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ABSTRACT 
 

Substantial research is being devoted to the development of III-nitride light 

emitting diodes (LEDs) and lasers, which have numerous applications in solid state 

lighting. In particular, white LEDs play an increasingly important role in our daily lives. 

Current commercially available white LEDs are nearly all phosphor-converted, but these 

have some serious disadvantages. Planar quantum well (QW) devices on foreign 

substrates exhibit large threading dislocation densities, strong strain induced polarization 

field, and In-rich nanoclusters. These result in poor electron-hole wavefunction overlap, 

large emission peak shift with injection, and substantial efficiency reduction at high 

injection currents in QW based LEDs and large threshold current densities in lasers. The 

objective of this doctoral research is to investigate the prospects of self-assembled 

InGaN/GaN disks-in-nanowire (DNW) LEDs and lasers for solid state lighting. The 

research described here embodies a detailed study of the optical and structural 

characteristics of the nanowire heterostructures by varying the growth conditions and by 

surface passivation, and using the disks as the active region in high performance 

nanowire LEDs and gain medium in nanowire lasers on (001) silicon.  

Self-assembled InGaN/GaN DNWs are grown in a plasma-assisted molecular 

beam epitaxy (PA-MBE) system. Due to their large surface to volume ratio, the growth 

optimized and surface passivated DNWs on (001) silicon are relatively free of extended 

defects and have smaller polarization field resulting in higher radiative efficiencies. The 
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growth conditions for the DNWs are optimized to obtain high radiative efficiencies (48%, 

43% and 41% for as-grown blue (λ=430nm), green (λ=540nm) and red (λ=650nm) 

DNWs, respectively). Upon surface passivation by parylene, radiative efficiency of the 

disks is enhanced by 10-12%. Blue-, green- and red-emitting DNW LEDs, with 

optimized nanowire densities, are demonstrated with substantially reduced efficiency 

droop (< 15%) and small peak shift with injection currents. With very large nanowire 

density, we might have more non-radiative recombination of carriers in the coalesced 

nanowires instead of having higher light output from LED or higher modal gain in laser. 

As a trade off, self-assembled nanowire density has been optimized to a moderate value 

of 2x1010 cm-2 for making nanowire LEDs and lasers.  

Phosphor-free tunable electrically injected white nanowire LEDs are realized by 

incorporating InGaN/GaN disks with different color emissions in the active region. 

Unlike QW based white LEDs, they demonstrate excellent stability of color temperature 

with injection currents and low color temperature required for true cool and warm white 

lights. The first ever monolithic edge-emitting electrically pumped green (λ=533nm) and 

red (λ=610nm) nanowire lasers on (001) silicon are demonstrated using DNWs as the 

gain media. The lasers are characterized by low threshold current densities of 1.76-2.88 

kA/cm2, small peak shifts of 11-14.8 nm, significantly large T0 of 234 K and relatively 

high differential gain of 3x10-17 cm-2. Dynamic measurements performed on these lasers 

yield a maximum small signal modulation bandwidth of 5.8 GHz. Extremely low value of 

chirp (0.8 Å) and a near-zero linewidth enhancement factor at the peak emission 

wavelength are also obtained from these measurements, which are encouraging for 

optical communication in plastic fibers.  
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Chapter I 

Introduction 

 

1.1      Solid State Lighting 

           Visual perception, by which humans assimilate information from their 

surroundings to perform day-to-day activities, is not possible without light. Other 

than by direct sunlight during daytime, we depend on artificial light to continue our 

productivity from the day into the non-sunlit hours of the night. The role of artificial 

light is inseparable in every sphere of our life so much so that we consumed an 

estimated 6.5% of total global primary energy in 2005 [1] just to fuel these artificial 

light sources. The history of lighting has seen quite a number of drastic twists and 

turns. The first commercially available lighting technology that served numerous 

homes, streets and offices near the end of 19th century was fueled by natural gas. 

Edison’s invention of the incandescent light bulb gave tremendous competition to 

these gas-based light sources for their existence and eventually they were replaced by 

these incandescent light bulbs which were first demonstrated in 1879. An 

incandescent lamp works by flowing a current through a filament to heat it up to a 

high temperature until it glows (mostly infrared emission), and therefore has poor 

radiative efficiency. Only the visible light that comes out of it is useful. Compared 

with incandescent lamps, fluorescent tubes and compact fluorescent Lamps (CFL)  
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Figure 1.1 (a) Illustration of illuminated gas-light at night in 1880s with a thorium 
oxide–soaked mantle, (b) replica of Edison’s incandescent lamp, (c) compact 

fluorescent lamp (CFL), (d) high-pressure sodium lamp [2]. 
 

reduce the amount of electric energy that is converted to wasteful infrared emission to 

some extent and became a mainstream lighting technology after the 1950s. However, 

fluorescent light sources, which produce light from mercury discharge, suffer from 

parasitic energy losses and the left-over mercury from burned out lamps is harmful to 

environment. The advent of solid state lighting, in terms of light emitting diodes and 

lasers, has revolutionized the lighting industry in many applications. In solid state 

light sources, electrons radiatively recombine with holes to emit visible light. Thus, 

unlike incandescent bulbs and fluorescent lamps, electricity is directly converted into 

light into the visible spectrum, therefore bringing down the parasitic energy losses 

significantly. Hence, solid state lighting has become the most energy-efficient and 

environment-friendly lighting technology over the last decade. Progress in solid state 

lighting primarily depends on the research and development of visible nitride-based 
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light emitting diodes (LEDs) and lasers. III-nitride based light sources, constituting of 

direct and wide band-gap semiconductors, emit in the visible spectrum needed in 

daily applications. In addition to the energy-saving and its positive effect on the 

environment, nitride based solid state lighting offers what is inconceivable with 

conventional light sources : tunability of spectral and polarization properties as well 

as the color temperature. Currently emerging solid state lighting technologies  

 

 

Figure 1.2 Electromagnetic spectrum depicting visible regime spanning from 380  
to 750 nm. Human eye sensitivity is the highest at ~ 550nm [3]. 

 

are expected to have applications in indoor-, outdoor- and colored-lighting, portable 

lights, displays, automobiles, transportation, communication, imaging, agriculture and 

medicine. Some of the applications of solid state LEDs and lasers are depicted in Fig. 

1.3.  

            In 2012, the United States Department of Energy (DOE) conducted a study on 

the lifecycle-energy consumption of different lighting technologies [4]. It was found 

that the average life-cycle energy consumption of LED lamps and CFLs were similar,  
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 Figure 1.3 Applications of nitride-based LEDs and lasers. 

and was around one-fourth the consumption of incandescent lamps. It was predicted 

that if LED lamps can keep on improving to meet industry performance targets by 

2015, their life-cycle energy consumption is expected to reduce by approximately 

one-half, whereas the performance of CFLs is not likely to improve by nearly as 

much. As derived from that study, Fig. 1.4 illustrates the energy consumption for 

incandescent, CFL and LED lamps up to the year 2015. As we proceed toward 2015, 

from incandescent to LED lamps, the significant drop in energy consumption 

(Joule/lumen-hour) is clearly visible. 

            LEDs play a very important role in the generation of white light. The latter 

can be achieved in two ways : (i) We have a fairly proportionate mixture of blue,  
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 Figure 1.4 Life-cycle energy consumption for incandescent, CFL and LED lamps. 
The “use” phase of all three types of lamps accounted for almost 90% of the total life-

cycle energy consumption, followed by manufacturing and transport. 
 

green and red (RGB) emission to generate true white light, or ii) we can use phosphor 

coating to convert a relatively short-wavelength emission to a longer one with the 

combination giving white light. At present, most commonly used “white” LEDs use 

phosphors [5], dichromatic blue/green LEDs [6], CdSe/ZnS nanocrystals for 

conversion into red light [7], prestrained growth of InGaN wells [8], and structure-

controlled GaN microfacets [9] etc. In absence of high-efficiency red light sources, 

they mostly convert lower wavelength visible light into amber or red emission and 

thus the light generated from these devices has poor color chromaticity with bluish 

white emission. Moreover, these devices also have low overall efficiency due to the 

significant conversion losses as blue or ultraviolet (UV) light is used to pump 

phosphor to obtain white emission. Highly efficient InAlGaP red LEDs are available 

in the market, but we cannot monolithically integrate it with the existing high  
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Figure 1.5  Light emitting diode (LED)-based and LED-plus-phosphor–based 
schemes for white light sources. Highest luminous efficiency and best color rendering 

index are obtained with dichromatic and tetrachromatic approaches, respectively. 
Trichromatic schemes can provide good color rendering and luminous efficiency [2]. 
 

 
efficiency blue-green nitride LED technology to collect white light from the same 

chip. One alternative can be to replace the phosphor coating in wavelength converter 

white LEDs with some other nitride structure that is capable of generating bright red 

light when excited with short-wavelength emission. Further, if such highly efficient 

nitride based red light sources can be made available, then by incorporating blue-

green-red light sources in the active region, monolithic phosphor-free tunable white 

light sources could be realized.  

             Apart from nitride LEDs in solid state lighting, nitride based lasers can be 

used in a host of applications such as in heads up display and front lights in  
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Figure 1.6  Illustration of (a) on-chip optical interconnect for data communication     
[11], (b) coupling of processed optical data from a chip with optical fibers  

for off-chip communication [12]. 
 
 

automobiles, pico-projectors, surgery, laser dazzlers, etc [5-9]. In the future, a 

potential application of monolithic nitride-based lasers on silicon substrate could be 

on-chip and chip-to-chip optical communications replacing present-day metal 

interconnects. In order to maintain the aggressive scaling of computing chips to 

follow Moore’s law which predicts that the number of components on a chip doubles 

approximately every two years [10], manufacturers now focus on multi-core design 
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along with increasing clock speed. Due to the associated time delay and cross-talk, 

metal interconnect is causing a problem in this regard.  A combination of electronic 

and photonic components on the same chip could be a promising solution where 

electronic components can process the data and optical elements can deal with data 

communication. Moreover, with such a combination, the processed data from a chip 

can also be coupled in to an optical fiber for various applications. Having these 

ambitious goals in mind, substantial research is going on in the field of silicon 

photonics, which could be enhanced by III-nitride based lasers on silicon.  

 

1.2      Brief History of III-Nitride Research 

           The first visible LEDs were demonstrated with Gallium Arsenide Phosphide 

(GaAsP) on a GaAs substrate in the 1960s [13]. With further development, green-

emitting gallium phosphide (GaP) LEDs and yellow-emitting silicon carbide (SiC) 

LEDs were realized, although they were very inefficient. In 1990s, high efficiency 

gallium aluminum arsenide phosphide (GaAlAsP) and aluminum indium gallium 

phosphide (AlInGaP) LEDs were demonstrated with yellow and red emissions. While 

blue-emitting LEDs are an absolute necessity to make white light sources, GaAs and 

InP based materials cannot emit at such short wavelengths. GaN based materials, on 

the other hand, are suitable candidates for visible light sources. Though the research 

on the III-nitride based materials started in the 1970s, the inability to grow a single 

crystal GaN epitaxial layer and the problems with p-doping of GaN due to high 

residual background doping and large effective hole mass were two major obstacles 

for the development of nitride based solid state lighting. In late 1980s, the first single 
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crystal GaN was grown on lattice mismatched sapphire and SiC substrates using low 

temperature AlN buffer layers grown by chemical vapor deposition (CVD) [14, 15]. 

After that, p-type doping of GaN through Mg incorporation was demonstrated [16, 

17]. The ability to grow single crystal GaN on mismatched sapphire substrates and 

achieving p-doping of GaN eventually laid the foundation for the first realization of 

InGaN/GaN blue LEDs, which recently earned Isamu Akasaki, Hiroshi Amano and 

Shuji Nakamura the 2014 Nobel Prize in physics. The first high-efficiency indium 

gallium nitride (InGaN) based blue-emitting LED was demonstrated by Shuji 

Nakamura at Nichia Corporation in 1995 [18]. Apart from a high brightness blue light 

source, this also opened up a window of possibility for realizing longer wavelength 

visible emissions in the green, amber and red wavelengths by using a higher In 

composition in the InGaN active region. In current commercial devices, blue LEDs 

are used to excite yellow phosphors to produce white light sources in solid state 

lighting [19]. Over the course of time, an AlGaN electron blocking layer (EBL) was 

introduced followed by the incorporation of InGaN quantum well active region 

instead of the double heterostructure which facilitated the realization of blue LEDs 

with high output power (1.5 mW) [20]. OSRAM, Phillips and Nichia have mastered 

the use of GaN-on-sapphire for their LED technology, whereas Cree has developed 

GaN-on-SiC technology and Soraa has recently started growing GaN-on-GaN i.e. free 

standing GaN substrates for their commercial LEDs. Nakamura et. al. demonstrated 

the first successful blue-emitting InGaN-based lasers  in 1996 [21]. Achieving lasing 

at longer wavelengths became difficult due to the problems associated with higher In 

incorporation in the InGaN active region required for obtaining longer wavelength 
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emissions such as high defect density, In inhomogeneity and large strain induced 

polarization field. The first InGaN/GaN quantum well (QW) based green-emitting 

laser was reported in March, 2009 [22]. 

 

 

Figure 1.7  Wurtzite GaN crystal lattice structure illustrating c-plane {0001}(polar), 
m-plane {1-100}(non-polar), a-plane {11-20}(non-polar), and {11-22}  

semipolar planes [23]. 
 

 

1.3      Challenges in III-Nitride Research      

1.3.1   Large Polarization Field and Related Effects      

           Figure 1.7 shows the wurtzite crystal structure of GaN having alternating 

planes of Ga and N atoms and illustrates the polar c-plane and other non-polar and 

semi-polar growth planes for nitride epitaxy. Compared with other conventional 

semiconductors, the spontaneous polarization field in nitride semiconductors is much 

stronger due to the high electronegativity of the nitrogen atoms in the crystal lattice. 

