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PREFACE
 

As the two first-author publications represented in this dissertation address entirely 

distinct areas of C. elegans small RNA biology, I have enclosed for an introduction a 

complete literature review of C. elegans endogenous small interfering RNA (endo-

siRNA) and Piwi-interacting RNA (piRNA) biology. This introduction, Chapter One, is in 

preparation for submission to WormBook as a solicited review and includes data 

published after the acceptance of the included manuscripts that address key 

unanswered questions. 

 

Chapter Two of this dissertation describes the identification and characterization of the 

functional HEN1 ortholog of C. elegans, HENN-1. Taking advantage of the unique 

proliferation of Argonaute proteins and small RNA classes in C. elegans, I have 

illuminated conserved mechanisms for selective stabilization of small RNAs that have 

defied explanation in previous animal studies of HEN1. This work was published in 

PLoS Genetics in 2012. 

 

Chapter Three of this dissertation describes my collaborative work with bioinformatician 

Mallory Freeberg defining paradigm-breaking mechanisms for piRNA expression in C. 

elegans. I used C. elegans transgenesis to address longstanding questions in the field, 

demonstrating that, unlike other animal piRNAs, C. elegans piRNAs are expressed 

independently from tiny, autonomous transcriptional units. Our investigations further 

revealed that the upstream sequence motif unique to the nematode piRNA is required 

for piRNA expression and directs restricted male or female germline enrichment through 

variation at a single nucleotide position. This work was published in PLoS Genetics in 

2013. 

 

A discussion of future research prospects concludes the dissertation as Chapter Four. 
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Appended are a first-author review of C. elegans piRNA function (published in Genome 

Biology in 2012), a co-second author study identifying small RNA pathway factors 

through phylogenetic signatures (published in Nature in 2013), and a mid-author study 

describing a conserved role for MORC ATPases in gene silencing (published in Science 

in 2012). 
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ABSTRACT 

 

Across the animal kingdom, small, noncoding RNAs preserve and promote fertility by 

engaging Argonaute effector proteins to silence deleterious genetic elements. 

Generated in germline and inherited into progeny, endogenous small interfering RNAs 

(endo-siRNAs) and Piwi-interacting RNAs (piRNAs) regulate vast suites of gametic and 

zygotic genes, yet remarkably little is known about how they are regulated. With an 

expanded repertoire of small RNA classes, Caenorhabditis elegans provides an ideal 

model for investigating how animals drive epigenetic inheritance of fertility-preserving 

germline small RNAs. 

 

The conserved methyltransferase HEN1 methylates small RNAs to prevent their 

degradation. Methylation of germline small RNAs enhances accumulation, promoting 

robust inheritance into progeny. All plant small RNAs are methylated, but animal HEN1 

methylates only some small RNAs. The mechanisms of selective methylation were 

unknown. I identified the functional C. elegans ortholog of HEN1 and demonstrated that 

it methylates all piRNAs but only select subclasses of endo-siRNAs. I further found that 

particular endo-siRNAs are methylated in maternal, but not paternal, germlines. 

Through genetic and biochemical analyses, I showed that small RNA methylation status 

is likely dictated by the associated Argonaute. This established selective expression of 

divergent Argonautes as a novel mechanism for differentially stabilizing germline small 

RNAs, with significant implications for preferential inheritance of maternal epigenetic 

information. 

 

piRNAs are essential for animal fertility, but their expression mechanisms are poorly 

characterized. In collaboration with bioinformatician Mallory Freeberg, I showed that C. 

elegans male and female germlines express distinct piRNA subsets that evolve 

independently and differ in inheritance. A common sequence motif lies upstream of 
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nematode piRNA loci. We discovered that this motif varies significantly between male 

and female piRNAs. Using a novel transgenic approach, I established that C. elegans 

piRNAs represent thousands of tiny, autonomous transcriptional units, rivaling coding 

genes in number. I further demonstrated that the upstream motif is required for piRNA 

expression and that variation at a single nucleotide position within this motif 

orchestrates selective male versus female germline enrichment and inheritance of 

piRNAs. 

 

These and additional included studies define novel factors and mechanisms involved in 

regulation of germline small RNAs and transgenerational transmission of their crucial 

epigenetic information. 
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CHAPTER ONE: Introduction to Caenorhabditis elegans germline small RNAs
 

 

INTRODUCTION 
 

C. elegans endogenous small non-coding RNAs are subdivided into microRNAs, 

endogenous small interfering RNAs (endo-siRNAs), and Piwi-interacting RNAs 

(piRNAs). All three types of small RNAs bind to Argonaute effector proteins, recognize 

target transcripts exhibiting partial or perfect complementarity, and direct target 

regulation that is primarily inhibitory in nature. Yet microRNAs, endo-siRNAs, and 

piRNAs vary greatly in biogenesis mechanisms, specific protein cofactors, and even 

effector function. The details of C. elegans microRNA biology have been previously 

described [1] and will be addressed in this review only insofar as they intersect with 

endo-siRNA and piRNA biology. Similarly, a thorough examination of exogenously-

derived siRNAs and exogenous RNAi (exo-RNAi) is beyond the scope of this review; 

however, as C. elegans exo-RNAi engages a downstream endo-RNAi amplification 

pathway shared by primary endo-siRNAs and piRNAs, only the mechanisms of primary 

exo-siRNA biogenesis are excluded. 

 

The transcript silencing capacity of antisense RNA was first described in C. elegans 

over two decades ago [2]. The effective interfering agent was subsequently determined 

to be double-stranded RNA, and its incredible potency suggested the existence of a 

catalytic or amplification mechanism engaged by exogenous dsRNA [3]. This dsRNA is 

processed into primary exo-siRNAs [4,5], increasing the ratio of trigger to target, but still 

to a degree insufficient to explain the potency of exo-RNAi. Further studies of the small 

RNA effector populations during exo-RNAi in C. elegans revealed that primary exo-

siRNAs are not the ultimate effectors of interference; rather, they trigger vigorous 

production of secondary siRNAs by RNA-dependent RNA polymerases (RdRPs), 
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amplifying the signal and focusing the interference response on expressed sequences 

[6]. Before the discovery of endogenous silencing pathways in C. elegans, isolation of 

mutations causing deficiencies in both exo-RNAi and endogenous silencing phenomena 

such as transposon silencing suggested a shared mechanism [7-9]. Mutations in core 

molecular machinery of RNAi also were found to result in phenotypes indicating 

essential endogenous roles. Loss of DCR-1, the sole C. elegans ortholog of Dicer, 

results in profound cell fate specification defects and germline abnormalities leading to 

lethality and sterility [10-12]; RNAi-mediated depletion of Argonautes PRG-1 and PRG-2 

impairs germline stem cell maintenance [13]; and the RdRP EGO-1 is required for 

germline development [14]. 

 

The discovery of the first microRNA, lin-4, in C. elegans suggested that endogenous 

products also initiate transcript regulation through antisense mechanisms [15]. It was 

not until a decade later that other endogenous small RNAs were identified in C. elegans 

[16,17], and only in 2006 did deep sequencing first reveal the incredible diversity of C. 

elegans small RNAs [18]. Among the species identified were a large pool of 5’ 

guanosine antisense small RNAs identified as endo-siRNAs that appeared to represent 

distinct 26- and 22-nucleotide (nt) subpopulations, later determined to correspond to 

primary and secondary endo-siRNAs, respectively [18-23]. Subsequent dissection of 

these 26G and 22G RNA populations identified unique subgroups with largely 

overlapping biogenesis requirements but that engage distinct effector pathways. Most 

notably, the 22G RNAs are subdivided into the WAGO 22G RNAs and CSR 22G RNAs; 

the former represent secondary siRNAs that effect target silencing, whereas the latter 

are a class of siRNAs complementary to germline-expressed transcripts that do not 

silence target genes but rather promote their proper organization during mitosis [24,25]. 

Also identified in the initial deep sequencing dataset were the 21U RNAs, 5’ uridine 21-

nt small RNAs later determined to represent the piRNAs of C. elegans [26,27]. This 

review summarizes the literature contributing to our current understanding of the C. 

elegans 26G RNAs, WAGO 22G RNAs, CSR 22G RNAs, and 21U RNAs, discussing 

mechanisms of triggering, biogenesis, and effector function, where known. Whereas 

microRNAs are required for diverse developmental and physiological processes in the 
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soma, endo-siRNAs and 21U RNAs serve as the guardians of the immortal germline, 

constituting a complex, interconnected, and tremendously robust system for 

surveillance of the C. elegans genome. 

 
 
MAIN TEXT 
 
Features and targets of 26G RNAs 
 

Early deep sequencing of C. elegans small RNAs revealed a distinct population of 26 nt 

species that are largely anti-sense to annotated genes and therefore classified as endo-

siRNAs [18]. Like endo-siRNAs sequenced earlier in C. elegans [28], these 26 nt 

species show a 5’ guanosine bias and are thus termed 26G RNAs [18,20,29-31]. 26G 

RNAs are 5’ monophosphorylated [18,20,30,31] and enriched for adenosine and 

guanosine across their lengths [31]. 26G RNAs are quite enriched in male and female 

germlines [20], where they comprise two distinct subpopulations that are temporally 

isolated and bound by unique, germline-specific effector complexes. 26G RNAs in the 

spermatogenic gonad are bound by redundant Argonautes ALG-3 and ALG-4, whereas 

26G RNAs in oogenic gonad are bound by the ERGO-1 Argonaute [19,20,23]. ERGO-1 

class 26G RNAs are also highly abundant in embryo [20,30] and perdure through early 

larval development [31]. 

 

Little is known about how transcripts are selected for targeting by 26G RNAs. 26G 

RNAs map primarily to protein-coding genes with a strong antisense bias, although 

some target unannotated loci [18,20,30]. They are transcribed from spliced mRNA 

templates by the RNA-dependent RNA polymerase RRF-3 [19,20,31,32], as indicated 

by the sequencing of rare species spanning exon-exon junctions [18,20,31] and by the 

loss of complementary 26G RNAs upon nonsense-mediated decay of template mRNA 

[20]. 
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Targets of ALG-3/4 class 26G RNAs are highly enriched for transcripts classified as 

spermatogenesis-enriched [19,20,32,33], explaining earlier observations connecting 

endo-siRNAs primarily with regulation of sperm function genes [18,34]. ALG-3/4 class 

26G RNAs map across the lengths of their target sequences, but preferentially target 

transcript 5’ and 3’ termini; transcripts exhibiting higher 5’ UTR targeting appear to be 

more efficiently silenced [19]. 

 

Although biogenesis of ERGO-1 class 26G RNAs initiates in oogenesis, their targets are 

depleted of germline-intrinsic transcripts [20,33]; accordingly, ERGO-1 class 26G RNAs 

primarily regulate zygotic targets throughout development [20,31]. The majority of 

abundant ERGO-1 class 26G RNAs map to within 5 Mb of chromosome ends at more 

gene-poor regions [23,35]. Unlike ALG-3/4 class 26G RNAs, ERGO-1 class 26G RNAs 

are excluded from the first ~100 nt of target transcripts [23]. Roughly half of ERGO-1 

class 26G RNAs map to coding loci or pseudogenes and half to loci that likely 

correspond to unannotated transcription units [23]. Many of their targets represent 

ancient duplications, suggesting ERGO-1 class 26G RNAs may buffer expression of 

rapidly expanding gene families [23,35]. A large-scale proteomics dataset [36] shows 

peptides corresponding to less than 20% of ERGO-1 class 26G RNA targets, but 54% 

of all annotated coding genes, indicating that very few of these targets represent 

functional, coding loci [35]. 

 

 
Biogenesis of 26G RNAs: The ERI complex 
 

The ERI complex mediates 26G RNA biogenesis and is named for the enhanced RNAi 

(Eri) phenotype that is associated with compromise of ERGO-1 class 26G RNA 

function. Loss of ERI complex members also results in temperature-sensitive (ts) 

sterility at 25°C due to defective spermatogenesis as well as a high incidence of male 

progeny (Him) phenotype, indicative of increased X chromosome nondisjunction, due to 

compromised ALG-3/4 class 26G RNA function. The Eri and ts sterile phenotypes are 

explained in greater detail below. At the heart of the ERI complex is a core RdRP 
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module consisting of RRF-3, DRH-3, and ERI-5. Associated with this module are DCR-

1, accessory factors ERI-1b, ERI-3, RDE-4, and possibly the RNA phosphatase PIR-1. 

Analyses of DCR-1, ERI-1b, and ERI-5 complexes immunopurified from gravid adult 

and embryo have revealed interactions with each other member of the ERI complex 

[37,38], and the ~850 kD estimated mass of the ERI complex is similar to the summed 

mass of these proteins, ~810 kD [38]. The ERI complex shares only DCR-1 and RDE-4 

with the RDE (RNAi defective) complex, which mediates processing of dsRNA trigger to 

initiate the exo-RNAi pathway [39]. DCR-1 and ERI-1 also both interact with ERI-9, 

another factor implicated in ERGO-1 class 26G RNA biogenesis [38], suggesting that 

the ERI complex includes other transient interactors. 

 

ERI complex factors show some interdependence and hierarchy of assembly. Both ERI-

5 and ERI-3 bind the N-terminal helicase domain of DCR-1, and both are required for 

ERI-1b to associate robustly with DCR-1. Within the RdRP module, ERI-5 protein 

requires RRF-3 for full accumulation and association with DRH-3 and DCR-1. DRH-3 

does not interact directly with DCR-1, so ERI-5 and RRF-3 recruit the RdRP module to 

DCR-1, independently of ERI-1b and ERI-3. ERI-5 is proposed to tether the RdRP 

module to DCR-1 to potentiate 26G RNA biogenesis [38]. The association between the 

RdRP module and DCR-1 does not require dsRNA substrate production, as the 

complex assembles normally with mutant, catalytically inactive RRF-3 [38]. 

 

While the other factors are required for biogenesis of 26G RNAs, loss of ERI-5 merely 

attenuates their expression due to partial compensation by paralog EKL-1. RNAi-

mediated knockdown of ekl-1 does not affect 26G RNA levels in wild type, but 

completely depletes them in the eri-5 mutant background [38]. EKL-1 interacts with 

DRH-3 [24] and substitutes for ERI-5 in the RdRP module, but it does not interact with 

DCR-1 [38]. Untethered to DCR-1, this EKL-1 RdRP module still produces 26G RNAs of 

normal genomic distribution and in a DCR-1-dependent manner, but 26G RNA 

accumulation is impaired [38].  
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RRF-3: RRF-3 is an RNA-dependent RNA polymerase (RdRP) [40] required for 26G 

RNA biogenesis [19,20,23,31,32,37,41,42]. The rrf-3 transcript is classified as germline-

intrinsic [33], but an rrf-3::gfp transcriptional fusion transgene shows expression in many 

different larval and adult cell types [43]. C. elegans RdRPs and homologs catalyze 

primer-independent synthesis of antisense siRNAs [21,22,44,45] (see RRF-1 below). 

The RdRP activity of RRF-3 is necessary for 26G RNA accumulation and function [42], 

suggesting that RRF-3 directly transcribes 26G RNAs. Each 26G RNA is likely 

generated as an independent transcript, as homologous RdRPs exhibit very low 

processivity [44,45], and 26G RNAs show irregular phasing and occasional overlap 

[18,23,35]. The N terminus of RRF-3 is divergent and may confer target specificity to the 

ERI RdRP module [38], as DRH-3 is also involved in biogenesis of other endo-siRNAs. 

In addition to loss of 26G RNAs, rrf-3 mutants show depletion of dependent secondary 

siRNAs, called WAGO 22G RNAs, whose biogenesis is triggered by 26G RNA targeting 

[19,23,31,32,37,41]. Loss of RRF-3 results in the characteristic sperm-origin ts sterile, 

Him, and Eri phenotypes associated with compromise of the 26G RNA pathway 

[37,42,46,47]. 

 

DRH-3: The conserved Dicer-related helicase genes include two homologs, drh-1 and 

drh-3, and a probable pseudogene, drh-2. These genes are named for the similarity of 

their encoded DExD/H box helicase domains to that of DCR-1 and likely act as 

helicases upon dsRNA intermediates during biogenesis of siRNAs [39]. The functions of 

DRH-1 and DRH-3 in siRNA biogenesis complexes differ. DRH-1 interacts with DCR-1, 

RDE-4, and Argonaute RDE-1 within the RDE complex to process primary exo-siRNAs 

from dsRNA trigger [38,39]. DRH-1 interacts directly with DCR-1 but does not 

participate in an RdRP module, whereas DRH-3 does not interact directly with DCR-1 

but appears to represent an essential component of all C. elegans RdRP modules 

[24,25,37,44,48]. Thus, loss of DRH-3 results in loss of 26G RNAs [23], although many 

other populations of small RNAs are also lost. Accordingly, the phenotypes associated 

with loss of DRH-3 are pleiotropic, with more severe phenotypes masking defects 

attributable to loss of 26G RNAs, and are discussed below with the relevant WAGO and 

CSR 22G RNA pathways.  
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ERI-5: ERI-5 is a protein containing two Tudor domains that putatively tethers the ERI 

complex RdRP module to DCR-1 [37,38]. In vitro, recombinant ERI-5 binds recombinant 

DCR-1 but fails to bind recombinant RRF-3, suggesting that RRF-3 may be modified in 

vivo to generate Tudor domain-binding sites [38]. Loss of ERI-5 results in the sperm-

origin ts sterility and Eri phenotype of ERI complex mutants [37]. However, due to 

redundancy with EKL-1, 26G RNAs are only depleted twofold and dependent WAGO 

22G RNAs ninefold in eri-5 mutant embryo, with modest impairment of 26G RNA target 

regulation [37,38]. 

 

DCR-1: Dicer contains a helicase domain, a PAZ domain, and dual RNase III motifs and 

is a conserved member of a family of RNase III nucleases that cleave dsRNA [49]. In C. 

elegans extracts, DCR-1 dices long dsRNA into 23 bp duplexes [11]. Immunopurified 

DCR-1 complexes digest dsRNA processively into siRNAs in the presence of ATP but 

terminate processing when ssRNA is encountered, demonstrating the specificity for 

dsRNA substrate [11]. dcr-1 encodes the sole Dicer homolog of C. elegans and acts in 

microRNA, primary exo-siRNA, and primary endo-siRNA biogenesis [11,20,50,51]. Loss 

of DCR-1 results in sterility, with abnormal oocyte formation and absence of fertilization 

[11,50,51], as well as heterochronic phenotypes due to defects in microRNA processing 

[11,50]. The dcr-1 transcript is classified as germline-intrinsic [33], and maternal 

inheritance of DCR-1 somewhat ameliorates somatic dcr-1 null mutant phenotypes. The 

dcr-1 mutant germline, however, shows an RNAi-defective (Rde) phenotype and 

impaired transgene silencing [11,50,51]. Although 26G RNAs are transcribed by RRF-3, 

they do not show the signature 5’ triphosphate of unprimed synthesis by an RdRP [45]. 

Rather, 26G RNAs show a 5’ monophosphate characteristic of Dicer products, and 

indeed DCR-1 is required for their biogenesis [20], as well as accumulation of 

dependent WAGO 22G RNAs [37,41]. 

 

DCR-1 helicase domain: The helicase domain of DCR-1 appears to play a specific role 

in biogenesis of primary siRNAs. The dcr-1(mg375) allele encodes a missense mutation 

in the helicase domain that does not affect ERI complex formation but abrogates 

biogenesis of 26G RNAs and dependent 22G RNAs [42,52]. The dcr-1(mg375) helicase 
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mutant shows sperm-origin ts sterile, Him, and Eri phenotypes, but is viable, fertile, and 

does not show heterochronic defects, indicating that DCR-1 helicase activity is 

dispensable for microRNA production [42,52]. The RNAi sensitivity of the dcr-1(mg375) 

helicase mutant is less enhanced than that of other ERI complex mutants [42], 

suggesting that the helicase activity of DCR-1 may enhance primary exo-siRNA 

production from dsRNA triggers. This would be consistent with the theory that the 

helicase domain also functions as a translocase, allowing DCR-1 to catalyze multiple, 

processive cleavage events before dissociation from a dsRNA substrate [52]. Study of 

the function of DCR-1 in cell-free embryo extracts has provided some insight into the 

specific contribution of the helicase domain to small RNA biogenesis [53]: The C. 

elegans Dicer homolog appears to measure from the 3’ terminus of dsRNA substrate. 

DCR-1-mediated cleavage of substrates with 3’-overhanging termini does not require 

helicase activity and generates 21-23 nt products. This accounts for the intact 

microRNA levels in the dcr-1(mg375) helicase mutant and the observed length of 

mature microRNAs, which are cleaved from precursors with 3’ overhangs. In contrast, 

cleavage of blunt or 5’-overhanging substrates is impaired in dcr-1(mg375) helicase 

mutant extract. This may be because blunt and 5’-overhanging termini engage the 

helicase domain to unwind the dsRNA and enable processive cleavage without 

dissociation: DCR-1 cleavage of blunt or 5’-overhanging termini, but not 3’-overhanging 

termini, is highly processive, yielding cleavage products from internal dsRNA regions. 

This processive cleavage requires both ATP and the helicase activity. Cleavage of short 

(~40 bp) blunt-ended dsRNA yields a 26 nt small RNA with a 22-23 nt passenger 

strand. Processing of longer (~100 bp) blunt-ended dsRNA in the presence of ATP 

yields both 26 and 27 nt species, with subsequent internal cleavages yielding ~23 nt 

duplexes with 3’ overhangs. Failure to produce 26 nt species from internal cleavages 

strongly supports independent processing of 26G RNAs from short RdRP products 

rather than sequential cleavage of a long dsRNA precursor. Finally, in embryo extract, 

dsRNA substrates are cleaved with similar efficiency by DCR-1 regardless of the 5’ nt 

identity, indicating that the 5’ guanosine bias of 26G RNAs and other endo-siRNAs is 

not imposed by preferential DCR-1 processing [53].  
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ERI-1b: eri-1 encodes two isoforms of a conserved RNase that contains a DEDDh-like 

3’ to 5’ exonuclease and a SAP/SAF-box domain [54]. In vitro, ERI-1 partially degrades 

siRNAs with 2-nt 3’ overhangs, but not ssRNA or siRNA internally hybridized to a long 

RNA [54]. In vivo, ERI-1 is required for 26G RNA biogenesis and degrades the 3’ end of 

the 5.8S rRNA, which pairs with the 5’ end of the 25-28S rRNA. Loss of ERI-1 results in 

sperm-origin ts sterile, Him, and Eri phenotypes with loss of 26G RNAs and dependent 

22G RNAs [19,20,31,37,54,55]. The significance of 5.8S rRNA processing is unknown. 

The eri-1 transcript is classified as germline-intrinsic [33], but its expression is not 

restricted to germline tissues [54]. Both ERI-1 isoforms are cytoplasmically localized, 

and dsRNA exposure does not change expression or localization [54,55]. Whereas 

either ERI-1 protein isoform is capable of rescuing 5.8S rRNA processing in vivo, eri-1 

mutant phenotypes and 26G RNA accumulation are only rescued by expression of ERI-

1b [54,55]. ERI-1a may be insufficient for rescue because only ERI-1b interacts with 

DCR-1 [37], possibly via its extended C-terminal domain [54,55]. ERI-1 exonuclease 

activity is required for 26G RNA accumulation and rRNA processing [55], but the 

precise function of ERI-1b in 26G RNA biogenesis is unclear. Possibly, ERI-1b 

recognizes 3’ stem-loop structures in mRNA targets and removes excess nucleotides to 

generate a suitable RNA substrate for RRF-3-dependent synthesis [37]. Alternatively, 

RRF-3 may synthesize dsRNA with short 3’ overhangs that must be processed by ERI-

1b to create blunt termini that engage DCR-1-mediated production of 26 nt species [53]. 

 

ERI-3: ERI-3 is a protein without identifiable domains encoded by a germline-intrinsic 

transcript [33,37]. eri-3 is encoded in an operon with taf-6.1 and can be expressed as a 

single polypeptide or as a fusion protein with TAF-6.1, which is also detected in 

immunopurified DCR-1 complexes [37]. Loss of eri-3 results in the characteristic 

phenotypes of ERI complex compromise [37], and ERI-3 may serve only to recruit ERI-

1b to DCR-1. 

 

RDE-4: RDE-4 contains two dsRNA-binding motifs and binds long dsRNA preferentially 

in vitro without specificity for sequence or overhang structure [39,56]. Although the rde-4 

transcript is classified as oogenesis-enriched [33], RDE-4 protein mediates exo-RNAi in 
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both germline and soma by interacting with DCR-1, DRH-1, and the Argonaute RDE-1 

[57]. In vitro and in vivo studies of recombinant RDE-4 have dissected the contributions 

of the constituent domains to RDE-4 function: The C-terminal domain of RDE-4 directs 

its dimerization in solution and is required for its function in siRNA production, possibly 

by activating DCR-1, but dispensable for dsRNA binding [56,58]. The 3’ dsRNA-binding 

motif is important for dsRNA binding and mediates interaction with DCR-1 along with 

the linker between the motifs [58,59]. RDE-4 binds dsRNA cooperatively [56,58] and 

promotes its accumulation in vivo [39]. During exo-RNAi, RDE-4 binds long trigger 

dsRNA in vivo, but not mRNA or amplified siRNAs [39]. RDE-4 is required for primary 

exo-siRNA and dependent 22G RNA production, but its absence can be partially 

bypassed by injection of prepared 24-25 nt siRNA duplexes [39,60]. RDE-4 is required 

for full production of ERGO-1 class 26G RNAs and dependent 22G RNAs [23,37,41,52]. 

Although its role in ALG-3/4 class 26G RNA production has not been explicitly tested, 

RDE-4 appears to be required for detection of an endo-siRNA corresponding to ALG-

3/4 class 26G target mRNA ssp-16 [52], and microarray profiling indicates that mRNA 

levels of ssp-16 are elevated in rde-4 mutant adult [61]. In spite of this, loss of RDE-4 

does not appear to result in the Him phenotype and highly penetrant sperm-origin 

sterility associated with compromise of ALG-3/4 class 26G RNAs: while RDE-4 is 

required for full fertility, the likely null rde-4(ne299) mutant appears capable of 

propagation at elevated temperature (25°C), albeit with some embryonic lethality and 

developmental delay and arrest [52,59]. Perhaps loss of RDE-4 does not fully abrogate 

26G RNA biogenesis, as target desilencing is less profound in rde-4 than eri-1 mutant 

embryo [62]. The function of RDE-4 in 26G RNA biogenesis remains somewhat unclear. 

The preference shown by RDE-4 for binding of long dsRNA may promote exo-RNAi by 

aiding release of dsRNA siRNA duplexes after DCR-1 processing [56], but argues 

against a role for RDE-4 in binding and stabilizing the likely very short dsRNA 26G RNA 

precursor. 

 

PIR-1: Although PIR-1 was initially identified as a member of the ERI complex that is 

also required for exo-RNAi [37], no data have since been reported indicating a role for 

PIR-1 in either pathway. 
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Biogenesis of 26G RNAs: Other factors implicated in 26G RNA biogenesis 
 

ERI-9: ERI-9 is a worm-specific RNA transferase [42,63] that interacts with DCR-1 [37] 

and is required only for ERGO-1 class 26G RNA and dependent 22G RNA 

accumulation [42]. ERI-9 is encoded by an oogenesis-enriched transcript [33], and its 

loss results in the Eri phenotype associated with loss of ERGO-1 class 26G RNAs, but 

neither the Him phenotype nor the sperm-origin ts sterility associated with loss of ALG-

3/4 class 26G RNAs [42].  

 

ERI-6/7: ERI-6/7 is a helicase protein required only for ERGO-1 class 26G RNA and 

dependent 22G RNA accumulation [35,64]. The ERI-6/7 protein is encoded by 

antiparallel eri-6 and eri-7 pre-mRNAs that are trans-spliced to generate a fusion 

mRNA; these two genes constitute a single, contiguous gene in C. briggsae and the C. 

elegans CB4856 isolate [64]. Although eri-7 is classified as oogenesis-enriched [33], 

transcriptional fusion reporters indicate that these genes are also somatically expressed 

[64]. ERI-6/7 is predominantly cytoplasmically localized, suggesting RNA helicase 

function [64]. Loss of ERI-6/7 results in an Eri phenotype [64], but only moderately 

decreased fertility [35]. ALG-3/4 class 26G RNAs and all other major classes of C. 

elegans small RNAs are not decreased by loss of ERI-6/7 [35]. 

 

MUT-16: MUT-16 is a worm-specific protein with proline-rich and glutamine/asparagine-

rich regions [65] that functions critically in Mutator foci in the WAGO 22G RNA pathway 

[66] and will therefore be further discussed below. Loss of MUT-16 results in severe 

depletion of ERGO-1 class 26G RNAs and dependent 22G RNAs, but not ALG-3/4 

class 26G RNAs [62]. Some C. elegans laboratory strains, such as the dcr-1(mg375) 

helicase mutant, contain a mut-16(mg461) mutation; this allele fails to express somatic 

MUT-16 fully, potentially compromising somatic 26G RNA production and complicating 

interpretation of experimental results pertaining to the ERGO-1 class 26G RNA pathway 

or somatic WAGO pathway-dependent gene silencing [62]. 
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Other Mutator (MUT) proteins: ERGO-1 class 26G RNAs also require MUT-2, MUT-7, 

and MUT-15 and show minor dependence on MUT-8 and MUT-14 [62]. These proteins 

are recruited by MUT-16 to form Mutator foci in the germline for WAGO 22G RNA 

amplification and target silencing (see below) [66]. ALG-3/4 class 26G RNAs are 

modestly decreased by loss of MUT-7, but appear intact upon loss of the other Mutator 

foci MUT proteins [62]. The dependence of ERGO-1 class 26G RNAs on this set of 

factors suggests that Mutator foci may also serve as amplification centers for primary 

endo-siRNA biogenesis. 

 

 
26G RNA Argonaute loading 
 

Consistent with the embryo extract studies showing DCR-1-mediated cleavage of 26 

nt/23 nt duplexes from blunt-ended transcripts [53], deep sequencing libraries show 

evidence of shorter passenger strands antisense to 26G RNAs. Most commonly, the 5’ 

nt of the sense read maps to nt 23 of the 26G RNA, corresponding to a 3 nt 3’ overhang 

for the 26G RNA [18,35,67]. While these sense fragments may be temporarily stabilized 

in the dsRNA duplex, the 3’ ends of sense reads are highly variable, suggesting 3’ to 5’ 

degradation [35,67]. 

 

The ERGO-1 and ALG-3/4 Argonautes are required for accumulation of their respective 

26G RNA populations [19,20,23,31]. While many of the Argonautes encoded by C. 

elegans do not show conservation of the three critical catalytic residues mediating slicer 

activity, all of the Argonautes that bind primary small RNAs (ERGO-1, ALG-3/4, PRG-

1/2, RDE-1, ALG-1/2, and, putatively, CSR-1) show intact catalytic triads in their RNase 

H-related PIWI domains [68]. Although the slicer activity of an Argonaute refers 

generally to the ability to catalyze target cleavage, it appears also to play a critical role 

in effector complex maturation through passenger strand removal. The catalytic activity 

of RDE-1, the Argonaute that binds primary exo-siRNAs, is required only for efficient 

removal of the passenger strain; thus, the catalytic mutant of RDE-1 shows only a 

partial Rde phenotype attributable to impaired target mRNA interaction [69]. A putative 
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ERGO-1 catalytic mutant exhibits an Eri phenotype [35]. This indicates that catalytic 

activity is required for ERGO-1-mediated triggering of WAGO 22G RNAs (see below), 

but 26G RNA and passenger strand levels have not been assessed. The ergo-1 mutant 

shows vastly depleted ERGO-1 class 26G RNA levels but twofold increased passenger 

strand levels [35], supporting a role for ERGO-1 slicer activity in liberating the 

passenger strand from a 26G RNA dsRNA intermediate. In comparison, both mature 

ERGO-1 class 26G RNAs and passenger strands are depleted by loss of ERI-1 or ERI-

6/7, suggesting function upstream of 26G RNA duplex formation [35]. Similar analyses 

of catalytically inactive ALG-3 or ALG-4 have not been reported. 

 

ALG-3/4: The highly homologous Argonautes ALG-3 and ALG-4 redundantly bind and 

stabilize 26G RNAs generated in spermatogenic germline and mediate their effector 

functions [19,20]. The alg-3 transcript is classified as spermatogenesis-enriched [33], 

and alg-3 mRNA and protein are enriched in male worms and depleted in female worms 

[19,20]. In the spermatogenic germline, ALG-3 expression begins in postpachytene 

spermatocytes, showing cytoplasmic localization with enrichment in P granules [19]. 

After spermatogenesis, ALG-3 is detected only in the spermatheca, where it is confined 

to residual bodies after mature, postmeiotic spermatids have budded off [19]. The 

fertility of the alg-3 or alg-4 single mutants does not differ significantly from that of wild 

type [19,20], reflecting their redundancy, but loss of both ALG-3 and ALG-4 impairs 

fertility at 20°C and results in the characteristic sperm-origin ts sterility at 25°C [19,20]. 

The RNAi sensitivity of the single and double mutants is wild type [20]. 

 

ERGO-1: The Argonaute ERGO-1 binds and stabilizes 26G RNAs generated in oogenic 

germline, embryo, and likely beyond and mediates their effector function [20,23,31,42]. 

The ergo-1 transcript is classified as oogenesis-enriched [33], and ERGO-1 is nearly 

absent from L3 and L4 larva and young adult [23], paralleling decreased detection of 

ERGO-1 class 26G RNAs during these stages [20,70]. In the hermaphrodite oogenic 

germline, ERGO-1 expression begins at pachytene exit and persists into embryo, 

showing cytoplasmic localization throughout [70]. The ergo-1 mutant exhibits the 
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characteristic Eri phenotype associated with loss of ERGO-1 class 26G RNAs, but only 

a minor fertility defect and no Him phenotype [20,42,68]. 

 

HENN-1: HENN-1 is the C. elegans ortholog of HEN1 methyltransferase [71]. HENN-1 

catalyzes 2’-O-methylation of the 3’ terminus of small RNAs associated with Argonautes 

of the PIWI clade [70,72], namely, ERGO-1 class 26G RNAs and 21U RNAs 

[18,70,72,73]. Direct interaction between HENN-1 and either ERGO-1 or PRG-1 has not 

been demonstrated [70,73], and recombinant HENN-1 is capable of methylating RNA 

oligomers in the presence of S-adenosyl methionine [73]. Nevertheless, HENN-1 

appears to methylate small RNAs only following Argonaute binding, as loss of ERGO-1 

results in loss of methylation for the rare residual ERGO-1 class 26G RNAs [70]. The 

henn-1 transcript is classified as germline-intrinsic [33], and mRNA and protein are 

detected at all stages in both germline and soma with strongest expression in germline 

and embryo [70,73]. HENN-1 is detected throughout male and female germlines, with 

proximal oocytes showing cytoplasmic and intense nucleoplasmic signal; the 

nucleoplasmic enrichment is lost upon fertilization [70]. During sperm maturation, 

HENN-1 becomes enriched in residual bodies, suggesting possible exclusion from 

mature spermatids [70]. In embryo, HENN-1, like ERGO-1, is abundant and diffusely 

cytoplasmic [70,73]. HENN-1-mediated methylation is critical for ERGO-1 class 26G 

RNA stability and inheritance into embryo; in the absence of HENN-1, ERGO-1 class 

26G RNAs show size heterogeneity [70,73] and increased levels of non-templated 

nucleotide additions [72]. However, this trimming and tailing activity is not limited to 

unmethylated 26G RNAs. Analysis of trimming and tailing rates by small RNA class 

reveals that the methylated 21U RNAs show the lowest frequency and ALG-3/4 class 

26G RNAs the highest, but ERGO-1 class 26G RNAs show a trimming and tailing rate 

nearly as high as that of ALG-3/4 class 26G RNAs [72]. 21U RNAs show significantly 

decreased perdurance in the absence of HENN-1, but their initial accumulation is less 

severely affected than that of ERGO-1 class 26G RNAs [70,72,73]. The relevance of 

HENN-1 to 21U RNA accumulation and stability are discussed further below. It is 

unclear how HENN-1 affects 22G RNA levels. Global levels of both WAGO and CSR 

22G RNAs are decreased in the absence of HENN-1 by ~30% without major changes in 
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size or frequency of addition of non-templated nucleotides [73], contributing to 

decreased detection of 22G RNAs dependent upon methylated primary siRNAs [70,72]. 

The effects on target mRNAs are difficult to interpret, as global mRNA analysis shows 

general downregulation of germline-expressed genes upon loss of HENN-1; however, 

ERGO-1 class 26G RNA target mRNAs are not downregulated, hinting at impaired 

target silencing [73], and another report identifies significant upregulation of several 

ERGO-1 class 26G RNA targets [72]. It is possible that the general depletion of 

germline mRNAs causes decreased 22G RNA levels due to decreased template-

dependent synthesis, but another explanation may be that mRNA levels of critical 22G 

RNA pathway factors such as PPW-2 and MUT-7 are decreased by loss of HENN-1 

[73]. This may also explain a curious phenotype of henn-1 mutants: while the soma 

shows an Eri phenotype, presumably due to somatic ERGO-1 class 26G RNA 

depletion, the germline is Rde [70,73]. Loss of HENN-1 also results in slightly 

decreased fertility at 25°C and a mild Him phenotype [70,73]. 

 

 
26G RNA effector function 
 
Loss of factors involved in ERGO-1 and/or ALG-3/4 class 26G RNA biogenesis or 

accumulation results in desilencing of the relevant population of complementary target 

mRNAs [19,20,23,31,32,37,41,42]. Factors that play lesser roles in accumulation such 

as ERI-5 or Mutator foci MUT proteins show less pronounced silencing defects [37,62]. 

While several factors have been identified that appear to contribute exclusively to 

ERGO-1 class 26G RNA accumulation [35,42,70,72-74], ALG-3 and ALG-4 remain the 

only factors known to be specifically required for accumulation of ALG-3/4 class 26G 

RNAs [19,20]. 26G RNAs repress target mRNA expression in their cognate cell types; 

loss of 26G RNAs does not result in ectopic expression within other cell types of the 

native male or female germline or inappropriate target expression in the opposite 

germline [20]. 
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During 26G RNA biogenesis, DCR-1 likely catalyzes the cleavage of the mRNA 

template in generating the dsRNA intermediate [53]. 26G RNA Argonaute recognition 

may also trigger target cleavage. However, neither is likely to represent a significant 

means of target silencing, as WAGO 22G RNAs triggered by 26G RNA targeting are the 

major effectors of the 26G RNA endo-RNAi pathway. These secondary siRNAs, 

discussed in depth below, are strictly required for 26G RNA target silencing [19,23,31], 

as well as silencing of other small RNA pathway targets (see WAGO 22G RNAs below). 

It is not known precisely how 26G RNA RISC association triggers 22G formation, but 

target transcripts show 26G RNA-dependent accumulation of WAGO 22G RNAs 

[19,23,31], and many 22G and 26G RNAs originate from the same 5’ nt [31]. 

 

22G RNAs amplify the silencing signal of 26G RNAs and increase the perdurance of the 

repression. ERGO-1 class 26G RNA levels peak in embryo and decline significantly 

throughout larval development [20,23,31]; however, ERGO-1 class 26G RNAs primarily 

target transcripts that are not germline-intrinsic [20,33], and triggering the production of 

WAGO 22G RNAs enables their silencing influence to persist through larval 

development [20,23,31]. Similarly, 26G RNAs and ALG-3/4 are depleted in mature 

sperm, but WAGO 22G RNA Argonaute WAGO-1 is abundant in mature sperm [19]. 

This precludes significant inheritance of paternal 26G RNAs, but evidently not 

dependent 22G RNAs: an ALG-3/4 class 26G RNA-dependent 22G RNA can be 

detected even at the L1 larval stage [20]. 

 

Analysis of 26G RNA-dependent 22G RNAs further suggests that 26G RNAs target 

transcripts in trans as well as in cis. The X-cluster [28] describes a region of the X 

chromosome from which abundant 22Gs, but none or very few 26Gs, are generated 

[23]. Accumulation of X-cluster 22G RNAs requires ERGO-1 [68] and a particular 

ERGO-1 class 26G RNA derived from the K02E2.11 transcript, which shares no other 

significant homology with the X-cluster [72]. This particular 26G RNA shows multiple 

putative target sites throughout the X-cluster. None is perfectly complementary, and the 

best sites contain a minimum of three adjacent, central mismatches and two wobble 
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pairs [72]. This indicates that 26G RNA targeting of mRNA targets to initiate 22G RNA 

production in trans is mismatch-tolerant, suggesting immense targeting capacity. 

 

 
Sperm-origin ts sterility due to loss of ALG-3/4 class 26G RNAs 
 
As indicated above, compromise of ALG-3/4 class 26G RNA pathway activity results in 

sterility at 25°C due to defective spermatogenesis and spermiogenesis [19,20,42]. The 

Him phenotype also results from X chromosome missegregation during compromised 

spermatogenesis. eri-1, eri-3, and rrf-3 mutants do not show maternal rescue of this 

fertility defect, unlike the Eri phenotype [74]. 26G RNA and dependent 22G RNA 

production is lost in eri-1, eri-3, eri-5, and rrf-3 mutants at both elevated and permissive 

temperatures [37], indicating that it is not siRNA production that is sensitive to 

temperature but rather that these siRNAs are only required for functional 

spermatogenesis at elevated temperatures. The temperature-sensitive period for fertility 

in the absence of ALG-3/4 class 26G RNAs coincides with spermatogenesis at the L4 

larval stage [19,32,42]. 

 

The defects occurring during spermatogenesis at 25°C in the absence of 26G RNAs 

have been detailed in rrf-3 and dcr-1(mg375) helicase mutants as well as in the alg-3; 

alg-4 double mutant, which lacks only ALG-3/4 class 26G RNAs [19,32,42]. The 

phenotypes are highly similar, suggesting that compromise of only the male germline-

expressed class of 26G RNAs is sufficient to cause these defects; consistent with this, 

loss of ERGO-1 ERI-9, or ERI-6/7 results on only very mild decreases in fertility at 25°C 

[20,35]. 

 

The spermatogenesis defects associated with compromised ALG-3/4 class 26G RNA 

target silencing are as follows [19,32,42]: Mutant gonads show delayed and decreased 

production of sperm-like nuclei. Early spermatogenesis appears grossly wild type, with 

normal germ cell number and morphology in mitotic and meiotic regions. Defects are 

first evident in primary spermatocytes, which may show nuclear abnormalities such as 
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chromosome bridges. Some late-stage spermatocytes also show chromatin bridges and 

arrest as multinucleate masses. Cytokinesis, if completed, produces spermatids with 

large, misshapen, or multiple nuclei. These defects may arise from delayed progression 

through spermatogenesis, as older males generate more normal spermatids. 

Spermatocytes that develop without obvious morphological abnormalities produce 

smaller numbers of residual bodies and sperm. Mutant sperm show abnormal wreaths 

of microtubules surrounding nuclei. In vitro, activation of these mutant sperm is 

impaired; many fail to form pseudopods and instead show long spike structures and 

impaired motility. In vivo, mutant sperm fail to localize to the spermatheca. Although 

transfer by mating is successful, mutant sperm are rapidly expelled through the vulva. 

 

Precisely how ALG-3/4 class 26G RNAs promote thermotolerant fertility is unknown. It 

is unlikely that desilencing of a single target results in these sperm development and 

motility defects, as individual depletion of 68 spermatogenesis-enriched transcripts 

desilenced in eri-1 or rrf-3 mutants failed to suppress the ts sterility and EMS 

mutagenesis failed to identify any suppressors among several million genomes 

screened [42]. Many of these defects are observed with variable penetrance at 20°C, 

but nearly all sperm show the abnormal spike structures during activation at 25°C, 

correlating with the penetrant ts sterility. Many ALG-3/4 class 26G RNAs target 

transcripts encoding major sperm proteins [19,20,34,42], which assemble into 

filamentous fibers in the pseudopod. One function of 26G RNAs may be to promote 

male fertility by limiting excess accumulation of major sperm proteins. Additionally, rrf-3 

and eri-1 mutant hermaphrodites cultured at 23°C generate embryos with significant 

spindle structure abnormalities including tripolar spindles or male pronuclei with 

supernumerary microtubule asters [32]. These defects, as well as the abnormal 

microtubule wreaths in spermatids [32] and the chromosome segregation defects in 

spermatocytes [19,32,42] suggest a role for ALG-3/4 class 26G RNAs in regulating 

microtubule organization during spermatogenesis. Alternatively, these microtubule 

defects may reflect abnormalities in chromosome complements resulting from 

dysfunctional spermatogenesis. 
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Enhanced RNAi sensitivity due to loss of ERGO-1 class 26G RNAs 
 
In C. elegans, exo-RNAi and endo-RNAi engage a common downstream pathway to 

effect target silencing: the WAGO 22G RNAs. The earliest evidence for intersection 

between these two pathways was the identification of mutants that show both Rde and 

Mutator (Mut) phenotypes [57,75], indicating that common mechanisms mediate exo-

RNAi and germline transposon silencing. Discovery of distinct primary and secondary 

phases of exo-RNAi first prompted the hypothesis that loss of RRF-3 might release 

limiting, common cofactors for function in the amplification phase of RNAi [46]. The 

WAGO Argonautes appear to represent these limiting factors in RNAi: loss of one can 

impair sensitivity to exogenous RNAi [68,76], and overexpression of one enhances 

accumulation of 22G RNAs and RNAi sensitivity [68]. Accordingly, loss of ERGO-1 

class 26G RNAs results in an Eri phenotype due to decreased competition for WAGO 

Argonaute occupancy by secondary siRNAs [24,37,41,68], in line with an earlier 

observation that loss of ERI-1 increases accumulation of exo-RNAi-triggered siRNAs 

[54]. The converse is also true. In the absence of exogenous dsRNA, RDE-1 scavenges 

diverse small RNAs and triggers endogenous somatic 22G RNA production [24,61,77]; 

loss of RDE-1 and these dependent endo-siRNAs enhances accumulation of an ERGO-

1-dependent somatic 22G RNA [68]. 

 

Loss of ERGO-1 class 26G RNAs, but not ALG-3/4 class 26G RNAs, results in the Eri 

phenotype of ERI complex mutants [20]. Only ERGO-1 class 26G RNAs are inherited 

by offspring to generate abundant 22G RNAs and effect target silencing [19,23,31]. Eri 

mutants show strong maternal, but not paternal, rescue of Eriness in the soma [74], 

consistent with the Eri phenotype arising due to liberation of WAGO Argonautes in the 

absence of maternally inherited ERGO-1 class 26G RNAs and dependent 22G RNAs. It 

is possible that upregulation of target mRNAs encoding factors such as helicases and 

dsRNA-binding proteins may also contribute to the Eri phenotype associated with loss 

of ERGO-1 class 26G RNAs [35]. 
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22G RNAs comprise two major small RNA pathways 
 

Early capture of C. elegans small RNAs using a protocol insensitive to 5’ structure 

indicated that a majority of antisensene small RNAs are 22 nt in length [28]. Protocols 

selective for 5’ monophosphorylated species failed to recover these sequences 

effectively [18,78], revealing a 5’ structure different from that of the 26G RNAs. Subsets 

of these small RNAs were subsequently shown to exhibit a 5’ triphosphate [21] and a 3’ 

hydroxyl [21,22,24]. Finally, 22 nt siRNAs in C. elegans show a prominent 5’ guanosine 

bias [18,24,28], distinguishing these as 22G RNAs. 

 

As a whole, 22G RNAs target about ~50% of the annotated coding genome, with most 

22G RNAs targeting unique genome sequences [24]. 22G RNAs mapping antisense to 

mRNAs show enrichment primarily at transcript 3’ ends, consistent with RdRP 

engagement at the mRNA 3’ terminus, but some also show enrichment at 5’ ends [24]. 

Most 22G RNAs are germline expressed and deposited into embryo, potentially 

coinherited with their mRNA targets [24]. The 22G RNAs comprise two distinct classes 

of small RNAs that are synthesized by similar RdRP modules but engage unique 

pathways mediated by nonoverlapping Argonautes and cofactor proteins to effect 

entirely distinct outcomes. The WAGO 22G RNAs bind semiredundant Argonautes of 

the worm-specific WAGO clade to mediate silencing of certain protein-coding genes, 

transposons, pseudogenes, and cryptic loci through both transcriptional and post-

transcriptional mechanisms [24,79-86]. The CSR 22G RNAs bind CSR-1, another 

WAGO Argonaute, and target germline-expressed genes to fulfill an essential role in 

promoting chromosome segregation [25]. Thus, 22G RNAs target both silent and 

expressed loci genome-wide to maintain the germline.  

 
 
The 22G RNA RdRP module: RdRP (RRF-1/EGO-1), DRH-3, and EKL-1 
 

RdRP: RdRPs RRF-1 and EGO-1 both contribute to biogenesis of 22G RNAs. The ego-

1; rrf-1 double mutant lacks 22G RNAs synthesized de novo in the germline [24]. EGO-
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1 and RRF-1 proteins show greater than 50% sequence identity [40] and collaborate to 

generate WAGO 22G RNAs, but EGO-1 alone is required for CSR 22G RNAs [24,25]. 

Accordingly, the ego-1 transcript is classified as germline-intrinsic [33], and ego-1 

mRNA and protein are enriched in young adult, adult, and embryo but nearly absent 

during larval development [25,40,87]. EGO-1 protein is also enriched in the nuclear 

fraction of cell lysates [88]. In contrast, a transgene expressing GFP::RRF-1 that 

rescues the rrf-1 mutant phenotype shows robust somatic expression, with prominent 

cytoplasmic and weak nuclear localization [44]. Despite their different expression 

patterns, the rrf-1 gene is encoded directly downstream of ego-1 in an operon [89]. 

 

WAGO RdRP: Because exo-RNAi engages WAGO 22G RNAs to mediate transcript 

knockdown [21,22,46], the RNAi sensitivity phenotypes associated with loss of RRF-1 

versus EGO-1 reveal their respective contributions to the WAGO pathway. RRF-1 is 

required in somatic tissues for 22G RNA accumulation and therefore exo-RNAi 

[23,31,46], whereas no role for EGO-1 is detected during RNAi in the soma [40,46]. 

Accordingly, 22G RNAs mapping to ERGO-1 class 26G RNA targets are largely RRF-1-

dependent [23]. In the germline, however, EGO-1 and RRF-1 are partially redundant for 

WAGO 22G RNA biogenesis. The rrf-1 mutant germline is sensitive to exo-RNAi of 

germline transcripts [46], revealing compensation by EGO-1. This explains why loss of 

RRF-1 does not recapitulate the ts sterility and other germline phenotypes associated 

with total compromise of WAGO 22G RNA target silencing. Loss of EGO-1 results in a 

partial germline Rde phenotype [40]. Interestingly, injection of dsRNA enhances the 

germline defects of an ego-1 null mutant [40], suggesting the possibility that RRF-1 may 

be recruited, although insufficiently, to CSR 22G RNA biogenesis in the absence of 

EGO-1. EGO-1 and phenotypes associated with its loss are discussed further with CSR 

22G RNAs below. 

 

RRF-1: In a cell-free system for analyzing secondary siRNA production triggered by 

exo-RNAi, RRF-1 accounts for 90% of RdRP activity [44]. Secondary siRNAs generated 

by immunopurified GFP::RRF-1 complexes are complementary to a supplied RNA 

template, and production is inhibited by addition of RNA chain elongation terminator. 
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RRF-1 also exhibits terminal transferase activity in cell extracts. 93% of RdRP products 

generated by GFP::RRF-1 complexes show a 5’ guanosine. This indicates that the 5’ 

guanosine bias of 22G RNAs, and perhaps also 26G RNAs, reflects an RdRP 

preference for initiation of transcription with GTP. GFP::RRF-1 complexes show very 

low processivity when incubated with ribonucleotides and mRNA template, generating 

products 22-23 nt in length; this length is not imposed by DCR-1-mediated cleavage, as 

DCR-1 is not recovered in GFP::RRF-1 complexes. DRH-3 immunopurifies with 

GFP::RRF-1 and is required for RdRP activity. GFP::RRF-1 complexes fail to generate 

RdRP products from long dsRNA template, but polyadenylated and non-polyadenylated 

mRNAs are equally effective templates in vitro; in cell extract, the non-polyadenylated 

template stimulates more robust RdRP activity. Neither in cell extract nor in vitro do 

GFP::RRF-1 complexes catalyze extension of an RNA primer complementary to a 

template, arguing against primer-dependent synthesis. In contrast, GFP::RRF-1 

complexes successfully incorporate labeled GTP as the 5’ nucleotide of RdRP products 

in vitro, demonstrating unprimed synthesis [44]. The 5’ ends of these RdRP products 

are also sensitive to capping, suggesting these products show the 5’ triphosphate of 

22G RNAs generated in vivo [21]. Unprimed synthesis also occurs in vivo, as secondary 

siRNAs triggered by a mismatch-containing primary siRNA show perfect 

complementarity to the endogenous target [22]. Furthermore, the rare secondary 

siRNAs that are generated 3’ to the trigger sequence could not originate via extension 

of exo-siRNA-derived primers [21]. 

 

DRH-3: As mentioned above, DRH-3 is an essential component of all known C. elegans 

RdRP modules [24,25,37,44,48]. DRH-3 is detected at all developmental stages and is 

not restricted to germline [25], but the drh-3 transcript is classified as germline-intrinsic 

[33], and drh-3 mRNA levels are threefold higher in young adult and adult than in larva 

[48]. The most severe phenotypes associated with loss of DRH-3 result from 

compromise of the CSR 22G RNA pathway [25] and will be discussed below. 

Nevertheless, partial loss of DRH-3 function results in phenotypes and target 

upregulation attributable to loss of WAGO 22G RNAs: point mutations in the helicase 

domain yield viable drh-3 hypomorphic mutants that show variable germline and 
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somatic Rde, Mut, ts sterile, and Him phenotypes as well as embryonic lethality possibly 

due to reduced CSR 22G RNA accumulation [24]. A sterile drh-3 null mutant is 

insensitive to RNAi in germline but not soma [37], presumably due to rescue by 

maternal inheritance. Deep sequencing of this mutant using a 5’ monophosphate-

independent protocol shows dramatically reduced endo-siRNA reads mapping to 

protein-coding genes, pseudogenes, repetitive elements, and unannotated loci but 

intact microRNAs and 21U RNAs [24]. Residual 22G RNAs detected in the drh-3 null 

mutant map primarily to the 3’ ends of transcripts, suggesting that the RdRP module 

may be loaded at transcript 3’ ends, with DRH-3 possibly acting to promote sequential 

initiation of polymerization [24]. Proposed roles for DRH-3 within the RdRP module 

include relaxing template secondary structure and promoting 22G RNA dissociation 

from the transcript for Argonaute loading [24]. 

 

EKL-1: EKL-1 is a Tudor domain protein [90] paralogous to ERI-5. Like ERI-5, EKL-1 

interacts with DRH-3, but only ERI-5 interacts DCR-1 [38]. This is consistent with 22G 

RNA biogenesis occurring through a DCR-1-independent mechanism [24,42,44]. The 

ekl-1 transcript is classified as germline-intrinsic [33], but EKL-1 is detected at all 

developmental stages and does not show germline restriction [25]. Like RRF-1/EGO-1 

and DRH-3, EKL-1 is also required for 22G RNA biogenesis [24] and exhibits 

phenotypes characteristic of compromise of CSR and WAGO 22G RNA pathways. Loss 

of EKL-1 results in sterility as well as somatic and germline defects in exo-RNAi and 

related phenomena [25,90-92]. 

 

 

Triggering of WAGO 22G RNAs 
 

WAGO 22G RNAs serve as the critical amplification pathway upon which most primary 

small RNAs in C. elegans converge. Accordingly, WAGO 22G RNAs are generated 

from and target transcripts targeted by 26G RNAs, primary exo-siRNAs, RDE-1-

scavenged small RNAs, and 21U RNAs. The requirements for triggering of WAGO 22G 

RNAs by each of these primary small RNA types are addressed below. 



	   24 

Secondary siRNAs in C. elegans were first identified during exo-RNAi as a population of 

small RNAs that are antisense to a target mRNA but not derived from the initial dsRNA 

trigger [46]. However, the existence of some means of amplification had been 

hypothesized several years prior. It had been noted that a few molecules of dsRNA are 

sufficient to deplete a cellular pool of target mRNAs, arguing against simple 

stoichiometric interaction and indicating the involvement of a catalytic and/or 

amplification mechanism [93,94]. Although trigger dsRNA cleavage generates some 

measure of amplification, this was recognized as still insufficient to explain the potent 

silencing ability of exogenous dsRNA [46]. The essential contribution of RdRP activity to 

this amplification was subsequently established by demonstrating complete insensitivity 

of the rrf-1 mutant soma to injection of prepared siRNA duplexes [46]. 

 

WAGO 22G RNAs are generated from spliced transcripts targeted by the triggering 

primary small RNAs [21]. RdRP initiation appears to be non-random, however, as 22G 

RNAs show some phasing across a target transcript, and similar sets of 22G RNAs are 

produced in different transgenic lines [22]. 22G RNA biogenesis shows a limited degree 

of spreading from the target site of the primary small RNA [46]. During exo-RNAi, 

spreading occurs primarily 5’ of the primary RNA target site with respect to the sense of 

the target transcript [21,22,46]. ERGO-1 class 26G RNAs rarely target the first ~100 nt 

of a transcript, but 22G RNAs show robust coverage of this interval at these same 

targets [23]. Similarly, 21U RNAs trigger 22G RNA production primarily 5’ of the target 

site [95]. This may have implications for transgenic construct design, as transgenes 

encoding foreign sequence 3’ to endogenous sequence are likelier to evade silencing 

by 21U RNAs [86]; presumably, 5’ spread of 22G RNA biogenesis from foreign to 

endogenous sequence could be detrimental, resulting in selection for evaders. The 

range of the spreading is relatively modest and may vary by primary small RNA 

abundance. Exo-RNAi appears to generate secondary siRNAs with a range of 100-180 

nt 5’ to the region targeted by dsRNA [96]. 21U RNAs trigger production of 22G RNAs 

within the surrounding 40-100 nt [95,97]. 
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Triggering by 26G RNAs: As described above, 26G RNAs trigger robust production of 

WAGO 22G RNAs at target sites, and these secondary siRNAs are essential for target 

silencing [19,23,31]. However, loss of 26G RNAs does not significantly deplete 22G 

RNA levels [23,24,31,32], indicating the existence of other primary triggers of WAGO 

22G RNA biogenesis. 

 

Triggering by primary exo-siRNAs: Competition between endo- and exo-RNAi 

implicates primary exo-siRNAs and the associated Argonaute RDE-1 in triggering 22G 

RNAs as well [37,41,46,68]. Exo-RNAi triggers production of antisense secondary 

siRNAs that share all of the features and dependencies of endogenously triggered 

WAGO 22G RNAs [21,22,24,44,46,98]. Expression of a single hairpin-derived 22 nt 

siRNA (22siR) targeting the unc-22 mRNA 3’ UTR reveals some of the requirements for 

RDE-1-triggered 22G RNA biogenesis [22]: A 22siR showing perfect target site 

complementarity depletes unc-22 mRNA levels by 50% and generates abundant 

secondary siRNAs upstream of the target site. A mutated 22siR bearing target site 

mismatches at positions 10-12 binds the unc-22 mRNA but does not trigger secondary 

siRNA biogenesis. Single mismatches at position 11 or position 21 weaken target 

silencing, but do not alter the range of secondary siRNAs triggered. The lack of an 

effect of mismatch at the putative cleavage site (position 11) on the distribution of 

secondary siRNAs suggests that RDE-1-mediated target cleavage is not necessary for 

triggering secondary siRNA production [22], consistent with a restricted role RDE-1 

cleavage activity in passenger strand removal [69]. 

 

Triggering by RDE-1-scavenged small RNAs: In the absence of exogenous dsRNA, 

RDE-1 binds a variety of DCR-1 products; among these are microRNAs and dsRNA-

derived siRNAs cleaved from endogenous hairpins or bidirectionally transcribed 

genomic regions [77]. Some of these scavenged siRNAs initiate significant 22G RNA 

production at target loci: the Y47H10A.5 transcript generates abundant 22G RNAs 

triggered by miR-243-loaded RDE-1, for which a perfectly complementary target site 22 

nt in length appears on Y47H10A.5 transcript [24,61,77]. Like primary exo-siRNAs, miR-

243-mediated triggering of these 22G RNAs requires RDE-4, in addition to RDE-1 [24]. 



	   26 

In contrast, the chief microRNA pathway Argonaute ALG-1 does not trigger secondary 

siRNA biogenesis at target sites [99]; this may explain why microRNAs fail to elicit 

dramatic target knockdown despite the vast abundances of individual microRNAs 

relative to individual endo-siRNAs. It is important to note that 22G RNAs themselves are 

rarely bound by RDE-1 [46], prohibiting triggering of further siRNA biogenesis from 

aberrant tertiary targets in trans. Similarly, 22G RNAs bound by WAGO Argonautes also 

do not appear to trigger further amplification or spreading at target sites: a sensor 

transgene with a single target site for an abundant 22G RNA shows confined loss of 

secondary siRNAs at the target site when the triggering 22G RNA is removed [72]. 

 

Triggering by 21U RNAs: A fourth population of primary small RNAs converging on the 

WAGO 22G RNAs are 21U RNAs, the piRNAs of C. elegans. These small RNAs are 

bound by and require the PIWI clade Argonaute PRG-1 for accumulation and targeting 

[26,27]. 21U RNAs constitute a library of mismatch-tolerant sequences that are depleted 

for targeting of protein-coding genes but capable of silencing non-self transcripts by 

triggering WAGO 22G RNAs [79,86,95,97]. 21U RNA properties, biogenesis, and 

function are discussed in depth below. Initial studies identified 21U RNA-dependent 

secondary siRNAs [26,27], but only recently were these established as WAGO 22G 

RNAs and the targeting requirements reported. 21U RNAs trigger 22G RNA biogenesis 

at engineered sensor targets with up to two target site mismatches and at endogenous 

targets with up to three or four mismatches [95,97]. Seed site pairing, which plays an 

important role in microRNA-mediated target repression, may also be important for 21U 

RNA targeting. One study found that nearly perfect pairing is required at positions 2-8, 

with a maximum of one G-U wobble pair across the interval, to trigger 22G RNA 

biogenesis [95]; however, another study found that transgenic 21U RNA sensor 

transcripts are effectively targeted regardless of the position of dinucleotide mismatches 

across the length of the 21U RNA [97]. Interestingly, 21U RNAs seem less effective at 

stimulating a secondary siRNA response, as less than 5% of target sites exhibiting 

perfect complementarity to 21U RNAs show unambiguous triggering of 22G RNAs 

[95,97]. This may be in part due to the low abundances of many 21U RNA species, as 

levels of 22G RNAs triggered correlate with both 21U RNA abundance and degree of 
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complementarity [95,97]. Recombinant PRG-1 shows some slicing activity in vitro, but 

this activity is dispensable for triggering 22G RNA production as well as target silencing 

[95,97]. Also in support of a cleavage-independent mechanism, 21U RNA target site 

mismatches at positions 10 and 11 do not abrogate 22G RNA triggering [95,97]. 

 

 

Germline amplification of WAGO 22G RNAs in perinuclear Mutator foci 
 

Screens for factors involved in transposon silencing in the germline (mutators) 

[65,75,100], exo-RNAi [57], and related phenomena [90,91,101] recurrently identified 

members of a group of proteins implicated in formation of Mutator foci. These 

perinuclear processing compartments interact with RRF-1 and are required for WAGO 

22G RNA amplification and target silencing in the germline [66]. The six proteins that 

assemble to form Mutator foci are MUT-16, MUT-7, MUT-8/RDE-2, MUT-2/RDE-3, 

MUT-15, and MUT-14. Consistent with their critical, non-redundant role in the WAGO 

22G RNA pathway, loss of any of these proteins results in mutator (Mut), ts sterile, Him, 

and Rde phenotypes [24,65,66,75,98,100,102,103], although a mut-16 mutant carrying 

a silent missense mutation shows only a germline Rde phenotype [66,98]. 

 

MUT-16 is a worm-specific protein containing proline-rich and glutamine/asparagine-rich 

regions [65]. A translational MUT-16::GFP fusion protein is expressed broadly in 

cytoplasm and nuclei [65]. MUT-16 is also required for accumulation of ERGO-1 class 

26G RNAs, whereas other Mutator foci components are not strictly required [62]. MUT-7 

is a 3’ to 5’ exonuclease [75] that is conserved in animals [66]. A mut-7::gfp 

transcriptional fusion shows expression in many different cell types in larva and adult 

[43]. MUT-8/RDE-2 contains no known domains and may only exist to recruit MUT-7 

[66]. MUT-2/RDE-3 is a beta-nucleotidyltransferase; mutations of conserved residues at 

the active site produce Rde phenotypes, suggesting polymerase activity is required for 

function [102]. MUT-2/RDE-3 expressed in frog oocytes shows no polymerase activity, 

unlike homolog CDE-1 [104]. The mut-2/rde-3 transcript is classified as germline-
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intrinsic [33]. MUT-15 contains no known domains. MUT-14 is a DEAD box RNA 

helicase [98]. 

 

Dynamics of Mutator foci: Fluorescently tagged translational fusions of these proteins 

reveal the dynamics of Mutator foci throughout development [66]: In male and 

hermaphrodite germlines, Mutator foci are perinuclear, adjacent to P granules, and most 

prominent in the mitotic region and transition zone. By meiotic diakinesis, they begin to 

show cytoplasmic localization. In somatic cells, Mutator foci components are 

cytoplasmically localized but still required for efficient WAGO 22G RNA amplification 

and silencing function, as most of the component proteins are required for exo-RNAi in 

both germline and soma [24,65,66,75,91,102,103]. Possibly, lower somatic expression 

of these proteins may prevent focal recruitment to the nuclear periphery. Failure to 

assemble Mutator foci in somatic tissues likely decreases the effectiveness of the 

components in promoting genome surveillance, as transposons efficiently silenced in 

germline can be active in the soma [105]. Maternal presence of Mutator foci appears to 

be critical for transposon suppression in offspring: mut-7 heterozygous mutants show a 

Mut phenotype with maternal, but not paternal, inheritance of the mutation, and 

paternally inherited mut-7 mutant alleles require several generations of homozygosity to 

reach maximal transposition activation, whereas maternal mut-7 alleles show maximal 

activation in the first homozygous generation [75]. 

