of 

this work, the physics simulator is the FRAPARCS script, and the parameters are the appropriate 

FRAPCON uncertainty variables. The analysis driver script utilizes the DAKOTA ‘deprepro’ 

utility to insert realizations of the uncertainty variables into a FRAPCON template input file 

based on distributions specified in the DAKOTA input. The simulation is then run, and the 

resulting responses of interest (for example, criticality or peaking factors) are retrieved from the 

output and passed back to DAKOTA. Depending on the type of analysis requested, DAKOTA 

then calculates statistics relating the uncertainties in the input variables to the uncertainties in the 

responses, and if desired, sensitivity coefficients. Within this work, we employ two varieties of 

sampling methods (Random Sampling and Latin Hypercube Sampling) and two stochastic 

expansion methods (Polynomial Chaos Expansion and Stochastic Collocation) to perform 

uncertainty and sensitivity analysis of a coupled depletion problem. The full description of the 

S/UA methods which are used in this work will be deferred to Chapter 5. 
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3.6 Conclusions 

In this Chapter, the methodology used in the fuel thermo-mechanical code FRAPCON 

was presented, as well as the eight uncertainty variables considered important for fuel-related 

sensitivity and uncertainty analysis. Then, the methods and algorithms for core depletion analysis 

with PARCS and thermal-hydraulic analysis with PATHS were described. The FRAPARCS 

coupling methodology was presented, along with the algorithm modifications to each of the 

individual subcodes necessary to make the coupling of the three codes functional.  The basic 

coupling scheme involves fixed-point iteration within each depletion step to fully converge the 

fuel temperature distribution and neutronics behavior used by each code prior to moving to the 

next step. Finally, a brief introduction was provided on the DAKOTA uncertainty package, as 

well as the implementation of FRAPARCS within the coupled code framework. In the next 

Chapter, applications of the FRAPARCS script to coupled depletion problems, and comparisons 

between coupled and uncoupled calculations will be presented. 
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CHAPTER 4 

 

 

Application of FRAPARCS to Depletion 

 

 

4.1 Introduction 

The principle purpose of the FRAPARCS code system is to evaluate core criticality, 

power distribution, temperature distribution, and fuel thermo-mechanical behavior as the reactor 

undergoes normal operation at power. In order to demonstrate the impact of explicitly modeling 

the fuel evolution in concert with the neutronics behavior during fuel depletion, two test 

problems are investigated: a PWR pin cell, representative of the typical geometry modeled by 

FRAPCON in stand-alone mode, and a 5x5 PWR mini-core, representative of loading patterns 

commonly used in the industry. We do not include a full-core depletion, as the code coupling is 

too inefficient to accommodate it in a reasonable time frame. As we will see, however, the two 

problems we do present capture sufficient physics such that we can draw conclusions about the 

importance of fuel performance within neutronic depletions for practical cases. 

Within the discussion of the pin cell problem, a sensitivity study of the neutronics to the 

uncertain fuel parameters discussed in Chapter 3, as well as to the heat transfer coefficient 

computed by PATHS, is presented. These calculations will form the basis for the uncertain 

variables considered within the uncertainty and sensitivity analysis presented in Chapter 6. 

 

4.2 Pin Cell Model Description 

The first test problem analyzed was a pin cell with geometry characteristic of a fuel rod 

within a 15x15 PWR fuel assembly. This problem was chosen to provide a simple means to 

evaluate the coupling scheme and ensure that the data transfer between FRAPCON and
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PARCS/PATHS was occurring as intended, as well as to provide a quick-running test case that 

would provide fundamental insights into the physical processes that are being modeled. As will 

be seen from the comparisons with the mini-core depletion, even the relatively simplistic pin cell 

depletion contains sufficient physical insights into the importance of fuel performance in 

depletion to warrant its use within Chapter 6 as the model of choice for uncertainty analysis. In 

this section, the neutronic model used to generate broad group cross sections with HELIOS is 

specified, and the FRAPARCS model is described. 

4.2.1 Cross Section Generation Model 

In order to generate the cross sections for the pin cell, a two-dimensional HELIOS model 

of a pin cell with reflective boundary conditions was created. The geometry, material data, and 

power density are based on the Turkey Point Unit 3 three-loop Westinghouse PWR [147]. Figure 

4.2.1 illustrates the HELIOS model and Table 4.2.1 presents the design data. 

As described in Chapter 2, the traditional process of core evaluation involves generating 

cross sections at a number of state points, which are then interpolated upon to determine the 

effective cross section for a specific nodal condition computed by the core simulator. The 

collection of state points upon which the cross sections are evaluated is referred to as the branch 

structure.   A detailed description of the methods by which PARCS evaluates the cross sections 

for nodal calculations is presented in the GenPMAX theory manual [148]. In PARCS, distinction 

is drawn between “history” variables (which characterize the conditions under which depletion 

takes place) and “branch” variables (which are instantaneous departures from a history state used 

by PARCS for transient conditions). For example, a given history may specify that the depletion 

occur at a fuel temperature of 1000 K and a moderator temperature of 570 K for an exposure 

length of 5000 MWd/MTU with 1000 MWd/MTU depletion steps. The fluxes used to evaluate 

the nuclide density evolution from step to step use these history temperatures. However, at each 

of the intermediate points between the beginning and end of the depletion, branch calculations 

which modify the temperatures and/or densities of each of these regions can be specified which 

use the nuclide densities resulting from the depletion at the history temperatures, but use cross 

section data evaluated at the branch temperatures. In this example, at the end of each 1000 

MWd/MTU step, there may be branches that change the fuel temperature to 550 K or 590 K, or 

change the fuel temperature to 800 K or 1200 K. By performing branch calculations, it becomes 
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Figure 4.2.1: HELIOS pin cell diagram (blue: coolant, orange: clad, white: gap, grey: fuel) 

 

Table 4.2.1: Pin cell geometry and material data 

Cell pitch (cm) 1.43 

Clad outer diameter (cm) 1.07 

Clad inner diameter (cm) 0.9466 

Gap thickness (cm) 0.0095 

Fuel outer diameter (cm) 0.9276 

Moderator material Water 

11.19 wt/o Hydrogen 

88.81 wt/o Oxygen 

Cladding material ZIRLO™ 

97.915 wt/o Zirconium 

0.005 wt/o Tin 

0.11 wt/o Iron 

0.9 wt/o Silicon 

0.98 wt/o Niobium 

Cladding density (g/cc) 6.5 

Fuel material Uranium Oxide (UO2) 

Fuel density (g/cc) 10.4215 

Fuel fraction of theoretical density 

(%) 

0.95 

Fuel enrichment (wt/o) 4.5 

Power density (W/gU) 36.37 

 

possible to model short transients with the core simulator in which the core temperature 

distributions may change, but the nuclide densities do not appreciably change. 

The histories used to generate the pin cell cross sections for the problem here are 

presented in Table 4.2.2. Since these calculations are performed at PWR conditions, densities are 

evaluated at the specified temperature at 15.5 MPa pressure. The limits for the moderator 

temperature ranges were chosen based on the inlet temperature of the core modeled with 

PARCS/PATHS and the saturation temperature of water at the core outlet pressure. To choose 

the range of fuel temperatures, a FRAPCON calculation was performed using the rod geometry 
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and materials with a prototypic cosine power distribution with a rod average LHGR of a typical 

15x15 assembly-fueled PWR out to 62 GWd/MTU burnup. 

 

Table 4.2.2: Cross section history structure for pin cell lattice calculations 

History ID Coolant Density (g/cc) Coolant Temperature (K) Fuel Temperature (K) 

c550f0625 

0.769699 550 

625 

c550f0900 900 

c550f1250 1250 

c550f1600 1600 

c572f0625 

0.728872 572 

625 

c572f0900 900 

c572f1250 1250 

c572f1600 1600 

c594f0625 

0.677945 594 

625 

c594f0900 900 

c594f1250 1250 

c594f1600 1600 

c616f0625 

0.603652 616 

625 

c616f0900 900 

c616f1250 1250 

c616f1600 1600 

 

Within each history case, there is a branch structure that reflects the other history cases 

being executed, which is supplemented with a branch at Hot Zero Power conditions should zero 

power operation need to be modeled with PARCS/PATHS. For example, if the pin cell was 

being depleted at a fuel temperature of 625K and moderator temperature at 550K, there were 15 

branches evaluated at the end of each depletion step which instantaneously changed the 

temperature conditions to match those of the other cases listed in Table 4.2.2, in addition to a 

HZP case (fuel temperature is 550K, moderator temperature is 550K), for a total of 16 branches. 

This was necessary to allow the PARCS/PATHS cross section evaluation methodology to 

effectively interpolate between history states. 

In accordance with Table 4.2.2, there were 16 history cases that were depleted at the 

power density specified in Table 4.2.1 from 0 GWd/MTU to 65 GWd/MTU. There were a total 

of 47 depletion steps used, with smaller timesteps used in the early part of the calculation to 

capture the region in which nuclide densities are changing relatively rapidly (standard practice in 

lattice calculations, see [149]). The depletion step structure is presented in Table 4.2.3: 
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Table 4.2.3: Depletion step structure of pin cell model 

Burnup range (MWd/MTU) Depletion Step Size (MWd/MTU) 

0 – 0.1 0.1 

0.1 – 250 249.9 

250 – 500 250 

500 – 10,000 500 

10,000 – 20,000 1,000 

20,000 – 65,000 3,000 

 

In order to generate the cross section data used for the pin cell calculation, the sixteen 

history cases described above were executed using HELIOS, and the data was post-processed 

with the Studsvik code ZENITH [150] to provide a format readable by GenPMAX [148], 

developed at the University of Michigan to provide an interface between lattice codes and 

PARCS. GenPMAX reads the cross section data provided by the lattice code output, calculates 

the derivatives which PARCS uses in its cross section evaluation routines, and generates a 

PMAX file which contains all this information in the format which PARCS can read. Using the 

computational flow described above, the cross sections for the pin cell case were generated and 

the PMAX file constructed. In the next section, the FRAPARCS model using these cross sections 

is described. 

4.2.2 FRAPARCS Input Specification 

Since FRAPARCS requires the execution of FRAPCON and PARCS/PATHS 

individually, it is necessary to construct input files for each code. The pin cell models used in 

this case are representative of a fuel rod from a 15x15 fuel assembly with a power rating 

consistent with the Turkey Point Unit 3 Nuclear Power Plant [147].   Because a primary impact 

of improving fuel predictions in core simulation was expected to be observed in the Doppler 

temperature prediction, a PWR fuel design with slightly thicker rods relative to the more 

common 17x17 fuel lattice used in industry was used in the pin model to accentuate the effect. 

Consistency was ensured between the lattice, diffusion, thermal-hydraulic, and fuel thermo-

mechanical models under investigation. Input data for the PARCS/PATHS and FRAPARCS 

models are presented in Table 4.2.4 and Table 4.2.5, respectively. Using this input specification, 

FRAPARCS was executed to provide comparisons of depletion calculations done with fixed gap 

conductances similar to the calculations first introduced in Chapter 1. In the next section, these 

comparisons are presented. 
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Table 4.2.4: PARCS/PATHS input specifications for pin cell model 

Input Value 

Number of assemblies 1 

Number of fuel rods/assembly 1 

Assembly pitch (cm) 1.43 

Active core length 366.0 cm 

Axial nodalization 28 total nodes: 

2 nodes for bottom reflector (19.05 cm/node) 

24 nodes for core region (15.25 cm/node) 

2 nodes for top reflector (19.05 cm/node) 

Boundary conditions Reflective (East, West, North, South) 

Zero incoming current (Top, Bottom) 

Depletion Length (d) 1600 

Depletion Step Length (d) 10 

Core power (kW) 76.21 

Inlet coolant mass flow rate (kg/sec) 0.3599 

Inlet coolant enthalpy (kJ/kg) 1260.0 

Core outlet pressure (MPa) 15.512 

Channel area (m
2
) 1.143 x 10

-5
 

Hydraulic diameter (m) 1.357 x 10
-2

 

Surface roughness (m) 6.800 x 10
-5

 

Pin pitch (m) 1.43 x 10
-2

 

Cladding outer radius (m) 5.35 x 10
-3

 

Fuel pellet radius (m) 4.638 x 10
-3

 

Cladding thickness (m) 6.170 x 10
-4

 

 

Table 4.2.5: FRAPCON input specifications for pin cell model 

Input Value 

Cladding outer diameter (m) 1.07 x 10
-2 

Cladding thickness (m)  6.17 x 10
-4 

Gap thickness (m) 9.5 x 10
-5 

Plenum length (m) 0.254 

Plenum spring outer diameter (m) 9.1 x 10
-3

 

Plenum spring wire diameter (m) 1.27 x 10
-3 

Number of spring turns 33 

Fuel pellet length (m) 1.14 x 10
-2

 

Fuel pellet dish depth (m) 2.4 x 10
-4

 

Fuel pellet end - dish shoulder width (m) 1.1 x 10
-4

 

Fuel stack height (m) 3.66 

Number of axial nodes 24 

Axial node length (m) 0.1525 

Fuel pellet Uranium-235 enrichment (wt/o) 4.5 

Fuel fraction of theoretical density  0.95 

Cladding material ZIRLO 

Fuel rod fill gas Helium 

Fuel rod fill pressure (MPa) 2.41 
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4.3 Comparisons with Stand-Alone Depletion 

In order to gauge the impact of including fuel performance in the depletion calculation, 

three PARCS/PATHS standalone models with a fixed gap conductance were used with a 

representative range of values experienced by fuel during depletion as shown in Table 4.3.1.   

The solutions with these models were compared with a FRAPARCS model which explicitly 

models fuel evolution with burnup. As specified in Table 4.2.4, depletion was simulated for 1600 

days (roughly corresponding to a rod exposed in a reactor core for three 18-month cycles) at 10 

day time steps to simulate the entire range of exposure which might be experience by a fuel rod 

in a reactor core. 

 
Table 4.3.1: Gap conductances used for stand-alone PARCS/PATHS pin cell model 

Case Description Gap Conductance (W/m
2
-K) 

Beginning-of-life 7,000 

During gap closure 30,000 

Closed gap 80,000 

 

Similar to the presentations in Chapter 1, the outputs of interest for this comparative 

study include the core-averaged Doppler temperature, criticality and axial peaking factor (since 

this is a single rod problem, radial peaking factors are not present). We also include discussion of 

the reactivity coefficients at various points in core life to determine if coupling the codes results 

in significantly different responses to perturbations. 

Before delving into the results, we first mention the model that PARCS/PATHS uses for 

Doppler temperature evaluation. Obviously there is a radial temperature gradient within the fuel 

as it operates at power; however, as discussed above, core simulators use a representative 

temperature for each node which is used in cross section evaluation. Therefore, the temperature 

gradient must be appropriately averaged to produce a single value for use in the core simulator. 

There are many possible ways to calculate this this value (see, for example, [151]); in PARCS, 

the following formulation is used: 

 

 𝑇𝑑𝑜𝑝 = 𝜔𝑇𝑠𝑢𝑟𝑓 + (1 − 𝜔)𝑇𝑐𝑙  (4.1) 

 

where 𝑇𝑑𝑜𝑝  is the Doppler temperature for a given node, 𝑇𝑠𝑢𝑟𝑓  is the fuel pellet surface 

temperature, 𝑇𝑐𝑙  is the fuel pellet centerline temperature, and 𝜔 is a weighting factor, taken as 
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0.7. In PARCS calculations, the pellet surface temperature is given strong priority over the 

centerline temperature. We will see the importance of this choice for Doppler temperature in the 

coupled calculations seen below; it causes a strong interaction between the calculated Doppler 

temperature and the gap conductance calculated by PARCS. 

4.3.1 Doppler Temperature and Core Reactivity 

The first results we present are the core-averaged Doppler temperature and the resultant 

difference in reactivity between the stand-alone and coupled cases (calculated in 10
-5

∆k (pcm)). 

These are presented in Figure 4.4.1: 

 
(a) Doppler Temperature 

 
(b) Reactivity relative to coupled 

 

Figure 4.3.1: Temperature and reactivity comparisons for standalone vs. coupled case 

 

From Figure 4.3.1(a), it is evident that the core-wide changes in the fuel with depletion 

cause the Doppler temperature to behave in a way which is not captured by the stand-alone 

neutronics cases. The initial rise in temperature with the first depletion step is the result of 

densification, where the fuel pellets become re-sintered and compacted with the rise to operating 

temperatures. This causes the pellets to slightly separate from the cladding wall, increasing the 

size of the gap and therefore increasing the temperature drop across it (and by result, the Doppler 

temperature itself). From this point through the next roughly 500 days of irradiation, the fuel 

cladding undergoes strain inward as a result of the coolant pressure being greater than the rod 

internal pressure. At the same time, the fuel is slowly swelling as fission products accumulate 

within the fuel matrix with irradiation. These two effects slowly close the fuel-clad gap and 

causes a reduction in Doppler temperature out to about 500 days, when the gap closes. The slow 
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temperature increase with burnup throughout the remainder of the depletion is due to the 

degradation in fuel thermal conductivity.  

We see from Figure 4.3.1(b) that there can be an approximately 300 pcm reactivity swing 

between the coupled and uncoupled cases. The reactivity difference basically follows the same 

trends as the Doppler temperature swing presented in Figure 4.3.1(a). The higher fuel 

temperatures throughout the cycle computed by the 7000 W/m
2
-K case result in a 

correspondingly low core reactivity relative to the coupled case due to the Doppler effect; the 

other two standalone cases demonstrate a higher reactivity because their fuel temperatures are 

lower than the coupled case. As the core depletes and the gap closes, the core average Doppler 

temperatures of the higher conductance cases approach the temperatures computed by the 

coupled case, which causes the reactivity difference to be relatively small. As depletion 

continues and the coupled case’s Doppler temperature begins to increase again, there is a 

corresponding deviation in the system eigenvalue. After gap closure, the reactivity of the 7000 

W/m
2
-K begins to approach the other cases, despite the higher temperature; this is because the 

higher-temperature operation results in more resonance absorption. While the instantaneous 

effect of increased resonance absorption is a negative reactivity effect, over time the creation of 

plutonium actually causes the reactivity of the system to increase relative to the depletions 

occurring at cooler temperatures. 

In Table 4.3.2, the pre-gap and post-gap closure Doppler temperature swings (i.e., value 

of the maximum deviation between the coupled and stand-alone cases), and their corresponding 

reactivity swings, are presented. 

 
Table 4.3.2: Temperature and reactivity swings for pin cell case 

Case Doppler temperature swing (K) Reactivity swing (pcm) 

7000 W/m
2
-K 

Pre-gap closure 74.9 -236.3 

Post-gap closure -32.9 357.2 

30000 W/m
2
-K 

Pre-gap closure -74.1 -297.7 

Post-gap closure 33.1 64.9 

80000 W/m
2
-K 

Pre-gap closure -74.0 -313.0 

Post-gap closure 33.1 21.9 

 

An observation from this data is that there can be a noticeable deviation in system 

criticality between stand-alone and coupled cases regardless of the fixed gap conductance one 

choses at the outset of the standalone calculation. This is particularly the case in the range of 

time wherein the fuel-cladding gap has not yet closed. There is not a simple linear relationship 
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between the change in core average Doppler temperature and the corresponding change in core 

reactivity; this is due to history effects (including the buildup of plutonium in resonance 

absorption) as the fuel depletes. 

In order to confirm that it is the closure of the gap and therefore the increased contact 

between fuel pellet and clad that causes the inflection point in Doppler temperature and reactivity 

at approximately 500 days, we present in Figure 4.3.2 the structural radial gap and the pellet 

surface temperature from the FRAPCON calculation for three nodes: one near the bottom (node 

3); one at the center (node 12); and one at the top (node 24). 

 

 
(a) Radial Gap 

 
(b) Pellet Surface Temperature 

 

Figure 4.3.2: Structural radial gap and pellet surface temperature from FRAPCON calculation 

 

We can see from this figure that once the gap is closed and the fuel and cladding come in 

thermal contact, the pellet surface temperature stabilizes at essentially a constant value for the 

remainder of the depletion. For the lower and center nodes, this between 400 and 600 days into 

the depletion cycle, which corresponds with the inflection points in Doppler temperature and 

core reactivity evident in Figure 4.3.1. We have thus confirmed that it is gap closure which is the 

cause of the Doppler and reactivity differences seen early in depletion. Once the gap is closed, 

the remainder of the differences comes from the thermal conductivity degradation in the fuel, 

which causes the pellet centerline temperature to increase at constant power. Neither gap closure 

nor thermal conductivity degradation can be modeled without the use of FRAPCON in the 

PARCS/PATHS depletion calculation.  
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4.3.2 Axial Power Distribution 

Now that Doppler reactivity has been discussed and found to be an important 

phenomenon modeled by FRAPARCS, we will present the impact of fuel modeling on other 

neutronics behavior. Another fundamental output of interest from depletion calculations is the 

power shape. This is usually characterized with a peaking factor, defined as the ratio of the 

maximum power in a neutronics node divided by the power of an average node. As we saw in 

Chapter 1, these factors are computed on a local (nodal), a radial, or an axial basis (denoted 𝐹𝑞 , 

𝐹𝑥𝑦 , and 𝐹𝑧, respectively). In this pin cell problem, there is no radial dimension, so 𝐹𝑥𝑦 = 1 and 

𝐹𝑞 = 𝐹𝑧. In Figure 4.3.3, we show the difference in 𝐹𝑧  in the standalone cases relative to the 

coupled case. 

 

Figure 4.3.3: Axial peaking factor difference relative to coupled case 

 

From this figure, it is evident that the effect that coupling fuel performance with the core 

depletion on the axial power distribution is relatively limited for the case of a single fuel pin. 

There are slight differences throughout the depletion which are generally within a few percent. 

To confirm that the axial power distribution as a whole follows the same trend, the power shapes 

at Beginning of Life (BOL), Middle of Life (MOL) (i.e., 800 days), and End of Life (EOL), in 

addition to the time of maximum deviation aside from BOL (in this case, at 160 days) are shown 

in Figure 4.3.4. 
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(a) BOC 

 
(b) 160 d 

 
(c) MOC 

 
(d) EOC 

 

Figure 4.3.4: Power shapes throughout life for pin cell depletion 

 

This figure confirms that, as the pin cell depletes, the power shape between the four cases 

stays fundamentally the same; at beginning of life, the power shape tends more towards the 

bottom of the core due to the cooler, denser moderator from the lower plenum. As the fuel in the 

bottom of the core is depleted, the shape shifts towards the upper portion of the core, and as the 

fuel in that portion is burned out migrates back down into a slight double-humped shape. These 

power shapes are characteristic of PWR depletion. 

The coupled case shows a very similar power distribution compared to the uncoupled 

cases primarily because the changes in the fuel temperature resulting from gap closure are 

reasonably uniform in the channel, even though there are some axial variations in the axial fuel 

power.   In other words, at a given burnup point, while the fuel temperatures within the 

individual nodes  between the different cases might be significantly different, the fuel 

temperature distributions display fundamentally the same normalized shape, which keeps the 

resulting axial power distributions very similar to one another.   This is confirmed by examining 

the axial fuel temperature distributions in Figure 4.3.5 which indicate that changing gap 

conductance tends to shift the temperature distribution left or right as a whole, but not 

fundamentally change its shape.  Therefore, the dominant effect of coupled fuel performance 

appears to be on criticality, whereas the power distribution is relatively unaffected. Questions 
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with regard to the radial dimension will be addressed with the mini-core depletions discussed in 

Section 4.6. 

 
(a) BOC 

 
(b) 160 d 

 
(c) MOC 

 
(d) EOC 

 
Figure 4.3.5: Doppler temperature distributions throughout life for pin cell depletion 

 

4.3.3 Reactivity Coefficients 

The final neutronics quantities of interest to be discussed are the impact of explicit fuel 

performance on reactivity coefficients. Reactivity coefficients provide a measure for how the 

criticality of a nuclear system operating at steady-state responds to small perturbations in the 

system parameters. These coefficients are often used in the design and safety analysis of a 

reactor core to determine the response of the core to a given perturbation in the operating state. 

The fuel and moderator temperature coefficients were calculated for the same pin cell problem 

examined above. In order to compute these coefficients, a system operating point is chosen. 

Then, using the restart capability of PATHS/PARCS, the temperature distribution at that point is 

perturbed either up or down, and the system criticality recalculated. The difference in criticality 

resulting from these up and down perturbations is used to estimate the reactivity coefficient of 

interest. The following central-differencing formula was used: 

 

 𝛼𝑥 =
𝜕𝜌

𝜕𝑥
≈

𝑘+ − 𝑘−

𝛿𝑥+ − 𝛿𝑥−
 (4.2) 
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where 𝛼𝑥 is the reactivity coefficient due to quantity 𝑥, 𝑥 is the quantity to be perturbed (either 

fuel or moderator temperature), 𝛿𝑥 is a small perturbation in that quantity (either up (+) or down 

(-)),and 𝑘  is the k-eigenvalue computed by PARCS/PATHS. For this valuation, the small 

perturbation was taken as 5 K up or down applied uniformly to the temperature distributions 

computed during the depletion. A Python script was written to read the depletion files generated 

during the depletion calculation, apply the perturbation to the requested variables at specified 

depletion points, and write restart depletion files for PARCS/PATHS to read to evaluate the 

resulting system eigenvalue. For the purposes of adequate history coverage, the coefficients were 

computed at 0, 230, 460, 690, 920, 1150, 1380, and 1600 days. The script read the k-eigenvalues 

produced by this perturbation and applied the above formula to estimate the resulting reactivity 

coefficient. The Doppler and Moderator Temperature Coefficients (DTC and MTC, respectively) 

are presented in Figure 4.3.6: 

 
(a) DTC 

 
(b) MTC 

 

 

 

Figure 4.3.6: Reactivity coefficients throughout depletion for pin cell case 

 

Examination of Figure 4.3.6(a) reveals that, as expected, all DTC are negative because an 

increase in fuel temperature results in Doppler broadening of the Uranium-238 resonance peaks, 

which increases parasitic absorption and causes system criticality to decrease. The range of 

values shown is consistent with the expected values of a PWR (see, for example, [152]). The 

results do not indicate there is a strong dependence of DTC on gap conductance or fuel 

modeling; most likely because in the range of Doppler temperatures experienced by the fuel the 

small changes in fuel temperature do not have a significant impact on the important phenomena 
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such as resonance absorption. There is a small dependence on gap conductance and therefore 

fuel temperature; the 7000 W/m
2
-K case is operating at a slightly higher temperatures than the 

other cases, and a small change in temperature about those points does result in systematically 

lower DTCs. However, the effect is relatively small. The coupled case behaves similar to the 

7000 W/m
2
-K case early in the depletion, because the fuel temperatures in this region are close, 

but as the gap closes and the coupled case develops temperatures more akin to the higher-

conductance cases the coupled DTC moves towards the uncoupled high-conductance DTCs. 

With the increase in temperature experienced later in life, the coupled DTC then moves back 

towards the 7000 W/m
2
-K case. In all cases the DTC becomes less negative as the fuel is burned 

due to the buildup of fissile plutonium isotopes. 

From Figure 4.3.6(b), there appears to be an even weaker dependence of MTC on the fuel 

modeling. This is primarily because, while the fuel temperatures can be significantly different, 

because this is a steady-state, fixed power problem, the moderator temperatures and axial 

temperature distributions are almost the same among the different cases run. Therefore, 

perturbing the moderator temperature has little effect on the physics occurring within the fuel 

region, where FRAPCON provides its major contribution. 

A question could be raised about the reactivity coefficient calculations presented here, as 

these depletions occurred at zero-boron conditions to allow for examination of fuel mechanical 

effects out to standard licensing limits. PWRs, however, are operated with soluble boron 

dissolved in the reactor coolant to maintain the reactor in a critical condition, and it is well-

known that the presence of boron has a significant effect on the moderator temperature 

coefficient. In order to address this, a borated set of pin cell cross sections was developed, with 

the same geometry and materials as the standard problem described above. The only differences 

were including a range of boron concentrations from 0 to 3600 ppm (parts per million) in the 

history and branch structure, and reducing the fuel enrichment from 4.5 wt/o to 2.8 wt/o in order 

to keep the BOC boron concentration reasonable (i.e., generally representative of real PWR 

cores). A consequence of choosing a lower enrichment is that the core cannot be depleted for a 

length of time representative of the full range of burnup experienced by the fuel. The initial 

enrichment was chosen, however, to allow for a depletion simulation to be carried out through 

gap closure, which has been established by the initial calculations as the most important part of 

coupled depletion. This depletion calculation is carried out for 700 days. 



87 

 

In Figure 4.3.7, we present the Doppler temperature and difference in critical boron 

concentration (CBC) between the FRAPARCS case and the fixed gap conductance cases: 

 
(a) Doppler Temperature 

 
(b) Critical boron concentration relative to coupled 

 
Figure 4.3.7: Doppler temperature and CBC for borated pin cell depletion 

 

From this figure, we can see very almost identical qualitative behavior between the 

borated and unborated cases. The Doppler temperature follows the same trend as Figure 4.3.1(a) 

out to 700 days. As expected, the reactivity curves in Figure 4.3.1(b) follow the CBC curves in 

Figure 4.3.7(b). The maximum reactivity difference in the unborated cases of approximately 313 

pcm translates to a maximum CBC difference of about 37 ppm; this is consistent with typical 

boron worth.  

Using these cases, we can apply the script described above to calculate reactivity 

coefficients, as presented in Figure 4.3.8. From this figure, we can see that the DTC follows the 

same trends as the unborated cases; at the beginning of depletion, the coupled DTC is closer to 

the 7000 W/m
2-

K case since the Doppler temperature is similar, and as burnup progresses the 

coupled DTC moves towards the higher conductance cases. For the MTC, we see a quantitative 

difference in that early in life the MTC is positive; this is because the critical boron concentration 

is on the order of 3000 ppm. At these boron levels, the effect of lowering the effective density of 

boron in the core through heating overcomes the negative reactivity effect of reducing the 

density of the water moderator. However, as burnup occurs and the CBC is reduced, the effect of 

moderator density decrease becomes dominant. In any case, there is practically no difference in 

the MTC due to coupling with a fuel performance code; this is again because the important 
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physics resulting from fuel coupling resides within the fuel region, rather than what is occurring 

in the moderator. 

 
(a) DTC 

 
(b) MTC 

 

Figure 4.3.8: Reactivity coefficients throughout depletion for pin cell case 
 

4.3.4 Standalone Comparison Summary 

In this section, the results of comparison between stand-alone pin cell problems with 

different gap conductances and the case where FRAPARCS was used to dynamically model the 

fuel changes with burnup in the neutronics depletion calculation were analyzed. The results 

suggest the following: 

 

 There are significant effects on the Doppler temperature, and in a way which fixed gap 

conductance calculations cannot capture because they lack the appropriate physics. 

 The changes in Doppler temperature result in significant time-dependent deviation of 

system criticality between the fixed gap conductance cases and the coupled case, on the 

order of approximately 300 pcm. This can be significant from the standpoint of shutdown 

margin, particularly early in a depletion cycle, where the fuel is changing significantly. 

 The impact of coupling fuel physics to the depletion calculation on the power distribution 

is fairly weak, since the fuel temperature distributions tend to be shifted up or down 

uniformly as opposed to changing shape significantly. 

 The effects on both the Doppler and moderator reactivity coefficients are relatively small, 

for both borated and unborated cases. Therefore, for follow-up investigations, in order to 

simulate the entire range of fuel life out to typical licensing limits, we will continue to 

use the unborated model. 
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The results of this analysis suggest that dynamically modeling the fuel in a depletion 

calculation can result in significant changes to some of the outputs of interest relative to stand-

alone cases, and therefore further investigation into the specifics of fuel performance is 

warranted. In the next section, we will examine the impact of the fuel performance uncertainty 

variables described in the previous chapter, as well as the single-phase heat transfer coefficient, 

to determine the sensitivity of the neutronics outputs to these parameters.  

 

4.4 Sensitivities to Uncertain Input Variables 

Beyond determining the overall effect of coupling fuel performance with neutronic 

depletion, a further goal of this work is to perform sensitivity and uncertainty analysis to 

determine which specific fuel models have a significant impact on the calculation. This will 

assist in broader efforts to determine the uncertainties in nuclear design computations. To 

facilitate this analysis, we will take advantage of the inherent capabilities of FRAPCON to 

perform uncertainty evaluations described in Chapter 3. In addition to studying the influence of 

the fuel parameters, we will also consider the sensitivity of the depletion calculation to the heat 

transfer coefficient. 

