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CHAPTER I

Introduction

Chronic diseases are persistent medical conditions which affect half of all adults in

the United States [151]. Chronic diseases are responsible for the majority of deaths

[107] and 84% of all health care spending [7] in the United States. The U.S. National

Center for Health Statistics defines a chronic disease as a disease which lasts between

3 months and the patient’s lifetime, which typically cannot be cured by medication

[51]. Some chronic diseases, like glaucoma, are severely debilitating and diminish the

quality of life of the patient [54], while others such as cardiovascular disease are both

debilitating and a leading cause of death in the United States [77].

The nature of these long-term chronic conditions present monitoring and treat-

ment challenges to practicing clinicians and medical researchers. As each patient is

different, a key challenge is how to use information learned about each patient’s dis-

ease characteristics over time to tailor monitoring and treatment decisions. Medical

care for chronic disease requires many sequential decisions where each decision has

strong implications for future decisions. Furthermore, long-term clinical management

also leads to decreasing rates of adherence to medical interventions.

The medical community has begun to pursue personalized medicine, i.e. tailoring

clinical decisions to the patient’s individual disease characteristics, as a way to im-

1



2

prove health outcomes for patients with chronic disease [61], [28], [112], [48], [156].

Working together, operations researchers and clinicians can address the challenges

of personalized medicine and chronic care. Noise extraction and filtering methods

can be used to improve the understanding of disease dynamics. Methods, such as

dynamic programming, enable the tractable modeling and optimization of sequential

decision making problems. Operations research can be used to tailor treatment plans

to the level of adherence and optimize how incentives are allocated to improve their

adherence. Finally, with increasing health care spending, operations researchers can

develop models which are sensitive to resource limitations at both the patient and

population level.

By combining operations research with the principles of personalized medicine, we

have developed novel mathematical models to answer high impact clinical questions

faced when managing patients with chronic conditions. This has lead to the creation

of decision support tools for real world implementation. We began our research by

understanding how information about a single patient can be used to personalize the

patient’s forecasted disease dynamics and likelihood of disease progression. Next,

we considered how models of heterogeneity in disease characteristics and patient

behavior can be embedded within an optimization framework to design individualized

treatment plans. Finally, we developed a resource allocation model for improving

patient adherence to their individualized treatment plans. Figure 1.1 summarizes

the three chapters of this dissertation.

1.1 Disease Progression Identification for Patients with Glaucoma

Chapter II addresses the problem of utilizing correlated repeated measures data

affected by measurement and process noise in statistical classification models. By
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Chapter II Chapter III Chapter IV 

Incentivize patient 

behavior 

Guide treatment  

decisions 

Understand  

disease progression 

Figure 1.1: Overview of dissertation chapters.

extracting noise from the data prior to model construction, we can reduce misclassi-

fication rates when identifying patients with worsening diseases and declining health.

This improved classification model was then embedded within a dynamic and per-

sonalized monitoring algorithm for determining the time between monitoring visits

for chronic disease. The work has been applied to glaucoma patients using clinical

trial data for training and testing the models. We found that our classification model

improved the area under the receiver operating characteristic curve from 0.889 (using

traditional methods) to 0.961. The increased model accuracy then translated to im-

provements for the monitoring algorithm as compared to current clinical guidelines

for glaucoma patients: 29% increase in efficiency of testing and 57% reduction in

diagnostic detection of disease progression.

1.2 Treatment Planning for Cardiovascular Disease

Adherence to pharmacotherapy is a major concern for both health care and insur-

ance providers. Poor adherence to medication can lead to avoidable adverse health

events, such as heart attack and stroke. In Chapter III, we developed a dynamic

programming formulation for incorporating patient adherence to medication, along

with individualized risk factors, when deriving optimal treatment policies. Our ap-
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proach utilized a coherent risk measure in the calculation of rewards to control the

marginal benefit of adherence on treatment outcomes. This work has been applied

to hypertension treatment planning for patients at risk of cardiovascular disease. We

first considered treatment policies which minimized a patient’s expected number of

coronary heart disease events using observational data from the U.S Department of

Veterans Affairs. Our personalized and optimal treatment decisions lead to a 9.4%

reduction in the expected number of coronary heart disease events when compared

to current treatment guidelines. Next, we considered treatment policies which max-

imized a patient’s expected quality-adjusted life years (QALYs) using data from a

nationally-representative survey, NHANES. We also analyzed the impact of physician

knowledge of the treatment disutility incurred by a patient when taking medication.

We found that misestimation of disutility can lead to upwards of 26.9% of patients

being mistreated for hypertension. Lastly, we studied the effects of time-varying

treatment benefit and disutility on current and future risk treatment strategies. Our

analysis indicated that the future risk strategy based on a forecasted 5% 10-year

cardvioascular risk is the most sensitive to changes in how long a medication must

be taken before maximum treatment benefit is attained. This phenomenon is due

to the lengthier expected treatment duration for patients under the future 5% risk

strategy.

1.3 Copayment Restructuring for Improved Adherence to Treatment
Plans

Building upon the theoretical and numerical results of the dynamic programming

formulation for hypertension treatment planning, we developed a bilevel optimization

model for determining allocations of resources designed to improve patient adherence

to their individualized treatment plan. This model considers allocating resources
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across a population which is heterogeneous in their risk factors for cardivascular

disease. The bilevel model studies the role of budgetary and equitability constraints

on the optimal allocations. Chapter IV develops an iterative nonlinear programming

technique to solve this resource allocation problem. Our research indicates that

targeting resources based on individual characteristics can improve health outcomes

(4.35 quality-adjusted life years per 1000 patients) for the patient population and

reduce total health costs.

1.4 Conclusion and Future Research

This research has developed mathematical methods for addressing key issues in

the management of chronic disease patients, including identifying disease progres-

sion, determining monitoring frequency, developing treatment plans, and allocating

incentives for improving adherence to medication. This body of work has generated

advances in engineering and medical decision making with many further opportu-

nities for continued research. Chapter V summarizes the contributions of the work

and presents the details of some proposed future research.



CHAPTER II

Disease Progression Identification for Patients with
Glaucoma

In this chapter, we present a statistical classification algorithm for noisy and

correlated data, and we highlight how this algorithm may be used to guide decision

making. The algorithm assesses the probability that a patient will experience disease

progression by combining a Kalman filter approach (to reduce noise and model the

system dynamics) with generalized estimating equations (to account for the correla-

tion of repeated observations for a patient). We show that, by optimally extracting

noise in the data prior to parameterizing our algorithm, it is possible to reduce mis-

classification error rates. This work has been published in BMC Medical Informatics

and Decision Making [138]. Next, we utilize the algorithm to assist clinicians in

developing monitoring schedules for their patients. Our approach yields a decision

support system for monitoring glaucoma patients with noisy and correlated obser-

vations. This extension has been published in Ophthalmology [137]. While our work

is directly motivated by open angle glaucoma, the algorithm and decision support

system are generalizable to chronic diseases where process and measurement noise

affect longitudinal data collection and interpretation.

6
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2.1 Background

Open angle glaucoma (OAG) is a chronic degenerative ocular disease character-

ized by damage to the optic nerve. It is the second leading cause of blindness with

an estimated 2.2 million adult Americans diagnosed with this disease [54], [122]. Pa-

tients with OAG are monitored regularly via visual field (VF) tests and intraocular

pressure (IOP) readings [90], [109], [17], [46], [106], [159]. Clinicians monitor glau-

coma patients in order to determine whether significant disease progression has oc-

curred which would warrant changes in the medical management of the disease (e.g.

perform surgery or change medications). VF tests summarize vision loss through

perimetric outputs (measurements of light sensitivity in different parts of the eye)

such as mean deviation (MD) and pattern standard deviation (PSD). These peri-

metric outputs compare the mean (standard deviation, respectively) light sensitivity

of a given patient’s eye to a normative database of patients without glaucoma. IOP

readings measure the fluid pressure on the eye caused by aqueous humor, a natural

fluid produced to provide nutrition and immune defense to the eye.

Clinicians use past and present VF and IOP tests to detect disease progression.

However, the clinical observations are subject to both process and measurement

noise. Errors in machine calibration, patient anxiety, human error in administering

tests, and variations in measurement technique can all contribute to measurement

noise when assessing chronic diseases [91]. Biological variability, like intraday fluc-

tuation of intraocular pressure, is a contributing factor to process noise which can

affect the ability to identify significant disease progression [101]. Distinguishing be-

tween signal and noise becomes paramount when these noisy measurements are used

in decision making.
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While most clinicians (glaucoma specialists in particular) are aware of the vari-

ability in VF and IOP measurements, non-specialists may not fully appreciate the

importance of considering noise in VF findings and IOPs from visit to visit: they

may erroneously conclude a patient is progressing or non progressing when they

observe variability and make treatment decisions accordingly. Studies have shown

that the difficulties associated with evaluating patients with glaucoma to assess for

disease progression have led to undertreatment [53],[99] and that decision aids, such

as risk calculators [98], are useful supplements to clinician judgment. Our proposed

methodology aids clinicians (both specialists and nonspecialists) in their decision

making process by providing them with a mathematical framework that systemati-

cally accounts for noise in the data used to identify disease progression.

2.2 Literature Review

Statistical classification, such as detecting disease progression, is not new to the

statistics and machine learning literature. Some traditional methods for supervised

classification include support vector machines [23], random forests [154], and logistic

regression [93], [118]. These traditional methods assume independent observations

as inputs, whereas identifying significant disease progression requires analysis of cor-

related longitudinal data of a particular patient. We propose the use of generalized

estimating equations (GEE) to statistically model the relationship between OAG

health metrics and progression. GEE has been extensively used in the medical lit-

erature to: assess improvements from conversion to electronic health records [130],

identify risk factors for chronic obstructive pulmonary disease [142], identify predic-

tors of influenza vaccine acceptance [47], and study spatially correlated binary data

in neuroimaging [6]. However, applying GEE to raw measurements may lead to deci-
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sion making that is informed by noisy observations, not measurements which reflect

true disease dynamics.

A key feature of the algorithm developed relies on its application of Kalman fil-

tering to model the disease dynamics. Kalman filtering is a technique for identifying

signal in the presence of measurement and process noise [73]. Other modeling tech-

niques, such as Markov chains [132], [65], have been used to model disease dynamics;

however, such techniques do not extract noise to estimate the true value of the disease

variables. The Kalman filter approach has been used to estimate pulmonary blood

flow [22], track cardiovascular signals [105], continuously monitor glucose levels [85],

and monitor prostate specific antigen levels in prostate cancer patients [87]. These

applications of the Kalman filter are used for predicting important health metrics,

but the relationship between filtered estimates of these metrics and significant disease

progression identification has not yet been modeled. Hence, in our statistical clas-

sification algorithm, we combine GEE for logisitic regression with Kalman filtered

estimates to both reduce noise and account for correlation.

The key contribution of this work is the utilization of Kalman filter estimates of

patient health metrics in logistic regression models. We show that our classification

algorithm improves significant disease progression identification compared to logistic

regression models constructed using raw clinical observations. Furthermore, Kalman

filter estimates explicitly account for process and measurement noise inherent in

clinical data, making these estimates more informative than raw observations alone.

This is of particular interest to clinicians who must decide when to monitor patients

and select treatments based on the patient’s likelihood of progression. While our

initial application is to patients with OAG, this methodology is applicable to other

chronic diseases.
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2.3 Methods

Our proposed methodology combines an understanding of system dynamics prop-

erties through a Kalman filter approach with the marginal response technique of GEE

to estimate the true value of clinical observations and to improve the ability of the

logistic regression models to identify significant OAG progression. Our methodology

is as follows: first, we build our dataset for analysis from clinical observations of a

randomized clinical trial of OAG patients. Next, we construct a robust definition of

significant OAG progression based on the knowledge of subject matter experts. We

then apply Kalman filtering to the repeated measures data of the large-scale random-

ized controlled clinical trial to estimate the true values of variables believed to be

correlated to significant OAG progression. The GEE with a logit link function is then

applied to the filtered data to develop a probability function for significant OAG pro-

gression. Finally, through cross validation, we measure sensitivity and specificity and

calculate the area under the receiver operating characteristic (ROC) curve (AUC)

to evaluate the accuracy of the probability function at identifying significant OAG

progression.

Analyses were run using R version 2.12.2 and MATLAB version 7.7. For all

analyses, p < 0.05 was considered statistically significant.

2.3.1 Data

The data set used for parameterization and validation of our proposed method-

ology came from the Collaborative Initial Glaucoma Treatment Study (CIGTS).

CIGTS provided clinical visit data for patients with early to moderate OAG over 10

years. All patients were seen approximately every 6 months following initial inter-

vention to have a VF test and IOP check. Longitudinal MD and PSD values from
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VF tests, along with longitudinal IOP measurements, were obtained for each patient

from the clinical trial data. From the longitudinal measurements, we calculated ve-

locities and accelerations for MD, PSD, and IOP for every patient at each visit. We

also extracted demographic information (age, sex, and race) for every patient in the

clinical trial.

Our inclusion criteria required patients to have at least 4 follow-up VF tests and

IOP checks after initial intervention. We also required the patient’s VF test data to

include information on each individual light sensitivity point in order to apply our

progression definition. Further, patients were required to have been initially treated

with medical therapy. Patients were censored when they left the clinical trial or if

they underwent trabeculectomy or argon laser trabeculoplasty (ALT).

2.3.2 Progression Labeling

Our modeling approach used repeated measures data from a randomized clinical

trial to obtain information about the evolution of OAG over time. Given the set of

longitudinal data obtained sequentially for each patient over the course of the clinical

trial, we used the input of subject matter experts to retrospectively identify patients

that experienced a significant change in disease characteristics that would warrant

clinical intervention. It is important to note that our definition of significant disease

progression is meant to serve as an alert to clinicians. Clinicians use the information

obtained from the models along with their experience and patient-specific factors to

ultimately decree how to best care for a particular OAG patient.

A large drop in MD is generally accepted as an instance of OAG progression.

Furthermore, we used the Hodapp-Anderson-Parish (HAP) classification [69] in our

definition of significant OAG progression. Patients were labeled as experiencing

progression at visit j when there was a loss of ≥ 3 decibels (dB) of mean deviation
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(MD) with respect to baseline MD at visit j and this loss of MD also occured for

some future visit k : k > j or if the patient shifted upward in HAP class (e.g.

moderate to severe). We applied this definition to all patients in our dataset. This

definition of progression requires both significant change in disease characteristics at

the particular visit and a validation of this change in some future visit. Validation

of the loss of MD at a future visit mitigates the chance of erroneously concluding a

patient is progressing or not progressing due to noise in the data. In practice, this

added level of validation necessitates the development of an OAG disease progression

probability function, since knowledge about future visits is not available to clinicians

when identifying whether a patient has progressed.

Our definition of OAG progression (using either a validated 3 dB decline in MD or

worsening based on HAP criteria) was compared against other suggested definitions

of OAG progression (validated decline of 3 dB in MD alone [108], progression based

on HAP criteria alone [69], and a point-wise linear regression method for progression

detection [113]) and the model performed well irrespective of the OAG progression

definition chosen. Given our interest in identifying global worsening of visual field

from glaucoma as well as segmental areas of the visual field loss from glaucoma

we opted to use the more encompassing progression definition, characterized as a

validated decline in MD of 3 dB from baseline or worsening based on HAP criteria

for our analyses.

2.3.3 Application of Kalman Filter

The raw measurements obtained from sequential testing of OAG patients can

be susceptible to process and measurement noise. To mitigate the effect of process

and measurement noise, we utilized a Kalman filter approach to estimate the true

value for observations obtained from VF and IOP tests. The Kalman filter utilizes
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recursive mathematical equations to optimally estimate the mean and covariance

parameters of a process to characterize the state of the disease system [73]. The

disease state can be multidimensional. We considered our state, αi,j ∈ <n, to be the

value of OAG-related variables (MD, PSD, IOP, and their respective velocities and

accelerations) at the jth observation time for patient i. The Kalman filter assumes

the state is a Gaussian random variable and that the evolution of the disease state

is governed by a linear stochastic difference equation:

αi,j = Tαi,j−1 + wi,j−1(2.1)

Equation (2.1) represents the disease state, αi,j, of patient i at the current period

j, as a transformation of the state of the last period, αi,j−1, according to the transi-

tion matrix T, plus Gaussian process noise, wi,j−1, with mean 0. Additionally, the

covariance of the disease state variables for the current period, Σi,j, is also governed

by the transition matrix T, plus the covariance matrix of the process noise, Q.

Σi,j = TΣi,j−1T
′ + Q(2.2)

Moreover, the true state cannot be directly measured. Instead, the clinical observations, zi,j,

are assumed to be a linear function of the state, αi,j, transformed by the matrix H

plus Gaussian measurement noise, vi,j, with mean 0:

zi,j = Hαi,j + vi,j

We obtained state estimates, α̂i,j of the true state αi,j for each patient’s visit by

recursively predicting the disease state values using a population-based understand-

ing of OAG mechanics (i.e. parameterized transition and covariance matrices) and

updating the estimates to reflect the patient’s particular disease evolution [73]. First,

equation (1) was used to forecast the patient’s disease state in the next period. The
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Kalman filter then used the patient’s observed disease state in order to update the

estimate of the true state,α̂i,j. This personalized trajectory process was repeated for

each patient, over the course of the patient’s duration in the clinical trial, to obtain

the best estimates of the patient’s state at each observation period. This procedure

accounted for the inherent process and measurement noise to provide information to

the decision makers that better reflects the actual disease state of each patient.

The final Kalman filter was developed using an expectation maximization (EM)

algorithm for parameter estimation [57].

2.3.4 Generalized Estimating Equations

We next used GEE for logistic regression to develop the probability function

for significant OAG progression. It is an extension of generalized linear models

to repeated measures data analysis using quasi-likelihood estimation [161]. GEE

is a semiparametric regression technique that uses an iterative algorithm, Newton-

Rhapsody, to estimate the coefficient parameters. Unlike linear mixed effects models,

GEE is robust to the specification of the correlation structure and requires only the

correct specification of the marginal means to obtain consistent and asymptotically

normal parameter estimates [60].

Let yi,j be the response (i.e. progression label) for patient i at time j, and let

µi,j be the expected value of yi,j. The GEE approach assumes independence at the

patient-level and relates the marginal response, µi,j, to a linear combination of the

covariates, xi,j, by the link function, g(·).

g(µi,j) = xTi,jβ(2.3)

where β is a p× 1 vector of unknown regression coefficients.

Traditionally, the covariates used in GEE are obtained from the raw observed
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measurements zi,j. Our proposed methodology called for using the state estimates

α̂i,j as the input to our model. We compared the performance of the GEE model

which uses α̂i,j (Kalman filter estimates) against the GEE model which uses zi,j (raw

observations).

Through the GEE framework, we considered the variance of the response variable,

V (yi,j), to be a function, v(·), of the mean response, µi,j:

V (yi,j) = v(µi,j)φ(2.4)

where v(·) is a known variance function and φ is a possibly unknown scale param-

eter.

Because of our Bernoulli response variable, i.e. 1 for progression and 0 for nonpro-

gression, we used the logit link function, logit variance function, and scale parameter,

φ = 1:

g(µi,j) = log[
µi,j

1− µi,j
](2.5)

v(µi,j) = µi,j(1− µi,j)(2.6)

Repeated measures data are inherently correlated, with independence at the pa-

tient level. GEE uses a n× n “working” correlation matrix, Zi, for each patient’s

sequence of response variables yi, to account for this inherent correlation. We uti-

lized an autoregressive correlation structure. The autoregressive correlation struc-

ture assumes a first-order relationship between the measurements. The correlation

depends on the magnitude of the time difference between the measurements:

Corr(yi,s, yi,t) = ρ|s−t|, ρ ∈ (−1, 1)(2.7)

The final covariate set for the logistic regression was obtained via forward variable

selection. Variable selection was initialized with MD, PSD, and change in MD. Chi-
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squared tests were used to evaluate the benefit of adding a single variable to the

model. We iteratively added the variable with the smallest Chi-square test p-value

to the model until no new variables were statistically significant (α = 0.10).

2.3.5 Model Performance

To assess the performance of the logistic regression models, we developed receiver

operating characteristic (ROC) curves. 10-fold cross validation was performed to

calculate sensitivity and specificities at various discrimination thresholds. Receiver

operating characteristic (ROC) curves were created using the average sensitivities

and specifities across the 10-fold cross validation to compare the performance of

the logistic regression model with raw observations as input versus the model with

Kalman filter state estimates as input. Estimates of the area under the ROC curve

(AUC) were obtained for each iteration of the 10-fold cross validation.

2.4 Results

From the CIGTS data, 90 patients satisfied our inclusion criteria. The mean

(standard deviation) number of visits for patients who met the inclusion criteria was

15.1 (2.6) visits. Nearly 99% of the patients had at least 8 follow-up visits.

We calculated the overall patient mean (and standard deviation) of every variable

(Kalman filter estimates and raw observations) from the VF and IOP tests (Table 2.1)

for instances of progression and nonprogression separately. We note that generally

the difference between the progressing and nonprogressing means for a variable is

larger for the Kalman filter estimates than in the raw measurement data set, e.g.

the difference between progressing and nonprogressing mean PSD is 7.643 for the

Kalman filter estimates and 4.831 for the raw observations. The increased difference

between progressing and nonprogressing means for a variable in the Kalman filter
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data set is due to the linear system dynamics framework of the Kalman filter. As

time increases, the linear trajectory of the Kalman filter results in more disparate

variable values between nonprogressing and progressing instances compared to the

“noisy” trajectories in the raw observations data set.

Kalman Filter Estimates Raw Observations
Variable Progressing Nonprogressing Progressing Nonprogressing
MD -8.75 (7.38) 1.24 (4.79) -8.55 (4.30) -2.31 (2.54)
MD
Velocity

1.94 (3.78) 2.37 (2.50) -.41 (1.43) 0.01 (0.94)

MD
Acceleration

2.44 (3.78) 2.31 (2.540) -.04 (1.14) -0.01 (0.85)

IOP 18.01 (5.30) 19.25 (5.14) 17.47 (3.82) 17.62 (3.10)
IOP
Velocity

2.50 (3.87) 2.48 (3.02) -.03 (2.00) -0.10 (1.64)

IOP
Acceleration

2.42 (3.56) 2.42 (2.74) .05 (1.67) 0.01 (1.49)

PSD 12.57 (6.31) 4.93 (4.03) 8.20 (3.45) 3.37 (2.17)
Baseline
MD

-5.35 (3.71) -3.15 (2.60) -5.35 (3.71) -3.15 (2.60)

Baseline
IOP

28.070 (5.70) 27.69 (5.04) 28.07 (5.70) 27.69 (5.04)

MD Change -3.41 (6.56) 4.39 (3.52) -3.21 (4.00) 0.84 (1.85)
IOP Change -10.06 (7.53) -8.44 (7.10) -10.60 (5.21) -10.07 (4.49)

Table 2.1: Summary statistics for Kalman filter and raw observations, separated by progressing and
nonprogressing instances.

The final logistic regression models (an average of the 10-fold cross validation) are

summarized in Table 2.2. Both models use the same set of final variables, however

the odds ratios are larger for the model trained on Kalman filter estimates than the

odds ratios for the model trained on raw observations. For instance, the odds ratio

of PSD is 1.344 for the logistic regression model based on Kalman filter estimates

and 1.107 for the logistic regression model based on raw observations. Analysis of

the logistic regression fitted values, i.e. the estimated probability of progression, is

presented in Table 2.3. It is important to note that the average estimated probability

of progression of the Kalman filter progressing instances (0.738) is much higher than

the average for the raw observations progressing instances (0.498). Additionally, the
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difference between average fitted values of progressing and nonprogressing instances

is much greater for the Kalman filter estimates (95% CI 0.611,0.676) than for the raw

observations data set (95% CI 0.290,0.337). This increased difference of average fitted

values between progressing and nonprogressing instances supports our hypothesis

that Kalman filtered estimates allows for improved distinction of significant disease

progression.

Kalman Filter Estimates Raw Observations
Variable Coefficient Odds Ratio P Value Coefficient Odds Ratio P Value
Intercept -3.492 0.030 <0.001 -1.966 0.140 <0.001
MD -0.554 0.575 <0.001 -0.178 0.837 <0.001
MD Velocity 0.193 1.213 0.06 0.071 1.074 0.04
Baseline MD 0.813 2.256 <0.001 -0.009 0.991 0.86
PSD 0.297 1.345 <0.001 0.102 1.108 0.005
IOP 0.076 1.079 0.03 -0.024 0.976 0.03

Table 2.2: Final covariates for the Kalman filter and raw observations logistic regression models.

Model Progressing Nonprogressing 95% Difference CI
Kalman Filter Estimates 0.738 0.095 (0.611, 0.676)
Raw Observations 0.498 0.185 (0.290, 0.337)

Table 2.3: Fitted probabilities for progressing and nonprogressing instances from the Kalman filter
and raw observations logistic regression models.

Finally, the ROC curve, Figure 2.1, illustrates that by first filtering the data us-

ing the Kalman filter model, we can achieve higher sensitivity and specificity than

a model based on the raw observations. For example, if we select 95% sensitivity

as our goal, we can obtain 83% specificity using the Kalman filter model but only

39% specificity using the raw observations model. At 90% sensitivity, the Kalman

filter achieves 88% specificity while the raw observations model achieves 66% speci-

ficity. The mean (and variance) of the estimated AUC for the Kalman filter and raw

observations models are 0.961 (0.002) and 0.889 (0.013), respectively. Hence, using

the probability function generated via Kalman filter state estimates and GEE for

logistic regression, we are able to more accurately classify patients and instances as
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experiencing or not experiencing significant OAG progression.

Kalman Filter Estimates 
Logistic Regression 

Raw Observations 
Logistic Regression 

Figure 2.1: Receiver operating characteristic (ROC) curve for the Kalman filter and raw observa-
tions logistic regression models.

2.5 Discussion

Using Kalman filter forecasts in determinations of when patients with OAG should

be observed by their physician required the development of a mapping from the fil-

tered health metrics to a probability of progression. The application of GEE for lo-

gistic regression on Kalman filtered longitudinal observations of patients with OAG

resulted in improved ability to identify significant glaucoma progression as compared

to the model generated using the raw clinical trial data. The Kalman filter model

is able to better detect relationships between health metrics and the more complex
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disease progression definition than the logistic regression model using raw observa-

tions as inputs. We believe that as the progression definition becomes more heavily

influenced by systematic process and measurement noise, a logistic regression model

parameterized on Kalman filter estimates of the input will become increasingly more

beneficial for detecting disease progression.