 

Assembly of Mutator foci: Mutator foci may associate directly with the nuclear pore 

complex [66], much like P granules [106]. However, Mutator foci are not required for P 

granule formation, nor are P granules required for Mutator focus assembly [66]. 

Consistent with the many associations of the nuclear pore with RNA processing bodies, 

nuclear pore complex proteins routinely emerge from screens for factors involved in 

RNAi [65,91]. Mutator focus assembly is a regulated process: MUT-16, which contains a 

Q/N-rich domain that may mediate protein-protein interactions, recruits MUT-2/RDE-3, 

MUT-15, MUT-14, and MUT-8/RDE-2, which itself recruits MUT-7 [66,103]. In the 

absence of MUT-16, the other five components do not interact [66]. Intriguingly, 

formation of Mutator foci appears not to require the presence of WAGO 22G RNAs, as 
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loss of DRH-3, EKL-1, or EGO-1 and RRF-1 simultaneously or alone does not affect 

their formation, nor does loss of 26G RNAs, CSR 22G RNAs, or several individual 

WAGO Argonautes [66]. 

 

Function of Mutator foci: Mutator foci serve as amplification centers for WAGO 22G 

RNAs in the germline [66]. mut-15, mut-16, and mut-2/rde-3 mutants show defects in 

secondary siRNA accumulation in response to exo-RNAi [22], and deep sequencing of 

mut-2, mut-7, and mut-16 mutants reveals general defects in accumulation of WAGO 

22G RNAs [24,62]. Somatic X-cluster 22G RNAs are depleted in mut-15, mut-2/rde-3, 

mut-7, and mut-16 mutants [62,66]. A mut-14 mutant shows intact X-cluster 22G RNAs, 

but loss of germline 22G RNAs [66]. Therefore, the germline and somatic Rde 

phenotypes of Mutator foci mutants reflect their respective capacities to support 22G 

RNA biogenesis. In Mutator foci mutants, however, loss of WAGO 22G RNAs is 

incomplete, and depletion does not appear proportionate for all species. For example, 

the targets showing greatest 22G RNA depletion upon loss of MUT-16, MUT-2, or MUT-

7 are those that generate very high levels of 22G RNAs [24,62,66]. Furthermore, MUT-

2/RDE-3 is required for full target knockdown during dsRNA feeding, but not when 

dsRNA is transgenically expressed [102]. These data suggest that Mutator foci are most 

important for heavy siRNA amplification and are less critical when primary small RNA 

triggers are abundant. The mechanisms by which Mutator foci promote WAGO 22G 

RNA amplification are not known, although recruitment of RdRP to target transcripts is 

likely involved. Germline RRF-1 localizes exclusively to Mutator foci, whereas EGO-1 

localizes both to P granules and Mutator foci [25,66], reflecting the dual function of 

EGO-1 in the WAGO and CSR 22G RNA pathways [24]. The adjacency of Mutator foci 

and P granules suggests possible interaction between the two [66]. P granules contain 

ALG-3 and PRG-1 [19,26,107], two Argonautes that require WAGO 22G RNA-mediated 

amplification to effect target silencing [19,24,27,95,97]. When a nascent mRNA passes 

through the nuclear pore, the presence of the hydrophobic P granule may retard its 

diffusion to enhance recognition by regulatory molecules such as loaded Argonautes 

[108]. Once a target transcript enters a P granule and is recognized by a primary small 

RNA Argonaute, the adjacent Mutator focus may engage the transcript for secondary 
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siRNA amplification. Notably, CSR 22G RNAs do not accumulate to high levels or 

trigger gene silencing [24,25] and do not require Mutator foci for amplification, as a mut-

16 mutant does not show depletion of 22G RNAs targeting a validated set of CSR 22G 

RNA pathway targets [62]. 

 

 

Additional amplification of WAGO 22G RNAs by RDE-10/RDE-11 
 
The RDE-10/RDE-11 protein complex amplifies 22G RNAs and potentiates degradation 

of the targets that serve as their templates [109,110]. RDE-10 and RDE-11 are worm-

specific genes [110]. The rde-10 transcript is classified as mixed oogenesis-somatic, 

whereas rde-11 is germline intrinsic [33]. WormBase reports RDE-10 as containing a 

Maelstrom domain, which adopts an RNase H fold that may confer nuclease or RNA-

binding functionality. RDE-11 contains a RING-type zinc finger domain [110]. Mutation 

of a key zinc-coordinating residue in RDE-11 abrogates its interaction with RDE-10 in 

vitro and results in failure to rde-11 mutant phenotypes (see below) [110]. Thus, zinc 

binding facilitates the formation of the RDE-10/RDE-11 complex, possibly by promoting 

folding of RDE-11. 

 

RDE-10/RDE-11 amplifies 22G RNAs triggered by exo-RNAi and ERGO-1: The 

RDE-10/RDE-11 complex appears to play a significant role in amplification of WAGO 

22G RNAs triggered by exo-RNAi [109,110]. The absence of RDE-10 or RDE-11 results 

in a partial germline and somatic Rde phenotype, but no fertility defect or Him 

phenotype [109,110]. The exo-RNAi deficiency of these mutants is dosage-sensitive 

and results from impaired accumulation of secondary WAGO 22G RNAs: loss of RDE-

10/RDE-11 depletes exo-RNAi-triggered 22G RNAs by ~80% [109,110]. ERGO-1 class 

26G RNAs also variably require RDE-10/RDE-11 for maximal amplification of secondary 

siRNAs and target silencing. ERGO-1 is detected in immunopurified RDE-10 complexes 

[109,110], and embryonic 22G RNAs targeting ERGO-1 26G RNA targets are depleted 

by more than half upon loss of RDE-10 [109]. 22G RNAs are most abundant in the 

germline [24,31], and some primary small RNAs are restricted to germline tissues 
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[19,26,27,107]. The more pronounced effects of RDE-10/RDE-11 on exo-RNAi and 

ERGO-1-mediated silencing therefore suggest that the RDE-10/RDE-11 complex may 

be particularly important in somatic 22G RNA amplification. Indeed, the somatic X-

cluster and Y47H10A.5 22G RNAs triggered by ERGO-1 and RDE-1, respectively, 

showed strong dependence on RDE-10 and RDE-11 for accumulation [109]. In 

comparison, accumulation of a germline-enriched, ERGO-1-independent 22G RNA 

targeting T01A4.3 [37] does not require RDE-10/11 [109], nor apparently do many other 

WAGO 22G RNAs, microRNAs, 21U RNAs, 26G RNAs, primary exo-siRNAs, or CSR 

22G RNAs [109,110]. Perhaps the RDE-10/RDE-11 complex supports WAGO 22G RNA 

amplification in the soma, in the absence of perinuclear Mutator foci. 

 

RDE-10/RDE-11-mediated target degradation: In addition to amplifying 22G RNAs, 

the RDE-10/RDE-11 complex may directly promote target deadenylation and 

degradation. RDE-10 binds mRNAs targeted by exo-RNAi, even in the absence of RDE-

11 [110]. This binding activity is lost in the absence of RDE-1, but intact in the absence 

of RRF-1, indicating that primary exo-siRNAs are guiding association of RDE-10/RDE-

11 with mRNA targets independently of secondary 22G RNAs [110]. After recognition, 

RDE-10-bound mRNAs are deadenylated and degraded in an RDE-11-dependent 

manner [110]. Targets undergoing RDE-10/RDE-11-mediated degradation retain 5’ 

caps, providing a transiently stable substrate for continued secondary siRNA production 

[110]. Thus, the RDE-10/RDE-11 complex may promote secondary siRNA biogenesis 

by binding exo-RNAi targets to promote RRF-1 binding as deadenylation and 

degradation occur [110]. The RDE-10/RDE-11-mediated degradation pathway likely 

acts in parallel to target silencing mediated by somatic nuclear Argonaute NRDE-3 and 

other WAGO Argonautes, as many NRDE-3-bound 22G RNAs are intact in the absence 

of RDE-10/RDE-11 [109,110]. In somatic exo-RNAi in particular, the RDE-10/RDE-11 

complex and NRDE-3 may represent the two main pathways for target silencing: rde-10, 

rde-11, and nrde-3 mutants all show partial sensitivity to unc-22 dsRNA feeding, but 

loss of RDE-10 or RDE-11 in a nrde-3 mutant background results in complete 

insensitivity to unc-22 dsRNA and a defect in unc-22 mRNA knockdown as profound as 

observed upon complete loss of exo-RNAi in the rde-1 mutant [110]. 
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RSD-2, RSD-6, and/or HAF-6 may potentiate RDE-10/RDE-11 function: RSD-2 and 

RSD-6 are worm-specific proteins that contain no annotated domains [111]. The rsd-6 

transcript is classified as germline-enriched [33]. HAF-6 is a half-molecule ATP-binding 

cassette transporter detected with a reticular pattern in intestinal, muscle, and germline 

cells, with perinuclear localization in germline [112]. Like rde-10 and rde-11 mutants, 

rsd-2, rsd-6, and haf-6 mutants also show dosage-sensitive Rde phenotypes [111-113] 

due to defects in WAGO 22G RNA accumulation [109,113]. These three proteins also 

regulate accumulation and target silencing of a subset of WAGO 22G RNAs, many of 

which are ERGO-1- and RDE-10/RDE-11-dependent [109]. RSD-2, RSD-6, and HAF-6 

are all required for accumulation of X-cluster 22G RNAs [109]. The shared dosage-

sensitive Rde phenotype and functional overlap of RDE-10/RDE-11 and RSD-2, RSD-6, 

and HAF-6 suggests the possibility of a common complex. Supporting this, RSD-2 

interacts with both RDE-10 and RSD-6 [109,111]. However, loss of RSD-2 also results 

in a Mut phenotype at 25°C, and loss of RSD-6 causes ts sterile and Him phenotypes 

[113]. These more severe WAGO 22G RNA pathway phenotypes indicate that RSD-2 

and RSD-6 may play more critical or additional roles in WAGO 22G RNA accumulation 

or function. The perinuclear germline localization of HAF-6 [112] suggests that HAF-6 

could also interact with Mutator foci, and there is some evidence for genetic interaction 

between HAF-6 and Mutator foci components: double heterozygous mut-8/rde-2(+/-); 

mut-7(+/-) mutants show impaired exo-RNAi; heterozygosity for a haf-6 mutation in 

either a mut-8/rde-2(+/-) or mut-7(+/-) heterozygous background also results in defects 

in exo-RNAi [112]. 

 

 

WAGO 22G RNA Argonaute binding 
 

Early analysis of C. elegans Argonautes revealed significant expansion of the protein 

family [50]. A large subset of these cluster phylogenetically into a WAGO, or worm-

specific Argonaute, clade that is roughly equally distant from the conserved PIWI and 

AGO clades [68]. Included in these are CSR-1, the Argonaute that mediates the CSR 

22G RNA pathway [25], and related protein C04F12.1. Also variably included is the 
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divergent RDE-1, the first C. elegans Argonaute to be linked to RNAi [57]. The other 12 

Argonaute proteins in this clade constitute the WAGO Argonautes of the WAGO 22G 

RNA pathway. These 12 Argonautes bind and stabilize WAGO 22G RNAs 

semiredundantly to mediate target silencing. Simultaneous loss of all 12 Argonautes in 

the MAGO12 Argonaute mutant results in penetrant ts sterile, Him, and Rde phenotypes 

and massive depletion of 22G RNAs that are not dependent on CSR-1 [24,25]. The ts 

sterility of the MAGO12 mutant is only partially rescuable by wild type sperm, likely 

because loss of 21U RNAs results in ts fertility defects in female germline as well as 

male [107]. These WAGO-dependent 22G RNAs are also globally depleted in mut-7 

and mut-2/rde-3 mutants [24], reflecting the contribution of Mutator foci components to 

WAGO 22G RNA accumulation [66]. 

 

The 12 WAGO Argonautes of the cognate 22G RNA pathway are clustered into three 

subclades referred to by phylogenetic branch: Branch 1 comprises WAGO-1 (R06C7.1), 

WAGO-2 (F55A12.1), WAGO-3 (PPW-2), WAGO-4 (F58G1.1), WAGO-5 (ZK1248.7); 

Branch 2 comprises WAGO-6/8 (SAGO-2/F56A6.1), WAGO-7 (PPW-1), WAGO-8/6 

(SAGO-1/K12B6.1); and Branch 3 comprises WAGO-9 (HRDE-1), WAGO-10 

(T22H9.3), WAGO-11 (Y49F6A.1), WAGO-12 (NRDE-3) [24]. wago-1, wago-2, wago-

3/ppw-2, and wago-5 transcripts are classified as germline-intrinsic [33]. wago-4 and 

wago-9/hrde-1 transcripts are classified as oogenesis-enriched, whereas wago-10 is 

spermatogenesis-enriched [33]. The wago-12/nrde-3 transcript is classified as mixed 

oogenesis-somatic [33]. The others are not assigned germline enrichment 

classifications [33]. WAGO-12/NRDE-3 and WAGO-9/HRDE-1 will be discussed in 

greater detail below in the context of the nuclear RNAi pathway. 

 

While loss of single WAGO Argonautes can cause mild defects in exo-RNAi sensitivity 

and germline transposon silencing [65,68,76], simultaneous loss of multiple WAGO 

Argonautes within the same phylogenetic branch produces more significant impairment. 

The MAGO strain lacks Branch 2 and WAGO-4 Argonautes and shows a somatic and 

germline Rde phenotype and a ts fertility defect [68]. The Quadruple mutant lacks all of 

the Branch 1 Argonautes but WAGO-1 and shows an Rde phenotype [24]. Similarly, 
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WAGO Argonautes bind and stabilize WAGO 22G RNAs semiredundantly. In exo-RNAi 

of the unc-22 transcript, Branch 2 Argonautes bind secondary siRNAs redundantly, and 

overexpression of any Branch 2 Argonaute rescues the RNAi defect of the MAGO 

strain, which otherwise fails to accumulate unc-22 secondary siRNAs [68]. Still, 

particular 22G RNAs in germline and soma show different dependencies upon different 

WAGO Argonautes. The Quadruple mutant, while showing a germline Rde phenotype, 

still generates wild type levels of a germline F37D6.3 22G RNA, whereas loss of the 

remaining Branch 1 Argonaute, WAGO-1, severely depletes this species [24]. Loss of 

all five Branch 1 Argonautes in the Quintuple mutant results in dramatic reduction of 

germline 22G RNAs, whereas a MAGO+2 mutant lacking Branch 2, WAGO-3, and 

WAGO-4 Argonautes [24] shows near wild type levels of germline 22G RNAs, but loss 

of a somatic Y47H10A.5 22G RNA triggered by RDE-1 [24]. 

 
 
WAGO 22G RNA-mediated post-transcriptional gene silencing 
 

Early evidence suggested that exo-RNAi occurred primarily through a post-

transcriptional silencing mechanism. Injection of dsRNA segments corresponding to 

intron and promoter sequences does not elicit interference [93], and injection of dsRNA 

targeting a transcript encoded in an operon generally does not decrease levels of 

transcripts encoded downstream of the target within the operon appreciably [114]. Little 

progress has been made in understanding cytoplasmic, post-transcriptional target 

silencing by WAGO 22G RNAs. It is unlikely to involve Argonaute-mediated target 

cleavage, as WAGO Argonautes lack the catalytic triad residues required for slicer 

activity [68]; furthermore, target cleavage induced by introduction of 5’ triphosphorylated 

siRNAs into cell lysate is predominantly mediated by CSR-1 [44], which is not involved 

in the WAGO 22G RNA pathway [24,25]. In the germline, post-transcriptional target 

silencing may occur at P granules, as GFP::WAGO-1 is expressed in the germline and 

localizes to perinucelar P granules [24], like Argonautes ALG-3, PRG-1, and CSR-1 

[19,25,26,107]. It is possible that RDE-10/RDE-11-mediated target deadenylation and 

degradation represents the main post-transcriptional mechanism for target silencing 
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[110]. Earlier data connecting the nonsense-mediated decay (NMD) pathway with exo-

RNAi likely resulted from the presence of the mut-16(mg461) mutation in the mutant 

strains of smg-2, smg-5, and smg-6 genes, which encode NMD pathway proteins [62]. 

This explanation is consistent with an initial report that failed to demonstrate a role for 

the SMG proteins in exo-RNAi [114], although a transgenic system for studying 

transcriptional gene silencing showed impairment of repression upon depletion of smg-5 

by RNAi [101]. 

 

 

WAGO 22G RNA-mediated transcriptional gene silencing: The nuclear RNAi 
pathway 
 

Early evidence for transcriptional gene silencing: Chromatin-associated factors 

MES-2, MES-3, MES-6, and MES-4 are required for germline silencing of high-copy 

arrays [115], and silenced arrays carry histone modifications consistent with a 

heterochromatinized state [116]. A screen for factors involved in cosuppression, 

silencing in trans of an endogenous locus in response to a cognate transgenic array, 

identified numerous factors that regulate chromatin structure and transcription [90]. In 

this system, silencing occurs at the transcriptional level, as relieving cosuppression 

through loss of MUT-16 or MUT-8/RDE-2 results in proportional increases in levels of 

both spliced and unspliced transcripts [90]. Another transgene was found to show 

transcriptional silencing upon dsRNA feeding that occurs through a mechanism that 

requires both RNAi factors and proteins involved in chromatin regulation [101]. 

Transcriptional silencing of this transgene correlates with decreased RNA polymerase 

(Pol) II occupancy as well as increased H4 histone acetylation. Furthermore, this 

transgene shows spontaneous silencing upon loss of RRF-3 [101], suggesting 

convergence of endo- and exo-RNAi upon a common a transcriptional silencing 

pathway. 

 

Early evidence for heritable and multigenerational gene silencing: The effects of 

dsRNA injection are often observed in progeny, but rarely heritable beyond the first 
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generation [93,114], suggesting the existence of an epigenetic heritable interfering 

agent of limited longevity. However, hermaphrodites injected with dsRNA targeting 

transcripts expressed in the maternal germline show multigenerational inheritance of 

silencing mediated by a dominant factor that can be inherited through either sperm or 

oocyte [117]. Similarly, a germline-expressed transgene transcriptionally silenced by 

cosuppression takes several generations to recover expression after relief of 

cosuppression [90]. In contrast, transcriptional silencing of a transgene expressed in the 

soma is not inherited [101]. These data suggest the existence of two different forms of 

inherited RNAi: single-generation inheritance of somatic RNAi and multigenerational 

inheritance of germline RNAi. 

 

NRDE-3 and HRDE-1 WAGO Argonautes mediate nuclear RNAi: Two WAGO 

Argonautes, WAGO-12/NRDE-3 and WAGO-9/HRDE-1, mediate somatic and germline 

nuclear RNAi, respectively, through what is referred to as the Nrde (Nuclear RNAi-

defective) pathway. Although both NRDE-3 and HRDE-1 were reported to be 

completely dispensable for RNAi-mediated knockdown of pos-1 or let-2 [68], these 

Branch 3 WAGO Argonautes appear to be the sole mediators of transcriptional gene 

silencing. As WAGO Argonautes, neither has an intact catalytic triad conferring slicer 

activity [68], but each contains a bipartite nuclear localization signal (NLS) and shows 

predominantly nuclear localization [79,80,84]. NRDE-3 and HRDE-1 are triggered by 

WAGO 22G RNA binding to enter the nucleus and associate with nascent pre-mRNA 

targets, where they recruit NRDE-2, NRDE-1, and NRDE-4 to inhibit Pol II elongation 

and deposit the repressive H3K9me3 chromatin mark (see below) [79-86,118]. The two 

Argonautes appear to use common silencing mechanisms and machinery [79-81,85], 

but their protein expression patterns are distinct: a rescuing GFP::NRDE-3 translational 

fusion protein shows expression in most somatic cells after the ~80-cell embryo stage 

[84], whereas GFP::HRDE-1 is expressed in male and female germ cells [80,86]. 

Consequently, NRDE-3 mediates somatic nuclear RNAi, and HRDE-1 mediates 

germline nuclear RNAi. 
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NRDE-3 collaborates with other WAGO Argonautes to silence somatic targets: 
NRDE-3-mediated silencing is not always a significant component of the silencing 

response triggered by exo-RNAi or primary endogenous small RNAs [84,118]. While 

NRDE-3 likely does not play an important role in silencing of cytoplasmic mRNAs [84], it 

is required for exo-RNAi of somatic nuclear-localized mRNAs, including polycistronic 

pre-mRNAs such as lin-15a-lin15b and lir-1-lin-26 [84]. Loss of nrde-3 also results in 

increased pre-mRNA and mRNA levels of select endogenous targets [84]; however, a 

majority of NRDE-3 targets show far less upregulation in the absence of NRDE-3 than 

in the absence of RRF-1/EGO-1, DRH-3, or EKL-1 [24]. This indicates that other 

somatic Argonautes such as SAGO-1 and SAGO-2 [68] collaborate with NRDE-3 to 

mediate WAGO 22G-RNA target silencing, potentially through the RDE-10/RDE-11 

complex [109,110]. Accordingly, loss of NRDE-3 abrogates somatic nuclear RNAi 

entirely, but does not result in a classical somatic Rde phenotype [84]. NRDE-3 is also 

required for single-generation inheritance of somatic target silencing triggered by exo-

RNAi; in progeny, NRDE-3 promotes continued accumulation of secondary WAGO 22G 

RNAs to reestablish H3K9me3 marks (see below) [82]. 

 

HRDE-1 transgenerationally silences diverse targets to promote germline 
immortality: In contrast to NRDE-3, HRDE-1 engages the Nrde pathway in germ cells 

to direct silencing that can be inherited over many generations (also called RNAe for 

RNA-induced epigenetic silencing) [79,80,83,85,86,97]. This transgenerational silencing 

can be initiated by exo-RNAi to establish transcript knockdown that is stable for several 

generations without additional trigger exposure [79,80,83]. Endogenous small RNA 

pathways also robustly engage germline nuclear RNAi. 22G RNAs bound by HRDE-1 

and WAGO-1 largely overlap [86], affirming that nuclear and cytoplasmic WAGO 

Argonautes share a common set of siRNA cofactors and targets. These include WAGO 

22G RNAs triggered by 21U RNAs and 26G RNAs that maintain germline integrity. In 

particular, 21U RNAs encode an epigenetic memory of non-self critical for genome 

surveillance [79,86,95,97]. These fertility-promoting small RNAs associate with HRDE-1 

to initiate transgenerational silencing of targets that pose a threat to germline integrity; 

accordingly, loss of HRDE-1 or downstream Nrde factors causes progressive target 
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desilencing and emergence of pleiotropic germline defects including a Him phenotype, 

production of nonfunctional gametes, and failure to generate mature oocytes or sperm 

in late generations at 25°C [80]. Effectively, loss of HRDE-1 results in a Mrt, or mortal 

germline, phenotype. While this phenotype is shared by mutants of downstream Nrde 

pathway members (NRDE-2, NRDE-1, and NRDE-4), it is not observed with loss of the 

somatic nuclear Argonaute NRDE-3 [80]. After engaging HRDE-1 to initiate 

transgenerational silencing, the triggering primary small RNA may not be required, as 

suggested by the dispensability of PRG-1 for maintenance of transgene silencing 

initiated by 21U RNAs [79,85,86,95]. For silencing of some targets, however, HRDE-1 

and the Nrde pathway collaborate with other, likely cytoplasmic WAGO Argonautes: 

some transgenes are incompletely silenced by HRDE-1 and show increased desilencing 

upon loss of additional Argonautes including WAGO-10 [86]. Additional requirements for 

transgenerational silencing are discussed further below. 

 

 

NRDE-3 target recognition 
 
Like other WAGO Argonautes, NRDE-3 binds WAGO 22G RNAs. Immunopurified 

NRDE-3 complexes contain primarily 5’ triphosphorylated ~22 nt endo-siRNAs [84]. 

Consistent with production by a cytoplasmic RdRP acting on spliced transcripts, NRDE-

3-associated siRNAs map to exonic sequences, even when RNAi is triggered by dsRNA 

containing introns [84]. NRDE-3 primarily binds somatic 22G RNAs triggered by ERGO-

1 class 26G RNAs, such as E01G4.5 22G RNAs, but also binds secondary siRNAs 

during exo-RNAi targeting a somatic transcript [31,84,118]. Due to redundancy among 

the WAGO Argonautes, loss of NRDE-3 does not significantly impair stability of these 

22G RNAs [84]. 

 

Upon binding a cytoplasmic WAGO 22G RNA, NRDE-3 translocates to the nucleus to 

execute target silencing [84]. Nuclear localization is required for NRDE-3 function: an 

NLS-defective NRDE-3 mutant protein that binds siRNAs at wild type levels but does 

not redistribute to the nucleus fails to rescue nrde-3 mutant phenotypes [84]. siRNA 
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binding is required for translocation to the nucleus, as mutating the NRDE-3 PAZ 

domain to abrogate siRNA binding also results in failure to localize to the nucleus [84]. 

Similarly, loss of siRNA cofactors abolishes nuclear localization. As NRDE-3 binds 

primarily somatic 22G RNAs triggered by ERGO-1 class 26G RNAs, GFP::NRDE-3 is 

cytoplasmic in eri-1, ergo-1, mut-7, rde-4, mut-2, eri-9, eri-6, and dcr-1(mg375) helicase 

mutants [35,42,84]. The nuclear localization of GFP::NRDE-3 is rescued upon 

introduction of dsRNA in an eri-1 mutant, but not an rde-4 mutant, which cannot initiate 

exo-RNAi [84]; this suggests that siRNA binding is necessary and sufficient for nuclear 

redistribution of nuclear Argonautes.  

 

After translocation to the nucleus, the loaded WAGO 22G RNA directs NRDE-3 to 

associate with unspliced target pre-mRNA [84]. NRDE-3 targeting recognition appears 

to require very high sequence complementarity [72]: A reporter transgene with a single 

target site for an X-cluster 22G RNA is efficiently silenced in a wild type background and 

shows primarily NRDE-3-dependent silencing. Silencing is abrogated by mismatches at 

positions 1-3, 4-5, 12-14, or deletion of a nucleotide at position 4. Silencing is impaired 

by mismatches at positions 9-11 or deletion or insertion of a nucleotide at position 13. 

Mismatches at position 13 or 20-22 are tolerated. 

 

 

The downstream nuclear RNAi machinery 
 

The proteins NRDE-2, NRDE-1, and NRDE-4 mediate the transcription silencing effects 

of nuclear Argonautes. After NRDE-3 binds a WAGO 22G RNA, translocates to the 

nucleus, and recognizes a nascent pre-mRNA target, NRDE-3 associates with NRDE-2 

to recruit NRDE-1 to the transcript and direct its deposition on chromatin through a 

mechanism that requires NRDE-4 [81,84,118]. NRDE-2, NRDE-1, and NRDE-4 are also 

engaged by HRDE-1 to mediate nuclear RNAi in the germline [79,80,85]. Accordingly, 

loss of any of these factors results in the same Mrt phenotype observed with loss of 

HRDE-1 [80], as well as loss of sensitivity to nuclear exo-RNAi [81,118]. 
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NRDE-2: NRDE-2 is a predominantly nuclear-localized, evolutionarily conserved protein 

encoding a domain of unknown function, a Serine/Arginine-rich domain, and a HAT-like 

domain [118]. Immunopurified NRDE-2 complexes contain NRDE-3, but only when the 

NRDE-3 NLS is intact, indicating an exclusively nuclear interaction [118]. NRDE-2 is 

dispensable for NRDE-3 to transport siRNAs from cytoplasm to nucleus and for NRDE-

3 to associate with the target pre-mRNA [118]. Within the nucleus, NRDE-3 recruits 

NRDE-2 to the targeted nascent transcript. It is interesting to note that siRNA counts 

appear to be elevated twofold by loss of NRDE-2 [83]; possibly, failure to silence target 

transcripts in the nucleus via the Nrde pathway results in increased cytoplasmic 

transcript accumulation, enhancing WAGO 22G RNAs production by RdRPs. 

 

NRDE-1: NRDE-1 is a nematode-specific, nuclear-localized protein containing no 

obvious protein domains [81]. NRDE-1 is recruited by NRDE-2/NRDE-3 to pre-mRNA 

near the target site, where it is required for nuclear RNAi-mediated inhibition of 

transcription elongation; a nrde-1 mutant fails to show 5’ transcription inhibition of lin-

15b upon RNAi and survives RNAi targeting of the lir-1 polycistron in a sensitizing eri-1 

mutant background [81]. NRDE-1 also associates with chromatin at the targeted 

genomic locus in a NRDE-4-dependent manner and links nuclear RNAi to chromatin 

regulation by promoting H3K9 trimethylation at genomic sites targeted by WAGO 22G 

RNAs. 

 

NRDE-4: NRDE-4 is a nematode-specific protein with a predicted bipartite NLS and no 

other obvious domains [81]. The nrde-4 transcript is classified as germline-intrinsic [33]. 

NRDE-4 does not recruit NRDE-3, NRDE-2, or NRDE-1 to pre-mRNA but is required for 

recruitment of NRDE-1 to chromatin and therefore for transcriptional inhibition and 

H3K9 trimethylation [81]. 

 

 

Nuclear RNAi inhibits transcriptional elongation and drives H3K9 trimethylation 
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Nuclear RNAi terminates transcription and promotes establishment of a repressed 

chromatin state at genomic loci targeted by exo-RNAi as well as multiple loci targeted 

by endo-siRNAs and 21U RNAs [80,81,83,85,86]. Nuclear RNAi requires interaction 

with target pre-mRNA, as targeting 5’ to the 5’ UTR does not result in silencing [83]. 

NRDE-3, NRDE-2, and NRDE-1 bind to pre-mRNA at the target site but are not 

detected in association with pre-mRNA 5’ to the target site, presumably due to co-

transcriptional splicing of nascent transcripts [81,118,119]. Nrde targeting inhibits 

transcription elongation, as Pol II occupancy increases near the target site but not at 

initiation sites [118]. Nuclear run-on assays show Pol II inhibition occurring ~2 kb 

downstream of the target site, correlating with decreased Pol II occupancy by chromatin 

immunoprecipitation 3’ to the target site [81,118]. Because transcription is inhibited, 

NRDE-3, NRDE-2, and NRDE-1 do not bind pre-mRNA sequences encoded 3’ to the 

target site; however, Nrde factors appear to remain associated with pre-mRNA 

fragments after silencing [81,118]. 

 

Nrde pathway targeting results in enrichment of H3K9 trimethylation at genomic target 

sites that correlates with the transcription inhibition [81], consistent with the established 

repressive role of H3K9 methylation. Whereas NRDE-3 and NRDE-2 recruit NRDE-1 to 

the RNA target near or 5’ to the target site, NRDE-1 requires NRDE-4 for chromatin 

interaction and associates with chromatin predominantly 3’ to the site of RNAi [81]. 

Accordingly, H3K9 trimethylation occurs across the gene but peaks 3’ to the target site 

[81]. The chromatin response to nuclear RNAi occurs at the subgenic level, as shifting 

the RNAi trigger site shifts the interval of H3K9me3 deposition [83]. During exo-RNAi-

triggered nuclear RNAi, secondary siRNAs accumulate mainly at exonic regions 

proximal to the dsRNA trigger site, but both exons and introns show high H3K9me3 

levels after targeting [83]. 

 

Although many of the studies of NRDE-3 function in nuclear RNAi were conducted 

under exo-RNAi, NRDE-3-mediated nuclear RNAi is also important for transcriptional 

silencing triggered by a subset of endogenous small RNAs in the soma [81]. As 

mentioned above, NRDE-3 binds somatic WAGO 22G RNAs, many of which are 
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triggered by ERGO-1 class 26G RNAs [31,84,118]. 22G RNAs targeting the ERGO-1 

target E01G4.5 are abundantly bound by NRDE-3 [84] and direct chromatin modification 

at this locus through the somatic nuclear RNAi pathway [81]. Loss of members of the 

ERI complex, NRDE-3, or downstream Nrde pathway factors results in a subtle but 

detectable increase in E01G4.5 transcription inhibition, increased transcript levels, and 

depletion of H3K9me3 marks at the E01G4.5 locus [81]. The strong influence of NRDE-

3 on H3K9me3 deposition at the E01G4.5 locus is uncommon, and levels of many 

ERGO-1 targets show little or no effect of loss of the somatic Nrde pathway [81], 

consistent with significant overlap between cytoplasmic and nuclear WAGO Argonautes 

in silencing of somatic targets [24]. Nonetheless, in the absence of ERGO-1 class 26G 

RNAs, the somatic Nrde pathway can be heavily engaged by exo-RNAi, as indicated by 

the emergence of RNAi phenotypes for polycistronic transcripts in an eri-1 mutant 

[54,120]. In fact, exo-RNAi of some monocistronic transcripts also engages NRDE-3 in 

the absence of ERGO-1 class 26G RNAs, as exo-RNAi targeting unc-73 and dpy-13 

results in less severe phenotypes in an eri-1; nrde-3 double mutant than in an eri-1 

mutant [84]. While loss of ERGO-1 class 26G RNAs does sensitize the somatic nuclear 

RNAi system for phenotypic analysis, an eri-1 or equivalent mutant background is not 

necessary for the transcription- and chromatin-level effects of nuclear RNAi [81]. 

 

 
NRDE-3 directs single-generation epigenetic inheritance of silencing 
 

Although NRDE-3 acts primarily in somatic cells, the silencing effects of somatic nuclear 

RNAi are transmissible for one generation [82]. Exo-RNAi in the parental generation 

generates secondary siRNAs abundantly bound by NRDE-3; inheriting progeny also 

show high levels of NRDE-3-bound secondary siRNAs from embryo through adulthood, 

although these are not inherited into F2 embryos [82]. In the absence of NRDE-1 or 

NRDE-4, these secondary siRNAs are still inherited and associate with NRDE-3, but 

levels of NRDE-3-bound secondary siRNAs are not maintained throughout development 

[82]. This indicates that somatic nuclear RNAi is not required for inheritance of 

secondary siRNAs but is required for continued expression of these siRNAs in progeny. 
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H3K9me3 marks established in the parental generation at RNAi target loci are lost in 

progeny during the embryo stage, possibly due to the absence of NRDE-3 in early 

embryogenesis [82,84]. Silencing is then reestablished through NRDE-3 and 

downstream Nrde factors during development and strengthened to exceed the 

H3K9me3 levels in the parental generation [82]. The mechanism is likely the same in 

progeny as in the parental generation, as NRDE-3 siRNA binding and nuclear 

translocation are still required for inherited silencing [82]. However, the increased 

H3K9me3 deposition in progeny suggests that the inheritance of a silencing signal may 

further promote the ability of nuclear RNAi to repress chromatin, possibly by enhancing 

coupling of siRNA generation and H3K9me3 deposition in progeny. Importantly, this 

reestablishment of silencing requires the activity of NRDE-3 in progeny: homozygous 

nrde-3 mutant progeny of heterozygous nrde-3 hermaphrodites subjected to exo-RNAi 

do not show inheritance of silencing [82]. The converse has not been tested; it is not 

known whether somatic nuclear RNAi is required in the parental generation for RNAi 

inheritance and chromatin repression in progeny. Furthermore, it is as yet unclear 

whether somatic nuclear RNAi is required for establishment or maintenance of 

transcriptional silencing during RNAi inheritance in the soma. 

 

Somatic nuclear RNAi in the parental generation directs siRNA expression and H3K9 

trimethylation in inheriting progeny through one of two possible mechanisms. NRDE-3-

bound secondary siRNAs may be directly deposited into germ cells to direct embryonic 

silencing in association with other WAGO Argonautes, then re-bind NRDE-3 to promote 

maintenance of siRNA expression through nuclear RNAi during development. 

Alternatively, a different silencing signal such as primary small RNAs may be deposited 

in germ cells to promote expression of siRNAs in progeny that bind NRDE-3 and re-

engage nuclear RNAi [82]. In support of the latter mechanism, NRDE-3-bound WAGO 

22G RNAs do not appear to initiate their own amplification at target sites [72], 

suggesting that primary small RNA trigger may be required for secondary siRNA re-

amplification in progeny. One likely possibility is that primary exo-siRNAs are directly 

inherited from hermaphrodites exposed to dsRNA. Indeed, rde-1 transcript is abundant 

in hermaphrodite germline and detected at high levels in embryos of all stages 
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(NEXTDB clone 26b3), suggesting that primary exo-siRNAs may be inherited bound to 

RDE-1 to trigger NRDE-3-mediated nuclear RNAi in inheriting progeny. Such a 

mechanism would explain why somatic nuclear RNAi is heritable for only a single 

generation. 

 

 

HRDE-1 directs multigenerational epigenetic inheritance of silencing 
 

Like NRDE-3, HRDE-1 engages the Nrde downstream machinery to direct 

transcriptional silencing and H3K9me3 deposition at loci targeted by exo-RNAi and 

endogenous small RNAs; however, HRDE-1 binds germline WAGO 22G RNAs and 

engages the downstream Nrde pathway to direct transgenerational silencing of germline 

transcripts [79,80,83,85,86,97]. Loss of HRDE-1, NRDE-2, NRDE-1, or NRDE-4 results 

in the Mrt phenotype described above [80], likely due to desilencing of germline targets 

such as transposons that pose a threat to genome integrity when active. Further testing 

of mutants for various upstream and downstream 21U RNA, 26G RNA, and WAGO 22G 

RNA pathway factors is necessary to determine the respective contributions of these 

pathways to promoting germline immortality. Curiously, the Mrt phenotype of hrde-1 and 

nrde-2 mutants manifests only at 25°C, whereas nrde-1 and nrde-4 mutants are Mrt at 

25°C and 20°C [80], suggesting the chromatin machinery of the Nrde pathway may 

have additional roles in germline maintenance. 

 

Multigenerational inheritance of transcriptional silencing requires germline expression of 

the targeted transcript [101]. Most likely, an mRNA template must be present in the 

germline for RdRP to generate siRNAs capable of propagating silencing across each 

generation; this may account for the limited perdurance of NRDE-3-mediated somatic 

nuclear RNAi [82]. In contrast, HRDE-1-mediated nuclear RNAi in the germline results 

in continued siRNA production and silencing over multiple generations that maintain 

H3K9 trimethylation [79,80,83,85,86]. Accordingly, factors such as MUT-7 and RDE-3 

that are required for 22G RNA accumulation are also required for maintenance of 

transgenerational silencing [85,86]. Screens using transgenerationally silenced exo-
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RNAi and 21U RNA sensor transgenes have identified a set of chromatin factors 

necessary for maintenance of transgenerational RNAi: the chromo domain protein HPL-

2 (semiredundantly with HPL-1), Polycomb complex protein MES-3, Trithorax complex 

protein MES-4, SET domain SET-32, and putative H3K9 methyltransferase SET-25 

[79,86]. These proteins may be recruited by NRDE-1 to mediate H3K9 methylation or 

otherwise promote a chromatin state favorable for continued siRNA biogenesis to 

maintain nuclear RNAi. 

 

In the parental generation exposed to dsRNA, HRDE-1 is dispensable for germline 

silencing; however, HRDE-1 is required in the F1 generation for inheritance of parental 

germline silencing, in the F2 generation for inheritance from the F1, and so on, as 

indicated by a failure of homozygous hrde-1 mutant offspring to inherit germline 

transgene silencing from a hrde-1 heterozygous hermaphrodite [80]. This result differs 

somewhat from another study, which shows that loss of HRDE-1 or MUT-7 reactivates a 

silenced locus only in the second generation of hrde-1 homozygosity [85], suggesting 

that epigenetic silencing may be established in the parental germline. 

 

Surprisingly, the germline nuclear RNAi pathway appears to require cytoplasmic WAGO 

Argonautes for initiation: during exo-RNAi targeting the oogenesis-enriched smg-1 

transcript [33], the target site fails to become enriched for H3K9me3 marks in the 

MAGO mutant strain [83]. This definitively indicates that the nuclear and cytoplasmic 

WAGO Argonautes do not compete for siRNA cofactors. Rather, cytoplasmic WAGO 

Argonautes promote nuclear RNAi through an unknown mechanism. It is not yet 

established whether WAGO Argonautes bind 22G RNAs irreversibly or reversibly; if the 

latter, perhaps HRDE-1 appropriates WAGO 22G RNAs from the cytoplasmic 

Argonautes for nuclear silencing. NRDE-3 does not appear to be required for 

establishment or maintenance of transgenerational silencing [80,85], nor is a sensitizing 

mutation in endo-RNAi factors such as ERI-1 or RRF-3 required [83]. Other WAGO 

Argonautes do, however, contribute variably to HRDE-1 target silencing, as some 21U 

RNA sensor transgenes show dependence on additional Argonautes for complete 

silencing [86,97]. 
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While establishment of transgenerational silencing requires factors involved in the 

formation of the initial trigger, such as RDE-1 in the case of primary exo-siRNAs [80,83] 

or PRG-1 in the case of 21U RNAs [79,85,86,95,97], maintenance of transgenerational 

silencing does not [79,80,85,86,95]. Once established, HRDE-1-mediated nuclear 

silencing is stable for multiple generations and can be inherited from either the male or 

female germline as a dominant signal, although silencing may show a generational lag 

when inherited from the male [79,85,86]. This silencing in trans is mediated by a 

diffusible agent, namely, secondary 22G RNAs, capable of repressing homologous DNA 

regardless of whether the primary small RNA target site is present [85]. These 22G 

RNAs map further upstream of the initiating 21U RNA target site than observed during 

early, PRG-1-dependent silencing [97], suggesting that transgenerational RNAi may 

entail additional spreading during maintenance [85]. 22G RNAs whose expression is 

stimulated at transgenerationally silenced 21U RNA targets to maintain silencing may 

not correspond precisely to the species triggered by 21U RNA targeting, as the latter 

appear to be PRG-1-dependent and are lost when transgenerationally silenced loci are 

introduced into a prg-1 mutant background [79]. 

 

After exposure to dsRNA, secondary siRNA accumulation and association with HRDE-1 

decrease progressively across generations [80]. Transgenerational silencing initiated by 

endogenous small RNAs shows a similar effect, as endogenous targets of HRDE-1 

silencing show progressive loss of H3K9me3 enrichment and increased expression over 

successive generations in a hrde-1 mutant background [80]. This suggests that 

endogenous primary small RNA triggers may be required for periodic reinforcement of 

established transgenerational silencing. It is intriguing to speculate what function the 

nuclear RNAi pathways serve. While nuclear RNAi may simply provide a heritable 

signal to direct silencing of aberrant and potentially dangerous transcripts, it has also 

been suggested that targeting of these endogenous loci by nuclear RNAi may also fulfill 

a larger function in regulating chromatin dynamics. 

 

 
Features and targets of CSR 22G RNAs 
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Those 22G RNAs that are not bound by WAGO Argonautes are the CSR 22G RNAs. 

Named for their sole Argonaute effector, CSR-1, these 22G RNAs do not effect target 

silencing but rather associate with chromatin to promote proper association of targets 

within the holocentric chromosomes of C. elegans [25]. CSR 22G RNAs are produced in 

the germline by the same DRH-3- and EKL-1-containing RdRP module as WAGO 22G 

RNAs, but require EGO-1 and not RRF-1 for accumulation [24,25]. Although CSR 22G 

RNAs share the features and biogenesis machinery of the secondary siRNAs engaged 

by WAGO Argonautes, there is no evidence that CSR 22G RNAs are themselves 

secondary siRNAs. 

 

CSR 22G RNAs largely target germline-expressed genes. Immunopurified CSR-1 

complexes are enriched for a set of 22G RNAs that are antisense to over 4,000 protein-

coding genes, whereas microRNAs, 21U RNAs, and 22G RNAs targeting repetitive 

sequences, pseudogenes, and intergenic or unannotated loci are depleted [25]. 

Similarly, comparison of deep sequencing libraries generated from csr-1 and ego-1 

mutants [25] with drh-3 and ekl-1 mutants [24] reveals that CSR-1 and EGO-1 are 

required for accumulation of 22G RNAs antisense to protein-coding genes, many of 

which also require DRH-3 and EKL-1 [25]. Most CSR 22G RNAs are depleted in the 

absence of germline [24], consistent with the germline-restricted expression pattern of 

EGO-1 [25,40,87,88]. Less than 1% of 22G RNAs recovered in immunopurified CSR-1 

complexes target repetitive elements and pseudogenes [25]. 

 

 

The CSR 22G RNA pathway molecular machinery 
 
The 22G RNA RdRP module is discussed in detail above; the following sections focus 

on the features and functions of EGO-1, DRH-3, and EKL-1 only as they pertain to the 

CSR 22G RNA pathway. In situ hybridization indicates that concentrations of ego-1, 

drh-3, ekl-1, and csr-1 transcripts are highest in gonad and early embryo [121], in line 

with other transcript and protein localization data [25,33,40,48,87,88]. DRH-3 and EKL-1 
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are not germline-restricted, as they also function in WAGO 22G RNA biogenesis in 

germline and soma [24,25]. 

 

CSR-1: The CSR-1 Argonaute clusters phylogenetically within the WAGO clade [68], 

but does not bind WAGO 22G RNAs [24,25]. Nevertheless, loss of CSR-1 results in 

partially defective germline and early zygotic transgene silencing [68], although this may 

be due to defective localization of P granules in the absence of CSR-1 [25]. CSR-1 

contains an intact catalytic triad [68]. In a cell-free system, addition of single-stranded, 

5’triphosphorylated 23 nt siRNA and target mRNA results in significant target cleavage 

that is 90% depleted in csr-1 null mutant adult lysate; substitution of 5’ 

monophosphorylated siRNA decreased cleavage efficiency considerably [44]. 

Recombinant CSR-1 is also capable of catalyzing robust cleavage in vitro when 

incubated with single-stranded 5’ triphosphorylated, but not 5’ monophosphorylated, 

siRNA and target [44]. Like the slicer activity of RISC in other organisms [122,123], 

CSR-1-mediated cleavage in cell lysate requires Magnesium ions and is abolished by 

mutation of the two nucleotides flanking the target cleavage site [44]. Although these in 

vitro findings demonstrate the catalytic competence of CSR-1, no direct function for its 

cleavage activity has been demonstrated. The csr-1 gene encodes two isoforms. Both 

are expressed at all developmental stages, but csr-1 mRNA and protein are most 

enriched in young adult, gravid adult, and embryo [25]. The larger CSR-1 protein 

isoform is expressed throughout larval development and is not germline restricted [25]. 

CSR-1 does not require EGO-1, DRH-3, or EKL-1 for stability, nor does any of those 

proteins require CSR-1 or another member of the RdRP module for stability [25]. 

 

 

Phenotypes associated with CSR 22G RNA pathway compromise 
 

EGO-1, DRH-3, EKL-1, and CSR-1 represent the main components of the CSR 22G 

RNA pathway [25]. Earlier phenotypic analyses and focused or genome-wide RNAi 

screens have identified an overlapping set of phenotypes associated with depletion of 

these proteins that include embryonic lethality, larval arrest, and sterility [37,40,68,124-
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133]. These four factors were first implicated in a common pathway by their shared 

enhancement of ksr-1 lethality (Ekl) phenotype, which describes a failure to specify 

excretory duct cell fate in late embryogenesis [92]. Transcripts whose loss produces an 

Ekl phenotype are expressed in maternal germline to regulate embryonic gene 

expression [92]. 

 

Germline phenotypes: Mutation or RNAi-mediated depletion of ego-1, drh-3, ekl-1, or 

csr-1 results in common mitotic and meiotic defects leading to sterility 

[37,68,90,124,129]. In general, loss of these factors results in underproliferation of the 

germline, with nuclei of abnormal shape and size [25,37,87,88,121]. ego-1 mutants 

show moderately reduced germ cell number, enlargement of the transition zone with 

large, diffuse transition zone nuclei, reduction of the pachytene zone, and overall 

delayed gametogenesis [40,87,124]. The spermatogenesis-to-oogenesis transition is 

also delayed, resulting in production of excess sperm [40]. Sperm produced by an ego-1 

mutant are incapable of fertilization, and oocytes are small, nonfunctional, and show 

unpaired homologous chromosomes [40,124]. Like ego-1 mutants, drh-3, ekl-1, and csr-

1 mutant germlines show protracted transition zones that include some large nuclei with 

diffuse chromosome morphology [37,121]. These mutants also show aberrantly 

segregated chromosomes in diakinesis oocyte nuclei, suggesting defects in pairing, 

synapsis, or recombination [25,48,121]. drh-3 and ekl-1 mutants produce sperm with 

abnormally large and variably sized nuclei, indicating impaired chromatin condensation 

or segregation; a similar phenotype is observed in an ego-1; csr-1 double mutant [121]. 

These phenotypes suggest pervasive chromosome segregation defects. 

 

Embryonic phenotypes: Loss of EGO-1, DRH-3, EKL-1, or CSR-1 results in 

embryonic lethality [37,68,92]. Fertilized ego-1 mutant oocytes produce eggshells, but 

arrest as balls of 20-50 cells without undergoing morphogenesis or gastrulation [40]. 

Similarly, RNAi-mediated depletion of ego-1, drh-3, ekl-1, or csr-1 results in production 

of embryos that show normal prophase chromosome condensation, poor metaphase 

alignment, chromosomal bridging at anaphase, and bisection of lagging chromosomes 

by the cleavage furrow at cytokinesis during every cell division; these defects cause 
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accumulation of abnormally shaped nuclei with non-wild type chromosomal 

complements and result in embryonic lethality due to arrest between gastrulation and 

early morphogenesis [25,37,48,68]. drh-3 hypomorphic mutants and a csr-1 mutant 

partially rescued by transgenic CSR-1 expression both produce dead embryos arrested 

at various points in embryogenesis that contain many nuclei with abnormal DNA content 

[24,25]. A Him phenotype is also observed in these mutants, confirming impairment of 

chromosome segregation [25].  

 

 

Localization and assembly of the CSR 22G RNA complex 
 

Germline localization: In the germline, EGO-1, DRH-3, and CSR-1, but not EKL-1, 

localize to P granules and promote or maintain P granule structure and association with 

the nuclear periphery [25]. As oocytes mature, EGO-1 is lost from P granules, but some 

DRH-3 and CSR-1 continue to associate with P granules in germ cells throughout the 

life cycle. DRH-3 recruits EGO-1 to the P granule, which recruits CSR-1 in an EKL-1-

dependent manner. This assemblage then drives P granule association with the nuclear 

periphery, possibly by binding mRNA targets as they exit through nuclear pores; such a 

mechanism would be consistent with loss of P granule perinuclear localization in states 

of low transcription such as in early germ cells or oocytes [25]. Mutation of ego-1, drh-3, 

ekl-1, or csr-1 disrupts perinuclear localization of P granules [25,87], possibly 

contributing to the Rde phenotypes exhibited by these mutants [24,37,40,68,90,91]. 

These four factors may also promote normal nuclear pore structure. In wild type 

germlines, P granules are detected near nuclear pore clusters, although not every 

nuclear pore is associated with a P granule [106]. Pachytene chromosomes are not 

located adjacent to nuclear pores and may not be able to attach to the nuclear envelope 

in regions of high nuclear pore density [106]. Because the nuclear envelope assembles 

around chromatin, the chromatin may therefore influence distribution of nuclear pores 

[134]. Loss of EGO-1 results in a patchy distribution of nuclear pore marker nucleoporin 

in mitotic and transition zones that might reflect abnormal chromatin dynamics [87]. In 

sperm and oocytes, CSR-1 is detected in chromatin fractions [135], consistent with 
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immunofluorescence data indicating that CSR-1 and EGO-1 are enriched in mature 

oocyte nuclei, with CSR-1 associating with diakinetic chromosomes [25]. 

 

Embryo localization: EGO-1, DRH-3, EKL-1, and CSR-1 localize to mitotic 

chromosomes in embryo [25]: In embryonic cells, all four factors show cytoplasmic 

localization. During mitosis, however, they show nuclear enrichment beginning at 

prophase. As embryonic mitotic chromosomes condense, EGO-1, DRH-3, and EKL-1 

become enriched along the length of each chromosome, but CSR-1 remains nuclear. At 

the metaphase plate, DRH-3 and CSR-1 localize to chromosomes in a pattern similar to 

that of cohesins, whereas EKL-1 and, to a lesser degree, EGO-1 localize to 

chromosomes in a pattern like that of kinetochore proteins. EKL-1 stays associated with 

chromosomes during anaphase, while the others are more difficult to detect. The factors 

assemble on chromosomes in a hierarchical order, with DRH-3 recruiting EGO-1 and 

EKL-1, which in turn recruit CSR-1 [25]. In embryo, CSR-1 pathway components are 

found to associate directly with chromatin in a CSR 22G RNA-dependent manner, 

supporting a direct role for CSR-1 and associated 22G RNAs in promoting chromosome 

segregation: CSR-1 shows enrichment at CSR 22G RNA target loci, but not WAGO 

22G RNA target loci, by chromatin immunoprecipitation; this association is lost in a drh-

3 mutant [25]. As CSR 22G RNA target loci are distributed relatively uniformly along 

chromosomes, CSR-1 associates with chromatin genome-wide to influence 

chromosome segregation [25]. 

 

  

CSR 22G RNA effector function 
 

Although CSR-1 shows cleavage activity in cell lysate [44], CSR-1 does not appear to 

silence CSR 22G RNA targets: these targets are expressed in germline, oocyte, and 

embryo and do not show changes in expression upon loss of CSR-1 or DRH-3 [24,25]. 

Rather, EGO-1, DRH-3, EKL-1, and CSR-1 localize to chromosomes to promote proper 

organization and alignment of metaphase chromosomes and proper orientation of 

kinetochores to opposing spindle poles [25]. Loss of these factors disrupts chromosome 
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condensation and cohesion: depletion of any by RNAi results in highly disorganized 

condensin and cohesin protein loading onto mitotic chromosomes in embryo [25]. Loss 

of these factors also disrupts kinetochore assembly. Whereas inner centromeric 

proteins HCP-3/CENP-A and HCP-4/CENP-C should be poleward-localized on both 

sides of metaphase plate, embryos depleted of CSR 22G RNA pathway factors show 

dramatically disorganized loading of these proteins on metaphase chromosomes; outer 

kinetochore protein KLP-7/MCAK and spindle checkpoint protein BUB-1 are also 

misloaded onto mitotic chromosomes [25]. Thus, the CSR 22G RNA pathway directly 

influences chromosome organization to promote proper segregation. The X 

chromosome is depleted of genes expressed in the germline [33] and therefore of CSR 

22G RNA targets. Nevertheless, the X chromosome usually segregates correctly, 

suggesting that other mechanisms may govern X chromosome segregation [25]. 

 

The CSR 22G RNA pathway also regulates H3K9me2 distribution. H3K9me2 becomes 

enriched on unpaired chromosomes and high-copy extrachromosomal arrays during 

meiosis [116,136]. Loss of EGO-1, DRH-3, EKL-1, or CSR-1 results in reduced 

H3K9me2 accumulation on unpaired chromosomes such as the male X chromosome 

and ectopic H3K9me2 accumulation on paired and synapsed chromosomes [88,121]. 

Whereas wild type male pachytene nuclei show a single focus of H3K9me2 labeling, 

ego-1, drh-3, ekl-1, or csr-1 mutant nuclei with normal pachytene morphology lack a 

single strong focus of H3K9me2 labeling, and some show multiple bright H3K9me2 foci 

with higher overall levels of H3K9me2 [88,121]. Mutant nuclei, however, may be large, 

morphologically abnormal, and polyploid, with diffuse chromosome morphology and 

multiple H3K9me2 foci and high overall H3K9me2 [121]. This demonstrates a role for 

CSR 22G RNAs in specifying chromatin modification. However, as CSR 22G RNAs 

target protein-coding genes expressed in germline [24,25], it is likely that CSR-1 and 

associated 22G RNAs are excluding repressive H2K9me2 marks from target genomic 

loci rather than depositing them. 

 

Another function of CSR 22G RNAs may be to define areas of germline transcription. 

This is consistent with a proposed role for CSR 22G RNAs in acting as a self-
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recognition system in opposition to 21U RNA-directed silencing of DNA perceived as 

non-self; targeting of transcripts by CSR-1 may therefore represent a licensing process 

that helps to maintain expression of bona fide germline transcripts [79,86]. As CSR 22G 

RNAs are generated in germline through the activity of RdRP EGO-1, CSR 22G RNA 

targets are robustly expressed in maternal germline and may therefore engage CSR-1 

as nascent transcripts during gametogenesis; this may define CSR-1 chromatin 

domains that could perdure through embryogenesis independent of transcription [25]. 

Such a mechanism would account for the prominent localization of CSR-1 to chromatin 

in mature oocytes [25]. Presumably, CSR-1 establishes euchromatic genomic regions 

and defines the boundaries of adjacent kinetochores, potentially by mediating 

deposition of activating chromatin marks and HCP-3/CENP-A incorporation, 

respectively. In embryo, CENP-A is loaded at low density onto about half of the 

genome, inverse to regions transcribed in germline and early embryo, and defines 

centromeric regions [137]. Pre-existing CENP-A nucleosomes are not necessary to 

guide recruitment of new CENP-A nucleosomes, as CENP-A is not transmitted by 

sperm during fertilization and is unloaded and reloaded during oogenic meiotic 

prophase [137]. Germline transcription of a genomic region may exclude CENP-A 

incorporation in progeny, with reinforcement by zygotic transcription in early 

embryogenesis. Domains targeted by the CSR 22G RNA pathway and regions enriched 

for the centromeric histone variant CENP-A appear to be mutually exclusive [25]; 

therefore, the CSR 22G RNA pathway may serve to transmit patterns of germline 

transcription to early embryo. Alternatively, H3K36 methylation may fulfill this role, as its 

pattern also correlates inversely with CENP-A occupancy [137,138]. 

 

Finally, the CSR pathway also appears to play a critical role in maturation of replication-

dependent core histone mRNAs. Processing of replication-dependent core histone pre-

mRNAs requires endonucleolytic cleavage in the 3’UTR just downstream of the stem-

loop that in many organisms is directed by the U7 snRNA [139]. Nematodes, however, 

lack the U7 snRNA [140], and CSR 22G RNAs may fulfill this role in its stead [141]: A 

majority of histone genes (66%) are depleted by loss of CSR-1. Immunopurified CSR-1 

complexes are enriched for 22G RNAs targeting all core histone genes, and EGO-1-
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dependent 22G RNAs map to histone pre-mRNAs at the 3’ end sites of mature histone 

mRNAs [141]. CSR-1 binds these 22G RNAs to target histone pre-mRNAs and either 

directly cleave them or facilitate their cleavage. Loss of CSR 22G RNA pathway factors 

results in unprocessed histone mRNAs accumulation, with a corresponding decrease in 

histone production that could explain the phenotypes of these mutants [141]. For 

example, histone biogenesis defects in cultured cells result in S-phase extension and 

cell cycle delay [142,143] reminiscent of the extended transition zone observed in ego-1 

mutant germlines [40]. Additionally, RNAi-mediated knockdown of a single core histone 

gene causes chromosome segregation defects and sterility similar to the phenotypes of 

CSR 22G RNA pathway mutants [131,144]. Consistent with this explanation, 

overexpression of transgenic histone pre-mRNAs that do not require cleavage rescues 

lethality associated with csr-1 or ego-1 depletion [141]. Phenotypes similar to those 

shown by CSR 22G RNA pathway mutants also result upon depletion of the stem-loop-

binding protein (SLBP), CDL-1. SLBP is required for histone mRNA processing, 

stabilization, and efficient translation [139]. In the germline, CDL-1::GFP shows nuclear 

enrichment in developing oocytes, much like CSR-1 [25,141]. RNAi-mediated 

knockdown of cdl-1 results in accumulation of unprocessed histone mRNA, severely 

depletes histone levels, and causes adult sterility and chromosome segregation defects 

in early embryo [141,144,145]. In contrast, RNAi-mediated knockdown of condensin 

component smc-4 does not result in histone processing and accumulation defects, 

showing that this is not a general feature associated with compromised chromosome 

segregation [141]. These results suggest that CSR-1 and CDL-1 may collaborate to 

promote histone maturation in oocytes, ensuring that stores of histones will be sufficient 

to sustain embryonic division until zygotic transcription begins. It is interesting to note 

that the sterility associated with compromise of the CSR 22G RNA pathway may be 

independent of the P granule defects, as loss of cdl-1 does not disrupt P granules [141]. 

Finally, intestinal cell endoreduplication also requires high levels of histone proteins 

[146]. Possibly related to somatic expression observed for the longer csr-1 isoform [25], 

CSR-1 protein is detected in adult intestinal nuclei [141]. These cells show depletion of 

histone H2B upon RNAi knockdown of csr-1, suggesting that CSR-1 function in histone 

processing may not be restricted to the germline [141].  
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CDE-1 regulates the CSR 22G RNA pathway 
 
The CSR 22G RNA pathway requires the conserved beta-nucleotidyltransferase CDE-1 

for uridylation of 22G RNAs to restrict their accumulation [147]. CDE-1 is encoded by a 

germline-enriched transcript [33] that is detected by in situ hybridization throughout the 

entire gonad but not in other tissues [147]. In the male or hermaphrodite spermatogenic 

germline, CDE-1 localizes to bright granules in close proximity to the condensing DNA 

of mature sperm. In the oogenic germline, CDE-1 localization is cytoplasmic with 

perinuclear enrichment. Within the embryonic P lineage, CDE-1 localizes to perinuclear 

granules, colocalizing mainly with PGL-1; in mitotic cells, CDE-1 shows EGO-1-

dependent localization to the outer edges of condensing chromosomes at 

prometaphase and the poleward sides of chromosomes at metaphase, with expression 

detectable through anaphase. CDE-1 immunopurifies with EGO-1 in embryo extract, but 

CSR-1 is not required for EGO-1 accumulation. Loss of EGO-1 results in dispersed 

localization of CDE-1 over the whole metaphase plate and a CDE-1 halo surrounding 

the DNA in condensing sperm. Depletion of CSR-1 results in very faint but correct CDE-

1 localization to the metaphase plate, but no association of CDE-1 granules with DNA in 

sperm. Loss of EGO-1 or CSR-1 does not affect CDE-1 localization to P-granules, and 

EGO-1 and CSR-1 show normal localization in the absence of CDE-1. CDE-1 protein is 

not detected in intestine [147]. 

 

CDE-1 is a catalytically active nucleotidyltransferase. Immunopurified CDE-1 complexes 

preferentially catalyze the addition of uridines to small RNA 3’ ends in vitro [147], 

consistent with earlier findings expressing CDE-1 in Xenopus oocytes [104]. Uridine 

tails added in vitro are short, suggesting low processivity, and can be blocked by 2’-O-

methylation of the substrate small RNA 3’ end [147]. In vivo, CDE-1 uridylates a portion 

of CSR 22G RNAs. Endo-siRNAs, but not microRNAs, show addition of one or more 

untemplated 3’ uridines that are lost in the absence of CDE-1 in adult; however, some 

endo-siRNAs in young adult still show untemplated uridines in a cde-1 mutant, 

suggesting redundant terminal uridylation activity at earlier stages [147]. It is not clear 

whether CDE-1 uridylates 22G RNAs already bound by CSR-1; however, no association 



	   56 

between the two proteins is detected in embryo extract [147]. Uridylation by CDE-1 

appears to destabilize CSR 22G RNAs, as those frequently found uridylated in wild type 

are increased upon loss of CDE-1, whereas levels of microRNAs, 21U RNAs, and other 

antisense small RNAs are not [147]. Accordingly, immunopurification of CSR-1 

complexes from a cde-1 mutant recovers many more siRNAs, although the distribution 

of targets does not change [147]. This suggests that CDE-1 acts to reduce the half-life 

of CSR 22G RNAs, ensuring that CSR-1 is only partially loaded, and, indeed, CSR 22G 

RNAs are rarer by far than WAGO 22G RNAs [24,25]. Their modest accumulation may 

also explain why CSR-1 22G RNA targets are not silenced, as only the more abundantly 

WAGO 22G RNA-targeted loci are appreciably silenced [24,25]. CDE-1-mediated 

uridylation and partial loading of CSR-1 may serve to restrict CSR 22G RNAs to the 

CSR 22G RNA pathway, as loss of CDE-1 results in erroneous gene silencing likely due 

to misloading of CSR 22G RNAs onto WAGO 22G RNA Argonautes [147]. This may 

explain the phenotypes of cde-1 mutants, which show defects in cosuppression, 

increased Tc1 transposon activity, and partial insensitivity to RNAi in the germline 

[90,147]. In the absence of CDE-1-mediated uridylation, excess CSR 22G RNAs 

compete with WAGO 22G RNAs for Argonatute binding, compromising exo-RNAi in the 

germline. Similarly, Tc1-targeting siRNAs are decreased, possibly due to decreased 

stabilization by available WAGO Argonautes, resulting in Tc1 activation and increased 

dsDNA breaks and apoptosis [147]. 

 

Loss of CDE-1 leads to meiotic and embryonic mitotic segregation defects with resulting 

Him phenotype, presumably due to erroneous targeting of CSR 22G RNA targets by 

WAGO Argonautes [147]. Germline nuclei do not show mitotic missegregation, but 

diakinetic oocytes often show univalents, suggesting impaired pairing of homologous 

chromosomes during meiosis [147]. cde-1 mutant embryos show metaphase plate 

disorganization similar to that observed in csr-1 and ego-1 mutant embryos, with 

abnormal CENP-A deposition, and occasional severe spindle defects and polar body 

retention [25,40,68,147]. In analysis of cde-1 mutant hermaphrodite x wild type male 

hybrid embryos, both parental chromosomes are affected by major segregation defects, 

indicating that missegregation is not limited to the parental germline and persists into 
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embryonic development [147]. Consistent with the collaborative but antagonistic 

functions of CDE-1 and CSR 22G RNA pathway factors, the embryonic lethality of cde-1 

mutants is less severe than that of csr-1 and ego-1 mutants [147]. CDE-1 also regulates 

processing of pre-let-7 through uridylation [148] and may act in additional roles in other 

small RNA pathways. 