FRAPCON allows the user access to eight fuel models which were determined to have a 

significant impact on fuel performance calculations. As a result of the data evaluations and 

sensitivity analysis performed in NUREG/CR-7001 [28], FRAPCON’s coding was changed to 

allow the user to bias these models up or down by a fraction of the standard error, calculated by  

the developers based on model-to-data comparisons. There are two types of biasing available, 

depending on the specific model in question: absolute biasing, and relative biasing. The method 

by which biases are applied is described by Equations 4.3 and 4.4, respectively: 

 

 𝑋 = 𝑋𝑛𝑜𝑚 + ℎ𝜎𝑋  (4.3) 

 

 𝑋 = {

𝑋𝑛𝑜𝑚(1 + ℎ𝜎𝑋) ℎ > 0
𝑋𝑛𝑜𝑚

(1 − ℎ𝜎𝑋)
ℎ ≤ 0

 (4.4) 

 

In these equations, 𝑋 is the value of the model used in the calculation, 𝑋𝑛𝑜𝑚 is the nominal value 

returned by the model, 𝜎𝑋  is the standard error computed by the developers and hard-wired into 

the code, and ℎ is a user-specified bias factor which shifts the model up or down. Usually in 



90 

 

uncertainty calculations performed with FRAPCON, ℎ  is drawn from a specified input 

distribution. In Table 4.4.1, we list the models with available biases, the bias type, and the value 

of the standard error (from [153]); the fuel models list the values used for uranium dioxide, and 

the cladding models list the values for the ZIRLO cladding alloy: 

 
Table 4.4.1: Uncertain fuel models and their biases in FRAPCON 

Model Bias Type 𝝈𝑿 

Fuel Thermal Conductivity Relative 8.8% 

Fuel Thermal Expansion Relative 10.3% 

Fuel Swelling Absolute 
Below 80 GWd/MTU: 0.08% ∆V/V/10 GWd/MTU  

Above 80 GWd/MTU: 0.16% ∆V/V/10 GWd/MTU 

Fission Gas Release Relative 100% (applied to gas diffusivity) 

Cladding Creep Relative 14.5 % 

Cladding Axial Growth Relative 22.3% 

Cladding Corrosion Absolute 15 μm 

Cladding Hydrogen Pickup Absolute 45 ppm 

 

In order to assess the influence of each of these parameters on the neutronics calculation, 

we varied the bias for each input ±2𝜎  in increments of 𝜎 , for a total of four sensitivity 

calculations per uncertain variable (32 total calculations). Each neutronic output discussed above 

was then examined to determine the parameters’ influences. The reactivity and peaking factors 

were calculated as the relative difference vs. the unbiased case. This sequence of calculations 

was performed to form a basis for which inputs proved to be the most relevant for inclusion in 

further sensitivity and uncertainty analysis. 

Of the neutronics outputs, the Doppler temperature and reactivity were found to be the 

most affected. In most cases, the impact on axial peaking and reactivity coefficients was found to 

be almost negligible. This can be expected from the standalone analysis presented above; even 

with rather large changes in fuel temperatures caused by explicit fuel modeling, these three 

parameters were not strongly affected. Of the eight uncertainty variables, three were found to be 

particularly important (i.e., causing a reactivity change of > 50 pcm at the ±2𝜎  level): fuel 

thermal conductivity, fuel thermal expansion, and cladding creep. Two of the models were found 

to be moderately important (~20 pcm at ±2𝜎): fuel swelling and cladding corrosion. Finally, two 

were found to have minimal influence: fission gas release, cladding axial growth, and hydrogen 

pickup. The reasons for these will be discussed below. 
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4.4.1 Strongly Influential Parameters 

The first parameter we will discuss in the context of coupled depletion is the thermal 

conductivity of uranium dioxide. As can be expected, this is a very important parameter in 

thermal analysis, as it is the primary parameter present in the conduction solution within the fuel 

rod. Biasing this parameter causes a readily-discernible effect on the fuel simulation. In Figure 

4.4.1, we show the effect that modifying the thermal conductivity has on Doppler temperature 

and core reactivity: 

 
(a) Doppler Temperature 

 
(b) Reactivity Relative to Base 

 
Figure 4.4.1: Effect of fuel thermal conductivity bias 

 

The influence of thermal conductivity on fuel temperatures is obvious from the above 

figure. By ranging the bias in this parameter from -2σ up to +2σ, the fuel temperature ranges by 

the end of life by approximately 70 K. As is expected, there is an inverse relationship between 

the direction of bias and the computed temperatures; biasing the model up causes a lower 

temperature and vice versa. The reactivity biases in these cases due to the modification of fuel 

thermal conductivity are very apparent and follow inversely from the direction of the 

temperature. Prior to gap closure, the reactivity bias is relatively constant. However, once the gap 

begins to close at around 600 days of depletion there is a slight hump either up or down 

depending on the direction of bias due to the fuel and cladding coming into contact and a new 

temperature distribution equilibrating. Then, as the fuel depletes, each of the systems approach 

the base case; this is due to the buildup of plutonium gradually overcoming the increase in 

resonance absorption caused by Doppler broadening. 
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(a) DTC 

 
(b) MTC 

 
(c) Axial Peaking Factor 

 

Figure 4.4.2: Reactivity coefficients and axial peaking factor for thermal conductivity cases 

 

As was the case with the standalone comparisons, the axial peaking factor and reactivity 

coefficients were minimally sensitive to biases in thermal conductivity. This was also the case 

with the other variables considered. As shown in Figure 4.4.2(a), DTC is minimally affected; the 

slight differences that do exist are due to the evaluation of the base Doppler temperature at 

different points. From Figure 4.4.2(b), it is evident that MTC is almost unaffected, again because 

perturbing the coolant conditions has very little effect on the fuel. Finally, the differences in axial 

peaking factor are basically negligible as shown in Figure 4.4.2(c); this is for the same reason the 

peaking factors were largely unchanged in the standalone comparisons. Although the fuel 
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temperatures are quite different, the Doppler temperature profile is of the same shape. Therefore, 

the relative power distribution throughout the rod remains essentially unchanged. 

Thermal conductivity is the parameter which has the largest effect on the neutronics 

evaluations, and its effect is obvious throughout the entire course of depletion. However, there 

are two other parameters which also have a strong effect on Doppler reactivity in particular 

because of their influence over the behavior of the fuel-cladding gap. As we have discussed, the 

gap closes early in life due to a combination of the fuel moving outward due to thermal 

expansion and swelling, and the cladding moving inward due to creep-down. Biasing the thermal 

expansion and cladding creep models in particular causes the gap to close at noticeably different 

rates, resulting in relatively strong deviations in Doppler reactivity. However, as was the case 

with thermal conductivity, neither of them shows strong influence over peaking factors or 

reactivity coefficients. The reactivity effects are discussed below. 

It is difficult to isolate the contribution of thermal expansion alone from the FRAPCON 

output. Therefore, we will discuss its contributions in terms of the fuel-clad gap size. To do this, 

we first present the rod-averaged (i.e., averaged over 24 axial nodes) gap thickness in Figure 

4.4.3. Although the averaging process causes us to lose some spatial detail, as we have seen in 

previous figures the vast majority of the fuel reaches the closed-gap regime within a relatively 

short span. It is only the low-power regions on the extreme ends of the core that maintain an 

appreciable gap for most of the depletion. 

 

Figure 4.4.3: Rod-averaged gap width for fuel thermal expansion cases 
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As we can see from this figure, our expectations regarding the size of the fuel-clad gap 

are met; biasing the model towards higher expansion causes the width to be lower, and biasing 

the model towards lower expansion causes the gap to persist in time longer. The temperature and 

reactivity effects of this are shown in Figure 4.4.4. 

 
(a) Doppler Temperature 

 
(b) Reactivity Relative to Base 

 
Figure 4.4.4: Impact of thermal expansion on Doppler reactivity 

 

The direct influence of the gap size on the computed Doppler temperatures is again 

apparent in Figure 4.4.4(a); the larger gaps in the downward-biased cases result in higher fuel 

surface (and thus Doppler) temperatures, whereas the converse is true for the upward-biased 

models. Once the gap closes, fuel thermal expansion no longer has an influence on the 

temperature behavior and all models compute approximately the same values. Figure 4.4.4(b) 

shows some similarities between the fuel thermal conductivity cases prior to gap closure in that 

the deviation in the keff relative to the unbiased case is approximately constant before the gap 

begins to close. Once closure is imminent, the differences between the unbiased and biased cases 

become quite small, until they begin to turn around what appear to be asymptotic values. This 

behavior is due to the differences in plutonium generated prior to gap closure; for the cases 

where the fuel is depleted in a hotter environment, the increased resonance absorption causes 

more plutonium. The effects of this are manifested later in life once the temperature equilibrates 

across the cases; the cases which had more resonance absorption and initially a lower reactivity 

now have more fissile material available later in life, which increases reactivity relative to the 

base case. The opposite is true for the cases depleted in a cooler environment. 
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We can also investigate the impact of the cladding creep model in a similar way to the 

fuel thermal conductivity calculations. We again begin the discussion with a presentation of the 

fuel-clad gap in Figure 4.4.5, because of the unavailability of creep-specific information. 

 
Figure 4.4.5: Gap width in creep sensitivity cases 
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brought up to temperature), creep is a time-dependent phenomenon which requires some 

operation to occur before manifesting itself. The influence of creep on Doppler reactivity is 

presented in Figure 4.4.6: 
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(a) Doppler Temperature 

 
(b) Reactivity Relative to Base 

 
Figure 4.4.6: Impact of cladding creep on Doppler reactivity 

 

In Figure 4.4.6(a), we see that the core-averaged Doppler temperature history closely 

follows the size of the fuel-clad gap displayed in the previous figure. As the gap closes and 

improved heat transfer out of the fuel through the cladding is achieved, the Doppler temperature 

hits a local minimum. Afterwards, the gap size does not have a strong influence on the Doppler 

temperature; rather, it is the degradation of thermal conductivity which causes temperature 

increase. Figure 4.4.6(b) illustrates the quantitative reactivity effect that occurs because of the 

differences in gap closure behavior. The cases with positive bias close the gap quicker than the 

base case, which causes a lower Doppler temperature and thus a positive reactivity effect; in the 

cases with negative bias, the opposite is true. However, once the gap closes the differences 

between the biased and unbiased cases become fairly small. Rather than the instantaneous effects 

we saw in the thermal expansion, the changes in Doppler reactivity are a time-dependent 

phenomena corresponding with the different creep rates among the cases. As with the expansion 

cases, once the gap is closed reactivity changes are due to the differences in accumulated 

plutonium from the exposure conditions early in life. 

 With this, we conclude our discussion of the parameters considered strongly important on 

reactivity. The fuel thermal conductivity was found to have the strongest effect (+82 pcm/-101 

pcm at ±2𝜎) and persisted throughout the course of the depletion. On the other hand, the thermal 

expansion and creep models were lower and primarily important prior to gap closure, but still 

significant (+76 pcm/-65 pcm and +58 pcm/-51 pcm at ±2𝜎, respectively). In the next section, 
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we will discuss some of the models that are of more moderate influence over the depletion 

calculation. 

4.4.2 Moderately Influential Parameters 

The two parameters which were found to have less, but still non-negligible influence on 

the neutronics output, were the fuel swelling and cladding corrosion models. Fuel swelling is 

phenomenologically similar to cladding creep, in that it is time-dependent. The differences are 

that there is a threshold value of burnup that must be reached prior to swelling being computed 

(this is to allow the fission products which cause swelling to populate whatever residual porosity 

remains in the fuel early in operation, unlike creep, which begins at the outset), and that the 

swelling causes the gap to decrease from the inside (i.e., the fuel region) rather than from the 

outside (the cladding). Because of this delayed onset, and because the relative dimensional 

changes are less than for creep, the reactivity effect is significantly less. Despite this, it is 

significant enough to include in the more detailed uncertainty analysis presented in Chapter 6.  

Cladding corrosion causes extra thermal resistance on the exterior surface of the 

cladding, which increases Doppler temperature. As we will see, however, the implementation of 

the bias in the cladding corrosion model in FRAPCON is non-physical. Therefore, because of the 

relatively small magnitude of neutronics effect and the unphysical way in which it behaves, we 

will preclude corrosion from the uncertainty calculations later in this thesis. 

To begin our detailed discussion, we will draw comparisons between the cladding creep 

and fuel swelling results by presenting the fuel-clad gap behavior resulting from biasing the 

swelling model in Figure 4.4.7. From this figure, it is seen that biasing the fuel swelling 

parameter has a minor effect on the size of the fuel-clad gap. The magnitude of the swelling is 

purely a burnup-driven effect (in contrast with some of the other fuel physics, which are both 

temperature- and burnup-dependent). In FRAPCON, there is a burnup threshold of 6000 

MWd/MTU prior to which no swelling is predicted to occur. Therefore, the differences in 

swelling do not begin to become apparent until around 200 days of depletion, when some of the 

nodes cross the threshold. From that point, there is a slight difference in the size of the gap until 

the fuel comes in contact with the cladding at about 500 days. From that point, the gap is closed. 
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Figure 4.4.7: Gap width in fuel swelling sensitivity cases 

 

Based on the small deviation relative to some of the other sensitivity cases, one can 

expect a relatively small influence on core Doppler temperature and thus criticality. In Figure 

4.4.8, respectively, these impacts are presented. 

 
(a) Doppler Temperature 

 
(b) Reactivity Relative to Base 

 
Figure 4.4.8: Impact of fuel swelling on Doppler reactivity 

 

As expected, the Doppler and therefore reactivity differences between the biased and 

unbiased cases are relatively minor. Since all of the nodes are below the 6000 MWd/MTU 
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cases begin to manifest themselves in the Doppler evaluation; the models biased up show more 
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swelling, a smaller gap, lower temperatures and therefore higher reactivity relative to the base 

case. One the other hand, the converse is true for the models which are biased toward less 

swelling. Once the gap closes, the fuel approaches the same temperature between all cases, and 

the residual reactivity effect is due to the history each case experiences early in life; the cases 

that were more reactive early in life become slightly less reactive as the burnup progress, and 

vice versa. As expected, the magnitude and shape of the Doppler temperature differences does 

not significantly influence axial peaking or reactivity coefficients. We see in comparison with the 

creep results presented in Figure 4.4.6 almost identical qualitative behavior once the burnup 

threshold is reached. 

As we have mentioned previously, the cladding corrosion model does not behave 

physically. To illustrate this, we present the behavior of the corrosion layer under biased 

conditions in Figure 4.4.9: 

 
Figure 4.4.9: Gap width in fuel swelling sensitivity cases 
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direction, cladding corrosion layer growth is almost completely suppressed. By the same token, 
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to occur on the cladding surface which then continues to grow as the rod is irradiated. However, 

this is physically not what we expect by biasing the corrosion model. Effectively what 
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0

5

10

15

20

25

30

35

40

45

0 200 400 600 800 1000 1200 1400 1600

C
o

rr
o

si
o

n
 t

h
ic

kn
es

s 
(m

ic
ro

n
s)

 

Time (d) 

-2σ -1σ base +1σ +2σ 



100 

 

for the corrosion to start at the same value, and biasing the model should cause the corrosion 

layer to grow at different rates. Conversations with the FRAPCON developers indicate that they 

chose this approach based on best fits to higher-burnup fuel data [154]. The data may be matched 

appropriately, but the way in which the corrosion layer at these burnup levels is reached is not 

realistic in our opinion. It is outside the scope of this thesis to correct these perceived issues, and 

since the reactivity effect is on the order of -25 pcm at +2𝜎  (i.e., much lower than the 

“significant” models), we choose to disregard the phenomenon in follow-up uncertainty analysis. 

In this section we detailed the two models which were found to have moderate influence 

on neutronics effects. Like the significant models, no significant differences in peaking factors or 

reactivity coefficients were found; however, there were influences on the Doppler reactivity. For 

the fuel swelling model, reactivity differences of +20 pcm/-21 pcm at the ±2𝜎  level were 

observed. Cladding corrosion had an influence similar in magnitude, but the implementation of 

corrosion biasing in FRAPCON was found to be non-physical. Therefore, we will include 

swelling in the uncertainty analysis presented in Chapter 6, but will not include corrosion studies. 

In the next section, we will discuss the models which showed no influence over the neutronics 

calculations, and the reasons why.  

4.4.3 Non-Influential Parameters 

Three of the parameters were discovered to be practically insignificant with respect to 

coupled depletion: cladding hydrogen, cladding axial growth, and fission gas release. The 

following discussion gives the reasons why, for this particular problem. 

First, we discuss cladding hydrogen content. This is an output that is computed for 

informational purposes primarily driven by the need of FRAPCON users to estimate hydrogen 

concentration in fuel cladding for the purposes of comparisons with Loss of Coolant Accident 

(LOCA) evaluations. The NRC has recently been engaged in a rulemaking effort to modify the 

LOCA acceptance criteria found in 10 CFR 50.46(b) to account for the difference in 

performance of different cladding materials [155]. As discussed in Chapter 3, the presence of 

hydrogen in cladding alloys has an embrittling effect which may lead to failure under extreme 

transient conditions. However, as currently implemented the cladding material models in 

FRAPCON do not account for changes in their properties due to hydrogen. Therefore, while 
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hydrogen levels are important outputs for strictly fuel performance evaluations, they do not 

affect the thermo-mechanical calculation, and therefore show no influence on coupled depletion. 

At first glance, it appears that cladding axial growth may have some influence over the 

mechanical calculations. Physically, growth has the effect of increasing the plenum length, 

which affects the amount of room the free gas within the rod has to expand and contract. This 

can have the effect of changing the outward pressure on the cladding, therefore changing the 

mechanical response. The ZIRLO™ material used in these calculations, however, does not 

exhibit a great deal of growth behavior. Observation of the parameters in the growth model (see 

Appendix A) show that, for equivalent fluence, the growth of ZIRLO™ is approximately four 

orders of magnitude less than M5™ or Zircaloy-4. Therefore, the sensitivity cases we executed 

did not show an appreciable impact. 

Finally, we discuss the fission gas release model. As we have noted in Chapter 3, there 

are two forms of release: athermal release, which occurs no matter the temperature due to 

fissions that occur near grain boundaries, and thermally driven release, which occurs due to the 

diffusion of fission gases from within the fuel grains to their boundaries. Similar to the swelling 

model and burnup, there is a threshold value of temperature which must be reached to activate 

thermal release. The FGR bias described in Table 4.3.1 is applied to the gas diffusivity which 

forms a part of the thermal release model. At the conditions experienced within the rod during 

the pin cell depletion, the temperature does not reach this threshold, and therefore applying the 

bias does not cause any difference in the coupled calculations considered here. Therefore, we 

will not consider FGR in subsequent uncertainty calculations in this thesis. 

With this, the discussion of the insensitive models is complete. In the next section, we 

will briefly move on from the fuel performance sensitivities and evaluate the impact of the heat 

transfer coefficient on PWR depletion. 

4.4.4 Heat Transfer Coefficient Sensitivity 

Another parameter which has a direct influence over the fuel temperature and therefore 

Doppler reactivity is the heat transfer coefficient (HTC). This describes the temperature rise from 

the bulk coolant flowing through the core to the fuel surface, depending on the flow conditions. 

In Chapter 3 we described the modifications in PATHS to model PWR conditions and to enable 

the user to manipulate the HTC in a similar manner to how the fuel biases are implemented. 



102 

 

Newton’s law of cooling is used to calculate the temperature rise from the bulk coolant to 

the rod surface. This is given by the following expression: 

 

 𝑞′′ = ℎ(𝑇𝑤 − 𝑇𝑏𝑢𝑙𝑘) (4.4) 

 

In this equation, 𝑞′′ is the surface heat flux, ℎ is the heat transfer coefficient, 𝑇𝑤 is the 

wall (i.e., rod surface) temperature, and 𝑇𝑏𝑢𝑙𝑘 is the bulk temperature of the coolant flowing up 

the channel. From the neutronics solution, 𝑞′′  is known; PATHS solves the coolant mass, 

momentum, and energy equations to evaluate the profile of 𝑇𝑏𝑢𝑙𝑘 up a channel. Therefore, to 

calculate the wall temperature, ℎ must be evaluated. 

By construction, the PATHS calculation only considers single phase heat transfer; should 

of the coolant be indicated, the calculation shuts down. To obtain the HTC based on the flow 

conditions, PATHS makes use of the Dittus-Boelter correlation, widely used to model heat 

transfer in reactor fuel bundles: 

 

 Nu = Re0.23Pr0.4 = (
𝜌𝑣𝐿

𝜇
)
0.23

(
𝑐𝑝𝜇

𝑘
)
0.4

 (4.5) 

  

where Nu is the Nusselt number (non-dimensional heat transfer coefficient), Re is the Reynold’s 

number, Pr is the Prandtl number, 𝜌 is the coolant density, 𝑣 is the coolant velocity, 𝑐𝑝  is the 

coolant specific heat, 𝜇 is the coolant viscosity, 𝑘 is the coolant thermal conductivity, and 𝐿 is 

the channel hydraulic diameter. With the coolant solution converged, the Nusselt number can be 

evaluated. Once this is known, the HTC can be calculated as: 

 

 ℎ =
Nu 𝑘

𝐿
 (4.6) 

 

The rod surface temperature is obtained by substituting this expression into Equation 4.4 and 

solving for 𝑇𝑤. 

To perform the sensitivity calculations, PATHS was modified to apply a bias to ℎ on a 

relative basis in the same manner as Equation 4.2. For the purposes of this exploration, the 

standard error in ℎ was taken to be 𝜎ℎ = 20%, and the model biased ±2𝜎ℎ in 1𝜎ℎ increments. 
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For the purposes of this calculation, the model was executed in both coupled and 

uncoupled modes to gain understanding of the effect of evaluating sensitivity of depletion to heat 

transfer in both possible modes. In Figure 4.4.9 we show the impact on Doppler temperature for 

the uncoupled and coupled cases. Since the power distribution throughout the depletion is 

unchanged regardless of the method by which the fuel was simulated, the coolant axial 

temperature distribution (and therefore average moderator temperature) was likewise unaffected. 

Standalone calculations were performed with a gap conductance of 30000 W/m
2
-K. 

 
(a) Uncoupled 

 
(b) Coupled 

 
Figure 4.4.10: Doppler temperatures for HTC sensitivity cases 

 

 From this figure, we see similar evolution in Doppler temperature that we saw in the 

comparisons presented in Section 4.2. It appears that a 20% change in HTC is worth 

approximately 3 K in Doppler temperature for most of the depletion. For the uncoupled case, the 

Doppler temperature is essentially constant throughout the calculation; on the other hand, during 

the gap closure phase of the coupled calculation, the temperatures of all cases become very close. 

This is because the fuel and cladding are not yet in contact, and therefore the insulating effect of 

the gap renders the effect of rod surface temperature to be insignificant. Once the gap is closed, 

however, the coupled case assumes differences between the individual calculations that are very 

similar to the uncoupled case. 

 In Figure 4.4.11, we present the respective reactivity effects of gap closure on each set of 

cases. 
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(a) Uncoupled 

 
(b) Coupled 

 
Figure 4.4.11: Reactivity for HTC sensitivity cases 

 

 In this figure, we see clear influence of the fuel-clad gap on the calculation. The 

uncoupled case initially begins with approximately 20 pcm difference at the 2𝜎 level, with the 

cases biased towards lower HTC being lower in reactivity due to relatively higher temperatures. 

As the depletion continues, the curves move towards one another since there is excess plutonium 

building up in the hot cases relative to the cold cases. In the coupled case, we see very little (and 

decreasing) reactivity effect during the gap closure phase. Once the gap closes, however, the fuel 

is more directly influenced by the coolant heat transfer conditions, and the shape assumes a 

similar profile to the uncoupled case. 

 Examination of other neutronics figures of merit (peaking factors and reactivity 

coefficients) did not reveal a significant impact from the HTC bias, similar to the other cases. We 

have found in this study that there is an appreciable, if modest, impact of the heat transfer 

coefficient on the depletion calculation, both in coupled and uncoupled forms. The influence in 

the coupled calculation was approximately -19 pcm/+13 pcm at ±2𝜎 levels, which is comparable 

to the effect of the fuel swelling model. Therefore, we will include uncertainty in this model in 

subsequent uncertainty evaluations. 
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4.4.5 Sensitivity Summary 

In this section, we exhaustively examined the effect of each of the fuel uncertainty 

parameters and the HTC on coupled depletion. We have determined that the depletion 

calculations are sensitive to fuel thermal conductivity, fuel thermal expansion, cladding creep, 

fuel swelling, and HTC and therefore warrant inclusion in more detailed sensitivity and 

uncertainty calculations presented in Chapter 6; the other models were either insignificant, or 

non-physical. We have also determined that the primary sensitivity lies in the Doppler reactivity 

relative to the nominal (unbiased) case, with peaking factors and reactivity coefficients being 

essentially insensitive. To summarize the sensitivity of temperature and reactivity to these 

parameters as a function of time, a linear regression fit was performed through the five data 

points computed at each time step. The slope of this fit (in units of K/σ or pcm/σ) gives a 

measure of the sensitivity, and will provide information on how the relative importance of each 

parameter changes throughout the depletion. In addition, we calculated the R
2
 value at each data 

point, which is a measure of how appropriate a linear fit is at each time point. R
2
 varies from 0 

(no fit) to 1 (perfect fit). All this information serves to guide the implementation of more 

sophisticated sensitivity methods described in Chapter 5. 

 

 
(a) Sensitivity 

 
(b) R

2
 

 
Figure 4.4.12: Sensitivity and R

2
 of Doppler temperature 

 

In this figure, we see that the sensitivity to Doppler temperature is for all these models 
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the case of the models which affect gap size (creep, swelling, thermal expansion), this is because 

increasing their value causes the gap to close at a faster rate, which provides additional cooling 

to the fuel and drives the temperature down. Thermal conductivity controls the temperature of 

the fuel; by increasing its value, heat transfer through the fuel is enhanced, and therefore the fuel 

operates at lower temperatures. Increasing HTC causes a lower temperature drop across the 

thermal boundary layer and therefore decreases fuel temperature. The influence of these various 

parameters as a function of burnup corresponds with the Doppler temperature plots presented in 

each subsection above. Temperature dependence on creep and swelling increases as the gap 

closes, but once thermal contact is established their influence becomes minor. Temperature 

becomes instantaneously affected by thermal expansion, but its influence decreases once the gap 

is closed. The heat transfer coefficient is also an important contributor, but primarily after the 

gap is closed; prior to this, the insulating effect of the gap causes its importance to be minimized 

as the gap closes. Once it is closed, however, the fuel and coolant are in more direct contact, and 

therefore it becomes more important. 

The information in Figure 4.4.12(b) indicates that, for the most part, the linear fit of each 

of these parameters to the system response is generally acceptable. The gaps in the creep, 

swelling, and thermal expansion curves are caused by the locations where sensitivity is computed 

to be zero; if there is no sensitivity, one cannot apply a line fit. As the gap closes, there are points 

on the HTC curve which indicate very low correlation, which is due to poor linear fits at times 

where the HTC is unimportant. This is likewise the case in the creep, swelling, and thermal 

expansion curves; by these points, the sensitivity to these parameters is essentially (but not 

identically) zero, which causes the R
2 

value to behave erratically. The essential point from this 

exercise is that, if the Doppler temperature response at most points in time is represented by a 

linear expansion in each of the models (i.e., using a stochastic expansion method), we expect that 

the fit will be good. What is not considered in this exercise is potential interactions between the 

input variables; all of them are varied independently. The sensitivity methods described in 

Chapter 5 will allow us to evaluate the effect of these interactions in the results we present in 

Chapter 6. 
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(a) Sensitivity 

 
(b) R

2 

 
Figure 4.4.13: Sensitivity and R

2
 of reactivity 

 

Figure 4.4.13(a) shows the relative sensitivity of each of the parameters on the core 

reactivity. As expected, the sensitivity of the thermal conductivity is the strongest. The creep and 

swelling model become more important as the gap closes. The thermal expansion and heat 

transfer coefficient show decreasing influence prior to gap closure. After the gap closes, the 

sensitivity to all the parameters trends downward, as the plutonium buildup occurring earlier in 

the hotter calculations manifests itself by providing a positive reactivity contribution offsetting 

the increase in fuel temperature that occurs due to thermal conductivity degradation. As with the 

temperature plot, Figure 4.4.13(b) shows the R
2 

value to be essentially unity for most of the 

depletion among the parameters; the points at which it deviates reflect the time points where the 

gap is closing and the relative sensitivities of each of the parameters are not strong. We expect 

that a linear expansion of the reactivity response will be appropriate for modeling the uncertainty 

in this value; further exploration of this question and convergence studies will help provide more 

detailed information in Chapter 6. 

With this, we conclude our discussion of the pin cell problem. As we have seen, much of 

the important physics is represented in this relatively simple problem. The behavior of the fuel-

clad gap was found to be very important in modeling the behavior of the neutronics system when 

taking into account fuel performance. The relative differences in temperature depending on the 

directions in which the parameters were biased caused competing reactivity effects depending on 

the instantaneous temperature at which the system was evaluated, and the build-up history of 
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plutonium that occurred during the depletion. Five models were identified as particularly 

important and physical; these are the models which will be incorporated in subsequent sensitivity 

and uncertainty analysis. In the next section, we will discuss the effect of coupling fuel 

performance on a mini-core depletion model, in order to both determine if the basic processes 

affecting the pin cell depletion hold true for a larger problem and to gauge the effect of fuel 

performance on the radial peaking factor. 

 

4.5 Mini-Core Model 

While the pin cell model proved to capture much of the important physical effects, it is 

important to assess the impact of coupling the fuel thermo-mechanics with the neutronics on a 

better representative of an actual reactor core system. As stated in the introduction to this 

Chapter, the coupling scheme implemented in FRAPARCS is not yet amenable to full-core 

calculations due to execution time concerns; however, it is possible to perform evaluations on a 

multi-assembly model which provides better representation of a full core than a single pin cell. 

A 5x5 fuel assembly mini-core model with a loading pattern representative of full PWR 

cores was developed and tested with FRAPARCS to determine the potential impact of including 

realistic fuel models in core depletion calculations.  A multi-cycle core depletion model was 

developed to evaluate the effect of having a mixture of fresh and burnt fuel in the core at the 

same time, with loading and shuffling patterns reflective of those used in industry. As with the 

pin cell, we compare stand-alone and couple results to determine the importance of fuel 

performance.  

4.5.1 Lattice Model and Cross Section Generation 

We use the same cross sections in this evaluation as we used for the preliminary study 

presented in Chapter 1. The reference plant is the Surry Unit 1 is a 3-loop Westinghouse-

designed PWR plant with 15x15 fuel assemblies. Each assembly contains 204 UO2 fuel rods and 

21 guide tube thimbles. For the initial Surry core, there were 5 types of assemblies loaded, with 

the differences primarily being in either enrichment or in burnable poison/power distribution 

control features. For the purposes of this work, the 5x5 assembly mini-core problem uses the 

Type 1, 2, and 3 assemblies, which have no burnable poisons and are characterized by differing 

enrichments and fuel radii. The lattice model input specifications can be found in Appendix C. 
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Similar to the pin cell problem, history and branch structures were developed to envelop 

the operating space of the Surry Unit 1 core. Instead of using moderator temperature to 

parameterize the cross sections, moderator density was used; otherwise, the structure and 

philosophy are generally similar to the pin cell case. The core conditions and depletion step 

structure can be found in Appendix C. Using these geometry, materials, and case and depletion 

step structure, HELIOS was used to perform the lattice calculations, the outputs of which were 

processed with ZENITH and GenPMAX to generate the cross section files used by 

PARCS/PATHS. With these data, the mini-core models were assembled and executed. 

4.5.2 FRAPARCS Input Specification 

First, we describe the loading patterns used in this computation. The initial core loading 

pattern was developed with a mixture of medium- and highly-enriched assemblies arranged in 

roughly a checkerboard pattern surrounded by a ring of primarily lower-enriched assemblies, 

with reflective boundary conditions on the radial periphery. Because an even mixture of the three 

assembly types was desired, a few highly-enriched assemblies were also placed near the 

periphery. This is not typically done in operating cores due to neutron economy and vessel 

fluence concerns; however, the selected loading pattern achieves a power distribution and nodal 

flux ratios which are roughly equivalent to full-scale PWR systems. The reflective boundary 

conditions serve to alleviate excessive peaking that would result from such a small core with 

zero-incoming flux boundary conditions. The initial core loading patter is presented in Figure 

4.5.1. 

