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ABSTRACT

The relatively recent abundance of computing resources has driven computational scientists

to build more complex and approximation-free computer models of physical phenomenon.

Often times, multiple high fidelity computer codes are coupled together in hope of improv-

ing the predictive powers of simulations with respect to experimental data. To improve the

predictive capacity of computer codes experimental data should be folded back into the pa-

rameters processed by the codes through optimization and calibration algorithms. However,

application of such algorithms may be prohibitive since they generally require thousands of

evaluations of computationally expensive, coupled, multiphysics codes. Surrogates mod-

els for expensive computer codes have shown promise towards making optimization and

calibration feasible.

In this thesis, non-intrusive surrogate building techniques are investigated for their ap-

plicability in nuclear engineering applications. Specifically, Kriging and the coupling of

the anchored-ANOVA decomposition with collocation are utilized as surrogate building

approaches. Initially, these approaches are applied and naively tested on simple reactor ap-

plications with analytic solutions. Ultimately, Kriging is applied to construct a surrogate to

analyze fission gas release during the Risø AN3 power ramp experiment using the fuel per-

formance modeling code Bison. To this end, Kriging is extended from building surrogates

for scalar quantities to entire time series using principal component analysis. A surrogate

model is built for fission gas kinetics time series and the true values of relevant parameters

are inferred by folding experimental data with the surrogate. Sensitivity analysis is also

performed on the fission gas release parameters to gain insight into the underlying physics.

x



CHAPTER 1

Introduction

1.1 Overview of Previous Work

Modeling nuclear reactor stability and performance computationally has evolved into a
multi-physics and multi-scale regime. Various computer codes have been developed and
optimized to model individual facets of reactor operation such as neutronics, thermal-
hydraulics, and kinetics. These codes are most often coupled to produce more physical
results. While it is crucial to be able to produce best-estimate calculations for the design
and safety analysis of nuclear reactors, it is equally important to obtain design margins by
propagating uncertainty information through the entire computational process. Replacing
seemingly arbitrary design margins based on engineering judgment with design margins
based on the uncertainty quantification of computer codes can help overcome significant
human shortcomings [18].

The methodologies used for uncertainty quantification in nuclear engineering have gen-
erally mirrored the computational resources available during the time of development.
When computational resources were relatively limited, methods based on perturbation the-
ory were derived since the method computation times are independent of the number of
input parameters [76]. Perturbation theory applies a number of linear approximations and
adjoint operators to allow for the retrieval of sensitivity coefficients and basic statistical
moments of responses of interest. However, in perturbation theory each desired response
requires the solution of a deterministic equation and in some inhomogeneous problems in
reactor physics the linear approximations may fail [21]. In addition, application of per-
turbation theory techniques to computer codes is highly intrusive. Coupled, multiphysics
uncertainty analyses using perturbation theory are prohibitive especially when legacy codes
are involved. Yet another drawback of perturbation theory in neutronics applications arises
in the adjoint-based formulation for cross section uncertainty propagation. In this case,
exceptions must be made to responses that cannot be expressed as ratios of reaction rates,
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as in the transport cross section and assembly discontinuity factors (ADFs) [84] [83].
As computer resources increased, the linear approximations of perturbation theory were

gradually relaxed until routine Monte Carlo sampling became feasible. In the XSUSA
method a 44-group covariance matrix is stochastically sampled to generate perturbed few-
group cross sections that can be used as input to a Monte Carlo uncertainty analysis in a
core simulator [43]. While uncertainty quantification using Monte Carlo sampling does
not apply any approximations to the mathematical system under investigation, the com-
putational expense is tremendous, and the extraction of information such as sensitivity
coefficients can be difficult. Nevertheless, sampling provides a brute force means by which
many uncertainty quantification algorithms can be validated.

Recently, an approach based on the stochastic finite element method, referred to as
polynomial chaos expansion, has been developed for the purposes of uncertainty quantifi-
cation [24]. The basic idea behind polynomial chaos expansions is to expand the random
variables of some governing stochastic partial differential equations in terms of orthogonal
polynomials and then to apply Galerkin projections [51]. This idea is similar to the angular
expansion of the scatter cross section in terms of Legendre polynomials in neutron transport
theory. Methods for uncertainty quantification that employ polynomial chaos expansions
fall under the general mathematical framework of spectral methods. The motivation behind
spectral methods, and specifically collocation, for uncertainty quantification is to combine
the rapid convergence rates of deterministic methods with the generality of stochastic sam-
pling methods.

While used extensively in structural and materials engineering, polynomial chaos ex-
pansions have been seldom applied in nuclear engineering. In [80] and [79] the author
applies analytic polynomial chaos techniques to investigate the effect of random material
properties on radiation transport through a slab in the P1 approximation. The authors in [5]
apply non-linear polynomial chaos to examine static and dynamic eigenvalue uncertainties
due to uncertainties in cross section values. Finally, the authors in [19] use polynomial
chaos-collocation to study the effects of total cross section uncertainties on the probability
density function of the scalar flux in absorbing and diffusive media.

The polynomial chaos expansions based on stochastic Galerkin methods applied in the
research above exhibit several substantial advantages over Monte Carlo and perturbative
methods. Mainly, spectral convergence rates can be achieved. In addition, while nonlin-
earities and large uncertainties in random variables pose problems for perturbation meth-
ods, the stochastic Galerkin methods easily deal with such factors. However, the primary
drawback of polynomial chaos expansions with stochastic Galerkin methods lies in their
intrusive nature. In other words, unless an engineering code is initially developed with
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stochastic Galerkin capabilities, which is unlikely, extensive modifications will have to be
made to the code. Modifications include adding the ability to solve an enlarged system of
coupled, partial differential equations.

To this end the stochastic collocation method, a variant of polynomial chaos expansion,
is considered since it circumvents the need to modify engineering code in order to im-
plement spectrally converging uncertainty quantification methods. Stochastic collocation
methods are essentially interpolatory, projecting a set of deterministic simulations onto a
polynomial basis. With stochastic collocation codes can be treated as ”black boxes”. Such
an attribute is highly desirable for the uncertainty analysis of nuclear engineering computer
codes since often these consist of coupled, multi-physics, and multi-scale legacy code. The
success of perturbatory methods, which are linear, in the uncertainty analysis of nuclear
engineering codes is indicative of the potential for stochastic collocation. Being a spectral
method, stochastic collocation performs best on smooth functions [12].

However, even when utilizing a stochastic collocation method based on sparse grid con-
structs, the method suffers from the so-called ”curse of dimensionality” [51]. The ”curse of
dimensionality” arises when the convergence of a method is proportional to the exponent
of the the function’s dimensionality, as in a full tensor product interpolation scheme. While
sparse grids help to mitigate the ”curse of dimensionality” researchers have shown that
when applied to realistic engineering computer simulations the practicality of stochastic
collocation diminishes for dimensions greater than O(10) [50]. Consequently, further mit-
igation is needed in order to apply stochastic collocation to real-world engineering prob-
lems. To this end, reduced order models, also known as surrogate models, are utilized.
Reduced order models work to find a relatively small subspace of some function that is still
representative of the original function space.

Performing uncertainty quantification on high-dimensional, coupled, multiphysics en-
gineering codes can be prohibitive if the codes take many hours to run. To make uncertainty
quantification feasible for such problems reduced order models are constructed. While a
reduced order model may be computationally expensive to build, the ideal end product is
a function that can be rapidly evaluated while simultaneously preserving the predictive ca-
pabilities of the large-scale model [13]. Due to the rapid evaluation of the reduced order
model, uncertainty quantification, optimization studies, probabilistic analysis, and inverse
problems can be carried out.

The popularity of collocation-based methods for uncertainty quantification have stemmed
from greater accessibility to computing clusters. As recently as 2006 the theme in uncer-
tainty quantification had been how to get the most out of a limited number of available
simulations [27]. In [27] researchers investigated whether it is more accurate to estimate
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statistics directly from N unstructured simulations of a large-scale engineering code or from
a trend model based on the N simulations. Krigging interpolation and multivariate adaptive
regression splines are two common approaches for building trend models [70]. Colloca-
tion methods differ from such response surface approximation methods mainly in their use
of structured grids at which the large-scale codes are evaluated. Use of structured grids
generally allow for faster convergence to various error thresholds. However, to achieve
the expected convergence of collocation algorithms the number of times a large-scale code
must be executed is dictated by the algorithm and not the user.

1.2 Stochastic Partial Differential Equations

A stochastic partial differential equation (SPDE) is similar in flavor to the better known
partial differential equation (PDE), the main difference being the presence of input uncer-
tainties in the former’s parameter space. If the parameters in some PDE are probabilistic
and the affects of those variable parameters on the outputs are of interest, then the PDE
must be reformulated into a SPDE. The following example aims to elucidate the difference
between PDEs and SPDEs and to motivate a discussion of the unique features characteristic
to SPDEs. While these features form the mathematical back-bone for this thesis they are
somewhat abstract and not crucial to developing an understanding of the subject matter.

Consider the PDE describing one-speed diffusion of neutron flux in a slab nuclear re-
actor [17]:

1
v

∂φ

∂ t
−D

∂ 2φ

∂x2 +Σaφ(x, t) = νΣ f φ(x, t) (1.1)

φ(x,0) = φ0(x)

φ(a, t) = φ(−a, t) = 0

The PDE in 1.1 can be solved for the flux φ as a function of both space x and time t.
However, such a solution assumes that the parameters in the PDE, namely v, D, Σa and
νΣ f , are fixed values. What would happen to the flux if these parameters were described
by probability distributions? The flux would be influenced by perturbations to any of the
parameters and so the initial two-dimensional problem is converted to a six-dimensional
problem, uncertainty in initial and boundary conditions aside. How would the solution to
this SPDE be found? A few preliminaries are in order.
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1.2.1 Preliminaries

Most of the language used to describe SPDEs comes from the field of probability the-
ory, which is based on the ideas of sets, fields, and events. The notation and definitions
described here come mainly from [54]. The ultimate purpose of introducing the proceed-
ing ideas from probability theory is to be able to understand random variables and the
Doob-Dynkin Lemma. Some of the jargon used to describe sets will also be utilized when
discussing dimension-wise function decompositions. A set is simply a collection of objects
while a subset is a collection of objects contained within the larger set. A sample space is
the set of all outcomes of an experiment and is usually denoted by Ω. For example, if the
experiment is flipping a fair coin then the sample space is Ω = {H,T}. Subsets of Ω are
referred to as events. If Ω = {ω1,ω2, ...,ωN} then the total number of subsets of Ω is 2N ,
where both the empty set /0 and all of Ω are included in the count.

A few definitions from set algebra are required before moving on to the Doob-Dynkin
Lemma. A union, or sum, of two sets A and B is the set of elements that are in at least A

or B and is denoted by A∪B. The intersection of sets A and B consists of all the elements
belonging to both A and B and is denoted by A∩B. Finally, the complement of a set A,
denoted by AC, consists of all the elements not in A. From these definition, it follows that
A∪AC = Ω and A∩AC = /0.

Now, let’s use the ideas of sets, unions, and intersections to define what is meant by a
field and sigma field. Let A and B be subsets of the set Ω. The subsets A and B form a field

M if,

• /0 ∈M, Ω ∈M

• If A ∈M and B ∈M then A∪B ∈M and A∩B ∈M

• If A ∈M then AC ∈M

A sigma field F is a field that is closed under any countably infinite set of unions and
intersections. In other words if subsets A1, ...,An, ... belong to F then so do

⋃
∞
i=1 Ai and⋂

∞
i=1 Ai. Consider the sample space Ω = {1,2,3}. Following the definition of a sigma field,

F = { /0,Ω,{1} ,{2,3}} is a sigma field while G = { /0,Ω{2}} is not. Rather, the correct
sigma field of G is σ (G ) = { /0,Ω,{2} ,{1,3}}. The notation σ (U ) is used to denote the
smallest sigma field containing U , where U is a collection of subsets of Ω. In general,
such a sigma field can be constructed by,

σ (U ) =
⋂
A

{U ⊂A :A is a sigma field} (1.2)
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A Borel sigma algebra is B = σ (U ) where U consists of all the open sets in RN .
Combining the ideas described above, a probability space (Ω,F ,P) consists of a sam-

ple space Ω, a sigma field F of subsets of Ω, and a probability function P on (Ω,F ). The
probability function must satisfy the three axioms of probability, which are given as:

1. P(A)≥ 0

2. P(Ω) = 1

3. P(A∪B) = P(A)+P(B) if A∩B = /0

An example will help make some of these abstract concepts more concrete. Consider the
experiment of tossing a fair coin. The sample space is Ω = {H,T} and the sigma field of
events is F = {{H} ,{T} ,Ω, /0}. Probabilities of events in F are P(H) = P(T ) = 1/2,
P(Ω) = 1 and P( /0) = 0.

At this point, enough background has been given to describe a random variable in gen-
eral terms. Uncertainty quantification pioneer Gianluca Iaccarino writes, ”Random vari-
ables are the building blocks for studying uncertainties in a probabilistic framework” [32].
In the simplest terms, a random variable takes events and assigns them a real number. Let
X be a random variable. Then X takes an event ω from the event space Ω and maps it to a
number on the real line X (ω) : Ω→R. Under such a mapping a whole region AB ∈Ω gets
mapped to an interval B on the real line. A more formal definition of a random variable can
be made using the language of set theory. Let (Ω,F ,P) be a probability space. A mapping
X : Ω→ RN measurable with respect to F is a random variable. In other words, for any
open set A in RN , X−1 (A) ∈F is a random variable.

As an example, consider the event space Ω = {1,2,3} and the sigma field F =

{ /0,Ω,{1} ,{2,3}}. Then if we define Y (1) = 1, Y (2) = 0, and Y (3) = −1 then Y is not
a random variable because {3} /∈F . Now, if we define Z (1) = 1, and Z (2) = Z (3) = 0
then Z is a random variable because {1} and {2,3} are both in F . This example serves to
demonstrate the interconnectedness between sigma fields and event spaces.

The purpose of the preceding discussion was to build a sufficient framework to be able
to state the Doob-Dynkin lemma. Let X : Ω→ RN be a random variable and let B be the
Borel sigma algebra. The sigma algebra generated by X is σ (X) =

{
X−1 (F) : F ∈B

}
.

The Doob-Dynkin lemma describes the relationship between a random variable and the
sigma field it generates. Let X ,Y : Ω→RN be two functions. Then Y is σ (X) measurable if
and only if there exists a Borel measurable function g : RN→RN (for any A∈B,g−1 (A)∈
B) such that Y = g(X). To say that Y is ”σ (X) measurable” means that if X is known then Y

is known as well [54]. When a PDE is transformed into a SPDE by treating the parameters
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as random variables it is appropriate to question whether the solution of the SPDE can be
described in terms of the same random variables [49]. The Doob-Dynkin lemma answers
this question with a resounding yes.

1.2.2 Application to Engineering Systems

In this section, the theory of SPDEs is applied to the types of problems that typically arise
in nuclear engineering. Much of the notation used in the proceeding discussion is borrowed
from [82]. First, define the physical domain as D ⊂Rd where d can be 1, 2, or 3 depending
on the number of spatial dimensions being considered. The boundary of the domain is
designated as ∂D . Any coordinate living in the spatial domain can be described by some
vector x = (x1, ...,xd). The most general mathematical systems that are of interest can be
written as,

L (x,ω;u) = f (x,ω) x ∈D (1.3)

B (x;u) = g(x) x ∈ ∂D . (1.4)

Ultimately, u : Ω×D→R is sought after since u is the solution to 1.3 and 1.4, where L is
a linear/non-linear differential operator, B is a boundary operator, and f and g are driving
terms. The system in 1.3 and 1.4 is defined over a complete probability space (Ω,F ,P)

with ω ∈Ω, as defined previously. Of course, 1.3 and 1.4 must be well-posed in the sense
of Hadamard [4]. In Hadamard’s definition, well-posed mathematical models of physical
phenomena satisfy three conditions:

1. Existence of a solution

2. Uniqueness of the solution

3. The solution is not sensitive to small perturbations in initial conditions

Generally, well-posed problems can be solved using stable computer algorithms. However,
it is important not to confuse posedness with conditioning as the two describe very differ-
ent things. Problems that are typically not well-posed, such as inverse problems, can be
formulated as well-posed problems through regularization.

The problem in 1.3 and 1.4 is continuous and as such, will not have an analytic solution
for practical problems in engineering applications. An infinite number of random variables
are needed to fully describe the stochastic process. Since modeling such a process on a
computer is impossible, the infinite-dimensional probability space must be reduced to a
finite-dimensional space. The procedure to do this is referred to as the ”finite-dimensional
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noise assumption”. The Karhunen-Loeve expansion of the stochastic space achieves this
reduction in dimensionality with the benefit of being able to fully model the full stochastic
space if desired [82].

Applying the Karhunen-Loeve expansion to 1.3, the random inputs can be characterized
by a set of N random variables as,

L (x,Y1(ω), ...,YN(ω);u) = f (x,Y1(ω), ...,YN(ω)) (1.5)

where {Yi(ω)}N
i=1 are uncorrelated random variables. By the Doob-Dynkin lemma, the so-

lution of 1.3 and 1.4 can be expressed in terms of the same random variables {Yi(ω)}N
i=1.

Hence, the solution to the SPDE can be written as u(x,ω) = u(x,Y1(ω), ...,YN(ω)). Equa-
tions 1.3 and 1.4 with a discrete stochastic space can be restated as,

L (x,Y;u) = f (x,Y) (x,Y) ∈ D×Γ (1.6)

B (x,Y;u) = g(x,Y) (x,Y) ∈ ∂D×Γ (1.7)

where Γi is the image of the independent random variables Yi (ω). Without loss of gen-
erality Γi can be restricted to [0,1] for i = 1, ...,N. Consequently, the bounded stochastic
space, or support, is an N-hypercube Γ = [0,1]N . No limits have really been imposed on
the stochastic space since any bounded region can be mapped to the unit hypercube. In
1.6 and 1.7 what remains is a set of independent, deterministic equations in space that can
be solved using any deterministic discretization technique. The stochastic problem has
essentially been decoupled from the spatial problem.

1.3 Uncertainties in Nuclear Data

1.3.1 Cross Section Uncertainty Overview

While the methods described in this thesis are applicable to a plethora of engineering ap-
plications, the target application here concerns the simulation of nuclear reactors. A main
component of any reactor analysis is a description of the neutronics, the physical processes
behind neutron transport inside a reactor. When studying uncertainty quantification and
sensitivity analysis of the neutronics in some reactor system, the primary player has been
shown to be uncertainty in cross section data [1] [35]. Cross section uncertainties for vari-
ous reactions, energies, and nuclides are accumulated during their experimental determina-
tion. Many of the cross sections exhibit correlations among themselves that must be taken
into account. A problem arises when one becomes interested in performing uncertainty
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and sensitivity analysis on a core simulator since the simulators use processed cross sec-
tion data. The experimental cross section uncertainties and covariances must be carefully
propagated down through the standard cross section processing regime.

Until recently, the primary approach for cross section uncertainty propagation involved
the application of first-order perturbation theory. The perturbation theory approach is de-
scribed in detail in [76]. Basically, for neutronics uncertainty analysis this approach entails
the solution of an adjoint transport equation for each response of interest, allowing for
the efficient retrieval of sensitivity coefficients for all input data. The sensitivity coeffi-
cients can then be used to obtain response uncertainties by being operated on by the inputs’
covariance matrix. However, the linear approximations in perturbation theory and general-
ized perturbation theory may fail in certain scenarios. In particular, if the ratio of neutron
loss due to absorption is high, such as when a control rod is rapidly inserted, second order
effects may become substantial [76]. In addition, while perturbation theory may be compu-
tationally efficient for problems where only a handful of responses are of interest, problems
with many responses may be burdensome due to the need to solve the generalized adjoint
transport equation for each response. Not to mention, implementation of the perturbation
theory approach is intrusive to engineering codes which makes uncertainty quantification
of coupled, multiphysics code systems infeasible.

With the recent increase in accessibility to parallel computing environments stochastic
sampling methods have become popular since they do not apply any kind of approximations
to the physics at hand. Consequently, for cross section uncertainty propagation sampling
methods have also been adopted to replace perturbation theory. A description of the pro-
cess for propagating experimental uncertainties in cross section data to few group cross
sections is described in this section. The statistical sampling framework for cross section
data is extremely flexible since uncertainties can be calculated for any few group parame-
ters. The same cannot be said of perturbation theory, which must formulate responses as
ratios of reaction rates. Consequently, uncertainties for few group transport cross sections
and assembly discontinuity factors are difficult to obtain using generalized perturbation
theory.

1.3.2 Sampling Method

The method for producing stochastically sampled few-group cross sections will be de-
scribed. Although the method described is quite general, to provide clarity it will be
described in the context of the Standardized Computer Analyses for Licensing Evalua-
tion (SCALE) code [9]. Specifically, SCALE’s Evaluated Nuclear Data File (ENDF) li-
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braries and cross section processing utilities will be detailed. In the ENDF libraries the
multigroup cross sections are assumed to be Gaussian and consequently, they can be fully
characterized by their means and covariances. The SCALE 44-group ENDF/B-VII covari-
ance matrix contains generic multigroup covariance data. For a problem where m nuclide-
reaction combinations are of interest the pertinent covariance matrix is expanded to a size
of [m ·44]× [m ·44]. The Gaussian assumption imposed on the cross section values implies
the cross sections can take on negative values. Since cross sections physically cannot take
on negative values their distributions are truncated [43].

The first step towards obtaining perturbed few-group cross sections is to sample the
generic multigroup covariance library. The covariance data schema in SCALE is given as
relative values of infinitely dilute cross sections [78]. Denote the 1D energy dependent,
pointwise cross section for reaction x as σx(E). The infinitely dilute cross section in energy
group g can then be calculated as,

σx,g(∞) =
〈σx(E)〉

∆ug
(1.8)

where the bracket notation indicates a lethargy inner product over the energy interval cov-
ered by group g. Consequently, when the multigroup covariance matrix in SCALE is sam-
pled the resulting perturbation σ ′x,g to the infinitely dilute cross sections can be expressed
in terms of a perturbation factor Qx,g,

σ
′
x,g(∞) =

(
1+

∆σx,g(∞)

σx,g(∞)

)
σx,g(∞)

= Qx,gσx,g(∞). (1.9)

The perturbations in Eq. 1.9 will provide generic multigroup cross section values to prop-
agate through a transport solver, which can then yield perturbed few-group cross section
values. However, to make the perturbed cross sections problem specific they must undergo
adjustments due to resonance self shielding. For this purpose, perturbed pointwise cross
sections and perturbed Bondarenko self-shielding factors are required. The pointwise, or
continuous energy, cross sections are needed to perform 1D transport calculations in the
resolved resonance range while the Bondarenko factors are applicable in the unresolved
energy range. Since the pointwise cross sections, Bondarenko factors, and generic in-
finitely dilute multigroup cross section are related algebraically it is necessary to perturb
each in terms of the factor Qx,g.

In [78] the authors show that, given a perturbation factor Qx,g, the appropriate pointwise
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cross sections perturbation can be obtained by,

σ
′
x(E) = Qx,gσx(E) E ∈ g. (1.10)

From Eq. 1.10 it is clear that the pointwise cross section data gets perturbed uniformly
in a given energy group g, which is a valid approximation if the energy width is small.
The authors in [78] note that although this approximation leads to discontinuities at the
energy group boundaries, it does not impact the resulting multigroup data significantly. No
significant impact is expected because the multigroup data is averaged using fluxes and
cross sections from the same energy bin.

At this point, infinitely dilute multigroup cross sections and pointwise cross sections
can be consistently perturbed using the SCALE ENDF covariance library. To proceed with
a transport calculation using perturbed parameters, perturbed Bondarenko self-shielding
factors f ′x,g(σ0) are also needed. The Bondarenko factors are expressed in terms of the
background cross section σ0, pointwise cross sections, and infinitely dilute cross sections
as,

fx,g(σ0) =
1

σx,g(∞)

〈
σx(E)

σt(E)+σ0

〉/〈 1
σt(E)+σ0

〉
. (1.11)

Substituting Eqs. 1.9 and 1.10 into Eq. 1.11, the perturbed Bondarenko factor is obtained,

f ′x,g(σ0) =
1

Qx,gσx,g(∞)

〈 Qx,gσx(E)
Qt,gσt(E)+σ0

〉/〈 1
Qt,gσt(E)+σ0

〉
. (1.12)

The authors in [78] show that Eq. 1.12 can be evaluated by simply evaluating the un-
perturbed Bondarenko equation in Eq. 1.11 at a perturbed background cross section σ ′0 =

σ0/Qt,g. Note that only those cross sections whose uncertainties are specified in the SCALE
covariance library can be processed and propagated through transport calculations. Since
covariance data for 2D scattering distributions is not available in the SCALE ENDF/B-VII
covariance library, their uncertainty affects cannot be quantified in any analyses [78].

1.3.3 Cross Section Sampling in SCALE

The method described in section 1.3.2 for producing perturbed cross sections will be further
described in the context of the modules in SCALE. The first step is to produce perturbation
factors using the module XSUSA by sampling the SCALE ENDF/B-VII covariance library.
If a total of N1 output files of transport solver are desired then N1 sets of perturbation fac-
tors are to be obtained. Using the perturbation factors, the SCALE module CLAROL+
yields perturbed, infinitely dilute, multigroup cross sections by essentially applying Eq.