 
 
21U RNA features and loci 
 
The following pertains to canonical or “Type 1” 21U RNAs. “Type 2” 21U RNAs are 

associated with transcription start sites (TSSs) of protein-coding mRNAs and other Pol 

II transcripts and are discussed below. 

 

Early deep sequencing of C. elegans small RNAs identified a highly diverse population 

21 nt small RNAs with a 5’ uridine bias and no other common sequence features [18]. 

These 21U RNAs are 5’ monophosphorylated [18] and terminally methylated by HENN-

1 methyltransferase [18,70,72,73]. Unlike endo-siRNAs, 21U RNAs are not generated 

from mRNA templates by RdRPs but rather transcribed directly from genomic loci 

primarily clustered in two gene-depleted regions of chromosome IV [18,149]. 21U RNA 

loci are vastly depleted for overlap with exons. Those that do overlap show no sense or 

antisense bias [18]. 21U RNA loci do not show a prominent strand bias and overlap less 

than expected by chance [18], consistent with their independent transcription from short 

precursors [150], [149]. Although the larger genomic clusters of 21U RNA loci show 

synteny across rhabditids, the 21U RNAs themselves show no sequence conservation 

[18,151]. This lack of conservation suggests that evolutionary pressure has maximized 

the diversity of 21U RNA sequences, in line with their purported role as a genetic 

immune system capable of selectively targeting non-self transcripts [79,86,95]. 

Consistent with their free evolution, the sequence content of a 21U RNA appears to be 

irrelevant for expression, with the exception of the 5’ uridine [150]. 
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21U RNAs are robustly expressed in the germline [26,27] and detected in early embryo, 

but their levels decline across development [30]. A majority of 21U RNAs show 

differential expression in male and female germlines [152] [150]. These male and 

female germline-enriched subpopulations of 21U RNAs direct the production of 

nonoverlapping 22G RNAs that target distinct transcripts. Targets of male germline-

enriched 21U RNAs are depleted for transcripts enriched in spermatogenesis but not 

oogenesis [33], suggesting selection against evolution of male-expressed 21U RNAs 

that target male germline genes [152] [150]. Female germline-enriched 21U RNAs do 

not show depletion of spermatogenesis-enriched transcripts and are paradoxically 

enriched for oogenesis-enriched transcripts. While the significance of this is uncertain, 

the distinct enrichment patterns suggest that male and female germline-enriched 21U 

RNAs are subject to different evolutionary pressures [152] [150]. Female germline-

enriched 21U RNAs are preferentially detected in embryo [152] [150], similar to the 

pattern observed for ERGO-1 class 26G RNAs [20]. 

 

 

21U RNA targets 
 

21U RNAs target transcripts by directing Argonaute PRG-1 to imperfectly 

complementary sites with up to three, or possibly even four, mismatches [95,97]. 21U 

RNA targets are depleted of protein-coding transcripts but not pseudogene or 

transposon transcripts [97]. As 21U RNA targeting triggers local production of WAGO 

22G RNAs [27,95], 21U RNA targets are enriched for WAGO 22G RNA targets and 

depleted for CSR 22G RNA targets [95]. As 21U RNAs are capable of triggering 

transgenerational silencing that persists for tens of generations in the absence of PRG-

1 and additional 21U RNA trigger [79,85], identification of target transcripts is 

challenging. Targets can be approximated as those transcripts that show robust 21U 

RNA-dependent 22G RNA accumulation or those that show upregulation upon loss of 

PRG-1, although the latter are more likely to report a specific subset of targets whose 

silencing is more heavily weighted toward cytoplasmic than nuclear RNAi. Possibly, the 

rapid evolution of 21U RNA sequences and the profoundly stable silencing exerted by 
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21U RNAs renders definition of a specific target set irrelevant, as many previously 

silenced targets have likely been eroded through genetic drift. So may be the eventual 

fate of sequences not protected from 21U RNA targeting by a self-recognition system 

such as CSR 22G RNAs are proposed to represent [79,86]. 

 
 
21U RNA biogenesis 
 
21U RNAs are not transcribed by RdRP complexes, nor does their biogenesis appear to 

require DCR-1 or any of the factors directly involved in endo-siRNA biogenesis [26,27]. 

Rather, 21U RNAs are encoded as independent Pol II transcriptional units [150] [149]. 

In C. elegans and other rhabditids, 21U RNA loci show a common upstream sequence 

arrangement of two motifs, the large and small motifs, that together drive the regulated 

expression of 21U RNAs in the germline [18,149,153] [150]. In C. elegans and C. 

briggsae, 21U RNA loci distribution shows a pattern of enrichment at the start and end 

of full-length DNA transposon loci in sense and antisense orientations, respectively, 

suggesting that 21U RNA upstream motifs may serve as traps for triggering 21U RNA 

biogenesis against recent integrations [97]. 

 

The 21U RNA large motif and Forkhead family transcription factors: The large 

motif, occupying ~60-25 bp upstream of the 21U RNA locus, consists of A/T-richness 

and a central 8 bp core motif of consensus sequence CTGTTTCA [18]. The A/T-

richness of this region repels nucleosomes, resulting in nucleosome depletion upstream 

of 21U RNA locus; accordingly, the genomic 21U RNA clusters of chromosome IV show 

general depletion of nucleosomes [153]. The core motif is conserved in other rhabditids, 

but more divergent in Pristionchus pacificus; however, the spacing is conserved, 

suggesting mechanistic conservation [151] [152]. The core motif is required for 

expression of the downstream 21U RNA, as its deletion or mutation results in loss of the 

associated 21U RNA [153] [150]. A subset of Forkhead family transcription factors, 

including at least FKH-3, FKH-4, FKH-5, and UNC-130, binds this core motif to promote 

21U RNA expression: 21U RNA upstream regions immunopurify with UNC-130::GFP, 
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and recombinant Forkhead proteins preferentially bind dsDNA probes containing the 

core motif octamer [153]. An unc-130 mutant shows ~50% depletion of individual 21U 

RNA species; similar depletion is observed upon partial, simultaneous RNAi knockdown 

of fkh-3/4/5 [153]. It is not yet understood whether these Forkhead proteins are 

semiredundantly required for expression of 21U RNAs or individually contribute to 

expression. Consistent with the core motif acting as a promoter element for independent 

transcription of 21U RNAs, the spacing between core motifs and 21U RNA loci affects 

21U RNA expression, as does the sequence content. Plotting 21U RNA abundances by 

spacer length reveals a strong correlation, with spacer lengths of 37-40 nt showing the 

highest abundances and tailing down to either side [18] [150]. The tolerance in the 

spacer length affords expression of multiple, genomically miniclustered 21U RNAs in 

association with the same core motif [154] [150]. Core motifs that more closely match 

the consensus sequence, and in particular those that contain the central GTTTC, are 

correlated with higher abundance 21U RNAs and are more likely to be associated with 

21U RNA miniclusters than solitary 21U RNAs [26] [150]. Miniclustered 21U RNA loci 

necessarily lie at different genomic distances from the core motif, and their respective 

abundances recapitulate the correlation between optimal spacer length and expression 

level [150]. The sequence content of the core motif also influences germline enrichment. 

Core motifs whose first nucleotide is cytidine are preferentially enriched in male 

germline, whereas female germline-enriched 21U RNAs show no preference at this 

motif position and in general show core motifs with poorer consensus match [150]. A 

simple explanation for differential germline expression of 21U RNAs according to their 

motifs would be selective binding by Forkhead transcription factors; however, neither 

UNC-130 nor FKH-3/4/5 appears to be selectively required for 21U RNAs expressed in 

male germline or showing a cytidine-intial motif (A.C.B, M.A.F., and J.K.K., unpublished 

data), suggesting that other factors confer germline enrichment. 

 

The 21U RNA small motif and precursor: The small motif shows a YRNT consensus 

sequence with the thymidine situated at position 1 of the 21U RNA locus and the YR 

pair at 3 and 2 nt upstream, resembling the initiator element required for Pol II 

transcription initiation [18,149]. Global profiling of endogenous capped small RNAs 
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(csRNAs) reveals that the R position of the small motif corresponds to the first 

nucleotide of the 21U RNA precursor [149]. These csRNA precursors show blocked 5’ 

ends consistent with Pol II-mediated capping and an average length of 26 nt, 

corresponding to the m7GpppAmNm cap-2 structure upstream and ~3 nt downstream 

that are removed during 21U RNA maturation [149]. The abundances of csRNA 

precursors correlate significantly with abundances of their cognate 21U RNAs, 

supporting their status as precursors [149]. A very small proportion of 21U RNAs show 

evidence of longer, >70 nt capped sequences [153]; however, these are unlikely to 

represent csRNA/21U RNA precursors, as their abundances do not correlate with 

abundances of cognate 21U RNAs [149]. The importance of the YR consensus match is 

indicated by the respective abundances of 21U RNAs encoded at loci staggered by 1 nt. 

Only one 21U RNA of each pair can show a YRNT motif; those that do are tenfold more 

abundant than their non-YRNT sister species [149]. 

 

 
21U RNA precursor processing and Argonaute loading 
 
In association with an upstream large motif or at a TSS, the YR pair of the YRNT small 

motif appears sufficient to direct csRNA expression, whereas the thymidine is required 

for 21U RNA accumulation. The accumulation of csRNAs, but not mature 21U RNAs, 

associated with YNRV small motifs suggests that the 5’ uridine of 21U RNAs is 

dispensable for transcription but plays a role in mature 21U RNA stabilization or 

processing [149]. In support of this, mutation of the thymidine to G or A abrogates 

accumulation of a cognate 21G or 21A species [150]. Furthermore, comparison of other 

C. elegans isolates with YRNT motifs where the N2 isolate shows YRNV reveals that 

substitution for a genomic thymidine results in accumulation the associated 21U RNA 

[150] [149]. The presence of a uridine at position 3 of the csRNA may be required for 

removal of the m7GpppAmNm cap-2 structure to generate the mature 21U RNA 5’ end; 

however, recombinant PRG-1 shows preferential target cleavage in association with 5’ 

uridine ssRNA [97], suggesting PRG-1 may purify candidate small RNAs processed 

from csRNAs by selectively binding and stabilizing those with 5’ uridines. Identification 
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of decapping machinery responsible for csRNA 5’ end processing will address this 

question definitively. Trimming of the csRNA 3’ end to achieve the mature 21 nt length 

may occur after PRG-1 binding. While the vast majority of small RNA deep sequencing 

reads corresponding to 21U RNA loci are 21 nt in length, a small portion show 

extensions, with a significant bias toward 3’ extensions [154]. These 3’ extended reads 

may represent biogenesis intermediates and support the hypothesis that 3’ trimming 

occurs after 5’ processing. In silkworm, PIWI Argonaute-bound small RNAs are trimmed 

after Argonaute loading by a 3’ to 5’ exonuclease until the length is sufficiently short for 

anchoring of the 3’ end in the Argonaute [155]. While the 26 nt length of 26G RNAs is 

determined by DCR-1 processing, both 22G RNAs and 21U RNAs are DCR-1-

independent [26,27,42,44]. Perhaps a common exonuclease trims 22G RNAs and 21U 

RNAs. 

 

PRG-1: PRG-1 was first identified as a factor required for germline stem cell 

proliferation and/or self-renewal: injection of antisense prg-1 RNA into the germline 

results in significant shortening of the mitotic proliferative zone, reduced sperm 

production, and decreased production of offspring [156]. Loss of PRG-1 results in 

decreased brood size at 20°C and sterility at 25°C [68]. This is likely due to defective 

sperm activation and fertilization. Spermatocytes are present at 25°C, but mature 

spermatids are rare; those that do form fail to produce pseudopodia upon activation in 

vitro [107]. prg-1 mutant fertility is rescued to wild type levels by mating to wild type 

males at 20°C, but still shows an average of half the wild type brood size when out-

crossed at 25°C [107], suggesting compromised female fertility as well. PRG-1 is one of 

three PIWI clade Argonautes encoded by the C. elegans genome; ERGO-1 is highly 

divergent, whereas PRG-1 and PRG-2 show 91% amino acid identity and are likely the 

result of a recent gene duplication [27,68,156]. Despite their nearly identical sequences, 

only PRG-1 is required for 21U RNA accumulation [26,27]. Expression of prg-1 mRNA 

is highly germline-restricted and detected primarily in young adult and gravid adult 

[26,27]. PRG-1 protein is abundant in young adult, gravid adult, and embryo, suggesting 

maternal inheritance [26]. Throughout the germline, PRG-1 associates consistently with 

P granules, with perinuclear localization in mitotic and meiotic zones, loss of expression 
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during spermatid maturation, and dissociation from the nuclear periphery in mature 

oocytes [26,107]. Embryonic PRG-1 is also associated with P granules in the P lineage 

[26]. PRG-1 is required for stabilizing 21U RNAs, and therefore accumulation of 21U 

RNAs parallels PRG-1 protein expression [26,27,33]. PRG-1 binds 21U RNAs to target 

transcripts that are often imperfectly complementary by triggering biogenesis in trans of 

WAGO 22G RNAs [27,95,97]. These 21U RNA-dependent 22G RNAs can trigger 

transgenerational silencing by binding HRDE-1 and engaging the germline nuclear 

RNAi pathway [79,85,86]. Loss of PRG-1 results in target derepression due to failure to 

trigger dependent 22G RNAs; in particular, levels of Tc3 transposase increase and 

WAGO 22G RNAs targeting Tc3 decrease [24,26,27]. However, transcripts upregulated 

by loss of PRG-1 may not represent the full set of targets silenced by 21U RNAs, as 

transgenerational silencing engaged by 21U RNA-dependent WAGO 22G RNAs can be 

effectively maintained in the absence of 21U RNA trigger [79,85,86,95]. This, in addition 

to the fact that PRG-1-mediated targeting may not trigger WAGO 22G RNA biogenesis 

as effectively as other primary small RNA triggers [95,97], likely explains the subtle 

effect of 21U RNA loss upon global transcript expression [26]. The catalytic triad of 

PRG-1 is intact, and recombinant PRG-1 is capable of cleaving target RNA when 

incubated with complementary 5’ uridine ssRNA; cleavage is abrogated by mutating a 

key catalytic residue or by introducing a mismatch at the cleavage site [97]. 

Nevertheless, introduction of catalytically inactive PRG-1 appears to rescue prg-1 

mutant 21U RNA accumulation, 22G RNA triggering, and target silencing, although the 

rescue of fertility may be imperfect [95,97]. This suggests that, much like ERGO-1 class 

26G RNAs, 21U RNAs silence targets primarily by triggering biogenesis of WAGO 22G 

RNAs that engage cytoplasmic and nuclear Argonautes. 

 

HENN-1: HENN-1 protein and loss of function phenotypes are described in greater 

detail above. HENN-1 terminal methylates 21U RNAs universally [70,72,73]. Although 

HENN-1 does not obviously localize to P granules [70] and stable interaction between 

PRG-1 and HENN-1 could not be detected [73], 21U RNA methylation presumably 

occurs after Argonaute loading, in analogy to ERGO-1, and 3’ end trimming [70]. HENN-

1 is detected in a larger complex of ~100 kD, suggesting that HENN-1 may act as a 
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complex or associate with another factor, such as perhaps a trimmer exonuclease [73]. 

HENN-1 is required for robust 21U RNA inheritance into embryo and perdurance in 

offspring [70,72], but loss of HENN-1 shows a lesser effect on 21U RNA accumulation 

in the adult germline [70,73]. In contrast, ERGO-1 class 26G RNAs are quite 

significantly affected [70,72,73]. This discrepancy does not appear to be due to 

differences in targeting complementarity preferentially triggering 26G RNA degradation, 

however, as the presence of a perfectly complementary 21U RNA target does not 

appear to stimulate 21U RNA trimming and tailing upon loss of methylation [73]. 

Furthermore, both classes of 26G RNAs show roughly equivalent frequency and 21U 

RNAs the lowest of trimming and tailing among major small RNA classes in a wild type 

background [72], suggesting that terminal methylation in C. elegans may not simply 

exist to oppose trimming and tailing. Nevertheless, loss of HENN-1 does result in 

increased levels of 20 nt reads corresponding to 21U RNAs [73]. The proportion of a 

particular 21U RNA species that is trimmed is highly correlated across different henn-1 

mutant libraries, and 21U RNAs that show higher trimming frequencies are more likely 

to be depleted in henn-1 mutant libraries, indicating that 21U RNA trimming is related to 

greater instability and varies by species [73]. The presence of HENN-1 appears to 

enhance 21U RNA-mediated silencing of a reporter transgene, but this may be an 

indirect consequence of decreased expression of factors involved in the WAGO 22G 

RNA pathway [73]. Loss of HENN-1 results in extremely modest, if any, effect on levels 

of Tc3 transposase [70,72,73] and no increase in Tc3 transposition [73]. 

 

 

TSS-associated 21U RNAs 
 
Mapping of csRNAs reveals that a majority are not associated with upstream core 

CTGTTTCA sequences; rather, many of these map bidirectionally to TSSs of protein-

coding and other Pol II transcripts [149]. Like chromosome IV csRNAs associated with 

large motifs, these TSS-associated csRNAs are also processed into mature 21U RNAs 

when encoded by YRNT motifs [149]. The abundance of csRNAs at a particular 

promoter correlates with the abundance of longer capped reads originating from that 
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promoter, suggesting that these csRNAs are products of Pol II initiation at active 

promoters and may reflect promoter-proximal pausing [149]. The significance of these 

TSS-associated 21U RNAs is as yet unknown. Much as Pol II initiation at canonical 

TSSs produces both csRNAs and longer pre-mRNA transcripts, a small fraction of 21U 

RNA loci show both csRNAs and corresponding longer reads [149,153]. This suggests 

that promoter elements and 21U RNA upstream motifs may both promote Pol II 

association and transcription initiation, but 21U RNA loci generally lack sequence 

elements or chromatin configuration necessary to promote further transcript elongation. 

csRNA distribution does reveal differences in 21U RNA and canonical promoters, as 

bidirectional transcription is not reported to occur at 21U RNA loci. 21U RNAs are 

required for full fertility [26,27,68,107], so it seems possible that csRNAs mapping to 

canonical promoters are incidental byproducts of selection for Pol II activity that 

produces 21U RNA precursors. However, promoter-associated csRNAs are observed in 

other metazoan genomes [157,158], suggesting rather that 21U RNA production may 

originally have arisen incidental to this more ancient process of unknown significance. 

 

 

CONTRIBUTIONS OF THE DISSERTATION 
 

C. elegans germline small RNA regulatory mechanisms are a unifying theme of this 

dissertation, but the mechanisms investigated in Chapters Two through Four are too 

diverse for adequate representation in anything but a thorough review of endo-siRNA 

and piRNA biology. Therefore, this introduction provides a comprehensive review of 

biogenesis, regulation, and function of the diverse classes of C. elegans germline small 

RNAs. The most significant findings presented in Chapters Two (Billi et al., PLoS Genet 

2012 [70]) and Three (Billi et al., PLoS Genet 2013 [150]) of this dissertation are 

included in the review where relevant. This is intended to demonstrate how these 

publications contributed to the current body of knowledge within the larger context of C. 

elegans small RNA literature without placing special emphasis on the research of the 

author. 
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Importantly, competing, coordinated, and subsequent studies are also included. Billi et 

al., PLoS Genet 2012 was published in coordination with Montgomery et al., PLoS 

Genet 2012 [72], with Kamminga et al., PLoS Genet 2012 [73] published shortly 

thereafter. Using unique approaches to investigate the functional HEN1 ortholog of C. 

elegans, HENN-1, the three publications draw many distinct yet complementary 

conclusions. In particular, our study examines the mechanisms governing selective 

methylation of small RNAs catalyzed by animal orthologs of HEN1. Previous crystal 

structure and modeling analyses of human Argonaute PAZ domains indicated that the 

PAZ domain of Piwi clade Argonautes is capable of accommodating, and indeed shows 

a mild binding preference for, methylated small RNA termini, whereas the Ago clade 

Argonaute PAZ domain cannot accommodate the bulky terminal methyl group [159]. 

This observation led the authors to conclude that the divergent Piwi Argonaute PAZ 

domain targets terminally methylated ssRNAs, while the Ago Argonaute PAZ domain 

targets dsRNAs with non-methylated 2-nt terminal overhangs. This conclusion 

suggested that methylation precedes Argonaute binding, and small RNAs are selected 

for methylation by an unknown mechanism and subsequently sorted into Piwi or Ago 

Argonautes according to the differing binding preferences. Our study shows that 

methylation of ERGO-1 class 26G RNAs is lost in the absence of ERGO-1, revealing 

that Argonaute binding probably occurs prior to small RNA methylation. By establishing 

this temporal relationship, this study reveals that the Argonautes themselves likely 

dictate which small RNAs are methylated by permitting or prohibiting HEN1-mediated 

methylation of associated small RNAs. Our study also reports that 26G RNAs are 

robustly bound by ERGO-1 in the absence of HENN-1 and thus terminal methylation, 

further supporting the new model. This mechanistic insight explains selective 

methylation of 26G RNAs in oocyte but not sperm and identifies differential expression 

of divergent Argonautes in male and female germlines as a novel mechanism for 

directing selective methylation, and thus robust inheritance, of small RNAs in female 

germline. Other results exclusive to Billi et al., PLoS Genet 2012 include endogenous 

ERGO-1 and HENN-1 protein expression patterns in germline and embryo and 

examination of accumulation and inheritance of numerous and diverse small RNAs 

across development. 
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In 2012, a number of studies emerged describing the function of C. elegans piRNAs, 

marking the first significant advance in understanding of C. elegans piRNA biology in 

nearly half a decade; however, no progress had yet been made in understanding C. 

elegans piRNA biogenesis and expression mechanisms. During review of Billi et al., 

PLoS Genet 2013, a competing study (Cecere et al., Mol Cell 2012 [153]) was 

published that identified forkhead family proteins as putative C. elegans piRNA 

transcription factors. The results reported in Cecere et al., Mol Cell 2012 could not be 

reproduced during revisions of our study. This inconsistency was not included in the 

revised manuscript, as the two studies examined largely distinct questions in C. elegans 

piRNA biology and drew predominantly distinct conclusions. Following final submission 

of our study, another study was published (Gu et al., Cell 2012 [149]) that uses an 

entirely distinct approach to examine C. elegans piRNA biogenesis. The conclusions of 

this study complement and greatly inform our results, yet our study presents evidence 

supporting many unique conclusions. Most significantly, the transgenic approach 

applied in Billi et al., PLoS Genet 2013 reveals that C. elegans piRNA loci represent 

tiny, autonomous transcriptional units. Additionally, more than half of C. elegans piRNAs 

were found to show specific male or female germline enrichment, an observation 

corroborated by Shi et al., Genome Res 2013 [152], another contemporary study. These 

piRNA subsets target distinct sets of genes that show different properties, suggesting 

that male and female germline-enriched piRNA subpopulations evolve independently in 

response to unique evolutionary pressures. Quite intriguingly, our study also shows that 

specific enrichment in male or female germline is heavily influenced by variation at a 

single position within an 8-nt cis regulatory element that lies upstream of each 

nematode piRNA. These significant findings address longstanding questions in the field 

of C. elegans piRNA biology and, along with Gu et al., Cell 2012, distinguish the 21U 

RNAs as unique among piRNAs.  
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CHAPTER TWO: The Caenorhabditis elegans HEN1 ortholog, HENN-1, methylates 
and stabilizes select subclasses of germline small RNAs 
 

AUTHORS: Billi AC, Alessi AF, Khivansara V, Han T, Freeberg MA, Mitani S, Kim JK 

 

AUTHOR CONTRIBUTIONS: The initial discovery of differential methylation of 26G 

RNAs in male and female germlines is credited to TH. ACB and JKK conceived and 

designed all subsequent experiments. ACB performed the experiments and analyses in 

Figures 2.1, 2.2, 2.3, 2.4A, 2.5, 2.6, 2.7A,B, 2.S1, 2.S2, 2.S3, 2.S4, 2.S5, 2.S6, 2.S7, 

2.S8, 2.S9, 2.S10, 2.S11, 2.S12, 2.S13A-B, 2.S14. ACB generated the transgenic 

strains analyzed in Figures 2.7C,D,F and 2.S13C-E. AFA performed the experiments in 

Figures 2.7C-F and 2.S13C-F. VK performed the experiments in Figure 2.4B,C. MF 

identified species for design of Taqman small RNA assays. SM isolated the henn-1 

deletion strain. ACB wrote the manuscript. ACB and JKK edited the manuscript. 

 

CITATION: Billi AC, Alessi AF, Khivansara V, Han T, Freeberg M, Mitani S, Kim JK. 

The Caenorhabditis elegans HEN1 ortholog, HENN-1, methylates and stabilizes select 

subclasses of germline small RNAs. PLoS Genetics 8: e1002617 (2012). 

 

 

ABSTRACT: Small RNAs regulate diverse biological processes by directing effector 

proteins called Argonautes to silence complementary mRNAs. Maturation of some 

classes of small RNAs involves terminal 2’-O-methylation to prevent degradation. This 

modification is catalyzed by members of the conserved HEN1 RNA methyltransferase 

family. In animals, Piwi-interacting RNAs (piRNAs) and some endogenous and 

exogenous small interfering RNAs (siRNAs) are methylated, whereas microRNAs are 

not. However, the mechanisms that determine animal HEN1 substrate specificity have 

yet to be fully resolved. In C. elegans, a HEN1 ortholog has not been studied, but there 
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is evidence for methylation of piRNAs and some endogenous siRNAs. Here, we report 

that the worm HEN1 ortholog, HENN-1 (HEN of Nematode), is required for methylation 

of C. elegans small RNAs. Our results indicate that piRNAs are universally methylated 

by HENN-1. In contrast, 26G RNAs, a class of primary endogenous siRNAs, are 

methylated in female germline and embryo, but not in male germline. Intriguingly, the 

methylation pattern of 26G RNAs correlates with the expression of distinct male and 

female germline Argonautes. Moreover, loss of the female germline Argonaute results in 

loss of 26G RNA methylation altogether. These findings support a model wherein 

methylation status of a metazoan small RNA is dictated by the Argonaute to which it 

binds. Loss of henn-1 results in phenotypes that reflect destabilization of substrate small 

RNAs: dysregulation of target mRNAs, impaired fertility, and enhanced somatic RNAi. 

Additionally, the henn-1 mutant shows a weakened response to RNAi knockdown of 

germline genes, suggesting that HENN-1 may also function in canonical RNAi. Together, 

our results indicate a broad role for HENN-1 in both endogenous and exogenous gene 

silencing pathways and provide further insight into the mechanisms of HEN1 substrate 

discrimination and the diversity within the Argonaute family. 
 
 
AUTHOR SUMMARY: Small RNAs serve as sentinels of the genome, policing activity 

of selfish genetic elements, modulating chromatin dynamics, and fine-tuning gene 

expression. Nowhere is this more important than in the germline, where endogenous 

small interfering RNAs (endo-siRNAs) and Piwi-interacting RNAs (piRNAs) promote 

formation of functional gametes and ensure viable, fertile progeny. Small RNAs act 

primarily by associating with effector proteins called Argonautes to direct repression of 

complementary mRNAs. HEN1 methyltransferases, which methylate small RNAs, play a 

critical role in accumulation of these silencing signals. In this study, we report that the 

26G RNAs, a class of C. elegans endo-siRNAs, are differentially methylated in male 

and female germlines. 26G RNAs derived from the two germlines are virtually 

indistinguishable, except that they associate with evolutionarily divergent Argonautes. 

Our data support a model wherein the methylation status and, consequently, stability of 

a small RNA is determined by the associated Argonaute. Therefore, selective 



 80 

expression of Argonautes that permit or prohibit methylation may represent a new 

mechanism for regulating small RNA turnover. As we observe this phenomenon in the 

germline, it may be particularly pertinent for directing inheritance of small RNAs, which 

can carry information not encoded in progeny DNA that is essential for continued 

transgenerational genome surveillance. 
 

 

INTRODUCTION 
 

Argonautes are an evolutionarily conserved family of proteins implicated in diverse 

cellular processes. They function as effector proteins in the RNA-induced silencing 

complex (RISC), a gene regulatory complex that binds small, non-coding RNAs to target 

its silencing effects. Small RNAs are broadly segregated into groups that differ in their 

mechanisms of biogenesis and silencing, as well as in the subsets of Argonaute 

effectors that bind them. The microRNAs (miRNAs) are highly conserved small RNAs 

processed from endogenous hairpin precursors that regulate networks of mRNAs 

primarily through post-transcriptional repression [1,2]. The piRNAs, so named for the 

Piwi Argonautes that bind them, function predominantly in maintenance of germline 

integrity, often through repression of repetitive transposable elements. The small 

interfering RNAs comprise a more heterogeneous group that includes small RNAs 

derived from cleavage of exogenous double-stranded RNA (exo-siRNAs) or generated 

endogenously (endo-siRNAs). 

 

Chemical modification has emerged as an important theme in regulation of small RNA 

function (for a review, see Kim et al., 2010 [3]). Internal editing has been found to occur 

in select miRNA precursors through the action of ADAR (adenosine deaminase acting 

on RNA) enzymes, with consequences for miRNA processing efficiency, stability, and 

targeting [4-8]. Some siRNAs generated in fly and mouse also show evidence of editing 

by ADARs [9,10], but the significance of such internal editing among siRNAs is not yet 

known. In contrast, terminal editing through 2’-O-methylation, addition of untemplated 

nucleotides, or exonucleolytic trimming plays a more general role in small RNA 
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metabolism. These terminal modifications are not unrelated. Evidence in plants and 

animals suggests that methylation of the 3’ terminal nucleotide protects small RNAs 

from polyuridylation and polyadenylation, signals that direct exonucleolytic degradation 

[11-16]. Thus, terminal methylation plays an important role in regulating small RNA 

turnover. Formation of the 2’-O-methyl group is catalyzed by HEN1, a methyltransferase 

discovered in Arabidopsis thaliana that is conserved across metazoa, fungi, viridiplantae, 

and bacteria [17]. Although plant and animal HEN1 orthologs exhibit 40-50% amino acid 

similarity in the conserved methyltransferase domain [18], the proteins differ in their 

substrate specificity. Plant HEN1 acts on small RNAs in duplex and methylates both 

siRNAs and miRNAs [19-21]. In contrast, animal HEN1 orthologs modify only single-

stranded small RNAs [22-24], enabling methylation of small RNAs such as piRNAs, 

which are not derived from double-stranded RNA intermediates [25-29]. While animal 

piRNAs appear to be universally methylated [24,26,27,30-32], animal miRNAs are 

generally not methylated [19,26,31], and the mechanisms by which animal HEN1 

orthologs discriminate between substrates are not entirely clear. HEN1 orthologs that 

catalyze terminal methylation of small RNAs have been characterized in mouse, fish, 

and fly, among other organisms [15,22-24,33], yet the orthologous methyltransferase in 

worm [18] has yet to be investigated. With its expanded Argonaute family and diverse 

small RNA classes, Caenorhabditis elegans provides an advantage for studying HEN1 

substrate specificity. 

 

Since the discovery of the founding members of the microRNA family in C. elegans 

[1,2,34], many additional classes of small RNAs have been characterized. A large-scale 

small RNA sequencing effort revealed a class of terminally methylated 21-nucleotide 

RNAs with 5’ uridines [27]. These 21U RNAs were subsequently determined to 

represent the piRNAs of C. elegans based on their germline-specific expression, 

association with worm Piwi Argonautes PRG-1 and PRG-2, and function in transposon 

silencing and maintenance of temperature-dependent fertility [35-38]. Also found 

through small RNA cloning and deep sequencing were populations of 26- and 22-

nucleotide RNAs with a 5’ preference for guanosine (the 26G RNAs and 22G RNAs, 

respectively) that constitute the endo-siRNAs of C. elegans [27,39]. The 26G RNAs are 
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primary endo-siRNAs generated in the germline to regulate spermatogenic and zygotic 

gene expression. They are divided into two non-overlapping subclasses named for the 

Argonautes that bind them: the ERGO-1 class 26G RNAs, which are generated in the 

maternal germline and distributed into the embryo, and the ALG-3/ALG-4 class 26G 

RNAs, which are specific to the male germline and required for sperm function [40-42]. 

The 22G RNAs are composed of many small RNA classes, all of which are bound by 

worm-specific Argonautes (Wagos). A large population of 22G RNAs are secondary 

endo-siRNAs whose production by RNA-dependent RNA polymerases is triggered by 

the activity of 21U RNAs and 26G RNAs [36,41-43]; however, many other 22G RNAs 

are independent of these primary small RNAs [44,45]. Secondary siRNAs serve to 

amplify the signal of primary small RNAs to effect robust silencing. Production of 22G 

secondary siRNAs is also triggered by exogenously introduced dsRNAs [43,45-47], 

suggesting convergence of endogenous and exogenous RNAi pathways at the level of 

the secondary siRNA response. 

 

Among C. elegans small RNAs, only 21U RNAs and 26G RNAs are known to be 

methylated [27,42]; 22G RNAs triggered by either primary endo- or exo-siRNAs appear 

to be unmethylated [45,46]. Although the significance of worm small RNA methylation is 

unknown, loss of terminal methylation has been shown to decrease stability of piRNAs 

in many animal models [15,22,24] and both endo- and exo-siRNAs in fly [22,48]. 

Methylation may therefore represent an essential step in stabilization of some classes of 

worm small RNAs. 

 

In this study, we characterize the C. elegans hen1 ortholog, which has been named 

henn-1 (hen of nematode), as the name hen-1 has already been assigned to an 

unrelated C. elegans gene. We demonstrate that HENN-1 methylates small RNAs 

bound by Piwi clade Argonautes: the 21U RNAs and the ERGO-1 class 26G RNAs. 

However, we show that 26G RNAs bound by Ago clade Argonautes ALG-3 and ALG-4 

are not methylated and are therefore henn-1-independent. Differential methylation of 

26G RNAs provides evidence for an existing model [13,22,23,49,50] wherein 

evolutionarily divergent Argonautes either direct or prohibit HEN1-mediated methylation 
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of associated small RNAs. In further support of this Argonaute-dictated methylation 

model, we find that small RNAs are likely methylated after associating with an 

Argonaute: the Argonaute ERGO-1 is required for 26G RNA methylation, but 

methylation is not required for ERGO-1 to bind a 26G RNA. 

 

In the henn-1 mutant, levels of both 21U RNAs and ERGO-1 class 26G RNAs drop 

precipitously after their deposition into embryo, suggesting that HENN-1-mediated 

methylation is essential for perdurance of the maternal small RNA load during filial 

development. Accordingly, the henn-1 mutant shows enhanced somatic sensitivity to 

exogenous RNAi, a phenotype associated with loss of ERGO-1 class 26G RNAs. 

Surprisingly, however, the henn-1 mutant germline exhibits an attenuated response to 

RNAi, suggesting that HENN-1 may also function in the exogenous RNAi pathway. 

Altogether, our study supports a role for HENN-1 in diverse small RNA pathways in C. 

elegans and offers further insight into the mechanisms governing substrate 

discrimination for animal HEN1 orthologs. 

 

 

RESULTS 
 
C02F5.6 Encodes the C. elegans HEN1 Ortholog 
 

To examine small RNA methylation in C. elegans, we began by characterizing C02F5.6, 

the gene previously predicted to encode the HEN1 ortholog in worm [18]. This gene, 

subsequently named henn-1, encodes a protein that exhibits significant amino acid 

similarity across the conserved HEN1 methyltransferase domain relative to established 

members of the HEN1 family (Figure 2.S1). Although two henn-1 gene models with 

differing 3’ ends have been proposed, 3’RACE and protein studies using a rabbit 

polyclonal antibody generated against a common N-terminal HENN-1 epitope detected 

only the longer isoform (Figure 2.S2A, B). 
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To facilitate our studies of the function of HENN-1, we isolated and characterized the 

henn-1(tm4477) allele. This allele carries a deletion that encompasses henn-1 exon four, 

which encodes 65% of the conserved methyltransferase domain as annotated by 

Kamminga et al. [15]. Sequencing of the henn-1(tm4477) mRNA indicates that loss of 

exon four activates a cryptic splice donor site in the third intron, resulting in an extended 

third exon that encodes a premature termination codon (Figure 2.S2B). The henn-

1(tm4477) mRNA is readily detected by RT-PCR but does not produce a detectable 

protein product (Figure 2.S2A) or exhibit methyltransferase activity (see below), 

suggesting that henn-1(tm4477) (hereafter, henn-1) represents a functional null allele. 

 

 

HENN-1 Terminally Methylates and Stabilizes C. elegans piRNAs 
 

Like piRNAs in fly [22,23,32], mouse [30,31], and zebrafish [26], the C. elegans 21U 

RNAs are terminally methylated [27], but the factor catalyzing this modification has not 

yet been identified. To determine if 21U RNA methylation depends on henn-1, we 

assessed methylation status using the β-elimination assay [51]. A small RNA molecule 

whose terminal nucleotide has been 2’-O-methylated is resistant to this treatment, 

whereas the cis-diols of an unmodified 3’ terminal nucleotide are oxidized by sodium 

periodate, rendering the nucleotide susceptible to β-elimination under basic conditions. 

The resulting size difference can be resolved on a polyacrylamide gel to determine 

methylation status. All 21U RNAs examined were found to be terminally methylated in a 

henn-1-dependent manner (Figures 2.1A, 2.S3A), whereas a control miRNA was not 

methylated in either wild-type or henn-1 mutant animals (Figure 2.1B). Although 21U 

RNAs are still detectable in the henn-1 mutant, the abundance of the full-length species 

is visibly decreased for some 21U RNAs; this correlates with the appearance of putative 

degradation products of unmethylated, unprotected 21U RNAs. To demonstrate that 

loss of 21U RNA methylation in the henn-1 mutant is specifically due to the absence of 

henn-1, we used the Mos1-mediated single copy insertion technique [52] to introduce a 

henn-1::gfp transgene driven by the promoter of the polycistronic mRNA that encodes 

henn-1 (xkSi1) or by the germline-specific pie-1 promoter (xkSi2) into the henn-1 mutant 
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(Figure 2.S2C). Both endogenous and germline-specific expression of henn-1::gfp 

restore 21U RNA methylation in the henn-1 mutant (Figure 2.1A). 
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Figure 2.1: Methylation of 21U RNAs Requires C. elegans HEN1 Ortholog HENN-1. 
A) HENN-1 is required for 21U RNA methylation. Endogenous (xkSi1) and germline-
specific (xkSi2) expression of henn-1::gfp rescue 21U RNA methylation in henn-
1(tm4477) mutant embryo. Total embryo RNA of the indicated genotypes was β-
eliminated (βe +) or control treated (βe -) and probed for piRNA 21UR-4292. prg-
1(tm872) lacks 21U RNAs and is included as a negative control. Below, ethidium 
bromide staining of 5.8S rRNA is shown. Additional 21U RNA northern blots are shown 
in Figure 2.S3A. B) C. elegans miRNAs are unmethylated. Total embryo RNA was 
probed for miR-1. Variable intensity of 5.8S rRNA bands in embryo indicates unequal 
loading. 
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To investigate the relationship between terminal methylation and piRNA accumulation, 

we used Taqman RT-qPCR to assess 21U RNA levels in wild-type and henn-1 mutant 

animals across development at 25°C. Importantly, the Taqman stem-loop RT primer is 

capable of distinguishing between full-length and terminally degraded small RNAs [53]. 

For example, the let-7e miRNA differs from let-7a only in the absence of the final 

nucleotide and U > G substitution at the ninth nucleotide, a position likely not 

represented in the stem-loop Taqman primer. Absence of this final nucleotide 

decreases detection of let-7e by the let-7a Taqman assay by more than a thousandfold 

[53]. henn-1 mutant embryo and early larva show dramatically reduced detection of 

female germline-enriched piRNA 21UR-1848 (Figure 2.2A), consistent with decreased 

embryonic detection for some 21U RNAs observed by northern blot (Figures 2.1A, 

2.S3A). 21U RNA levels recover to wild-type in late larval stages, coincident with the 

onset of germline proliferation and de novo 21U RNA biosynthesis; however, in gravid 

animals at 56 hours, 21UR-1848 levels in the henn-1 mutant have declined to less than 

50% of those observed in wild-type (P=0.0005; two-tailed t-test). Eight additional 21U 

RNAs examined show a similar pattern (Figure 2.S4). These data suggest that henn-1 

is dispensable for piRNA biogenesis but essential for robust inheritance of piRNAs. 

Parallel analysis of miR-1 and several additional miRNAs across development shows 

that effects of loss of henn-1 are specific to its substrates and not due to generalized 

small RNA dysregulation in the henn-1 mutant (Figures 2.2B, 2.S5). 

 

 

HENN-1 Plays a Minor Role in piRNA-mediated Germline Regulation 
 

We next sought to determine the extent to which decreased abundance of piRNAs in 

the henn-1 mutant compromises activity of the piRNA pathway. Unlike in fly, where 

many selfish genetic elements are desilenced in the absence of piRNAs [32], C. 

elegans at present has only a single established molecular readout for piRNA pathway 

function: increased expression of transposase mRNA from Tc3, a Tc1/mariner family 

transposon [35,36]. Two 21U RNAs have been found to map to Tc3, but both map in the 

sense direction and thus are unlikely to act directly in Tc3 repression via canonical RNAi 
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mechanisms [35,36]. Rather, 21U RNAs likely mediate their repressive effects through 

triggering production of secondary siRNAs, 22G RNAs, that engage worm-specific 

Argonautes (Wagos) to effect Tc3 gene silencing [36,45]. We therefore identified a 22G 

RNA that shows complete antisense complementarity to Tc3 and can be classified as a 

Wago-dependent, 21U RNA-dependent secondary siRNA based on its total depletion 

both in the MAGO12 mutant, which lacks all Wagos, and in the prg-1(n4357); prg-

2(n4358) double mutant, which lacks piRNAs [36,45]. Levels of this 22G RNA in the 

henn-1 mutant are reduced by 44% in embryo but not significantly altered in hatched L1 

larva (Figure 2.S6A). This suggests that the low embryonic and early larval levels of 

21U RNAs in the henn-1 mutant are still sufficient to trigger production of secondary 

siRNAs, although to a lesser degree than in wild-type.  

 

Consistent with the modest effect of loss of henn-1 on accumulation of piRNA-triggered 

secondary siRNAs, henn-1 mutant animals exhibit only a small increase (35% in starved 

L1 larva, 25% in L1 larva fed for 4 hours at 25°C) in Tc3 transposase mRNA levels 

relative to wild-type (Figure 2.2C). This is not unexpected due to the poor coincidence of 

the time intervals corresponding to piRNA dysregulation in the henn-1 mutant and Tc3 

sensitivity to 21U RNAs; the henn-1 mutant shows the greatest disparity in piRNA levels 

in early larval development, whereas Tc3 levels are most sensitive to piRNAs in 

germline and embryo (Figure 2.2A, C). These findings suggest that HENN-1 is not 

strictly required for piRNA target repression, but contributes to robust silencing of Tc3. 

 

In addition to Tc3 dysregulation, loss of prg-1 also results in a temperature-sensitive 

sterility phenotype [38,43]. To determine if the henn-1 mutant also exhibits a fertility 

defect, we assessed fertility at 20°C and 25°C. At 20°C, brood size of the henn-1 mutant 

does not differ significantly from that of wild-type. In contrast, henn-1 mutant animals 

maintained at 25°C exhibit a 25% decrease in brood size relative to wild-type 

(P=0.0059; two-tailed t-test) that can be rescued by germline expression of henn-1::gfp 

from the xkSi2 transgene (Figure 2.S7). The impaired fertility of the henn-1 mutant is 

consistent with abnormal fertility phenotypes associated with loss of HEN1 

methyltransferase activity in other animals. Loss of HEN1 in Tetrahymena thermophila 
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depletes Piwi-interacting RNAs called scan RNAs, impairing DNA elimination and, 

consequently, the viability of progeny [24]. The zebrafish hen1 mutant fails to maintain a 

female germline, resulting in an exclusively male population [15]. Nevertheless, we 

cannot conclude that the temperature-sensitive fertility defect of the henn-1 mutant is 

due exclusively to compromise of the 21U RNA pathway. 
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Figure 2.2: HENN-1 Stabilizes 21U RNAs. A) Loss of henn-1 impairs 21U RNA 
accumulation in adult, embryo, and early larva. Levels of 21UR-1848 were assayed by 
Taqman qPCR in embryo and every four hours across development of wild-type and 
henn-1(tm4477) mutant animals at 25°C. Standard deviation is shown for biological 
triplicates. Taqman qPCR data for eight additional 21U RNAs are shown in Figure 2.S4. 
B) Effects of loss of henn-1 are restricted to its small RNA substrates. Levels of miR-1 
across development were assayed by Taqman qPCR. Standard deviation is shown for 
biological triplicates. Additional Taqman qPCR data for miRNAs are shown in Figure 
2.S5. C) Loss of henn-1 impairs Tc3 transposase silencing primarily in early L1 larva. 
Tc3 transposase mRNA levels were assayed by qPCR across development and 
normalized to mRNA levels of eft-2, an abundantly expressed housekeeping gene. prg-
1(tm872) lacks 21U RNAs and is included as a positive control for Tc3 upregulation. 
Significant zero and four hour time points are expanded at right (*: P=0.0251; **: 
P=0.0250, two-tailed t-test). Standard deviation is shown for biological triplicates. E, 
embryo; hr, hour. 
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ERGO-1 and ALG-3/ALG-4 Class 26G RNAs Are Differentially Methylated by 
HENN-1 
 

26G RNAs were reported to be methylated in the first C. elegans small RNA deep 

sequencing study [27]. Subsequent studies concluded that the species assessed was 

an ERGO-1 class 26G RNA [40]. Consistent with these data, we found that ERGO-1 

class 26G RNAs, found in female germline and embryo, are methylated. As was the 

case for piRNAs, this methylation occurs in a henn-1-dependent manner (Figures 2.3A, 

2.S3B). Surprisingly, however, ALG-3/ALG-4 class 26G RNAs, specific to the male 

germline, showed no evidence of methylation even in wild-type animals (Figures 2.3B, 

2.S3C). One potential explanation for this observation would be that female germline 

small RNAs are universally methylated, whereas male germline small RNAs are not. To 

explore this possibility, we assessed 21U RNAs in male and female germlines. Both 

were methylated (Figure 2.3C), indicating that differential 26G RNA methylation cannot 

be explained simply by a lack of methyltransferase functionality in the male germline. 
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Figure 2.3: HENN-1 Selectively Methylates ERGO-1 Class 26G RNAs in an ERGO-
1-dependent Manner. A) HENN-1 is required for ERGO-1 class 26G RNA methylation 
and stability. Total β-eliminated (βe +) or control treated (βe -) embryo RNA of the 
indicated genotypes was probed for ERGO-1 class 26G RNA 26G-O7. eri-1(mg366) 
lacks 26G RNAs and is included as a negative control. Asterisk indicates signal 
corresponding to cross-hybridization with unmethylated 22G RNAs. Below, ethidium 
bromide staining of 5.8S rRNA. Additional ERGO-1 class 26G RNA northern blots are 
shown in Figure 2.S3B. B) ALG-3/ALG-4 class 26G RNAs are unmethylated. Total him-
8(e1489) male RNA was probed for ALG-3/ALG-4 class 26G RNA 26G-S5. An 
additional ALG-3/ALG-4 class 26G RNA northern blot is shown in Figure 2.S3C. C) 21U 
RNAs are methylated in a HENN-1-dependent manner in both female and male 
germlines. Total RNA of the indicated genotypes from fem-1(hc17) female or him-
8(e1489) male was probed for female germline-enriched piRNA 21UR-4292 or male 
germline-enriched piRNA 21UR-5941, respectively. 
 

 
  



 93 

Because the two classes of 26G RNAs bind unique Argonautes in male and female 

germlines, we hypothesized that the Argonaute ERGO-1 might direct methylation of 

26G RNAs. To address this question, we sought to assess methylation of an ERGO-1 

class 26G RNA in the absence of ERGO-1. As 26G RNAs are dramatically depleted in 

the absence of their respective Argonautes [40], we queried published wild-type and 

ergo-1(tm1860) gravid adult deep sequencing libraries [42] to identify an ERGO-1 class 

26G RNA that still accumulates to levels sufficient for visualization by northern blotting 

in the ergo-1(tm1860) mutant. 26G-O1, an extremely abundant ERGO-1 class 26G 

RNA, is present at roughly 0.5% wild-type levels in the ergo-1(tm1860) mutant, but still 

abundant enough to detect by northern blotting. Consistent with our hypothesis that 

ERGO-1 is required for 26G RNA methylation, we found that 26G-O1 is unmethylated in 

the ergo-1(tm1860) mutant embryo (Figure 2.4A). We next asked the converse 

question: Is 26G RNA methylation required for association with ERGO-1? We 

immunopurified ERGO-1 complexes from wild-type and henn-1 mutant embryo lysates 

(Figure 2.4B) and extracted RNA. In both wild-type and henn-1 mutant samples, ERGO-

1 class 26G RNAs are readily detected (Figure 2.4C), indicating that ERGO-1 effectively 

binds both methylated and unmethylated 26G RNAs. Taken together, these data 

suggest that 26G RNAs bind ERGO-1 and are subsequently methylated by HENN-1. 
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Figure 2.4: ERGO-1 is Required for Methylation of 26G RNAs. A) ERGO-1 class 
26G RNA 26G-O1 is unmethylated in the absence of ERGO-1. Total embryo wild-type 
(5 µg) or ergo-1(tm1860) (10 µg) β-eliminated (βe +) or control treated (βe -) RNA was 
probed for 26G-O1. B) Anti-ERGO-1 rabbit polyclonal antibody immunoprecipitates 
ERGO-1 complexes. ERGO-1 complexes were immunopurified from lysates of 
equalized protein concentration extracted from wild-type, henn-1(tm4477) mutant, or eri-
1(mg366) mutant embryo. Aliquots of lysates and immunoprecipitates (RNA IP) were 
probed with anti-ERGO-1 antibody. ergo-1(tm1860) mutant lysate was run in parallel to 
ensure specificity of ERGO-1 detection (data not shown). C) ERGO-1 binds methylated 
and unmethylated 26G RNAs. Taqman RT-qPCR for the indicated ERGO-1 class 26G 
RNAs was performed on samples described in B. The eri-1(mg366) mutant lacks 26G 
RNAs and serves as a negative control to demonstrate specificity of 26G RNA detection 
by Taqman assay. Standard deviation is shown for technical duplicates. Results are 
representative of two independent RNA immunoprecipitation experiments. 
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To test whether HENN-1-mediated methylation is required to maintain levels of all 

substrate small RNAs, we assessed ERGO-1 class 26G RNAs for defects in 

accumulation in the henn-1 mutant. Loss of henn-1 has more severe consequences for 

this class of small RNAs than are observed for 21U RNAs: ERGO-1 class 26G RNA 

26G-O3 fails to accumulate to wild-type levels at any stage of development, although 

the disparity is less pronounced in adulthood, during peak 26G RNA biogenesis (Figure 

2.5A). For comparison, we assayed levels of ALG-3/ALG-4 class 26G RNA 26G-S5 

across the developmental window during which it is readily detected by Taqman RT-

qPCR. Levels of 26G-S5 are similar in the henn-1 mutant relative to wild-type (Figure 

2.5B), consistent with the idea that HENN-1 is required for accumulation of ERGO-1 

class 26G RNAs but dispensable for that of ALG-3/ALG-4 class 26G RNAs. Analysis of 

seven additional ERGO-1 class 26G RNAs and two additional ALG-3/ALG-4 class 26G 

RNAs corroborated these observations (Figures 2.S8, 2.S9). 

 

 

HENN-1 Contributes Minimally to ERGO-1 Class 26G RNA Target Silencing 
 

To determine the effect of loss of henn-1 on the silencing of ERGO-1 class 26G RNA 

targets, we assayed levels of a panel of mRNAs targeted by ERGO-1 class 26G RNAs 

for desilencing in henn-1 mutant animals. During time points at which ERGO-1 class 

26G RNAs are abundant, only modest upregulation of some, but not all, targets was 

detected; furthermore, no single target shows consistent desilencing in the henn-1 

mutant (Figure 2.5C, S10A). This is not unexpected, however, as the targets 

themselves vary in both expression and sensitivity to small RNA-mediated silencing 

across development [40]. To determine the specificity of this effect, two non-targets 

were examined in parallel. The maximal upregulation for either non-target does not 

exceed the maximal upregulation observed for any target, suggesting that the 

upregulation of ERGO-1 class 26G RNA targets in the henn-1 mutant may be a 

consequence of 26G RNA depletion (Figures 2.5C, 2.S10B). This connection is 

supported by our observation that a Wago-dependent and ERGO-1 class 26G RNA-

dependent secondary siRNA that presumably enhances target silencing also shows 
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defects in accumulation in embryo (Figure 2.S6B). The effect is modest, indicating that, 

as observed for the piRNA pathway, the depleted pool of ERGO-1 class 26G RNAs in 

the henn-1 mutant is still sufficient for triggering fairly robust production of secondary 

siRNAs. Nevertheless, in an accompanying manuscript, Montgomery et al. observe that 

HENN-1 is required for silencing activity of a similar secondary siRNA upon a sensor 

transgene [54], suggesting that this pathway may indeed be compromised by loss of 

henn-1. 
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Figure 2.5: HEN1 Stabilizes ERGO-1 Class, but Not ALG-3/ALG-4 Class, 26G RNAs. 
A) Loss of henn-1 impairs ERGO-1 class 26G RNA accumulation at all stages. Levels of 
ERGO-1 class 26G RNA 26G-O3 were assayed by Taqman qPCR across development 
of wild-type and henn-1(tm4477) mutant animals at 25°C. Standard deviation is shown 
for biological triplicates. Taqman qPCR data for seven additional ERGO-1 class 26G 
RNAs are shown in Figure 2.S8. B) ALG-3/ALG-4 class 26G RNAs are henn-1-
independent. Levels of ALG-3/ALG-4 class 26G RNA 26G-S5 were assayed across the 
period of development in which ALG-3/ALG-4 class 26G RNAs are readily detectable. 
Standard deviation is shown for biological triplicates. Taqman qPCR data for two 
additional ALG-3/ALG-4 class 26G RNAs are shown in Figure 2.S9. C) Loss of henn-1 
may result in modest, sporadic defects in ERGO-1 class 26G RNA target silencing. 
Levels of eight target and two non-target mRNAs were assayed across development of 
wild-type and henn-1(tm4477) mutant animals at 25°C and normalized to eft-2. 
Expression in the henn-1(tm4477) mutant relative to wild-type is represented according 
to the red-green color scheme indicated in the right panel. Raw data is shown in Figure 
2.S10. E, embryo. 
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The Soma of the henn-1 Mutant Exhibits Enhanced Sensitivity to Exogenous 
RNAi 
 
ALG-3/ALG-4 class 26G RNAs are restricted to the male germline, and their mRNA 

targets are enriched for genes involved in spermatogenesis [40]. Accordingly, loss of 

ALG-3/ALG-4 class 26G RNAs results in male-associated sterility at non-permissive 

temperatures due to defects in sperm activation that are thought to arise from target 

dysregulation [41]. ERGO-1 class 26G RNAs, in contrast, are dispensable for fertility 

and target mostly poorly conserved and incompletely annotated genes, many of which 

reside in duplicated regions of the genome [42]. It is therefore not unexpected that the 

ergo-1(tm1860) mutant, which lacks ERGO-1 class 26G RNAs, exhibits no overt 

phenotypes that can be traced to target dysregulation. Rather, the ergo-1(tm1860) 

mutant exhibits an enhanced RNAi sensitivity (Eri) phenotype that is attributed to effects 

of loss of the ERGO-1-dependent small RNAs themselves; presumably, depletion of 

ERGO-1 class 26G RNAs and dependent secondary siRNAs liberates limiting RNAi 

factors shared between the endogenous and exogenous RNAi pathways [43,55,56]. 

  

To determine whether loss of henn-1 depletes ERGO-1 class 26G RNAs sufficiently to 

produce an Eri phenotype, as observed in the ergo-1 mutant, we subjected L1 larvae 

from a panel of strains to feeding RNAi targeting various genes in the soma or germline. 

In order to expose subtle differences in RNAi sensitivity, we modulated the degree of 

knockdown, attenuating the dose of dsRNA trigger by diluting the bacterial RNAi clone 

with a bacterial clone harboring empty vector. RNAi of the somatic gene lir-1 causes 

larval arrest and lethality in wild-type animals at full strength, but dilution 1:1 with empty 

vector largely eliminates the effect. In contrast, the eri-1(mg366) mutant, which lacks 

26G RNAs, is affected severely by even dilute lir-1 RNAi. The henn-1 mutant also 

shows dramatically increased sensitivity to lir-1 feeding RNAi relative to wild-type 

(Figure 2.6A, B). A henn-1; eri-1 double mutant, however, shows RNAi sensitivity that is 

virtually identical to that of the single eri-1 mutant, suggesting that the Eri phenotype of 

each allele likely stems from the same defect, namely, loss of ERGO-1 class 26G RNAs. 

While the somatic Eri phenotype of the henn-1 mutant shows partial rescue by the 
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germline-specific henn-1::gfp transgene xkSi2, henn-1::gfp expression under the native 

promoter from transgene xkSi1 rescues wild type RNAi sensitivity completely in the 

henn-1 mutant (Figure 2.6B). These findings suggest that loss of henn-1 in both 

germline and soma contributes to the Eri phenotype of the henn-1 mutant. The henn-1 

mutant exhibits a similar somatic Eri response to RNAi of dpy-13 and lin-29 (Figure 

2.S11). 

 

 

The Germline of the henn-1 Mutant Exhibits Decreased Sensitivity to Exogenous 
RNAi 
 

While the somatic Eri phenotype of the henn-1 mutant was expected, knockdown of 

genes required for germline development or embryogenesis revealed that, 

incongruously, the henn-1 mutant maternal germline exhibits an RNAi defective (Rde) 

phenotype. Animals subjected to pos-1 RNAi lay dead embryos because maternally 

loaded pos-1 mRNA is required for specifying cell fate of many tissues during 

embryonic development [57]. On pos-1 RNAi diluted 1:2 with empty vector (1/3 

strength), knockdown in wild-type animals is still sufficiently robust to reduce average 

brood size to fewer than five offspring per animal. henn-1 mutant animals at this dilution, 

however, produce an average brood greater than tenfold that of wild-type, suggesting 

that loss of henn-1 confers resistance to RNAi-mediated knockdown of this maternally 

deposited mRNA (Figure 2.6C). A lesser but statistically significant effect was observed 

for RNAi of the germline-expressed transcripts par-1, par-2, pie-1, and glp-1 (Figure 

2.S12). Sensitivity to pos-1 RNAi is effectively rescued by either endogenous or 

germline-specific expression of henn-1::gfp, likely due to the fact that both transgenes 

are expressed in germline. 
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Figure 2.6: The henn-1 Mutant Exhibits Opposite RNAi Sensitivity Phenotypes in 
Soma and Germline. A) henn-1(tm4477) mutant animals exhibit mildly enhanced 
somatic RNAi. Animals of the indicated genotype were plated as L1 larvae on lir-1 
feeding RNAi diluted 1:1 with empty vector (1/2 strength) and grown for 70 hours at 
20°C. Data is quantified in part B. RNAi sensitivity data for knockdown of two additional 
somatic transcripts are shown in Figure 2.S11. B) Endogenous expression of henn-
1::gfp from xkSi1 rescues somatic RNAi sensitivity. Percent of animals reaching full size 
on lir-1 feeding RNAi of the indicated strength at 70 hours is plotted. N = 8 plates of >50 
animals per strain. Standard deviation is shown. C) henn-1(tm4477) mutant animals 
exhibit defective germline RNAi. Brood size of animals plated at 20°C as L1 larvae on 
pos-1 feeding RNAi diluted 1:2 with empty vector is plotted. N ≥ 13 animals per strain. 
Mean and standard deviation are shown. RNAi sensitivity data for knockdown of four 
additional germline transcripts are shown in Figure 2.S12. Alleles used in this figure: eri-
1(mg366), prg-1(tm872), rde-4(ne301). 
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HENN-1 is Expressed in Both Germline and Soma 
 

HEN1 orthologs appear to be restricted to the germline in vertebrates [15,33]; however, 

we observe phenotypes in both the germline and soma of the henn-1 mutant that 

suggest broader activity. To investigate expression of HENN-1 in C. elegans, we 

assessed henn-1 mRNA and protein levels throughout development. henn-1 mRNA 

levels are lowest in young larva and increase as the germline proliferates, peaking in 

gravid adult (Figures 2.7A, 2.S13A). Germline-deficient glp-4(bn2) adult hermaphrodites 

show approximately a 50% reduction in henn-1 mRNA levels relative to wild-type 

(Figure 2.S13B), indicating that henn-1 mRNA is expressed in both germline and soma. 

Embryonic levels of henn-1 are high but decrease rapidly; this pattern suggests that, 

unlike in zebrafish [15], henn-1 mRNA may be maternally deposited into the embryo. 

HENN-1 protein is detectable throughout development and in both hermaphrodite and 

male adults (Figure 2.7B). 

 

We next assessed the distribution of HENN-1::GFP fusion protein expressed from xkSi1, 

the rescuing henn-1::gfp transgene driven by the endogenous promoter, in the henn-1 

mutant background. Although single copy transgene expression levels are too low for 

direct visualization by fluorescence microscopy, HENN-1::GFP is readily detected using 

a mouse monoclonal anti-GFP antibody. Whole-mount immunostaining of transgenic L4 

larvae reveals that HENN-1::GFP is expressed broadly in diverse somatic tissues and 

germline (Figure 2.S13C). Non-transgenic larvae show no signal, indicating that 

detection of HENN-1::GFP is specific. In extruded gonads of xkSi1; henn-1 

hermaphrodites, HENN-1::GFP is detected throughout the germline. Notably, the 

proximal oocytes show cytoplasmic and intense nucleoplasmic HENN-1::GFP 

expression (Figure 2.7C). Although nucleoplasmic enrichment is lost following 

fertilization, HENN-1::GFP is also abundant in embryo, with ubiquitous expression prior 

to gastrulation (Figure 2.S13D). HENN-1::GFP is also expressed throughout the 

germline of xkSi1; henn-1 males (Figure 2.7D). During sperm maturation, we detect 

enrichment of HENN-1::GFP in residual bodies, but we cannot definitively conclude that 

it is excluded from sperm (Figure 2.7D, inset). In wild-type animals, studies of 
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endogenous HENN-1 using the rabbit polyclonal antibody generated against an N-

terminal HENN-1 epitope corroborate the above findings, although the signal is more 

difficult to detect (Figure 2.7E). Staining in the henn-1 mutant yields no signal for anti-

GFP and anti-HENN-1 antibodies (Figure 2.7F); this demonstrates that detection of 

transgenic and endogenous HENN-1 proteins is specific. Together, these data define an 

expression pattern consistent with a role for HENN-1 in modifying small RNAs in both 

male and female germlines as well as in soma. 
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Figure 2.7: HENN-1 is Broadly Expressed in C. elegans Germline. A) The henn-1 
mRNA expression profile is consistent with germline enrichment. Levels of henn-1 
mRNA were assayed throughout development and normalized to eft-2 mRNA. Standard 
deviation is shown for biological triplicates. Non-normalized levels are shown in Figure 
2.S13A. B) HENN-1 is detected at all stages of development and in male. Lysates from 
animals of the indicated stages were probed with anti-HENN-1 rabbit polyclonal 
antibody. C) HENN-1 is abundant in hermaphrodite proximal germline and enriched in 
proximal oocyte nucleoplasm (inset). Extruded gonads of xkSi1; henn-1(tm4477) adult 
hermaphrodites were stained with anti-GFP mouse monoclonal and anti-HENN-1 rabbit 
polyclonal antibodies. D) HENN-1 is detectable in male proximal and distal gonad, with 
enrichment in residual bodies during spermatid maturation (inset). Extruded gonads of 
xkSi1; henn-1(tm4477) adult males were stained with anti-GFP and anti-HENN-1 
antibodies. E) Expression of endogenous HENN-1 mirrors expression of HENN-1::GFP 
from transgene xkSi1. Extruded gonads of wild-type animals were stained with anti-
HENN-1 antibody. F) Detection of HENN-1 proteins by immunostaining is specific. 
Extruded gonads of henn-1(tm4477) mutant animals were stained with anti-GFP and 
anti-HENN-1 antibodies. E, embryo. 
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The 21U RNAs and 26G RNAs appear to be significantly stable only in the presence of 

their respective Argonaute proteins [35,36,40]; accordingly, the localization patterns of 

the Argonaute proteins reflect the distribution of the different classes of small RNAs. We 

therefore wanted to compare the expression patterns of HENN-1 and the 26G RNA-

binding Argonautes to determine whether the small RNA substrate specificity of HENN-

1 could be explained by differential access to Argonaute-bound small RNAs. ERGO-1, 

which binds methylated 26G RNAs, is abundant in embryo [42], and its transcript is 

enriched during oogenesis [58], but its localization has not yet been reported. We 

assessed the staining pattern of ERGO-1 in hermaphrodite gonad and embryo using a 

polyclonal antibody generated against a C-terminal ERGO-1 epitope. ERGO-1 

expression in the hermaphrodite germline begins at pachytene exit and persists in 

embryo (Figure 2.S13D, E). ERGO-1 shows cytoplasmic enrichment both in germline 

and embryo, suggesting that the cytoplasmic pool of HENN-1 may act in methylating 

26G RNAs bound by ERGO-1. This interaction may, however, be transient, as we were 

unable to identify HENN-1 by mass spectrometry of immunopurified ERGO-1 

complexes, nor could we detect ERGO-1 in immunopurified HENN-1::GFP complexes 

by western blot (data not shown). Notably, both HENN-1 and ERGO-1 remain abundant 

in early embryo (Figure 2.S13D). This is consistent with the proposed existence of a 

somatic endo-siRNA pathway that promotes continued biosynthesis of ERGO-1 class 

26G RNAs after fertilization [59]. 