During heteroepitaxy, polarization charges accumulate at the interface between layers 
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resulting in a spontaneous field as high as 2MV/cm in AlGaN/GaN heterointerfaces 

[24]. However, this strong polarization field has applications in high performance 

devices such as high electron mobility transistors for creating a high mobility two 

dimensional electron gas. The other kind of polarization observed in nitride 

heterostructure is piezoelectric polarization. This field is formed during the epitaxy of 

lattice mismatched layers resulting in large strain at the heterointerface which causes 

the displacement of anion sub-lattice with respect to the cation sub-lattice. In 

particular, in visible Ga(In)N LEDs and lasers, piezoelectric polarization field, being 

stronger than the spontaneous polarization field, plays a more significant role on the 

device performances. Figure 1.8 shows the band bending associated with the large 

polarization fields in planar InGaN quantum well (QW) LEDs with AlGaN electron  

 

 
Figure 1.8  Simulated band diagram of InGaN/GaN multi quantum well LEDs (a) 

with (solid line) and (b) without (dashed line) polarization fields [24]. 
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blocking layer (EBL) that causes the reduction of potential barrier to electrons on the 

p-GaN side and pulls down the AlGaN EBL making it less efficient for blocking 

electrons. As a result, carrier leakage from the active region increases a potential 

source of efficiency droop. Additionally, due to the band bending, triangular potential 

wells are formed in conduction and valence bands resulting in poor electron-hole 

wavefunction overlap in the active region and thereby low radiative efficiency. This 

becomes a severe problem, especially in InGaN QWs with high In composition, one 

reason why growing red-emitting LEDs with planar InGaN QWs with high radiative 

efficiency is still found difficult. With increasing injection currents in InGaN LEDs 

and lasers, these polarization fields are screened by the injected carriers, leading to 

flat-bands with an associated blue-shift in the emission peak. This phenomena, known 

as the quantum confined Stark effect (QCSE), is responsible for the large shift in peak 

wavelengths for visible InGaN LEDs and lasers. Another adverse effect of the band 

bending resulting from large polarization fields in the nitrides is a non-uniform hole 

distribution across the multiple InGaN QWs with the first few QWs close to the p-

GaN getting filled with holes first before holes can reach the subsequent QW layers. 

Due to the detrimental effects of the large polarization field and the related effects on 

device performance, efforts have been made to grow blue- and green-emitting LEDs 

and lasers on non-polar and semi-polar GaN substrates, from which were 

demonstrated reduced efficiency droop in LEDs and longer emission wavelengths in 

lasers. However, the LEDs grown on non-polar or semi-polar planes have poor peak 

radiative efficiency and the lasers grown on those planes have very large threshold 

current densities [25-27]. Other schemes that have been adopted to reduce the 
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polarization fields include a double heterostructure design replacing strained 

InGaN/GaN QWs [28], epitaxy of lattice matched InGaN/InAlGaN QWs [29] and the 

application of external tensile strain on the substrates [30], etc. Our group has 

extensively used InGaN/GaN disks-in-nanowires as gain media in LEDs and lasers to 

reduce the polarization fields in the nitride-based devices, which will be discussed in 

subsequent chapters in detail. 

 

1.3.2   Availability of Substrates   

           GaN based LEDs need to be improved further in terms of luminous efficacy 

and they need to be grown on large wafers with high yield in order to reduce the per 

unit cost to make this alternative solid state lighting technology affordable for 

everyday applications. To achieve this goal, large-size single crystal GaN wafers or 

foreign wafers lattice matched to the GaN crystal, need to be made readily available. 

Ideally, nitride-based LEDs should be grown on GaN substrates. While GaN melts 

above 2500oC and at a pressure higher than 4.5GPa, at low pressure, it decomposes 

 
Table 1.1  Substrates used for the growth of III-nitride LEDs and lasers. 

  
Substrate 

Lattice 
constant  

(Å) 

Lattice 
mismatch to 

GaN (%) 

Thermal 
conductivity 
(Wm-1K-1) 

GaN 3.189 0 130 

Silicon 5.43 17 3.59 

 Sapphire 2.747 13 7.5 

6H SiC 3.081 3.4 490 

 

into Ga and N2 before melting. Therefore, traditional crystal growth techniques such 
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as the floating zone technique, which are used for Si and GaAs, are not applicable for 

GaN crystal growth. Substrates, currently used for GaN growth, including sapphire, 

SiC, GaN and Si, are listed in Table 1.1. Because of the uniqueness and difficulty of 

single crystal GaN growth technology, it is not readily available in large-size wafers, 

and even though it is available in small-size wafers, it is very expensive compared to 

large-size Si and GaAs substrates. Hence, large GaN crystals are usually grown on 

lattice mismatched foreign substrates such as sapphire, SiC and Si, which leads to the 

formation of threading dislocation defects with a typical areal density of 107-1010 cm-2 

at GaN/substrate interface. These dislocation defects propagate through the epitaxial 

layers in the growth direction and act as nonradiative recombination centers for the 

carriers causing heating of the device and subsequently carrier leakage resulting in the 

degradation of nitride based LED and laser efficiency.  

 

1.3.3    Green Gap and Efficiency Droop 

            (Ga,Al)InP-based LEDs emit in the red wavelengths, but it is not possible to 

cover the entire visible spectrum (blue-green-red) with this material as can be seen in 

Fig. 1.9. On the other hand, by varying the In composition in Ga(In)N LEDs, any 

emission wavelength across the visible spectrum can be achieved. The very well-

known problem in solid state visible spectrum lighting is the so-called “green gap” 

(Fig. 1.9) which results from the fact that the radiative efficiency of planar InGaN 

active region decreases abruptly with higher In composition as the nitride LEDs 

proceed towards green emission wavelengths and other than the nitrides, there is no 

other material that can provide high efficiency blue and green emissions. One of the 
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major problems of planar nitride based LEDs with emission wavelengths λ > 520 nm 

at high injection currents is the large drop in device efficiency, which is known as 

  

 

Figure 1.9 Measured external quantum efficiency (EQE) of high performance LEDs 
emitting in the visible spectrum [31]. 

 

“efficiency droop”.  Significant research has been devoted to understanding the origin 

of this problem and to find out a way how to solve it. Nonradiative Auger 

recombination [32], self-heating of device [33] and carrier leakage from the quantum 

wells [34] can contribute to the drop in efficiency at high injection levels. The large 

polarization fields in wurtzite c-plane polar Ga(In)N materials may also be 

responsible for the observed efficiency droop. Phillips Lumileds first proposed that 

Auger recombination is the root cause behind the large efficiency droop in nitride 

LEDs [35], which was later backed by other groups [36] including ours [37] through 

varying experimentation. Carrier leakage from the active region is held accountable 
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for this efficiency droop by some other groups [38, 39]. Self-heating of the device on 

the other hand could not be responsible as a possible reason, since efficiency droop 

was found to be independent of device surrounding temperature [40]. 

  

1.3.4   Problems with p-doping 

           One of the major drawbacks in the early days of research into visible solid 

state lighting was the p-doping of GaN, which was a major roadblock for achieving 

high performance visible LEDs and lasers. In both molecular beam epitaxy (MBE) 

and metal organic chemical vapor deposition (MOCVD) grown techniques, as-grown 

GaN epitaxial layers were found to be unintentionally n-doped due to the presence of 

oxygen impurities and nitrogen vacancies in the epilayers that act as compensating 

donors. Though initially tremendous progress in GaN crystal growth was achieved by 

the MOCVD techniques, incorporation of hydrogen atoms as interstitial defects in the 

crystal during growth impeded the activation of Mg acceptors by forming a Mg-H 

complex. A post-growth annealing step demonstrated by Nakamura et al. [41] solved 

the problem of MOCVD growth of p-GaN. Based on this discovery, he eventually 

succeeded to demonstrate the first GaN based LEDs and lasers. Still the p-doping 

level in most MOCVD grown GaN epi-layers is poor (~ 1017cm-3) due to the high 

activation energy of Mg acceptor levels (~200 meV). In the hydrogen-free 

environment of plasma assisted molecular beam epitaxy (PA-MBE), highly p-doped 

GaN epi-layers (2x1018cm-3) was demonstrated by our group [42] in 2010 under 

nitrogen rich conditions at low substrate temperatures. In MBE growth, electrically 

active hole concentrations in GaN have been limited to low 1018 cm−3 range with a 
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doping efficiency of ~5% due to the high activation energy of Mg acceptor level, 

lower solubility, and compensation from defects present in the structure. Recently 

there is report of enhanced doping efficiency as high as ~10% in GaN by metal 

modulation epitaxy, where the hole concentration was obtained to be ~1.5x1019 cm−3 

by periodically modulating Ga atoms and Mg dopants [43]. There is scope for further 

investigation and to increase the doping levels of p-GaN epilayers.  

 

1.3.5   Issues with Lasing Threshold and Emission Wavelength in Ga(In)N 

           Lasers 

           Since the demonstration of first blue-emitting nitride-based laser in 1995, 

substantial research has been going on to increase the lasing wavelength to green and 

beyond. In 2009, the first green-emitting InGaN QW lasers were reported, though 

with very large threshold current densities [44]. Several factors contribute to the high 

lasing threshold of nitride-based lasers with increasing emission wavelengths. First, in 

order to increase the lasing emission wavelength, higher In composition is required in 

the InGaN QW active region. With higher In incorporation, large strain induced 

polarization fields, In inhomogeneities (clustering) [45] and other related defects are 

observed in the active region reducing the radiative efficiency of the gain medium. 

Increasing the indium composition in the InGaN QWs to obtain longer emission 

wavelengths lead to large piezoelectric polarization fields that cause poor electron-

hole wavefunction overlap, i.e. low optical gain, and carrier leakage from the active 

region. Moreover, to incorporate such high indium in the wells, the substrate 

temperature during QW growth is reduced substantially, resulting in rough 
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morphology [46] and In alloy fluctuations in the wells due to poor growth kinetics. 

These effects lead to broadening of the spontaneous emission spectrum which 

subsequently decreases the peak modal gain needed to surmount the losses and reach 

the lasing condition. 

  

1.4      Use of InGaN/GaN Disk-in-Nanowires as Gain Media 

           A major challenge faced by the nitride research community is the 

unavailability of large-area GaN substrates for the epitaxy of nitride heterostructures 

at reasonable costs, as mentioned in section 1.3.2. As an alternative, nitride epitaxy is 

being performed on lattice mismatched SiC and sapphire templates to avoid using the 

expensive free standing GaN substrates, which results in the formation of threading 

dislocation defects at the GaN/template interface with an areal density of ~107-

1010cm-2 that can propagate into the active region. These defects can act as 

nonradiative recombination centers for carriers, therefore decreasing the radiative 

efficiency of nitride-based LEDs and lasers. Self-assembled Ga(In)N nanowires can 

be grown on substantially less expensive (001) Si substrates along the c-axis by 

molecular beam epitaxy (MBE). While growing the GaN nanowires, thin regions of 

InGaN (~2-3 nm), sandwiched between GaN barriers on both sides, can be 

incorporated along the c-axis. These are commonly called as InGaN disks-in-GaN-

nanowires (DNW) due to their shape and behave as quantum wells in GaN nanowires 

by providing spatial confinement of carriers along the growth direction. In this 

dissertation, our approach revolves around these InGaN/GaN disks-in-nanowires 

(DNW) as the active medium for making LEDs and lasers on silicon. Typically, the 
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nanowires have an average diameter of ~60-80 nm and they can be as long as several 

micrometers. There is almost no epitaxial constraint in the growth of wurtzite GaN 

nanowires on silicon substrates unlike the heteroepitaxy of planar GaN on sapphire or 

SiC substrates, which will be discussed in detail in chapter II. This reduces the 

number of threading dislocations at GaN/silicon interface to a great extent. The fewer 

threading dislocations that generate at GaN/silicon boundary usually bend towards the 

sidewall of the nanowires and therefore do not propagate into the active region [47]. 

From detailed structural characterization by our and other research groups, it is found 

that these nanowires are nearly defect-free, compared to planar GaN grown on lattice 

mismatched substrates [48-53]. To estimate the extent of defects in the Ga(In)N 

nanowires, we have performed some measurements on them. Measured Auger 

coefficient C0, at low excitation, is 4.1x10-33 cm6s-1 in the DNW samples (λ=500nm), 

which is in reasonably good agreement with theoretical predictions for InGaN alloy 

semiconductors [54]. These values are much smaller than the earlier measured values 

of ∼10-30-10-31 cm6s-1 in InGaN/GaN quantum wells and bulk InGaN samples that 

have a defect density of 107-1010 cm-2. Thus, a defect-assisted Auger recombination 

process might be operative in planar Ga(In)N materials grown on lattice mismatched 

substrates which account for the large value of C0. We have also measured the 

Schottky barrier height of a Pt contact on InGaN nanowires (Pt–InxGa1−xN (0≤x≤0.5)) 

with different In compositions, which varies from 1.4eV (GaN) to 0.44eV 

(In0.5Ga0.5N) and this data agrees well with the ideal barrier heights in the Schottky 

limit [55]. Unlike planar Ga(In)N grown on lattice mismatched substrates, the 

consistency of these measured values with theoretical calculations obtained from 
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Ga(In)N nanowires on silicon implies that the nanowires are relatively free of 

extended defects such as threading dislocations, stacking faults, etc. as compared to 

epitaxial GaN on SiC or sapphire substrates.  

            In addition to the defect-free nitride material useful for making visible LEDs 

and lasers, InGaN nanowires or InGaN/GaN disk-in-nanowires on silicon also 

provide the advantage of emission wavelength tunability. By varying the indium 

composition in the InGaN disks, nanowire LEDs and lasers on silicon with any 

emission color over the entire visible spectrum and even in the near-infrared should 

be possible. Achieving emission at longer wavelength (λ > 600 nm) with high 

radiative efficiency by planar InGaN quantum wells grown on polar GaN substrates 

poses some serious challenges including In inhomogeneity or clustering, high defect 

density due to large strain at the heterointerface,  strong strain-induced polarization 

field, etc [56, 57]. The large polarization field also results in poor electron-hole 

wavefunction overlap in the active region, thereby reducing the radiative efficiency of 

the devices [58]. In case of InGaN QW lasers on non-polar or semi-polar GaN 

substrates, this polarization field is minimized, but there are problems with limited In 

incorporation and stacking fault formation in the QWs for emission wavelengths 

higher than 500 nm [59]. On the other hand, due to their large surface-to-volume ratio 

(SVR) and radial strain relaxation during epitaxy, the strain induced polarization 

fields in the nanowires and InGaN disks are significantly smaller than those in planar 

InGaN quantum wells. Hence, defect-free Ga(In)N/GaN disk-in-nanowires with 

reduced strain induced polarization field are promising as the gain medium for 

making LEDs and lasers with high radiative efficiency. 
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1.5       Dissertation Overview 

            This dissertation focuses on the optimization of the self-assembled growth and 

improving the radiative efficiency of InGaN/GaN disks-in-nanowire by MBE. The 

optimized disks were used as the active medium for making monolithic visible 

nanowire array LEDs and lasers on (001) silicon substrates. Additionally, coalescence 

of the nanowires during their self-organized epitaxy is discussed in the context of an 

optimum range of areal densities for high performance nanowire based devices. 

