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CHAPTER 1 

 
INTRODUCTION  

 
1.1 Overview 
  Lung cancer is the number one cause of cancer related deaths in both men and 

women in the United States. The current standard of care is unsuccessful in treating 

these patients, thus new anticancer agents are needed. This section of the thesis will 

give an overview of the lung and lung cancer as well as therapies currently used 

and those in clinical trials. Additionally, the signaling pathways whose dysregulation 

is associated with non-small cell lung cancer, a specific subtype of lung cancer, and a 

novel target in these pathways, Fas-Associated Death Domain, will be discussed in 

detail.  

1.2 Lung 

1.2.1 Structure  
 The lung is an integral respiratory organ which facilitates the exchange of oxygen 

and carbon dioxide. The lung consists of five sponge-like lobes, three lobes on the right 

and two smaller left lobes, which accommodate the heart. Air enters the larynx which 

passes through the trachea into a system of cartilage lined airways, the bronchi. Air 

passes through the two main bronchi and then into smaller bronchioles where it reaches 

sac-like structures called the alveoli the site of gas exchange (Fig. 1.1).  

The bronchi are composed of cartilage, smooth muscle, and club cells (formerly 

known as Clara cells). The main function of the bronchi beyond facilitating air to flow 

into the alveolar sac is to protect the lung from dust and pathogens. This protection is 

accomplished through the production of a sticky mucus called mucin. To remove the 

mucin with captured foreign molecules, ciliated club cells move the mucin up and out of 
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the bronchi and trachea. During infections there is an overproduction of mucin and 

coughing becomes necessary to remove it [1, 2].  
Surrounding the alveoli are thin endothelial cells, fibroblast cells, and a basement 

membrane (Fig. 1.2). Thirty to forty percent of the lung is comprised of fibroblasts [3]. 
These cells secrete extracellular matrix components to make up the base membrane 

adding physical support to the alveoli. Also in the alveolar sac, macrophages function in 

helping remove dust and pathogens which bypassed the bronchiolar mucin. The alveoli 

consist of four types of cells, alveolar type I (ATI), alveolar type II (ATII), macrophages, 

and interstitial fibroblasts. ATI cells are very thin epithelial cells which cover 95% of the 

alveolus, but only make up 8% of the total cells in the lung [3]. ATI are responsible for 

carrying out gas exchange. ATII cells are cuboidal epithelial cells which are known to 

produce surfactant. Since the alveoli do not have cartilage or muscle tissue, surfactant 

is necessary to maintain surface tension keeping the alveolar sac from collapsing [4]. 
ATII cells cover only 5% of the alveolus, but make up 15% of the cells in the lung [3]. 
These cells have been shown to have metabolic functions, but exhibit a slow mitotic 

rate, which upon injury or growth factors this rate increases. Upon lung injury, ATII cells 

differentiate into ATI cells for repair [1, 2].  

1.3 Lung Cancer 

1.3.1 Incidence 
 Lung cancer is the leading cause of cancer related death worldwide in both men 

and women. One in four lung cancer patients will succumb to the disease making it 

more deadly than prostate, breast, colon and pancreatic cancers combined. Lung 

cancer is the most common cancer in men and the fourth most common cancer in 

women globally [5]. By incidence rate (age-standardized rate) 33.8 per 100,000 men 

and 13.5 per 100,000 women have lung cancer. However, the rate of incidence in 

women of North America is higher (35.8-37 per 100,000). In men, this rate is higher 

(48.5-56.5 per 100,000) in developed countries such as those found in North America, 

parts of Europe, and East Asia. Rates in less developed countries are lower than in the 

more developed countries, but are still high at 25.7-32.2 per 100,000 [5]. Due to raised 

awareness of risk factors such as smoking, the incidence and mortality rates are 
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decreasing [5]. However, since the number of smokers has plateaued, these rates will 

likely remain unchanged.  

 Although incidence rate has stabilized, the mortality rate has still remained high 

at 27%. The 5-year survival rate is 15% for all lung cancers. Lung mortality rates in men 

have declined since 1991 to approximately 61.9 per 100,000. Rates in women started to 

decline in 2003 (38.5 per 100,000). Unlike incidence rate, location does not seem to 

play a role in mortality rate [5].The delays in rates between men and women are likely 

linked to historical shifts in cigarette use since the 1960s [5, 6]. 

1.3.2 Etiology and Risk Factors:  
 The etiology of lung cancer has been well studied. Table 1.1 lists the many 

known risk factors associated with lung cancer such as environmental and genetic 

factors. Smoking, air pollution, asbestos, radon, and age are all risk factors associated 

with lung cancer [5, 7].  
Smoking has been the most studied risk factor for the development of lung 

cancer. The majority of deaths due to lung cancer (80-90%) are thought to be caused 

by the smoking of tobacco [5]. Chemicals present in tobacco smoke, such as polycyclic 

aromatic hydrocarbons and N-nitroso compounds have been found to be potent 

carcinogens. These compounds have been associated with GT transversions as well 

as to induce mutations in necessary tumor suppressor like p53 [5, 6]. Non-smokers who 

live with a smoker, and thus are exposed to second hand smoke, also demonstrated 

higher levels of these compounds, of which directly correlated with the number of 

cigarettes smoked [5, 8]. Non-smokers tend to have GA transversions resulting in 

similar phenotypes to smokers but arising from different mutations of the same 

oncogene or tumor suppressors [5, 9].  
The second leading cause of lung cancer is exposure to the radioactive gas 

radon. Radon naturally diffuses from soil leading to increased domestic exposure. As it 

decays, radon emits carcinogenic α-particles. Asbestos and other environmental agents 

such as silica, chromium, nickel, and arsenic have also been implicated as risk factors. 

([5], Table 1.1) 
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1.3.3 Prognostic Factors in Lung Cancer 
 Lung cancer has few symptoms until the disease is at a late stage. Symptoms 

generally involve a chronic cough, shortness of breath, chest pain and weight loss. Lung 

cancer can be diagnosed during routine examinations by a chest radiograph (chest x-

ray) or from a chest CT (computed tomography) scan [10].  Several factors have been 

identified in lung cancer patients that may help in identifying patients at a higher risk of 

recurrence and in planning treatment. Important risk factors include: type of the lung 

cancer, stage and grade of the disease [11].  

1.3.3.1 Types of Lung Cancer 
 There are two types of lung cancer, non-small cell lung cancer (NSCLC) and 

small cell lung cancer (SCLC) based on appearance of the cell. Over 85% of patients 

are diagnosed with NSCLC [12]. Several differences between NSCLC and SCLC 

include location of disease in the lung, cells affected and response to chemotherapy. 

NSCLC arise primarily in the distal airways whereas SCLC arise closer to main 

bronchiole airways and is linked with chronic inflammation and smoking as compared to 

NSCLC. Although SCLC is associated with smoking, the use of  cigarettes which 

include filters and contain less tar correlate with a predisposition with forming 

adenocarcinomas (ADC), a subtype of NSCLC [10]. This is likely due to the increase in 

nitrosamines as well as smaller particles that can penetrate the peripheral lung, where 

ADC tends to form.  NSCLC are glandular in nature and express common biomarkers 

associated with the distal lung. SCLC appears more columnar in nature suggesting a 

squamous differentiation. SCLC proliferates and metastasizes at a higher rate than 

NSCLC, although SCLC is more responsive to chemotherapy [10]. Although SCLC is 

an important disease to study, this thesis will focus primarily on NSCLC due to its 

refraction to therapy. 

1.3.3.2 Histological Grade of NSCLC 
 Pathological characteristics of NSCLC include ADC, squamous cell carcinoma 

(SCC) and large cell carcinomas [12]. In general, location of lesions defines the 

subtype. SCC forms in the lining of the bronchial tubes and likely arises from club cells. 

As the name implies, SCC morphology is squamous in nature meaning the cells are 

columnar. SCC stains positively for cytokeratin 5 and 6 as well as SOX2 and p63, 
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proteins [12]. About 50% of patients with NSCLC are diagnosed with ADC [12]. This is 

the most common type of lung cancer in non-smokers. It is believed that these cancers 

arise from the ATII cells in the alveolar sacs in the periphery of the lung. ADC tends to 

have glandular features and stain for keratin 7 and NKX2-1, markers consistent with the 

distal lung [12]. 

1.3.3.3 Stages of NSCLC 
 Ascertaining the stage of cancer is currently the most effective method to 

diagnosing the patient as well as for determining the most suitable treatment options. 

NSCLC is staged in two ways. The first is clinical staging: the patient undergoes 

physical examination, biopsies are taken and the patient receives some form of chest 

imaging such as a CT or PET (positron emission tomography) scan. The second is 

histological examination of the tumor which provides additional information to the clinical 

staging. To uniformly stage each patient, the American Joint Committee on Cancer 

developed TNM staging as shown in Table 1.2 [13]. Staging is determined based on 

tumor size (T), if cancer is present in the lymph nodes (N), and if the cancer has 

metastasized (M). Numbering 0-4 determines severity. For example: T1 would refer to a 

patient with one tumor that is larger than 2cm but smaller than 3cm, N2 indicates there 

is metastasis to the lymph nodes and M0 specifies there are no distant metastasis. After 

TNM is assessed the patient is diagnosed with a stage 0-IV. Stage 0 refers to cancer in 

situ while Stage IV refers to cancer that has metastasized to other tissue, e.g. the liver 

or kidneys. Based on the example given, a patient with T1, N2, and MO would have 

stage IIIa lung cancer (Table 1.2). 40% of new patients are diagnosed with stage IV 

disease [11]. The five-year relative survival rates for patients presenting with stage IA, 

IB, IIA, IIB, IIIA, IIIB, and IV disease are 49, 45, 30, 31, 14, 5, and 1 percent, 

respectively [11].  
TNM stage is one of the most useful prognostic factors for survival of patients 

with unresected and resected tumors [13]. Other prognostic markers for patients with 

unresected tumors include age greater than 70, gender, and overall mobility [11]. 
Prognostic factors in patients with resected tumors include nodal stage and histology 

type. Certain genetic mutations have also been shown to convey prognostic factors as 

well as resistance to certain drug treatments. 
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1.3.3.4 Markers in NSCLC 
 One of the difficulties with treating NSCLC is its heterozygous nature [12]. The 

same tumor may have different cellular genetic profiles, thus responding to therapy 

differently. However there are some associated markers implicated in decreased 

survival in NSCLC including overexpressed or mutated Epidermal Growth Factor 

Receptor (EGFR), Anaplastic Lymphoma Kinase (ALK) gene rearrangements, loss of 

p53 activity, and mutant KRAS [12, 14]. Many new biomarkers are under investigation; 

including proteins involved in cell proliferation and cell cycle.  However, due to the 

heterogeneity of this cancer the prognostic value of these markers are variable. 

Currently EGFR, ALK, and KRAS gene statuses are tested in patients to determine 

therapeutic benefit.  

 Mutations in KRAS are among the most prevalent oncogene in lung cancer and 

occur in 32.2% of all NSCLC patients.   Mutant KRAS is a marker of poor survival in 

patients with NSCLC [15, 16]. However, mutant KRAS does not seem to be a useful 

marker for prognostic value. A clinical study for patients with refractory NSCLC patients 

revealed that mutant KRAS was not associated with overall survival or progression-free 

survival. However, when distinct KRAS mutations are taken into account this is not 

entirely the case. Upon subsequent review, patients with G12C and G12V mutations 

had decreased progression-free survival compared to patients with other KRAS 

mutations or wild type KRAS. This was confirmed in a recent study which found patients 

with KRAS G12C had a higher tendency of recurrence and death as compared to other 

KRAS mutations or wild type KRAS [15]. Other retrospective studies have also shown 

that mutant KRAS does not seem to be a predictive marker for chemotherapy benefit. 

However, this may also be due to differences conferred by different KRAS mutations. 

Subtle changes in KRAS structure, dictated by each mutation, may directly affect 

substrate specificity. For example KRAS with a G12C mutation prefers to signal through 

Ras-related protein (RAL) whereas KRAS G12D prefers signaling through mitogen and 

extracellular signal-regulated kinase (MEK) [17]. However, patients with KRAS G12D 

may respond better to a MEK inhibitor than a patient with KRAS G12C (See section 1.4 

for a more in depth description of KRAS signaling).  
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1.3.4 Therapy 
 Treatment choices for patients are based on the histopathology, stage of the 

cancer and age of the patient. For early stage cancers, lobectomies are the most 

common form of treatment and may be performed in conjunction with radiation, 

chemotherapy and/or targeted therapies [10]. Although much progress has been gained 

in cancer research (as reviewed in section 1.2.1) lung cancer is still the leading cause of 

cancer related death and there remains an immense need for new therapies.    