 

     

     

     

     

     

 

 Low-enriched (1.868 wt/o)  Medium-enriched (2.573 wt/o)  High-enriched (3.117 wt/o) 

 
Figure 4.5.1: Initial loading pattern for multi-cycle depletion 
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1 2 3 4 5 

6 7 8 9 10 

11 12 13 14 15 

16 17 18 19 20 

21 22 23 24 25 

(a) First cycle (numbers denote assembly position) 
 

7 8 0 14 9 

1 0 3 0 5 

0 11 0 15 0 

21 0 23 0 25 

17 12 0 18 19 

(b) Second cycle (numbers denote position in previous cycle; 0 means fresh) 
 

7 8 0 14 9 

1 0 3 0 5 

0 11 0 15 0 

21 0 23 0 25 

17 12 0 18 19 

(c) Third cycle (numbers denote position in previous cycle; 0 means fresh) 
 

 Low-enriched, fresh  Medium-enriched, fresh  Medium-enriched, once 

 High-enriched, fresh  High-enriched, once  High-enriched, twice 

 
Figure 4.5.2: Shuffling pattern for multicycle depletion calculation 

 

The multicycle depletion calculations began with the loading pattern in Figure 4.5.1. A 

fuel shuffling strategy was developed to move assemblies around the core in a manner analogous 

to industry practice. After 540 days of depletion (about 18 months), the reactor core was 

shuffled; the lower-enriched assemblies and the higher-enriched assembly in the center of the 

core were removed, the middle-enriched assemblies were shuffled into the place of the lower-

enriched assemblies, and the higher-enriched assemblies placed where the middle-enriched 

assemblies once were. To replace the discharged assemblies, fresh higher-enriched feed 
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assemblies were inserted. The process was repeated for an additional cycle. The shuffle maps are 

presented in Figure 4.5.2. 

By the beginning of the third cycle, all fuel of Types 1 and 2 (low- and medium-enriched, 

respectively) have been removed from the core and only Type 3 assemblies at differing levels of 

initial burnup are present. In order to model this in PARCS/PATHS, a program called 

SHUFFLER was developed to read the depletion file printed out at the end of the previous cycle 

by PARCS and move each assembly’s axial burnup, fuel history temperature, and moderator 

history density to their new locations, while filling in the initial values of these quantities used 

for fresh assemblies. To accommodate shuffling in the FRAPCON calculations, the FRAPARCS 

script was used to shuffle the fuel pins representing specific assemblies in accordance with the 

shuffle map used above, and new cases were spawned for fresh assemblies. As a check to ensure 

that FRAPARCS was moving the fuel appropriately, a tag in each of the FRAPCON input decks 

was used to denote the fuel rod’s first, second, and third cycle position.  The PARCS/PATHS and 

FRAPCON input specifications are given in Appendix C. As with the pin cell problem, care was 

taken to ensure consistency between the lattice, neutronic, thermal-hydraulic, and fuel models. 

With the input specified, we next present the results of the calculations. 

4.5.3 Comparisons with Stand-alone Computations 

To provide a basis of comparison between the stand-alone models and the coupled 

calculation, we employed the same three gap conductances as were used in the pin cell cases. In 

addition, we took advantage of the break between cycles to attempt to in some way model the 

gap changing from cycle-to-cycle by incorporating a mixed conductance case where the 

conductances of the first, second, and third-cycle assemblies were given values representative of 

their exposure. This data is provided in Table 4.5.1: 

Table 4.5.1: Gap conductances employed for mixed case 

 
Fuel condition Gap conductance (W/m

2
-K) 

Fresh 15000 

Once-burnt 40000 

Twice-burnt 100000 

 

We can now present the results from the four stand-alone cases in comparison with the 

coupled case. In Figure 4.5.3, the Doppler temperature and reactivity are presented. 
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(a) Doppler Temperature 

 
(b) Reactivity 

 
Figure 4.5.3: Doppler temperature and reactivity for multi-cycle depletion 

 

We can see in Figure 4.5.3(a) that even with some clever choices of representative gap 

conductances in the mixed case, the Doppler temperature cannot be captured accurately without 

the use of an explicit physics model. The difference in temperature is most pronounced for the 

first cycle, where the entire core is comprised of fresh fuel. When the cycle ends and the fuel is 

shuffled, the fresh fuel that is introduced produces highly noticeable “spikes” in the Doppler 

temperature as the contribution of the fresh fuel with its relatively large gap is felt. The high-

burnup effects on fuel thermal conductivity and gap conductance become evident near the end of 

cycle two and more obviously in the last third of cycle three, as evidenced by the slight upturn in 

Doppler temperature. The small steps in the 7000 W/m2-K case are due to the introduction of 

Type 3 fuel, which has a smaller fuel pellet diameter and thus a slightly higher fuel temperature.  

Similar reactivity behavior is present in Figure 4.5.3(b) as in the single depletion cases. 

There is a large discrepancy on the order of 200 pcm initially due to the difference in Doppler 

temperature which begins to decrease as the fuel-cladding gap closes; the reactivity swing from 

maximum to minimum difference is somewhere between 200-300 pcm depending on the case in 

question. The gap closes about the time the first cycle completes; the fresh fuel which is 

subsequently loaded contributes to “spikes” in reactivity (directly related to the spikes in Doppler 

temperature); the subsequent reactivity swings are about half the swings seen from the purely 

fresh core, since only one third of the core is replaced with fresh fuel. This highlights the 

particular importance of fuel modeling for fresh cores; while the effect is still important for 
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standard reload cores, it is especially important for the initial cycle. This is a pertinent finding 

considering the number of nuclear reactor plants currently under construction or consideration 

across the world at this point in time. 

The next comparison which is of interest is in the radial peaking factor. It is possible that, 

with the introduction of fresh, high-powered fuel next to burned, low-power fuel, that we might 

see some influence of fuel performance on the radial power distribution. The axial and radial 

peaking factors are presented in Figure 4.5.4: 

 
(a) Axial 

 
(b) Radial 

 
Figure 4.5.4: Axial and radial peaking factors for multi-cycle depletion 

 

We see from these results that the concerns over radial power distribution anomalies are 

unfounded. The impact on radial peaking factor is consistent with the Chapter 1 comparisons, 

and is even less than that of the axial peaking factor. While the radial peaking factor increases 

significantly at reload because of the mixture of fresh and burned fuel, there is not a significant 

difference in the coupled case as opposed to the stand-alone cases. Again, this is because 

incorporating changing fuel performance is significant to the effective Doppler temperature 

averaged over the core, locally it only causes the magnitude of the temperature to change and not 

the basic profile. 

In addition to Doppler reactivity and peaking factors, we also ran cases to determine the 

effect on mini-core reactivity coefficients. We found the same behavior in the mini-core problem 

that we did in the single pin-cell case; namely, these parameters were not significantly affected. 
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4.5.4 Mini-Core Conclusions 

We have constructed a mini-core problem representative of a PWR in operation. The 

basic physics between the pin cell calculations and the mini-core depletion were in general the 

same. The major difference was in the reactivity behavior of the mixed cycles; once there was a  

mixture of fresh and burned fuel included simultaneously in the core, the reactivity swing 

throughout the cycle (i.e., maximum difference between stand-alone and coupled depletion) 

became roughly half as much as a fully-fresh core. The other neutronics parameters remain 

largely unaffected because it is the magnitude of the temperature rather than its distribution 

which is affected by including the effects of fuel performance. 

 

4.6 Conclusions 

In this Chapter, we have described the application of FRAPARCS to both a pin-cell and a 

multi-cycle mini-core problem. We found that the major influence of including fuel physics was 

in the Doppler reactivity computed throughout the depletion cycle. Other neutronics parameters, 

such as reactivity coefficients and peaking factors, were minimally influenced. Based on these 

results, and because of practical computational concerns, we can perform sensitivity and 

uncertainty analysis of the coupled calculation with the relatively fast-running pin cell model, 

and still make general conclusions about the influence of fuel performance on neutronic 

depletion. In addition, we evaluated the individual effect of each fuel uncertainty variable 

available in FRAPCON, as well at the heat transfer coefficient. We found that four of the fuel 

variables were either unphysical or insignificant for the cases presented here, but that four of 

them, the fuel thermal conductivity, fuel thermal expansion, cladding creep, and fuel swelling, 

had significant effects on the nuclear performance of the core. In addition, we determined that 

the heat transfer coefficient was sufficiently influential to include in further analysis. In the next 

Chapter, we will discuss the uncertainty methods available in DAKOTA which we have applied 

to this work. This will set the stage for the discussion in Chapter 6, which presents the robust 

application of sensitivity and uncertainty analysis methods to the coupled depletion problem. 
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CHAPTER 5 

 

 

Uncertainty and Sensitivity Analysis Methods 

 

 

5.1 Overview 

In the previous chapters, the basis for and mechanics of coupling fuel performance and 

core depletion codes were described, and example calculations demonstrating the impact of this 

coupling were presented. In this Chapter, we present the theoretical basis for sensitivity and 

uncertainty methods in general, and then describe specifics regarding the individual methods in 

DAKOTA applied to this work in particular. In Chapter 6, we will apply the ideas described here 

to the coupled pin cell problem in order to precisely quantify the sensitivity and uncertainty in 

neutronics to fuel performance parameters. 

As we have discussed previously, the purpose of uncertainty analysis is to quantify the 

relationship between the uncertainties in the input and problem parameters and the resulting 

uncertainty distribution of the outputs. There are two general classes of uncertainties [7]: 

 Aleatory uncertainties are irreducible variabilities inherent in nature 

 Epistemic uncertainties are reducible uncertainties which arise from a lack of knowledge 

 

The models considered here are considered aleatory, since sufficient data exists to 

generate probability distributions describing their nature, and therefore probabilistic methods can 

be employed to evaluate their influence. Epistemic uncertainties, on the other hand, are generally 

not characterized by probabilistic methods; for example, expert opinion may provide intervals in 

which an epistemic variable may lay, with no information available about the underlying 

distribution. Special classes of uncertainty techniques have been developed to perform analysis 
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where epistemic uncertainty is present (for example, Dempster-Shafer theory of evidence); as 

our uncertainty variables are aleatory, this topic will not be further explored here. 

In order to quantify the response uncertainty, the input uncertainties must be propagated 

through the numerical model in some way, and the response statistics tabulated or computed. 

Illustrated graphically: 

 

Figure 5.1.1: Uncertainty propagation through a numerical model 

 

In Figure 5.1.1, the basic approach to uncertainty calculations is illustrated. The output in 

question, y, is a function of three random input parameters 𝐱 = {𝑥1, 𝑥2, 𝑥3}, each subject to a 

given probability distribution function (pdf). The goal of the analysis is to in some way 

propagate those pdf’s through the numerical model and estimate the resulting pdf of the output 

variable subject to those input distributions, from which statistics can be obtained. The output 

distributions can then be, for example, compared with performance criteria to determine the 

likelihood that the system will operate within their specified bounds. 

There are two basic approaches used to propagate input uncertainties: extrusive (or black 

box) methods and intrusive methods. In the former, the computational model in question (i.e., 

computer code) is largely unmodified from its deterministic state. Calculations using the model 

are repeated a number of times with the uncertain inputs perturbed in accordance with whichever 

uncertainty analysis technique is to be employed. The resulting collection of outputs is then 

analyzed to determine statistics of interest, such as means, variances, and confidence and 

tolerance intervals. Intrusive methods, on the other hand, require that the original model be recast 

from a deterministic into a stochastic formulation. The advantage of intrusive methods is that 

they provide deterministic evaluations of the response statistics; the disadvantage is the potential 
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mathematical complexity and expense involved in developing probabilistic representations of the 

computational model. For the purposes of this work, non-intrusive methods, including Random 

Sampling (RS), Latin Hypercube Sampling (LHS), and non-intrusive formulations of Polynomial 

Chaos Expansion (PCE) and Stochastic Collocation (SC) are employed, given the complexity in 

particular of the material behavior modeling in FRAPCON.  

Once the uncertainty analysis has been performed and the input and response statistics 

have been generated, sensitivity analysis can be performed to quantify the relative importance of 

each input variable on the response. In this work, we use Sobol’-expansion based variance 

decomposition to perform this evaluation, since, as we will describe, it follows relatively easily 

out of the stochastic expansions. 

Before delving into the description of each uncertainty analysis technique, we will 

present some basic statistical definitions which are used to describe the inputs and responses. 

First, let us define the probability density function (pdf) as a function that describes the relative 

likelihood that a random variable takes on a value within a particular range. If x is a continuous 

random variable that is described by pdf f(x), then: 

 

 𝑃[𝑎 < 𝑥 < 𝑏] = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

 (5.1) 

 

is the probability that x will take on a value within the interval from a to b. The pdf is defined as 

a non-negative function such that the integral over the whole support space of x is 1; i.e., if one 

knows that x must take a value between bounds xmin and xmax, then the probability that x takes a 

value within that range is given by: 

 

 𝑃[𝑥𝑚𝑖𝑛 < 𝑥 < 𝑥𝑚𝑎𝑥] = ∫ 𝑓(𝑥)𝑑𝑥 = 1
𝑥𝑚𝑎𝑥

𝑥𝑚𝑖𝑛

 (5.2) 

 

Depending on the pdf in question, those upper and lower bounds could extend to ±∞ , 

respectively. Common pdf’s include the uniform distribution, the normal distribution and the 

log-normal distribution; there are several other examples. 

A related function to the pdf is the cumulative distribution function (CDF) F(y), which 

defines the probability that a random variable will take a value less than y: 
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 𝐹(𝑦) = ∫ 𝑓(𝑥)𝑑𝑥
𝑦

𝑥𝑚𝑖𝑛

 (5.3) 

Obviously the CDF is a non-decreasing function of y which takes values between 0 at 𝑦 ≤ 𝑥𝑚𝑖𝑛 

and 1 at 𝑦 ≥ 𝑥𝑚𝑎𝑥. Because of the fundamental theorem of calculus, the pdf is related to the 

CDF as: 

 𝑓(𝑦) =  
𝑑𝐹

𝑑𝑥
|
𝑥=𝑦

 (5.4) 

 

These definitions can be generalized for multivariate functions of random variables 

𝒙 = [𝑥1, 𝑥2, … , 𝑥𝑛], in which case the pdf is referred to as the joint density: 

 

 

𝑃[𝑎1 < 𝑥1 < 𝑏1, 𝑎2 < 𝑥2 < 𝑏2, … , 𝑎𝑛 < 𝑥𝑛 < 𝑏𝑛]

= ∫ …∫ ∫ 𝑓(𝒙)𝑑𝑥1𝑑𝑥2…𝑑𝑥𝑛

𝑏1

𝑎1

𝑏2

𝑎2

𝑏𝑛

𝑎𝑛

 
(5.5) 

 

The same normalization condition (i.e., integration over the support space of 𝑓 yields 1) and non-

negativity requirement hold for joint densities. Using the joint density, one can also define the 

marginal density 𝑓𝑋𝑖(𝑥𝑖) by integrating out the other variables 𝑥1, … , 𝑥𝑖−1, 𝑥𝑖+1, … , 𝑥𝑛 over their 

respective ranges of support: 

 

 𝑓𝑋𝑖(𝑥𝑖) = ∫ …∫ 𝑓(𝒙)𝑑𝑥1…𝑑𝑥𝑖−1𝑑𝑥𝑖+1…𝑑𝑥𝑛

∞

−∞

∞

−∞

 (5.6) 

 

Using this definition for marginal density, one can then define the conditional density 

𝑓−𝑖(𝒙−𝑖|𝑥𝑖) as: 

 

 𝑓−𝑖(𝒙−𝑖|𝑥𝑖) =
𝑓(𝒙)

𝑓𝑋𝑖(𝑥𝑖)
 (5.7) 

 

where 𝒙−𝑖 = [𝑥1, … , 𝑥𝑖−1, 𝑥𝑖+1, … , 𝑥𝑛]. 

Before describing the calculation of the moments of a pdf, we define the concept of 

independence. That is, if the joint distribution can be decomposed into the product of each 

variable’s marginal densities: 
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 𝑓(𝒙) =∏𝑓𝑋𝑖(𝑥𝑖)

𝑛

𝑖=1

 (5.8) 

 

then the random variables 𝑥1, 𝑥2, … , 𝑥𝑛 are said to be independent. Generally speaking, 

independence among the uncertain input variables greatly simplifies the application of 

uncertainty analysis methods. In the cases where there is some inter-dependence among the 

inputs, special orthogonalization techniques can be applied to produce an equivalent system with 

independent transformed inputs (see, for example, [156]). 

With these basic statistical definitions in mind, we move on to defining the moments of 

the output distribution, which are of interest in uncertainty and sensitivity analysis. Suppose 𝑔 is 

a function of random variables 𝒙 = {𝑥1, 𝑥2, … , 𝑥𝑛} whose distributions are given by the joint 

density function 𝑓(𝒙). Then, the expected value (i.e., mean) of g is given by: 

 

 𝐸[𝑔(𝒙)] = 𝜇𝑔 = ∫ 𝑔(𝒙)𝑓(𝒙)𝑑Ω
Ω

 (5.9) 

 

where Ω is the support space of 𝒙. In simple terms, the mean is simply the average value of 𝑔 

subject to the joint density function f. While the expected value is most definitely a useful way to 

characterize the possible distribution of 𝑔, it is by no means sufficient, because it functions as a 

point quantity that represents only the average value of 𝑔. In order to describe other aspects of 

𝑔’s distribution, additional higher moments must be taken. The first of these is the second 

moment of g subject to x, which is referred to as the variance of 𝑔: 

 

 𝑉[𝑔(𝒙)] = 𝜎𝑔
2 = ∫ (𝑔(𝒙) − 𝜇𝑔)

2
𝑓(𝒙)𝑑Ω

Ω

 (5.10) 

 

The variance is related to the spread in the spread in the possible function values; in other words, 

a high variance is indicative of a function that has a relatively high probability of taking values 

far from the mean. A low variance, on the other hand, means that there is a high likelihood that 

any particular sampled value of the function g will lie near the mean. The variance is related to 

the standard deviation 𝜎𝑔 = √𝜎𝑔
2, which is of the same units as the function 𝑔. This makes for 
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intuitive comparison of the spread in the data relative to the mean value. A related quantity is the 

covariance between two functions 𝑔1(𝒙) and 𝑔2(𝒙): 

 

 𝑐𝑜𝑣[𝑔1(𝒙), 𝑔2(𝒙)] = 𝜎𝑔1,𝑔2
2 = ∫ (𝑔1(𝒙) − 𝜇𝑔1)(𝑔2(𝒙) − 𝜇𝑔2)𝑓(𝒙)𝑑Ω

Ω

 (5.11) 

 

This is a measure of how two functions change with respect to one another; if 𝑐𝑜𝑣[𝑔1(𝒙), 𝑔2(𝒙)] 

is positive, the two functions tend to change in the same direction, whereas if 𝑐𝑜𝑣[𝑔1(𝒙), 𝑔2(𝒙)] 

is negative, they trend in the opposite direction. This definition becomes important in the 

definition of correlation coefficients, described below. 

In addition to the mean and standard deviation, higher order moments of g can be 

computed to provide additional information on its distribution. The third moment is referred to as 

the skewness, and is related to the lack of symmetry about the mean value. A positive skewness 

indicates more of the distribution is shifted above (to the right) of the mean, whereas a negative 

skewness implies more data shifted below (to the left) of the mean. Finally, the fourth moment is 

referred to as the kurtosis, which is a measure of the peakedness of the distribution. A large 

kurtosis indicates a highly peaked distribution, while a low kurtosis indicates a flat distribution. 

Kurtosis is usually judged relative to the standard normal distribution, which has a kurtosis value 

of about 3. 

With these definitions in mind, we re-emphasize that the purpose of uncertainty analysis 

within the context is to determine and characterize the response uncertainty distribution subject 

to uncertain input variables. Quantification of the response uncertainty includes estimation of the 

pdf/cdf, the mean, variance, and higher-order moments. Using this information, the contribution 

of each input to the resulting variance in the output distributions can be estimated via sensitivity 

analysis methods. With this clarification, we move to discussion of specific methods from which 

the response distribution can be estimated. 

 

5.2 Sampling-based Methods 

In this section, we describe the two sampling based methods used in this work: Random 

Sampling (RS) and Latin Hypercube Sampling (LHS). 
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5.2.1 Random Sampling 

The most intuitive and straight-forward approach to uncertainty analysis is Random 

Sampling. With this method, a value for each of the uncertain variables is sampled at random 

according to their prescribed PDFs. These values are then propagated through the model (i.e., 

used in a simulation), and the responses of interest are tabulated. This process is repeated N times 

to generate estimates for the response mean �̂�𝑦 and standard deviation 𝜎𝑦: 

 

 �̂�𝑦 =
1

𝑁
∑ 𝑦𝑖

𝑁

𝑛=1

 (5.12) 

 

𝜎𝑦 = (
1

𝑁 − 1
∑(𝑦𝑖 − �̂�𝑦)

2
𝑁

𝑛=1

)

1/2

 (5.13) 

 

where 𝑦𝑖  is the response calculated for the i
th

 sample. In a likewise fashion higher-order statistics, 

such as skewness and kurtosis can be estimated. The response cdf can be estimated by using the 

following function: 

 𝐷(𝑦) =
1

𝑁
∑𝑢(𝑦 − 𝑦𝑖)

𝑁

𝑖=1

 (5.14) 

 

where 𝑢(𝑧) = 1 if 𝑧 > 0 and zero otherwise. In a likewise fashion, one can define an empirical 

pdf by generating a histogram of the response and counting the number of observations within 

each bin. 

The main advantages to RS are that it is conceptually easy to understand, and that the 

cost is largely independent of the number of uncertain input parameters. The disadvantage lies 

primarily in the computational cost that may be required to generate sufficiently resolved 

statistics, particularly if each individual response evaluation (i.e., simulation) requires more than 

a few seconds to complete. In particular, since random sampling does not a priori guarantee 

complete coverage of the sample space, many evaluations are required to ensure that samples are 

drawn from lower-probability regions so that their impact on the response statistics can be 

captured. Also, since the estimates of statistical quantities are themselves uncertain variables 

(i.e., each individual set of RS runs generates a unique estimate for the true mean and variance). 

It can be shown that, with RS, the estimate of the mean converges to the true mean as 1/√𝑁, 
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where N is the number of samples [157]. Obviously, depending on the cost of each evaluation 

and the level of confidence desired in the estimate of the mean, this can result in an excessive 

computational expense. To attempt to mitigate some of these drawbacks, Latin Hypercube 

Sampling was developed. 

5.2.2 Latin Hypercube Sampling 

In order to improve sample space coverage and produce more precise estimates of true 

values with the same number of response evaluations as RS, the Latin Hypercube approach was 

developed ([157], [158]). LHS is a constrained sampling method which subdivides the sample 

space of each input variable into N equal-probability bins, where N is the total number of 

samples. Suppose there are a total of m random input variables. A sample is drawn randomly 

from each bin for each variable, to yield m sequences of N variables, {𝑥1
𝑖 ,  𝑥2

𝑖 , … , 𝑥𝑁
𝑖 }, 𝑖 =

1,2,…𝑚 , which are arranged in ascending order. In order to form the Latin Hypercube of 

samples, each sequence is randomly permuted, and the resulting permuted sequences are 

combined to form N sets of m variables which provide a relatively even covering of the sample 

space.  

In order to better illustrate this process, consider a situation where there are two random 

variables 𝑥1 and 𝑥2, which are both uniform with lower bound equal to 0 and upper bound equal 

to 1, from which we wish to draw 10 samples for evaluation of the function 𝑔(𝑥1, 𝑥2). In this 

case, a random sample is drawn from the 10 intervals, as shown in Table 5.2.1: 

 

Table 5.2.1: LHS example, 10 random samples from two uniform random variables 

  

Bin Range 
   

lower upper bin index 𝒙𝟏 𝒙𝟐 

0.0 0.1 1 0.025288 0.072574 

0.1 0.2 2 0.132135 0.156519 

0.2 0.3 3 0.229848 0.230081 

0.3 0.4 4 0.37909 0.340184 

0.4 0.5 5 0.475412 0.48707 

0.5 0.6 6 0.577243 0.519017 

0.6 0.7 7 0.667137 0.65478 

0.7 0.8 8 0.749587 0.724337 

0.8 0.9 9 0.828822 0.869256 

0.9 1.0 10 0.997868 0.928379 
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The next step is to permute each sequence of 𝑥1 and 𝑥2 by their bin indices. In this case, a 

random permutation of indices might be: 

 Permutation set for 𝑥1: (10, 9, 5, 7, 3, 6, 1, 4, 2, 8) 
 Permutation set for 𝑥2: (3, 5, 7, 9, 2, 6, 10, 4, 1, 8) 

 

The final step is to combine the pair the permuted sequences to generate the 10 pairs of 𝑥1 and 𝑥2 

which will be used in the evaluations of 𝑔(𝑥1, 𝑥2): 

 

Table 5.2.2: LHS example, sequence of variables used to evaluate 𝒈(𝒙𝟏, 𝒙𝟐) 
 

Simulation Index x1 bin index x2 bin index 

1 10 3 

2 9 5 

3 5 7 

4 7 9 

5 3 2 

6 6 6 

7 1 10 

8 4 4 

9 2 1 

10 8 8 

 

With this sequence of pairings defined, Figure 5.2.1 illustrates the difference in the samples 

drawn using LHS as opposed to simple RS. It is obvious this figure that a simple random 

sampling can cause clustering of sample points, while leaving some regions of the sample space 

completely untouched. LHS, on the other hand, achieves better coverage of the entire region. As 

evidenced by this figure, there are still some regions of the space that neither LHS nor RS 

manage to access. The obvious solution is to increase the number of samples; whereas clustering 

is often an issue with RS even with a large number of samples, LHS gives some guarantee of 

even coverage.  

Obviously the brief illustration here can be extended to an arbitrary number of random 

variables of any distribution type. One potential issue with LHS is the potential for introducing 

artificial correlations between the inputs, depending on the order in which they are paired. 

Additionally, the random variables may exhibit a desired correlation structure, and the analyst 

would like to ensure that it is captured by the sampling procedure. Iman and Conover [159] 

proposed a method by which the desired correlation structure can be obtained via a refined 
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permutation procedure which does not pair the sequences of bins randomly, but rather chooses a 

pairing which closely obtains the desired correlations. 

 

 
Figure 5.2.1: Contrast between RS and LHS for two uniform variables, N = 10 

 

McKay et at showed that the estimates of means and variance produced via LHS are less 

than that from RS [158]. If we define a class of estimators 𝑇 as: 

 

 𝑇(𝑦1 , 𝑦2 , … , 𝑦𝑁) =
1

𝑁
∑𝑔(𝑦𝑖)

𝑁

𝑖=1

 (5.15) 

 

where 𝑔 is an arbitrary function, and the expected value (i.e., true or population mean) of T is 𝜏, 

then McKay et al proved that LHS yields unbiased estimators of 𝜏. If we take 𝑔(𝑦𝑖) = 𝑦𝑖 , then T 

is the sample mean; higher-order moments can be obtained in a similar fashion. Furthermore, 

they showed that if the response 𝑦 = 𝑓(𝒙) is monotonic in each of its arguments 𝑥𝑖 (which the 

sensitivity studies presented in Chapter 4 indicated) and 𝑔(𝑦)  is monotonic in y, then the 

variance in the estimator T using LHS is less than or equal to the variance obtained using simple 

random sampling. In many cases, the variance in estimators from LHS is significantly lower than 

RS, which is why it is a popular choice for sampling-based uncertainty analysis. 
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In this section, random sampling methods were described for response distribution 

characterization. The main advantage is the conceptual simplicity and discipline independence; 

the main disadvantage is the potential computational expense. In general, LHS provides for 

lower-variance estimates of response distribution quantities. Even so, in many cases the required 

accuracy in the statistics is not computationally obtainable with sampling-based methods. 

Therefore, alternative methods have been explored and implemented. Two of these methods, 

both based on stochastic expansion, will be explored in the following section. 

 

5.3 Stochastic Expansion Methods 

An alternative approach to empirically constructing approximations to response statistics 

via sampling methods is to develop functional representations of the response with respect to the 

input variables. So-called response surface approximations (a.k.a. trend models, surrogate 

models, meta-models) have their roots in the work of Meyers et al ([113], [160]), which sought 

to develop design of experiments methods. The underlying idea is to represent the response in an 

analytical form (i.e., as a hypersurface), the coefficients of which are determined by relatively 

few functional evaluations. The surface can then be used directly in evaluating response 

statistics, or it can be used in conjunction with a sampling method to inexpensively generate a 

large number of samples. 

A number of different approaches have been explored to represent responses functionally, 

from simple polynomial regression fits to more advanced approaches such as kriging 

interpolation or multivariate adaptive regression splines (MARS) [161]. The complexity of the 

approach is largely dictated by the degree of non-linearity expected in the response; for certain 

types of physics (such as complex CFD simulations), the response may exhibit a complicated 

peak and valley structure that simple representations cannot capture accurately. 

For this work, stochastic expansion representations of the system response are 

considered. Both Polynomial Chaos Expansion and Stochastic Collocation seek to construct the 

functional representation with a linear combination of polynomials. The ideas behind the two 

methods are distinct; in PCE, the functional expansion is obtained by solving a system of 

equations which provides the expansion coefficients for known orthogonal basis functions. In 

contrast, SC requires the determination of grid points and weights for quadrature rules which 
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allow the functional expansion to be integrated; by construction, the expansion coefficients are 

simply the values of the response function evaluated at each particular grid point. These ideas 

will be further explored in the following sections. 

5.3.1 Polynomial Chaos Expansion 

As stated above, the idea behind PCE is to form a functional expansion of the response in 

terms of polynomial chaoses. In the original intrusive formulation, polynomials were chosen 

with certain orthogonality properties. The expansion could then be inserted into the mathematical 

model, and by a procedure similar to the development of finite-element equations, expansion 

coefficients can be determined [162]. This work uses related non-intrusive formulations to 

estimate the expansion coefficients; these will described below. 

First, we describe the polynomials with which the PCE is generated. The key feature of 

PCE is that basis polynomials for each uncertain input are chosen such that they are orthogonal 

with respect to the pdf of that variable. It is well-established that orthogonal basis polynomials 

can be defined via a three-term recurrence relationship for arbitrary density functions [163]. In 

other words, there exists a family of polynomials 𝑝𝑛(𝑥) for any density function 𝑓(𝑥) (where n 

refers to the order of the polynomial) such that: 

 

 ∫ 𝑝𝑛(𝑥)𝑝𝑚(𝑥)𝑓(𝑥)𝑑𝑥
Ω

= 𝐶𝑛𝛿𝑚𝑛 (5.16) 

 

where Ω is the support of 𝑥, 𝐶𝑛 is a multiplicative constant and 𝛿𝑚𝑛 is the Kronecker delta (i.e., 

𝛿𝑚𝑛 = 1 if 𝑚 = 𝑛  and zero otherwise). It was shown in [164] that the standard continuous 

probability density functions have associated hypergeometric orthogonal polynomials (known as 

the Askey scheme) which satisfy the weighted orthogonality property. For example, Hermite 

polynomials are orthogonal with respect to the standard normal distribution; Legendre 

polynomials are orthogonal with respect to the uniform distribution. These polynomials provide 

an optimal basis for their respective density functions by virtue of the orthogonality property; 

i.e., as the degree of approximation is increased, the polynomial approximation converges 

exponentially to the distribution. It is possible to use, for example, Hermite polynomials to 

represent arbitrary input uncertainties, but convergence with increasing polynomial order is sub-

optimal. 
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Non-intrusive (or black box) PCE has been developed to take advantage of the 

fundamental ideas of PCE without requiring the extensive investment in code modifications 

necessary for classical PCE. The idea is to expand the response function R into an infinite series 

of polynomials in the uncertain input variables 𝝃 = {𝜉1, 𝜉2, … , 𝜉𝑚} , each with a prescribed 

density function. Adapting the nomenclature used in [156]: 

 

 

𝑅(𝝃) = 𝑎0𝐵0+ ∑ 𝑎𝑖1𝐵1(𝜉𝑖1)

𝑚

𝑖1=1

+ ∑ ∑ 𝑎𝑖1𝑖2𝐵2(𝜉𝑖1 , 𝜉𝑖2)

𝑖1

𝑖2=1

𝑚

𝑖1=1

+ ∑ ∑ ∑ 𝑎𝑖1𝑖2𝑖3𝐵3(𝜉𝑖1 , 𝜉𝑖2 , 𝜉𝑖3)

𝑖2

𝑖3=1

𝑖1

𝑖2=1

𝑚

𝑖1=1

+ ⋯ 

(5.17) 

 

where 𝐵𝑛(𝜉𝑖1 , 𝜉𝑖2 , … , 𝜉𝑖𝑛) indicates a polynomial of degree n. This particular expansion scheme is 

referred to as total order expansion in that the highest degree of polynomial present is defined by 

choosing a maximum value of n. This notation can be condensed to a single index-based scheme 

via a one-to-one correspondence between 𝑎𝑖1𝑖2…𝑖𝑛  and 𝛼𝑗  and between 𝐵𝑛(𝜉𝑖1 , 𝜉𝑖2 , … , 𝜉𝑖𝑛) and 

Ψ𝑗(𝝃): 

 𝑅(𝝃) =∑𝛼𝑗

∞

𝑗=0

Ψ𝑗(𝝃) (5.18) 

 

In actual implementation, the expansion is truncated to an upper limit of 𝑃 .The 

multivariate polynomials Ψ𝑗(𝝃) are constructed as products of the hypergeometric polynomials 

that correspond with the distribution of each random variable. To illustrate this point, suppose 

the variability in a mathematical model is represented by two uncertain input variables: one 

uniform (𝜉1) and one normal (𝜉2). It is desired to represent the response using a total order 

expansion of degree 2. The first three Legendre and Hermite polynomials (for expansion of 

uniform and normal variables, respectively) are given in Table 5.3.1: 
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Table 5.3.1: Legendre and Hermite polynomials up to order 2 

 

Legendre Hermite 

𝑃0(𝜉) = 1 𝐻𝑒0(𝜉) = 1 

𝑃1(𝜉) = 𝜉 𝐻𝑒1(𝜉) = 𝜉 

𝑃2(𝜉) =
1

2
(3𝜉2 − 1) 𝐻𝑒2(𝜉) = 𝜉2 − 1 

 

In this case, the expansion polynomials would be: 

 

 

Ψ0(𝜉1, 𝜉2) = 𝑃0(𝜉1)𝐻𝑒0(𝜉2) = 1 

Ψ1(𝜉1, 𝜉2) = 𝑃1(𝜉1)𝐻𝑒0(𝜉2) = 𝜉1 

Ψ2(𝜉1, 𝜉2) = 𝑃0(𝜉1)𝐻𝑒1(𝜉2) = 𝜉2 

Ψ3(𝜉1, 𝜉2) = 𝑃2(𝜉1)𝐻𝑒0(𝜉2) =
1

2
(3𝜉1

2 − 1) 

Ψ4(𝜉1, 𝜉2) = 𝑃1(𝜉1)𝐻𝑒1(𝜉2) = 𝜉1𝜉2 

Ψ5(𝜉1, 𝜉2) = 𝑃0(𝜉1)𝐻𝑒2(𝜉2) = 𝜉2
2 − 1 

(5.19) 

 

These results can be generalized for any combination of uncertain variables and input 

distributions. For expansion order p and number of variables m, the number of terms in a total 

order expansion is given as: 

 

 𝑁 = 1 + 𝑃 = 1 +∑
1

𝑠!