The methodology we present here takes advantage of state estimation and the lin-

ear system model of the Kalman filter, in conjunction with the marginal response of

GEE, to improve the logistic regression model’s ability to correctly classify patients.

The Kalman filter model performs at higher specificity and sensitivities for signif-

icant disease progression classification due to the greater difference in mean fitted

values (i.e. average estimated probability of progression) between progressing and

nonprogressing instances. As we iterate through potential probability thresholds for

classifying instances/patients as progressing or nonprogressing, the greater difference

in mean fitted values creates a larger set of thresholds for which there are fewer false

negatives and false positives. The lower rate of false negatives and false positives

leads to improved sensitivity and specificity for the Kalman filter model at detecting

significant glaucoma progression in comparison to the raw observations.

The difference of mean fitted values for the Kalman filter model is larger because

of the greater in magnitude covariate coefficients and higher odds ratios of the model

covariates. With higher odds ratios, each unit increase in a predictive covariate

increases the probability of progression more greatly for the Kalman filter model

than it does for the raw observations model.

The greater in magnitude covariate coefficients and higher odds ratios are ex-

plained by the linear system model the Kalman filter uses for state estimation. In

the case of glaucoma, IOP decreases over time for treated patients and mean devi-
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ation becomes more negative since VF loss cannot be reversed. The trend creates

the larger difference in mean variable values as the number of measurements in-

creases. The “noisy” nature of the raw observations creates fluctuation around this

expected trend. Because the GEE approach is concerned with population-averaged

(i.e. the mean response) variable, we expect covariate coefficients to be greater in

magnitude when the difference between the mean variable value for progression and

nonprogression instances increases.

The increased standard deviation of the mean value of the Kalman filter estimates

is due to the Kalman filter’s recognizing each patient’s individual disease realization.

As the Kalman filter updates the state estimates to reflect a patient’s particular

characteristics, that patient’s trajectory becomes more dissimilar to the trajectories

of other patients. The “noisy” raw observations mask these dissimilar trajectories

which results in clustered mean variable values for progressing or nonprogressing

instances.

Increased sensitivity and specificity of classification models improves clinical deci-

sion making by more accurately identifying significant disease progression. Clinicians

who are able to correctly identify patients who experience significant glaucoma pro-

gression can make more informed decisions, such as improving monitoring schedules

and improving treatment decisions. Additionally, the increased accuracy allows clin-

icians to utilize the statistical model without fearing high rates of misclassification.

Our proposed methodology is limited by the linear system dynamics model. Glau-

coma progresses relatively slowly, thus changes in disease state can be estimated well

by a linear model. For more rapidly progressing diseases, if the time between patient

observations is sufficiently small, the disease progression mechanics can potentially

be estimated by a linear dynamics model. The Kalman filter also assumes the state
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estimates, noise and raw observations come from a Gaussian distribution. This as-

sumption is reasonable within a range around the mean (2 standard deviations) for

bounded variables, e.g. IOP.

The application of our methodology to CIGTS data is limited by the fact that this

trial took place between 1993 and 2003. Since 2003, there have been many advances

in the field of diagnostic testing for glaucoma including testing to check for damage

to the retinal nerve fiber layer tissue using optical coherence tomography (OCT) and

additional progression detection software on the visual field machines such as Guided

Progression Analysis (GPA). In the future, we plan to use data from other sources

to be able to integrate data from OCT and GPA into our models and progression

definition.

2.6 Extension: Dynamic and Personalized Monitoring Schedules

Now that we have illustrated the use of Kalman filtering for noise reduction in sta-

tistical classification models, we next consider how the improved classification model

can be used within the framework developed by [64] to better manage glaucoma

patients. In particular, we considered how the classification model can inform moni-

toring decisions for individual patients. Monitoring decisions include deciding when

a patient should be tested by the VF and IOP devices. When patients are tested too

frequently, they undergo unnecessary testing and stress. However, when testing is

too infrequent, clinicians may miss observing disease progression and miss the chance

to intervene. The decision of how frequently to monitor a patient is directly affected

by process and measurement noise. Therefore, our approach of combining noise re-

duction with statistical classification can enhance a clinician’s ability to properly

determine the monitoring frequency. In this section, our analysis has been expanded
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by adding another source of randomized clinical trial data: the Advanced Glaucoma

Intervention Study (AGIS). Together with CIGTS, these two clinical trials provide

information on the disease dynamics for patients with early to advanced glaucoma.

Since the AGIS data did not have information on light sensitivities of individual

points of the eye, we were unable to continue using the HAP classification as part of

our progression definition. Our revised progression definition is based on a validated

drop in MD of at least 3 dB with respect to baseline MD [108].

2.6.1 Methods

The algorithm steps are illustrated in Figure 2.2. The algorithm uses information

about the underlying population and the particular patients test results to estimate

the patients true MD, IOP, PSD and the respective velocities and accelerations of

these parameters. These key clinical values are then forecasted using the Kalman

filter to compute confidence regions, centered around the estimate of the true values,

at future time periods.

We then use the classification model derived in Section 2.3 to assess the prob-

ability, over the entire confidence region, that the patient will experience disease

progression at the future time periods. If the maximum probability of progression

for a confidence region exceeds a given threshold, the algorithm calls for a VF and

IOP test at that future time period. Figure 2.5 provides a graphical representation

of how the progression threshold determines the Time to Next Test (TNT). Once the

VF and IOP tests are performed, the algorithm receives the new test measurements,

the MD, PSD, IOP and the respective velocities and accelerations are updated us-

ing the Kalman filter. The algorithm then repeats this process of forecasting the

patients disease parameters and computing the maximum probability of progression

to determine when each patient should next be monitored.
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Figure 2.2: The Time to Next Test (TNT) algorithm flow diagram.

Figure 2.3: Probability threshold and the TNT algorithm



25

We compared the performance of our scheduling algorithm against 1 year, 1.5 year

and 2 year fixed interval testing schedules for performing VFs and IOPs. To assess

how well the algorithm performed relative to the fixed testing intervals, we compared:

(i) the average number of examinations (VFs and IOP measurements) performed per

patient per year; (ii) efficiency in testing (percent of instances where OAG progression

was noted at the time a VF test and IOP measurement was scheduled); and (iii)

diagnostic delay (average number of months that a patient’s glaucoma progression

went undetected between examinations). We used asymptotic values for efficiency

(e.g. 50% for 1 year fixed) and diagnostic delay (e.g. 3 months for 1 year fixed) as the

performance measures for fixed interval schedules. This algorithm was applied to the

patient until a visit was scheduled on or after the date the patient first experienced

glaucoma progression.

To validate and test our methodology, we divided the CIGTS and AGIS trial data

equally into a training set (for parameterizing models) and testing set (for validating

and testing the models). We randomly assigned CIGTS/AGIS participants to these

sets to assure equal representation of both groups in the training and testing sets.

We performed this randomization process 25 times and calibrated the Kalman filter

for each randomization. The prediction error of the Kalman filter was consistently

unbiased across the randomizations. We present here the numerical results of one of

these randomizations.

2.6.2 Results

A total of 571 participants (571 eyes) with OAG met the study inclusion criteria.

Table 2.4 presents a summary of the participants. Of these, 266 (47%) came from

CIGTS and 305 (53%) came from AGIS. The mean (standard deviation) age of the

study participants at baseline was 63.2 (10.9) years. The participants included 272
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males (48%) and 299 females (52%). There were 263 whites (46%), 288 blacks (50%)

and 20 were classified as some other race. Participants were followed in the trials for

an average of 6.3 (2.8) years. The training dataset included 286 eyes of 286 patients

and the testing dataset included 285 eyes of 285 patients. There was no statistically

significant difference in the demographic characteristics, number of visits, or clinical

parameters (mean MD, PSD, IOP) between individuals in the training and testing

datasets (p > 0.05 for all comparisons) , except there were slightly more blacks in

the training set than the testing set (154 vs. 134; p = 0.05).

Training Testing P Value
Variable n % n %
Number of Eyes 286 285 0.48
Number of Participants 286 285 0.48
Number from CIGTS 131 46 135 47 0.64
Number from AGIS 155 54 150 53 0.34
Sex Male 135 47 137 48 0.57

Female 151 53 148 52 0.40
Race White 123 43 140 49 0.93

Black 154 54 134 47 0.05
Other 9 3 11 4 0.74

Total Number of Visits 3158 3227 0.89
Number of Progression
Instances

163 166 0.59

Mean (SD) Number of
Visits per Patient

11.0 (5.0) 11.3 (5.3) 0.4

Mean (SD) Age 64.2(10.9) 64.3 (11.0) 0.8
Kalman Filter Variables Initial MD -7.55 (3.74) -7.65 (3.73) 0.91

Initial PSD 6.49 (3.39) 6.41 (3.83) 0.54
Initial IOP 17.61 (0.22) 17.7 (0.18) 0.28
MD -8.30 (2.04) -8.27 (1.95) 0.96
MD Velocity -0.04 (0.21) -0.03 (0.20) 0.23
MD Acceleration -0.01 (0.28) -0.02 (0.26) 0.65
PSD 6.58 (1.18) 6.70 (1.13) 0.69
PSD Velocity 0.01 (0.13) 0.01 (0.12) 0.74
PSD Acceleration 0.00 (0.19) 0.01 (0.17) 0.50
IOP 17.43 (2.64) 17.14 (2.63) 0.23
IOP Velocity 0.00 (0.29) 0 (0.31) 0.67
IOP Acceleration 0.00 (0.42) 0.01 (0.41) 0.62

Table 2.4: Summary statistics for AGIS/CIGTS data used in TNT algorithm.

Figure 2.4 compares the average efficiency and diagnostic delay of the TNT algo-

rithm and 1, 1.5, and 2 year fixed testing intervals. For the same average number of
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tests as the 1, 1.5, and 2 year fixed testing intervals, the TNT algorithm achieved

higher efficiency (p<0.0001 for all comparisons) and reduced diagnostic delay (p=

0.02, <0.0001, and <0.0001 respectively) for detecting OAG progression. For exam-

ple, when comparing the 1 year fixed testing interval against the TNT algorithm, for

the same average number of tests (4.7 tests), the TNT algorithm increased efficiency

by 29% and reduced diagnostic delay at OAG progression detection by 1.7 months.

Table 2.5 compares the fixed yearly schedule against the TNT algorithm.

Performance Measures Fixed Interval Testing TNT Algorithm
Average Number of Tests per Year 1.00 1.12
Average Efficiency (%) 50 79
Average Diagnostic Delay (months) 3.00 1.29

Table 2.5: Performance measures for TNT algorithm and fixed yearly testing.

We also analyzed the subset of participants enrolled in both trials that experi-

enced OAG progression as compared with those who never experienced glaucoma

progression. Overall, 116 trial participants in the testing dataset were noted to have

OAG progression and 169 did not exhibit progression. Among those in the testing

dataset who progressed, the mean (SD) time from study enrollment to first record

of OAG progression was 45.7 (23.4) months. Since efficiency and diagnostic delay

assess the algorithm’s ability to schedule follow-up tests at times when there was ev-

idence of actual OAG progression, these performance measures were not applicable

for the subset of participants who did not exhibit disease progression. The algorithm

scheduled more tests per year for patients who were exhibiting OAG progression (1.3

tests per year) than others who were stable (1.0 test per year) (p<0.0001).

We further studied how the TNT algorithm performed on CIGTS and AGIS

participants in the testing dataset separately. As one might expect, the TNT al-

gorithm scheduled more tests for AGIS participants than CIGTS participants (1.3

average tests per year vs. 0.9 average tests per year; p<0.0001). The TNT algo-
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Figure 2.4: Comparison of the TNT algorithm and fixed-schedule performance measures.

rithm achieved marginally improved efficiency (83% vs. 71%; p= 0.06) for AGIS

compared with CIGTS participants, and the efficiency at OAG progression detection

for both groups were better than the efficiency achieved using 1 year fixed testing

intervals (50%). Diagnostic delay at detecting OAG progression (1.0 months vs. 1.9

months; p= 0.09) was slightly shorter for AGIS participants, though this did not

reach statistical significance.
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Additional analyses were performed to see how well the TNT algorithm performed

on black vs. white patients from the trials. We found that the TNT algorithm

performed more tests on average for black patients than white patients (5.31 vs.

4.24; p=0.03). The TNT algorithm performed equally well in terms of efficiency

and diagnostic delay (p=0.10 and 0.20, respectively) for black and white patients.

Further analysis of the Kalman filter and the new logistic regression model can be

found in Section 2.8.

2.6.3 Discussion

Comparing the output generated from the algorithm with fixed testing intervals

of 1, 1.5, and 2 years, we show that the algorithm is capable of detecting OAG

progression more efficiently and with reduced diagnostic delay compared with fixed

interval schedules, without the need for additional tests. The model appears to

work well for those with mild to moderate OAG (participants in CIGTS) as well as

for those with more advanced disease (participants in AGIS), and performs well on

the subset of trial participants who did and did not exhibit OAG progression, and

forecasts well for white and black trial participants.

There are several advantages to using this approach to aid in the evaluating and

monitoring of patients with OAG, rather than simply testing all patients at fixed

intervals or relying on one’s gestalt of how often to monitor a given patient. By

incorporating data from a population of patients with OAG, the Kalman filter is

able to identify and filter out systematic noise (e.g. measurement error, variability

in test performance) that is known to exist in IOP readings and VF test results.

Second, the Kalman filter makes use of data from sequential visits to account for the

disease dynamics of each individual patient, and continually updates the model with

new test results after each visit to determine the timing of future testing. Third, the
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algorithm is scalable and can include additional data from structural tests such as

optical coherence tomography or confocal scanning laser ophthalmoscopy, as well as

other quantifiable data elements. Fourth, since there is presently no consensus on the

optimal approach to define OAG progression, the model is flexible enough to be able

to make predictions of progression using different definitions. Finally, the algorithm

can be tailored by the eye care provider to be more or less aggressive in testing for

disease progression. For example, the algorithm can be modified so that a clinician

can choose to increase the threshold for detecting OAG progression for an 85 year

old patient with early OAG who has multiple medical comorbidities, if she thinks

this patient is unlikely to go blind from the disease, so as to not overburden such a

patient with frequent tests. Alternatively, for a 40 year old monocular patient with

severe OAG, the clinician might opt to lower the threshold so that the algorithm can

identify the first hint of possible disease progression. From a societal perspective, the

use of Kalman filter forecasting can improve the quality of care offered to patients

by aiding in more timely identification of those who are exhibiting OAG progression

and require additional treatment while simultaneously limiting patient burden and

added costs of performing unnecessary testing.

There are several study limitations that need to be acknowledged. First, the types

of parameters we were able to incorporate into the Kalman filter we developed were

limited to those that were measured in the CIGTS and AGIS studies. Information

that we would have liked to include in the algorithm but was not available from

those trials includes pachymetry readings, optical coherence tomography measure-

ments, and other quantifiable measures of the optic nerve or retinal nerve fiber layer.

In the future we hope to obtain access to datasets that longitudinally capture infor-

mation on these parameters so we can refine our algorithm, which should enhance its



31

ability to identify persons who are at increased risk of OAG progression. Second, we

have yet to test this algorithm on other groups of patients such as those with ocular

hypertension, those with early pre-perimetric glaucoma, those with other forms of

glaucoma, and those who underwent incisional glaucoma surgery. Further valida-

tion is necessary to determine how well the algorithm predicts disease progression

and need for monitoring in these groups. Third, the timing of the follow-up exam-

inations in AGIS and CIGTS restricted our algorithms scheduling decisions to no

more frequently than every 6 months. If follow-up examination data for smaller time

windows, e.g. every 1 month, were available, our algorithm could make scheduling

decisions as often as every month. As we shorten the time interval allowed in schedul-

ing (e.g. 6 months to 1 month), we expect the algorithm to achieve higher efficiency

and lower diagnostic delay. In particular, this would have large gains in the improve-

ment of our TNT algorithm for diagnostic delay. The exact gains cannot be known

until we have tested our TNT algorithm on data collected at the higher frequency

of every 1 or 3 months. And lastly, patient adherence to prescribed medications

is likely higher for participants in AGIS and CIGTS compared to those routinely

care for in clinical practice. When applied to patients seen in clinical practice, the

increased IOP variability due to lower medication adherence would likely decrease

the predictive capability of the Kalman filter. When we further validate the model

on another sample of patients who were not enrolled in a clinical trial we will be able

to explore this further.

2.7 Conclusion

In this research, we applied a linear system dynamics model approach, using a

Kalman filter, to estimate true measurement values for variables which have both
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measurement and process noise. Filtering techniques are important for true mea-

surement estimation for medical decision making and have been shown to result in

improved significant disease progression classification when utilizing GEE for logistic

regression with repeated measures data, as demonstrated in our modeling of OAG

progression dynamics. Due to process and measurement noise, only after having seen

future observations can clinicians retrospectively assess whether true progression has

occurred. Logistic regression models that directly consider those noises allow for

the prospective calculation of the probability of experiencing progression. Further-

more, for complex progression definitions, logistic regression enables a reduction in

the number of variables to consider, which is important in guiding clinical decisions.

We showed that our statistical classification approach reduces misclassification error

via noise extraction. Next, we extended this research to study how an improved

classification model can be used to better monitor glaucoma patients. We combined

the classification model with the Kalman filter forecasts to develop dynamic and

personalized monitoring schedules that outperform the current practice of fixed in-

terval schedules. While this methodology has been applied to OAG, the techniques

are applicable to many other chronic diseases, particularly those diseases whose dy-

namics can be modeled effectively by a linear system and whose biomarkers can be

reasonably approximated by a Gaussian distribution.
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2.8 Appendix

Table 2.6 presents the coefficients, standard errors, and p-values of the covariates

incorporated into the logistic regression, which we then used to assess the probability

of OAG progression for each patient. As expected, patients with more advanced

glaucoma as captured on perimetry (a more negative MD or a more positive PSD) had

a higher probability of progression compared to those with less advanced disease. In

the regression model, each of the covariates in Table 2.6 was found to be significantly

associated with OAG progression (p < 0.04 for each covariate).

Covariate Coefficient Standard Error P Value
Intercept -6.004 0.723 <0.001
Mean Deviation (dB) -0.057 0.017 0.001
Mean Deviation Velocity (dB per month) -4.054 0.666 <0.001

Mean Deviation Acceleration (dB per month2) -1.183 0.326 <0.001
Baseline Pattern Standard Deviation (dB) -0.162 0.078 0.039
Pattern Standard Deviation (dB) 0.154 0.075 0.039
Age (years) 0.026 0.103 0.013

Table 2.6: Final covariates for logistic regression in TNT algorithm.

To validate the fit and predictive ability of the Kalman filter for assessing OAG

progression, we calculated the 95% confidence intervals for the mean prediction errors

of MD, PSD, and IOP and their respective velocities and accelerations across all

study participants in the testing dataset. Errors were calculated at various prediction

lengths (6 months, 2 years, and 5 years into the future). Table 2.7 shows that the

mean differences between the Kalman filter predictions and the observed values from

the trials were close to zero across various prediction lengths (α = 0.05), supporting

the accuracy of the Kalman filter predictions.

We also compared the observed values of MD from each clinical trial participant

in the testing dataset against the filtered and predicted values of MD generated by

the Kalman filter. The Kalman filter forecasts one period ahead and updates the
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95% Confidence Interval
Variable 6 Months 2 Years 5 Years
Present MD (-0.1493, 0.0329) (-0.1294, 0.1361) (-0.2979, 0.3882)
MD Velocity (-0.0163, -0.0003) (-0.0175, 0.0024) (-0.0361, 0.0000)
Present PSD (0.0163, 0.1227) (0.1308, 0.2880) (0.4675, 0.8394)
PSD Velocity (0.0065, 0.0168) (0.0039, 0.0166) (-0.0028, 0.0195)
Present IOP (-0.2487, 0.0121) (-0.2751, 0.0792) (-0.6454, 0.0519)
IOP Velocity (-0.0033, 0.0194) (-0.0117, 0.0185) (-0.0365, 0.0175)

Table 2.7: Prediction error for the Kalman filter.

forecasts with the clinical observation for that period to obtain the filtered estimate

of MD at each sequential trial visit. Predicted MD values are those obtained from

the Kalman filter without incorporating future clinical observations. To illustrate the

Kalman filters forecasting ability, we present in Figure ?? four study participants,

two of whom exhibited OAG progression and two which experienced no progression

during their enrollment in one of the clinical trials. We also estimated 90% confidence

intervals for the predicted values toward the end of each participant’s enrollment in

the clinical trial. We chose the narrower 90% confidence intervals for the predicted

values to demonstrate how strong the predictive power of the Kalman filter actually

is. Since all observations fell well within the 90% confidence intervals, the observa-

tions would also fall within the wider 95% confidence intervals. We found that at

all future time points, the Kalman filter forecasts for MD were close to the observed

MD values obtained when the participant took the test during the clinical trial; our

confidence intervals for predicted MD fully encompassed the observed MD values,

even 3.5 years into the future. Similar analyses were performed on all patients in

the testing set for PSD and IOP. Figure 2.6 shows an example of how the algorithm

forecasts future PSD and IOP measurements.
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Figure 2.5: Kalman filter trajectories of mean deviation (MD).
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Figure 2.6: Kalman filter trajectories of pattern standard deviation (PSD) and intraocular pressure
(IOP).



CHAPTER III

Treatment Planning for Cardiovascular Disease

In this chapter we discuss dynamic programming formulations for the optimal

long-term treatment of patients at risk for cardiovascular disease events, e.g. heart

attack and stroke. This research focuses on analyzing patient heterogeneity, which

includes disease risk factors and treatment consumption, in order to personalize the

treatment policies. Our work establishes the modeling framework for incorporating

patient heterogeneity, via conditional value-at-risk, to tailor the reward structure of

the dynamic program to the particular characteristics of the patient. The proper-

ties of the optimal and personalized treatment policies are studied, and the policies

are compared against current treatment guidelines using observational patient data.

Next, we extend our formulation to consider a different objective function and use

the new model to answer key clinical questions: (1) how does misestimation of treat-

ment disutility impact treatment decisions and patients and (2) how do time-varying

treatment benefit and disutility influence the timing of initial treatment.

3.1 Background

Heterogeneity in the stochastic outcome of control actions translates to variability

in rewards/costs accrued in a sequential decision making framework. Within a med-

ical decision making context, this heterogeneity occurs when differences in patient

37
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characteristics result in different outcomes for the same treatment. Heterogeneity

may arise due to variability in patient characteristics, how biological factors affect

disease response to treatment, as well as differing patient perception, risk sensitivity,

and other factors that impact the medication consumption of the patient. Failure to

identify and incorporate sources of heterogeneity may lead to improper specification

of the optimal control policy and suboptimal performance when used in practice.

This suboptimal performance can have strong and immediate consequences in med-

ical decision making. To address heterogeneity, we propose a general method which

utilizes a state-space inclusion of heterogeneity parameters to compute the expecta-

tions of truncated distributions. This robust approach enables both the identification

and exploitation of heterogeneity in the development of optimal treatment policies

and the understanding of how changes in heterogeneity parameters influence health

outcomes.

Heterogeneity in control action outcomes and the associated consequences are es-

pecially important in the context of lifetime treatment decisions for patients with

chronic disease. In the clinical setting, the observed variability in disease response to

cancer therapies [28] and HIV treatments [112] have become popular examples of the

need for tailoring treatment decisions to a patient’s particular characteristics [48].

Personalized medicine poses a challenge to clinicians [156] and an opportunity for op-

erations researchers to exploit these medical findings of heterogeneity to improve the

performance of treatment policies. When designing personalized treatment policies,

it is also important to consider the side-effects associated with the intensity of the

prescribed medications. For this reason, the total treatment intensity (or resource

utilization) should be constrained to prevent harm from increased side-effects under

the optimal treatment policies.
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We focus on modeling heterogeneity parameters and the corresponding patient-

specific treatment outcomes (e.g. disease response distributions) in a stochastic con-

trol problem for patients at risk of coronary heart disease (CHD) events. CHD is the

leading cause of death for men and women worldwide, and it caused approximately

1 out of 6 deaths in the United States in 2009 [77]. CHD is caused by atherosclerotic

plaques in the heart’s arteries. These plaques can lead to narrowing of the arteries,

but even more importantly, are prone to rupture. When plaques rupture, a blood

clot can form in the artery and block blood flow to the heart muscle downstream.

A heart attack (also called a myocardial infarction) occurs when heart muscle dies,

causing irreversible damage [128]. One of the most important and controllable risk

factor for cardiovascular disease is high blood pressure, i.e. hypertension [155]. More

than 42 million Americans have hypertension that warrants treatment [38]. The

U.S. guidelines for treating hypertension follow a treat-to-target (TTT) strategy

designed by the Joint National Committee (JNC) on Prevention, Detection, Evalua-

tion, and Treatment of High Blood Pressure [32]. Clinicians are advised to initialize

non-diabetic patients on a single antihypertensive medication if their systolic blood

pressure (SBP) is between 140 mmHg and 159 mmHg (stage 1 hypertension). If

their SBP is higher (stage 2 hypertension), clinicians are advised to start patients

on a two drug combination. Guidelines recommend changes in dosages of drugs or

the addition of drugs until the goal blood pressure of 140 mmHg (130 mmHg for

diabetic patients) is achieved. Aside from diabetes status, the TTT guidelines are

not sensitive to the patients particular disease risk factors which determine the like-

lihood that the patient will experience CHD events. Furthermore, only 53.1% of

persons with hypertension have achieved the target blood pressure [59]. Patient ad-

herence to prescribed hypertension treatments is, at least in part, to blame for poor
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hypertension control since controlled blood pressure is highly correlated with treat-

ment consumption (3.44 odds ratio of good blood pressure control among adherent

patients compared against nonadherent patients) [83].

The poor blood pressure control and high incidence of CHD death under the TTT

strategy indicates a need for evaluating changes to clinical management policy. Im-

proving health outcomes for hypertensive patients at risk for CHD events requires

a joint effort on the part of treatment guideline policymakers and health providers.