            Chapter II discusses the growth of self-assembled blue, green and red-emitting 

InGaN/GaN disks-in-nanowires on (001) silicon by molecular beam epitaxy (MBE). 

By varying the growth conditions and by passivating the nanowire surface, the 

radiative efficiency of the InGaN disks have been optimized. Temperature dependent 

and time-resolved photoluminescence measurements were performed on as-grown 

and passivated disks-in-nanowires to study carrier lifetimes in them. Detailed 

structural characterizations and elemental analysis were performed on the nanowires 

to investigate the crystal quality of the material and alloy compositions in the disks. 

             Growth, fabrication and characteristics of nanowire array visible LEDs on 

(001) silicon are reported in chapter III. External quantum efficiency (EQE) (in 

arbitrary units) at room temperature was measured as a function of injection current 

density to determine the peak efficiency of the device and the efficiency drop at high 

injection current compared to the peak efficiency. Shift in the electroluminescence 

(EL) peak with increasing injection current density was investigated, from which the 

polarization field in the InGaN disks, was estimated and compared with that in planar 

InGaN quantum wells. To increase light output from the device, nanowire LEDs, 
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grown on a silicon substrate, were transferred to a metal reflector, since silicon 

absorbs the light emitting from the disks. 

            In the self-assembled growth of nanowires with high areal density, 

coalescence can take place between two or more misaligned nanowires or nanowires 

with increasing diameter during epitaxy. The degree of nanowire coalescence with 

increasing areal density and its effect on the optical properties of the nanowires is 

discussed in chapter IV. Structural characterization of the nanowires, grown with high 

areal density, was performed using high resolution transmission electron microscopy 

(HRTEM) imaging to investigate the nature of the defects formed near the coalescing 

boundaries. The effects of coalescence on the optical properties of the InGaN disk 

active region was studied by measuring their radiative efficiency as a function of 

nanowire densities. To understand how this coalescence affects the performance of 

nanowire LEDs, devices were fabricated with different areal densities keeping other 

growth conditions the same. The peak efficiency and near-field images of the 

electroluminescence from the LEDs were compared. Transient capacitance 

measurements were performed on planar GaN and GaN nanowire n+p diodes to 

compare and characterize the deep level traps in these structures. Nanowire n+p 

diodes were grown with similar set of areal densities as those of the LEDs. 

            White LEDs, which are at the center of solid state lighting, are mostly 

phosphor-converted. Due to some major disadvantages of the phosphor-converted 

white LEDs, a white nanowire LED, based on direct electrical injection, or a 

monolithic semiconductor-based wavelength converter quantum dot (QD) white LED 

can be a desirable alternative. In chapter V, we demonstrate and characterize 
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electrically injected tunable InGaN/GaN disk-in-nanowire white LEDs on (001) 

silicon introducing blue, green and red-emitting InGaN disks in the active region. We 

have also reported the characteristics of phosphor-free self-organized InGaN/GaN 

QD wavelength converter white LEDs on c-plane GaN-on-sapphire substrates. The 

exciting quantum dots were blue-emitting, in which electrically injected carriers 

recombine, and the converter dots were red-emitting. Stability of correlated color 

temperatures of white emission with injection currents was studied for these LEDs. 

Tunability of white emission was investigated by changing the number and emission 

wavelengths of the disks in the nanowire LEDs and those of the exciting and 

converter dots in the wavelength converter QD devices.   

            A suitable monolithic electrically injected nitride laser on (001) silicon can 

have a host of applications as visible lasers on less expensive silicon substrates and in 

silicon photonics when emitting in the near-IR wavelengths. The first monolithic 

electrically injected edge-emitting nanowire array lasers (green (λ=533nm) and red 

(λ=610nm)) on (001) silicon are demonstrated in chapter VI. Finite difference time 

domain (FDTD) simulation and transmission measurements were done on the 

nanowire waveguides to study the propagation of light in them. DC and dynamic 

characteristics of the green and red-emitting nanowire lasers have been investigated 

in detail. Nanowire lasers on silicon have demonstrated potential for superior 

performance in terms of threshold current density, differential gain, temperature 

coefficient and small signal modulation bandwidth compared with planar QW-based 

devices. Characteristics of the green and red-emitting Ga(In)N nanowire lasers are 

compared with those of planar green InGaN quantum well lasers and conventional 
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InAlGaP based red lasers. 

             Finally, a brief summary on the work done in this dissertation is presented in 

chapter VII and suggestions for future work are outlined. 
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Chapter II 

Growth and Characterization of Self-Assembled InGaN/GaN Disk-

in-Nanowires on (001) Silicon by Plasma-Assisted  

Molecular Beam Epitaxy (MBE) 

 

2.1      Introduction 

           III-nitride based nanowires and quantum-confined heterostructures have 

emerged as a promising technology base for the development of visible light emitting 

diodes (LEDs) and lasers [60-62]. Ga(In)N nanowires grown on (001) silicon by 

molecular beam epitaxy (MBE) are relatively free of extended defects compared to 

planar GaN grown on foreign substrates [48-53]. The nanowire geometry prevents the 

propagation of threading dislocations into the active region of the heterostructure 

because the free surface at the nanowire sidewalls allows for the elastic relaxation of 

the strain [63]. Therefore, threading dislocations generated at nanowire/silicon 

interface are expected to bend toward the sidewalls near the bottom of the nanowires 

(NWs) [47]. Auger coefficients measured in InGaN/GaN disks-in-nanowires are ~2-3 

orders of magnitude smaller than those measured in heteroepitaxial bulk materials 

[54]. This is important in the context of LED and laser efficiency at high injection 

currents. Achieving emission at longer wavelengths (green and beyond) with planar 

InGaN quantum wells (QWs) with high radiative efficiency is difficult. This is due to  
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Figure 2.1 Cross-sectional transmission electron micrograph (XTEM) showing the 
bending of threading dislocations towards the nanowire sidewall [47]. 

 

the strong polarization field and associated quantum-confined Stark effect (QCSE) 

[58], the presence of compositional inhomogeneities in the ternary alloys with high In 

composition [56, 57] and an increasing rate of non-radiative recombination due to the 

lack of confinement of carriers in the in-plane direction in the wells. It has been 

reported that the internal quantum efficiency (IQE), ƞIQE, of planar quantum wells 

decreases with an increase of emission wavelength at a rate of ~ 0.6-0.7% per 

nanometer [64]. In contrast, Ga(In)N nanowires and InGaN/GaN disks-in-nanowires 

(DNW) have reduced strain-induced polarization field even with high In 

compositions. This is due to the radial strain relaxation during their epitaxy resulting 

from their large surface-to-volume ratio. As a consequence, electron-hole 

wavefunction overlap is better and radiative lifetimes are smaller in the disks [65]. 

Accessibility to the longer wavelengths, such as 600 nm and beyond, could then very 
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well emerge as the most useful attribute of nanowire heterostructures in the context of 

solid state lighting.  

            Current white light sources in solid state lighting require the use of rare-earth 

doped phosphors, e.g. for the conversion of blue light to the yellow-red spectral range 

[19, 66-69]. Such conversion is inevitably accompanied by a variety of losses and is 

limited by long-term reliability [64, 70-72]. Combining multiple colors with the same 

material system, either as direct emitters (R-G-Y-B) or as a combination of internal 

converter and emitter, is an attractive alternative. InGaN ternary alloys with different 

In compositions cover the entire visible range in bandgap from blue to red emission. 

Therefore, they could in principle, provide a white light source with any desired color 

coordinates and color temperature [18, 61, 73, 74]. Increasing the In composition in 

the InGaN disks in GaN nanowires further can even result in near-infrared (near-IR) 

emission which is important for silicon photonics. However, before these important 

applications can be realized, the epitaxy and optical properties of the nanowire 

heterostructures need to be characterized and optimized. While it has been reported 

that the surface recombination velocity of GaN nanowires is smaller than that of 

GaAs by 2 orders of magnitude [75], the injected carriers would encounter a large 

area of nanowire surface with a detrimental effect on the radiative efficiency [76, 77]. 

Due to their large surface-to-volume ratio and the presence of surface states on the 

nanowires, there can be substantial nonradiative recombination of carriers through 

these states—leading to reduced radiative efficiency. Hence, surface passivation of 

nanowires is likely to play a significant role in the improvement of the radiative 

efficiency of the Ga(In)N disks and nanowires. This chapter focuses on the growth 
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study of the InGaN/GaN disks-in-nanowires by MBE that can be used as active 

medium for making visible light sources. It also discusses their detailed optical and 

structural characterization required for the improvement of LED and laser 

performances. 

 

2.2      Growth and Characterization of Self-Assembled GaN Nanowires on (001) 

           Silicon 

            Self-assembled III-nitride nanowires were grown on (001) silicon without any 

foreign catalyst or self-catalyst Ga droplets by Veeco Gen II and Veeco Gen 930 

plasma-assisted molecular beam epitaxy (MBE) systems (Fig. 2.2). Both MBE 

systems are equipped with Ga, In Al, Si and Mg effusion cells and a uni-bulb nitrogen 

plasma source. At the initial stage of nanowire growth, Si-N bonding is more 

energetically favorable than Ga-N bonding and hence SixNy grows on Si. During this 

stage, Ga incorporation rate is very low. From the high resolution transmission 

electron microscope (HRTEM) imaging of the Si/GaN interface, as shown in Fig. 2.3, 

usually a thin (~2nm) amorphous non-uniform SixNy layer was observed by us and 

other groups [47, 78-80] between GaN nanowire and Si substrate. The formation of 

this thin amorphous SixNy layer mainly removes the epitaxial requirement from the 

growth of wurtzite GaN nanowires on (001) Si substrates. The stress field generated 

on the SixNy layer helps in the formation of the initial GaN clusters and nanowire 

growth then proceeds with large Ga incorporation at a substrate temperature of 800oC 

under nitrogen rich condition. The Ga flux is maintained at 1.65x10-7 Torr, and the 

nitrogen flux is typically 1 sccm. As depicted in Fig. 2.4, there are three adatom paths  
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Figure 2.2 RF plasma assisted (a) Veeco Gen II and (b) Veeco Gen 930 molecular 
beam epitaxy (MBE) systems in our lab. 

 
 

that contribute to nanowire growth, together with their desorption : i) adatoms 

impinge on the top surface of NWs, ii) adatoms that impinge on the silicon diffuse 

towards the foot of nanowires and cross the energy-barrier between Si and GaN and  
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Figure 2.3 High resolution transmission electron microscopy (HRTEM) image of 
GaN nanowire/Si substrate interface showing the formation of thin  

SixNy layer between GaN and Si [54].  
 

 
Figure 2.4 Illustration of growth mechanism of self-assembled GaN nanowires on 

(001) Si showing various adatom paths that contribute to nanowire  
growth along with their desorption. 

 

 
iii) adatoms that impinge on the nanowire sidewalls. In the latter two cases, adatoms 

diffuse on the nanowire sidewall. Fastest growth occurs on lower energy (0001) GaN 

facet. Nanowire growth is carried out under nitrogen rich condition. Nitrogen rich  
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 Figure 2.5 45o tilted SEM images of 250 nm long GaN nanowires grown with Ga 
fluxes of (a) 3x10-8, (b) 7.8x10-8, and (c) 9x10-8 Torr keeping the same nitrogen flux 

and otherwise identical growth conditions demonstrating different nanowire areal  
densities as a function of Ga flux [81]. 

 

condition slows down random movement of the adatoms on silicon initially and helps 

to accumulate adatoms at the nucleation centers. Top surface of nanowire (NW) acts 

as an efficient collector of adatoms that are driven towards it due to the lower 

chemical potential at the top. While diffusing on the silicon and nanowire sidewalls, 

desorption of adatom might take place. Most semiconductor nanowires are grown via 

catalyst based vapor–liquid–solid (VLS) mechanism as mentioned in literature. 

However, in molecular beam epitaxy (MBE), the self-assembled GaN nanowires 

grow due to the thermodynamically driven higher surface sticking coefficients of the 

group III adatoms on the c-plane nanowire tip relative to the m-plane nanowire 

sidewalls under certain growth conditions [82]. Therefore, group III atoms that 

impinge on the growing nanowire at the very tip or within a surface diffusion length 

of the tip will likely to incorporate there. Adatoms that impinge farther down the 

nanowire sidewall will mostly desorb and will not contribute to nanowire growth. The 

sticking coefficients on tip and sidewalls and surface diffusion length of adatoms 



32 
 

 
Figure 2.6 Phase diagram for GaN nanowire growth at fixed  

N2 plasma conditions [83]. 
 

 
Figure 2.7 Growth rate of  GaN columnar and compact layers as a  

function of the Ga flux [84]. 
 

depend on the growth conditions such as substrate temperature and V/III flux ratio. 
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Nanowires nucleate spontaneously on random places of silicon. Then they keep on 

growing vertically because the sticking coefficient on the polar [0001] c-plane is 

higher than that on the non-polar [1-100] m-plane under high substrate temperature 

(800–830oC) and high N2 overpressure. We may shower Ga droplets initially on the 

silicon substrate before starting the nanowire growth. But they cannot act as catalytic 

sites since these Ga droplets are unstable under these growth conditions and undergo 

strong desorption and/or a quick transformation into GaN [82]. In fact, alternative 

means of growth using Ga self-catalyst is disproved by the absence of Ga droplets on 

the sample surface. This has been observed by SEM imaging even after cooling the 

substrate in Ga flux inside the growth chamber [82].  

            The lateral growth of a nanowire cannot be completely suppressed in this 

growth mechanism. If the nanowires are grown long enough, then there will be a 

temperature gradient along the growth axis with the top surface being at a lower 

temperature compared to the substrate temperature. This can contribute to the 

increasing diameter during epitaxy. Figure 2.5 shows the 45o tilted scanning electron 

microscope (SEM) images of self-organized GaN nanowires grown on (001) silicon 

substrates. The SEM image demonstrates the variation of nanowire areal density as a 

function of Ga flux keeping the nitrogen flux and other growth conditions constant. 

SEM images show that GaN NWs do not grow on preferential nucleation sites. 