 

We next assessed co-localization of HENN-1 and ALG-3. ALG-3 and its close paralog, 

ALG-4, bind unmethylated 26G RNAs, and their transcripts are enriched during 

spermatogenesis [58]. In the male gonad, a rescuing gfp::alg-3 transgene was reported 

to express in the proximal male germline, with localization to P granules beginning at 

late pachytene [41]. During sperm maturation, GFP::ALG-3 is relegated to residual 

bodies. Dual immunostaining of GFP::ALG-3 and endogenous HENN-1 demonstrates a 

large region of overlap (Figure 2.S13F), but HENN-1 does not appear to localize to P 

granules. This does not explain why ALG-3/ALG-4 class 26G RNAs are not methylated, 

because it is likely that HENN-1 can access P granules transiently: PRG-1 localizes 

predominantly to P granules [35,37], and the PRG-1-bound piRNAs are methylated. 
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This is in contrast to zebrafish Hen1, which carries a poorly conserved C-terminal 

domain (Figure 2.S1) that directs localization of Hen1 to nuage, perinuclear granules 

similar to C. elegans P granules, to methylate piRNAs [15]. 

 

 

DISCUSSION 
 

Differential 26G RNA Methylation Supports an Argonaute-Dictated Methylation 
Model 
 
We have shown that HENN-1 is essential for methylating select classes of C. elegans 

small RNAs, namely, 21U RNAs and ERGO-1 class 26G RNAs. As is the case in other 

animals, small RNAs in C. elegans that associate with Piwi clade Argonautes require 

HENN-1 for maintenance of wild-type levels. Ago clade Argonaute-associated 

microRNAs and ALG-3/ALG-4 class 26G RNAs, in contrast, are HENN-1-independent 

(Figure 2.S14A). It has been proposed that spatial and temporal regulation of HEN1 

ortholog expression may contribute to small RNA substrate specificity in metazoans [24]. 

However, our immunostaining studies indicate that HENN-1 is coexpressed in the same 

tissues and subcellular compartments as Argonautes ERGO-1, PRG-1, and ALG-3 and 

their respective small RNAs (Figures 2.7, 2.S13). Therefore, differences in gross sub-

cellular localization cannot explain the failure of ALG-3/ALG-4 class 26G RNAs to be 

methylated. Furthermore, although the two subclasses of 26G RNAs are generated in 

different germlines from non-overlapping targets, their sequences exhibit no obvious 

distinguishing characteristics that might account for their non-uniform methylation status. 

 

One model of small RNA methylation posits that animal HEN1 orthologs only methylate 

small RNAs bound by Argonautes [15,22-24,49]. In support of this, work in fly shows 

that siRNA methylation requires assembly of DmAgo2 RISC [22,50], and in vitro studies 

using lysate from a silkworm ovary-derived cell line show that methylation of synthetic 

RNA only occurs after the longer substrate is bound by a Piwi protein and trimmed to 

piRNA size [60]. This model predicts that all 26G RNAs are bound as unmethylated 
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species by either ERGO-1 in the female germline or ALG-3/ALG-4 in the male germline 

and subsequently methylated or not, respectively. This is consistent with our findings in 

vivo that ERGO-1 is required for methylation of 26G RNAs (Figure 2.4A) and associates 

with 26G RNAs of either methylation status (Figure 2.4C). It has been further proposed 

that the identity of the Argonaute determines whether bound small RNAs are methylated 

[22,23,49,50]. An elegant illustration of this is provided by fly miR-277, which associates 

with both Ago1, the canonical fly miRNA Argonaute, and Ago2, which binds methylated 

siRNAs [61]. The miR-277 pool contains both methylated and unmethylated species. 

Depletion of Ago2 in cell culture results in loss of methylated miR-277, whereas Ago1 

depletion results in a completely methylated miR-277 population [22]. Similarly, fly 

hairpin derived hp-esiRNAs sort into Ago1 and Ago2, but accumulate mainly in Ago2 

because only hp-esiRNAs bound by Ago2 are methylated and therefore protected 

against degradation triggered by their extensive target complementarity [50]. In C. 

elegans, the model of Argonaute-dictated methylation can be invoked to explain the 

disparate methylation of the 26G RNAs: in the male germline, only ALG-3/ALG-4 are 

expressed, resulting in an unmethylated male 26G RNA population, whereas exclusive 

expression of ERGO-1 in the female germline and embryo directs methylation of female 

and zygotic 26G RNAs. This raises the intriguing possibility that selective expression of 

Argonautes that permit or prevent methylation could represent a new mechanism for 

differentially regulating small RNA turnover. 

 

It is important to note that our results do not definitively exclude an alternative model 

wherein 26G RNAs are methylated prior to association with Argonautes and 

subsequently bound by ALG-3/ALG-4 only if unmethylated or by ERGO-1 only if 

methylated. In this model, HEN1 would methylate 26G RNAs in both germlines, but 

degradation of labile unbound siRNAs would result in a purely unmethylated or 

methylated population of 26G RNAs in male and female germlines, respectively. 

Because 26G RNAs assessed in embryo are fully methylated (Figures 2.3A, 2.S3B), 

such a mechanism would require that ERGO-1 exhibit very unfavorable kinetics for 

association with unmethylated small RNAs. We do not find this to be the case, as 

ERGO-1 binds some 26G RNAs with similar efficiency when methylated and 
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unmethylated (Figure 2.4C). Our data therefore provide stronger evidence for a model 

of Argonaute-dictated methylation of small RNAs. 

 

 

Possible Advantages for Selective Methylation of Small RNAs 
 
Differential germline expression of Argonautes could have evolved in C. elegans 

because of advantages conferred by selective stabilization of female germline 26G 

RNAs. Unlike ALG-3/ALG-4 class 26G RNAs, which appear to function exclusively 

during sperm development [40,41], ERGO-1 class 26G RNAs exert much of their 

influence during embryonic and larval development, well beyond initiation of their 

biogenesis in the hermaphrodite germline [40]. Accordingly, their targets are depleted of 

germline-enriched genes [40,59]. The oocyte contributes the vast majority of the initial 

zygotic cellular contents; therefore, methylation of 26G RNAs originating in the female 

germline may ensure robust inheritance and perdurance of primary small RNAs. 

Methylation of 26G RNAs in the male germline would likely not significantly increase 

their representation in sperm or zygote, as ALG-3/ALG-4 are relegated to residual 

bodies during spermatogenesis and exert effects in mature sperm only indirectly 

through dependent secondary 22G RNAs [41]. Nonetheless, it would be interesting to 

express ERGO-1 ectopically in sperm and determine whether ALG-3/ALG-4 class small 

RNAs are methylated. Such a strategy may reveal unexpected consequences related to 

inappropriate methylation and stabilization of ALG-3/ALG-4 class 26G RNAs. 
 

 

Role of HENN-1 in the Balance Between Endo- and Exo-RNAi 
 
In the absence of henn-1, we show that response to RNAi-mediated knockdown is 

enhanced for somatic genes (Figures 2.6A,B, 2.S11). This is likely due to destabilization 

of ERGO-1 class 26G RNAs in the henn-1 mutant, which reduces competition with 

primary exo-siRNAs for stimulating secondary siRNA activity mediated by somatic 

Argonautes such as SAGO-1 and SAGO-2 [43,55]. While germline-specific expression 
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of henn-1::gfp only partially rescues this somatic Eri phenotype, henn-1 mutant animals 

rescued with an endogenous henn-1::gfp transgene, which drives both somatic and 

germline expression, show wild-type RNAi sensitivity. Under the model of competing 

endo- and exo-RNAi pathways, this suggests that HENN-1-mediated methylation of 

ERGO-1 class 26G RNAs in the germline alone cannot maintain small RNA levels 

sufficient to sequester an appropriate proportion of the limiting RNAi factors. It is 

possible that ERGO-1 class 26G RNA biogenesis continues in embryo and larva, as 

previously suggested [59], and that high concentrations of HENN-1 are necessary for 

continued stabilization of these small RNAs. Such a model would be consistent with our 

characterization of the distributions of HENN-1 and ERGO-1, both of which are still 

detected in abundance in developing embryo (Figure 2.S13D, E). 

 

While the majority of the phenotypes observed in the henn-1 mutant can be attributed to 

destabilization of endogenous small RNA substrates, the germline Rde phenotype 

suggests a role for HENN-1 in exogenous RNAi. It is unclear why HENN-1 is 

dispensable for robust exogenous RNAi in the soma but required in the germline. While 

this may be an indirect effect, as suggested in concurrent work by Kamminga et al. [62], 

one possible explanation is that HENN-1 stabilizes primary exo-siRNAs or dependent 

22G secondary siRNAs. There is support in fly for methylation of exo-siRNAs and 

transgenic hairpin-derived siRNAs [22,63], but this has not yet been demonstrated in C. 

elegans. 22G RNAs triggered by primary exo-siRNAs appear not to be methylated [47], 

consistent with our and others’ observations that Wago-dependent 22G RNAs from 

diverse endogenous sources are unmethylated (Figures 2.3A, 2.S3B, and [45]). The 

methylation status of worm primary exo-siRNAs has not been definitively established, 

although a 22-nucleotide siRNA generated from a transgene encoding a perfect hairpin 

was not found to be methylated [46]. 

 

 

Structural Differences in Ago and Piwi Clade Argonautes May Dictate HEN1 
Substrate Specificity 
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All Argonautes contain two signature domains, PAZ and Piwi [64]. The Piwi domain, 

unique to Argonautes, adopts an RNase H-like configuration and serves as the catalytic 

core of RISC [65,66]. The PAZ domain recognizes and anchors the 3’ end of the small 

RNA [67,68]. Comparison of Piwi and Ago clade Argonautes reveals that Piwi proteins 

contain a small insertion in their PAZ domains in a loop connecting two β strands [69]. 

Crystal structures of a human Piwi Argonaute PAZ domain suggest that this insertion 

results in the formation of a more spacious binding pocket capable of accommodating 

the 2’-O-methyl group of a piRNA. Interactions between the methyl group and 

hydrophobic residues lining the pocket confer a threefold to sixfold higher binding 

affinity for 2’-O-methyl than 2’-OH [69]. In C. elegans, only PRG-1/PRG-2 and ERGO-1 

show evidence of a PAZ domain insertion (Figure 2.S14B), consistent with their 

designation as Piwi clade Argonautes and association with methylated small RNAs. 

 

In spite of their shared classification, ERGO-1 exhibits far less homology than PRG-

1/PRG-2 to mammalian and insect Piwi proteins (Figure 2.S14A) [43]. Similarly, among 

worm, fly, and human Argonautes, DmAgo2 and C. elegans Argonaute RDE-1 are 

among the most divergent members of their clades [43]. In fact, so divergent is RDE-1 

that its cladistics are ambiguous, with our and other published alignments variably 

assigning it to each of the three clades (Figure 2.S14A and [43,70]). Both DmAgo2 and 

RDE-1 bind exo-siRNAs, although only the former has been shown to permit 

methylation [22]. Interestingly, both lack the insertion found in Piwi Argonaute PAZ 

domains (Figure 2.S14B). The absence of this insertion in DmAgo2 suggests that it is 

not required for association with methylated small RNAs, raising the possibility that 

RDE-1 too may permit methylation of associated small RNAs. If HENN-1 does not 

methylate RDE-1-bound small RNAs, it is unclear what specific role HENN-1 plays in 

exo-RNAi in the germline. Nevertheless, its dual functions in endogenous and 

exogenous RNAi place HENN-1 in the company of DCR-1 and the Wago proteins at the 

intersection between these two RNAi pathways. 

 

 

MATERIALS AND METHODS 
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C. elegans Strains 
C. elegans were maintained according to standard procedures. The Bristol strain N2 

was used as the standard wild-type strain. The alleles used in this study, listed by 

chromosome, are: unmapped: neIs23[unc-119(+) GFP::ALG-3]; LGI: glp-4(bn2), prg-

1(tm872); LGII: xkSi1[PC30A5.3::henn-1::gfp::henn-1 3’UTR cb-unc-119(+)] II, 

xkSi2[Ppie-1::henn-1::gfp::tbb-2 3’UTR cb-unc-119(+)] II; LGIII: rde-4(ne301), henn-

1(tm4477); LGIV: eri-1(mg366), fem-1(hc17), him-8(e1489); LGV: ergo-1(tm1860). The 

neIs23[unc-119(+) GFP::ALG-3] strain was generously provided by Craig Mello 

(University of Massachusetts, Worcester, MA). 

 

RNA Sample Preparation 
For embryo samples, L1 larvae were grown at 20°C until gravid. Embryos were isolated 

using sodium hypochlorite solution; an aliquot of embryos was allowed to hatch 

overnight at room temperature to determine viability. For male samples, synchronized 

him-8(e1489) L1 larvae were grown at 20°C for 72-75 hours. Males were isolated by 

filtering through 35 µm mesh [71]. For female samples, synchronized fem-1(hc17) L1 

larvae were plated and grown at 25°C for 52 hours. For time course samples, 

synchronized wild-type (N2) and henn-1(tm4477) L1 larvae were grown at 25°C until 

gravid; embryos were extracted and harvested for RNA or hatched overnight at room 

temperature and then grown at 25°C for the specified number of hours before harvest. 

The prg-1(tm872) time course samples were prepared in the same way, except that 

animals were grown for the first generation at 20°C to evade temperature-sensitive 

sterility. Samples were processed by either three rounds of freeze/thaw lysis or two 

rounds of homogenization for 15 sec using the Tissue Master-125 Watt Lab 

Homogenizer (Omni International) and the RNA was extracted in TriReagent (Ambion) 

following the vendor’s protocol, with the following alterations: RNA was precipitated in 

isopropanol for one hour at -80°C; RNA was pelleted by centrifugation at 4°C for 30 min 

at 20,000 x g; the pellet was washed three times in 75% ethanol; the pellet was 

resuspended in water. 

 

β-elimination Assay for Small RNAs and Northern Blot Analysis 
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For detection of small RNAs, 10 or 40 µg of total RNA were β-eliminated as described 

[51]; control samples were processed in parallel without sodium periodate. Northern blot 

analysis was performed as described [72]. In brief, 5 or 10 µg of β-eliminated total RNA 

were resolved on 17.5% or 20% denaturing Urea-PAGE gels (SequaGel, National 

Diagnostics) and transferred to Hybond-NX membrane (Amersham). 21 and 26 nt 

synthetic RNAs were run as size markers and visualized in tandem with rRNA by 

ethidium bromide staining. Pre-hybridization/hybridization and washes were performed 

at 48°C or 50°C. Oligonucleotides corresponding to the antisense sequences of the 

small RNAs (Table 2.S1) were synthesized and end-labeled with [α-32P]-dATP using the 

miRNA StarFire kit (Integrated DNA Technologies). 

 

RNAi Sensitivity Assay 

To test the response to exogenous RNAi, bacterial clones from the Ahringer RNAi 

library [73] were diluted with bacteria harboring the empty vector L4440 to achieve a 

level of RNAi sensitivity that allowed us to differentiate the RNAi responses in the 

strains examined. To determine lir-1 RNAi sensitivity, the lir-1 RNAi bacterial clone 

diluted with L4440 bacterial clone at a 1:1 or 1:2 ratio (1/2 or 1/3 strength) was used; 

>50 L1 larvae were plated per plate and the number of total animals assayed per plate 

was determined at day two after plating; the percent of animals exhibiting the larval 

arrest phenotype was determined at 70 hours at 20°C. Sensitivity to RNAi of dpy-13 and 

lin-29 was also assessed using this method, where animals subjected to dpy-13 RNAi 

were imaged at 70 hours and those subjected to lin-29 RNAi were evaluated for the 

absence of protruding vulva or bursting phenotype. For pos-1 RNAi, synchronized L1 

larvae were singled onto plates with pos-1 RNAi diluted with empty vector at a 1:2 ratio 

(1/3 strength) that had been induced overnight at 25°C. Animals were grown at 20°C for 

six days and progeny were counted. Sensitivity to RNAi of pie-1, par-1, and par-2 was 

assessed similarly at the indicated dilutions with 4 plates of 4 P0 animals per strain. 

Sensitivity to glp-1 RNAi was determined at the indicated dilutions by plating 4 plates of 

>50 L1 larvae per strain per gene and scoring for the absence of oocytes and embryos 

in both arms of the germline at 70 hours at 20°C. For all RNAi sensitivity assays, data 

are representative of at least two independent experiments. 
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Fertility Assay 

To determine brood size, synchronized L1 larvae from gravid adults grown at 20°C or 

shifted to 25°C for two generations were singled onto plates with OP50 and grown to 

adulthood at their respective temperatures. Once egg-laying began, animals (N ≥ 13 per 

strain) were transferred to fresh plates daily until the supply of fertilized eggs was 

exhausted. Progeny of the singled parents were counted as late larvae/adults. Results 

are representative of two independent experiments. 

 
Quantitative RT-PCR 
Taqman small RNA probes were synthesized by Applied Biosystems (Table 2.S2) [74]. 

For each reaction, 50 ng of total RNA were converted into cDNA using Multiscribe 

Reverse Transcriptase (Applied Biosystems). The resulting cDNAs were analyzed by a 

Realplex thermocycler (Eppendorf) with TaqMan Universal PCR Master Mix, No 

AmpErase UNG (Applied Biosystems). We could not identify a small RNA whose levels 

were consistent across development for use in normalization. Therefore, to preserve the 

developmental profile of each of the small RNA assessed, back transformation was 

used to calculate relative small RNA levels from qRT-PCR cycle numbers. As a control 

for RNA quality, miR-1 Taqman assays were run in parallel for all samples excluding the 

ERGO-1 RNA immunoprecipitation samples, in which miRNAs are absent. For 

quantification of mRNA levels, 100 ng of total RNA were converted into cDNA with 

Multiscribe Reverse Transcriptase (Applied Biosystems) following the vendor’s protocol 

with the following changes: 25 units of RT and 7.6 units of RNAse OUT (Invitrogen) 

were used per reaction. cDNAs were analyzed using Power Sybr Green PCR Master 

Mix (Applied Biosystems) (primers, Table 2.S3). Relative mRNA levels were calculated 

based on the ΔΔ2Ct method [75] using eft-2 for normalization. For all qPCR, 40 cycles 

of amplification were performed; reactions whose signals were not detected were 

therefore assigned a cycle number of 40. All results presented are the average values 

of independent calculations from biological triplicates unless indicated. To determine 

average upregulation of ERGO-1 26G RNA targets in henn-1 relative to wild-type 

(Figure 2.5C), the mean was calculated for all of the ratios generated by dividing each 

henn-1 biological replicate by each wild-type biological replicate. 
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3’ RACE 
3’ RACE was performed using the 3’ RACE System for Rapid Amplification of cDNA 

ends (Invitrogen) according to the manufacturer’s protocol. henn-1 gene-specific primer 

(5’ GCAGTATGTCGCCTCCAAGTAGAT 3’) was used to amplify henn-1 3’ ends from 

cDNA generated from embryo. Product corresponding to only the seven-exon gene 

model of henn-1 was observed, consistent with detection of a single protein isoform 

corresponding to this model on western blot analysis. 

 
Plasmids and Transgenic Strains 
The endogenous henn-1::gfp reporter construct (xkSi1) was generated by introducing 

the following fragments into pCFJ151: endogenous promoter of the henn-1-containing 

operon CEOP3488 [76] (3.9 kb PCR fragment immediately upstream of the C30A5.3 

start codon), henn-1 genomic coding region (1.8 kb PCR fragment with mutated 

termination codon), gfp coding region (0.9 kb fragment with multiple synthetic introns 

and termination codon), and henn-1 endogenous 3’UTR (1.1 kb PCR fragment 

immediately downstream of henn-1 termination codon). The germline-only henn-1::gfp 

reporter construct (xkSi2) was generated as above with the following substitutions: 

CEOP3488 operon promoter was replaced with the pie-1 promoter (2.4 kb PCR 

fragment immediately upstream of pie-1 start codon) and henn-1 endogenous 3’UTR 

was replaced with the C36E8.4 3’UTR (0.3 kb PCR fragment downstream of C36E8.4). 

Constructs were cloned into the pCFJ151 vector, confirmed by sequencing, and used to 

generate single-copy integrated transgenes via the MosSCI technique [52]. Gene fusion 

products of the expected size were specifically detected by western blot with both anti-

HENN-1 and anti-GFP antibodies. 

 

Generation of Antibodies 

Synthetic antigenic peptides were conjugated to KLH and each was used to immunize 

two rabbits (Proteintech). Antisera were subsequently affinity purified using Affi-Gel 15 

gel (Bio-Rad). Antigenic peptide sequences are as follows: N-terminal HENN-1 peptide 

with N-terminal added cysteine (CTYVEAYEQLEIALLEPLDR), C-terminal ERGO-1 

peptide (CEVNKDMNVNEKLEGMTFV). 
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Western Blot Analysis 

Proteins immobilized on Immobilon-FL transfer membrane (Millipore) were probed with 

anti-HENN-1 rabbit polyclonal antibody (1:2000), anti-γ-tubulin rabbit polyclonal antibody 

(LL-17) (Sigma) (1:2000), or anti-ERGO-1 rabbit polyclonal antibody (1:1000). 

Peroxidase-AffiniPure goat anti-rabbit IgG secondary antibody was used at 1:10000 

(Jackson ImmunoResearch Laboratories) for detection using Pierce ECL Western 

Blotting Substrate (Thermo Scientific). 

 

Isolation of ERGO-1-associated RNAs 

Wild-type, henn-1, or eri-1(mg366) embryos isolated from gravid adults grown at 20°C 

were frozen in liquid nitrogen and homogenized with a Mixer Mill MM 400 ball mill 

homogenizer (Retsch) Homogenates were suspended in lysis buffer (50 mM HEPES 

(pH 7.4), 1 mM EGTA, 1 mM MgCl2, 100 mM KCl, 10% glycerol, 0.05% NP-40 treated 

with a Complete, Mini, EDTA-free Protease Inhibitor Cocktail tablet (Roche Applied 

Sciences)) and clarified by centrifugation at 12,000 x g for 12 minutes at 4°C. Aliquots of 

homogenate were reserved as crude lysate for western blot to confirm that 

immunoprecipitations were performed in lysates of equivalent protein concentration (2 

mg/mL). For immunoprecipitations, embryo homogenates were incubated at 4°C for one 

hour with 75 µg anti-ERGO-1 rabbit polyclonal antibody conjugated to Dynabeads® 

Protein A (Invitrogen), after which the beads were washed (500 mM Tris-HCl (pH 7.5), 

200 mM KCl, 0.05% NP-40) and associated proteins were eluted with 200 µL glycine. 

Three quarters of each eluate were precipitated overnight at 4°C in trichloroacetic acid, 

pelleted, washed with acetone, and resuspended for western blot analysis. The 

remaining eluate was treated with 2 mg/ml Proteinase K (Roche) and incubated at 37°C 

for 30 minutes. RNA was isolated from the eluate by incubation with TriReagent and 

processed as described above. RNA pellets were resuspended in 10 µL water and 5 µL 

were used for each Taqman RT reaction. 

 
Immunostaining 

Primary antibodies were applied according to the following specifications: anti-GFP 

mouse monoclonal antibody 3E6 (Invitrogen) was diluted 1:1500 to detect HENN-
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1::GFP and 1:200 to detect ALG-3::GFP; anti-ERGO-1 rabbit polyclonal was diluted 

1:200; and anti-HENN-1 rabbit polyclonal antibody was preabsorbed as described [77] 

with henn-1(tm4477) mutant extract and diluted 1:200. Alexa Fluor 555 goat anti-rabbit 

IgG and Alexa Fluor 488 goat anti-mouse IgG (Molecular Probes) secondary antibodies 

were diluted 1:500. All antibodies were diluted in 0.5% bovine serum albumin (Sigma). 

For immunostaining of gonads and embryos, synchronized gravid hermaphrodites or 

adult males grown at 20°C were dissected on Superfrost Plus positively charged slides 

(Fisherbrand) with 27 G x 1/2 inch BD PrecisionGlide needles (Becton, Dickinson and 

Company) as described by Chan and Meyer in WormBook [78] Protocol 21 with 1.5% 

paraformaldehyde (Sigma). Slides were incubated with primary antibodies overnight at 

4°C and with secondary antibodies for three hours at room temperature. Slides were 

mounted with VECTASHIELD Mounting Medium with DAPI (Vector Laboratories). For 

whole-worm immunostaining, synchronized late L4 larvae grown at 20°C were 

transferred to subbed slides [77] in M9, fixed for six minutes in 1.5% paraformaldehyde, 

freeze-cracked, and incubated for 15 minutes in ice cold methanol. After fixation, slides 

were processed as above. Images were captured on an Olympus BX61 epifluorescence 

compound microscope with a Hamamatsu ORCA ER camera using Slidebook 4.0.1 

digital microscopy software (Intelligent Imaging Innovations) and processed using 

ImageJ. 
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SUPPLEMENT 
 
Figure 2.S1: Alignment of HEN1 Orthologs. A) C. elegans HENN-1 bears the 
conserved HEN1 methyltransferase domain. Protein sequences of HEN1 orthologs from 
Caenorhabditis elegans (NP_741250.1), Drosophila melanogaster (NP_610732.1), 
Danio rerio (NP_001017842.1), Mus musculus (NP_079999.2), Homo sapiens 
(NP_001096062.1), and Arabidopsis thaliana (NP_567616.1) were aligned using T-
Coffee [79,80] with default parameters. The resulting multiple sequence alignment was 
cropped to show the conserved HEN1 methyltransferase domain (underlined in red) and 
the C terminus. Significant alignment was not observed for the N terminus. B) 
Conservation of the HEN1 methyltransferase domain of HENN-1 is comparable to that 
of other orthologs. Percent identity was calculated using ClustalW (version 2.1; 
http://www.ebi.ac.uk/Tools/msa/clustalw2/) [81,82] with default parameters to perform 
pairwise alignments of the conserved HEN1 methyltransferase domains as defined in 
Figure 2.S1A. 
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Figure 2.S2: C02F5.6 Alleles and Transgenes. A) anti-HENN-1 polyclonal antibody 
recognizes a single ~52 kD HENN-1 isoform in wild-type embryo lysate; no protein 
product is detected in henn-1(tm4477) embryo lysate. B) C02F5.6 (henn-1) gene 
structure showing the encoded N-terminal epitope for generating the anti-HENN-1 rabbit 
polyclonal antibody, conserved HEN1 domain (pink), and deletion region for the henn-
1(tm4477) allele (red underline). Aberrant splicing of henn-1(tm4477) mRNA is 
diagrammed below. Activation of a cryptic splice donor site in the henn-1(tm4477) 
mRNA produces a premature termination codon (STOP). C) Diagrams of xkSi1 
(endogenous expression) and xkSi2 (germline-only expression) henn-1::gfp transgenes. 
Transgenes were inserted as single copies on chromosome II via the MosSCI technique 
[52]. 
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Figure 2.S3: Methylation Status of Additional Small RNAs. A) Additional 21U RNAs 
show HENN-1-dependent methylation. β-eliminated (βe +) or control treated (βe -) 
embryo RNA of the indicated genotypes was probed for the specified 21U RNAs. Below, 
ethidium bromide staining of 5.8S rRNA. prg-1(tm872) lacks 21U RNAs and is included 
as a negative control. B) Additional ERGO-1 class 26G RNAs show HENN-1-dependent 
methylation in embryo RNA. eri-1(mg366) lacks 26G RNAs and is included as a 
negative control. C) ALG-3/ALG-4 class 26G RNA 26G-S7 shows absence of 
methylation in him-8(e1489) male RNA. 
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Figure 2.S4: Diverse 21U RNAs Exhibit HENN-1 Dependence in Early 
Development and Adulthood. A) A panel of additional 21U RNAs exhibit significant 
defects in accumulation in the henn-1(tm4477) mutant. 21U RNA levels were assayed 
by Taqman qPCR in wild-type and henn-1(tm4477) mutant animals at the indicated 
developmental time points. Standard deviation is shown for biological triplicates. B) 21U 
RNAs are generally depleted in the henn-1(tm4477) mutant relative to wild-type in 
embryo, early larva, and gravid adult. Abundance in henn-1(tm4477) mutant relative to 
wild-type was calculated for the 21U RNAs shown in A) and Figure 2.2A and the 
average was plotted for each time point to illustrate the general effect of loss of henn-1. 
C) 21U RNA Taqman assays specifically detect piRNAs. 21U RNA and miRNA levels 
were assayed in prg-1(tm872) mutant embryo biological duplicates. Fold levels relative 
to wild-type embryo are plotted. E, embryo. 
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Figure 2.S5: miRNAs Do Not Exhibit HENN-1 Dependence. A) miRNAs are generally 
unaffected in the henn-1(tm4477) mutant. miRNA levels were assayed by Taqman 
qPCR in wild-type and henn-1(tm4477) mutant animals at the developmental time 
points assessed in Figure 2.S4. Standard deviation is shown for biological triplicates. B) 
miRNAs are not generally depleted in the henn-1(tm4477) mutant relative to wild-type. 
Abundance in henn-1(tm4477) mutant relative to wild-type was calculated for the 
miRNAs shown in A) and the average was plotted for each time point to illustrate the 
general effect of loss of henn-1. E, embryo. 
 

  



 124 

Figure 2.S6: HENN-1 Dependence of Substrate-dependent Secondary siRNAs. A) 
Levels of a Wago-dependent, 21U RNA-dependent 22G RNA targeting Tc3 are 
decreased in henn-1(tm4477) mutant embryo (P=0.0064; two-tailed t-test). Standard 
deviation is shown for biological triplicates. B) Levels of a Wago-dependent, ERGO-1 
class 26G RNA-dependent 22G RNA targeting E01G4.7 are decreased in henn-
1(tm4477) mutant embryo (P=0.044; two-tailed t-test). Standard deviation is shown for 
biological triplicates. 
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Figure 2.S7: henn-1 Contributes to Robust Fertility at Elevated Temperatures. 
henn-1(tm4477) mutant animals exhibit a modest fertility defect at 25°C that is rescued 
by germline-specific expression of henn-1::gfp from transgene xkSi2. Progeny per 
animal cultured at 20°C or shifted to 25°C for three generations is plotted for animals of 
the indicated genotype. Differences between henn-1(tm4477) mutant and wild-type or 
xkSi2; henn-1(tm4477) transgenic rescue strain are statistically significant (*: P=0.0059; 
**: P=0.0130, two-tailed t-test). N ≥ 13 animals per strain. Mean and standard deviation 
are shown. 
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Figure 2.S8: Many ERGO-1 Class 26G RNAs Exhibit HENN-1 Dependence 
throughout Development. A) A panel of additional ERGO-1 class 26G RNAs exhibit 
significant defects in accumulation in the henn-1(tm4477) mutant. ERGO-1 class 26G 
RNA levels were assayed by Taqman qPCR in wild-type and henn-1(tm4477) mutant 
animals at the indicated developmental time points. Standard deviation is shown for 
biological triplicates. B) ERGO-1 class 26G RNAs are generally depleted in the henn-
1(tm4477) mutant relative to wild-type throughout development. Abundance in henn-
1(tm4477) mutant relative to wild-type was calculated for the 26G RNAs shown in A) 
and Figure 2.5A and the average was plotted for each time point to illustrate the general 
effect of loss of henn-1. C) ERGO-1 class 26G RNA Taqman assays specifically detect 
ERI-1-dependent small RNAs. ERGO-1 class 26G RNA and miRNA levels were 
assayed in eri-1(mg366) mutant embryo biological duplicates. Fold levels relative to 
wild-type embryo are plotted. E, embryo. 
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Figure 2.S9: ALG-3/ALG-4 Class 26G RNAs Do Not Exhibit HENN-1 Dependence. 
A) Additional ALG-3/ALG-4 class 26G RNAs do not exhibit significant defects in 
accumulation in the henn-1(tm4477) mutant. ALG-3/ALG-4 class 26G RNA levels were 
assayed by Taqman qPCR in wild-type and henn-1(tm4477) mutant animals at the 
indicated developmental time points. Standard deviation is shown for biological 
triplicates. B) ALG-3/ALG-4 class 26G RNAs are generally unchanged in the henn-
1(tm4477) mutant relative to wild-type during their peak expression. Abundance in 
henn-1(tm4477) mutant relative to wild-type was calculated for the 26G RNAs shown in 
A) and Figure 2.5B and the average was plotted for each time point to illustrate the 
general effect of loss of henn-1. C) ALG-3/ALG-4 class 26G RNA Taqman assays 
specifically detect ERI-1-dependent small RNAs. ALG-3/ALG-4 class 26G RNA and 
miRNA levels were assayed in eri-1(mg366); him-8(e1489) mutant male biological 
duplicates. Fold levels relative to wild-type male are plotted. D) miRNAs are generally 
unaffected in the henn-1(tm4477) mutant. miRNA levels were assayed by Taqman 
qPCR in wild-type and henn-1(tm4477) mutant animals at the developmental time 
points assessed in A. Standard deviation is shown for biological triplicates. B) miRNAs 
are not generally depleted in henn-1(tm4477) mutant relative to wild-type animals. 
Abundance in henn-1(tm4477) mutant relative to wild-type was calculated for the 
miRNAs shown in D) and the average was plotted for each time point to illustrate the 
general effect of loss of henn-1. 
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Figure 2.S10: The henn-1(tm4477) Mutant Does Not Exhibit Significant 
Upregulation of ERGO-1 Class 26G RNA Target mRNAs. A) ERGO-1 class 26G 
RNA target mRNAs show only sporadic HENN-1 dependence. Data is summarized in 
Figure 2.5C. Levels of eight ERGO-1 class 26G RNA targets were assayed across 
development of wild-type and henn-1(tm4477) mutant animals at 25°C and normalized 
to mRNA levels of eft-2, an abundantly expressed housekeeping gene. Standard 
deviation is shown for biological triplicates. B) Non-target mRNAs do not show 
upregulation in the henn-1(tm4477) mutant relative to wild-type. Levels of two non-
target mRNAs were assayed across development of wild-type and henn-1(tm4477) 
mutant animals at 25°C and normalized to eft-2. Standard deviation is shown for 
biological triplicates. E, embryo. 
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Figure 2.S11: The henn-1(tm4477) Mutant Exhibits a Mild but General Somatic Eri 
Phenotype. A) henn-1(tm4477) mutant animals are weakly somatic Eri to RNAi 
knockdown of dpy-13. Animals of the indicated genotypes were plated as L1 larvae on 
dpy-13 feeding RNAi diluted 1:2 or 1:5 (1/3 or 1/6 strength) with empty vector and 
grown for 90 hours at 20°C. eri-1(mg366) and rde-4(ne301) are included as controls. B) 
henn-1(tm4477) mutant animals are weakly somatic Eri to RNAi knockdown of lin-29. 
Animals of the indicated genotypes were plated as L1 larvae on lin-29 feeding RNAi 
diluted 1:2 (1/3 strength) or 1:5 (1/6 strength) with empty vector and grown for 70 hours 
at 20°C. Percent of animals reaching full size without exhibiting protruding vulva or 
bursting is plotted. N = 4 plates of >50 animals per strain. Mean and standard deviation 
are shown. 
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Figure 2.S12: The henn-1(tm4477) Mutant Exhibits a General Germline Rde 
Phenotype. A) henn-1(tm4477) mutant animals are Rde to RNAi knockdown of 
germline genes. Animals of the indicated genotypes were plated as L1 larvae on par-1, 
par-2, or pie-1 feeding RNAi diluted to the indicated strengths with empty vector and 
grown for 6 days at 20°C. Brood size averaged to the number of P0 L1s per plate is 
plotted. N = 4 plates of 4 P0 animals per strain. Mean and standard deviation are shown. 
*: P=0.0234; **: P=0.0028; ***: P=0.0151; ****: P=0.0098, two-tailed t-test. B) henn-
1(tm4477) mutant animals are weakly Rde to RNAi knockdown of germline 
development gene glp-1. Animals of the indicated genotypes were plated as L1 larvae 
on glp-1 feeding RNAi and grown for 70 hours at 20°C. Percent of animals failing to 
develop both arms of the germline is plotted. rde-4(ne301) is included as a control. N = 
4 plates of >50 animals per strain. Mean and standard deviation are shown. †: P=0.0424, 
two-tailed t-test. 
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Figure 2.S13: HENN-1 is Broadly Expressed in the Germline and Soma. A) henn-1 
mRNA is highly expressed throughout development. Non-normalized henn-1 mRNA 
levels are plotted relative to eft-2 mRNA levels. The expression profile of henn-1 is 
largely unaffected by normalization to eft-2 (as shown in Figure 2.7A). B) henn-1 is 
expressed in germline and soma. Levels of henn-1 mRNA were assayed in wild-type 
and glp-4(bn2) mutant animals grown for 56 hours at 25°C. C) HENN-1::GFP is broadly 
expressed in both germline and somatic tissues. HENN-1::GFP was detected in xkSi1; 
henn-1(tm4477) L4 larva but not wild-type control larva using anti-GFP mouse 
monoclonal antibody. D) ERGO-1 and HENN-1::GFP are generally abundant in early 
embryo; specificity of anti-ERGO-1 antibody in embryo is shown on right. E) ERGO-1 
shows cytoplasmic enrichment in the hermaphrodite proximal germline. Extruded 
gonads of xkSi1; henn-1(tm4477) adult hermaphrodite were stained with anti-GFP and 
anti-HENN-1 antibodies. Staining of ergo-1(tm1860) mutant demonstrates specificity of 
anti-ERGO-1 antibody (right). F) GFP::ALG-3 expression overlaps with that of HENN-1 
(inset: residual bodies). Extruded gonads of gfp::alg-3 transgenic adult males were 
stained with anti-GFP and anti-HENN-1 antibodies. E, embryo. 
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Figure 2.S14: Comparison of C. elegans Argonautes. A) Phylogram of human, fly, 
and worm Argonautes shows divergence of CeERGO-1, CeRDE-1, and DmAgo2 
relative to other members of their clades. Multiple sequence alignment of the longest 
annotated RefSeq protein sequences was performed using ClustalW with default 
parameters and visualized using Phylodendron (version 0.8d; 
http://www.es.embnet.org/Doc/phylodendron/). Scale, 0.1: 0.1 substitutions per site. B) 
Only Piwi clade Argonautes bear the characteristic PAZ domain insertion. Multiple 
sequence alignment of select Argonautes was performed using ClustalW with default 
parameters and cropped to show the context of the PAZ domain insertion between 
strands β6 and β7 as annotated by Tian et al. [69]. For each Argonaute, methylation 
status (MET) of associated small RNAs is indicated at right (Yes, methylated; No, not 
methylated). Sources: HsAGO1, [68,69] and by analogy to mouse [31]; DmAgo1, [19]; 
CeALG-1, [19]; CeALG-3, this study; HsPIWIL1, [69] and by analogy to mouse [30,31]; 
DmPiwi, [31,32]; CePRG-1, [27] and this study, DmAgo2, [9,22]; CeERGO-1, [27,42] 
and this study. 
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Table 2.S1: Oligonucleotides for Northern Blot Analysis. Oligonucleotides 
corresponding to the antisense sequences of small RNAs were synthesized by 
Integrated DNA Technologies and used for small RNA detection by northern blot. 
 
Small RNA target Probe sequence 
cel-miR-1 5’ TACATACTTCTTTACATTCCA /3StarFire/ 3’ 
21UR-845 5’ TTCGAGTTCTTGCTTTCCTGA /3StarFire/ 3’ 
21UR-4292 5’ CCATTCTTTGTCACCCTCGTA /3StarFire/ 3’ 
21UR-4748 5’ TAGCCAGTACTCTACGTTGTA /3StarFire/ 3’ 
21UR-5941 5’ ATTAACCGTTCGTGCCCCGAA /3StarFire/ 3’ 
26G-O1 5' TTGAAAATAATCTACCGTTTCTGAGC /3StarFire/ 3' 
26G-O3 5' AAAAGTATCCGACTTTCGAGTTTGTC /3StarFire/ 3' 
26G-O7 5’ TTCCACGATCAGAAGGGATGTCACTC /3StarFire/ 3’ 
26G-O8 5’ TGCTGCGAAAACTGTGGATTTCCTAC /3StarFire/ 3’ 
26G-S5 5' TACCATGTCGCTCACTGCTGATCCAC /3StarFire/ 3' 
26G-S7 5' CGATGATCATATTCTACTTCATTTTC /3StarFire/ 3' 
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Table 2.S2: Small RNA Sequences for Taqman Probe Design. Sequences of the 
indicated small RNAs were submitted to Applied Biosystems for Taqman small RNA 
probe design and synthesis. 
 
Small RNA Sequence (5’ to 3’) 
let-7 TGAGGTAGTAGGTTGTATAGTT 
miR-1 TGGAATGTAAAGAAGTATGTA 
miR-124 TAAGGCACGCGGTGAATGCCA 
21UR-845 TCAGGAAAGCAAGAACTCGAA 
21UR-1063 TGAGCGCATTTGTATACACTG 
21UR-1267 TAGGAACGAAATGAACAAAAT 
21UR-1343 TGAAGGAAGAGTACGAAACTT 
21UR-1832 TTTAACAAATGACGGTAAATC 
21UR-1838 TTGTTCTTCGTTCGGTCCAAA 
21UR-1848 TAAAGGCAGAATTTTATCAAC 
21UR-3129 TGTATGTAAAACTTTACGGCA 
21UR-5191 TGTAAAAAGTTTTTTGATGTA 
22G targeting Tc3 GAATCAGAACCAGTCTGGAGAT 
22G targeting E01G4.7 GAGTGACATCCCTTCTGATCGT 
26G-O1 GCTCAGAAACGGTAGATTATTTTCAA 
26G-O3 GACAAACTCGAAAGTCGGATACTTTT 
26G-O4 GAGGGGATAAGAGCTCGTCCGATGGC 
26G-O5 GATGGGAATGCAGAAGAAAAGAGGGG 
26G-O6 GTAGAAGGATTCATCTGGCATTTCAT 
26G-O7 GAGTGACATCCCTTCTGATCGTGGAA 
26G-O8 GATGAATCGTCGATAGAAAGACAAAC 
26G-O9 GTAGGAAATCCACAGTTTTCGCAGCA 
26G-S1 GCTATGGAGGACGAGAATACATAATT 
26G-S5 GTGGATCAGCAGTGAGCGACATGGTA 
26G-S6 GACTCTTCGACTTCGGCATTTGCGGA 
26G-S7 GAAGAACGAAAATTTGAAGATGTATA 
26G-S8 GAAAATGAAGTAGAATATGATCATCG 
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Table 2.S3: Primers for RT-qPCR. RT-qPCR primers for detection of the indicated 
gene targets were synthesized by Integrated DNA Technologies. 
 
Gene target Forward (5’ to 3’) Reverse (5’ to 3’) 
act-1 CCAGGAATTGCTGATCGTATGCAGAA TGGAGAGGGAAGCGAGGATAGA 
C40A11.10 AATGGCTCCTTGAAAAGATCG TACATTTCCGCCACGTTGAAA 
E01G4.7 GCACAAGGTTTCGTTCTTGGTG AGTGACATCCCTTCTGATCG 
eft-2 TGTGTTTCCGGAGTGTGTGT CCATCGTCGTCTCCGTAAGT 
F39E9.7 CCCAGTGGCCCAATTAAACG GCACAAGGTTTCGTTCTTGGTG 
F55C9.5 ACCATTGGAGCACGTAAATCAA GGTCCTAATAATAAAGTTGCGTCG 
fbxa-65 ACTTACAAGGATCAAGAAAAGCG CCTTGACCGCTATTCCGAGAAA 
fbxb-37 CATAAGTCCTGGAAGCCATACTCC ATCTTTCGATACGATGTATGTTCG 
K02E2.6 CAGTGGTACAAGTGGGAGTAAACG AATTGGCAAGTAACTGATTCCG 
rem-1 GGAAGAGGGATGTGTTCAACG  TTCCAGTGCTGATGCGATCATA 
ssp-16 GTCATCAAACAACAATGAGTACCG GCTCCAGCAGTGCGAGTGAT 
T05E12.8 TTCCATTTGAGGATTTTGCTACG ATTATTTGGATGGCAGCCGATG 
Tc3 GAGCGTTCACGGAGAAGAAG AATAGTCGCGGGTTGAGTTG 
Y82E9BR.20 CTCCCGCTTTCTTGATGTATTG AGTCCGAACTCATCCAAAGCAG 

 
 
  



 140 

REFERENCES 
 
1. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 

encodes small RNAs with antisense complementarity to lin-14. Cell 75: 843-854. 
2. Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the 

heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. 
elegans. Cell 75: 855-862. 

3. Kim Y-K, Heo I, Kim VN (2010) Modifications of small RNAs and their associated 
proteins. Cell 143: 703-709. 

4. Kawahara Y, Zinshteyn B, Sethupathy P, Iizasa H, Hatzigeorgiou AG, et al. (2007) 
Redirection of silencing targets by adenosine-to-inosine editing of miRNAs. 
Science 315: 1137-1140. 

5. Kawahara Y, Megraw M, Kreider E, Iizasa H, Valente L, et al. (2008) Frequency and 
fate of microRNA editing in human brain. Nucleic Acids Research 36: 5270-5280. 

6. Kawahara Y, Zinshteyn B, Chendrimada TP, Shiekhattar R, Nishikura K (2007) RNA 
editing of the microRNA-151 precursor blocks cleavage by the Dicer-TRBP 
complex. EMBO Rep 8: 763-769. 

7. Yang W, Chendrimada TP, Wang Q, Higuchi M, Seeburg PH, et al. (2006) 
Modulation of microRNA processing and expression through RNA editing by 
ADAR deaminases. Nat Struct Mol Biol 13: 13-21. 

8. Hundley HA, Bass BL (2010) ADAR editing in double-stranded UTRs and other 
noncoding RNA sequences. Trends in biochemical sciences 35: 377-383. 

9. Kawamura Y, Saito K, Kin T, Ono Y, Asai K, et al. (2008) Drosophila endogenous 
small RNAs bind to Argonaute 2 in somatic cells. Nature 453: 793-797. 

10. Nejepinska J, Malik R, Filkowski J, Flemr M, Filipowicz W, et al. (2012) dsRNA 
expression in the mouse elicits RNAi in oocytes and low adenosine deamination 
in somatic cells. Nucleic Acids Research 40: 399-413. 

11. Shen B, Goodman HM (2004) Uridine addition after microRNA-directed cleavage. 
Science 306: 997. 

12. van Wolfswinkel JC, Claycomb JM, Batista PJ, Mello CC, Berezikov E, et al. (2009) 
CDE-1 affects chromosome segregation through uridylation of CSR-1-bound 
siRNAs. Cell 139: 135-148. 

13. Ameres SL, Horwich MD, Hung J-H, Xu J, Ghildiyal M, et al. (2010) Target RNA-
directed trimming and tailing of small silencing RNAs. Science 328: 1534-1539. 

14. Ibrahim F, Rymarquis LA, Kim EJ, Becker J, Balassa E, et al. (2010) Uridylation of 
mature miRNAs and siRNAs by the MUT68 nucleotidyltransferase promotes their 
degradation in Chlamydomonas. Proc Natl Acad Sci U S A 107: 3906-3911. 

15. Kamminga LM, Luteijn MJ, den Broeder MJ, Redl S, Kaaij LJ, et al. (2010) Hen1 is 
required for oocyte development and piRNA stability in zebrafish. EMBO J 29: 
3688-3700. 

16. Li J, Yang Z, Yu B, Liu J, Chen X (2005) Methylation protects miRNAs and siRNAs 
from a 3'-end uridylation activity in Arabidopsis. Curr Biol 15: 1501-1507. 

17. Tkaczuk KL, Obarska A, Bujnicki JM (2006) Molecular phylogenetics and 
comparative modeling of HEN1, a methyltransferase involved in plant microRNA 
biogenesis. BMC Evol Biol 6: 6. 



 141 

18. Park W, Li J, Song R, Messing J, Chen X (2002) CARPEL FACTORY, a Dicer 
homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis 
thaliana. Curr Biol 12: 1484-1495. 

19. Yu B, Yang Z, Li J, Minakhina S, Yang M, et al. (2005) Methylation as a crucial step 
in plant microRNA biogenesis. Science 307: 932-935. 

20. Yang Z, Ebright YW, Yu B, Chen X (2006) HEN1 recognizes 21-24 nt small RNA 
duplexes and deposits a methyl group onto the 2' OH of the 3' terminal 
nucleotide. Nucleic Acids Res 34: 667-675. 

21. Vilkaitis G, Plotnikova A, Klimasauskas S (2010) Kinetic and functional analysis of 
the small RNA methyltransferase HEN1: the catalytic domain is essential for 
preferential modification of duplex RNA. RNA 16: 1935-1942. 

22. Horwich MD, Li C, Matranga C, Vagin V, Farley G, et al. (2007) The Drosophila 
RNA methyltransferase, DmHen1, modifies germline piRNAs and single-stranded 
siRNAs in RISC. Curr Biol 17: 1265-1272. 

23. Saito K, Sakaguchi Y, Suzuki T, Siomi H, Siomi MC (2007) Pimet, the Drosophila 
homolog of HEN1, mediates 2'-O-methylation of Piwi- interacting RNAs at their 3' 
ends. Genes Dev 21: 1603-1608. 

24. Kurth HM, Mochizuki K (2009) 2'-O-methylation stabilizes Piwi-associated small 
RNAs and ensures DNA elimination in Tetrahymena. RNA 15: 675-685. 

25. Brennecke J, Aravin AA, Stark A, Dus M, Kellis M, et al. (2007) Discrete small RNA-
generating loci as master regulators of transposon activity in Drosophila. Cell 
128: 1089-1103. 

26. Houwing S, Kamminga LM, Berezikov E, Cronembold D, Girard A, et al. (2007) A 
role for Piwi and piRNAs in germ cell maintenance and transposon silencing in 
Zebrafish. Cell 129: 69-82. 

27. Ruby JG, Jan C, Player C, Axtell MJ, Lee W, et al. (2006) Large-scale sequencing 
reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. 
elegans. Cell 127: 1193-1207. 

28. Girard A, Sachidanandam R, Hannon GJ, Carmell MA (2006) A germline-specific 
class of small RNAs binds mammalian Piwi proteins. Nature 442: 199-202. 

29. Lau NC, Seto AG, Kim J, Kuramochi-Miyagawa S, Nakano T, et al. (2006) 
Characterization of the piRNA complex from rat testes. Science 313: 363-367. 

30. Kirino Y, Mourelatos Z (2007) Mouse Piwi-interacting RNAs are 2'-O-methylated at 
their 3' termini. Nat Struct Mol Biol 14: 347-348. 

31. Ohara T, Sakaguchi Y, Suzuki T, Ueda H, Miyauchi K (2007) The 3' termini of 
mouse Piwi-interacting RNAs are 2'-O-methylated. Nat Struct Mol Biol 14: 349-
350. 

32. Vagin VV, Sigova A, Li C, Seitz H, Gvozdev V, et al. (2006) A distinct small RNA 
pathway silences selfish genetic elements in the germline. Science 313: 320-324. 

33. Kirino Y, Mourelatos Z (2007) The mouse homolog of HEN1 is a potential methylase 
for Piwi-interacting RNAs. RNA 13: 1397-1401. 

34. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, et al. (2000) The 21-
nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. 
Nature 403: 901-906. 



 142 

35. Batista PJ, Ruby JG, Claycomb JM, Chiang R, Fahlgren N, et al. (2008) PRG-1 and 
21U-RNAs interact to form the piRNA complex required for fertility in C. elegans. 
Mol Cell 31: 67-78. 

36. Das PP, Bagijn MP, Goldstein LD, Woolford JR, Lehrbach NJ, et al. (2008) Piwi and 
piRNAs act upstream of an endogenous siRNA pathway to suppress Tc3 
transposon mobility in the Caenorhabditis elegans germline. Mol Cell 31: 79-90. 

37. Wang G, Reinke V (2008) A C. elegans Piwi, PRG-1, regulates 21U-RNAs during 
spermatogenesis. Current biology : CB 18: 861-867. 

38. Cox DN, Chao A, Baker J, Chang L, Qiao D, et al. (1998) A novel class of 
evolutionarily conserved genes defined by piwi are essential for stem cell self-
renewal. Genes & development 12: 3715-3727. 

39. Ambros V, Lee RC, Lavanway A, Williams PT, Jewell D (2003) MicroRNAs and 
other tiny endogenous RNAs in C. elegans. Curr Biol 13: 807-818. 

40. Han T, Manoharan AP, Harkins TT, Bouffard P, Fitzpatrick C, et al. (2009) 26G 
endo-siRNAs regulate spermatogenic and zygotic gene expression in 
Caenorhabditis elegans. Proc Natl Acad Sci U S A 106: 18674-18679. 

41. Conine CC, Batista PJ, Gu W, Claycomb JM, Chaves DA, et al. (2010) Argonautes 
ALG-3 and ALG-4 are required for spermatogenesis-specific 26G-RNAs and 
thermotolerant sperm in Caenorhabditis elegans. Proc Natl Acad Sci U S A 107: 
3588-3593. 

42. Vasale JJ, Gu W, Thivierge C, Batista PJ, Claycomb JM, et al. (2010) Sequential 
rounds of RNA-dependent RNA transcription drive endogenous small-RNA 
biogenesis in the ERGO-1/Argonaute pathway. Proc Natl Acad Sci U S A 107: 
3582-3587. 

43. Yigit E, Batista PJ, Bei Y, Pang KM, Chen CC, et al. (2006) Analysis of the C. 
elegans Argonaute family reveals that distinct Argonautes act sequentially during 
RNAi. Cell 127: 747-757. 

44. Zhang C, Montgomery TA, Gabel HW, Fischer SE, Phillips CM, et al. (2011) mut-16 
and other mutator class genes modulate 22G and 26G siRNA pathways in 
Caenorhabditis elegans. Proceedings of the National Academy of Sciences of 
the United States of America 108: 1201-1208. 

45. Gu W, Shirayama M, Conte D, Jr., Vasale J, Batista PJ, et al. (2009) Distinct 
argonaute-mediated 22G-RNA pathways direct genome surveillance in the C. 
elegans germline. Mol Cell 36: 231-244. 

46. Sijen T, Steiner FA, Thijssen KL, Plasterk RHA (2007) Secondary siRNAs result 
from unprimed RNA synthesis and form a distinct class. Science 315: 244-247. 

47. Pak J, Fire A (2007) Distinct populations of primary and secondary effectors during 
RNAi in C. elegans. Science 315: 241-244. 

48. Okamura K, Chung WJ, Ruby JG, Guo H, Bartel DP, et al. (2008) The Drosophila 
hairpin RNA pathway generates endogenous short interfering RNAs. Nature 453: 
803-806. 

49. Huang Y, Ji L, Huang Q, Vassylyev DG, Chen X, et al. (2009) Structural insights into 
mechanisms of the small RNA methyltransferase HEN1. Nature 461: 823-827. 

50. Ameres SL, Hung J-H, Xu J, Weng Z, Zamore PD (2011) Target RNA-directed 
tailing and trimming purifies the sorting of endo-siRNAs between the two 
Drosophila Argonaute proteins. RNA 17: 54-63. 



 143 

51. Yang Z, Vilkaitis G, Yu B, Klimasauskas S, Chen X (2007) Approaches for studying 
microRNA and small interfering RNA methylation in vitro and in vivo. Meth 
Enzymol 427: 139-154. 

52. Frokjaer-Jensen C, Davis MW, Hopkins CE, Newman BJ, Thummel JM, et al. 
(2008) Single-copy insertion of transgenes in Caenorhabditis elegans. Nat Genet 
40: 1375-1383. 

53. Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, et al. (2005) Real-time 
quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33: e179. 

54. Montgomery TA, Rim Y-S, Zhang C, Dowen RH, Phillips CM, et al. (2012) PIWI 
associated siRNAs and piRNAs specifically require the Caenorhabditis elegans 
HEN1 ortholog henn-1. PLoS Genetics. 

55. Duchaine TF, Wohlschlegel JA, Kennedy S, Bei Y, Conte D, Jr., et al. (2006) 
Functional proteomics reveals the biochemical niche of C. elegans DCR-1 in 
multiple small-RNA-mediated pathways. Cell 124: 343-354. 

56. Lee RC, Hammell CM, Ambros V (2006) Interacting endogenous and exogenous 
RNAi pathways in Caenorhabditis elegans. RNA 12: 589-597. 

57. Tabara H, Hill RJ, Mello CC, Priess JR, Kohara Y (1999) pos-1 encodes a 
cytoplasmic zinc-finger protein essential for germline specification in C. elegans. 
Development 126: 1-11. 

58. Reinke V, Gil IS, Ward S, Kazmer K (2004) Genome-wide germline-enriched and 
sex-biased expression profiles in Caenorhabditis elegans. Development 131: 
311-323. 

59. Gent JI, Lamm AT, Pavelec DM, Maniar JM, Parameswaran P, et al. (2010) Distinct 
phases of siRNA synthesis in an endogenous RNAi pathway in C. elegans soma. 
Molecular Cell 37: 679-689. 

60. Kawaoka S, Izumi N, Katsuma S, Tomari Y (2011) 3' end formation of PIWI-
interacting RNAs in vitro. Molecular Cell 43: 1015-1022. 

61. Forstemann K, Horwich MD, Wee L, Tomari Y, Zamore PD (2007) Drosophila 
microRNAs are sorted into functionally distinct argonaute complexes after 
production by dicer-1. Cell 130: 287-297. 

62. Kamminga LM, van Wolfswinkel J, Luteijn MJ, Kaaij LJ, Bagjin MP, et al. (2012) 
Differential impact of the Hen1 homolog HENN-1 on 21U and 26G RNAs in the 
germline of Caenorhabditis elegans. PLoS Genetics. 

63. Pelisson A, Sarot E, Payen-Groschene G, Bucheton A (2007) A novel repeat-
associated small interfering RNA-mediated silencing pathway downregulates 
complementary sense gypsy transcripts in somatic cells of the Drosophila ovary. 
Journal of Virology 81: 1951-1960. 

64. Cerutti L, Mian N, Bateman A (2000) Domains in gene silencing and cell 
differentiation proteins: the novel PAZ domain and redefinition of the Piwi domain. 
Trends Biochem Sci 25: 481. 

65. Liu J, Carmell MA, Rivas FV, Marsden CG, Thomson JM, et al. (2004) Argonaute2 
is the catalytic engine of mammalian RNAi. Science 305: 1437-1441. 

66. Song JJ, Smith SK, Hannon GJ, Joshua-Tor L (2004) Crystal structure of Argonaute 
and its implications for RISC slicer activity. Science 305: 1434-1437. 

67. Lingel A, Simon B, Izaurralde E, Sattler M (2004) Nucleic acid 3'-end recognition by 
the Argonaute2 PAZ domain. Nat Struct Mol Biol 11: 576-577. 



 144 

68. Ma JB, Ye K, Patel DJ (2004) Structural basis for overhang-specific small interfering 
RNA recognition by the PAZ domain. Nature 429: 318-322. 

69. Tian Y, Simanshu DK, Ma JB, Patel DJ (2011) Structural basis for piRNA 2'-O-
methylated 3'-end recognition by Piwi PAZ (Piwi/Argonaute/Zwille) domains. 
Proceedings of the National Academy of Sciences 108: 903. 

70. Boland A, Huntzinger E, Schmidt S, Izaurralde E, Weichenrieder O (2011) Crystal 
structure of the MID-PIWI lobe of a eukaryotic Argonaute protein. Proceedings of 
the National Academy of Sciences of the United States of America 108: 10466-
10471. 

71. L'Hernault SW, Roberts TM (1995) Cell biology of nematode sperm. Methods in cell 
biology 48: 273-301. 

72. Pall GS, Hamilton AJ (2008) Improved northern blot method for enhanced detection 
of small RNA. Nature protocols 3: 1077-1084. 

73. Kamath RS, Fraser AG, Dong Y, Poulin G, Durbin R, et al. (2003) Systematic 
functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 
421: 231-237. 

74. Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, et al. (2005) Real-time 
quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Research 33: 
e179. 

75. Nolan T, Hands RE, Bustin SA (2006) Quantification of mRNA using real-time RT-
PCR. Nature protocols 1: 1559-1582. 

76. Allen MA, Hillier LW, Waterston RH, Blumenthal T (2011) A global analysis of C. 
elegans trans-splicing. Genome research 21: 255-264. 

77. Crittenden S, Kimble J (2009) Preparation and immunolabeling of Caenorhabditis 
elegans. Cold Spring Harbor protocols 2009: pdb prot5216. 

78. Girard LR, Fiedler TJ, Harris TW, Carvalho F, Antoshechkin I, et al. (2007) 
WormBook: the online review of Caenorhabditis elegans biology. Nucleic Acids 
Research 35: D472-475. 

79. Notredame C, Higgins DG, Heringa J (2000) T-Coffee: A novel method for fast and 
accurate multiple sequence alignment. Journal of molecular biology 302: 205-217. 

80. Poirot O, O'Toole E, Notredame C (2003) Tcoffee@igs: A web server for computing, 
evaluating and combining multiple sequence alignments. Nucleic Acids Research 
31: 3503-3506. 

81. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, et al. (2007) 
Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948. 

82. Goujon M, McWilliam H, Li W, Valentin F, Squizzato S, et al. (2010) A new 
bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Research 
38: W695-699. 

 

 

 



 145 

CHAPTER THREE: A conserved upstream motif orchestrates autonomous, 
germline-enriched expression of Caenorhabditis elegans piRNAs 
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ABSTRACT: Piwi-interacting RNAs (piRNAs) fulfill a critical, conserved role in 

defending the genome against foreign genetic elements. In many organisms, piRNAs 



 146 

appear to be derived from processing of a long, polycistronic RNA precursor. Here, we 

establish that each Caenorhabditis elegans piRNA represents a tiny, autonomous 

transcriptional unit. Remarkably, the minimal C. elegans piRNA cassette requires only a 

21 nucleotide (nt) piRNA sequence and an ~50 nt upstream motif with limited genomic 

context for expression. Combining computational analyses with a novel, in vivo 

transgenic system, we demonstrate that this upstream motif is necessary for 

independent expression of a germline-enriched, Piwi-dependent piRNA. We further 

show that a single nucleotide position within this motif directs differential germline 

enrichment. Accordingly, over 70% of C. elegans piRNAs are selectively expressed in 

male or female germline, and comparison of the genes they target suggests that these 

two populations have evolved independently. Together, our results indicate that C. 

elegans piRNA upstream motifs act as independent promoters to specify which 

sequences are expressed as piRNAs, how abundantly they are expressed, and in what 

germline. As the genome encodes well over 15,000 unique piRNA sequences, our study 

reveals that the number of transcriptional units encoding piRNAs rivals the number of 

mRNA coding genes in the C. elegans genome. 
 
 
AUTHOR SUMMARY: Across the animal kingdom, Piwi-interacting small RNAs 

(piRNAs) protect genome integrity and promote fertility. While the functions of piRNAs 

are well-characterized, far less is known about how they are generated and how their 

expression is regulated. In the Caenorhabditis elegans genome, a conserved sequence 

motif lies upstream of many piRNA loci and appears to regulate their expression. We 

combined computational and experimental approaches to investigate the role of this 

motif in the expression of C. elegans piRNAs. We discovered that >70% of piRNAs are 

differentially enriched in male versus female germline, and these male and female 

piRNAs show different upstream motifs. Using a transgenic system for expressing 

synthetic piRNAs in vivo, we demonstrate that variation of a single nucleotide within this 

motif influences piRNA germline enrichment. We further show that the conserved motif 

is capable of driving piRNA expression in genomic isolation. Accordingly, the genomic 

distribution of these motifs determines which sequences are expressed as piRNAs in C. 
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elegans. Our results suggest that each C. elegans piRNA represents an independent 

transcript whose sequence, abundance, and germline enrichment are encoded by a 

variant upstream motif, defining a novel modality for expression of piRNAs. 

 

 

INTRODUCTION 
 

piRNAs and Piwi clade Argonautes arose in the primordial metazoan ancestor [1] and 

are generally restricted to the germline, where they act in an RNA-induced silencing 

complex (RISC) to silence foreign genetic elements. From protozoa to mammals, loss of 

Piwi proteins, and consequently piRNAs, results in abnormal fertility phenotypes or 

sterility, revealing their highly conserved and essential role in animal reproduction [2-8]. 

piRNAs are incredibly diverse, with tens of thousands of unique sequences expressed 

in any single organism. While piRNAs in many organisms map to large, broadly syntenic 

genomic clusters, the sequences are not conserved among even closely related species, 

and no unifying sequence features have been identified beyond a bias among primary 

piRNAs for a 5’ uridine [9-15]. 

 

The mechanisms of de novo piRNA biogenesis remain elusive. In fly and mouse, 

primary piRNAs appear to be processed from long, single-stranded RNA precursors 

[9,10,14]. This long transcript is cleaved by the endoribonuclease Zucchini with little or 

no sequence specificity to generate candidate piRNA 5’ ends [16,17], which are likely 

subsequently purified according to the binding preferences of the Piwi proteins that bind 

primary piRNAs [18]. Silkworm data suggest that the 3’ ends of these piRNA precursors 

are then trimmed by a 3’ to 5’ exonuclease until the 3’ end is sufficiently short for 

anchoring by Piwi to protect against further trimming [18]. The 3’ end is then methylated 

to prevent degradation [19-23]. While recent studies have shed light on the biogenesis 

of primary piRNAs in many animal models, little is known in any organism about how 

primary piRNA expression is regulated or how specific sequences are designated as 

piRNAs. 

 



 148 

21U RNAs, a class of germline-enriched small RNAs, represent the piRNAs of 

Caenorhabditis elegans. They are terminally methylated [24-26], show a 5’ uridine bias 

[12], and are dependent upon and bound by the Piwi Argonaute PRG-1 [27,28], which is 

required for normal fertility [3]. Yet C. elegans piRNAs exhibit some unusual features. 