1.3.4.1 Systemic Therapy 
 Systemic therapy can be through oral or intravenous chemotherapy. Currently 

patients with stage 0-IIIa will undergo a lobectomy to remove part or a whole lobe in 

hopes of removing the entire tumor. Stage Ia-IIIb will receive radiation therapy with or 

without chemotherapy [10]. Common chemotherapy drugs include platinum-based 

drugs like cisplatin, a DNA intercalator: taxol, a microtubule stabilizer; and gemcitabine, 

a drug which inhibits DNA synthesis. Table 1.3 shows the suggested treatment 

schematic for patients at different stages [18].  

1.3.4.2 Targeted Therapy 
Patients with advanced disease (stage IV) also receive cytotoxic chemotherapy 

drugs, however if they test positive for certain markers, they will receive more targeted 

therapy. Crizotinib is a small molecule inhibitor that was originally developed for 

anaplastic large cell lymphoma, but recently has found success in treating the 5% of 

NSCLC patients with ALK fusions [19-21]. Patients with overexpressed EGFR receive 

inhibitors such as erlotinib or gefitinib. Several clinical trials have shown that patients 

with overexpressed EGFR treated with these inhibitors greatly benefit in terms of 

increased progression-free survival over traditional chemotherapy [19, 22, 23]. However 

EGFR inhibitors do not benefit patients with normal levels of EGFR. Although these 

inhibitors are initially successful at treated ALK or EGFR positive lung cancers, most 

patients become resistant to these therapies after 9-12 months [19, 24-26]. This is due 

to activating mutations in the kinase domains of both proteins, such as T790M in EGFR 

[14], which the drug is not effective at inhibiting therefore second generation drugs 

which overcome this setback are being sought.  
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Although there are no drugs to directly inhibit mutant KRAS, MEK, a downstream 

effector of KRAS signaling, has been shown to be a modest target. MEK inhibitors are 

not robust, likely due to the KRAS mutation status of the patient (Section 1.2.3.4) and 

suffer from increased cytotoxicity in normal cells (see section 3.2.1.2 for a more detailed 

discussion on MEK inhibitors). Thus there is a critical need for identification of 

druggable downstream targets of both EGFR/KRAS.  

 

1.4 Mouse Models of Lung Cancer 
 To better study the factors involved in the initiation and progression of lung 

cancer, several murine models of lung cancer have been developed. Since the 1960s 

studies have been done to induce lung adenomas in mice via carcinogens. Common 

carcinogens used are urethane, and components of tobacco smoke, benxo(a)pyrene or 

4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone [27]. In spontaneous and chemically 

induced lung tumors, more than 90% of these tumors are driven by Kras mutations. 

In 2001, two mutant Kras mouse models were made; the KrasLA and the KrasLSL-G12D 

mouse [28, 29]. Both models demonstrate that activation of mutant Kras predominately 

leads to adenocarcinoma, a subtype of NSCLC. The KrasLA mouse has a latent mutant 

Kras allele (KrasG12D) which is activated through homologous recombination [28]. The 

mouse develops normally, but perishes at an early age due to high penetrance of early 

stage lesions. The second model, the KrasLSL-G12D mouse, enables conditional activation 

of mutant Kras. KRAS is necessary for embryonic development. In KrasLSL-G12D mice, 

one allele is wild type for Kras and the other includes an upstream synthetic stop 

flanked by lox-p sites which blocks the expression of a Kras mutated at codon 12 

(glycine to aspartic acid) [29]. Mutant Kras is activated when Cre-recombinase is 

administered. Cre-recombinase recognizes the lox-p sites and removes the stop, 

allowing transcription to proceed. The titer of virus administered to this mouse directly 

correlates with the total of tumor burden, allowing control over the number of lesions. 

Other benefits include being able to monitor initiation as well as the different steps in 

tumor progression. This animal, however normally only occasionally will develop 

adenocarcinomas. Figure 1.3 is a schematic which shows the progression of 

tumorigenesis in this mouse. When the KrasLSL-G12D mouse is crossed with a p53 null 
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(KP), after initiation of mutant Kras, these animals develop adenomas more quickly and 

also develop adenocarcinomas [30, 31]. Although this model better recapitulates the 

human disease, the rapid mortality of these mice makes it hard to monitor progression.  

Other mouse models include ectopic xenograft models, in which human lung cancer 

cell lines are subcutaneously injected. Moreover, orthotopic models are also used which 

include mouse (syngeneic) or human cell lines are injected intravenously and mice 

subsequently develop primary and metastatic tumors. Overall, these models allow for 

quick analysis of tumor growth over time and as a result are useful for testing drug 

efficacy [27]. To date, these mouse models have been useful in elucidating new 

potential therapeutic targets, testing new antitumor agents, and providing new insights 

into the process of lung tumorigenesis.   

1.5 EGFR/KRAS Signaling 

1.5.1 EGFR 
 EGFR promotes cell proliferation through signaling cascades. EGFR is 

overexpressed in approximately 40-80% and mutated in 10% of NSCLC patients [19, 
32].  Normal function of this receptor initiates when its ligand, Epidermal Growth Factor 

(EGF), binds to the extracellular domain of EGFR, causing EGFR to dimerize. 

Dimerization triggers auto-phosphorylation of its cytoplasmic kinase domains activating 

the receptor. Activated receptor primarily induces the KRAS/MAPK signaling cascades, 

resulting in cell cycle progression and cell proliferation (Fig. 1.4). Although, other 

pathways such as the PI3K/AKT and JNK/STAT are also activated leading to cell 

survival, migration, inflammation, increased transcription and proliferation [33]. 

However, the focus of this thesis will be primarily discussing the downstream 

KRAS/MAPK pathway.  

1.5.2 KRAS 
 KRAS, a small GTPase, is activated by EGFR signaling when adaptor proteins 

recruit KRAS to the membrane in proximity to the receptor. KRAS farnesylation and 

palmitolyation (Fig. 1.5) helps facilitate association with the plasmid membrane once it 

is recruited [34-37]. These post-translational modifications are important for KRAS 

activation, and the enzymes that catalyze these reactions became potential targets of 
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inhibition. These inhibitors found success in tissue culture, but they failed in clinical trials 

[34].  
Guanine exchange factors (GEF), such as SOS [38], mediate exchange of GDP 

for GTP on KRAS, also activating it. GTPase activating proteins (GAPs) facilitate 

hydrolysis of GTP to GDP to regulate this process, turning KRAS off (Fig. 1.6) [34]. 
KRAS mutations generally arise in the P-loop, a structure that controls whether the 

active site prefers GTP or GDP (G12 and G13) [34]. Some mutations, such as Q61, 

result in a constitutively active KRAS bound to GTP as the GAP is unable to hydrolyze 

GTP [34]. Activated KRAS stimulates the downstream kinase V-Raf Murine Sarcoma 

Viral Oncogene Homolog B1 (BRAF). BRAF activates mitogen and extracellular signal-

regulated kinase (MEK) leading to cell cycle progression and proliferation (Fig. 1.7) 

[34]. As mentioned in section 1.2.3.4, specific mutations of KRAS may confer distinct 

specificity for downstream effectors as shown in Figure 1.8.  
 Although it is well documented that mitogenic signaling by EGFR/KRAS induces 

early cell cycle progression, the mechanism of how this signaling stimulates mitotic 

progression is unclear. KRAS activates MEK which phosphorylates ERK1/2. It is not 

known if ERK1/2 is phosphorylated in the cytoplasm or nucleus [39], regardless 

phosphorylated ERK1/2 in the nucleus phosphorylates several transcription factors 

leading to expression of early cell cycle proteins such as Cyclin D1. It is known that 

EGFR/KRAS/MEK stimulates all stages of the cell cycle, although it is unclear how this 

pathway regulates later cell cycle events such as the G2 phase to transition to mitosis 

[40, 41].  
 

1.6 FADD 
 Another potential marker in lung cancer is Fas-associated death domain (FADD). 

FADD is an adaptor protein traditionally characterized in cell death pathways [42-45]. In 

recent years it has become apparent that FADD plays roles in other important cellular 

processes such as cell cycle progression and cell proliferation and has been implicated 

in different cancers, like lung cancer. However, the mechanism by which FADD 

modulates these pathways is not yet understood.  
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1.6.1 Chromosomal Location and Structure of FADD 
 FADD gene is located 11q13.3 on chromosome 11 and encodes 2 exons. FADD 

is a 23kDa adaptor protein containing two domains, a Death Domain (DD) and a Death 

Effector Domain (DED) (Fig. 1.8). FADD secondary structure is predominately alpha 

helices (Fig. 1.9) [46]. The first domain is a DD which interacts with DD containing cell 

death or inflammation related receptors such FAS or TRAIL [42, 47, 48]. The second 

domain is the DED which in interacts with pro-Caspase 8 and other proteins containing 

DED domains. FADD is expressed in all tissue and has been shown to be localized both 

in the cytoplasm and nucleus. FADD contains a nuclear localization and nuclear export 

sequence in its DED domain (Fig. 1.8). Exportin 5 has been shown to mediate FADD’s 

transport into the nucleus [49]. It is now accepted that FADD’s role in the nucleus is 

different than its role in the cytoplasm and will be described in the following sections.  

1.6.2 Cell Death 
 FADD plays an important role in the extrinsic apoptosis pathway. FADD acts an 

adaptor, binding a death receptor’s DD (such as the FAS receptor) with its own, causing 

a conformational change in FADD’s DED. This conformational change allows pro-

Caspase 8 to bind [47, 48]. The complex of FADD, FAS receptor, and pro-Caspase 8 is 

known as the DISC complex. Pro-Caspase 8 oligomerizes then undergoes proteolytic 

cleavage of its pro domains to become active. Subsequently, activated Caspase 8 

cleaves downstream Caspases, leading to the activation of Caspase 3 and ultimately 

cell death (Fig. 1.9A) [47, 48]. FADD has also been shown to initiate apoptosis 

independent of FAS, by oligomerizing with itself to form “death filaments” to which pro-

Caspase 8 can bind initiating this pathway [50, 51].  
 Necrosis is another form of cell death in which FADD plays an important role. 

FADD forms another complex with Caspase-8 and two kinases, Receptor-interacting 

serine/threonine-protein kinase 1 (RIPK1) and 3 (RIPK3) [52]. RIPK1 has a DD to which 

FADD binds. In a FAS or TRAIL receptor dependent manner, FADD forms a complex 

with Caspase 8, RIPK1and RIPK3 (Fig. 1.9.B). Caspase 8 activity regulates RIPK1 and 

RIPK3 by cleavage of their kinase domain and the cell undergoes apoptosis. When 

FADD is lost, Caspase 8 cannot inactivate RIPK1 and RIPK3. RIPK1 and RIPK3 can 
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then form a complex and phosphorylate each other to initiate necrosis (Fig. 1.9C) [52]. 
Interestingly, necrosis initiated by TNF occurs in a FADD independent manner [52]. 

1.6.3 T-cell Proliferation 
 Although FADD has been well characterized as a protein important for cell death, 

it has roles outside of death and may positively regulate cell proliferation and cell cycle.  

Many reports describe the use of a dominant negative construct of FADD, where the 

DED is removed [53-58]. This construct inhibits FAS mediated apoptosis as well as 

causes a proliferation defect in MEFs and T-cells cultured from transgenic mice [56]. 
These mice had smaller thymus as well as lower numbers of thymocytes [56]. Mitogenic 

stimulation was also abrogated in these cells [53, 56-59]. It was postulated that the 

growth defect was not due to increased apoptosis, but that the cells were arrested or 

undergoing necroptosis [60]. It was later shown that FADD is post-translationally 

modified when mitogen stimuli were present, suggesting this modification was 

necessary for facilitating cell survival and growth [61].  

1.6.4 FADD Phosphorylation (Cell Cycle) 
 FADD is regulated by post-translational modifications. FADD is phosphorylated 

at Serine 194 (Serine 191 in mice) and this modification is associated with FADD’s 

activity outside of cell death [62-65]. Phosphorylation of FADD does not affect FADD’s 

ability to bind to the FAS receptor or impede cell death. However, this phosphorylation 

does affect FADD’s location in the cell, which may affect FADD’s role in cell death [62, 
66]. Cells lacking FADD arrest in G2/M, suggesting FADD plays a role in cell cycle 

progression. When cells are arrested at G2/M with drugs that perturb microtubule 

formation (e.g. taxol or nocodozole), FADD is highly phosphorylated. Inhibition of the 

kinase which phosphorylates FADD leads to an increase in G2/M arrested cells, 

suggesting that FADD phosphorylation is also necessary for cells to progress through 

G2/M.  

 FADD is phosphorylated by several kinases: Casein Kinase 1alpha (CK1α), Polo-

like Kinase 1 (PLK1), Aurora Kinase A (AURKA) and FIST/HIP kinase [62, 64, 65, 67, 
68]. Both CK1α and PLK1 phosphorylate FADD at S194 (S191 in mouse) [62, 68]. 
AURKA phosphorylates FADD at S203; however the consequences of this modification 

are not quite known [67]. Recently, FADD has been shown to be dephosphorylated by 



13 
 

DUSP26, a nuclear phosphatase, and that this is regulated by AK2 [69]. Knockdown of 

AK2 caused a decrease in phosphorylation of FADD.  