Treatment guideline policymakers should tailor guidelines to reflect patient hetero-

geneity, while health providers may consider interventions aimed at improving patient

adherence to the guidelines. To assist the efforts to improve the management of hy-

pertensive patients, we develop a model which incorporates heterogeneity in CHD

risk factors and treatment consumption. Figure 3.1 provides an overview of the key

features and decision makers involved in improving CHD patient health outcomes.

Within this context, we study three potential changes: (1) changes in treatment

guidelines under the current resource utilization, (2) intensification of resource uti-

lization, and (3) interventions aimed at improving treatment consumption.

Optimal treatment policy 
Between-patient 

heterogeneity 
Resource utilization 

Bounds on health outcomes 

Risk factors 
Treatment  

consumption 

Health providers & 

insurance companies 
Treatment guideline 

policymaker 

Figure 3.1: Decision makers involved in improving CHD patient health outcomes.



41

We start by formulating the lifetime hypertension treatment problem as a single

patient, finite-horizon, discrete-time Markov decision process (MDP). We apply this

model to each patient within a representative sample of the population. We char-

acterize heterogeneity between patients into two sources: risk factors (such as age,

sex, and diabetes) that directly impact disease progression, and factors (such as pa-

tient perception, risk sensitivity, education, and socioeconomic status) that impact

treatment consumption. The model accounts for heterogeneity in risk factors and

treatment consumption, as well as resource utilization, when deriving the optimal

policy that minimizes the patients expected weighted number of CHD events over

the planning horizon. To understand the role of treatment consumption, we consider

adherence to medication as a motivating example of treatment consumption in the

context of hypertension treatment planning. The MDP uses conditional value at risk

(CVaR) to model patient-specific treatment outcomes which are affected by hetero-

geneity. CVaR is a coherent risk measure that isolates subsections of the treatment

outcome distribution in order to personalize the expected benefit from treatment.

We then consider the perspective of a hypertension treatment guideline policy-

maker, such as the Joint National Committee that is tasked with studying hyper-

tension and making treatment recommendations. This committee may be comprised

of physicians, statisticians, epidemiologists, hospital administrators, and government

agency workers. This treatment guideline policymaker wants to determine optimal

and personalized treatment policies that account for heterogeneity across patients

while ensuring a fair comparison between the TTT strategy and new optimal treat-

ment policies. The guidelines may directly tailor treatments to each patients esti-

mated adherence or, alternatively, the guidelines may assume perfect adherence for

the entire population. The evaluation of the marginal benefit of resources is also of
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interest to the treatment guideline policymaker.

Finally, we investigate clinical policy changes from the perspective of a health

provider or insurance company that is considering implementing treatment consump-

tion improving interventions (e.g. pharmacist intervention [134], cultural education

[18], and messaging systems [68]). The provider wants to establish an upper bound

on the marginal benefit of improving the patient’s adherence to medication.

By using a unified framework for decision making and cardiovascular disease dy-

namics, treatment guideline policymakers and health providers can coordinate their

efforts to maximize patient health. While new, optimal treatment guidelines are

implemented, health providers and insurance companies can pursue adherence im-

proving interventions given the knowledge of the marginal benefit of improving ad-

herence. Since the U.S. Department of Veterans Affairs (VA) serves as both health

provider and insurance company to the men and women of the U.S. armed services,

we parameterize our model using longitudinal data from a nationwide, multi-center

VA data set.

We consider the following to be our main contributions: (i) we develop a mathe-

matical model that incorporates risk factor and treatment consumption heterogeneity

to determine optimal hypertension treatment guidelines for patients at risk of CHD;

(ii) we directly model resource utilization to fairly compare treatment policies and to

compute the marginal benefit of resources; (iii) we utilize our generalizable modeling

framework to compute the marginal benefit of improving treatment consumption on

patient health outcomes; (iv) we derive analytical results relating heterogeneity pa-

rameters and resource utilization with the optimal value function and the optimal

treatment policy; (v) we provide numerical results from the application of our model

to nationwide longitudinal data which support our analytical findings; and (vi) we
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compare U.S. guidelines to the optimal hypertension treatment policy given by the

MDP formulation and show the health improvement achievable by the MDP policy.

3.2 Literature Review

3.2.1 Treatment Models

Systematic reviews of Markov decisions processes and their applications to treat-

ment decisions can be found in [3] and [136]. While many MDPs for treatment

decisions focus on small action spaces, such as binary decisions (e.g. wait to initiate

therapy or initiate therapy) including the work by [2], [4], [5], [31], [133], [81], [13],

[139], and [141], our model utilizes a larger action space to capture the intensity of

treatments. Previous work with an expanded action space include: the investigation

of multiple therapies for HIV control [140]; treatment and testing decisions for hep-

atitis C [49], [76]; optimal dosage level of a given treatment over a series of treatment

sessions [58]; and dosage decisions for anesthesia infusion decisions [70]. Our work

differs from this research in that we explicitly model and update estimates of patient

heterogeneity, and we model directly a patient’s resource availability to study the

impact of resource limitations on the optimal treatment policy.

Researchers have also investigated treatment decisions for patients at risk of CHD.

[84] and [45] developed a MDP formulation of statin therapy initiation for patients

with type 2 diabetes who are at risk of CHD that maximizes quality-adjusted life

years (QALYs) with considerations of costs. [63] used an infinite-horizon POMDP

approach to decide medical therapies for patients with ischemic heart disease. The

objective was to minimize the cumulative cost of treatment, represented as a combi-

nation of economic, quality of life, and health costs. [102] used a MDP formulation to

determine blood pressure and cholesterol treatment decisions for patients at risk of

CHD. The action space is comprised of wait/initiate decisions for a set of blood pres-
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sure and cholesterol treatments. She used a bi-criteria objective function of QALYs

and costs using a willingness-to-pay factor.

While we consider the research of [102] and [58] to be most closely related to

our work, our inclusion and analysis of heterogeneity parameters in our sequential

decision making framework differentiates our research from all of the previously men-

tioned work. In addition to the treatment consumption heterogeneity parameter, our

work differs in that our action space is a large collection of treatment intensities, and

we allow for the discontinuation of treatments. Furthermore, the explicit modeling of

resource utilization also distinguishes our work from the previous research in treat-

ment modeling. Through direct inclusion of resource availability in the model, we

are able to perform marginal-benefit analysis on the resources.

3.2.2 Conditional Value at Risk

One key aspect of our work is the utilization of conditional value at risk (CVaR)

for computing treatment effects and capturing the impact of patient heterogeneity

in treatment consumption. CVaR is a risk measure popularized in the financial

literature which calculates the expected value of a random variable over a restricted

region of the random variable’s domain [126], [127]. Let X by a random variable

with cumulative distribution function F (z) = P (X ≤ z), where X has the meaning

of a gain (e.g. improvement in health due to treatment). Define the value at risk

(V aRα(X)) as the lower α-percentile of the random variable X. For α ∈ (0, 1], VaR

is computed as:

V aRα(X) = min{z | F (z) ≥ α}(3.1)

CVaR of X with level α, denoted CV aRα(X), is then the mean of the generalized
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α-tail distribution [135], i.e.

CV aRα(X) =

∫ ∞
−∞

zdFα(z)(3.2)

where

Fα(z) =
α− F (z)

α
1{z ≤ V aRα(X)}(3.3)

For continuous distribution functions, we can simply write

CV aRα(X) = E[X | X ≤ V aRα(X)](3.4)

Popularly, the parameter α measures risk-sensitivity. Risk-sensitivity can play

an important role in medical decision making since some patients will be risk-averse

(i.e. place greater weight on worst-case outcomes) and others may be risk-seeking

(i.e. place greater weight on best-case outcomes) depending on the severity of their

disease condition. In our application to hypertension treatments, we consider an

equivalent interpretation of α, where α is our treatment consumption heterogeneity

parameter for the patients adherence to therapy. In this sense, α = 1 implies full

adherence to therapy, while α = 0 implies complete nonadherence to therapy.

Attention to the role of patient adherence to therapy in sequential treatment deci-

sion models is relatively new in the literature. [164] modeled prostate biopsy referral

decisions, but assumed imperfect adherence was implicitly captured by the random

nature of prostate-specific antigen levels. [141] considered a patient-dependent mul-

tiplier for adherence that leads to proportionally higher (lower) expected lifetime

upon initiating therapy if the patient is more (less) adherent than the average pa-

tient. [103] modeled adherence as a state variable in their statin treatment model.

However, adherence was limited to four categories and it was assumed either the

patient had a fixed adherence state or evolved in accordance to a transition matrix.
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The patient-dependent multiplier and the categorical adherence levels are special

cases of our CVaR approach. And [12] highlighted that mammography screening has

adherence issues, but left such extensions to future work.

Unlike previous research, our approach is not restricted by the assumptions on

the effect of treatment consumption on treatment outcomes. Our generalizable ap-

proach allows for discrete or continuous and parametric or empirical distributions

for treatment outcomes. Our method explicitly connects the treatment consumption

heterogeneity parameter α for patient adherence to a general distribution Fτ used

to compute immediate costs in the MDP formulation. Through CVaR, we can ef-

fectively model any assumed treatment consumption effects. For example, we can

let Fτ be a uniform distribution, Uτ (0,M), to capture patient-dependent multipliers

and proportionality, where M < ∞ is the maximum disease response from therapy

τ . Letting α = 0.5 be the average patient adherence, then α = 1 would be a patient

with maximal adherence, and α = 0 would be a patient who never complies with

therapy τ (and therefore receives no benefit from the treatment). Other parametric

distributions may also be used; for instance, we may consider a Gaussian distribu-

tion when the rate of improvement in disease response (due to increased adherence)

is large when starting from moderate adherence levels, and the rate is small when

starting from high adherence levels.

We may also consider empirical distributions, both discrete and continuous, for

the treatment outcome. Discrete empirical distributions arise when treatment con-

sumption is discretized or categorized into intervals and disease response is estimated

from data. For example, [117] discretized adherence to HIV therapy into intervals: ≥

95%, 90-94.9%, 80-89.9%, 70-79.9%, and < 70% and the percentage of patients with

virologic failure was computed: 21.7%, 54.6%, 66.7%, 71.4% and 82.1%, respectively.
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For this discrete distribution, we can define probability mass functions on xα that

lead to x95=21.7; x90=54.6; x80=66.7; x70=71.4; and x0=82.1. Similar construction

can be done for empirical continuous distributions, as in the case of modeling the

effect of adherence and drug resistance [15].

The previous work in the field that studied adherence are all special cases of

CVaR. Our approach is generalizable to any of the assumed relationships between

treatment consumption and disease response in the literature (see [74] for a review

of this medical literature), which makes optimal control policies based on CVaR

computations more widely applicable.

CVaR in stochastic control has arised primarily in two cases: (1) as a candidate

risk measure in risk-sensitive Markov decision processes [100], [116], [19], and (2) as

a risk-based constraint in a Markov decision process [20], [82]. The first case seeks to

minimize a risk measure u, such as CVaR, of total cost:
∑N

n=0 E[u(cn)], where cn is

the cost incurred when there are n decisions remaining. While the second case uses

CVaR to prevent low-likelihood and undesirable outcomes. Our approach differs in

that we are concerned with minimizing total cost (e.g. expected total number of CHD

events) which is a function of CVaR random variables:
∑N

n=0 E[cn(u)]. Rather than

using CVaR as the overall objective, we are using CVaR implicitly in our objective

function via computation of costs and the differentiation of patients.

3.3 MDP Model Formulation

We formulate the lifetime hypertension treatment problem as a single patient,

discrete-time, finite-horizon Markov decision process. Our objective is to minimize

the patient’s expected weighted number of CHD events over the planning horizon

while considering sources of patient heterogeneity and resource utilization. Formally,
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the notation for the MDP is as follows:

• N : total number of decision epochs in the planning horizon

• τ ∈ A: treatment τ from the set of all treatment options A.

• Θ: treatment consumption heterogeneity matrix (|A| × N) comprised of the

patient’s treatment consumption heterogeneity parameters with elements αij ∈

[0, 1], i = 1, . . . , |A| , j = 1, . . . , N .

• K ∈ R+: patient’s resource amount available over the planning horizon.

• s ∈ S: multidimensional state of the patient represented by the number of

remaining decision epochs in the planning horizon, the patient’s treatment con-

sumption heterogeneity parameter, the remaining resource available, and risk

factors including demographic information for the patient (e.g. age, sex, dia-

betes status, smoking status), his/her pretreatment SBP, HDL, TC, and the

patients health state. Let n = 0, . . . , N be the number of remaining decision

epochs (also a proxy variable for the patients age); y ∈ {0, . . . , K} denotes

the remaining resource available for expenditure; p represents patient demo-

graphic information necessary for computing CHD risk, b ∈ R+ denotes the

pretreatment SBP; l ∈ R+ denotes the HDL; c ∈ R+ denotes the TC; and

h ∈ {1, 2, 3, 4} denotes the patient health state (no CHD event; survived a

CHD event; died from a CHD event; died from non-CHD cause, respectively).

Thus, s = (n,Θ, y, p, b, l, c, h) is a particular state vector capturing risk factor

and treatment consumption heterogeneity.

• r(s) ∈ [0, 1]: patient’s one-epoch pretreatment risk of a CHD event when in

state s.
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• bmin ∈ R+: minimum allowable SBP.

• A(bmin; y) ⊆ A: set of available treatments sorted by their treatment intensity

(computed based on the dosage and number of drugs prescribed) and restricted

by the minimum allowable SBP bmin and amount of resource remaining y.

• γτ ∈ R+: resource cost (measured by the intensity of the treatment) associated

with selecting treatment τ .

• Fτ,∫ : cumulative distribution function for the SBP reduction of treatment τ

when in state s.

• xα,τ (s) ∈ R: CVaR SBP reduction from treatment τ with treatment consump-

tion heterogeneity parameter α when in state s.

• D(s) ∈ [0, 1]: relative-risk factor when in state s.

• φ(s) ∈ [0, 1]: probability of death from non CHD cause given the patients post-

treatment CHD risk when in state s.

• ρ(s) ∈ [0, 1]: probability of death from a CHD event when in state s, given that

the patient had a CHD event (i.e. a subsequent CHD event), independent of

the treatment selected.

• ζ ∈ [0,∞): pretreatment CHD risk multiplier for subsequent CHD events.

• rα,τ (s) ∈ [0, 1]: one-epoch risk of a CHD event after taking treatment τ when

in state s with treatment consumption heterogeneity parameter α.

• pτ (s, s′) ∈ [0, 1]: probability that the patient transitions from state s to post-

state s′ after selecting treatment τ .

• J(s): immediate cost accrued when the patient is in state s.
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• V (s) ∈ R+: optimal value function that gives the minimized expected weighted

number of CHD events when in state s. By construction, V (n = 0, . . .) = 0.

At the beginning of each decision period, we assume that a measurement of the

patient’s risk factors (e.g. demographic information, pretreatment SBP, high density

lipoprotein (HDL), and total cholesterol (TC)) is obtained. Using a risk calculator,

such as Framingham [39], we estimate the patient’s one-period pretreatment risk

of a CHD event. We consider a treatment consumption heterogeneity matrix, Θ,

comprised of α elements for each decision period and treatment action combination.

In the context of adherence to therapy, this matrix allows for age- and treatment-

specific adherence levels. We consider the α parameter to be a summary variable for

the patients treatment consumption, which likely depends on other variables such

as socioeconomic status and education. Furthermore, while Θ is an element of the

state vector s, we repeat for emphasis the dependency on a particular α (an element

of Θ) for some variables in our notation. Figure 3.2 provides an overview of the

steps taken within each decision epoch of the MDP model. At each decision epoch,

the clinician prescribes a hypertension treatment for the patient to follow until the

next decision epoch. Given the patient’s treatment consumption α and the SBP

reduction function, Fτ,∫ , for each possible treatment τ , we compute the CVaR of

the SBP reduction for each treatment, xα,τ (s), to determine the true SBP reduction

under the given level of adherence. Only those treatments whose CVaR reduction

in SBP would not bring the patient’s SBP below the minimum allowable SBP, bmin,

are feasible treatments in a given decision epoch.

We compute the CVaR SBP reduction xα,τ for treatment τ in accordance to

equation (3.2), i.e. xα,τ = E[X | X ≤ supF−1
τ,s (α)].
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Figure 3.2: Hypertension treatment timeline.

While Fτ,s is parameterized as a cumulative distribution function, this function is

not used as a probability distribution of outcomes. Rather, Fτ,s serves as a mapping

for how changes in treatment consumption (e.g. α = 0.56 to α = 0.60) affect the

SBP reduction from treatment, xα,τ . We utilize the shape of the distribution function

Fτ,s and the CVaR equation to control the relationship between adherence and the

true SBP reduction from treatment. For example, to model a constant marginal

benefit of treatment consumption, a uniform distribution function, U(0,M) would

be used for Fτ,s. In this example, the uniform distribution is not being used to claim

that all SBP reductions between 0 and M are equally likely, but rather that there is

a constant marginal benefit of improving treatment consumption. When combined

with the CVaR equation, a uniform Fτ,s indicates that each increase in treatment

consumption α causes the same increase in SBP reduction, e.g. a 5% increase in

adherence leads to a 1 mmHg higher reduction in SBP regardless of the patients

initial adherence. Since CVaR provides the true SBP reduction from treatment, we

add an error term to the CVaR SBP reduction to capture process and observation

noise in our numerical studies. This error term captures the natural fluctuations

observed in practice and the inaccuracy of blood pressure measurements.
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We can map the patient’s state s to the one-period pretreatment risk of a CHD

event r(s). Paired with the CVaR SBP reduction, we can then compute a relative

risk factor D(s) ∈ [0, 1] and resultant post-treatment risk rα,τ (s), according to [88]:

D(s) = ∆(s)
xα,τ (s)

20 , ∆(s) ∈ (0, 1)(3.5)

rα,τ (s) = D(s) · r(s)(3.6)

The 20 in the equation for D(s) represents a reference standard SBP reduction of

20 mmHg for which ∆(s) was computed. Note that since xα,τ (s) is increasing in α,

then D(s) is decreasing in α. Therefore, post-treatment CHD risk decreases as the

patients treatment consumption increases.

Based on this post-treatment risk, the patient may enter one of four health states:

(1) no CHD event; (2) survival of a CHD event; (3) death from a CHD event; or (4)

death from a non-CHD cause. By construction, the patient has at most one event

each decision period. Therefore, we assume the patient can have at most N CHD

events in a planning horizon of N decision epochs. A surviving patient (i.e. health

state 1 or 2) continues to the next decision epoch and repeats the process of selecting

a treatment.

The patients pretreatment SBP, HDL and TC evolve over time as a function of the

patients age. The dynamics of SBP, HDL and TC are captured using independent

linear mixed effects (LME) models. We further assume those dynamics are affected

by process noise that is added to the LME models. We also assume that hypertension

treatment only affects the patients SBP and CHD risk in the period the treatment

is taken. For example, if a patient discontinues treatment, the patients SBP would

return to the pretreatment SBP forecasted by the LME model.
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Our modeling framework provides the following set of dynamic programming equa-

tions:

V (s) = min
γτ≤y;τ∈A(bmin)

{∑
s′∈S

pτ (s, s
′)[J(s′) + λV (s′)]

}
(3.7)

V (n = 0, . . .) = 0(3.8)

Our recursive equations include a discount factor λ, but we set this parameter to

1 for our analysis.

The state transition probabilities are functions of the patients post-treatment

CHD risk, rα,τ (s); the likelihood of death from a CHD event, ρ(s); and the likelihood

of non-CHD death, φ(s). Note that while not directly included in the notation,

we adjust the likelihood of non-CHD death φ(s) to account for the patient’s post-

treatment CHD risk rα,τ (s). We first compute the post-treatment CHD risk rα,τ (s),

which provides the total probability of transitioning to either health state 2 or 3.

Next, we estimate φ(s) given rα,τ (s), denoted as simply φ(s). This ensures that 1−

rα,τ (s)−φ(s) (the transition probability to health state 1) is not negative and that the

sum of all state transition probabilities equals 1. In solving the dynamic programming

equations, we also manually check the transition probabilities to guarantee a valid

transition probability distribution.

By definition, J(. . . , h = 2) = J(. . . , h = 3) = 1 (i.e. 1 CHD event occurred) and

J(. . . , h = 1) = J(. . . , h = 4) = 0 (i.e. no CHD event occurred). In order to penalize

death from a CHD event earlier in life, we set V (n, . . . , h = 3) = n, i.e. the optimal

value function is set to n events if the patient dies from a CHD event when there are

n decision epochs remaining. And we set V (n, . . . , h = 4) = 0 as there is no need to

penalize for non-CHD deaths.
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Combining the above, we can look at the optimal value function for health state

1 (i.e. no CHD event) as:

V (n, . . . , h = 1) = min
γτ≤y;τ∈A(bmin)

{(1− rα,τ (s)− φ(s))V (n− 1, . . . , h = 1)

(3.9)

+ rα,τ (s)(1− ρ(s))(1 + V (n− 1, . . . , h = 2))(3.10)

+ rα,τ (s)ρ(s)(1 + V (n− 1, . . . , h = 3))}(3.11)

Once a patient has had a CHD event (i.e. h = 2), the pretreatment CHD risk is

multiplied by (1 + ζ) to reflect the increased risk of subsequent CHD events due to a

prior event. We assume only the first CHD event increases the patients CHD risk. We

assume experiencing multiple CHD events does not further increase the subsequent

CHD risk. In all living health states (h = 1 or h = 2) after the first CHD event,

the patients CHD risk is scaled by (1 + ζ). Thus, when h = 2, in the computation

for the next decision epoch optimal value function, we set V (n − 1, . . . , h = 1) =

V (n − 1, . . . , h = 2) to capture the continued increased CHD risk. For h = 2, we

obtain the following optimal value function:

V (n, . . . , h = 2) = min
γτ≤y;τ∈A(bmin)

{(1− (1 + ζ)rα,τ (s)− φ(s))V (n− 1, . . . , h = 1)

(3.12)

+ (1 + ζ)rα,τ (s)(1− ρ(s))(1 + V (n− 1, . . . , h = 2))(3.13)

+ (1 + ζ)rα,τ (s)ρ(s)(1 + V (n− 1, . . . , h = 3))}(3.14)

(3.15)

If ζ > 0 then V (n, . . . , h = 1) < V (n, . . . , h = 2). Once again, we guarantee a valid

transition probability distribution by computing φ(s) given rα,τ (s). We first enforce

the requirement that (1 + ζ)rα,τ (s) is less than or equal to 1. Then we compute



55

the likelihood of a non-CHD death given the patients post-treatment CHD risk.

A discount factor λ ∈ (0, 1) may be considered as well, as is commonly done in the

economic evaluation of health care interventions [36]. Since our model formulation for

computing the expected weighted number of CHD events over the planning horizon

penalizes more heavily death from a CHD event earlier in life and accounts for

the increased likelihood of subsequent CHD events, we believe further discounting

through inclusion of λ in the dynamic programming equations is unnecessary.

3.4 Model Properties

We now study structural properties of the optimal value function as they relate to

treatment consumption heterogeneity and resource utilization. These properties are

important to understanding current clinical practice and they provide insight into

how guidelines can be altered to improve patient health. All proofs appear in the

Section 3.10.1. We start by showing the intuitive result that as resource utilization

increases, the minimized expected weighted number of CHD events is nonincreasing,

i.e.

Theorem 1. V (s) is nonincreasing with K.

This result suggests that not imposing restrictions on total treatment intensity

for treating hypertension would benefit patients. Similarly, decreasing treatment

intensity results in worse health outcomes. We now show that, in a high resource

utilization environment, a myopic policy which selects the treatment that maximizes

SBP reduction in that decision epoch (without violating the minimum allowable SBP

constraint) is optimal, i.e.

Theorem 2. Let high resource utilization be defined as y ≥ nmaxτ∈An(bmin;y){γτ}

when there are n decisions remaining. Under high resource utilization and if xα,τ∗(s) ≥
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xα,τ (s) ∀τ ∈ An(bmin; y), then τ ∗ is the optimal treatment when there are n deci-

sions remaining.

The above result has several implications for clinical practice which we present

as corollaries. First, under a mild assumption of nonincreasing minimum allowable

SBP levels, the theorem implies that treatment intensity under the optimal policy

never decreases over time. Then the MDP has a control-limit type policy under high

resource utilization, which is a desirably structural property in MDP models [139].

Corollary 1. Let the treatments be ordered by intensity, i.e. xα,τi(s) < xα,τi+1(s)

for i = 1, . . . , |A|. Under high resource utilization and An(bmin; y) ⊆ Ak(bmin; y) for

n > k, then τ ∗ is nondecreasing with decreasing n.

The theorem also implies that the optimal treatment policy will yield a SBP that

approaches the minimum allowable SBP. If we consider the minimum allowable SBP

to be the target SBP set by the physician, then the resource sufficiency theorem

states that a target-based strategy is optimal.

Corollary 2. Under high resource utilization, the optimal policy leads to a

post-treatment SBP that reaches (or approaches) the minimum allowable SBP, bmin.

Thus, the optimal policy is TTT under resource sufficiency.

Next, we consider the implications of low resource utilization. In this scenario,

the optimal policy is not guaranteed to be myopic, i.e. minimizing CHD risk in each

epoch does not necessarily minimize the expected number of CHD events. With

low resource utilization, it may be favorable to reserve resources (e.g. choose a less

intense treatment in the current epoch) for later epochs when CHD risk is higher

and treatments are more effective due to increasing SBP with age. This implies that

with low resource utilization, the TTT strategy is not guaranteed to be optimal.

Corollary 3. Let low resource utilization be defined as y < nmaxτ∈An(bmin;y){γτ}



57

when there are n decisions remaining. Under low resource utilization, xα,τ∗(s) ≥

xα,τ (s) does not guarantee τ ∗ is optimal.

While the TTT policy is optimal under high resource utilization, current U.S.

guidelines have led to only 53.1% of patients with controlled blood pressure. In ad-

dition to low adherence, another reason for this poor control is the under-treatment

of hypertension [42] and the restrictions imposed in clinical practice regarding in-

creases in the intensity of prescribed medications. In Section 3.6, we evaluate the

impact of those restrictions via our comparison of current U.S. guidelines against the

MDP optimal policy which does not restrict the change in prescription intensity.