11



1.9. The resulting cross sections are then passed to the module CRAWDAD+, which out-
puts perturbed, continuous energy cross sections. To make the multigroup cross sections
problem specific they are passed to the BONAMI module, which adjusts the cross sections
to account for self-shielding effects in the unresolved energy region using the Bondarenko
shielding factor method. Perturbed Bondarenko factors are used in BONAMI, as output
from CLAROL+ upon application of Eq. 1.12.

At this point the cross sections still need to be processed for self-shielding effects in the
resolved energy region. The SCALE modules CENTRM/PMC are responsible for folding
in these effects into the multigroup cross sections. CENTRM solves the neutron slowing
down equation on an ultra fine spectra on the order of O(104) energy points. For the
flux a linear interpolation scheme is used between energy points to produce a continuous
energy solution over the entire energy range [77]. The CENTRM module incorporates
actual composition, temperature, and environment dependent effects into the resonance
shielded cross sections. PMC accepts the high resolution flux spectra output by CENTRM
and averages pointwise nuclear data into multigroup cross sections, which are now tailored
to solve the specific problem of interest.

Finally, the problem specific multigroup cross sections output by CENTRM/PMC are
sent to a lattice transport solver, which in this case is the SCALE module NEWT. In gen-
eral, NEWT can be replaced by any transport solver. However, for the purposes of pro-
ducing few group cross sections a lattice transport solver will generate the multigroup flux
distribution for some heterogeneous configuration, which is then used to generate homoge-
nized few group cross sections and intra-assembly flux shapes. A script to extract desirable
output quantities from the transport output, such as few group cross sections and kinetics
parameters, is needed. Such a script is executed after each of N1 calls to NEWT. Each call
extracts a set of perturbed, few group cross sections that are ultimately propagated through
a core simulator. The SAMPLER sequence in SCALE automates the process of producing
perturbed cross section sets [78].

With the availability of N1 perturbed few group cross section sets, each set containing all
the nuclear data required by a core simulator, the sets can be directly propagated through
the core simulator. The desired results from each simulation can then be gathered and
statistically analyzed in what is referred to as the ’one-step’ method. However, in what is
referred to as the ’two-step’ method, the N1 perturbed few group cross section sets can be
used to create a few group covariance matrix [84]. The few group covariance matrix is then
sampled and each sample is propagated through the core simulator. Both the ’one-step’
and ’two-step’ methods have been shown to produce consistent results [84]. However, the
’two-step’ method has the advantage of breaking the limitation on the number of samples
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that can be propagated through the core simulator. In the ’one-step’ method each core
simulation requires a corresponding transport solution. Transport solutions are relatively
expensive to compute when compared to core simulations. A flow diagram of the ’two-
step’ method is displayed in Figure 1.1. For the ’one-step’ method N1 = N2 whereas for
the ’two-step’ method N2 >> N1, allowing for the acquisition of better statistics.
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Figure 1.1: Flow diagram of ’two-step’ method for core simulators.
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CHAPTER 2

Surrogate Models for Computer Codes

Often an engineering team seeks to perform optimization and calibration routines on a set
of computer codes which may require several hours, if not days, to complete a single sim-
ulation. Given the limited computational budget available to such teams a surrogate model
is typically sought for the computational codes. The use of a surrogate model for an ex-
pensive computer code effectively exchanges predictive accuracy for simulation execution
time. Unfortunately, to construct a surrogate model the expensive computer code must still
be executed a certain number of times, although still significantly less times than required
to conduct an optimization study. At this point there are two directions that can be taken
to construct the surrogate model. If a computational budget is limited to say, N evaluations
of the objective function then it is necessary to somehow optimize the set of input points
at which the objective computer code is evaluated. The general strategy for constructing a
surrogate is outlined in Fig. 2.1, with each component described in detail in the proceeding
sections. Sampling plan optimization strategies are described in section 2.1, while surro-
gates based on the resulting sampling plan, namely Kriging, is described in section 2.2.
If there is more flexibility in the computational budget then collocation-based surrogates
should be considered since they offer the benefits of built-in convergence metrics.

Computer codes that model physical phenomena typically accept an input file whose
purpose is to describe specific conditions in the universe being modeled by the code. The
code is executed and the affects of the conditions on some dependent quantities are out-
put. From this perspective computer codes can be viewed and treated in much the same
way functions mathematicians deal with are treated. Like matrices, functions with certain
properties can undergo various decompositions that offer insight into their structure. The
purpose of section 2.3 is to describe a technique for decomposing functions into orthogonal
components, with the ultimate intention of applying the technique to computer codes. It
is hoped that the decomposition of the computer code in terms of its inputs reveals which
inputs play the most active roles in the underlying physics. Keeping only the most active
dimensions in the decomposition, a reduced order model is effectively built. However, the
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Figure 2.1: General flow diagram for constructing a surrogate for an expensive computer
code.

Sampling Plan (Define computer experiments)

Observations (Quantitative evaluation of designs)

Dimension Reduction (Strategic processing of design variables)

Surrogate Construction (Create fast mapping)

Optimization (Evaluate surrogate many times)

function decomposition technique described in section 2.3 describes only half the story.
To create a reduced order model of a computer code that can be efficiently evaluated at
any state point in the original parameter space an efficient, multidimensional, interpolation
scheme is needed. Such a scheme is discussed in section 2.4. The coupling between in-
terpolation and function decomposition that creates a usable reduced order model is then
described in section 2.5.

2.1 Optimized Sampling Plans

The following section is concerned with the problem of identifying an optimal set of points
at which to build a surrogate model for an expensive computer code when only N eval-
uations can be afforded. All surrogate models are built around a set of points at which
the objective computer code is actually evaluated. Intuitively, the surrogate accuracy is
expected to decrease as one moves further away from such points. Consequently, it is
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important to spread N points as uniformly as possible across the design space.

2.1.1 Morris Algorithm

Expensive computer codes generally have many input parameters because they attempt to
model some phenomena on a very fine scale as accurately as possible. Of course, when
writing such computer codes engineers are not aware which input parameters have the
greatest impact on the outputs of interest or else only these parameters would be modeled.
Contrarily, engineers typically only know that certain parameters are involved in the perti-
nent physics in some way but not to what extent. Due to the curse of dimensionality, the
less design variables considered in the construction of a surrogate the cheaper the compu-
tational cost will be [20]. Consequently, before attempting to construct a surrogate for an
expensive computer code it is worth identifying which design variables are most active.
After all, if a design variable has a trivial effect on some output of interest then its presence
in the surrogate should be minimized, for this is the very purpose of a surrogate model. One
method for weeding out unimportant design variables is described by Morris [52], which
is summarized in algorithm 1.

The premise of Morris’ algorithm is that if the derivative of some output parameter
with respect to a design variable changes significantly throughout the design space then the
variable is important. If the output parameter does not change with respect to the design
variable then the variable can safely be ignored. To this end, the metric in Eq. 2.1 is
introduced by Morris to estimate the so-called elementary effect di (x) of design variable
xi.

di (x) =
f (x1,x2, ...,xi−1,xi +∆,xi+1, ....,xk)− f (x)

∆
(2.1)

In Eq. 2.1, ∆ is a step-length size for the perturbation. For convenience all variables xi are
normalized to unit length and divided into p segments such that xi ∈ {0,1/(p−1),2/(p−
1), ...,1}. Choosing a set of x carefully, it is possible to calculate an elementary effect
for each of k design variables using only k+ 1 function evaluations. Indeed, as described
in [52], a [k+1]× [k] random orientation matrix B∗ can be constructed using the equation,

B∗ =
(

1k+1,1x∗+
∆

2
[(

2B−1k+1,k
)

D∗+1k+1,k
])

P∗. (2.2)

In Eq. 2.2, 1 is a matrix of ones with size specified by its subscript and B is a [k+1]× [k]

matrix of zeros and ones with the characteristic that for each column there exists a pair of
rows differing in only their ith entry for i ∈ {1,2, ...,k}. Also, D∗ is a [k]× [k] diagonal
matrix with ones of differing parity uniformly spread, P∗ is a [k]× [k] random permutation
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matrix, and x∗ is a random point chosen in the p-level design space. When the rows of B∗

are evaluated by the objective function and substituted into Eq. 2.1 an elementary effect is
calculated for each design variable.

The more elementary effects that can be calculated for each design variable, the better
the estimate as to the effect of each design variable on the objective function. Consequently,
r random orientation matrices are typically created to obtain a total of r elementary effects
for each design variable. Taking the mean and standard deviation of each variable’s r

effects can yield insight into the most important variables. Plotting the mean and standard
deviation of each variable’s effects on a scatter plot, variables that have a negligible effect
on the objective function will cluster around the origin. Large fluctuations in standard
deviation are indicative of nonlinear and interactive effects [52].

Algorithm 1 Uses Morris’ Algorithm to determine which of a function’s design variables
induce the most significant effects and interactions.

1: Initialize zeros matrix dstats of size [r]× [k]
2: for i = 1 : r do
3: X → Create random orientation matrix . Eq. 2.2
4: fbase = f (X [0, :])
5: for j = 1 : k do
6: fnew = f (X [k, :])
7: l→ Find index of effect being perturbed
8: de f f ect → Calculate elementary effect . Eq. 2.1
9: dstats[i, l] = de f f ect

10: fbase := fnew
11: end for
12: end for
13: Return mean and standard deviation of dstats

2.1.2 Latin Hypercube Sampling

One of the major problems with random sampling occurs when a relatively limited sample
size is utilized. In this case, subsets of the sample space with high consequence but low
probability are likely to be missed [28]. In addition, the proximity of sampled values caused
by random sampling is inefficient, which often causes slow convergence. In order to resolve
such issues LHS was conjured. The basis of LHS rests upon dividing the normalized space
of each design variable into n equally sized bins if n samples are required. As a result, when
the n samples are taken it is guaranteed that the entire spectrum of each design variable’s
space has been visited. Algorithmically an n sample Latin hypercube in k dimensions can
be easily calculated, as described in algorithm 2.
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Algorithm 2 Creates a random Latin hypercube consisting of n samples in k dimensions.
1: Initialize zeros matrix X of size [n]× [k]
2: for i = 1 : k do
3: p→ Create random permutation of the set {1,2, ...,n}
4: X [:, i] := p[:]
5: end for
6: Map each entry of X into hypercube
7: Return X

Each row of the output from algorithm 2 is a sample point normalized to a hypercube.
As mentioned previously, when sampling a design space it is important to take sample
points uniformly. While LHS increases the likelihood of obtaining such a uniform sampling
space at random it is actually possible to obtain an optimized sampling space based on the
maximin metric [20].

The maximin metric describe by Morris and Mitchell [53] makes use of two notions in
an attempt to quantify the uniformity, or ’space-fillingness’, of a set of sampling points. In
order to describe the notions for each sampling plan it is useful to gather {d1,d2, ...,dm}
and {J1,J2, ...,Jm}, the unique distances between all points in the plan sorted in ascending
order and the number of occurrences of each distance, respectively. In words, the Mor-
ris and Mitchell criteria states that an optimized sampling plan will minimize all Ji while
maximizing the corresponding di. More formally, Morris and Mitchell define the maximin
sampling plan as one which maximizes d1, and among plans for which this is true, mini-
mizes J1, among plans for which this is true, maximizes d2, and so on [20]. The previous
definition can be restated into pseudo-equivalent minimization problem by introducing the
parameter Φq(X),

Φq(X) =

(
m

∑
j=1

J jd
−q
j

)1/q

(2.3)

where X is a sampling plan and q is a control parameter inherent in the minimization
problem.

The minimization of Eq. 2.3 and the Morris and Mitchell definition of the maximin
sampling plan are generally used in unison to obtain a locally optimal sampling plan since
finding the globally optimal plan is computationally infeasible. In this approach a random
sampling plan X0 is initially generated using algorithm 2. Using a range of q values, usu-
ally from one to one-hundred, an optimal latin hypercube plan is found for each value based
on the initial sampling plan X0. To obtain an optimized plan for each q algorithms such as
simulated annealing [42] and evolutionary operation [10] can be used. These algorithms
work to minimize Eq. 2.3 by comparing an initial sampling plan to perturbed versions,
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which are obtained by switching pairs of column entries in the output of algorithm 2. Once
an optimized LHS plan is found for each q value, the resulting set of plans are contested
directly against each other by explicit application of Morris and Mitchell’s maximin defi-
nition. The sampling plan satisfying the maximin criteria is the locally optimal sampling
plan to be used for proceeding surrogate model construction. Algorithm 3 summarizes the
search for a locally optimal LHS plan.

Algorithm 3 Obtains a locally optimal LHS plan using the Morris-Mitchell minimax cri-
teria.

1: Initialize sampling plan X0 . Apply algorithm 2
2: q = [1,2,5,10,20,50,100]
3: Xcands.→ Initialize empty array for optimal X candidates
4: for qi in q do
5: Xopt(qi)→ Find optimal X for qi using simulated annealing . Minimize Eq. 2.3
6: Add Xopt(qi) to Xcands.

7: end for
8: Apply Morris-Mitchell criterion between all (Xcands.

i ,Xcands.
j ) to find optimal plan

2.2 Kriging

The formulation of kriging is such that a deterministic computer code’s output is assumed
to be a stochastic process, enabling a statistical approach to a surrogate construction [63].
To this end, consider the sampling data X = {x(1),x(2), ...,x(n)}, which may have come
from the result of an optimized sampling plan as described in section 2.1.2. At each datum
x(k) a random process Y (x(k)) induces an observation y(k). In kriging the random field can
be described with a mean value of 1µ , where 1 is a vector of length n, and a correlation
matrix of the random field instances,

Ψ =


cor[Y (x(1)),Y (x(1))] · · · cor[Y (x(1)),Y (x(n))]

... . . . ...
cor[Y (x(n)),Y (x(1))] · · · cor[Y (x(n)),Y (x(n))]

 . (2.4)

The correlation between two stochastic processes Y (x(i)) and Y (x(l)) is expressed as,

cor[Y (x(i)),Y (x(l))] = exp

(
−

k

∑
j=1

θ j|x(i)j − x(l)j |
p j

)
(2.5)
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where θ j and p j are optimization parameters controlling the magnitude of correlation at
each basis. Specifically the parameter p j controls a correlation’s smoothness while θ j

defines the spread.
Given the formulation of the observations occurring at x(k) as instances of a stochastic

process it is appropriate to discuss the likelihood of seeing the observed data. Of course,
the likelihood is conditional on the parameters described in Eq. 2.5 as well as the mean and
standard deviation of the random field. The likelihood of seeing the observed data can be
written as,

L
(

Y(1), ...,Y(n)|µ,σ ,{θ1, ...,θk},{p1, ..., pk}
)
=

1

(2πσ2)
n/2 |Ψ|1/2

×·· · (2.6)

×exp

[
(y−1µ)T

Ψ
−1 (y−1µ)

2σ2

]
.

In order to maximize the likelihood L, that is, picking values for the mean and standard de-
viation that maximize the probability of seeing the observed data, the standard procedures
taught in calculus can be applied to obtain the maximum likelihood estimators,

µ̂ =
1T

Ψ
−1y

1T
Ψ
−11

(2.7)

σ̂
2 =

(y−1µ)T
Ψ
−1 (y−1µ)

n
. (2.8)

The estimators in Eq. 2.7- 2.8 are actually estimators of the natural logarithm of the like-
lihood since this form is easier to work with. Substitution of Eq. 2.7- 2.8 into the natural
logarithm likelihood leads to the so called concentrated ln-likelihood function [20], given
as,

log(L)≈−n
2

log
(
σ̂

2)− 1
2

log |Ψ|. (2.9)

While it is relatively easy to optimize the natural logarithm likelihood with respect to µ

and σ it is much more difficult to optimize Eq. 2.9 with respect to the θ and p parameters
discussed earlier. Indeed, global search algorithms such as simulated annealing [42] are
generally used to find optimizing θ and p parameters. Since such search algorithms require
repetitive calls to the objective function, in this specific optimization problem it is important
to be able to evaluate Eq. 2.9 efficiently. Quick inspection of Eqs. 2.7 - 2.9 leads to
the observation that Ψ must be inverted, a common computational bottleneck for large
matrices. Fortunately, being symmetric positive-definite, the matrix inversion action of Ψ

can be completed efficiently by performing Cholesky decomposition followed by calls to
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forward and backwards substitution routines.
Once all optimizing parameters are available the goal is to utilize the parameters to

build a model that makes function predictions on new points x. Of course, the prediction
should be consistent with all correlation parameters. To this end, for some new data point
x a vector of correlations with existing points must be constructed using Eq. 2.5,

ψ =


cor[Y (x(1)),Y (x)]

...
cor[Y (x(n)),Y (x)]

 . (2.10)

Using Eq. 2.10 new predictions can be made at x using the maximum likelihood estimator,

ŷ(x) = µ̂ +ψ
T

Ψ
−1 (y−1µ̂) . (2.11)

To get some intuition for Eq. 2.11, it is worth while to consider the second term on the right-
hand side as a perturbation to the mean of the stochastic process. The term Ψ

−1 (y−1µ̂) is
a vector of coefficients of the unique linear expansion of (y−1µ̂) in the basis columns of
Ψ. From this point of view, prediction using kriging works to estimate a function value at
a certain point by computing a weighted average of known function values in the vicinity
of the objective points [33].

2.3 Function Decompositions

In order to reduce the dimensionality of some function there must exist a metric to deter-
mine the importance of each dimension with respect to the others. It’s important to have
a framework that isolates the effects of each dimension on the output of the function. The
framework chosen to perform dimension reduction is formally known as high-dimensional
model representation (HDMR). In statistics, the ANOVA decomposition is a special case
of HDMR where the Lebesgue measure is used to perform all integrations.

2.3.1 Dimension-wise Decompositions

The dimension-wise HDMR is algorithmically similar to Gram-Schmidt for matrix orthog-
onalization in that orthogonal components are systemically removed to create a linearly
independent basis. As in Gram-Schmidt, the essential operator in dimension-wise HDMR
is the projection operator. Before introducing the projection operator of interest in this
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thesis, define the d-dimensional product measure to be,

dµ (x) =
d

∏
j=1

dµ j
(
x j
)

(2.12)

where µ j are probability measures defined over some Ω. Two functions f ,g : Ωd → R
are considered orthogonal with respect to the product measure defined in 2.12 if the inner
product,

( f ,g) =
∫

Ωd
f (x)g(x)dµ(x) (2.13)

is equal to zero. To introduce the projection operator Pu, the notation used in [30] is
adopted. The operator Pu projects from a d-dimensional space to a |u|-dimensional space
for some set u⊆D , where D = {1, ...,d} consists of the set of all coordinate indices in x.
The projection on to u is given as,

Pu f (xu) =
∫

Ωd−|u|
f (x)dµD\u (x) (2.14)

where xu has length |u| and consists of the x coordinates specified in u. Also, the notation
D \u signifies all the coordinates in D not contained in u. From 2.14 it is clear that the
projection operator works to integrate out all coordinate indices not contained in u from f .
For some coordinate indice sets u and v, where u 6= v, the following orthogonality relation
holds,

( fu, fv) = 0. (2.15)

The notation fu is used to denote the function of only the coordinate indices contained
in u. From 2.15, it follows that a function can be written in terms of its 2d orthogonal
components,

f (x) = ∑
u⊆D

fu (xu) (2.16)

where the component functions fu are defined recursively as [30],

fu (xu) = Pu f (xu)− ∑
v⊂u

fv (xv) . (2.17)

The recursive definition in 2.17 can be written explicitly as,

fu (xu) = ∑
v⊆u

(−1)u−v Pv f (xv) (2.18)

For most functions arising in engineering applications, especially if the function is a
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computer code, the decomposition in 2.16 is not possible to obtain because each compo-
nent function fu will require a high-dimensional integral to be performed. Of course, this
statement assumes a Lebesgue measure in the definition of dµ in 2.12. Alternatively, if a
Dirac measure is used then the computationally burdensome integral in 2.14 is reduced to
a single function evaluation. In this case, the decomposition in 2.16 is referred to as an
anchored-ANOVA decomposition, or CUT-HDMR [50].

2.3.2 Anchored-ANOVA Decomposition

Using the Dirac measure δ (x− a)dx to evaluate the projection operator at a fixed point
a ∈ [0,1]d in the hypercube, equation 2.14 becomes,

Pu f (xu) = f (x) |x=a\xu. (2.19)

The notation a\xu is the anchor point a except at the coordinate indices specified in u. At
the coordinate indices u, the anchor point takes upon the corresponding values in x. Using
the Dirac measure to evaluate the projections comprising 2.16, the objective function is
expressed as a linear combination of its values along lines, faces, hyperplanes,..., etc [30].
As mentioned previously, using the Dirac measure to perform the projection operations
in HDMR results in enormous computational savings since high-dimensional integrals are
replaced with single function evaluations.

Given the structure of anchored-ANOVA, it is not surprising to learn that there exists a
close connection to multivariate Taylor series [47]. This connection provides insight into
some of the properties of the anchored-ANOVA decomposition. The multivariate Taylor
series of f (x) about a point x̄ can be written as,

f (x) = f (x̄)+
d

∑
i=1

∂ f (x)
∂xi

(xi− x̄i)+
1
2!

d

∑
i, j=1

∂ 2 f (x)
∂xi∂x j

(xi− x̄i)
(
x j− x̄ j

)
+ ... (2.20)

As an example, consider what happens if 2.20 is evaluated at x = a\ xi,

f (x) |x=a\xi = f (x̄)+
∂ f (x)

∂xi
(xi− x̄i)+

1
2!

∂ 2 f (x)
∂x2

i
(xi− x̄i)

2 + ... (2.21)

Since fi (xi) = f (x) |x=a\xi− f (x̄),

fi (xi) =
∂ f (x)

∂xi
(xi− x̄i)+

1
2!

∂ 2 f (x)
∂x2

i
(xi− x̄i)

2 + ... (2.22)
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Expression 2.22 shows that the first-order component functions in anchored-ANOVA con-
sist of entire Taylor series expansions. Similarly, second-order component functions will
consist of their respective entire Taylor series expansions and so on. Consequently, a trun-
cated anchored-ANOVA expansion will always provide a better approximation to a function
than a truncated Taylor expansion [47].

2.3.2.1 Effective Dimensions

The ultimate purpose of introducing an expansion such as anchored-ANOVA is to trun-
cate it and use the truncated portion as an approximation to the objective function. Of
course, evaluation of the truncated anchored-ANOVA expansion is expected to be much
more computationally efficient than the objective function. When an anchored-ANOVA
decomposition is truncated, the loss incurred becomes the components 2.17 that are not
being represented. Of course, in practical construction the components not represented are
calculated to contribute relatively trivially. Two notions exist for classifying the dimension
of a truncated anchored-ANOVA decomposition. Both notions depend on σ̂( f ), which is
the sum of the absolute values of the integrals of all anchored-ANOVA terms [30]

σ̂ ( f ) = ∑
u⊆D
u6= /0

|I fu| ≈ ∑
u⊆D
u6= /0

|qu|. (2.23)

The notation I· represents an exact integral but, in practice the integral will be evaluated
using some multivariate quadrature scheme and so the exact integral’s approximation is
denoted by qu ≈ I fu. For some user-defined threshold α ∈ [0,1] the truncation and su-
perposition dimensions of a truncated anchored-ANOVA expansion can be defined. The
truncation dimension attempts to quantify the importance of a certain number of dimen-
sions dt . Mathematically, the truncation dimension is the smallest integer dt such that,

∑
u⊆{1,...,dt}

u6= /0

|qu| ≥ ασ̂( f ).

Contrastingly, the superposition dimension attempts to quantify the order of important di-
mensions ds. Mathematically, the superposition dimension is the smallest dimension ds

such that,

∑
|u|≤ds
u6= /0

|qu| ≥ ασ̂( f ).

Both definitions for the effective definition of a truncated anchored-ANOVA expansion
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can be directly related to the exact integral of the objective function I f . Specifically, for
the truncation dimension the following relation holds [30],

|I f − ∑
u⊆{1,...,dt}

I fu| ≤ (1−α) σ̂ ( f ) . (2.24)

Similarly, for the superposition dimension the following inequality holds,

|I f − ∑
|u|≤ds

I fu| ≤ (1−α) σ̂ ( f ) . (2.25)

Inequalities 2.24 and 2.25 suggest that if all the anchored-ANOVA terms are used then
the exact integral of the objective function can be reproduced. However, in general the
set of effective dimensions as determined by anchored-ANOVA will not be equal to the
set determined by a classic ANOVA decomposition. The choice of the anchor point a
has a direct influence on the accuracy and truncation dimension of the anchored-ANOVA
expansion [22]. In [22] the authors argue that choosing the anchor point to be the centroid
of the parameter space is an excellent choice for most applications. As such, in this thesis
the anchor point is always chosen to be the centroid of the working parameter space Ωd .

2.4 Smolyak Sparse Grids

In order to create a reduced-order model for some objective function the anchored-ANOVA
decomposition plays a crucial role but more is needed [23]. Recall that the primary pur-
pose for constructing a reduced-order model is to replace the presumably computationally
intensive objective function with something that is trivial to evaluate. Consequently, in
evaluating the anchored-ANOVA decomposition at some point x the projections in 2.19
must be trivial to evaluate as well. As it stands, evaluating the anchored-ANOVA decom-
position for some objective function is significantly more expensive than simply evaluating
the function itself. To resolve this issue, a Smolyak sparse grid interpolant is created for
each projection. While creating each such interpolant incurs some initial overhead, the
payoff is the desired reduced order model.