1.6.5 FADD in Cancer 
 The first indication that FADD had a role in cancer came in 2002 in a gene-

expression profile of 86 primary lung adenocarcinoma samples [70]. FADD mRNA was 

demonstrated to be up-regulated and that this increases in mRNA correlated with 

increased protein level. This finding was confirmed by our group in 2005. We found that 

not only was FADD mRNA up-regulated in lung cancer patients, but this also correlated 

with poor survival [71]. It was later found that FADD is located on 11q13.3 on 

chromosome 11, which is highly amplified in lung cancer as well as head and neck 

cancer [72]. FADD phosphorylation is actually a more stringent indicator of survival in 

lung cancer and head and neck patients [71-75]. FADD phosphorylation also acts as a 

marker of proliferation in B-cell non-Hodgkin lymphomas [76]. Interestingly, our group 

also found FADD mRNA levels correlated with KRAS mutation status, suggesting a 

connection [71]. 
 Although FADD overexpression and phosphorylation is highly correlative with 

aggressive lung cancer and head and neck cancer, FADD appears to play a role as a 

tumor suppressor in cancers such as prostate and colon [77-79]. This may be due to 

FADD’s roles in other signaling pathways which could be cell dependent. For example, 

in colon cancer inflammation plays a large role in tumorigenesis; loss of FADD would 

result in an increase in necrosis, potentially inflaming this cancer. This holds true in skin 

and colon mouse models. A loss of FADD resulted in massive activation of necrosis 

which resulted in cancer [80, 81].  
 One of the goals of this thesis was to confirm a role of FADD in lung 

tumorigenesis. 

1.7 CK1α 

1.7.1 Chromosomal Location and Structure of CK1α 
 Casein Kinase 1 alpha (CK1α) is part of the Casein Kinase family of enzymes.  It 

is a serine/threonine kinase which has been shown to regulate p53 and Wnt signaling. 

To date there are seven isoforms of CK1, α, β, ε, δ, γ1, γ2, and γ3 and two splice 
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variants of CK1α, CK1αS and CK1αL [82]. The Csnk1a1 gene is located on 

chromosome 5 and codes for a 38kDa protein, which shares 50-70% homology with the 

other isoforms of CK1.  CK1α has a shorter non-catalytic regulatory C terminus than all 

of the other isoforms [82]. Although no crystal structure has been solved for CK1α, 

there is for a structure of CK1δ. The CK1δ N terminus consists of 5 β-strands which with 

the α-helices of the C terminus forms the active site cleft. CK1α has a putative nuclear 

localization sequence (NLS), although only one of the CK1α variants has a complete 

NLS (CK1αL) [83]. The canonical substrate sequence is pSer/Thr-X-X-(X)-Ser/Thr, 

however sequences with several negatively charged amino acids or primed sequences, 

meaning another kinase has phosphorylated the substrate are suitable for CK1α [84]. 
CK1α is regulated through its localization as well as post-translational modifications, like 

neddylation and auto-phosphorylation [82, 85]. CK1α has been shown to be localized in 

the cytoplasm and in the nucleus on the centrosome and kinetochore [62].  

1.7.2 Wnt and p53 Signaling Regulation by CK1α 
 CK1α negatively regulates Wnt signaling. CK1α complexes with GSK3, APC, and 

Axin and together this complex acts to modify β-Catenin for degradation when Wnt 

ligand is absent. CK1α primes β-Catenin through phosphorylation at S45 for further 

phosphorylation by GSK3β and subsequent ubiquitination and degradation [82, 84]. 
When CK1α is depleted, β-Catenin is not phosphorylated and its levels stabilize and 

activation of the pathway occurs. Importantly, other CK1 isoforms also play a role in 

regulating Wnt signaling, suggesting that each isoform may redundantly modulate this 

pathway [82, 86]. In a model of colon cancer, loss of CK1α resulted in a massive 

increase in Wnt signaling. However, this activation did not result in tumorigenesis due to 

an increase in p53 levels and increased apoptosis [87].  
 Loss of CK1α results in higher levels of p53 and this occurs through multiple 

pathways. First, CK1α negatively regulates p53 levels through modulation of MDMX or 

by physically interacting with MDM2. Phosphorylation of MDMX by CK1α causes 

stabilization of MDMX which results in decreased p53 levels. Second, CK1α promotes 

the MDMX-p53 complex as well [88, 89].  When CK1α is activity is impaired or CK1α is 

depleted or CK1α is depleted, MDMX is targeted for degradation and p53 levels 

increase.  
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1.7.3 FADD as a Substrate 
As mentioned in section 1.5.4, FADD has been shown to be a substrate of CK1α. 

CK1α is likely the main kinase which regulates FADD’s roles outside of apoptosis. As 

demonstrated by Alappat et al., 2005 CK1α co-localizes with phosphorylated FADD at 

the mitotic spindle, and is responsible for  FADD phosphorylation at S194 (S191 in 

mice) [62]. Inhibition of CK1α by inhibitors resulted in a decrease in phosphorylated 

FADD as well as cells arresting in G2/M [62, 90, 91]. 

1.8 Conclusions 
FADD mRNA and phosphorylated FADD levels have associated with poor 

outcome in patients with lung cancer as well as other cancers (Section 1.5.5).  

Increased FADD mRNA has been shown to correlate with KRAS mutation status, 

suggesting FADD may have a role in KRAS-mediated lung cancer. Inhibition of FADD 

phosphorylation through inhibiting its kinase may result in a new therapy for patients 

with mutant KRAS positive lung cancer. Because downstream KRAS mitogenesis 

signaling is not well understood we hypothesized that FADD has a role in facilitating 

KRAS-mediated mitogenic signaling. The goals of this thesis include: 1. To determine if 

FADD is necessary for Kras-mediate lung oncogenesis in a mouse model of lung 

cancer; 2. To determine if phosphorylation of FADD is necessary for Kras-mediated 

mitogenesis and cell proliferation in mouse embryonic fibroblasts (MEF); 3. To 

determine if FADD is part of the RAS-MEK-ERK signaling pathway using MEF cells; 4. 

To determine if CK1α has a role in Kras-mediated lung oncogenesis in a mouse model 

of lung cancer. 
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1.9 Figures 
 

 

 
 
Figure 1.1 Schematic representation of the lung. The lung is composed of five lobes, 
three right and two left. Connecting these lobes are two bronchi which branch into 
smaller bronchioles which end at small sacs referred to the alveolar sac.  
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Figure 1.2 Schematic of the alveoli. The alveolar sac or alveolus is comprised of cells 
which facilitate gas exchange, type I cell and cells which produce surfactant, type II cell. 
Other cells which make up these structures are macrophages, fibroblasts and 
endothelial cells. The dark line represents the basement membrane which consists of 
both fibroblasts and endothelial cells.  
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Figure 1.3 Schematic of hypothesized cancer progression of type II cells. Type II 
cells are thought to be the originators of adenocarcinoma in NSCLC. Overexpressed 
EGFR or mutant KRAS in these cells cause hyper-proliferation resulting in adenomas or 
cancer in situ in mouse models. Loss of p53 or additional mutations of other driver 
genes are necessary, in mouse models, for the regular occurrence of adenocarcinoma.  
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Figure 1.4 Diagram of the EGFR/KRAS pathway. Stimulation of the epidermal growth 
factor receptor (EGFR) primarily results in activation of the RAS/MAPK signaling 
cascade resulting in cell cycle progression and increased proliferation. [34] 
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Figure 1.5 Post-translational modifications of RAS.  RAS is farnesylated by FTase 
and palmitoylated by PTase enzymes. These modifications result in RAS associating 
with the plasma membrane and are necessary for RAS to facilitate activation of 
downstream pathways. [34] 
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Figure 1.6 Diagram of the KRAS GAP/GEF cycle. RAS is activated when a GEF 
protein helps facilitate the diffusion of GDP from the nucleotide binding site, which 
allows GTP to bind. As a mechanism to shut off RAS, GAP proteins facilitate hydrolysis 
of the GTP to GDP+ Pi. Mutations in RAS result in an increased affinity for GTP as well 
as block GAP from acting on RAS. [34] 
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Figure 1.7 Schematic of the downstream pathways activated by RAS. RAS can 
signal through the PI3K/AKT, Ral and MAPK pathway. Each pathway regulates different 
cellular functions, all of which result in increased proliferation. Denoted in red are KRAS 
mutations associated with a downstream pathway. [34] 
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Figure 1.8 FADD Sequence.  A). Schematic of human FADD showing the location of 
the DED and DD domains as well as the nuclear localization and nuclear exportation 
sequences. FADD is phosphorylated at Serine 194 in human FADD and Serine 191 in 
mouse FADD.  B). Diagram showing the human FADD sequence, in which amino acids 
in green represent the DED and in blue are part of the DD. Amino acids in red are the 
NES, the NLS and the serine which is phosphorylated, respectively. [92] 
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Figure 1.9 Diagram of FADD’s role in cell death. A). FADD acts as an adaptor to 
facilitate receptor mediated cell death. FADD interacts with the FAS receptor via its DD 
and procaspase 8 with its DED. Upon binding FADD, procaspase 8 dimerizes and 
undergoes proteolytic cleavage of its pro domain. Activated Caspase 8 then initiates the 
Caspase cascade resulting in apoptosis. B) and C) illustrate FADD’s role in RIPK 
mediated necrosis. FADD interacts with RIPK1 and procaspase 8. When FADD is 
present procaspase 8 activates itself and cleaves RIPK1 and RIPK3’s kinase domain. 
When FADD is lost, RIPK1 and RIPK3 are not cleaved by procaspase 8. Both kinases 
then phosphorylate each other and signal necrosis. [93] and [52]. 
 
 
 



25 
 

1.10 Tables 
 

Table 1.1 Risk Factors 
         ___________________________________________________________________ 

• Smoking 
• Exposure to Radon gas 
• Exposure to Asbestos 
• Exposure to Silica 
• Exposure to Chromium 
• Exposure to Nickel 
• Exposure to Arsenic 
• Exposure to Air pollution 
• Family history of lung cancer 
• Chest radiation 

 
 Table listing common environmental risk factors. Modified from [5, 7] 
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Table 1.2 TNM Staging 
 

Stage T N M 
Occult TX N0 M0 

Stage 0 Tis N0 M0 

Stage IA 

T1a N0 M0 

T1b N0 M0 

Stage IB T2a N0 M0 

Stage IIA 

T2b N0 M0 

T1a N1 M0 

T1b N1 M0 

T2a N1 M0 

Stage IIB 

T2b N1 M0 

T3 N0 M0 

Stage IIIA 

T1a N2 M0 

T1b N2 M0 

T2a N2 M0 

T2b N2 M0 

T3 N1 M0 

T3 N2 M0 

T4 N0 M0 

T4 N1 M0 

Stage IIIB 

T1a N3 M0 

T1b N3 M0 

T2a N3 M0 

T2b N3 M0 

T3 N3 M0 

T4 N2 M0 

T4 N3 M0 

Stage IV 

Any T Any N M1a 

Any T Any N M1b 

  
Modified from [13].  T refers to tumor, N to lymph node and M represents metastasis.  
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Table 1.3 Treatments by Stage 
 

Stage (TNM Staging Criteria)  Standard Treatment Options   

Occult NSCLC Surgery 

Stage 0 NSCLC Surgery 

Endobronchial therapies 

Stages IA and IB NSCLC Surgery 

Radiation therapy 

Stages IIA and IIB NSCLC Surgery 

Neoadjuvant chemotherapy 

Adjuvant chemotherapy 

Radiation therapy 

Stage IIIA 

NSCLC 

Resected or resectable 

disease 

Surgery 

Neoadjuvant therapy 

Adjuvant therapy 

Unresectable disease Radiation therapy 

Chemoradiation therapy 

Superior sulcus tumors Radiation therapy alone 

Radiation therapy and surgery 

Concurrent chemotherapy with radiation therapy and surgery 

Surgery alone (for selected patients) 

Tumors that invade the 

chest wall 

Surgery 

Surgery and radiation therapy 

Radiation therapy alone 

Chemotherapy combined with radiation therapy and/or surgery 

Stage IIIB NSCLC Sequential or concurrent chemotherapy and radiation therapy 

Chemotherapy followed by surgery (for selected patients) 