The poor control is also the result of the guidelines’ incorporating neither risk

factor heterogeneity nor the treatment consumption heterogeneity parameter of pa-

tient adherence to treatment. Our MDP approach explicitly captures the effects of

heterogeneity on treatment outcomes to tailor the optimal treatment decisions. By

incorporating heterogeneity, the MDP is capable of properly selecting the treatment

intensity that will achieve the target SBP. Furthermore, knowledge of the patient’s

particular adherence level is necessary to prevent violations of the minimum allowable

SBP constraint.

We now consider the effects of the treatment consumption heterogeneity param-

eter on the optimal value function and optimal treatment policy. First, we show

the intuitive result of a nonincreasing minimized expected number of CHD events

with an increasing treatment consumption heterogeneity parameter. As α increases

(e.g. patient adherence increases), SBP reduction increases and the resulting ex-

pected number of CHD events decreases. In clinical practice, this theorem implies

that improving patient adherence will yield improved health outcomes. In Section

3.6, we compute the marginal benefit of adherence on patient health outcomes. We
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also analyze the tradeoff between an optimal policy which directly models patient

adherence and policies which assume the patient is perfectly adherent to treatment.

Theorem 3. When the feasible action space An(bmin; y) is the same across all α

for each n, V (s) is nonincreasing with α.

Finally, we examine how the treatment consumption heterogeneity parameter in-

fluences the decision of when to initiate treatment. Since treatment initiation deci-

sions are a special case of the treatment intensity decisions, the timing of treatment

initiation is equivalent to identifying the first decision epoch at which resources are

expended.

Theorem 4. Let η(α) be the set of decision periods where it is optimal to not

treat the patient, given the patient’s treatment consumption heterogeneity parameter

α. Then for ᾱ > α, if:

1. The feasible action space An(bmin; y) is the same under α and ᾱ for each n,

2. Vα(s)−Vᾱ(s) = c ≥ 0 for α ≤ ᾱ, i.e. equal change in the optimal value functions

when moving between two α levels across all patient states.

3. V (. . . , h = 1) ≤ (1 − ρ(s))V (. . . , h = 2), i.e. the optimal value function when

the patient has had a CHD event in the past is sufficiently larger than the

optimal value function when the patient has not had a prior CHD event.

then η(ᾱ) ⊆ η(α).

The above implies that if a patient with a particular α chooses to treat in a given

decision epoch, the same patient with a higher α will also choose to treat. Because

the theorem is true for any number of remaining decision epochs, it is true for the

first decision in the planning horizon. Therefore, a patient with a given α will begin

treatment no later than a patient with identicalcharacteristics except for a smaller
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α.

The first assumption prevents instances where the higher benefit of a treatment at

higher α levels leads to infeasibility due to the minimum SBP constraint. Numerical

studies have shown that the second assumption is reasonable, especially for problem

instances with low resource utilization. And the third assumption is fair given the

large increase in the risk of subsequent CHD events following a patient’s first CHD

event [124].

3.5 Identification of Heterogeneity Parameters

When tailoring treatment guidelines to patient adherence, it is important to have

a reliable estimate of the patient’s true adherence. A reliable estimate also allows

a health provider to compute the marginal benefit of adherence on patient health

outcomes. If the treatment consumption heterogeneity parameter is unknown, we

can use the patient’s history of SBP observations and treatments to dynamically

estimate adherence. However, the identification of all elements αij in the matrix of

parameters Θ is challenging. With assumptions on the structure of Θ, we can develop

a method for updating our knowledge of the treatment consumption heterogeneity

parameters over time.

Let the elements αij of Θ have a functional dependence fij on a single heterogene-

ity parameter α, i.e.

Θ =



f1,1(α) · · · f1,N(α)

f2,1(α) · · · f1,N(α)

...
. . .

...

f|A|,1(α) · · · f|A|,N(α)


Then the identification and updating of α leads to the identification and updating
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of the full matrix Θ. Furthermore, by construction, any nonstationarity for α is

captured in the functions fij. In our analysis, we let Θ = αJ, where J is a |A| ×N

matrix of ones. Other forms for Θ are possible, given the necessary data. To identify

and update our estimate of α, we start by defining x̂α,τ (n) as the observed SBP

reduction from the treatment selected when there are n decision epochs remaining

and the true treatment consumption is α. This observed SBP reduction may be

affected by noise, i.e.

x̂α,τ (n) = xα,τ (n) + ε(3.16)

where xα,τ (n) is the true CVaR SBP reduction and ε is a noise term, e.g. ε ∼

N(0, σ2
ε ). Let α(x̂α,τ (n)) ∈ [0, 1] be the treatment consumption which corresponds

to the observed SBP reduction, calculated as:

(3.17) α(x̂α,τ (n)) = sup
α∈[0,1]

{α : x̂α,τ (n) = CV aRα(X)]}

If the treatment outcome distributions, Fτ,s, are 1-1 distribution functions, then

α(x̂α,τ (n)) is unique. When there is no closed form for equation (3.17), computational

methods such as bisection [143] can be used to determine the corresponding treatment

consumption heterogeneity parameter. By the stationarity of α, we can compute our

estimate, α̂n, of the true heterogeneity parameter α when there are n decision epochs

remaining as the mean of all the sequentially observed corresponding heterogeneity

parameters. With an initial estimate α̂N (which can be estimated using population

data), we update our estimate via:

(3.18) α̂n =
(N − n)α̂n+1 + α(x̂α,τ (n+ 1))

N − n+ 1
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3.6 Numerical Analysis

3.6.1 Parameterization

We utilized longitudinal data from the U.S. Department of Veterans Affairs, a

popular CHD risk calculator [39], a meta-analysis of hypertension randomized clin-

ical trials [88], and U.S. life tables [10] to parameterize our MDP model. Our VA

data set combined data collected between 1999 and 2009 from the Veterans Health

Administration (VHA) Medical SAS Data Sets, VHA Decision Support System files,

and VHA Corporate Data Warehouse. The combined data contained information on

approximately 2.5 million patients treated at VA hospitals across the U.S. For every

patient in the data set, we had information on patient demographics (e.g. age, sex,

diabetes) as well as longitudinal clinical observations (SBP, TC, HDL) and any pre-

scribed medications. The average (standard deviation) follow-up time for patients

in the data set was 6.4 (2.4) years. Table 1 summarizes the data sources and values

for various model inputs.

From this VA data set, we randomly sampled 50,000 patients to use for parameter-

izing statistical models of stochastic risk factor evolution over time and to establish

distributions for initial patient characteristics. Diabetes, alocholism, and smoking

status were not available in the data. We assigned diabetes, alcoholism and smoking

status to these patients at random based on their observed frequency in the U.S.

population [1], [111], [27]. We used linear mixed effects (LME) models [121] to fore-

cast the stochastic risk factors of SBP, TC, and HDL. LME models are statistical

models which account for the inherent intra-patient correlation of longitudinal ob-

servations. Using the LME models and patient demographic data, we generated a

sample patient population comprised of 3,000 patients followed for 10 years for use

in the numerical study of our MDP model.
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Parameter Value Source
Initial age 66.43 (11.05) Analysis of VA Data
Percentage of men 97% Analysis of VA Data
Percentage with diabetes 8.3% [1]
Percentage of smokers 20% [27]
Percentage of alcoholics 10% [111]
Initial pretreatment SBP 142.12 (22.17) mmHg Analysis of VA Data
Initial HDL 42.69 (13.08) mg/dL Analysis of VA Data
Initial TC 180.16 (40.46) mg/dL Analysis of VA Data
Pretreatment CHD risk, r(s) Baseline 1-year risk: 0.0074 (0.0065);

Baseline 10-year risk: 0.13 (0.10)
Analysis of VA Data &
[39]

Minimum allowable SBP,
bmin

120 mmHg [14]

Treatment set, A 0 to 5 drugs, each at either half or full
dosage

[88]

SBP reduction function,
Fτ (s)

N(µτ , σ
2) with coefficient of variation

= 1
[88]

Relative risk factor, D(s) [0.49, 0.67] [88]
Probability of death from
non CHD cause, φ(s)

[0.002, 0.08] [10]

Probability of death from a
CHD event given that the pa-
tient has a CHD event, ρ(s)

[0.095, 0.235] [10]

Pretreatment CHD risk mul-
tiplier for subsequent CHD
events, ζ

2 [124]

Table 3.1: Model inputs and data sources for hypertension treatment model.

To compute the likelihood of a CHD event in an epoch given the patient’s risk

factors, we used the risk calculator developed by researchers studying the Framing-

ham Heart Study [39]. For each patient, we used the risk calculator to compute a

pre-treatment CHD risk over the length of the decision epoch (e.g. 1 year CHD risk).

The risk of CHD events after the patient had his/her first CHD event was computed

using a scaling factor ζ, i.e. subsequent CHD event risk is (1 + ζ) times higher than

the patient’s risk for his/her first CHD event. Research shows that patients are at

higher risk (estimated around 3 times higher) for subsequent CHD events than for

initial CHD events, i.e. ζ = 2 [124].

Analyses of randomized clinical trials revealed that SBP reduction from treatment

depends on the number of prescribed drugs (η ∈ {0, 1, 2, 3, 4, 5}) and the dosage
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level (d ∈ {full, half}) of the drugs [88]. We sorted (lowest to highest) and labeled

the action space based on the intensity of treatments, which corresponds to the

expected SBP reduction of the treatment. With this ranking, the lowest intensity

treatment (intensity 1) was no treatment, intensity 2 was one half-standard dosage

drug, intensity 3 is one full dosage drug, intensity 4 is two half-standard dosage

drugs, intensity 5 is one full and one half-standard dosage drug, and so on with the

highest intensity treatment (intensity 21) at five full dosage drugs.We used equations

developed by [88] to compute the expected SBP reduction from a combination of drug

count and dosage (dη). We selected the Gaussian distribution, truncated at 0 mmHg

reduction in SBP, as the outcome distribution for a particular treatment, where the

mean is the computed expected SBP reduction and the variance is σ2. We utilized

a coefficient of variation (CV) of 1 to determine the variance. By construction, a

patient with heterogeneity parameter α = 1, would have a CVaR SBP reduction xα,τ

equal to the expected SBP reduction. Estimates of relative CHD risk reduction due to

SBP reduction, ∆(s) are also taken from [88]. Using the patient’s pre-treatment CHD

risk and the relative CHD risk reduction due to treatment, we computed the patient’s

post-treatment CHD risk which yielded our health state transition probabilities.

3.6.2 Results

With a parameterized MDP model, we first analyzed numerical results from the

perspective of the treatment guideline policymaker. Using simulation, we compared

the optimal treatment policy derived by the MDP against the TTT strategy for

treating patients with hypertension (JNC7). We considered two implementations of

the JNC7 guidelines: conservative and aggressive. Both implementations initialized

with the same treatments (either one or two drugs per the guidelines). The conserva-

tive JNC7 implementation increased one half-dosage drug to full dosage or added one
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half-dosage drug if all currently prescribed medications were already at full dosage

when the patient had not reached the target SBP. The aggressive JNC7 implemen-

tation prescribed one additional full dosage drug to the patient when he/she had not

reached the target SBP. In our simulation, each patient was treated annually over 10

years according to both the conservative and aggressive JNC7 implementation. First,

a patient was simulated under the JNC7 implementations and the total number of

prescribed medications (i.e. total treatment intensity) over the 10 year horizon was

computed for conservative and aggressive JNC7. The total treatment intensity was

then used as the resource input K in the MDP model (solved under the K from

conservative JNC7 and under the K from aggressive JNC7). This ensured that the

JNC7 guidelines and MDP treatment policies expended equal amounts of resources

on any given patient.

Furthermore, we considered levels of the treatment consumption heterogeneity

parameter for adherence ranging between α = 0.1 and α = 1. Since JNC7 does

not directly incorporate adherence in the treatment guidelines, implementations of

JNC7 guidelines assumed the patient’s true adherence was α = 1 at all times. For

the MDP model, we initialized with α = 1 for all patients for a more fair comparison

with JNC7, but used our identification algorithm from Section 3.5 to learn the true

α over time given noisy clinical observations of SBP. After each clinical observation

of SBP reduction (the true SBP reduction plus Gaussian white noise ε, considered at

high and low variance), our estimate of α was updated according to equation (3.18)

and the MDP was solved for the remaining decision periods.

We tested the sample population of 3,000 patients at each level of the hetero-

geneity parameter, each level of observation noise, and each JNC7 implementation

and MDP model. Each patient was simulated 500 times. The simulation model uses
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the same inputs and parameters described in Section 3.6.1 and Table 3.1. For each

scenario, we computed the following performance measures: the average number of

CHD events and the average time until the patient’s first CHD event.

Figure 3.3 illustrates the relative improvement in the average number of CHD

events of the MDP policy over the JNC7 guidelines. The figure presents the results

for the four combinations of JNC7 implementation (conservative and aggressive)

and observation noise (low and high) at various levels of the treatment consumption

heterogeneity parameter. The average percentage reduction in the number of CHD

events over the 10 year planning horizon ranged from 6.5% to 9.4% (p < 0.05 for

all improvements using paired t-tests). In addition to examining differences for the

mean number of CHD events, we investigated differences within the distribution of

patients. Patients with high initial SBP, i.e. > 140 mmHg, achieved the greatest

reduction in the average number of CHD events (18.7% and 18.0%, compared against

conservative JNC7 at α = 1 with low and high noise, respectively). When compared

against aggressive JNC7, the relative improvement for high initial SBP patients

decreased (11.7% and 9.8% at α = 1 with low and high noise, respectively), but the

reduction still exceeded the overall average improvement.

While time until the first event (TTFE) was not the objective of the MDP model,

Figures 3.4 and 3.5 shows that the MDP policies resulted in later first CHD events

for patients who had CHD events (p < 0.05 for all MDP and JNC7 comparisons using

paired t-tests). This performance measure is considered clinically important, because

a patient’s first CHD event increases the likelihood of subsequent CHD events during

the patient’s lifetime. The average percentage improvement in the TTFE over the 10

year planning horizon ranged from 5.1% to 6.6%. Similar to the relative improvement

in the number of CHD events, patients with high initial SBP achieved the greatest
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Figure 3.3: Percentage improvements in the average number of CHD events.

improvement in TTFE (18.5% and 17.0%, compared against conservative JNC7 at

α = 1 with low and high noise, respectively). Compared against aggressive JNC7,

the relative improvement for high initial SBP patients decreased (15.5% and 10.4%

at α = 1 with low and high noise, respectively), but the improvement still exceeded

overall average improvement in TTFE. Furthermore, this average 3 to 4 month delay

in TTFE per patient corresponds to a significant increase in quality of life for the

population as a whole. With 785,000 new coronary events in the United States

every year [128], the delays in first heart attacks from the MDP treatment policy

corresponds to approximately 31,400 quality-adjusted life years saved [120, 119].

In general, we found that the relative improvement in health outcomes was higher
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Figure 3.4: Conservative JNC7 implementation

when comparing the MDP policy against the conservative JNC7 implementation.

This result is due to ceiling effects for the aggressive JNC7, i.e. the aggressive imple-

mentation yields higher intensity treatment decisions which correspond to increased

likelihoods of reaching the target SBP. Thus, the improvements achievable through

optimization by the MDP policy over the aggressive implementation are relatively

smaller than the improvements achievable over the conservative implementation.

In addition to using simulation to compare the MDP policy against the TTT

strategy for a sample population of patients, we investigated the marginal bene-

fit of resources (total treatment intensity) on the number of CHD events. Figure

3.6 plots the expected number of CHD events over the next 10 years for a sample
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Figure 3.5: Aggressive JNC7 implementation

patient at various total treatment intensities. The figure shows that the number

of CHD events decreases with increasing resources (Theorem 1). By our inclusion

of the resource utilization in the state space, the resource curve plotted in Figure

3.6 can be generated immediately after solving the MDP. These resource curves are

patient-specific and allow for easy cost-effectiveness analyses. From the figure, we

can see regions of different marginal improvements in the objective function. There

are regions of large marginal improvements, small marginal improvements, and no

marginal improvements. These resource curves can help clinicians and treatment

guideline policymakers interpret the value of intensifying treatment intensity on the

patient’s expected weighted number of CHD events over his/her lifetime.
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Figure 3.6: Comparison of the expected number of CHD events at various total treatment intensities
for a sample patient.

For the same patient, we can also visualize the intensity of treatments in the MDP

policy over the planning horizon. Figure 3.7 shows the optimal treatment policy for a

sample patient when the total treatment intensity is high. We see that with resource

utilization, the treatment intensity for optimal policy does not decrease over time

(Corollary 1). Instead, the optimal treatment policy selects the highest intensity

treatment that does not violate the minimum allowable SBP constraint (Theorem 2).

Since the underlying pretreatment SBP is increasing with age, the highest intensity

and feasible treatment is also increasing to bring the post-treatment SBP to the

target (Corollary 2). However, the nondecreasing property of the treatment intensity
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no longer holds when we consider the same patient under lower resource utilization

(Corollary 3). Figure 3.8 shows that under low total treatment intensity the optimal

policy starts at a milder intensity, increases briefly, then decreases toward the end of

the planning horizon as resources are consumed.
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Figure 3.7: Optimal treatment policy under high resource utilization

Next, we considered two possible implementations of the optimal treatment pol-

icy within the sample population: (1) treatment policies which directly account for

the patients treatment consumption heterogeneity and (2) treatment policies which

assume all patients are fully adherent to treatment (i.e. α = 1). Note that both

implementations account for risk factor heterogeneity when making treatment deci-

sions. The first implementation requires tracking the patients adherence level over

time to tailor medication choices to his/her particular adherence. However, such an
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Figure 3.8: Optimal treatment policy under low resource utilization

implementation may be difficult to use in clinical practice. The second implemen-

tation mitigates those challenges by assuming that all patients will fully adhere to

prescribed medications. Figure 3.9 shows the total number of CHD events over the

next 10 years under these two policies per 1000 patients at true adherence levels

between 0.1 and 1. Treatment policies which account for the patients true adherence

outperform treatment policies which assume full adherence. Treatment guideline

policymakers must decide whether the improvement in health outcomes is worth the

additional complexity in decision making and implementation.

Finally, we analyzed numerical results from the perspective of the health provider

or insurance company interested in evaluating adherence improving interventions.

The marginal benefit of improving the adherence for the sample patient population is
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Figure 3.9: Comparison of CHD events per 1000 ppl under two implementations of the optimal
treatment policy derived by the MDP.

shown in Figure 3.9. Paired with a cost of adherence interventions, cost-effectiveness

analysis can be readily computed under each of the treatment policies: (1) the op-

timal policy which assumes all patients are fully adherent, or (2) the optimal policy

which directly accounts for each patients particular adherence. Figure 3.9 also indi-

cates that treatment guideline policymakers and health providers can work together

to improve patient health outcomes. For example, if treatment guideline policymak-

ers advocate for optimal policies which account for risk factor heterogeneity while

assuming all patients will fully adhere to the prescribed medications, health providers

and insurance companies can implement adherence improving interventions so that

the assumption of full adherence is more appropriate. Our numerical analysis indi-

cates that jointly addressing problems in the clinical management of hypertension
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patients will generate the greatest gains in patient health.

3.7 Discussion

We have developed a modeling framework that utilizes the power of CVaR for

the identification and exploitation of patient heterogeneity in stochastic sequential

decision making. CVaR is an efficient and general approach for incorporating hetero-

geneity in treatment outcomes in the derivation of optimal treatment policies. We

applied this modeling framework to the problem of lifetime hypertension treatment

decisions for patients at risk of CHD events and studied the structural properties

of the MDP formulation. We focused on three possible clinical management policy

changes: (1) using optimal treatment policies which incorporate patient heterogene-

ity, (2) increasing resource utilization when treating patients, and (3) utilizing inter-

ventions which improve treatment consumption. Our analysis revealed that under

high resource utilization, a control-limit type policy is optimal when knowledge of

the heterogeneity parameters, such as adherence to therapy, is used to decide the

treatment intensity. In addition to numerically verifying the structural properties,

we utilized a large VA dataset of longitudinal clinical observations to parameterize

our MDP and simulation models which compared the TTT strategy for treating

hypertension against the treatment policies generated by our MDP model. Our opti-

mal MDP policies yielded fewer CHD events and later first CHD events for patients

when compared to the performance of the TTT strategy. Our analysis also reveals

that by working jointly, treatment guideline policymakers and health providers can

achieve maximum gains in patient health through optimal treatment planning and

the implementation of adherence improving interventions.

We note that new recommendations have been released for the management of
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hypertension [44]. Since these recommendations have not been incorporated into

clinical practice, we focused on comparisons against the widely used JNC7 guidelines.

The recommendations (target SBP of 150 mm Hg) are considerably less aggressive

(i.e. lower resource utilization) in treating hypertension than the conservative JNC7

implementation tested in this paper. We expect that our MDP framework would

achieve greater benefits than the improvements numerically shown over the JNC7

guidelines.

Further research remains to be done in calibrating and implementing the model

discussed. While our work has focused on adherence as a summary variable of treat-

ment consumption heterogeneity, other elements of heterogeneity in medical decision

making (e.g. biological response) can be included in the dynamic programming for-

mulation to improve its real-world performance. Currently, our modeling framework

makes use of a single matrix of heterogeneity parameters for treatment consumption,

Θ. Incorporating multiple sources of treatment consumption heterogeneity separately

(e.g. letting α denote education and β denote socioeconomic status) would require

a joint distribution Fτ so that CVaR is computed given α and β. Using this joint

distribution, we could then evaluate the impact of these heterogeneity parameters on

treatment outcomes. While a joint distribution may be easily modeled, such a for-

mulation creates additional complexity when inverting the distribution to learn the

treatment consumption parameters given SBP reductions observed over time. Simi-

larly, while we assumed in the numerical analysis that adherence was constant across

treatments and age, data pertaining to the factors which influence adherence could

be used to enrich the functional form of the heterogeneity matrix. Also, our assump-

tion that hypertension treatment only affects the patients SBP and CHD risk in the

period the treatment was prescribed may be unrealistic. For example, the benefit of
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treatment may depend on the number of decision periods the patient has been taking

medication. We leave the analysis of such treatment phenomena to future research.

We used the Framingham risk calculator, but other calculators with different risk

factors may prove to be better estimators of CHD event likelihoods. Further under-

standing of the impact of distribution assumptions remains, and other distributions

(e.g. exponential and uniform) for the SBP reduction from treatments need to be

considered. It would also be beneficial to examine the health benefits of our MDP

model when applied to developing nations that operate under resource insufficiency.

Lastly, while our application area was hypertension treatments for patients at risk of

CHD, our modeling framework is generalizable to other chronic diseases, particularly

those where severely adverse events result from disease progression.

3.8 Model Extension: Optimizing Quality-Adjusted Life Years

To extend the research described above, we next consider treatment policies which

maximize the patient’s expected discounted quality-adjusted life years (QALYs). We

use this new model to answer two clinically relevant questions: (1) how does misesti-

mation of treatment disutility impact treatment decisions and patient outcomes and

(2) what is the impact of time-varying treatment benefit and disutility on current

treatment strategies. To increase the acceptance of our results by the clinical com-

munity, we include both CHD and stroke as adverse health outcomes. The inclusion

of stroke requires extending our state space to now contain 10 mutually-exclusive pa-

tient health states: (1) healthy (no history of CHD or stroke); (2) history of CHD but

no CHD event this period; (3) history of stroke but no stroke this period; (4) history

of CHD and stroke but no adverse event this period; (5) survived a CHD event this

period; (6) survived a stroke this period; (7) death from a non-CVD related cause;
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(8) death from CHD event this period; (9) death from stroke this period; and (10)

dead. We also expand the dataset upon which the analysis is performed by utilizing

data from the National Health and Nutrition Examination Survey (NHANES), which

contains data on a representative sample of the U.S. population [148]. Furthermore,

for this analysis, we assume all patients are fully adherent (i.e. α = 1), and we leave

the study of how adherence would impact these models for future research.

The QALY-maximizing MDP is characterized by the following recursive dynamic

programming equations for the optimal value function V (s):

V (s) = max
τ∈A(bmin)

{∑
s′∈S

pτ (s, s
′)[J(s′, τ) + λV (s′)]

}
(3.19)

where J(s′, τ) equals the quality of life associated with being in state s′ minus

the treatment disutility dτ of treatment τ . In addition to the immediate reward’s

dependence on the treatment, equation (??) differs from equation (3.7) in that there

is no resource constraint γτ ≤ y. Furthermore, in the original dynamic program,

the terminal condition was set to 0 (i.e. no CHD events after the planning horizon

ends). However, in this analysis of QALYs, we compute a terminal condition as the

product of the patients expected lifetime [9], a mortality scaling factor [21], and the

quality of life weighting for the health state. All data inputs and sources for the

QALY-maximizing MDP can be found in Section 3.10.2.

3.8.1 Physician Estimation of Treatment Disutility

One reason for low adherence to medication is the disutility from treatment, specif-

ically the side effects and costs. All medications have side effects and costs to both

the patient and society as a whole. However, the measurement of treatment disutility

varies between patients [50], [71], and it is challenging to estimate in a clinical visit.

If clinicians incorrectly estimate the disutility a patient places on a medication, the
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clinician may not prescribe the best treatment plan to the patient. As differences

between a physician’s perception of treatment disutility and the patient’s true disu-

tility increase [166], the rate of mistreatment is likely to increase. Clinicians with

the belief that treatments have low disutility may overtreat patients who believe the

disutility is high. Similarly, clinicians who believe treatments have low disutility may

undertreat patients who believe the disutility is low.

To compute the impact of the physician’s ability to accurately estimate a pa-

tient’s true treatment disutility, we estimate the differences in the optimal treatment

plan and the expected outcomes of that plan when the patient’s true disutility and

the physician’s perceived disutility are misaligned. We assume at the beginning of

the planning horizon that all patients have never had a CHD event or stroke (i.e.

the first health state). We assume medication dosage decisions are based upon the

physician’s perceived disutility of treatment after solving equation (3.19) for the

QALY-maximizing MDP. The resulting MDP treatment policy is then evaluated

under the patient’s true treatment disutility. We consider four levels of disutility

per antihypertensive medication: none (0), low (0.001), medium (0.005), and high

(0.001). Each patient in our sample population was evaluated under the MDP for

every combination of true and perceived disutility. We then repeated this process us-

ing the JNC7 guidelines which are not sensitive to the perceived disutility. For each

scenario (disutility combination and treatment policy), we computed the expected

total number of QALYs, the expected number of total medications prescribed, the

expected total number of CV events, and the total number of patients treated. We

compared the performance of the MDP against the current treatment guidelines of

JNC7. We also compared the MDP policy under the true disutility against the

MDP policies for each of the perceived disutilities to detect significant differences in
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treatments (i.e. mistreatment rates).