𝑃

𝑠=1

∏(𝑚 + 𝑟)

𝑠−1

𝑟=1

=
(𝑚 + 𝑝)!

𝑛! 𝑝!
 (5.20) 

 

An alternative to full order expansion is tensor product expansion, where instead of 

fixing the maximum order of any polynomial in the expansion, the maximum order in each 

individual uncertain variable’s expansion is fixed. In the case of the expansion explored above, 

the expansion polynomials would be: 

 

 

Ψ0(𝜉1 , 𝜉2) = 𝑃0(𝜉1)𝐻𝑒0(𝜉2) = 1 

Ψ1(𝜉1 , 𝜉2) = 𝑃1(𝜉1)𝐻𝑒0(𝜉2) = 𝜉1 

Ψ2(𝜉1 , 𝜉2) = 𝑃2(𝜉1)𝐻𝑒0(𝜉2) =
1

2
(3𝜉1

2 − 1) 

Ψ3(𝜉1 , 𝜉2) = 𝑃0(𝜉1)𝐻𝑒1(𝜉2) = 𝜉2 

Ψ4(𝜉1 , 𝜉2) = 𝑃1(𝜉1)𝐻𝑒1(𝜉2) = 𝜉1𝜉2 

Ψ5(𝜉1 , 𝜉2) = 𝑃2(𝜉1)𝐻𝑒1(𝜉2) = 𝜉1(𝜉2
2 − 1) 

Ψ6(𝜉1 , 𝜉2) = 𝑃0(𝜉1)𝐻𝑒2(𝜉2) = 𝜉2
2 − 1 

Ψ7(𝜉1 , 𝜉2) = 𝑃1(𝜉1)𝐻𝑒2(𝜉2) = 𝜉1(𝜉2
2 − 1) 

Ψ8(𝜉1 , 𝜉2) = 𝑃2(𝜉1)𝐻𝑒2(𝜉2) =
1

2
(3𝜉1

2 − 1)(𝜉2
2 − 1) 

(5.21) 
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The total number of terms in a tensor product expansion is given by: 

 𝑁 = 1+ 𝑃 =∏(𝑝𝑖 + 1)

𝑚

𝑖=1

 (5.22) 

 

The advantage to tensor product as opposed to total order expansion is that it readily supports 

anisotropy in the expansion dimensions. While anisotropy can be captured in total order 

expansions, it requires careful pruning of polynomials which satisfy the total order bound but 

violate individual per-dimension bounds. The disadvantage is that tensor product expansion 

suffers from the “curse of dimensionality” in that the number of terms exponentially increases 

with the number of uncertain variables. This can lead to a prohibitively high number of 

evaluations to compute the expansion coefficients, which is the same drawback as sampling 

based methods described above. Ways to mitigate this drawback (such as sparse grid approaches) 

are discussed below. 

In either case, the basis for the particular expansion employed is primarily driven by the 

method in which the expansion coefficients are to be evaluated. Random sampling can be used to 

generate 𝑃 + 1 samples, and the resulting linear system can be solved to give the expansion 

coefficients. However, this method suffers from the same disadvantage as pure RS methods; the 

number of responses necessary for accurate evaluation can become intractable [165]. 

Alternatively, linear regression fits can be employed, but these often require at least 2𝑃 

evaluations. In this work, we employ tensor-product integration to generate the response 

coefficients, which can be thought of as the most efficient approach. 

The response is projected against each polynomial basis function using inner products, 

and the expansion coefficient is extracted due to the orthogonality properties of the basis 

polynomial. If the response is represented by the following expansion: 

 

 𝑅(𝝃) =∑𝛼𝑗

𝑃

𝑗=0

Ψ𝑗(𝝃) (5.23) 

 

then it is evident that, by multiplying both sides by Ψ𝑖(𝝃) and taking the inner product with 

respect to the joint uncertain input density function 𝜚(𝝃) = ∏ 𝜚𝑖(𝜉𝑖)
𝑚
𝑖=1  (assuming independence 

of the input variables), the expansion coefficients can be extracted thusly: 
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 𝛼𝑗 =
〈𝑅,Ψ𝑗〉

〈Ψ𝑗
2〉

=
1

〈Ψ𝑗
2〉
∫ 𝑅(𝝃)Ψ𝑗(𝝃)𝜚(𝝃)𝑑𝝃
Ω

 (5.24) 

 

where Ω = Ω1⊗…⊗ Ω𝑚  is the support range of the density function, and is the tensor product 

of the supports of the individual random variables. The denominator can be computed relatively 

easily since it is comprised of known polynomials; the primary computational effort resides in 

the computation of the numerator. 

We can use tensor-product rules to calculate the numerator in Equation 5.24. Quadrature 

formulas are a way to evaluate definite integrals numerically using function evaluations 

computed at pre-defined points (abscissas) 𝑥𝑖, 𝑖 = 1,… ,𝑁 , where 𝑁  is the total number of 

points, and weights 𝜔𝑖  associated with each of those points. In the univariate case, for Gaussian 

quadrature, if a function 𝑓(𝑥) can be expressed as the product of a polynomial function 𝑔(𝑥) and 

a weighting function 𝜔(𝑥), then the quadrature rule can be expressed as: 

 

 ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

= ∫  𝑔(𝑥)𝜔(𝑥)𝑑𝑥
𝑏

𝑎

≈∑𝜔𝑖𝑔(𝑥𝑖)

𝑁

𝑖=1

 (5.25) 

 

In this quadrature formula, the abscissas are simply the zeros of the 𝑁𝑡ℎ order orthogonal 

polynomial associated with the weighting function 𝜔(𝑥), and the weights 𝜔𝑖  can be calculated 

using a formula dependent upon integrals of the orthogonal polynomials. Each standard class of 

orthogonal polynomials and weighting functions has a Gaussian quadrature rule associated with 

it; they can also be calculated for arbitrary density functions as discussed above. The 

approximation formula using 𝑁 points will exactly integrate polynomials up to order 2𝑁 − 1. 

There are alternative quadrature approaches, such as Clenshaw-Curtis, which offer the benefit of 

nested rules (i.e., the points of successively higher quadrature orders include points from lower 

orders); the downside is that such rules may only integrate polynomials of degree up to the 

number of points included. 

In order to describe tensor product quadrature, first, univariate quadrature rules must be 

defined. Following the discussion in [156], first, define an index 𝑖 ∈ ℕ+, 𝑖 ≥ 1. This index refers 

to the 𝑖𝑡ℎ uncertain variable. Then, for each value of 𝑖, there is a sequence of Gauss abscissas 

{𝜉1
𝑖 , 𝜉2

𝑖 , … 𝜉𝑚𝑖

𝑖 } ∈ Ω𝑖 , where 𝑚𝑖  defines the quadrature order (i.e., number of abscissas) in 
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direction 𝑖. For any continuous, not necessarily differentiable function 𝑓, there are a sequence of 

quadrature operators 

 𝒰𝑖(𝑓)(𝝃) =∑𝑓(𝜉𝑗
𝑖)𝜔𝑗

𝑚𝑖

𝑗=1

 (5.26) 

 

which, for Gaussian quadrature, integrates polynomials up to order 2𝑚𝑖 − 1  exactly. In 

application to PCE, if expansion order p is chosen, then the integral in Eq. 5.26 would require 

evaluation of integrals up to order 2p, and thus a quadrature rule of order at least p+1 is 

necessary. To generalize to multi-dimensional quadrature rules, one simply takes the tensor 

product of univariate quadrature rules in each dimension. Define a multi-index 

𝐢 = (𝑖1 , 𝑖2 , … , 𝑖𝑛) ∈ ℕ+
𝑛 . Then, the multivariate quadrature operator 𝒬𝐢

𝑛 is defined as: 

 

 

𝒬𝐢
𝑛(𝑓)(𝝃) = (𝒰𝑖1 ⊗…⊗𝒰𝑖𝑛)(𝑓)(𝝃)

= ∑ … ∑ 𝑓 (𝜉𝑗1
𝑖1 , … , 𝜉𝑗𝑛

𝑖𝑛) (𝜔𝑗1
𝑖1 ⊗…⊗𝜔𝑗𝑛

𝑖𝑛)

𝑚𝑛

𝑗𝑛=1

𝑚1

𝑗1=1

 
(5.27) 

 

To use this quadrature rule, first, the response is evaluated at the points 𝜉𝑗1
𝑖1 , … , 𝜉𝑗𝑛

𝑖𝑛  corresponding 

with the abscissas in the desired quadrature scheme. The number of points which are evaluated in 

each direction depend upon the desired order the polynomial chaos expansion. Once the response 

values at these points are determined, the quadrature rule can be applied to compute the integral 

in Eq. 5.24, producing the expansion coefficients. The key idea is that the weights and 

quadrature points are determined based on the density function of each uncertain variable, which 

allows the coefficients to be evaluated accurately. 

As stated above, a disadvantage to tensor-product quadrature is the sheer number of 

evaluations that can be required, particularly for problems with a moderate-to-large (i.e., > 5) 

random inputs. As is obvious from Eq. 5.27, each quadrature evaluation requires ∏ 𝑚𝑖𝑗
𝑛
𝑗=1  

function values; if the same order is chosen in all directions (𝑚𝑖𝑗 = 𝑚), then 𝑚𝑛 total function 

values are necessary. This is referred to as the “curse of dimensionality,”  and can quickly scale 

beyond the computationally feasible. In order to reduce the number of function evaluations 

required, while maintaining accuracy in the expansion coefficients, sparse grid approaches have 

been implemented. Sparse grids were originally proposed by Smolyak [166], and further 
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explored by other authors (for example, [167]) as a way to dramatically reduce the number of 

function evaluations required to construct the expansion. The general approach is to balance the 

desired accuracy of approximation with the number of points required to form it (see, for 

example, [168]). The way this is accomplished is by paring down the full tensor-product grid in a 

specific way and only using tensor products which have a relatively small number of points. 

Again following the discussion in [156], we describe the Smolyak isotropic formulas 𝒜(w, 𝑛) 

where w is referred to as the level of the sparse grid and n is the number of directions. Let 

𝒰0 = 0 and for 𝑖 ≥ 1 define: 

 

 ∆𝑖= 𝒰𝑖 −𝒰𝑖−1. (5.28) 

 

This is a differencing operator between univariate quadrature rules with 𝑖 and 𝑖 − 1 abscissas, as 

defined in Eq. 5.26. If we set |𝐢| = 𝑖1 + 𝑖2 + ⋯+ 𝑖𝑛 , then the isotropic Smolyak quadrature 

formula is: 

 𝒜(w, 𝑛) = ∑ (∆𝑖1 ⊗…⊗∆𝑖𝑛)

 |𝐢|≤w+𝑛

 (5.29) 

 

This can be also written in terms of the original univariate quadrature formulas: 

 

 𝒜(w, 𝑛) = ∑ (−1)w+𝑛−|𝐢| (
𝑛 − 1

w + 𝑛 − |𝐢|
) (𝒰𝑖1 ⊗…⊗𝒰𝑖𝑛)

w+1≤|𝐢|≤w+𝑛

 (5.30) 

 

The integral in Eq. 5.24 can be computed using this rule, with a greatly reduced number of 

function evaluations. Instead of 𝑚𝑛 evaluations (as was the case in an isotropic tensor grid), only 

𝑚log𝑛  points are required, with only slightly degraded accuracy (see, for example, [169]). A 

comparison between a full tensor grid and sparse grids using Gauss and Clenshaw-Curtis 

abscissas in two dimensions is shown in Figure 5.3.1. It is obvious that the sparse grids contain 

significantly fewer evaluation points, even in two dimensions; the effect is even greater for 

multi-dimensional problems. 
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Figure 5.3.1: Tensor product and sparse grid using Clenshaw-Curtis abscissas (left, center) and 

sparse grid using Gaussian abscissas (right), for dimension = 2 and maximum level w = 5 (taken 

from [156]) 

 

Once the expansion is formed and the expansion coefficients are calculated via the 

quadrature methods described above, the statistical moments of interest can be easily calculated. 

The mean and variance, for example, are given by the following expressions: 

 

 𝜇𝑅 = 〈𝑅〉 = ∫ 𝑅(𝝃)𝜚(𝝃)𝑑Ω
Ω

≅ ∫ ∑𝛼𝑗

𝑃

𝑗=0

Ψ𝑗(𝝃)𝜚(𝝃)𝑑Ω =
Ω

∑𝛼𝑗〈Ψ𝑗(𝝃)〉

𝑃

𝑗=0

= 𝛼0 (5.31) 

 

 

𝜎𝑅
2 = 〈(𝑅 − 𝜇𝑅)

2〉 ≅ 〈(∑𝛼𝑗

𝑃

𝑗=1

Ψ𝑗(𝝃))

2

〉 = ∑∑𝛼𝑖𝛼𝑗〈Ψ𝑖(𝝃)Ψ𝑗(𝝃)〉

𝑃

𝑗=1

𝑃

𝑖=1

 

= ∑𝛼𝑗
2〈Ψ𝑗(𝝃)

2〉

𝑃

𝑗=1

 

(5.32) 

 

Higher-order moments of the distribution can also be computed, and analytic moment-fitting 

methods could be employed to approximate the response pdf. Alternatively, the expansion can be 

very cheaply sampled via an RS or LHS technique to numerically approximate these quantities. 

 With this, the tensor-product based methods which are available in DAKOTA to form 

PCE have been described. In the next section, we will describe an alternative (but related) 

method to expand the response: stochastic collocation. 

5.3.2 Stochastic Collocation 

As presented in the previous section, PCE is based upon an infinite expansion of 

polynomials, which are then truncated to form an approximation of the functional behavior of the 
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response with respect to the uncertain inputs. Because of this, there are a number of different 

choices available for the estimation of the expansion coefficients. Stochastic collocation, on the 

other hand, forms its expansion based on structured Lagrange interpolation on the uncertain 

variable space, with one polynomial per expansion point, and the expansion coefficients are 

simply the response values at the interpolation points. The choices of abscissas, therefore, are the 

crux of the method. It turns out that the optimal strategy is to perform collocation using the 

Gauss points and weights corresponding to the orthogonal polynomials used in PCE. 

As was the case with PCE, we largely follow [156] to discuss the basis of SC. To begin 

the discussion, recall the definition of Lagrange polynomials on a grid of points 𝜉1, 𝜉2, … , 𝜉𝑚 in 

one dimension: 

 𝐿𝑗(𝜉) =∏
𝜉 − 𝜉𝑖

𝜉𝑗 − 𝜉𝑖

𝑚

𝑖=1
𝑖≠𝑗

 (5.33) 

 

This polynomial returns 1 when 𝜉 = 𝜉𝑗  and 0 when 𝜉 = 𝜉𝑖 , 𝑖 ≠ 𝑗 . It is obvious that it is a 

polynomial of degree 𝑚 − 1. We can form an 𝑚 − 1th
 degree interpolant of a function 𝑅(𝜉) over 

𝑚 points as: 

 𝑅(𝜉)  ≅ ∑𝑟(𝜉𝑗)𝐿𝑗(𝜉)

𝑚

𝑗=1

 (5.34) 

 

This expansion smoothly interpolates between the responses 𝑟(𝜉𝑗) evaluated at points 𝜉𝑗 . To 

form a multidimensional interpolant, one simply takes the tensor product of the one-dimensional 

Lagrange interpolants: 

 

 𝑅(𝝃)  ≅ ∑ … ∑ 𝑟 (𝜉𝑗1
𝑖1 , … , 𝜉𝑗𝑛

𝑖𝑛)(𝐿𝑗1
𝑖1 ⊗…⊗ 𝐿𝑗𝑛

𝑖𝑛)

𝑚𝑖𝑛

𝑗𝑛=1

𝑚𝑖1

𝑗1=1

=∑𝑟𝑗(𝝃)𝐿𝑗(𝝃)

𝑁𝑝

𝑗=1

 (5.35) 

 

where 𝜉𝑗𝑙
𝑖𝑘  is the 𝑗𝑙

𝑡ℎ point in the 𝑘𝑡ℎ direction and 𝑁𝑝  is the total number of expansion points. 

Equation 5.35 is the Stochastic Collocation expansion of the response. 

As mentioned above, the key to maximizing the SC approach is to choose the 

interpolation points to be the Gaussian abscissas corresponding to the orthogonal polynomials 

chosen for each direction (which, in turn, depend upon the weighting function (pdf) describing 
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the variability of the input in that dimension).  Both the tensor-product and the sparse grid 

approaches described above can be employed for this purpose. Noting that the Gauss points of 

orthogonal polynomials are its roots, one can factor such polynomials as: 

 

 𝜓𝑗 = 𝑐𝑗∏(𝜉 − 𝜉𝑘)

𝑝

𝑘=1

 (5.36) 

 

where 𝜉𝑘 are the roots and 𝜓𝑗 is a 𝑝𝑡ℎ-order orthogonal polynomial. The parallels between this 

factorization and the form of the one-dimensional Lagrange interpolant are obvious. However, it 

should be noted that in order to form a 𝑝𝑡ℎ-order Lagrange interpolant using Gauss points, it is 

necessary to use the roots of the orthogonal polynomial of order 𝑝 + 1 and then exclude the 

Gauss point at which the response is being interpolated. For example, let 𝜉 be a uniform random 

variable on the interval [−1,1]. Legendre polynomials correspond with this distribution. If we 

wished to form a second-order expansion, we would need to use the Gauss points corresponding 

with the third-order Legendre polynomial, and then exclude the point at which we were 

interpolating. In this specific case, the third-order Gauss points are {−√3 5⁄ , 0,+√3 5⁄ }, and the 

interpolant at 𝜉2 = 0 is: 

 𝐿2(𝜉) = −
5

3
(𝜉 + √3 5⁄ ) (𝜉 − √3 5⁄ ) (5.37) 

 

Therefore, to form an expansion of order 𝑝, one uses the polynomial roots of order 𝑝 + 1. As 

discussed above, integration to determine expansion coefficients in PCE requires a similar 

approach; for expansion orders up to 𝑝 , Gaussian quadrature with at least 𝑝 + 1  points is 

required. This means that the collocation points for PCE and SC of equivalent order are the 

same. However, there is a slight difference in the expansion formulation in that, for PCE, the 

expansion involves all 𝑝 roots up to order 𝑝, whereas for SC the expansion involves a 𝑝 root 

subset of order 𝑝 + 1. Therefore, the actual polynomial expansions using the two methods are 

related, but not equivalent. 

In summary, the stochastic collocation method is based upon forming an expansion based 

on Lagrange interpolants, with the expansion coefficients being the response values at the 

collocation points. The optimal choices for the collocation points are the Gauss points of the 

orthogonal polynomials with respect to each uncertain variable’s distribution. Once the 
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expansion is formed and the responses calculated at each point, the mean and variance of the 

response 𝑅 can be computed: 

 

 𝜇𝑅 = 〈𝑅〉 = ∫ 𝑅(𝝃)𝜚(𝝃)𝑑Ω
Ω

≅ ∫ ∑𝑟𝑗

𝑁𝑝

𝑗=1

L𝑗(𝝃)𝜚(𝝃)𝑑Ω =
Ω

∑𝑟𝑗

𝑁𝑝

𝑗=1

〈L𝑗(𝝃)〉 =∑𝑟𝑗

𝑁𝑝

𝑗=1

𝜔𝑗  
(5.38) 

 

 

𝜎𝑅
2 = 〈(𝑅 − 𝜇𝑅)

2〉 = 〈𝑅2〉 − 𝜇𝑅
2 ≅∑∑𝑟𝑖𝑟𝑗〈𝐿𝑖(𝝃)𝐿𝑗(𝝃)〉 − 𝜇𝑅

2

𝑁𝑝

𝑗=1

𝑁𝑝

𝑖=1

=∑𝑟𝑗
2𝜔𝑗 − 𝜇𝑅

2

𝑁𝑝

𝑗=1

 
(5.39) 

 

Therefore, the mean value is simply a weighted average of the response over all points in the 

domain. The above integrals simplify considerably with the application of the appropriate 

quadrature rule. As with a PCE, additional moments can be computed, or the SC expansion can 

be cheaply employed in a sampling based method to estimate the response distribution. 

With this, the four basic approaches to uncertainty analysis (random sampling, Latin 

Hypercube sampling, polynomial chaos expansion, and stochastic collocation) employed in this 

work have been introduced. Before applying these methods to the coupled depletion problem, we 

provide a description of sensitivity analysis methods used here. 

 

5.4 Sensitivity Analysis 

Sensitivity analysis is the process of quantifying the relative importance of input 

variables to the system response. This usually means determining the fraction of variance in the 

response due to the variance in a particular input variable. There are a number of different 

approaches to this problem, varying in mathematical complexity and required computational 

effort, depending upon the type of information the analyst is attempting to generate. The most 

intuitive approach to quantifying the sensitivity 𝑆𝑖  of response 𝑌 to input variable 𝑥𝑖 is to use a 

differential [170]: 

 𝑆𝑖 ≡
𝜕𝑌

𝜕𝑥𝑖
 (5.40) 

 

The analysis presented in Chapter 4 was rudimentary sensitivity analysis of this type; the input 

variables were ranged over their 95% intervals (i.e., ±2𝜎), and the resulting change in the output 

response was observed. The derivative can be thought of as evaluated about the nominal (i.e., 
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zero-bias) point. The differential approach can be effective, depending on the required 

implementation effort; however, in the presence of uncertain input variables and depending on 

the degree of non-linearity of the response, it may be inappropriate or insufficient to truly 

characterize the sensitivity. In order to account for the distributional effect in an uncertainty 

analysis context, it is common to non-dimensionalize the sensitivity coefficient 𝑆𝑖  with the 

standard deviations of 𝑌 and 𝑥𝑖: 

 

 𝑆𝑖
𝜎 ≡

𝜎𝑖

𝜎𝑌

𝜕𝑌

𝜕𝑥𝑖
 (5.41) 

 

While it does include some influence of the uncertain nature of input and output, this definition 

still has limited applicability; due to the local nature of the derivative, it is only valid at or near 

the point at which 𝑆𝑖  is evaluated. If 𝑌 is strongly non-linear, it may require many evaluations 

over the span of the input space to properly characterize the sensitivity. This is what is meant by 

local sensitivity analysis. 

5.4.1 Pearson and Spearman Correlation Coeffients 

Due to the limited nature of local approaches, it is common to pursue global sensitivity 

approaches, in which the sensitivity of a response to a particular input variable is integrated over 

the range of the input and distilled into a single index. For example, the Pearson correlation 

coefficient is defined as ([171]): 

 

 𝑅𝑖 ≡
cov(𝑥𝑖, 𝑌)

𝜎𝑖𝜎𝑌
=
𝜎𝑖

𝜎𝑌
�̂� (5.42) 

 

In this equation, �̂� is the slope calculated via linear regression of 𝑌 against 𝑥𝑖 . This definition 

follows naturally from a Monte Carlo approach to computing the distribution of 𝑌. In that sense, 

the effect of 𝑥𝑖 over its entire range and distribution is accounted for. It can be shown that the 

square of the Pearson coefficient 𝑅𝑖
2  is proportional to the variance in 𝑌  explained by the 

variance in 𝑥𝑖  assuming that 𝑌  is a linear function of 𝑥𝑖  [172]. We computed 𝑅2  for the 

uncertainty parameters in Chapter 4. 

The trouble with the Pearson coefficient is the linearity assumption; it only provides 

adequate explanation of the constituent variances’ contribution to the response variance for 

linear, additive functions. A generalization of the Pearson coefficient to nonlinear, monotonic 
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functions is provided by the Spearman coefficient [171]. Instead of performing the correlation 

calculation on the raw data itself, the calculations are performed on the ranks of the data. That is, 

the realizations of 𝑥𝑖 and 𝑌 are arranged in ascending order and assigned values from 1 to 𝑁. The 

Spearman coefficient for ranks 𝑟𝑥𝑖 and 𝑟𝑌 is thus given by: 

 

 𝜌𝑖 ≡
cov(𝑟𝑥𝑖, 𝑟𝑌)

𝜎𝑟𝑥𝑖
𝜎𝑟𝑌

 (5.43) 

 

As with the Pearson coefficient, 𝜌𝑖
2 gives an estimate of the 𝑖𝑡ℎ  variable’s contribution to the 

variance of 𝑌. It often performs considerably better than the Pearson coefficient because of the 

removal of the linear assumption; however, it still may not work particularly well in the case of 

non-monotonic or non-additive functions. Additionally, both the Pearson and the Spearman 

coefficient only consider the effect of one input variable at a time, and may not include higher-

order input interaction effects which may be important. In order to quantify these possible 

interactions and give a more robust treatment of sensitivity for general responses, Variance-

Based Decomposition (VBD), first proposed by Sobol’ [173] is available. 

5.4.2 Variance-Based Decomposition 

The main idea of VBD is that the total variance of an output 𝑌 can be decomposed into a 

finite sum involving the variances of both the input variables and terms that describe the 

interaction of the inputs. Following the discussion presented in [170], we consider a function 𝑓 

which is square-integrable over the 𝑘𝑡ℎ-dimensional unit hypercube Ω𝑘 = {𝑋|0 ≤ 𝑥𝑖 ≤ 1, 𝑖 =

1, . . , 𝑘}. This function can be expanded into terms of increasing dimension: 

 𝑓 = 𝑓0 +∑𝑓𝑖 +∑ ∑ 𝑓𝑖𝑗

𝑘

𝑗=𝑖+1

𝑘

𝑖=1

𝑘

𝑖=1

+⋯+ 𝑓12…𝑘  (5.44) 

 

where 𝑓0  is a constant, 𝑓𝑖 = 𝑓𝑖(𝑋𝑖) , 𝑓𝑖𝑗 = 𝑓𝑖𝑗(𝑋𝑖, 𝑋𝑗) , etc. Sobol’ showed that, if each non-

constant term in this expansion has a zero mean (i.e., ∫ 𝑓𝑖(𝑥𝑖)𝑑𝜇𝑖 = 0, where 𝑑𝜇𝑖 = 𝑝𝑖(𝑥𝑖)𝑑𝑥𝑖, 

and 𝑝𝑖(𝑥𝑖) is the pdf associated with 𝑥𝑖), then the terms in the expansion are pair-wise orthogonal  

(i.e., ∬𝑓𝑖(𝑥𝑖)𝑓𝑗(𝑥𝑗)𝑑𝜇𝑖𝑑𝜇𝑗 = 0, 𝑖 ≠ 𝑗). Therefore, if the response 𝑌 = 𝑓(𝑋1, … , 𝑋𝑘), the terms 

can be calculated using conditional expectations of 𝑌: 
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𝑓0 = 𝐸[𝑌] 
𝑓𝑖 =  𝐸[𝑌|𝑋𝑖] − 𝐸[𝑌] 
𝑓𝑖𝑗 =  𝐸[𝑌|𝑋𝑖 , 𝑋𝑗] − 𝐸[𝑌|𝑋𝑖] − 𝐸[𝑌|𝑋𝑗] − 𝐸[𝑌] 

(5.45) 

 

and so on. In this context, the conditional expectations are defined as: 

 

 𝐸[𝑌|𝑋𝑖] = ∫ 𝑓(𝑥1, … , 𝑥𝑖−1, 𝑥𝑖+1, … 𝑥𝑘)𝑑𝜇1…𝑑𝜇𝑖−1𝑑𝜇𝑖+1…𝑑𝜇𝑘
Ω𝑘−1

 (5.46) 

 

From this definition, it is clear that it is the expectation value where all other dependencies 

except for the conditional variable have been integrated out. What is of interest, of course, is the 

relationship between the variance of 𝑌 and the variance of each of these individual terms in the 

expansion. If we apply the variance operator (Equation 5.10) to both sides of Eq. 5.44 and take 

advantage of the term-by-term pairwise orthogonality, one arrives at the following 

decomposition (see [170] or [174]): 

 

 𝑉(𝑌) =∑𝑉𝑖 +∑ ∑ 𝑉𝑖𝑗

𝑘

𝑗=𝑖+1

𝑘

𝑖=1

𝑘

𝑖=1

+⋯+ 𝑉12…𝑘 (5.47) 

 

where 𝑉𝑖 = 𝑉(𝑓𝑖) = 𝑉(𝐸[𝑌|𝑋𝑖]) , 𝑉𝑖𝑗 = 𝑉(𝑓𝑖𝑗) = 𝑉(𝐸[𝑌|𝑋𝑖, 𝑋𝑗]) − 𝑉(𝐸[𝑌|𝑋𝑖]) − 𝑉(𝐸[𝑌|𝑋𝑗]) , 

etc. These terms 𝑉𝑖1𝑖2…𝑖𝑠  are referred to as partial variances. The expression in the above 

equation is referred to as the analysis of variance (ANOVA) decomposition [174]; the total 

variance in the response is a summation of the variances due to each effect alone, the pairwise 

interaction of each term, the interaction of each triplet of terms, etc. If the above equation is 

normalized by 𝑉(𝑌), then we arrive at the following: 

 

 ∑𝑆𝑖 +∑ ∑ 𝑆𝑖𝑗

𝑘

𝑗=𝑖+1

𝑘

𝑖=1

𝑘

𝑖=1

+⋯+ 𝑆12…𝑘 = 1 (5.48) 

 

where we have defined sensitivity indices: 

 

 𝑆𝑖1𝑖2…𝑖𝑚 ≡
𝑉𝑖1𝑖2…𝑖𝑚
𝑉(𝑌)

 (5.49) 
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The advantage of this decomposition is that it allows us to determine what fraction of 

variance in 𝑌 is due to each individual contributor. The first order terms are referred to as the 

main effect indices: 

 

 𝑆𝑖 =
𝑉(𝐸[𝑌|𝑋𝑖])

𝑉(𝑌)
 (5.50) 

 

and characterize each variable’s direct contribution to the variance. In the case of a linear model, 

𝑆𝑖 = 𝑅𝑖
2, and all the variance is explained by the main effect terms. However, in many physics 

simulations, the main effects are not sufficient to capture the complete picture of what 

contributes to response variability. As is clear from the decomposition presented in Eq. 5.48, it is 

possible to use VBD to isolate and estimate the effects of each input variable’s interaction with 

other inputs, therefore giving a much more comprehensive view of which effects are important to 

variance. An excellent application of Sobol’ decomposition to fuel thermo-mechanical 

calculations using FRAPCON was performed by Ikonen and Tulkki in [171]. They investigated a 

number of phenomena important for fuel performance, and showed the benefit to using VBD 

over standard measures to estimate contributions to variance. For example, using only Spearman 

or first-order sensitivity coefficients, less than two-thirds of the variance in gap conductance at a 

specified burnup was explained. By including second-order interaction terms, the fraction of 

variance described jumped to 97%; nearly all the variance was explained, and the missing 3% 

could be found by investigating the higher-order terms. The improvement over linear analysis is 

obvious. 