Radiation therapy alone 

http://www.cancer.gov/cancertopics/pdq/treatment/non-small-cell-lung/healthprofessional/Page3#Section_510
http://www.cancer.gov/cancertopics/pdq/treatment/non-small-cell-lung/healthprofessional/Page6#Section_535
http://www.cancer.gov/cancertopics/pdq/treatment/non-small-cell-lung/healthprofessional/Page7#Section_549
http://www.cancer.gov/cancertopics/pdq/treatment/non-small-cell-lung/healthprofessional/Page8#Section_595
http://www.cancer.gov/cancertopics/pdq/treatment/non-small-cell-lung/healthprofessional/Page8#Section_484203
http://www.cancer.gov/cancertopics/pdq/treatment/non-small-cell-lung/healthprofessional/Page8#Section_484268
http://www.cancer.gov/cancertopics/pdq/treatment/non-small-cell-lung/healthprofessional/Page8#Section_627
http://www.cancer.gov/cancertopics/pdq/treatment/non-small-cell-lung/healthprofessional/Page9#Section_658
http://www.cancer.gov/cancertopics/pdq/treatment/non-small-cell-lung/healthprofessional/Page9#Section_484224
http://www.cancer.gov/cancertopics/pdq/treatment/non-small-cell-lung/healthprofessional/Page9#Section_484229
http://www.cancer.gov/cancertopics/pdq/treatment/non-small-cell-lung/healthprofessional/Page9#Section_4829
http://www.cancer.gov/cancertopics/pdq/treatment/non-small-cell-lung/healthprofessional/Page9#Section_4846
http://www.cancer.gov/cancertopics/pdq/treatment/non-small-cell-lung/healthprofessional/Page9#Section_4861
http://www.cancer.gov/cancertopics/pdq/treatment/non-small-cell-lung/healthprofessional/Page9#Section_4861
http://www.cancer.gov/cancertopics/pdq/treatment/non-small-cell-lung/healthprofessional/Page9#Section_4861
http://www.cancer.gov/cancertopics/pdq/treatment/non-small-cell-lung/healthprofessional/Page9#Section_4861
http://www.cancer.gov/cancertopics/pdq/treatment/non-small-cell-lung/healthprofessional/Page9#Section_4881
http://www.cancer.gov/cancertopics/pdq/treatment/non-small-cell-lung/healthprofessional/Page9#Section_4881
http://www.cancer.gov/cancertopics/pdq/treatment/non-small-cell-lung/healthprofessional/Page9#Section_4881
http://www.cancer.gov/cancertopics/pdq/treatment/non-small-cell-lung/healthprofessional/Page9#Section_4881
http://www.cancer.gov/cancertopics/pdq/treatment/non-small-cell-lung/healthprofessional/Page10#Section_484283
http://www.cancer.gov/cancertopics/pdq/treatment/non-small-cell-lung/healthprofessional/Page10#Section_4912


28 
 

Stage (TNM Staging Criteria)  Standard Treatment Options   

Stage IV NSCLC Cytotoxic combination chemotherapy (first line) 

Combination chemotherapy with bevacizumab or cetuximab 

EGFR tyrosine kinase inhibitors (first line) 

EML4-ALK inhibitors in patients with EML-ALK translocations 

Maintenance therapy following first-line chemotherapy 

Endobronchial laser therapy and/or brachytherapy (for obstructing lesions) 

External-beam radiation therapy (primarily for palliation of local 

symptomatic tumor growth) 

Recurrent NSCLC Radiation therapy (for palliation) 

Chemotherapy or kinase inhibitors alone 

EGFR inhibitors in patients with/without EGFR mutations 

EML4-ALK inhibitors in patients with EML-ALK translocations 

Surgical resection of isolated cerebral metastasis (for highly selected 

patients) 

Laser therapy or interstitial radiation therapy (for endobronchial lesions) 

Stereotactic radiation surgery (for highly selected patients) 

 
Modified from [18] 

 

 

 

 

 

 

 

http://www.cancer.gov/cancertopics/pdq/treatment/non-small-cell-lung/healthprofessional/Page3#Section_510
http://www.cancer.gov/cancertopics/pdq/treatment/non-small-cell-lung/healthprofessional/Page11#Section_48414
http://www.cancer.gov/cancertopics/pdq/treatment/non-small-cell-lung/healthprofessional/Page11#Section_48622
http://www.cancer.gov/cancertopics/pdq/treatment/non-small-cell-lung/healthprofessional/Page11#Section_48630
http://www.cancer.gov/cancertopics/pdq/treatment/non-small-cell-lung/healthprofessional/Page11#Section_48637
http://www.cancer.gov/cancertopics/pdq/treatment/non-small-cell-lung/healthprofessional/Page11#Section_484480
http://www.cancer.gov/cancertopics/pdq/treatment/non-small-cell-lung/healthprofessional/Page11#Section_484480
http://www.cancer.gov/cancertopics/pdq/treatment/non-small-cell-lung/healthprofessional/Page12#Section_48551
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CHAPTER 2 

 
 
THE ROLE OF FAS ASSOCIATED DEATH DOMAIN IN KRAS-

MEDIATED LUNG ONCOGENESIS 
 

2.1 Abstract 
Although genomic amplification and phosphorylation of Fas-Associated Death Domain 

(FADD) has been associated with poor clinical outcome in lung and head and neck 

cancer, its role in oncogenesis is not fully understood. Here, we describe the 

requirement for FADD in lung oncogenesis by utilizing conditional murine models of 

Kras-driven lung cancer. In the absence of FADD, abrogation of tumor growth was 

observed wherein a lower proliferative index and decreased activation of downstream 

effectors of the RAS-mitogen-activated protein kinase (MAPK) pathway, including 

phosphorylated extracellular signal-regulated kinase 1 and 2 (pERK1/2), 

phosphorylated retinoblastoma (pRB) and Cyclin D1, indicated alterations in cell cycle 

progression. Studies using embryonic fibroblasts revealed that the induction of 

mitogenesis upon activation of the RAS-MAPK pathway required FADD and its 

phosphorylation by Casein Kinase 1 alpha (CK1α). A conditional mouse wherein CK1α 

expression was ablated simultaneous with Kras activation confirmed a requirement for 

FADD-phosphorylation in Kras-mediated lung oncogenesis. Phosphorylation of FADD 

during G2/M and its interaction with mediators of the G2/M transition, including Polo-

Like Kinase 1 (PLK1), Aurora Kinase A (AURKA) and Budding Uninhibited by 

Benzimidazoles 1 (BUB1), provide a molecular basis for a requirement of FADD and its 

phosphorylation in Kras-mediated mitogenesis and demonstrate CK1α as a therapeutic 

target for Kras-driven lung cancer. 
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2.2 Introduction 
In cancer cells, dysregulated cell signaling and proliferation occurs through 

overexpression, post-translational modification or mutation of signaling proteins. RAS is 

a membrane associated small G protein, which functions as a signaling mediator of 

receptor and non-receptor tyrosine kinases to cytoplasmic and nuclear effector 

pathways. Oncogenic mutations of RAS account for approximately 30% of all cancers. 

These mutations results in constitutive signaling, which leads to dysregulated cell 

proliferation and enhanced survival. Mutations in the KRAS gene are common in non-

small-cell lung cancer (NSCLC), colorectal, and pancreatic cancer. Approximately 

32.2% of patients with lung adenocarcinoma exhibit tumor associated KRAS mutations 

[1]. Uncontrolled cell proliferation as a result of mutations within RAS is attributed to a 

cascade of signaling kinases known as the mitogen activated protein kinase pathway 

(MAPK). The MAPK pathway includes RAF, mitogen and extracellular signal-regulated 

kinase (MEK), and extracellular signal-regulated kinase (ERK). The MAPK pathway 

promotes, by phosphorylation, the activities of several transcription factors, including C-

Myc, CREB and C-Fos. This activation leads to the altered transcription of genes that 

are involved in cell cycle progression. Beyond this, the molecular details of a link 

between the MAPK cascade and the cell cycle machinery remain partially understood. 

For example, the molecular basis for the role of MEK and ERK, key components of 

MAPK signaling in M-phase progression is commonly observed, yet the precise 

molecular mechanisms have not been defined [2]. 
 Increased abundance of FADD, (mRNA and protein) and specifically the post-

translationally modified, phosphorylated and nuclear localized form of FADD is 

correlated with aggressive disease and poor clinical outcome in lung adenocarcinoma 

as well as head and neck cancer [3-8]. In addition, amplification of the FADD locus on 

chromosome 11q13.3 is frequently observed in human cancers resulting in increased 

FADD abundance, poor prognosis [4-7] and correlation with overabundant CCND1 and 

CCNB1, genes that are involved in the regulation of cell cycle progression [3, 9]. FADD-

null cells exhibit defects in cell cycle progression [3, 10]. An absence of Fadd, as well 

as expression of a dominant negative Fadd mutant in peripheral T lymphocytes, 

resulted in an inhibition of mitogen-induced T cell proliferation [10-12]. Ten percent of 
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freshly isolated peripheral T cells from Fadd-null mice were arrested in the S and the 

G2/M phases, compared to two percent from normal littermates [10]. Alappat et al., 

2005 demonstrated phosphorylation of FADD at Ser194 (Ser191 in mouse), during the 

G2/M phase, but not in G1/S. Casein Kinase 1 alpha (CK1α) was identified as the 

kinase responsible for phosphorylation of FADD at Ser194. Alappat et al., 2005 also 

demonstrated a direct interaction between CK1α and FADD early in mitosis [13]. 
Although a requirement for CK1α dependent phosphorylation of FADD early in mitosis is 

clear, upstream signaling events and its significance in oncogenesis remain to be 

investigated. To this end, using conditional mouse models, we demonstrate that mutant 

Kras-mediated lung oncogenesis requires FADD and its phosphorylation by CK1α. Mice 

in which mutant Kras was initiated developed lung tumors as expected, while mice with 

concurrent introduction of mutant Kras and deletion of Fadd or Csnk1a1 exhibited 

greatly reduced and delayed tumor growth. Embryonic fibroblasts isolated from these 

animals revealed that activation of Kras resulted in the phosphorylation of FADD and 

enhanced cell proliferation through the MAPK cascade. Phosphorylation of FADD 

during G2/M and subsequent interaction with key mediators of the G2/M transition, 

including Polo-Like Kinase 1 (PLK1), Aurora Kinase A (AURKA) and Budding 

Uninhibited by Benzimidazoles 1 (BUB1), provide a molecular basis for the phenotypes 

observed in the mouse models. 

2.3 Results 

2.3.1 A Requirement for FADD in Kras-Driven Lung Cancer 
A transgenic mouse wherein the genomic locus for Fadd is insertionally 

inactivated and complimented by a conditional transgene (Fadd:GFP) [14] was crossed 

with KrasLSL-G12D animals [15] and subsequently crossed with Rosa26LSL-Luciferase mice 

[16]. The resulting mouse will be referred to as KFLuc (KrasLSL-G12D; Luc; Fadd-/-). 

Intranasal instillation of an adenovirus for expression of the Cre-recombinase (AdCre) 

enabled simultaneous activation of oncogenic Kras to initiate tumorigenesis, expression 

of luciferase as a surrogate for proliferation, and deletion of the Fadd transgene (Fig. 
2.1A). Mice heterozygous for genomic Fadd were used as controls since they retained 

Fadd expression despite deletion of the transgene in the lung (KrasLSL-G12D; Luc; 
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Fadd+/-) and will be referred to as KLuc. As controls, mice expressing Fadd and wild-

type Kras (Luc; Fadd+/-) were also used and will be referred to as Luc. 

Upon AdCre delivery bioluminescence imaging was performed to monitor tumor 

growth at indicated time points (Fig. 2.1, A to C). A time dependent increase in 

bioluminescence activity in KLuc was observed at week 7 compared to Luc mice (Fig. 
2.1C). In KFLuc animals, we observed minimal changes in bioluminescence activity over 

time, in contrast to KLuc animals (Fig. 2.1, B to C). Animals which were wild type for 

Kras but null for Fadd (Luc; Fadd-/-), hereafter referred to as FLuc, similarly lacked 

changes in bioluminescence (Fig. 2.1C). Anatomic visualization of tumor burden in mice 

was also carried out using micro-computed tomography (μCT).  μCT detectable lesions 

were identified in KLuc animals, but to a lesser degree in their KFLuc littermates, while no 

detectable lung lesions were identified in mice with wild-type Kras (Fig. 2.1D). 

Quantitative analysis of μCT images was accomplished by segmentation and 

measurement of the functional lung space, which upon subtraction from the total chest 

space yielded volumetric measure of the tumor and vascular component [17]. These 

analyses, in agreement with the bioluminescence measurements, revealed an increase 

in the tumor burden at week 13 and 16 in KLuc mice compared to KFLuc mice (Fig. 2.1E). 

Using a multimodality reader that allows for simultaneous acquisition of spatially aligned 

bioluminescence and µCT, demonstrated that the X-ray dense lesions were also 

positive for bioluminescence. Histological analysis of the single lesion pathologically 

confirmed a hyper-proliferative phenotype (Fig. 2.1F). In agreement with these 

measurements of tumor burden, we observed prolonged survival in KFLuc mice 

compared to KLuc littermates. The median survival of KFLuc mice was 51.4 weeks (95% 

CI =29.8 to 73.0 weeks) compared to 34 weeks (95% confidence interval of 24 to 44 

weeks) for the KLuc mice (Fig. 2.1G). 