Instead, they grow at random sites and the diameter of these nucleation sites might be 

different—giving rise to NWs with different diameters.  By varying V/III ratio, NW 

diameter and areal density can be controlled as depicted in Fig. 2.5. Figure 2.6 shows 

the effect of substrate temperature on the growth of GaN nanowires, as investigated  
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Figure 2.8 Morphology of GaN layers, grown on (111) Si, as a function of the III–V 

ratio (decreasing the Ga flux) grown at 690°C: a) compact flat layer, b) compact 
rough layer, c) coalesced nanowires, and d) isolated nanowires [85]. 

 
 

 

Figure 2.9 45o tilted SEM image of GaN nanowires on (001) silicon grown at a high 
substrate temperature of 870oC and a relatively low Ga flux of 5.6x10-8 Torr,  

resulting in non-uniform nanowires. 
 

by Bertness et al. [83].  Only within the nanowire growth window, the density and 

diameter of the self-assembled nanowires can be influenced by changing the Ga flux, 

substrate temperature and N2 plasma conditions. Figure 2.7 demonstrates the variation 
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of growth rate of GaN nanowire and GaN compact layer with Ga flux as observed by 

Stoica et al. [84]. For high Ga flux, compact layers are formed, and the excess Ga is 

accumulated as droplets on the substrate surface. With a gradual decrease in Ga flux 

 

 
Figure 2.10 Diameter dependence of the axial growth rate of the GaN nanowires 

grown for long deposition time of 6 hours [84]. 
 

compact layers are still formed, but without massive Ga accumulation on the sample 

surface. At low Ga flux i.e. under the N-rich condition, the growth is limited by the 

group III flux and the nanowire growth is observed. Calleja et al. [85] reported 

similar observations for the growth of GaN nanowires under nitrogen-rich conditions, 

as demonstrated by the SEM images in Fig. 2.8. The nanowire growth requires 

optimized III–V ratio and substrate temperature. Starting from stoichiometric 

conditions at a given substrate temperature and a fixed nitrogen flux, Ga flux is 

gradually decreased until a nanocolumnar structure is obtained.  Figures 2.8 (a)-(d) 

show the formation of a flat compact GaN layer, a compact rough GaN layer, 

coalesced nanowires and finally isolated nanowires, respectively, with gradual 
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increase in V/III ratio. Figure 2.9 shows the SEM image of GaN nanowires on (001) 

silicon grown at a high substrate temperature (870oC) and a low Ga flux (5.6x10-8 

Torr). Too low III/V flux ratio and high growth temperature result in non-uniform (in 

height) ensemble of nanowires, which is not suitable for making planar LEDs and 

lasers. The correlation between the length and diameter of NWs for a long growth 

time of 6 hours is also reported in Ref. [84]. The vertical growth rate (length/time) 

estimated for individual NW using SEM images is demonstrated as a function of the 

nanowire diameter in Fig. 2.10. It is found that for growth times longer than 60 min, 

the formation of GaN clusters on SixNy terminates due to the lack of space between 

the nanowires. 

             Ga(In)N nanowires can be grown on Si in two ways – as a regular array by 

  

 
Figure 2.11 Photoluminescence (PL) spectra of growth-optimized as-grown GaN 

nanowires measured at 10K and 300K with 325 nm excitation.  
 

patterning [86, 87], or as a random array by the formation of initial nucleation centers 
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followed by nanowire growth along the c-axis [61, 73, 74]. The latter is simpler from 

a technological point of view, and the nanowire density can be increased to ~(5-

8)x1011cm-2 to maximize light output. The present research concentrates entirely on 

self-assembled Ga(In)N nanowires for making nanowire LEDs and lasers on (001) Si. 

Due to the non-uniformity of SixNy layer, some nanowires grow tilted—which can 

lead to the coalescence of nanowires. Also, as will be discussed in Chapter IV, large 

areal densities can lead to coalescing of the nanowires and the formation of 

dislocations and stacking faults [81, 88-90], which can give rise to deep level traps in 

the structure. This, in effect, would reduce the radiative efficiency (IQE) of the 

nanowires and disk-in-nanowires. We have grown GaN nanowires with an optimized 

areal density of 2x1010 cm-2. Room temperature photoluminescence (PL) from the 

ensemble of GaN nanowires grown on (001) silicon is shown in Fig. 2.11.  

 

                         
Figure 2.12 Schematic representation of InGaN/GaN disks-in-nanowire 

heterostructures grown on (001) silicon for the calibration of emission wavelength 
and optimization of the radiative efficiency of the disks. 

 

Temperature dependent photoluminescence measurements were made at 10K and 

300K with excitation at 325 nm by mounting the samples in a liquid He cryostat. This 

is to determine the radiative efficiency (or internal quantum efficiency-- IQE) of GaN  
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(a)                                                               (b) 

   
                                           (c)                                                                 (d) 

Figure 2.13 PL intensities of as-grown red disks at 10K and 300K grown at (a) 
515oC, (b) 580oC and (c) 545oC;  (d) variation of PL peak intensity of the optimized 

as-grown red DNW sample with excitation power density at 10K and 300K. 
 

nanowires. The photoluminescence was analyzed with a high resolution Acton 

SpectraPro 2750 monochromator (resolution ~0.03 nm) and was detected with lock-in 

amplification during steady-state PL measurements. The IQE is calculated as the ratio 

of the maximum intensities at 300 and 10K, assuming that non-radiative 

recombination centers are frozen at 10K, and the quantum efficiency is approximately 

unity at this temperature. By optimizing the growth conditions in MBE (Ga flux = 
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1.65x10-7 Torr, nitrogen plasma = 1sccm, substrate temperature = 800oC), a 

maximum radiative efficiency of 68% was measured for the as-grown GaN 

nanowires. 

 

2.3      Growth and Characterization of Self-Organized Blue, Green and Red- 

           Emitting InGaN/GaN Disk-in-Nanowires on (001) Silicon   

            InGaN/GaN disks-in-nanowires (DNW) were used as gain media for making 

visible LEDs and lasers with high radiative efficiency. For that, emission wavelengths 

(blue-green-red) of the disks were calibrated, and the growth conditions of DNW 

samples were optimized inside MBE to maximize their radiative efficiency. 

 

2.3.1    Optimization of Radiative Efficiency of InGaN/GaN Disk-in- 

            Nanowires by Temperature Dependent Photoluminescence 

            Measurements    

 

            To optimize the growth conditions of the InGaN disks for high radiative 

efficiency, we have grown 300 nm GaN nanowire on (001) silicon followed by 6 

InGaN disks (~2nm) separated by GaN barriers (~12 nm). Schematic illustration of 

such a heterostructure is shown in Fig. 2.12.  After growing the GaN region at 800oC, 

substrate temperature is lowered to grow the InGaN/GaN DNW regions. Both 

substrate temperature and In-to-total group III flux ratio were varied to optimize the 

radiative efficiency of the InGaN disks and to extend the peak emissions to the range 

of 600-650 nm. Table 2.1 shows the growth conditions for the optimized InGaN disks 

with the highest radiative efficiency we have obtained so far. In order to go from blue 
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to red emission, substrate temperature needs to be reduced substantially from 630oC 

to 545oC. At the same time, indium flux was increased from 3.4x10-8 Torr to 1.3x10-7 

Torr, and Ga flux was decreased to some extent from 1.57x10-7 Torr to 1.45x10-7 

Torr, respectively. For the optimized as-grown blue, green and red-emitting InGaN 

disks, In-to-total group III flux ratios were 17.8%, 30.5% and 45.3%, respectively. In 

this section, we have reported the optimized radiative efficiency for blue (λ=430nm), 

 

   
(a)                                                               (b) 

Figure 2.14 PL intensities of optimized as-grown (a) blue- and (b) green-emitting 
InGaN disks in GaN nanowires at 10K and 300K grown on (001) silicon. 

  

Table 2.1 Growth conditions for the optimized InGaN disks with the highest radiative 

efficiency. 

Growth parameters Blue disks 

(λ=430 nm) 

Green disks 

(λ=540 nm) 

Red disks 

(λ=650 nm) 

Substrate T (oC) 630 590 545 

In flux (Torr) 3.4x10-8 6.5x10-8 1.2x10-7 

Ga flux (Torr) 1.57x10-7 1.48x10-7 1.45x10-7 

 

green (λ=540nm) and red emitting (λ= 600-650 nm) DNWs samples. Optimizing the 
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radiative efficiency at the longer wavelengths (i.e. red) was the most challenging of 

all. At first, both substrate temperature and In-to-total group III flux ratios were 

varied to calibrate the emission wavelength. Once we obtained the desired emission 

wavelength, both substrate temperature and In-to-total group III flux ratio were 

reduced to maximize the radiative efficiency with minimum In composition in the 

disks keeping the emission wavelength almost constant. But if the substrate 

temperature is reduced too much (~515oC), then photoluminescence (PL) intensity at 

room temperature becomes very weak, possibly due to the presence of growth defects 

  

 
Figure 2.15 Measured variation of PL peak energy with temperature at three different 

points in an as-grown red-emitting DNW sample. The solid line is the calculated 
InGaN bandgap shift with temperature according to the Varshni  

equation using α = 9.39x10-4eVK-1 and β = 772K.   
 

resulting from limited adatom diffusion, as shown in Fig. 2.13(a) and radiative 

efficiency of the red-emitting InGaN disks drops down to 12.5%. Another way of 

calibration is to increase both the substrate temperature and In-to-total group III flux  
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                (a) 

  
                  (b) 

 
              (c) 

Figure 2.16 PL intensities of growth-optimized as-grown and surface passivated 

(with Si3N4 and parylene) (a) blue-, (b) green-, and (c) red-emitting InGaN disks in 

GaN nanowires at 10K and 300K grown on (001) silicon. 
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Figure 2.17 PL spectra of growth-optimized as-grown and parylene passivated red-

emitting InGaN/GaN disk-in-nanowires measured at 10K and 300K  
with 267 nm excitation. 

 

ratio to maximize the radiative efficiency with good crystalline quality and without 

changing the emission wavelength. If the substrate temperature is increased too much 

(~580oC), a broad PL emission having multiple peaks with low intensity is observed 

due to the indium phase segregation in the disks as demonstrated in Fig. 2.13(b) and 

the IQE is again reduced to 15%. Following these calibration methods, the highest 

radiative efficiency of 41% was obtained for the as-grown red disks as shown in Fig. 

2.13(c) with an In-to-total group III flux ratio of ~45.3% and a substrate temperature 

of 545oC. Photoluminescence measurements were made with a wide range of 

excitation intensities to determine the radiative efficiency. Excitation of variable 

intensity was provided with a frequency-doubled Ti: sapphire laser (λ = 405 nm, 

pulse width 130 fs, repetition rate 80 MHz) focused to a ~10 μm2 spot. The excitation 

is, therefore, confined within the InGaN disks for all the DNW samples (blue-green-

red) and does not produce carriers in the GaN nanowire region. Data for the as-grown 
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red DNW sample is shown in Fig. 2.13(d), where the peak intensities measured at 

10K and 300K are plotted as a function of excitation power density. At both 

temperatures, the peak intensity increases with excitation and then saturates due to the 

screening of the polarization field in the red InGaN disk with the optically excited 

carriers. The IQE is calculated as the ratio of the maximum intensities at 300K and 

10K. For blue and green DNWs, similar methods as mentioned above have been 

followed to optimize the radiative efficiency and maximum radiative efficiencies of 

48% and 43% have been measured for the as-grown blue- and green-emitting disks, 

respectively. Figures 2.14(a) and (b) depict the photoluminescence of growth-

optimized as-grown blue and green-emitting disks, respectively at 10K and 300K. 

 

2.3.2   Temperature Dependent Photoluminescence Peak Shift : Absence of 

           S-shaped behavior  

            Since we had to increase the In composition in the disks to a great extent to 

have red emission from them, In-rich nanoclusters might have formed in the disks.   

The peak energy of the luminescence from the red InGaN disks measured at three 

different locations on a DNW sample (Fig. 2.15) exhibits a red-shift with increasing 

temperature. This is due to the temperature induced bandgap shrinkage and the 

measured data agree extremely well with bandgap energies calculated according to 

the Varshni relation (Eq. (2.1)) [91] with the bandgap at 10K assumed from the 

results of Fig. 2.13(c).  

                                                        ��(�) = ��(0) −
���

����                                            (2.1) 

Where, Eg(0) is the bandgap at 10K, and α and �� are material constants. The data do  
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Figure 2.18 (a) Time resolved PL of as-grown DNW samples at room temperature. 

Solid lines show the calculated carrier lifetime in accordance with the stretched 
exponential model. Variation of carrier lifetimes with temperature in (b) as-grown 

and (b) parylene passivated red-emitting DNWs samples. 
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not exhibit the S-shaped variation of bandgap with temperature commonly attributed 

to In-rich nanoclusters formed by In phase segregation [92, 93] during the growth of 

the nanowires. 

 

2.3.3    Surface Passivation of Optimized Ga(In)N Nanowires  

            As mentioned earlier, due to their large surface-to-volume ratio and the 

presence of surface states on the nanowires, non-radiative recombination of carriers 

through these states can have a detrimental effect on device performance reducing the 

radiative efficiency of the disks. Hence, by passivating these surface states on the 

nanowires, radiative efficiency of the growth-optimized as-grown InGaN disks can be 

improved further. We have passivated the nanowires with Si3N4 and parylene. 

Parylene is a transparent insulator with a dielectric constant of ~3 and we 

 
Table 2.2 Radiative efficiencies of as-grown and passivated optimized InGaN disks. 

Samples as-grown Si3N4 

 passivated 

parylene 

passivated 

Blue disks 

(λ=430 nm) 

48% 52% 55% 

Green disks 

(λ=540 nm) 

43% 49% 53% 

Red disks 

(λ=650 nm) 

41% 48% 52% 

 

have deposited parylene conformally on the nanowire surface by physical vapor 

deposition at room temperature. Si3N4 was deposited at 300oC by plasma enhanced 

chemical vapor deposition (PECVD). Maximum improvement in radiative efficiency 

was obtained with parylene and upon parylene passivation, an increase in radiative 
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efficiency of ~10-12% was measured in all the passivated DNW samples irrespective 

of sample emission wavelength. The radiative efficiencies of Si3N4-passivated and 

parylene-passivated blue-emitting DNW samples are 52% and 55%, respectively, 

whereas for green they are 49% and 53%, respectively and for red disks they are 48% 

and 52%, respectively [Figs. 2.16(a)-(c)]. Radiative efficiencies of as-grown and 

passivated optimized InGaN disks are listed in Table 2.2. Surface recombination 

velocities have been estimated to be 2.3x103 cm s-1, and 1.44x103 cm s-1 in the as-

grown and  parylene passivated In0.51Ga0.49N/GaN disks-in-nanowires (DNW), 

respectively with an areal density of 2x1010 cm-2 [75]. 