2.4.1 Motivation

To describe multivariate function interpolation based on Smolyak sparse grids it makes
sense to speak in the context of quadrature since a quadrature rule consists of interpolating
a function using polynomials and then integrating the polynomials exactly. For the moment
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consider some smooth 1D function f (x). The function f (x) can be approximated arbitrarily
well through the summation,

f (x)≈
P

∑
i=1

f (xi)Ci(x) (2.26)

where Ci(x) are cardinal functions of degree P with the property that Ci(x j) = δi j, δi j

being the Kronecker δ -function [11]. By the Weierstrass approximation theorem, smooth
functions can be uniformly approximated as closely as desired by polynomial functions
[73]. At the collocation points, or abscissas, in 2.26 the function f (x) is interpolated exactly
at xi. The function f (x) is comprised of various constant, linear, quadratic, cubic,..., etc
terms and so exact integration of f (x) amounts to integrating its monomial constituents.

Suppose that instead of interpolating a 1D function, a multivariate function of d dimen-
sions is to be interpolated. The naive approach to multivariate interpolation is to take a
Cartesian product of 1D rules, such as in 2.26, d times. Consequently, the product grid will
contain Pd points, each of which requires a unique function evaluation. Such exponential
growth is coined the ”curse of dimensionality” [51]. As a rule of thumb, exact integration of
a monomial constituent comes at the cost of a single function evaluation [14]. Considering
the space of d-dimensional, P-degree polynomials has some,(

P+d
d

)
≈ dP

P!
(2.27)

dimensions, for high dimensional problems the full Cartesian product approach integrates
a superfluous number of monomials. Russian mathematician Sergei Smolyak was one of
the first to realize the potential computational savings in his paper [67].

2.4.2 Algorithm Mechanics

A Smolyak sparse grid is the set of collocation points used to build an interpolant for
some multivariate objective function while the Smolyak algorithm is the whole procedure
of building the interpolant. To begin, the Smolyak algorithm will be stated and pertinent
notation will be introduced. Since indice tracking comprises the brunt of understanding the
Smolyak algorithm, it is crucial to choose a clear notation. Consequently, the notation used
here closely follows that of [6].

Slightly generalizing 2.26, for the case of some smooth 1D function f , let U i be the
interpolant of f comprised of mi collocation points.

U i =
mi

∑
j=1

f
(
xi

j
)

ai
j (2.28)
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In 2.28, i ∈N, and ai
j ∈C([−1,1]) are basis functions imposing the demand that U i exactly

be able to reproduce f at the collocation points xi
j. The notation xi

j ∈ [−1,1] refers to the
jth collocation point of mi total points. Restricting the domain of the collocation points to
[−1,1] does not impose any limitations on being able to interpolate f arbitrarily well since
[−1,1] can always be mapped to the parameter space of f .

To generalize from 1D interpolation to multivariate interpolation 1D interpolation for-
mulas, such as the one in 2.28, are combined using tensor products.

(
U i1⊗·· ·⊗U id

)
( f ) =

mi1

∑
j1=1
· · ·

mid

∑
jd=1

f
(

xi1
j1, · · · ,x

id
jd

)
·
(

ai1
j1⊗·· ·⊗aid

jd

)
(2.29)

Tensor products are a mathematical convenience used to represent all combinations of some
entity, in this case U i. The scheme in 2.29 suffers from the, ”curse of dimensionality” since
a total of,

d

∏
k=1

mik (2.30)

function evaluations are needed to form the interpolant. The Smolyak algorithm is based
on 2.29, the only difference being not all the tensor products are used. In explicit form, the
Smolyak formula for approximating the left-hand side of 2.29 is given as [6],

A(q,d) = ∑
q−d+1≤|i|≤q

(−1)q−|i|
(

d−1
q−|i|

)(
U i1⊗·· ·⊗U id

)
. (2.31)

Each entry ik in the vector i ∈ Nd contains the indice corresponding to the level of inter-
polation in dimension k. The more collocation points being utilized, the higher the level
of interpolation since the interpolant becomes increasingly accurate. The magnitude of i is
|i|= |i1 + · · ·+ id|. Since each id ≥ 1, the variable q≥ d. The variable q essentially keeps
track of the level of interpolation of the Smolyak algorithm. As q is increased, more tensor
product combinations are allowed. From 2.31 it is clear that the Smolyak algorithm is able
to reduce the total number of tensor product components by limiting the entries of i. Note,
when performing analysis using the Smolyak algorithm the ”interpolation level” typically
refers to q−d in order to ground the analysis at an interpolation level of zero.

The Smolyak formula in 2.31 can be rewritten in several ways, all of which use the idea
of the incremental interpolant ∆i defined as,

U0 = 0

∆
i = U i−U i−1 (2.32)
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The incremental interpolant operator is simply the difference between interpolants at two
successive levels. Using the notion of the incremental interpolant, the Smolyak formula
can be rewritten as,

A(q,d) = ∑
|i|≤q

(
∆

i1⊗·· ·⊗∆
id
)

(2.33)

At first sight, 2.31 and 2.33 seem inefficient since neither exposes the recursiveness inherent
in the Smolyak formula. In other words, when moving from index q to q+ 1 the work
done to get to level q is not lost. Rewriting the Smolyak formula in a recursive fashion is
advantageous for implementation on a computer.

A(q,d) = A(q−1,d)+∆A(q,d) (2.34)

∆A(q,d) = ∑
|i|=q

(
∆

i1⊗·· ·⊗∆
id
)

(2.35)

While the Smolyak algorithm representation in 2.34 has the advantage of being represented
recursively, it does not provide any type of indicator for when the Smolyak sparse grid
should be refined. Collocation points should be added to a Smolyak sparse grid until
the resulting interpolant is able to reproduce the objective function to some user-defined
threshold. The authors in [49] are able to rewrite 2.35 in terms of what’s referred to as a
hierarchical surplus,

∆A(q,d) = ∑
|i|=q

(
f (xi1

j1, ...,x
id
jd)−A(q−1,d)(xi1

j1, ...,x
id
jd)
)
·
(

ai1
j1⊗·· ·⊗aid

jd

)
(2.36)

which appears as the first term in the summation as the difference between the function
value at the point (xi1

j1 , ...,x
id
jd) and the Smolyak q− 1 level interpolant value at the same

point. Level q of the Smolyak algorithm generally contains all the points comprising level
q− 1 plus some new collocation points. Consequently, the level q Smolyak interpolant is
expected to exactly evaluate any collocation points born in previous levels. The summation
in 2.36 is taken over all the new points in level q that have not appeared in level q− 1
since the hierarchical surplus for these will be identically equal to zero. The hierarchical
surpluses provide an indicator for how well the Smolyak algorithm is interpolating some
objective function. If the hierarchical surpluses are decreasing with each successive level
then the Smolyak algorithm is converging.

Following the notation in [6], let X i = {xi
1, ...,x

i
mi
} be the collocation points comprising

U i. From 2.31, the total number of collocation points in a Smolyak sparse grid can be
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written as,
H(q,d) =

⋃
q−d+1≤|i|≤q

(
X i1×·· ·×X id

)
. (2.37)

2.4.3 Basis and Collocation Points

The exactness of the Smolyak algorithm is decided mainly by the choice of collocation
points xik

jk used to build H(q,d). The basis functions aik
jk work to weave the collocation

points together. Gaussian quadrature is a favorite of many since with only n+1 collocation
points, all polynomials of degree 2n+ 1 or less can be integrated exactly [29]. However,
collocation points derived from Gaussian quadrature schemes are not nested in that X i 6⊂
X i+1. Nestedness in the choice of collocation points is an essential feature for reducing the
computational expense of applying the Smolyak algorithm. If nested collocation points are
chosen for each X ik then the Smolyak sparse grid will also be nested such that H(q−1,d)⊂
H(q,d) [6]. Consequently, when improving the Smolyak interpolant from level q− 1 to
level q one will only have to evaluate the objective function at the points that are unique to
X i, which are given as X i

∆
= X i \X i−1 [49]. The set of new points in level q of a Smolyak

sparse grid are given as,
∆H(q,d) =

⋃
|i|=q

X i1
∆
×·· ·×X id

∆
. (2.38)

A viable alternative to Gaussian quadrature collocation points for the Smolyak algo-
rithm is to use Clenshaw-Curtis collocation points, which consist of the extrema of Cheby-
shev polynomials. While n+1 Clenshaw-Curtis abscissas can only exactly integrate poly-
nomials of degree n, they have the advantage of being nested. Accuracy is sacrificed for
nestedness in the Smolyak algorithm, at least in theory. In practice it has been shown that
for most functions Clenshaw-Curtis quadrature performs almost on par to Gaussian quadra-
ture [72]. In other words, the double accuracy of Gaussian quadrature is rarely realized.
For some level i the Clenshaw-Curtis collocation points are given by,

xi
j =

{
cos π( j−1)

mi−1 j = 1, ...,mi if i > 1

0 j = 1 if i = 1
(2.39)

In order for the level i Clenshaw-Curtis abscissas to contain the level i−1 abscissas, a total
of 2i−1 new points must be added. Consequently, the total number of abscissas appearing
in the level i Clenshaw-Curtis scheme is given as,

mi =

{
2i−1 +1 i > 1

1 i = 1
(2.40)
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Another alternative to the Gaussian and Clenshaw-Curtis abscissas is Gauss-Patterson.
The Gauss-Patterson set of collocation points are nested and provide a polynomial exact-
ness of (3n− 1)/2 with n points, which is right in between the exactness of Clenshaw-
Curtis and Gaussian sets. Obtaining the Gauss-Patterson abscissas involves a rather con-
voluted, iterative process and so the reader is referred to [15] to review the methodology
and obtain tables of the actual points. The growth rule for Gauss-Patterson goes as 2i−1,
which is some factor of two greater than the growth rule for Clenshaw-Curtis. In [48], the
authors conclude the Gauss-Patterson collocation points are competitive with Clenshaw-
Curtis when comparing the cost and accuracy of computing quadratures using the same
number of function evaluations.

To weave together the collocation points forming a Smolyak sparse grid, some type of
basis function ai

j is needed, as defined in 2.28. Although the basis functions will be applied
to multi-dimensional interpolation, the Smolyak algorithm conveniently scales 1D basis
functions to multiple dimensions through the use of tensor products. One basis commonly
used in adaptive sparse grids is the linear hat basis function [3]. For the scheme in 2.40 the
linear hat functions are given as,

a1
1 = 1 for i = 1, (2.41)

ai
j =

{
1− (mi−1)|x− xi

j| if |x− xi
j|< 1/(mi−1)

0 else

for i> 1 and j = 1, ...,mi. While the linear hat functions have the advantage of local support
they are limited to relatively slow convergence due to their lack of curvature. Offering faster
error decay are the global Lagrange characteristic polynomials,

ai
j =


1 if i = 1

mi

∏
k=1
k 6= j

x− xi
k

xi
j− xi

k
j = 1, ...,mi for i > 1 (2.42)

However, the Lagrange characteristic polynomials are plagued by the fact that each eval-
uation of 2.28 requires O(m2

i ) operations and often the computation is numerically unsta-
ble [7]. To remedy these concerns, the barycentric form of Lagrange characteristic polyno-
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mials is used to form a basis. The barycentric Lagrange basis is given as,

ai
j =


1 if i = 1
wi

j

x−xi
j

∑
mi
j=0

wi
j

x−xi
j

j = 1, ...,mi for i > 1
(2.43)

where wi
j are barycentric weights defined by,

wi
j =

1

∏
k 6= j

(
xi

j− xi
k
) j = 1, ...,mi. (2.44)

For special collocation sets, such as Clenshaw-Curtis in 2.39, explicit forms exist for the
barycentric weights. Generally, forming the weights is an O(m2

i ) operation and then evalua-
tion of an interpolant based on the barycentric Lagrange basis is only a O(mi) operation [7].
With an explicit form in hand, evaluation of the barycentric Lagrange basis is significantly
cheaper than the Lagrange basis. For the Clenshaw-Curtis collocation points in 2.39, the
barycentric weights are given by [65],

wi
j = (−1) j+1

δ
i
j δ

i
j =

{
.5 j = 1 or j = mi

1 else
. (2.45)

From 2.43, an apparent problem exists if the barycentric basis is to be evaluated at a col-
location point. As [7] explains, the problem can be circumvented by simply perturbing
the value of x by an ε on the order of machine precision. In this case, the numerator and
denominator in 2.43 will effectively cancel each other such that ai

j = 1. The barycentric
Lagrange basis is therefore numerically stable.

2.4.4 Exactness and Error Bounds

The exactness of the Smolyak algorithm is determined by the space of polynomials the
algorithm is exact on. Since the 1D interpolation rules, on which the Smolyak algorithm is
based on, can exactly interpolate certain polynomials it is not presumptuous to expect the
Smolyak algorithm to exactly interpolate certain polynomial spaces. Using the collocation
set in 2.40 and 2.39 the Smolyak interpolant A(q,d) is exact on [6],

∑
|i|=q

P(mi1−1,1)⊗·· ·⊗P(mid −1,1) (2.46)
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where P(k,d) is the space of all polynomials in d dimensions of total degree no greater
than k. From 2.46 it follows that the Smolyak interpolant for q = d +P is exact for all
polynomials of degree P. In other words, the effects of any monomials containing xl for l ≤
P will be captured by the Smolyak algorithm. Recall from 2.27 that the degrees of freedom
of P(P,d) goes as dP/P!. Any method aiming to reproduce P requires at least this many
function evaluations. Since the number of collocation points in a Smolyak grid for A(d +

P,d) goes as 2PdP/P! the dependence on dimension is said to be optimal [6]. However,
the asymptotic growth of points also indicates that the Smolyak algorithm requires still
excessive function evaluations to achieve polynomial exactness.

Since the Smolyak algorithm is constructed using one-dimensional interpolation for-
mulas, which all have error bounds, it is also possible to derive error bounds for a Smolyak
interpolant A(q = d + P,d). While the reader is instructed to consult [6] for a detailed
derivation of the error bounds, they will nevertheless be stated here. Consider some d-
variable function f with continuous derivatives of order P in each variable. The error in
using a Smolyak interpolant to approximate f can be given as,

‖ f −A(d +P,d)( f )‖∞ ≤ cd,PM−P(logM)(P+2)(d−1)+1 (2.47)

where M is the total number of knots used by A(d +P,d) and cd,P is a constant depending
on both d and P. From 2.47, the error in the Smolyak interpolant heavily depends on the
smoothness of the function being interpolated and on the total number of collocation points
used to form the interpolant.

2.4.5 Computer Implementation

To implement Smolyak’s algorithm on a computer equations 2.34 and 2.36 should be uti-
lized since together they provide a recursive definition. Much of the implementation ef-
forts are concerned with indice book keeping. Although the pseudocode for Smolyak’s
algorithm used in this thesis is provided here, the reader is directed to [44] for more elab-
orate details. Efficiency of the algorithm can be increased by pre-calculating the desired
abscissas as in 2.39, the number of abscissas at a given level as in 2.40, and corresponding
barycentric weights as in 2.45. A data structure for quick retrieval of the desired values
is also necessary. Abscissa information is constantly being reused in Smolyak’s algorithm
and so it is inefficient to have to recalculate values each time.

The pseudocode for Smolyak’s algorithm in algorithm 4 will now be discussed in some
detail. To initialize the algorithm a data structure must be created to store all information
for each index in the sparse grid. For level q of the Smolyak algorithm the summation in
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Algorithm 4 Smolyak’s algorithm for creating an interpolant for a function f of d dimen-
sions. The algorithm will exit if the maximum Smolyak level is reached or if one of the
convergence criteria is met.

1: Create data structure that stores indice coordinates and hierarchical surplus.
2: for q = d,maximum level do
3: for (i1, ..., id) in enumerations of i1 + ...+ id = q do . See Alg. 5
4: for ( j1, ..., jd) in enumerations of (i1, ..., id) do . See Alg. 6
5: Turn each ( j1, ..., jd) into a knot.
6: Categorize as either processed or unprocessed knot.
7: end for
8: Evaluate f (unprocessed knots).
9: Calculate hierarchical surplus at unprocessed knots. . Eq. 2.36

10: Archive newly processed knots.
11: end for
12: Check for convergence.
13: end for

2.34 is over all sets (i1, i2, ..., id) such that i1 + i2 + ...+ id = q. Each such set corresponds
to a knot (xi1

ji1
, ...,xid

jid
) in the random space defined by the hypercube [−1,1]d . The knot,

function value at the knot, and the corresponding hierarchical surplus should all be stored
in the data structure.

The first loop in the pseudocode tells the code to keep increasing the interpolation level
in the Smolyak algorithm until some maximum level is reached, which is specified by the
user. The purpose of this loop is to make sure the algorithm ends eventually. Of course,
other convergence criteria are in place in hope that the algorithm terminates long before
the maximum level is reached. The second loop goes through all the enumerations of
(i1, i2, ..., id) such that i1+ i2+ ...+ id = q. The algorithm for producing such enumerations
is provided in algorithm 5. The third loop takes each enumeration and again enumerates
over each index to obtain each component in the tensor product appearing in the Smolyak
formulation. An algorithm to execute this enumeration is provided in algorithm 6.

In the main body of the pseudocode each output from algorithm 6 is first converted to a
knot (xi1

ji1
, ...,xid

jid
). Each potential knot must then be sorted into one of two categories. The

motivation for the two categories arises from the fact that the same knot may be expressed
in several ways. Since each knot corresponds to a function value and hierarchical surplus,
significant computational savings can be incurred by not reevaluating the objective function
at the same knots. Consequently, each potential knot is binned into either a category of
knots that have already been evaluated at f or a category of unevaluated knots.

Once all components in the tensor product for a given (i1, i2, ..., id) have been converted
and sorted, the unevaluated knots are processed. In this step of the algorithm the previously
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unevaluated knots should be evaluated at f in parallel if possible since each evaluation is
completely independent. The resulting functions values should then be used to compute the
hierarchical surplus in 2.36 for each knot. Once the function value and hierarchical surplus
is available for each new knot the results should be archived in the indice data structure.

Finally, once the second loop is complete, the level of the Smolyak interpolant has been
effectively increased and it’s time to check whether additional levels are required based on
user-defined convergence criteria. Perhaps the best indicator of a Smolyak interpolant’s
convergence is the maximum hierarchical surplus calculated for all newly processed knots
at the current interpolation level. The hierarchical surplus is a measure of how well the in-
terpolant is able to match the objective function and therefore, if the hierarchical surpluses
being calculated are decreasing with each level the interpolant is converging. An additional
convergence criteria includes comparison of the relative change in computed mean and vari-
ance between two successive interpolation levels. For this thesis, the Smolyak algorithm
is terminated only after the maximum hierarchical surplus is below a certain threshold, the
relative change in interpolant mean is below a threshold, and the relative change in variance
does not exceed a threshold.

2.5 Combining Decomposition and Smolyak’s Algorithm

As hinted at in the beginning of chapter 2, the Smolyak algorithm combines with the
anchored-ANOVA decomposition to create a reduced order model for any well behaving
computer code. To see how the Smolyak algorithm fits into the functional decomposition
described in this chapter, begin by substituting 2.18 into 2.16 to get,

f (x) = ∑
u⊆D

∑
v⊆u

(−1)|u|−|v|Pv f (xv). (2.48)

Now, insert the Dirac projection operator from 2.19 into 2.48 to arrive at,

f (x) = ∑
u⊆D

∑
v⊆u

(−1)|u|−|v| f (x)|x=a\xv. (2.49)

To create a reduced order model the set D is ultimately shrunk to only contain a subset
of all the variables of f but this is discussed later. The important aspect of 2.49 to realize
is that in order to evaluate f (x)|x=a\xv evaluation of the expensive computer code f (x)
is required. Consequently, the desirable property of reduced order models, that of rapid
evaluation, is not achieved in 2.49. The remedy is to approximate each f (x)|x=a\xv using
Smolyak interpolants. Substituting 2.33 into 2.49, the formulation for creating a reduced
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order model of f is complete.

f (x) = ∑
u⊆D

∑
v⊆u

(−1)|u|−|v| ∑
|i|≤q

(
∆

i1⊗·· ·⊗∆
i|v|
)

(2.50)

While there is initial overhead to create an interpolant for each component in 2.49 the result
is quick evaluation of the reduced order model. Details regarding the implementation and
application of 2.50 will be discussed in the proceeding sections.

2.5.1 Combinatorics Routines

In order to implement 2.50 on a computer several enumeration routines need to be available.
Unfortunately, these routines are not available in most numerical math libraries containing
combinatorics routines. The first routine of interest solves the problem of how to enumerate
all the ways d positive integers can be summed to equal another integer. In other words,
what are all the sets {i1, ..., id} such that i1 + i2 + ...+ id = q? This problem inserts itself
in 2.50 in the summation index for Smolyak interpolation. As the Smolyak interpolant be-
comes refined from level to level—q is increased by one in each refinement—the Smolyak
algorithm must newly account for all i such that |i| = q. The following enumeration al-
gorithm, a slight modification of the original algorithm found in [30], finds all the desired
indice sets:

With all the index sets for some Smolyak level q available through the code segment
in 5, the tensor product appearing in 2.33 can be evaluated with the aid of an additional
enumeration routine. Each indice in an index set {i1 + i2 + ...+ id} corresponds to certain
number of knots, which for example, is given by 2.40 for Clenshaw-Curtis. All the com-
ponents in the tensor product can be given by the following enumeration algorithm, which
is based on the algorithm in [30]. Input to algorithm 6 should be based on output from
algorithm 5. Specifically for some index set {i1, i2, ..., id} returned by algorithm 5, each
indice should be converted to a corresponding number of knots and input to algorithm 6.

2.5.2 Sampling Sparse Grid Interpolant of Correlated Variables

The reduced order model in 2.50 consists of linear combinations of Smolyak interpolants.
Evaluation of the reduced order model is equivalent to finding the value at several Smolyak
interpolants and summing the results. However, recall that in the Smolyak algorithm for
building the interpolants described in 2.4.2 each dimension in the sparse grid is built orthog-
onal to the others. Implicit in this construction is the assumption that the random variables
comprising the objective function are independent. In fact, in many computer codes the
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Algorithm 5 For positive integers d and q this code outputs all sets {i1, i2, ..., id} such that
i1 + i2 + ...+ id = q.

1: p = 0
2: m = q−d +1
3: k = [0,1, ...,1] . vector of length d
4: k̂ = [m,m, ...,m] . vector of length d
5: repeat
6: k(p) = k(p)+1
7: if k(p)> k̂(p) then
8: if p=d then
9: All indices enumerated!

10: else
11: k(p) = 1
12: p = p+1
13: end if
14: else
15: for j = 0 : p do
16: k̂( j) = k̂(p)− k(p)+1
17: end for
18: k(0) = k̂(0)
19: p = 1
20: Return valid index set k!
21: end if
22: until k = [0, ...,0]

Algorithm 6 Code for enumerating all components of a tensor product. The input is a
d dimensional vector m where each entry m j corresponds to the number of knots in a
collocation scheme of level i j.

1: p = 0
2: s = [0,1,1, ...,1] . vector of length d
3: repeat
4: s(p) = s(p)+1
5: if s(p)> m(p) then
6: if p = d−1 then
7: All indices enumerated!
8: else
9: s(p) = 1

10: p = p+1
11: end if
12: else
13: p = 0
14: Return valid enumeration set!
15: end if
16: until s = m
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random variables forming the parameter space are correlated. The degree of correlation
among the random variables is generally described using a covariance matrix.

With the availability of a covariance matrix for the input random variables it is possible
to sample the reduced order model hundreds or thousands of times to get accurate and
precise statistical moments. Evaluating a Smolyak interpolant is relatively cheap and fast
so this is not a computational problem. To produce correlated random variables from a
Gaussian population the Kaiser-Dichman method can be applied [39]. Say some inputs to
a computer code are normally distributed with mean µ and covariance Σ. To produce a
random sample µ ′ from Σ one can apply,

µ
′ = µ +UT

π (2.51)

where UT is the lower triangular matrix arising from the Cholesky decomposition of Σ and
π is a standard normal random vector.

The Cholesky decomposition of a covariance matrix C =UTU is the equivalent to tak-
ing the square root of a matrix. A Cholesky matrix transform, or left multiplication by
UT , maps uncorrelated variables into correlated variables with covariance matrix Σ. Con-
sequently, in 2.51 µ ′ is normally distributed with mean µ and covariance Σ. A statistically
significant number of instances of µ ′ should be calculated and evaluated at the reduced
order model. Even though the model is built assuming independent variables this method
takes into account any correlations when calculating statistical moments. When evaluating
any Smolyak interpolant at a number of sampled points one must always make sure all the
sampled points lay inside the bounds of the hypercube forming the sparse grid.

2.5.3 Dimension Truncation

By definition a reduced order model contains less dimensions than the original model
whose reduction is intended. Consequently, a methodology for identifying important di-
mensions is necessary. For the purposes of this thesis, the importance of a random input
variable on some objective function is determined by its contribution to the function’s vari-
ance. While there are methods for exactly calculating the truncation and superposition
dimensions of a function [30], these methods require the computation of all 2d component
functions in an ANOVA decomposition. For typical computer codes used in engineering
this requirement is not feasible and so the effective dimensions of a function must be esti-
mated adaptively.