2.3.2 Fadd-Null Lung Tumors are Less Proliferative  
To confirm our imaging results, we performed histological studies of lung tissue 

from the aforementioned animals. Histopathological analysis of KFLuc and KLuc lungs at 

18 weeks post AdCre revealed that KLuc animals often exhibited large adenomas 

(papillary, solid and mixed), presented large mixed type adenomas (solid and papillary) 

within lung parenchyma, and possessed alveoli containing atypical adenomatous 



39 
 

hyperplasia. A more robust, macrophage predominant, chronic inflammatory infiltrate 

was also appreciated in these histopathology sections. In contrast, analysis of lung 

sections from KFLuc animals revealed demonstrably smaller and fewer adenomas. We 

observed average tumor volumes of 45 uM2 in the KFLuc mice compared to 70 uM2 in 

the KLuc mice (Fig. 2.2, A to B). Lung tissue from control Luc or FLuc animals appeared 

normal with no detectable hyperplasia. 

As a measure of proliferation, Ki-67 immunohistochemistry of lung tissue was 

also conducted. KLuc tumors demonstrated significantly higher Ki-67 staining, 

quantitative analysis of 10 animals and 4 fields per animal revealed that almost 30% of 

cells within KLuc derived tumors were positive for Ki-67, while only 18% of the cells 

within KFLuc tumors were Ki-67 positive (Fig. 2.2C). Consistent with this, lung tissue 

from KFLuc animals revealed less Cyclin D1 staining compared to KLuc derived tissue by 

immunohistochemistry as well as western blotting (Fig. 2.2, A and D). Tumor samples 

derived from KFLuc animals also demonstrated lower pRB amounts by western blot, 

suggesting abrogated cell proliferation (Fig. 2.2D). Elevated FADD staining was 

observed in KLuc derived lung tissue compared to tissue derived from Luc or KFLuc 

animals. Immunohistochemistry of lung sections revealed a low amount of FADD in Luc 

(control) as well as KFLuc animals, while elevated FADD protein was observed in KLuc 

tumor tissue (Fig. 2.2A). High magnification (100x) revealed staining for FADD that was 

predominantly nuclear in KLuc animals (Fig. 2.2A). Western blot analysis of tumor tissue 

also confirmed a lack of endogenous Fadd expression in tumor tissue derived from 

KFLuc animals compared to KLuc animals. Increased FADD phosphorylation (based on 

the presence of a doublet of FADD immune-reactive protein at 28kDa [3, 18-21], was 

consistently observed in tissues wherein mutant Kras was activated (KLuc), while a 

single band was observed in lung tissue from control animals (Luc, Fig. 2.2D). In 

addition to Cyclin D1 and pRB, another marker of proliferation, Cyclin B1, was 

significantly increased in KLuc tumors, but was reduced in KFLuc tumors (Fig. 2.2D). A 

loss of Fadd expression resulted in a decrease of pERK1/2 abundance, a downstream 

mediator of oncogenic KRAS signaling (Fig. 2.2D and Fig. 2.3A). Since FADD is an 

established adaptor of Caspase-dependent apoptosis, we also performed 

immunohistochemical staining for the activated form of Caspase 3 in lung tumor tissue. 
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Both KLuc and KFLuc lesions lacked staining for active Caspase 3, indicating that 

differences in tumor size were not due to an increase in apoptotic cell death (Fig. 2.3B).  

Based on previous experience with conditional mouse models, we hypothesized 

that tumors arising in KFLuc animals may be FADD positive due to inefficient Cre 

recombination. To test this, we analyzed the expression of the Fadd transgene using 

semi-quantitative PCR of lung tumors isolated from KLuc and KFLuc mice. Although 

reduced compared to control tissue, the Fadd transgene was still present in all samples 

tested (Fig. 2.4A). Persistent expression the Fadd transgene in KFLuc tumors was also 

observed by western blot and immunohistochemistry (Fig. 2.2D and Fig. 2.4, B to C). 

2.3.3 FADD and FADD Phosphorylation are Required for Kras-Driven Cell 
Proliferation 

Since elevated FADD mRNA has been shown to correlate with poor survival in 

lung cancer patients [3], we investigated if FADD mRNA amounts correlated with KRAS 

mutation status. Analysis of patient data revealed a correlation between mutant KRAS 

status with increased amounts of FADD mRNA as compared to patients with wild type 

KRAS in two independent studies (Fig. 2.5, A to B). We next investigated if KRAS 

signaling impacted phosphorylation of FADD in mouse embryonic fibroblasts (MEF) 

derived from the mouse models. FLuc derived MEFs lacking mutant Kras failed to 

proliferate in culture due to cell cycle arrest as previously demonstrated [14]. Western 

blot analysis for FADD in Luc MEFs revealed a single predominant band at 28kDa, 

while those from KLuc MEFs exhibited a doublet, indicative of an increase in the 

phosphorylated form of FADD (Fig. 2.6A) [3, 18-21]. As expected, KFLuc cells 

demonstrated no detectable endogenous FADD. Consistent with our finding for a role of 

FADD in proliferation, we observed increased Cyclin D1 abundance in MEFs from KLuc 

compared to the KFLuc (Fig. 2.6A). KLuc MEFs exhibited a higher rate of proliferation 

compared to KFLuc and Luc MEFs (Fig. 2.6B). This finding was in agreement with 

previous work wherein decreased proliferation was observed in Fadd-/- MEFs 

compared to Fadd+/- MEFs [14, 21, 24]. Reconstitution of Fadd expression in KFLuc 

cells restored cell proliferation (Fig. 2.6B). To evaluate a requirement for CK1α, the 

kinase responsible for FADD phosphorylation [12, 25-26], KLuc cells were treated with a 

CK1α inhibitor, CKI-7. In the treated KLuc cells, we observed a marked decrease in 
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proliferative ability whereas proliferation of KFLuc or Luc cells was not significantly 

impacted by the inhibitor (Fig.  2.6C). Since increased abundance of phosphorylated 

FADD were observed in KLuc cells compared to then Luc cells, we hypothesized that 

MEK and ERK, key effectors of the RAS signaling pathway, may be upstream mediators 

of FADD phosphorylation. Lonafarnib, an inhibitor of Kras farnesylation [27], as well as 

PD0325901, a MEK inhibitor [28] inhibited proliferation and FADD phosphorylation (Fig. 
2.6, C and F). In soft agar colony formation assays, KFLuc MEFs formed 70% fewer 

colonies as compared to KLuc MEFs (Fig. 2.6D). Exogenous Fadd expression in KFLuc 

cells restored colony forming capacity, confirming a requirement for FADD in 

proliferation (Fig. 2.6D). KLuc cells treated with CKI-7, PD0325901 or Lonafarnib also 

reduced colony forming activity as compared to untreated cells (Fig. 2.6D).  

Examination of the cell cycle distribution revealed that compared to KLuc cells, 

KFLuc cells were arrested in G2/M (Fig. 2.6E), and reconstitution of Fadd restored 

normal cell cycle distribution (Fig. 2.6E). Cell cycle analysis of CKI-7 treated KLuc cells 

revealed a G2/M arrest analogous to untreated Fadd-deficient KFLuc cells, whereas 

PD0325901 or Lonafarnib treatment resulted in a G1 arrest (Fig.  2.6E). CKI-7 treated 

KLuc cells showed a marked decrease in pRB and Cyclin D1 and an increase in 

phosphorylated Cell Division Cycle 2 (pCDC2), confirming an arrest of cells at G2/M 

(Fig. 2.6F). The amount of phosphorylated FADD was also decreased upon treatment 

with CKI-7 (Fig. 2.6F). Treatment with Lonafarnib or PD0325901 also resulted in 

decreased amount of pRB and Cyclin D1 as well as phosphorylated FADD (Fig. 2.6F). 

2.3.4 FADD Interacts with Key Mediators of G2/M Transition. 
To study the phosphorylation of FADD as cells transit G2/M, H1975 human lung 

cancer cells were synchronized by a double thymidine block. FADD-phosphorylation 

was prominent eight hours post-release, which coincided with a peak in Cyclin B1 and 

AURKA amounts, but was preceded by a an increase in PLK1 abundance (Fig. 2.7A), 

events which mark the transition of cells from G2 into M [29-30].  
We next conducted an interactome study using Halo-tagged FADD in HEK 293T 

cells. Mass spectrometry analysis of co-precipitating polypeptides revealed the 

interaction of FADD with CK1α as well as several proteins involved in the cell cycle, 

including PLK1, CDC20 and Aurora Kinase B (AURKB) (Fig. 2.7B). To evaluate if 
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interaction of FADD with these proteins was specific for G2/M, A549 lung cancer cells 

were treated with hydroxyurea to induce a G1/S arrest, or with nocodozole to induce a 

G2/M arrest (Fig. 2.7C). Immunoprecipitation analysis revealed an interaction of FADD 

with PLK1 predominantly in G2/M.  Since PLK1, AURKB and CDC20 interact with BUB1 

during G2/M [33-35] we investigated if BUB1 also interacted with FADD. Indeed, BUB1 

and AURKA maximally interacted with FADD in G2/M compared to G1/S arrested or 

asynchronous cells. Inhibition of CK1α using CKI-7 abrogated the interaction of FADD 

with AURKA, PLK1 and BUB1 (Fig. 2.7C). Functional annotation analysis of the 

interactome using DAVID (Fig. 2.8, A to B) [31-32] also identified other FADD-

interacting nodes, including proteins involved in cell death, a pathway in which FADD 

was originally studied in [18].  

2.3.5 A Requirement for CK1α in Kras-Driven Lung Cancer 
 To investigate a requirement for CK1α in Kras-driven lung oncogenesis a mouse 

model was generated wherein the genomic locus of Csnk1a1 could be conditionally 

deleted (Csnk1afl/fl) [36] in the presence of mutant Kras expression.  KrasLSL-G12D; 

Rosa26LSL-Luciferase animals [15, 16] were crossed with Csnk1afl/fl to generate KCLuc mice 

(KrasLSL-G12D; Luc; Csnk1afl/fl). Intranasal instillation of an adenovirus for expression of 

AdCre was performed to initiate Kras-mediated tumorigenesis in the presence (KLuc) or 

absence of Csnk1a1 expression (KCLuc, Fig. 2.9A). Littermates with wild-type Kras in 

the presence (Luc) or absence of Csnk1a1 (CLuc) were used as controls (Fig. 2.9A). 
Imaging revealed a robust increase in bioluminescence, indicative of tumor burden, in 

KLuc mice compared to the Luc mice (Fig. 2.9B) as seen previously (Fig. 2.1, B and C). 

In contrast, KCLuc and CLuc mice did not show an increase in bioluminescence over time, 

indicative of decreased tumorigenesis. μCT confirmed the presence of lung tumor 

burden in KLuc, whereas no detectable tumors were observed in KCLuc, CLuc and Luc 

mice (Fig. 2.9C). Quantitative analysis of μCT images was performed, which revealed a 

6 fold decrease in tumor burden at week 18 in KCLuc mice compared to KLuc (Fig. 2.9D).  
 Histological analysis of lung sections from the KCLuc mice at week 18 

demonstrated minimal hyperplasia and a rare adenoma compared to KLuc mice (Fig. 
2.9E and Fig. 2.10). Lesions present in KCLuc mice stained positive for CK1α, indicating 

that they arose from cells where only Kras was activated, but Csnk1a1 was not Cre-
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recombined (Fig. 2.10). Both Luc and CLuc mice showed healthy lung tissue as 

expected. KLuc lung tumors showed increased quantities of FADD, which was also 

nuclear localized, whereas in KCLuc, CLuc and Luc mice, lower amounts of FADD were 

observed (Fig. 2.9E).  

 To investigate if ablation of Csnk1a1 expression resulted in a decrease in FADD-

phosphorylation, we isolated MEFs from KCLuc animals and treated with increasing titers 

of AdCre. A decrease in FADD-phosphorylation was observed when in the absence of 

Csnk1a1 expression (Fig 2.9F). Since CK1α is also known to play a role in p53 

signaling through phosphorylation of Mouse Double Minute 2 (MDM2) and Mouse 

Double Minute X (MDMX), as well as in Wnt signaling through by phosphorylation of β-

Catenin [37-39], we next asked if ablation of Csnk1a1 in our KCLuc MEFs stimulates 

these signaling pathways. The abundance of p53 and the amount of phosphorylated 

MDM2 were unchanged in KCLuc compared to KLuc animals (Fig 2.9G). Similarly, the 

amount of β-Catenin was unchanged although phosphorylated β-Catenin (Ser45) levels 

were lower (Fig 2.9G).  