While the vast majority of 21U RNAs map to two large genomic clusters on 

chromosome IV, the loci do not exhibit prominent strand biases [12]. The 21U RNAs 

also do not appear to play a prominent role in silencing transposable elements, a main 

function of mouse and fly piRNAs, nor do they engage a ping-pong amplification 

mechanism [27,28]. Rather, PRG-1 and the 21U RNAs target aberrant and coding 

transcripts broadly via imperfect complementarity, triggering production of secondary 

endogenous siRNAs [27-31]. These 21U RNA-dependent 22G RNAs can induce 

chromatin changes to establish dominant, heritable target silencing [32-34]. 21U RNAs 

evolve rapidly, presumably constrained only by selection against sequences that silence 

mRNAs; thus, mismatch-tolerant 21U RNAs constitute an epigenetic memory of self 

versus non-self. Finally, a conserved motif lies upstream of 21U RNA genomic loci [12]. 

This stretch of sequence, which includes an eight-nucleotide (nt) core motif 

approximately 40 nt upstream of the 21U RNA locus, is conserved across divergent 

nematodes [12,13]. Recently, Cecere et al. found that this motif is bound by forkhead 

family transcription factors and that deletion of the core motif abrogates 21U RNA 

expression [35], but it is still unknown how 21U RNA sequences are defined and how 

their expression is regulated. 

 

Here, we demonstrate that piRNAs are expressed autonomously in C. elegans. 

Combining computational and transgenic approaches, we find that the conserved core 

motif defines the piRNA transcriptional cassette, specifying expression of 21U RNAs 

from genomic thymidines situated at an optimal distance downstream to determine 

which genomic sequences are expressed as C. elegans piRNAs. Core motifs also 

encode information dictating germline-specific expression of 21U RNAs. We show that 

more than 70% of C. elegans piRNAs are preferentially enriched in male or female 

germline. Unexpectedly, this germline enrichment appears to be enforced by a single 

nucleotide position within the core motif. We demonstrate autonomous expression of 
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synthetic 21U RNAs from multiple minimal transgenic cassettes consisting only of the 8 

nt core motif, the ~40 nt intervening genomic spacer, the 21U RNA sequence, and ~50-

100 nt of flanking genomic context. Finally, we use single-copy transgenes integrated in 

genomic isolation to show that the clustered organization of endogenous piRNA loci is 

entirely dispensable for robust piRNA expression. Together, our results suggest that 

each 21U RNA locus encodes all of the information necessary for driving independent, 

autonomous transcription from more than 15,000 unique piRNA loci in C. elegans. 

 

 

RESULTS 
 
A majority of 21U RNAs are male or female germline-enriched 

 

To investigate the mechanisms regulating piRNA expression, we first identified 21U 

RNA subclasses by performing a meta-analysis of over 50 million reads from published 

small RNA deep sequencing datasets [27,36-42] (Table 3.S1). Using the pipeline shown 

in Figure 3.1A, we determined that a majority of the 13,711 21U RNAs represented in 

our composite dataset show differential germline enrichment, distinguishing 7,677 

(56.0%) unique male and 2,171 (15.8%) unique female germline-enriched 21U RNAs 

(hereafter, male and female 21U RNAs) (See Materials and Methods). The distribution 

of 21U RNA Enrichment scores is skewed toward the male (Figure 3.S1A), whereas 

randomly generated 21U RNA count data show no significant skewing (Binomial test, p 

= 0.245) and define a false discovery rate below 1% (Figure 3.S1B). To assess the 

reliability of the Enrichment score in classifying germline enrichment, we quantified the 

average relative abundance of every male 21U RNA between each pair of male and 

female libraries (Figure 3.S1C); the reciprocal calculation was performed for female 21U 

RNAs (Figure 3.S1D). On average, the abundance of male 21U RNAs is 6.8-fold higher 

in male libraries than female, whereas the abundance of female 21U RNAs is 2.4-fold 

higher in female libraries than male. Average abundance of 21U RNAs not classified as 

male or female (hereafter, non-enriched 21U RNAs) is approximately equal in male and 

female libraries (Figure 3.S1E). Taqman RT-qPCR of select 21U RNAs in fem-1(hc17) 



 150 

adult female versus him-8(e1489) or fog-2(q71) adult male animals shows segregation 

of 21U RNAs according to germline enrichment classification (Figure 3.1B,C), endorsing 

our computational discovery of germline-enriched piRNA subclasses in C. elegans. 
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Figure 3.1: Over 70% of 21U RNAs show distinct germline enrichment. (A) Pipeline 
for computational identification of male and female 21U RNAs. A majority of 21U RNAs 
are classified as male or female germline-enriched. Pie chart depicts classification as 
proportion of 13,711 21U RNAs analyzed. (B,C) Male 21U RNAs are more highly 
expressed in male animals, and female 21U RNAs are more highly expressed in female 
animals. Relative expression of representative 21U RNAs was assayed by Taqman RT-
qPCR in him-8(e1489) (B) and fog-2(q71) (C) male versus fem-1(hc17) female animals 
and normalized to non-enriched 21U RNA 21UR-1. Error bars: ±1 standard deviation 
(SD) of two biological replicates. AU: arbitrary units. 
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Male and female 21U RNAs show different expression profiles in embryo 
 
Our meta-analysis also revealed a subpopulation of 21U RNAs highly abundant in 

embryo. Comparison of the abundances of male and female 21U RNAs in mixed stage 

embryo sequencing libraries showed that female 21U RNAs were overrepresented in 

embryo relative to male. A higher proportion of unique female 21U RNAs were detected 

in embryo (χ2 test, p = 9.2e-45) (Figure 3.S2A,B). Furthermore, unique female 21U 

RNAs were on average 4.4-fold more abundant in embryo than unique male species 

(Welch’s t-test, p = 3.4e-148). The trend is corroborated by Taqman analysis showing 

depletion of male 21U RNAs and enrichment of female 21U RNAs in embryo (Figure 

3.S2C-E). These data suggest that female piRNAs are preferentially inherited into C. 

elegans embryo, consistent with previous observations in fly [43-45]. Parallel 

classification and embryonic enrichment analysis of 26G RNAs, germline-enriched 

primary endo-siRNAs, recapitulated previously observed inheritance patterns [38] and 

validated the ability of our pipeline to identify germline-enriched small RNA subclasses 

(Figure 3.S2F,G). 

 

 

Male 21U RNA targets reflect spermatogenic gonad restriction 
 

21U RNAs target transcripts with imperfect complementarity of up to three mismatches 

to trigger production of antisense 22G RNAs proximal to the targeting site [29,30,32,33]. 

The lax complementarity requirement for piRNA-mediated silencing predicts widespread 

targeting capacity. Compartmentalization of piRNA expression to the male and female 

germline may help to confer specificity. To investigate the biological significance of 

germline-enriched 21U RNA subclasses, we first examined whether male and female 

21U RNAs target distinct subsets of genes. We analyzed the overlap between their 

respective dependent 22G RNAs by identifying 22G RNAs that map antisense to within 

40 nt of 21U RNA target sites [30] (See Materials and Methods). Ignoring 22G RNAs 

detected in prg-1(n4357) deep sequencing datasets, as these are likely not 21U RNA-

dependent, we identified 11,377 (72.3%) unique 22G RNAs that are likely male 21U 
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RNA-dependent and 3,855 (24.5%) unique 22G RNAs that are likely female 21U RNA-

dependent (Figure 3.S3A). Only 494 (3.1%) unique 22G RNAs lie within 40 nt of both a 

male and female 21U RNA target site, precluding assignment to either category. This 

overlap is less than expected when 22G RNAs from random but similarly sized sets of 

21U RNAs are compared (χ2 test, p = 0.012). We then compared the 5,956 male and 

1,387 female 21U RNA targets identified in young adult [29] and gravid [30] animals, 

respectively. Overlap between targets (149 overlapping targets) is significantly lower 

compared to random sets of genes (294 overlapping and 6,756 non-overlapping targets; 

χ2 test, p = 7.7e-13) (Figure 3.S3B). 

 

Because targets of 21U RNAs are subject to transgenerational silencing [32-34], 21U 

RNAs are unlikely to evolve to target transcripts required in the germline. Similarly, male 

21U RNAs would not be expected to target transcripts required for spermatogenesis; 

however, temporal separation of the spermatogenic and oogenic gonads might permit 

evolution of male 21U RNAs capable of targeting transcripts required for oogenesis. We 

examined our data for evidence of this evolutionary signature. As comprehensive lists of 

genes required for spermatogenesis and oogenesis have yet to be assembled, we used 

as a proxy lists of transcripts identified by microarray studies as enriched during 

spermatogenesis (865 transcripts) or oogenesis (1,030) [46]. Comparing male 21U RNA 

targets to randomly generated gene lists, we found that male 21U RNA targets are 

indeed depleted of spermatogenesis transcripts (χ2 test, p = 0.044), but neither enriched 

nor depleted for oogenesis transcripts (χ2 test, p = 0.76) (Figure 3.S3C). Curiously, we 

do not observe the same signature for female 21U RNAs (Figure 3.S3D). Their targets 

are neither enriched nor depleted for spermatogenesis transcripts (χ2 test, p = 0.27), as 

expected, but female 21U RNA targets are significantly enriched for oogenesis 

transcripts (χ2 test, p = 0.0017). These differences between male and female 21U RNA 

targeting suggest that the evolutionary pressures acting on male and female 21U RNA 

sequences may differ (See Discussion). 

 

 

Male and female 21U RNAs have distinct core upstream motifs 
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To investigate how 21U RNA germline enrichment information is genetically encoded, 

we analyzed the genomic loci of the 13,387 21U RNAs that map uniquely to the 

genome. Comparison of male and female 21U RNA sequences identified no differences 

in content; therefore, we evaluated the 21U RNA upstream region. The 8 nt core motif, 

with consensus sequence CTGTTTCA, is separated from the 21U RNA locus by an 

A/T-rich spacer of ~35 to 42 nt [12]. Scanning the 60 nt upstream of each 21U RNA for 

the best conserved central GTTTC of the core motif, we found that 6,615 of 7,677 (88%) 

male 21U RNAs show a canonical, GTTTC-containing core motif, compared to only 

1,119 of 2,171 (54%) female 21U RNAs. While the length of the A/T-rich spacer does 

not differ between male and female 21U RNAs (Figure 3.2A), core motif sequence 

analysis revealed a striking difference: only the core motifs of male 21U RNAs are 

enriched for a 5’ cytidine. 5,765 of 7,677 (77%) male 21U RNAs are located 

downstream of canonical, GTTTC-containing core motifs with a 5’ cytidine, compared to 

only 443 of 2,171 (21%) female 21U RNAs (χ2 test, p = 7.9e-137) (Figure 3.2B). To 

examine whether this 5’ core motif position influences 21U RNA expression, we 

calculated the average abundance of male and female 21U RNAs grouped by 5’ core 

motif nt. Male 21U RNAs with 5’ cytidine core motifs are significantly more abundant 

than all other male 21U RNAs (Figure 3.2C, Welch’s t-test p-values in Table 3.S2), 

consistent with the previous observation that 21U RNAs whose core motifs better match 

the consensus sequence are more highly expressed [12]. No other subgroup differs 

significantly in abundance from all others among the male, female, and non-enriched 

21U RNAs (Figure 3.2C,D, Table 3.S2), suggesting that GTTTC-containing core motifs 

with a 5’ cytidine are overrepresented among male 21U RNAs and may drive male 

germline expression. 
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Figure 3.2: Variation in the core upstream motif correlates with 21U RNA germline 
enrichment. (A) Spacer lengths follow expected distribution for all enrichment 
classifications. Dotted lines: canonical spacer length range (35-42 nt). (B) Male, but not 
female, 21U RNA loci show enrichment for core motifs with 5’ cytidines. Significantly 
fewer female 21U RNAs exhibit a GTTTC-containing core motif than male. Top: 
Weblogo plots illustrate core motif differences. Bottom: Pie charts depict proportions of 
21U RNAs with GTTTC-containing core motifs indicating the 5’ nt (colors) or with no 
GTTTC-containing core motif (NM, no motif, dark grey). (C) Core motif variations 
correlate with male 21U RNA abundance in 5'-monophosphate-dependent libraries. 
Average 21U RNA abundance was calculated based on the 5’ nt of the core motif. Error 
bars: ±1 standard error of the mean (SEM). (D) Core motif variations do not correlate 
with female 21U RNA abundance in 5'-monophosphate-dependent libraries. Average 
21U RNA abundance was calculated as in (C). 
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A transgenic synthetic 21U RNA recapitulates features of endogenous 21U RNAs  
 

To explore the significance of variation at the 21U RNA upstream motif, we developed a 

transgenic system to express synthetic 21U RNAs from high-copy, integrated arrays in 

vivo (Figure 3.3A). 2-3 kilobase regions of genomic sequence from a chromosome IV 

piRNA cluster were cloned, and a central 21U RNA (male 21U RNA ♂21UR-1258 or 

female 21U RNA ♀21UR-2502) was mutated to a unique synthetic 21 nt sequence 

(21UR-synth) to distinguish transgenic from endogenous expression. The sequences 

were then further mutated to generate the panel of transgenes shown in Table 3.1. 

Transgenes are named for the endogenous 21U RNA replaced by 21UR-synth, with 

prefixes to indicate transgene type (e.g., ♀Tg2502 represents the otherwise wild-type 

transgene encoding 21UR-synth in place of ♀21UR-2502). These transgenes are 

carried by the vector pCFJ178 [47], which also expresses the C. briggsae unc-119 gene 

(Figure 3.S4A), enabling gross normalization for variable array expression. 

 

To validate our transgenic system, we examined whether 21UR-synth recapitulates all 

of the known features and genetic sensitivities of endogenous 21U RNAs. 21U RNAs 

are 2’-O-methylated at the 3’ terminus by the conserved methyltransferase HENN-1 [24-

26]. Northern blot for 21UR-synth in transgenic strains identified a 21 nt species that is 

terminally methylated in a henn-1-dependent manner (Figure 3.3B). Robust, specific 

detection of the 3’ terminus by Taqman RT-qPCR [48] confirms that this species 

corresponds to 21UR-synth (Figure 3.3C). Levels of endogenous 21U RNAs ♂21UR-

1258 and ♀21UR-2502 are largely unaffected by expression of the transgenes (Figure 

3.S4B). Endogenous 21U RNAs are generated in the germline and require PRG-1 for 

accumulation [27,28]. Accordingly, 21UR-synth is highly depleted by loss of prg-1 and in 

the glp-4(bn2) germline-deficient mutant (Figure 3.3C-E). 21UR-synth and endogenous 

21U RNAs are also specifically detected in immunoprecipitated PRG-1 complexes, 

while a microRNA control is not (Figure 3.3F,G, Figure 3.S5). To rule out the unlikely 

possibility that transgenic products corresponding to the 21UR-synth sequence might be 

generated by an alternative, Dicer-dependent mechanism, we assayed 21UR-synth 

accumulation in a null mutant of rde-4. This gene encodes a dsRNA binding protein that 
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is a key cofactor of Dicer in siRNA biogenesis [49-51], but dispensable for 21U RNA 

production (Figure 3.S4B). Loss of rde-4 does not impair 21UR-synth expression 

(Figure 3.3C-E), suggesting that 21UR-synth does not represent an siRNA generated 

from the high-copy transgenic array. 

 

Finally, we examined whether the core motif is required for 21UR-synth expression. We 

scrambled the core motif to eliminate any resemblance to the consensus sequence 

(♂Scram1258 and ♀Scram2502 transgenes; Table 3.1). 21UR-synth levels in these 

strains are depleted by more than 100-fold after normalization for array expression 

(Figure 3.3H,I), consistent with previous findings that deletion of the core motif depletes 

21U RNA expression [35]. Together, these data demonstrate that 21UR-synth 

represents a bona fide 21U RNA and support the use of this transgenic system for 

exploring 21U RNA biology in vivo. 
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Figure 3.3: A transgenic synthetic 21U RNA shows characteristics of endogenous 
21U RNAs. (A) Diagram of Tg (dark grey) and Min (light grey) transgenes with core 
motif sequences shown. Asterisk indicates a 21U RNA whose core motif is disrupted by 
21UR-synth and is therefore predicted not to express. (B) 21UR-synth is methylated by 
HENN-1. 21UR-synth is specifically detected in transgenic strains and is susceptible to 
β-elimination only in the henn-1(tm4477) background. Arrowhead represents migration 
of a 21 nt size marker. 21UR-synth blot was reprobed for miR-1. Endogenous ♀21UR-
2502 is shown as a control. (C-E) 21UR-synth is a prg-1-dependent, germline-enriched 
21U RNA. 21UR-synth detection by Taqman RT-qPCR (C) and northern blot (D,E) is 
greatly decreased in prg-1(tm872) and glp-4(bn2) germline-deficient mutant animals, 
but intact in rde-4(ne301) mutant animals. Error bars: ±1 SD of three biological 
replicates. (F) anti-PRG-1 antibody immunopurifies PRG-1 complexes. CL: crude lysate, 
RIP: RNA immunoprecipitation. (G) 21UR-synth is bound by endogenous PRG-1. Error 
bars: ±1 SD of two technical replicates; data are representative of two independent 
experiments. (H,I) Loss of the core motif dramatically decreases 21UR-synth expression 
by northern blot (H) and Taqman qRT-PCR (I). Error bars: ±1 SD of three biological 
replicates. 
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21U RNA core upstream motif variation influences germline enrichment 
 

We then used our transgenic system to test whether variation at the core motif 5’ 

position affects germline expression of 21UR-synth (Figure 3.4A). Endogenous male 

21U RNA ♂21UR-1258, which lies downstream of a CTGTTTCA core motif, peaks in 

expression during spermatogenesis (52h time point) and is highly expressed in him-

8(e1489) male adult; in contrast, expression of endogenous ♀21UR-2502, with an 

ATGTTTCA core motif, peaks after the spermatogenesis-to-oogenesis transition in 

adulthood (~72h) and is highly expressed in fem-1(hc17) female adult (Figure 3.4B). 

Accordingly, the ♂Tg1258 and ♀Tg2502 transgenes express 21UR-synth in similar 

male and female patterns, respectively (Figure 3.4C,D, colored lines/bars). Toggling the 

core motif from CTGTTTCA to ATGTTTCA (♂C>A1258 transgene) or ATGTTTCA to 

CTGTTTCA (♀A>C2502) disrupts these germline-specific expression patterns. 

Whereas 21UR-synth expression from ♂Tg1258 plummets after spermatogenesis, loss 

of the core motif 5’ cytidine in the ♂C>A1258 transgenic strain results in sustained 

21UR-synth expression through oogenesis; the ♂C>A1258 transgene also preferentially 

expresses 21UR-synth in fem-1(hc17) female (Figure 3.4C). Thus, mutating the 5’ 

cytidine of a male 21U RNA core motif results in a failure to restrict 21U RNA 

expression to spermatogenesis. Similarly, introducing a 5’ cytidine into a female 21U 

RNA core motif impairs restriction of expression to oogenesis: while ♀Tg2502 

expression of 21UR-synth increases dramatically during the spermatogenesis-to-

oogenesis transition, gain of the motif 5’ cytidine in the ♀A>C2502 transgene dampens 

this increase (Figure 3.4D). These results suggest that this single nucleotide 

orchestrates the accurate switching of 21U RNA expression in the hermaphroditic 

germline. However, 21UR-synth expression from the ♀A>C2502 transgene is still high 

in fem-1(hc17) female, indicating that other elements contribute to female 21U RNA 

expression patterns. This is consistent with our finding that female 21U RNA core motifs 

show no bias at the 5’ nucleotide, and indeed ~21% of female 21U RNA core motifs 

show a 5’ cytidine (Figure 3.2B). As expected, 21UR-synth expression from the 

♂C>A1258 and ♀A>C2502 transgenes is still dependent upon prg-1 (Figure 3.4E). 
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Figure 3.4: A 5’ cytidine in the core upstream motif promotes male germline 
expression pattern of 21UR-synth. (A) Schematic of transgenes with 5’ nt of core 
motif mutated. (B) Left: Endogenous ♂21UR-1258 and ♀21UR-2502 peak during 
spermatogenesis (sp.) and oogenesis (oo.), respectively. Right: Germline enrichment 
patterns are recapitulated in him-8(e1489) male and fem-1(hc17) female animals. Error 
bars: ±1 SD of three biological replicates. (C) The male expression pattern of 21UR-
synth from ♂Tg1258 is disrupted by core motif mutation in ♂C>A1258. Error bars: ±1 
SD of three biological replicates. (D) The female expression pattern of 21UR-synth from 
♀Tg2502 is disrupted by core motif mutation in ♀A>C2502, but expression in fem-
1(hc17) female is not lost. Error bars: ±1 SD of three biological replicates. (E) Mutating 
the 5’ nt of the core motif does not affect 21UR-synth prg-1 dependence. 
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A 5’ thymidine is required for robust expression from the 21UR-synth locus 
 

It is not yet known how individual genomic sequences are selected for expression as 

piRNAs. As the core motifs, but not the sequences, of 21U RNAs are conserved across 

Caenorhabditis species, it seemed possible that the core motifs themselves might 

determine what sequences are expressed as 21U RNAs by directing their expression 

from genomic thymidines located an optimal distance downstream. We explored this 

hypothesis by mutating the genomic thymidines encoding the first nucleotide of 21UR-

synth to adenosine (21U>A transgenes) or guanosine (21U>G transgenes), such that 

the transgenes encode 21[U>A]R-synth or 21[U>G]R-synth, respectively (Figure 3.5A, 

Figure 3.S6A). These putative products emulate the 5’ nucleotide identity of microRNAs 

(predominantly 5’ uridine and adenosine) and endo-siRNAs (predominantly 5’ 

guanosine). Small RNAs expressed from these transgenes and recognized by the 

21UR-synth northern blot probe differ in size from and are less abundant than wild-type 

21UR-synth (Figure 3.5B, Figure 3.S6B). By Taqman analysis, 21[U>A]R-synth and 

21[U>G]R-synth are detected at levels more than 150-fold lower than 21UR-synth after 

normalization for array expression (Figure 3.5C, Figure 3.S6C), suggesting that 

21[U>A]R-synth and 21[U>G]R-synth are poorly transcribed, stabilized, or both. 

 

 

The genomic positioning of core motifs specifies 21U RNA sequences 
 

We hypothesized that 21U RNA expression from a particular genomic thymidine may 

simply be a function of distance from a core motif (i.e., length of the intervening genomic 

spacer). Therefore, the presence of multiple thymidines within the optimal genomic 

window downstream of a core motif might result in expression of multiple, overlapping 

21U RNAs. Indeed, many C. elegans piRNAs map to proximal genomic thymidines as 

members of “miniclusters” of overlapping 21U RNAs that appear to share an upstream 

core motif. To explore the relationship between core motif position and expression, we 

extracted read count information from deep sequencing of wild-type adult animals [27] 

for uniquely mapping 21U RNAs and analyzed their corresponding genomic loci. After 
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separating 21U RNAs into those that share a core motif with at least one other uniquely 

mapping 21U RNA (“miniclustered”; 4,550 21U RNAs) and those that do not (“solitary”; 

8,837 21U RNAs), we grouped 21U RNAs by length of genomic spacer and examined 

their abundance. For both miniclustered and solitary 21U RNAs, the resulting 

distributions peak at a 39 nt spacer length and decrease as the spacer lengthens or 

shortens (Figure 3.5D). The evident correlation between spacer length and robustness 

of expression explains previous observations that miniclustered 21U RNAs routinely 

show great variation in abundance [39]. 

 

We also observed that miniclustered 21U RNAs with 37-40 nt spacers are more 

abundant than solitary 21U RNAs at matched positions (Figure 3.5D, asterisks), 

suggesting that 21U RNA miniclusters may arise when expression is driven more 

robustly. To investigate this further, we compared the core motifs associated with 

miniclustered 21U RNAs (“shared” motifs) versus solitary 21U RNAs (“non-shared” 

motifs). We found that a significantly larger proportion of miniclustered 21U RNAs 

(3,580 of 4,550, 79%) than solitary 21U RNAs (5,667 of 8,837, 64%) are associated 

with canonical, GTTTC-containing core motifs (χ2 test, p = 1.4e-66). Additionally, we 

observed significantly greater thymidine richness in the optimal genomic windows 35-42 

nt downstream of shared GTTTC-containing motifs versus non-shared (Welch’s t-test, p 

= 4.0e-95) (Figure 3.5E). Therefore, particular sequences of 21U RNAs may not be 

specified intrinsically; rather, core motifs may simply direct expression of 21U RNAs 

from one or more downstream thymidines, depending on the strength of the motif and 

the number of optimally positioned thymidines.  

 

To further confirm the association between the core motif and germline enrichment, we 

analyzed miniclusters consisting of two germline-enriched 21U RNAs (1,026 pairs). 

Random assortment of these 21U RNAs would predict 66% male:male, 4% 

female:female, and 31% male:female pairs; however, we observed 73% male:male, 

12% female:female, and only 15% male:female pairs. Thus, 85% of pairs showed 

matching enrichment classification (Figure 3.5F), a significant departure from the 69% 

expected by random assortment (χ2 test, p = 9.6e-28). We note that this paucity of 
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mixed male:female 21U RNA miniclusters likely contributes to the low number of 22G 

RNAs that can be attributed to both male and female 21U RNAs (Figure 3.S3A). 
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Figure 3.5: 21U RNA sequences are specified by the genomic positions of 
upstream core motifs. (A) Schematic of transgenes with 5’ nt of 21U RNA mutated. 
(B-C) Mutation of the 5’ genomic thymidine disrupts expression of 21UR-synth by 
northern blot (B) and Taqman assay (C). (D) 21U RNA abundances correlate with 
distances downstream of core motifs. Miniclustered 21U RNAs with 37-40 nt spacer 
lengths are more abundant than solitary 21U RNAs. Asterisks indicate Welch’s t-tests, p 
< 0.05. Error bars: ±1 SEM. (E) Optimal downstream windows are more thymidine-rich 
for shared core motifs than non-shared (Welch’s t-test, p = 2.5e-46). The number of 
genomic thymidines located 35 - 42 nt downstream of each GTTTC-containing motif 
was counted. (F) 21U RNA miniclusters are significantly biased for being composed of 
21U RNAs with the same, as opposed to opposite, germline enrichment than expected 
if the same 21U RNAs were randomly paired.  
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Each upstream motif and 21U RNA sequence constitutes a tiny, autonomous 
transcriptional unit 
 

The absence of long, unidirectional 21U RNA clusters in the C. elegans genome and 

the presence of the conserved upstream motif have generated speculation that 21U 

RNAs represent autonomously transcribed units [12,27,28]. This is further suggested by 

our and others’ findings that scrambling or deleting the core motif abrogates 21U RNA 

expression (Figure 3.3H,I and [35]). To test whether 21U RNAs express independently, 

we generated transgenes representing putative minimal 21U RNA transcriptional units. 

Each of these Min transgenes encodes only a single core motif, spacer, and 21U RNA, 

with limited 5’ and 3’ genomic context (Figure 3.3A). Strikingly, 21UR-synth expressed 

from this minimal context shows the same size, prg-1 dependence, rde-4 independence, 

and germline enrichment as endogenous 21U RNAs (Figure 3.6A,B), indicating that the 

sequence features conferring these 21U RNA characteristics are contained within a 

single 21U RNA transcriptional unit. To ensure that the 5’ nucleotide of the core motif 

still influences germline enrichment within this minimal context, we also generated and 

tested an independent set of minimal 21UR-synth transgenes with core motif intact 

(♂Min1415) or first nucleotide toggled (♂MinC>A1415). These transgenes also showed 

impaired male germline enrichment upon toggling of the core motif 5’ nucleotide (Figure 

3.6C), reaffirming our conclusions that a core motif 5’ cytidine helps to orchestrate 21U 

RNA male germline enrichment. 

 

 

The 21U RNA transcriptional unit is autonomous 
 

To explore the autonomy of the 21U RNA transcriptional unit further, we generated 

additional transgenes carrying <300 nt of genomic sequence encoding two adjacent 

21U RNA transcriptional units on the same strand (Figure 3.6D). To create the “wild-

type” Tg1415-Tg2109 transgene, the upstream 21U RNA locus, corresponding to 

21UR-1415, was mutated to encode 21UR-synth, and the downstream locus, 

corresponding to 21UR-2109, was mutated to encode a different unique synthetic 21U 
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RNA (21UR-synthB). We then scrambled the core motif of the upstream 21U RNA locus 

to generate the Scram1415-Tg2109 transgene and measured relative expression of the 

two synthetic 21U RNAs from each transgene. Much as expression of 21UR-synth is 

vastly decreased by loss of the core motif in the ♂Scram1258 and ♀Scram2502 

transgenes above (Figure 3.3H,I), 21UR-synth is expressed at far lower levels than 

21UR-synthB from the Scram1415-Tg2109 transgene, whereas expression of the 

synthetic 21U RNAs from the Tg1415-Tg2109 transgene is comparable (Figure 3.6E). 

This experiment specifically pursues a recent finding by Cecere et al. that deletion of the 

core motif of one 21U RNA does not abrogate expression of neighboring 21U RNAs, 

although the species assessed were distant, separated by multiple 21U RNA loci, and 

encoded on both strands [35]. 

 

C. elegans 21U RNA loci, like the piRNA loci of mouse and fly [9,10,14], are 

genomically clustered. The overwhelming majority of 21U RNAs map to two large 

regions on chromosome IV, and GTTTC, the most highly conserved five nt of the core 

motif, occurs much more frequently on chromosome IV at these regions (4.0 

occurrences per kilobase, occ/kb) than on chromosome IV outside these regions (0.4 

occ/kb) or on other chromosomes (0.2 occ/kb). Furthermore, 21U RNAs encoded on 

chromosome IV are detected at much higher abundance (mean abundance: 148 RPM) 

than those encoded on other chromosomes (1 RPM) (Welch’s t-test, p = 2.4e-269). 

These observations suggest the possibility of a positional requirement for expression of 

21U RNA loci: a privileged genomic environment might contribute to the expression of 

21U RNAs. To investigate the significance of 21U RNA genomic organization, we 

carried out rough mapping of the genomic insertion sites of several of the high-copy 

transgenic arrays. None of the integration loci mapped to chromosome IV (Table 3.1), 

indicating that these strains are not expressing 21UR-synth from the context of the 21U 

RNA genomic clusters. Yet the transgenic arrays themselves could represent 21U RNA-

rich genomic microenvironments, much like the chromosome IV 21U RNA clusters. We 

therefore tested the true autonomy of the 21U RNA by using the MosSCI technique [47] 

to insert single-copy transgenes at a locus on chromosome IV not contained within the 

21U RNA genomic clusters. Local 21U RNA concentration at the integration site is low, 
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and no 21U RNAs are annotated as mapping to the homology arms encoded on the 

pCFJ178 MosSCI plasmid. Unexpectedly, single-copy insertions of ♂Tg1258 and 

♀Tg2502 transgenes express 21UR-synth at levels easily detectable, albeit tenfold 

lower than the high-copy arrays. As observed for the high-copy arrays, scrambling of 

the core motif severely diminishes expression of 21UR-synth from the single-copy 

transgenic insertions (Figure 3.6F). Finally, to exclude the remote possibility that 

chromosome IV origin itself is essential for 21U RNA expression, we used an alternative 

MosSCI plasmid to insert onto chromosome II a single copy of the ♀Min2502 transgene, 

which encodes no other 21U RNAs. Like the chromosome IV transgene insertions, 

♀Min2502 expresses 21UR-synth robustly (Figure 3.6F), confirming that 21U RNAs can 

be autonomously transcribed. 
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Figure 3.6: 21U RNAs represent independent transcriptional units. (A-B) 21UR-
synth expressed from a minimal transcriptional cassette shows prg-1 dependence, rde-
4 independence, and germline enrichment by northern blot (A) and Taqman assay (B). 
(C) The male expression pattern of 21UR-synth from ♂Min1415 is disrupted by core 
motif mutation in ♂MinC>A1415. Error bars: ±1 SD of three biological replicates. (D) 
Schematic of transgenes encoding two closely adjacent 21U RNAs. (E) Scrambling the 
core motif upstream of 21UR-synth abrogates 21UR-synth, but not 21UR-synthB, 
expression levels. (F) The ♂Tg1258, ♂C>A1258, ♀Tg2502, and ♀A>C2502 transgenes, 
but not the ♂Scram1258 or ♀Scram2502 transgenes, express from single copy 
insertions on chromosome IV. The ♀Min2502 transgene also expresses from a single-
copy insertion on chromosome II. 
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DISCUSSION 
 

piRNAs are transcribed as tiny, autonomous transcriptional units 
 

Our data support a 21U RNA biogenesis mechanism wherein the upstream motif and 

21U RNA sequence constitute a tiny, independent transcriptional unit that encodes 

regulated germline expression. The upstream motif as initially identified by Ruby et al. 

[12] is necessary for autonomous expression of a 21U RNA from one or more optimally 

situated downstream genomic thymidines. Importantly, this genomic thymidine may not 

represent a transcriptional requirement but rather reflect the binding preferences of the 

Argonaute PRG-1: a heterogeneous pool of candidate 21U RNA sequences may be 

transcribed and subsequently purified through preferential stabilization by PRG-1. Our 

transgenic studies showing greatly decreased expression when 21UR-synth is mutated 

to 21[U>A/G]R-synth cannot differentiate between a transcriptional or post-

transcriptional requirement for a 5’ uridine; however, findings in other organisms support 

the latter mechanism. In mouse and fly, the prevailing model posits that Zucchini 

generates candidate primary piRNA 5’ ends with very little sequence specificity during 

the processing step, and then Piwi preferentially binds 5’ uridine piRNAs during the 

loading step [16,17]. This is consistent with in vitro data showing that Siwi, the silkworm 

ortholog of PRG-1, preferentially incorporates ssRNAs bearing a 5’ uridine [18]. 

 

 

On the evidence for transcription of 21U RNAs by RNA polymerase II 
 

The upstream motif differences of male and female 21U RNAs suggest that germline 

enrichment could be achieved through selective transcription in male versus female 

germlines. Recently, Cecere et al. reported that 21U RNA upstream regions are 

depleted of nucleosomes [35]. They further observed that RNA polymerase II (Pol II) 

occupancy shows local peaks in this region, rising steadily over the interval of -300 nt to 

-50 nt from the genomic thymidine encoding the 5’ uridine of the 21U RNA. Analyzing 

the same ChIP-seq dataset as Cecere et al., we noticed that the amplitude of the 



 172 

changes in Pol II occupancy at 21U RNA loci is quite modest. Analyzing randomly 

generated intergenic windows from chromosome IV, we determined that the Pol II ChIP-

seq background actually exceeds the “signal” at 21U RNA loci (Figure 3.S7A,B), 

indicating relative Pol II depletion. This overall depletion of Pol II occupancy at 21U RNA 

loci may indicate that transcription of 21U RNAs is a more transient process than 

transcription of genes with canonical promoter elements. Thus the ChIP-seq might 

capture only a small fraction of interactions between Pol II and DNA. However, the Pol II 

occupancy profiles for the loci encoding the top 25% and bottom 25% of 21U RNAs by 

abundance are virtually indistinguishable (Figure 3.S7C). Again, this is in stark contrast 

to mRNA coding loci, for which Pol II occupancy at the top 25% of mRNAs by 

abundance is much higher than at the bottom 25% (Figure 3.S7D). An alternative 

possibility is that the open chromatin of the nucleosome-depleted regions upstream of 

21U RNA loci is more susceptible to incidental binding by Pol II, causing the modest 

increase in local occupancy observed by Cecere et al. Should this be the case, the 

products of Pol II transcription at these loci could be unrelated to 21U RNAs. Cecere et 

al. also identify a transcript whose 5’ end extends 2 nt upstream of a 21U RNA locus 

and note that deep sequencing of 5’ capped RNAs reveals many more such transcripts. 

While these transcripts may represent 21U RNA precursors, they may also represent 

the products of incidental transcription from 21U RNA loci exposed due to local 

nucleosome depletion. The levels of such long putative precursors were below the 

threshold of our detection, precluding further study. Nevertheless, the uncertain 5’ 

nucleotide identity of the nascent 21U RNA transcript does not affect the interpretation 

of our results. Further studies, including identification of a cleavage mechanism for the 2 

nt 5’ overhang, are needed to confirm these capped transcripts as bona fide 21U RNA 

precursors. The Zucchini endoribonuclease, thought to generate piRNA 5’ ends in 

mouse and fly [16,17], is not a likely candidate, as it has no obvious homolog in C. 

elegans and shows very little sequence specificity, nor is there any evidence in C. 

elegans for processing of a long 21U RNA precursor into multiple species. 

 

 

How are the male and female subsets of 21U RNAs differentially expressed? 
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We show that the 5’ nucleotide of the conserved core motif influences germline 

enrichment of the dependent 21U RNA species (Figures 3.4, 3.6). This differential 

expression of male and female 21U RNAs may be orchestrated by DNA-binding 

proteins that differ in germline expression patterns and/or binding affinity for 5’ cytidine 

core motifs. Recently, Cecere et al. demonstrated that the forkhead transcription factors 

UNC-130, FKH-3, and FKH-5 specifically bind a CTGTTTCA-containing substrate 

dsDNA probe in vitro [35]. However, male and female 21U RNAs do not appear to be 

differentially sensitive to depletion of these forkhead proteins, nor do 21U RNAs with 

and without 5’ cytidine motifs (data not shown and [35]). Cecere et al. propose that 

these forkhead proteins play a redundant role in transcription of 21U RNAs. While these 

are dispensable for viability and fertility, other forkhead proteins are required for 

development of the germline, precluding testing for a role in transcribing 21U RNAs; 

these additional forkhead proteins could indeed represent germline-specific or motif-

specific transcription factors (Figure 3.S8). 

 

 

Why are autonomous 21U RNA transcriptional units genomically clustered? 
 

The autonomy of the C. elegans piRNA gene raises the questions of why 21U RNA loci 

exhibit genomic clustering on chromosome IV and why 21U RNAs encoded on 

chromosome IV are expressed more robustly. Perhaps the high density of 21U RNAs 

within these genomic clusters evolved as such: 21U RNA loci, defined by 21U RNA core 

motifs flanked by A/T richness, accumulated randomly on ancestral chromosome IV. 

Targeting of any overlapping genes resulted in silencing, subjecting the coding 

sequences of these genes to drift and eventual elimination. This would deplete the 

region of genes, reducing selection upon the genomic sequence and thereby permitting 

further accumulation of 21U RNA loci. The lack of selective pressure related to 

conservation of protein-coding genes might also explain why chromosome IV loci 

express 21U RNAs most robustly: the high density of coding and regulatory elements 

on other chromosomes likely constrains the evolution of features such as flanking A/T-

richness that might enhance 21U RNA expression. It is also possible that different 
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transcriptional machineries or different chromatin configurations are required to 

transcribe 21U RNAs versus other elements. 

 

Genomic clustering of piRNA loci has been proposed to provide a “trap” for mobile 

elements [14]. In organisms such as mouse and fly where these clusters are transcribed 

to generate long precursors from which piRNAs are processed [9,10,14], the trapping 

function of the genomic piRNA cluster is readily apparent. Although the 21U RNAs are 

independently transcribed, Bagijn et al. have identified a similar mechanism acting in C. 

elegans: the genome shows evidence of recent transposon integration downstream of 

the conserved upstream 21U RNA motif, sometimes generating 21U RNAs that are 

antisense to the transposon 3’ end and capable of silencing it [29]. Each conserved 

upstream motif can therefore serve as an independent trap, with the result that 

increased accumulation of motifs enhances protection against mobile elements. While 

retroelements comprise over 40% of the human genome, they appear to have been 

strongly counterselected in C. elegans, where they constitute only 0.2% of the genome 

[52]. Perhaps the autonomous piRNA mechanism at play in C. elegans has rendered 

the animal less susceptible to this kind of mobile element over an evolutionary time 

scale. Intriguingly, however, C. elegans shows significantly higher rates of gene 

duplication than fly [53], and the C. elegans genome shows substantial expansions of 

gene families; for example, the C. elegans Argonaute family has expanded to over two 

dozen members, with the evolution of a worm-specific clade. As gene duplications, like 

mobile elements, may also be targeted by piRNAs, the preponderance of gene family 

expansions in C. elegans could suggest that this system confers enhanced protection 

against transposons at the expense of enhanced tolerance for gene duplications. 

Identification of additional organisms that use similar mechanisms for generating 

piRNAs will reveal whether this is a pattern or a peculiarity of C. elegans. 

 

Note added in proof: Gu et al. recently identified global candidate RNA polymerase II 

transcription start sites by deep sequencing of capped RNAs [54]. For a large proportion 

of annotated 21U RNAs, the authors identified 5’ capped, ~26 nt putative precursors 

with a 2 nt 5’ overhang. Longer RNA reads (70-90 nt) were identified overlapping a very 



 175 

small minority of 21U RNA loci. Abundance of these longer reads correlated poorly with 

21U RNA abundance, while the abundance of the short, ~26 nt reads correlated well, 

suggesting they are likelier to represent 21U RNA precursors. The 5’ cap structure of 

the putative 21U RNA precursor indeed suggests transcription by Pol II, although our 

analysis of Pol II occupancy data is inconclusive. 

 

 

MATERIALS AND METHODS 

 
Strains 

C. elegans were maintained according to standard procedures. The Bristol strain N2 

was used as the standard wild-type strain. The alleles used in this study, listed by 

chromosome, are: unmapped: xkIs11[♂Scram1258 cb-unc-119(+)], 

xkIs12[♀Scram2502 cb-unc-119(+)], xkIs14[♂21U>A1258 cb-unc-119(+)], 

xkIs15[♂21U>G1258 cb-unc-119(+)], xkIs16[♂Min1258 cb-unc-119(+)], 

xkIs17[♀21U>A2502 cb-unc-119(+)], xkIs18[♀21U>G2502 cb-unc-119(+)], 

xkIs19[♀Min2502 cb-unc-119(+)], xkIs20[♂Min1415 cb-unc-119(+)],  

xkIs21[♂MinC>A1415 cb-unc-119(+)], xkIs22[Tg1415-Tg2109 cb-unc-119(+)],  

xkIs23[Scram1415-Tg2109 cb-unc-119(+)]; LGX: xkIs10[♀A>C2502 cb-unc-119(+)]; 

LGI: glp-4(bn2), prg-1(tm872), xkIs5[♀Tg2502 cb-unc-119(+)]; LGII: xkSi30 [♀Min2502 

cb-unc-119(+)], xkIs6[♂C>A1258 cb-unc-119(+)]; LGIII: rde-4(ne301), henn-1(tm4477); 

LGIV: xkSi3[♂Tg1258 cb-unc-119(+)], xkSi13[♀Tg2502 cb-unc-119(+)], 

xkSi17[♂C>A1258 cb-unc-119(+)], xkSi20[♀A>C2502 cb-unc-119(+)], 

xkSi23[♂Scram1258 cb-unc-119(+)], xkSi28[♀Scram2502 cb-unc-119(+)], fem-1(hc17), 

him-8(e1489); LGV: fog-2(q71), xkIs1[♂Tg1258 cb-unc-119(+)]. Transgenic allele 

details and corresponding strain names are shown in Table 3.1.  

 

Sample collection and small RNA analysis 
C. elegans samples were generated as previously described [24]. Samples for Taqman 

RT-qPCR validation of 21U RNA germline enrichment classification analysis were 

collected in biological duplicate. Samples collected for RNA-immunoprecipitation (RIP) 
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analysis were collected in biological duplicate and analyzed in independent experiments 

with technical duplicates. All other samples were collected in biological triplicate. All 

samples analyzed represent adult animals unless otherwise stated. 

 

RNA isolation, beta-elimination, northern blot analysis, Taqman RT-qPCR, and mRNA 

quantitation were performed as previously described [24]. RIP analysis was performed 

as follows: A custom rabbit polyclonal anti-PRG-1 antibody was generated by 

Proteintech Group, Inc using an N-terminal peptide antigen 

(MASGSGRGRGRGSGSNNS (C)) conjugated to keyhole limpet hemocyanin (KLH) 

carrier protein. Antisera were affinity purified using Affi-Gel 10 gel (Bio-Rad). PRG-1 

was purified from synchronized gravid animals using this anti-PRG-1 rabbit polyclonal 

antibody. For each IP, 10 µg of anti-PRG-1 antibody was cross-linked to Dynabeads 

Protein A (Invitrogen) and incubated with lysate prepared from 0.3 ml of frozen worms 

at 4°C for 1 hr. Beads were washed 4X with RIP wash buffer (50 mM Tris-HCL pH 7.5, 

200 mM KCL and 0.05% NP-40). After final wash, beads were split into equal volumes 

for RNA extraction and western blot procedure. For western blot analysis: 30 ul of 1X 

Tris-glycine SDS sample buffer (Invitrogen) without DTT was added directly to beads 

and incubated at 50°C for 10 min. 0.1 M DTT was then added to samples and boiled for 

5 min before loading on gel. Proteins immobilized on Immobilon-FL transfer membrane 

(Millipore) were probed with anti-PRG-1 rabbit polyclonal antibody or anti-gamma-

tubulin rabbit polyclonal antibody (LL-17) (Sigma) (1:2,000). Peroxidase-AffiniPure goat 

anti-rabbit IgG secondary antibody was used at 1:10,000 (Jackson ImmunoResearch 

Laboratories) for detection using Pierce ECL Western Blotting Substrate (Thermo 

Scientific). For RNA extraction: 1 ml of TRI-Reagent (Ambion) was directly added to 

beads and incubated at room temperature for 5 min. RNAs were precipitated in 

isopropanol for 1 hr at -30°C followed by three washes with 70% ethanol. 

 

Small RNA quantitation was performed as previously described [24]. All 21U RNA 

qPCR data from transgenic studies were normalized to miR-1 levels. As a result of this 

normalization, some small RNAs whose levels are not detectable (cycle number > 36) 

appear to be detected due to small variation in detection of miR-1. 21UR-synth is not 
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detectable in non-transgenic animals at any stage at which it was assessed. All Cbr-

unc-119 qPCR data were normalized to act-1 mRNA levels. The sequence of 21UR-

synth is 5’ TGATATGCGATGTAGTAGACT 3’. The sequence of 21UR-synthB is 5’ 

TTAGTCGTATGTGACGCTGCC 3’. Full small RNA sequences were submitted to 

Applied Biosystems for design of Taqman assays. Northern blot probe sequences used 

for this study: miR-1 5’ TACATACTTCTTTACATTCCA /3StarFire/ 3’; ♀21UR-2502 5’ 

CAGCAGTCTACTACAATTTCA /3StarFire/ 3’; 21UR-synth 5' 

AGTCTACTACATCGCATATCA /3StarFire/ 3'. RT-qPCR primer sequences used for 

this study are as follows: act-1 F 5’ CCAGGAATTGCTGATCGTATGCAGAA 3’, R 5’ 

TGGAGAGGGAAGCGAGGATAGA 3’; Cbr-unc-119 F 5’ 

AACGACGTTTTAGCACTTCCG 3’, R 5’ GGATTTGGAACTTGGTGAACTCG 3’. 

 

C. elegans transgenesis 

To generate the base of the 1258 transgene, sequence spanning genomic coordinates 

IV:14390835-14393692 was used; IV:14392513-14392673 was used for the ♂Min1258 

transgene. To generate the base of the 2502 transgene, sequence spanning genomic 

coordinates IV:15395699-15397722 was used; IV:15396667-15396886 was used for 

the ♀Min2502 transgene. To generate the base of the Min1415 transgene, sequence 

spanning genomic coordinates IV:16564187-16564395 was used. To generate the base 

of the Tg1415-Tg2109 transgene, sequence spanning genomic coordinates 

IV:16564133-16564395 was used; the Tg1415-Tg2109 and Scram1415-Tg2109 

transgenes carry a 13 nt deletion downstream of both 21U RNA loci. Coordinates were 

taken from the C. elegans genome WS220. The mutations described in Table 3.1 were 

introduced through site-directed mutagenesis or inverse PCR with phosphorylated 

primers. Transgenes were then subcloned into the pCFJ178 (IV) or pCFJ151 (II) vector. 

The chromosome IV transgene insertion site lies outside the larger 21U RNA genomic 

clusters, and the homology arms of chromosome IV MosSCI vector pCFJ178 do not 

encode any annotated 21U RNAs. Transgenes were confirmed by sequencing and 

injected into animals with pharyngeal and/or body wall muscle coinjection markers to 

distinguish transgenic animals. High-copy arrays were integrated through ultraviolet 

irradiation. MosSCI single-copy insertions were generated as previously described [47]. 
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Small RNA sequencing data acquisition and linker removal 
Raw data files from 24 small RNA sequencing experiments [27,36-42] were downloaded 

from NCBI Gene Expression Omnibus [55]. Artificial linker sequences were removed 

using an in-house linker removal pipeline. We first searched each sequence for a 

perfect match to the linker. If a perfect match was not found, we searched for an 

alignment to the linker with 1 mismatch. If not found, we searched for a perfect 

alignment between the last 5 nt of the sequence and the first 5 nt of the linker. If not 

found, we repeated this search allowing 1 mismatch. We continued this pattern to align 

4 and 3 nt. Sequences with no linker alignment were discarded (~20% of reads). 

 

Small RNA read alignment to genome and annotation to 21U RNAs 
Reads were aligned to the reference C. elegans genome version WS220 using Bowtie 

[56] with the following parameters: -f -v 2 -k 50 --best --strata. Mapped read counts in 

each library were normalized to the number of total mapped reads in that library and to 

the number of mapped genomic loci. Sequence abundance is reported as reads per 

million mapped reads (RPM). To determine 21U RNA abundance, we first generated 

21U RNA genomic coordinates by aligning 15,703 known 21U RNA sequences [27] to 

the C. elegans genome version WS220 using Bowtie. Perfect, full-length alignments for 

15,093 of these sequences were considered valid 21U RNA coordinates. Reads 

mapping entirely within these coordinates were annotated to 21U RNAs. 

 

Enrichment Score calculations 
Germline enrichment classifications of 21U RNAs were generated based on read counts 

in 17 germline libraries: 14 male germline libraries prepared from isolated 

spermatogenic cells, isolated spermatids, or whole adult males; and 3 female germline 

libraries prepared from purified oocytes or whole adult hermaphrodites defective in 

sperm production (Table 3.S1). 1,198 21U RNAs had no read counts in any of these 

libraries and were removed from our analysis. 184 21U RNAs had higher read counts in 

a prg-1(tm872) young adult library compared to an N2 young adult library [27] and were 

removed from our analysis, leaving 13,711 21U RNAs for which we assessed germline 

enrichment. Libraries generated using a 5’-monophosphate-dependent (5 male, 1 
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female) versus -independent (9 male, 2 female) protocol were separated for calculation 

of the Enrichment Score as follows: For each 21U RNA, we calculated fold abundance 

difference between every male and female library, for a total of 23 comparisons. Each 

21U RNA began with an Enrichment Score of 0. For every comparison, if the 21U RNA 

was more then 5-fold abundant in the male library, the Enrichment Score decreased by 

1; if the 21U RNA was more than 5-fold abundant in the female library, the Enrichment 

Score increased by 1. Male 21U RNAs were defined as those with Enrichment Scores ≤ 

-3, while female 21U RNAs were defined as those with Enrichment Scores ≥ 3. 

Remaining 21U RNAs were classified as non-enriched. To validate enrichment 

classifications, the fold abundance differences for each 21U RNA were averaged across 

all 23 comparisons. Less than 1% of 21U RNAs classified as male or female do not 

show enrichment by average fold abundance in their respective libraries. These 21U 

RNAs were reclassified as non-enriched for subsequent analyses. 21U RNA 

Enrichment scores and germline enrichment classifications are in Dataset 3.S1. 

 

Determination of false discovery rate 

To approximate the number of 21U RNAs falsely classified as male or female germline-

enriched by our method, we performed Enrichment Score calculations on randomly 

generated count data modeled from an N2 young adult library [27]. 11,458 21U RNAs 

are represented in this library. Because 17 germline libraries were used for the real 

analysis, we generated 17 control libraries as follows: For each 21U RNA, 17 random 

counts were generated from a Poisson distribution with λ=α (where α is set to the 21U 

RNA count in the N2 library) and assigned to one of 17 control libraries. After all counts 

were assigned, the 17 control libraries were randomly grouped to represent the number 

of male or female and 5’-monophosphate-dependent or -independent libraries used 

above. Enrichment Score calculations were then performed on these control libraries as 

described above, and the number of 21U RNAs classified as germline-enriched was 

calculated. This protocol was repeated 1,000 times. On the basis of this randomized 

data, we defined an Enrichment Score threshold of -/+3, inclusive, for classifying 21U 

RNAs as male or female germline-enriched, respectively. Application of this threshold to 

the randomized data resulted in classification of, on average, only 0.76% (101 of 
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11,458) of 21U RNAs as germline-enriched, corresponding to a false discovery rate 

below 1%. This value is consistent with the less than 1% of 21U RNAs classified as 

male or female that do not show enrichment by average fold abundance in their 

respective libraries. 

 
Enrichment Score calculations performed on 26G RNAs 
26G RNA annotations were taken from Han et al., 2009 [38]. The abundances of 4,002 

26G RNAs were measured in 13 of the 17 libraries used for 21U RNA Enrichment Score 

calculations. Four male libraries (GSM465244, GSM503843, GSM459329, and 

GSM459331) were excluded because the animals used in preparation of the libraries 

carried mutations in genes required for 26G RNA expression [36,40,41]. Enrichment 

Score calculations were performed on the 13 remaining libraries as above, for a total of 

16 male:female comparisons. We retained the Enrichment Score threshold for 

classifying 26G RNAs as male or female germline-enriched. 

 
Analysis of 21U RNA-dependent 22G RNAs and 21U RNA targets 
21U RNA target and 22G RNA information for young adult animals (N2 and prg-

1(n4357)) was obtained from Bagijn et al. [29]; raw sequencing data files for gravid adult 

animals (N2 and prg-1(n4357)) were downloaded from GEO [30]. Raw sequences were 

processed as described above, and reads 22 nt long and starting with guanosine were 

annotated as 22G RNAs. 21U RNA targets were defined as transcripts with 0-3 

mismatches to a 21U RNA sequence. 21U RNA-dependent 22G RNAs were defined as 

22G RNAs that map antisense to transcripts within 40 nt of a 21U RNA target site. The 

number of 22G RNAs that map to both male and female 21U RNA target sites was 

compared to a control number of 22G RNAs that map to both a random set of male and 

a random set of female 21U RNA target sites. These random target sites were defined 

as the target sites of 7,677 randomly selected 21U RNAs representing “male” 21U 

RNAs and the target sites of 2,171 randomly selected (and not overlapping random 

male) 21U RNAs to represent “female” 21U RNAs. This random selection was repeated 

1,000 times. A similar randomization process was repeated to compare with the number 

of genes targeted by both male and female 21U RNAs.   
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Core motif visualization 
Core motifs of 21U RNAs were visualized using WebLogo and correcting for C. elegans 

genome nucleotide composition [57]. To account for variability in the location of core 

motifs relative to their 21U RNA loci, upstream regions were aligned by the central 3 Ts 

of the core motif. If no core motif was identified within 60 nt upstream of a 21U RNA, we 

aligned position -44 relative to the 21U RNA locus to the G of the core motif, 

corresponding to the previously identified most common position of the G [12]. Only 21U 

RNAs that map to a single locus in the genome (13,387 of 13,711 21U RNAs, 97.6%) 

were analyzed since 21U RNAs that map to more than 1 locus may have different 

upstream sequences. 

 

Identification of genomic features for nucleosome and Pol II occupancy profiling 
Nucleosome and Pol II occupancy profiling for 21U RNA loci was centered on the 

genomic thymidine encoding the 21U RNA 5’ uridine. Profiling for transcripts was 

centered on transcription start sites (TSS) defined as the start of 5’ UTRs annotated in 

the Ensembl66 database [58]. Intergenic regions were defined as regions absent of an 

annotated 5’ UTR, exon, intron, 3’ UTR or small RNA transcript that were partitioned 

into randomly distributed, non-overlapping 1,000 nt windows. Profiling for intergenic 

regions was centered on these 1,000 nt windows. Young adult TSS expression was 

calculated as fragments per kilobase per million mapped reads (FPKM) using biological 

replicates from a transcriptomic sequencing experiment [59]. Transcriptome sequence 

data were removed of linkers and aligned to the C. elegans genome version WS220 

using TopHat [60]. Cufflinks [61] was used to calculate transcript isoform expression. 

Transcripts with an annotated 5’ UTR were extracted from the Ensembl66 database. 

Average transcript FPKM across the two libraries was calculated, and the isoform with 

the highest expression was chosen for nucleosome and Pol II occupancy analyses. For 

isoforms with equivalent expression, a single isoform was randomly chosen. 

 

Analysis of nucleosome and Pol II occupancy  
Published nucleosome occupancy data [62] were downloaded from UCSC, and the 

genomic coordinates were lifted over from WS170 to WS220. Adjusted nucleosome 
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occupancy data centered on 21U RNAs, TSS, and an intergenic background control 

were averaged for each nucleotide. Pol II ChIP-seq data from young adult worms were 

downloaded from the modEncode repository [63]. Pol II signal to input ratios on 

chromosome IV were averaged for each nucleotide. TSS were further filtered to only 

include transcripts with at least 5 FPKM as calculated above. Pol II ChIP-seq data from 

young adult worms were downloaded from the modEncode repository. Pol II signal to 

input ratios were averaged for each nucleotide separately for male and female 21U 

RNAs on chromosome IV.  
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SUPPLEMENT 
 
Figure 3.S1: Computational identification of male and female germline-enriched 
21U RNAs. (A) Enrichment Score calculations performed on 17 small RNA sequencing 
libraries classify a majority of 21U RNAs as male (blue) or female (red) germline-
enriched. Non-enriched (NE) 21U RNAs, grey. Numbers indicate percent of 13,711 21U 
RNAs analyzed. (B) Enrichment Score calculations performed on control data classify < 
1% of 21U RNAs as male or female germline-enriched indicating a 1% false discovery 
rate. Numbers indicate percent of 11,458 21U RNAs analyzed. (C) Male 21U RNAs are 
more abundant in male libraries. Average relative abundance of each male 21U RNA 
was calculated between each of the 23 male:female library comparisons. (D) Female 
21U RNAs are more abundant in female libraries. Average relative abundance of each 
male 21U RNA was calculated between each of the 23 female:male library comparisons. 
(E) Non-enriched 21U RNAs are equally abundant in male and female libraries. 
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Figure 3.S2: Female 21U RNAs are preferentially abundant in embryo. (A) Relative 
male 21U RNA abundance is decreased in embryo. Average relative abundance of each 
male 21U RNA was calculated between each of 5 male and 4 mixed stage embryo 
libraries. Dotted line indicates equal male and embryo abundance. Pie chart depicts 
proportion of male 21U RNAs with reads in at least one embryo library (dark blue). (B) A 
population of female 21U RNAs shows increased abundance in embryo. Average 
relative abundance of each female 21U RNA was calculated between each of 1 female 
and 4 mixed stage embryo libraries. Pie chart depicts proportion of female 21U RNAs 
with reads in at least one embryo library (dark red). (C,D) Taqman RT-qPCR analysis 
corroborates male 21U RNA depletion in embryo. Expression of representative male 
21U RNAs was assayed by Taqman in him-8(e1489) (C) and fog-2(q71) (D) male 
animals and N2 embryos. Error bars represent ±1 SD from two biological replicates. (E) 
Taqman RT-qPCR analysis corroborates female 21U RNA enrichment in embryo. 
Expression of representative female 21U RNAs was assayed by Taqman in fem-1(hc17) 
female animals and N2 embryos. (F) Male germline-enriched 26G RNAs are generally 
absent in embryo. Average relative abundance of each male 26G RNA was calculated 
between each of 4 male and 4 mixed stage embryo libraries. (G) Female germline-
enriched 26G RNAs are robustly expressed in embryo. Average relative abundance of 
each female 26G RNA was calculated between each of 1 female and 4 mixed stage 
embryo libraries. 
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Figure 3.S3: 21U RNAs target significantly non-overlapping sets of genes. (A) 22G 
RNAs are almost exclusively derived from either male or female 21U RNAs, but not 
both. The number of unique 22G RNAs derived from both male and female 21U RNAs 
is significantly less than expected if 22G RNAs are selected at random (Fisher’s exact 
test, p=1.2e-02). (B) Male and female 21U RNAs target significantly fewer overlapping 
genes compared to selecting random sets of genes (Fisher’s exact test, p=7.7e-13). (C) 
5,956 genes targeted by male 21U RNAs in young adult (YAd) animals are depleted of 
spermatogenesis genes compared to a random set of 5,956 genes. (D) 1,387 genes 
targeted by female 21U RNAs in gravid adult (GA) animals are enriched for oogenesis 
genes compared to a random set of 1,387 genes. 
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Figure 3.S4: Transgenic array expression varies across transgenes. (A) Levels of 
Cbr-unc-119 mRNA in adult animals were assayed by RT-qPCR for all transgenes and 
normalized to act-1 mRNA levels. (B) Expression of transgenic 21UR-synth does not 
affect expression of endogenous 21U RNA counterparts. Endogenous ♂21UR-1258 
and ♀21UR-2502 levels were assayed by Taqman RT-qPCR and normalized to 
microRNA miR-1 levels in all samples. 
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Figure 3.S5: 21U RNAs are specifically immunoprecipitated with PRG-1 
complexes.  (A) anti-PRG-1 antibody does not immunprecipitate microRNA miR-1. (B) 
21UR-synth expression does not interfere with association of endogenous 21U RNAs 
with PRG-1.  
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Figure 3.S6: 21U RNA expression requires a 5’ genomic thymidine. (A) Schematic 
of transgenes encoding 21UR-synth with different 5’ nt. (B-C) Mutation of the 5’ 
genomic thymidine disrupts expression of 21UR-synth by northern blot (B) and Taqman 
assay (C). WT and ♀Tg2502 lanes in (B) are repeated from Figure 3.5B for clarity. 
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Figure 3.S7: RNA polymerase II occupancy at 21U RNA loci is below background 
level. (A) Average Pol II occupancy in a young adult library of 21U RNA loci expressing 
21U RNAs with at least 5 RPM (red), transcriptional start sites (TSS) expressing 
transcripts with at least 5 FPKM (green), and randomized intergenic regions (yellow). 
Only regions on ChrIV were assayed (B) Pol II occupancy as described in (A) but 
independently scaled for each transcript type and plotted with average nucleosome 
occupancy (black line). Grey error bands: SEM. (C) Average Pol II occupancy of 21U 
RNA loci as (B) but showing the top 25% 21U RNAs by abundance (1st quartile) and the 
bottom 25% (4th quartile) separately. 21U RNAs on all chromosomes are shown. (D) 
Same as (E) but showing top and bottom 25% of TSS by transcript abundance. 
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Figure 3.S8: Model of 21U RNA expression. 
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Table 3.S1: Descriptions of small RNA sequencing libraries used in this study. 
GEO Accessions for datasets and libraries used are listed. Libraries generated using 5’-
monophosphate-dependent (Dep) or -independent (Indep) RNA extraction protocols are 
indicated along with how the library was used in this study (“Use” column). 
 

  

Table S1. Descriptions of small RNA sequencing libraries used in this study. 
GEO Accessions           

Dataset Library Genotype Developmental 
Stage 

Extraction 
protocol 

Sequencing 
platform Raw reads Mapped 

reads % 21U RNA 
reads % Use 

GSE20341 

GSM510085 N2 mixed-stage 
embryos Dep Illumina 4,661,109 3,721,872 79.8 31,837 0.9 Embryo analysis 

GSM509932/ 
GSM510089 him-8(e1489) isolated sperm-

atogenic cells Dep Illumina/454 9,596,732 1,312,607 13.7 25,024 1.9 Germline enrichment 

GSM509933/ 
GSM510090 fer-1(hc1) purified unfertilized 

oocytes Dep Illumina/454 6,488,731 2,165,341 33.4 47,731 2.2 Germline enrichment 

GSE11738 

GSM297742 N2 mixed-stage 
embryos Dep Illumina 2,730,450 2,382,829 87.3 52,072 2.2 Embryo analysis 

GSM297751 N2 young adult Dep Illumina 3,533,717 3,169,078 89.7 333,587 10.5 Random control, 
spacer analyses 

GSM297755 prg-1(tm872) young adult Dep Illumina 3,588,293 3,303,711 92.1 2,577 0.1 21U RNA filtering 
GSM297753 fog-2(q71) young adult Dep Illumina 3,387,268 2,960,986 87.4 297,715 10.1 Germline enrichment 

GSE18215 GSM455395 fem-1(hc17) purified oocytes Indep Illumina 8,496,639 7,575,752 89.2 53,848 0.7 Germline enrichment 

GSE19414 

GSM503834 fem-1(hc17) adult Indep Illumina 389,636 369,130 94.7 224 0.1 Germline enrichment 

GSM503842 mut-16(mg461); 
fem-3(q20) 

isolated sperm-
atogenic cells Dep Illumina 425,438 399,905 94.0 94,863 23.7 Germline enrichment 

GSM503843 rrf-3(pk1426); 
fem-3(q20) 

isolated sperm-
atogenic cells Dep Illumina 650,621 608,159 93.5 46,864 7.7 Germline enrichment 

GSE17153 GSM427297 N2 mixed-stage 
embryos Dep Illumina 2,159,213 1,681,110 77.9 6,926 0.4 Embryo analysis 

GSE13339 
GSM336052 N2 mixed-stage 

embryos Dep Illumina 6,391,734 2,746,387 43.0 29,378 1.1 Embryo analysis 

GSM336086 dpy-28(y1); 
him-8(e1489) young adult Dep Illumina 3,653,638 1,357,061 37.1 21,778 1.6 Germline enrichment 

GSE18729 

GSM465244 
alg-3(tm1155); 
alg-4(ok1041); 

fog-2(q71) 
adult Indep Illumina 3,216,031 3,003,318 93.4 237,635 7.9 Germline enrichment 

GSM465245 fog-2(q71) adult Indep Illumina 821,513 757,771 92.2 45,592 6.0 Germline enrichment 
GSM465246 fog-2(q71) adult Indep Illumina 2,740,511 2,562,914 93.5 157,991 6.2 Germline enrichment 
GSM465247 fem-3(q20) isolated spermatids Indep Illumina 10,478,418 7,131,378 68.1 256,516 3.6 Germline enrichment 

GSE18429 

GSM459328 fem-3(q20) isolated sperm-
atogenic cells Indep Illumina 375,816 341,766 90.9 8,029 2.3 Germline enrichment 

GSM459329 rrf-3(pk1426); 
him-8(e1489) young adult Indep Illumina 1,756,561 1,673,756 95.3 15,702 0.9 Germline enrichment 

GSM459330 him-8(e1489) young adult Indep Illumina 1,709,934 1,614,576 94.4 3,515 0.2 Germline enrichment 

GSM459331 rrf-3(pk1426); 
him-8(e1489) young adult Indep Illumina 1,492,360 1,366,804 91.6 9,238 0.7 Germline enrichment 

GSM459332 him-8(e1489) young adult Indep Illumina 755,623 695,239 92.0 2,191 0.3 Germline enrichment 
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Table 3.S2: Welch’s t-test p-values for all abundance comparisons between 21U 
RNAs with different core motifs.  Highlighted are p-values <0.01. Identity of the 5’ nt 
corresponding to higher 21U RNA abundance is indicated below each significant p-
value. All t-tests are two-tailed. Comparisons of abundances in 5’-monophosphate-
dependent and -independent libraries were performed separately. 
 