 

 

Figure 2.19 Arrhenius plot, derived from temperature dependent PL measurements 
on passivated green-emitting InGaN disks, yields two activation energies               

(Ea1 =58meV and Ea2 =1.34eV).  The origins of these activation energies are 
however unknown and need to be further investigated. 

 

            To understand the significance of the surface passivation in thin InGaN disks 

region along the growth direction, we repeated the temperature dependent PL 
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measurements on the red emitting as-grown and passivated DNW samples with 

excitation at 267 nm. This is provided by a frequency-tripled Ti:sapphire laser, such 

that electron-hole pairs were generated in the GaN nanowire sections also [Fig. 2.17]. 

The improvement in efficiency upon parylene passivation obtained from these data is 

~10% for both the GaN nanowire and red InGaN disk regions. Since this value is 

almost identical to the improvement in efficiency of the luminescence from the disk 

  

Table 2.3 Carrier lifetimes in as-grown and passivated InGaN/GaN disks-in-

nanowires at T=300K. The measurements were carried out with 405 nm excitation. 

 

 

 

 

 

 

 

 

 

Table 2.4 Carrier lifetimes in as-grown and passivated GaN region of the nanowire at 

T=300K with 267 nm excitation. 

 
 

 

 
regions obtained by 405 nm excitation and since the surface-to-volume (SVR) ratio 

remains constant in the nanowire and the disk regions (SVR=(2πrh/πr2h) = 2/r >> 1, 

where r is the average nanowire diameter and h is the thickness of the region along 

the growth direction), it may be concluded that passivation by Si3N4 and parylene 

Sample Passivation τ τr (ps) τnr (ps) 

Blue 
(λ = 430 nm) 

As-grown 209 409 397 
Si3N4 236 408 562 

Parylene 253 408 687 

Green 
(λ = 540 nm) 

As-grown 338 750 632 
Si3N4 404 748 725 

Parylene 434 748 1058 

Red 
(λ = 650 nm) 

As-grown 404 985 685 
Si3N4 471 982 905 

Parylene 510 981 1062 

GaN region of nanowire τ (ps) τr (ps) τnr (ps) 

As-grown 940 1843 1918 

Parylene passivation 1160 1840 3138 
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reduces non-radiative recombination via surface states. Additionally, band bending on 

the lateral surfaces of nanowires due to space charge related surface depletion can 

enhance surface recombination [94, 95]. With passivation, the extent of the depletion 

is reduced in both the nanowire and disk regions [55]. The reduction of surface state 

density will also improve the transport of electrically injected carriers from the 

contact regions to the InGaN disks gain media in LEDs and lasers. 

 

2.3.4    Study of Carrier Lifetimes in Ga(In)N Disk-in-Nanowires by Time 

            Resolved Photoluminescence Measurements (TRPL) 

            To confirm the improvement of IQE values of the InGaN/GaN DNW samples 

measured by the temperature dependence of the PL intensities, TRPL measurements 

were performed on the as-grown and passivated DNW samples with excitation at both 

405 nm and 267 nm. The luminescence was detected by a Picoquant single photon 

avalanche diode having a resolution time of 40 ps. Typical transient data with 405 nm 

excitation at room temperature are shown in Fig. 2.18(a). Similar measurements were  

made at several temperatures in the range 10-300K. The transient response was 

analyzed with the stretched exponential model: I(t)=I0exp[-(t/τ)β], where τ is the 

photoexcited carrier lifetime and β is the stretching parameter. The value of β 

obtained from analysis of TRPL data varied in the range ~0.7-0.9 which suggests that 

the polarization field in the disks is small. This is expected because of the radial 

relaxation of strain during the growth of nanowires. The values of carrier lifetime τ 

obtained from analysis of data recorded at room temperature from the different 

samples are listed in Table 2.3. Total carrier lifetime, τ increases with the emission 
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wavelength. A clear trend is observed: τ increases significantly upon passivation, 

being the largest in the parylene passivated DNW samples.  

            The radiative and non-radiative lifetimes, τr and τnr can be derived from the 

measured IQE (η) and τ using the relations : η = (1+ τr/τnr)
-1 and τ-1 = τr

-1 + τnr
-1. The 

values of carrier lifetimes so derived at room temperature are also listed in Table 2.3. 

The lifetimes for red DNW samples are plotted as a function of temperature together 

with the measured values of τ for as-grown and parylene passivated samples in Figs. 

2.18(a) and (b), respectively. Similar trends for the radiative and nonradiative carrier 

lifetimes in as-grown and parylene passivated blue- and green-emitting DNW 

samples have been observed. A few relevant observations can be made from the 

lifetime data. For example, if we consider the red emitting DNW samples, the values 

of τ in the InGaN/GaN disks are ~2 orders of magnitude smaller than those reported 

for planar InGaN quantum wells with lower In composition [96, 97]. The disks are 2 

nm thick and 60 nm in average diameter and in the context of quantum confinement 

they are quite similar to wells. It is therefore apparent that the significantly smaller 

lifetimes in the DNW are due to a smaller polarization field resulting from a near 

absence of strain, and a weak confinement in the lateral direction [65]. Also, the 

radiative lifetime remains almost constant with variation of temperature, as expected, 

and the non-radiative lifetime attains very large values at low temperatures due to the 

freeze-out of non-radiative recombination centers. Finally, it is evident that for the 

samples passivated with parylene, τr < τnr and hence the IQE is larger than 50%. This 

is significant since quantum wells emitting in the red cannot easily be grown due to 

effects related to excess indium. Therefore, the InGaN/GaN quantum disks in 
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nanowires may emerge as a viable active region for red-emitting light emitting diodes 

and lasers on silicon.  

            We next describe and discuss the results of TRPL measurements made on red-

emitting as-grown and parylene passivated samples at 300K with 267 nm excitation, 

which excites the GaN nanowire region also. Again, the values of τr and τnr are 

derived from the measured time constant τ   by using the measured IQE values, and 

the lifetimes are listed in Table 2.4. The values of τ are comparable to those reported 

earlier for GaN nanowires [75]. More significantly, the value of τnr in the GaN region 

of the nanowire increases by a factor of 1.64 upon passivation. This value is nearly 

identical to the increase in τnr in the InGaN disk region which is 1.55 (Table 2.3). This 

result corroborates the identical (~10%) increase in IQE in both regions (with equal 

surface-to-volume ratio) and strongly suggests that the improvement in efficiency is a 

result of the passivation of surface states. From Table 2.3, it is seen that τr is 

increasing as a function of emission wavelength. According to the Fermi-Golden rule, 

radiative recombination rate is proportional to the joint density of states. With 

increase in emission wavelength, two-dimensional joint density of states (DOS) 

decreases from 6.92x1013 eV-1 cm-2 in the blue disks to 5.63x1013 eV-1 cm-2 in the red 

InGaN disks. Hence, radiative recombination rate decreases, i.e. radiative lifetime 

increases. According to Table 2.3, nonradiative lifetimes also increase with emission 

wavelengths. Figure 2.19 shows Arrhenius plot, derived from temperature dependent 

PL measurements on passivated green-emitting InGaN disks, which yields two 

activation energies (Ea1 =58meV and Ea2 =1.34eV).  The origins of these activation 

energies are however unknown and need to be further investigated. 
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2.4       Structural and Compositional Characterization of Ga(In)N Nanowires 

2.4.1    Scanning Electron Microscopy (SEM) Imaging of Ga(In)N Nanowires 

            In this work, self-assembled InGaN/GaN disk-in-nanowires were grown by 

MBE on (001) silicon substrate with an areal density ranging from ~1010 to 1011 cm-2 

and an average diameter ranging from 60-80 nm, as observed by 45o tilted scanning 

  

   

(a)                                                                 (b) 

Figure 2.20 (a) 45o tilted SEM image of the ensemble of InGaN/GaN disk-in-
nanowires grown on (001) silicon with an optimized areal density of 2x1010 cm-2,  

(b) top-view of nanowires from SEM image demonstrates almost near-perfect  
hexagonal cross-sections. 

 

                   
Figure 2.21 Illustration of Ga and N atoms in GaN nanowires, grown in wurtzite 

crystalline form with Ga-face polarity on the top surface [98]. 
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electron microscopy (SEM) imaging shown in Fig. 2.20(a). It is seen that the 

nanowires are vertically aligned on silicon and separated at the top. Ga(In)N 

nanowires are grown exclusively in the wurtzite (or hexagonal) crystal structure with 

the growth axis parallel to the [0001] crystal direction, also called the c-axis. The  

 
(a) 

 
(b) 

Figure 2.22 (a) High-resolution transmission electron microscopy (HRTEM) image 
of InGaN nanowire showing almost defect-free crystalline structure along the growth 

direction of nanowires [65]. The inset shows the selective area diffraction (SAD) 
pattern; (b) HRTEM image of a single nanowire showing multiple  

InGaN disks separated by GaN barriers.  
 

sidewalls of the nanowires conform to the non-polar [1-100] m-planes. From SEM 

imaging, the top view of the ensemble of nanowires, as depicted in Fig. 2.20(b), 
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reveals that the nanowires, when well separated, have near perfect hexagonal cross 

sections. Ga(In)N nanowires grown on silicon by MBE generally have Ga-face 

polarity [79], [99], although one study found mixed polarity [100]. 

 

2.4.2    Transmission Electron Microscopy (TEM) Imaging of InGaN Disks in 

            GaN Nanowires 

            The structural properties of the nanowires were investigated by high-

resolution TEM (HRTEM) imaging. Figure 2.22(a) shows HRTEM image of InGaN 

nanowire depicting defect-free uniform crystalline structure along the growth 

direction of nanowires i.e. c-axis [65]. The inset to Fig. 2.22(a) demonstrates the 

selective area diffraction (SAD) pattern which indicates that the entire nanowire is 

single crystal with wurtzite structure and the c-plane is normal to the growth 

direction. It is derived from the SAD pattern that the lattice constant of this nanowire 

is 5.4 Å that corresponds to an In composition of ~25%. Figure 2.22(b) depicts 

HRTEM image of a single nanowire having multiple ~2nm thick InGaN disks 

separated by ~12 nm GaN barriers. Due to the relatively large diameter of the base of 

the InGaN disks in GaN nanowires, the quantum confinement in the InGaN disks is 

primarily provided along the growth direction. The size of the InGaN quantum wells 

(shaped as disks), buried in between GaN barriers, is almost identical to that of self-

assembled InGaN/GaN quantum dots [101]. 

 

2.4.3    Energy-Dispersive X-ray (EDX) Measurements 

            Indium composition in the InGaN disks was varied to have emissions from 
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blue (λ=430nm) to red (λ=650nm) wavelengths. From energy-dispersive x-ray 

spectroscopy (EDS), as shown in Fig. 2.23, In composition in the InGaN nanowires, 

sandwiched between two GaN nanowire regions, was estimated to be ~20%, 38% and 

54% for blue (λ=430nm), green (λ=540nm) and red emitting (λ=650nm) DNW 

  

        

 

Figure 2.23 Estimation of In compositions in (a) blue, (b) green and (c) red-emitting 
InGaN nanowires by energy dispersive x-ray (EDX) measurements.  

 

samples, respectively. For the EDX measurement, GaN (250nm) / InGaN (400nm) / 

GaN (350nm) nanowire heterostructure was grown, and line scan was performed 

along the c-axis of the nanowire for elemental analysis. Similar growth conditions as 

those for the optimized InGaN disks were used to grow the InGaN regions. In 
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compositions estimated from EDX measurements, hence indicates the elemental 

compositions of the corresponding InGaN disks.  

 

2.6       Summary 

            In summary, we have grown self-assembled blue (λ=430nm), green 

(λ=540nm) and red (λ=650nm) InGaN/GaN DNWs on (001) silicon by MBE. 

Radiative efficiency of the InGaN disks has been optimized by varying the growth 

conditions inside MBE and passivating the surface states with Si3N4 and parylene. 

IQE of as-grown blue, green and red DNW samples was measured to be as high as 

48% 43% and 41%, respectively. Parylene provided better surface passivation, 

compared to Si3N4, increasing the radiative efficiency by ~ 10-12% for all emission 

wavelengths. Upon parylene passivation, we obtained maximum IQEs of 54%, 52% 

and 51% for the passivated blue, green and red disks, respectively. Temperature 

dependent and time-resolved PL measurements were performed on as-grown and 

surface passivated DNW samples to investigate the total, radiative, and non-radiative 

carrier lifetimes in the disks. The trend in the lifetimes corroborate the improvement 

in radiative efficiency of InGaN disks after parylene passivation. Detailed structural 

characterizations were performed on InGaN nanowires and InGaN/GaN DNWs by 

SEM, HRTEM, and EDX measurements to investigate the crystal quality of the 

material and to estimate the elemental compositions of the disks. Optimization of the 

radiative efficiency and detailed structural characterization of InGaN/GaN DNWs 

will facilitate their use as gain media in high-performance visible LEDs and lasers, 

which will be discussed in Chapters III and VI. 
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Chapter III 

InGaN/GaN Disk-in-Nanowire Array Light-Emitting Diodes 

 

3.1      Introduction 

            Nitride-based light emitting diodes (LEDs) with emission in the visible 

spectrum play an important role in solid state lighting, A great deal of research is 

being devoted to the development of state-of-the-art nitride LEDs. Some of the major 

challenges that the current nitride planar quantum well (QW) LED industry is facing 

are low radiative efficiency, large shift of peak emission wavelength due to quantum-

confined Stark effect (QCSE) [58] and efficiency drop at high injection currents 

[103], etc. These problems become even more severe when long wavelength emission 

(green and beyond) with high radiative efficiency is desired with planar quantum 

wells. White LEDs are at the center of solid state lighting, and high efficiency 

monolithic blue-green-red-emitting QW LEDs are required to realize white light 

sources with optimum color coordinates and correlated color temperatures. For the 

planar InGaN QWs having high indium composition to obtain green and red 

emissions, large strain induced polarization field is observed. This leads to poor 

electron-hole wavefunction overlap resulting in low radiative efficiency and large 

shift in emission peak (~20-30 nm) when bias is increased across the device [58, 

103]. Self-assembled InGaN/GaN disks-in-nanowires (DNWs) on (001) silicon, on 
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the other hand, demonstrate significantly smaller polarization field due to the radial 

strain relaxation during their epitaxy resulting from their large surface-to-volume 

ratio (SVR). This, in turn, provides much better electron-hole wavefunction overlap 

in the active region leading to high radiative efficiency even at longer emission 

wavelengths and a small blueshift in emission peak as injection current is increased.  