To this end, construction of a reduced order model based on the anchored-ANOVA
decomposition begins with calculation of the zeroth-order and all first-order components.
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The zeroth-order component function is simply the function evaluated at the anchor point,

f{ /0} = f (x). (2.52)

From the recursive definition of the anchored-ANOVA decomposition in 2.17, the ith com-
ponent function is given as,

f{i} = f (x)|x\xi− f{ /0}. (2.53)

The first order components solely measure the affect of the ith random variable on the
function output. Therefore, for each of d random variables contributing to a function’s
variability a sensitivity coefficient can be calculated as [50],

ηi =

∫
Ωi

[
f (x)|x=x\xi− f (x)

]
ρ(xi)dxi

f{ /0}
(2.54)

where ρ(xi) is the probability density of xi. If f is a function of spatial coordinates then
the L2 norm can be applied to 2.54. The greater the affect of the ith random variable on the
function output, the greater the sensitivity coefficient.

Once all the first order anchored-ANOVA components are calculated the sensitivity
coefficients in 2.54 can be used to identify the important dimensions. To start, each ηi

should be normalized by the sum of all ηi. The important dimensions can then be obtained
by taking all i variables such that ηi > θ1. A value of θ1 = .02 has been shown to be
effective for many problems [23]. At the very least, the reduced order model described
here will consists of the zeroth order and all first order anchored-ANOVA components,
giving it a superposition dimension of one. The variance and mean of the reduced order
model with superposition dimension one should be obtained through sampling using 2.51.

To improve accuracy higher order components can be included. Higher order com-
ponents should only be built using combinations of the dimensions deemed important. If
all dimensions were to be included construction of a reduced order model based on the
ANOVA decomposition would quickly become intractable for most engineering problems.
It can be argued that if a set of random variables independently affect a function then their
interactions will likely also affect the function. Say all first order components have been
constructed and the important dimensions have been added to a set T . The next step in
creating a higher order model is to construct anchored-ANOVA components utilizing di-
mensions t such that t ⊂T and |t|= 2. In total there should be C(|T |,2) such components.
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In general, the number of p order components can be given as,

C(|T |, p) =
|T |!

(p!)(|T |− p)!
. (2.55)

To determine whether additional orders need to be included in the reduced order model, the
mean of the current reduced order model should be compared to the mean of the previous
order model. If the relative change in mean doesn’t exceed some threshold θ2 then the
reduced order model is considered converged. Otherwise, higher order components should
be added. In this manner, a reduced order model for a computer code can be constructed
adaptively. The procedure for adaptively creating a reduced order model is summarized in
algorithm 7.

Algorithm 7 Adaptively creates a reduced order model for some function f of d dimen-
sions.

1: Create zeroth-order component function. . Eq. 2.52
2: for i = 1,d do
3: Construct 1D Smolyak interpolant for P{i} f . . Eq. 2.19
4: Create first-order anchored-ANOVA component f{i}. . Eq. 2.53
5: end for
6: Identify important dimensions and put into set T . . Eq. 2.54
7: for p = 2,d do
8: for t ⊂T s.t. |t|= p do
9: Construct p-dimensional Smolyak interpolant for Pt f . . Eq. 2.19

10: Create p-order anchored-ANOVA component ft . . Eq. 2.17
11: end for
12: Check for convergence of reduced order model.
13: end for
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CHAPTER 3

Application to Simplified Reactor Systems

The methodologies described in Chapter 2 will initially be applied to three relatively simple
problems in reactor physics, each building on its predecessors in complexity. The purpose
of the simple problems is to develop some intuition about the workings of the described
reduced order model algorithms. Ultimately, the methods will be applied to solve a state of
the art problem in reactor uncertainty quantification and sensitivity analysis.

3.1 Infinite Lattice Multiplication Factor

3.1.1 Problem Statement

In an infinite lattice a reactor of infinite size is considered and therefore neutrons are not
capable of leaking out of the system. An infinite lattice effectively removes the effects of
geometry in neutron transport and characterizes the system entirely in terms of its material
properties. Since the physics of an infinite lattice are greatly simplified an analytic analysis
of the system is possible. Consequently, the infinite lattice problem is ideal for an initial
analysis of any new computational method.

To begin, the mathematical formulation of an infinite lattice will be described. In matrix
form the two-group neutron balance equations for an infinite lattice can be written as,(

Σa1 +Σ1→2 0
−Σ12 Σa2

)(
φ1

φ2

)
=

1
k∞

(
νΣ f1 νΣ f2

0 0

)(
φ1

φ2

)
. (3.1)

Solving the system in 3.1 for the infinite multiplication factor, the following analytic ex-
pression is obtained,

k =
Σa2νΣ f1 +Σ1→2νΣ f2

Σa2 (Σa1 +Σ1→2)
. (3.2)

The infinite multiplication factor is a function of five material parameters. Since this thesis
is concerned with the affect of uncertainties in input parameters on computer code outputs,
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variations in k∞ as a function its stochastic input variables are of interest. Assume all
variation in k∞ can be attributed to its input cross sections, whose distributions follow a
multivariate Gaussian. To obtain physical homogenized, two-group cross section values a
real system must first be modeled in a transport code. The UAM Benchmark is sought for
this purpose [34]. Specifically, the TMI assembly is modeled using the two-step method
described in [84]. A total of 300 perturbed cross section sets were produced to obtain the
few-group mean and covariance data used in the proceeding analysis. The cross section
data is summarized in Table 3.1.

Table 3.1: Two-group cross section data for an infinite TMI lattice.

Correlation Coefficient Matrix
Mean Standard Dev. Σa1 Σa2 νΣ f1 νΣ f2 Σ1→2

Σa1 1.04E-02 9.06E-05 1 0.07 -0.13 0.02 0.75
Σa2 1.10E-01 2.31E-04 0.07 1 0.06 0.31 -0.07

νΣ f1 9.00E-03 4.85E-05 -0.13 0.06 1 0.33 -0.10
νΣ f2 1.91E-01 8.87E-04 0.02 0.31 0.33 1 0.01
Σ1→2 1.80E-02 2.18E-04 0.75 -0.07 -0.10 0.01 1

Multiple methods will be applied to obtain basic statistical and sensitivity data on the in-
finite multiplication factor. Of course, Monte Carlo sampling using the input cross sections’
covariance matrix and applying 2.51 will provide the mean and variance of k∞. Another
approach to get at the variance of k∞ is through the ”Sandwich Equation” [36],

σ
2(k∞) = STCS (3.3)

where C is the covariance matrix for the input data. In equation 3.3 the array S contains
sensitivities of the output to the input parameters. For this problem the vector S contains,

ST =
(

∂k∞

∂Σa1

∂k∞

∂Σa2

∂k∞

∂νΣ f1

∂k∞

∂νΣ f2

∂k∞

∂Σ1→2

)
. (3.4)

Since there exists an analytic expression for k∞ the sensitivity vector for this problem in
3.4 is exact. As a side-check the sensitivity vector S can also be constructed using central
differencing. The sensitivity of k∞ to the ith cross section Σi using central differencing is
expressed as,

∂k∞

∂Σi

∣∣∣∣
Σ j 6=i=Σ̄ j

≈ k∞(Σi +∆Σi)− k∞(Σi−∆Σi)

2∆Σi
(3.5)

where all cross sections Σ j, j 6= i, are held at their mean values. Generally a one percent
perturbation ∆Σ is sufficient to obtain accurate sensitivities although this rule of thumb is
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dependent on the smoothness of the objective function. With a variety of methods available
to obtain sensitivities and statistical moments of k∞ it is possible to thoroughly assess the
potential of a reduced order model.

3.1.2 Analysis

Several elements of the methodologies described in Chapter 2 will be tested in this sec-
tion and compared to results obtained using analytic and Monte Carlo approaches. For all
Smolyak sparse grids constructed the hypercube domain extends to six standard deviations
in each random variable. Since k∞ is a function of only five random variables a sparse grid
interpolant will be constructed without applying any function decomposition in order to
demonstrate the accuracy and convergence of the method. The convergence criteria for the
sparse grid interpolant is set such that the maximum hierarchical surplus at a given level is
not to exceed 10−10. Both Clenshaw-Curtis and Gauss-Patterson abscissas are tested.

From Fig. 3.1 the Clenshaw-Curtis and Gauss-Patterson schemes perform similarly in
terms of level to level convergence. However, observe that at each interpolation level the
Gauss-Patterson scheme requires significantly more nodes in exchange for a small increase
in convergence speed. Both schemes converge to the threshold around level five although
the Gauss-Patterson scheme requires more than twice as many function evaluations to get
there than Clenshaw-Curtis. Based on the graphical determination of order of convergence
[11], it is clear from 3.1 that the Smolyak interpolant for k∞ converges geometrically.

With the Smolyak interpolation routines working as expected it’s safe to apply them to
an anchored-ANOVA decomposition of k∞. To start, only the first order components will
be built and analyzed. The first order components are relatively cheap to produce and often
collectively produce very accurate reduced order models [50]. Afterwards, all higher order
components will be added in order to show that the full anchored-ANOVA decomposition
can fully reproduce the objective function. Since k∞ is a function of only five random
variables there is no point in adaptively constructing the reduced order model as described
in Section 2.5.3.

As a first comparison between all the models developed for quantifying the uncertainty
in k∞ the mean and variance values of each model will be compared. With the exception of
the variance obtained using the Sandwich Equation, each model’s variance was obtained by
propagating 1000 samples of Eq. 2.51 through the model. All samples produced for each
model were seeded identically and so the same random numbers were drawn. The mean
and variance results, along with 99% confidence intervals, are summarized in Table 3.2.

The five dimensional sparse grid interpolant results are entirely self consistent with the
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Figure 3.1: Convergence study of a five dimensional sparse grid interpolant for the multi-
plication factor of an infinite TMI lattice. The boxed numbers represent the current number
of knots in the sparse grid.
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Table 3.2: Mean and variance data for the multiplication factor of an infinite TMI lattice
obtained using Monte Carlo sampling. Wherever sampling was utilized the same random
numbers were used.

Method Mean 99% CI Standard Dev. 99% CI
5D Sparse Grid CC 1.41562 (1.41512, 1.41612) 0.006168 (0.005909, 0.006544)
5D Sparse Grid GP 1.41562 (1.41512, 1.41612) 0.006168 (0.005831, 0.006544)

1D ANOVA CC 1.41560 (1.41510, 1.41610) 0.006168 (0.005831, 0.006544)
All ANOVA CC 1.41562 (1.41512, 1.41612) 0.006168 (0.005831, 0.006544)
1D ANOVA GP 1.41560 (1.41510, 1.41610) 0.006168 (0.005831, 0.006544)
All ANOVA GP 1.41562 (1.41512, 1.41612) 0.006168 (0.005831, 0.006544)
True Function 1.41562 (1.41512, 1.41612) 0.006168 (0.005831, 0.006544)

Sandwich 0.006540
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Figure 3.2: Cumulative number of knots required at each level of an anchored-ANOVA
decomposition of the multiplication factor of an infinite TMI lattice. Boxes contain the
calculated standard deviation at the current level.
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anchored-ANOVA results. Further, both of these methods produce identical results to those
obtained using Monte Carlo sampling. Although the analytic variance from the Sandwich
Equation is within the 99% confidence bounds of each model’s results, there is a notable
difference due to the fact that only 1000 samples were used to obtain each model’s statis-
tics. Increasing the number of samples decreased the difference. Note that in Table 3.2 the
anchored-ANOVA the reduced order models consisting of only one dimension anchored-
ANOVA components perform just as well as the full decomposition and the sparse grid
interpolants over all five random variables. However, the 1D component models require
only 29 function evaluations to produce, which is some ten times fewer evaluations than
the 5D interpolants, and some hundred times fewer evaluations than the full decomposi-
tion. The rapid convergence of the reduced order model containing only one dimensional
anchored-ANOVA components is shown in 3.2. Construction of higher order components
is very expensive. Fortunately for this problem, and perhaps others, construction of only
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Table 3.3: Normalized sensitivity coefficients for the multiplication factor of an infinite
TMI lattice.

Normalized Sensitivity Coefficient of k∞

Method Σa1 Σa2 νΣ f1 νΣ f2 Σ1→2
5D Sparse Grid CC -.367551 -.776087 .224060 .776010 .143491
5D Sparse Grid GP -.367551 -.776087 .224060 .776010 .143491

1D ANOVA CC -.367556 -.776098 .224063 .776020 .143493
All ANOVA CC -.367551 -.776087 .224060 .776010 .143491
1D ANOVA GP -.367556 -.776098 .224063 .776020 .143493
All ANOVA GP -.367551 -.776087 .224060 .776010 .143491

Analytic -.367520 -.775956 .224044 .775956 .143476
Central Difference -.367551 -.776089 .224060 .776011 .143492

one dimensional components is completely sufficient to represent the objective function.
As another performance measure of the reduced order model methodologies, each

model is used to obtain normalized sensitivity coefficients for k∞. Central differencing is
applied to each model, with perturbations made to each cross section at a time while holding
the other cross sections at their mean values. Perturbations are taken to be 1% of each cross
section’s value. Using the analytic expression for k∞ in 3.2, the central differencing results
can be compared to the true sensitivity coefficients. The results are summarized in Table
3.3. Table 3.3, sensitivity coefficients are also obtained by applying central differencing to
the true function as in Eq. 3.5. As expected, all models utilizing the central differencing
formula produce self consistent sensitivity coefficients. The models differ from the ana-
lytic sensitivity coefficients only in the fourth decimal place, which is expected given the
O(∆Σ2) convergence of the central differencing formula.

Finally, the performance of a Kriging surrogate, as described in section 2.2, in modeling
the infinite multiplication factor will be assessed. Before a Kriging surrogate is constructed
the designer must agree on the number of points that will be used to construct the surrogate.
As the number of points increases the accuracy of the Kriging surrogate is expected to
increase. Recall that each point requires an evaluation of the true objective function, in this
case Eq. 3.2. Since Eq. 3.2 is linear relatively few sampling points are expected to exactly
reproduce the objective function. Indeed, these expectations are demonstrated in Fig. 3.3.

In Fig. 3.3 the number of points used to construct the Kriging surrogate is gradually
increased. For each surrogate the root mean square error is calculated by having both Eq.
3.2 and the surrogate evaluate the same 100 randomly chosen points in the design space.
Observe that for ten evaluation points, which is twice the number of design variables in the
objective function, the error essentially goes to zero. This result can be explained by Eq.
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Figure 3.3: Reduction in Kriging surrogate error for the infinite multiplication factor as
the number of points used to build the surrogate increases.
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3.2’s linearity and the fact that Kriging is an interpolation method, thus requiring a pair of
points in each dimension for exact interpolation.

3.2 Point Kinetics/Lumped Thermal Hydraulics

3.2.1 Problem Statement

A reduced order model based on the anchored-ANOVA decomposition will be constructed
in this section for a simple system of ordinary differential equations modeling a transient
in a BN800 sodium fast cooled reactor. The physical model of the reactor consists of
point kinetics to model the neutronics and lumped thermal hydraulics equations to describe
temperature feedback. The coupled system is nonlinear and only has a time dependence.
Previous research groups have utilized point kinetics and lumped thermal hydraulics equa-
tions to model basic reactor systems in [26], [25], and [31]. In this section a reduced order
model will be constructed for the maximum fuel temperature attained following a reactiv-
ity insertion as a function of the random variables exhibited in the description of the point
kinetics/lumped thermal hydraulics system.

The six-group point kinetics equations modeling the neutronics of a reactor consist of
a balance for reactor power P(t) and a balance equation for each of the six precursor con-
centrations Ck(t). Changes in reactor power are dependent on the precursor concentration,
decays constants λk, delayed neutron fraction β and the mean neutron generation time Λ

as detailed in,
dP
dt

=
ρ(Tf ,Tc, t)−β

Λ
P+

6

∑
k=1

λkCk. (3.6)

The reactivity ρ depends on feedback from the fluids temperature models for the reactor
fuel and coolant, which in turn depend on reactor power. The expression for each of the k

precursor concentrations is written as,

dCk

dt
=−λkCk +

βk

Λ
P. (3.7)

As for the ordinary differential equations describing the behavior of the reactor coolant
system, two coupled equations suffice. For the fuel temperature Tf , the following lumped
model is used,

M f cp f
dTf

dt
= P+Ah(Tc−Tf ) (3.8)

where M f is the lump fuel mass, cp f is the specific heat capacity of the fuel, A is the heat
transfer surface, and h is the heat transfer coefficient between the coolant and reactor fuel.
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Finally, the coolant temperature is described as,

Mccpc

(
dTc

dt
+ v

Tc−Tin

L

)
= Ah(Tf −Tc) (3.9)

where Mc is the lump coolant mass, cpc is the specific heat capacity of the coolant, L

is the coolant channel length, v is the coolant flow velocity, and Tin is the inlet coolant
temperature. The initial conditions for P, Ck, Tf , and Tc depend on the initial power in the
reactor P0 before any kind of transient occurs and are listed in 3.10.

P(0) = P0 (3.10)

Ck(0) =
βk

λkΛ
P0

Tf (0) = Tc(0)+
P0

Ah

Tc(0) = Tin +
P0L

Mccpcv

Serving as the coupling device between the lumped thermal hydraulics model and point
kinetics model is the reactivity, which is proportional to the coolant temperature and the fuel
temperature. Of course, any external reactivity ρex added to the reactor is also a contributor.
The time dependent reactivity is given explicitly as,

ρ(Tf ,Tc, t) = ρex +αd(Tf −Tf (0))+αc(Tc−Tc(0)) (3.11)

where αd and αc are the doppler and coolant coefficients of reactivity, respectively.
The equations in 3.6, 3.7, 3.9, and 3.8 are used to model the transient resulting from a

half sawtooth external reactivity insertion, as shown in 3.12.

ρex(t) =

{
tρmax/20 t ≤ 20

0 t > 20
(3.12)

By treating the coefficients in the point kinetics/lumped thermal hydraulics model as ran-
dom variables, the objective function investigates the response surface for the maximum
fuel temperature attained during transient. The reduced order methodologies will be tested
against the stated problem. A depiction of the transient at the random variables’ mean val-
ues, along with the external reactivity is shown in Figure 3.4. A total of twenty two random
variables will be investigated for their affect on the maximum fuel temperature attained
during transient. The random variables’ mean values, along with their standard deviations
are listed in 3.4. Note that all standard deviations are taken to be 5% of the mean value. All
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Figure 3.4: Transient resulting from a half sawtooth external reactivity insertion, as mod-
eled using the mean parameter values of the point kinetics/lumped thermal hydraulics sys-
tem.

0.0

0.2

0.4

0.6

0.8

1.0

Ex
te

rn
al

 R
ea

ct
iv

ity
 ($

)

0 5 10 15 20 25 30
Time (s)

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

No
rm

al
iz

ed
 P

ow
er

Normalized Power
External Reactivity

50



Table 3.4: Mean parameter values used in the point kinetics/lumped thermal hydraulics
model for the analysis of a BN800 fast sodium cooled reactor.

Random Variable Units Mean Standard Dev.
λ1 s−1 1.24E-02 6.20e-04
λ2 s−1 3.05E-02 1.52e-03
λ3 s−1 1.11E-01 5.55e-03
λ4 s−1 3.01E-01 1.50e-02
λ5 s−1 1.14E+00 5.70e-02
λ6 s−1 3.01E+00 1.50e-01
β1 9.00E-05 4.50e-06
β2 8.53E-04 4.26e-05
β3 7.00E-04 3.50e-05
β4 1.40E-03 7.00e-05
β5 6.00E-04 3.00e-05
β6 5.50E-04 2.75e-05
Λ s 4.00E-07 2.00e-08
Ah kW/K 2.50E+06 1.25e+05
Mc kg 1.16E+03 5.84e+01
M f kg 9.67E+03 4.83e+02
cpc J/kg ·K 1.20E+03 6.00e+01
cp f J/kg ·K 5.00E+02 2.50e+01
v m/s 7.50E+00 3.75e-01

αd pcm/K 6.87E-06 3.43e-07
αc pcm/K 1.23E-06 6.15e-08

ρmax 4.19E-04 2.09e-05

random variables are assumed to be independent of one another, as was assumed in [25].
A plot of the fuel temperature as a function of time due to the external reactivity profile
shown in the same figure is depicted in Figure 3.5.

3.2.2 Analysis

An adaptive reduced order model, whose formulation is summarized in Algorithm 7, will
be created for the problem described in section 3.2.1. The reduced order model will be
investigated for its ability to reproduce statistics of interest by comparing its results with
those obtained from sampling the true function. As described in Algorithm 7, the first step
in creating a reduced order model for the maximum fuel temperature is to construct all first
order components in the anchored-ANOVA decomposition and to identify the important
ones. The sparse grids comprising the reduced order model are assumed to be converged
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Figure 3.5: Fuel temperature transient resulting from a half sawtooth reactivity insertion.
All parameters in the coupled point kinetics/lumped thermal hydraulics equations are held
at their mean values.
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when the maximum hierarchical surplus for a given level is less than 10−5. Consequently,
at least five digits of accuracy are expected. Important dimensions are those whose normal-
ized sensitivity index in Eq. 2.54 exceeds 5%.

From Figure 3.6 the ”important” variables are identified to be Ah, αd , and ρmax. Collec-
tively these three ”important” random variables comprise 82% of the total sensitivity. The
indication that the maximum fuel temperature is sensitive to the heat transfer Ah from fuel
to coolant is not surprising since in Eq. 3.8 the fuel temperature is directly proportional to
Ah. Further, the random variables ρmax and αd determine the slope of the increase in fuel
temperature, as seen in Figure 3.5, and so a strong sensitivity to these random variables is
expected. The sensitivity of the maximum fuel temperature to αc is not as great since the
increase in coolant temperature during the transient is significantly smaller than the rise in
fuel temperature. Relatively weak sensitivity to M f and cp f can perhaps be attributed to
cancellation of error since these two variables are multiplied together.
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Figure 3.6: Normalized sensitivity indices for all random variables comprising the coupled
point kinetics/lumped thermal hydraulics equations. The effects of all βk and λk have been
lumped into single β and λ effects, respectively.
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With only three random variables deemed as ”important” only three second order anchored-
ANOVA components must be built for the reduced order model. Neglecting any conver-
gence criteria, third order component describing the interaction effects among the three
important random variables is also built. A summary of the total number of function evalu-
ations needed to construct the adaptive reduced order model for the maximum fuel temper-
ature is shown in Figure 3.7. The Gauss-Patterson scheme required almost twice as many
knots as Clenshaw-Curtis to adaptively build the reduced order model. From Figure 3.7
it’s clear that the reduced order model consisting of only one dimensional components is
effectively just as accurate as the full model, but requiring only 126 function evaluations to
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Figure 3.7: Number of knots needed to adaptively construct a reduced order model for
the maximum fuel temperature in both the Clenshaw-Curtis and Gauss-Patterson schemes.
Boxed values state the standard deviation calculated at each level.
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build using Clenshaw-Curtis. To see how well the reduced order models are able to repro-
duce the mean and variance of the true function Monte Carlo simulation is utilized. The
models produced using anchored-ANOVA decomposition with superposition dimensions
of one and three are sampled along with the true function. Mean, variance, and pertinent
99% confidence intervals for the sampling are summarized in Table 3.5. A total of 1000
samples were used for each method, each using the same random numbers. As evidenced
in Table 3.5 the statistical results for each method are consistent. While the reduced order
model with superposition dimension of three is able to replicate the Monte Carlo results to
five significant figures, the expected accuracy, the order-one superposition model is slightly
short. Of course, this is due to the absence of higher order components. However, the prox-
imity of the order-one superposition model’s results to the true results indicate that for this
problem the higher order components do not have a significant impact. To further verify the
ability of the reduced order models to accurately reproduce basic statistical moments, the
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Table 3.5: Mean and variance data for the maximum fuel temperature achieved during
transient obtained using Monte Carlo sampling. The same random numbers were used for
all 1000 samples for each method.

Method Mean 99% CI Standard Dev. 99% CI
1D ANOVA CC 1.03193 (1.03175, 1.03211) 0.002187 (0.002068, 0.002320)
All ANOVA CC 1.03193 (1.03175, 1.03211) 0.002196 (0.002076, 0.002330)
1D ANOVA GP 1.03193 (1.03175, 1.03211) 0.002187 (0.002068, 0.002320)
All ANOVA GP 1.03193 (1.03175, 1.03211) 0.002196 (0.002076, 0.002330)
True Function 1.03193 (1.03175, 1.03211) 0.002196 (0.002076, 0.002330)

probability distributions for the normalized maximum fuel temperature produced by each
model are compared in Figure 3.8. All of the tested reduced order models are able to repro-
duce the Gaussian probability distribution for the normalized maximum fuel temperature.

As done in section 3.1.2, a sensitivity analysis will be completed for the reduced or-
der model and compared to the normalized sensitivity coefficients obtained using central
differencing. From Table 3.6 notice that the largest sensitivity coefficients are those of the
random variables deemed ”important” using the adaptive reduced order model algorithm.
Only the sensitivity coefficients for the Clenshaw-Curtis sparse grid are shown in Table 3.6
since the Gauss-Patterson sparse grid returns identical results. The normalized sensitivity
coefficients calculated using the reduced order models are the same as those calculated
using central differencing to the expected number of significant digits.