2.4 Discussion 
The constitutive activation of KRAS, through dysregulated EGFR signaling or 

mutations in KRAS, leads to enhanced proliferation through the RAS-MEK-ERK 

axis. Mutations in the small GTPase KRAS renders the protein constitutively active by 

locking GTP in its binding pocket [40]. The G12D mutation of KRAS is present in 17% 

of patients with lung cancer [41]. Mutually exclusive to this, genomic amplification 

and/or overexpression of EGFR are also commonly found in patients with lung cancer 

[1]. Erlotinib and Gefitinib, small molecule kinase inhibitors targeting the EGFR, have 

shown significant efficacy but in a limited set of patients. In addition, development of 

drug resistance due to mutations of EGFR and compensatory signaling through 

alternate receptor tyrosine kinases has limited the broad applicability of these 

therapies. Recent progress in targeting KRASG12C is encouraging [42], but KRAS 

inhibitors are currently not clinically available. Efforts to target downstream effectors of 

KRAS, including MEK, are in development however, preliminary evidence indicates that 

these may not be effective as monotherapies [43] due to compensatory signaling 

through the PI3K/AKT pathway. The EGFR-KRAS-MEK-ERK signaling axis represents 
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a major mitogenic pathway in cancer, yet the molecular details of signaling events 

downstream of RAS and MEK that lead to cell cycle proliferation are not well 

understood. This may explain the paucity of molecular targets for abrogating EGFR and 

KRAS mitogenic signaling.  

The studies presented here demonstrate that phosphorylation of FADD by CK1α 

represents a key signaling event in KRAS-mediated mitogenic signaling. Genetically 

engineered conditional mouse models were used to initiate lung cancer in the presence 

or absence of Fadd or Csnk1a1. Ablation of either resulted in a decrease in the 

oncogenic potential of mutant Kras. Tumor progression was delayed significantly in the 

absence of Fadd or Csnk1a1 as revealed by bioluminescence and µCT imaging. In 

support, histopathological studies revealed fewer and smaller lesions in KFLuc as well as 

KCLuc mice compared to KLuc animals. Expression of mutant Kras resulted in an increase 

in FADD protein, as well as its phosphorylated form in tumor tissue as well as MEFs 

derived from these animals. Inhibition of KRAS, MEK or CK1α resulted in a reduction of 

FADD phosphorylation. Decreased FADD phosphorylation in response to MEK 

inhibition has been described previously [44], further affirming our finding that 

phosphorylation of FADD represents an important signaling event downstream of the 

KRAS-MEK-MAPK pathway.  
Immunohistochemical analysis of tissue from KLuc revealed increased abundance 

of markers of cell proliferation including Ki-67 and Cyclin D1. In support, tumors isolated 

from these animals exhibited elevation in markers of proliferation including Cyclin D1, 

pERK1/2, pRB, Cyclin B1. In contrast, loss of Fadd or Csnk1a1 did not show an 

increase in these markers of cell proliferation in tissues and MEFs derived from KFLuc or 

KCLuc mice, suggesting a requirement for FADD and its phosphorylation by CK1α in 

mutant Kras-mediated mitogenic signaling. This was further supported by an observed 

G2/M arrest of MEFs lacking Fadd, or wherein its phosphorylation was inhibited. 

Previous findings demonstrate a role for FADD, specifically its phosphorylated form, in 

the proliferation of T cells [10, 12, 14, 20]. This complements our findings that FADD 

and its phosphorylation are required for Kras-mediated cell proliferation.  Additionally, in 

FADD-null Jurkat cells which arrest in G2/M, reconstitution of either a FADD phospho-

mimetic (FADD-Asp) or a non-phosphorylatable form (FADD-Ala) failed to complement 
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the FADD-null phenotype [3]. The AK2/DUSP26 phosphatase protein complex has 

been shown to result in the dephosphorylation of FADD [21]. Reduced amounts AK2 in 

tumor cells and human cancer tissues correlated with elevated amounts of 

phosphorylated FADD and proliferation. Consistently, AK2+/− MEFs as well as AK2 

knockdown exhibited an increase in phosphorylated FADD abundance and enhanced 

cell proliferation, which could be reversed by ectopic AK2 expression, further supporting 

a role for phosphorylated FADD in mitogenic signaling.  

Controlled phosphorylation/dephosphorylation reactions of complexes such as 

the cyclin B/cyclin-dependent kinase 1 (CDK1) are central to the control of mitosis [45]. 
Phosphorylation of FADD in a cell cycle dependent manner [3, 13] (Fig.  2.6 F and Fig. 
2.7A), the G2/M arrest of cells lacking FADD [3] (Fig. 2.6E), and the G2/M arrest of 

cells wherein FADD-phosphorylation is inhibited (Fig. 2.6E) are all consistent with a role 

for FADD-phosphorylation in cell cycle progression in response to Kras activation. 

Maximal phosphorylation of FADD prior to histone H3 (Ser10) phosphorylation [46] and 

the interaction of FADD with PLK1, AURKA, CDC20 and BUB1, all mediators of the 

G2/M transition, further support its role in G2/M transition. The interaction of FADD with 

PLK1 and AURKA has been demonstrated previously [29], but our findings show that 

these occur in a G2/M specific manner and in the context of mitogenic signaling by 

mutant KRAS.  

Previous studies describing the conditional deletion of Csnk1a1 in the intestine 

resulted in activation of the Wnt pathway. Concurrent deletion of p53 resulted in 

activation of the Wnt pathway and resulted in invasive carcinomas [36]. Our analysis of 

MEFs derived from KCLuc or CLuc animals did not reveal dysregulated Wnt signaling. 

This discrepancy could be explained by the cellular context (intestinal tissue compared 

to lung tissue or MEFs) as the Wnt pathway has been primarily associated with colon 

cancer and lung metastasis [22, 47].  
In summary, using a murine model of lung cancer we demonstrate a requirement 

for FADD in Kras-mediated tumorigenesis, and demonstrate that phosphorylation of 

FADD by CK1α is required for mitogenic activity of the KRAS-MEK-ERK signaling 

pathway. Upon phosphorylation, FADD is translocated to the nucleus [3-4, 14, 20, 24] 
wherein it is required for G2/M progression through its interaction with PLK1, AURKA, 
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CDC20 and BUB1 (Fig. 2.11). Our finding of increased in FADD mRNA expression in 

patients with mutant KRAS emphasizes the significance of the signaling pathway in 

KRAS-mediated oncogenesis. We propose that CK1α may be an attractive downstream 

target for inhibition of oncogenic signaling in EGFR and mutant KRAS-driven tumors. 
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2.5 Materials and Methods 
 
Mice 

All animal protocols were approved by the University of Michigan University Committee 

on Use and Care of Animals (UCUCA). All mouse work was performed in accordance 

with the University of Michigan protocol P00004781. Animals were housed in specific 

pathogen-free facilities of the University of Michigan Biomedical Science Research 

Building. KrasLSL-G12D mice [15] from the NCI repository were intercrossed with 

Rosa26LSL-Luciferase (Jackson Laboratory, stock# 005125) and Fadd-/-; Fadd:GFP [14] 
(provided by Jianke Zhang, Thomas Jefferson University) mice to create KrasG12D; Luc; 

Fadd-/- or Fadd+/- animals (KFLuc or KLuc, respectively). Combinations of mutant 

littermates were used as controls: Luc; Fadd+/- or Luc; Fadd-/- (Luc or FLuc). A Kaplan-

Meier survival curve was performed to represent animals that needed to be euthanized, 

if signs of labored breathing were present, or died during the time of experiments. 

Csnk1alfl/fl mice [36] (provided by Yinon Ben-Neriah and Eli Pikarsky) were also crossed 

with KrasLSL-G12D mice and Rosa26LSL-Luciferase mice to create KrasLSL-G12D; Luc; 

Csnk1a1fl/fl or Csnk1a1+/+ animals (KCLuc or KLuc respectively) and combinations of 

littermates were used as controls Luc; Csnk1a +/+ or Luc; Csnk1afl/fl (Luc or CLuc).  

 

Genotyping and PCR 

Mice were genotyped using tail DNA. For the genotyping of mutant KrasLSL-G12D, wild 

type Kras and Cre-recombined KrasLSL-G12D, three primers were used: 

5’GTCTTTCCCCAGCACAGTGC, 5’CTCTTGCCTACGCCACCAGCT and 

5’AGCTAGCCACCATGGCTTGAGTAAGTCTGCA. For Rosa26LSL-Luciferase the primers 

used were 5’ CGTGATCTGCAACTCCAGTC and 5’GGAGCGGGAGAAATGGATATG. 

For the Fadd wild type allele the following primers were used: 5’ 

TGCGCCGACACGATCTACTG and 5’ TGTCAGGGTGTTTCTGAGGA. For the Fadd 

knockout neo cassette the primers were: 5’ CGCTCGGTGTTCGAGGCCACACGC and 

5’ ACTGTAGTGCCCAGCAGAGACCAGC. For the Fadd transgene (Fadd:GFP), the 

primers were 5’ GTTGTCTTCGAAGTGCTCAGGC and 5’ 

GAACTTGTGGCCGTTTACGTC. For the genotyping of wild type and Csnk1a1fl/fl mice 

the following primers were used 5’ TCCACAGTTAACCGTAATCGT and 5’ 
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AACTGCAAATGAAAGCCCTG The Fadd:GFP primers were utilized for semi-

quantitative PCR to determine Cre recombination efficiency. 10ng of template were 

used and the PCR was run for 25 cycles.   

 
Induction of lung cancer 
Lung tumors were initiated with 3x107 plaque forming units of Adenovirus-Cre 

Recombinase, by intranasal inhalation in mice 6 to 8 weeks in age [48].  
 

Mouse Bioluminescent Imaging 

Mice were imaged at weeks 7, 13, 18 and 22 post Adenovirus-Cre Recombinase 

administration. Imaging was performed on an IVIS Spectrum from Perkin Elmer. Mice 

were injected with 150mg/kg D-Luciferin (Promega)/PBS solution and anesthetized with 

1-2% isoflurane/air while imaged. Serial images were acquired for 30 seconds to 2 

minutes intervals for 20 minutes post injection to capture the peak luminescence. 

Regions of interest were drawn around each lung and a highest photon emission value 

for each image was used for analysis.  

 

Micro-computed Tomography 

μCT imaging was performed at weeks 13 and 16 or 18 post adenovirus Cre 

recombinase administration using a Siemens Inveon System with the following 

parameters: 80kVp, 500μA, 400-ms exposure, 360 projections over 360 degrees, and 

49.2-mM field of view (56-μM voxel size). Quantitative analysis was performed on 

automatically segmented lung volumes as the sum of lung, tumor, and vascular tissues. 

Following image calibration to Hounsfield units (HU) using air and a water phantom, 

segmentation of the lungs was accomplished using a connected threshold algorithm 

developed in-house (Matlab, Natick, MA) with a threshold of -200HU. This volume was 

subtracted from the total chest volume to approximate the tumor plus vascular volume. 

An assumption with this analysis is that vasculature should be similar between all 

subjects, with changes in this volume indicative of tumor volume changes [17]. 
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BLI/CT Imaging 
CT and BLI imaging was performed to demonstrate co-localization of luminescence with 

CT-determined lung lesions at 22 weeks post adenovirus Cre recombinase 

administration using an IVIS Spectrum CT from Perkin-Elmer. Mice were injected with 

150mg/kg D-Luciferin (Promega)/PBS solution and anesthetized with 1-2% 

isoflurane/air while imaged at 1 minute intervals. The following parameters for CT 

imaging were used: 50kVp, 1mA, 720 projections over 360 degrees, and 12-cm field of 

view (150μm voxel size). 

 

Histology 

Animals were euthanized and the lung was perfused with PBS through the heart.  The 

lung was removed and fixed in formalin for 24 hours. Samples were embedded in 

paraffin and sliced at 5μM. Samples were stained with hematoxylin and eosin y (H&E). 

Protocol in brief: Samples were hydrated in xylene, 100% EtOH, 95% EtOH and water. 

Samples were then stained in Gill Hematoxylin washed in tap water. Samples were 

immersed in 95% EtOH and then stained with acidic eosin y. All antibodies were used at 

1:200 and secondary antibodies used were biotinylated-rabbit or biotinylated-goat using 

the DAP system and Alexa488-chicken for immunofluorescence.  

 

Antibodies and Reagents 

Rabbit polyclonal antibodies to GFP, pERK1/2, pRB, ERK1/2, Cyclin D1, phospho-

FADDS194, AURKA, phospho-β-Catenin, β-Catenin, pMDM2 and PLK1 were 

purchased from Cell Signaling Technology (Danvers, MA). The antibody for human 

FADD was obtained from BD Biosciences (San Jose, CA). Antibodies against Cyclin 

B1, CK1α, MDM2 and p53 were purchased from Santa Cruz (Santa Cruz, CA). The 

antibody against mouse FADD used for western blotting was purchased from Epitomics, 

initially (Burlingame, CA (cat# 3523-1)), and then from Abcam (Cambridge, MA (cat# 

ab124812)). Antibodies for BUB1, β-Actin, FADD (mouse FADD) and GFP (used for 

IHC and IF, respectively) antibodies were from Abcam (Cambridge, MA (FADD cat# 

ab24533). Ki-67 antibody was obtained from Vector labs. CKI-7 was from Sigma (St. 

Louis, MO). PD0325901 was purchased from Selleck (Houston, TX), and Lonafarnib 
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was bought from Cayman Chemical (Ann Arbor, MI). Alamar Blue was purchased from 

Invitrogen (Carlsbad, CA). Luciferin was obtained from Promega (Madison, WI). 

Adenovirus-Cre was bought from the University of Michigan Vector core.  