 

Table S2. Welch’s t-test p-values for all abundance comparisons between 21U RNAs with different core motifs.   

Library type Enrichment 
classification A vs. C A vs. G A vs. T A vs. N C vs. G C vs. T C vs. N G vs. T G vs. N T vs. N 

Male 
(5'-mPi-Dep.) 

Male 2.4E-13 3.5E-01 3.5E-03 2.0E-08 1.2E-03 6.0E-11 1.3E-56 3.6E-01 2.2E-01 7.7E-01 
C - A A C C C - - - 

Non-enriched 1.9E-01 4.2E-01 2.8E-01 3.3E-05 1.5E-01 3.0E-02 2.1E-12 9.0E-01 3.1E-01 5.3E-02 
- - - A - - C - - - 

Female 
(5'-mPi-Dep.) 

Female 
6.1E-03 2.4E-02 9.8E-01 1.4E-01 4.0E-01 1.9E-02 6.8E-02 3.1E-02 9.6E-02 2.2E-01 

A - - - - - - - - - 

Non-enriched 
6.0E-03 5.0E-01 9.3E-01 4.6E-03 5.9E-01 3.6E-02 9.5E-01 4.9E-01 5.7E-01 3.2E-02 

A - - A - - - - - - 

Male 
(5'-mPi-indep.) 

Male 
4.06E-09 2.48E-01 6.40E-04 5.14E-07 1.09E-03 1.90E-11 8.21E-45 2.72E-01 3.28E-01 6.79E-01 

C - A A C C C - - - 

Non-enriched 4.04E-03 8.76E-01 9.41E-01 1.84E-04 2.59E-01 2.99E-02 2.73E-01 8.49E-01 1.33E-01 5.31E-03 
A - - A - - - - - T 

Female 
(5'-mPi-indep.) 

Female 1.53E-05 2.62E-03 4.17E-01 4.44E-04 4.20E-01 5.98E-03 1.06E-01 1.72E-02 1.18E-01 6.69E-02 
A A - A - T - - - - 

Non-enriched 4.12E-06 8.19E-01 8.04E-01 6.90E-04 9.71E-02 1.99E-03 1.10E-01 9.42E-01 2.40E-01 2.63E-02 
A - - A - T - - - - 

P-values colored gold are significant at p<0.01. Letters below p-values indicate which nt corresponds to higher abundance and are colored to match Weblogos. 
Boxed p-values/letters show that male 21U RNAs with 5’-cytidine motifs are more abundance than any other 5’-nt. 
mPi-indep: monophosphate independent; mPi-dep: monophosphate dependent. 
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Dataset 3.S1: List of 21U RNAs analyzed in this study, their Enrichment scores, their 
germline enrichment classifications based on Enrichment scores (Classification by 
score), and final germline enrichment classifications after removal of 21U RNAs whose 
average fold abundance in the enriched germline was not higher than the non-enriched 
germline (Adj. for avg. fold abundance). 
 
http://www.editorialmanager.com/pgenetics/download.aspx?id=308035&guid=57108f22-
bdbb-44f2-b362-9a1858707257&scheme=1 
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CHAPTER FOUR: Future directions 

 

 

Investigating mechanisms and significance of selective endo-siRNA methylation 

 

Germline small RNAs fulfill a conserved, essential role in promoting proper gamete 

formation and preserving genome integrity. Methylation by the conserved factor HEN1 

represents a critical step in maturation of many germline small RNAs. This modification 

prevents degradation, promoting inheritance of parental small RNAs. While plant small 

RNAs are universally methylated, animal small RNA methylation is a regulated process: 

piRNAs are methylated, microRNAs are not, and methylation of siRNAs varies by class. 

However, the mechanisms governing selective methylation of animal small RNAs have 

not yet been definitively established. Recently, I and others determined that the C. 

elegans HEN1 ortholog, HENN-1 (hereafter, HEN1 for simplicity), methylates 26G 

RNAs generated in female, but not 

male, germline [1-3]. Intriguingly, 

26G RNAs in male and female 

germlines are loaded onto unique, 

divergent Argonaute effector 

proteins whose cladistics reflect the 

methylation status of the associated 

small RNAs (Fig. 4.1A). The 

unmethylated male 26G RNAs are 

bound by redundant Ago clade 

Argonautes ALG-3 and ALG-4 in 

developing sperm, whereas the 

Fig. 4.1: Argonaute cladistics reflect selective 
methylation. A) C. elegans Argonautes and methylation 
status of associated small RNAs. B) Protein alignment 
showing the Piwi Argonaute-specific PAZ domain 
insertion (pink box). 
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methylated female 26G RNAs are bound by the ERGO-1 Argonaute in oocyte and 

developing embryo and require ERGO-1 for methylation [1]. These findings support a 

model wherein methylation status of an animal small RNA is dictated by the associated 

Argonaute. Comparison of the divergent PAZ domains of Piwi and Ago Argonautes 

reveals that the Piwi PAZ domain shows a small insertion that expands the binding 

pocket for the small RNA 3’ end (Fig. 4.1B), where the stabilizing methyl group is added 

by HEN1 [4]. Using a panel of transgenic C. elegans strains that express wild-type or 

mutant 26G RNA Argonaute proteins (ALG-3 and ERGO-1) in their respective native 

germlines or ectopically in the non-native germlines, we will test the necessity and 

sufficiency of the Piwi Argonaute, its PAZ domain, and its PAZ insertion in directing 

methylation. We will then investigate the effects of aberrant methylation to gain insight 

into the functional significance of selective methylation and stabilization of germline 

small RNAs. 

 

To test how Argonaute identity influences methylation of associated 26G RNAs, we are 

developing the transgenic rescue strains depicted in Fig. 4.2 using a single-copy 

insertion method to evade transgene silencing in the germline [5]. These strains express 

N-terminal FLAG-tagged versions of wild-type or mutant 26G RNA Argonautes in the 

relevant null backgrounds and can be described in the following groups: 1) The WT 

strains express tagged wild-type ALG-3 or ERGO-1 under the native promoter in the 

relevant mutant background (alg-3Δ; alg-4Δ or ergo-1Δ, respectively); 2) The SWAP 

strains express ERGO-1 in the male germline or ALG-3 in the female germline by 

exchanging the coding 

sequences in the two 

transgenes; 3) The PAZ SWAP 

strains express mutated forms 

of ALG-3 and ERGO-1 in which 

the PAZ domains have been 

exchanged; 4) The PAZΔINS 

strain expresses a mutated form 

of ERGO-1 in which the Piwi 

Fig. 4.2: Argonaute rescue transgene diagrams. 
Transgenes with alg-3 promoter and 3’UTR will express in 
male germline and be crossed into the alg-3Δ; alg-4Δ mutant; 
transgenes with ergo-1 promoter and 3’ UTR will express in 
female germline and be crossed into the ergo-1Δ mutant. 
“Methyl?” column indicates prediction for methylation of 
associated 26G RNAs. 
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Argonaute-specific PAZ insertion has been deleted in frame. We will isolate single-copy 

transgene insertions as previously described [5] and confirm FLAG::Argonaute 

expression in the expected germline using anti-FLAG immunohistochemistry of 

extruded male and hermaphrodite gonads. After crossing the transgenes into the 

relevant null backgrounds, we will define the molecular consequences of rescue with  

the transgenic Argonaute, 

examining the effects on 26G 

RNA biogenesis and function as 

depicted in Table 4.1. 

 

We hypothesize that the ALG-3 PAZ domain prohibits methylation of 26G RNAs and the 

ERGO-1 PAZ domain permits HEN1-mediated methylation, but only when its PAZ 

domain insertion is intact (see Fig. 4.2, “Methyl?” column). We therefore expect that 

SWAP and PAZ SWAP strains will show reversed methylation status for the native 26G 

RNAs by beta-elimination and northern blot. We further predict that the PAZΔINS strain 

will show loss of methylation for the relevant small RNA population. As loss of 

methylation decreases small RNA stability, ergo-1Δ animals rescued by predicted 

methylation-prohibitive Argonautes under the ergo-1 promoter will likely show reduced 

female 26G RNA accumulation, with a corresponding decrease in dependent 22G 

RNAs. This will manifest most noticeably as a dramatic decrease in inheritance of 

female 26G RNAs, as in the hen1Δ mutant [1]. Female 26G RNA target levels may be 

largely unaffected, however, as the hen1Δ mutant shows little or no target upregulation 

[1]. The results in the male germline may reveal more. alg-3Δ; alg-4Δ mutants rescued 

by expression of putative methylation-permissive Argonautes under the alg-3 promoter 

are expected to show increased male 26G RNA levels. This will likely correlate with 

increased production of dependent secondary 22G endo-siRNAs and enhanced 

silencing of target transcripts. The more abundant 22G RNAs, or possibly the stabilized 

male 26G RNAs themselves, may even show robust embryonic inheritance, as is 

observed for methylated female 26G RNAs and piRNAs. The significance of this is 

expanded upon below. 

 

Table 4.1. Assays for 26G RNA biogenesis and function. 
Step tested Assay Ref 
Methylation Beta-elimination + northern blot [6] 
Accumulation 
 

Taqman of 26G RNAs 
Taqman RT-qPCR across 
development 

[7] 
Amplification Taqman of dependent 22G RNAs [8, 9] 
Target silencing RT-qPCR of published targets [7] 
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It is possible that the ERGO-1 PAZ domain may be required for 26G RNA methylation, 

but insufficient. In this case, our SWAP strains would show reversed methylation status, 

but no 26G RNAs would be methylated in the PAZ SWAP strains. Should we observe 

this, we would generate additional ERGO-1/ALG-3 hybrid transgenes to determine the 

minimal set of ERGO-1 domains required for 26G RNA methylation. Other domains 

identified as required might be involved in recruiting HEN1 to the Argonaute complex. 

 

To understand the biological relevance of selective endo-siRNA methylation in the 

germline, we will complement these molecular studies with phenotypic analysis of the 

transgenic rescue strains, characterizing any defects in fertility and gametogenesis 

associated with 26G RNA dysregulation. To examine consequences of loss of female 

26G RNA methylation, we will test for phenotypes observed in the hen1Δ mutant. We 

will assay for enhanced somatic sensitivity to exogenous dsRNA, which reflects the 

decreased competition with endo-siRNAs for limiting RNAi factors [7,10-12]. We will 

also perform a brood size assay, as the hen1Δ mutant exhibits a 25% decrease in 

brood size at elevated temperatures. Because the male 26G RNAs play an essential 

role in promoting sperm maturation at elevated temperatures [7,9], we will examine a 

broad range of possible phenotypes to determine the molecular consequences of 

aberrant male 26G RNA methylation. We will perform DAPI staining of the germline to 

quantitate sperm and assess their morphology. To test sperm maturation, we will 

conduct sperm activation assays as previously described [13]. We will assess sperm 

function by counting unfertilized oocytes and performing brood size assays. Any fertility 

defects will be further characterized by outcrossing transgenic males or females (fem-

1Δ mutants that generate no sperm) to wild-type animals to explore the gametic origin 

of the defect. 

 

We predict that transgenic Argonautes expected to prohibit female 26G RNA 

methylation will exhibit enhanced RNAi sensitivity, but not recapitulate the temperature-

sensitive fertility defect observed in the hen1Δ mutant [1], as piRNA methylation will 

remain intact. It is far more difficult to predict the phenotypes of strains predicted to 

show aberrant methylation of male 26G RNAs. In these strains, we expect target 
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silencing to be enhanced and prolonged, which may affect gametogenesis. As male 

26G RNAs target many spermatogenesis-enriched coding transcripts [7], enhanced 

silencing of these targets may disrupt sperm development, presenting phenotypically as 

decreased sperm number, increased unfertilized oocyte number, and complete rescue 

with outcrossing to wild-type males. The converse is possible as well: because silencing 

of male 26G RNA targets is required for normal sperm development, and particularly 

chromosome segregation [9], additional silencing may further increase production of 

functional sperm. 

 

Aberrant methylation of male 26G RNAs may also affect zygotic viability or fitness. 

Zygotes formed from sperm carrying methylated male 26G RNAs or excess dependent 

secondary siRNAs may suffer erroneous silencing of transcripts common to zygote and 

sperm. Any inherited male 26G RNAs would also target imperfectly complementary 

transcripts in trans [3], triggering robust and most probably detrimental silencing by 

secondary siRNAs. As the alg-3 promoter primarily drives sperm-specific expression, 

any somatic phenotypes observed in strains with aberrant male 26G RNA methylation 

would likely derive from erroneous inheritance of these endo-siRNAs from the paternal 

germline. This inherited effect could be conclusively demonstrated by examining 

offspring of heterozygous transgenic males outcrossed to wild-type hermaphrodites. 

Phenotypes observed in the nontransgenic cross progeny would represent heritable 

defects attributable to increased stability of male 26G RNAs in the parental germline. 

Such phenotypes would provide striking evidence in support of our hypothesis that 

methylation of only female 26G RNAs enforces selective inheritance of a maternal 

epigenetic program.  

 

Female 26G RNAs are robustly inherited and therefore under selective pressure to 

avoid targeting essential zygotic transcripts. We expect aberrant methylation and 

inheritance of male 26G RNAs to prove deleterious to offspring, but only because male 

26G RNAs have not evolved under the same constraint. It is intriguing to speculate on 

the biological advantage of inhibiting paternal inheritance of epigenetic signals. 

Additional mechanisms appear to exist to reinforce this bias: ALG-3 and PRG-1, 
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Argonautes that bind primary small RNAs in male germline, are largely excluded from 

mature sperm [9,14]. Accordingly, female piRNAs are dramatically overrepresented in 

the zygote [15] even though both male and female piRNAs are methylated [1]. 

Exclusion of ALG-3 and PRG-1 is not due to incapacity of the sperm to carry a 

significant Argonaute cargo, as secondary siRNA-binding Argonaute WAGO-1 is 

effectively packaged into the spermatid [9]. Several RNAi phenomena show interesting 

parent-of-origin effects that may be related to the maternal inheritance bias. Mutations 

in some genes required for transposon silencing cause complete, immediate transposon 

activation when maternally inherited, but only a gradual increase in desilencing over 

several generations when paternally inherited [16,17]. Transgenes that are heritably 

silenced at the chromatin level are capable of triggering immediate silencing in trans 

(cosuppression) of a homologous locus when maternally inherited, but cosuppression 

may show a generational lag or fail entirely when the silenced locus is paternally 

inherited [18-20]. 

 

Why should such a system of preferential maternal transmission evolve? The 

application of this seems somewhat unclear in C. elegans, as the vast majority of C. 

elegans zygotes arise from identical parental genomes through self-fertilization. 

However, the androdioecious (hermaphrodite and male) C. elegans species likely 

evolved from a relatively recent gonochoristic (male and female) ancestral state [21]. 

Perhaps inheritance of discordant epigenetic programs from two different parental 

genomes is detrimental to offspring, and selective inheritance of maternal small RNAs 

served until recently to prevent a clash of distinct maternal and paternal epigenetic 

programs. Other androdioecious and gonochoristic Caenorhabditis species also show 

distinct male and female 26G RNA classes [22]. Adding to the mystery, these species 

show target overlap between male 26G RNAs and 26G RNAs found in embryo, 

whereas male and embryo 26G RNA populations show virtually no target overlap in C. 

elegans. Notably, in these other three species, the ergo-1 gene has undergone multiple 

duplications [22], and expression of one or more of these paralogs in male germline 

may confer methylation and thus inheritance of male 26G RNAs. While the proposed 

investigation of small RNA-mediated methylation in C. elegans will enhance our 
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understanding of structural features within the Argonaute family that dictate animal 

small RNA methylation, it will only begin to elucidate the biological function of selective 

germline endo-siRNA methylation in vivo. Examining Argonaute diversity and small 

RNA methylation in gametes of other Caenorhabditis species and additional organisms 

with diverse reproductive strategies may provide further clarity. 

 

Identifying small RNA pathway cofactors through HEN1 proteomics 
 
HEN1 is the only known factor required for small RNA methylation. In vitro, purified 

recombinant C. elegans HEN1 effectively methylates ssRNA substrates [2], suggesting 

that HEN1 may not require protein cofactors for methyltransferase activity; however, 

HEN1-mediated methylation appears to require Argonaute binding in vivo [1]. Proteins 

that associate with HEN1 may therefore be important for HEN1 recruitment or 

regulation; alternatively, they may represent Argonaute cofactors that mediate 

interaction with HEN1. While numerous members of the microRNA effector complex, 

miRISC, have been identified and characterized, the core Argonautes remain the only 

known components of the female 26G RNA and piRNA effector complexes. Previous 

mass spectrometry analysis of immunopurified ERGO-1 and PRG-1 complexes failed to 

distinguish protein cofactors essential for the female either pathway (data not shown). 

To identify HEN1 interactors that might contribute to methylation or effector function of 

these small RNAs, I introduced a rescuing HEN1::GFP transgene into the hen1Δ mutant 

[1] and used an α-GFP antibody to isolate HEN1 complexes from transgenic embryo 

and adult male extracts. Proteins were identified by mass spectrometry, and factors 

detected in nontransgenic control samples were excluded from subsequent analyses. I 

prioritized candidates by peptide coverage and putative function in small RNA pathways 

as indicated by emergence from a genome-wide transgene silencing RNAi screen 

performed in a sensitized genetic background (see below, the eri-1; scm::gfp screen). 

Our list of ten high-confidence candidates includes H27M09.1, a paralog of the known 

miRISC component CGH-1 [23], F43G9.1, an isocitrate dehydrogenase previously 

implicated in small RNA pathways [24], and TKT-1, the C. elegans ortholog of the 
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conserved metabolic enzyme transketolase. The last of these is discussed in detail in 

the next two sections. 

 

To evaluate putative HEN1 interactors for a role in HEN1-mediated methylation, we will 

inactivate candidate genes by RNAi and assess progeny for loss of 26G RNA and 

piRNA methylation by beta-elimination and northern blot. For candidate genes with 

definitive roles in methylation, we will obtain mutants from the Caenorhabditis Genetics 

Center and subject them to the molecular and phenotypic assays described above to 

determine the candidate’s relevance to germline small RNA dynamics. To validate 

interaction with HEN1, we will generate transgenic strains expressing FLAG-tagged 

candidate proteins to enable us to attempt reciprocal co-immunoprecipitations with 

HEN1. To determine if candidates mediate interaction between HEN1 and Argonautes, 

we will also attempt to reciprocally co-immunoprecipitate candidates and ERGO-1 and 

PRG-1 Argonautes using specific polyclonal antibodies we have previously generated. 

Candidates deemed to be Argonaute complex components will be similarly tested for 

interaction with Ago clade Argonautes to assess whether they represent factors unique 

to methylation-permissive silencing complexes. The results of these preliminary studies 

will guide further investigation of the roles of these candidates in small RNA methylation 

and/or effector function. 

 

 

Establishing a role for HEN1 interactor TKT-1 in the female 26G RNA pathway 
 

I have identified the highly conserved metabolic enzyme transketolase, encoded by tkt-

1, as a HEN1 interactor. Our mass spectrometry analysis of immunopurified 

HEN1::GFP complexes recovered a total a total of four unique, non-overlapping TKT-1 

peptides covering 11% of the protein. Although a role for TKT-1 in small RNA pathways 

has never before been demonstrated, TKT-1 also emerged from a proteomic analysis of 

complexes containing DCR-1 [11], the C. elegans ortholog of the conserved small RNA 

processing factor Dicer. In C. elegans, DCR-1 is required for cleavage of 26G RNAs, 

but not piRNAs [7,14,25]. Analysis of a mutant carrying a ~400 bp deletion in the coding 
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sequence of tkt-1 reveals 

severe depletion (100- to 

1000-fold) of female 26G 

RNAs in mutant embryo, 

whereas control microRNA 

and piRNA species show no 

significant change (Fig. 4.3A). 

Interestingly, a control male 

26G RNA is intact in tkt-1Δ 

mutant young adult (Fig. 
4.3B), indicating a specific role for tkt-1 in accumulation of female 26G RNAs. These 

preliminary data have led us to hypothesize that TKT-1 fulfills a multipart role in 26G 

RNA biogenesis by promoting 26G RNA processing and assembly into a mature 

ERGO-1 Argonaute complex. 
Interaction between TKT-1 and HEN1 suggests that they may collaborate to mediate 

methylation. To investigate the role of TKT-1 in germline small RNA methylation, we will 

assess the methylation status of female 26G RNAs and piRNAs in wild-type versus tkt-

1Δ mutant embryo using the beta elimination assay as above. Based on the interaction 

of TKT-1 and HEN1 and the specific loss of female 26G RNAs in the tkt-1Δ mutant, we 

expect methylation of female 26G RNAs, but not piRNAs, to be compromised in the tkt-

1Δ mutant. As methylation occurs following Argonaute loading, it is also possible that 

TKT-1 is required for loading of female 26G RNAs onto ERGO-1. We will test this by 

immunopurifying ERGO-1 complexes from wild-type, eri-1Δ mutant (which lacks 26G 

RNAs entirely), and tkt-1Δ mutant animals and quantifying associated 26G RNAs, 

normalizing the proportion of 26G RNAs recovered in the immunoprecipitate to levels in 

the crude lysate. Although female 26G RNA levels are very low in the tkt-1Δ mutant, we 

have previously demonstrated our ability to assess methylation status of highly depleted 

species by northern blot analysis of the ergo-1Δ mutant [1]. A direct or indirect role for 

TKT-1 in 26G RNA effector complex assembly will likely be shown by decreased 

relative detection of female 26G RNAs in ERGO-1 immunoprecipitates isolated from tkt-

1Δ mutant, as this mutant shows female 26G RNA levels similar to those of the ergo-1Δ 

Fig. 4.3: Female 26G RNAs are specifically depleted in the 
tkt-1Δ mutant. A) Control microRNA miR-1 and piRNA 21UR-
1848 are intact in tkt-1Δ mutant embryo (red bar), but female 
26G RNA 26G-O3 is severely depleted; additional examples 
not shown. B) Control male 26G RNA 26GR-535 is intact in 
tkt-1Δ mutant L4 larva.  
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mutant. If small RNA loading into the effector complex is inhibited in the tkt-1Δ mutant, 

our previous work suggesting that methylation occurs after Argonaute loading [1] would 

predict that the residual female 26G RNAs detected in the tkt-1Δ mutant will be 

unmethylated. Alternatively, if the residual female 26G RNAs in the tkt-1Δ mutant are 

still methylated, we would conclude that TKT-1 is dispensable for methylation, but 

functions in other steps of female 26G RNA biogenesis such as precursor processing, 

or possibly earlier. 

Because interaction was detected between TKT-1 and Dicer [11], we hypothesize that 

TKT-1 may also act in 26G RNA processing. The dsRNA dicing activity of Dicer 

complex can be faithfully recapitulated in vitro using embryo extract [26]. This dicing 

assay has been successfully adapted in our laboratory to investigate requirements for 

26G RNA biogenesis in vitro. In extract from wild-type embryos supplemented with ATP 

and RNase inhibitor, radioactively labeled dsRNA precursor is processed to generate 

26G RNAs, which can be visualized by polyacrylamide gel electrophoresis and 

autoradiography. This 26 nt dicing activity is absent in extract from dcr-1(mg375) mutant 

embryos, which lack Dicer helicase activity [27], as well as embryos lacking factors 

required for 26G RNA biogenesis (Ting Han, unpublished data). 26G RNA production is 

intact in the ergo-1Δ mutant, demonstrating that this assay reports on 26G RNA 

processing capacity rather than stabilization. To test if TKT-1 is required for 26G RNA 

processing, we will perform the dicing assay in embryonic extract from tkt-1Δ mutant 

embryos. We expect to see decreased accumulation of the 26 nt species in tkt-1Δ 

mutant extract relative to wild-type, indicating that the 26 nt dicing activity is 

compromised in tkt-1 mutant extract. 

 

Testing TKT-1 involvement at each stage will enable definitive identification of steps in 

the female 26G RNA pathway that are defective in the tkt-1Δ mutant; however, the 

separation of these steps may be somewhat artificial. Argonaute loading may be 

coupled to 26G RNA transcription and processing, and our previous results indicate that 

methylation is dependent upon Argonaute loading [1]. TKT-1 may represent a linchpin, 

regulating at multiple steps, perhaps acting to coordinate female 26G RNA biogenesis, 

Argonaute loading, and methylation. A similar role was recently shown to be played by a 
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human prion protein that binds Dicer and the microRNA Argonaute AGO, facilitating 

formation of a mature effector complex [28]. One experiment that may help us 

distinguish whether TKT-1 acts in transcription and processing, loading and methylation, 

or both would be to assess female 26G RNA levels in a tkt-1Δ; ergo-1Δ double mutant. 

If TKT-1 acts only in Argonaute loading and methylation, female 26G RNA levels should 

not decrease further; if, however, TKT-1 contributes to biogenesis, the defect in female 

26G RNA levels should be enhanced relative to the ergo-1Δ single mutant. The results 

obtained from these studies will not only provide clarity as to how TKT-1 promotes 

accumulation of female germline endo-siRNAs but also guide the following investigation 

addressing the most important question: Why is the conserved metabolic enzyme 

transketolase acting in the female 26G RNA pathway? The function of female 26G 

RNAs is still not yet definitively established, and the involvement of transketolase may 

provide a critical clue. 

 

 

Exploring a novel connection between nutrition status and maternal endo-siRNAs 
 

The transketolase enzyme is broadly conserved in animals, plants, and bacteria, but 

plays no known role in small RNA pathways. Transketolase acts in the pentose pentose 

phosphate pathway (PPP), a metabolic shunt with two distinct phases (Fig. 4.4). In the 

first phase, irreversible oxidative reactions generate reducing equivalents (NADPH) and 

a five-carbon sugar that can be isomerized to ribose-5-phosphate, the basic sugar 

component of the nucleic acid. Transketolase acts in the 

second phase, during which reversible non-oxidative reactions 

transform these five-carbon sugars into glycolytic intermediates. 

When nucleotide biosynthesis is in high demand, as in a highly 

proliferative cell, ribose-5-phosphate can be generated through 

both branches of the PPP [29]. Our preliminary data indicate a 

specific role for the C. elegans transketolase ortholog, TKT-1, in 

the female 26G RNA pathway, raising the possibility that one or 

both branches of the PPP may have evolved to fulfill a novel Fig. 4.4: The pentose 
phosphate pathway. 
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function in germline endo-siRNA dynamics. Indeed our proteomic studies suggest such 

an undiscovered role: HEN1 and the female 26G RNA Argonaute, ERGO-1, associate 

specifically with other enzymes in the PPP (Table 4.2). These interactions suggest that 

the PPP may provide an unprecedented link between germline endo-siRNAs and 

maternal nutritional status through nucleotide metabolism. 

Table 4.2. C. elegans PPP genes (Fig. 4.4) and small RNA pathway evidence. 
# Enzyme Ce ortholog Evidence for small RNA role 
1 glucose-6-P dehydrogenase GSPD-1  
2 6-Pgluconolactonase Y57G11C.3 3 peptides, ERGO-1 mass spec (17% coverage) 
3 6-Pgluconate dehydrogenase T25B9.9  
4 ribulose-5-P isomerase RPIA-1 1 peptide, HEN1 mass spec (8% coverage) 
5 ribulose-5-P epimerase F08F8.7  

6 transketolase TKT-1 3 peptides, HEN1 mass spec (11% coverage) 
Dicer mass spec (13% coverage) [11] 

7 transaldolase Y24D9A.8  
 

Guided by the results of the TKT-1 studies described above, we propose to test other 

members of the PPP for roles in female 26G RNA biogenesis or stability to demonstrate 

a role for this metabolic pathway in regulating maternal endo-siRNA accumulation and 

inheritance. We will deplete the expression of each gene of the PPP by RNAi using 

clones from a C. elegans genome RNAi library [30] and assay for phenocopy of the 

selective female 26G RNA depletion observed in the tkt-1Δ mutant. Based on the HEN1 

protein interaction evidence, we expect phenocopy of tkt-1Δ mutant defects upon RNAi-

mediated knockdown of members of the non-oxidative branch of the pathway; however, 

if the primary activity of this pathway is routing energy from glycolytic intermediates into 

nucleotides, the oxidative branch may be dispensable to the female 26G RNA pathway, 

failing to produce phenotypes upon its loss. If indeed the PPP promotes female 26G 

RNA accumulation through provision of ribose-5-phosphate, supplementing the E. coli 

food source with excess ribose-5-phosphate may rescue female 26G RNA levels in 

animals lacking TKT-1 or other PPP enzymes. Supplementation of other intermediates 

in the PPP may further help to define how molecular energy flows through the reversible 

or non-reversible branches of this pathway into female 26G RNA synthesis. 
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The most intriguing facet of this investigation is examining the hypothesized connection 

between nutrient availability and female germline endo-siRNA accumulation. To explore 

this, we will compare female 26G RNA levels in late larval, young adult, and early gravid 

wild-type animals that have been collected from nutrient-rich environments or 

transferred to starvation conditions for four hours prior to collection. As a control, we will 

also assay male 26G RNA levels in the late larval starved and fed animals. To 

normalize for potential differences in germline development or proliferation due to 

starvation, we will assess levels of germline-enriched and oocyte-specific transcripts 

between starved and fed animals for normalization of germline small RNA levels. If we 

find that female but not male 26G RNA levels are sensitive to nutrient availability, the 

results would provide evidence for a novel connection between maternal nutritional 

status and germline endo-siRNA production. In the germline of a normal adult 

hermaphrodite, the PPP could rout energy stores toward nucleotide synthesis and 

storage in the form of heritable endo-siRNAs. Under starvation conditions, this pathway 

could resume conversion of ribose-5-phosphate to glycolytic intermediates, depleting 

nucleotide stores and decreasing female 26G RNA accumulation. 

 

The hypothesis we posit here would define an unprecedented function of the 

transketolase in funneling excess nucleotide components into endo-siRNA production in 

the female germline during periods of high nutrient availability. However, a connection 

between energy status and endo-siRNAs does not require that the PPP as a whole be 

involved. If we find that TKT-1 acts independently of the PPP to promote female 26G 

RNA accumulation, TKT-1 may still be sensitive to the broader nutritional status of the 

animal and be sequestered by the PPP when that shunt is most active, such as during 

oxidative stress when cells require additional NADPH. Thus, oxidative stress could 

reduce female 26G RNA levels. Developing C. elegans subjected to crowding or other 

unfavorable environmental conditions enter an alternative larval stage called dauer. This 

fate decision to become the hardier, longer-lived dauer form occurs early in larval 

development prior to germline expansion. Once in a favorable environment, the dauer 

larva will resume development into adulthood, with full germline expansion. Animals that 

have recovered from a dauer stage have been found to show changes in gene 
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expression and produce larger brood sizes [31]. A recent study has shown that 

recovered dauer adults also show altered small RNA expression levels, and small RNA 

pathway factors are required for the brood size increase [32]. This indicates a 

connection between fertility and a history of stress prior to germline expansion. Once 

the germline has expanded, a flow of nutrients through transketolase and the PPP may 

regulate maternal endo-siRNA accumulation to influence inheritance. 

The completion of this investigation will either reveal a non-canonical function for the 

conserved enzyme transketolase in female 26G RNA biogenesis that is independent of 

its role in the PPP or establish an unprecedented link between these two pathways. The 

proposed studies may also provide evidence for a novel connection between 

metabolism and maternal germline endo-siRNAs. This discovery would lead to an 

exciting new line of inquiry: Can oocyte endo-siRNAs serve as a transgenerational 

energy source? Beyond their critical role in transmission of genetic information, 

nucleotides represent a rich source of cellular energy. In C. elegans, proteins and lipids 

derived from the yolk are mobilized to support rapid embryonic development. 

Polymerized nucleotides in the form of oocyte endo-siRNAs may represent an 

analogous reservoir of nucleotides for fueling the maternal to zygotic transmission. 

 

 

Mining genome-wide RNAi screen data for novel endo-siRNA pathway factors 
 
Across metazoans, germline small noncoding RNAs, including piRNAs and endogenous 

siRNAs (endo-siRNAs), fulfill a conserved function in promoting germline immortality. 

These small RNAs act as an immune system for the genome, passing from parent to 

offspring and silencing genetic elements that pose a threat to genome integrity such as 

transposons. In higher animals, compromise of the piRNA or endo-siRNA pathway 

results in sterility [33-37], revealing their essential roles in reproduction. Similarly, 

compromise of 26G RNAs and piRNAs in C. elegans causes sterility at elevated 

temperatures [7,14,25,38]. Upon target recognition, these primary small RNAs trigger 

the production of 22G secondary siRNAs that amplify their repressive signal and effect 

silencing [8,9,25,39-41]. The secondary siRNAs associate with the expansive, worm-
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specific clade of WAGO Argonautes and are accordingly called WAGO 22G RNAs. It 

was recently determined that WAGO 22G RNAs triggered by exo-siRNAs, endo-

siRNAs, and piRNAs are capable of mediating not only post-transcriptional silencing but 

also heritable co-transcriptional silencing in the nuclei of germ cells; this germline 

nuclear RNAi pathway promotes ongoing expression of secondary siRNAs across 

generations to mediate H3K9 methylation and transgenerational silencing [18-20,41-43]. 

NRDE-2, NRDE-1, NRDE-4, and nuclear WAGO Argonaute HRDE-1 represent the core 

germline nuclear RNAi machinery, but other chromatin-associated factors required for 

transgenerational silencing have been identified [18-20,42,44-46]. At elevated and, in 

some cases, even permissive temperatures, loss of the core germline nuclear RNAi 

factors results in progressively worsening defects in gametogenesis that lead to sterility 

[42]. Thus, C. elegans endo-siRNA and piRNA pathways converge on an endo-siRNA 

amplification system with both cytoplasmic and nuclear branches for target silencing, 

the latter of which is critical to germline immortality. 

 

Systematic RNAi screening of the C. elegans genome has proven extremely valuable 

for identifying genes involved in a common pathway. Somewhat surprisingly, the utility 

of this approach extends even to discovery of genes involved in the RNAi pathway itself 

[24]. Although the core factors of many small RNA pathways have been characterized, 

the frequent identification of novel RNAi factors suggests we are far from the point of 

saturation for discovery of such genes. An additional genome-wide RNAi screen with 

enhanced sensitivity to detect putative small RNA pathway factors was therefore 

devised and executed [47]. Briefly, this screen tests for desilencing of a high-copy array 

expressing GFP in a population of somatic cells (scm::gfp) in the enhanced RNAi 

background of the eri-1Δ mutant; this sensitizing background lacks 26G RNAs, thereby 

liberating downstream WAGO 22G RNA machinery to increase the potency of exo-

RNAi. The scm::gfp transgene is fully silenced in the eri-1Δ mutant background. The 

genome was screened as previously described [24], and all genes whose depletion by 

RNAi resulted in any transgene desilencing were retested in triplicate. This approach 

distinguished ~900 candidate small RNA pathway factors, including many that had been 

previously discovered and validated. 
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To identify optimal candidates for 

further screening, I selected those 

candidates receiving a desilencing 

score ≥ 1.5 out of 4 for which 

viable, probable loss-of-function 

mutants are available from the 

Caenorhabditis Genetics Center or 

through our collaborator at the 

National Bioresource Project for the 

Experimental Animal “Nematode C. 

elegans” at Tokyo Women’s 

Medical University School of 

Medicine.  I filtered this list further by identifying candidates whose protein structure or 

loss-of-function phenotypes suggested possible involvement in small RNA pathways. 

My final refined list contained over 60 candidate mutant strains. These were subjected 

to RT-qPCR analysis of levels of male 26G RNA target mRNA ssp-16, female 26G RNA 

target mRNA F39E9.7, piRNA target Tc3 transposase mRNA, piRNA non-target Tc1 

transposase mRNA, and control mRNA act-1 in early gravid adult biological duplicate 

RNA samples. No candidate mutant showed selective upregulation of Tc3 but not Tc1 

transposase mRNA, which would suggest specific compromise of the piRNA pathway 

[14,25]. Candidates that showed possible 26G RNA target mRNA upregulation were 

confirmed by RT-qPCR analysis of a new set of RNA samples, defining 10 mutants 

representing 11 genes as positive in the RT-qPCR screening (Fig. 4.5). Three of our 

positive genes, rnp-2, Y38A10A.6, and ZK1127.9, were previously identified in the first 

genome-wide RNAi screen for factors involved in RNAi [24], and swd-3.1 was 

previously found to be required for full sensitivity to exogenous RNAi [48]. Subsequent 

to this RT-qPCR screening, hpl-1/2 were found to be required for transgenerational 

silencing [18,20], and ZK1127.9 was found to be required for silencing of a transgene by 

a WAGO 22G RNA that engages the somatic nuclear RNAi pathway [3].  

 

Fig. 4.5. Candidate small RNA pathway factor mutant 
screening results. Levels relative to wild-type (N2) are 
plotted for the indicated gene mutants. Blue, ssp-16 
mRNA. Red, F39E9.7 mRNA levels. eri-1 and rde-4 are 
genes required for 26G RNA biogenesis. 



	   217 

The next step in pursuing these candidates will be to determine at which stage in small 

RNA pathways their respective proteins function. As the eri-1Δ; scm::gfp screen was 

conducted in a mutant background lacking 26G RNAs, genes that function only in 26G 

RNA biogenesis or effector function would be unlikely to emerge from the screen. These 

mutants are thus not predicted to show decreased levels of 26G RNAs. As none of 

these mutants shows a specific defect in silencing of Tc3 transposase mRNA (data not 

shown), levels of piRNAs are also not expected to be affected. Rather, silencing of the 

somatic high-copy scm::gfp array is likely mediated by a combination of 21U RNAs 

recognizing non-self elements of the array and exo-siRNA-like siRNAs generated by 

incidental bidirectional transcription within the array. The latter small RNAs may direct 

array transcripts for deadenylation and degradation via the recently identified RDE-

10/RDE-11 complex [49,50]; however, neither rde-10 nor rde-11 was identified in the 

eri-1Δ; scm::gfp screen [47], suggesting that silencing of the sensor transgene may be 

independent of RDE-10/RDE-11. The transgenic system used for this screen is 

therefore likely to report on the function of WAGO 22G RNA-mediated cytoplasmic, 

post-transcriptional silencing of array transcripts and/or transcriptional silencing through 

engagement of the somatic nuclear RNAi pathway [44-46,49-51]. Consistent with this 

interpretation, many factors involved in these mechanisms emerge from the eri-1Δ; 

scm::gfp screen. 

 

For all candidate factors, we will apply the same approach. Accumulation of WAGO 22G 

RNA species will be quantified by Taqman RT-qPCR to detect a defect in WAGO 22G 

RNA biogenesis or Argonaute loading and stabilization. Each gene will also be 

inactivated by RNAi in a GFP::NRDE-3 transgenic background; failure of the somatic 

nuclear RNAi Argonaute, NRDE-3, to localize to the nucleus will indicate a defect in 

accumulation or Argonaute loading of WAGO 22G RNAs that engage somatic nuclear 

RNAi pathway [44]. We will then test the integrity of the exo-RNAi pathway in germline 

and soma by subjecting the mutants to RNAi-mediated inactivation of pos-1 and dpy-13, 

respectively. The integrity of the nuclear RNAi pathway will be specifically assessed by 

assaying mutant sensitivity to RNAi targeting the lir-1 polycistronic pre-mRNA in the 

nucleus. Defects observed in the nuclear RNAi pathway will be further pursued using 
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assays for transcriptional gene silencing, target H3K9me3 levels, single-generation and 

transgenerational RNAi inheritance, and mortal germline phenotyping as previously 

described [42,45,46,51]. 

 

CCR-4, RNP-2, and SMU-1 have established roles in RNA metabolism or regulation, 

and Y38A10A.6 encodes a probable ATP-dependent RNA helicase. It is therefore 

possible that these factors will contribute to cytoplasmic small RNA pathway processes 

such as WAGO 22G RNA biogenesis or post-transcriptional target silencing, although 

they may also contribute to nuclear RNAi by interacting with nascent transcripts. In 

contrast, HIS-24, HPL-1/2, SWD-3.1, Y75B8A.31, and ZK1127.9 putatively act at the 

level of chromatin: HIS-24 is the only of eight C. elegans H1 linker histone variants that 

promotes germline development [52]. HIS-24 is required for germline silencing of 

extrachromosomal arrays and functions synergistically with the SIR-2.1 deacetylase to 

maintain germline heterochromatin; simultaneous loss of these two proteins results in a 

mortal germline phenotype [52,53]. HPL-1 and HPL-2 represent the two C. elegans 

heterochromatin protein 1 homologs; HPL-2 interacts with H3K9me2/3, and its loss 

results in desilencing of germline extrachromosomal arrays and sterility at elevated 

temperatures [53,54]. SWD-3.1 is a member of the conserved H3K4 trimethylation 

complex, which regulates lifespan in a germline-dependent manner and enables 

inheritance of longevity [55,56]. Y75B8A.31 contains an Arb2 domain, found in Hda1, a 

histone deacetylase factor, and Arb2; in fission yeast, Arb1 and Arb2 constitute the 

Argonaute siRNA chaperone complex and are required for siRNA biogenesis, H3K9 

methylation, and heterochromatin assembly [57]. ZK1127.9 is a transcription elongation 

factor that also regulates lifespan in a germline-dependent manner [58]. Thus, many of 

our candidates may contribute to the chromatin-level effector function of WAGO 22G 

RNAs. At present, very little is known about the mechanisms required for endo-siRNA-

mediated chromatin modification in C. elegans. Definitively linking the nuclear RNAi 

pathway to candidates RNAi factors with such diverse protein domains will help guide 

future investigation of these emerging mechanisms. 
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ABSTRACT: Caenorhabditis elegans piRNAs promote genome surveillance by 

triggering siRNA-mediated silencing of nonself DNA in competition with licensing 

programs that support endogenous gene expression. 
 

 

MAIN TEXT 
 

Piwi-interacting (piRNAs) are a conserved class of small RNAs that defend against 

selfish genetic elements in the animal germline. The Piwi Argonautes associate with 

piRNAs to recognize and silence complementary transcripts. piRNA sequence diversity 

is immense, enabling targeting of various transposons and repetitive sequences, but 

mechanisms of target selection are incompletely resolved. Here, we discuss four recent 

publications [1-4] that provide important insights into piRNA-mediated genome 

surveillance mechanisms in C. elegans. 
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The canonical piRNA pathway promotes genome integrity 

 

In the germline, piRNAs act to silence mobile elements that can be deleterious to the 

genome. In flies and mammals, these elements can become “trapped” after integration 

into genomic piRNA clusters; this chance event induces biogenesis of piRNAs from that 

element, enabling silencing in trans of copies located elsewhere in the genome. 

Additionally, through an amplification loop termed the ping-pong cycle, the piRNA 

genome surveillance system can be tuned to recognize and selectively repress actively 

transcribed mobile elements (Reviewed in [5]). The cycle is primed by primary piRNAs 

generated through largely unknown mechanisms from sense or antisense transcripts 

corresponding to target elements. Loaded into a Piwi Argonaute, primary piRNAs direct 

the cleavage of complementary transcripts of the opposite sense; these cleavage 

products are in turn incorporated into distinct Piwi Argonautes as secondary piRNAs to 

direct the generation of still more piRNAs. Thus, active mobile elements provide 

substrate transcripts for this amplification loop. In fly, the ping-pong cycle not only 

amplifies piRNA silencing, but also provides a mechanism for epigenetic transmission of 

silencing to progeny. Maternally inherited Piwi-piRNA complexes are required for 

continued genome surveillance in developing progeny and may indeed serve as primary 

piRNAs to trigger silencing in the filial germline. 

 

 

C. elegans piRNAs act through secondary siRNAs 
 

The C. elegans genome encodes two highly homologous Piwi Argonautes, PRG-1 and 

PRG-2; the latter is dispensable for the piRNA pathway and may represent a 

pseudogene [6, 7]. PRG-1 binds and is required for the production of 21U RNAs, a 

population of 21 nucleotide small RNAs with a 5’ uridine that exhibit the high sequence 

diversity, genomic clustering, germline enrichment, and terminal methylation 

characteristic of piRNAs [6, 7]. Unlike canonical piRNAs, however, the mechanism of 

action of 21U RNAs is poorly understood: their targets and functions are largely 

unknown, and they exhibit no evidence of a ping-pong amplification cycle. Rather, they 
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were previously shown to act upstream of an endogenous siRNA pathway [7], but the 

specifics of the targeting mechanism and the nature of the secondary siRNAs were not 

reported. 

 

Recent studies by Bagijn et al. [1] and Lee et al. [2] provide new clarity to these 

pathways through deep sequencing of small RNAs in prg-1 mutant strains and 

transgenic sensor strains engineered to express complementary 21U RNA target sites. 

Independently, these two groups show that PRG-1 and the 21U RNA pathway trigger 

the biogenesis of secondary 22G RNAs of the WAGO pathway in order to effect target 

silencing. The WAGO 22G RNAs, which associate with the worm-specific WAGO clade 

of Argonautes, represent a point of convergence for multiple C. elegans small RNA 

pathways, including both the primary endogenous siRNA (26G RNA) pathway and 

exogenous RNA interference (RNAi).  

 

Through activity that is independent of PRG-1 “slicer” endonuclease function, 21U 

RNAs guide PRG-1 to target transcripts with up to three or four mismatches, promoting 

the association of factors involved in WAGO 22G RNA biogenesis to mount a localized 

silencing response [1, 2]. Whereas earlier reports identified only a single transposon 

silenced by the C. elegans piRNA pathway [6, 7], Bagijn et al. and Lee et al. identify 

numerous additional C. elegans piRNA pathway targets that include multiple 

transposable elements and pseudogenes [1, 2], strengthening the previously tenuous 

connection between 21U RNAs and transposon defense. They further show that many 

factors required for WAGO 22G RNA biogenesis are also necessary for silencing of 21U 

RNA genomic targets, indicating that 22G RNAs mediate the silencing effects of piRNAs. 

Such laxity in piRNA targeting requirements raises the question of how selectivity is 

achieved for 21U RNA-triggered repression. The answer may lie with the CSR-1 22G 

RNAs, another class of endogenous siRNAs required for chromosome segregation. The 

CSR-1 22G RNAs are primarily antisense to germline-expressed genes and may recruit 

the Argonaute CSR-1 to protein-coding genomic loci to promote proper chromatin 

organization through embryonic mitotic divisions [8]. Intriguingly, Bagijn et al. observe 

that transcripts silenced by the 21U RNA pathway are significantly depleted of protein-
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coding genes [1]. Similarly, Lee et al. show that 21U RNAs that map to CSR-1 22G 

RNA targets trigger a less robust secondary siRNA response compared to those 

mapping to WAGO 22G RNA targets [2]. Consistent with this finding, a gfp::histone 

fusion transgene shows inconsistent targeting by 21U RNA-dependent secondary 

siRNAs: the exogenous sequence encoding the GFP moiety is robustly targeted by 22G 

RNAs, whereas the endogenous sequence encoding the histone moiety largely evades 

21U RNA targeting [2]. This leads the authors to suggest that CSR-1-dependent 

“licensing” may protect endogenous protein-coding sequences (self) from piRNA-

mediated silencing. Unlicensed, nonself genes, in contrast, are silenced by PRG-1-

dependent WAGO 22G RNAs. Once such a piRNA immune response is mounted 

against nonself genes, this silencing is heritable and no longer requires 21U RNAs [2-4]. 

 

 
siRNAs enforce an epigenetic identity of self versus nonself 
 

The mechanism of 21U RNA-dependent, epigenetic memory is further explored by Ashe 

et al. [3] and Shirayama et al. [4]. In related studies, these two groups describe a 

phenomenon of heritable transcriptional and post-transcriptional silencing initiated by 

piRNAs. This pathway is also triggered by exogenous RNAi, which likewise engages the 

WAGO 22G RNA pathway [3]. Trans-generational silencing is observed under diverse 

circumstances. Shirayama et al. show that single-copy transgenes that include lengthy 

foreign sequences show permanent, PRG-1-dependent silencing that they call RNA-

induced epigenetic silencing (RNAe) [4]. Ashe et al. demonstrate heritable epigenetic 

silencing of a single-copy 21U RNA target transgene as well as a transgene targeted by 

canonical, exogenous RNAi [3]. Trans-generational silencing requires an intact WAGO 

22G RNA response, including genes involved in nuclear RNAi, and correlates with de 

novo production of filial 22G RNAs. Chromatin factors are also necessary for trans-

generational silencing, solidifying a connection between chromatin modification and 

epigenetic inheritance of silencing [3, 4]. Heritably silenced single-copy alleles show 

enrichment for H3K9me3, a histone mark associated with silenced chromatin [4]. This 

finding correlates with recent work showing that exogenous RNAi of diverse 
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endogenous loci results in trans-generational silencing that requires the WAGO 22G 

RNA pathway and results in H3K9me3 accumulation [9, 10]. 

 

Study of transgenic C. elegans is greatly confounded by germline silencing. While the 

advent of single-copy transgene insertion has revolutionized C. elegans transgenesis, 

even these non-repetitive transgenes can be subject to piRNA-dependent silencing [4]. 

How therefore does silencing machinery recognize self versus nonself? The studies 

discussed here propose a memory of self genomically encoded in mismatch-tolerant 

piRNAs. Presumably, piRNA sequences, constrained only by selection against 

sequences that silence mRNAs, evolve rapidly, enabling targeting of diverse foreign 

genetic material [1]. An unpaired DNA silencing response may also aid in recognition of 

foreign sequences, as stable silencing of a piRNA sensor transgene was achieved 

when present in a heterozygous state over multiple generations [3]. 

 

There is, however, competition between the silencing and licensing signals. 

Endogenous genes targeted by exogenous RNAi generally recover expression after 

several generations, and even low-copy transgenes containing foreign DNA may 

become resistant to permanent silencing after propagation for years [4]. Continued 

propagation of foreign DNA seems to confer self-identity and thus unchecked 

expression; this process is likely enhanced by experimental selection by investigators 

for transgenic animals that maintain robust transgene expression. Intriguingly, silenced 

single-copy gfp transgenes can be activated in trans by the presence of ancient, 

licensed transgenes carrying gfp [4]. The agents responsible for this antagonism may 

well be CSR-1 22G RNAs. Thus, C. elegans may distinguish self from nonself through 

piRNA-mediated surveillance and the activities of competing, complementary siRNA 

pathways. 

 

Questions remain regarding the function of C. elegans piRNAs. What are the 

consequences of loss of 21U RNAs over many generations? How is genome integrity 

affected by desilencing of the suite of elements regulated by PRG-1, only a minority of 

which are transposons? What other factors influence the outcome when silencing and 
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licensing programs clash? Importantly, are analogous epigenetic programs somehow 

enacted in higher organisms, which lack the arsenal of Argonaute proteins and RNA-

dependent RNA polymerases that generate C. elegans siRNAs? And finally, whole 

areas of piRNA biology remain largely uncharted – most notably, primary piRNA 

biogenesis – and await further study in C. elegans and higher organisms. 
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ABSTRACT: Genetic and biochemical analyses of RNA interference (RNAi) and 

microRNA (miRNA) pathways have revealed proteins such as Argonaute and Dicer as 

essential cofactors that process and present small RNAs to their targets. Well-validated 

small RNA pathway cofactors such as these show distinctive patterns of conservation or 

divergence in particular animal, plant, fungal and protist species. We compared 86 

divergent eukaryotic genome sequences to discern sets of proteins that show similar 

phylogenetic profiles with known small RNA cofactors. A large set of additional 

candidate small RNA cofactors have emerged from functional genomic screens for 

defects in miRNA- or short interfering RNA (siRNA)-mediated repression in 
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Caenorhabditis elegans and Drosophila melanogaster1,2, and from proteomic analyses 

of proteins co-purifying with validated small RNA pathway proteins3,4. The phylogenetic 

profiles of many of these candidate small RNA pathway proteins are similar to those of 

known small RNA cofactor proteins. We used a Bayesian approach to integrate the 

phylogenetic profile analysis with predictions from diverse transcriptional coregulation 

and proteome interaction data sets to assign a probability for each protein for a role in a 

small RNA pathway. Testing high-confidence candidates from this analysis for defects 

in RNAi silencing, we found that about one-half of the predicted small RNA cofactors 

are required for RNAi silencing. Many of the newly identified small RNA pathway 

proteins are orthologues of proteins implicated in RNA splicing. In support of a deep 

connection between the mechanism of RNA splicing and small-RNA-mediated gene 

silencing, the presence of the Argonaute proteins and other small RNA components in 

the many species analysed strongly correlates with the number of introns in those 

species. 
 

 

MAIN TEXT 
 

Proteins with similar patterns of conservation or divergence across different organisms 

are more likely to act in the same pathways5. To identify proteins that share an 

evolutionary history with validated small RNA pathway proteins, we determined the 

phylogenetic profiles of approximately 20,000 C. elegans proteins in 85 genomes, 

representing diverse taxa of the eukaryotic tree of life: 33 animals, 6 land plants, 1 alga, 

31 Ascomycota fungi, 3 Basidiomycota fungi and 12 protists. Of the ~20,000 C. elegans 

proteins, 10,054 show homologues in non-nematode eukaryotic genomes 

(Supplementary Table 1). Following correlation and clustering, this analysis sorts genes 

into clades of conservation and relative divergence or loss in the various organisms as 

suites of genes are maintained from common ancestors or diverge in particular 

lineages6. Protein divergence or loss in particular taxonomic clades is not random; 

entire suites of proteins can diverge or be lost as particular taxa specialize and no 

longer require ancestral functions. The correlated loss of proteins has been used to 
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assign roles for nuclear-encoded mitochondrial proteins7 and eukaryotic cilia-associated 

proteins8. 

 

We developed a non-binary method of phylogenetic profiling to cluster all protein 

sequences encoded by C. elegans genes. BLAST scores were normalized to the length 

of the query sequence and for relative phylogenetic distance between C. elegans and 

the queried organism9. The matrix of 864,644 conservation scores for the 10,054 C. 

elegans proteins in the 86 genomes was queried either with a single protein to generate 

a ranking of other C. elegans proteins with the most similar pattern of conservation 

values or using a more global hierarchical clustering method (Fig. 1a). Proteins of the 

same families exhibit similar patterns of phylogenetic conservation and therefore tend to 

group together in the hierarchical clustering. However, many phylogenetic clusters 

include proteins with no sequence similarity; only their conservation or divergence in 

genomes is correlated. The ability of this non-binary method of phylogenetic profiling to 

cluster proteins based on function is exemplified by the clustering of proteins known to 

act as members of complexes. For example, the known protein components of the 

sensory cilium have highly correlated phylogenetic profiles characterized by loss in 

particular vertebrates and all fungi and plants and retention in particular protists, 

whereas the extraordinarily high and universal conservation of ribosomal and translation 

factor proteins clusters many of these translation components (Supplementary Fig. 1a, 

b). 

 

With a simple query of one of the central proteins in RNAi, the Argonaute RDE-1, we 

generated a rank-ordered list of proteins with phylogenetic profiles most similar to that 

of RDE-1 (Fig. 1b). The 26 other C. elegans Argonautes represent the top correlated 

proteins, a trivial consequence of protein sequence similarity within the Argonaute 

family. The signature phylogenetic profile of the Argonaute proteins is that they are 

absent in 9 out of 31 Ascomycota species, 1 out of 3 Basidiomycota species, and 6 out 

of 14 protist species, but have not been lost in any of the 33 animal or 6 land plant 

species compared. The retention of Argonaute proteins correlates with the ability to 

inactivate genes by RNAi10, and the loss of RNAi in about one-half of the sequenced 



 233 

Ascomycota fungi is correlated with the ‘killer’ RNA virus11. Additional C. elegans 

proteins that cluster with the Argonautes but show no sequence similarity include an 

asparaginase encoded by K01G5.9, the CAND-1 elongation factor and another 

elongation factor, the THO complex protein THOC-1. THO complex members have 

emerged from genetic screens for defective transgene and RNAi silencing in 

Arabidopsis thaliana12. 

 

Another validated C. elegans RNAi protein is MUT-2, a polyA polymerase implicated in 

a step downstream of the production of primary siRNAs by Dicer13. Out of the 50 C. 

elegans proteins with phylogenetic profiles most closely correlated with MUT-2 

(Supplementary Fig. 1c), 10 are Argonautes, which bear no sequence similarity to MUT-

2, demonstrating the efficacy of this approach to detect validated small RNA pathway 

proteins. The splicing components MAG-1, RSP-8, RNP-4, RSP-5 and DDB-1 and the 

translation factors EIF-3.D and EIF-3.E, many of which score in the validation tests 

below, also have similar phylogenetic profiles. In addition, out of the proteins most 

correlated with the C. elegans orthologue of Dicer (DCR-1), a nuclease that processes 

siRNAs and miRNAs, 3 Argonaute proteins emerge among the top 50 correlated 

phylogenetic profiles (Supplementary Fig. 1d and Supplementary Table 2). 

 

The RNA-dependent RNA polymerases14, siRNA-amplifying cofactors, are present in 

only 5 out of 27 animals (all the nematode species and, surprisingly, the tick), in all of 

the land plants, in 2 out of 4 Basidiomycota fungi, in 18 out of 27Ascomycota fungi and 

in 4 out of 14 protists, but are not present in green algae. A query of the RNA-

dependent RNA polymerase RRF-3 (Supplementary Fig. 1e) revealed the cofactor-

independent phosphoglycerate mutase F57B10.3 as a dramatically correlated non-

homologous protein (R = 0.93). Inactivation of this phosphoglycerate mutase gene 

causes defects in the endogenous siRNA response as well as transgene silencing, 

validating its role in RNA silencing (Supplementary Table 2). It is possible that either the 

biochemical substrate or product of this glycolysis pathway protein, or its enzymatic 

activity as a phosphatase, couples it to small RNA pathways. 
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Figure B.1 | Phylogenetic profiling analysis shows correlated conservation 
patterns of C. elegans proteins. a, Phylogenetic profiles of 10,054 conserved C. 
elegans proteins across 85 other eukaryotic genomes. For each C. elegans query 
protein, the normalized ratio of the BLAST score for the top-scoring protein sequence 
similarity is indicated in the column corresponding to each genome. Values range from 
0 (white, no similarity) to 1 (blue, 100% similarity). b, Phylogenetic profiles of validated 
RNAi factor RDE-1 and the 49 most correlated proteins in rank order. 
 

 
  

RNA pathway proteins. The splicing components MAG-1, RSP-8,
RNP-4, RSP-5 and DDB-1 and the translation factors EIF-3.D and
EIF-3.E, many of which score in the validation tests below, also have
similar phylogenetic profiles. In addition, out of the proteins most
correlated with the C. elegans orthologue of Dicer (DCR-1), a nuclease
that processes siRNAs and miRNAs, 3 Argonaute proteins emerge
among the top 50 correlated phylogenetic profiles (Supplementary
Fig. 1d and Supplementary Table 2).

The RNA-dependent RNA polymerases14, siRNA-amplifying cofac-
tors, are present in only 5 out of 27 animals (all the nematode species and,
surprisingly, the tick), in all of the land plants, in 2 out of 4 Basidio-
mycota fungi, in 18 out of 27 Ascomycota fungi and in 4 out of 14 pro-
tists, but are not present in green algae. A query of the RNA-dependent
RNA polymerase RRF-3 (Supplementary Fig. 1e) revealed the cofactor-
independent phosphoglycerate mutase F57B10.3 as a dramatically
correlated non-homologous protein (R 5 0.93). Inactivation of this pho-
sphoglycerate mutase gene causes defects in the endogenous siRNA res-
ponse as well as transgene silencing, validating its role in RNA silencing
(Supplementary Table 2). It is possible that either the biochemical sub-
strate or product of this glycolysis pathway protein, or its enzymatic
activity as a phosphatase, couples it to small RNA pathways.

To identify candidate small RNA pathway proteins more compre-
hensively, we globally ranked proteins based on phylogenetic-profile
correlation with multiple validated siRNA and miRNA cofactors. After
assigning all conserved C. elegans proteins to hierarchical clusters, we
gave each protein a score to reflect its phylogenetic clustering with the

validated set of small RNA proteins (Supplementary Fig. 2). This ana-
lysis identified 60 proteins not previously implicated in small RNA
pathways whose phylogenetic profiles correlate highly with those of
validated siRNA and miRNA pathway proteins (Fig. 2).

The validated siRNA and miRNA protein cofactors identified so far
probably constitute a small fraction of the total number of proteins that
mediate small RNA function. Full-genome RNAi screens for defects
in siRNA or miRNA pathway function have identified hundreds of
additional candidate small RNA pathway proteins. We integrated ten
genome-scale studies into the phylogenetic cluster analysis: five C. elegans
gene-inactivation screens for defects in RNAi or miRNA function1,15,16,
C. elegans orthologues of Drosophila genes identified in two full-
genome RNAi screens for impaired siRNA or miRNA response2 and
three proteomic studies of complexes containing the known RNAi
proteins DCR-1 (ref. 4), ERI-1 (ref. 17) and AIN-2 (ref. 18). Candidate
genes identified in these studies show little overlap (Supplemen-
tary Table 3 and Supplementary Fig. 3a, b). However, the candidates from
the different studies have similar phylogenetic profiles to each other and to
validated small RNA cofactors (Fig. 3, Supplementary Fig. 3c, d and
Supplementary Table 4).

We used a naive Bayesian classifier to assign predictive values to six
genome-scale studies of RNAi cofactors and five miRNA cofactors (see
Supplementary Methods)19,20. To the phylogenetic profiles, we added a
score for each C. elegans gene that is co-expressed on microarrays21 or
whose encoded gene product interacts with validated small RNA path-
way proteins22. The top 105 genes identified by this analysis are
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Figure 1 | Phylogenetic profiling analysis shows correlated conservation
patterns of C. elegans proteins. a, Phylogenetic profiles of 10,054 conserved C.
elegans proteins across 85 other eukaryotic genomes. For each C. elegans query
protein, the normalized ratio of the BLAST score for the top-scoring protein

sequence similarity is indicated in the column corresponding to each genome.
Values range from 0 (white, no similarity) to 1 (blue, 100% similarity).
b, Phylogenetic profiles of validated RNAi factor RDE-1 and the 49 most
correlated proteins in rank order.
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To identify candidate small RNA pathway proteins more comprehensively, we globally 

ranked proteins based on phylogenetic-profile correlation with multiple validated siRNA 

and miRNA cofactors. After assigning all conserved C. elegans proteins to hierarchical 

clusters, we gave each protein a score to reflect its phylogenetic clustering with the 

validated set of small RNA proteins (Supplementary Fig. 2). This analysis identified 60 

proteins not previously implicated in small RNA pathways whose phylogenetic profiles 

correlate highly with those of validated siRNA and miRNA pathway proteins (Fig. 2). 
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Figure B.2 | Phylogenetic clusters of candidate small RNA pathway proteins. 
Validated miRNA and siRNA pathway proteins map non-randomly on the phylogenetic 
profile; proteins that map to the same clusters are likely to function in small RNA 
pathways. Left panel, clusters enriched for validated miRNA and siRNA pathway 
proteins (black boxes). Darker blue, higher protein-sequence similarity. Right panel, 
pairwise local protein-sequence alignment of all pairs of proteins in the cluster. White, 
no similarity; black, significant similarity. 
 

  

enriched with 41 well-validated siRNA pathway genes (Supplementary
Fig. 7 and Supplementary Table 2). The other genes on this list are
excellent candidates to mediate siRNA or related small RNA functions.
More than 20 of these genes encode RNA recognition motifs including
RNP (P , 0.00001) and helicase (P , 0.00001), an approximately 20-
fold enrichment relative to the entire data set. Nine proteins from this
list constitute components of the spliceosome (Supplementary Fig. 3).

From the proteins best correlated with validated small RNA path-
way cofactors by phylogenetic profile or in the naive Bayesian analysis
(Figs 1–3), we tested 87 representative candidates using two different
tests for defects in RNAi. Transgene silencing in the somatic cells of
the enhanced RNAi mutant eri-1(mg366) is mediated by an RNAi
mechanism1. We tested a set of 87 predicted small RNA pathway genes
using this strain, and 43 scored as significantly RNAi-defective
(Supplementary Table 2, and Fig. 4a). We also tested candidates using
a green fluorescent protein (GFP)-based sensor for the abundant
C. elegans endogenous siRNA 22G siR-1 (ref. 23) to monitor whether
any of the gene inactivations affect the production or response to this
endogenous siRNA. Thirty-three out of 87 genes tested scored in this
assay (Supplementary Table 2 and Fig. 4b). Eight of the nine predicted
splicing components scored strongly in these validation screens.