To further analyze the coupled point kinetics/lumped thermal hydraulics problem in
hand, Morris’ algorithm is applied, as described in section 2.1.1. As previously described,
algorithm 1 aims to identify the design variables that have the greatest influence on an ob-
jective function’s behavior, which in this case is the fuel temperature. To effectively deter-
mine such design variables it is convenient to plot the mean against the standard deviation
of each design variable’s elementary effects. From the problem at hand, the elementary
effect statistics are plotted in Fig. 3.9. Figure 3.9 was obtained using five divisions and ten
elementary effects per design variable. Observe how eighteen of the twenty two points are
clustered around the origin, implying that each of these clustered variables have minimal
influence on the fuel temperature. In contrast, the variables ρex, α f , and Ah are likely to be
primary contributors. The results of Fig. 3.9 are entirely consistent with Fig. 3.6, which
also identifies the variables ρex, α f , and Ah as being principally important.

Now, with the three key variables identified a kriging surrogate is constructed for the
normalized fuel temperature. Sampling the three-dimensional surrogate 1000 times, as
done to obtain the results in Table 3.5, a mean normalized temperature of 1.03198±
0.002299 was obtained which is well within the 99% confidence interval of the sampled
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Figure 3.8: Histograms produced by sampling the true function, order-one superposition
reduced order model, and the full adaptive reduced order model.
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true result. Note that some of the statistical discrepancies being observed can be attributed
to the fact that the same random number were not used in the evaluation of the surrogate
and true function.
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Table 3.6: Normalized sensitivity coefficients of the maximum fuel temperature to random
variables.

Random Variable 1D ANOVA CC All ANOVA CC Central Diff.
λ1 3.7894E-05 3.7894E-05 3.7895E-05
λ2 7.0387E-04 7.0387E-04 7.0387E-04
λ3 8.4244E-04 8.4244E-04 8.4215E-04
λ4 9.7308E-04 9.7309E-04 9.7379E-04
λ5 1.1572E-04 1.1572E-04 1.1607E-04
λ6 4.4638E-05 4.4639E-05 4.0498E-05
β1 -3.2992E-04 -3.2992E-04 -3.2976E-04
β2 -2.6582E-03 -2.6582E-03 -2.6616E-03
β3 -1.1953E-03 -1.1953E-03 -1.2040E-03
β4 -1.0129E-03 -1.0129E-03 -1.0232E-03
β5 -1.1689E-04 -1.1689E-04 -1.1810E-04
β6 -4.0718E-05 -4.0718E-05 -4.1134E-05
Λ -8.9294E-08 -8.9295E-08 -8.9364E-08
Ah 1.2553E-02 1.2553E-02 1.2584E-02
Mc 1.8753E-03 1.8753E-03 1.8716E-03
M f -3.6695E-04 -3.6695E-04 -3.6360E-04
cpc 1.8753E-03 1.8753E-03 1.8903E-03
cp f -3.6695E-04 -3.6695E-04 -3.5976E-04
v 1.8838E-03 1.8839E-03 1.9177E-03

αd -2.6655E-02 -2.6656E-02 -2.6625E-02
αc 8.4387E-04 8.4387E-04 8.7194E-04

ρmax 3.1164E-02 3.1164E-02 3.1272E-02

3.3 TMI Minicore

3.3.1 Problem Statement

The previous two problems dealt with relatively simple functions that don’t require indus-
trial engineering codes to solve. However, the main intention of this thesis is to construct
reduced order models for computer codes that aim to model large and complex engineering
systems. Interaction with such computer codes consist of input and output files; the govern-
ing equations and their solvers are rarely seen. The primary purpose of this demonstration
problem is to show that the same algorithms applied to analyze the previous problems are
also functional when applied to engineering computer codes.

In this demonstration problem the reactor core simulator code PARCS [16] is applied
to the TMI minicore described in the first phase of the UAM Benchmark [34]. The mini-
core problem consists of a three-by-three fuel assembly configuration with reflector blocks
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Figure 3.9: Statistics of each design variable’s elementary effects, as applied to the coupled
point kinetics/lumped thermal hydraulics problem.

placed around the assemblies, as seen in Figure 3.10. In the minicore the central assembly
is rodded while the periphery fuel assemblies are unrodded. Vacuum boundary conditions
are applied. The few-group, homogenized cross section description for each fuel assembly
consists of transport, absorption, nu-fission, and scatter cross sections along with values for
ADFs. For a two-group problem the total number of cross sections to describe an assembly
is nine. Since the homogenized reflector region does not support fission only seven ho-
mogenized cross sections are required to describe it. Consequently, to model the minicore
configuration in Fig. 3.10 in PARCS a total of twenty five homogenized, two-group cross
sections are needed.

In order to study the effects of the uncertainties inherent in the few-group cross sections
on output parameters of interest in PARCS, a few-group covariance matrix is necessary.
The few-group covariance matrix is obtained using the ’two-step’ method depicted in Fig.
1.1. A total of 300 transport calculations with perturbed multigroup cross sections were
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Figure 3.10: TMI minicore configuration used for analysis, as defined in the UAM Bench-
mark specifications.

Reflector

Control Rod 
 Out 
 9

Control Rod 
 Out 
 8

Control Rod 
 Out 

 7

Control Rod 
 Out 
 1

Control Rod 
 Out 
 6

Control Rod 
 Inserted 

 5

Control Rod 
 Out 
 4

Control Rod 
 Out 

 3

Control Rod 
 Out 

 2

executed to generate the few-group covariance matrix. In the previous example problems
only one output parameter was investigated at a time. However, recall in the discussion
of the Smolyak algorithm that interpolation is only performed on the random space. The
objective function is evaluated at each abscissa in the random space, returning an output
that can still be a function of physical space. In this case the hierarchical surplus is no
longer one dimensional. Rather, the hierarchical surplus in Eq. 2.36 is rewritten as,

f (x,xi1
j1, ...,x

id
jd)−A(q−1,d)(x,xi1

j1, ...,x
id
jd) (3.13)

where x ∈ D is a coordinate in the spatial domain. When the objective function is a func-
tion of spatial coordinates the Smolyak algorithm approximates the function as a linear
combination of vectors, the linear weights still being tensor products of basis functions for
the random space. To determine the mean and variance of a reduced order model approx-
imation of some space-dependent objective function the L2 norm is taken over the spatial
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domain D . Similarly, to identify important dimensions using the sensitivity coefficient
defined in Eq. 2.54 the L2 norm is taken of ηi(x).

The problem in this section considers the core box power distribution of the minicore in
Fig. 3.10 and consequently, the objective function is space dependent. For each simulation
in PARCS a vector of length nine is returned with each entry containing the relative box
power in the fuel assemblies. The box powers are calculated such that the average of all
nine entries is identically equal to unity. In the PARCS output file the box powers are only
given to four digits of accuracy and therefore roundoff error in this problem warrants some
attention.

3.3.2 Analysis

In this analysis a pure ’two-step’ approach is used to compare the results obtained using
a reduced order model for the box powers output in PARCS. For the ’two-step’ approach
a few group covariance matrix is constructed and sampled 500 times, with each sample
containing perturbed few group cross sections. Each cross section set is propagated through
the PARCS code and the box powers for the fuel assemblies are extracted from the output
file. Ultimately, 500 box power outputs are analyzed statistically to obtain correlations,
means, and variances. The same few group covariance matrix is used to sample the reduced
order model for the box powers.

To build a reduced order model, Algorithm 7 is applied with a hierarchical surplus
threshold of 10−4 since the PARCS box powers are only output to four decimal places.
Consequently, roundoff error may accumulate in the fourth decimal point of the reduced
order model. A total of 123 executions of PARCS were required to construct all single
order components of the reduced order model using Clenshaw-Curtis abscissas. Due to
the geometry of the TMI minicore, 1/8 symmetry is expected in the box power results.
Consequently, only fuel assemblies one, four and five are investigated, as defined in Fig.
3.10. Sampling results for the mean and standard deviation for the true box power PARCS
model and the reduced order model are summarized in Tables 3.7 and 3.8, respectively.
As always, the same random numbers are used to produce each sample when comparing
two different methods. The results are identical in all cases to four significant digits and
in most cases, to five significant digits. In the reduced order model results notice that
the standard deviation for assembly six is slightly off in the fourth decimal place when
compared to assemblies two, four, and eight. The standard deviation should be equal in
these four assemblies due to symmetry, indicating the presence of roundoff error.

Adding higher order components in accordance with Algorithm 7 did not improve the
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Table 3.7: Mean and standard deviation data for TMI minicore box powers where PARCS
code is used as objective function. A total of 500 samples were used. Assembly numbers
correspond to Fig. 3.10.

Assembly Mean 99% CI Standard Dev. 99% CI
1 0.8387 (0.8386, 0.8388) 0.0007 (0.0006, 0.0008)
2 1.1499 (1.1498, 1.1500) 0.0011 (0.0010, 0.0012)
3 0.8387 (0.8386, 0.8388) 0.0007 (0.0006, 0.0008)
4 1.1499 (1.1498, 1.1500) 0.0011 (0.0010, 0.0012)
5 1.0453 (1.0450, 1.0456) 0.0027 (0.0025, 0.0029)
6 1.1499 (1.1498, 1.1500) 0.0011 (0.0010, 0.0012)
7 0.8387 (0.8386, 0.8388) 0.0007 (0.0006, 0.0008)
8 1.1499 (1.1498, 1.1500) 0.0011 (0.0010, 0.0012)
9 0.8387 (0.8386, 0.8388) 0.0007 (0.0006, 0.0008)

Table 3.8: Mean and standard deviation data for TMI minicore box powers where the
objective function is a reduced order model for PARCS containing only 1D components. A
total of 500 samples were used. Assembly numbers correspond to Fig. 3.10.

Assembly Mean 99% CI Standard Dev. 99% CI
1 0.8387 (0.8386, 0.8388) 0.0007 (0.0006, 0.0008)
2 1.1500 (1.1499, 1.1501) 0.0012 (0.0011, 0.0013)
3 0.8387 (0.8386, 0.8388) 0.0007 (0.0006, 0.0008)
4 1.1500 (1.1499, 1.1501) 0.0012 (0.0011, 0.0013)
5 1.0455 (1.0452, 1.0458) 0.0027 (0.0025, 0.0029)
6 1.1500 (1.1499, 1.1501) 0.0011 (0.0010, 0.0012)
7 0.8387 (0.8386, 0.8388) 0.0007 (0.0006, 0.0008)
8 1.1500 (1.1499, 1.1501) 0.0012 (0.0011, 0.0013)
9 0.8387 (0.8386, 0.8388) 0.0007 (0.0006, 0.0008)

statistics of the reduced order model. For the purposes of uncertainty quantification the
reduced order model consisting entirely of 1D components is sufficient for this problem.
The bivariate distributions for the box powers for all combinations of assemblies one, four,
and five are given in Fig. 3.11. For each case in Fig. 3.11 the bivariate distributions
are obtained by sampling the reduced order model and PARCS. Variations between the
overlaid distributions can be attributed to roundoff error. A decrease in the box power of
assembly five is equivalent to an increase in the absorption of the assembly’s control rods,
which effectively shifts the neutron flux away from the central assembly. Consequently, a
negative correlation is expected between assemblies one and five and between assemblies
one and four. Indeed, statistical sampling has the Pearson correlation coefficient for the
box powers of assemblies one and four to be −0.83 and −0.84 between assemblies one
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and five. However, negative correlation coefficients between assembly one and assemblies
four and five implies a positive correlation coefficient between assemblies four and five.
The positive correlation coefficient of +0.40 between assemblies four and five is evident in
Fig. 3.11.

Further investigation into the decisive parameters effecting the core power distribution
can be obtained with a design variable screening study. Applying algorithm 1 to the nor-
malized power distribution of assemblies one, two, four, and five, the plot in Fig. 3.12 is
obtained. As seen in Fig. 3.12, a cluster of design variables are centered around the origin
indicating a lack of activity relating to the core power. For example, the ADFs in each of
the four assemblies have a negligible effect on the core power. On the contrary, the cross
sections Σi

12, Σo
12 and Σo

tr stand out from the cluster, which is no surprise considering the
TMI minicore is a scattering dominant problem. The key design variables effecting as-
sembly five’s core power, which essentially controls the remaining power in the core, are
Σi

a1, νΣi
f 2, νΣo

f 2, and the scattering cross sections. Note that the elementary effects of the
important design variables in assembly five are an order of magnitude greater than in the
other assemblies.

From the observation of the important design variables in Fig. 3.12, a Kriging surro-
gate is constructed for the core power as a function of Σi

a1, νΣi
f 2, Σi

12, Σo
tr1, νΣo

f 2 and Σo
12.

Using these variables a sampling plan consisting of twenty true PARCS evaluations was
obtained using algorithm 3. Based on the optimized sampling plan a Kriging surrogate was
constructed and sampled 500 times in accordance with the six design variables’ covariance
matrix. The results are summarized in Table 3.9 and should be compared to Tables 3.7
and 3.8. The random numbers used for sampling the the Kriging surrogate were not the

Table 3.9: Mean and standard deviation for TMI minicore box powers using a six dimen-
sional Kriging surrogate. A total of 500 samples were used. Assembly numbers correspond
to Fig. 3.10.

Assembly Mean 99% CI Standard Dev. 99% CI
1 0.8385 (0.8384, 0.8386) 0.0010 (0.0009, 0.0011)
2 1.1499 (1.1497, 1.1500) 0.0013 (0.0012, 0.0014)
3 0.8384 (0.8383, 0.8386) 0.0010 (0.0009, 0.0011)
4 1.1499 (1.1497, 1.1500) 0.0013 (0.0012, 0.0014)
5 1.0465 (1.0462, 1.0467) 0.0022 (0.0020, 0.0024)
6 1.1499 (1.1497, 1.1500) 0.0013 (0.0012, 0.0014)
7 0.8384 (0.8383, 0.8386) 0.0010 (0.0009, 0.0011)
8 1.1499 (1.1497, 1.1500) 0.0013 (0.0012, 0.0014)
9 0.8384 (0.8383, 0.8386) 0.0010 (0.0009, 0.0011)
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same as those used to sample the true function and the collocation-based surrogate. Con-
sequently, some of the discrepancies between Table 3.9 and Tables 3.7 and 3.8 are purely
statistical. Despite this fact each assembly’s core power mean and standard deviation confi-
dence intervals overlap between the different modeling approaches. The Kriging surrogate
consisting of six of the original twenty five design variables can adequately represent the
physical phenomenon occurring in the TMI minicore. Of course, this conclusion can be
made for this problem because the uncertainties in the cross sections are relatively small.
Larger uncertainties in the design variables are likely to effect the ability of a surrogate’s
ability to represent its objective function.

3.4 General Observations

Before moving on to a large-scale engineering system a few general observations regarding
the application of collocation-based and Kriging reduced order models to the uncertainty
quantification of the reactor systems described are in order. Primarily, the demonstration
problems indicate that use of only 1D components in the anchored-ANOVA expansion
provides a very good approximation to the true system under investigation. From a compu-
tational point of view, 1D components are cheap to build and their quantity is equal to the
number of random variables modeled. Higher order components generally require higher
levels of interpolation and so their construction should be minimized if possible. As men-
tioned in [50], the interaction effects between random variables for most realistic physical
systems have a negligible effect on outputs of interest.

Nevertheless, if multivariate components are needed algorithm 7 is able to identify the
combination of components most likely to affect the output, which offers significant com-
putational savings. For example, if all components of two random variables were to be
included in the anchored-ANOVA expansion then 4950 two-dimensional sparse grid in-
terpolants would need to be built. However, if only 5 of the 100 variables are deemed
”important” by algorithm 7 then only 10 two-dimensional sparse grid interpolants will be
built. Not to mention, identification of variables that most affect the variability in some
computer code output of interest offers insight into the physical system under considera-
tion. It should be reemphasized that components of the anchored-ANOVA used to build
reduced order models do not represent the order of effects on the output. Even the 1D
component functions can model nonlinear behavior as discussed in section 2.3.2. Rather,
the multivariate components describe the effect of input variables upon some output when
acting together.

For the demonstration problems investigated in this chapter, the Clenshaw-Curtis collo-
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cation abscissas performed significantly better than Gauss-Patterson. The Clenshaw-Curtis
knots offered effectively the same convergence rates as Gauss-Patterson with far fewer
function evaluations. Not to mention, Clenshaw-Curtis knots are much easier to generate.

The application of Morris’ Algorithm for design variable screening was found to be
a visually useful tool for dimension reduction. Whether a computational problem has a
large number of dimensions or not the results of Morris’ Algorithm can be viewed on
a two-dimensional plot. Design variables having the greatest influence on an objective
output’s behavior become instantly recognizable. After identifying each example problem’s
key design variables, a reduced order model based on surrogate Kriging was constructed.
The Kriging models’ ability to reproduce statistics calculated used exact and collocation-
based models using only twenty or so basis points demonstrated great promise for further
applications.

However, in all of the example problems analyzed in the current chapter the input un-
certainties were calculated systematically beforehand and were therefore relatively small.
In other words, engineering judgment never had to be applied in order to estimate the un-
certainty of some model input parameter. Uncertainty estimates based on engineering judg-
ment are reasonably expected to be significantly greater than those that can be calculated
because more information is known about the latter. The introduction of large uncertainty
estimates will be expected in the proceeding application, largely due to the fact that the
sources of uncertainty are unknown. Such estimates are expected to negatively impact the
smooth construction of surrogate models to represent the applications of interest.
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Figure 3.11: Multivariate distributions for the box powers of two assemblies. Dashed
distributions were obtained by sampling the reduced order model consisting of only 1D
components.
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Figure 3.12: Design variable screening study for the TMI Minicore.
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CHAPTER 4

Application to Fission Gas Release

4.1 Problem Overview

In the previous chapters collocation-based and Kriging surrogates were applied to several
play problems in hopes of demonstrating the surrogates’ efficacy. Ultimately, the same sur-
rogate methods will be applied to a difficult problem in nuclear fuel performance modeling.
Specifically, modeling the depletion behavior of high burnup fuel is of interest. The field of
fuel performance modeling is an ideal application for surrogates because most modern fuel
performance codes such as Bison [81] are computationally expensive and there is a rela-
tive abundance of experimental data to complement the computer codes. Recall that the
true promise of surrogates arises when thousands of simulations of an expensive computer
code are required, as is the case for optimization and calibration studies. The idea is to
fold together computer simulations and experimental data to improve the computer code’s
predictive accuracy.

Calibration studies involving the fuel performance code Bison have already been con-
ducted by Swiler et. al. in [71]. In [71], an optimal fuel relocation activation parameter is
identified by an aggregated calibration to experimental observations of several Halden fuel
rods. Surrogates were not required for the calibration study due to the relative simplicity of
the fuel rod model used. The Dakota [2] framework was used to complete the calibration
study.

For the proposed thesis research the application of interest arises from the extensive val-
idation base for fuel performance modeling found in the Fumex-II database [40]. Specifi-
cally, the application involves calibrating fission gas parameters involved in modeling the
Risø AN3 experiment since these parameters are notoriously uncertain. The Risø AN3
experiment consists of a base irradiation of four reactor cycles up to some 41 GWd/t, as
shown in Fig. 4.1, followed by a power ramp. The base irradiation takes place in the Biblis
A pressurized water reactor [40]. After the base irradiation period, a fuel rod is extracted
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Figure 4.1: Base irradiation history for the Risø AN3 experiment.
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Figure 4.2: Power ramp experiment for the the Risø AN3 experiment.

and refabricated to a shorter length before undergoing the power ramp in Fig. 4.2. The
refabricated fuel rod was outfitted with various instrumentation such that fuel centerline
temperature, fission gas release and rod internal pressure measurements could be obtained.
The Risø AN3 test rod specifications are summarized in Table 4.1. The reader is encour-
aged to consult [60] for more in-depth specifications and modeling details.

The Risø AN3 experiment was modeled using solely Bison in [59] and is included as
a validation case for the Bison code. The relevant Bison input file and pertinent operat-
ing conditions, as utilized in this thesis, are included in Appendices A, B. Note, the Bison
Risø AN3 model is based upon the conditions and specifications in Table 4.1 and [60].
To model fission gas release the SIFGRS model is utilized in Bison. Bison’s prediction of
fission gas release during the power ramp is displayed alongside the corresponding exper-
imental results in Fig. 4.3. As seen in Fig. 4.3, Bison over predicts fission gas release by
a factor of two some forty hours into the power ramp. Similarly, Bison’s prediction of fuel
centerline temperature is plotted against experimental data in Fig. 4.4. Since fission gas re-
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Table 4.1: Risø AN3 test configurations and operating conditions.

Description Units Value
Overall fuel rod length m 0.39058

Fuel stack length m 0.286
Nominal plenum height mm 61.0

Pre-ramp rod fill gas composition He
Pre-ramp rod fill gas pressure MPa 2.31

Refabfricated rod fill gas composition He
Refabfricated rod fill gas pressure MPa 1.57

Fuel material UO2
Fuel enrichment % 2.95

Fuel density % 93.74
Fuel inner diameter mm 2.5
Fuel outer diameter mm 9.053
Pellet dish diameter cm 0.665

Pellet dish depth cm 0.013
Pellet chamfer width cm 0.046
Pellet chamfer depth cm 0.016

Cladding material Zr-4
Cladding outer diameter mm 10.81
Cladding inner diameter mm 9.258
Cladding wall thickness mm 0.776

Base irradiation coolant inlet temperature C 287.7
Base irradiation coolant pressure MPa 15.52

Power ramp coolant pressure MPa 15.3
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Figure 4.3: Comparison of Bison fission gas release prediction to experimental results
during the Risø AN3 power ramp.
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Figure 4.4: Comparison of Bison fuel centerline temperature prediction to experimental
results during the Risø AN3 power ramp.

lease and fuel temperature are strongly coupled [59], it is anticipated that better fission gas
release predictions will result in a more accurate fuel centerline temperature comparison.

Calibrated parameters in SIFGRS are expected to decrease the error between Bison’s
predicted output and the experimental data. Input parameters to SIFGRS such as the fuel
grain radius, hydrostatic stress, fuel porosity, bubble surface tension, and the gas diffusion
coefficient are quite generic and uncertain. Consequently, adjusting such parameters to
better match experimental data is justified. However, Bison’s fission gas release predictions
are computationally expensive. Considering the calibration of parameters in SIFGRS will
requires thousands of Bison instances, a surrogate model for fission gas release behavior
becomes necessary. As in [70], the Dakota framework will be utilized to construct surrogate
models for fission gas release behavior and to perform calibration routines.

The primary culprits in the SIFGRS model have been identified in [69] and [55] to be
the initial fuel grain radius, fuel porosity, surface tension, temperature, fuel grain radius,
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Figure 4.5: Fission gas release time series for 100 LHS Bison simulated Risø AN3 power
ramp experiments.

diffusion coefficient, resolution parameter and grain boundary coefficient. The importance
and role of of these variables will be described in section 4.2. For now, suffice it to say that
the true values of these variables are unknown and only uniform probability distributions
can be attached to each variable. As a starting point for analysis, the LHS module in Dakota
was utilized to sample the variable space and simulate the resulting fission gas release time
series resulting from the Risø AN3 power ramp. The 100 resulting time series are shown
in Fig. 4.5. From Fig. 4.5, it is clear that Bison tends to over predict fission gas release.
However, it is also apparent that the range of variables is sufficient to contend with the
experimental data.

The problem of finding ”true” fission gas release parameters that will yield a release
profile similar to that provided by experimental data is complicated by the quality of the
experimental data. As seen in Fig. 4.3, the fission gas release is not monotonically increas-
ing at all time steps in the power ramp. Of course, such a result is not physical. One possible
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explanation for the fission gas release decrease attributes the pressure transducers used to
measure plenum pressure. Under some conditions released fission gases get trapped in fuel
gaps and cracks, thereby not contributing to plenum pressure. The same phenomenon is
believed to cause the large release of fission gas occurring at approximately hour fifty into
the power ramp [56]. Observe the large drop in power occurring at the same time as the
spike in rod internal pressure measured by the transducer. As the power drops the cracks
where fission gases are stored open. Consequently, although such fission gases were actu-
ally released earlier in the power ramp, the pressure transducer registers the gases in one
burst. A burst of fission gases is expected to occur in the event of pellet-clad mechanical
interaction. However, no such interaction took place during the Risø AN3 power ramp.
The fission gas burst is controversial and currently not well understood [56]. An alternative
explanation suggests the burst is caused by gases accumulated at grain boundaries. Given
the active research and discussion in this area, it is safe to say the fission gas release model
implemented in Bison is not capable of exactly reproducing experimental observations. In-
deed, no fission gas release burst mechanism exists in the Bison code. Such shortcomings
will have to be considered when performing calibration on fission gas parameters.

4.2 Theory of Fission Gas Release

Initial attempts to create models describing fission gas release were based on empirical
correlations. Analyses performed with such models are limited in scope since they depend
on a limited set of experimental observations. Simulations with conditions set outside
the realm of the experimental data are extrapolating and therefore unreliable, especially
when it is acknowledged that the input parameters to the fission gas release models have
high uncertainty. To this end, a physics-based fission gas release model was developed by
Pastore et. al [57]. Physics based models are based on the solution of partial differential
equations describing the various processes in fission gas release such as fuel swelling and
diffusion of gas bubbles to the rod free volume.