The main drawback to Sobol’ decomposition is that the integrals embedded within it can 

be quite expensive to calculate, depending on the uncertainty method applied (this will be made 

clear below). The number of terms in the expansion alone, given by 2𝑘 − 1, can quickly become 

overwhelming (for example, an expansion with 10 random inputs would have 1023 terms). In 

order to provide a means by which the potential interaction effects of each variable can be 

evaluated without explicitly calculating every term in the expansion, the total effect index is 

available. 

The total effect 𝑇𝑖  for variable 𝑋𝑖  is defined as the summation of all sensitivity indices 

which involve that variable [171]: 
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 𝑇𝑖 = ∑𝛿𝑖𝑗𝑆𝑗

𝑘

𝑗=1

+∑ ∑ (𝛿𝑖𝑗+𝛿𝑖𝑙)𝑆𝑗𝑙

𝑘

𝑙=𝑗+1

𝑘

𝑗=1

+⋯+ 𝑆12…𝑖…𝑘 (5.51) 

 

For example, if there are three uncertain inputs, then the total effect index for 𝑋1 is 𝑇1 = 𝑆1 +

𝑆12 + 𝑆13 + 𝑆123. The difference 𝑇𝑖 − 𝑆𝑖  can be interpreted as a measure of the “departure from 

additivity” of 𝑋𝑖 ; the higher this value relative to the total effect, the more important the 

interaction contributions to variance are for that variable. It is obvious that if a full Sobol’ 

decomposition of the variance is available, the total effect is trivial to compute. As it stands, 

however, this is not always a trivial calculation, particularly if a sampling method is used to 

evaluate the response statistics. As we will see in following discussion, the total effect can be 

computed using sampling without the need to compute every term in the Sobol’ expansion. 

Therefore, the importance of input interaction can be somewhat (and oftentimes sufficiently) 

quantified relatively cheaply. On the other hand, as we will also see, one of the chief benefits of 

using a stochastic expansion method is that the Sobol’ decomposition can be extracted from the 

expansion coefficients (in the case of PCE) or the products of the quadrature weights and 

response values at the abscissas (in the case of SC) without a great deal of additional calculation. 

5.4.3 VBD using Sampling Methods 

We now discuss the means by which Sobol’ indices can be computed using random 

sampling. To begin, we describe the method developed by Saltelli using a sampling-based 

approach and implemented in DAKOTA ([7], [170]). The goal of these calculations is to produce 

the main effect and total effect indices with a relatively few number of calculation. 

First, two 𝑁 × 𝑘  matrices 𝐴  and 𝐵  are generated by sampling the random input 

distributions, where 𝑁 is the number of sampled outputs and 𝑘 is the number of input variables: 

 

 𝐴 =

(

 
 
 
 

𝑥1
(1)

𝑥2
(1)

… 𝑥𝑖
(1)

… 𝑥𝑘
(1)

𝑥1
(2)

𝑥2
(2)

… 𝑥𝑖
(2)

… 𝑥𝑘
(2)

… … … …

𝑥1
(𝑁−1)

𝑥2
(𝑁−1)

… 𝑥𝑖
(𝑁−1)

… 𝑥𝑘
(𝑁−1)

𝑥1
(𝑁)

𝑥2
(𝑁)

… 𝑥𝑖
(𝑁)

… 𝑥𝑘
(𝑁)

)
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𝐵 =

(

 
 
 
 

𝑥𝑘+1
(1)

𝑥𝑘+2
(1)

… 𝑥𝑘+𝑖
(1)

… 𝑥2𝑘
(1)

𝑥𝑘+1
(2)

𝑥𝑘+2
(2)

… 𝑥𝑘+𝑖
(2)

… 𝑥2𝑘
(2)

… … … …

𝑥𝑘+1
(𝑁−1)

𝑥𝑘+2
(𝑁−1)

… 𝑥𝑘+𝑖
(𝑁−1)

… 𝑥2𝑘
(𝑁−1)

𝑥𝑘+1
(𝑁)

𝑥𝑘+2
(𝑁)

… 𝑥𝑘+𝑖
(𝑁)

… 𝑥2𝑘
(𝑁)

)

 
 
 
 

 

 

Then, 𝑘 matrices 𝐶𝑖 , 𝑖 = 1, … , 𝑘 are formed by replacing the 𝑖𝑡ℎ column of 𝐵 with the 𝑖𝑡ℎ column 

of 𝐴: 

 𝐶𝑖 =

(

 
 
 
 

𝑥𝑘+1
(1)

𝑥𝑘+2
(1)

… 𝑥𝑖
(1)

… 𝑥2𝑘
(1)

𝑥𝑘+1
(2)

𝑥𝑘+2
(2)

… 𝑥𝑖
(2)

… 𝑥2𝑘
(2)

… … … …

𝑥𝑘+1
(𝑁−1)

𝑥𝑘+2
(𝑁−1)

… 𝑥𝑖
(𝑁−1)

… 𝑥2𝑘
(𝑁−1)

𝑥𝑘+1
(𝑁)

𝑥𝑘+2
(𝑁)

… 𝑥𝑖
(𝑁)

… 𝑥2𝑘
(𝑁)

)

 
 
 
 

  

 

The model output using these collections of input variables is then generated and collected in 

vectors 𝑦𝐴, 𝑦𝐵 , and 𝑦𝐶𝑖: 

 

 𝑦𝐴 = 𝑓(𝐴)     𝑦𝐵 = 𝑓(𝐵)     𝑦𝐶𝑖 = 𝑓(𝐶𝑖)  

 

where the 𝑗𝑡ℎ element of 𝑦𝑋is the response obtained using the 𝑗𝑡ℎ row of matrix 𝑋. This requires 

a total of 𝑁(𝑘 + 2) model evaluations; significantly more expensive than simple sampling-based 

uncertainty analysis, but still not as expensive as alternative methods to estimate the Sobol’ 

indices, which can scale as 𝑁2 [170]. Saltelli showed [175] that the main effect sensitivity index 

can be estimated as: 

 

 𝑆𝑖 =
𝑉(𝐸[𝑌|𝑋𝑖])

𝑉(𝑌)
=
𝑦𝐴 ∙ 𝑦𝐶𝑖 − 𝑓0

2

𝑦𝐴 ∙ 𝑦𝐴 − 𝑓0
2 =

(1/𝑁) ∑ 𝑦𝐴
(𝑗)
𝑦𝐶𝑖
(𝑗)𝑁

𝑗=1 − (1/𝑁)(∑ 𝑦𝐴
(𝑗)𝑁

𝑗=1 )
2

(1/𝑁) ∑ (𝑦𝐴
(𝑗)
)
2
− (1/𝑁)𝑁

𝑗=1 (∑ 𝑦𝐴
(𝑗)𝑁

𝑗=1 )
2  (5.52) 

 

In this formula, 𝑦𝐶𝑖  is generated by fixing the value of 𝑋𝑖  and resampling all the other 

variables. If 𝑋𝑖  is non-influential, then high and low values in the vectors 𝑦𝐴  and 𝑦𝐶𝑖  will be 

randomly associated, and we can expect that the difference in the numerator will not be large. If, 

on the other hand, 𝑋𝑖  is important, then large values of 𝑦𝐴 will be associated with large values of 

𝑦𝐶𝑖, and the first term in the numerator will be accordingly amplified. 



143 

 

To describe the method used to compute the total effect index, we first recall that the total 

variance in an output variable can be expressed as the sum of the variance of the mean 

conditioned on a particular input 𝑋𝑖  and the expectation of the variance conditioned on that 

variable (see [170]): 

 

 𝑉(𝑌) = 𝑉(𝐸[𝑌|𝑋𝑖]) + 𝐸[𝑉(𝑌|𝑋𝑖)] 
(5.53) 

 

The first term in this sum is the main effect, and the second term is referred to as the residual. 

Alternatively, the variance can be expressed as the sum of the variance of the expectation of 𝑌 

conditioned on all variables except 𝑋𝑖  and the expectation of the variance of 𝑌 conditioned on 

the same: 

 

 𝑉(𝑌) = 𝑉(𝐸[𝑌|𝑿−𝑖]) + 𝐸[𝑉(𝑌|𝑿−𝑖)] 
(5.54) 

 

The quantity 𝑉(𝑌) − 𝑉(𝐸[𝑌|𝑿−𝑖]) = 𝐸[𝑉(𝑌|𝑿−𝑖)] is “the remaining variance of 𝑌 that would be 

left, on average, if we could determine the true values for 𝑿−𝑖 . The average is calculated over all 

possible combinations of 𝑿−𝑖 , since 𝑿−𝑖  are uncertain factors and their ‘true values’ are 

unknown.” [170].  The total effect index for random variable 𝑋𝑖  thus found by dividing by 𝑉(𝑌): 

 

 𝑇𝑖 =
𝐸[𝑉(𝑌|𝑿−𝑖)]

𝑉(𝑌)
= 1 −

𝑉(𝐸[𝑌|𝑿−𝑖])

𝑉(𝑌)
 (5.55) 

 

Similarly to the evaluation of the main effect index, Saltelli showed that 𝑉(𝐸[𝑌|𝑿−𝑖]) can be 

estimated using dot products of 𝑦𝐵 , and 𝑦𝐶𝑖 : 

 

 

𝑇𝑖 = 1 −
𝑉(𝐸[𝑌|𝑿−𝑖])

𝑉(𝑌)
 

= 1 −
𝑦𝐵 ∙ 𝑦𝐶𝑖 − 𝑓0

2

𝑦𝐴 ∙ 𝑦𝐴 − 𝑓0
2  

= 1 −
(1/𝑁)∑ 𝑦𝐵

(𝑗)
𝑦𝐶𝑖
(𝑗)𝑁

𝑗=1 − (1/𝑁)(∑ 𝑦𝐴
(𝑗)𝑁

𝑗=1 )
2

(1/𝑁) ∑ (𝑦𝐴
(𝑗)
)
2
− (1/𝑁)𝑁

𝑗=1 (∑ 𝑦𝐴
(𝑗)𝑁

𝑗=1 )
2  

(5.56) 

 

In this formula, we obtain 𝑦𝐵 ∙ 𝑦𝐶𝑖 by resampling 𝑋𝑖  and keeping all the other values of 

the uncertain variables fixed. Similar to Equation 5.52, we see that if the other variables are 
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unimportant, then high and low values of 𝑦𝐵  and 𝑦𝐶𝑖  will be randomly associated; otherwise, 

high values of 𝑦𝐵  will be preferentially multiplied by high values of 𝑦𝐶𝑖 , amplifying the dot 

product in the numerator. A higher value of this dot product indicates that the other variables 

(i.e., all except 𝑋𝑖) are more important, which would reduce the value of 𝑋𝑖’s total effect.  

The methods applied above are ways in which the main and total effect sensitivity indices 

can be computed via sampling-based methods. As described above, these calculations require 

𝑁(𝑘 + 2) model evaluations; as is the case with sampling methods in general, this may become 

quickly intractable if the cost of each evaluation is excessive. Also, the integrals evaluated via 

dot product in the above formulas provide statistical estimates of the true quantities; Saltelli et al 

recommend 𝑁 to be at least a hundred, and preferably many hundreds or thousands, to ensure 

that the indices are estimated accurately [170]. Unfortunately, this is not often a tenable strategy, 

given the costs of executing a model; for example, the pin cell problem described in the Chapter 

4 costs approximately one hour per execution; with five random input variables and 𝑁 = 1000, 

this would require about 7000 hours of execution time. Even on multi-core processor computers, 

this is an arduous task. We next explore how the stochastic expansion methods provide access to 

the partial variances without the need for excessive additional calculation. 

5.4.4 VBD with Stochastic Expansions 

Fortunately, the stochastic expansion methods described above provide a means by which 

all the terms in the Sobol’ variance decomposition can be evaluated analytically, simply by using 

the expansion coefficients. This means that once the expansion is constructed, it is virtually free 

to generate sensitivity data and explicitly compute all the interaction terms. In the following 

discussion, the way in which this is achieved is explained. 

First, we will discuss Sobol’ index recovery using PCE. Much of the following 

discussion is taken from Sudret [165], who was the first to relate PCE with Sobol’ 

decomposition. As we have described above, the PCE of a function 𝑌 = 𝑓(𝝃) can be expressed 

as: 

 𝑌 = ∑𝛼𝑗

𝑃−1

𝑗=0

Ψ𝑗(𝝃) (5.55) 
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where 𝑃 is the total number of terms in the expansion, 𝛼𝑗  are the expansion coefficients, and 

Ψ𝑗(𝝃) are the expansion polynomials. We shall see that, if these terms are simply re-ordered and 

grouped appropriately, the form of the Sobol’ decomposition (Equation 5.44) can be recovered. 

To show this, we first represent each expansion polynomial using a tuple 𝜽 =

(𝜃1, … , 𝜃𝑘), depending on which uncertain variables are contained within a given polynomial: 

 

 Ψ𝑗 ≡ Ψ𝜽: Ψ𝑗(𝝃) =∏𝑃𝜃𝑖(𝜉𝑖)

𝑘

𝑖=1

 (5.56) 

 

This is simply expressing each multivariate expansion polynomial Ψ𝑗(𝝃)  as a product of the 

univariate orthogonal polynomials 𝑃𝜃𝑖(𝜉𝑖)  of which it consists (see the examples given in 

Equations 5.19 and 5.21). 𝑃𝜃𝑖(𝜉𝑖)  is interpreted as the orthogonal polynomial of order 𝜃 

corresponding with dimension 𝑖. Next, denote by ℐ𝑖1,…,𝑖𝑠  the set of 𝜽 tuples such that only the 

indices (𝑖1, … , 𝑖𝑠) are non-zero (note that 𝑃0𝑛  corresponds with a zero
th

-order polynomial (i.e., a 

constant) in direction 𝑛, which is therefore not a function of any variable): 

 

 ℐ𝑖1 ,…,𝑖𝑠 = {𝜽 ∶  
𝜃𝑛 > 0   ∀𝑛 = 1,… , 𝑘, 𝑛 ∈ (𝑖1 , … , 𝑖𝑠)

𝜃𝑛 = 0   ∀𝑛 = 1, … , 𝑘, 𝑛 ∉ (𝑖1 , … , 𝑖𝑠)
} (5.57) 

 

We can use this definition to re-order the terms of the PCE in Eq. 5.55 in accordance with the 

dependent variables: 

 

𝑌 = 𝛼0 +∑∑𝛼𝜽Ψ𝜽(𝜉𝑖)

𝜽∈ℐ𝑖

𝑘

𝑖=1

+ ∑ ∑ ∑ 𝛼𝜽Ψ𝜽(𝜉𝑖1 , 𝜉𝑖2)

𝜽∈ℐ𝑖1,𝑖2

𝑘

𝑖2=𝑖1+1

𝑘

𝑖1=1

+ ⋯

+ ∑ … ∑ ∑ 𝛼𝜽Ψ𝜽(𝜉𝑖1 , … , 𝜉𝑖𝑠)

𝜽∈ℐ𝑖1,…,𝑖𝑠

𝑘

𝑖𝑠=𝑖𝑠−1+1

𝑘

𝑖1=1

+⋯

+ ∑ 𝛼𝜽Ψ𝜽(𝜉1, … , 𝜉𝑘)

𝜽∈ℐ1,2,…,𝑘

 

(5.58) 

 

As shown above, the constant term 𝛼0  is the mean of the response, the second term is a 

summation over all polynomials that only depend on one uncertain variable, the second term 

includes all terms that involve only two variables, etc, until the last term, which contains the 

polynomials including all variables. If this expansion is compared with the definition of the 

Sobol’ expansion, Equation 5.44, and it is recognized that due to the orthogonality of the 
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constituent polynomials, this expansion shares the orthogonality properties required to make the 

Sobol’ expansion unique, we can conclude that this expression of the polynomial chaos 

expansion is identical to the Sobol’ expansion. This is particularly clear when the following 

connection is made between the terms in the Sobol’ expansion 𝑓𝑖1𝑖2…𝑖𝑠  and the terms in the above 

re-ordered PCE expansion: 

 

 𝑓𝑖1𝑖2…𝑖𝑠(𝜉𝑖1 , 𝜉𝑖2 , … , 𝜉𝑖𝑠) = ∑ 𝛼𝜽Ψ𝜽(𝜉𝑖1 , … , 𝜉𝑖𝑠)

𝜽∈ℐ𝑖1,…,𝑖𝑠

 (5.59) 

 

With the terms in the Sobol’ expansion thus available, it is trivial to compute the sensitivity 

indices for any order of interaction thusly: 

 

 𝑆𝑖1𝑖2…𝑖𝑠 =
∑ 𝛼𝜽

2𝐸[Ψ𝜽
2(𝜉𝑖1 , … , 𝜉𝑖𝑠)]𝜽∈ℐ𝑖1,…,𝑖𝑠

𝜎𝑌
2  

(5.60) 

 

Total effect indices can then be computed using the definition provided in Eq. 5.51. A further 

benefit to using the PCE approach is that we can choose to investigate the sensitivity indices of 

particular pieces of the above summation (i.e., isolating the linear, quadratic, cubic, etc. terms) to 

determine the contribution of a particular polynomial degree to the total variance. 

With the knowledge that PCE can be used to analytically evaluate sensitivity indices, it is 

natural to question whether an equivalent calculation could be done using the SC expansion. As 

it happens, Tang et al investigated the means by which sensitivity indices can be computed using 

SC [176]. Instead of a reordering of terms as with PCE, the SC calculation involves substituting 

the expansion into the definitions of partial variance and integrating them using the Gauss 

quadrature rules. We summarize their approach below; additional details can be found in their 

paper. 

Recall that the SC expansion of response 𝑌 = 𝑓(𝜉1, … , 𝜉𝑘) = 𝑓(𝝃) can be expressed as: 

 

 𝑓(𝜉1, … , 𝜉𝑘) ≈ ∑ …∑ 𝑓 (𝜉𝑗1
𝑖1 , … , 𝜉𝑗𝑘

𝑖𝑘) (𝑙𝑗1
𝑖1 ⊗…⊗ 𝑙𝑗𝑘

𝑖𝑘)

𝑚𝑖𝑘

𝑗𝑘=1

𝑚𝑖1

𝑗1=1

 (5.61) 

 

i.e., as a tensor product of univariate Lagrange interpolants 𝑙𝑗
𝑖  with expansion coefficients being 

the function values evaluated at particular points of the input space. Let us denote by 𝑢 a multi-
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index such that 𝑢 ∈ 𝒰 = {1,2,… , 𝑘} . Also, define 𝜉𝑢 = {𝜉𝑖| ∀𝑖 ∈ 𝑢}  as the set of random 

variables whose index is contained in 𝑢.  Also, denote by 𝑢′ the complement of 𝑢, i.e., the set of 

indices which are not contained in 𝑢 . For example, for a three-dimensional input space, if 

𝑢 = {1}, then 𝑢′ = {2,3}. We can express the Sobol’ basis functions 𝑓𝑢 in the following way: 

 

 𝑓𝑢 =

{
 
 

 
 ∫𝑓(𝝃)𝑑𝜇𝑢′ − ∑ ∫𝑓𝑤(𝜉𝑤)𝑑𝜇𝑢

𝑤⊂𝑢

𝑢 ≠ ∅

∫ 𝑓(𝝃)𝑑𝜇 𝑢 = ∅

 (5.62) 

 

where 𝑑𝜇𝑢 = ∏ 𝑝(𝜉𝑖)𝑑𝜉𝑖𝑖∈𝑢 . According to [177] we can express the partial variances 𝑉𝑢 in the 

following way: 

 

 

𝑉𝑢 = ∫(∫𝑓(𝝃)𝑑𝜇𝑢′)
2

𝑑𝜇𝑢 − ∑ ∫(𝑓𝑤(𝜉𝑤))
2
𝑑𝜇𝑢

𝑤⊂𝑢

 

= ∫(∫𝑓(𝝃)𝑑𝜇𝑢′)
2

𝑑𝜇𝑢 − ∑ 𝑉𝑤
𝑤⊂𝑢

 

(5.63) 

 

The basic approach to calculating the partial variance will be to compute the Sobol’ basis 

functions recursively (i.e., using Eq. 5.63) and substituting both the SC function expansion and 

the relevant basis functions into Eq. 5.62. The integrals are evaluated using the quadrature rules 

defined to evaluate the locations and weights of the SC expansion. We follow the process in 

[176] to explain how this is done. First, substitute the SC expansion into the inner integral in Eq. 

5.63: 

 ∫𝑓(𝝃)𝑑𝜇𝑢′ = ∫ ∑ … ∑ 𝑓 (𝜉𝑗1
𝑖1 , … , 𝜉𝑗𝑘

𝑖𝑘) (𝑙𝑗1
𝑖1 ⊗…⊗ 𝑙𝑗𝑘

𝑖𝑘)

𝑚𝑖𝑘

𝑗𝑘=1

𝑚𝑖1

𝑗1=1

𝑑𝜇𝑢′ (5.64) 

 

Next, we want to separate the interpolants that are dependent on 𝜉𝑢 from the interpolants 

that are dependent on 𝜉𝑢′ and use the Gauss rule to integrate. Suppose there are 𝑑 elements in a 

given 𝑢: 

 ∫𝑓(𝝃)𝑑𝜇𝑢′ = ∑ … ∑ 𝑓 (𝜉𝑗1
𝑖1 , … , 𝜉𝑗𝑘

𝑖𝑘)∫(𝐥𝑢
′
⊗ 𝐥𝑢)𝑑𝜇𝑢′

𝑚𝑖𝑘

𝑗𝑘=1

𝑚𝑖1

𝑗1=1

 (5.65) 
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= ∑ … ∑ 𝑓 (𝜉𝑗1
𝑖1 , … , 𝜉𝑗𝑘

𝑖𝑘) (𝐰𝑢′ ⊗ 𝐥𝑢)

𝑚𝑖𝑘

𝑗𝑘=1

𝑚𝑖1

𝑗1=1

 

 

where, for notational convenience, we have defined 

 

𝑢 = {𝑢1, … , 𝑢𝑑} 

𝐰𝑢 = 𝑤𝑗𝑢1

𝑖𝑢1 ⊗…⊗𝑤𝑗𝑢𝑑

𝑖𝑢𝑑  

𝐥𝑢 = 𝑙𝑗𝑢1

𝑖𝑢1 ⊗…⊗ 𝑙𝑗𝑢𝑑

𝑖𝑢𝑑  

 

This equation can be simplified by combining the tensor product of the weights 𝐰𝑢′ with the 

response values 𝑓 (𝜉𝑗1
𝑖1 , … , 𝜉𝑗𝑘

𝑖𝑘) to form a new set of weighted coefficients ℎ (𝜉𝑗𝑢1

𝑖𝑢1 , … , 𝜉𝑗𝑢𝑑

𝑖𝑢𝑑 ): 

 

∑ …∑ 𝑓 (𝜉𝑗1
𝑖1 , … , 𝜉𝑗𝑘

𝑖𝑘) (𝐰𝑢′ ⊗ 𝐥𝑢)

𝑚𝑖𝑘

𝑗𝑘=1

𝑚𝑖1

𝑗1=1

= ∑ … ∑ ( ∑ … ∑ 𝑓 (𝜉𝑗1
𝑖1 , … , 𝜉𝑗𝑘

𝑖𝑘)𝐰𝑢′

𝑚
𝑢𝑘−𝑑
′

𝑗
𝑢𝑘−𝑑
′ =1

𝑚
𝑢1
′

𝑗
𝑢1
′ =1

) (𝐥𝑢)

𝑚𝑢𝑑

𝑗𝑢𝑑=1

𝑚𝑢1

𝑗𝑢1=1

= ∑ … ∑ ℎ(𝜉𝑗𝑢1

𝑖𝑢1 , … , 𝜉𝑗𝑢𝑑

𝑖𝑢𝑑) (𝐥𝑢)

𝑚𝑢𝑑

𝑗𝑢𝑑=1

𝑚𝑢1

𝑗𝑢1=1

 

(5.66) 

 

We are now prepared to evaluate the outer integral present in Eq. 5.63. In order to handle the 

square in the integral, recall that by definition Lagrange interpolants have the following property: 

 

𝑙𝑟
𝑞(𝜉𝑝

𝑞) ⋅ 𝑙𝑠
𝑞(𝜉𝑝

𝑞) = {
1 𝑝 = 𝑠 = 𝑟
0 𝑜/𝑤

 

 

By virtue of this property, and by applying the quadrature rule to evaluate the integral, we have: 

 

 ∫(∫𝑓(𝝃)𝑑𝜇𝑢′)
2

𝑑𝜇𝑢 = ∫( ∑ … ∑ ℎ (𝜉𝑗𝑢1

𝑖𝑢1 , … , 𝜉𝑗𝑢𝑑

𝑖𝑢𝑑) (𝐥𝑢)

𝑚𝑢𝑑

𝑗𝑢𝑑=1

𝑚𝑢1

𝑗𝑢1=1

)

2

𝑑𝜇𝑢  (5.67) 
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= ∑ … ∑ ℎ2 (𝜉
𝑗𝑢1

𝑖𝑢1 , … , 𝜉
𝑗𝑢𝑑

𝑖𝑢𝑑) ⊗ 𝐰𝑢

𝑚𝑢𝑑

𝑗𝑢𝑑
=1

𝑚𝑢1

𝑗𝑢1=1

 

 

 

Therefore, the fractional variance 𝑉𝑢 is found to be: 

 

 𝑉𝑢 = ∑ … ∑ ℎ2 (𝜉𝑗𝑢1

𝑖𝑢1 , … , 𝜉𝑗𝑢𝑑

𝑖𝑢𝑑) ⊗𝐰𝑢

𝑚𝑢𝑑

𝑗𝑢𝑑=1

𝑚𝑢1

𝑗𝑢1=1

− ∑ 𝑉𝑤
𝑤⊂𝑢

 (5.67) 

 

Once the fractional variance is known, the sensitivity index for that particular term can be found 

simply by dividing by the total variance. A recursive calculation can be used to compute these 

indices, starting with the main effects and progressing through two-way, three-way, up to 

however many potential interaction terms exist. The total effect indices can also be computed by 

simply summing up the interaction terms appropriately. This concludes our discussion of how 

VBD follows easily and inexpensively from stochastic expansions of the response. 

 

5.5 Conclusions 

In this Chapter, we have discussed the theoretical basis for the sensitivity and uncertainty 

methods which we employ to evaluate the influence of fuel performance on nuclear reactor 

depletion calculations. In the first section, we discussed the general approach to sensitivity and 

uncertainty analysis. We then discussed two variants of the random sampling approach, followed 

by a discussion of stochastic expansion methods. Finally, we discussed the methods by which 

both random sampling and stochastic expansion methods can be used to generate sensitivity 

information. In the next Chapter, we will apply these methods to the pin cell depletion problem 

in order to gain physical insights into which fuel performance variables have the greatest effect 

on depletion calculations, and evaluate the possible importance of uncertain variable interaction. 
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CHAPTER 6 

 

 

Uncertainty and Sensitivity Analysis of Pin Cell Depletion 

 

 

6.1 Introduction 

In this Chapter, we apply the uncertainty and sensitivity methods described in the 

previous Chapter to the pin cell problem in order to quantify the effect that the important fuel-

related models have on the neutronics calculation. The goal is to assign uncertainties (i.e., error 

bars) in the core reactivity, Doppler temperature, axial peaking factor, and fuel and moderator 

temperature coefficients due to the explicit consideration of uncertainties in fuel thermo-

mechanical models. We expect based on the results shown in Chapter 4 that the peaking factors 

and reactivity coefficients will display very tight error bands, since none of the models appeared 

to exert strong influence on these quantities. Doppler temperature and reactivity, on the other 

hand, may be significantly affected. This analysis will quantify the degree of that influence, and 

help determine the appropriate level of effort to incorporate these effects in a production-level 

simulation tool. Once the uncertainties are determined, VBD using Sobol’ decomposition is 

applied to determine which inputs and input interactions have the largest influence on each 

response of interest. 

As we saw in Chapter 4, several of the fuel models have a negligible first-order impact. 

The possibility exists that there may be a non-trivial second order influence on the variance 

through the interaction terms, but it can be shown through physical arguments that, for this 

particular case, these interactions do not exist. The justifications for the treatment of each model 

will be discussed in the next section.  
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For all these calculations, DAKOTA Version 6.0 was used on a Windows 7 platform with 

16 cores available for processing. As each FRAPARCS calculation required approximately 1 

hour, which allowed us to explore a number of different techniques. However, even on this kind 

of machine there were limitations to what could be achieved in the timeframe required, as will be 

discussed further below. 

 

6.2 Definition of Input Distributions 

As is illustrated in Figure 5.1, the first step in performing uncertainty calculations is to 

define the distributions used to describe the input variables. In many cases, these variables can be 

defined using standard distributions (ex. normal, log-normal), depending upon the amount of 

data available to generate the model. In the case of the uncertain variables investigated in this 

work, however, we will see that the differences between the models and the data cannot be 

supported with standard distributions. Therefore, we employ DAKOTA’s continuous histogram 

input specification to define the probability distributions, and base the resulting analysis off of 

these. This is in contrast to many fuel uncertainty calculations performed to date (see, for 

example, [137], [143] and [171]), where standard distributions are used. 

As noted earlier, eight models are used in FRAPCON for uncertainty calculations: 

 Fuel thermal conductivity 

 Fuel thermal expansion 

 Fuel swelling 

 Fuel fission gas release 

 Cladding creep 

 Cladding growth 

 Cladding corrosion 

 Cladding hydrogen uptake 

From the analysis in Chapter 4, we saw that the three most important factors (i.e., 

displaying a potential impact of >50 pcm on core reactivity for ±2𝜎) were thermal conductivity, 

thermal expansion, and creep, with thermal conductivity being dominant. Additionally, swelling 

and corrosion affected reactivity by approximately 20 pcm at the point of greatest departure from 

the nominal calculation. For the pin cell problem in which the system operates at nominal power 

for the duration of irradiation (out to approximately 60 GWd/MTU maximum nodal burnup), 

fission gas release, growth and hydrogen uptake had negligible difference from nominal 
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conditions. These results form the basis for the choices in the variables we include in the 

following analyses. 

Of these eight variables, we chose to eliminate four in the subsequent S/UA for the 

following reasons: 

 Fission gas release: the application of FGR uncertainty in FRAPCON is through a bias 

applied to the gas diffusion coefficient. At the temperatures experienced by the fuel in the 

pin cell problem, even in cases where other uncertain variables affect temperature, 

thermal gas diffusion is not activated through this mechanism. It would likely become a 

contributor in cases where local powers and therefore temperatures become elevated, 

particularly at higher burnups; however, for the pin cell depletion used in this work, this 

is not the case. Therefore, it is not considered in the uncertainty analysis. 

 Cladding axial growth: axial growth is caused by irradiation. Growth is not a significant 

mechanism which affects fuel rod performance for the cladding material considered in 

this work (ZIRLO™); the cladding simply does not grow sufficiently to affect the 

mechanical response, for any combination of other inputs. Therefore, it is not considered 

in uncertainty analysis. 

 Cladding hydrogen: hydrogen pickup is a phenomenon that is modeled for informational 

purposes to predict accumulation against set limits. Although hydrogen accumulation 

contributes to cladding embrittlement under irradiation, at this time FRAPCON does not 

use this information to modify cladding material properties. Therefore, it is not 

considered in the uncertainty analysis. 

 Cladding corrosion: while the results in Chapter 4 demonstrate a minor but noticeable 

influence of corrosion thickness on fuel temperatures, further inspection of the model 

behavior indicated that the use of this model caused corrosion to grow in an unphysical 

way (see Fig. 4.4.9). It is expected that a more appropriate treatment would be to 

influence the rate of corrosion growth, rather than the initial amount of corrosion present 

at the beginning of irradiation. Since we wish to keep the physics as representative of 

reality as possible, we choose to disregard this particular phenomenon in the uncertainty 

analysis. 

In addition to the fuel models, the effect of the heat transfer coefficient on core depletion 

was evaluated in Chapter 4, for both coupled and uncoupled models. PATHS was modified to 

accept a multiplier on the Dittus-Boelter heat transfer coefficient, in a similar way to how 

relative uncertainties are applied within FRAPCON (see Equation 4.4). With this approach, we 

found the core reactivity swing from nominal to be approximately on the order of the secondary 

fuel effects (i.e., approximately ±20 pcm swing at ±2𝜎, taking the standard relative error in the 

HTC to be 20%); as the HTC is increased, the outer cladding temperature decreases, resulting in 

lower fuel temperatures and a slightly more reactive system. This result held true for both 
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coupled and stand-alone cases. While not expected to be a dominant factor, we included 

consideration of HTC uncertainty in the following results. 