The enrichment for RNA splicing components (Supplementary Fig. 4)
points to a close mechanistic connection between splicing and small RNA
regulation. Among the Ascomycota and protist species that have lost the
Argonaute proteins, most show an extreme loss of introns, from 104–105

introns in species with Argonautes to 102 or fewer introns in most species
without Argonautes (Supplementary Fig. 5). We screened for defects in

RNAi a cherry-picked gene inactivation sublibrary of C. elegans ortho-
logues of known splicing factors that have emerged from bioche-
mical and genetic screens for splicing components from other systems.
From a set of 46 C. elegans genes annotated in KEGG (Kyoto
Encyclopedia of Genes and Genomes) to encode the orthologues of
known splicing proteins that could be tested for roles in RNAi in our
assays, 16 and 22 of these splicing-factor genes scored strongly in the eri-1
transgene desilencing assay and the endogenous 22G siR-1 sensor assay.
Many of the splicing components that scored strongly in these screens
show a phylogenetic profile similar to the Argonaute proteins (Sup-
plementary Fig. 6 and Supplementary Table 6). However, a subset of
splicing factors that are well conserved across phylogeny also scored
strongly in these assays.

We used the eri-1 transgene desilencing system to conduct a full-
genome screen for gene inactivations that disable transgene silencing
and identified 855 genes required for transgene silencing, with more
than 200 scoring above 3 on a scale of 0 to 4 for desilencing (Sup-
plementary Table 7). Among gene inactivations that caused the great-
est desilencing, 11% correspond to the highest ranked predictions
from the siRNA naive Bayesian analysis, a 30-fold enrichment
(P 5 4.7 3 10213 using a hypergeometric test) for positives. Out of
the 84 splicing factors that have been assigned to specific splicing steps,
49 scored in the full genome screen as required for transgene silencing,
and 32 showed phylogenetic profiles clustering with known small
RNA factors. The splicing factors that couple to small RNA pathways
were not isolated to any particular step of RNA splicing. Splicing factor
mutations in Schizosaccharomyces pombe disrupt the RNAi-based
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The validated siRNA and miRNA protein cofactors identified so far probably constitute a 

small fraction of the total number of proteins that mediate small RNA function. Full-

genome RNAi screens for defects in siRNA or miRNA pathway function have identified 

hundreds of additional candidate small RNA pathway proteins. We integrated ten 

genome-scale studies into the phylogenetic cluster analysis: five C. elegans gene-

inactivation screens for defects in RNAi or miRNA function1,15,16, C. elegans orthologues 

of Drosophila genes identified in two full genome RNAi screens for impaired siRNA or 

miRNA response2 and three proteomic studies of complexes containing the known 

RNAi proteins DCR-1 (ref. 4), ERI-1 (ref. 17) and AIN-2 (ref. 18). Candidate genes 

identified in these studies show little overlap (Supplementary Table 3 and 

Supplementary Fig. 3a, b). However, the candidates from the different studies have 

similar phylogenetic profiles to each other and to validated small RNA cofactors (Fig. 3, 

Supplementary Fig. 3c, d and Supplementary Table 4). 
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Figure B.3 | Select phylogenetic clusters enriched with hits from proteomic and 
functional genomic small RNA screens. a, The phylogenetic profile matrix was 
clustered and a Max Ratio score (MRS) was calculated for every protein in each screen; 
117 proteins scored significantly in miRNA (56 proteins) or siRNA (75 proteins) 
functional genomic screens, or both (14 proteins). Middle panel, black tick, hit in 
screens; grey tick, significant MRS. b, Blue boxes, the 23 known small RNA pathway 
proteins identified. c, From the 117 proteins predicted by the phylogenetic profile, 28 
proteins (red boxes) show defects in siRNA silencing (P < 3 x 1015). 
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Figure 3 | Select phylogenetic clusters enriched with hits from proteomic
and functional genomic small RNA screens. a, The phylogenetic profile
matrix was clustered and a Max Ratio score (MRS) was calculated for every
protein in each screen; 117 proteins scored significantly in miRNA
(56 proteins) or siRNA (75 proteins) functional genomic screens, or both

(14 proteins). Middle panel, black tick, hit in screens; grey tick, significant MRS.
b, Blue boxes, the 23 known small RNA pathway proteins identified. c, From
the 117 proteins predicted by the phylogenetic profile, 28 proteins (red boxes)
show defects in siRNA silencing (P , 3 3 1015).
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Figure 4 | Inactivation of genes implicated in RNAi pathways re-animates
transgenes that are silenced by RNAi. a, Expression of scm::gfp in the seam
cells of an eri-1(mg366) mutant, where it is normally silenced by RNAi. Animals
shown were treated with control, dcr-1, arp-6 or B0336.3 RNAi. b, GFP

expression from the ubl-1::gfp-siR-1-sensor transgene, which is normally
silenced by the siR-1 endogenous siRNA. Animals shown were treated with
control, dcr-1, arp-6 or mes-4 RNAi.
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We used a naive Bayesian classifier to assign predictive values to six genome-scale 

studies of RNAi cofactors and five miRNA cofactors (see Supplementary Methods)19,20. 

To the phylogenetic profiles, we added a score for each C. elegans gene that is co-

expressed on microarrays21 or whose encoded gene product interacts with validated 

small RNA pathway proteins22. The top 105 genes identified by this analysis are 

enriched with 41 well-validated siRNA pathway genes (Supplementary Fig. 7 and 

Supplementary Table 2). The other genes on this list are excellent candidates to 

mediate siRNA or related small RNA functions. More than 20 of these genes encode 

RNA recognition motifs including RNP (P < 0.00001) and helicase (P < 0.00001), an 

approximately 20-fold enrichment relative to the entire data set. Nine proteins from this 

list constitute components of the spliceosome (Supplementary Fig. 3). 

 

From the proteins best correlated with validated small RNA pathway cofactors by 

phylogenetic profile or in the naive Bayesian analysis (Figs 1–3), we tested 87 

representative candidates using two different tests for defects in RNAi. Transgene 

silencing in the somatic cells of the enhanced RNAi mutant eri-1(mg366) is mediated by 

an RNAi mechanism1. We tested a set of 87 predicted small RNA pathway genes using 

this strain, and 43 scored as significantly RNAi-defective (Supplementary Table 2, and 

Fig. 4a). We also tested candidates using a green fluorescent protein (GFP)-based 

sensor for the abundant C. elegans endogenous siRNA 22G siR-1 (ref. 23) to monitor 

whether any of the gene inactivations affect the production or response to this 

endogenous siRNA. Thirty-three out of 87 genes tested scored in this assay 

(Supplementary Table 2 and Fig. 4b). Eight of the nine predicted splicing components 

scored strongly in these validation screens. 
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Figure B.4 | Inactivation of genes implicated in RNAi pathways re-animates 
transgenes that are silenced by RNAi. a, Expression of scm::gfp in the seam cells of 
an eri-1(mg366) mutant, where it is normally silenced by RNAi. Animals shown were 
treated with control, dcr-1, arp-6 or B0336.3 RNAi. b, GFP expression from the ubl-
1::gfp-siR-1-sensor transgene, which is normally silenced by the siR-1 endogenous 
siRNA. Animals shown were treated with control, dcr-1, arp-6 or mes-4 RNAi. 
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Figure 3 | Select phylogenetic clusters enriched with hits from proteomic
and functional genomic small RNA screens. a, The phylogenetic profile
matrix was clustered and a Max Ratio score (MRS) was calculated for every
protein in each screen; 117 proteins scored significantly in miRNA
(56 proteins) or siRNA (75 proteins) functional genomic screens, or both

(14 proteins). Middle panel, black tick, hit in screens; grey tick, significant MRS.
b, Blue boxes, the 23 known small RNA pathway proteins identified. c, From
the 117 proteins predicted by the phylogenetic profile, 28 proteins (red boxes)
show defects in siRNA silencing (P , 3 3 1015).
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Figure 4 | Inactivation of genes implicated in RNAi pathways re-animates
transgenes that are silenced by RNAi. a, Expression of scm::gfp in the seam
cells of an eri-1(mg366) mutant, where it is normally silenced by RNAi. Animals
shown were treated with control, dcr-1, arp-6 or B0336.3 RNAi. b, GFP

expression from the ubl-1::gfp-siR-1-sensor transgene, which is normally
silenced by the siR-1 endogenous siRNA. Animals shown were treated with
control, dcr-1, arp-6 or mes-4 RNAi.
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The enrichment for RNA splicing components (Supplementary Fig. 4) points to a close 

mechanistic connection between splicing and small RNA regulation. Among the 

Ascomycota and protist species that have lost the Argonaute proteins, most show an 

extreme loss of introns, from 104-105 introns in species with Argonautes to 102 or fewer 

introns inmost species without Argonautes (Supplementary Fig. 5). We screened for 

defects in RNAi a cherry-picked gene inactivation sublibrary of C. elegans orthologues 

of known splicing factors that have emerged from biochemical and genetic screens for 

splicing components from other systems. From a set of 46 C. elegans genes annotated 

in KEGG (Kyoto Encyclopedia of Genes and Genomes) to encode the orthologues of 

known splicing proteins that could be tested for roles in RNAi in our assays, 16 and 22 

of these splicing-factor genes scored strongly in the eri-1 transgene desilencing assay 

and the endogenous 22G siR-1 sensor assay. Many of the splicing components that 

scored strongly in these screens show a phylogenetic profile similar to the Argonaute 

proteins (Supplementary Fig. 6 and Supplementary Table 6). However, a subset of 

splicing factors that are well conserved across phylogeny also scored strongly in these 

assays. 

 

We used the eri-1 transgene desilencing system to conduct a full genome screen for 

gene inactivations that disable transgene silencing and identified 855 genes required for 

transgene silencing, with more than 200 scoring above 3 on a scale of 0 to 4 for 

desilencing (Supplementary Table 7). Among gene inactivations that caused the 

greatest desilencing, 11% correspond to the highest ranked predictions from the siRNA 

naive Bayesian analysis, a 30-fold enrichment (P = 4.7 x 10-13 using a hypergeometric 

test) for positives. Out of the 84 splicing factors that have been assigned to specific 

splicing steps, 49 scored in the full genome screen as required for transgene silencing, 

and 32 showed phylogenetic profiles clustering with known small RNA factors. The 

splicing factors that couple to small RNA pathways were not isolated to any particular 

step of RNA splicing. Splicing factor mutations in Schizosaccharomyces pombe disrupt 

the RNAi-based centromeric silencing24. Both splicing proteins and siRNAand miRNA 

pathway proteins co-localize to cytoplasmic processing bodies (P-bodies) and nuclear 
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Cajal bodies25, further supporting the possibility of functional crosstalk between splicing 

and RNAi. 

 

Early genome sequence comparisons of S. pombe, Saccharomyces cerevisiae and a 

small set of eukaryotes suggested that loss of introns and splicing components is highly 

correlated with loss of Argonaute proteins26. One interpretation was that the loss of 

RNAi in S. cerevisiae enabled viral invasion and a subsequent loss of introns through 

reverse transcription of genes by the invading viral replication enzymes. However, such 

a scenario would not predict that inactivation of splicing components in a species 

bearing the RNAi apparatus would cause an RNAi-defective phenotype. One model is 

that splicing could regulate RNAi indirectly by modulating spliced isoforms of key RNAi 

factors. However, the observations that only a subset of splicing cofactors are required 

for RNAi and the co-immunoprecipitation of splicing factors and DCR-1, ERI-1 and AIN-

2 disfavours this indirect model. A mechanistic coupling between RNAi and RNA 

splicing explains these new data better. RNAi factors also affect splicing: Dicer is 

required for efficient spliceosomal RNA maturation in Candida albicans27. If RNAi 

engages introns intimately by, for example, engaging nascent transcripts through the 

Argonaute NRDE-3 before splicing28, then the selective advantage of introns may fade 

once the RNAi pathway is lost. 

 

Our data suggest that a large subset of the proteins that mediate steps in the maturation 

ofmRNAs bearing introns are also required for RNAi, and that those genomes that have 

lost most of their introns no longer require the RNAi pathway. Superimposed on the 

mRNA splicing pathway is an RNA surveillance system that eliminates aberrantly 

processed or mutant pre-mRNAs andmRNAs. It is possible thatRNAi constitutes 

another level of mRNA surveillance that acts in parallel to—and using many of the same 

components as—the splicing quality control surveillance pathways. 

 

 

METHODS SUMMARY 
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Informatics 
 
The Normalized Phylogenetic Profile (NPP) data matrix was clustered through MATLAB 

statistical toolbox using the average linkage method and Pearson correlation coefficient 

as a similarity measure. Clustering was performed on the rows of the matrix. To identify 

C. elegans proteins with phylogenetic profiles similar to published small RNA co-factors 

(Supplementary Table 9), the fraction of the validated proteins in each phylogenetic 

cluster was calculated and optimized to define a Max Ratio Score (MRS) 

(Supplementary Fig. 2). 
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SUPPLEMENT 
 
Figure B.S1: Phylogenetic profiles of the 50 proteins mostly correlated with: A. 
BBS-1, B. RPS-5, C. MUT-2, D. RRF-3, E. DCR-1. Correlation coefficients were 
calculated using the normalized phylogenetic profile matrix (NPP) and genes were rank 
ordered. Each row represents a gene; dark blue corresponds to high conservation of the 
C. elegans gene in that organism; white denotes no similarity. A. A query of the 
ribosomal S5 protein RPS-5 identifies in the top 30 proteins most correlated in 
phylogenetic profile 7 other ribosomal proteins with no similarity to RPS-5 as well as 6 
tRNA synthetases also involved in translation. The ribosome is one of the most 
conserved components of the cell; strong conservation across nearly the entire 
phylogeny correlates the profiles of these proteins. B. A query of the ciliated sensory 
ending component BBS-1 detects the known ciliated ending components CHE-13, 
MKSR-2, OSM-1, IFTA1, IFT-81, DYF-2, OSM-6, and DYF-13 in the top 20 proteins 
with a correlated phylogenetic profile, BBS-1 shows no protein sequence similarity to 
any of these phylogenetically correlated C. elegans factors29. The driving pattern of this 
phylogenetic profile correlation is strong conservation in all animals and particular 
protists, but no homologue in any of the fungi or plants tested. 
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Supplementary Figure 1: phylogenetic profiles of the 50 proteins mostly correlated with: A. BBS-1, B. 

RPS-5, C. MUT-2, D. RRF-3, E. DCR-1. Correlation coefficients were calculated using the normalized 

phylogenetic profile matrix (NPP) and genes were rank ordered. Each row represents a gene; dark blue 

corresponds to high conservation of the C. elegans gene in that organism; white denotes no similarity. A. A 

query of the ribosomal S5 protein RPS-5 identifies in the top 30 proteins most correlated in phylogenetic 

profile 7 other ribosomal proteins with no similarity to RPS-5 as well as 6 tRNA synthetases also involved in 

translation. The ribosome is one of the most conserved components of the cell; strong conservation across 

nearly the entire phylogeny correlates the profiles of these proteins. B. A query of the ciliated sensory ending 

component BBS-1 detects the known ciliated ending components CHE-13, MKSR-2, OSM-1, IFTA1, IFT-81, 

DYF-2, OSM-6, and DYF-13 in the top 20 proteins with a correlated phylogenetic profile, BBS-1 shows no 

protein sequence similarity to any of these phylogenetically correlated C. elegans factors29. The driving 

pattern of this phylogenetic profile correlation is strong conservation in all animals and particular protists, but 

no homologue in any of the fungi or plants tested.  
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RPS-5, C. MUT-2, D. RRF-3, E. DCR-1. Correlation coefficients were calculated using the normalized 

phylogenetic profile matrix (NPP) and genes were rank ordered. Each row represents a gene; dark blue 

corresponds to high conservation of the C. elegans gene in that organism; white denotes no similarity. A. A 
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translation. The ribosome is one of the most conserved components of the cell; strong conservation across 
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DYF-2, OSM-6, and DYF-13 in the top 20 proteins with a correlated phylogenetic profile, BBS-1 shows no 

protein sequence similarity to any of these phylogenetically correlated C. elegans factors29. The driving 

pattern of this phylogenetic profile correlation is strong conservation in all animals and particular protists, but 

no homologue in any of the fungi or plants tested.  
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phylogenetic profile matrix (NPP) and genes were rank ordered. Each row represents a gene; dark blue 

corresponds to high conservation of the C. elegans gene in that organism; white denotes no similarity. A. A 

query of the ribosomal S5 protein RPS-5 identifies in the top 30 proteins most correlated in phylogenetic 

profile 7 other ribosomal proteins with no similarity to RPS-5 as well as 6 tRNA synthetases also involved in 

translation. The ribosome is one of the most conserved components of the cell; strong conservation across 

nearly the entire phylogeny correlates the profiles of these proteins. B. A query of the ciliated sensory ending 

component BBS-1 detects the known ciliated ending components CHE-13, MKSR-2, OSM-1, IFTA1, IFT-81, 

DYF-2, OSM-6, and DYF-13 in the top 20 proteins with a correlated phylogenetic profile, BBS-1 shows no 

protein sequence similarity to any of these phylogenetically correlated C. elegans factors29. The driving 

pattern of this phylogenetic profile correlation is strong conservation in all animals and particular protists, but 

no homologue in any of the fungi or plants tested.  
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Figure B.S2: Identification of proteins that cluster phylogenetically with known 
small RNA co-factors or with hits from a set of small RNA genetic and 
biochemical screens. A. Hierarchical clustering of the NPP was used to cluster the 
proteins such that each could be assigned to several clusters, ranging from small, tight 
clusters (i.e. c1, c2) to clusters that contain more members (c3 or the even looser c4). 
The ratio of the number of validated RNAi pathway proteins to the total number of 
proteins in each cluster was calculated (termed the ratio score). Because each protein 
can have several ratio scores, depending on the number of clusters it belongs to, the 
highest ratio score per protein was used (termed the Maximum Ratio Score (MRS)). To 
identify those proteins with a significant MRS, we applied a filter, retaining only proteins 
with MRS ≥ 2.33 Standard Deviations (SD) from the mean (p-value <0.01). B. MRS 
calculation and thresholding was applied to each protein in the six datasets used to 
identify siRNA cofactors (see Supplementary Methods). Proteins that passed the 
threshold of 2.33 in at least three of the six datasets were considered positives and 
reported in Figure 3 (similar analysis was done to identify candidate miRNA pathway 
proteins). 
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Figure B.S3: Overlap of genes and known small RNA factors between different 
screens without (A-B) and with (C-D) taking into account the phylogenetic 
clustering. A. Histogram of proteins that emerged from the siRNA (white) or miRNA 
(black) screens that were hits in 1, 2, 3, or 4 screens to identify siRNA or miRNA factors 
(see Methods). Absolute numbers are given above the bars. B. The number of 
previously validated siRNA (white) or miRNA (black) pathway proteins identified as hits 
in 0 to 4 screens. C. Histogram of the ratio of proteins (among those that emerged from 
the siRNA (white) or miRNA (black) screens) that passed the Max Ratio Score (MRS) 
threshold (Supplementary Figure 2) in the analysis of 1, 2, 3, or 4 screens. Absolute 
numbers are given above the bars. D. The number of previously validated small RNA 
pathway proteins that obtained a significant score in the MRS analysis of 0 to 5 screens. 
 

   
Supplementary Figure 3: Overlap of genes and known small RNA factors between different screens 
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Figure B.S4: Proteins assigned to the spliceosome by KEGG pathway analysis. 
Cyan boxes represent the proteins that received the high scores in the Bayesian 
classification for siRNA co-factors (Supplementary Table 4), proteins that mapped to the 
same phylogenetic profile clusters as known small RNA-related factors (Figure 2), or 
proteins found in clusters enriched with hits from a range of proteomic and functional 
genomic small RNA screens (Figure 3). 
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Supplementary Figure 5: Relation between the average number of introns per gene in each species 

and the presence or absence of Argonaute proteins. Average number of introns per gene were taken from 

Kaplunovsky et al.30 and Koralewski et al.31 (x-axis). Protein similarity to the C. elegans ALG-1 was calculated 

using blastp (see Supplementary Methods). Since all metazoans have many introns and all have conserved 

Argonaute proteins, we present one representative metazoan, Homo sapiens. There is a clear general trend 

for organisms with more introns to have significant Argonaute homologues. But there are outliers that are not 

explained by our model: for example, the fungus Magnaporthe grisea and the chromalveolate Theileria parva 

have no Argonaute but retain significant intron numbers. 
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Figure B.S5: Relation between the average number of introns per gene in each 
species and the presence or absence of Argonaute proteins. Average number of 
introns per gene were taken from Kaplunovsky et al.30 and Koralewski et al.31 (x-axis). 
Protein similarity to the C. elegans ALG-1 was calculated using blastp (see 
Supplementary Methods). Since all metazoans have many introns and all have 
conserved Argonaute proteins, we present one representative metazoan, Homo 
sapiens. There is a clear general trend for organisms with more introns to have 
significant Argonaute homologues. But there are outliers that are not explained by our 
model: for example, the fungus Magnaporthe grisea and the chromalveolate Theileria 
parva have no Argonaute but retain significant intron numbers. 
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Figure B.S6: Inactivation of splicing factors that are implicated in the RNAi 
pathways reanimates transgenes targeted by RNAi. A. Expression of scm::gfp in the 
seam cells of an eri-1(mg366) mutant, where it is normally silenced by an RNAi 
pathway. Animals shown were treated with control, rde-4, rnp-6, cdtl-7, rsp-3, prp-17, 
C0749.2, hrp-1, rnp-3, or ncbp-1 RNAi. B. GFP expression from the ubl-1::gfp-siR-1 
sensor transgene, which is normally silenced by the siR-1 endogenous siRNA. Animals 
shown were treated with control, sap-1, Ism-6, mtr-4 or rnp-6 RNAi. 
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Figure B.S7: Receiver operating characteristic (ROC) analysis. Graphical 
representation of the Naïve Bayesian Classifier performance (see methods) in discovery 
of known siRNA factors (in red) compared to single datasets (in blue). For each dataset, 
a Likelihood Ratio score was calculated and the sensitivity as function of the specificity 
(Or number of known RNAi factors compared to other genes) was plotted. 
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Table B.S1: The C. elegans phylogenetic profile database. Each row is a blastp bit-
score between a single C. elegans protein and the top blast hit in each of the 85 other 
genomes. Among the ~20,000 C. elegans proteins, 10,054 are conserved proteins that 
have homologues (bearing significant protein domain sequence similarity) or 
orthologues (reciprocal top blast hit in each species) in other eukaryotic genomes. The 
result is a table of 10,054 proteins X 86 species. The table continues the gene list from 
Figures 1-3. 
 
http://www.nature.com/nature/journal/v493/n7434/extref/nature11779-s2.xlsx 
 
 
Table B.S2: Top siRNA pathway candidates and experimental tests of informatic 
predictions. Column A-M: Likelihood Ratio score indicating the contribution of being a 
positive in each of 10 different screens, gene coexpression, or protein-protein 
interaction to the probability of being a small RNA cofactor relative to baseline (see 
Supplementary Methods). Column J-M: The 87 genes were chosen for further 
validation based on: high Naïve Bayesian Classifier score, similar phylogenetic profile to 
RDE-1, similar phylogenetic profile to other known siRNA genes, or high CR score 
(Figure 1-3). Column R,S: score in the eri-1 transgene desilencing screens. Column T: 
score in the 22G-siR-1 siRNA sensor screen. 
 
http://www.nature.com/nature/journal/v493/n7434/extref/nature11779-s3.xlsx 
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Table B.S3: Overlap between positives in each of the functional genomic and 
proteomic screens and with the lists of known siRNA and miRNA pathway 
proteins. The table presents the percent of the known siRNA and miRNA proteins that 
were hits in each screen, the number of hits identified in each screen (the gray 
diagonal), the number of proteins that were also hits in other screens, (upper triangle) 
and the hyper-geometric p-value for such an overlap (lower triangle). 
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let-7 sensitized 7.7% 40.0% 319 78 7 3 3 5 11 7 5 1 68
let-7 phenotype 11.5% 33.3% 0 296 7 1 4 6 12 13 5 2 63
Drosophila miRNA 5.8% 33.3% 4E-04 3E-04 71 2 2 4 63 4 0 2 13
AIN-2 Co-IP 1.9% 20.0% 0.034 0.492 0.011 38 6 3 0 0 0 0 1
DCR-1 Co-IP 19.2% 20.0% 0.243 0.078 0.057 5E-08 95 22 3 3 1 1 10
ERI-1 Co-IP 19.2% 20.0% 0.026 0.005 6E-04 0.001 0 89 5 4 1 0 9
Drosophila siRNA 7.7% 20.0% 2E-05 1E-06 0 1 0.028 4E-04 120 6 0 3 23
ds GFP RNAi 23.1% 13.3% 0.001 5E-09 5E-04 1 0.012 0.001 4E-05 90 3 6 66
Germline suppression defect 11.5% 6.7% 0.01 0.008 1 1 0.317 0.312 1 0.006 71 1 11
SynMuv suppression 0.0% 0.0% 0.444 0.104 0.008 1 0.155 1 0.001 1E-08 0.122 31 17
Suppression of transgene silencing in eri-1 26.9% 46.7% 0 0 3E-05 0.846 0.012 0.027 1E-08 0 5E-04 5E-15 829

WWW.NATURE.COM/NATURE | 6



 254 

Table B.S4: Phylogenetic Clustering of hits from small RNA functional genomic 
screens. 
Positives from the RNAi screens for factors in miRNA or siRNA pathway proteins tend 
to aggregate into phylogenetic profile clusters (column B), with an average of 80% 
conserved proteins (defined as top hit blastp scores >50 in more than 8 organisms). The 
Phylogenetic Coherence (PC) score (column C) was calculated for the conserved 
proteins in each screen to measure similarity among the phylogenetic profiles in a group 
of proteins (column D) (see Supplementary Methods). 
 

 
 

 

Supplementary Table 4: Phylogenetic Clustering of hits from small RNA functional genomic screens.   

Positives from the RNAi screens for factors in miRNA or siRNA pathway proteins tend to aggregate into 

phylogenetic profile clusters  (column B), with an average of 80% conserved proteins  (defined as top hit 

blastp scores >50 in more than 8 organisms). The Phylogenetic Coherence (PC) score (column C) was 

calculated for the conserved proteins in each screen to measure similarity among the phylogenetic profiles in 

a group of proteins (column D) (see Supplementary Methods). 

 

 

Supplementary Table 5: Top miRNA pathway candidates by Bayesian analysis. To estimate the 

likelihood of protein a being part of the siRNA pathway, we examined its score relative to the scores of the 

highly validated miRNA proteins in the relevant datasets. This was performed in two stages: First, we 

computed the likelihood ratio of protein a being associated with the miRNA pathway given the evidence from 

a single dataset (columns F-P). Next, we combined all likelihoods from the individual datasets into one 

predictive score (column Q).  

 

Supplementary Table 6: RNA interference defects after gene inactivations of C. elegans orthologues 

of known splicing factors. Columns F-H: The scores of gene inactivations of splicing factors with a 

transgene silenced by one particular endogenous siRNA or a transgene that is desilenced if RNAi is defective. 

Columns I-R: scores for these same gene inactivations from 10 other full genome screens for small RNA 

defects. Columns S: if the gene maps to a phylogenetic cluster of a known small RNA factor and the rank of 

the correlation. Above (in gray) are the p-values that were calculated for over-representation of splicing 

factors in each of the genome-wide small RNA studies.  Gene inactivation of 33 out of 89 splicing factors from 

the KEGG dataset caused embryonic or early larval arrest that interfered with these tests, so only 46 of the 89 

gene inactivations could be tested. 

 

Supplementary Table 7: Genome-wide transgene desilencing screen positives. Roughly 800 RNAi 

inactivations caused transgene desilencing. Of these, 448 were strong hits (scoring 2 or more). Genes 

screens % Conserved genes PC score p-value
let-7 sensitized 82.4% 0.069 0.01181
let-7 phenotype 84.5% 0.055 0.25922
Drosophila miRNA 100.0% 0.154 <0.00001
AIN-2 Co-IP 94.7% 0.084 0.07598
DCR-1 Co-IP 78.9% 0.068 0.12217
ERI-1 Co-IP 79.8% 0.096 0.00658
Drosophila siRNA 98.3% 0.128 <0.00001
ds GFP RNAi 78.9% 0.103 0.00249
Germline Supression defect 62.0% 0.044 0.55185
SynMuv supression 87.1% 0.097 0.05415
Suppression of transgene silencing in eri-1 72.0% 0.064 0.00526
Known RNAi factors 76.6% 0.164 0.00004
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Table B.S5: Top miRNA pathway candidates by Bayesian analysis. To estimate the 
likelihood of protein a being part of the siRNA pathway, we examined its score relative 
to the scores of the highly validated miRNA proteins in the relevant datasets. This was 
performed in two stages: First, we computed the likelihood ratio of protein a being 
associated with the miRNA pathway given the evidence from a single dataset (columns 
F-P). Next, we combined all likelihoods from the individual datasets into one predictive 
score (column Q). 
 
http://www.nature.com/nature/journal/v493/n7434/extref/nature11779-s4.xlsx 
 
 
Table B.S6: RNA interference defects after gene inactivations of C. elegans 
orthologues of known splicing factors. Columns F-H: The scores of gene 
inactivations of splicing factors with a transgene silenced by one particular endogenous 
siRNA or a transgene that is desilenced if RNAi is defective. Columns I-R: scores for 
these same gene inactivations from 10 other full genome screens for small RNA 
defects. Columns S: if the gene maps to a phylogenetic cluster of a known small RNA 
factor and the rank of the correlation. Above (in gray) are the p-values that were 
calculated for over-representation of splicing factors in each of the genome-wide small 
RNA studies. Gene inactivation of 33 out of 89 splicing factors from the KEGG dataset 
caused embryonic or early larval arrest that interfered with these tests, so only 46 of the 
89 gene inactivations could be tested. 
 
http://www.nature.com/nature/journal/v493/n7434/extref/nature11779-s5.xlsx 
 
 
Table B.S7: Genome-wide transgene desilencing screen positives. Roughly 800 
RNAi inactivations caused transgene desilencing. Of these, 448 were strong hits 
(scoring 2 or more). Genes targeted by positive clones are listed with average score as 
determined by screening process described in Supplementary Methods and Kim et al. 
(Kim et al., 2005). 
 
http://www.nature.com/nature/journal/v493/n7434/extref/nature11779-s6.xlsx 
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Table B.S8: The validated siRNA and the miRNA pathway proteins. These genes 
and their encoded proteins were included in the validated list if the factor has been 
genetically or biochemically found to be a component of small RNA pathways. Using 
these criteria, we assembled a list of 52 factors that act in the siRNA pathway and a list 
of 15 factors that act in the miRNA pathway. 
 

 
  

targeted by positive clones are listed with average score as determined by screening process described in 

Supplementary Methods and Kim et al. (Kim et al., 2005). 

 

!

Supplementary Table 8: The validated siRNA and the miRNA pathway proteins. These genes and their 

encoded proteins were included in the validated list if the factor has been genetically or biochemically found to 

be a component of small RNA pathways. Using these criteria, we assembled a list of 52 factors that act in the 

siRNA pathway and a list of 15 factors that act in the miRNA pathway. 

 

 

 

Supplementary Methods 
Almost 50% of C. elegans genes encode proteins that are nematode-specific and excluded from this 

phylogenetic analysis. While the expected trend for conservation of most C. elegans proteins correlates with 

phylogenetic distance, with higher conservation in animals, less conservation in fungi and plants, and even 

less in protists. However, there are numerous dramatic examples of much higher divergence or even 

disappearance of homologues in particular clades; we focus on one such example, the small RNA cofactors.  

The validated small RNA pathway factors are broadly conserved among RNAi-competent organisms. 

Furthermore, candidates identified by RNAi screens for small RNA pathway factors are highly enriched for 

conserved proteins (proteins that have homologous protein outside nematode) , with an average of 80% 

conserved (Supplementary Table 2), and tend to aggregate into phylogenetic profile clusters (as measured 

using Phylogenetic Coherence score; see below). This suggests that the analysis captures much of the small 

RNA pathway despite the exclusion of nematode-specific proteins.  

 
 
Phylogenetic profile generation  

Protein sequences for C. elegans were downloaded using BioMart version 0.7 from the Ensembl 

project (release 60). When different splice variants existed for a gene, the longest variant was used. The 

miRNA 
factors
ain-1 C04F12.1 eri-9 rde-10 tsn-1
ain-2 cgh-1 haf-6 rde-2 vig-1
alg-1 cid-1 mut-14 rde-4 wago-2
alg-2 csr-1 mut-15 rrf-1 wago-4
dcr-1 dcr-1 mut-16 rrf-2 Y49F6A.1
drsh-1 drh-1 mut-2 rrf-3 ZK1248.7
lin-28 drh-3 mut-7 rsd-2 ZK757.2
lin-41 ego-1 ncbp-1 rsd-3
ncbp-1 ekl-1 ncbp-2 rsd-6
ncbp-2 ergo-1 nrde-3 sago-1
nhl-2 eri-1 pir-1 sago-2
pash-1 eri-3 ppw-1 sid-1
pup-2 eri-5 ppw-2 sid-2
xpo-1 eri-6 R06C7.1 T22B3.2
xrn-2 eri-7 rde-1 T22H9.3

siRNA Factors
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SUPPLEMENTARY METHODS 
 

Almost 50% of C. elegans genes encode proteins that are nematode-specific and 

excluded from this phylogenetic analysis. While the expected trend for conservation of 

most C. elegans proteins correlates with phylogenetic distance, with higher 

conservation in animals, less conservation in fungi and plants, and even less in protists. 

However, there are numerous dramatic examples of much higher divergence or even 

disappearance of homologues in particular clades; we focus on one such example, the 

small RNA cofactors. 

 

The validated small RNA pathway factors are broadly conserved among RNAi-

competent organisms. Furthermore, candidates identified by RNAi screens for small 

RNA pathway factors are highly enriched for conserved proteins (proteins that have 

homologous protein outside nematode), with an average of 80% conserved 

(Supplementary Table 2), and tend to aggregate into phylogenetic profile clusters (as 

measured using Phylogenetic Coherence score; see below). This suggests that the 

analysis captures much of the small RNA pathway despite the exclusion of nematode-

specific proteins. 

 

 

Phylogenetic profile generation 

 

Protein sequences for C. elegans were downloaded using BioMart version 0.7 from the 

Ensembl project (release 60). When different splice variants existed for a gene, the 

longest variant was used. The resulting 20,242 protein sequences of C. elegans were 

compared using blastp of all open reading frames (ORFs) of 85 additional organisms. 

From the existing genomes available in the Ensembl database (release 60), we filtered 

a set of 53 fully sequenced eukaryotic genomes with no more than one genome per 

genus (except Caenorhabditis). Because Ensembl includes only a limited number of 

fungi and protists, 33 additional high quality genomes from the NCBI genome database 

were added to supplement the analysis. The blastp comparison generates a matrix P of 
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size 20,242 x 86 where each entry Pab is the best blastp bit score between a C. elegans 

protein sequence ‘a’ and the top result in organism ‘b’. The blastp scores provide a 

continuous phylogenetic profile, indicating homology level at each species. This 

approach is more sensitive than traditional binary phylogenetic profiles, which are based 

only on a comparison of the presence or absence pattern of suites of factors in 

particular clades of organisms32,33. 

 

 

Preprocessing and clustering the phylogenetic profiles 

 

Preprocessing and normalization were applied to the profile matrix P prior to clustering. 

We used a preprocessing approach similar to that described by Enault et al.34, related to 

the original binary phylogenetic profile preprocessing32. 

 

Our method included several steps that were performed on the phylogenetic profile 

matrix P: 

 

1. Thresholding low blastp bit scores: To reduce the influence of random matches in the 

phylogenetic profiles, low blastp bit scores (<50) were assigned a value of 1 (if Pab <50 

then we set Pab =1). 

 

2. Excluding poorly conserved proteins from the phylogenetic analysis: We have 

excluded proteins with less than five orthologues in the 81 non-nematode organisms 

from further phylogenetic analysis, since calculating the correlation between poorly 

conserved proteins is mainly governed by the zeros (no homologue found) across the 

phylogenetic matrix, and therefore such correlation measurement is likely less reliable. 

From a total of 20,242 worm proteins, only 10,054 passed this filter and were used for 

the subsequent phylogenetic profiling analysis. 

 

3. Normalizing the blastp bit scores for protein length: Since the blastp score depends 

linearly on the length of protein ‘a’, long alignments would tend to have higher scores 
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independently of whether the aligned segments show sequence similarity, resulting a 

bias towards longer proteins. We therefore next normalized the phylogenetic profile 

matrix values to remove biases resulting from variations in protein lengths. In addition to 

Pab, the best blastp bit score between a C. elegans protein a and all ORFs of a 

eukaryote genome ‘b’, we computed Paa, defined as the self-similarity score of the C. 

elegans protein ‘a’ when blasted against itself. In LenNPP, the normalized phylogenetic 

profile matrix, each entry in the row corresponding to protein ‘a’ is computed as: 

LenNPPab = log2(Pab/Paa). The normalized blastp score represents the (log)-ratio of the 

observed blastp score and the best possible blastp score of the same length (the self-

similarity score), thus eliminating dependence on alignment length34. 

 

4. Normalizing for organisms with different evolutionary distance: A second 

normalization procedure was applied in order to compensate for the different protein 

similarity (i.e. score) expected when C. elegans proteins are compared to proteins from 

eukaryotes of highly variable evolutionary distance. For this purpose we normalized the 

values in each column b (i.e. each organism) by subtracting their average µb and 

dividing by their standard deviation σb, yielding: 

 

NPPab = (LenNPPab - µb) / σb 

 

The normalized matrix NPP was used for subsequent clustering analysis. 

 

For the more global clustering of proteins, a phylogenetic profile correlation (R) was 

calculated for each pair of the 10,054 proteins in the dataset. These R-values were 

used to cluster the proteins by average linkage, yielding groups of proteins with similar 

phylogenetic profiles. 

 

 

Phylogenetic Coherence score 

 

To measure if a particular set of proteins tends to have a more similar phylogenetic 
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profile than a random set of genes, we have developed the Phylogenetic Coherence 

(PC) score. The PC score measures how close on average are the phylogenetic profiles 

of proteins within a set compared to within a random set of proteins. A high PC score 

indicates that proteins within a set show similar phylogenetic profiles, a characteristic 

known to be associated with similar function32,33,35. The PC score is a variation of the 

Expression Coherence (EC) score, which was originally developed to measure how 

similar a set of proteins is with regard to their expression profiles across different 

conditions36,37. 

 

To calculate the PC score for a given set A of K genes, the Pearson correlation between 

the normalized phylogenetic profiles (the NPP matrix) of each of the K x (K - 1) / 2 pairs 

of proteins in A was calculated. The phylogenetic coherence score is simply defined as 

the fraction of pairs whose score exceeds a threshold, PC(A) = p(A,S) / (K(K - 1) / 2)), 

where p(A,S) is the number of gene pairs in set A whose phylogenetic similarity is better 

than a threshold similarity S. We determined the value of the threshold S as follows: We 

calculated the Phylogenetic correlation between all 10,057 conserved C. elegans 

protein sequence pairs (10,054 x 10,053 / 2 = 50,536,431) and then defined S as the 

95th percentile of the distribution of these similarities (such that a random set of K 

sequences should get, on average, a PC score of ~0.05). If the sequences in our set K 

tend to have more similar phylogenetic profiles than a random set, their PC score 

should be > 0.05. 

 

To assign a p-value for the PC score of a list of sequences A of size K, the process was 

repeated 10,000 times for random sets of sequences of the same size K. PC scores 

were calculated for the random sets and used to rank of the true set’s score PC (A) 

among the 10,000 randomized scores, yielding an empirical p-value for the PC score of 

the true set A. Finally, to test the robustness of the method to the threshold choice, 

alternative thresholds (S) were tested. These yielded similar p-values and identified 

similar factors as significant (data not shown). 
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The validated siRNA and the miRNA pathway factors 

 

To identify new proteins that are part of small RNA pathways, we compiled two gold 

standard lists of factors with evidence in the literature for a role in either the siRNA or 

miRNA pathway. A factor was included in a gold standard list if the factor has been 

genetically or biochemically found to be a component of the small RNA pathways. Using 

these criteria, we assembled a gold standard list of 52 factors that are part of the siRNA 

pathway and a list of 15 factors that are part of the miRNA pathway (see lists in 

Supplemental table 8). Three factors, DCR-1, NCBP-1, and NCBP-2, are in both lists. 

The average linkage method produces a hierarchical clustering (dendrogram), and 

distinct clusters were obtained by ‘cutting’ the dendrogram at various thresholds, 

producing different numbers of clusters. 

 

 
The Cluster Ratio and Max Ratio Scores 

 

Given a pre-defined set of proteins of interest Ginterest (for example, proteins with shared 

biological function such as the siRNA pathway factors, or factors obtained as results of 

a certain biological assay such as an RNAi screen), we wanted to identify which other 

C. elegans proteins might be related to this set based on similarity in their phylogenetic 

profiles. For this purpose, we have clustered the NPP and used the obtained 

dendrogram to score proteins for phylogenetic similarity with the list of validated factors. 

The dendrogram was thresholded to obtain N distinct clusters using the MATLAB 

‘cluster’ function, for different clustering resolutions N. Next, we looked for each factor a 

at the overlap between the cluster to which it was assigned Gcluster(a,N) and the list of 

factors of interest Ginterest. To quantify this overlap, we have calculated for each factor a 

the Cluster Ratio (CR) score CRa,N, which is the fraction of factors from the cluster 

Gcluster(a) that belong to the list of interest (Ginterest). 

 

CRa,N = |Ginterest ∩ Gcluster(a,N)| / |Gcluster(a,N)| 
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Where here |A| denotes the number of factors in a set A. (see supplementary fig 2 

showing the cluster ratio score) 

 

The CR score captures the tendency of factors to appear together with the list of 

interest based on the clustering dictated by our dendrogram, with factors having a high 

CR score showing similar phylogenetic profile to one or several factors in our list of 

interest. Such genes represent candidate factors predicted to have similar function with 

our list of validated miRNA and siRNA pathway factors. 

 

For the phylogenetic profile of each factor a, we have tested the similarity to the profiles 

of factors on the list of interest at various similarity levels by modifying the clustering 

resolution. This was achieved by altering the number of clusters N obtained from the 

dendrogram, with N values chosen to be N = 10,50,100, 200,...., 9000, 10000. This 

resulted in 102 different Cluster Ratio (CRa,N) scores for each factor a. Finally, for each 

factor we chose the clustering resolution maximizing the cluster ratio, giving us the 

gene’s Max Ratio Score: MRSa = max (CRa,10, CRa,50,.., CRa,10000); when cluster is 

define as a group of 3 or more proteins with most similar profile to each other. The MRS 

for each factor a represents the optimized phylogenetic clustering resolution achieving 

the highest enrichment for factors of interest in a cluster containing gene a. 

 

 

Integration of genome-scale data sets 

 

Sixteen recently published studies and genome-wide databases were integrated using a 

Naïve Bayesian Classifier (see below) to predict new factors that are part of the siRNA 

or miRNA pathways. From the 16 datasets described below, 12 were used to predict 

new factors in the siRNA pathway and 11 were used to predict new factors in the 

miRNA pathway, as indicated below: 

 
let-7 sensitized background screen (miRNA): The let-7 miRNA is conserved in other 

organisms38,39. A sensitized background of a weak let-7 allele, mg279, was used to 
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identify miRNA pathway factors by genome-wide RNAi screening for enhancement of 

the let-7(mg279) vulval rupture phenotype40. Screen positives were divided into three 

categories: weak, medium, and strong. From the total of 332 hits in the screen, 105 

were not repeated in a secondary screen and considered as weak hits (we scored them 

1), 169 genes retested positive in triplicate, considered as a medium hits (scored 2), 

and 45 were validated by genetic tests and declared strong hits (scored 3). Three genes 

didn’t match our gene database, and all the other genes in the database were scored 0. 

 
Vulval bursting phenotype screen (miRNA): The let-7 miRNA controls the L4-to-adult 

transition. let-7 mutants fail to execute this transition and die by bursting through the 

vulva39. This vulval bursting phenotype can therefore indicate defects in miRNA 

pathway function. We have downloaded from WormBase (WS220) a list of 296 genes 

with the exploded through vulva phenotype in RNAi experiments. These genes were 

scored 1 to indicate a vulval bursting phenotype, and all other genes were scored 0. 

 
D. melanogaster miRNA type (imperfect duplex) 3' UTR reporter screen (miRNA): 
A genome-wide RNAi screen was performed in D. melanogaster S2 cells to identify 

factors that impact miRNA pathway function41. C. elegans orthologues of tested protein 

sequences were scored 1 if positive, 0 if not. C. elegans proteins whose orthologues 

were not tested were assigned a null score. 

 
AIN-2 Co-immunoprecipitation (miRNA): AIN-2 interacts with miRNA-specific 

Argonaute proteins and regulates the expression of miRNA targets. To identify proteins 

interacting with AIN-2, which could represent miRNA pathway factors, a mass 

spectrometry-based proteomics approach was applied42. The 38 identified AIN-2-

interacting factors were scored 1, and all others were scored 0. 

 
DCR-1 Co-immunoprecipitation (siRNA and miRNA): A mass spectrometry-based 

proteomics approach was used to identify DCR-1-interacting proteins43. The purification 

process was performed in duplicate under native conditions in embryos and gravid 

adults43. We scored as follows: Proteins identified in mass spectrometry of DCR-1 
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complexes in both embryonic and adult purifications received a score of 2. Proteins 

identified in two repeats of a single purification (embryonic or adult) received a score of 

1. Otherwise, proteins were scored according to the peptide coverage ratio, which was 

always less than one (i.e. for peptide coverage of 26%, the gene score is 0.26). 

 
ERI-1 Co-immunoprecipitation (siRNA): A mass spectrometry-based proteomics 

approach was used to identify ERI-1-interacting proteins. A tagged ERI-1 protein was 

purified using standard protein biochemistry under native conditions, washed 

extensively, and interacting proteins were identified by mass spectroscopy. The ERI-1-

interacting factors were scored 1, and all others were scored 0. 

 
D. melanogaster siRNA type (perfect duplex) 3' UTR reporter screen (siRNA): A 

genome-wide RNAi screen was performed in D. melanogaster S2 cells to identify genes 

that impact siRNA pathway function41. C. elegans genes orthologous to tested genes 

were scored 1 if positive, 0 if not. C. elegans genes whose orthologues were not tested 

were assigned a null score. 

 
Transgene RNAi screen (siRNA): A genome-wide RNAi screen was performed in an 

engineered RNAi sensor strain of C. elegans to identify genes required for RNAi. Genes 

corresponding to the RNAi clones were scored on a GFP intensity and penetrance scale 

of 0 (no GFP expression) to 4 (highly penetrant, strong GFP expression), and those that 

scored an average of 2 or greater were designated candidate RNAi genes44. We used 

numerical scores as reported in the paper. 

 
Germline cosuppression defect screen (siRNA): During silencing of repetitive 

transgenes, a trans effect (“cosuppression”) occurs that results in silencing of cognate 

endogenous genes. A genome-wide RNAi screen was performed in an engineered 

germline cosuppression sensor strain of C. elegans to identify factors required for 

cosuppression in the germline45. Positives were scored 1, and all others were scored 0. 

 
Suppression of synMuvB and synMuvA synthetic multivulva (Muv) phenotype 
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screen (siRNA): SynMuv B genes are involved in multiple cellular functions during 

development including RNA interference46. A genome-wide RNAi screen was performed 

in the lin-15AB(n765) background to identify suppressors of the Muv phenotype46. 

SynMuv suppressor genes were scored 1, and all others were scored 0. 

 
Phylogenetic profiling analysis (siRNA and miRNA): We have generated 

phylogenetic profiles for the entire worm proteome by blastp, searching all ~20,000 

worm proteins across all 86 genomes (see Methods, above). Proteins were clustered 

based on phylogenetic profile similarity, and the score used for each is the Max Ratio 

score (MR) (see Methods, The Cluster Ratio and Max Ratio scores). 

 
Co-expression analysis (siRNA and miRNA): For each gene in the gold standard 

groups (siRNA or miRNA) we identified, using the SPELL engine (Serial Pattern of 

Expression Levels Locator)47, the 100 genes that correlate best in 72 different gene 

expression data sets. The results are 100 x 51 (for the siRNA) and 100 x 14 (for the 

miRNA) tables of the most correlated genes for each of the gold standard genes. For 

each gene, independent siRNA and miRNA co-expression scores were calculated as 

the number of time the gene is found in each of the tables (e.g. inx-22 was among the 

top 100 co-expressed genes of 15 of the siRNA and 2 of the miRNA gold standard 

factors; hence, its scores are 15 for siRNA and 2 for miRNA). 

 
Protein-protein interactions: A genome-scale protein-protein interaction map 

generated from yeast two-hybrid data was downloaded from the Worm Interactome 

version 848. We scored each gene by calculating the ratio of its number of interactions 

with the siRNA or miRNA gold standard factors to its total number of interactions. 

 
Interologs: protein-protein interactions of orthologues of C. elegans protein coding 

genes: Predicted pairs of C. elegans interactors whose respective orthologues were 

experimentally shown to interact in another organism were downloaded from Worm 

Interactome version 848. We scored each factor by calculating the ratio of its number of 

interactions with the siRNA or the miRNA gold standard factors to its total number of 



 266 

interactions. 

 
Predicted genetic interactions from text mining: WormBase provides a list of genetic 

interactions that are text processed and manually curated48. We scored each gene by 

calculating the ratio of its number of interactions with the siRNA or the miRNA gold 

standard factors to its total number of interactions. 

 
Gross phenotypic signatures: A list of genes pairs that share phenotypic similarity 

were download from the Worm Interactome version 848. We scored each gene by 

calculating the ratio of its number of pairings with the siRNA or the miRNA gold 

standard factors to its total number of pairings. 

 

For each of the two pathways, the entire dataset was represented by one data matrix D, 

where Dab represents the value obtained for factor ‘a’ in dataset b. Values were either 

binary (e.g. for the vulval bursting phenotype screen), or quantitative (e.g. for the 

protein-protein interaction dataset). In all datasets, higher values suggest a higher 

probability of a factor belonging to the siRNA or miRNA pathways. 

 

For brevity, we describe here the analysis for the siRNA pathway. The miRNA pathway 

analysis is identical, except for a different gold standard set and data matrix D used. To 

estimate the likelihood of factor ‘a’ being part of the siRNA pathway, we examined its 

score relative to the scores of the gold standard genes in all datasets. This was 

performed in two stages: First, we computed the likelihood of factor ‘a’ being associated 

with the siRNA pathway given the evidence from a single dataset. Next, we combined 

all likelihoods from the individual datasets into one predictive score. For the true status 

of factor ‘a’ is marked by a binary variable Ya, which is equal to one if the factor is part 

of the siRNA pathway. Since we don’t know if factor a is part of the siRNA pathway, Ya 

is unknown, and our goal is to predict it as accurately as possible, given the dataset D. 

Methods are defined in the following sections. 

 

A screen that is useful for our analysis is indicated by scores for the gold standard 
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factors that are higher than expected by chance. Therefore, a factor getting a high score 

is more likely to function in the siRNA pathway. We utilized this information to define a 

likelihood ratio score as follows: For each factor a in each dataset b, we defined a 

threshold score tab, such that all factors with scores in the dataset greater or equal to 

this threshold are considered positives, and other factors are considered negatives. For 

binary traits, the threshold tab was simply chosen to be tab = Dab, such that positives are 

either all factors with score ‘1’ (in case factor ‘a’ got a ‘1’ score, giving evidence for it 

being part of the siRNA pathway) or all factors (in case factor ‘a’ got a ‘0’, offering no 

evidence for pathway membership). For quantitative datasets, threshold selection was 

slightly more complex. The use of Dab as a threshold might be sub-optimal and even 

misleading - this is particularly true in cases when Dab is very high and none of the gold 

standard factors passed Dab. We therefore examined all thresholds t ≤ Dab and 

calculated the likelihood ratio LRab+(t) for each possible threshold (as described below). 

We then set the threshold tab as the one maximizing the obtained likelihood ratio, and 

took 

 

LRab+ = MAXt{LRab+ (t)}. 

 

Once a threshold has been set, we have computed a Likelihood Ratio score LRab+, a 

measure of a test power indicating how the knowledge of a specific score changes the 

likelihood of a factor being part of the siRNA pathways from baseline. More precisely, 

the likelihood ratio score is defined as LRab+ = Pr(Ya = 1 | Dab) / Pr(Ya = 0 | Dab); i.e. 

LRab+(t) is the ratio of probabilities of a factor a being part of the siRNA pathway versus 

not being part of this pathway given the evidence provided by dataset b. For each 

dataset we set LRab+ as LRab+(t) using the threshold t chosen as above. In practice, it is 

computed by comparing the proportion of gold standard factors among the positives 

(genes which scored above the threshold tab) and negatives (factors scoring below the 

threshold), as detailed below. 

 

The value Pr(Ya = 1 | Dab) is also often termed sensitivity, and the value Pr(Ya = 0 | Dab) 

is known as one minus the specificity. The sensitivity and specificity values for a given 
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score Dab are defined as: 

 

where: 

 

(i)  TPab denotes True Positives, the number of gold standard factors with scores equal 

to or higher  than the score threshold tab  

 

(ii)  TNab denotes True Negatives, the number of non-gold standard factors with scores 

lower than  the score threshold tab.  

 

(iii)  FPab denotes False Positives, the number of non-gold standard factors with scores 

equal to or  higher than the score threshold tab.  

 

(iv)  FNab denotes False Negatives, the number of gold standard factors with scores 

lower than the  score threshold tab.  

 

The likelihood ratio, computed via sensitivity and specificity is then given by: 

 

 
 

Finally, we used a Naïve Bayesian Classifier to merge the LRab+ scores from the 

different datasets and assign a final score. Naïve Bayesian Classifiers provide a simple, 

standard, and scalable method for utilizing the power of different data sources and 

types for prediction by assuming conditional independence of the various predictors 

given the outcome. It has been used successfully in various genomics applications49-51 

and was used here to predict likelihood of membership in the siRNA pathway for a given 

factor. 

 

 LRab+ = MAXt{LRab+ (t)}. 

Once a threshold has been set, we have computed a Likelihood Ratio score LRab+, a measure of a test 
power indicating how the knowledge of a specific score changes the likelihood of a factor being part of the 

siRNA pathways from baseline. More precisely, the likelihood ratio score is defined as LRab+ = Pr(Ya = 1 | Dab) 

/ Pr(Ya = 0 | Dab); i.e. LRab+(t)  is the ratio of probabilities of a factor a being part of the siRNA pathway versus 

not being part of this pathway given the evidence provided by dataset b. For each dataset we set LRab+ as 

LRab+(t) using the threshold t chosen as above. In practice, it is computed by comparing the proportion of gold 

standard factors among the positives (genes which scored above the threshold tab) and negatives (factors 

scoring below the threshold), as detailed below. 

The value Pr(Ya = 1 | Dab) is also often termed sensitivity, and the value Pr(Ya = 0 | Dab) is known as 

one minus the specificity. The sensitivity and specificity values for a given score Dab are defined as:  

where:  

(i) TPab denotes True Positives, the number of gold standard factors with scores equal to or higher 

than the score threshold tab  

(ii) TNab denotes True Negatives, the number of non-gold standard factors with scores lower than 

the score threshold tab. 

(iii) FPab denotes False Positives, the number of non-gold standard factors with scores equal to or 

higher than the score threshold tab. 

(iv) FNab denotes False Negatives, the number of gold standard factors with scores lower than the 

score threshold tab. 

The likelihood ratio, computed via sensitivity and specificity is then given by: 

specificity = abTN
TNab + FPab

=
TrueNegatives

TrueNegatives+ FalsePositives

sensitivity = abTP
TPab + FNab

=
TruePositives

TruePositives+ FalseNegatives  
  

Finally, we used a Naïve Bayesian Classifier to merge the LRab+ scores from the different datasets and 

assign a final score. Naïve Bayesian Classifiers provide a simple, standard, and scalable method for utilizing 

the power of different data sources and types for prediction by assuming conditional independence of the 

various predictors given the outcome. It has been used successfully in various genomics applications 49-51 and 

was used here to predict likelihood of membership in the siRNA pathway for a given factor.  

We define the final score for a factor ‘a’ (Sa) as the log likelihood ratio of the probability of factor a being 

in the siRNA pathway to the probability of factor ‘a’ not being in the pathway given evidence collected from all 

12 datasets used for the siRNA classifier:  
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We define the final score for a factor ‘a’ (Sa) as the log likelihood ratio of the probability 

of factor a being in the siRNA pathway to the probability of factor ‘a’ not being in the 

pathway given evidence collected from all 12 datasets used for the siRNA classifier: 

 

Sa = log(Pr(Ya = 1 | Da1, Da2,.., Da12) / Pr(Ya = 0 | Dab, Da2,.., Da12)) 

 

An underlying assumption of the Naïve Bayesian procedure is that the individual data 

sets are independent of each other. As such, we can compute Sa by simply summing 

the log-likelihood ratios: 

 

Sa = Σb (LRab+) 

 

where LRab+ is the likelihood ratio score of factor ‘a’ in data set b. 

 

The independence assumption is rarely strictly satisfied in practice49 Hence treating the 

dataset as independence may be sub-optimal. Nevertheless, we used the Naïve 

Bayesian model for two reasons: first, our goal in this work was to show that combining 

different data sources in a simple manner enables us to reliably predict new siRNA 

pathway factors; and second, reliably estimating and exploiting the dependencies in our 

databases is difficult, and often requires larger amounts of data. Better modeling of the 

dependencies between the different data sources will likely lead to even better 

classifiers and thus more accurate prediction of gene membership in the pathway. 

 

 

Validation screens 

 

A transgene that expresses GFP in the hypodermal cells in wild type is silenced in an 

eri-1(mg366) mutant, but RNAi targeting of genes encoding validated small RNA 

pathway cofactors such as rde-1, rde-4, or dcr-1 causes transgene desilencing. 

wIs54(scm:gfp) in eri-1(mg366) is silenced in seam cells44. Desilencing of the 

wIs54(scm:gfp) transgene in the eri-1(mg366) mutant and desilencing of the ubl-
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1::GFP::siR-1 endo siRNA sensor transgene was tested in two samples of each of 87 

gene inactivations and scored 4 for most desilencing to 0 for least. For the 87 top 

ranked genes from the Bayesian analysis tested, the sequences of the gene inactivating 

dsRNAs were verified. In the full genome screen with the wIs54 in eri-1(mg366), every 

gene knockdown that caused in any degree of desilencing (score > 0) in the primary 

screen was subjected to secondary screening in triplicate, scoring 4 for the most 

desilencing down to 0 for no desilencing. Due to the large number of positives emerging 

from the full genome screen, plasmids for RNAi clones were not re-sequenced. 

 

 

Images 

 

Images were captured using a Zeiss Axioplan microscope equipped with a Hamamatsu 

digital camera and Zeiss Axiovision software. Images compared to each other were 

captured using the same exposure settings and processed identically. Control RNAi 

bacteria expressed double-stranded RNA homologous to no worm gene. 
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APPENDIX C: MORC family ATPases required for heterochromatin condensation 
and gene silencing 
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ABSTRACT: Transposable elements (TEs) and DNA repeats are commonly targeted 

by DNA and histone methylation to achieve epigenetic gene silencing. We isolated 

mutations in two genes, CRT1 and CRH6, which cause de-repression of DNA-

methylated genes and TEs, but no losses of DNA or histone methylation. CRT1 and 

CRH6 are members of the conserved Microrchidia (MORC) ATPase family, predicted to 

catalyze alterations in chromosome superstructure. The crt1 and crh6 mutants show 

decondensation of pericentromeric heterochromatin, increased interaction of 

pericentromeric regions the rest of the genome, and transcriptional defects that are 

largely restricted to loci residing in pericentromeric regions. Knockdown of the single 

MORC homolog in Caenorhabditis elegans also impairs transgene silencing. We 

propose that the MORC ATPases are conserved regulators of gene silencing in 

eukaryotes. 
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MAIN TEXT 
 

Gene silencing in the Arabidopsis genome is highly correlated with DNA methylation, 

which is found in three different cytosine contexts. Methylation of symmetric CG and 

CHG sites (in which H = A, T, or C) are mediated by DNA METHYLTRANSFERASE1 

(MET1) and CHROMOMETHYLASE3 (CMT3), respectively, whereas CHH methylation 

is mainly catalyzed by DOMAINS REARRANGED METHYLTRANSFERASE2 (DRM2) 

(1). Silent loci are also enriched in the repressive histone H3 lysine 9 dimethylation 

mark (H3K9me2) (2, 3). 

 

Suppressor of drm2 cmt3 (SDC) is a gene whose repression in most tissues depends 

on the redundant activities of DRM2 and CMT3 (4, 5). Hence, a loss of SDC silencing is 

observed in the drm2 cmt3 double mutant but not in drm2 or cmt3 single mutants. The 

SDC promoter carries seven tandem repeats, which recruit the DNA methylation 

machinery and cause transcriptional gene silencing. We engineered a green fluorescent 

protein (GFP)–based sensor construct controlled by the SDC promoter (fig. S1A). The 

SDC::GFP transgene behaves similarly to endogenous SDC, and GFP fluorescence is 

not detectable in wild-type, drm2, or cmt3 plants but is highly expressed in drm2 cmt3 

double mutant (Fig. 1A). 

 

We carried out ethyl methanesulfonate (EMS) mutagenesis screens in wild-type (wt) or 

cmt3 backgrounds for mutants showing SDC::GFP overexpression and identified the wt 

#67, cmt3 #7, and cmt3 #49 mutants (Fig. 1, A and B). Mapping experiments using bulk 

segregant analysis coupled to deep genome resequencing indicated that cmt3 #7 

contained a mutation in At4g36290 (AtMORC1), previously also named 

COMPROMISED RECOGNITION OF TCV-1 (CRT1) (6, 7), whereas wt #67 and cmt3 

#49 both contained mutations in At1g19100 (AtMORC6) (7) (figs. S1B, S2, and S3A). 

An atmorc1 allele was previously reported to show reduced resistance to the turnip 

crinkle virus (TCV) (6, 7), suggesting that AtMORC1 is involved in viral resistance in 

addition to its role in gene silencing described in this study, whereas mutations in 

AtMORC6 have not been described. To ensure that atmorc1 and atmorc6 mutations 
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were those responsible for the loss of SDC silencing, we isolated knock-out transferred 

DNA (T-DNA) insertion lines atmorc1-4 and atmorc6-3 and confirmed SDC 

overexpression in these two mutant alleles (fig. S3, B to D). Genetic complementation 

crosses between the recessive EMS and T-DNA mutants confirmed AtMORC1 and 

AtMORC6 as the mutated genes responsible for SDC::GFP activation in the three EMS 

lines (fig. S3E). Therefore, #7, #67, and #49 were renamed atmorc1-3, atmorc6-1, and 

atmorc6-2, respectively. 

 

By using RNA sequencing (RNA-seq) (8), we found that the majority of RNAs 

significantly affected in the atmorc1 and atmorc6 mutants showed up-regulation, and 

many of these were transposable elements (TEs) belonging to various transposon 

superfamilies, including, among others, the LTR/Gypsy, LTR/Copia, DNA/MuDR, and 

DNA/Harbinger families (Fig. 1, C and D; fig. S4A; table S1). The expression defects in 

the atmorc1 and atmorc6 mutants were very similar, with all but two of the transposons 

up-regulated in atmorc1 also up-regulated in atmorc6 (fig. S4B). Protein-coding genes 

overexpressed in the atmorc1 and atmorc6 EMS and T-DNA mutants included 

endogenous SDC (table S2). There was a high degree of overlap between the genes 

up-regulated in atmorc1 and atmorc6 (fig. S4C), most of them corresponding to DNA-

methylated and silenced loci (fig. S4, D and E). We also performed RNA-seq in the 

atmorc1 atmorc6 double mutant and found a very similar set of genes and transposons 

up-regulated, with only a few genes up-regulated in the double mutant that were not up-

regulated in each of the single mutants (table S3), suggesting that AtMORC1 and 

AtMORC6 may act together to enforce gene silencing. 
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Fig. C.1. Mutations of two MORC homologs induce SDC::GFP and TE overexpression. 
(A) wt, drm2 mutant, and cmt3 mutant plants carrying SDC::GFP showed no GFP 
fluorescence under ultraviolet (UV) light (insets show each plant under white light), and 
drm2 cmt3 double mutant and EMS-mutagenized lines wt #67, cmt3 #49, and cmt3 #7 
plants showed strong GFP fluorescence. (B) Western blot using antibody against GFP 
(anti-GFP) confirms SDC::GFP overexpression in the EMS mutants. Coomassie 
staining of the large Rubisco subunit (rbcL) is used as loading control. (C) Number of 
TEs overexpressed in atmorc1 and atmorc6 mutants and classified by superfamily. For 
each mutant, only TEs with at least a fourfold increase in both the EMS and T-DNA 
alleles over wt and with a P ≤ 0.05 are represented. (D) Relative fold increase of four TE 
transcripts in atmorc1-4 and atmorc6-3 over wt assayed by real-time quantitative 
polymerase chain reaction (RT-qPCR) and normalized to ACTIN7. Errors bars indicate 
standard deviation based on three independent biological replicates. 
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for Heterochromatin Condensation
and Gene Silencing
Guillaume Moissiard,1 Shawn J. Cokus,1 Joshua Cary,1 Suhua Feng,1 Allison C. Billi,2

Hume Stroud,1 Dylan Husmann,1 Ye Zhan,3 Bryan R. Lajoie,3 Rachel Patton McCord,3

Christopher J. Hale,1 Wei Feng,4 Scott D. Michaels,4 Alison R. Frand,5 Matteo Pellegrini,1,6

Job Dekker,3 John K. Kim,2 Steven E. Jacobsen1,5,6,7*

Transposable elements (TEs) and DNA repeats are commonly targeted by DNA and histone methylation
to achieve epigenetic gene silencing. We isolated mutations in two Arabidopsis genes, AtMORC1
and AtMORC6, which cause derepression of DNA-methylated genes and TEs but no losses of DNA or
histone methylation. AtMORC1 and AtMORC6 are members of the conserved Microrchidia (MORC)
adenosine triphosphatase (ATPase) family, which are predicted to catalyze alterations in chromosome
superstructure. The atmorc1 and atmorc6 mutants show decondensation of pericentromeric
heterochromatin, increased interaction of pericentromeric regions with the rest of the genome, and
transcriptional defects that are largely restricted to loci residing in pericentromeric regions. Knockdown
of the single MORC homolog in Caenorhabditis elegans also impairs transgene silencing. We
propose that the MORC ATPases are conserved regulators of gene silencing in eukaryotes.