There are two primary physical processes that lead to fission gas release into the rod free
volume. Both processes involve the formation of Xenon and Krypton gas bubbles along
UO2 grain boundaries. In athermal gas release, which occurs at relatively low operating
reactor temperatures, the diffusion of gas bubbles from within the fuel grains is negligi-
ble. However, in athermal gas release bubbles along fuel grain surfaces are able to escape
into the rod free volume through the release mechanisms of recoil and knockout [56]. At
high temperatures fission gas release is dominated by thermal release, which involves the
coupling of several physical processes. In thermal release Xenon and Krypton gas atoms
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formed within fuel grains diffuse towards the grain boundaries through trapping-in and
irradiation-induced resolution [57]. Additional gas bubbles appear onto grain boundaries
through sweeping due to grain growth. As more and more gas bubbles diffusion towards
grain boundaries the bubbles experience growth and ultimately coalesce. Eventually, tun-
nel networks form that provide a means for fission gases to escape into the rod free volume.
The internal pressure causing bubble growth can be subdued by hydrostatic stress from the
rod internal pressure and pellet/cladding contact pressure. A primary motivation for de-
veloping a physics-based fission gas release model is to accurately describe the interplay
between these opposing forces [57].

The physics-based models for athermal and thermal fission gas release are given math-
ematical treatments in the proceeding sections. The implementation of the physics-based
fission gas release model by Pastore et. al., namely SIFGRS, is implemented in the Bi-
son code and utilized in this research. The implementation is validated in [56], [58], [59],
and [55]. Note that the models on which the SIFGRS implementation is based on is kept
relatively simple in order to provide timely estimates of fission gas release in the computa-
tionally expensive, finite-element based Bison code. The relative simplicity of the models
is justified considering the large uncertainties in both fuel performance modeling codes and
model parameters in the fission gas release model [58] [46].

The primary challenges of modeling thermal fission gas release are in describing the
diffusional process of fission gases to grain boundaries and the resulting bubble growth
and coalescence. As mentioned previously, the thermal release model is intended to be
relatively simple, and as such, makes several assumptions that are in contrast to the current
understanding of materials science. Upon reaching a fuel grain boundary fission gas atoms
can be thrust back into the grain by irradiation. Such behavior is neglected in the proceeding
model. Further, the complexity of grain edges, most notably triple grain junctions, are
completely neglected. In addition, the initial concentration of grain face bubbles is static,
which is not entirely correct because new bubbles will form during any irradiation process.
Bubbles are also assumed to absorb any gas atoms arriving at grain faces. Finally, all grain
face bubbles are assumed to have the same size and shape [56].

Fission gas bubble growth is known to result from two channels. First, growth occurs
due to absorption of vacancies caused by a pressure differential between the bubble’s ex-
pansion and external forces acting on the bubble. Second, bubble growth is accelerated due
to the diffusional process bringing gas atoms from the inner fuel grain to the grain faces.
To this end, bubble growth rate can be described as,

dVg f

dt
= ω

dng

dt
+Ωg f

dnv

dt
(4.1)
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where Vg f is the bubble volume, nv is the number of vacancies per bubble, and ng is the
number of fission gas atoms per bubble. The first term in Eq. 4.1 describes the contribu-
tion from diffusional gas atoms while the second term describes absorption of vacancies.
The factors ω and Ωg f are respective proportionality constants commonly described in
the literature as Van Der Waal’s’ volume of a fission gas atom and the vacancy volume in
grain boundary bubbles. The term due to diffusional gas atoms is obtained by solving the
diffusion equation in spherical geometry for the concentration of intra-granular gas atoms
Cig,

dCig

dt
=

b
b+g

Ds
1
r2

∂

∂ r

(
r2 ∂Cig

∂ r

)
+β . (4.2)

The effective diffusion coefficient in Eq. 4.2, which regulates the rate at which gas atoms
in a UO2 lattice diffuse from fuel grain to face, consists of several components. The factor
g represents the trapping parameter while b is the resolution parameter. Together, the ratio
b/(b+g) is the fraction of all intra-granular gas atoms that can potentially diffuse towards
the grain boundary [57]. The final component in the effective diffusion coefficient is the
intra-granular gas atom diffusion coefficient Ds, which carries the classic interpretation of
a diffusion coefficient. The source term in Eq. 4.2 is the rate at which gas is generated.

Changes in vacancy absorption and emission, the second term in Eq. 4.1, is proportional
to the pressure differential of the gas bubble. If nv is the vacancy number in a bubble then
the time rate of change of nv is given by,

dnv

dt
=

2πDvδg

kT s

(
p− peq

)
. (4.3)

The internal pressure of the gas bubble can be expressed using Van Der Waal’s equation,

p =
kT
Ωg f

ng

nv
(4.4)

where k is Boltzman’s constant and T is temperature. The pressure peq acting on the bubble
is given as the difference between the bubble surface tension and the hydrostatic stress σh

of the surrounding medium. More formally,

peq =
2γ

Rg f
−σh (4.5)

where Rg f is the bubble radius of curvature. The factor γ is the surface tension, which
is also commonly referred to as the UO2/gas specific surface energy. The surface tension
parameter strongly affects the kinetics of bubble growth [69]. To solve for the vacancy
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Figure 4.6: Bubble coalesce on a fuel grain face from the AGR/Halden Ramp Test Pro-
gramme [75].

number in Eq. 4.3 the grain boundary diffusion layer thickness δg is needed in addition to
the vacancy diffusion coefficient Dv. The factor s in Eq. 4.3 is closely related to the grain
face fractional coverage [56]. At this point all the elements are in place to model bubble
growth using Eq. 4.1.

As bubbles increase in size along grain boundaries they will eventually run into each
other and coalesce, as exemplified in Fig. 4.6. Under the premise of conservation of total
bubble volume, the relationship between bubble number density Ng f and the projected
bubble area along the grain face Ag f can be expressed as [57],

dNg f

dt
=−

6N2
g f

3+4ng f Ag f

dAg f

dt
. (4.6)

The bubble number density is obtained by solving 4.1. The processes of bubble growth
and coalescences along fuel grain boundaries lead to fission gas release once certain satura-
tion criteria have been met. Let Fc = Ng f Ag f denote the fraction of a grain face covered by
bubbles. The saturation condition holds when the time rate of change of Fc is static. When
the saturation condition holds, the relation between bubble number density and projected
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grain face area can be reformulated as,

dNg f

dt
=−

Ng f

Ag f

dAg f

dt
. (4.7)

Only when the saturation condition has been reached can fission gas escape into the rod
free volume. Once the saturation condition is met, Eq. 4.8 can be used to model the
concentration of gas atoms released per unit grain face.

dψthr

dt
= ng

1
2

2Ng f Ag f −3
4Ng f Ag f

dNg f

dt
(4.8)

where ng is the number of fission gas atoms per grain face bubble. The authors in [57]
argue that the process of fission gas release works strictly to reduce the bubble gas content
and size but not concentration.

While 4.8 is useful for quantifying fission gas release, a more useful metric is the con-
centration of gas atoms release per unit fuel volume Cthr. The metric Cthr is related to
ψthr through the proportionality constant equal to the grain surface to volume ratio [58], as
expressed in 4.9.

dCthr

dt
=

3
rgr

(
1−Pf

) dψthr

dt
(4.9)

In Eq. 4.9 the factors rgr and Pf represent the fuel grain radius and fuel porosity, respec-
tively. Both of these parameters are omnipresent in fuel performance modeling and have
a significant effect on fission gas release values. As the fuel grain radius increases during
irradiation the grain surface to volume ratio decreases. Consequently, fuel grain faces gen-
erally are less able to hold fission gases [56]. In addition, an increase in fuel grain radius
implies a larger travel distance for the fission gases to reach the grain face, per Eq. 4.2.
Furthermore, in the phenomenon of grain boundary sweeping additional fission gases are
swept to grain faces resulting from fuel grain growth, and specifically, moving grain bound-
aries. The fuel grain radius is the determinant in governing the fraction of intra-granular
gas atoms get swept to the boundaries, as evidenced in Eq. 4.10.

f =
r3

gr,i− r3
gr,i−1

r3
gr,i

(4.10)

The i in Eq. 4.10 refers to the ith time-step since grain boundary sweeping makes time-
dependent contributions.

In the Bison implementation of the fission gas release model described above, integral
fission gas release values are reported. Being a finite element code, Bison computes the
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gas release at each integration point. The ratio of total fission gas released into the rod free
volume to the total fission gas generated at each integration point is the quantity of inter-
est in this thesis. Also, note that since Bison makes time-dependent calculations and the
SIFGRS model accepts parameter values such as temperature from the greater code, how
to go about a parametric or sensitivity analysis is not straight forward. To this end, scaling
factors have been introduced into SIFGRS. At each time-step in a Bison simulation the a
set of predetermined scaling factors are applied to their corresponding parameters [58]. As
discussed in [58], the existing framework in Bison for propagating uncertainty values is not
ideal. For example, to accurately asses the affect of temperature on fission gas release the
material properties directly determining temperature fields should be parameterized.

As a final note, due to the relatively high temperatures involved in the Risø AN3 power
ramp experiment athermal fission gas release is mostly trumped by its thermal counter-
part. Nevertheless, for completeness the equations implemented in Bison for modeling the
recoil-and-knockout phenomena leading to athermal gas release is included in Eq. 4.11.

dCatr

dt
=

yF
4

(
Sg

V
µ f +2

St

V
µU,ko

)
(4.11)

The parameters y and F are the yield of fission gases and fission rate density, respectively.
Also, Sg, St and µU,ko are the geometric surface area of the fuel, total fuel surface area, and
range of higher-order knock-on in uranium oxide [58].

4.3 Kriging-based Surrogate for Parameter Calibration

In this section Bison is used to model the Risø AN3 power ramp fission gas release time
series. More specifically, given the wide uncertainty in the input fission gas release parame-
ters the problem of identifying parameter values resulting in Bison predictions most similar
to experimental data is tackled. Since a single Bison simulation of the Risø AN3 power
ramp is a computationally expensive, the surrogate construction techniques described in
chapter 2 will be employed. Recall that calibration exercises require thousands of instances
of computer code simulations. Consequently, without the use of surrogates parameter cali-
bration would not be feasible in this problem. Of the two surrogate construction techniques
described, namely Kriging and the collocation approach, Kriging is more applicable for
the problem in hand. Both surrogate techniques are designed for modeling surrogates of
scalar quantities. However, in this problem a surrogate for an entire time series is desired.
Of course, a surrogate can be constructed at each time-step but this would be extremely
expensive considering there are O(100) time-steps. Kriging is used here mainly because it
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Table 4.2: Fission gas release parameters used for calibration along with their uniform
probability distributions.

Description Symbol Lower Bound Upper Bound Scaled
Initial Fuel Grain Radius rg,0 2.0E-6 15.0E-6 no

Fuel Porosity Pf 0.0 0.1 no
Surface Tension γ 0.5 1.0 no

Temperature T 0.95 1.05 yes
Fuel Grain Radius rg 0.4 1.6 yes

Vacancy Diffusion Coef. Dv 0.1 10.0 no
Resolution Parameter b 0.1 10.0 no

Intra-granular Diffusion Coef. Ds 0.316 3.162 no

can most easily be extended when only a set and limited number of Bison simulations can
be afforded.

4.3.1 Uncertain Parameters

In order to calibrate certain parameters it’s necessary to first assign a valid range of values
each parameter can potentially take on. In light of previous fission gas release parameter
sensitivity research in [58], [69], and [37] a total of eight parameters have been chosen for
calibration in this research due to their propensity for influencing fission gas release be-
havior. The eight parameters are the initial fuel grain radius, fuel porosity, bubble surface
tension, temperature, fuel grain radius, intra-granular gas atom diffusion coefficient, va-
cancy diffusion coefficient and resolution parameter. Each of the parameters is assumed to
carry a uniform uncertainty distribution with lower and upper bounds estimated by Pastore
et. al. [69] [58] using experimental values cited in published literature. The distributions
are summarized in Table 4.2.

The scaled column in Table 4.2 denotes whether or not the parameter is scaled at each
time-step in a Bison simulation, as described in Section 4.2. Temperature T is a ubiquitous
field parameter in Bison that gets passed into the SIFGRS model, appearing most notably
in Eq. 4.4 and 4.3 along with the vacancy diffusion coefficient Dv. The bubble surface
tension parameterizes how internal bubble gas pressure behaves and appears in Eq. 4.4.
The fuel grain radius appears in the grain boundary sweeping model 4.10 along with the
equation describing the rate at which fission gases are released into the rod free volume in
Eq. 4.9. In addition, the fuel grain radius rg is a boundary condition in the gas diffusion
process in Eq. 4.2. The parameters b and Ds also appear in Eq. 4.2.
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4.3.2 Principal Component Analysis

The problem at hand involves a time-dependent objective function, namely the fission
gas release fraction throughout the course of a power ramp. Considering most surrogate
methodologies, including the ones of interest in this thesis, are designed to handle single
objective functions at a time, constructing a surrogate for an entire time series is problem-
atic since a surrogate must be constructed at every time step. Such is especially the case
when one does not know a priori whether or not a given time series will contain interesting
features mid-cycle, such as jumps and peaks in the objective function. In addition, if perti-
nent experimental time series data is available and a calibration study is desired, a surrogate
model for the entire time series will be necessary. Time dependency is not an issue if one is
only interested in investigating, for example, beginning of life or end of life behavior. PCA
will be used in this thesis as a framework to create an efficient mapping between fission
gas release parameters in SIFGRS and the Risø AN3 power ramp fission gas release time
series.

4.3.2.1 Theory

As with many of the great ideas in linear algebra, the premise of PCA rests on a change
of basis. PCA attempts to represent some original data samples in terms of a set of basis
vectors that reduce redundancy and noise in the data. To this end, consider a matrix X of
n observations and k variables where the k variables have been rescaled by their respective
mean, as shown in Eq. 4.12. Rescaling by the mean will ensure that the projected data will
live around the centroid of the new basis vectors.

X =

 · · ·
X1 X2 · · · Xk

· · ·

 (4.12)

The problem PCA solves is that of choosing a set of expansion coefficients {p1 j}k
j=1 such

that,
Y1 = pT

1 XT = p11X1 + p12X2 + · · ·+ p1kXk (4.13)

captures the largest variance in the data set. In other words, Y1 will point in the direction of
largest variance. To bound the potential values of p1 the condition ‖p1‖2 = 1 is enforced.
Since it is unlikely that Y1 will capture all the variance in the data, PCA goes on to find
Y2, ...,Yk such that all the variance in the data is accounted for. Each Y j is independent
from the other Yi6= j to make sure there is no redundancy in capturing variance. Each Y j is
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referred to as the j-principal component. In matrix form, the workings of PCA result in,

Y = PT XT . (4.14)

From Eq. 4.14 it becomes clear that the operator P consisting of {pi j}k
i, j=1 has the effect

of rotating the data in X onto an uncorrelated set of axis.
While the desired effect of operator P to produce output Y has been described, the

question of how to find the expansion coefficients comprising P remains. As described in
[66], the coefficients can be shown to be the loadings of the eigenvectors of the covariance
matrix for X. The columns of P are the eigenvectors of the symmetric matrix,

σ1,1 σ1,2 · · · σ1,k

σ2,2 · · · σ2,k
. . . ...

σk,k

 (4.15)

where σi, j represents the covariance between random variables Xi and X j. The eigenvalues
of the matrix in Eq. 4.15 represent the amount of variance covered by the respective eigen-
vector. Before being placed into P, the eigenvectors should be sorted in descending order
with respect to eigenvalue.

The utility of PCA lays in the fact that for most data sets the variance can be projected
onto O(1) eigenvectors. To reveal this property the sorted eigenvalues can be plotted con-
secutively. PCA can be viewed as a tool for reducing the dimensionality of a data set by
opting to keep only the first r-principal components since a majority of the variance can be
projected onto these components. Indeed, if only r eigenvectors are kept then the projected
data can written as,

Yr = PT
r XT . (4.16)

Using Eq. 4.16 the reduced-variance version of the data in X can be reconstructed as,

XT
∗ = PrYr (4.17)

where it’s noted that the inverse of a matrix with orthonormal columns is its transpose. The
reconstructed data in Eq. 4.17 represents perturbations around a centroid; the data mean
must be added back in to obtain physical values. Using PCA to express a data set in terms of
a more meaningful and truncated basis allows one to filter out noise and identify structure
in the data. Such possibilities allow one to glean insights into the main contributors of a
data set’s variance [8].
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Figure 4.7: Cummulative variance carried by successive eigenvalues in the PCA covari-
ance matrix.

4.3.2.2 Insights

To obtain insight into the contributors of variance in Bison fission gas release time series,
PCA is applied to the data shown in Fig. 4.5. Each of the 100 time series shown in Fig.
4.5 is induced by a different set of SIFGRS parameters. Consequently, the time-stepping
required for convergence in Bison varies from one time series to another. To perform PCA
on the data, fission gas release fractions must be compared at identical times throughout
the 100 different samples. Consequently every power ramp time series output by Bison
is interpolated using cubic splines and then sampled at 150 evenly spaced points. The
covariance matrix central to PCA in this case contains covariances between all 150 time
steps. The eigenvalues of the covariance matrix are depicted in Fig. 4.7. As seen in Fig.
4.7, the three largest eigenvalues account for over 99% of the variance. If the original time
series data is rotated onto the corresponding three principal components using Eq. 4.16,
each time series can be represented using only three expansion coefficients. Consequently,
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Figure 4.8: First three principal components of the time series covariance matrix.

surrogates can be constructed for only the three expansion coefficients as a function of
the SIFGRS parameters. Instead of having to construct a surrogate at every time step, the
principal component expansion coefficient surrogates act as a mapping to the entire time
series.

The three principal components corresponding to the three largest eigenvalues of the
time series covariance matrix are plotted in Fig. 4.8. The principal components enable
insight into an underlying stochastic process by observing the magnitude of their coeffi-
cients [8]. Each time index’s magnitude in a principal component represents its influence
on the component. From Fig. 4.8 it appears as though the first principal component is
strongly influenced by the times in the middle of the power ramp, the second principal
component is influenced by the times at the end of the power ramp and the third principal
component is influenced most by the early stages of the power ramp. Further insights can
be gleaned by plotting the principal components as time series and correlating the loadings
with the LHS values for the SIFGRS parameters as in Fig. 4.9. The initial fuel grain radius
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Figure 4.9: Time series of the first principal component and correlations with SIFGRS
parameters.
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appears to be the leading driver of the variance in the first principal component judging by
its high correlation in the middle of the power ramp. Observe how in the late stages of the
power ramp, the temperature and grain radius become primary contributors.

4.3.3 Time-Series Surrogate

In Section 4.3.2 PCA was used used to show that three eigenvectors are sufficient to capture
over 99% of the variance in Bison’s simulated Risø AN3 power ramp fission gas release
time series. The variation is caused by perturbations in the fission gas release parameters
although they are not explicit in the PCA framework. The Dakota code is used to create
the 100 time series in the previous section. In accordance with each parameter’s uniform
distribution described in Table 4.2, Dakota made 100 sets of perturbations to the parameters
using the LHS method. Each of the 100 samples was then propagated through Bison and
a time series of fission gas release was output. PCA was then performed on the covariance
matrix of the 100 samples. Consequently, there is a clear mapping from a set of eight fission
gas release parameters to a time series. More specifically, there is a mapping from the ith

set of eight parameters Ri to the three expansion coefficients {pi1, pi2, pi3} that are capable
of reproducing the time series, as described in Eq. 4.13. In order to predict new time series
for a set of fission gas release parameters not in the set used to derive the three principal
components this mapping must be generated. Kriging is used to achieve the mapping using
the procedure summarized in Fig. 4.10. The procedure in Fig. 4.10 is an adaptation of the
traditional surrogate construction process for scalar outputs of expensive computer codes
summarized in Fig. 2.1 and is one of the original contributions of this thesis.

To start, using the Kriging description in Section 2.2 a surrogate is constructed for each
of the expansion coefficients related to the three principal components responsible for over
99% of the variance. Each of these surrogates p̂i j for j ∈ (1,2,3) accepts a set of fission gas
release parameters and outputs a scalar expansion coefficient for the principal component
X j. In accordance with Eq. 4.13 the predicted fission gas release time series is,

F̂ i(Ri) = p̂i1
(
Ri)X1 + p̂i2

(
Ri)X2 + p̂i3

(
Ri)X3 +µ (4.18)

where µ is the mean release time series of the 100 simulations. Since Kriging surrogates
return an uncertainty σp̂i j along with a predicted scalar value, an uncertainty band can be
derived for the time series in Eq. 4.18.

σ
2
F̂ i = σ

2
p̂i1

X2
1 +σ

2
p̂i2

X2
2 +σ

2
p̂i3

X2
3 (4.19)
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Figure 4.10: Flow diagram for constructing a time series surrogate using PCA and kriging
for an expensive computer code.

Identify Variables (Identify input variables of interest and respective probability
distributions)

LHS (Create LHS plan for inputs)

Propagate Sam-
pling Plan

(Propagate sampling plan through expensive computer code)

Perform PCA (Perform PCA on output time series)

Variance Projection (Identify number of eigenvalues needed to account for at least 99%
of the time series variance)

Kriging Surrogates for
Expansion Coefficients

(Construct kriging surrogates for expansion coefficients of primary
principal components determined from previous step)

Cross Validation (Cross validate surrogate performance on test cases)

Use Surrogate
for Analysis

(Use surrogate to perform analyses)
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The shape of the uncertainty vector output by Eq. 4.19 is equal to the number of time-steps
utilized in the principal components.

4.3.4 Analysis

The time series surrogate formulation described in Section 4.3.3 is tested on the point ki-
netics problem in Section 3.2. Although maximum fuel temperature was studied in Section
4.3.3 the raw output of the solution to the system of differential equations in Eq. 3.6 -
3.12 yields a time series of reactor power, as depicted in Fig. 3.4. Since a time series
solution can be obtained relatively quickly for any given set of input parameters the point
kinetics problem in hand is ideal for investigating how sensitive the time series surrogate
formulation is to training size. Indeed, the training size determines the quality of princi-
pal components and the accuracy of the kriging surrogates. The purpose of this section is
analyze the trade-off between surrogate accuracy and the expense induced by additional
expensive computer code simulations.

Due to the sensitivity analysis conducted in Section 3.2 the time series surrogate for-
mulation will only be tested on the non-kinetics parameters in Table 3.4 since the kinetics
parameters were deemed trivial. Specifically, the surrogates were built for the ten variables
Λ, Ah, Mc, M f , cpc, cp f , v, αd , αc and ρmax. LHS was utilized to sample the parameter
space to generate the design grid on which the principal components and kriging surro-
gates are calculated. Design grids are created for training set sizes of 15, 20, 30, 50, 75,
100, 200, 300 and 500 samples.

First, the minimum number of eigenvalues needed to accurately represent the variance
in the point kinetics time series is investigated. After all, if the number of eigenvalues is
on par with the number of time-steps there is no point in applying the time series surrogate
formulation described in Section 4.3.3. Using 100 samples, the eigenvalues of the time
series covariance matrix are found and sorted. The cumulative sum of the eigenvalues,
which corresponds to the fraction of total variance resulting from the 100 samples explained
by the corresponding eigenvectors, is plotted in Fig. 4.11. Note, each eigenvector consists
of 500 time steps. From Fig. 4.11 it’s clear that the three largest eigenvalues can explain
over 99% of the variance in the 100 samples. Consequently, the 500 dimensional space
initially faced with in the point kinetics time series can be reduced to only three dimensions
with minimal loss of explainability.

The three principal components corresponding to the top three eigenvalues are plotted
for training sizes of 20, 75, and 200 in Fig. 4.12 to ensure the shapes of the principal com-
ponents do not change. It is important that the fundamental shapes of the principal compo-
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Figure 4.11: Cumulative eigenvalue contribution for point kinetics power ramp using 100
samples.

nents do not change significantly with training size because then surrogates for expansion
coefficients values cannot be constructed since they are predicting different objects. For
deterministic computer codes, as those investigated in this thesis, the shapes of the princi-
pal components are expected to remain relatively static with training set size. Contrarily,
the magnitudes of the principal components are expected to change as each principal com-
ponent is expected to account for more variance introduced with increased training size.
Indeed, such a phenomenon is observed in Fig. 4.12. The first principal component in this
problem closely follows the normalized reactor power while the second and third principal
components correspond to the variance presented following the decrease in power once the
sawtooth reactivity insertion ends.

To analyze how well the kriging surrogates are capable of predicting the principal com-
ponent coefficients, the actual expansion coefficients are plotted against the predicted co-
efficients in Fig. 4.13 for various training set sizes. The test set in this case consists of
50 LHS sampled independently of those using the training sets. Note, the same test set is
used for all proceeding analyses. As the training set size increases in Fig. 4.13 the rela-
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Figure 4.12: Top three principal components for the point kinetics time series as calculated
using various training set sizes.

tionship between predicted and true expansion coefficients is gradually rotated to 45◦. For
relatively low training sizes the predicted expansion coefficients are nearly zero, the mean
value of the kriging surrogate. Part of the reason for this is the algorithm utilized for op-
timizing the θ values in the kriging construction. Although a global optimizer should be
used a local optimization algorithm is generally used in R [62] and Python statistical pack-
ages for efficiency. Regardless of the sample size in Fig. 4.13 the surrogates struggle with
predicting extreme expansion coefficients, which for this problem have magnitudes in the
regions of -0.08 and 0.08. Since the expansion coefficients are normally distributed, as in
Fig. 4.14, there simply are not as many training samples in these regions to provide accu-
rate predictions. However, the kriging formulation is aware of this situation and accounts
for the problem by outputting a relatively large uncertainty for these extreme expansion
coefficients.