Table 3.2 summarizes the performance measures as applied to 100,000 randomly

generated patients from NHANES III followed over 10 years. Five performance mea-

sures were recorded: the expected number of patients treated, the expected total

number of medications prescribed per 1000 treated patients, the expected number

of CV events prevented per 1000 patients, the expected change in QALYs per 1000

patients, and the expected change in QALYs per 1000 treated patients. To be clas-

sified as a treated patient, the patient needed to have been prescribed at least 5

medications over the 10 year planning horizon. Performance measures on QALYs

and number of CV events were computed relative to JNC7. Notice that, for each

perceived disutility, the optimal treatment policy is the same for a single patient

across all true treatment disutilities. Therefore, there are no changes in the expected

number of treated patients, number of medications prescribed, or number of CV

events within a perceived disutility.

As one may expect, as the perceived disutility of treatment increases, the number

of patients treated decreases. Patients at low risk for CV events are unlikely to re-

ceive enough benefit from treatment to outweigh the disutility and hence would never

be prescribed hypertension medication. Similarly, the total number of medications

prescribed amongst those who are treated also decreases as the perceived treatment

disutility increases. However, as the total number of medications prescribed de-

creases, overall CV risk is higher which leads to fewer CV events prevented compared

to the current guidelines of JNC7. The greater number of CV events causes fewer

QALYs in the population. All of these findings are true regardless of the patient’s

true disutility.

Table 3.3 presents the mistreatment rate (percentage of patients with a difference
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Perceived Disutility
Performance Measure True Disutility 0 0.001 0.005 0.01
Expected number of patients 0 59171 59109 54116 46562
treated 0.001 59171 59109 54116 46562

0.005 59171 59109 54116 46562
0.01 59171 59109 54116 46562

Expected total number of meds 0 24670.11 24634.72 23287.43 21511.4
prescribed per 1000 ppl Rx’d 0.001 24670.11 24634.72 23287.43 21511.4

0.005 24670.11 24634.72 23287.43 21511.4
0.01 24670.11 24634.72 23287.43 21511.4

Expected number of CV events 0 17.62 17.62 16.23 12.83
prevented per 1000 ppl 0.001 17.62 17.62 16.23 12.83

0.005 17.62838 17.62 16.23 12.83
0.01 17.62838 17.62 16.23 12.83

Expected QALYs saved 0 111.93 111.90 106.10 89.18
per 1000 ppl 0.001 105.16 105.17 101.13 86.51

0.005 78.07 78.21 81.22 75.80
0.01 44.21 44.52 56.34 62.41

Expected QALYs saved per 0 1433.26 1430.48 1348.70 933.94
1000 ppl Rx’d 0.001 1426.63 1423.89 1343.52 930.58

0.005 1400.11 1397.52 1322.79 917.17
0.01 1366.97 1364.56 1296.89 900.39

Table 3.2: Performance of the QALY maximizing MDP under each combination of true and per-
ceived treatment disutility when compared against JNC7.

of at least 0.5 medications per year between the MDP policy under the perceived

disutility and the MDP policy under the true disutility) for each combination of

true and perceived disutility. When the perceived disutility is greater than the true

disutility, the mistreatment rate indicates the percentage of patients undertreated,

whereas when the perceived disutility is less than the true, the mistreatment indicates

overtreatment. As the difference between true and perceived disutility increases, the

mistreatment rate also increases. The highest mistreatment rate occurs at the com-

bination of no disutility and high disutility with 26.9% of patients being mistreated

under the MDP policy due to differences between patient and physician calculations

of treatment disutility.

We have found that the patient’s perception of treatment disutility should play a

key role in the hypertension medication decision-making process. When patients are

either over- or under-treated due to differences between the patient’s true disutility
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Perceived Disutility
% Mistreated 0 0.001 0.005 0.01

True Disutility 0 0.0% 0.2% 13.0% 26.9%
0.001 0.2% 0.0% 13.0% 26.9%
0.005 13.0% 13.0% 0.0% 19.8%
0.01 26.91% 26.9% 19.8% 0.0%

Table 3.3: Percentage of patients mistreated for each combination of true and perceived disutility.

and the physician’s perceived disutility, there is a loss of QALYs. While the number

of CV events is always minimized when the perceived disutility is 0, the costs of

medication outweigh the benefit of prevented CV events when true and perceived

disutilities are misaligned. This misalignment of disutilities results in the misman-

agement of patients, particularly when considering no disutility and high disutility.

In addition to mistreatment, the misalignment of disutility may lead to poor adher-

ence rates to prescribed medication, a motivating factor in the research presented in

Section 3.3. Future research may address the need to effectively model the impact

of disutility misestimation on patient adherence when desigining treatment policies.

Our model provides computations of the costs associated with improper estima-

tion of a patient’s true treatment disutility. We illustrate these costs through different

levels of assumed disutility; unfortunately, identification of the patient’s true disu-

tility remains a challenge. Because patient disutility is inherently subjective, there

are few tools to accurately estimate a given patient’s views on medication trade-offs.

However, our analysis reveals the importance of accurately estimating disutility and

provides strong evidence for further research in this under-studied area.

This research also shows the short-comings of the current clinical guidelines of

JNC7. Even with high misestimation of disutility, the MDP policies greatly outper-

form the JNC7 guidelines. The MDP formulation enables the treatment policy to

consider the medication costs and trade-offs. In combination with a focus on CV risk

rather than intermediate markers, such as SBP, the dynamic programming approach
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to treatment planning offers superior health outcomes for patients.

3.8.2 Time-Varying Treatment Benefit and Disutility

Next, we use the data sources and Markov model discussed in 3.8 to evaluate the

impact of time-varying treatment benefit and disutility on different treatment initi-

ation strategies. In this context, the relative risk reduction (RRR) from treatment

D(s), used to compute J(s, τ), and the treatment disutility dτ depend on how long

the patient has been taking the medication. Our prior work in CV treatment plan-

ning assumed that the RRR (i.e. treatment benefit) was invariant to the length of

time the patient had been taking the medication. Similarly for disutility, we assumed

that the disutility per medication was constant across time. In this extension, we

model the treatment benefit and disutility as a function of the patient’s number of

years on medication by expanding the state space to include the medication exposure

duration ητ , and we study how different assumptions on these functional relationships

affect the performance of clinician-designed treatment strategies. In this research, we

consider a 45 year planning horizon where patients may initiate treatment as early

as age 30, and we follow them through age 75.

We analyzed four functional forms for the RRR from treatment. The first case

assumes that the RRR is 30% all years the patient is on treatment. The second

through fourth cases assume that the RRR is 30% for the first 5 years and then

increases linearly to become 60% in year 10, 20, 30 (respectively) and remains 60%

(i.e. maximum treatment benefit) in all future years. Figure 3.10 illustrates how the

RRR depends on the number of years the patient has been on treatment.

We also considered five functional forms for the disutility from treatment. Figure

3.11 illustrates how treatment disutility depends on the number of years the patient

has been on treatment. The first three cases assume a static 0.001, 0.005, and 0.01
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Figure 3.10: Relative risk reduction (RRR) from treatment as a function of the number of years
the patient has been on treatment.

disutility. The last two cases initiate with a disutility of 0.001 in the first year of

treatment and increase to 0.05 and 0.1, respectively, in year 25, according to the

following equations:

dτ (ητ ) = dτ (1 + i)ητ(3.20)

i = 1−
(
dMτ
dmτ

) 1
25

(3.21)

where dmτ and dMτ denote the treatment disutility at year 1 and year 25, respectively,

and dτ (ητ ) is the treatment disutility when the patient has been on treatment for ητ

years.

We considered treatment strategies, derived by our clinical collaborators, which
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Figure 3.11: Treatment disutility per medication as a function of the number of years the patient
has been on treatment.

initiate treatment when the patients current 10-year cardiovascular (CV) risk, equal

to the sum of 10-year CHD and stroke risk as calculated by [8], exceeds a given

threshold. By using strategies designed by clinicians, our analysis may be easier to

implement in real-world practice. We considered thresholds of 5, 10, 15, and 20%

CV risk. We also considered treatment strategies which initiate treatment when the

patients forecasted 10-year CV risk 10 years in the future exceeds the given threshold.

This future risk strategy initiates treatment early so the treatment benefit is closer

to maximum benefit at the time the patients CV risk is high.

We applied each treatment strategy (current and future 10-year CV risk thresh-

olds) to each patient beginning at age 30 for each combination of treatment benefit
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and disutility function. We assumed patients never discontinue treatment. For each

patient, treatment strategy and assumed treatment benefit and disutility function,

we computed the expected number of treatment years, the expected number of CV

events, and the expected QALYs. We then stratified the sample population based

upon their age-adjusted CV risk (i.e. CV risk at age 50) into quartiles to analyze

how the treatment strategies differ across risk stratums.

3.8.3 Results

Tables 3.4 through 3.6 present the results of different assumptions on treatment

benefit and disutility for those patients in the top quartile of age-adjusted CV risk

under each of the treatment strategies. For the treatment disutilities, 0.05∗ and 0.1∗

denote the increasing disutilities. Section 3.10.3 contains the analysis of the other

three quartiles.

Comparing the assumption of no increase in RRR to the assumption of 10 years

until full benefit is achieved, we found that the future 5% 10-year CV risk strategy

is most affected by time-varying benefit. For an assumed low disutility (0.001), the

expected QALYs per 1000 patients for the future 5% CV risk strategy under no

increase in RRR was 23,435 and 24,089 when treatment takes 10 years to reach full

benefit. This change in QALYs (654 QALYs per 1000 patients) was the highest

amongst all treatment strategies indicating that the health outcome of the strategy

highly depends on the modeling assumptions. Furthermore, for the low disutility,

the future 5% CV risk strategy also attained the highest QALYs per 1000 patients

amongst the tested strategies for all assumptions on time-varying treatment benefit.

At higher disutilities, including the increasing disutility functions, no single strategy

dominates the other strategies in terms of QALYs across all time-varying treatment

benefit assumptions. In general, the future 5% CV risk strategy attained the highest
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Top Quartile Age-Adjusted CV Risk Pa-
tients

Rx years per 1000 ppl

Treatment Disutility 0.001 0.005 0.01 0.05* 0.1*
Current risk strategy
No increase in RRR
5% CV risk 34082 34082 34082 34082 34082
10% CV risk 27259 27259 27259 27259 27259
15% CV risk 21786 21786 21786 21786 21786
20% CV risk 17158 17158 17158 17158 17158
10 years till full benefit
5% CV risk 35112 35112 35112 35112 35112
10% CV risk 28185 28185 28185 28185 28185
15% CV risk 22590 22590 22590 22590 22590
20% CV risk 17847 17847 17847 17847 17847
20 years till full benefit
5% CV risk 35010 35010 35010 35010 35010
10% CV risk 28050 28050 28050 28050 28050
15% CV risk 22450 22450 22450 22450 22450
20% CV risk 17727 17727 17727 17727 17727
30 years till full benefit
5% CV risk 34859 34859 34859 34859 34859
10% CV risk 27894 27894 27894 27894 27894
15% CV risk 22316 22316 22316 22316 22316
20% CV risk 17623 17623 17623 17623 17623
Future risk strategy
No increase in RRR
5% CV risk 39157 39157 39157 39157 39157
10% CV risk 36185 36185 36185 36185 36185
15% CV risk 31189 31189 31189 31189 31189
20% CV risk 26253 26253 26253 26253 26253
10 years till full benefit
5% CV risk 40228 40228 40228 40228 40228
10% CV risk 37239 37239 37239 37239 37239
15% CV risk 32186 32186 32186 32186 32186
20% CV risk 27162 27162 27162 27162 27162
20 years till full benefit
5% CV risk 40158 40158 40158 40158 40158
10% CV risk 37152 37152 37152 37152 37152
15% CV risk 32071 32071 32071 32071 32071
20% CV risk 27027 27027 27027 27027 27027
30 years till full benefit
5% CV risk 40026 40026 40026 40026 40026
10% CV risk 37009 37009 37009 37009 37009
15% CV risk 31915 31915 31915 31915 31915
20% CV risk 26877 26877 26877 26877 26877

Table 3.4: Treatment (Rx) years for the top quartile age-adjusted CV risk patients under different
assumptions on time-varying treatment benefit and disutility.

QALYs compared to the other strategies. The high performance of the future 5%

CV risk strategy for patients in the top quartile of CV risk is due to the increased
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Top Quartile Age-Adjusted CV Risk Pa-
tients

CV events per 1000 ppl

Treatment Disutility 0.001 0.005 0.01 0.05* 0.1*
Current risk strategy
No increase in RRR
5% CV risk 767.27 767.27 767.27 767.27 767.27
10% CV risk 781.93 781.93 781.93 781.93 781.93
15% CV risk 804.86 804.86 804.86 804.86 804.86
20% CV risk 833.98 833.98 833.98 833.98 833.98
10 years till full benefit
5% CV risk 427.24 427.24 427.24 427.24 427.24
10% CV risk 466.90 466.90 466.90 466.90 466.90
15% CV risk 520.39 520.39 520.39 520.39 520.39
20% CV risk 581.73 581.73 581.73 581.73 581.73
20 years till full benefit
5% CV risk 450.38 450.38 450.38 450.38 450.38
10% CV risk 499.72 499.72 499.72 499.72 499.72
15% CV risk 558.83 558.83 558.83 558.83 558.83
20% CV risk 621.08 621.08 621.08 621.08 621.08
30 years till full benefit
5% CV risk 486.38 486.38 486.38 486.38 486.38
10% CV risk 542.49 542.49 542.49 542.49 542.49
15% CV risk 601.49 601.49 601.49 601.49 601.49
20% CV risk 656.94 656.94 656.94 656.94 656.94
Future risk strategy
No increase in RRR
5% CV risk 763.85 763.85 763.85 763.85 763.85
10% CV risk 765.38 765.38 765.38 765.38 765.38
15% CV risk 772.13 772.13 772.13 772.13 772.13
20% CV risk 785.43 785.43 785.43 785.43 785.43
10 years till full benefit
5% CV risk 414.95 414.95 414.95 414.95 414.95
10% CV risk 420.58 420.58 420.58 420.58 420.58
15% CV risk 440.70 440.70 440.70 440.70 440.70
20% CV risk 474.81 474.81 474.81 474.81 474.81
20 years till full benefit
5% CV risk 431.98 431.98 431.98 431.98 431.98
10% CV risk 440.83 440.83 440.83 440.83 440.83
15% CV risk 467.79 467.79 467.79 467.79 467.79
20% CV risk 508.37 508.37 508.37 508.37 508.37
30 years till full benefit
5% CV risk 462.11 462.11 462.11 462.11 462.11
10% CV risk 474.33 474.33 474.33 474.33 474.33
15% CV risk 506.96 506.96 506.96 506.96 506.96
20% CV risk 551.00 551.00 551.00 551.00 551.00

Table 3.5: Cardiovascular (CV) disease events for the top quartile age-adjusted CV risk patients
under different assumptions on time-varying treatment benefit and disutility.

exposure duration ητ over the other strategies. By initiating treatment when the

patient is predicted to have at least 5% 10-year CV risk in 10 years from now, the
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Top Quartile Age-Adjusted CV Risk Pa-
tients

QALYs per 1000 ppl

Treatment Disutility 0.001 0.005 0.01 0.05* 0.1*
Current risk strategy
No increase in RRR
5% CV risk 23429 23356 23266 23120 22838
10% CV risk 23393 23342 23278 23204 23035
15% CV risk 23337 23300 23253 23216 23111
20% CV risk 23268 23241 23207 23185 23113
10 years till full benefit
5% CV risk 24054 23980 23888 23731 23435
10% CV risk 23950 23897 23832 23750 23572
15% CV risk 23817 23778 23731 23689 23577
20% CV risk 23674 23646 23611 23585 23507
20 years till full benefit
5% CV risk 23992 23918 23826 23670 23375
10% CV risk 23871 23818 23753 23671 23493
15% CV risk 23733 23695 23648 23605 23492
20% CV risk 23596 23568 23533 23506 23428
30 years till full benefit
5% CV risk 23907 23834 23742 23587 23294
10% CV risk 23780 23728 23663 23582 23406
15% CV risk 23650 23612 23565 23522 23411
20% CV risk 23529 23501 23467 23440 23362
Future risk strategy
No increase in RRR
5% CV risk 23435 23345 23231 23011 22619
10% CV risk 23433 23354 23254 23080 22755
15% CV risk 23418 23355 23276 23163 22933
20% CV risk 23385 23336 23275 23207 23049
10 years till full benefit
5% CV risk 24089 23997 23882 23648 23239
10% CV risk 24074 23993 23892 23705 23365
15% CV risk 24020 23956 23876 23753 23510
20% CV risk 23930 23880 23818 23743 23576
20 years till full benefit
5% CV risk 24044 23952 23837 23605 23196
10% CV risk 24020 23940 23838 23652 23313
15% CV risk 23952 23887 23807 23685 23442
20% CV risk 23851 23802 23740 23664 23497
30 years till full benefit
5% CV risk 23970 23878 23763 23533 23127
10% CV risk 23940 23859 23758 23574 23237
15% CV risk 23863 23799 23720 23598 23358
20% CV risk 23762 23713 23651 23577 23411

Table 3.6: Quality-adjusted life years (QALYs) for the top quartile age-adjusted CV risk patients
under different assumptions on time-varying treatment benefit and disutility.

strategy is treating patients earlier and for longer. As long as the assumed treatment

disutility is relatively low, the increased exposure duration leads to higher QALYs
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for these high risk patients regardless of how long it takes the medication to reach

full benefit.

This research has presented a first step toward modeling time-varying treatment

benefit and disutility in the evaluation of treatment strategies. We expanded the

state space to include an exposure duration ητ parameter. This parameter provides

a tractable way to incorporate general functions relating treatment benefit and disu-

tility to how long a patient has been on medication. These functional forms and

the numerical analyses performed provide insight into the trade-off between early

initiation for higher RRR and the increasing cumulative disutility from longer medi-

cation exposure. While we focused on testing the impact of time-varying benefit and

disutility on clinician-designed treatment strategies, our modeling approach enables

the derivation of the optimal initiation strategy. We can also expand the method-

ology to include the initiation of multiple medications over a patient’s lifetime (e.g.

start with a statin, then start an antihypertensive medication later in life) through

the addition of extra ητ for each new treatment added to the patient’s medication

regimen.

3.9 Conclusion

In conclusion, we have presented a dynamic programming formulation for deter-

mining optimal hypertension treatment plans. Our utilization of conditional value-

at-risk for incorporating patient heterogeneity allows for modeling a rich set of as-

sumptions about the relationship between adherence and treatment outcome when

computing immediate rewards. We showed that by personalizing optimal treatment

policies, we are able to improve patient health outcomes compared to current treat-

ment guidelines. Furthermore, our modeling framework allows for direct computation
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of the marginal benefit of improving patient adherence to medication. This marginal

benefit analysis informs decisions made at the population level, as we will discuss in

Chapter IV. In addition to deriving optimal treatment policies and analyzing the ef-

fects of patient heterogeneity on health outcomes, we used the dynamic programming

models to answer clinical questions about the impact of differences between true and

perceived treatment disutility as well as the effect of time-varying treatment benefit

and disutility on treatment strategies.
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3.10 Appendix

3.10.1 Proofs

Proof of Theorem 1 (Optimal Value Function and Resources): Let ΠK be

the set of feasible policies when the lifetime resource amount available for expenditure

is K. And let π∗K ∈ ΠK be the optimal policy, i.e. π∗K = arg minπK∈ΠK
VπK (s). Then

if K ′ > K, then ΠK ⊆ ΠK′ which implies Vπ∗
K′

(s) ≤ Vπ∗K (s)∀s ∈ S. �

Proof of Theorem 2 (Myopic Policy): Noting that V (n− 1, y − γτ , . . . , h =

4) = 0, the state-action cost function qτ for treatment τ is:

qτ (n, y, . . . , h = 1) = (1− rα,τ (s)− φ(s))V (n− 1, y − γτ , . . . , h = 1)

+ rα,τ (s)(1− ρ(s))[1 + V (n− 1, y − γτ , . . . , h = 2)]

+ rα,τ (s)ρ(s)[1 + V (n− 1, y − γτ , . . . , h = 3)]

Let τ ∗ be defined such that xα,τ∗(s) ≥ xα,τ (s) ∀τ ∈ An(bmin; y). Then rα,τ∗(s) ≤

rα,τ (s) ∀τ ∈ An(bmin; y). To show optimality, we require that the state-action

cost function difference of τ ∗ and all other τ is less than or equal to 0. If y ≥

nmaxτ∈A(bmin;y){γτ}, then:

V (n− 1, y − γτ∗ , . . . , h = 1) = V (n− 1, y − γτ , . . . , h = 1)

= V (n− 1, . . . , h = 1) ∀τ ∈ A(bmin; y)

V (n− 1, y − γτ∗ , . . . , h = 2) = V (n− 1, y − γτ , . . . , h = 2)

= V (n− 1, . . . , h = 2) ∀τ ∈ A(bmin; y)

V (n− 1, y − γτ∗ , . . . , h = 3) = V (n− 1, y − γτ , . . . , h = 3)

= V (n− 1, . . . , h = 3) ∀τ ∈ A(bmin; y)
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Which implies:

qτ∗ − qτ = (rα,τ∗(s)− rα,τ (s))[−V (n− 1, y − γτ , . . . , h = 1)

+ (1− ρ(s))(1 + V (n− 1, y − γτ , . . . , h = 2))

+ ρ(s)(1 + V (n− 1, y − γτ , . . . , h = 3))]

By construction, V (n − 1, y − γτ , . . . , h = 1) ≤ V (n − 1, y − γτ , . . . , h = 2) ≤

V (n − 1, y − γτ , . . . , h = 3) = n − 1 and V ≥ 0. Since rα,τ∗(s) − rα,τ (s) ≤ 0, we

require for optimality of τ ∗ that:

(1− ρ(s))V (n− 1, y − γτ , . . . , h = 2)−

V (n− 1, y − γτ , . . . , h = 1) ≥ −ρ(s)(n− 1)− 1

The above is always true since V (n− 1, y−γτ , . . . , h = 1) ≤ V (n− 1, y−γτ , . . . , h =

2) ≤ V (n − 1, y − γτ , . . . , h = 3) = n − 1. For all ρ(s) values between 0 and 1, the

requirement for optimality holds. Therefore, τ ∗ is optimal. �

Proof of Corollary 1: By the above theorem, the optimal treatment with n

decisions remaining when y ≥ nmaxτ∈An(bmin;y){γτ} is τ ∗ : xα,τ (s) ≤ xα,τ∗(s) ∀τ ∈

An(bmin; y). If An(bmin; y) ⊆ Ak(bmin; y) for n > k, then τ ∗ is feasible in all fu-

ture decision epochs. The optimal treatment changes only if xα,τ∗(s) < xα,τ̃ (s) for

some τ̃ ∈ Ak(bmin; y). By xα,τi(s) < xα,τi+1(s) for i = 1, . . . , |A|, this implies τ ∗ is

nondecreasing with decreasing n. �

Proof of Corollary 2: By the above theorem, the optimal treatment with n

decisions remaining when y ≥ nmaxτ∈An(bmin;y){γτ} is τ ∗ : xα,τ (s) ≤ xα,τ∗(s) ∀τ ∈

An(bmin; y). The set of feasible treatments An(bmin; y) is constrained by the minimum

allowable SBP, bmin, such that feasible treatments do not lead to a SBP below bmin.

Therefore, the optimal treatment when there are n decisions remaining minimizes the
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distance between the post-treatment SBP, bn − xα,τ (s), and the minimum allowable

SBP, bmin, i.e. τ ∗ = arg minτ∈An(bmin;y)(bn − xα,τ (s))− bmin. �

Proof of Corollary 3: If y < nmaxτ∈An(bmin;y){γτ}, and xα,τ∗(s) ≥ xα,τ (s) then

γτ∗ > γτ . By the nonincreasing with resources property of the optimal value function:

V (n − 1, y − γτ∗ , . . . , h = 1) ≥ V (n − 1, y − γτ , . . . , h = 1). Thus, qτ∗(n, y, . . . , h =

1) − qτ (n, y, . . . , h = 1) is not guaranteed to be ≤ 0, as it was in the proof under

the assumption of high resource utilization. Therefore, the myopic policy is not

guaranteed to be optimal. �

Proof of Theorem 3 (Optimal Value Function and Heterogeneity Pa-

rameter): Let α∗ > α. Then rα∗,τ (s) < rα,τ (s) because xα∗,τ (s) > xα,τ (s). For a

fixed y, τ and n:

qα∗ − qα = (1− rα∗,τ (s)− φ(s))Vα∗(n− 1, y − γτ , . . . , h = 1)

− (1− rα,τ (s)− φ(s))Vα(n− 1, y − γτ , . . . , h = 1)

+ rα∗,τ (s)(1− ρ(s))[1 + Vα∗(n− 1, y − γτ , . . . , h = 2)]

− rα,τ (s)(1− ρ(s))[1 + Vα(n− 1, y − γτ , . . . , h = 2)]

+ rα∗,τ (s)ρ(s)[1 + Vα∗(n− 1, y − γτ , . . . , h = 3)]

− rα,τ (s)ρ(s)[1 + Vα(n− 1, y − γτ , . . . , h = 3)]

Consider the final decision epoch, i.e. n = 1. The terminal condition is given as

V (n = 0, . . .) = 0. Therefore:

qα∗(n, y, . . . , h = 1)− qα(n, y, . . . , h = 1) = rα∗,τ (s)− rα,τ (s) < 0

Because the above is true for any τ , we conclude that Vα∗(n = 1, . . .) ≤ Vα(n = 1, . . .).