            Efficiency drop in planar QWs at high injection currents mostly results from 

nonradiative Auger recombination of carriers [32, 36, 37] and carrier leakage from 

the quantum wells [34]. This is again facilitated by the presence of large polarization 

field associated with planar QWs with high In composition to achieve long emission 

wavelengths. Our measurements on nonradiative Auger recombination in InGaN 

nanowires and disks reveal that the Auger recombination rate is ~2-3 orders of 

magnitude smaller in them compared to those in planar InGaN QWs grown on lattice 

mismatched substrates [54]. Therefore, at high injection currents, Auger 

recombination driven efficiency drop is likely to be much smaller in InGaN/GaN 

DNWs gain media irrespective of the In composition. Also, due to the smaller strain-

induced polarization field in the nanowires, carrier leakage from the disks is small at 

high injection. As presented and explained in Chapter II, structural characterizations 

of self-organized InGaN/GaN DNWs grown on (001) silicon with optimized areal 

density show that the nanowires are almost free of any extended defects. S-shaped 

behavior is not observed from the temperature dependence of PL peak emission 

indicating that the disks (even with high In) do not have significant In-rich clustering. 

Moreover, the InGaN disks are characterized by stretched monoexponential carrier 

decay times and low radiative lifetimes resulting in high radiative efficiency for blue-
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green-red emissions. Hence, InGaN disks in GaN nanowires are promising candidate 

as gain media for making visible LEDs and lasers. This chapter focuses on the growth 

and fabrication of visible InGaN/GaN disk-in-nanowire LEDs on (001) silicon. Light-

current (L-I) characteristics, electroluminescence (EL) and LED efficiencies are 

investigated. Additionally, to extract more light from the LEDs, the nanowire device 

heterostructures have been transferred to a metal reflector from the silicon substrate. 

Fabrication process, detailed characterization and the challenges with the nanowire 

LEDs on metal mirrors are discussed. 

 

3.2      Growth of Blue, Green and Red InGaN/GaN Disk-in-Nanowire Light 

           Emitting Diode (LED) Heterostructures on (001) Silicon 

           Monolithic InGaN/GaN disks-in-nanowires p-i-n LED heterostructures were 

grown with good uniformity in height on n-type (001) Si by plasma-assisted 

molecular beam epitaxy (PA-MBE). 300 nm of Si-doped n-type GaN nanowire was 

first grown, followed by 8 pairs of InGaN (2nm) disks/ GaN (12 nm) barrier as the 

active region, 15 nm p-doped Al0.15Ga0.85N electron blocking layer (EBL) and 150 nm 

Mg-doped p-type GaN. Figure 3.1 demonstrates 45o tilted SEM image of the as-

grown nanowire LED on (001) silicon substrate with an average diameter of ~ 60nm 

and optimized areal density of ~2x1010cm-2. High density of nanowires is needed to 

increase the light output, but the areal density cannot be too large such that the 

nanowires coalesce with each other and form defects at the coalesced boundary. We 

will address this issue of nanowire coalescence with high areal density in Chapter IV.  

N-doped GaN region was grown at a substrate temperature of 800oC under nitrogen 
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rich condition with a Ga flux of 1.62x10-7 Torr. P-GaN region of the LED was grown 

at a substrate temperature of 680oC. To grow blue (λ=430nm), green (λ=540nm) and 

  

 

Figure 3.1 45o tilted scanning electron microscopy (SEM) image of as-grown 
nanowire LED heterostructure on (001) silicon substrate. 

 

 

       

Figure 3.2 Normalized photoluminescence of the optimized blue (λ=430nm), green 
(λ=540nm) and red-emitting (λ=610nm) InGaN/GaN DNWs at 300K, used as active  

regions in the LED heterostructure. 
 

red-emitting (λ=610nm) nanowire LED heterostructures, indium composition in the 

disks was changed along with the growth temperature for the InGaN disks. A detailed 
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discussion on the In compositions and growth temperatures for the optimized InGaN 

disks with the highest radiative efficiency we have obtained so far was presented in 

Chapter II. Growth temperatures for the optimized blue, green and red-emitting  

 
(a) 

 

 
(b) 

Figure 3.3 (a) Schematic representation of the fabricated nanowire LED on (001) 
silicon showing n-GaN, p-GaN, DNWs active region and p-Al0.15Ga0.85N electron 

blocking layers separately; (b) SEM image of the fabricated nanowire LED on silicon  
illustrating p- and n-contacts of the device. 

 

InGaN disks were 630, 590 and 558oC, respectively, where In-to-total group III flux 

ratios were 17.8%, 30.5% and 42.1%, respectively. Figure 3.2 shows the room 
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temperature photoluminescence of the optimized blue, green and red-emitting 

InGaN/GaN DNWs that have been used as active regions in the LED heterostructure. 

The electrically active doping level of the p-GaN layer was estimated to be (6-7) x 

1017 cm-3 from C-V measurements on n+p GaN nanowire diodes. Doping level of the 

n-GaN layer was estimated to be ~5x1018 cm-3 from C-V measurements on Pt 

Schottky contact deposited on GaN nanowires. To optimize the Ohmic contact on p-

GaN, the final 20nm of p-GaN was grown with a higher Mg flux increasing the p-

doping level to 8.7x1017cm-3.  

 

Figure 3.4 Reflectance of Ag, Au and Al as a function of emission wavelength [103]. 
Ag was used as metal reflector in flip-chip nanowire LEDs. It has a reflectance of 

higher than 90% for the emission wavelengths of our working LEDs. 
 

3.3       Fabrication of InGaN/GaN Disk-in-Nanowire LEDs 

3.3.1    Fabrication of Nanowire LEDs on (001) Silicon    

            At first, as-grown nanowire LED heterostructures were dry etched to make 

600 µm x 600 µm device mesa. Then the ensemble of nanowires were planarized and 

passivated with parylene. This step of planarization is extremely critical while 
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processing the nanowire LEDs. The nanowires should have good uniformity in terms 

of their height, which was assured by optimizing substrate temperature and V/III flux 

ratio during growth. After its deposition on the nanowires, excess parylene was 

etched up to the average height of the ensemble of nanowires to expose most of the 

nanowire tips. The parylene etch calibration for a particular LED heterostructure was 

achieved by step-by-step etching along with SEM imaging of the etched 

heterostructure. Once the device was planarized, thin semitransparent Ni/Au 

(5nm/5nm) layer was deposited by e-beam evaporation on p-GaN. The contact was 

then annealed at 550oC for 2 min under 4:1 N2:O2 ambient to minimize the contact 

resistance. 250nm transparent indium tin oxide (ITO) current spreading layer was 

deposited by sputtering. The ITO layer was annealed at 500oC for 1 min under Ar 

environment to increase the transparency and reduce the resistance of the layer. The 

thickness of the ITO layer was chosen such a way as to avoid the formation of 

standing waves within the ITO layer for the emission wavelength. Finally, Al/Au 

(100nm/200nm) layer was deposited on n-type (001) silicon to form the n-contact of 

the device. Figures 3.3(a) and (b) show the schematic illustration of the fabricated 

LED on silicon depicting each layer and SEM image of the fabricated nanowire LED 

on silicon demonstrating the p-and n-contacts of the device, respectively. 

 

3.3.2    Fabrication of Flip-chip Nanowire LEDs on Metal Reflector 

            With LEDs on (001) silicon substrates, we can collect the light that is going 

upward and finally coming out of the top surface. Most of the emitted light from the 

disks that is traveling downward is absorbed by the silicon substrate and thus wasted.  
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Figure 3.5 (a) Schematic representation of nanowire LED heterostructure wafer 
bonded with a silicon carrier on the top before removing the silicon growth substrate, 
(b) schematic illustration of flip-chip nanowire LED on Ag reflector after removing 

the entire silicon growth substrate. 
 

Hence, LED heterostructure was transferred from the silicon substrate to a metal 

reflector so that the downward-propagating light is reflected by the mirror at the 

bottom and can be collected from the top. This should in turn increase the light output 
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for the same injection current, therefore increasing the device efficiency. As shown in 

Fig. 3.4, Ag metal has a reflectance of higher than 90% for the blue (λ=430 nm), 

green (λ=540 nm) and red (λ=600-650 nm) emission wavelengths. For flip-chip LED 

on a metal reflector, at first p-i-n LED heterostructure, as discussed in the previous 

section, was grown on (001) n-type silicon. 230 nm ITO was deposited by sputtering 

on the p-GaN side and annealed to form the p-contact. It will be discussed later in this 

chapter that ITO itself can make both n- and p-contacts on n- and p-GaN, 

respectively, and we used ITO directly on p-GaN without using Ni/Au layer. 

Because, though thin, Ni/Au (5nm/5nm) layer was found to absorb a significant 

fraction of the light output. Continuing with the flip-chip LED fabrication, after ITO 

deposition, 600 nm Ag mirror was deposited by sputtering. A metal diffusion barrier 

(W-Ti (100nm)) was then deposited by sputtering on top of Ag so that bonding metal 

cannot diffuse into Ag mirror and cause its deterioration especially at high injection 

currents. The bonding metal stack consisting of Ti(20nm) /Pt(30nm) /Au(400nm) was 

then deposited on the device heterostructure at the p-GaN side and also on a silicon 

carrier wafer simultaneously. The device was wafer bonded to the carrier at an 

elevated temperature of ~350oC and high pressure (400N). Figure 3.5(a) shows the 

schematic representation of nanowire LED heterostructure wafer bonded with a 

silicon carrier on the top before removing the silicon growth substrate. The whole 

structure was then flipped and the silicon growth substrate was removed in two steps. 

Most of the silicon substrate was removed by reactive ion etching (DRIE) using 

SF6+C4F8 and the remaining silicon layer was isotropically dry-etched by XeF2. The 

thin amorphous Si3N4 layer was removed by dry-etching. Using standard lithography  
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Figure 3.6 Room temperature current-voltage characteristics: (a) blue, (b) green, and 
(c) red-emitting nanowire LEDs with Ni/Au/ITO contact (device A), (d) red-emitting 

nanowire LEDs with only ITO contact (device B) on (001) silicon. Insets of Figs. 
3.6(a)-(c) show corresponding illuminated fabricated devices; (e) I-V characteristics 

of flip-chip red-emitting nanowire LED on Ag reflector at 300K. Inset shows the 
optical micrograph of the fabricated flip-chip red LED wafer bonded on a Si carrier. 
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and metallization processes, 230 nm ITO and 200 nm Au were deposited to make the 

n-contact of the device.  

 

3.4       Output Characteristics of Nanowire LEDs 

3.4.1    Current-Voltage Characteristics 

            Figures 3.6(a) and (b) depict room temperature current-voltage characteristics 

of the blue- and green-emitting nanowire LEDs on silicon under continuous wave 

(cw) operation. The light emission area is 3.6x10-3 cm-2 and the fill factor of the 

nanowires is estimated to be 28% from SEM images. The blue-emitting diodes show 

a turn on voltage of ~6.5V and a series resistance of 15Ω, whereas the green-emitting 

device has a turn-on voltage of 6.8V and a series resistance of ~18Ω. As mentioned 

earlier, deposition and annealing of ITO layer form Ohmic contact on both n- and p-

GaN. We compared the I-V characteristics of the red-emitting nanowire LEDs with 

and without Ni/Au contact. For some red-emitting LEDs, both Ni/Au and ITO were 

deposited on p-GaN region of the device heterostructure and annealed to form the p-

contact (device A). For others only ITO was sputtered and annealed (device B). From 

the I-V characteristics of red-emitting LEDs, shown in Figs. 3.6(c) and (d), it was 

found that the device with only ITO contact (device B) exhibits higher series 

resistance and turn-on voltage compared to those with Ni/Au + ITO contact (device 

A). Device A and B show turn-on voltages of ~6.8V and 7.6V, respectively and series 

resistances of 22Ω and 28Ω, respectively. Insets of Figs. 3.6 (a)-(c) show optical 

micrographs of the corresponding fabricated devices. I-V characteristics between 

nanowire LEDs on silicon and LEDs on metal mirrors were compared for the red 



68 
 

emission wavelength. Fig. 3.6(e) depicts the I-V characteristics of the flip-chip red-

emitting nanowire LED on Ag reflector at 300K. The diode shows poor I-V 

characteristics compared to those of red-LEDs on silicon. One possible reason behind 

the worse I-V performance of the flip-chip device is that we could not anneal the ITO 

contact on the n-GaN side at the optimum high temperature (~500oC) to reduce the  

      

    

Figure 3.7 (a) Room temperature electroluminescence (EL) of the LEDs on silicon 
under cw operation. L-I characteristics of (b) blue and (c) green-emitting LEDs on 

silicon at 300K under cw bias; (d) output characteristics of devices A and B on silicon 
and red-LEDs on Ag reflector under the same conditions. Solid lines are  

guide to the eye. 
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contact resistance. This is because of the fact that Au-Au bond was formed at ~350oC 

previously during the wafer bonding of the LED heterostructure with the silicon 

carrier (Fig. 3.5(a)). Hence, it cannot withstand the elevated annealing temperature. 

Further work needs to be done to overcome this annealing issue and to optimize the 

flip-chip device processing steps. 

 

   

 

Figure 3.8 Shift in electroluminescence (EL) peak at room temperature with 
increasing injection current density for (a) blue, (b) green and (c) red-emitting  
(device A) nanowire LEDs on (001) silicon. Solid lines are guide to the eye. 

 

3.4.2    Electroluminescence of Nanowire LEDs   

            Light-current (L-I) characteristics of the devices were measured at room 
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temperature. Figure 3.7(a) demonstrates the normalized electroluminescence (EL) of 

the nanowire LEDs on silicon with different emission wavelengths at 300K under cw 

operation. Blue and green LEDs have a half power linewidth of ~80 nm, where red 

LED has a half power linewidth of ~110 nm. Figures 3.7(b)-(d) depict the L-I 

 

 

(a)                                                                (b) 

Figure 3.9 (a) Optical image of the red-emitting nanowire LED on silicon under 5x 
optical microscope, (b) near field image of the same device with 100x optical 

microscope reveals that around 38% of the total device area is  
illuminated at a current bias of 20 A/cm2. 