The performance of the time series kriging formulation, with uncertainties for the ex-
pansion coefficients accounted for, is gaged in Fig. 4.15 by utilizing the standardized cross-
validated residual in Eq. 4.20.

pi j− p̂i j

σp̂i j

. (4.20)

Since the expansion coefficients are normally distributed, some 99% of the values’ stan-
dardized values should lay between -3 and +3. From Fig. 4.15 points lay outside the bounds
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Figure 4.13: Comparison of predicted and true principal component expansion coefficients
for the point kinetics problem using 45◦ plots.

Figure 4.14: Distributions of point kinetics principal component expansion coefficients
for a training size of 500 samples.

only for the small train sizes consisting of 15 and 20 samples. Indeed, for small train set
sizes the uncertainty predictions are likely to be misrepresented. Recall, kriging predictions
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are initialized by the mean of the objective function in the training set and then error terms
are added based on the proximity of the desired inputs to those in the training set. As ex-

Figure 4.15: Cross validation of the point kinetics time series surrogate by examining
standardized cross-validated residuals.

pected, the standardized residuals decrease with increasing train set size. To visualize this
trend better the absolute value of the standardized residuals are plotted against train set size
in Fig. 4.16. After some 100 samples in the training set there appears to be only marginal
gains in test set performance. Fig. 4.16 indicates that the first principal component for
the point kinetics time series surrogate is predicted best followed by the third and second
principal components. Since each successive principal component captures less variance
than its predecessors it is most important to accurately predict the principal components
corresponding to the largest eigenvalues.

4.3.4.1 Cross Validation

With a Kriging formulation for predicting Risø AN3 power ramp fission gas release time
series for any set of Bison fission gas release parameters in place, it is necessary to test
the formulation. In other words, it’s necessary to investigate the error in the formulation’s
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Figure 4.16: Average absolute value of standardized cross-validated residuals for the point
kinetics time series surrogate for various train set sizes.

predictions. If the Kriging surrogates can accurately predict their respective PCA expansion
coefficients then the formulation will be able to accurately predict gas release time series
since Eq. 4.18 is just a linear combination of the predictions. To this end, a test set of
100 independent Bison simulations of the Risø AN3 power ramp were obtained. The
simulations in the test set are completely isolated from those in the training set and not
used in calculating the Kriging surrogates nor the principal components. There are several
common approaches to judging the validity of a predictive model as described in [38]. With
training and test sets available at disposal are true expansion coefficient values, predicted
values, and uncertainties in the predicted values.

The standardized cross-validated residuals for all three Kriging surrogates’ predictions
on the test set are shown in Fig. 4.17. Note the Kriging models used to predict the ex-
pansion coefficients are built on 100 samples analyzed previously in Sec. 4.3.2. Each
point represents the number of standard deviations the true expansion coefficient is to the
predicted coefficient. Some 99.7% of points are expected to lie within the band [−3,+3].
Indeed, of the 300 points appearing in Fig. 4.17 some six lie outside the bands, which is a
first indication that the predictive model has merit.
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Figure 4.17: Cross validation of Kriging predictions for PCA expansion coefficients using
3σ band approach.
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Figure 4.18: Cross validation of Kriging predictions for PCA expansion coefficients using
45◦ approach.
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In the second cross validation approach, the predicted values are plotted directly against
the true values as shown in Fig. 4.18. Ideally, all points would lie on the 45◦ line, which
would indicate that predictions perfectly match the true expansion coefficient values. The
plots in Fig. 4.18 show that the predicted values do generally approach this trend despite
the presence of some noise. For predictions of each expansion coefficient in Fig. 4.18
the results are plotted when 20, 60, and 100 random samples from the test set are utilized.
Of course, less noise is present as the number of samples used to build the surrogates in-
crease. Surprisingly, regardless of the training set size, predictions for the first principal
component expansion coefficient are of the highest quality followed by the predictions for
the expansion coefficients of the third principal component. It is most important to accu-
rately predict expansion coefficients for the top principal components since they explain
the most variance. Accurate prediction of lower principal components offers diminishing
returns. Both inverse and logarithmic transforms were applied to the data as suggested
in [38] although no noticeable improvement was observed in prediction accuracy. Due to
the relatively noisy values for the second expansion coefficient in Fig. 4.18 it is anticipated
the largest prediction errors will occur from the release jump and onwards since the second
principal components attempts to account for a majority of the variance in this area per Fig.
4.8.

4.3.5 Calibration

Now that the predictive accuracy of the individual Kriging surrogates for each expansion
coefficient have been cross validated it is time to investigate how well the surrogates can
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perform collectively in predicting Risø AN3 power ramp fission gas release time series.
To determine the error between predicted time series the RMSE is used as a cost function.
Recall that before any two time series are compared each is segmented into 150 identical
locations. The objective of calibration is to find a set of fission gas release parameters Ri

such that when they are input into Eq. 4.18 the RMSE is minimized.
Ideally, the landscape of possible RMSE values is such that a clear global minimum ex-

ists. In this case, an algorithm such as Efficient Global Optimization (EGO) can be used to
find the minimal value and its corresponding parameter set [38]. EGO couples a computer
model’s surrogate prediction and uncertainty with the computer model itself in an iterative
optimization process. At each iteration EGO estimates the parameter space location that
is most likely to contain a RMSE value smaller than the current minimum. The true com-
puter model is then evaluated at this point and therefore, the minimization procedure can be
potentially expensive. However, if it is known a priori that the RMSE landscape is for ex-
ample, convex then EGO should be strongly considered. Unfortunately, there is usually no
way to tell a priori the shape of a landscape for most expensive engineering codes such as
Bison. Due to the non-linearities inherent in such codes the landscape is often fairly ”flat”.
A flat landscape can result when some parameters are insignificant and thus, many values
of these parameters will result in similar cost function values. Also, a flat landscape can re-
sult if the minimization problem is non-unique, meaning many combinations of parameters
can yield the same, or nearly the same, optimal values for the RMSE. Often times, these
two issues may be interrelated and both will tremendously complicate the global optimizer
search. Indeed, if EGO is used many expensive computer code evaluations will be wasted.
A local optimization algorithm should be utilized if a flat landscape is suspected.

To decide which class of minimization algorithm to apply to solve the problem in-hand
Sobol indices are calculated using the surrogate model. However, Morris’ algorithm is first
applied to get a sense of which of the eight fission gas release parameters in Table 4.2 most
influence the RMSE. In reference to Section 2.1.1, 500 elementary effects are calculated
for each fission gas release parameter. A total of 4500 evaluations of the surrogate in Eq.
4.18 were required to produce the plot in Fig. 4.19. The value µ∗ in Fig. 4.19 is simply
the average of the absolute values of each parameter’s elementary effects, as defined in
Eq. 2.1. Taking the absolute value helps to ensure cancellation effects in non-monotonic
models do not obscure a parameter’s true influence [52]. The initial fuel grain radius is
clearly the most influential parameter followed by the fuel grain and temperature scaling
parameters. Such results are consistent with the variable importances discovered through
the PCA study that resulted in Fig. 4.9. The importance of fuel grain radius parameters is
of no surprise given how omnipresent they are in the SIFGRS model, and specifically in
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Figure 4.19: Morris’ algorithm applied to the RMSE of the fission gas release time series.

determining diffusion distances and grain boundary sweeping. The positive distances away
from the origin along the σ -axis are indicative of non-linear interaction effects between the
fission gas release parameters and a first sign that a global minimum solution may be too
computationally expensive for the calibration problem.

Further investigation of the sensitivity of the RMSE with respect to its input parameters
is achieved by calculating Sobol indices. As described in [68], Sobol indices attribute a
system’s total variance to individual variables and their interactions with other variables
by applying the anchored-ANOVA decomposition described in Section 2.3.2. In reference
to Eq. 2.16, the ”main effect index” is defined to be the variance of fu (xu) normalized
by the system’s total variance. The main effect determines the fraction of variance that is
due to either one variable or any number of interacting variables. The anchored-ANOVA
frameworks allows for the subtraction of variance contributions from other variables. If the
main effect indices are added for all combinations of a systems d variables then the 2d−1
components are expected to sum to unity.

However, the integrals involved in calculating the variance of fu (xu) are expensive and
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therefore, typically main effect indices are only calculated for the individual variables and
not their interactions [64]. The ”total effect index” uses the anchored-ANOVA decomposi-
tion to estimate the variance due to a variable and all of its possible interactions with other
variables in the system. The calculation of total effect indices is made possible thanks to
the total variance theorem [64]. Unlike the sum of all main effect indices, the sum of all
total effect indices is expected to sum to unity only when the model under consideration is
purely additive.

Various methods exist for computing Sobol indices, all of which are based on the Monte
Carlo method for estimating the integrals in the variance calculations when the model under
consideration is not analytic. The R code package [62] is utilized for calculating Sobol
indices for the problem in hand. Specifically, the method of Sobol and Jansen [64] is used
initially to estimate main and total effect indices. The Sobol and Jansen algorithm requires
n(d+2) evaluations of the objective function to estimate both sets of indices, where n is the
number of Monte Carlo samples to use. Both main and total effect indices for the RMSE are
displayed in Fig. 4.20 using 105 Monte Carlo samples and 100 bootstrap samples to obtain
95% confidence intervals. Note, a total of 105 calculations for the RMSE were required
to produce the data in Fig. 4.20. Without a surrogate model, the Bison code would have
to be executed this same number of times, which would be prohibitive. The main effect
magnitudes for each of the eight fission gas release parameters is entirely consistent with
Fig. 4.19. The far greatest variance is due to the initial fuel grain radius followed by the
temperature and fuel grain radius scaling factors. The intra-granular and vacancy diffusion
coefficients have non-zero but relatively small Sobol sensitivity indices. However, Pf , γ ,
and b contribute trivially to any variability in the RMSE. From Fig. 4.20 it is evident that
the parameters with non-trivial main effect indices also have significant total effect indices.
Consequently, higher-order parameter interactions play a significant role in determining
the RMSE. Such a discovery is no surprise given how, for example, tightly coupled the
temperature and fuel grain radius are in the SIFGRS formulation described in Section 4.2.

In order to get a sense for which fission gas release parameters are strongly interacting,
second-order Sobol indices are calculated in R. As seen in Fig. 4.21 the highest magnitude
interaction effects are between parameters with the largest main effects from Fig. 4.20. The
largest interaction variance is due to the initial fuel grain radius and temperature scaling
factor. Relatively large interactions that contribute to RMSE variance are between the
initial fuel grain radius and all the other fission gas release parameters. Of particular note is
the magnitude of interaction between the vacancy diffusion coefficient and the temperature
and initial fuel grain radius. A total of 3.7× 105 RMSE calculations were required to
produce Fig. 4.21. As mentioned previously, such an analysis is only feasible using an
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Figure 4.20: Main and total effect indices for the RMSE using the Sobol-Jansen algorithm.
A total of n = 104 Monte Carlo samples are used to estimate the indices.

efficient surrogate.
Given the presence of strong interaction among the fission gas release parameters it is

unlikely a global RMSE minimum can be found in reasonable time. However, a locally
optimal solution can be found using the COBYLA algorithm. The COBYLA algorithm
is of the simplex variety that does not require any gradient information while allowing for
constraints to be placed on both the search parameters and objective function. For this
problem it is necessary to not allow fission gas parameters that result in negative fission
gas release values in predicted time series. Simplex algorithms are based on the fact that
parameter constraints act as hyperplanes in d-dimensional space that collectively enclose a
convex volume. The optimal objective function value must lay on one of the vertices of the
intersection of the hyperplanes [61].

Since local optimization algorithms such as COBYLA are notorious for being sensi-
tive to initial search conditions the algorithm is executed 100 different times, with each
execution being seeded by one of the 100 LHS used to construct the expansion coefficient
surrogates. Such a procedure increases the probability of finding a true minimum RMSE
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Figure 4.21: Second order Sobol indices for the RMSE. A total of n = 104 Monte Carlo
samples are used to estimate the indices.

and not one existing in a flat space. The minimum RMSE found was 0.02941, which
corresponded to the predicted time series in Fig. 4.22. To identify the locally minimum
RMSE some 105 instances of the surrogate were required. For each of the 100 seedings the
COBYLA algorithm was terminated either after 2× 103 iterations or a relative difference
of 10−6 between two consecutive iterations. While the time series in Fig. 4.22 is certainly
an improvement over the time series produced when the mean fission gas parameter values
are used in Fig. 4.3, the predicted fission gas release time series leaves much to be desired.
Discrepancies between predicted and experimental values may safely be attributed to the
way in which gas release is modeled in SIFGRS. The optimal parameter values, with each
parameter scaled to the unit hypercube, found for each of the 100 COBYLA seedings is
summarized in a boxplot in Fig. 4.23. The length of the whiskers in Fig. 4.23 implies
strong non-linear interaction effects, as substantiated by the investigation involving Sobol
indices. The relative difference between the maximum RMSE and minimum RMSE among
all 100 optimized seedings was only some 35%. The relatively low differences between the
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Figure 4.22: Best-estimate fission gas release time series compared to experimental data.

two extremes was achieved using a wide combination of parameter values.
One path taken to lessen the difference between experimental data and prediction was to

smooth the experimental data. As mentioned previously, the measurements taken of fission
gas release during the Risø AN3 power ramp may contain significant error. At some points
in the experimental data the total fission gas release actually decreases, which is completely
not physical. However, with only a single time series measurement there is no way of
assigning uncertainties to fission gas release values measured at different times throughout
the power ramp. Also, it would be unfounded to assign an uncertainty of say, 10% to
all measurements taken during the power ramp. Consequently, in an attempt to smooth
the experimental data local polynomial regression was applied with the minimal amount
of smoothing necessary to make the fission gas release time series strictly monotonically
increasing. Using the R ”loess” function with linear interpolants and a spanning parameter
of 0.17 the desired smoothing was achieved. The smoothed experimental data along with
the best-fit surrogate prediction is shown in Fig. 4.24. The RMSE for the best-estimate time
series when compared to the smoothed experimental data was calculated to be 0.02486,
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Figure 4.23: Boxplot of optimal parameter combinations for 100 seedings of the COBYLA
algorithm.

which was a 15.5% reduction in RMSE from when raw experimental data was utilized.
Comparing Fig. 4.24 with Fig. 4.22, it is not clear whether the smoothed experi-

mental data offers any advantages towards finding a set of Bison fission gas release pa-
rameters that best predict the available data. Although there are significant discrepancies
between predicted and experimental time series, especially in the power burst occurring
at hour fifty of the power ramp, the Bison predictions do a good job in predicting end-of-
experiment fission gas release values. For the case when raw experimental data is used, as
in Fig. 4.22, there is only a 2.6% relative error in the end-of-experiment fission gas release
prediction. The beginning-of-experiment prediction error in this case is 64.8%. For the
case of smoothed experimental date the prediction results are marginally improved with
a beginning-of-experiment prediction error of 57.8% and an end-of-experiment error of
0.5%. Note, it’s possible to enforce the conditions of matching the predicted beginning-
of-experiment and end-of-experiment predictions to their respective experimental values in
the COBYLA framework. However, the COBYLA algorithm is unable to converge to a
solution that matches these conditions. Enforcing only one of the conditions to a tolerance
of 10−3 was achievable although the resulting solution grossly over predicted the fission
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Figure 4.24: Best-estimate fission gas release time series compared to experimental data
that was smoothed using the local polynomial regression smoothing.

gas release elsewhere in the time series. A table of calibrated fission gas release parameters
for both raw and experimental data is summarized in Table 4.3.

Table 4.3: Calibrated fission gas release parameters with respect to raw and smoothed
experimental data.

Description Symbol Smoothed Raw Relative Difference
Initial Fuel Grain Radius rg,0 1.50E-05 1.50E-05 0.0E+00

Fuel Porosity Pf 0.10 0.09 8.2E-02
Surface Tension γ 0.50 0.50 1.4E-04

Temperature T 1.02 1.02 1.8E-04
Fuel Grain Radius rg 1.26 1.26 5.1E-03

Vacancy Diffusion Coef. Dv 7.49 7.50 3.8E-04
Resolution Parameter b 0.10 0.19 4.8E-01

Intra-granular Diffusion Coef. Ds 1.02 1.05 2.7E-02
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CHAPTER 5

Summary and Conclusion

5.1 Summary

Advances in computing the past decade have motivated scientists and engineers to write
computer code that models physical phenomenon using as few approximations as possi-
ble. While the predictive capabilities of such codes’ simulations improve in representing
experimental data, they typically require hours on parallel compute clusters to complete.
Indeed, from a statistical vantage point the analysis of computer experiments landscape
has not changed. Engineering computer codes are still expensive to execute and therefore,
techniques must be used to somehow simplify the codes before analyzing them. Newly
available computational power has been spent towards making individual computer codes
more accurate and encompassing rather than on easing the ability to perform optimization,
calibration and sensitivity analysis in hopes of gleaning insight into the physics at hand.
The purpose of this thesis has been to apply and develop so-called surrogate methods to-
wards the statistical analysis of expensive engineering computer codes when the inputs to
the codes are uncertain.

Two surrogate approaches are investigated in this thesis. The first, anchored-ANOVA
decomposition on Smolyak sparse grids is a relatively new approach researched in the
2000s. Kriging is the second approach taken to analyze the output of computer experiments
and has been considered the bread-and-butter of the field since the 1950s. In Kriging, a
computer code is treated as a stochastic process. For various inputs, the computer code’s
outputs are observed and a statistical model is built based on the distance between input sets
and the marginal differences in output. Usually LHS is used to sample computer codes in an
optimal fashion when only a limited number of computer simulations can be afforded. The
anchored-ANOVA decompositions takes a more deterministic approach towards surrogate
building. First, a computer code is sliced into components of first order, second order, and
higher order combinations of input variables. For each component a polynomial interpolant
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is built on a Smolyak sparse grid. In the anchored-ANOVA approach one does not have the
flexibility to evaluate the computer code at any arbitrary points. Rather, the computer code
must be evaluated at points dictated by the collocation set and convergence criteria chosen.
Based on the insight that higher order interaction effects are small compared to their first
order counterparts, very accurate surrogates can be constructed with relatively few points.

Initially, both surrogate approaches were applied to text-book type problems in order
to gain familiarity and to identify which approach would be more suitable when applied
to modeling fission gas release using a computationally expensive computer code. In the
anchored-ANOVA approach each variable considered requires special attention and conse-
quently, for simple problems with relatively small uncertainties Kriging was observed to
build as accurate of surrogate models as anchored-ANOVA using less objective function
simulations. Spectral convergence was observed for each text-book problem considered
when the anchored-ANOVA approach was applied. However, the number of new simu-
lations of the objective function for each increasing level of Smolyak interpolants grows
exponentially. In the classic formulations of both surrogate methods the input parameters
are assumed to be independent of one another. For statistical analysis this assumption can
be circumvented by building the surrogates with the independent assumption and then sam-
pling the surrogates using a covariance matrix that describes the variables’ interconnected-
ness. The performance of Clenshaw-Curtis and Gauss-Patterson collocation sets were both
investigated in application to Smolyak interpolants. For the problems in this thesis, the
higher theoretical accuracy of Gauss-Patterson did not show and consequently, Clenshaw-
Curtis collocation is recommended due to its transparency and near-optimal performance.

Ultimately, Kriging was chosen as the surrogate approach to apply towards modeling
fission gas release in Bison. The decision resulted from consideration on several fronts.
The non-linearity of fission gas release models coupled with large uncertainties implied
the need for modeling higher-order interaction effects with the surrogate. As indicated by
the text-book problems, modeling such higher-order effects with anchored-ANOVA and
Smolyak sparse grids can get very expensive, with no clear limit of how many objective
function simulations will be needed to complete the surrogate. A Kriging surrogate makes
more sense when faced with a limited computational budget. In addition, the transparency
of Kriging was appealing when considering each Bison fission gas release simulation would
have to be performed in parallel. For Kriging a total of n randomly sampled simulations are
needed in order to construct the surrogate and thus, if one simulations fails to converge or
experiences an error, the correction process is straight forward. Contrarily, there are a lot
of moving pieces in the anchored-ANOVA surrogate approach. Repairing the damages to
a surrogate’s construction due to a failed simulation requires much book keeping. Finally,
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Kriging was chosen over the anchored-ANOVA approach for fission gas release due to
Kriging’s clear extension to time series. Both surrogate methods investigated in this thesis
were primarily developed for scalar quantities. It was not clear how the anchored-ANOVA
approach could be extended to construct a surrogate for a time series without taking on an
immense computational expense.

Before investigating fission gas release kinetics for the Risø AN3 power ramp using
Kriging, eight SIFGRS parameters were chosen for analysis. The eight parameters were
the initial fuel grain radius, fuel porosity, bubble surface tension, temperature, fuel grain
radius, intra-granular gas atom diffusion coefficient, vacancy diffusion coefficient and res-
olution parameter. Uniform distributions spanning orders of magnitudes were assigned to
the parameters in order to reflect their large uncertainties. A total of 100 LHS of the param-
eters were then taken and propagated through Bison and the Risø AN3 fission gas release
model. Principal component analysis was applied to model the variability in the fission gas
kinetics output. Only three principal components were necessary to capture over 99% of
the variance in the 100 fission gas release time series.

Kriging was extended to produce a surrogate for entire time series by constructing in-
dividual scalar Kriging surrogate models for the expansion coefficients of each of the three
principal components. The time series Kriging model was then cross validated before ap-
plying it to calibrate Bison’s SIFGRS parameters to experimental data. Although a locally
optimal solutions was found by minimizing RMSE, there were apparent and irreconcil-
able differences between Bison’s fission gas release predictions and the experimental data.
While experimental data lays mostly outside of the calibrated fission gas kinetics output’s
99% confidence intervals, the end-of-experiment error was under 3%. Some of the differ-
ences between prediction and experiment can be attributed to several fission gas release
aspects not explicitly modeled in Bison. Namely, burst fission gas release due to micro-
cracking and the effect of measuring fission gas release using pressure transducers. Ex-
periments have identified scenarios where released fission gases get trapped in closed gaps
and cracks in the fuel, thereby not contributing to changes in plenum pressure that can be
measured by pressure transducers. Another factor contributing to discrepancies between
predicted and experimental fission gas release time series is the uncertainty in SIFGRS
parameters not modeled in this thesis.

Sobol indices were calculated for the fission gas release parameters using the Kriging
surrogate. The starting fuel grain radius and fuel temperature had the highest sensitiv-
ity indices and produced the largest non-linear interaction effects with the other param-
eters. While sensitivity coefficients were calculated for the Risø AN3 problem, it is not
certain that the same parameter conclusions would generalize to other fission gas kinetics
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problems. The same type of analysis as conducted in this thesis would likely have to be
replicated for each unique problem. The lack of generalization is likely due to the unique
profundity of physics in play for each type of problem.

The original contributions of this thesis are three fold. First, the construction of a sur-
rogate model for the fuel performance code Bison and subsequent calibration of fission gas
release parameters to experimental data from the FUMEX database. Second, the extension
of Kriging to construct surrogates for entire time series through PCA. Finally, the applica-
tion of anchored-ANOVA decomposition and Smolyak sparse grids to construct surrogates
for classic nuclear engineering problems.

5.2 Suggestions for Future Research

The research conducted in this thesis can be extended in many ways, in both the application
and theory of surrogate models. In addition, the results of the research are suggestive of
areas in which fission gas release modeling can be improved. The most direct extension
of this research is to apply it towards any of the fuel performance models in the FUMEX
databases [40] [41] that contain experimental data such as the Halden IFA rods, Risø GE7,
OSIRIS and REGATE test cases. Surrogates can be constructed for any of these models
using the framework discussed in this thesis. The surrogates can then be folded together
with available experimental data to analyze thermal responses during power ramps, fission
gas release, fuel pellet swelling and pellet clad mechanical interaction. Surrogates for these
models would allow for sensitivity analyses, which would allow modelers to gain valuable
insights into underlying physics.

As scientists and engineers begin to write computer codes that are able to better emu-
late the fundamental physics in the material, thermalhydraulic, and neutronic components
of nuclear processes surrogates should eventually be constructed for resulting multiphysics
codes. Before such a task is undertaken it is essential to validate the individual codes to
see if they are indeed capable of reproducing desired physics. Otherwise, coupling various
codes will have no effect on the efficacy of the multiphysics systems and any surrogates
built upon it since its success will only be as strong as its weakest constituent. Such a
coupled, multiphysics code system is currently being developed and validated in Michigan
Parallel Characteristics Transport Code (MPACT) [45]. If a coupled code system is more
accurate than any of its constituent pieces individually then a surrogate model for the multi-
physics system should be constructed. Performing optimization and calibration with such a
surrogate and experimental data should yield more accurate parameter analyses. However,
it should be noted that a more accurate objective code will not alleviate a resulting surrogate
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from the problems that have classically plagued surrogates. Namely, the existence of many
local optima. The extension of surrogates to multiphysics computer codes is a worthwhile
investigation.

In many of the problems where engineering computer codes are trying to model some
physical phenomena there exists sparse experimental data to validate the codes. For ex-
ample, in this thesis only a single time series measurement existed to measure fission gas
release during the Risø AN3 power ramp. With the availability of more experimental data,
more interesting and rigorous analyses can be conducted with surrogate models. Error bars
on experimental data enable probabilistic inferences of parameter values in calibration. As
in [74], Bayesian hierarchical models can be used to probabilistically infer parameter val-
ues and even reconstruct temperature and flux fields. Such Bayesian approaches have the
advantage of indicating the likelihood of parameters taking on certain values using posterior
probability distributions, which can then be used for probabilistic risk assessment. Given
the relatively limited amount of experimental data available in the nuclear engineering field,
application of hierarchical Bayes for solving stochastic inverse problems should strongly
be considered because it allows for the natural incorporation of multiple data sources. In
other words, multiple experimental results, such as both pellet elongation and fission gas
release data for the same problem, can be folded together to provide a holistic calibration
approach.