The inequality is strict when the patient is in a living health state (i.e. h = 1 or

h = 2).
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We now have:

(rα,τ (s) + φ(s))Vα(n− 1, y − γτ , . . . , h = 1)−

(rα∗,τ (s) + φ(s))Vα∗(n− 1, y − γτ , . . . , h = 1) ≥ 0

Since rα,τ (s) + φ(s) ≤ 1 and rα∗,τ (s) + φ(s) ≤ 1, we have the following relationships:

(rα,τ (s) + φ(s))Vα(n− 1, y − γτ , . . . , h = 1) ≤ Vα(n− 1, y − γτ , . . . , h = 1)

(rα∗,τ (s) + φ(s))Vα∗(n− 1, y − γτ , . . . , h = 1) ≤ Vα∗(n− 1, y − γτ , . . . , h = 1)

Therefore, we have:

Vα∗(n− 1, y − γτ , . . . , h = 1)− Vα(n− 1, y − γτ , . . . , h = 1)

+(rα,τ (s) + φ(s))Vα(n− 1, y − γτ , . . . , h = 1)

−(rα∗,τ (s) + φ(s))Vα∗(n− 1, y − γτ , . . . , h = 1)

≤ 0

Then the sum of the inequalities is < 0. Hence, Vα∗(n = 2, . . .) ≤ Vα(n = 2, . . .). By

induction, this relationship holds for all n. �

Proof of Theorem 4 (Initial Treatment Timing and Heterogeneity Pa-

rameter): Let η(α) = {n | qα,0(n, y, . . . , h = 1)− qα,τ (n, y, . . . , h = 1) ≤ 0}, i.e. the

set of decision periods where it is optimal to not treat the patient. To prove that

η(ᾱ) ⊆ η(α) for ᾱ > α, it is necessary to prove that qα,0 − qα,τ is increasing as α
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increases.

qα,0 − qα,τ = (1− r(s)− φ(s))V (n− 1, y, . . . , h = 1)

+ r(s)(1− ρ(s))[1 + V (n− 1, h, . . . , h = 2)]

+ r(s)ρ(s)[1 + (n− 1)]

− (1− rα,τ (s)− φ(s))V (n− 1, y − γτ , . . . , h = 1)

− rα,τ (s)(1− ρ(s))[1 + V (n− 1, y − γτ , . . . , h = 2)]

− rα,τ (s)ρ(s)[1 + (n− 1)]

Let A0(α) and Aτ (α) be defined as:

A0(α) = (1− r(s)− φ(s))V (n− 1, y, . . . , h = 1)

+ r(s)(1− ρ(s))[1 + V (n− 1, h, . . . , h = 2)]

Aτ (α) = (1− rα,τ (s)− φ(s))V (n− 1, y − γτ , . . . , h = 1)

+ rα,τ (s)(1− ρ(s))[1 + V (n− 1, y − γτ , . . . , h = 2)]

Then we have:

qα,0 − qα,τ = A0(α)− Aτ (α) + nρ(s)[r(s)− rα,τ (s)]

Since rα,τ (s) decreases as α increases, then nρ(s)[r(s)− rα,τ (s)] is increasing with

α. It remains to be shown that A0(α) − Aτ (α) is increasing with α. Let Q(α) =
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A0(α)− Aτ (α). If Q(α)−Q(ᾱ) ≤ 0, then we have completed the proof.

Q(α)−Q(ᾱ) = A0(α)− Aτ (α)− (A0(ᾱ)− Aτ (ᾱ))

= (1− r(s)− φ(s))Vα(n− 1, y, . . . , h = 1)

+ r(s)(1− ρ(s))[1 + Vα(n− 1, h, . . . , h = 2)]

− (1− rα,τ (s)− φ(s))Vα(n− 1, y − γτ , . . . , h = 1)

− rα,τ (s)(1− ρ(s))[1 + Vα(n− 1, y − γτ , . . . , h = 2)]

− (1− r(s)− φ(s))Vᾱ(n− 1, y, . . . , h = 1)

− r(s)(1− ρ(s))[1 + Vᾱ(n− 1, h, . . . , h = 2)]

+ (1− rᾱ,τ (s)− φ(s))Vᾱ(n− 1, y − γτ , . . . , h = 1)

+ rᾱ,τ (s)(1− ρ(s))[1 + Vᾱ(n− 1, y − γτ , . . . , h = 2)]



96

Under the assumption that Vα(s)− Vᾱ(s) = c ≥ 0, then we have:

Q(α)−Q(ᾱ) = (1− r(s)− φ(s))c

+ r(s)(1− ρ(s))c

+ (1− ρ(s))[rᾱ,τ (s)− rα,τ (s)]

− rα,τ (s)(1− ρ(s))Vα(n− 1, y − γτ , . . . , h = 2)

+ rᾱ,τ (s)(1− ρ(s))Vᾱ(n− 1, y − γτ , . . . , h = 2)

− Vα(n− 1, y − γτ , . . . , h = 1) + Vᾱ(n− 1, y − γτ , . . . , h = 1)

+ rα,τ (s)Vα(n− 1, y − γτ , . . . , h = 1)

− rᾱ,τ (s)Vᾱ(n− 1, y − γτ , . . . , h = 1)

+ φ(s)Vα(n− 1, y − γτ , . . . , h = 1)− φ(s)Vᾱ(n− 1, y − γτ , . . . , h = 1)

Q(α)−Q(ᾱ) = −r(s)ρ(s)c+ (1− ρ(s))[rᾱ,τ (s)− rα,τ ]

+ rα,τ (s)[Vα(n− 1, y − γτ , . . . , h = 1)

− (1− ρ(s))Vα(n− 1, y − γτ , . . . , h = 2)]

− rᾱ,τ (s)[Vᾱ(n− 1, y − γτ , . . . , h = 1)

+ (1− ρ(s))Vᾱ(n− 1, y − γτ , . . . , h = 2)]

Assuming Vα(. . . , h = 1) ≤ (1− ρ(s))Vα(. . . , h = 2), then Q(α)−Q(ᾱ) ≤ 0. �

3.10.2 Data for QALY-Maximizing MDP

Table 3.7 summarizes the inputs and data sources for the model.

Table 3.8 presents the 10 mutually-exclusive health states and their respective

quality of life weight.

Table 3.9 reports the mortality ratio and quality of life weights for each terminal

health state.

Risk slopes used to compute relative risk reduction are shown in Table 3.10
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Input Description Source
T Length of planning horizon
st ∈ S Patient state consisting of demo-

graphics, clinical observations and
health state

[148]

at ∈ A Available treatment options [88]
bmin(st) Minimum allowable SBP threshold
rCHD(st) Pre-treatment one-period risk of a

CHD event
[8]

rStroke(st) Pre-treatment one-period risk of a
stroke

[8]

ζCHD Subsequent CHD event risk scaling
factor

[124]

ζStroke Subsequent stroke risk scaling factor [25]
RRRCHDat (sπt ) Relative risk reduction for CHD [88]
RRRStrokeat (sπt ) Relative risk reduction for stroke [88]
rCHDat (sπt ) Post-treatment one-period risk of a

CHD event
rStrokeat (sπt ) Post-treatment one-period risk of a

stroke
ρCHD(sπt ) Fatality likelihood for CHD events [95],[9], [66]
ρStroke(sπt ) Fatality likelihood for stroke [95], [9], [66]
φ(sπt ) Total mortality likelihood [9]
P (st+1 | st, aπt (st)) State transition probability
q(st) Quality of life weight [55], [119],[120]
daπt Treatment disutility per medication
λ Discount factor
π∗ Optimal treatment strategy
VT+1(sT+1) Terminal condition
Vt(st) Optimal value function

Table 3.7: QALY model inputs and data sources.

Health State Quality of Life Weight
Healthy 1
History of CHD but no event this period 0.90
History of stroke but no event this period 0.90
History of CHD and stroke but no event this period 0.81
Survival of a CHD event this period 0.88
Survival of a stroke this period 0.67
Death from non-CVD related cause this period 0
Death from a CHD event this period 0
Death from a stroke this period 0
Dead 0

Table 3.8: Quality of life weights for each health state

Fatality likelihoods for cardiovascular events are presented in Table 3.11.
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Health State
Quality of Life
Weight

Mortality
Scaling Factor

Healthy 1 1
History of CHD but no event this period 0.90 0.8
History of stroke but no event this period 0.90 0.8
History of CHD and stroke but no event this period 0.81 0.8
Survival of a CHD event this period 0.90 0.8
Survival of a stroke this period 0.90 0.8
Death from non-CVD related cause this period 0 0
Death from a CHD event this period 0 0
Death from a stroke this period 0 0
Dead 0 0

Table 3.9: Quality of life weight and mortality scale factor for terminal health states

Age CHD Stroke
40-49 0.49 0.36
50-59 0.5 0.38
60-69 0.54 0.43
70-79 0.6 0.5
80+ 0.67 0.67

Table 3.10: Risk slopes by age and cardiovascular event type

CHD Stroke
Age Male Female Male Female
40-44 0.12 0.26 0.03 0.04
45-54 0.19 0.37 0.07 0.08
55-64 0.26 0.48 0.11 0.11
65-74 0.35 0.64 0.16 0.16
75+ 0.44 0.64 0.21 0.21

Table 3.11: Fatality likelihoods by age, sex and cardiovascular event type

3.10.3 Additional Analyses for Time-Varying Benefit and Disutility

Tables 3.12 through 3.20 present the results of the time-varying treatment benefit

and disutility assumptions on the second, third and bottom quartiles of age-adjusted

CV risk patients. For the treatment disutilities, 0.05∗ and 0.1∗ denote the increasing

disutilities.
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Bottom Quartile Age-Adjusted CV Risk
Patients

Rx years per 1000 ppl

Treatment Disutility 0.001 0.005 0.01 0.05* 0.1*
Current risk strategy
No increase in RRR
5% CV risk 15756 15756 15756 15756 15756
10% CV risk 4721.3 4721.3 4721.3 4721.3 4721.3
15% CV risk 950.07 950.07 950.07 950.07 950.07
20% CV risk 454.56 454.56 454.56 454.56 454.56
10 years till full benefit
5% CV risk 15794 15794 15794 15794 15794
10% CV risk 4731.3 4731.3 4731.3 4731.3 4731.3
15% CV risk 958.4 958.4 958.4 958.4 958.4
20% CV risk 462.28 462.28 462.28 462.28 462.28
20 years till full benefit
5% CV risk 15779 15779 15779 15779 15779
10% CV risk 4729.4 4729.4 4729.4 4729.4 4729.4
15% CV risk 957.04 957.04 957.04 957.04 957.04
20% CV risk 460.5 460.5 460.5 460.5 460.5
30 years till full benefit
5% CV risk 15771 15771 15771 15771 15771
10% CV risk 4727.4 4727.4 4727.4 4727.4 4727.4
15% CV risk 954.95 954.95 954.95 954.95 954.95
20% CV risk 458.4 458.4 458.4 458.4 458.4
Future risk strategy
No increase in RRR
5% CV risk 25174 25174 25174 25174 25174
10% CV risk 11084 11084 11084 11084 11084
15% CV risk 2547.2 2547.2 2547.2 2547.2 2547.2
20% CV risk 791.62 791.62 791.62 791.62 791.62
10 years till full benefit
5% CV risk 25243 25243 25243 25243 25243
10% CV risk 11111 11111 11111 11111 11111
15% CV risk 2558.1 2558.1 2558.1 2558.1 2558.1
20% CV risk 800.64 800.64 800.64 800.64 800.64
20 years till full benefit
5% CV risk 25228 25228 25228 25228 25228
10% CV risk 11101 11101 11101 11101 11101
15% CV risk 2556.5 2556.5 2556.5 2556.5 2556.5
20% CV risk 800.02 800.02 800.02 800.02 800.02
30 years till full benefit
5% CV risk 25212 25212 25212 25212 25212
10% CV risk 11097 11097 11097 11097 11097
15% CV risk 2555.2 2555.2 2555.2 2555.2 2555.2
20% CV risk 798.68 798.68 798.68 798.68 798.68

Table 3.12: Treatment (Rx) years for the bottom quartile age-adjusted CV risk patients under
different assumptions on time-varying treatment benefit and disutility.
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Bottom Quartile Age-Adjusted CV Risk
Patients

CV events per 1000 ppl

Treatment Disutility 0.001 0.005 0.01 0.05* 0.1*
Current risk strategy
No increase in RRR
5% CV risk 59.11 59.11 59.11 59.11 59.11
10% CV risk 69.26 69.26 69.26 69.26 69.26
15% CV risk 75.29 75.29 75.29 75.29 75.29
20% CV risk 76.57 76.57 76.57 76.57 76.57
10 years till full benefit
5% CV risk 44.19 44.19 44.19 44.19 44.19
10% CV risk 64.20 64.20 64.20 64.20 64.20
15% CV risk 72.21 72.21 72.21 72.21 72.21
20% CV risk 73.65 73.65 73.65 73.65 73.65
20 years till full benefit
5% CV risk 48.48 48.48 48.48 48.48 48.48
10% CV risk 65.73 65.73 65.73 65.73 65.73
15% CV risk 72.54 72.54 72.54 72.54 72.54
20% CV risk 74.09 74.09 74.09 74.09 74.09
30 years till full benefit
5% CV risk 51.91 51.91 51.91 51.91 51.91
10% CV risk 66.48 66.48 66.48 66.48 66.48
15% CV risk 73.15 73.15 73.15 73.15 73.15
20% CV risk 74.79 74.79 74.79 74.79 74.79
Future risk strategy
No increase in RRR
5% CV risk 55.51 55.51 55.51 55.51 55.51
10% CV risk 62.57 62.57 62.57 62.57 62.57
15% CV risk 72.57 72.57 72.57 72.57 72.57
20% CV risk 75.75 75.75 75.75 75.75 75.75
10 years till full benefit
5% CV risk 34.63 34.63 34.63 34.63 34.63
10% CV risk 50.62 50.62 50.62 50.62 50.62
15% CV risk 67.41 67.41 67.41 67.41 67.41
20% CV risk 72.26 72.26 72.26 72.26 72.26
20 years till full benefit
5% CV risk 37.53 37.53 37.53 37.53 37.53
10% CV risk 54.30 54.30 54.30 54.30 54.30
15% CV risk 68.65 68.65 68.65 68.65 68.65
20% CV risk 72.60 72.60 72.60 72.60 72.60
30 years till full benefit
5% CV risk 41.41 41.41 41.41 41.41 41.41
10% CV risk 56.67 56.67 56.67 56.67 56.67
15% CV risk 69.26 69.26 69.26 69.26 69.26
20% CV risk 72.97 72.97 72.97 72.97 72.97

Table 3.13: Cardiovascular (CV) disease events for the bottom quartile age-adjusted CV risk pa-
tients under different assumptions on time-varying treatment benefit and disutility.
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Bottom Quartile Age-Adjusted CV Risk
Patients

QALYs per 1000 ppl

Treatment Disutility 0.001 0.005 0.01 0.05* 0.1*
Current risk strategy
No increase in RRR
5% CV risk 25687 25665 25637 25654 25631
10% CV risk 25661 25655 25648 25655 25651
15% CV risk 25648 25647 25645 25645 25642
20% CV risk 25646 25645 25645 25644 25642
10 years till full benefit
5% CV risk 25722 25700 25672 25688 25666
10% CV risk 25670 25664 25657 25664 25660
15% CV risk 25653 25652 25650 25650 25647
20% CV risk 25651 25650 25649 25649 25647
20 years till full benefit
5% CV risk 25710 25688 25660 25677 25654
10% CV risk 25667 25661 25654 25661 25657
15% CV risk 25652 25651 25650 25649 25647
20% CV risk 25650 25649 25649 25648 25646
30 years till full benefit
5% CV risk 25702 25680 25652 25669 25646
10% CV risk 25665 25660 25653 25660 25656
15% CV risk 25651 25650 25649 25648 25646
20% CV risk 25649 25648 25647 25647 25645
Future risk strategy
No increase in RRR
5% CV risk 25696 25654 25601 25564 25451
10% CV risk 25678 25663 25644 25656 25641
15% CV risk 25653 25650 25646 25646 25640
20% CV risk 25647 25646 25645 25642 25638
10 years till full benefit
5% CV risk 25751 25709 25656 25619 25505
10% CV risk 25704 25689 25669 25682 25667
15% CV risk 25662 25658 25654 25655 25649
20% CV risk 25653 25652 25651 25648 25643
20 years till full benefit
5% CV risk 25741 25699 25646 25609 25495
10% CV risk 25695 25679 25660 25673 25658
15% CV risk 25660 25656 25652 25653 25646
20% CV risk 25652 25651 25650 25648 25643
30 years till full benefit
5% CV risk 25730 25688 25635 25597 25484
10% CV risk 25689 25674 25655 25668 25653
15% CV risk 25659 25655 25651 25651 25645
20% CV risk 25652 25651 25649 25647 25642

Table 3.14: Quality-adjusted life years (QALYs) for the bottom quartile age-adjusted CV risk pa-
tients under different assumptions on time-varying treatment benefit and disutility.
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3rd Quartile Age-Adjusted CV Risk Pa-
tients

Rx years per 1000 ppl

Treatment Disutility 0.001 0.005 0.01 0.05* 0.1*
Current risk strategy
No increase in RRR
5% CV risk 24017 24017 24017 24017 24017
10% CV risk 14359 14359 14359 14359 14359
15% CV risk 6565.8 6565.8 6565.8 6565.8 6565.8
20% CV risk 2575.6 2575.6 2575.6 2575.6 2575.6
10 years till full benefit
5% CV risk 24171 24171 24171 24171 24171
10% CV risk 14439 14439 14439 14439 14439
15% CV risk 6610.8 6610.8 6610.8 6610.8 6610.8
20% CV risk 2616.4 2616.4 2616.4 2616.4 2616.4
20 years till full benefit
5% CV risk 24132 24132 24132 24132 24132
10% CV risk 14413 14413 14413 14413 14413
15% CV risk 6604.8 6604.8 6604.8 6604.8 6604.8
20% CV risk 2611.9 2611.9 2611.9 2611.9 2611.9
30 years till full benefit
5% CV risk 24098 24098 24098 24098 24098
10% CV risk 14400 14400 14400 14400 14400
15% CV risk 6596.8 6596.8 6596.8 6596.8 6596.8
20% CV risk 2603 2603 2603 2603 2603
Future risk strategy
No increase in RRR
5% CV risk 33823 33823 33823 33823 33823
10% CV risk 23684 23684 23684 23684 23684
15% CV risk 14419 14419 14419 14419 14419
20% CV risk 6494 6494 6494 6494 6494
10 years till full benefit
5% CV risk 34025 34025 34025 34025 34025
10% CV risk 23835 23835 23835 23835 23835
15% CV risk 14504 14504 14504 14504 14504
20% CV risk 6547 6547 6547 6547 6547
20 years till full benefit
5% CV risk 34002 34002 34002 34002 34002
10% CV risk 23797 23797 23797 23797 23797
15% CV risk 14480 14480 14480 14480 14480
20% CV risk 6538.7 6538.7 6538.7 6538.7 6538.7
30 years till full benefit
5% CV risk 33967 33967 33967 33967 33967
10% CV risk 23766 23766 23766 23766 23766
15% CV risk 14468 14468 14468 14468 14468
20% CV risk 6533.6 6533.6 6533.6 6533.6 6533.6

Table 3.15: Treatment (Rx) years for the 3rd quartile age-adjusted CV risk patients under different
assumptions on time-varying treatment benefit and disutility.
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3rd Quartile Age-Adjusted CV Risk Pa-
tients

CV events per 1000 ppl

Treatment Disutility 0.001 0.005 0.01 0.05* 0.1*
Current risk strategy
No increase in RRR
5% CV risk 139.96 139.96 139.96 139.96 139.96
10% CV risk 152.02 152.02 152.02 152.02 152.02
15% CV risk 169.08 169.08 169.08 169.08 169.08
20% CV risk 181.28 181.28 181.28 181.28 181.28
10 years till full benefit
5% CV risk 88.60 88.60 88.60 88.60 88.60
10% CV risk 116.54 116.54 116.54 116.54 116.54
15% CV risk 148.77 148.77 148.77 148.77 148.77
20% CV risk 165.90 165.90 165.90 165.90 165.90
20 years till full benefit
5% CV risk 96.68 96.68 96.68 96.68 96.68
10% CV risk 126.70 126.70 126.70 126.70 126.70
15% CV risk 153.16 153.16 153.16 153.16 153.16
20% CV risk 167.11 167.11 167.11 167.11 167.11
30 years till full benefit
5% CV risk 106.81 106.81 106.81 106.81 106.81
10% CV risk 132.95 132.95 132.95 132.95 132.95
15% CV risk 155.65 155.65 155.65 155.65 155.65
20% CV risk 169.31 169.31 169.31 169.31 169.31
Future risk strategy
No increase in RRR
5% CV risk 135.87 135.87 135.87 135.87 135.87
10% CV risk 140.23 140.23 140.23 140.23 140.23
15% CV risk 152.09 152.09 152.09 152.09 152.09
20% CV risk 169.11 169.11 169.11 169.11 169.11
10 years till full benefit
5% CV risk 76.18 76.18 76.18 76.18 76.18
10% CV risk 89.23 89.23 89.23 89.23 89.23
15% CV risk 115.38 115.38 115.38 115.38 115.38
20% CV risk 144.69 144.69 144.69 144.69 144.69
20 years till full benefit
5% CV risk 80.19 80.19 80.19 80.19 80.19
10% CV risk 97.25 97.25 97.25 97.25 97.25
15% CV risk 124.46 124.46 124.46 124.46 124.46
20% CV risk 150.24 150.24 150.24 150.24 150.24
30 years till full benefit
5% CV risk 87.05 87.05 87.05 87.05 87.05
10% CV risk 106.99 106.99 106.99 106.99 106.99
15% CV risk 130.79 130.79 130.79 130.79 130.79
20% CV risk 152.88 152.88 152.88 152.88 152.88

Table 3.16: Cardiovascular (CV) disease events for the 3rd quartile age-adjusted CV risk patients
under different assumptions on time-varying treatment benefit and disutility.
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3rd Quartile Age-Adjusted CV Risk Pa-
tients

QALYs per 1000 ppl

Treatment Disutility 0.001 0.005 0.01 0.05* 0.1*
Current risk strategy
No increase in RRR
5% CV risk 25186 25147 25098 25074 24981
10% CV risk 25150 25131 25106 25122 25102
15% CV risk 25106 25098 25088 25093 25083
20% CV risk 25081 25077 25073 25071 25063
10 years till full benefit
5% CV risk 25304 25265 25216 25191 25097
10% CV risk 25220 25200 25175 25191 25171
15% CV risk 25139 25131 25121 25126 25115
20% CV risk 25105 25101 25097 25095 25086
20 years till full benefit
5% CV risk 25279 25240 25191 25167 25072
10% CV risk 25196 25177 25152 25168 25148
15% CV risk 25131 25123 25113 25118 25107
20% CV risk 25102 25099 25095 25092 25083
30 years till full benefit
5% CV risk 25254 25215 25166 25141 25047
10% CV risk 25183 25163 25139 25155 25134
15% CV risk 25126 25118 25108 25113 25102
20% CV risk 25098 25095 25091 25088 25079
Future risk strategy
No increase in RRR
5% CV risk 25195 25129 25047 24918 24665
10% CV risk 25185 25147 25099 25075 24984
15% CV risk 25148 25128 25103 25113 25086
20% CV risk 25104 25095 25084 25085 25069
10 years till full benefit
5% CV risk 25344 25278 25195 25064 24810
10% CV risk 25301 25262 25214 25191 25098
15% CV risk 25219 25199 25173 25183 25156
20% CV risk 25144 25135 25125 25125 25109
20 years till full benefit
5% CV risk 25329 25263 25180 25049 24795
10% CV risk 25277 25238 25190 25166 25074
15% CV risk 25198 25178 25152 25162 25135
20% CV risk 25134 25126 25115 25115 25099
30 years till full benefit
5% CV risk 25307 25241 25158 25028 24774
10% CV risk 25253 25214 25166 25142 25050
15% CV risk 25185 25165 25140 25149 25122
20% CV risk 25130 25121 25110 25110 25094

Table 3.17: Quality-adjusted life years (QALYs) for the 3rd quartile age-adjusted CV risk patients
under different assumptions on time-varying treatment benefit and disutility.
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2nd Quartile Age-Adjusted CV Risk Pa-
tients

Rx years per 1000 ppl

Treatment Disutility 0.001 0.005 0.01 0.05* 0.1*
Current risk strategy
No increase in RRR
5% CV risk 28728 28728 28728 28728 28728
10% CV risk 20593 20593 20593 20593 20593
15% CV risk 14088 14088 14088 14088 14088
20% CV risk 8645.5 8645.5 8645.5 8645.5 8645.5
10 years till full benefit
5% CV risk 29085 29085 29085 29085 29085
10% CV risk 20860 20860 20860 20860 20860
15% CV risk 14273 14273 14273 14273 14273
20% CV risk 8783.8 8783.8 8783.8 8783.8 8783.8
20 years till full benefit
5% CV risk 29026 29026 29026 29026 29026
10% CV risk 20795 20795 20795 20795 20795
15% CV risk 14230 14230 14230 14230 14230
20% CV risk 8766.5 8766.5 8766.5 8766.5 8766.5
30 years till full benefit
5% CV risk 28959 28959 28959 28959 28959
10% CV risk 20746 20746 20746 20746 20746
15% CV risk 14203 14203 14203 14203 14203
20% CV risk 8746.1 8746.1 8746.1 8746.1 8746.1
Future risk strategy
No increase in RRR
5% CV risk 38562 38562 38562 38562 38562
10% CV risk 30218 30218 30218 30218 30218
15% CV risk 23193 23193 23193 23193 23193
20% CV risk 16759 16759 16759 16759 16759
10 years till full benefit
5% CV risk 38974 38974 38974 38974 38974
10% CV risk 30588 30588 30588 30588 30588
15% CV risk 23491 23491 23491 23491 23491
20% CV risk 16977 16977 16977 16977 16977
20 years till full benefit
5% CV risk 38947 38947 38947 38947 38947
10% CV risk 30534 30534 30534 30534 30534
15% CV risk 23426 23426 23426 23426 23426
20% CV risk 16928 16928 16928 16928 16928
30 years till full benefit
5% CV risk 38895 38895 38895 38895 38895
10% CV risk 30468 30468 30468 30468 30468
15% CV risk 23371 23371 23371 23371 23371
20% CV risk 16897 16897 16897 16897 16897