 

characteristics of the devices under cw bias. The injection current density is 

calculated using the effective area (Aeff) of the nanowire LEDs, where Aeff is the total 

area of the device times the nanowire fill factor (FF). Since Ni/Au was absorbing a 

large fraction of the emitted light from the disks, light output from device A (red-

LED with Ni/Au/ITO contact) is much lower compared to that from device B (red-

LED with only ITO contact) for the same injection current as shown by Fig. 3.7(d). 

The light output from the flip-chip red-LED on the metal reflector with only ITO 

contact was also smaller compared to that from device B on silicon. As mentioned 
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earlier, since we could not anneal the ITO contact on the n-GaN side due to the 

temperature constraint of the wafer bonding, the transparency of the ITO layer was 

not optimized. A blueshift in EL peak wavelength with increasing injection current 

density was observed for all the devices on silicon (Figs. 3.8 (a)-(c)) due to the 

screening of the polarization fields in the InGaN/GaN DNWs by the injected carriers. 

Total blue shifts in EL peaks were measured to be ~4.5 nm, 7 nm and 14.5 nm for the 

blue, green and red-emitting LEDs on silicon, respectively which correspond to 

calculated polarization fields of 396kV/cm, 605kV/cm and 1260 kV/cm, respectively. 

These values are significantly smaller than those reported for equivalent planar green-

emitting InGaN quantum wells (~2 MV/cm) grown on c-plane sapphire substrate 

[104]. The field would be much higher in planar red-emitting quantum wells if such 

heterostructures could be grown reproducibly. The small polarization field in the 

disks is a result of the radial strain relaxation during their epitaxy.  

            Under 5x optical microscope, as illustrated by Fig. 3.9(a), EL of the red-

emitting nanowire LED seems uniform across the device. As shown in Fig. 3.9(b), 

near-field image of the electroluminescence from the same device under 100x optical 

microscope reveals that around 38% of the total device area (~125µm x 100µm) 

produces luminescence at a current bias of 20 A/cm2. The remaining area of the 

device appeared dark under the microscope. In the self-assembled growth of 

nanowires on silicon, not all nanowires are of the same height. During planarization, 

excess parylene is etched up to the average height of the nanowire forest so that the 

maximum number of nanowires get connected to the top p-metal contact. The 

nanowires that are longer than the average height might get shorted since metal  
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Figure 3.10 External quantum efficiency (EQE) vs injection current density under cw 
bias at 300K for (a) blue, (b) green and (c) red-emitting (devices A and B) parylene 
passivated nanowire LEDs on (001) silicon. Fig. 3.10(c) also depicts the EQE of the 
unoptimized flip-chip red-LED on the metal reflector. The EQE curves have been  

analyzed by ABC recombination model (solid line). 
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contact is in direct contact of their active region. The ones shorter than the average 

height are not even exposed above the parylene layer. In both cases, these nanowires 

cannot emit any light and appear dark when observed (Fig. 3.9(b)). With the same 

V/III flux ratio for a DNW sample with a particular emission color, In incorporation 

in the InGaN disks varies between nanowires to some extent due to the difference in 

the nanowire diameter. Hence, as seen in Fig. 3.9(b), some of the nanowires are 

emitting light at different wavelengths other than the desired red. To increase the light 

output from nanowire LEDs, we need high density of nanowires on silicon. If the 

areal density becomes too large such that the nanowires coalesce with each other and 

form defects at the coalesced boundary, then these defects can act as nonradiative 

recombination centers for carriers. Hence, the coalesced nanowires appear dark or 

have reduced light intensity. We will discuss this issue of nanowire coalescence with 

high areal density in Chapter IV. More disks in the active region will result in higher 

light output. However, increasing the number of disks will cause a non-uniform 

injection of holes amongst the disk layers due to the heterostructure band line-up. 

Thickness of GaN barriers and number of disks used in the heterostructure have been 

optimized by the I-V characteristics of the device. We have included six disk layers in 

our heterostructures based on our optimization. The thickness of the disks affects the 

electron-hole wavefunction overlap and hence the emitted light intensity. We have 

used the optimum value of ~2 nm. 

 

3.4.3    Efficiency of Nanowire LEDs  

            Figures 3.10(a)-(c) show the external quantum efficiency (EQE) of blue, green 
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and red-emitting nanowire LEDs on silicon at 300K under cw mode as a function of 

injection current density. Fig. 3.10(c) also depicts the EQE of the unoptimized flip-

chip red-LED on the metal reflector. As discussed in section 3.4.2, light output from 

the flip-chip device is lower than that from red-LED on silicon (device B) since 

unannealed ITO contact had poor transparency. Similar observations were made from 

the EQEs of these devices with the flip-chip device on reflector having smaller EQE 

values through the entire range of injection currents. EQE reaches its peak value at 

low injection current densities of ~18 A/cm2, 27 A/cm2 and 38A/cm2 for blue, green 

and red-emitting LEDs, respectively. The efficiency drops at an injection level of 

~120 A/cm2 were measured to be 10%, 13% and 16%, respectively compared to the 

peak efficiency of the corresponding device. These values of efficiency drop are 

smaller than those in planar InGaN QW LEDs [54, 55, 65, 105]. Nonradiative Auger 

recombination and carrier leakage from the active regions are two major reasons 

behind the drop of device efficiency at high injection currents. Compared to those in 

planar InGaN QWs, Auger recombination coefficients in InGaN/GaN DNWs are ~2-

3 orders of magnitude smaller [54]. Also, an optimized p-doped Al0.15Ga0.85N EBL 

was used just after the active region in all these LED heterostructures to reduce the 

carrier leakage from the disks. The EQE curves can be analyzed with the A-B-C 

recombination model [106, 107]. By using the relations: η = Bn2/(An+Bn2+Cn3) and 

J=qd(An+Bn2+Cn3), the values of A, B and C were estimated to be 2.88x108s-1, 

8.34x10−11cm3s−1, and 4.3x10−33cm6s−1, respectively for the red-LED on silicon. Here, 

n is the injected carrier density and A, B, and C are the non-radiative, radiative and 

Auger recombination coefficients, respectively. It is considered that the effective 
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recombination thickness for each disk is ~2 nm. It is, of course, assumed here that the 

maximum IQE of 52% for this device, as determined from the temperature dependent 

PL measurements on the parylene passivated red DNW samples described earlier, is 

valid under electrical injection. Other factors to note are that the IQE at 10K may not 

be 100%, and carrier injection and transport may be temperature dependent. Most 

notable here is the fact that the values of the Auger coefficient in the InGaN/GaN 

disks are consistently ~ 10-34-10-33 cm6 s−1, which agree well with calculated values 

[108, 109]. Similar values for Auger recombination coefficients were derived from 

the ABC model analysis for other LEDs with different emission colors. We did not 

measure the electroluminescence of the LEDs inside integrating spheres. No post-

processing was done to encapsulate the LEDs to improve light extraction. The 

extraction efficiency of these devices is not accurately known and hence, the external 

quantum efficiency (EQE) is reported in arbitrary units (a.u). Nevertheless, the 

measured EQEs (in a.u.) (Figs. 3.10) clearly show the current density at which the 

device efficiency becomes maximum and the subsequent reduction in efficiency at 

higher injection currents. 

 

3.5       Summary 

            In conclusion, we have fabricated self-assembled nanowire array blue, green 

and red-emitting LEDs on (001) silicon and characterized them. The diodes have 

demonstrated a turn-on voltage in the range of ~6-7.5 V and an overall series 

resistance in the range of ~17-28 Ω. Room temperature EQE reaches its peak at a low 

injection current density of ~ 18-38 A/cm2. The LEDs suffer from efficiency 
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reductions of ~ 10-15% at 120A/cm2 compared to peak efficiency of the 

corresponding device. These values of efficiency droop are much smaller than those 

reported in planar InGaN QW LEDs due to the low Auger coefficients in the DNWs 

and presence of an EBL in the nanowire LED heterostructures. From the analysis of 

the EQE curves by ABC recombination model, Auger coefficients in the InGaN/GaN 

disks were consistently derived to be ~ 10-34-10-33 cm6 s−1 for all emission colors. This 

agrees well with theoretical calculations. From the blueshift of the 

electroluminescence peak with increasing injection current density, polarization fields 

of 396kV/cm, 605kV/cm and 1260 kV/cm, were derived for the blue, green and red-

emitting LEDs on silicon, respectively. These values are significantly smaller than 

those derived for equivalent planar green-emitting InGaN quantum wells (~2 MV/cm) 

grown on c-plane sapphire substrate due to the radial strain relaxation of the nanowire 

heterostructure during epitaxy. In order to increase light output from the device, 

nanowire LEDs were transferred from the silicon substrate to Ag reflector. However, 

superior performance in light output, as desired from the flip-chip LEDs on metal 

mirror, could not be obtained due to the poor transparency and high resistivity of the 

unannealed ITO contact resulting from the temperature limitation of the existing Au-

Au bonding in the flip-chip LED heterostructure.           
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Chapter IV 

Effect of Coalescence on the Optical Properties of Self-Assembled 

Ga(In)N  Nanowires Grown on (001) Silicon 

 

4.1      Introduction 

            As discussed in previous chapters, InGaN disks in GaN nanowires (DNWs) 

have advantages over planar InGaN quantum wells (QWs) as the gain media for 

realizing visible LEDs and lasers. In particular, even at long emission wavelengths, 

polarization field is smaller in DNWs compared with planar QWs giving rise to their 

high radiative efficiency. Other advantages of DNWs include small peak shift with 

injection, reduced efficiency drop at high injections, etc. Moreover, as investigated by 

detailed structural characterizations by us and others [48-53, 85, 88, 110-113], 

InGaN/GaN DNWs grown on (001) silicon are relatively free of extended defects 

compared to planar QWs grown on lattice mismatched substrates. Heteroepitaxy of 

planar GaN on lattice mismatched substrates is performed due to the unavailability of 

large free-standing GaN substrates and the very high prices even for the smaller ones. 

The presence of a thin amorphous Si3N4 layer at the GaN/Si interface mostly removes 

the epitaxial requirement from the growth of wurtzite GaN nanowires on (001) Si. 

Due to their large surface-to-volume (SVR) ratio, strain relaxes in the radial direction 

during the epitaxy of InGaN disks in GaN nanowires even for high In compositions 



78 
 

leading to nearly defect-free InGaN/GaN interfaces. The few dislocation defects that 

generate at the GaN/Si boundary, usually bend toward nanowire sidewall if the 

nanowires are grown long enough, and therefore do not propagate into the active 

region. However, in the self-assembled growth of nanowires on silicon, the nanowire 

areal density plays a crucial role on the optical properties of nanowire LEDs and 

lasers. The extent of nanowire coalescence can be controlled by the density of the 

nanowires. The density of self-organized nanowires is difficult to control and depends 

on growth parameters such as V/III ratio and substrate temperature, etc. A high 

density of nanowires is usually desired to obtain high light output. However, for high 

nanowire density, where the nanowires are in close proximity, coalescence can take 

place between two or more misaligned nanowires or adjacent nanowires with 

increasing diameter during epitaxy [88-90, 110, 112-114]. Coalescence between 

adjacent nanowires can result in the formation of defects near the coalesced 

boundaries that can behave electronically as deep level traps in the structure, 

therefore having detrimental effect on the radiative efficiency of the devices. Whereas 

in-depth research is being done on the growth of Ga(In)N nanowires and device 

fabrication with these materials, the study of the role of nanowire coalescence on the 

defects needs to be further examined. This chapter discusses the nature of these 

defects at the coalesced nanowire boundaries through structural characterizations. To 

understand the effects of nanowire coalescence on the optical properties of DNWs, 

radiative efficiency of InGaN disks in GaN NWs with different areal density are 

studied. Transient capacitance measurements are performed on planar GaN and GaN 

nanowire n+p diodes to investigate the electron and hole trap characteristics in these 
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structures. Deep level traps in these structures are compared, and the dependence of 

trap density in nanowires on their areal density i.e. the degree of nanowire 

coalescence is presented and explained. Nanowire LEDs made with the similar set of 

areal densities as that of the nanowire diodes were characterized, and the effect of 

nanowire coalescence on the device performance was discussed. 

 

4.2       Optical and Structural Characterization of GaN Nanowires with 

            Different Areal Densities 

4.2.1    Transmission Electron Microscopy (TEM) Imaging of Nanowires 

            TEM imaging of GaN nanowires was done to examine the crystalline quality 

of individual and coalesced nanowires. All TEM imaging on the nanowires was done 

in Prof. Joanna M. Millunchick’s group. It is known that coalescence can occur 

between two or more slightly misaligned nanowires or two adjacent nanowires very 

near to each other if the diameter increases during epitaxy. Both kinds of coalescence 

will be enhanced if the nanowire areal density is large. It has been observed that this 

coalescence between adjacent nanowires can occur at an early stage of the growth up 

to several hundred nanometers from the Si substrate [81]. From SEM images it has 

been found that the majority of the nanowires grew normal to the Si substrate while 

few of them grew at some angle to the substrate. Coalescence of both parallel and 

tilted nanowires was observed. Beside the tilted nanowires, the coalescence of the 

parallel nanowires indicates that the removal of nanowire surface area by coalescence 

is energetically favored [81]. Hence, coalescence is likely to occur whenever the 

nanowires come in proximity to each other. GaN nanowire samples for TEM  
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Figure 4.1 High resolution Transmission electron microscope (HRTEM) image of 
coalescence-free single GaN nanowire collected from the ensemble of GaN 

nanowires with areal density of 2x1010cm-2, showing no defects in the crystal 
structure along the growth direction. Inset shows selective area diffraction 

(SAD) pattern of the nanowire. 
 

measurements were grown on (001) Si substrates with areal densities ranging from ~ 

2x1010cm-2 - 3x1011cm-2. Samples for high-resolution TEM analysis were prepared by 

dispersing individual and coalesced nanowires on carbon coated copper TEM grids. 