Another suggested area of research that would have wide ranging consequences for all
engineering fields utilizing surrogate models would be in the development of a systematic
method for initially reducing the size of the input parameter space. Despite claims to
the contrary, existing surrogate construction methods can only handle O(10) variables.
Unfortunately, most computer codes, and especially multiphysics systems, have hundreds
if not thousands of inputs. A method is needed to reduce the initial parameter space to
one more suitable for surrogate construction. For the problem in this thesis, the SIFGRS
model itself consisted of some dozen input parameters. Modeling the effects of all input
parameters into Bison would have been a challenging task. Fortunately, much research
had been conducted previously as to which fission gas release parameters generally have
a large impact. Consequently, the initially large parameter space faced in this research
was narrowed down by a thorough literature review. Ideally a mathematically rigorous
method should exist to replace the literature review that is not immensely computationally
burdensome.

Finally, as evidenced by the calibrated fission gas kinetics in Fig. 4.22, the Bison code
fundamentally predicts fission gas release in a way different than experiment shows. As
discussed in [55], the discrepancies are likely due to the trapping and sudden release of
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fission gases in fuel grain cracks [55]. Efforts should be made to model this phenomena in
SIFGRS and the Bison code. Another area of development that may lessen any differences
between predicted fuel performance metrics and observed values is the modeling of mea-
surement devices. In this research, both thermocouples and pressure transducers are used
to gather the experimental data. These instruments affected the quality of the experimental
data and even the shape of the fission gas kinetics. Efforts should be made in Bison to in-
corporate the effects of instrumentation on predicted values in order for valid comparisons
to be made between predicted and experimental data.
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APPENDIX A

Bison Input File

The following input file was developed at Idaho National Laboratory. The input models
Risø AN3 and attempts to mimic the actual conditions of the test fuel rod during the exper-
imental power ramp and its preceding irradiation history. The same input file is packaged
with the Bison code as a validation case.
# Set initial fuel density

[GlobalParams]

density = 10303.0

disp_x = disp_x

disp_y = disp_y

order = SECOND

family = LAGRANGE

energy_per_fission = 3.2e-11 # J/fission

[]

# Specify coordinate system type

[Problem]

coord_type = RZ

[]

# Set problem dimension (2d-rz here) and import mesh file

[Mesh]

file = riso_an3.e

displacements = 'disp_x disp_y'

patch_size = 1000

[]

# Define dependent variables, element order and shape function family, and initial conditions

[Variables]

[./disp_x]

[../]

[./disp_y]

[../]

[./temp]

initial_condition = 513

[../]

[]

# Define auxillary variables, element order and shape function family

[AuxVariables]

[./fast_neutron_flux]

block = '1'

[../]

[./fast_neutron_fluence]

block = '1'

[../]

[./grain_radius]
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block = '3 4'

initial_condition = 4.000000000000000e-01

[../]

[./hydrostatic_stress]

order = CONSTANT

family = MONOMIAL

[../]

[./stress_xx] # stress aux variables are defined for output;

order = CONSTANT

family = MONOMIAL

[../]

[./stress_yy]

order = CONSTANT

family = MONOMIAL

[../]

[./stress_zz]

order = CONSTANT

family = MONOMIAL

[../]

[./creep_strain_xx]

order = CONSTANT

family = MONOMIAL

[../]

[./creep_strain_yy]

order = CONSTANT

family = MONOMIAL

[../]

[./creep_strain_xy]

order = CONSTANT

family = MONOMIAL

[../]

[./creep_strain_hoop]

order = CONSTANT

family = MONOMIAL

[../]

[./vonmises]

order = CONSTANT

family = MONOMIAL

[../]

[./creep_strain_mag]

order = CONSTANT

family = MONOMIAL

[../]

[./gap_cond]

order = CONSTANT

family = MONOMIAL

[../]

[]

# Define functions to control power and boundary conditions

[Functions]

[./power_profile]

type = PiecewiseLinear # reads and interpolates an input file containing rod average linear power vs time

data_file = riso_an3_power_history.csv

format = columns

scale_factor = 1

[../]

[./axial_peaking_factors] # reads and interpolates an input file containing the axial power profile vs time

type = PiecewiseBilinear

data_file = an3_axial_peaking.csv
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scale_factor = 1

axis = 1

[../]

[./pressure_ramp] # reads and interpolates input data defining amplitude curve for coolant and fill gas pressure

type = PiecewiseLinear

x = '-100 0 103528800 103529000 103794477'

y = '0 1 1 0.986 0.986'

[../]

[./flux] # reads and interpolates input data defining fast neutron flux

type = PiecewiseLinear

data_file = riso_an3_fast_flux.csv

format = columns

[../]

[./clad_temp_bc]

type = PiecewiseLinear

data_file = riso_an3_clad_bc.csv

format = columns

[../]

[./q]

type = PiecewiseLinear # reads and interpolates an input file containing rod average linear power vs time

data_file = riso_an3_power_history.csv

format = columns

[../]

[]

# Specify that we need solid mechanics (divergence of stress)

[SolidMechanics]

[./solid]

disp_r = disp_x

disp_z = disp_y

temp = temp

[../]

[]

# Define kernels for the various terms in the PDE system (in all cases here, the axisymmetric (RZ) version is specified)

[Kernels]

[./gravity] # body force term in stress equilibrium equation

type = Gravity

variable = disp_y

value = -9.81

[../]

[./heat] # gradient term in heat conduction equation

type = HeatConduction

variable = temp

[../]

[./heat_ie] # time term in heat conduction equation

type = HeatConductionTimeDerivative

variable = temp

[../]

[./heat_source_] # source term in heat conduction equation

type = NeutronHeatSource

variable = temp

block = '3 4' # fission rate applied to the fuel (block 2) only

fission_rate = fission_rate # coupling to the fission_rate aux variable

[../]

[]

[Burnup]

[./burnup]

block = '3 4'

rod_ave_lin_pow = power_profile

axial_power_profile = axial_peaking_factors

num_radial = 80

num_axial = 11

a_upper = 0.29334
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a_lower = 0.00734

fuel_inner_radius = 0

fuel_outer_radius = 0.0045265

fuel_volume_ratio = 0.9889

RPF = RPF

[../]

[]

# Define auxilliary kernels for each of the aux variables

[AuxKernels]

[./fast_neutron_flux]

type = FastNeutronFluxAux

variable = fast_neutron_flux

block = '1'

axial_power_profile = axial_peaking_factors

function = flux

factor = 4.9e17

execute_on = timestep_begin

[../]

[./fast_neutron_fluence]

type = FastNeutronFluenceAux

variable = fast_neutron_fluence

fast_neutron_flux = fast_neutron_flux

execute_on = timestep_begin

[../]

[./grain_radius]

type = GrainRadiusAux

block = '3 4'

variable = grain_radius

temp = temp

execute_on = residual

[../]

[./hydrostatic_stress] # include hydrostatic stress for possible use in ForMas

block = '3 4'

type = MaterialTensorAux

tensor = stress

variable = hydrostatic_stress

quantity = hydrostatic

execute_on = timestep

[../]

[./stress_xx] # computes stress components for output

type = MaterialTensorAux

tensor = stress

variable = stress_xx

index = 0

execute_on = timestep # for efficiency, only compute at the end of a timestep

[../]

[./stress_yy]

type = MaterialTensorAux

tensor = stress

variable = stress_yy

index = 1

execute_on = timestep

[../]

[./stress_zz]

type = MaterialTensorAux

tensor = stress

variable = stress_zz

index = 2

execute_on = timestep

[../]

[./vonmises]

type = MaterialTensorAux

tensor = stress

variable = vonmises

quantity = vonmises

execute_on = timestep
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[../]

[./creep_strain_xx] # computes stress components for output

type = MaterialTensorAux

tensor = creep_strain

variable = creep_strain_xx

block = 1

index = 0

execute_on = timestep # for efficiency, only compute at the end of a timestep

[../]

[./creep_strain_yy]

type = MaterialTensorAux

tensor = creep_strain

variable = creep_strain_yy

block = 1

index = 1

execute_on = timestep

[../]

[./creep_strain_xy]

type = MaterialTensorAux

tensor = creep_strain

variable = creep_strain_xy

block = 1

index = 3

execute_on = timestep

[../]

[./creep_strain_hoop]

type = MaterialTensorAux

tensor = creep_strain

variable = creep_strain_hoop

block = 1

index = 2

execute_on = timestep

[../]

[./creep_strain_mag]

type = MaterialTensorAux

tensor = creep_strain

variable = creep_strain_mag

block = 1

quantity = plasticstrainmag

execute_on = timestep

[../]

[]

[AuxBCs]

[./conductance]

type = MaterialRealAux

property = gap_conductance

variable = gap_cond

boundary = 10

[../]

[]

# Define mechanical contact between the fuel (sideset=10) and the clad (sideset=5)

[Contact]

[./pellet_clad_mechanical]

master = 5

slave = 10

disp_x = disp_x

disp_y = disp_y

formulation = penalty

penalty = 1e10

model = frictionless

normal_smoothing_distance = 0.1

[../]

[]

# Define thermal contact between the fuel (sideset=10) and the clad (sideset=5)

[ThermalContact]
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[./thermal_contact]

type = GapHeatTransferLWR

variable = temp

master = 5

slave = 10

initial_moles = initial_moles # coupling to a postprocessor which supplies the initial plenum/gap gas mass

gas_released = fis_gas_released # coupling to a postprocessor which supplies the fission gas addition

roughness_clad = 1.0e-6

roughness_fuel = 2.0e-6

roughness_coef = 3.2

plenum_pressure = plenum_pressure

jump_distance_model = KENNARD

initial_gas_fractions = '1 0 0 0 0 0 0 0 0 0'

refab_time = 103529000

refab_gas_fractions = '1 0 0 0 0 0 0 0 0 0'

contact_pressure = contact_pressure

quadrature = true

normal_smoothing_distance = 0.1

[../]

[]

# Define boundary conditions

[BCs]

# pin pellets and clad along axis of symmetry (y)

[./no_x_all]

type = DirichletBC

variable = disp_x

boundary = 12

value = 0.0

[../]

# pin clad bottom in the axial direction (y)

[./no_y_clad_bottom]

type = DirichletBC

variable = disp_y

boundary = '1'

value = 0.0

[../]

# pin fuel bottom in the axial direction (y)

[./no_y_fuel_bottom]

type = DirichletBC

variable = disp_y

boundary = 20

value = 0.0

[../]

[./temp]

type = FunctionDirichletBC

boundary = '1 2 3'

variable = temp

function = clad_temp_bc

[../]

[./Pressure]

# apply coolant pressure on clad outer walls

[./coolantPressure]

boundary = '1 2 3'

factor = 1.552e7 #changes to 1.53e7 for bump tests

function = pressure_ramp # use the pressure_ramp function defined above

[../]

[../]

[./PlenumPressure]

# apply plenum pressure on clad inner walls and pellet surfaces

[./plenumPressure]

boundary = 9

initial_pressure = 2.31e6 #changes to 1e5 for bump tests

startup_time = 0

R = 8.3143

output_initial_moles = initial_moles # coupling to post processor to get inital fill gas mass

temperature = ave_temp_interior # coupling to post processor to get gas temperature approximation

volume = gas_volume # coupling to post processor to get gas volume
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material_input = fis_gas_released # coupling to post processor to get fission gas added

output = plenum_pressure # coupling to post processor to output plenum/gap pressure

refab_time = 103529000

refab_pressure = 1.57e6

refab_temperature = 500

refab_volume = 7.0e-6

[../]

[../]

]

# Define material behavior models and input material property data

[Materials]

[./density1]

type = Density

block = '1'

density = 6551.0

[../]

[./density2]

type = Density

block = '3 4'

[../]

[./fuel_thermal] # temperature and burnup dependent thermal properties of UO2 (bison kernel)

type = ThermalFuel

block = '3 4'

temp = temp

burnup = burnup

model = 4

initial_porosity = 0.06

[../]

[./fuel_solid_mechanics_swelling] # free expansion strains (swelling and densification) for UO2 (bison kernel)

type = VSwellingUO2

block = '3 4'

temp = temp

burnup = burnup

[../]

[./fuel_creep] # thermal and irradiation creep for UO2 (bison kernel)

type = Elastic #CreepUO2

block = '3 4'

disp_r = disp_x

disp_z = disp_y

temp = temp

youngs_modulus = 2.e11

poissons_ratio = .345

thermal_expansion = 10e-6

stress_free_temperature = 297

[../]

[./fuel_relocation]

type = RelocationUO2

block = '3 4'

burnup = burnup

diameter = 0.009053 #Fuel pellet diameter in m

q = q

gap = 2.05e-4 #diametral gap in m

burnup_relocation_stop = 0.029

relocation_activation1 = 5000 #initial relocation activation power in W/m

[../]

[./clad_thermal] # general thermal property input (elk kernel)

type = HeatConductionMaterial

block = '1'

thermal_conductivity = 16.0

specific_heat = 330.0

[../]

[./clad_solid_mechanics] # thermoelasticity and thermal and irradiation creep for Zr4 (bison kernel)

type = MechZry

block = '1'

disp_r = disp_x

disp_z = disp_y
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temp = temp

fast_neutron_flux = fast_neutron_flux

fast_neutron_fluence = fast_neutron_fluence

youngs_modulus = 7.5e10

poissons_ratio = 0.3

thermal_expansion = 5.0e-6

absolute_tolerance = 1e-12

output_iteration_info = false

stress_free_temperature = 297

model_irradiation_growth = false

model_thermal_expansion = false

[../]

[./clad_irrgrowth]

type = IrradiationGrowthZr4

block = '1'

fast_neutron_fluence = fast_neutron_fluence

[../]

[./fission_gas_release]

type = Sifgrs

block = '3 4'

temp = temp

fission_rate = fission_rate # coupling to fission_rate aux variable

# initial_grain_radius = 3.0e-6

grain_radius = grain_radius

gbs_model = true

burnup = burnup

ramp_model = true

file_name = riso_an3_power_history.csv

format = columns

rod_ave_lin_pow = power_profile

axial_power_profile = axial_peaking_factors

temperature_scalef = 9.500000000000000e-01 # scaling factor for temperature

grainradius_scalef = 4.000000000000000e-01 # scaling factor for grain radius

igdiffcoeff_scalef = 1.000000000000000e+01 # scaling factor for intragranular diffusion coefficient

resolutionp_scalef = 1.000000000000000e+01 # scaling factor for resolution parameter

gbdiffcoeff_scalef = 3.160000000000000e-01 # scaling factor for grain boundary diffusion coefficient

initial_grain_radius = 4.000000000000000e-01

initial_porosity = 8.615294515923598e-02

surface_tension = 9.512108845950570e-01

[../]

[]

[Dampers]

[./limitT]

type = MaxIncrement

max_increment = 50.0

variable = temp

[../]

[]

#[Debug]

# show_var_residual = 'disp_x disp_y temp'

#[]

[Executioner]

type = Transient

# PETSC options

#Preconditioned JFNK (default)

solve_type = 'PJFNK'

petsc_options = '-ksp_gmres_modifiedgramschmidt'

petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_composite_pcs

-sub_0_pc_hypre_type -sub_0_pc_hypre_boomeramg_max_iter

-sub_0_pc_hypre_boomeramg_grid_sweeps_all -sub_1_sub_pc_type

-pc_composite_type -ksp_type -mat_mffd_type'

petsc_options_value = '201 composite hypre,asm boomeramg 2 2 lu multiplicative fgmres ds'

line_search = 'none'

# controls for linear iterations
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l_max_its = 100

l_tol = 8e-3

# controls for nonlinear iterations

nl_max_its = 10

nl_rel_tol = 1e-4

nl_abs_tol = 1e-10

# time control

start_time = -100

end_time = 103789797

num_steps = 5000.0

dtmax = 1e6

dtmin = 1

# direct control of time steps vs time (optional)

[./TimeStepper]

type = IterationAdaptiveDT

dt = 1.0e2

optimal_iterations = 6

growth_factor = 1.3

linear_iteration_ratio = 100

time_t = '0 103528800 103529000 103529119 103531160

103533619 103537700 103552640 103567520 103582160

103596439 103611019 103625239 103701019 103701870

103781900 103782929'

time_dt = '2.0e2 1e2 1.0e1 1.0e2 1e2 1e2 1e2 1e2 1e2 1e2 1e2

1e2 1e2 1e2 1e2 1e2 1e2 '

[../]

[./Quadrature]

order = THIRD

[../]

[]

# Define postprocessors (some are required as specified above; others are optional; many others are available)

[Postprocessors]

[./ave_temp_interior] # average temperature of the cladding interior and all pellet exteriors

type = SideAverageValue

boundary = 7

variable = temp

[../]

[./clad_inner_vol] # volume inside of cladding

type = InternalVolume

boundary = 7

output = file

[../]

[./pellet_volume] # fuel pellet total volume

type = InternalVolume

boundary = 8

output = file

[../]

[./avg_clad_temp] # average temperature of cladding interior

type = SideAverageValue

boundary = 7

variable = temp

[../]

[./fis_gas_generated]

type = ElementIntegralFisGasGeneratedSifgrs

variable = temp

block = '3 4'

[../]

[./fis_gas_released]

type = ElementIntegralFisGasReleasedSifgrs

variable = temp

block = '3 4'

[../]
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[./fis_gas_grain]

type = ElementIntegralFisGasGrainSifgrs

variable = temp

block ='3 4'

[../]

[./fis_gas_boundary]

type = ElementIntegralFisGasBoundarySifgrs

variable = temp

block = '3 4'

[../]

[./gas_volume] # gas volume

type = InternalVolume

boundary = 9

[../]

[./flux_from_clad] # area integrated heat flux from the cladding

type = SideFluxIntegral

variable = temp

boundary = 5

diffusivity = thermal_conductivity

[../]

[./flux_from_fuel] # area integrated heat flux from the fuel

type = SideFluxIntegral

variable = temp

boundary = 10

diffusivity = thermal_conductivity

[../]

[./_dt] # time step

type = TimestepSize

[../]

[./nonlinear_its] # number of nonlinear iterations at each timestep

type = NumNonlinearIterations

[../]

[./rod_total_power]

type = ElementIntegralPower

variable = temp

fission_rate = fission_rate

block = '3 4'

[../]

[./ave_fission_rate]

type = ElementAverageValue

variable = fission_rate

block = '3 4'

[../]

[./TC_temp]

type = NodalVariableValue

variable = temp

nodeid = 9738 #Global node ID 9739

[../]

[]

# Define output file(s)

[Outputs]

interval = 1

output_initial = true

csv = true

exodus = true

[./console]

type = Console

perf_log = true

linear_residuals = true

max_rows = 25

[../]

# iteration_plot_start_time = 1.035972e8

[]
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APPENDIX B

Bison Operational Input Values

The parameter values below are inputs to the Risø AN3 input file described in Appendix
A. Specifically, the values in the ”Clad Temperature” column are input, along with the
time, into the csv file named ”riso an3 clad bc.csv”. The values in the ”Power History”
column are input, along with the time, into the csv file named ”riso an3 power history.csv”.
Finally, the values in the ”Fast Flux Multiplier” column are input, along with the time,
into the csv file named ”riso an3 fast flux.csv”. Bison uses the fast flux multiplier, power
history, and an additional scaling factor to determine the fast neutron flux.

Time (s) Clad Temperature (C) Fast Flux Multiplier Power History (W/m)
0.0 300.0 0.000000 0

378000.0 571.5 0.901837 13000
1260000.0 571.6 0.901224 13100
2520000.0 571.3 0.886939 12800
5040000.0 571.6 0.909184 13100
7560000.0 572.0 0.949184 13600

10080000.0 572.4 0.976122 14000
12600000.0 572.5 0.991633 14200
15120000.0 572.5 1.001020 14200
17640000.0 572.6 1.006327 14300
20160000.0 572.5 1.010408 14200
22680000.0 572.5 1.009184 14200
23630400.0 572.4 1.007755 14100
24008400.0 579.2 1.466735 21900
24890400.0 580.2 1.541020 23100
26150400.0 580.5 1.557347 23400
28670400.0 580.5 1.569796 23400
31190400.0 580.3 1.586122 23200
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33710400.0 580.2 1.593673 23100
36230400.0 579.9 1.593265 22800
38750400.0 579.7 1.593265 22500
41270400.0 579.4 1.583673 22200
43790400.0 579.2 1.590612 22000
46310400.0 579.0 1.584490 21700
48830400.0 578.9 1.587755 21600
51350400.0 578.8 1.593061 21500
53870400.0 578.8 1.608980 21500
55000800.0 578.7 1.618571 21400
55378800.0 574.9 1.345714 16900
56260800.0 576.0 1.441633 18200
57520800.0 576.0 1.442653 18200
60040800.0 576.0 1.449592 18200
62560800.0 576.1 1.467347 18300
65080800.0 576.1 1.487959 18400
67597200.0 576.1 1.500612 18400
70117200.0 576.3 1.530204 18600
72637200.0 576.3 1.541020 18600
75157200.0 576.4 1.559796 18700
77677200.0 576.4 1.567959 18700
79261200.0 576.4 1.584694 18700
79639200.0 580.3 1.910000 23200
80629200.0 580.5 1.925918 23400
81784800.0 580.0 1.884898 22900
84304800.0 579.3 1.822041 22100
86828400.0 578.4 1.739796 21000
89348400.0 577.7 1.686531 20200
91872000.0 577.3 1.648980 19700
94395600.0 576.9 1.620408 19300
96915600.0 576.6 1.597755 18900
99439200.0 576.3 1.580816 18600

101959200.0 576.1 1.573469 18400
103528800.0 576.1 1.578571 18300
103529000.0 500.0 0.000000 0
103529019.9 500.0 0.000000 0
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103529119.9 0.012245 1500
103529299.9 611.0 0.012245 1500
103529309.9 0.031837 3900
103531160.0 611.3 0.031837 3900
103531170.0 0.102857 12600
103533619.9 611.8 0.102857 12600
103533629.9 0.116735 14300
103533740.1 611.8 0.116735 14300
103533750.1 0.145306 17800
103537700.1 611.9 0.145306 17800
103537710.1 0.166531 20400
103538479.9 612.0 0.166531 20400
103538489.9 0.176327 21600
103538600.1 612.0 0.176327 21600
103538610.1 0.189388 23200
103538839.9 612.0 0.189388 23200
103538849.9 0.208163 25500
103552640.1 612.1 0.208163 25500
103552650.1 0.229388 28100
103553239.9 612.1 0.229388 28100
103553249.9 0.252245 30900
103567520.0 612.2 0.252245 30900
103567530.0 0.263673 32300
103582160.1 612.2 0.263673 32300
103582170.1 0.282449 34600
103596439.9 612.3 0.282449 34600
103596449.9 0.295510 36200
103611019.9 612.3 0.295510 36200
103611029.9 0.312653 38300
103625239.9 612.3 0.312653 38300
103625249.9 0.332245 40700
103701019.9 612.3 0.332245 40700
103701029.9 0.295510 36200
103701140.1 612.3 0.295510 36200
103701150.1 0.250612 30700
103701739.9 612.2 0.250612 30700
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103701749.9 0.226122 27700
103701860.1 612.1 0.226122 27700
103701870.1 0.179592 22000
103702700.0 612.0 0.179592 22000
103702710.0 0.202449 24800
103703480.1 612.1 0.202449 24800
103703490.1 0.208163 25500
103703600.0 612.1 0.208163 25500
103703610.0 0.245714 30100
103704500.0 612.2 0.245714 30100
103704510.0 0.275918 33800
103705339.9 612.2 0.275918 33800
103705349.9 0.287347 35200
103705460.1 612.3 0.287347 35200
103705470.1 0.306939 37600
103706239.9 612.3 0.306939 37600
103706249.9 0.331429 40600
103781900.0 612.3 0.331429 40600
103781910.0 0.293878 36000
103782019.9 612.3 0.293878 36000
103782029.9 0.249796 30600
103782680.1 612.2 0.249796 30600
103782690.1 0.235918 28900
103782800.0 612.2 0.235918 28900
103782810.0 0.202449 24800
103782919.9 612.1 0.202449 24800
103782929.9 0.176327 21600
103783639.9 612.0 0.176327 21600
103783649.9 0.186122 22800
103783760.1 612.0 0.186122 22800
103783770.1 0.205714 25200
103784539.9 612.1 0.205714 25200
103784549.9 0.241633 29600
103785439.9 612.2 0.241633 29600
103785449.9 0.277551 34000
103786339.9 612.2 0.277551 34000
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103786349.9 0.306122 37500
103787239.9 612.3 0.306122 37500
103787249.9 0.332245 40700
103788200.0 612.3 0.332245 40700
103788210.0 0.233469 28600
103788319.9 612.2 0.233469 28600
103788329.9 0.103673 12700
103788440.1 611.8 0.103673 12700
103788450.1 0.043265 5300
103788679.9 611.4 0.043265 5300
103788689.9 0.011429 1400
103789797.0 611.0 0.011429 1400
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