With the justification of the five uncertainty variables considered within the S/UA, we 

now define the distributions used to characterize these variables. First, we discuss the HTC. 

After a literature review, we have decided to use a uniform distribution on the single phase HTC, 

because data to model comparisons similar to those available for the fuel models discussed 

below were unavailable. This is applied via a multiplier with lower bound of 0.79 and upper 

bound of 1.85, in accordance with the NRC CSAU LOCA calculations [13]. Instead to applying 

the HTC bias as Equation 4.3, PATHS was modified to apply the bias as simply a multiplier: 

 

 𝐻𝑇𝐶 = 𝐻𝑇𝐶𝑛𝑜𝑚 × ℎ (6.1) 

 

where h is the multiplier drawn from the uniform distribution [0.79, 1.85]. 

The next step is to determine the distributions to use for the fuel models. There are 

significant data available from work performed to do FRAPCON model assessment [28]. Using 

these comparisons, PNNL developed standard errors in the models which were hard-wired into 

FRAPCON to support uncertainty evaluations (see Table 4.4.1). These data used in model 

assessment was obtained via EXCEL spreadsheets from PNNL [177], in order to determine if 

standard probability distributions could be used to model the uncertainty in these parameters. We 

first show the predicted-vs.-measured comparisons in Figure 6.2.1. 

Using this data, we can generate histograms of the deviation of the models’ predictions 

from the measured values, since these are the quantities that we wish to apply in the manner of 

Equations 4.3 and 4.4. We first tabulated the difference between the model predictions and the 

data; for conductivity, expansion, and creep, we tabulated the relative difference, whereas for 

swelling we computed the absolute difference, as shown in Equations 6.2 and 6.3, respectively, 

consistent with the approach used by PNNL: 

 

 ∆𝑟𝑒𝑙=
𝑋𝑝𝑟𝑒𝑑 − 𝑋𝑚𝑒𝑎𝑠

𝑋𝑚𝑒𝑎𝑠
 (6.2) 

   

 ∆𝑎𝑏𝑠= 𝑋𝑝𝑟𝑒𝑑 − 𝑋𝑚𝑒𝑎𝑠 (6.3) 
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(a) Fuel Thermal Conductivity 

 

 
(b) Fuel Thermal Expansion 

 

 
(c) Cladding Creep 

 
(d) Fuel Swelling 

 

Figure 6.2.1: Measured vs predicted values for fuel properties used in S/UA 

 

Note that the fuel swelling uncertainty is applied via the swelling rate. Recall that, for time step 

𝑖, the swelling that occurs within the step is computed as: 

 

 (
∆𝑉

𝑉
)
𝑖
= (𝐵𝑈𝑖 − 𝐵𝑈𝑖−1)(𝐹𝑆𝑅𝑛𝑜𝑚 + ℎ𝜎𝐹𝑆𝑅) 

(6.4) 

 

where (∆𝑉 𝑉⁄ )𝑖  is the incremental swelling within timestep 𝑖 , (𝐵𝑈𝑖 − 𝐵𝑈𝑖−1)  is the burnup 

accumulated within timestep 𝑖, 𝐹𝑆𝑅𝑛𝑜𝑚 is the nominal swelling rate in fractional change per unit 

burnup, and 𝜎𝐹𝑆𝑅 is the standard error in the swelling rate model. In order to use the information 

presented in Figure 6.2.1(d) to generate an appropriate histogram, the absolute difference in 

swelling (i.e., ∆𝑉 𝑉⁄ ) was divided by the burnup at which it was measured to convert from 

absolute swelling to a rate. Once the appropriate data manipulation was performed, the 

differences between the model (nominal) values and the measured points across the datasets 
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were binned into a histogram. The number of histogram bins was chosen in accordance with the 

suggestion in [178]: 

 

 𝑁𝑏𝑖𝑛𝑠 = 1 + 3.3 log(𝑁) (6.5) 

 

where 𝑁 is the number of data points. We choose to use equal bin widths, calculated as: 

 

 𝑊𝑏𝑖𝑛 =
∆𝑚𝑎𝑥 − ∆𝑚𝑖𝑛

𝑁𝑏𝑖𝑛𝑠
 (6.6) 

 

where ∆𝑚𝑖𝑛  and ∆𝑚𝑎𝑥  are the minimum and maximum deviations, respectively, between the 

model and the fuel data. In Fig. 6.2.2, we present the histograms resulting from this data 

analysis: 

 

 
(a) Fuel Thermal Conductivity 

 

 
(b) Fuel Thermal Expansion 

 

 
(c) Cladding Creep 

 
(d) Fuel Swelling Rate 

 

Figure 6.2.2: Histogram distributions used for uncertain fuel models 
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Note that several of these distributions are qualitatively similar to the normal distribution, in that 

the peak is around ∆=0 and tails off as the distance is increased from the origin. There is an 

obvious benefit to applying standard distributions for stochastic expansion methods, in that the 

related orthogonal polynomials are well-defined, and these distributions can often be captured 

with relatively few expansion terms. Therefore, we performed the 𝜒2 test for normality at 95% 

confidence as described in [178] for the conductivity, expansion, and creep differences (the 

swelling rate difference obviously does not follow a normal distribution); the results of these 

calculations show that the normal distribution is not appropriate for any model. Therefore, these 

histograms are input directly into DAKOTA as continuous distributions of the 

histogram_bin type (which can be thought of as piecewise uniform distributions) and used 

in the calculations. A range of expansion orders are employed in conjunction with stochastic 

expansion methods to study how the statistics and sensitivity coefficients respond with 

increasing expansion order. This ensures that a expansion is chosen to appropriately capture the 

underlying input distributions. 

Before delving into the uncertainty analysis, we will address the concept of covariance 

among the input models. In some applications when defining input distributions, different inputs 

cannot be treated as independent. Therefore, they must be sampled accordingly, using a structure 

referred to as a covariance matrix. The classic example of this in the nuclear engineering field is 

cross sections (ex. [121], [122]). Methods have been developed to handle these situations, such 

as ORNL’s TSUNAMI tool available in SCALE. The question of whether the fuel models in this 

work would require the use of a covariance matrix was considered; however, a literature review 

of the major nuclear materials-related journals did not reveal any consideration of such an issue. 

Unlike in cross section measurements, where several different subtypes of cross sections are 

measured simultaneously, the fuel properties are derived from experiments designed to measure 

one quantity at a time; this makes it quite difficult to manufacture covariance information across 

data sets where the experimental conditions are not consistent. Therefore, in the absence of such 

information, we choose to follow the path of other fuel thermo-mechanical uncertainty analysis 

(see, for example, [137], [143], and [171]) and treat the fuel uncertainties as independent 

variables. With this, we now turn to the results of the uncertainty analysis. 
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6.3 Uncertainty Analysis 

One goal of the uncertainty analysis, in addition to simply computing the uncertainty 

associated with the neutronics parameters, was to determine which methods available in 

DAKOTA provide sufficiently detailed statistics such that they might be used in follow-up 

analysis with a production-level coupled tool and a larger core. Obviously it is beneficial for any 

analysis to require as few calculations as possible that meet whatever accuracy requirements 

exist. Therefore, we will explore a range of different methods with varying degrees of required 

function evaluations and determine to how the computed statistics change with increasing 

numbers of samples. Using these results, we can estimate what number of sample sites is 

sufficient to capture the output distributions. 

Before delving into the specifics of each application, we must define what our responses 

are. Many uncertainty analyses consist of determining the uncertainty in relatively few numbers 

of responses; for example, in a LOCA analysis we wish to determine the uncertainty and 95% 

upper bound on three main quantities within the transient: peak cladding temperature, maximum 

local cladding oxidation, and cladding core-wide oxidation. In this analysis, on the other hand, 

we are interested in the time history of the neutronics parameters under depletion, as the fuel 

behavior changes. It would be impractical (and extremely burdensome) to compute the mean, 

standard deviation, and sensitivity coefficients in each of our outputs of interest at every time 

step, considering that there are 161 time steps computed in the FRAPARCS calculation (for a 

total depletion length of 1600 days). Therefore, we will examine the time history of the depletion 

by sampling at 100 day intervals and computing relevant statistics at these points. This gives 

sufficient coverage of the time histories in each of the parameters that we can gain insights as to 

how the fuel performance parameters influence the neutronics calculation throughout the length 

of the depletion. 

We define the following responses, all computed at 100 day intervals: 

 Doppler temperature 

 Reactivity deviation relative to nominal (unbiased) case 

 Axial peaking factor 

 Doppler Temperature Coefficient 

 Moderator Temperature Coefficient 

As we have seen from the Chapter 4 comparisons, we do not expect large uncertainties to emerge 

in the latter three responses of interest. However, for the sake of completeness we will 
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investigate the potential effect. With this discussion complete, we describe the application of RS 

and LHS to the coupled pin cell depletion. 

6.3.1 Sampling Based Analysis 

In order to quantify the effect of increasing the number of samples and to determine the 

difference between using simple RS and LHS, we performed 5 sets of calculations for each using 

10, 50, and 200 samples respectively. Each calculation within a fixed number of samples was 

seeded with a different number in order to gauge the potential range of possible outputs; as we 

saw in Chapter 5, we expect the LHS results to have a lower set-to-set variance in the computed 

statistics. This gives us a total of 30 sets of DAKOTA runs that we performed. We also 

combined the RS runs to generate a super-set of 1300 calculations which can be used as a 

reference solution; we cannot do the same with the LHS calculations due to their specific 

sampling structure. Once we have introduced the reference solution, we will begin delving into 

the smaller sub-sets to see how many samples were required within each piece to approach the 

reference. 

We begin by presenting the reference results for Doppler temperature and deviation in 

reactivity from nominal condition in Figure 6.3.1. All plots to follow are provided with 2σ error 

bars. 

 
(a) Doppler Temperature 

 
(b) Reactivity 

 

Figure 6.3.1: Doppler temperature and reactivity deviation in RS reference 
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In this figure, we can see that the mean deviation for both the Doppler temperature and 

the reactivity are very small; this is to be expected, as the distributions applied to the input 

variables are approximately (if not perfectly) symmetric. Therefore, we do not calculate a large 

bias in either parameter based on the probability characteristics of the inputs. We can also see 

that, while the standard deviation in the Doppler temperature is approximately constant 

throughout depletion (value ranges from ~14 K at BOC to ~17 K at EOL), the standard deviation 

in the reactivity decreases from 57 pcm at BOC to 13 at EOC. This is because of the damping 

effect that plutonium buildup has on reactivity differences later in life; cases which experience 

higher temperatures and therefore greater negative reactivity relative to the reference solution 

will develop more plutonium, which later in life yields a positive reactivity effect. This behavior 

in standard deviation is consistent with what was presented for each of the individual fuel models 

in Chapter 4. The decrease in reactivity uncertainty particularly begins manifesting itself as the 

gap closes from 400-600 days, where the main contributor to fuel uncertainty becomes the 

thermal conductivity. In Table 6.3.1, we present our reference values for Doppler temperature 

and reactivity: 

 
Table 6.3.1: Reference values of Doppler temperature and reactivity 

Time (d) E[T] (K) 𝝈𝑻 (K) E[ρ] (pcm) 𝝈𝝆 (pcm) 

0 846.66 14.13 -6.82 57.76 

100 844.55 14.01 -9.32 52.27 

200 826.27 14.50 -8.60 53.48 

300 810.59 15.34 -6.11 55.52 

400 796.31 15.38 -9.36 54.45 

500 789.48 14.29 -12.58 48.50 

600 789.63 14.25 -6.40 46.04 

700 792.39 14.61 -4.73 44.26 

800 795.98 15.01 -4.81 41.96 

900 799.84 15.38 -3.98 39.31 

1000 803.59 15.69 -2.99 35.86 

1100 807.22 15.97 -2.61 32.03 

1200 810.97 16.24 -2.11 28.05 

1300 814.73 16.51 -1.63 23.95 

1400 818.44 16.75 -0.86 19.92 

1500 822.06 16.97 -0.12 16.20 

1600 825.58 17.19 0.37 13.28 

 

The values we calculate from the subsets and the other methods can be compared with the values 

in Table 6.3.1 to determine if a sufficiently large sample size (or alternatively, a sufficiently high 

order expansion) has been used. 
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(a) Axial peaking 

 
(b) DTC 

 
(c) MTC 

 
Figure 6.3.2: Axial peaking, DTC and MTC RS reference 

 

In Figure 6.3.2, we can see the effects of varying the fuel parameters on the calculated 

values for axial peaking factor, DTC, and MTC. As we expected from our results in Chapter 4, 

no significant uncertainty in these parameters is introduced by uncertainty in the inputs. The 

axial peaking factor is unaffected because the power shape is not distorted by virtue of including 

fuel performance physics; rather, the magnitude of the temperature distribution is what changes. 

The uncertainty in DTC is approximately 1% relative to the nominal value throughout life, likely 

because the base temperature at which the DTC is evaluated can change significantly enough 

from case to case to show up in the results. While quantifiable, it is not considered to be a major 
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concern. The difference in MTC is much smaller (~0.2 %); this is even less important in coupled 

calculations. 

Now that we have presented and explained the reference solution, generated with 1300 

random samples, we will examine both the RS subsets and the LHS sets of data. The goal here is 

to first, determine if the variance in data from set-to-set in the LHS cases is less than the RS data 

sets (which is what we expect), and second, to determine how many samples we need to generate 

mean and standard deviation estimates which are comparable to the reference. In order to make 

efficient presentation, we will choose time points at which either the mean or the standard 

deviation in reactivity deviation is maximal, and will show the results computed by the subsets at 

these data points as a function of the number of FRAPARCS evaluations. 

First, we will consider the behavior of the BOC reactivity mean and standard deviation 

across the different data sets. This data is presented in Figure 6.3.3, with the RS reference 

solution included. 

 
(a) Mean 

 
(b) Standard Deviation 

 
Figure 6.3.3: BOC mean and standard deviation of reactivity with increasing sample size 
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there is still significant variance in the RS mean. A similar behavior us observed in the standard 

deviation (Figure 6.3.3(b)), although the convergence is not quite as strong; it appears as though 

the LHS samples estimate a slightly larger standard deviation than the reference solution. This is 

most likely due to statistical noise and small sample size. 
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In addition to mean and standard deviation, we can also examine the behavior of the 

distribution with increasing sample size. For example, let us examine the cumulative distribution 

function of BOC reactivity. For clarity’s sake, we will examine one case from each sample 

type/number combination to provide an illustration of the effect of increasing the number of 

samples on resolving the distribution:  

 

 
(a) RS 

 
(b) LHS 

 

Figure 6.3.4: CDF of BOC reactivity with increasing sample size 

 

We can clearly see the effect of increasing the number of samples here; the CDF tends to 

smooth out, and the tail regions become better resolved as more data is available for the 

calculation. LHS shows a slightly broader coverage of the sampled regions since the sampling 

strategy ensures coverage of the lower-probability regions of the input distributions. 

We will next present similar results for the time at which the deviation in system 

reactivity from the nominal value is the greatest; this occurs at 500 days, which is during the time 

at which the gap is closing throughout most of the fuel rod. We will examine the behavior of 

both the reactivity and Doppler temperature at this time, to determine if there are physical effects 

that cause the uncertainty to behave in an interesting way. 
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(a) Mean 

 
(b) Standard Deviation 

 
Figure 6.3.5: 500 day mean and standard deviation of reactivity with increasing sample size  

 

We see similar behavior among the different sampling subsets here as we did in the BOC 

case; namely, that the LHS samples showed less variance among the different calculations and 

that, by 200 samples, the mean value in LHS was basically converged. In this case, however, it 

there appears to be significant agreement between the LHS cases of a slightly lower reactivity 

bias than the reference. The standard deviation, on the other hand, showed the same clustering 

behavior, but there is still appreciable spread between the different cases. However, the 

magnitude of the spread is not what would be considered in most cases significant; in addition to 

means and standard deviations DAKOTA also computes confidence intervals, which give an 

interval within which we can be 95% confident that the true mean and standard deviations exist. 

For the LHS-computed standard deviations, the confidence intervals range about the estimate by 

approximately ±5 pcm. Therefore, we can say with confidence that the values we compute here 

are accurate. 

The CDFs for reactivity at 500 days also show similar behavior to those at BOC: 
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(a) RS 

 
(b) LHS 

 
Figure 6.3.6: CDF of 500 day reactivity with increasing sample size 

 

These CDFs are very similar, and show a similar trend in smoothening as the sample size is 

increased. The range of potential values is narrower in this case than the BOC case; this is 

consistent with the lower value of standard deviation we compute in this quantity relative to 

BOC. 

  

 
(a) Mean 

 
(b) Standard Deviation 

 
Figure 6.3.7: 500 day mean and standard deviation of temperature with increasing sample size 
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 The Doppler temperature at this time step shows similar clustering behavior that the 

reactivity cases showed. The temperature mean is approximately the same between the 200 LHS 

sample cases; there is greater variance in RS vs. LHS, because of the differences in sampling 

philosophy. We see that the standard deviation shows greater variance than the mean between 

the different cases, but as with the reactivity case the 95% confidence interval in Doppler 

temperature is very narrow; we can say with 95% confidence that the standard deviation is 

within ~1.5 K of the computed value.  

 

 
(a) RS 

 
(b) LHS 

 

Figure 6.3.8: CDF of 500 day Doppler temperature with increasing sample size 

 

 In Figure 6.3.8, we see that these CDFs also exhibit smoothing and better tail-region 

coverage with increasing sample size. We can also see the benefit of using the LHS method over 

the RS method; if we compare the 50 sample vs. 200 sample distributions for the different 

methods, we see convergence to the higher sample CDF with fewer calculations for LHS as 

opposed to RS.  

 Summarizing, we first presented reference values obtained by coalescing the RS results 

for a total of 1300 samples. We compared the results we obtained from each RS and LHS sample 

set with the reference values, and showed that within each sample set, there was greater variance 

in the mean and standard deviations computed with RS as with LHS. It appears from this 

analysis that sufficient estimates of mean and standard deviation in reactivity and Doppler 

temperature can be obtained by using 200 LHS samples. In the next section we will explore the 
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use of stochastic expansion methods to compute these quantities, and determine if similar 

accuracy can be obtained with fewer function evaluations. 

6.3.2 Stochastic Expansions 

In this section, we apply the tensor-product quadrature approach available in DAKOTA 

to explore the potential for representing the coupled depletion uncertainty with Polynomial 

Chaos and Stochastic Collocation expansions. From the results we saw in Chapter 4, we expect 

that a low-order expansion (perhaps even linear) will be sufficient to capture the uncertainty 

behavior; we explore a range of expansions and see how the calculated values change as the 

number of function evaluations increases. Because tensor-product expansion suffers the curse of 

dimensionality, we also considered some sparse grids; however, we will see that the sparse grids 

behave poorly for much of the depletion calculation. The reasons for this are explored below. 

For both PCE and SCE, we explored first, second, and third order tensor expansions 

respectively. As we explained in Chapter 5, although the expansion polynomials are different, 

these methods are evaluated at the same tensor grid points. In Figure 6.3.9, we show the 

projections of each of the fuel variable grid points against the HTC grid points for the third-order 

grid. 

As we have discussed exhaustively in Chapter 5, the grid points are chosen to correspond 

with Gauss quadrature rules associated with the specified PDFs of the input variables. We can 

see from this figure that the grid points used for HTC biasing are symmetric and have been 

transformed from the [0.79, 1.85] interval to the standard uniform interval [-1, 1]. As this is a 

uniform case, the associated quadrature rule is Gauss-Legendre. DAKOTA numerically 

generates quadrature rules for the histogram distributions we specified for the fuel variables; we 

can see from comparing this figure with the pdfs specified in Figure 6.2.2 that the denser 

collection of points in the quadrature rule correspond with higher-probability regions in the pdf. 

As stated, we have considered isotropic grids in expansion orders 1, 2, and 3, which 

correspond with 32, 243, and 1024 evaluation points, respectively, in accordance with Equation 

5.X. Obviously, since each function call takes approximately one hour to complete, the highest-

order cases are quite expensive. The purpose of this analysis is to determine if the statistics can 

be accurately computed with the lower-order expansions. 
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(a) Thermal Expansion vs HTC 

 

 
(b) Thermal conductivity vs HTC 

 

 
(c) Cladding creep vs HTC 

 
(d) Fuel swelling vs HTC 

 

Figure 6.3.9: Third-order grid for tensor-product expansions 

 

In addition to computing statistics analytically with the expansions, we also applied LHS 

to the constructed surface in order to generate estimates of the means and standard deviations as 

well as the CDFs. Ten thousand samples were used to ensure fully adequate coverage. In all 

cases, the sample-based and analytically-based statistical quantities were the same, which 

indicates proper convergence of the surface. 

In the course of evaluating the results, it became clear that the statistics generated from 

PCE and SC were identical. This can be the case for tensor-product expansions on synchronized 

grids, as was discussed in [156]. However, it was not a priori obvious that this would be the case 

for the specific problem in question. As it happens, the expansions end up producing the same 

polynomials in different settings, leading to equivalence in the calculation of the statistical 

quantities. In the following presentation of results, we will explore the behavior of the figures of 

merit as the expansion order is increased. 
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We will first examine the behavior of Doppler temperature and reactivity of the third-

order expansion against the nominal calculation.  As in the previous analyses, 2σ error bars are 

shown: 

 

 
(a) Doppler Temperature 

 
(b) Reactivity 

 

Figure 6.3.10: Doppler temperature and reactivity evolution relative to nominal 

 

In Figure 6.3.10, the same behavior of the Doppler reactivity can be observed as already 

seen for the reference case with random sampling. The values computed for the different 

parameters and the standard deviation in each case are also equivalent. Therefore, it can be 

concluded that, for the order of calculation considered here, the Random Sampling reference 

solution can be reconstructed with stochastic expansion methods. The uncertainty in the fuel 

temperature slightly increases from ~14 K initially to ~17 K at the end of the depletion, mostly 

due to thermal conductivity uncertainty. The uncertainty in reactivity, on the other hand, is 

highest initially, where there are a number of models contributing. But after gap closure, the 

uncertainty decreases with the relative buildup of plutonium in the core damping out reactivity 

differences. This is expected behavior, as we saw in figures in Chapter 4. As with the random 

sampling cases, power distribution and reactivity coefficients showed very tight error bands. 

In order to determine the importance of converging the sample space, the differences in 

Doppler temperature and reactivity as a result of the first- and second-order expansions, 

respectively, are analyzed  relative to the third-order expansion  in Figure 6.3.11. 
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(a) Mean 

 
(b) Standard Deviation 

 

Figure 6.3.11: Temperature difference relative to third-order expansion 

 

In Figure 6.3.11, it can be observed that the relative difference in Doppler temperature 

mean is practically insignificant. Differences are primarily manifest as time history effects; there 

is a tendency for the second order expansion to predict a lower Doppler temperature during the 

gap closure phase, while the mean of the first order method is slightly higher. This may be due to 

the placement of the evaluation points in uncertainty space; as we can see from Figure 6.3.9, the 

third-order expansion (and the first order as well) are evaluated at points in the quadrants of the 

input ranges, whereas the second-order expansion includes points evaluated in the center. This 

may have some influence over the differences in mean and standard deviation we see here. On 

the other hand, the relative differences in standard deviation are somewhat more significant, 

although for most of the depletion they end up being on the order of less than a percent. Again, 

the standard deviation is largest during the gap closure phase and the uncertainty contributions 

from all of the models and their differing relative effects are taken into account. Once the gap is 

closed, however, the values stabilize. The second-order expansion is clearly sufficient to 

characterize the spread in the temperature calculations throughout this phase. In all cases, 

however, the absolute difference in temperature as the expansion order is increased is very small; 

for computational efficiency purposes, the linear (i.e., first-order) expansion should be sufficient 

to capture the evolution in temperature uncertainty throughout the depletion. 

 

 

-0.05

-0.04

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

0.05

0 200 400 600 800 1000 1200 1400 1600

Te
m

p
e

ra
tu

re
 d

if
fe

re
n

ce
 (

%
) 

Time (d) 

PCE1 PCE2

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 200 400 600 800 1000 1200 1400 1600

Te
m

p
e

ra
tu

re
 d

if
fe

re
n

ce
 (

%
) 

Time (d) 

PCE1 PCE2



170 

 

 
(a) Mean 

 
(b) Standard Deviation 

 

Figure 6.3.12: Reactivity difference relative to third-order expansion 

 

In Figure 6.3.12 we see that the differences between the third-order expansion (which 

required 1024 calculations) and the first- and second-order expansions are very small. In all 

cases, the differences in the means of the reactivity deviation are less than 2 pcm, which is 

negligible. Additionally, we see that the computed difference in standard deviation is very small. 

As we would expect, the second-order approximation is in general closer to the third order 

reference, particularly in standard deviation during gap closure. Additionally, there is an obvious 

time history effect; the differences chiefly occur early in life, when the fuel-cladding gap is 

closing and the effects of the mechanical models important to capturing gap closure are most 

apparent. If we compare the results in Figure 6.3.10 with Figure 6.3.11, we see that the 

deviations in reactivity mean and standard deviation occur simultaneously with the deviations we 

see in the temperature statistics. The reasons for this are clear: deviations in computed 

temperatures are inversely correlated to the differences in temperature, and the places at which 

the temperature spread is largest relate to the places at which the reactivity spread is also largest. 

A higher-order expansion is necessary in order to capture these effects; however, given their 

level of significance, it is likely that in most applications lower-order expansions would be 

sufficient. 

In addition to these tensor-product expansions, we attempted to implement the sparse grid 

methods available in DAKOTA to determine if the equivalent of even higher-order expansions 
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able to converge on an expansion for any sparse grid levels that we attempted. One potential 

reason for this is challenges that sparse grid methods may have in representing the histogram-

type input uncertainty distributions; since the distributions are not smooth, there may be issues in 

attempting to essentially interpolate within the regions of probability space where no points exist. 

The resulting expansions were therefore not stable, and in many cases integration over the 

probability space resulted in negative variance. This is obviously unphysical, and should be 

explored further to better understand the relevant phenomena, since sparse grid methods hold 

great promise in making PCE and SC expansions applicable to practical engineering analysis 

problems. 

With this, we conclude our presentation of the stochastic expansions we used in this 

work. Summarizing, we exercised the PCE and SC capabilities of DAKOTA for the pin cell 

depletion problem and determined that the expansions are essentially the same. The means and 

variances in the responses for the highest-order expansion were very comparable to the reference 

random sampling calculation. We also saw that the lower-order expansions were able to capture 

the mean and standard deviation in Doppler reactivity relative to the third-order expansion to 

within a few pcm of reactivity and generally a fraction of a percent of Doppler temperature. The 

differences in the expansions mostly manifested themselves during the gap closure phase, where 

the locations and numbers of calculations performed can have an impact on capturing the 

uncertainty behavior. However, in our judgment the linear expansion (requiring only 32 

calculations) would be sufficient for most practical analysis.  

6.3.3 Conclusions 

Before moving to the sensitivity analysis, we will provide a comparison of the 

temperatures and reactivities computed using random sampling and PCE/SC. In Table 6.3.2, we 

present the temperatures, and in Table 6.3.3 we present reactivity for the random sampling 

reference case and the three polynomial chaos expansions. 

It should be obvious from these tables that there are no significant differences in the 

values we estimate for Doppler reactivity across the different methods. Indeed, even with only 32 

simulations used with the linear stochastic expansion, we were able to compute very closely the 

statistics of the system responses in question. Therefore, especially given that these calculations 
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can be quite expensive, it would be advantageous to explore the use of PCE for the depletion 

uncertainty analysis of more practical problems. 

 

Table 6.3.2: Doppler temperatures across methods 

 RS Reference PCE1 PCE2 PCE3 

Time (d) E[T] (K) 𝝈𝑻 (K) E[T] (K) 𝝈𝑻 (K) E[T] (K) 𝝈𝑻 (K) E[T] (K) 𝝈𝑻 (K) 

0 846.66 14.13 846.74 14.96 846.60 14.34 846.75 14.55 

100 844.55 14.01 844.67 14.77 844.46 14.14 844.64 14.33 

200 826.27 14.50 826.44 15.22 826.16 14.55 826.39 14.74 

300 810.59 15.34 810.75 16.26 810.53 15.33 810.77 15.50 

400 796.31 15.38 796.83 16.16 796.21 15.21 796.58 15.49 

500 789.48 14.29 789.99 14.46 789.43 14.34 789.71 14.26 

600 789.63 14.25 789.76 14.28 789.66 14.25 789.80 14.23 

700 792.39 14.61 792.57 14.79 792.45 14.62 792.59 14.64 

800 795.98 15.01 796.18 15.22 796.08 15.04 796.20 15.05 

900 799.84 15.38 800.03 15.59 799.93 15.41 800.05 15.41 

1000 803.59 15.69 803.77 15.91 803.69 15.72 803.82 15.73 

1100 807.22 15.97 807.42 16.22 807.32 16.02 807.44 16.02 

1200 810.97 16.24 811.19 16.49 811.06 16.29 811.19 16.29 

1300 814.73 16.51 814.94 16.75 814.84 16.55 814.94 16.55 

1400 818.44 16.75 818.61 16.98 818.54 16.79 818.67 16.80 

1500 822.06 16.97 822.22 17.22 822.17 17.00 822.28 17.01 

1600 825.58 17.19 825.76 17.41 825.69 17.20 825.80 17.21 

 

Table 6.3.3: Reactivities across different methods 

 RS Reference PCE1 PCE2 PCE3 

Time (d) 
E[ρ] 

(pcm) 
𝝈𝛒 (pcm) 

E[ρ] 

(pcm) 
𝝈𝛒 (pcm) 

E[ρ] 

(pcm) 
𝝈𝛒 (pcm) 

E[ρ] 

(pcm) 
𝝈𝛒 (pcm) 

0 -6.82 57.76 -7.11 61.20 -6.62 58.86 -7.18 59.52 

100 -9.32 52.27 -9.73 55.16 -8.93 52.74 -9.59 53.46 

200 -8.60 53.48 -9.24 56.14 -8.16 53.67 -9.07 54.40 

300 -6.11 55.52 -6.63 58.95 -5.88 55.47 -6.79 56.05 

400 -9.36 54.45 -11.35 57.15 -8.99 53.81 -10.36 54.82 

500 -12.58 48.50 -14.51 48.79 -12.46 48.75 -13.39 48.28 

600 -6.40 46.04 -6.59 46.22 -6.64 46.05 -6.93 45.95 

700 -4.73 44.26 -5.22 45.00 -4.99 44.36 -5.35 44.39 

800 -4.81 41.96 -5.35 42.65 -5.13 42.09 -5.39 42.14 

900 -3.98 39.31 -4.34 39.94 -4.30 39.42 -4.46 39.45 

1000 -2.99 35.86 -3.19 36.53 -3.32 35.95 -3.47 36.02 

1100 -2.61 32.03 -2.85 32.67 -2.98 32.11 -3.01 32.18 

1200 -2.11 28.05 -2.35 28.65 -2.42 28.12 -2.48 28.20 

1300 -1.63 23.95 -1.74 24.57 -1.94 24.01 -1.89 24.10 

1400 -0.86 19.92 -0.85 20.54 -1.14 19.96 -1.06 20.10 

1500 -0.12 16.20 -0.07 16.84 -0.36 16.23 -0.28 16.38 

1600 0.37 13.28 0.51 13.95 0.16 13.26 0.32 13.46 
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The uncertainty analysis using a spectrum of methods available in DAKOTA has now 

been presented, and we found that we were able to largely replicate the 1300 sample case with 

only 32 function evaluations with a polynomial chaos expansion. This would indicate that the 

response is quite linear in nature; to fully explore this question, we turn to sensitivity analysis, 

whose goal it is to determine precisely which input variables have the largest effect on the 

uncertainty in the depletion calculation. 

 

6.4 Sensitivity Analysis 

In this section, we discuss the application of Sobol’ decomposition to the uncertainty 

analysis presented in the previous chapter. For the random sampling cases in question, we 

employed the method described in Chapter 5 to compute the main and total effect indices for 

each of the five RS and LHS calculations with 50 samples. As discussed in Section 5.4, this 

means for each estimation of these indices, 350 function evaluations were necessary. While we 

acknowledge that Saltelli et al. recommend at least 100 base samples to evaluate these 

coefficients, since the calculations are so expensive and because the response statistics do not 

show an inordinate sensitivity to the number of calculations, we decided to apply VBD for the 50 

sample cases. Additionally, we can examine the simple (Pearson) and rank (Spearman) 

correlation indices, given in Equations 5.42 and 5.43 respectively. 