Table 3.18: Treatment (Rx) years for the 2nd quartile age-adjusted CV risk patients under different
assumptions on time-varying treatment benefit and disutility.
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2nd Quartile Age-Adjusted CV Risk Pa-
tients

CV events per 1000 ppl

Treatment Disutility 0.001 0.005 0.01 0.05* 0.1*
Current risk strategy
No increase in RRR
5% CV risk 287.54 287.54 287.54 287.54 287.54
10% CV risk 300.62 300.62 300.62 300.62 300.62
15% CV risk 320.20 320.20 320.20 320.20 320.20
20% CV risk 343.30 343.30 343.30 343.30 343.30
10 years till full benefit
5% CV risk 166.61 166.61 166.61 166.61 166.61
10% CV risk 198.61 198.61 198.61 198.61 198.61
15% CV risk 239.78 239.78 239.78 239.78 239.78
20% CV risk 282.63 282.63 282.63 282.63 282.63
20 years till full benefit
5% CV risk 178.84 178.84 178.84 178.84 178.84
10% CV risk 216.11 216.11 216.11 216.11 216.11
15% CV risk 257.94 257.94 257.94 257.94 257.94
20% CV risk 293.89 293.89 293.89 293.89 293.89
30 years till full benefit
5% CV risk 195.96 195.96 195.96 195.96 195.96
10% CV risk 234.58 234.58 234.58 234.58 234.58
15% CV risk 269.69 269.69 269.69 269.69 269.69
20% CV risk 300.39 300.39 300.39 300.39 300.39
Future risk strategy
No increase in RRR
5% CV risk 282.77 282.77 282.77 282.77 282.77
10% CV risk 286.30 286.30 286.30 286.30 286.30
15% CV risk 295.22 295.22 295.22 295.22 295.22
20% CV risk 311.04 311.04 311.04 311.04 311.04
10 years till full benefit
5% CV risk 151.04 151.04 151.04 151.04 151.04
10% CV risk 162.98 162.98 162.98 162.98 162.98
15% CV risk 185.98 185.98 185.98 185.98 185.98
20% CV risk 220.13 220.13 220.13 220.13 220.13
20 years till full benefit
5% CV risk 156.35 156.35 156.35 156.35 156.35
10% CV risk 174.05 174.05 174.05 174.05 174.05
15% CV risk 201.71 201.71 201.71 201.71 201.71
20% CV risk 237.51 237.51 237.51 237.51 237.51
30 years till full benefit
5% CV risk 166.83 166.83 166.83 166.83 166.83
10% CV risk 190.21 190.21 190.21 190.21 190.21
15% CV risk 220.17 220.17 220.17 220.17 220.17
20% CV risk 252.02 252.02 252.02 252.02 252.02

Table 3.19: Cardiovascular (CV) disease events for the 2nd quartile age-adjusted CV risk patients
under different assumptions on time-varying treatment benefit and disutility.
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2nd Quartile Age-Adjusted CV Risk Pa-
tients

QALYs per 1000 ppl

Treatment Disutility 0.001 0.005 0.01 0.05* 0.1*
Current risk strategy
No increase in RRR
5% CV risk 24595 24543 24477 24403 24233
10% CV risk 24559 24527 24487 24477 24410
15% CV risk 24507 24487 24463 24469 24439
20% CV risk 24452 24441 24427 24427 24405
10 years till full benefit
5% CV risk 24844 24791 24726 24649 24477
10% CV risk 24751 24719 24678 24668 24600
15% CV risk 24643 24623 24599 24604 24573
20% CV risk 24544 24533 24519 24518 24494
20 years till full benefit
5% CV risk 24808 24755 24690 24613 24440
10% CV risk 24709 24677 24636 24625 24557
15% CV risk 24606 24586 24561 24567 24535
20% CV risk 24524 24513 24499 24498 24474
30 years till full benefit
5% CV risk 24765 24713 24647 24571 24398
10% CV risk 24670 24637 24597 24586 24518
15% CV risk 24583 24564 24539 24544 24513
20% CV risk 24512 24501 24487 24486 24462
Future risk strategy
No increase in RRR
5% CV risk 24603 24519 24413 24211 23849
10% CV risk 24598 24542 24471 24380 24185
15% CV risk 24573 24535 24487 24459 24362
20% CV risk 24527 24502 24471 24469 24422
10 years till full benefit
5% CV risk 24890 24806 24700 24493 24125
10% CV risk 24856 24799 24728 24635 24437
15% CV risk 24785 24747 24699 24669 24571
20% CV risk 24686 24661 24630 24627 24580
20 years till full benefit
5% CV risk 24872 24787 24682 24475 24107
10% CV risk 24823 24766 24695 24601 24403
15% CV risk 24744 24706 24658 24628 24530
20% CV risk 24648 24623 24592 24589 24541
30 years till full benefit
5% CV risk 24840 24756 24650 24444 24077
10% CV risk 24781 24724 24653 24560 24362
15% CV risk 24704 24665 24618 24588 24489
20% CV risk 24621 24596 24564 24561 24513

Table 3.20: Quality-adjusted life years (QALYs) for the 2nd quartile age-adjusted CV risk patients
under different assumptions on time-varying treatment benefit and disutility.



CHAPTER IV

Copayment Restructuring for Improved Adherence to
Treatment Plans

This chapter builds upon the research completed in Chapter III to understand

how to incentivize adherence to optimal treatment policies. This work develops

a bilevel optimization model based upon a Stackelberg game where the leader is

a single insurance provider who determines medication copayments for its insured

patients. The followers are patient classes who react to the insurance provider’s

copayment level by altering their adherence to medication. As discovered in Chapter

III, the optimal treatment policy for a patient depends on his/her adherence to

medication; therefore, the new copayment level also potentially alters the optimal

treatment policy. To solve this nonlinear bilevel model, we propose an iterative

scheme which repeatedly solves the lower level problem (determining the optimal

treatment policy) which provides inputs to the upper level problem (determining the

optimal medication copayments). We applied this model to patients, aged 65 and

older found in the NHANES dataset, who may be representative of those patients

enrolled in Medicare and compared the health and economic performance of the

optimal copayments against current practice.
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4.1 Background

Operations research has contributed heavily to the derivation of optimal treat-

ment guidelines for chronic disease [2], [4], [5], [31], [133], [81], [13], [139], [141].

However, this research has assumed that physicians and patients will follow the

optimal guidelines, which may not always be the case. As shown in Chapter III,

decreased adherence to treatment plansmay negatively impact outcomes. Hence, it

is crucial to determine how improved patient adherence may be incentivized.

One source for these incentives is the insurance provider. An insurance provider

sets the price a patient pays for medical services, including pharmacotherapy (e.g.

hypertension medication). Theoretical and empirical research in health economics

[80], [30], [24], [34], [97] suggests that as the price of medication decreases, adherence

to the medication will increase due to price elasticity. Therefore, insurance providers

may be able to directly address low patient adherence to treatment policies by de-

creasing copayments (i.e. the price paid per medication). With the principle of price

elasticity as the motivation for a financial incentive to improve adherence, we pro-

pose a mathematical program for determining optimal copayments paid by patients

to their insurance provider.

We consider the perspective of a single insurance provider whose health care plan

covers a patient population which is heterogeneous in its risk factors for cardiovascu-

lar disease. The insurance provider wishes to estimate what copayment to assign to

each patient class (i.e. a cluster of patients similar in their risk factors) while taking

into consider that patient heterogeneity leads to differences in optimal treatment

plans and variability in the marginal benefit of improved adherence. We assume

the insurance provider is a centralized decision maker who is interested in setting
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copayment levels for its patients that would maximize the expected total health of

its patient population. Free medications for all patients would naturally maximize

total health; however, free medications would be very expensive to the insurance

provider who is operating in an environment with increasing national expenditures

on health care [26] and a strong focus on cost control [67], [114]. On the other hand,

the provider may wish to target those patients who would benefit the most. We also

assume the insurance provider is concerned with the inequity caused by different

copayments for different patients classes.

4.2 Literature Review

This research intersects the fields of payment structures, health economics and op-

timization. Within the domain of operations research and payment structures, there

have been studies on outcome-based reimbursement policies, including how threshold

reimbursements affect prescription policies for a clinic [147] and the use of principal-

agent models for identifying measures for determining reimbursement/incentives be-

tween a healthcare provider (e.g. hospital) and the payer (e.g. insurance provider)

[89], [56]. Research has focused primarily on contracts between payers and providers:

threshold performance-based contract in order to coordinate payer-provider sys-

tem [72], and coordination of relationships between payer-provider (maximize both

payer’s and provider’s objectives) in preventive health care through ranking patients

with a threshold for providing treatment [157]. This research has also extended into

copayment coupons from drug manufacturers and the desirability of copay coupon

bans to insurers [75]. In addition to the study of pricing between hospitals and

insurance providers, researchers have studied pricing mechanisms between manufac-

turers and insurance providers [162], [160], [149], [96]. Our research differs in that
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we model the relationship between patients (the end-user of services) and the insur-

ance provider (the primary payer for services). Furthermore, our research considers

treatment plans (prescribed by the healthcare provider) which are sensitive to the pa-

tient’s characteristics and adherence to medication. The focus on the patient requires

the modeling of disease dynamics over time and an optimization model for deriving

treatment plans. Our research also incorporates inequity of copayment coverage,

which differs from current research that seeks a purely utilitarian solution.

The field of health economics has also studied copayments, including stylistic

models for determining whether a new health technology should be subsidized [145]

or whether medical interventions should be included in statutory insurance packages

[146]. Health economists have considered the welfare economics of public drug in-

surance and government subsidies for health care premiums [86]. They have also

researched the impact of payments and altruistic physicians on treatment decisions

between physician and patient [94]. Other research looks at financial incentives to

control treatment decisions [29], which considers inexpensive vs. expensive treat-

ments for an observable disease state, as well as economic models for copayment

reduction [35], [33], [129]. More empirical research includes studying the impact of

adherence on health [125], [104] as well as real-world implementations of cost-sharing

changes [97], [30], [24], [34]. While the previous research has addressed the economics

of copayments, our work differs from this research in that we employ optimization

to determine copayment levels which are tailored to the patient’s characteristics and

his/her optimal treatment plan.

To determine the optimal copayment levels, we formulate the problem as a bilevel

optimization model (see 4.3.1 for details) with a single leader (i.e. insurance provider)

and multiple followers (i.e. patient classes). Hierarchical models, including bilevel,
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are generally challenging to solve due to the interplay between the leader and followers

[158]. Traditional approaches to solving hierarchical models include the Kuhn Tucker

approach [62], [43] and penalty functions [153]. More recent solution techniques

include genetic algorithms [92], evolutionary algorithms [144], and tabu search [165].

Researchers have found that there is no single best approach to solving these models,

and that heuristic approaches combined with problem domain expertise are more

robust [115] than the traditional methods. We continue in this trend of heuristic

algorithms and develop an iterative nonlinear programming approach which utilizes

the findings of Chapter III to solve the followers’ optimization problem.

Overall, our research has the following key contributions: (1) a bilevel optimiza-

tion formulation for determining optimal copayments for different patients, (2) the

direct modeling of inequity constraints, (3) an iterative algorithm for solving the

bilevel problem, and (4) a comparative analysis between optimal copayments and

the current Medicare system. To our knowledge, this is the first study to integrate

optimal copayments and optimal treatment plans for hypertension. While this work

is applied to hypertension, the formulation and modeling principles are applicable to

other chronic diseases for which patients are required to pay out-of-pocket to treat

their disease.

4.3 Model

Figure 4.1 presents the dynamics and relationships between decisions and out-

comes in the insurance/patient healthcare system. Our decision maker is a single

insurance provider servicing a heterogeneous patient population. We assume the

population of patients can be segmented into different classes. These classes may

be defined based on behavior, e.g. smoking vs. nonsmoking, and/or cardiovascular
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Figure 4.1: Flow diagram capturing the dynamics of the health system and the relationship between
coverage decisions and outcomes.

risk, e.g. the patient’s diabetes status. Let p ∈ P denote a particular patient class

and let npht be the expected number of patients in class p and health state h ∈ H

(as defined in 3.8) at each time period t ∈ T . The benevolent insurance provider

is interested in determining the medication coverage yph ∈ [0, 1], defined as the per-

centage of medication cost covered by the insurance provider, for each patient class p

that maximizes total population health. We assume the insurance provider does not

want the copayment level for a particular patient class to change from year to year

within the planning horizon, since this would create implementation challenges with

its patients. Assuming a quality of life qpht ∈ [0, 1] and discount factor λ ∈ [0, 1], the

insurance provider’s objective function is of the form:

Z∗ = max
y

{
T∑
t=1

∑
p∈P

∑
h∈H

λt · npht(y) · qpht

}
(4.1)

where y is the matrix of coverage decisions and Z∗ is the optimal objective function

value.

Using the theory of price elasticity, we assume the following relationship between



114

the coverage decision yph and the patient’s adherence to medication αpht:

αpht = max{0,min{1, αipht + δαpht · (yph − yiph)}}(4.2)

where δαpht is the price elasticity of adherence, i.e. the increase in adherence caused

by a 1% reduction in the price of medication; αipht is the current adherence rate

and yiph is the current coverage. When δαpht is positive and the change in coverage is

positive (i.e. new coverage is higher than current coverage), the patient’s adherence

to medication will increase.

From our analyses in Chapter III, we found that the optimal treatment pol-

icy depends on the patient’s particular cardiovascular risk factors and adherence to

medication. Let π∗pht be the optimal treatment for patient class p in health state h at

time t as determined by the MDP (see equation (3.19)). In addition to providing the

optimal treatment policy, the MDP also implicitly computes the probability that a

patient of class p ∈ P will be in each of the health states h ∈ H at each time period

t ∈ T . Using the state transition probabilities, we can compute the expected number

of patients in each combination of health state and time for a particular patient class,

npht.

Given the drug manufacturer’s price c(·), the cost of the optimal treatment to the

patient is (1 − yph) · c(π∗pht) and the cost of the optimal treatment to the insurance

provider is yph · c(π∗pht). The insurance provider is assumed to have a limited bud-

get each time period, Bt, defined on a per patient basis, which constrains the total

cost-sharing relief available from the insurance provider. We assume this budget rep-

resents the additional amount of resources the insurance provider is willing to expend

to reduce copayments for its patients. We do not consider extracting resources from

other segments of the insurance provider’s budget to pay for copayment reductions.
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We can write the insurance provider’s resource constraint as:

∑
p∈P

∑
h∈H

npht(y) · yph · c(π∗pht) ≤ Bt ·
∑
p∈P

∑
h∈H

npht(y)(4.3)

We further assume that the benevolent insurance provider wants to limit the

total inequity of copayment coverage present in the allocation of resources across the

different patient classes. To compute the total allocation inequity, we propose to use

a social welfare function W (y) paired with a maximum inequity threshold w ∈ [0, 1].

We will use the Theil index as our social welfare function W (y). The Theil index

measures the degree of entropy or disorder in a system, and it is a special case of

the generalized entropy ratio [110]. A low Theil index corresponds to an equitable

distribution of resources (i.e. low disorder) and a high Theil index corresponds to an

inequitable distribution (i.e. high disorder). We compute the Theil index as:

W (y) =
1

N lnN

∑
p∈P

∑
h∈H

yph
ȳ

ln
yph
ȳ
≤ w(4.4)

ȳ =
1

N

∑
p∈P

∑
h∈H

yph(4.5)

N = |P | · |H|(4.6)

where N is the total number of combinations of patient class and health state and

ȳ is the average coverage across all patient classes. The scale factor 1
N lnN

ensures

that the Theil index takes values between 0 and 1. Note that a patient class with

no difference from average coverage (i.e yph = ȳ) does not contribute to the index

since 1 · ln(1) = 0. Therefore, when all copayment coverages are equal, the Theil

index equals 0. As coverages begin to deviate from the average coverage, the Theil

index increases toward 1. Therefore, with a maximum inequity threshold w, we can

appropriately limit the total allocation inequity to match the insurance provider’s

desired level of fairness.
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Formally, we can write the mathematical program as follows:

Z∗ = max
y

{
T∑
t=1

∑
p∈P

∑
h∈H

λt · npht(y) · qpht

}
(4.7)

s.t.
∑
p∈P

∑
h∈H

npht(y) · yph · c(π
∗
pht) ≤ Bt ·

∑
p∈P

∑
h∈H

npht(y)(4.8)

W (y) =
1

N lnN

∑
p∈P

∑
h∈H

yph
ȳ

ln
yph
ȳ
≤ w(4.9)

αpht = max{0,min{1, αipht + δαpht · (yph − yiph)}}(4.10)

yph ∈ [0, 1](4.11)

From the formulation above, we see that the optimal treatment policy π∗pht is

embedded within the constraint (4.8). Furthermore, the optimal treatment policy

depends on the patient’s adherence which is a function of the coverage decision

variable yph. Additionally, the expected number of patients npht, as computed by the

MDP under the optimal treatment policy, is present in both the objective function

and the resource constraint. This mathematical program shows the complex nature

of the insurance provider/patient relationship and the necessary hierarchy of the

optimization model.

4.3.1 Bilevel Optimization

The hierarchical structure of the copayment problem can be characterized as a

Stackelberg game [16], [163]. A Stackelberg game involves a leader and follower,

where the leader makes a decision and the follower reacts to that decision. The

leader is assumed to have knowledge of the follower’s reaction when making his

decision. When both parties act optimally, the problem can be formulated as a

bilevel optimization problem (BLP). The general formulation for a BLP is:
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max
y,π(y)

F (y,π(y))(4.12)

s.t. Gi(y,π(y)) ≤ 0 ∀i(4.13)

πp(y) = arg max
π

fp(y, π) ∀p(4.14)

gpj(y, πp) ≤ 0 ∀p, j(4.15)

The general formulation applies to the mathematical program described by equa-

tions (4.7) to (4.11). In the BLP, F corresponds to (4.7) while the set of Gi corre-

spond to the constraints on resources (4.8) and inequity (4.9). Similarly, πp matches

the optimal treatment policy π∗pht for each patient class p and gpj denotes the SBP

constraint for the selected treatments as defined in Section 3.3. As mentioned in 4.2,

BLPs are difficult to solve due to the complex relationship between leader and fol-

lowers. To solve the BLP, we propose an iterative nonlinear programming technique.

4.4 Solution Methodology

Our algorithm iteratively solves the follower’s optimization problems (modeled as

the MDP from Chapter III) to provide information to the leader. The leader then

uses this information to determine copayment levels. The new copayment levels and

corresponding adherence rates are passed back to the followers and the MDPs are

resolved. The algorithm repeats this cycle of information flow between followers and

the leader until the objective function Z∗ has not sufficiently changed. The specifics

of the algorithm are described below:

1. INITIALIZE: Choose convergence parameter ε. Set i = 1, Zi =∞, y0 = yi and

αpht = αipht.
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2. Solve the MDP for all patient classes p ∈ P under αpht to obtain π∗pht. Set

πpht = π∗pht.

3. Solve the NLP under πpht to obtain y∗, α∗pht and Z∗. Store yi = y∗ and set

αpht = α∗pht and Zi+1 = Z∗.

4. IF Zi+1 ∈ [(1− ε) ·Zi, (1 + ε) ·Zi] OR yi = yj for some j < i THEN Stop ELSE

Set i = i+ 1 and return to Step 2 .

The termination condition for the iterative algorithm requires that the conver-

gence condition be satisfied, i.e. the objective function value is within ±ε of the

previous iterate’s objective function value, or if the copayment coverage matrix y

has been revisited. The second termination condition is an anti-cycling rule akin to

the anti-cycling rules used in the simplex algorithm for linear optimization. Since

the set of optimal treatment policies is finite π∗ ∈ Π, |Π| < ∞, there are finitely

many iterations of algorithm before the anti-cycling rule applies or the convergence

condition is satisfied.

4.5 Results

To numerically test our model and algorithm, we considered the perspective of

Medicare, the public insurance provider for senior citizens in the United States.

We assumed Medicare is interested in optimizing their copayments for hypertension

medication, and that all other copayments and deductibles remained constant. Table

4.1 summarizes the key inputs to the BLP.

We parameterized the model using assuming a population of 10,000 senior cit-

izens (those aged 65 and older) who were randomly sampled from NHANES III,

survey data comprising a representative sample of the U.S. population [148]. We

believe this sample population is a good representation of patients who are enrolled
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Input Value Source
Number of patients 10,000
Patient data NHANES III [148]
Current coverage 37% [35]
Current adherence 50% [150]
Price elasticity of adherence 0.16 [37]
Risk calculator Framingham [8]
Treatment benefit Meta-analysis of RCTs [88]
Mortality and fatality likelihoods CV event and other-cause [78], [9]
CV event costs $12,229 [35]
Drug cost per year $212 [35]

Table 4.1: BLP inputs and data sources

in Medicare. We assumed a 10 year planning horizon. In our analysis, we considered

four patient classes: diabetic smokers, diabetic nonsmokers, nondiabetic smokers,

and nondiabetic nonsmokers with the following prevalences: 2.3%, 23.6%, 6.7%, and

67.4%, respectively [52], [11]. Currently under Medicare, 37% of the cost of hyper-

tension medication is covered by standard insurance. We assumed all patients had

a current adherence αi of 50%. Based on health economics literature, we assumed

a price elasticity of 0.16 which indicates a relatively low change in adherence due to

copayment changes [37]. All sources for cardiovascular risk calculations and mortal-

ity and fatality likelihoods are from the analysis in 3.8. Hypertension drug costs and

cardiovascular event costs were computed as average costs.

Figure 4.2 shows the BLP coverage policy at different budget levels when there

is no constraint on inequity, i.e. w = 1. The BLP policy prioritizes diabetic pa-

tients, both smokers and nonsmokers, over nondiabetic patients in the allocation of

coverage resources. Specifically, when Medicare is budget-neutral (Bt = 0), the BLP

policy provides free hypertension medication to diabetic patients. To offset the cost

of giving free medication to diabetic patients, Medicare must increase the copay-

ments for nondiabetic patients: 17% coverage for nondiabetic nonsmokers and 0%

for nondiabetic smokers. As the budget increases, the BLP policy allocates resources
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to the nondiabetic nonsmokers until they receive free medication. Finally, remaining

resources are directed to nondiabetic smokers until all patients are at full copayment

coverage.

Pe
rc

en
ta

ge
 o

f 
D

ru
g 

C
o

st
 C

o
ve

re
d

 

Additional Resources per Patient per Month ($) 

Nondiabetic smoker 

Diabetic smoker 

Current Medicare 
coverage 

Diabetic nonsmoker 

Figure 4.2: Optimal coverage decisions at different budget levels assuming no constraint on inequity.

For the BLP policies described above, we computed the change in QALYs per

1000 patients as the expected QALYs under the BLP policy minus the expected

QALYs under the current Medicare coverage. Figure 4.3 graphs the QALY change

as a function of the budget. When Medicare is budget-neutral, the change in QALYs

per 1000 patients is 4.35 over the next 10 years. At full coverage for all patients, the

QALY gain is 15.37 per 1000 patients over the next 10 years.

Figure 4.4 shows the change in cost under the BLP policy, defined as the expected

total medication and cardiovascular disease event costs for the BLP policy minus

the expected total costs for the current Medicare coverage. At low resource levels,

the change in cost is negative (-$36,184.40 per 1000 patients when budget-neutral)
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Figure 4.3: Change in quality-adjusted life years (QALYs) with respect to current Medicare cover-
age.

indicating that the BLP policy is cost-saving. As the resource expenditures increase,

the costs of covering medications exceeds the savings from fewer CV events which

leads to higher costs under the BLP policy.

The above analyses assumed there was no constraint on the total inequity caused

by the BLP allocation. Figure 4.5 shows the performance of the BLP policy in

terms of QALY gains as a function of the maximum allowable inequity threshold

w, assuming Medicare is budget-neutral. When w = 0 (no inequity allowed) and

Bt = 0 (budget-neutral), the BLP policy is the same as the current Medicare coverage

since all patients must receive the same coverage and Medicare has no additional

resources to expend for reducing copayments. Therefore, the QALY gain is 0. As
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Figure 4.4: Change in cost of optimal coverage with respect to current Medicare coverage.

the maximum allowable inequity is increased, the QALY gain increases toward its

maximum (assuming budget-neutral) of 4.35 QALYs per 1000 patients over the next

10 years.

Combining the change in QALYs with the change in costs, we computed an incre-

mental cost-effectiveness ratio (ICER). ICER is defined as the ratio of the change in

cost to the change in QALYs for the BLP policy. Hence, a small change in cost and

large change in QALYs will yield a low ICER. The lower the ICER for the BLP pol-

icy, the more cost-effective the policy becomes. Figure 4.6 presents a heat map of the

ICER for the BLP policies under combinations of resource constraints and maximum

allowable inequity. Dark colors correspond to low ICERs (more cost-effective) and

light colors correspond to high ICERs (less cost-effective). As illustrated, when the

maximum allowable inequity decreases, the ICER for the BLP policy increases. Sim-
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Figure 4.5: QALYs saved under different levels of maximum allowable inequity.

ilarly, as the resource level increases, the ICER increases. Given a cost-effectiveness

threshold, Medicare could use Figure 4.6 to determine if the BLP policy for a par-

ticular resource level and inequity constraint would be cost-effective.

4.6 Discussion

We have developed a bilevel optimization model to determine copayment levels

for individual patient classes within a heterogeneous patient population serviced by

a single insurance provider. In this model, the leader is the insurance provider whose

objective is to maximize total population health by choosing a percentage of the

medication cost to cover for each patient class. The patients (followers) then react

to the leader’s coverage decision by adjusting their adherence to medication and
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Figure 4.6: Incremental cost-effectiveness ratio (ICER) at different budgets and inequity levels.

their optimal treatment policy, which depends on their adherence rate and disease

characteristics. We developed an iterative nonlinear programming algorithm which

exploits the leader/follower relationship to derive locally optimal solutions to the

BLP.