 

Tissue Isolation and Western blotting 

Animals were euthanized with CO2. Tumors were harvested and snap frozen in liquid 

nitrogen. Tumor samples were manually homogenized in RIPA buffer (Invitrogen) with 

protease inhibitor (Complete-Roche), PhosSTOP (Roche), and PMSF (Sigma). Lysates 

were centrifuged at 4oC for 30 minutes at 16,000xg and the supernatant collected for 

analysis. Cells from culture dishes were collected in cold 1x PBS and centrifuged at 

1,800 X g for 5 minutes at 4°C. The cell pellet was washed with cold PBS and then 

lysed with the same buffer as above. Cells in lysis buffer were incubated in ice for 30 

minutes. The lysates were then cleared by centrifugation at 16,000 X g for 15 minutes. 

The collected supernatants were estimated for protein content by Lowry assay (Biorad). 

Lysates with equal amounts of protein were resolved by 12% SDS/PAGE, and protein 

abundance was detected by Western blot analysis using the appropriate primary and 

secondary antibodies. Specific signals were visualized by using ECL Clarity western 

detection system by Biorad.   

 

Cell Culture, MEF Isolation 
A549 (lung epithelial carcinoma), NCI H1975 (lung epithelial adenocarcinoma) and 

HEK293T cells were purchased from the American Type Culture Collection (ATCC). 

A549 and H1975 cell lines were cultured in RPMI-1640 (Invitrogen, Carlsbad, CA) 

supplemented with 10% fetal bovine serum (FBS) and 1% penicillin, streptomycin and 

glutamine (Invitrogen, Carlsbad, CA). HEK293T cells were cultured in DMEM 

(Invitrogen, Carlsbad, CA) and supplemented with 10% FBS and 1% penicillin, 

streptomycin and glutamine. Mouse embryonic fibroblasts (MEFs) were isolated from 

day E13-14 embryos from one mother. Briefly embryos were placed in ice cold PBS 

where the placenta and visceral tissue was removed. After washing in PBS the embryos 

were minced in trypsin and incubated at 37°C. The minced embryos were then further 

disrupted and then plated with DMEM supplemented with 10% FBS, and 1% of 
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penicillin, streptomycin, glutamine and non-essential amino acids (Invitrogen, Carlsbad, 

CA). Cells were grown at 37°C with 5% CO2. MEFs were subjected to AdCre 1x108 pfu 

and 24-48 hours later were FACs sorted for GFP negative cells.  

 

Cell Proliferation, Soft Agar Foci Assays, and Cell Cycle Analysis  
Cell proliferation assays were carried out by plating 3x103 MEF cells per well in a 96 

well format in DMEM supplemented with 10% FBS, 1% penicillin streptomycin with 

glutamine and 1% non-essential amino acids. 5 hours after plating, 250μM CKI-7, 10 

μM Lonafarnib or 200nM PD0325901 were added to designated wells. 24 hours after 

adding CKI-7 Lonafarnib or PD0325901, 10ul of Alamar blue was added to the first set 

of wells. Fluorescence was measured an hour later on a Perkin Elmer Envision. This 

was repeated at 48, 72 and 96 hours post addition of inhibitors. For the soft agar assay 

2x104 MEF cells were plated in 0.3% agarose DMEM complete, with 20% FBS, on top 

of 0.7% agar supplemented with DMEM. Media was added to the cells twice a week for 

2 weeks. 0.005% crystal violet was added to the cells and colonies were counted 24 

hours later using a dissecting microscope and ImageJ. For cell cycle analysis, MEF 

cells were plated in supplemented DMEM as described above. 24 hours later 250μM 

CKI-7, 10μM Lonafarnib or 200nM PD0325901 were added. 24 hours after adding the 

inhibitors, cells were trypsinized and resuspended with PBS. Cells were then fixed with 

100% ice cold ethanol either for 20 minutes. Cells were centrifuged and resuspended 

with a propdium Iodide and RNAse solution (final concentration 50μg/ml PI with 

100μg/ml RNAse Type I-A in PBS). Cells were incubated at room temperature for 20 

minutes and then over night at 4°C in the dark before being analyzed. Cells were 

analyzed as described above using a FACSAria III machine and with the FlowJo 

software.  

 

Thymidine Synchronization, Immunoprecipitation 

To detect the cell cycle dependent endogenous association between FADD and other 

cell cycle related proteins, NCI H1975 cells were synchronized by double thymidine 

block. Cells were incubated with 4 mM thymidine (Sigma) for 16 hours, released into 

fresh media for 9 hours, followed by 16 hours thymidine incubation then released into 
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fresh media. Cells were harvested at the indicated time points. Synchronized cells were 

harvested in lysis buffer (50 mM Tris-HCl pH 7.5, 150 mM NaCl, 10% glycerol, 1 mM 

EDTA, 1% NP40) supplemented with protease and phosphatase inhibitors. Protein 

concentration was normalized by Biorad Protein Assay (Bio-Rad). Immunoprecipitation 

was carried out by incubating cell lysates with antibodies against human FADD or 

normal mouse IgG for 2 hours at 4°C. Antibody-protein complexes were captured with 

protein A or G-sepharose (GE Healthcare) by incubating 50 µl of beads per 200 µg of 

protein at 4°C for 2-3 hours. The resulting pellet was collected by centrifugation at 

2,000g for 2 minutes, washed three times with lysis buffer, boiled in 2X NuPage LDS 

sample buffer (Invitrogen) and resolved by SDS-PAGE. Western blots were carried out 

as outlined above. 

 

Mass Spectrometry 
12 million HEK 293T cells in 15 cm dishes were transfected with 30 µg pFN21A-FADD-

HaloTag and Ctrl-HaloTag using Fugene HD. 24 hours post transfection, cells were 

scraped into DPBS and cell pellets were frozen at -70C for at least 20 minutes. 

Previously frozen cell pellets were lysed in Promega Mammalian Lysis Buffer 

supplemented with protease inhibitor cocktail (G65A). The cleared lysate was bound to 

the pre-equilibrated HaloLink resin for 15 minutes at room temperature. Resin-bound 

proteins were eluted with Promega SDS Elution Buffer (G651A). Samples were 

analyzed by LC-MS/MS analysis. Refer to Promega TM342 Section 5A for details. 

 

Statistics 
Differences between groups were assessed using an unpaired Student’s t-test. Results 

were declared statistically significant at the two-tailed 5% comparison-wise significance 

level (p<0.05). All error bars represent the standard error of the mean (SEM). 
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2.6 Figures  
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Figure 2.1 A requirement for FADD in Kras-driven lung cancer 
(A) Genetic strategy used to activate KrasLSL-G12D, Rosa26LSL-Luciferase and deplete 
Fadd:GFP expression in a lung specific manner. Animals were imaged using 
bioluminescence and/or CT at indicated weeks post administration of AdCre. (B) 
Representative bioluminescent images of KLuc, and KFLuc mice at designated times. (C) 
Average bioluminescence (BLI) for Luc (n=7), FLuc (n=7), KLuc (n=25), and KFLuc (n=34) 
mice at specified times. (D) Representative images of CT scans of lungs from Luc, FLuc, 
KLuc, and KFLuc animals at shown times, with H&E slide corresponding to that animal 
from week 18 or week 22 as indicated. Arrows indicate lesions. H indicates heart. (E) 
Average tumor and vascular volumes of KLuc (n=10) and KFLuc (n=17) analyzed from CT 
at indicated times. Statistical significance *p=0.009 and **p=0.018 calculated using an 
unpaired Student’s t-test. (F) Co-localization of BLI and CT image of Luc, KFLuc and KLuc 
mice. Inset of H&E stained image of lesion in KLuc animal. (G) Survival Plot of KLuc 
(n=19) and KFLuc (n=15). ***p=0.005 determined by Wilcoxon logrank test. All data are 
represented as the mean + SEM. 
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Figure 2.2 Fadd-null lung tumors are less proliferative  
(A) Representative images of lung histology from 18 weeks post AdCre animals stained 
with hematoxylin and eosin (H&E) and antibodies against Cyclin D1, Ki-67, and FADD. 
Scale bar = 500uM for 10x, 200uM for 40x, and 50uM for 100x. (B) Average tumor area 
quantified from H&E slides of KLuc (n=6) and KFLuc (n=10) mice. *p=0.04 calculated 
using unpaired Student’s t-test. (C) Average percentage of positive Ki-67 stained cells 
of KLuc (n=10) and KFLuc (n=10) mice. **p=2x10-5 calculated using unpaired Student’s t-
test. (D) Representative western blot of lung tumor protein using antibodies for FADD 
(endogenous), GFP (Fadd transgene), pERK1/2, total ERK1/2, phospho-RB, Cyclin D1, 
Cyclin B1 and β-Actin.  
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Figure 2.3 Fadd-null lesions have lower pERK1/2 abundance and their smaller 
size is not due to cell death (A) Representative images of lung tissue from Luc, KLuc 
and KFLuc stained with an antibody to pERK1/2 or Hematoxylin and Eosin Y (H&E). 
Scale bar =200uM. (B) Representative images of lung tissue from KLuc and KFLuc 
animals stained with an antibody against cleaved-Caspase 3 at 40x magnification. 
Scale bar = 200uM 
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Figure 2.4 Fadd-null lesions still express Fadd transgene. (A) Semi-quantitative 
PCR of tumor samples from individual mice show decreased quantities of Fadd 
transgene (Fadd:GFP) compared to liver samples. (B) Representative western blot of 
tumor samples from individual KLuc and KFLuc mice probed with antibodies against 
FADD, GFP and β-actin. All samples are positive for Fadd transgene (GFP). (C) 
Immunofluorescence of tumor tissue stained with DAPI and an antibody against GFP. 
Scale bar = 500uM. 
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Figure 2.5 Increased FADD mRNA correlates with KRAS mutation. (A). Box and 
whiskers graph analyzed from Oncomine using data from Ding et al 2008 (22). Patient 
data was separated based on mutant KRAS status. Patients’ whose KRAS mutation 
status was unknown was placed in a No Value (n= 34) group. FADD mRNA was 
increased in patients with mutant KRAS (n=12) as compared to patients with wild type 
KRAS (n=29).  The P value was calculated using unpaired Student’s ttest comparing. 
p=0.007. (B). Box and whiskers graph analyzed from Oncomine using data from 
Okayama et al 2012 (23). Patient data was separated based on mutant KRAS status. 
Patients’ whose KRAS mutation status was unknown was placed in a No Value (n=20) 
group. FADD mRNA was increased in patients with mutant KRAS (n=20) as compared 
to patients with wild type KRAS (n=206). The P value was calculated using unpaired 
Student’s ttest comparing. p=0.009. 
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Figure 2.6 FADD and FADD phosphorylation are required for Kras-driven cell 
proliferation 
(A) Representative western blot of Luc, KLuc and KFLuc MEFs immunoblotted with 
antibodies for FADD, Cyclin D1 and β-Actin. (B) Alamar blue proliferation assay of 
untreated Luc, KLuc and KFLuc MEFs. Graphs are comprised of 3 separate experiments.  
(C) Alamar blue proliferation assay of Luc, KLuc and KFLuc MEFs treated with 250uM 
CKI-7, 10uM Lonafarnib, 200nM PD0325901 or DMSO. Graphs are comprised of 3 
separate experiments. (D) Average number of foci formed in a colony formation assay 
by KLuc and KFLuc MEFs treated with DMSO, 250uM CKI-7, 10uM Lonafarnib or 200nM 
PD0325901 for 2 weeks.  (E) Fluorescence assisted cell sorting (FACS) analysis of cell 
cycle distribution 24 hours after treatment with DMSO, 200nM PD0325901, CKI-7 
250uM or 10uM Lonafarnib in KLuc and KFLuc MEFs. (F) Representative western blot 
using indicated antibodies in KLuc MEFs that were treated with DMSO, 250uM CKI-7, 
10uM Lonafarnib or 200nM PD0325901 for 6 hours before being harvested. All data are 
represented as the mean + SEM. 
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Figure 2.7 FADD interacts with key mediators of G2/M transition. 
(A) Representative western blot using antibodies to indicated human proteins in H1975 
cells after double thymidine block and subsequent release. Cells were harvested at 6, 7, 
8, and 9 hours post thymidine block. The first lane was harvested asynchronous cells. 
(B) Table illustrating top cell cycle related proteins which Halo tagged FADD pulled 
down. NSAF is the normalized spectral abundance factor. (C) Representative western 
blot of FADD co-immunoprecipitation assay from A549 cells using antibodies against 
FADD, BUB1, PLK1, and AURKA.  Indicated conditions include asynchronous cells, 
CKI-7 treated cells, nocodozole (G2/M) and hydroxyurea (G1/S) treated cells.  
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Figure 2.8 FADD interacts with proteins involved in cell cycle (A) Analysis of mass 
spectrometry data using DAVID. Top cell processes by p values as analyzed from 
DAVID.  (B) Interactome of cell cycle proteins from mass spectrometry experiment 
prepared using STRING. Lines represent confidence of interaction.  
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Figure 2.9 A requirement for CK1α in Kras-driven lung cancer 
(A) Genetic strategy used to activate KrasLSL-G12D, Rosa26LSL-Luciferase and delete Csnk1a 
expression in a lung specific manner. Animals were imaged for BLI and/or CT at 
indicated weeks post administration of Cre recombinase. (B) Average BLI for Luc (n=8), 
CLuc (n=5), KLuc (n=38), and KCLuc (n=25) mice at specified times. Scale is radiance 
(p/sec/cm2/sr). (C) Representative images of CT scans of lungs from Luc, KLuc, CLuc, 
and KCLuc animals at shown times, with H&E slide corresponding to that animal from 
week 18. Arrows indicate lesions. H indicates heart. (D) Average tumor and vascular 
volumes of KLuc (n=8) and KCLuc (n=7) analyzed from CT at indicated times. Statistical 
significance *p=7.47x10-6 was calculated using an unpaired Student’s t-test. (E) 
Representative images of lung histology from 18 weeks post AdCre animals stained 
with hematoxylin and eosin (H&E) and antibodies for  Ki-67, FADD and CK1α. Scale bar 
= 500uM for 10x, 200uM for 40x, and 50uM for 100x. (F) Representative western blot 
using antibodies against CK1α, FADD and β-actin, in KCLuc MEFs that were treated with 
different concentrations of AdCre. pfu=Plaque forming units (G) Representative western 
blot using antibodies for indicated proteins in KLuc and KCLuc MEFs treated with AdCre 
or AdLuc (Adenovirus Luciferase)  
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Figure 2.10 Immunohistochemistry of Csnk1a1 null lesions reveal residual CK1α 
protein. Representative images of lung histology from week 18 post AdCre 
administration, stained with (H&E) and antibodies against Ki-67, FADD, and CK1α. 
Scale bar = 500uM for 10x 200uM for 40x, and 50uM for 100x. 
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Figure 2.11 Model. Based on our data, we believe that FADD and CK1α play a 
necessary role in mediating KRAS mitogenic signaling in cancer. Inhibition of KRAS and 
MEK led to decreased FADD phosphorylation and decreased cell proliferation. Inhibition 
of CK1α or deletion of Csnk1a1 also resulted in decreased growth phenotypes and 
decreased FADD phosphorylation. Deletion of FADD resulted in sever decrease of cell 
proliferation as cells were arrested in G2/M, likely since it cannot interact with key G2/M 
transition proteins like AURKA, PLK1 or BUB1. 
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CHAPTER 3 