Gene silencing in the Arabidopsis genome
is highly correlated with DNA methyla-
tion, which is found in three different

cytosine contexts. Methylation of symmetric CG
and CHG sites (in which H is A, T, or C) are
mediated by DNA METHYLTRANSFERASE1

(MET1) and CHROMOMETHYLASE3 (CMT3),
respectively, whereas CHH methylation is main-
ly catalyzed by DOMAINS REARRANGED
METHYLTRANSFERASE2 (DRM2) (1). Silent
loci are also enriched in the repressive histone H3
lysine 9 dimethylation mark (H3K9me2) (2, 3).

Suppressor of drm2 cmt3 (SDC) is a gene
whose repression in most tissues depends on the
redundant activities of DRM2 and CMT3 (4, 5).
Hence, a loss of SDC silencing is observed in the
drm2 cmt3 doublemutant but not in drm2 or cmt3
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Fig. 1. Mutations of two MORC homologs induce SDC::GFP and TE overex-
pression. (A) wt, drm2mutant, and cmt3mutant plants carrying SDC::GFP showed
no GFP fluorescence under ultraviolet (UV) light (insets show each plant under
white light), and drm2 cmt3 double mutant and EMS-mutagenized lines wt #67,
cmt3 #49, and cmt3 #7 plants showed strong GFP fluorescence. (B) Western blot
using antibody against GFP (anti-GFP) confirms SDC::GFP overexpression in the
EMS mutants. Coomassie staining of the large Rubisco subunit (rbcL) is used as
loading control. (C) Number of TEs overexpressed in atmorc1 and atmorc6 mu-
tants and classified by superfamily. For each mutant, only TEs with at least a
fourfold increase in both the EMS and T-DNA alleles over wt and with a P ≤ 0.05
are represented. (D) Relative fold increase of four TE transcripts in atmorc1-4 and

atmorc6-3 over wt assayed by real-time quantitative polymerase chain reaction (RT-qPCR) and normalized to ACTIN7. Errors bars indicate standard deviation
based on three independent biological replicates.
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Transposable elements (TEs) and DNA repeats are commonly targeted by DNA and histone methylation
to achieve epigenetic gene silencing. We isolated mutations in two Arabidopsis genes, AtMORC1
and AtMORC6, which cause derepression of DNA-methylated genes and TEs but no losses of DNA or
histone methylation. AtMORC1 and AtMORC6 are members of the conserved Microrchidia (MORC)
adenosine triphosphatase (ATPase) family, which are predicted to catalyze alterations in chromosome
superstructure. The atmorc1 and atmorc6 mutants show decondensation of pericentromeric
heterochromatin, increased interaction of pericentromeric regions with the rest of the genome, and
transcriptional defects that are largely restricted to loci residing in pericentromeric regions. Knockdown
of the single MORC homolog in Caenorhabditis elegans also impairs transgene silencing. We
propose that the MORC ATPases are conserved regulators of gene silencing in eukaryotes.

Gene silencing in the Arabidopsis genome
is highly correlated with DNA methyla-
tion, which is found in three different

cytosine contexts. Methylation of symmetric CG
and CHG sites (in which H is A, T, or C) are
mediated by DNA METHYLTRANSFERASE1

(MET1) and CHROMOMETHYLASE3 (CMT3),
respectively, whereas CHH methylation is main-
ly catalyzed by DOMAINS REARRANGED
METHYLTRANSFERASE2 (DRM2) (1). Silent
loci are also enriched in the repressive histone H3
lysine 9 dimethylation mark (H3K9me2) (2, 3).

Suppressor of drm2 cmt3 (SDC) is a gene
whose repression in most tissues depends on the
redundant activities of DRM2 and CMT3 (4, 5).
Hence, a loss of SDC silencing is observed in the
drm2 cmt3 doublemutant but not in drm2 or cmt3

1Department of Molecular, Cell, and Developmental Biology,
University of California at Los Angeles, Terasaki Life Sciences
Building, 610 Charles Young Drive East, Los Angeles, CA
90095–723905, USA. 2Life Sciences Institute and Depart-
ment of Human Genetics, University of Michigan, Ann Arbor,
MI 48109, USA. 3Lazare Research Building 570N, Program in
Systems Biology and Gene Function and Expression, Univer-
sity of Massachusetts Medical School, 364 Plantation Street,
Worcester, MA 01605, USA. 4Department of Biology, Indiana
University, Bloomington, IN 47405, USA. 5Department of Bio-
logical Chemistry, David Geffen School of Medicine, University
of California Los Angeles, Los Angeles, CA 90095, USA. 6Eli and
Edythe Broad Center of Regenerative Medicine and Stem Cell
Research, University of California Los Angeles, Los Angeles, CA
90095, USA. 7Howard Hughes Medical Institute, University of
California Los Angeles, Los Angeles, CA 90095, USA.

*To whom correspondence should be addressed. E-mail:
jacobsen@ucla.edu

Fig. 1. Mutations of two MORC homologs induce SDC::GFP and TE overex-
pression. (A) wt, drm2mutant, and cmt3mutant plants carrying SDC::GFP showed
no GFP fluorescence under ultraviolet (UV) light (insets show each plant under
white light), and drm2 cmt3 double mutant and EMS-mutagenized lines wt #67,
cmt3 #49, and cmt3 #7 plants showed strong GFP fluorescence. (B) Western blot
using antibody against GFP (anti-GFP) confirms SDC::GFP overexpression in the
EMS mutants. Coomassie staining of the large Rubisco subunit (rbcL) is used as
loading control. (C) Number of TEs overexpressed in atmorc1 and atmorc6 mu-
tants and classified by superfamily. For each mutant, only TEs with at least a
fourfold increase in both the EMS and T-DNA alleles over wt and with a P ≤ 0.05
are represented. (D) Relative fold increase of four TE transcripts in atmorc1-4 and

atmorc6-3 over wt assayed by real-time quantitative polymerase chain reaction (RT-qPCR) and normalized to ACTIN7. Errors bars indicate standard deviation
based on three independent biological replicates.
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Fig. 1. Mutations of two MORC homologs induce SDC::GFP and TE overex-
pression. (A) wt, drm2mutant, and cmt3mutant plants carrying SDC::GFP showed
no GFP fluorescence under ultraviolet (UV) light (insets show each plant under
white light), and drm2 cmt3 double mutant and EMS-mutagenized lines wt #67,
cmt3 #49, and cmt3 #7 plants showed strong GFP fluorescence. (B) Western blot
using antibody against GFP (anti-GFP) confirms SDC::GFP overexpression in the
EMS mutants. Coomassie staining of the large Rubisco subunit (rbcL) is used as
loading control. (C) Number of TEs overexpressed in atmorc1 and atmorc6 mu-
tants and classified by superfamily. For each mutant, only TEs with at least a
fourfold increase in both the EMS and T-DNA alleles over wt and with a P ≤ 0.05
are represented. (D) Relative fold increase of four TE transcripts in atmorc1-4 and

atmorc6-3 over wt assayed by real-time quantitative polymerase chain reaction (RT-qPCR) and normalized to ACTIN7. Errors bars indicate standard deviation
based on three independent biological replicates.
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Whole-genome bisulfite sequencing (BS-seq) (9) revealed that DNA methylation levels 

in all sequence contexts were unaltered in atmorc1 or atmorc6 relative to wild type at 

TEs up-regulated in atmorc1 or atmorc6 (Fig. 2, A and B), nor were there any bulk 

alterations in protein-coding genes or TEs in the genome (fig. S5, A and B). In addition, 

analyses at the pericentromeric satellite CEN180 repeats and five loci up-regulated in 

atmorc1 and atmorc6 showed that the DNA methylation patterns in atmorc1-4 and 

atmorc6-3 were similar to those of wild type (Fig. 2, C and D). Chromatin 

immunoprecipitation sequencing (ChIP-seq) analyses of H3K9me2 also did not reveal 

any changes in the atmorc1 or atmorc6 mutants at SDC or other up-regulated locations 

(fig. S6, A and B). Lastly, small RNA sequencing analyses showed that elements up-

regulated in atmorc1 and atmorc6 mutants were enriched in small interfering RNAs 

(siRNAs), but these siRNA levels did not change in the mutants (fig. S7). Thus, 

AtMORC1 and AtMORC6 are not required to maintain DNA methylation, H3K9me2, or 

siRNAs, suggesting that AtMORC1 and AtMORC6 are likely to either act downstream of 

DNA methylation or enforce silencing by a novel mechanism. 
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Fig. C.2. DNA methylation is not impaired in atmorc1 and atmorc6 mutants. (A and B) 
Metaplot analyses show DNA methylation level in atmorc1-4, atmorc6-3, and wt for the 
set of TEs up-regulated in atmorc1-4 (A) and atmorc6-3 (B). The gray vertical lines mark 
the boundaries between 1 kilobase upstream and downstream regions of TEs. (C) 
Southern blot analyses assayed CG methylation level at CEN180 repeats by using 
HpaII-treated genomic DNAs. m, methylated; u, unmethylated. met1-3 genomic DNA is 
used as positive control for loss of CG methylation (23). (D) Percent DNA methylation at 
SDC and four TEs overexpressed in atmorc1-4 and atmorc6-3 mutants assayed by 
bisulfite sequencing. Twenty-four clones were analyzed for each individual analysis. 

 

  

single mutants. The SDC promoter carries seven
tandem repeats, which recruit the DNA methyl-
ation machinery and cause transcriptional gene
silencing. We engineered a green fluorescent pro-
tein (GFP)–based sensor construct controlled by
the SDC promoter (fig. S1A). The SDC::GFP
transgene behaves similarly to endogenous SDC,
and GFP fluorescence is not detectable in wild-

type, drm2, or cmt3 plants but is highly expressed
in drm2 cmt3 double mutant (Fig. 1A).

We carried out ethyl methanesulfonate (EMS)
mutagenesis screens in wild-type (wt) or cmt3
backgrounds for mutants showing SDC::GFP
overexpression and identified the wt #67, cmt3
#7, and cmt3 #49 mutants (Fig. 1, A and B).
Mapping experiments using bulk segregant anal-

ysis coupled to deep genome resequencing in-
dicated that cmt3 #7 contained a mutation in
At4g36290 (AtMORC1), previouslyalsonamedCOM-
PROMISED RECOGNITION OF TCV-1 (CRT1)
(6, 7), whereas wt #67 and cmt3 #49 both con-
tained mutations in At1g19100 (AtMORC6) (7)
(figs. S1B, S2, and S3A). An atmorc1 allele was
previously reported to show reduced resistance to

Fig. 2. DNA methylation is not impaired in
atmorc1 and atmorc6 mutants. (A and B) Meta-
plot analyses show DNA methylation level in
atmorc1-4, atmorc6-3, and wt for the set of TEs
up-regulated in atmorc1-4 (A) and atmorc6-3
(B). The gray vertical lines mark the boundaries
between 1 kilobase upstream and downstream
regions of TEs. (C) Southern blot analyses as-
sayed CG methylation level at CEN180 repeats
by using HpaII-treated genomic DNAs. m, meth-
ylated; u, unmethylated.met1-3 genomic DNA is
used as positive control for loss of CG methyla-
tion (23). (D) Percent DNA methylation at SDC
and four TEs overexpressed in atmorc1-4 and
atmorc6-3mutants assayed by bisulfite sequenc-
ing. Twenty-four clones were analyzed for each
individual analysis.

www.sciencemag.org SCIENCE VOL 336 15 JUNE 2012 1449

REPORTS

 o
n 

Au
gu

st
 8

, 2
01

2
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fro
m

 

single mutants. The SDC promoter carries seven
tandem repeats, which recruit the DNA methyl-
ation machinery and cause transcriptional gene
silencing. We engineered a green fluorescent pro-
tein (GFP)–based sensor construct controlled by
the SDC promoter (fig. S1A). The SDC::GFP
transgene behaves similarly to endogenous SDC,
and GFP fluorescence is not detectable in wild-

type, drm2, or cmt3 plants but is highly expressed
in drm2 cmt3 double mutant (Fig. 1A).

We carried out ethyl methanesulfonate (EMS)
mutagenesis screens in wild-type (wt) or cmt3
backgrounds for mutants showing SDC::GFP
overexpression and identified the wt #67, cmt3
#7, and cmt3 #49 mutants (Fig. 1, A and B).
Mapping experiments using bulk segregant anal-

ysis coupled to deep genome resequencing in-
dicated that cmt3 #7 contained a mutation in
At4g36290 (AtMORC1), previouslyalsonamedCOM-
PROMISED RECOGNITION OF TCV-1 (CRT1)
(6, 7), whereas wt #67 and cmt3 #49 both con-
tained mutations in At1g19100 (AtMORC6) (7)
(figs. S1B, S2, and S3A). An atmorc1 allele was
previously reported to show reduced resistance to

Fig. 2. DNA methylation is not impaired in
atmorc1 and atmorc6 mutants. (A and B) Meta-
plot analyses show DNA methylation level in
atmorc1-4, atmorc6-3, and wt for the set of TEs
up-regulated in atmorc1-4 (A) and atmorc6-3
(B). The gray vertical lines mark the boundaries
between 1 kilobase upstream and downstream
regions of TEs. (C) Southern blot analyses as-
sayed CG methylation level at CEN180 repeats
by using HpaII-treated genomic DNAs. m, meth-
ylated; u, unmethylated.met1-3 genomic DNA is
used as positive control for loss of CG methyla-
tion (23). (D) Percent DNA methylation at SDC
and four TEs overexpressed in atmorc1-4 and
atmorc6-3mutants assayed by bisulfite sequenc-
ing. Twenty-four clones were analyzed for each
individual analysis.

www.sciencemag.org SCIENCE VOL 336 15 JUNE 2012 1449

REPORTS

 o
n 

Au
gu

st
 8

, 2
01

2
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fro
m

 



 280 

AtMORC1 and AtMORC6 are homologs of mouse Microrchidia1 (MORC1) (10, 11) and 

contain gyrase, Hsp90, histidine kinase, and MutL (GHKL) and S5 domains, together 

comprising an adenosine triphosphatase (ATPase) module (6) in addition to a putative 

C-terminal coiled-coil domain (fig. S1B). The EMS mutations found in atmorc1-3, 

atmorc6-1, and atmorc6-2 alleles all introduced premature stop codons within the GHKL 

domain (fig. S1B). Because of the similarity of AtMORC1 and AtMORC6 to ATPases 

involved in manipulating chromatin superstructure (12), these proteins may affect gene 

silencing through higher-order compaction of methylated and silent chromatin. In wild-

type nuclei, pericentromeric heterochromatin forms densely staining nuclear bodies 

called chromocenters that localize to the nuclear periphery (13). We observed 

decondensation of chromocenters in the atmorc1 and atmorc6 mutants (as well as in 

atmorc1 atmorc6 double mutant) (figs. S8 to S11) and found that loci transcriptionally 

derepressed in the mutants mostly localized to pericentromeric heterochromatin (fig. 

S12 and tables S1 and S3). To directly examine whole-genome chromatin interactions, 

we performed Hi-C analyses in wild type and atmorc6-1 (14). Consistent with previous 

cytological studies (13), the wild-type genome showed interactions between telomeres 

as well as between euchromatic regions on the same chromosome arm (Fig. 3A). In 

contrast, pericentromeric heterochromatin regions interacted very weakly with the rest 

of the genome, consistent with their compaction in chromocenters (Fig. 3A). Although 

atmorc6-1 showed a roughly similar chromatin architecture (fig. S13), plotting the 

differences between mutant and wild type showed that atmorc6-1 shows an increase in 

interactions between the pericentromeric regions of all chromosomes with the 

euchromatic arms of all chromosomes and a corresponding depletion of interactions of 

euchromatic arms with themselves. Because the analysis reports relative changes with 

the sum of differences set to zero, the most likely interpretation of these findings is that 

pericentromeric regions interact more strongly with the euchromatic arms in atmorc6-1, 

although we cannot exclude that the mutant also has effects on the euchromatic arms 

(Fig. 3B). This interpretation is consistent with the cytological observations showing that 

chromocenters expand out into a larger area of the nucleus in the mutants (fig. S8). We 

also found, by using complementing myc-tagged transgenes, that AtMORC1 and 

AtMORC6 proteins formed small nuclear bodies that were usually adjacent to but not 
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within chromocenters (Fig. 3C and figs. S14 and S15). These results are all consistent 

with a model in which AtMORC1 and AtMORC6 enforce compaction and gene silencing 

of pericentromeric heterochromatin, although it is also possible that changes in 

chromatin and gene expression in the mutant secondarily lead to the observed changes 

in chromatin compaction. Mutation of the plant-specific MOM1 gene has also been 

shown to affect gene silencing but not DNA methylation in Arabidopsis; however, mom1 

mutants do not show chromocenter decondensation and therefore are likely to act via a 

different mechanism (15, 16). 

 

A single MORC homolog, morc-1, is present in the worm Caenorhabditis elegans, which 

is devoid of DNA methylation (17). To test whether the C. elegans morc-1 (ZC155.3) is 

involved in gene silencing, we performed RNA interference (RNAi)–mediated 

knockdown of morc-1 in the eri-1 sensitized background, in which a GFP transgene is 

silenced in most of the worm seam cells (Fig. 3D) (18). morc-1–depleted worms showed 

GFP reactivation similar to worms depleted of rde-4, an essential component of gene 

silencing in C. elegans (Fig. 3D) (19). These results suggest that MORCs may play an 

ancient and conserved role in gene silencing. In addition, the observation that morc-1 is 

required for gene silencing in C. elegans reinforces our view that MORCs in Arabidopsis 

are enforcing silencing by a mechanism that may not be directly linked with DNA 

methylation. It is interesting to note that the phenotype of the Morc1-knockout mouse 

resembles Miwi2- and Dnmt3L-knockout mouse phenotypes, showing male-specific 

meiotic defects during spermatogenesis (10, 20–22). Miwi2 and Dnmt3L are both 

required for TE silencing, and it is possible that Morc1 might be involved in transposon 

silencing in mammals as well. We propose that MORC family ATPases act to regulate 

chromatin architecture and gene silencing in a wide variety of eukaryotes. 
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Fig. C.3. AtMORC1 and AtMORC6 are required for maintenance of chromatin 
architecture and form nuclear bodies near chromocenters, and morc-1 is involved in 
gene silencing in C. elegans. (A) Interaction matrix of the wt Arabidopsis genome from 
Hi-C analysis. Positions along the five chromosomes are shown from left to right and 
top to bottom, and each pixel represents interactions from uniquely mapping paired end 
reads in 200-kilobase bins. Black bars and circles mark the positions of the 
pericentromeric and telomeric regions, respectively. Light gray regions represent areas 
masked out because of problematic mapping. Black bars show separation between 
chromosomes. (B) Difference plot shows enrichment of Hi-C interactions in atmorc6-1 in 
red and interactions depleted in atmorc6-1 in blue. (C) Anti-Myc immunostaining 
showing localization of pAtMORC6::AtMORC6-Myc and pAtMORC1::AtMORC1-Myc in 
nuclear bodies adjacent to chromocenters. AtMORC1 and AtMORC6 showed 2.0 T 1.0 
(average T standard deviation) and 2.5 T 1.2 bodies per chromocenter, respectively. 
DAPI (4‘,6-diamidino-2-phenylindole) staining shows chromocenter location. Bottom 
images are merges. (D) A silenced seam cell–specific GFP transgene in the eri-
1(mg366) sensitized background is overexpressed in worms fed with bacteria 
expressing double-stranded RNA targeting morc-1 or rde-4 but not in worms fed with 
bacteria expressing a control empty vector. Results are representative of five 
independent replicates. 

  

the turnip crinkle virus (TCV) (6, 7), suggesting
that AtMORC1 is involved in viral resistance in
addition to its role in gene silencing described in
this study, whereas mutations in AtMORC6 have
not been described. To ensure that atmorc1 and
atmorc6mutations were those responsible for the
loss of SDC silencing, we isolated knock-out trans-
ferred DNA (T-DNA) insertion lines atmorc1-4
and atmorc6-3 and confirmed SDC overexpres-
sion in these two mutant alleles (fig. S3, B to D).
Genetic complementation crosses between the re-
cessive EMS and T-DNA mutants confirmed
AtMORC1 and AtMORC6 as the mutated genes
responsible for SDC::GFP activation in the three
EMS lines (fig. S3E). Therefore, #7, #67, and
#49 were renamed atmorc1-3, atmorc6-1, and
atmorc6-2, respectively.

By using RNA sequencing (RNA-seq) (8),
we found that the majority of RNAs significantly
affected in the atmorc1 and atmorc6 mutants
showed up-regulation, and many of these were
transposable elements (TEs) belonging to various
transposon superfamilies, including, among others,
the LTR/Gypsy, LTR/Copia, DNA/MuDR, and
DNA/Harbinger families (Fig. 1, C and D; fig.
S4A; table S1). The expression defects in the
atmorc1 and atmorc6 mutants were very similar,
with all but two of the transposons up-regulated
in atmorc1 also up-regulated in atmorc6 (fig. S4B).
Protein-coding genes overexpressed in theatmorc1
and atmorc6 EMS and T-DNA mutants included
endogenous SDC (table S2). There was a high
degree of overlap between the genes up-regulated
in atmorc1 and atmorc6 (fig. S4C), most of them
corresponding to DNA-methylated and silenced
loci (fig. S4, D and E). We also performed RNA-
seq in the atmorc1 atmorc6 double mutant and
found a very similar set of genes and transposons
up-regulated, with only a few genes up-regulated
in the double mutant that were not up-regulated
in each of the single mutants (table S3), sug-
gesting that AtMORC1 and AtMORC6 may act
together to enforce gene silencing.

Whole-genome bisulfite sequencing (BS-seq)
(9) revealed that DNA methylation levels in all
sequence contexts were unaltered in atmorc1 or
atmorc6 relative to wild type at TEs up-regulated
in atmorc1 or atmorc6 (Fig. 2, A and B), nor
were there any bulk alterations in protein-coding
genes or TEs in the genome (fig. S5, A and B). In
addition, analyses at the pericentromeric satel-
lite CEN180 repeats and five loci up-regulated
in atmorc1 and atmorc6 showed that the DNA
methylation patterns in atmorc1-4 and atmorc6-3
were similar to those of wild type (Fig. 2, C and
D). Chromatin immunoprecipitation sequencing
(ChIP-seq) analyses of H3K9me2 also did not
reveal any changes in the atmorc1 or atmorc6
mutants at SDC or other up-regulated locations
(fig. S6, A and B). Lastly, small RNA sequencing
analyses showed that elements up-regulated in
atmorc1 and atmorc6mutants were enriched in
small interfering RNAs (siRNAs), but these siRNA
levels did not change in the mutants (fig. S7).
Thus, AtMORC1 and AtMORC6 are not required

tomaintainDNAmethylation,H3K9me2, or siRNAs,
suggesting that AtMORC1 and AtMORC6 are
likely to either act downstream of DNA methyl-
ation or enforce silencing by a novel mechanism.

AtMORC1 and AtMORC6 are homologs of
mouseMicrorchidia1 (MORC1) (10, 11) and con-
tain gyrase, Hsp90, histidine kinase, and MutL
(GHKL) and S5 domains, together comprising
an adenosine triphosphatase (ATPase) module
(6) in addition to a putative C-terminal coiled-coil
domain (fig. S1B). The EMS mutations found

in atmorc1-3, atmorc6-1, and atmorc6-2 alleles
all introduced premature stop codons within the
GHKL domain (fig. S1B).

Because of the similarity of AtMORC1 and
AtMORC6 to ATPases involved in manipulating
chromatin superstructure (12), these proteinsmay
affect gene silencing through higher-order com-
paction of methylated and silent chromatin. In
wild-type nuclei, pericentromeric heterochro-
matin forms densely staining nuclear bodies called
chromocenters that localize to the nuclear periphery

Fig. 3. AtMORC1 and AtMORC6 are required for maintenance of chromatin architecture and form
nuclear bodies near chromocenters, andmorc-1 is involved in gene silencing in C. elegans. (A) Interaction
matrix of the wt Arabidopsis genome from Hi-C analysis. Positions along the five chromosomes are shown
from left to right and top to bottom, and each pixel represents interactions from uniquely mapping paired
end reads in 200-kilobase bins. Black bars and circles mark the positions of the pericentromeric and
telomeric regions, respectively. Light gray regions represent areas masked out because of problematic
mapping. Black bars show separation between chromosomes. (B) Difference plot shows enrichment of Hi-C
interactions in atmorc6-1 in red and interactions depleted in atmorc6-1 in blue. (C) Anti-Myc im-
munostaining showing localization of pAtMORC6::AtMORC6-Myc and pAtMORC1::AtMORC1-Myc in
nuclear bodies adjacent to chromocenters. AtMORC1 and AtMORC6 showed 2.0 T 1.0 (average T standard
deviation) and 2.5 T 1.2 bodies per chromocenter, respectively. DAPI (4´,6-diamidino-2-phenylindole)
staining shows chromocenter location. Bottom images are merges. (D) A silenced seam cell–specific GFP
transgene in the eri-1 (mg366) sensitized background is overexpressed in worms fed with bacteria ex-
pressing double-stranded RNA targetingmorc-1 or rde-4 but not in worms fed with bacteria expressing a
control empty vector. Results are representative of five independent replicates.
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MATERIALS AND METHODS 

 

Plant material and growing conditions 
 

All mutants are in the Columbia (Col) ecotype. atmorc6-3 (GK_599B06) and atmorc1-4 

(SAIL_1239_C08) T-DNA lines were obtained from GABI-Kat (24) at University of 

Bielefeld, Germany and ABRC at Ohio State University, respectively. drm2-2 

(SALK_150863.37.35) and cmt3-11 (SALK_148381) were previously described (4). T-

DNA insertions were confirmed by PCR-based genotyping. Primer sequences are 

described in Table S4. Arabidopsis plants were grown under continuous light. 

 
 
Cloning of SDC::GFP 
 
 NLS-GFP-35S terminator was PCR amplified and cloned into pCambia3300. The SDC 
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promoter corresponding to a region of ~2.4 kb upstream of SDC transcriptional start site 

was PCR amplified from wild type genomic DNA and cloned into pCR2.1 TOPO vector 

(Invitrogen). Quick change site-directed mutagenesis (Stratagene) was performed to 

create a polymorphism (NlaIII -> BamHI) within the SDC promoter, which was 

subsequently mobilized into pCambia3300 upstream of NLS-GFP sequence. drm2 cmt3 

double mutant plants were transformed with the SDC::GFP construct using the 

Agrobacterium-mediated floral dip method (25). Transgenic plants showing strong GFP 

fluorescence were backcrossed with a wild type plant to ensure proper silencing of 

SDC::GFP in the F1 generation. F1 plants were self-crossed and their progenies (F2) 

were screened for GFP fluorescence and PCR-based genotyped to obtained the 

following genetic backgrounds: SDC::GFP wt, SDC::GFP drm2, SDC::GFP cmt3 and 

SDC::GFP drm2 cmt3. Primer sequences used for SDC::GFP cloning are described in 

Table S4. 

 
 
Cloning of pAtMORC1::AtMORC1-Myc and pAtMORC6::AtMORC6-Myc 
 
AtMORC1 and AtMORC6 genomic regions were PCR amplified and the Myc epitope 

was added to the C-terminus of each protein as previously described (26). In both 

cases, the amplified region includes a ~1Kb promoter sequence upstream of the 

respective transcriptional start site. Primer sequences are described in Table S4. 

 
 
EMS mutagenesis, GFP screening and mapping analyses 
 

Two thousand seeds from SDC::GFP wt and SDC::GFP cmt3 lines were mutagenized 

in 0.3% EMS solution for 13 hours with rotation. Seeds were subsequently washed with 

water and planted onto soil. For each background, approximately one thousand M2 

populations were collected and subsequently screened for GFP fluorescence under UV 

light using a Leica MZ16F Fluorescence Stereomicroscope coupled with the GPF Plus 

fluorescence filter. Pictures were taken using the DFC300 FX digital camera kit. 
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Mapping and identification of the three EMS mutations responsible for the phenotypes 

were performed by bulk segregant analysis coupled with deep genome re-sequencing 

as previously described (27), using single nucleotide polymorphisms (SNPs) between 

the Landsberg (Ler) and Col ecotypes derived de novo from data from a large number 

of mapping crosses. 

 
 
Western Blotting 
 

Western blots against GFP were performed using the GFP-specific antibody (Invitrogen, 

AA1122). Western blots against Myc were performed as previously described (26). 

 
 
RNA analyses 
 

Total RNAs were extracted from two-week-old seedlings using Trizol (Ambion RNA 

technology). Two µg of total RNAs were subsequently used to generate libraries for 

High Throughput RNA sequencing (TruSeq RNA, Illumina) per manufacturer instruction. 

For RNA-seq analyses, sequencing reads were mapped with Bowtie (28) allowing up to 

2 mismatches. Gene and transposon expression was measured by calculating reads 

per kilobase per million mapped reads (RPKM) (29). p-values were calculated using 

Fisher’s exact test and Benjamini corrected for multiple testing (30). Differentially 

expressed elements in wild type and mutants were defined by applying log2(mutant 

/wild type)>2 and P<0.05 cutoffs. For quantitative PCR analysis, total RNAs were 

converted into cDNA using SuperScript III Reverse Transcriptase (Invitrogen) per 

manufacturer instructions. Quantitative PCR was carried out using SyBr Green PCR 

mastermix (Roche) and gene- or transposon-specific primers (see Table S4) on a 

Stratagene Mx real-time thermocycler. 

 
 
DNA methylation analyses 



 286 

Whole genome BS-seq libraries were performed as previously described (9), except 

directly with pre-methylated final adapters. BS-seq data was mapped with BS seeker as 

previously described (31). For traditional bisulfite sequencing, genomic DNA extracted 

from two-week-old seedlings was bisulfite converted using MethylEasy (Human Genetic 

Signature) and processed as previously described (5). Primer sequences used for 

bisulfite sequencing are described in Table S4. Southern blot was performed as 

previously described (2). 

 
 
H3K9me2 ChIP-seq analyses 
 

Two grams of 3-week-old seedlings were crosslinked with formaldehyde and chromatin-

IP experiments were performed as previously described (32). A mouse monoclonal 

antibody was used for H3K9me2 immunoprecipitation (Abcam ab1220). ChIP-seq 

library was generated per manufacturer instructions (Illumina). Demultiplexed (by exact 

match to canonical 6-mers) single end 50-mer HiSeq PF-passing reads were aligned to 

the TAIR8 reference genome using Bowtie 1, keeping all hits with at most two or fewer 

mismatches in the first 28 cycles and with total sum of Phred quality scores at 

mismatches up to 100, further filtered to only keep reads with a unique hit of fewest total 

mismatches, retaining only that unique hit. Reads were extended downstream to total 

length 220 nucleotides to reflect nominal library fragment lengths and single-stranded 

per-base pair coverage tallied, normalized by total nuclear chromosome coverage to 

account for variation in sequencing depth. 

 
 
siRNA analyses 
 

Total RNAs were extracted from flowers using Trizol (Ambion RNA technology) and 

siRNAs were purified as previously described (33) with the following modifications. 

Polyacrylamide gel-excised siRNAs were eluted in 0.3M NaCl overnight at 4°C. Gel 

debris were filtered using 5µm Filter tubes (IST Engineering Inc) and, ethanol-
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precipitated siRNAs were resuspended in 5ul of nuclease-free H20 to subsequently 

generate libraries for High Throughput small RNA sequencing (TruSeq small RNA, 

Illumina) per manufacturer instruction. Small RNA libraries were Illumina sequenced to 

50bp length, and resulting reads were trimmed for adapter sequences and then aligned 

to the TAIR8 genome using Bowtie (28). 

 

 

Hi-C analyses 
 

Two grams of 3-week-old seedling leaves were crosslinked with formaldehyde as 

previously described (32). Hi-C experiments were performed as previously described 

(34), with the exception that plant nuclei were prepared following a previously published 

Arabidopsis ChIP protocol (32). Hi-C libraries were sequenced on a HiSeq 2000 

sequencer (Illumina) obtaining paired end 50+50 nucleotide reads. Sequencing reads 

were mapped to the TAIR8 A. thaliana reference genome using Bowtie 1 to obtain all 

zero-mismatch hits of ends independently and keeping only paired end read pairs with 

each end having exactly one hit, obtaining 21,379,391 wild type and 14,815,038 

atmorc6-1 pairs. Paired reads with ends aligning to the same HindIII fragment were 

discarded. Hi-C interaction counts were summed within disjoint symmetric 2-D bins 200 

kilobase pairs tiling the genome. HindIII fragments which overlapped regions of poor 

reference genome quality were excluded from the analysis. Genomic 1-D bins (rows 

and columns) in which > 50% of the sequence length was excluded by these filters were 

treated as missing data, excluded from further analyses, and appear in figures as empty 

regions. The “raw” coverage of each genomic 2-D bin was taken as the number of 

paired end reads lying in that bin. Whole genomic 1-D bins with a total coverage more 

than 3 standard deviations greater than or less than the mean were excluded and then 

the matrix of interactions was corrected for 1-D bin coverage variation as previously 

described (34) using 50 iterations of that procedure. The comparison between the wild 

type and atmorc6-1 mutant was expressed as the difference divided by the mean within 

each bin with smoothing plus or minus one bin. 
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Immunofluorescence 
 

Immunofluorescence experiments examining chromocenter condensation were 

performed as previously described (35) with the following modifications. Leaves from 

three-week-old plants were fixed in 4% paraformaldehyde in TRIS buffer (10mM TRIS 

pH 7.5, 10mM EDTA, 100mM NaCl) for 20 minutes and washed twice in TRIS buffer. 

Leaves were chopped in 400 microliters lysis buffer (15mM TRIS pH 7.5, 2mM EDTA, 

0.5mM spermine, 80mM KCl, 20mM NaCl, 0.1% Triton X-100) and filtered through a 35 

micron cell strainer. Five microliters of nuclei suspension was added to sorting buffer 

(100mM TRIS pH 7.5, 50mM KCl, 2mM MgCl2, .05% Tween-20, 20.5% sucrose) and 

air dried on microscope slides for two hours and then post-fixed in 4% 

paraformaldehyde in PBS for 20 minutes. Slides were washed three times in PBS and 

incubated in blocking buffer (3% BSA, 10% horse serum in PBS) for 30 minutes at 

37°C. Nuclei were incubated at 4°C overnight in mouse monoclonal antibody against 

H3K9me2 (Abcam ab1220; 1:200). Slides were washed in PBS and incubated with goat 

anti-mouse FITC antibody (Abcam ab7064; 1:200) for 90 minutes at room temperature. 

Following PBS washes, nuclei were counterstained and mounted in Vectashield 

mounting media with DAPI (Vector H-1200). Nuclei were analyzed with a Zeiss Axio 

Imager Z1 microscope at 100X magnification and images were captured with a 

Hamamatsu ORCA-ER Camera. For detection of Myc epitope tagged proteins, nuclei 

were isolated as above. Following preparation of nuclei suspension, nuclei were spun 

down for 2 minutes at 2,000rpm and resuspended in PBS. Blocking and antibody 

incubations were performed in suspension, followed by pellet washing with PBS. Myc 

epitope was detected with mouse monoclonal antibody (Abcam 9E10; 1:200) and goat 

anti-mouse FITC (abcam ab7064; 1:200). Two microliters of prepared nuclei were 

mounted in Vectashield media. Nuclei were analyzed with the Applied Precision 

DeltaVision DV Live Cell Imaging System using Olympus IX-71 Customized Inverted 

Microscope and Photometrics CoolSNAP HQ2 CCD Camera (Figure 3). Additional 

images of nuclei were taken using a Zeiss LSM 510 META confocal microscope with 

Axiocam camera (Figure S15). 
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RNA interference in C. elegans 
 
RNAi experiments were carried out as reported previously (36) using the eri-1(mg366); 

[wIs54(scm::gfp)] strain, which shows increased sensitivity to RNAi. Briefly, bacterial 

strains carrying plasmids expressing double-stranded RNA targeting morc-1 or rde-4 

were obtained from the Ahringer RNAi library (37). Hatched L1 eri-1(mg366); 

[wIs54(scm::gfp)] larvae were cultured on empty vector (L4440), morc-1, or rde-4 RNAi 

bacteria for two generations at 22.5°C. Images of F1 L4 larvae were captured on an 

Olympus BX61 epifluorescence compound microscope with a Hamamatsu ORCA ER 

camera using Slidebook 4.0.1 digital microscopy software (Intelligent Imaging 

Innovations) and processed using ImageJ. 
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SUPPLEMENT 
 
Fig. C.S1. (A) Schematic representation of the SDC::GFP construct. The SDC promoter 
carries seven tandem repeats (black arrows) targeted by DNA methylation. The red bar 
corresponds to the Simian Virus 40 (SV40) Nuclear Localization Signal fused to GFP. 
(B) Schematic of AtMORC1 and AtMORC6 proteins showing the GHKL and S5 ATPase 
domains together with putative Coiled-Coil (CC) domains. The location of nonsense 
mutations within the protein sequences is shown for each EMS allele. aa; amino acid. 
Based on contextual associations of prokaryotic and eukaryotic MORC family members 
with associated domains, as well as with genes in operons, eukaryotic MORCs were 
predicted to have originated from bacterial restriction modification systems, and in 
eukaryotes have been proposed to remodel chromatin superstructure in response to 
epigenetic signals such as histone and DNA methylation (12). For instance, 
topoisomerases and MutL (a factor involved in methylated DNA directed mismatch 
repair) proteins use ATP hydrolysis to mediate large movements and looping of DNA. 
Similar to other GHKL ATPases (38), MORC3 in mouse was shown to act as a 
molecular clamp, interacting with itself constitutively through its coiled-coil domain, and 
also interacting via its ATPase domain in an ATP-dependent manner (39). In this way, 
MORC protein architectures are also reminiscent of the structural maintenance of 
chromosomes (SMC) family of proteins, which control chromosome condensation and 
cohesion (40). In addition, a very distant class of ATPase homologs contain the GHKL 
domain fused with the hinge and coiled coil domains of SMC-like ATPases (12) one of 
which, SmcHD1, is required for maintenance of X chromosome inactivation in mouse 
(41). Interestingly, in Arabidopsis, the protein DMS3/IDN1, which contains an SMC-like 
Hinge domain, has also been involved in gene silencing (42, 43) and GMI1, which is a 
GHKL protein carrying a Hinge domain has recently been involved in DNA repair (44). 
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Fig. C.S2. Mapping of cmt3 #7, wt #67 and cmt3 #49 mutations by bulk segregant 
analysis coupled with whole genome re-sequencing (27). (A to C) Depletion in 
percentage of Landsberg (Ler) single nucleotide polymorphisms (SNPs), defining the 
linkage interval for the population cmt3 #7 (chromosome 4 at ~17-18 megabases) (A), 
and defining the linkage intervals for the populations wt #67 (B) and cmt3 #49 (C) 
(chromosome 1 at ~6-7 megabases). Red arrows mark the linkage intervals. 
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Fig. C.S3. Characterization of atmorc1 and atmorc6 EMS and T-DNA mutant alleles. 
(A) Location of EMS point mutations in atmorc1-3, atmorc6-1, and atmorc6-2 alleles 
confirmed by traditional DNA sequencing. AtMORC1 and AtMORC6 reference 
sequences are shown for comparison. bp, base pair. (B) Gene structures of AtMORC1 
and AtMORC6 showing exons (E, dark gray boxes) and introns (gray lanes). Light gray 
boxes correspond to 5’ and 3’ untranslated regions. The locations of EMS point 
mutations and T-DNA insertions are described above the gene structures. (C and D) 
Relative AtMORC1 and AtMORC6 RNA levels (C), and SDC RNA level (D) in atmorc1-4 
and atmorc6-3 over wild type assayed by RT-qPCR and normalized to ACTIN7. Errors 
bars indicate standard deviation based on three independent biological replicates. Red 
arrows shown in (B) correspond to the primer locations within AtMORC1 and AtMORC6 
mRNAs used in (C). (E) Genetic complementation tests and backcrosses showing that 
wt #67, cmt3 #49, and atmorc6-3 are three recessive allelic mutations in AtMORC6 (top 
panels), while cmt3 #7 and atmorc1-4 are two recessive allelic mutations in AtMORC1 
(two bottom left panels). The cross between wt #67 and cmt3 #7 confirms that these two 
mutations are non-allelic (bottom right panel). Pictures represent leaves from F1 plants 
observed under UV light for GFP fluorescence. 
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Fig. C.S4. Similar sets of TEs and protein-coding genes are upregulated in atmorc1 and 
atmorc6. (A) Relative fold increase of SDC and four TE transcripts in atmorc6-1, cmt3-
11 and cmt3-11 atmorc1-3 over wild type assayed by RT-qPCR and normalized to 
ACTIN7. Errors bars indicate standard deviation based on three independent biological 
replicates. (B-D) Venn diagrams showing overlap of upregulated TEs (B), upregulated 
protein-coding genes (C), and upregulated protein-coding genes associated with DNA 
methylation (D) in atmorc1 and atmorc6. These analyses include the genes that were 4-
fold up-regulated in RNA-seq experiments in both the EMS and T-DNA alleles. (E) 
Gene ontology (GO) analyses of genes upregulated in atmorc1 and atmorc6 showing 
no significant over-representation of any GO category in both MORC mutants. GO p-
values are shown in parenthesis. 
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Fig. C.S5. DNA methylation at all protein-coding genes and transposons is not altered 
in atmorc1 and atmorc6. (A and B) Metaplot analyses showing DNA methylation 
percent within protein-coding genes (A) and transposons (B) in atmorc1-4, atmorc6-3 
and wild type plants. The gray vertical lines mark the boundaries between 1 kilobase 
(Kb) upstream regions and gene bodies or transposons (left), and between gene bodies 
or transposons and 1Kb downstream regions (right). 
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Fig. C.S6. H3K9me2 is not altered in atmorc1 and atmorc6. (A) log2 ratios of 
H3K9me2/H3 in atmorc1-4 and atmorc6-3 over wild type do not show H3K9me2 
changes in atmorc6 or atmorc1 mutants at the SDC promoter region. The H3K9me2/H3 
wild type ratio is shown over the SDC promoter region in which H3K9me2 is enriched. 
RNA-seq reads in the different genetic backgrounds are shown to define the SDC 
transcribed region. (B) Metaplot analyses showing log2 ratios of H3K9me2/H3 in 
atmorc1-4 and atmorc6-3 over wild type at the set of transposable elements and DNA-
methylated genes that are upregulated in atmorc1-4 and atmorc6-3. The gray vertical 
lines mark the boundaries between 1 kilobase upstream regions and transposons/PCGs 
(left) and between transposons/PCGs and 1 kilobase downstream regions (right). 
PCGs, Protein-coding genes. 
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Fig. C.S7. Small RNA accumulation is unaltered in atmorc1 and atmorc6. Metaplot 
analyses showing no difference in the level of siRNAs in atmorc1-4 and atmorc6-3 
compared to wild type at the set of transposable elements that are upregulated in 
atmorc1-4 and atmorc6-3. The gray vertical lines mark the boundaries between 2 
kilobases upstream regions and transposons (left) and between transposons and 2 
kilobases downstream regions (right). Data is illustrated for different size classes of 
small RNAs. 
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Fig. C.S8. AtMORC1 and AtMORC6 are required for chromocenter condensation. 
Percentage of nuclei showing decondensed, partially decondensed (intermediate) and 
wild type chromocenters in atmorc6-1, cmt3-11 atmorc1-3 and in atmorc1-3 atmorc6-1 
double mutants in comparison to control backgrounds after immunostaining of nuclei 
using an antibody against H3K9me2. Pictures on top panels show examples of the 
three different patterns of chromocenters. 
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Fig. C.S9. H3K9me2 and DAPI staining show similar chromocenter condensation 
patterns in nuclei defined in Fig. S8 as nuclei showing wild type, intermediate or 
decondensed chromocenters in cmt3-11 atmorc1-3. 
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Fig. C.S10. H3K9me2 and DAPI staining show similar chromocenter condensation 
patterns in nuclei defined in Fig. S8 as nuclei showing wild type, intermediate or 
decondensed chromocenters in atmorc6-1. 
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Fig. C.S11. H3K9me2 and DAPI staining show similar chromocenter condensation 
patterns in nuclei defined in Fig. S8 as nuclei showing wild type, intermediate or 
decondensed chromocenters in atmorc1-3 atmorc6-1. 
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Fig. C.S12. Loci upregulated in atmorc1 and atmorc6 mostly localize to pericentromeric 
regions. Chromosomal views showing the log2 ratios (atmorc6-3/wild type and atmorc1-
4/wild type) of RNA sequencing reads in 100 Kb bins. The two red bars on each 
chromosome delimit the pericentromeric region with white circles representing the 
centromeres. 
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Fig. C.S13. Interaction matrix of the atmorc6-1 genome from Hi-C analysis. Positions 
along the 5 chromosomes are shown from left to right and top to bottom, and each pixel 
represents interactions from uniquely mapping paired end reads in 200 kilobase bins. 
Black bars and circles mark the positions of the pericentromeric and telomeric regions, 
respectively. Light grey regions represent areas masked out due to problematic 
mapping. Black bars show separation between chromosomes. 
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Fig. C.S14. Myc tagged AtMORC1 and AtMORC6 complement the EMS mutant lines. 
(A) Western blot using an antibody against Myc confirms that pAtMORC1::AtMORC1-
Myc and pAtMORC6::AtMORC6-Myc are expressed in transformed plants but not in 
untransformed control. (B) Similar analyses using an antibody against GFP show that 
lines expressing AtMORC1-Myc and AtMORC6-Myc do not express the SDC::GFP 
transgene, confirming that pAtMORC1::AtMORC1-Myc and pAtMORC6::AtMORC6-Myc 
proteins are functional. cmt3-11 atmorc1-3 and atmorc6-1 mutants are used as GFP 
positive controls for AtMORC1-Myc and AtMORC6-Myc complementation, respectively. 
Coomassie staining of the large Rubisco subunit (rbcL) is used as loading control. 
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Fig. C.S15. AtMORC6 bodies are adjacent to chromocenters. Additional images of 
nuclei expressing AtMORC6-Myc were obtained using a Zeiss LSM 510 META confocal 
microscope. Eight images are displayed, taken at depth intervals of 1 micron. Multiple 
chromocenters are bordered by AtMORC6 bodies. 
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Table C.S1. 

 
 

 
  

TEs upregulated in atmorc6
NAME FAMILY NAME SUPERFAMILY NAME CHROMOSOMAL LOCATION
AT1TE43225 ROMANIAT5 LTR/Copia chr1:13,232,205-13,236,935
AT1TE45510 ATENSPM6 DNA/En-Spm chr1:13,872,370-13,872,595
AT1TE51360 ROMANIAT5 LTR/Copia chr1:15,613,068-15,617,844
AT2TE07145 ATCOPIA95 LTR/Copia chr2:1,547,658-1,552,030
AT2TE13060 ATCOPIA32 LTR/Copia chr2:2,995,748-2,996,367
AT2TE16220 HELITRON2 RC/Helitron chr2:3,749,179-3,756,447
AT2TE18240 ATIS112A DNA/Harbinger chr2:4,343,480-4,344,832
AT2TE28020 ATMU1 DNA/MuDR chr2:6,888,343-6,891,692
AT2TE41170 ATIS112A DNA/Harbinger chr2:9,660,885-9,661,799
AT3TE51895 ROMANIAT5 LTR/Copia chr3:12,605,745-12,609,307
AT3TE51900 ATCOPIA28 LTR/Copia chr3:12,609,702-12,610,774
AT3TE51910 VANDAL18NA DNA/MuDR chr3:12,612,304-12,613,201
AT3TE51930 ATGP1 LTR/Gypsy chr3:12,615,787-12,623,418
AT3TE60425 ATHILA3 LTR/Gypsy chr3:14,799,085-14,800,505
AT3TE60460 ATHILA6A LTR/Gypsy chr3:14,806,306-14,815,940
AT3TE63540 ATHILA2 LTR/Gypsy chr3:15,722,463-15,733,680
AT4TE04415 ATIS112A DNA/Harbinger chr4:860,921-864,078
AT4TE09845 ATIS112A DNA/Harbinger chr4:2,076,980-2,077,351
AT4TE15005 ATHILA3 LTR/Gypsy chr4:3,266,370-3,288,501
AT4TE15025 ATHILA0_I LTR/Gypsy chr4:3,273,946-3,285,539
AT4TE15030 ATHILA6A LTR/Gypsy chr4:3,274,431-3,285,232
soloLTR soloLTR retroelement soloLTR chr5:9,871,837-9,872,408
AT5TE39630 ATIS112A DNA/Harbinger chr5:10,901,855-10,903,021
AT5TE47200 ATHILA2 LTR/Gypsy chr5:13,334,474-13,345,770
AT5TE48715 ATREP15 RC/Helitron chr5:13,705,744-13,706,653
AT5TE48720 HELITRONY1E RC/Helitron chr5:13,706,654-13,706,934
TEs upregulated in atmorc1
NAME FAMILY NAME SUPERFAMILY NAME CHROMOSOMAL LOCATION
AT1TE43225 ROMANIAT5 LTR/Copia chr1:13,232,205-13,236,935
AT1TE45510 ATENSPM6 DNA/En-Spm chr1:13,872,370-13,872,595
AT1TE51360 ROMANIAT5 LTR/Copia chr1:15,613,068-15,617,844
AT2TE13060 ATCOPIA32 LTR/Copia chr2:2,995,748-2,996,367
AT2TE18240 ATIS112A DNA/Harbinger chr2:4,343,480-4,344,832
AT2TE28020 ATMU1 DNA/MuDR chr2:6,888,343-6,891,692
AT2TE28025 ATGP10 LTR/Gypsy chr2:6,891,693-6,892,236
AT3TE51895 ROMANIAT5 LTR/Copia chr3:12,605,745-12,609,307
AT3TE51900 ATCOPIA28 LTR/Copia chr3:12,609,702-12,610,774
AT3TE60460 ATHILA6A LTR/Gypsy chr3:14,806,306-14,815,940
AT4TE04415 ATIS112A DNA/Harbinger chr4:860,921-864,078
AT4TE09845 ATIS112A DNA/Harbinger chr4:2,076,980-2,077,351
soloLTR soloLTR retroelement soloLTR chr5:9,871,837-9,872,408
AT5TE39630 ATIS112A DNA/Harbinger chr5:10,901,855-10,903,021
AT5TE48715 ATREP15 RC/Helitron chr5:13,705,744-13,706,653
AT5TE48720 HELITRONY1E RC/Helitron chr5:13,706,654-13,706,934

Table S1: Lists of Transposable elements (TEs) 4-fold upregulated in both EMS 
and T-DNA atmorc6 and atmorc1 mutant alleles. The TE soloLTR was identified by 
RT-qPCR. Therefore, it does not appear in Venn diagram shown in Fig. S4b. 

��

AT5TE48740 ATLINE1_4 LINE/L1 chr5:13,712,007-13,715,840
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Table C.S2. 

 

  

Protein coding genes upregulated in atmorc6
NAME GENE ANNOTATION
AT1G33840 unknown protein
AT1G35730 APUM9 (ARABIDOPSIS PUMILIO 9); RNA binding 
AT1G36675 glycine-rich protein
AT1G53480 unknown protein
AT1G59930 unknown protein
AT1G60110 jacalin lectin family protein
AT1G67105 non coding RNA
AT2G07215 unknown protein 
AT2G07240 Ulp1 protease family protein
AT2G10975 unknown protein
AT2G13770 unknown protein
AT2G17690 SDC, F-box family protein
AT3G20340 unknown protein
AT3G29639 unknown protein
AT3G30842 ATPDR10/PDR10 (PLEIOTROPIC DRUG RESISTANCE 10)
AT3G33528 unknown protein
AT3G42850 galactokinase, putative 
AT4G12490 protease inhibitor/seed storage/lipid transfer protein (LTP) family protein 
AT5G07550 GRP19 (Glycine rich protein 19)
AT5G07560 GRP20 (Glycine rich protein 20); nutrient reservoir
AT5G15500 ankyrin repeat family protein
AT5G35480 unknown protein
AT5G35490 unknown protein
AT5G36910 THI2.2 (THIONIN 2.2); toxin receptor binding (THI2.2)
Protein coding genes upregulated in atmorc1
NAME GENE ANNOTATION
AT1G19610 LCR78/PDF1.4 (Low-molecular-weight cysteine-rich 78)
AT1G26390 FAD-binding domain-containing protein
AT1G26410 FAD-binding domain-containing protein
AT1G33840 unknown protein
AT1G35730 APUM9 (ARABIDOPSIS PUMILIO 9)
AT1G36675 glycine-rich protein (AT1G36675)
AT1G47890 disease resistance family protein
AT2G07215 unknown protein
AT2G10975 unknown protein
AT2G13770 unknown protein
AT2G17690 SDC, F-box family protein
AT2G17740 DC1 domain-containing protein
AT2G45220 pectinesterase family protein
AT3G29639 unknown protein
AT3G30842 ATPDR10/PDR10 (PLEIOTROPIC DRUG RESISTANCE 10)
AT3G33528 unknown protein
AT3G55970 oxidoreductase, 2OG-Fe(II) oxygenase family protein

Table S2: Lists of Protein coding genes 4-fold upregulated in both EMS and
T-DNA atmorc6 and atmorc1 mutant alleles. With the exception of genes in italics,
all genes in these lists are located in pericentromeric regions and show DNA
methylation or H3K9me2 silencing marks. 

��

AT4G12490 protease inhibitor/seed storage/lipid transfer protein (LTP) family protein
AT4G18170 WRKY28 (WRKY DNA-binding protein 28); transcription factor
AT5G07550 GRP19 (Glycine rich protein 19)
AT5G35480 unknown protein
AT5G35490 unknown protein
AT5G35510 unknown protein
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Table C.S3. 

 

TEs upregulated in the atmorc1-3 atmorc6-1 double mutant
NAME FAMILY NAME SUPERFAMILY NAME CHROMOSOMAL LOCATION
AT1TE30845 HELITRON1 RC/Helitron chr1:9,574,349-9,575,358
AT1TE43225 ROMANIAT5 LTR/Copia chr1:13,232,205-13,236,935
AT1TE45135 ATHILA2 LTR/Gypsy chr1:13,872,370-13,872,595
AT1TE45510 ATENSPM6 DNA/En-Spm chr1:13,872,370-13,872,595
AT1TE53070 ATCOPIA87 LTR/Copia chr1:16,118,258-16,118,383
AT1TE59745 ATCOPIA49 LTR/Copia chr1:18,005,845-18,011,038
AT2TE07145 ATCOPIA95 LTR/Copia chr2:1,547,658-1,552,030
AT2TE08840 TA11 LINE/L1 chr2:1,921,517-1,925,279
AT2TE13060 ATCOPIA32 LTR/Copia chr2:2,995,748-2,996,367
AT2TE15415 ATGP10 LTR/Gypsy chr2:3,533,343-3,539,331
AT2TE15880 ATHILA6A LTR/Gypsy chr2:3,643,453-3,652,409
AT2TE16220 HELITRON2 RC/Helitron chr2:3,749,179-3,756,447
AT2TE18240 ATIS112A DNA/Harbinger chr2:4,343,480-4,344,832
AT2TE19615 VANDAL21 DNA/MuDR chr2:4,736,486-4,744,627
AT2TE19625 ATHILA4C LTR/Gypsy chr2:4,738,315-4,739,542
AT2TE29450 ATCOPIA70 LTR/Copia chr2:7,231,166-7,236,206
AT2TE38900 ATCOPIA76 LTR/Copia chr2:9,194,572-9,198,735
AT2TE38905 ATGP2N LTR/Gypsy chr2:9,198,736-9,200,805
AT2TE66360 ATCOPIA50 LTR/Copia chr2:14,938,850-14,939,092
AT3TE50570 VANDAL3 DNA/MuDR chr3:12,177,936-12,189,847
AT3TE50595 ATHILA2 LTR/Gypsy chr3:12,189,865-12,193,865
AT3TE51895 ROMANIAT5 LTR/Copia chr3:12,605,745-12,609,307
AT3TE51900 ATCOPIA28 LTR/Copia chr3:12,609,702-12,610,774
AT3TE51910 VANDAL18NA DNA/MuDR chr3:12,612,304-12,613,201
AT3TE51930 ATGP1 LTR/Gypsy chr3:12,615,787-12,623,418
AT3TE60425 ATHILA3 LTR/Gypsy chr3:14,799,08- 14,800,505
AT3TE60460 ATHILA6A LTR/Gypsy chr3:14,806,306-14,815,940
AT3TE63540 ATHILA2 LTR/Gypsy chr3:15,722,463-15,733,680
AT4TE09845 ATIS112A DNA/Harbinger chr4:2,076,980-2,077,351
AT4TE10335 ATCOPIA58 LTR/Copia chr4:2,198,163-2,203,991
AT4TE15005 ATHILA3 LTR/Gypsy chr4:3,266,370-3,288,501
AT4TE15025 ATHILA0_I LTR/Gypsy chr4:3,273,946-3,285,539
AT4TE15030 ATHILA6A LTR/Gypsy chr4:3,274,431-3,285,232
AT4TE16900 ATHILA LTR/Gypsy chr4:3,838,635-3,843,992
AT4TE17090 ATCOPIA41 LTR/Copia chr4:3,909,249-3,910,990
AT4TE17115 ATHILA6A LTR/Gypsy chr4:3,915,207-3,916,819
AT4TE20120 ATENSPM5 DNA/En-Spm chr4:4,830,277-4,836,762
AT4TE25590 ATCOPIA49 LTR/Copia chr4:6,067,394-6,072,632
AT5TE35950 HELITRONY1DRC/Helitron chr5:9,871,833-9,872,483
AT5TE39170 ATGP1 LTR/Gypsy chr5:10,764,247-10,772,507
AT5TE39630 ATIS112A DNA/Harbinger chr5:10,901,855-10,903,021

Table S3: Lists of Transposable elements (TEs) and protein-coding genes
(PCGs) that were 4-fold upregulated in the atmorc1-3 atmorc6-1 double
mutant. * defines loci found to be 4-fold upregulated only in the atmorc1-3 atmorc6-
1 double and not in the atmorc1 or atmorc6 single mutants. All the other loci have
been found to be upregulated in either EMS or T-DNA atmorc1 and/or atmorc6 alleles 
at least in one RNA sequencing dataset. 

��
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AT5TE43315 ATHILA LTR/Gypsy chr5:12,182,325-12,187,588
AT5TE46210 ATHILA8B LTR/Gypsy chr5:13,008,325-13,013,667
AT5TE47200 ATHILA2 LTR/Gypsy chr5:13,334,474-13,345,770
PCGs upregulated in in the atmorc1-3 atmorc6-1 double mutant
NAME GENE ANNOTATION
AT3G20710 F-box protein-related
AT4G05370 unknown protein
AT3G13220 ABC transporter family protein
AT3G15440 unknown protein 
AT3G22860 TIF3C2 (eukaryotic translation initiation factor 3 subunit C2)
AT5G29560  Ca+2-binding EF hand family protein
AT1G45063  copper ion binding / electron carrier 
AT3G44460  DPBF2 (BASIC LEUCINE ZIPPER TRANSCRIPTION FACTOR 67)
AT3G30842  ATPDR10/PDR10 (PLEIOTROPIC DRUG RESISTANCE 10)
AT1G27570  phosphatidylinositol 3- and 4-kinase family protein
AT2G17690  F-box family protein
AT3G29639  unknown protein
AT2G04050  MATE efflux family protein
AT5G60260  unknown protein
AT4G05380  AAA-type ATPase family protein
AT1G33840  unknown protein 
AT2G10975  unknown protein
AT5G18840  sugar transporter, putative
AT1G36675  glycine-rich protein
AT1G35730  APUM9 (ARABIDOPSIS PUMILIO 9); RNA binding (APUM9)
AT3G01345  unknown protein
AT1G15150  MATE efflux family protein
AT4G36850  PQ-loop repeat family protein / transmembrane family protein
AT1G27565  unknown protein
AT2G07213 other_rna
AT5G23020  MAM-L (METHYLTHIOALKYMALATE SYNTHASE-LIKE); 2-isopropylmalate synthase 

AT5G45095  unknown protein
AT4G20820* )FAD,binding)domain,containing)protein
AT2G07215  unknown protein
AT3G14380  integral membrane family protein
AT3G47340  ASN1 (DARK INDUCIBLE 6)
AT5G07700* )MYB76)(myb)domain)protein)76);)DNA)binding)/)transcripGon)factor
AT5G41080  glycerophosphoryl diester phosphodiesterase family protein
AT3G33528  unknown protein
AT3G09450  unknown protein
AT5G38386  F-box family protein
AT2G18193  AAA-type ATPase family protein
AT5G36910  THI2.2 (THIONIN 2.2); toxin receptor binding (THI2.2)
AT3G44990* )XTR8)(xyloglucan:xyloglucosyl)transferase)8);)hydrolase,)acGng)on)glycosyl)bonds)(XTR8))
AT3G01600  ANAC044 (Arabidopsis NAC domain containing protein 44); transcription factor 

AT1G07450* )tropinone)reductase,)putaGve)/)tropine)dehydrogenase,)putaGve
AT4G15680  glutaredoxin family protein

��
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Table C.S4. 

 
 

  

T-DNA genotyping
JP9339 atmorc6-3_LP GGAAAGCTGGAAGCTATAATGATG
JP9340 atmorc6-3_RP GATGACATCTGCCCCAAGTCTC
JP7707 GABI-KAT LB O8409 ATATTGACCATCATACTCATTGC
JP8938 atmorc1-4_LP CGTATCTCAGCCGCTAACTTG
JP8939 atmorc1-4_RP AAGCAGCTGCAGTGGATTATG
JP2207 LB3 SAIL T-DNA TAGCATCTGAATTTCATAACCAATCTCGATACAC
JP8509 drm2-2_LP AGATCGCTTCCAGAGTTAGCC
JP8510 drm2-2_RP TTGTCGCAAAAAGCAAAAGAG
JP2922 cmt3-11_LP TAACGGAAGGATGCCAGATT
JP2923 cmt3-11_RP CAAGAAATGGGCTGTTGACAT
JP2410 LBA1 SALK T-DNA TGGTTCACGTAGTGGGCCATCG
RT-qPCR
JP2452 ACTIN 7_LP TCGTGGTGGTGAGTTTGTTAC
JP2453 ACTIN 7_RP CAGCATCATCACAAGCATCC
JP3395 SDC_LP AATGTAAGTTGTAAACCATTTGAACGTGACC
JP3396 SDC_RP CAGGCATCCGTAGAACTCATGAGC
JP9642 ROMANIAT5_LP GTATCCTTTGGCCCGGTATT
JP9643 ROMANIAT5_RP GCCTCTTCGAAATGCCATAA
JP9055 ATCOPIA28_LP AGTCCTTTTGGTTGCTGAACA
JP9056 ATCOPIA28_RP CCGGATGTAGCAACATTCACT
JP9640 soloLTR_LP AACTAACGTCATTACATACACATCTTG
JP9641 soloLTR_RP AATTAGGATCTTGTTTGCCAGCTA
JP9057 ATMU1_LP TAATTTGGCTGACGGAATCAC
JP9058 ATMU1_RP ATTTGGGGGAAAACAAATGAG
JP9646 atmorc6-3_LP CATGTGCACCCTATGTTCCTT
JP9647 atmorc6-3_RP ATCCCTTGGATTTGTGGTTTT
JP9680 atmorc1-4_LP ATCAAGGAGGCCCCTAAACTT
JP9681 atmorc1-4_RP TGTGACAGTGATTTTGCCAGT
BS-sequencing
JP6349 SDC_BSPCR_LP GAAAAAGTTGGAATGGGTTTGGAGAGTTTAA
JP6350 SDC_BSPCR_RP CAACAAACCCTAATATATTTTATATTAAAAC
JP9775 ROMANIAT5_BSPCR_LP GTAAGTGGATTAGTTATTAAAAGAGAGTT
JP9776 ROMANIAT5_BSPCR_RP ATAAATAAACATCATCTACATCTTATAA
JP9120 ATCOPIA28_BSPCR_LP TATTTATTTYGTTCATTTGGATTAGTTTT
JP9121 ATCOPIA28_BSPCR_RP ACRATATCAAAATAATTATCATCATCTTAA
JP9377 soloLTR_BSPCR_LP GATATAAAGGAATGGTTAGATAATATGYGATT
JP9378 soloLTR_BSPCR_RP CRATATAACTCAAAATTTATATTACTCTTAA
JP9177 ATMU1_BSPCR_LP TTATGAATTAGTTAGGTTATAGTTTGTTTATT
JP9178 ATMU1_BSPCR_RP ATTCCTCRTCTTCTACAACATCATTTAA
Cloning
JP5275 PstI_SDCpro_fwd GTAACTGCAGTGATGCTCTAACAATTCTTTCCACAAGACC
JP5276 PstI_SDCpro_rev GAAACTGCAGTTCTCTCCCCTGTTTTTGCTACTATTG
JP5235 HindIII-NLS-eGFP_FWD TGGCAAGCTTATGGCTCCAAAGAAGAAGAGAAAGGTCATG
JP5236 HindIII_35Sterminator_REV TAGCAAGCTTCTCTCAACACATGAGCGAAACCCTATAAG
JP8644 ATMORC1_Ctertag_LP CACCGTTGATTTGGTTTTGTCTGGTC
JP8645 ATMORC1_Ctertag_RP AACTTGTTGCATCTCCTTCTTC
JP8646 ATMORC6_Ctertag_LP CACCAGTATGATGTGAGGTTAGTGAG

Table S4: Sequences of primers used in this study

��

JP8647 ATMORC6_Ctertag_RP CGTATTTACATTTCTTCTGTGC
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