We also applied VBD to the PCE/SC cases; as we have stated above, one of the chief 

benefits of stochastic expansions is that the sensitivity indices are computed analytically and do 

not require additional function evaluations beyond that required to form the expansion. In this 

section, we will show how the main and total effect indices evolve throughout the depletion, 

showing the relative importance of each uncertainty variable to the overall system variability. 

We will also see that the importance of input interactions is in fact almost negligible, and that the 

variability is mostly dominated by the linear terms. 

6.4.1 Random Sampling 

We will first investigate the relative contributions to uncertainty with VBD in the random 

sampling methods. DAKOTA uses Equation 5.52 and 5.55 to evaluate the Main Effect (ME) and 

Total Effect (TE) indices, respectively. We first present the computed MEs throughout depletion 
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on the variance in Doppler temperature across all five respective cases. Then, we evaluate the 

difference in TE and ME to estimate the potential importance in model-to-model interaction. 

 
(a) RS 

 
(b) LHS 

 

Figure 6.4.1: Main Effect Index for Doppler Temperature 

 

In Figure 6.4.1 it can be observed that there is significant variability between the cases 

with regards to the ME indices estimated. Additionally, we see that in some cases, the ME 

computed via the random sampling method is outside the expected interval [0, 1]; this is 

obviously not expected, given the definition of the ME index. However, since the random 

sampling approach to calculating ME is essentially based on estimating the variance integrals 

using a Monte Carlo technique, and the sample size we used in this particular exploration was 

not large, we can conclude that the calculation of this parameter outside its bounds is likely due 

to relatively poor resolution of the sample space. Even so, from comparing the general trends 

across these data sets, we find that early in life, prior to gap closure, there is generally competing 

effects (initially between the fuel thermal conductivity and thermal expansion models, and then 

creep and swelling make a contribution) in ME. This is because, as we have stated before, this is 

the time interval in which the fuel is changing the most. Once the gap has closed, however, the 

Doppler temperature variance is dominated by the variance in fuel thermal conductivity. There 

does not appear to be a significant difference in the relative spread of the different indices 

computed by LHS vs. RS. 
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(a) RS 

 
(b) LHS 

 

Figure 6.4.2: Model-to-model variance effects for Doppler Temperature 

 

In Figure 6.4.2, we see some of the same statistical noise effects in this calculation that 

we saw in the ME calculation. By definition, the TE is greater than the ME since it is a sum of all 

contributions to variance involving a particular uncertain variable; the negative values that we 

see here are likely due to poor estimates of the integrals via Equation 5.56. Nevertheless, we can 

draw some conclusions from this figure; it appears as though the difference between TE and ME 

is approximately near zero when averaged across all cases. This would indicate that the variance 

is primarily dominated by ME rather than interaction terms; however, the resolution is so poor 

with this small sample size that we cannot draw many additional conclusions. The differences in 

TE and ME are generally narrower for LHS, which is a product of the structured sampling 

scheme; the non-linear contributions are better resolved with this strategy. 

Next, we will present the sampling results for reactivity ME n Figure 6.4.3. We can again 

see in this figure the poor resolution of the variance integrals due to insufficient sampling. 

However, despite this we do see evidence of some physical effects that we might not otherwise 

have seen. The variance in reactivity early in life is due to a combination of the physical effects 

as the gap is closing, and then Doppler temperature dominates for most of the rest of the 

depletion. However, we can see here that near the end of depletion, other effects (most 

importantly the thermal expansion) again manifest themselves as significant contributors to the 

uncertainty in the reactivity. This is due not so much to the fuel thermal expansion being more 

important, as it is due to fuel thermal conductivity becoming less important. As we have seen, 
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the history effect of plutonium buildup depending on prior operating conditions causes the 

overall uncertainty in the reactivity calculation to decrease later in life. This history effect causes 

the temperature (dominated by thermal conductivity) to likewise become a less important 

contributor to uncertainty in reactivity. In its place, fuel thermal expansion becomes relatively 

more important. 

  

 
(a) RS 

 
(b) LHS 

 

Figure 6.4.3: Main effect index for reactivity 

 

 
(a) RS 

 
(b) LHS 

 

Figure 6.4.4: Model-to-model variance effects for reactivity 
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In Figure 6.4.4, we present the difference in TE and ME for reactivity throughout the 

depletion. We see similar behavior here as we saw in Figure 6.4.2; namely, poor resolution in the 

integral estimates has caused the difference in TE and ME to be outside their defined ranges. 

Regardless, it is clear that the centroid of the values within each data point is approximately 

about the zero line, and therefore we can expect that the models are primarily linear. 

Additionally, there appears to be one LHS sample that predicts the interaction effects of the 

thermal expansion model to be more important as the depletion continues; this is likely an 

artificial product of that particular calculation’s sampling scheme, and therefore is not likely to 

be an actual physical effect. We will find no evidence in the analytic expansions of something 

like this. 

Before discussing the VBD results with stochastic expansions, we will touch on the 

Pearson and Spearman coefficients for these cases. As we discussed in Chapter 5, these 

coefficients are defined based on the assumption that there is no interaction between the input 

variables. Pearson is defined based on a linear regression of the outputs on the inputs, whereas 

Spearman is derived based on the ranks of the data rather than the values themselves. In the 

event that a model is linear and non-interacting, we can expect that these coefficients will 

adequately describe the contributions to variance in the data. DAKOTA calculates these 

coefficients as part of its standard output. We will next present these results and discuss their 

values relative to the ME and TE indices; for linear non-interacting systems, the ME index is 

equivalent to the Pearson coefficient. 

 We can see from Figure 6.4.5 that there is not an appreciable difference between the 

Pearson and Spearman correlation coefficients, which is indicative of a system in which linear 

regression of the outputs against the inputs is appropriate. We see in general negative 

correlations between the input values we use and the outputs; this is physically reasonable, since 

for all these models biasing the model in the positive direction produces a negative reactivity 

effect. Within the cases, there is general agreement in the predicted value of the correlation 

coefficients. We do not see an appreciable difference in the spread in these quantities between 

RS and LHS. The magnitude of the ME coefficients presented in Figure 6.4.1 generally agree in 

value and trend with those present in the above Figure; the fuel thermal expansion and 

conductivity dominate early in the depletion, with creep and swelling increasing prior to gap 
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closure. Once the gap is closed, however, only thermal conductivity is closely correlated to 

temperature, which is what we expect. 

 
(a) Pearson RS 

 
(b) Pearson LHS 

 
(c) Spearman RS 

 
(d) Spearman LHS 

 

Figure 6.4.5: Pearson and Spearman Coefficient for Doppler Temperature 

 

 In Figure 6.4.6 we again see general agreement between the Pearson and Spearman 

coefficient, indicating that reactivity is also largely a linear function of the uncertain inputs. The 

fuel thermal conductivity model is positively correlated throughout the depletion, although the 

correlation decreases later in life as the effects of plutonium buildup on core reactivity are felt. 

Thermal expansion, cladding creep, and swelling are generally positively correlated early in life, 

and then become negatively correlated, again because of the plutonium history effects. The heat 

transfer coefficient is weakly correlated with reactivity, indicating that it is a minor effect. 
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(a) Pearson RS 

 
(b) Pearson LHS 

 
(c) Spearman RS 

 
(d) Spearman LHS 

 

Figure 6.4.6: Pearson and Spearman Coefficient for reactivity 

 

6.4.2 Stochastic Expansions 

Now that VBD and correlation methods have been applied to the pin cell problem, we 

will investigate the analytic approach to calculating the ME and TE indices with stochastic 

expansions. As was the case with the uncertainty analysis, we found that the PCE and SC 

expansions of equivalent orders returned almost the same sensitivity indices (on the order of 

10−12 difference at maximum). Therefore, the results we apply below are representative of both 

methods. As before, we first discuss the ME index for Doppler temperature: 
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Figure 6.4.7: Main effect index for Doppler temperature 

 

We can see from this figure general agreement in trends between the random sampling-

based VBD analysis, albeit with much less noise. Also, as was the case with the uncertainty 

analysis provided above, we see that the three expansion orders are in very close agreement on 

the values of ME. This indicates that a linear expansion is sufficient to capture the sensitivity 

behavior. At the beginning of the depletion, the most important contributor to variance in 

Doppler temperature comes from the fuel thermal expansion model; physically, this is because 

this model dictates the degree in which the gap closes as the fuel comes to temperature. The 

other dominant effect initially is in the thermal conductivity, which is inversely proportional to 

temperature; obviously variance in this model would play a key role in the overall variance of the 

output. As the fuel depletes through the gap-closure regime, the instantaneous effect of the 

thermal expansion model decreases in relative significance as the other models take a more 

prominent role. The role of creep variance increases from zero initially to reach its maximum 

value at around the time the gap begins to close throughout the model because this is the time in 

which its influence over the cladding-gap temperature drop is largest. We see a similar effect in 

the swelling model, although it is delayed due to the minimum threshold before the model is 

activated. After the gap closes, the most important contributor to temperature variance becomes 

the thermal conductivity, with heat transfer coefficient playing a minor role. 

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000 1200 1400 1600

M
ai

n
 E

ff
e

ct
 

Time (d) 

PCE2 htc PCE2 ftx PCE2 ftc PCE2 crp PCE2 swl

PCE3 htc PCE3 ftx PCE3 ftc PCE3 crp PCE3 swl

PCE4 htc PCE4 ftx PCE4 ftc PCE4 crp PCE4 swl



181 

 

 
 

Figure 6.4.8: Input interaction metric for Doppler temperature 

 

In Figure 6.4.8, we investigate the difference in ME and TE to determine whether non-

linear input interactions are important for this problem. As we can clearly see in this figure, some 

interaction effects exist; however, their magnitude is so small (i.e., less than 0.03) it is hard to 

say that they are important contributors to the overall uncertainty in the calculation. The 

difference peaks at 500 days; in the following table, we present the significant (i.e., > 10−3) 

interaction sensitivity coefficients for the PCE4 case. 

 
Table 6.4.1: Important interaction coefficients for Doppler temperature 

Interaction variables Sensitivity index 

FTX, CRP 8.324E-03 

FTC, CRP 1.166E-03 

FTX, SWL 6.684E-03 

CRP, SWL 8.129E-03 

FTX, CRP, SWL 1.216E-03 

 

We can see from this table that the most important interactions are between the thermal 

expansion, cladding creep, and fuel swelling models. This is an unsurprising result, since these 

are the three models considered that contribute directly to the manner in which the fuel-cladding 

gap closes. Simultaneous variability in these models contributes to the variance in the 

temperature calculation because they all directly affect the fuel-clad temperature drop, directly 

influencing the Doppler temperature. The other interaction effects have small contributions. In 
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any event, the magnitude of these effects is quite small, so while interaction effects to occur and 

contribute to output variance in a manner in which linear coefficients cannot account for, they 

are not generally significant. 

 
 

Figure 6.4.9: Main effect index for reactivity 

 

In Figure 6.4.9, we show the ME index for reactivity. Again, the expansion orders return 

very similar values as the core depletes, which indicates that a linear model is sufficient.  We see 

clearly here effects that the sampling-based VBD analysis showed in a non-converged way; 

namely, that the relative contributions to the reactivity variance across the models are very 

similar to the Doppler temperature throughout most of the depletion. However, as the depletion 

nears the end, the history effects of plutonium buildup in the core contribute to decreasing the 

relative importance of the thermal conductivity, and increasing the influence of models which 

have a strong reactivity influence early in life. The thermal expansion model is the most 

significant contributor here, with cladding creep playing a secondary role. The other models are 

generally insignificant. In this way, we can see the propagation of the uncertainty in irradiation 

conditions early in life to the end-of-life reactivity uncertainty. However, as we noted in Section 

6.3, the reactivity standard deviation in this region ranges from ~15-30 pcm; from a core 

operation standpoint, this is not significant. 
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Figure 6.4.10: Input interaction metric for reactivity 

 

 In taking the difference between TE and ME indices, we see a similar peak in the 

importance of input interactions to variance in the region where the gap is closing. Although 

again the effect is minor, we present in the following table the specific input interactions that are 

of note. 

Table 6.4.2: Important interaction coefficients for reactivity 

Interaction variables Sensitivity index 

HTC, FTX 1.17E-03 

HTC, CRP 1.08E-03 

FTX, CRP 9.95E-03 

FTC, CRP 1.60E-03 

HTC, SWL 1.25E-03 

FTX, SWL 7.74E-03 

FTC, SWL 1.20E-03 

CRP, SWL 1.00E-02 

FTX, CRP, SWL 1.75E-03 

 

 As with the Doppler temperature, there are some variable interactions which contribute 

relatively significantly to the reactivity variance. The most important effects are the interactions 

between the creep and swelling models and creep and fuel thermal expansion models. Again, 

these are the models that contribute the most to the behavior of the fuel-cladding gap, affecting 

fuel surface temperature, which is at this point in the depletion the most important influence over 

the nuclear behavior of the system.  
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6.4.3 Comparisons between methods 

Before concluding this sensitivity analysis, we make some general remarks on the 

findings, and in particular the comparisons between the different methods we employed. First, 

we saw that sampling-based VBD analysis can be employed to evaluate the sensitivity of the key 

system outputs for this problem, and that comparisons between the VBD indices, correlation 

coefficients, and VBD indices calculated by expansion methods showed general agreement. 

However, the effect of small sample size was clearly obvious in these evaluations; the calculated 

VBDs showed great variability across sample sets, and there were some instances where values 

outside the defined interval of ME and TE were computed. We expect that using larger sample 

sizes would help mitigate this issue, but the drawback is that they are extremely expensive for 

this problem due to the time required to execute the FRAPARCS depletion. On the other hand, 

we saw that the VBD analysis based on stochastic expansions required relatively few evaluations 

to achieve consistency across different orders; while the sampling-based calculations required 

350 calculations each (and we performed 5 sets of samples each for RS and LHS), a stochastic 

expansion can be formed and sufficient data extracted using only 32 (for the linear expansion) or 

243 (for quadratic) calculations. The benefit to practical analysis is obvious for this type of 

problem. 

  

6.5 Conclusions 

In this Chapter, we have applied the methods described in Chapter 5 to uncertainty and 

sensitivity analysis of the pin cell depletion problem using FRAPARCS. First, we examined the 

data which was used by the FRAPCON developers to qualify the models and generate standard 

errors for use in uncertainty calculations. Finding that these data did not fit standard 

distributions, we generated histogram distributions which we used in DAKOTA. 

We then applied sampling- and stochastic expansion-based uncertainty methods to the 

pin cell depletion. The results of the uncertainty analysis indicate that the mean and standard 

deviation closely approximate a 1300 sample reference solution with the application of 200 LHS 

calculations. These results can also be obtained using stochastic expansion methods. For this 

problem, PCE and SC expansions generated equivalent polynomials, and therefore the statistical 

outputs generated by them were the same. We discovered that comparable statistics to the 
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reference solution can be generated with as few as 32 function evaluations using stochastic 

expansion. We also attempted to apply sparse grid methods to the stochastic expansions, and 

found that they were not able to converge; this is likely due to the discontinuous nature of the 

input distributions and the fact that the sparse grids did not sufficiently cover the sample space. 

We found that the most significant uncertainties (as could be guessed from the Chapter 4 

analysis) were in the Doppler temperature and reactivity; power shape and reactivity coefficients 

were minimally affected (i.e., the variance and departure from nominal values was very small).  

In the follow-up sensitivity analysis, we showed that only using 50 samples to evaluate 

the main- and total-order effect indices was not sufficient to properly converge them; however, 

the general trend in these parameters though the depletion was consistent with analysis based on 

correlation coefficients. We also saw the benefit of using an analytical method to generate the 

expansion coefficients; a linear expansion appears to be sufficiently accurate to resolve the 

sensitivity information for the problem in question. From a physics standpoint, the 5 uncertain 

models competed for importance early in depletion while the fuel-clad gap was closing; the most 

important model was the fuel thermal conductivity, followed by thermal expansion, cladding 

creep, and fuel swelling. Under the conditions of this analysis, the heat transfer coefficient was 

not a major contributor to the variance of the Doppler reactivity. We also saw that input 

interactions were not a major contributor to the variance in the output values, although they did 

manifest in a minor way during gap closure. 

With this, we conclude our analysis. In the next chapter, we will draw some general 

conclusions from the results of this work, and make recommendations as to which paths should 

be followed in the future related to this topic. 
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CHAPTER 7 

 

 

Conclusions and Future Work 

 

 

7.1 Summary 

Within this thesis, we have first demonstrated the need to include the thermo-mechanical 

effects of reactor fuel in a coupled neutronics and thermal-hydraulics depletion calculation. We 

showed through a sensitivity study that the method used in PARCS to account for fuel-clad gap 

closure and resulting temperature drop can have significant influence over the reactivity 

predicted by the code throughout core life. 

We then discussed prominent approaches to model nuclear reactor fuel and core 

components, as well as applications of these methods. The various methods of multi-physics 

calculations and their importance to the fuel depletion problem were also discussed, including 

prominent examples of applications in coupled neutronics/thermal-hydraulics and neutronics/fuel 

thermo-mechanics. We found that, while advanced methods are currently being developed for 

detailed, transport-level multiphysics behavior reactor components, there was a lack of 

application of the current-generation reactor analysis tools to the coupled depletion problem. In 

most cases, current methods rely on the pre-generation of gap conductivity tables in core 

simulators; while these methods have proven effective in industry, a true coupled calculation did 

not exist. We also discussed several representative uncertainty and sensitivity analysis methods 

and applications. 

Next, the methods used in the codes for this work were described. FRAPCON and 

PARCS/PATHS were used to model the fuel performance and neutronics/thermal-hydraulics, 

respectively. We discussed the algorithms and models included in these codes, and the algorithm 
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modifications required to apply them to a coupled depletion problem. The code coupling is 

achieved through a Python script called FRAPARCS. The coupling method was through file 

transfer where PARCS/PATHS is the master and FRAPCON is the slave. To ensure convergence 

in the power distribution and fuel temperature, a fixed-point iteration scheme was chosen. 

 Then, we discussed the application of FRAPARCS to two depletion problems: a pin cell 

and a mini-core with fuel reloads. Comparisons with PARCS/PATHS standalone computations 

showed that the fuel temperature and resultant reactivity deviations relative to the coupled 

calculation. The magnitude of these deviations could be as much as 50 K and 300 pcm in 

Doppler temperature and reactivity, respectively. Other neutronics figures of merit (such as 

peaking factors and reactivity coefficients) were minimally affected. We showed in these 

comparisons that PARCS/PATHS is not capable of representing these physical effects in stand-

alone mode. The primary contributor to the deviations was the closing of the fuel-clad gap early 

in the depletion, and the degradation of the fuel thermal conductivity later in life. The gap effects 

were most prominent in fresh fuel situations, while in the reload cores, the magnitude in 

reactivity deviation was roughly half as large. We then explored eight FRAPCON models 

accessible to the user for biasing, and their relative effects on the core depletion as they were 

changed. This sensitivity analysis revealed four models that were particularly influential on the 

Doppler reactivity. In addition, we showed that the single-phase heat transfer coefficient can 

have a minor but significant effect on the depletion. 

 With the results of these studies, we applied uncertainty and sensitivity analysis methods 

to the coupled pin cell depletion problem. We first described sampling-based and stochastic 

expansion-based methods to determine response distributions and statistics. We also examined 

methods which can be used to evaluate sensitivity information; in particular, we focused on 

Variance-Based Decomposition methods, in order to gauge the possible importance of input 

interactions on the neutronics outputs. Then, we applied these methods to the pin cell depletion. 

First, input distributions for the uncertainty variables were generated based on data. We explored 

the use of random and Latin Hypercube sampling to the problem, and found that the mean and 

standard deviation in the reactivity relative to the nominal case and the Doppler temperature 

could be well-represented relative to a reference solution by 200 LHS samples. We also applied 

Polynomial Chaos Expansion and Stochastic Collocation on first, second, and third-order tensor 

grids. We showed that the expansions between these methods were equivalent, and that the first-
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order model predicted nearly the same values for output statistics as the higher-order models. 

The expansion results also compared well with the random sampling-based results. The mean 

values in temperature and reactivity deviation in general agreed well with the reference solution. 

The standard deviations in Doppler temperature were found to range from 14 K to 17 K at 

beginning and end of life, respectively, and the standard deviation in reactivity was found to vary 

from ~60 pcm to 14 pcm at beginning and end of life, respectively. As expected based on the 

Chapter 4 results, the uncertainties in the peaking factors and reactivity coefficients were found 

to be almost negligible. 

 Following the estimates of the output statistics, we employed VBD methods to evaluate 

the relative importance of each uncertain input on the response variance. We found that applying 

VBD via a sampling-based approach with only 50 samples was insufficient; although general 

trends were captured, there was far too much noise in the data to draw definitive conclusions. 

Then, we applied VBD with the stochastic expansions. This method proved to work well, and 

was able even with the first-order model to capture most of the sensitivity in the data. We found 

that the fuel models competed for prominence in relative performance during the period of gap 

closure, but that once thermal contact was established between the fuel and the cladding material 

the thermal conductivity contributed the most to the variance in temperature and reactivity. The 

reactivity sensitivity study also showed that, near the very end in life, the conductivity 

contribution decreased significantly; this is likely due to the influence of plutonium dampening 

out the effects.  

 

7.2 Suggestions for further development 

While this work investigates some important and unique questions, there are still several 

areas that should be addressed in follow-up study. First of all, as we expressed several times 

within this text, the coupling method is not very efficient. The method here leads to long 

execution times even for small test problems, and restricts our ability to perform evaluations on 

larger, more realistic nuclear systems. We have shown that there is a real benefit to including 

fuel physics in diffusion-based depletion calculations, even outside of uncertainty considerations. 

The first suggestion is to further develop the coupling method to reduce the execution time. This 

could be done by embedding FRAPCON within PARCS/PATHS as a subroutine; one of the 
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challenges to accomplishing this is FRAPCON’s coding and architecture. With appropriate 

support, however, it should be possible. 

The second recommendation is to expand the class of problems that has been considered. 

Within this work, we used a 15x15 PWR assembly design as the reference; the effect of other 

geometries (and more representative cores) should be evaluated. Additionally, the potential for 

using pin power reconstruction methods to evaluate fuel performance on the pin level should be 

further explored. The primary issue with this is the possibility of evaluating cladding outer 

surface temperatures at somewhat inappropriate temperatures (PATHS models each assembly as 

a single channel, as opposed to subchannel-based methods that model the space between each 

fuel rod explicitly); however, based on the relative importance of heat transfer coefficient, this 

may not be a limiting factor. Further exploration is warranted. 

Within the context of uncertainty analysis, we limited the number of uncertain variables 

to five, all of which were directly associated with different phenomenological models. However, 

there are a number of potential uncertainties that have not yet been evaluated, such as the rod 

geometry. Additional uncertainty in the neutronics results may be possible, depending on how 

they affect the behavior of the fuel-clad gap. Also, work should be done to integrate the 

uncertainty approaches described here within the context of neutronic uncertainty in general. As 

we discussed in the Literature Review, much of the core-level uncertainty work comes though 

the collapsing of detailed cross sections into two-group cross sections appropriate for diffusion-

based simulators. The effect of fuel mechanics in the cross section generation process, and the 

relative importance of the models we considered here to the uncertainties introduced by 

including cross section covariance data, should be further studied. 

 

7.3 Conclusions 

The work performed here to develop the FRAPARCS code and apply it to the uncertainty 

and sensitivity analysis of a PWR fuel pin depletion represents a step forward in multi-physics 

depletion analysis. However, much work needs to be done to integrate these concepts into 

production-level tools, but the demonstrations provided here show that the effects of fuel 

performance on reactor core depletion are important, and merit further study. 
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APPENDIX A 

 

 

FRAPCON Uncertainty Models 

 

 

A.1: Fuel Thermal Conductivity 

The model for fuel thermal conductivity in FRAPCON is derived from the Nuclear Fuel 

Industries (NFI) model with modifications. This model is a function of temperature and burnup. 

For 95% theoretical density (TD) UO2, it is given by: 

 

 𝑘95 =
1

𝐴 + 𝑎 ∙ 𝑔𝑎𝑑 + 𝐵𝑇 + 𝑓(𝐵𝑢) + (1 − 0.9exp(−0.04𝐵𝑢))𝑔(𝐵𝑢)ℎ(𝑇)
+
𝐸

𝑇2
exp (−

𝐹

𝑇
) (A.1) 

 

where: 

𝑘95 = thermal conductivity of 95% TD fuel (W/m-K) 

T = temperature (K) 

Bu = burnup (GWd/MTU) 
f(Bu) = effect of fission products in crystal matrix (solution) 

 = 0.00187∙Bu 

g(Bu) = effect of irradiation effects 

 = 0.038∙Bu0.28 

h(T) = temperature dependence of annealing on irradiation defects 

 = 1

1 + 396exp (−
𝑄
𝑇
)
 

Q = temperature dependence parameter  

 = 6380 K 
A = 0.0452 (m-K/W) 

a = 1.1599 

gad = weight fraction of gadolinia 

B = 2.46E-4 (m-K/W/K) 

E = 3.5E9 (W-K/m) 

F = 16361 (K) 
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In FRAPCON-3.4, the thermal conductivity is calculated using the above model. For fuel that is 

not 95% TD, the following adjustment is applied: 

 

 𝑘𝑑 = 1.0789𝑘95 [
𝑑

1.0 + 0.5(1 − 𝑑)
] (A.2) 

 

where 𝑘𝑑 is the thermal conductivity at fraction of TD d, and 𝑘95  is the thermal conductivity 

predicted by the model above. 

 

A.2: Fuel Thermal Expansion 

The equation for temperature-related strain in UO2 fuel given in NUREG/CR-7024 is as 

follows: 

 
∆𝐿

𝐿0
= 𝐾1𝑇 − 𝐾2 + 𝐾3𝑒𝑥𝑝 (−

𝐸𝐷

𝑘𝑇
) (A.3) 

 

where 

∆𝐿

𝐿0
 = linear strain caused by thermal expansion (equal to zero at 300K)  

T = temperature (K) 

ED = energy of formation of a defect 
 = 1.32 x 10

-19
 J 

k = Boltzmann’s constant 
 = 1.38 x 10

-23
 J/K 

K1 = 9.8 x 10
-6

 K
-1

 

K2 = 2.61 x 10
-3

 (unitless) 

K3 = 0.316 (unitless) 

 

A.3: Fuel Thermal Swelling  

The fuel swelling model in FRAPCON-3.4 is given by the following equations. For 

burnup less than 80 GWd/MTU: 

 

 𝑠𝑜𝑙𝑑𝑠𝑤 = 2.315 × 10−23𝑏𝑢𝑠(1 + 0.08𝑠𝑖𝑔𝑠𝑤) (A.4) 

 

For burnup greater than 80 GWd/MTU: 

 𝑠𝑜𝑙𝑑𝑠𝑤 = 3.211 × 10−23𝑏𝑢𝑠(1 + 0.16𝑠𝑖𝑔𝑠𝑤) (A.5) 



192 

 

with 

𝑠𝑜𝑙𝑑𝑠𝑤  = fractional volume change due to solid fission products (m
3
/ m

3
) 

sigsw = user-defined parameter that incrementally changes error (this is one 

of the input uncertainty parameters described above) 

bus = fuel burnup during timestep 

 = 2.974 × 1010𝑓𝑑𝑒𝑛𝑠(𝑏𝑢 − 𝑏𝑢𝑙)  
fdens = initial pellet density (kg/m

3
) 

bu = burnup at end of timestep (MWs/kgU) 

bul = burnup at end of previous timestep (MWs/kgU) 

 

A.4: Fission Gas Release 

As discussed in Chapter 3, the Forsberg-Massih model is chosen as the FGR model for 

this work, due to its superior agreement with steady-state measurements. However, both this and 

the FRAPFGR models have similar theoretical structure and form. The basic model for fission 

gas release in the Forseberg-Massih and the FRAPFGR models is as follows: 

 

 𝑑𝐶

𝑑𝑡
= 𝐷(𝑡)∆𝑟𝐶(𝑟, 𝑡) + 𝛽(𝑡) 

(A.6) 

 

where 

𝐶(𝑟, 𝑡) = gas concentration 

𝛽(𝑡) = gas production (assumed uniform within grain) 

∆𝑟 = Laplacian operator in spherical geometry 

 
= 

𝑑2

𝑑𝑟2
+
2

𝑟

𝑑

𝑑𝑟
 

D(t) = diffusion coefficient 

t = time  

 

This equation describes the diffusion of gas within a spherical fuel grain. The boundary 

conditions and the correlation for the diffusion coefficient depend on the specific model chosen. 

It is worth noting that no matter which model is chosen, the diffusion coefficient is a strong 

function of temperature. The same process for calculating fission gas release is used by all FGR 

models in FRAPCON: 

 

1. Using local power history, determine source term (i.e., 𝛽(𝑡)) 

2. Using local temperatures and burnup, compute D(t) 
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3. Compute the approximate change in concentration within the fuel grains and on the fuel 

grain boundaries using a 4-term approximation to the integration kernel of the above 

equation 

4. The fraction of gas released is determined based on the local gas saturation levels on the 

grain boundaries; any fission gas accumulated on the boundaries beyond the saturation 

limit is assumed to be released into the fuel-cladding gap 

 

In order to compute fission gas release, one must know the source term. Currently, the 

model FRAPCON-3.4 uses to compute fission gas production during a given timestep at an axial 

location z is: 

 𝐺𝑃𝑇(𝑧) =
𝐵𝑈(𝑧)𝑉𝐹(𝑧)

100𝐴𝑣
(𝑃𝑅𝑘𝑟𝑦𝑝𝑡𝑜𝑛 + 𝑃𝑅ℎ𝑒𝑙𝑖𝑢𝑚 + 𝑃𝑅𝑥𝑒𝑛𝑜𝑛) 

(A.7) 

 

where 

𝐺𝑃𝑇(𝑧) = gas produced at axial location z (mole) 

𝐵𝑈(𝑧) = accumulated burnup at z (fissions/cm
3
) 

𝑉𝐹(𝑧) = fuel volume about z (cm
3
) 

𝐴𝑣 = Avogadro’s number 

PR = fission gas production rate (atoms/100 fissions) for Krypton, 

Helium and Xenon  

 

Within FRAPCON-3.4, this equation is manipulated to be consistent with 𝛽(𝑡) appearing in the 

above diffusion equation Eq. (3.4). 

Fission gas release is a strongly temperature-dependent formula. However, as 

implemented in FRAPCON-3.4, there is also an enhancement multiplier that increases the 

diffusion coefficient as burnup increases. The key point relevant to this work is that thermal 

diffusion only occurs with temperatures greater than 1381 K; in the depletion calculations 

considered in this work, the fuel did not reach this threshold. Therefore, only athermal release 

occurred. As discussed in Chapter 3, the FGR bias is applied to the enhancement factor in D of 

Equation A.6, which is only activated in high-temperature situations. 

 

A.5: Cladding Creep 

The models for thermally- and irradiation-induced creep of the cladding material are 

given by the following, respectively: 
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 휀�̇�ℎ = 𝐴
𝐸

𝑇
(sinh

𝑎𝑖𝜎𝑒𝑓𝑓

𝐸
)
𝑛

exp (
−𝑄

𝑅𝑇
) (A.8) 

   

 휀�̇�𝑟𝑟 = 𝐶0𝜙
𝐶1𝜎𝑒𝑓𝑓

𝐶2 𝑓(𝑇) (A.9) 

 

where 

휀̇𝑖𝑟𝑟 = irradiation creep strain rate (in/in/hr) 

휀̇𝑡ℎ = thermal creep strain rate (in/in/hr) 

𝜙 = fast neutron flux (>1 MeV) (neutrons/cm
2
-s) 

𝜎𝑒𝑓𝑓 = effective stress (MPa) 

A, E, n, 
Q, C0, 
C1, C2 

= empirical coefficients depending on temperature, flux, and 

cladding type (stress-relieved annealed (SRA) or fully 

recrystallized annealed (RXA) 

f(T) = empirical temperature-dependent function depending on 

cladding type (SRA or RXA) 

T = temperature (K) 

R = universal gas constant (0.008314 kJ/mol-K) 

 

At the end of a timestep, the thermal and irradiation creep rates based on the conditions within 

the node are computed, and then combined to determine the total creep strain. 