 
CONCLUSIONS  

 
 

3.1 Summary of Thesis 
In this thesis, I have presented evidence demonstrating the importance of FADD 

and its phosphorylation by CK1α in mutant Kras-driven lung cancer. I determined that 

indeed both FADD and CK1α are necessary for tumorigenesis in a mutant Kras 

dependent mouse model of lung cancer, as loss of either resulted in decreased tumor 

burden from abrogated proliferation. In cell culture studies I showed that FADD 

phosphorylation is mediated by KRAS signaling, and inhibition of this pathway or 

inhibition of CK1α resulted in decreased FADD phosphorylation and lower cell 

proliferation due to cell cycle arrest. Based on this data I believe CK1α is an attractive 

therapeutic target for patients with mutant KRAS positive NSCLC.  

3.2.1 Lack of KRAS Specific Therapies 
 As mentioned in the introduction, there are currently no KRAS specific therapies 

available to the 32.2% of patients with mutant KRAS. Until recently, KRAS was 

considered an impossible to target [1]. One reason for this is the general nucleotide 

binding site of KRAS. Many early inhibitors acting at this site have off target effects. 

Second, inhibitors of farnesylation, although potent in cell cultured failed in patients 

again due to off target effects [1]. Recently, a set of potential compounds have been 

found which specifically inhibit the G12C KRAS mutation [2, 3]. However there are still 

no targeted therapies against other KRAS mutants. Currently, there are several clinical 

trials testing the inhibition of downstream targets of KRAS, such as MEK and the 

kinases involved in cell cycle regulation. The next sections describe the state of current 

state of the art drugs and their respective clinical trials.  
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3.2.1.1 KRASG12C Inhibitors  
Recently, two groups found success in inhibiting the KRAS G12C mutation; both 

groups discovered compounds which affect the nucleotide binding site in KRAS by 

exploiting the Cys 12 residue [2, 3]. Ostrem et al., 2013 found compounds that 

allosterically inhibit GTP binding by disturbing both switch I and II resulting in an 

increased affinity for GDP [2]. Separately in 2014, Hunter et al developed irreversible 

inhibitors which covalently bind to Cys 12 [3]. These findings are very exciting, as KRAS 

could be targeted specifically for the first time. It also gives hope for patients with this 

mutation, although it will be several years before this will become a reality. The need 

remains to develop inhibitors targeting the other G12 mutations in KRAS. Finding 

inhibitors which target the G12D mutation may be feasible since the negatively charged 

aspartic acid could be utilized, but the G12V mutation may prove to be more difficult to 

target. Importantly, inhibitors of downstream targets would benefit patients regardless of 

their KRAS mutation.  

3.2.1.2 MEK Inhibitors 
 As mentioned earlier, there is ongoing research into downstream targets of the 

EGFR/KRAS pathway. MEK is one such downstream target. Currently, there are 

several trials underway to test the efficacy of MEK inhibitors as monotherapies as well 

as in combination therapies with docetaxel. At present, there are several compounds 

currently in clinical trials for targeting MEK in mutant KRAS positive NSCLC. The two I 

will focus on are Selumetinib and Trametinib which are selective oral inhibitors of 

MEK1/2 [4]. Selumetinib has been entered into a phase III trial in combination with 

docetaxel after a successful phase II. In the phase II trial, patients who were treated 

with selumetinib and docetaxel (n=44) saw an improvement in progression-free survival 

of 5.2 months versus 2.1 months of patients treated with docetaxel and placebo (n=43) 

[5]. The combination treatment also had a median overall survival of 9.4 months as 

compared to 5.2 months of docetaxel and placebo [5]. However, many patients (18%) 

on the combination therapy suffered from febrile neutropenia as well as a general 

increase in hospital visits as compared to the docetaxel only group [4, 5]. Currently 

there is an ongoing phase III trial for this treatment in patients with late stage and 

mutant KRAS NSCLC (NCT01933932) [4, 6]. Trametinib has been approved in 
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combination treatment of patients with melanoma [4] and several phase I clinical trials 

in NSCLC have been completed [4, 7].  
Although there has been partial success with selumetinib, several trials involving 

MEK inhibitors failed [8].This was due to increased toxicity, such as rash, diarrhea, 

nausea. Depending on the inhibitor, serious neurotoxicity (PD3025901), rare left 

ventricular cardiac dysfunction (tramentinib), and disappointing tumor response also 

occurred [8]. MEK inhibitors remain the next best in treatment for KRAS-driven lung 

cancer, however new inhibitors with less toxicity are needed as well as optimal therapy 

regimens.  

3.2.1.3 AURKA and PLK1 Inhibitors 
 Polo-like Kinase 1 (PLK1) and Aurora Kinase A (AURKA) are important 

regulators of cell cycle progression and each have several roles. PLK1 signaling affects 

mitotic entry, centrosome maturation, spindle assembly, APC/C regulation and 

cytokinesis [9, 10].  PLK1 overexpression in NSCLC has been shown to correlate with 

poor survival in patients [11]. Currently there are several clinical trials with potent PLK1 

inhibitors. Although these inhibitors, such as BI 2536, BI 6727, are potent and selective 

for PLK1, PLK1 inhibitors have only shown modest clinical efficiency with very few 

NSCLC patients responding to treatment [12-15]. These inhibitors also suffer from high 

toxicity such as neutropenia, nausea, fatigue, leucopenia and thrombocytopenia [12-
15].  
 Similarly to PLK1 inhibitors, AURKA inhibitors also have not proved to be efficient 

targets in clinical trials and suffer from high toxicity [16]. Like PLK1 inhibitors the most 

common side effect is neutropenia. Furthermore, AURKA has not been demonstrated to 

be an oncogene [16]. Although, there are several reports where high levels of AURKA 

in cell culture potentiates mutant KRAS transformation, increased levels of AURKA did 

not lead to transformed cells [16, 17]. There are several second generation AURKA 

inhibitors in phases I and II for solid tumors and it will be interesting to see the 

outcomes.  

 Interestingly, both kinases bind to FADD (Fig. 2.7) and phosphorylate FADD [18, 
19]. Inhibition of these kinases results in G2/M arrest and a decrease in FADD 

phosphorylation. Our depletion of CK1α in a mouse model of lung cancer led to similar 
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results as FADD depletion and led to a significant loss of FADD phosphorylation. It is 

unclear how important PLK1 or AURKA is in regulating FADD in this context. 

Regardless, current therapies against both kinases are proving to be highly toxic without 

useful clinical efficiency in NSCLC, indicating the need for new inhibitors or even 

different targets.  

3.2.2 CK1α as a Therapeutic Target 
 We have demonstrated that inhibition of CK1α is a viable method to treat mutant 

Kras-driven lung cancer. Inhibition or depletion of CK1α decreased cell proliferation as a 

result of cell cycle arrest in cell culture prevented the formation of lesions in the KCLuc 

mouse model. In BaF3 cells, expression of CK1α was recently observed to be 

necessary for KRAS G12V driven cell proliferation [20]. CK1α was required for the 

formation of plasamacytomas in a mouse model, and  animals with low expression of 

CK1α lived longer than animals with both mutant KRAS and CK1α expression [20]. 
Together these data indicate CK1α as an attractive downstream target of mutant KRAS-

driven cancers.   

3.2.3 Need for New CK1α Inhibitors 
Currently there are several CK1 inhibitors available to researchers. However, these 

inhibitors are not satisfactory due to problems with affinity, bioavailability and selectivity. 

CK1-7 is a widely used CK1 inhibitor which suffers from a low IC50 of 6 uM and poor 

cellular uptake [21, 22]. CKI-7’s poor uptake necessitated the high concentration used 

in this thesis (250uM).  Another commonly used inhibitor is D4476. D4476 has an IC50 

of 0.3uM molar affinity for CK1α [22], however it has poor bioavailability and in cell 

based assays has decreased activity (20-50uM) [23, 24]. Both inhibitors also have off 

target effects. CKI-7 is a 6uM inhibitor of SGK, and other CK1 isoforms and D4476 has 

been shown to inhibit ALK5, p38, and CK1ε [22, 23, 25].  
While these inhibitors are widely used, their issues highlight a need for new and 

better drugs. New CK1α inhibitors are inadvertently being discovered in the effort to 

synthesize new CK1ε/δ inhibitors for their role in circadian rhythm [24]. One potential 

CK1α inhibitor is a compound called Bischof-5, [26, 27]. Subsequent compounds 

derived from Bischof-5 confer nanomolar affinity for CK1α.  At least three compounds 

that have nanomolar affinity for CK1α (Compound 1: 163.4nM; Compound 5: 228.6nM; 
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Compound 6: 340.2nM) [27] which is more sensitive than either CK1-7 or D4476 (6uM 

and 0.3-20uM, [23, 24]) [27].  Although these compounds are more specific for the 

CK1ε/δ isoforms, these agents provide a starting point for developing specific CK1α 

inhibitors.   

3.3 Future Directions 
 

In the work presented in this dissertation, significant progress has been made in 

confirming FADD and its phosphorylation by CK1α as important downstream mediators 

of Kras signaling and CK1α as a promising targeting this pathway. However, further 

work needs to be carried out to demonstrate the benefits of inhibiting FADD 

phosphorylation in other contexts, such as NSCLC with other genetic drivers or even 

other cancers. Both p53 loss and abrogated EGFR also prevalent in lung cancer as 

discussed in section 1.2.3.4. To better stratify patients for targeted therapies, studying 

the role of FADD in a mouse model of p53 loss or overexpressed/mutant EGFR would 

be an important future direction. I believe that loss of FADD or inhibition of CK1α in 

EGFR dependent lung cancer may be similar to the results we found in this thesis, since 

KRAS is downstream of EGFR.  

Another interesting future direction would be to confirm FADD interacting proteins 

from our Mass Spectrometry data. As mentioned in Chapter 2, many of these proteins 

are involved in G2/M transition of the cell cycle. FADD may play a role in chromosome 

condensation and sister chromatid cohesion; mass spectrometry reveals FADD 

interacts with proteins from both the cohesion and condensin complexes (Fig. 2.7B). 

Both cohesion and condensin complexes are important for proper chromosome 

segregation [28]. Phosphorylated FADD has been shown to be localized to the mitotic 

spindle in mitosis [29]. If FADD is a necessary component in these complexes, it is 

possible that cells arrest in G2/M due to improper mitotic spindle formation/separation 

when FADD is lost.  

In summary, FADD and CK1α pose as new therapeutic targets for patients with 

mutant KRAS lung cancer.  
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