In our case-study, we found that the BLP policy prioritizes diabetic patients over

nondiabetic patients. Diabetic patients are at higher risk for cardiovascular disease

events and thus receive greater benefit from improved adherence as a result of lower

copayments. Amongst nondiabetic patients, the BLP policy prioritizes nonsmokers

over smokers because smokers are at higher risk for non-CV related death, such

as lung cancer. Hence, nondiabetic smokers have the smallest marginal benefit of
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improved adherence.

When the insurance provider is able to seek the most efficient allocation of re-

sources, i.e. he has no consideration of inequity when deciding coverages, we found

that inequity is maximized at low resource budgets. The BLP policy prioritizes dia-

betic patients which requires the recuperation of costs via increased copayments for

nondiabetic patients. However, as the resource budget increases, ceiling effects and

diminishing returns on those resources lead to lower total inequity in the copayment

coverages. We also found that fairness can be relatively costly, but restrictions on the

total inequity caused by the coverage may be a necessary consideration for a public

institution like Medicare. However, when the insurance provider has more resources

available for expenditure the cost of fairness is lower.

The health benefits from the BLP policy depend strictly on the ability of copay-

ment restructuring to improve adherence to medication for high risk patients. The

relatively small improvement in health (15.37 QALYs per 1000 patients) in our nu-

merical study is a reflection of the small price elasticity of adherence δα found in the

health economics literature. The change in coverage from 37% to 100% leads to a

10% increase in adherence to medication under the assumed price elasticity. This

small improvement in adherence generates a small change in QALYs for a single

patient, as illustrated in Chapter III. If certain patients were more sensitive to the

price of medications, the health gains would increase accordingly.

Overall, we found that the cost-effectivess, as defined by ICER, is decreasing with

the resource budget and decreasing as the maximum allowable inequity threshold

decreases. As more resources are expended, the change in total costs is increasing,

but at a faster rate than the change in QALYs due to diminishing returns. Therefore,

ICER increases as the budget increases. And we found that at low resource budgets,



126

the BLP policy is cost-saving compared to current Medicare coverage. Similarly,

as the maximum allowable inequity decreases, the BLP policy is forced to allocate

resources to low priority patients which could go to high priority patients. By en-

forcing more equal allocations across the population, efficiency is lost but fairness is

gained. This loss of efficiency leads to less cost-effective BLP policy.

4.6.1 Limitations

One limitation of this work is that our proposed iterative nonlinear programming

algorithm does not guarantee a globally optimal solution. Similar to other research

in bilevel optimization, heuristic approaches have been used to solve the models.

We may consider other heuristic algorithms, such as genetic algorithms, but these

do not resolve the issue of global optimality. Another approach may involve linear

approximations of the BLP presented in order to obtain globally optimal solutions to

the approximate problem. With uncertainty around the modeling inputs, optimally

solving the approximate problem may be better than local optimal solutions to the

exact problem.

In our numerical analysis, we considered as a case-study only a small number of

patient classes: combinations of smoking and diabetes status. The full Medicare

population is comprised of a richer set of classes including differences in socioeco-

nomic status, sex, and race. These additional features of the patients alter both

the optimal treatment policy and their price elasticity of adherence. Future research

remains in extending the numerical study to include more patient classes to better

represent the heterogeneity present within the Medicare population.

We restricted the insurance provider’s mechanism for improving adherence to

fiscal incentives in the form of medication copayment reduction. Numerically, we

found that the small price elasticity of adherence leads to small health improvements.
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This suggests other mechanisms may be useful for improving adherence to optimal

treatment policies, such as implementing educational programs about the value of

medication and registering patients with a text-message system to remind them

to take their medication as prescribed. Our modeling framework is amenable to

extending the decision space to include a portfolio of incentives, where the insurance

provider can select the intensity of the incentive (e.g. the number of text messages

to send) for each patient class. Using a similar modeling strategy as the financial

incentive, the impact of the portfolio of incentives on the patient’s adherence can be

structured using correlated adherence elasticities for each incentive.

We also assumed our insurance provider is benevolent, i.e. the insurance provider’s

objective was to maximize the total health of its population. This assumption holds

true for a public insurance provider like Medicare. However, a private insurance

provider may be more interested in minimizing cost. We believe that our inclusion

of a resource constraint in the BLP captures the key elements important to a cost-

minimizing decision maker, but directly altering the objective function to minimize

total expected costs is an intriguing research extension for this work.

Lastly, we assumed perfect information on the part of the insurance provider. In

practice, the insurance provider may not know exactly how patients will react to

changes in copayments, both in terms of the new adherence rate and the resulting

optimal treatment policy. Future work in this area may include modeling the price

elasticity of adherence as an unknown variable within an uncertainty set. Such a

formulation lends itself to solutions via robust optimization paired with BLP tech-

niques.
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4.7 Conclusion

In conclusion, we have formulated a bilevel optimization model for determining

copayment levels faced by a heterogeneous patient population serviced by a single

insurance provider. Using the theory of price elasticity, we have modeled the relation-

ship between copayments and the patient’s adherence to medication. Each patient

class is unique in their characteristics and receives a different clinical benefit from

improved adherence to medication. With the knowledge obtained from studying the

optimal and personalized treatment policies presented in Chapter III, we developed

an iterative nonlinear programming algorithm to derive copayment levels for dif-

ferent patient classes within the population. The class-specific marginal benefit of

adherence informs the model’s determination of the copayment that should be paid

when the insurance provider faces a resource constraint as well as a constraint on

the total inequity caused by the copayments. We believe this work is the first to

address the problem of improving adherence to personalized and optimal treatment

policies. While the formulation was parameterized using patients at risk for car-

diovascular disease, the modeling framework is applicable to many chronic diseases

where adherence to dynamic treatment plans is a major clinical concern.



CHAPTER V

Conclusion and Future Research

Proper management of patients with chronic diseases can save lives, improve qual-

ity of life, and reduce health care costs. This research developed novel methodol-

ogy and decision support systems to assist physicians, policymakers, and insurance

providers with their operational and strategic medical decisions. This work focuses on

the use of operations research tools to incorporate elements of personalized medicine

in order to better tailor key clinical decisions to the needs of individual patients. The

research began with an understanding of how chronic diseases evolve over time and

the importance of correctly identifying progressing patients. The research then ad-

dressed the development of optimal treatment plans for individual patients in order

to improve health outcomes. Finally, using the information learned at the individual

patient level, a resource allocation model was developed to exploit the patient level

differences and target adherence improving incentives across a heterogeneous patient

population.

This body of work has been shown to improve patient outcomes and has con-

tributed to the operations research domain. Chapter II utilized Kalman filtered true

state estimates of covariates as data for a generalized estimating equations formula-

tion with a logit link function in order to develop a statistical classification model

129
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with explicit handling of measurement and process noise. This classification model

was then embedded within a Kalman filter forecasting model to derive dynamic and

personalized monitoring schedules for patients with open-angle glaucoma. Chapter

III incorporated conditional value-at-risk to directly account for patient heterogene-

ity, specifically adherence to medication, in a dynamic programming formulation of

optimal hypertension treatment planning. This approach, in combination with a

state-space representation of resources, allowed for immediate computation of the

marginal benefit of improved adherence and the marginal benefit of increased treat-

ment intensity. Chapter IV developed an iterative nonlinear programming technique

to solve a bilevel optimization formulation where the lower level problem was charac-

terized by the dynamic program from Chapter III. The bilevel optimization formula-

tion also addressed the issue of inequity in resource allocations through a constrained

social welfare function of the allocations across the heterogeneous patient population.

In conclusion, this research has proposed novel techniques for incorporating the

new paradigm of personalized medicine in operations research models of monitor-

ing, treatment, and resource allocation decisions. This research has addressed key

clinical questions of interest to physicians, policymakers and insurance providers.

Furthermore, this work has generated interest in new areas of research including

methodology for capturing medical nuance in treatment planning, as well as theo-

retical and algorithmic research for solving multilevel optimization models.

5.1 Future Research: Disease Progression Identification

Our prior research in improved statistical classification models combined the sys-

tems modeling and noise reduction from Kalman filtering with the marginal analysis

of generalized estimating equations to develop a logistic regression function for as-
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sessing the probability of experiencing disease progression, given noisy and correlated

variables. Logistic regression is a parametric statistical approach which assumes a

linear relationship between data and coefficients, i.e. P (Y = 1 | X) = 1

1+e−βTX

where β is a p × 1 vector of coefficients and X is a p × 1 vector of data. Paramet-

ric approaches can be limiting in their ability to find the best relationship between

the predictor variables X and the outcome variable Y . However, nonparametric ap-

proaches (such as random forests) do not suffer from the same restrictions. Future

work may combine the Kalman filtering approach with nonparametric approaches to

develop semiparametric models for disease progression identification. This approach

would retain the noise reduction benefits of Kalman filtering, but would enhance

the model through nonparametric estimation. We could then compare the logistic

regression approach against the nonparametric models developed to determine which

model has the lowest misclassification rate.

5.2 Future Research: Treatment Planning

We consider three extensions to our existing research: (1) growth-mixture mod-

eling for transition probabilities in dynamic programming, (2) optimal treatment

initiation strategies for multidrug regimens, and (3) Poisson regression for optimal

policy approximation.

The model developed in Chapter III uses a population-based regression model

of SBP, HDL and TC in order to forecast cardiovascular risk over time. While the

regression model accounts for personalized features such as diabetes and smoking

status, theoretically the model assumes the data is drawn from a single population

defined by a single set of parameters. To address this issue, multiple-group modeling

may be used to develop separate models for each group. However, this approach re-
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quires a priori knowledge of the groups as well as each patient’s membership to one

of those groups. To overcome this restriction, we propose to utilize growth-mixture

modeling (GMM) to identify multiple unobserved subpopulations [123]. This sta-

tistical technique allows for the calculation of longitudinal change both within and

across the unobserved subpopulations. GMM maybe used to compute the probability

that a patient is a member of each subpopulation based on their observed trajec-

tory. Given repeated measures data and an assumed number of subpopulations, an

expectation-maximization or Markov chain Monte Carlo procedure may be employed

to iteratively estimate model parameters and compute posterior membership proba-

bilities which provide the maximum likelihood. Then using information criteria like

the Akaike Information Criteria (AIC) or Bayesian Information Criteria (BIC), the

appropriate final model can be determined.

Given a parameterized GMM for SBP, HDL and TC, the dynamic programming

formulation for determining optimal hypertension treatment plans could be greatly

improved in the direction of more nuanced personalized medicine. To handle the

different subpopulations and each patient’s respective membership probabilities, the

expected cost-to-go value function Vt+1 can be computed using the membership prob-

abilities as weights for the transition probabilities for SBP, HDL and TC. Thus, GMM

can extend the previously deterministic evolution of these cardiovascular risk factors

into stochastic risk factors. Given a sequence of observed SBP, HDL and TC, we will

need to dynamically update these membership probabilities (where the membership

probabilities at the first decision come directly from the GMM’s finalized model pa-

rameters). Due to the long planning horizon for chronic disease treatment, the curse

of dimensionality quickly becomes problematic if the patient’s history of SBP, HDL

and TC observations are stored in the state space. As a first step to overcome the
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state space explosion, one may assume that membership probabilities are station-

ary and can be reliably updated via exponential smoothing. Exponential smoothing

requires knowledge of only the current observation and the previous smoothed prob-

abilities in order to estimate the current smoothed membership probabilities. There-

fore, utilizing GMM and dynamic updating of membership probabilities necessitates

including one additional state variable in the dynamic programming formulation.

GMM and dynamic updating of membership probabilities are particularly rel-

evant to medical decision making when there are time-varying treatment benefits

and disutilities. In Chapter III, we presented research on the impact of different

assumptions on how treatment benefit and disutility depend on the exposure dura-

tion to the treatment, e.g. both benefit and disutility increase as the patient takes

the medication for longer periods of time. One treatment strategy for incorporat-

ing time-varying effects was to base treatment initiation upon a patient’s forecasted

cardiovascular risk 10 years from today, rather than current protocol based on to-

day’s cardiovascular risk. The key feature of the future risk strategy is the ability

to identify patient’s who will be at high risk for cardiovascular disease events in the

distant future so that treatment can be initiated today and the treatment will have

had enough time to approach maximum benefit. However, if the forecasting of risk

is inaccurate, the truly low-risk patient will accrue all of the compounding treatment

disutility but not receive the benefit in the distant future. Therefore, by incorporat-

ing GMM and dynamic updating of membership probabilities, the model’s forecasts

of cardiovascular risk can be greatly enhanced and the decision of when to initiate

treatment will be improved.

Moreover, comparisons of treatment initiation strategies under time-varying ben-

efit and disutility were restricted to heuristic risk threshold policies based on either
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current or future cardiovascular risk. To optimize the timing of treatment initiation,

we propose to update the dynamic programming formulation described above, which

includes the GMM and dynamic membership probabilities. In this formulation, the

action space may be to wait or initiate treatment, where initiation of treatment im-

plies no future decisions need to be made. In the literature, these stopping time

problems formulated as dynamic programs require the computation of the expected

cost-to-go value function Vt+1 when the action is initiate treatment. Typically, this

value function is computed (assuming QALYs as the objective function) using a qual-

ity of life weight and expected life years remaining when on treatment as estimated

from clinical literature. However, under different assumptions of time-varying treat-

ment benefit and disutility, this value function may not be as directly computable.

Rather, the dynamic programming formulation may require continued calculations of

immediate rewards and cost-to-go value functions using the on-treatment transition

probabilities. These transition probabilities are especially challenging to compute

when the planning horizon is long, which amplifies the benefits of incorporating

GMM and dynamic membership probabilities.

Furthermore, our initial assessment of time-varying benefit and disutility re-

stricted the action space to a single medication initiation. A more robust model

would allow for the initiation of several medications over time. To allow for multiple

initiations, each with their own functional forms for time-varying benefit and disu-

tility, we could expand the state space to include a medication exposure duration

variable ητ for each possible medication. Assuming a multiplicative treatment ben-

efit and additive treatment disutility when on multiple medications, our approach

would then be generalizable to determining optimal initiation strategies for multidrug

regimens.
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Finally, in the domain of treatment planning, there is great relevance to studying

methods for implementing the optimal treatment guidelines in clinical practice. Ob-

taining the personalized and optimal treatment policy requires solving the dynamic

program for each patient a clinician sees. In addition to the barrier of interfacing

with the dynamic program, the model may be perceived as a black box to many

clinicians which generates distrust of the clinical suggestions. To address both is-

sues, we propose to use policy regression. Policy regression would have the form of a

Poisson regression model where the response variable is the number of medications to

prescribe and the predictors are patient characteristics including cardiovascular risk,

adherence level, and treatment disutility. We propose a three stage approach: (1)

training, (2) validation, and (3) testing. The first stage would utilize a large sample

of randomized patients and their corresponding optimal treatment policies as inputs

to the regression model. Model selection would then be performed using information

criteria, such as AIC or BIC, to arrive at the final training model. The output of the

final training model will not be guaranteed to be an integer, which may necessitate

a rounding rule where the optimal threshold for rounding down is unknown. The

second stage might determine the optimal threshold for rounding down by iteratively

validating the fit of the Poisson regression predictions against the observed treatment

policies. The optimal threshold may then chosen so as to maximize QALYs, which

are calculated from a simulation of the rounded predictions across the training data

patient population. Finally, the third stage would test the fit and resulting QALYs

of the optimal threshold on new randomized patients. This approach provides an

easy-to-use model for clinicians that is also easily interpreted. By examining the

sign and magnitude of the covariate coefficients in the Poisson regression, clinicians

may be better informed as to how the optimal number of medications depends on
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patient characteristics, and the coefficients could be used to understand the intuition

behind the dynamic program. The Poisson regression model could be easily incorpo-

rated into existing electronic health record systems or implemented as a smart phone

application.

5.3 Future Research: Copayment Restructuring

In the domain of resource allocation models, we consider the following possible

avenues for future research: (1) successive piecewise linear approximation for solving

bilevel problems, (2) approximate linear programming via optimal policy and value

function regression, and (3) coordination of leaders in hierarchical optimization.

The solution algorithm developed in Chapter IV iteratively solves the lower level

MDP for each patient class to obtain the optimal policy given the patient class’s

adherence. This optimal policy is then given to the upper level nonlinear program

to determine locally optimal copayments for each patient class. The limitations of

this solution technique is the guarantee of only locally optimal copayments and the

lack of scalability to many patient classes. To address both local optimality and

scalability, we propose to solve the bilevel problem (BLP) via successive piecewise

linear approximations (PLAs). First, we note that the objective function for the

BLP can be written as the sum of separable optimal value functions:

Z∗ = max
y

{
T∑
t=1

∑
p∈P

∑
h∈H

λt · npht(y) · qpht

}
(5.1)

=
∑
p∈P

∑
h∈H

nph0 · Vph(α)(5.2)

where npht(y) is the expected number of patients in class p and health state h

at time t under decision y and qpht is the quality of life weight. In the separable

objective function (5.2), nph0 is the number of patients in class p and health state h
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at the beginning of the planning horizon, and VphT (s) is the optimal value function

for patient class p when in health state h with adherence rate α at the beginning of

the planning horizon. This optimal value function comes from solving the MDP (see

equation (3.19)) for patient class p when starting in health state h with adherence

α that depends on the patient class’s copayment level. Given this separability, if we

can approximate each optimal function linearly, we can reduce the nonlinearity of

the BLP.

To approximate the optimal value function, we can use piecewise linear functions

f̂ph(α) to approximate Vph(α) as piecewise linear in α (the outcome variable asso-

ciated with our copayment coverage decision variable yph). PLAs connect points

(knots) of the original function with lines of the form y = mx + b (standard linear

form denoting an outcome y as the product of a slope m and parameter x plus an

intercept b) to approximate the entire function with a series of linear functions [79].

PLAs have the following form:

f̂(α) = f(xk) + (α− xk)
f(xk+1)− f(xk)

xk+1 − xk
(5.3)

where xk, k = 1, . . . , K are knots and f is the original function. Typically, one

selects the set of knots xk beforehand, approximates the function f , and uses the

PLA f̂ in the optimization problem [131]. We can then write our objective function

as:

Z∗ =
∑
p∈P

∑
h∈H

nph0 · Vph(α)(5.4)

=
∑
p∈P

∑
h∈H

nph0 · f̂ph(α)(5.5)

Rather than solve the BLP with a single set of knots, we propose a successive

approximation scheme that updates the set of knots to improve the fit of the approx-

imations f̂ph(α). Our proposed algorithm is described below:
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1. For each p ∈ P , solve the MDP for the current adherence vector αipht, the

maximum adherence αMpht = αipht + δαpht · (1− yiph) and the minimum adherence

αmpht = αipht + δαpht · (0 − yiph). Obtain the optimal policies π∗ and the optimal

value functions Vph(α).

2. For each combination of p and h, fit piecewise linear approximations (piecewise

linear in α) to Vph(α) at the knots: xph = (αmpht, α
i
pht, α

M
pht).

3. Using the PLAs, solve the BLP with objective defined by equation (5.5) to find

y∗.

4. For each p ∈ P , solve the MDP at the solution y∗ph. Update the objective

function value Z∗. Add αpht = max{0,min{1, αipht+δαpht ·(yph−yiph)}} to the set

of knots xph. Solve the MDP at the new knot and update the piecewise linear

approximations.

5. Repeat Steps 3 and 4 until Z∗ is within convergence requirement.

The successive PLA algorithm initializes the set of knots for PLA as the minimum,

current and maximum adherence for patient class p, given their price elasticity of

adherence δαpht. These initial knots cover the full range of possible values for the

optimal value function Vph(α). Given the PLA under the initial set of knots, we

may then solve the BLP to obtain a globally optimal solution to the approximate

objective function. Next, we could add the adherence corresponding to the optimal

solution to the set of knots. The MDP would then be solved at the new knot, the

PLA would be updated, and the BLP would be solved again. We may continue

this process until the objective function value Z∗ has not sufficiently changed after

expanding the set of knots in the PLAs.
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This algorithm has the following features: (1) monotonicity of Vph(α) in α leads

to improving optimal BLP solutions and objective function value Z∗, (2) the ob-

jective function value at the BLP optimal solution is exactly equal to the original

nonlinear objective function value, (3) under concave BLP constraints, the feasibility

of the BLP solution for the PLAs implies an optimal solution to the original BLP

formulation, and (4) the piecewise linearity of the objective function may improve

the scalability of the BLP to include more patient classes.

We propose to use this successive PLA algorithm to solve the BLP formulation

in Chapter IV and compare the performance of the two solution techniques. Given

the features described above, we believe the successive PLA algorithm should yield

faster and better solutions on problems of larger size.

Another approximation approach for solving the original BLP formulation is to

use approximate linear programming (ALP) by approximating the objective function

and constraints using basis functions [41]. A linear basis function approximation for

the optimal value function V (s) has the following form:

V (s) ≈ v̂(s) = pTβ(s)(5.6)

where β is a vector of basis functions for state s and p is a vector of basis weights.

The goal of v̂(s) is to find the weights p that minimizes the error between V (s) and

v̂(s). From a statistics perspective, finding the weights p is equivalent to determining

regression coefficients β in the regression function Y = βTX. Therefore, we can ap-

proximate the optimal value function V (s) via linear regression. Similarly, we could

approximate the optimal policy π∗ from the MDP described in Chapter III using

linear regression. These linear regression models can be parameterized using data

from randomly sampled patients and their respective MDP solutions and policies.

Pairing linear representations of the objective function and optimal treatment plans
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with linearizations of the budget and equity constraints, the original BLP can be

reformulated as a linear program (LP). The LP has the property of global optimality

and very efficient solution methods [40]. Given linear approximations, we can rewrite

the original BLP as:

max
y,π̂(y)

pT1 β1(y, π̂(y))(5.7)

s.t. Ĝi(y, π̂(y)) ≤ 0 ∀i(5.8)

π̂p(y) = pT2 β2(y) ∀p(5.9)

ĝpj(y, π̂p) ≤ 0 ∀p, j(5.10)

where p1 and p2 are weights for the leader’s objective function and the follower’s

optimal treatment policy, respectively. Similarly, β1 and β2 are basis function vec-

tors for the leader’s objective function and the follower’s optimal treatment policy,

respectively. And Ĝi and ĝpj are linear approximations to the leader’s and follower’s

constraints, respectively.

The benefits of the ALP approach over PLA is the solution speed. Once param-

eterized, the ALP approach does not require repeatedly solving the MDP for each

patient class p ∈ P . Furthermore, the efficiency of linear programming solution

techniques, like simplex, imply that the ALP approach may scale better with the

problem size than the successive PLA approach. However, because of the degree

of approximations necessary to formulate the BLP as a LP, the optimal solution to

the ALP may not be sufficiently close to the optimal solution to the BLP. Futher

analysis and implementation studies are necessary to properly evaluate the trade-offs

between the two approximation techniques.

Lastly, we consider modeling multiple insurance providers (i.e. leaders in the

BLP), where each services their own heterogeneous patient population. In our prior
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work, we assumed a single insurance provider. Under a free market with multiple pri-

vate insurance providers, the patients are able to change insurance providers during

the open enrollment season [152]. Assuming rational patients who seek to minimize

their costs and insurance providers who are otherwise equal in attractiveness, if an

insurance provider decreases copayments for a patient class (e.g. diabetics), patients

of that class will migrate to that insurance provider during open enrollment. This

may leave the insurance provider who decreased copayments with an influx of high

risk patients (they are prioritized in the QALY-maximizing BLP formulation) which

increases their costs. This leaves the other insurance providers with a generally

healthier patient population and lower costs. Therefore, there is a first-mover disad-

vantage to reducing copayments when there are multiple private insurance providers

servicing a patient population who can switch providers. Given these problems, it

may be beneficial for the government to allocate resources to the insurance providers

to incentivize the reduction of copayments. Adding government intervention to the

system adds a new optimization level to the hierarchical model, creating a trilevel

optimization problem where the highest level is the government, the next level is the

insurance providers, and the lower level is the patients.

The existence of multiple insurance providers occurs in the private insurance mar-

ket where the insurance provider may be interested in minimizing expected costs

rather than maximizing expected total health of its patient population. However,

we may assume the government wants to maximize the expected health of the pop-

ulation when allocating resources to encourage copayment reform. Therefore, the
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trilevel optimization problem may have the following form:

max
x

H(x,y(x),π(y(x)))(5.11)

s.t. hl(x,y(x),π(y(x))) ≤ 0 ∀l(5.12)

yr(x) = arg min
y

Fr(y(x),π(y(x))) ∀r(5.13)

Gri(yr(x),π(yr(x))) ≤ 0 ∀r, i(5.14)

πpr(yr(x)) = arg max
π

fp(yr(x), π) ∀p, r(5.15)

gprj(yr(x), πp) ≤ 0 ∀p, r, j(5.16)

where equation (5.11) captures the government’s interest in maximizing total

health of the population by allocating resource vector x across each insurance provider

r ∈ R. Equation (5.12) denotes each of the l ∈ L constraints faced by the goverment,

including budgetary constraints on the allocations to the insurance providers. Equa-

tions (5.13) now reflects the insurance providers’ desire to minimize their expected

total costs Fr, which depend on the government’s allocation x as well as the reac-

tions of its patients to the copayment level yr. Each private insurance provider will

have its own budget and equity constraints, denoted by equation (5.14). The opti-

mal treatment policy now depends on the copayment coverage set by their insurance

provider as described in equation (5.15). In addition the minimum SBP thresholds,

each patient may switch insurance providers in accordance with equation (5.16).

With this trilevel optimization (TLP) formulation, we can study the structure

of a coordination strategy set by the government that would lead private insurance

providers to reduce copayments so that patient health can be improved via increased

adherence to medication. Furthermore, we can analyze how differences in budgets

and equity constraints amongst the private insurance providers influence the TLP

resource allocation and the corresponding optimal value. Numerically, we could con-
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sider how state governments can use incentives to coordinate copayment reductions

amongst a set of insurance providers servicing a particular geographical region.

The extra level of decisions makes this hierarchical model more challenging to

solve than the BLP described in Chapter IV. In fact, the BLP is embedded within

the TLP. One solution technique may be to solve the BLP under different government

allocations and use this series of solutions to approximate equations (5.13) through

(5.16). By approximating the outcome of government allocations to each private

insurance provider, we may be able to reduce the hierarhical complexity to a single

level mathematical program. Depending on the convexity of H and the shape of the

approximation functions for equations (5.13) through (5.16), we may be able to solve

the approximate problem using existing techniques.
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