 

A.6: Cladding Axial Growth 

The model for irradiation-induced cladding axial growth is based on the EPRI model 

published in 1982 which accounts for high neutron fluences. It is of the form: 

 𝑎𝑥 =  𝐶Φ𝑛 (A.10) 

 

where 

𝑎𝑥 = Axial growth increment (m/m) 

Φ = Fast neutron fluence (n/cm
2
) (E > 1.0 MeV) 

C, n = Material-dependent fitting parameters 

 

Table A.1: Fitting parameters for axial growth model 

 

Parameter Zircaloy-4 ZIRLO M5 

C 2.18x10
-21

 9.7893x10
-25

 7.013x10
-21

 

n 0.845 0.98239 0.81787 
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A.7: Cladding Corrosion 

The corrosion behavior modeled by FRAPCON-3.4 takes into account the cladding 

material and environment. For PWRs, up to a specific material-dependent (i.e., Zircaloy-4, 

ZIRLO, or M5) transition thickness (typically on the order of 5 microns), a cubic rate equation is 

employed. When integrated, the corrosion thickness is given by: 

 

 𝑠𝑖+1 = (3𝐴 exp {−
𝑄1

𝑅𝑇1
} (𝑡𝑖+1 − 𝑡𝑖) + 𝑠𝑖

3)
(1/3)

 (A.11) 

 

where 

i, i+1 = Time step level 

s = oxide thickness (m) 

A = empirical constant dependent on material (m
3
/day) 

Q1 = empirical constant dependent on material (cal/mol) 

R = constant (1.98 cal/mol-K) 

T1 = oxide-metal interface temperature (K) 

t = time (days) 

 

Once the transition oxide thickness is reached, the growth is assumed to obey a flux 

dependent linear rate law, with the rate constant given by an Arrhenius function of oxide-metal 

interface temperature. In the implementation of this equation in FRAPCON-3.4, the nodal oxide 

weight gain is computed, rather than the oxide thickness itself. This weight gain is then easily 

converted into thickness. The equation for oxide weight gain is: 

 

 ∆𝑤𝑖+1 = ∆𝑤𝑖 +
𝑅𝑇0

2𝜆

𝛾𝑄2𝑞′′
ln [1 −

𝛾𝑄2𝑞
′′

𝑅𝑇0
2𝜆
𝑘0 exp{−

𝑄2
𝑅𝑇0

} exp{
𝛾𝑄2𝑞

′′∆𝑤𝑖

𝑅𝑇0
2𝜆

}(𝑡𝑖+1 − 𝑡𝑖)]

−1

 (A.12) 

 

which is then converted to thickness using: 

𝑠 =  
∆𝑤𝛾

100
 

In these equations, 

i, i+1 = Time step level 

s = oxide thickness (m) 

Δw = weight gain (g/cm
2
) 

R = constant (1.98 cal/mol-K) 

T0 = oxide-water interface temperature (K) 
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λ = oxide thermal conductivity (W/cm/K) 

γ = oxide specific volume (0.6789 cm
3
/g) 

Q2 = empirical constant dependent on material (cal/mol) 

q'’ = heat flux (W/cm
2
) 

k0 = 11863+3.5×10
4
(1.91×10

-15
Φ)

0.24
 (g/cm

2
-day) 

Φ = fast neutron flux (E>1 MeV) (n/cm
2
-s) 

t = time (days) 

 

The specific values for Q1, Q2, and transition thickness vary depending upon the specific 

material in question. 

 

A.8: Cladding Hydrogen Pickup 

Cladding corrosion is an oxidation process described by the following reaction: 

 

𝑍𝑟 + 2𝐻2𝑂 → 𝑍𝑟𝑂2 + 2𝐻2 

 

In addition to zirconium oxide formed on the cladding surface, some amount of free 

hydrogen is produced. Much of this hydrogen is swept away into the coolant, but some amount is 

absorbed by the cladding material. This is a potential issue because hydrides within fuel cladding 

can cause embrittlement, making the material more susceptible to cracking during transient 

operation. 

As with corrosion modeling, the specifics of cladding hydrogen absorption depend upon 

the material in question. For PWR materials, a fixed, experimentally determined hydrogen 

pickup fraction is used; based on the corrosion of the material, a certain percentage is assumed to 

be absorbed into the cladding metal. This, in effect, ties the cladding corrosion and hydrogen 

content tightly together. Table A.2 gives the hydrogen pickup fractions for the PWR cladding 

materials modeled in FRAPCON-3.4: 

 

Table A.2: Hydrogen pickup fractions for PWR cladding materials 

 

Material Pickup Fraction 

Zircaloy-4 0.15 

ZIRLO 0.125 

M5 0.10 
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APPENDIX B 

 

 

FRAPARCS Example Scripts and Flowchart 

 

 

B.1: FRAPARCS for pin cell depletion 

 

#!/usr/bin/python 

#This is the FRAPCON/PARCS driver script. It will be called from DAKOTA 

#to perform sensitivity and uncertainty estimations. 

#Author: Andrew Bielen 

#Date:   November 20 2013 

from sys import exit 

from subprocess import call 

from time import sleep 

import fp_util 

import numpy as np 

import scipy 

import os 

 

#Make changes here 

opsys = 'windows'     #choose 'windows' or 'linux' 

parcfi = 'pwr_pin.inp' 

fraptmp = 'TPbase.in.template' 

frapout = 'TPbase.out' 

f2pfile = 'f2p.dat' 

f2pflag = 'f2pready.flg' 

frapplot = 'TPbase.plot' 

parcpath = 'C:\\PARCS\\v32m10frap_v3\\run\\parcs_ivfr.exe' 

frappath = 

'C:\\frapcon3_5m\\frapcon3_5m\\frapcon3_5m\\Release\\frapcon3_5m.exe' 

frapid = ['00001999'] 

tmst = [0.01, 10., 20, 30., 40., 50., 60., 70., 80., 90., 100., 

        110., 120., 130., 140., 150., 160., 170., 180., 190., 200., 

        210., 220., 230., 240., 250., 260., 270., 280., 290., 300., 

        310., 320., 330., 340., 350., 360., 370., 380., 390., 400., 

        410., 420., 430., 440., 450., 460., 470., 480., 490., 500., 

        510., 520., 530., 540., 550., 560., 570., 580., 590., 600., 

        610., 620., 630., 640., 650., 660., 670., 680., 690., 700., 

        710., 720., 730., 740., 750., 760., 770., 780., 790., 800., 

        810., 820., 830., 840., 850., 860., 870., 880., 890., 900., 
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       910., 920., 930., 940., 950., 960., 970., 980., 990., 1000., 

        1010., 1020, 1030., 1040., 1050., 1060., 1070., 1080., 1090., 1100., 

        1110., 1120., 1130., 1140., 1150., 1160., 1170., 1180., 1190., 1200., 

        1210., 1220., 1230., 1240., 1250., 1260., 1270., 1280., 1290., 1300., 

        1310., 1320., 1330., 1340., 1350., 1360., 1370., 1380., 1390., 1400., 

        1410., 1420., 1430., 1440., 1450., 1460., 1470., 1480., 1490., 1500., 

        1510., 1520., 1530., 1540., 1550., 1560., 1570., 1580., 1590., 1600.] 

x  = [0.0000000000, 0.159130435, 0.31826087, 0.477391304, 0.636521739, 0.795652174, 0.954782609, 

1.113913043, 

      1.273043478, 1.432173913, 1.591304348, 1.750434783, 1.909565217, 2.068695652, 2.227826087,  

      2.386956522, 2.546086957, 2.705217391, 2.864347826, 3.023478261, 3.182608696, 3.34173913, 

3.500869565,3.66] 

xt = [0.0, 0.1525, 0.305, 0.4575, 0.61, 0.7625, 0.915, 1.0675, 1.22, 1.3725, 1.525, 1.6775, 

      1.83, 1.9825, 2.135, 2.2875, 2.44, 2.5925, 2.745, 2.8975, 3.05, 3.2025, 3.355, 3.5075, 3.66] 

na = 24  

 

#Leave below unchanged 

if opsys == 'windows': 

 copycmd = 'copy' 

 delcmd = 'del' 

 movecmd = 'move' 

 parcscmd = ['start','%COMSPEC%','/k',parcpath, parcfi] 

elif opsys == 'linux': 

 copycmd = 'cp' 

 delcmd = 'rm' 

 movecmd = 'mv' 

 parcscmd = [parcspath,parcfi,'$'] 

else: 

 exit('bad OS specification') 

 

#Interpret input data from above 

nstp = len(tmst) 

iterhist = np.zeros(nstp) 

nfrp = len(frapid) 

for i in range(len(x)): 

 x[i] = str(x[i]) 

for i in range(len(xt)): 

 xt[i] = str(xt[i]) 

#Spawn input files for each frapcon case 

for id in frapid: 

 frapfi_old = 'TPbase'+id+'_old.in' 
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 frapfi_new = 'TPbase'+id+'.in' 

 call([copycmd,fraptmp,frapfi_old],shell=True) 

 call([copycmd,fraptmp,frapfi_new],shell=True) 

 

call([delcmd,'nextstep.txt'],shell=True) 

call([delcmd,'repeat.txt'],shell=True) 

call([delcmd,'*.flg'],shell=True) 

  

#Get PARCS rolling first 

 

call(parcscmd,shell=True) 

 

#March through time with FRAPCON 

 

i = 1 

iter = 1 

move = False 

stay = False 

ready = False 

for tm in tmst: 

 print 'executing timestep ', i, ' (', tm, ' days)' 

 while not move: 

  move = os.path.exists('nextstep.txt') 

  stay = os.path.exists('repeat.txt') 

  if move: 

   call([delcmd,'nextstep.txt'],shell=True) 

   stay = False 

   move = False 

   break 

  elif stay: 

   print 'executing f/p iteration ', iter 

   for id in frapid: 

#    flg = 'p2f'+id+'.flg' 

    dat = 'p2f'+id+'.dat' 

    inp = 'TPbase'+id+'.in' 

    old = 'TPbase'+id+'_old.in' 

    f2p = 'f2p'+id+'.dat' 

#    call([delcmd,flg],shell=True) 

    call([delcmd,inp],shell=True) 

    call([copycmd,old,inp],shell=True) 

    #call the substitution routine 



200 

 

    fp_util.frap_sub(dat,inp,i,na,x,xt,tmst[i-1]) 

    #call frapcon 

    call([frappath,inp],shell=True) 

    call([delcmd,dat],shell=True) 

    call([movecmd,f2pfile,f2p],shell=True)     

   call([delcmd,'repeat.txt'],shell=True) 

   print 'frapcon is done, writing f2p flag file' 

   f2pflg = open(f2pflag,'w') 

   f2pflg.close() 

   stay = False 

   iter = iter + 1 

  else: 

   print 'at timestep ', i, ' waiting for parcs to make up its mind' 

   sleep(1) 

 print 'PARCS and FRAPCON have finished timestep ', i, 'with ', iter, ' iterations' 

 for id in frapid: 

  old = 'TPbase'+id+'_old.in' 

  new = 'TPbase'+id+'.in' 

  call([delcmd,old],shell=True) 

  call([movecmd,new,old],shell=True) 

 iterhist[i-1] = iter 

 i = i + 1 

 iter = 1 

 sleep(1) 

#rerun last time step after turning full output on 

for id in frapid: 

 inp = 'TPbase'+id+'_old.in' 

 fp_util.frap_printsub(inp) 

 print 'running frapcon id, ', id, ' for printing' 

 call([frappath,inp],shell=True) 

 call([movecmd,frapout,'TPbase'+id+'.out'],shell=True) 

 call([movecmd,frapplot,'TPbase'+id+'.plot'],shell=True) 

#call([delcmd,'*.dat'],shell=True) 

#print iteration history 

itfile = open('iterhist.txt','w') 

for iter in iterhist: 

 print>>itfile, str(iter) 

itfile.close() 
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B.2: FRAPARCS for Multicycle Depletion 

#!/usr/bin/python 

#This is the FRAPCON/PARCS driver script. It will be called from DAKOTA 

#to perform sensitivity and uncertainty estimations. 

#This is the multicycle adaptation. 

#Author: Andrew Bielen 

#Date:   April 3 2014 

# 

#Core positions 

#       1   2   3   4   5 

#       6   7   8   9  10 

#      11  12  13  14  15 

#      16  17  18  19  20 

#      21  22  23  24  25 

# 

#Cycle 1 design (8 Hi, 5 M, 2 Lo) 

#       5   2   8   2   5 

#       2   8   5   8   2 

#       8   5   8   5   8 

#       2   8   5   8   2 

#       5   2   8   2   5 

#  

#Cycle 2 design (8 Hi, 5 M) 

#       8   5   8   5   8 

#       5   8   8   8   5 

#       8   8   8   8   8 

#       5   8   8   8   5 

#       8   5   8   5   8 

# 

#Cycle 3 design (8 Hi) 

#       8   8   8   8   8 

#       8   8   8   8   8 

#       8   8   8   8   8 

#       8   8   8   8   8   

#       8   8   8   8   8 

# 

#Shuffle map - 0 means fresh, position in prev cycle o/w 

#   Applied both at EOC1 and EOC2 

#       7   8   0  14   9 

#       1   0   3   0   5 
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#       0  11   0  15   0 

#      21   0  23   0  25 

#      17  12   0  18  19 

# 

 

from sys import exit 

from subprocess import call 

from time import sleep 

import fp_util 

import numpy as np 

import scipy 

import os 

 

#Make changes here 

opsys = 'windows'     #choose 'windows' or 'linux' 

parcfi = ['pwr_5x5CPL_C1.inp','pwr_5x5CPL_C2.inp','pwr_5x5CPL_C3.inp'] 

#parcfi = ['pwr_5x5CPL_C2.inp','pwr_5x5CPL_C3.inp'] 

#parcfi = ['pwr_5x5CPL_C3.inp'] 

##cycle index 

icyc = 1 

#icyc = 2 

#icyc = 3 

shuffi = ['pwr_5x5CPL_1to2.inp','pwr_5x5CPL_2to3.inp'] 

cycid = ['CYC1','CYC2','CYC3'] 

frpre = 'sur' 

tmpsuf = '.in.template' 

insuf = '.in' 

outsuf = '.out' 

pltsuf = '.plot' 

f2pfile = 'f2p.dat' 

f2pflag = 'f2pready.flg' 

parcpath = 'C:\\PARCS\\v32m10frap_v3\\run\\parcs_ivfr.exe' 

frappath = 'C:\\frapcon3_5m\\frapcon3_5m\\frapcon3_5m\\Release\\frapcon3_5m.exe' 

shufpath = 'C:\\fraparcs\\shuffler\\shuffler\\Release\\shuffler.exe' 

#Fuel rod groupings for initial cycle 

frapid1 = ['00003999','00007999','00009999','00011999','00013999', 

           '00015999','00017999','00019999','00023999'] 

frapid2 = ['00001999','00005999','00008999','00012999', 

           '00014999','00018999','00021999','00025999'] 

frapid3 = ['00002999','00004999','00006999','00010999', 

           '00016999','00020999','00022999','00024999'] 
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enr = ['3.117','2.573','1.868'] 

ftd = ['91.9','92.9','93.5'] 

gtk = ['0.000108','0.00009525','0.00009525'] 

shufmap = ['007','008','000','014','009','001','000','003','000', 

           '005','000','011','000','015','000','021','000','023', 

           '000','025','017','012','000','018','019'] 

order = ['001','002','003','004','005','006','007','008','009','010', 

         '011','012','013','014','015','016','017','018','019','020', 

   '021','022','023','024','025'] 

discard = ['00002999','00004999','00006999','00010999','00013999', 

           '00016999','00020999','00022999','00024999'] 

frapgrp = [frapid1,frapid2,frapid3] 

frapid = frapid1 + frapid2 + frapid3 

#print frapid 

tmst = [0.01, 10., 20, 30., 40., 50., 60., 70., 80., 90., 100., 

        110., 120., 130., 140., 150., 160., 170., 180., 190., 200., 

        210., 220., 230., 240., 250., 260., 270., 280., 290., 300., 

        310., 320., 330., 340., 350., 360., 370., 380., 390., 400., 

        410., 420., 430., 440., 450., 460., 470., 480., 490., 500., 

        510., 520., 530., 540.] 

#tmst = [0.01,10] 

x  = [0.0000000000, 0.159130435, 0.31826087, 0.477391304, 0.636521739, 0.795652174, 0.954782609, 

1.113913043, 

      1.273043478, 1.432173913, 1.591304348, 1.750434783, 1.909565217, 2.068695652, 2.227826087,  

      2.386956522, 2.546086957, 2.705217391, 2.864347826, 3.023478261, 3.182608696, 3.34173913, 

3.500869565,3.66] 

xt = [0.0, 0.1525, 0.305, 0.4575, 0.61, 0.7625, 0.915, 1.0675, 1.22, 1.3725, 1.525, 1.6775, 

      1.83, 1.9825, 2.135, 2.2875, 2.44, 2.5925, 2.745, 2.8975, 3.05, 3.2025, 3.355, 3.5075, 3.66] 

na = 24  

 

#Leave below unchanged 

if opsys == 'windows': 

 copycmd = 'copy' 

 delcmd = 'del' 

 movecmd = 'move' 

elif opsys == 'linux': 

 copycmd = 'cp' 

 delcmd = 'rm' 

 movecmd = 'mv' 

 parcscmd = [parcspath,parcfi,'$'] 

else: 
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 exit('bad OS specification') 

 

#Interpret input data from above 

template = frpre+tmpsuf 

nstp = len(tmst) 

nfrp = len(frapid) 

nenr = len(enr) 

ncyc = len(parcfi) 

cyclen = tmst[nstp-1] 

totstp = nstp * ncyc 

iterhist = np.zeros(totstp) 

for i in range(len(x)): 

 x[i] = str(x[i]) 

for i in range(len(xt)): 

 xt[i] = str(xt[i]) 

 

#Clean up the directory 

call([delcmd,'nextstep.txt'],shell=True) 

call([delcmd,'repeat.txt'],shell=True) 

call([delcmd,'*.flg'],shell=True) 

call([delcmd,'*.dat'],shell=True) 

call([delcmd,'*'+insuf],shell=True)  

 

if icyc == 1: 

#Spawn input files for each frapcon case 

#Consider all individual enrichments - replace wtp flag with actual value 

#Also considers differences in theoretical density and gap thickness 

 j = 0 

 for grp in frapgrp: 

  jind = str(j) 

  templateenr = template+'.'+jind 

  call([copycmd,template,template+'.'+jind],shell=True) 

  fileold = open(templateenr).read() 

  fileold = fileold.replace('enrch=wtp','enrch='+enr[j]) 

  fileold = fileold.replace('thkgap=gtk','thkgap='+gtk[j]) 

  fileold = fileold.replace('den=ftd','den='+ftd[j]) 

  filenew = open(templateenr,'w') 

  filenew.write(fileold) 

  filenew.close() 

  for id in grp: 

   fiold = frpre+id+'_old'+insuf 
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   finew = frpre+id+insuf 

   call([copycmd,templateenr,fiold],shell=True) 

   fileold = open(fiold).read() 

   fileold = fileold.replace(cycid[0],id[2:5]) 

   filenew = open(fiold,'w') 

   filenew.write(fileold) 

   filenew.close() 

   call([copycmd,fiold,finew],shell=True) 

  j = j + 1 

#write BOC1 directory 

 bocdir = 'BOC'+str(icyc) 

 call(['mkdir',bocdir],shell=True) 

 for id in frapid: 

  fiold = frpre+id+'_old'+insuf 

  finew = frpre+id+insuf 

  call([copycmd,fiold,bocdir+'\\'+fiold],shell=True) 

  call([copycmd,finew,bocdir+'\\'+finew],shell=True) 

else: 

#Copy the frapcon input files from the BOC directory 

 bocdir = 'BOC'+str(icyc) 

 for id in frapid: 

  fiold = frpre+id+'_old'+insuf 

  finew = frpre+id+insuf 

  call([copycmd,bocdir+'\\'+fiold,fiold],shell=True) 

  call([copycmd,bocdir+'\\'+finew,finew],shell=True) 

# 

#start the multicycle train 

# 

for pfi in parcfi: 

  

 #Get PARCS rolling first 

  

 parcscmd = ['start','%COMSPEC%','/k',parcpath, pfi] 

 call(parcscmd,shell=True) 

  

 #March through time with FRAPCON 

  

 i = 1 

 iter = 1 

 move = False 

 stay = False 
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 ready = False 

 for tm in tmst: 

  print 'executing cycle ', icyc, ' timestep ', i, ' (', tm, ' days)' 

  while not move: 

   move = os.path.exists('nextstep.txt') 

   stay = os.path.exists('repeat.txt') 

   if move: 

    call([delcmd,'nextstep.txt'],shell=True) 

    stay = False 

    move = False 

    break 

   elif stay: 

    print 'cycle ', icyc, ' time step ', i, ' f/p iteration ', iter 

    sleep(1)  #added sleep command will hopefully add some stability 

    for id in frapid: 

     dat = 'p2f'+id+'.dat' 

     inp = frpre+id+insuf 

     old = frpre+id+'_old'+insuf 

     f2p = 'f2p'+id+'.dat' 

     call([delcmd,inp],shell=True) 

     call([copycmd,old,inp],shell=True) 

# Add logic to include the appropriate timestep index and time value depending on core residence time 

     if icyc == 1: 

     # all fresh 

      iin = i 

      fraptime = tmst[i-1] 

     elif icyc == 2: 

      if id in frapid1: 

      #fresh 

       iin = i 

       fraptime = tmst[i-1] 

      else: 

      #once-burnt 

       iin = nstp + i 

       fraptime = cyclen + tmst[i-1] 

     elif icyc == 3: 

      if id in frapid1: 

      #fresh 

       iin = i 

       fraptime = tmst[i-1] 

      elif id in frapid2: 
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      #once-burnt 

       iin = nstp + i 

       fraptime = cyclen + tmst[i-1] 

      elif id in frapid3: 

      #twice-burnt 

       iin = 2*nstp + i 

       fraptime = 2*cyclen + tmst[i-1] 

     #call the substitution routine 

     fp_util.frap_sub(dat,inp,iin,na,x,xt,fraptime) 

     #call frapcon 

     call([frappath,inp],shell=True) 

     #delete the parcs to frapcon data file 

     call([delcmd,dat],shell=True) 

     #rename the frapcon to parcs data file to have the id number 

     call([movecmd,f2pfile,f2p],shell=True)     

    call([delcmd,'repeat.txt'],shell=True) 

    #look for stragglers...rerun case if need be 

    strag = False 

    for id in frapid: 

     dat = 'p2f'+id+'.dat' 

     inp = frpre+id+insuf 

     f2p = 'f2p'+id+'.dat' 

     strag = os.path.exists(dat) 

     if strag: 

      print 'p2f',id,' is still here, rerunning case' 

      call([frappath,inp],shell=True) 

      call([delcmd,dat],shell=True) 

      call([movecmd,f2pfile,f2p],shell=True) 

      strag = False 

    print 'frapcon is done, writing f2p flag file' 

    f2pflg = open(f2pflag,'w') 

    f2pflg.close() 

    stay = False 

    iter = iter + 1 

   else: 

    print 'at cycle ', icyc, ' timestep ', i, ' iteration ', iter, ' waiting for 

parcs to make up its mind' 

    sleep(1) 

  print 'PARCS and FRAPCON have finished cycle ', icyc, ' timestep ', i, 'with ', iter, ' 

iterations' 

  iterhist[nstp*(icyc-1)+(i-1)] = iter 
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  for id in frapid: 

   old = frpre+id+'_old'+insuf 

   new = frpre+id+insuf 

   call([delcmd,old],shell=True) 

   call([movecmd,new,old],shell=True) 

  i = i + 1 

  iter = 1 

  sleep(1) 

#Copy frapcon output files to a storage location 

 eocdir = 'EOC'+str(icyc) 

 call(['mkdir',eocdir],shell=True) 

 for id in frapid: 

  fiold = frpre+id+'_old'+insuf 

  finew = frpre+id+insuf 

  call([copycmd,fiold,eocdir+'\\'+fiold],shell=True) 

  call([copycmd,finew,eocdir+'\\'+finew],shell=True) 

#perform fuel shuffling between cyc 1 & 2 and between cyc 2 & 3 

 if icyc < ncyc: 

 #shuffle the fuel - first, mark and discard the rods which will be removed 

 #for fuel that is not removed, duplicate file for shuffling 

  disdir = 'discharge'+str(icyc) 

  call(['mkdir',disdir],shell=True) 

  for id in frapid: 

   frpfi = frpre+id+'_old'+insuf 

   if id in discard: 

    disfi = frpre+id+'_discard_cyc'+str(icyc)+insuf 

    call([movecmd,frpfi,disdir+'\\'+disfi],shell=True) 

   else: 

    fiprev = frpre+id+'_prev'+insuf 

    call([copycmd,frpfi,fiprev],shell=True) 

  #then, perform the frapcon shuffling in accordance with the shuffle map 

  for iassy in range(1,nfrp+1): 

   if iassy < 10: 

    istr = '00'+str(iassy) 

   elif iassy < 100: 

    istr = '0'+str(iassy) 

   else: 

    istr = str(iassy) 

   iprev = shufmap[iassy-1] 

   id = '00'+istr+'999' 

   idprev = '00'+iprev+'999' 
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   if iprev != '000': 

   #this denotes a burned assembly, need to change the name 

    print 'moving rod ', iprev, ' to position ', istr 

    fiprev = frpre+idprev+'_prev'+insuf 

    fiold = frpre+id+'_old'+insuf 

    finew = frpre+id+insuf 

    call([movecmd,fiprev,fiold],shell=True) 

    fileold = open(fiold).read() 

    fileold = fileold.replace(cycid[icyc],istr) 

    filenew = open(fiold,'w') 

    filenew.write(fileold) 

    filenew.close() 

    call([copycmd,fiold,finew],shell=True) 

  call([delcmd,'*_prev'+insuf],shell=True) 

  #now, spawn the new cases for fresh rods 

  for iassy in range(1,nfrp+1): 

   if iassy < 10: 

    istr = '00'+str(iassy) 

   elif iassy < 100: 

    istr = '0'+str(iassy) 

   else: 

    istr = str(iassy) 

   iprev = shufmap[iassy-1] 

   id = '00'+istr+'999' 

   if iprev == '000': 

   #this denotes a fresh assembly, need to spawn a new case - assume type 3 feeds 

    print 'spawning new case for location ', istr 

    templateenr = template+'.0' 

    fiold = frpre+id+'_old'+insuf 

    finew = frpre+id+insuf 

    call([copycmd,templateenr,fiold],shell=True) 

    fileold = open(fiold).read() 

    fileold = fileold.replace(cycid[icyc],istr) 

    filenew = open(fiold,'w') 

    filenew.write(fileold) 

    filenew.close() 

    call([copycmd,fiold,finew],shell=True) 

  #for some weird reason, filenew is being generated right but not fileold always 

#  exit() 

  exists = False 

  for id in frapid: 
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   fiold = frpre+id+'_old'+insuf 

   finew = frpre+id+insuf 

   exists = os.path.exists(fiold) 

   if not exists: 

    print 'old ', id, ' file not found, generating it' 

    call([copycmd,finew,fiold],shell=True) 

  #store the BOC frapcon inputs for use if the cycle craps out for some reason 

  bocdir = 'BOC'+str(icyc+1) 

  call(['mkdir',bocdir],shell=True) 

  for id in frapid: 

   fiold = frpre+id+'_old'+insuf 

   finew = frpre+id+insuf 

   call([copycmd,fiold,bocdir+'\\'+fiold],shell=True) 

   call([copycmd,finew,bocdir+'\\'+finew],shell=True) 

  # finally, call the PARCS shuffling routine 

  call([shufpath,shuffi[icyc-1]],shell=True) 

  icyc = icyc + 1 

 

itfile = open('iterhist.txt','w') 

for iter in iterhist: 

 print>>itfile, str(iter) 

itfile.close() 

 

#rerun last time step after turning full output on 

#for id in frapid: 

# inp = frpre+id+'_old'+insuf 

# fp_util.frap_printsub(inp) 

# print 'running frapcon id, ', id, ' for printing' 

# call([frappath,inp],shell=True) 

# call([movecmd,frpre+outsuf,frpre+id+outsuf],shell=True) 

# call([movecmd,frpre+pltsuf,frpre+id+pltsuf],shell=True) 

#call([delcmd,'*.dat'],shell=True) 
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Figure B.1: FRAPARCS flowchart
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APPENDIX C 

 

Mini-Core Design Information 

 

 

C.1: Lattice Model 

 

Table C.1: Design data for 15x15 lattice calculations 

 
Pin Pitch (cm) 1.43 

Number of fuel pins 204 

Number of control rod guide tubes 20 

Number of instrumentation tubes 1 

Fuel pin cladding diameter (cm) 1.07188 

Fuel pin cladding thickness (cm) 6.1722x10
-2

 

Fuel pin fuel diameter (cm) Type 1/2 0.929 

Type 3 0.926 

Guide/instrumentation tube outer diameter (cm) 1.380 

Guide/instrumentation tube inner diameter (cm) 1.228 

Guide/instrumentation tube thickness (cm) 7.62x10
-2
 

Guide/instrumentation tube material Zircaloy-4 

Assembly pitch (cm) 21.504 

Coolant material Borated water 

Fuel cladding material Zircaloy-4 

Fuel  material Uranium dioxide 

Fuel density (g/cc) Type 1 10.25 

Type 2 10.18 

Type 3 10.07 

Fuel fraction of theoretical density (%) Type 1 93.5 

Type 2 92.9 

Type 3 91.9 

Fuel enrichment (wt/o) Type 1 1.868 

Type 2 2.573 

Type 3 3.117 

Power density (W/gU) 44.98 
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Figure C.1: 15x15 assembly design (blue: coolant; orange: clad; grey: fuel; white: gap) 

 

 

 

 

Table C.2: Core conditions spanned by Surry Unit 1 benchmark cross sections 

 
Parameter Range 

Fuel temperature (K) 293 – 1500 

Moderator Density (g/cc) 0.11888 – 1.00519 

Boron concentration (ppm) 0.1 – 2400 

 

 

 

 

 

Table C.3: Depletion step structure for assembly cross section generation 

 
Range (MWd/MTU) Step Size (MWd/MTU) 

0.0-0.1 0.1 

0.1-0.5 0.4 

0.5-1.0 0.5 

1.0-11.0 1.0 

11.0-12.5 1.5 

12.5-60.0 2.5 
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C.2: PARCS/PATHS and FRAPCON Input Specification 

 

 

 

Table C.4: PARCS/PATHS input for multi-cycle depletion 

 
Input Value 

Number of assemblies 25 

Number of fuel rods/assembly 204 

Assembly pitch (cm) 21.504 

Active core length 366.0 cm 

Axial nodalization 28 total nodes: 

2 nodes for bottom reflector (19.05 cm/node) 

24 nodes for core region (15.25 cm/node) 

2 nodes for top reflector (19.05 cm/node) 

Boundary conditions Reflective (East, West, North, South) 

Zero incoming current (Top, Bottom) 

Number of cycles 3 

Cycle depletion length 540 

Depletion Step Length (d) 10 

Core power (kW) 388670.0 

Inlet coolant mass flow rate (kg/sec) 2024.4 

Inlet coolant enthalpy (kJ/kg) 1268.0 

Core outlet pressure (MPa) 15.512 

Channel area (m
2
) 2.469 x 10

-2
 

Hydraulic diameter (m) 3.17372 x 10
-3

 

Surface roughness (m) 6.800 x 10
-5

 

Pin pitch (m) 1.43 x 10
-2

 

Cladding outer radius (m) 5.3594 x 10
-3

 

Fuel pellet radius (m) Type 1&2 4.64693 x 10
-3

 

Type 3 4.63423 x 10
-3

 

Cladding thickness (m) 6.1722 x 10
-4

 

Number of water rods/assembly 21 

Outer radius of water rod (m) 6.901 x 10
-3
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Table C.5: FRAPCON input for multi-cycle depletion 

 
Input Value 

Cladding outer diameter (m) 1.07188 x 10
-2 

Cladding thickness (m)  6.1722 x 10
-4 

Gap thickness (m) Type 1&2
 

9.525 x 10
-5

 

Type 3 1.080 x 10
-4

 

Plenum length (m) 0.254 

Spring outer diameter (m) 9.1 x 10
-3
 

Spring wire diameter (m) 1.27 x 10
-3 

Number of spring turns 33 

Fuel pellet length (m) 1.14 x 10
-2

 

Fuel pellet dish depth (m) 2.4 x 10
-4
 

Fuel pellet end - dish shoulder width (m) 1.1 x 10
-4
 

Fuel stack height (m) 3.66 

Number of axial nodes 24 

Axial node length (m) 0.1525 

Fuel pellet Uranium-235 enrichment (wt/o) Type 1  1.868 

Type 2 2.573 

Type 3 3.117 

Fuel fraction of theoretical density  Type 1 93.5 

Type 2 92.9 

Type 3 91.9 

Cladding material Zircaloy-4 

Fuel rod fill gas Helium 

Fuel rod fill pressure (MPa) 2.41 
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