High resolution TEM image of coalescence-free single GaN nanowire collected from 

the ensemble of nanowires with areal density of 2x1010cm-2 is shown in Fig.4.1 and 

HRTEM images of coalesced nanowires from the nanowire forest on silicon with 

nanowire density 3x1011cm-2 are shown in Fig. 4.2. As nanowires coalesce, the 

crystallographic (c-axis) misorientation between impinging nanowires is 

accommodated by the formation of zipper-like arrays of dislocations and basal plane 

stacking faults near the boundary of the coalescing nanowires. These defects, once 

originated, mostly propagate all the way to the top. These threading dislocations and 

stacking faults at the coalesced boundary are known to give rise to dark lines and dark  
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Figure 4.2 High resolution Transmission electron microscope (HRTEM) images of 
coalesced GaN nanowires with areal density of ~3x1011cm-2: (a) an example of chain 
of stacking fault defects near the boundary of coalescing nanowires at low and high 
magnification (inset); (b) a pair of nanowires that coalesced and a high resolution 

image of the defects (inset) in the vicinity of the juncture. 
 
 
spots in the near-field image of planar LEDs. These defects can also electronically 

behave as non-radiative carrier trapping centers. It may then be assumed that as the 

degree of coalescing increases, with increasing nanowire density, the density of such 

non-radiative deep levels would increase. Consequently, the radiative efficiency of 

the nanowires and nanowire based devices such as LEDs and lasers would decrease. 
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Several other groups [88-90, 110, 112-114] beside us have investigated the 

coalescence of GaN nanowires. It has been observed that coalescence and resulting 

defects detrimentally affect optical output, which will be discussed in subsequent 

sections. In the self-organized scheme of nanowire growth, we can control the 

proximity of the nanowires by varying the nanowire areal density changing the Ga 

flux used for the nanowire growth. With smaller areal density, we can reduce the 

number of coalesced nanowires that is likely to lower the defect density in them 

resulting from the coalescence. 

 

4.2.2    Temperature Dependent Photoluminescence Measurements : Radiative 

            Efficiency 

            To investigate the effect of nanowire coalescence on the radiative efficiency 

i.e. internal quantum efficiency (IQE) of the ensemble of DNWs, we have performed 

temperature dependent photoluminescence (TDPL) measurements on as-grown red-

emitting (λ=610nm) In0.51Ga0.49N/GaN disks-in-nanowires (DNW) on (001) silicon 

with different areal densities in the range of ~ 2x1010 – 3.5x1011cm-2. For this study, 

300nm GaN was grown on (001) n-type silicon substrate followed by six ~2nm thick 

In0.51Ga0.49N disks separated by ~12 nm GaN barriers. GaN nanowires were grown on 

silicon at a substrate temperature of 800oC under nitrogen rich condition. During 

growth, Ga flux was kept at 1.62x10-7 Torr and nitrogen plasma was constant at 1 

sccm. To grow the optimized red-emitting In0.51Ga0.49N/GaN disks-in-nanowires, 

substrate temperature was lowered to 553oC and In-to-total-group III flux ratio of 

42% was used. Schematic illustration of the nanowire heterostructure, used in the  
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Figure 4.3 (a) Schematic representation (change color) of the red-emitting        
(λ=610 nm) In0.51Ga0.49N/GaN disks-in-nanowire heterostructure on (001) silicon. 

Photoluminesces of the as-grown red-emitting DNWs with areal densities of           
(b) 3.5x1011cm-2, (c) 5.2x1010cm-2 and (d) 2x1010cm-2, at room temperature and 10K. 
 

experiment is shown in Fig. 4.3(a). Radiative efficiency or internal quantum 

efficiency (IQE) of the DNW sample is derived as the ratio of the measured 

maximum PL intensities at 300K and 10K. It is assumed that non-radiative 

recombination centers are frozen at 10K and the quantum efficiency is approximately 

unity at this temperature. The radiative efficiency of the red-emitting as-grown InGaN 

disks in GaN nanowires increases from 8% to 43% with a reduction in nanowire areal 

density from 3.5x1011cm-2 to 2x1010 cm-2, respectively, as demonstrated in   Figs. 
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4.3(b)-(d). As mentioned in section 4.2.1, the degree of nanowire coalescence 

increases with areal density that leads to the formation of defects near the coalescing 

boundary. These defects can electronically behave as electron and hole deep level 

traps through which carriers can recombine non-radiatively, therefore reducing the 

radiative efficiency of DNW samples. 

 

4.3       Effect of Nanowire Coalescence on the Output of Nanowire LEDs 

4.3.1    Electroluminescence of LEDs with Different Nanowire Areal Densities 

            We investigated the effect of nanowire coalescence on the light output of 

disks-in-nanowires (DNWs) array red-emitting LEDs, grown with different areal 

densities. Red-emitting (λ=610nm) nanowire LED heterostructure having optimized 

InGaN/GaN disks in the active region was grown on (001) Si substrate as discussed in 

Chapter III and depicted in Fig. 4.4(a). 300 nm of Si-doped n-type GaN nanowire was 

first grown, followed by 6 pairs of In0.51Ga0.49N (2 nm)/ GaN (12 nm) barrier as the 

active region, 15 nm p-Al0.15Ga0.85N electron blocking layer (EBL), and 150 nm Mg-

doped p-type GaN. The electrically active doping levels of the p-GaN and n-GaN 

layers were estimated to be ~6x1017cm-3
 and 5x1018 cm-3 from C-V measurements. 

The devices were fabricated with passivation of the nanowires by parylene, which 

also served to planarize the structure for subsequent p-contact formation with 230 nm 

indium tin oxide (ITO). Aluminum was deposited on the n-type Si substrate to form 

the bottom electrode. Four devices were made with nanowire areal density equal to 

2x1010, 3x1010, 6x1010 and 2x1011 cm-2. The InGaN disk alloy composition and 

emission wavelength (610 nm) and all the other layers and their parameters were  
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Figure 4.4 (a) Schematic illustration of red-emitting (λ=610nm) nanowire LEDs on 
silicon; (b) room temperature current-voltage characteristics of the LED under 

continuous wave operation. Inset shows the electroluminescence  
data of the device. 

 

maintained constant in the four devices. Typical current-voltage characteristics of a 

nanowire LED measured with a cw bias is shown in Fig. 4.4(b). A series resistance of 

28Ω is measured for the diode. The inset to this figure shows the electroluminescence 

measured with CW bias, exhibiting a peak at 610 nm. The measured  
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Figure 4.5 Room temperature electroluminescence of nanowire LEDs with areal 

densities of 3x1010, 6x1010 and 2x1011 cm-2 at the same injection current density of 
40A/cm2, showing suppression of light output from the higher density devices. 

 
 
electroluminescence (EL) of nanowire LEDs with areal densities of 3x1010, 6x1010  

and 2x1011 cm-2 at 300K at the same injection current density of 40A/cm2 is shown in 

Fig. 4.5. It is evident from the EL data that light output from the highest density 

device is significantly smaller than that of the lowest density LEDs at the same 

injection level. Electrically injected carriers undergo more nonradiative 

recombination in the higher density nanowire LEDs in presence of a large number of 

defects near the coalesced interface both in the active region and also while they 

travel from contacts to active regions. Under 5x optical microscope, 

electroluminescence from the LED looks uniform across the device (Fig. 4.6(a)). 

Upon examining the near-field image of the electroluminescence (under 100x optical 

microscope), it is observed that only a certain percentage of the device area produce 

luminescence. Figures 4.6(a)-(d) show the same amount of device area (~125µm x 

100µm) for all four parylene-passivated red-LEDs, where we have compared the  
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(a) 

    
                                   (b)                                                            (c) 

 
(d) 

Figure 4.6 Near field image of EL from the red nanowire LEDs with 100x 
magnification and 5V bias having (a) 2x1011, (b) 6x1010, (c) 3x1010, and (d) 2x1010 

cm-2 nanowire areal density. Only 3%, 20%, 33% and 38% of the device area produce 
luminescence for (a), (b), (c) and (d), respectively. 

 

percentage of the device area that is lighting up. The injection current is not 

distributed evenly among all the nanowires since they have different individual series 

resistances due to the variation in their heights and diameters. As shown in           
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Figs. 4.6(a)-(d), the percentage of device area being illuminated varies from 3% in the 

device with 2x1011cm-2 nanowire density to 38% in the device with 2x1010cm-2 

nanowire density. As mentioned in section 4.2.2, a similar trend was observed in 

photoluminescence data in terms of the radiative efficiency obtained from red InGaN 

disk-in-nanowire samples without parylene passivation with similar nanowire density 

variation. The IQE varies from 8% in the sample with 3.5x1011 cm-2 nanowire density 

to 43% in the sample with 2x1010 cm-2 nanowire density. IQE is not measured from 

the percentage of device area or nanowires that is lighting up. Rather it is measured 

by taking the ratio of the maximum intensities of the ensemble of nanowires at 300K 

and 10K at a very high excitation level. Careful observation of Fig. 4.6 reveals that 

the intensity of the light-emitting nanowires is not the same. Nanowires might not 

emit at all, or they might have weak emission depending on the extent of defects 

generated at the coalesced boundary. To estimate the percentage of device area that is 

lighting up, we have assumed a threshold intensity below which a point is considered 

dark. On the other hand, IQE is calculated from the maximum intensity of the 

ensemble of nanowires, where all the light-emitting nanowires with varying 

intensities contribute. The purpose of these near-field images (Fig. 4.6) is to show the 

significant increment in the percentage of the device area that is lighting up due to the 

lower coalescence with reduced areal density. Of course, it will improve the IQE. So, 

they will follow the same incremental trend, but they might not very well be the 

same. Due to coalescence of nanowires with high areal density, defects are produced 

at the coalescing boundaries. We believe, therefore, that deep level traps originating 

from nanowire coalescence account for the large difference in IQE and eventually the  
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Figure 4.7 Measured external quantum efficiencies of the red LEDs with different 
nanowire areal densities under CW mode of operation. Solid curves represent the 

calculated internal quantum efficiency (IQE) of the LEDs based on  
the A-B-C recombination model. 

 

Table 4.1 Radiative   and   non-radiative   recombination   coefficients   derived   

from   red-LED   efficiency   measurements. 

Nanowire 
density (cm-2) 

A 

(s-1) 

B 

(cm3s-1) 

C                    
(cm6s-1) 

2x1010 2.92x108 6.38x10-11 3.48x10-33 

3x1010 2.98x108 6.32x10-11 3.5x10-33 

6x1010 4.85x108 4.75x10-11 4.7x10-33 

2x1011 8.46x108 2.85x10-11 4.91x10-33 

 

large variation in the percentage of device area being illuminated (3 to 38%). 

 

4.3.2    Efficiency Analysis of Nanowire LEDs with Different Areal Densities 

            The measured external quantum efficiency (EQE) of the four LEDs with 

varying nanowire densities is plotted in Fig. 4.7 as a function of injection current  



90 
 

   

 

Figure 4.8 45o tilted scanning electron microscopy (SEM) images of GaN n+p 
nanowire diodes grown on  (001) Si substrates with areal densities (a) 1011cm-2, 

(b) 7.4x1010cm-2, and (c) 3.6x1010cm-2. 
 

 
density. The injection current density is calculated using the effective area (Aeff) of 

the nanowire LEDs, where Aeff is the total area of the device times the nanowire fill 

factor (FF). The estimated fill factors for the nanowire LEDs, grown with areal 

densities equal to 2x1010, 3x1010, 6x1010 and 2x1011 cm-2, are 0.28, 0.32, 0.55, and 

0.75, respectively. The best results are obtained with the lowest nanowire density of 

2x1010cm-2. Two features are immediately noticeable. The highest efficiency is 

achieved in the device with the lowest nanowire density and the current density to 

reach peak efficiency in this device is also extremely low (~10A/cm2). The efficiency 

reduction in this device is ~15% at an injection level of 50 A/cm2, compared to the  
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measured maximum efficiency. The data of Fig. 4.7 (dots) have been analyzed with 

the A-B-C recombination model [106, 107] using the maximum IQEs obtained from 

temperature dependent PL (TDPL) measurements on the parylene passivated red-

emitting (λ=610nm) disk-in-nanowire samples with similar set of areal densities. The 

values of A, B, and C parameters obtained from the fits to the data (shown alongside 

with the solid curves) are listed in Table 4.1. Here A, B, and C are, the non-radiative, 

radiative and Auger recombination coefficients, respectively.  It is important to note 

that the values of C obtained from the analysis for all the samples are ~ 10-33cm6s-1, as 

predicted from theoretical calculations [108, 109]. 

 

4.4       Transient Capacitance Measurements 

            It is clear from the results presented above that the LED efficiency degrades 

with increasing nanowire density. We attribute this degradation to the defects 

generated near the coalescing boundary of nanowires with high areal density. In order 

to understand quantitatively how nanowire areal density affects the defects density 

resulting from the coalescence in the self-assembled growth of nanowires, we have 

performed additional measurements, and the results are described and discussed in the 

following. 

 

4.4.1    Growth and Fabrication of n+p GaN Nanowire Diodes 

            Deep level traps in GaN nanowires were characterized by transient 

capacitance measurements performed on n+p GaN nanowire diodes grown on (001) n- 

type Si. The epitaxy of GaN nanowires was initiated at 800°C under N-rich 
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conditions. Ga flux was varied from 7.5×10-8 to 1.74×10-7 Torr to obtain different 

areal densities of nanowires, and the N flow rate was held constant at 1 sccm. For all 

three samples, 600 nm of Si-doped n-GaN with a doping concentration of n 

~1.5x1019cm-3 is grown on an n-type Si substrate, followed by 400 nm of Mg-doped 

p-GaN with a doping level of p ~3x1017cm-3. The nanowire diodes were planarized 

and passivated with parylene. Using standard optical lithography and metallization 

techniques, Ni/Au (5 nm/5 nm) and 200 nm indium tin oxide (ITO) were deposited on 

p-GaN to form ohmic p-contact. Aluminum was deposited on the n-type Si substrate 

to form the bottom n-contact. The three diodes have nanowire densities of 1011cm-2 

(Device 1), 7.4x1010cm-2 (Device 2) and 3.6x1010cm-2 (Device 3). The n+p nanowire 

diodes were grown with similar set of areal densities as those of the fabricated 

nanowire LEDs to quantitatively investigate the deep level traps characteristics in 

GaN nanowire. These traps are subjected to nanowire coalescence and responsible for 

decrease in LED efficiency with higher areal densities. Figures 4.8(a)-(c) show the 

45o tilted scanning electron microscopy (SEM) images of the diodes 1, 2, and 3, 

respectively. Figure 4.9 shows the measured I-V characteristics of all three devices at 

room temperature along with the schematic representation of the n+p nanowire diode 

on silicon on the inset. Device 1, grown with the highest nanowire areal density 

(~1011cm-2), has a very high leakage current below the turn-on voltage. Device 3 with 

the lowest areal density (~3.6x1010cm-2) has the smallest leakage current due to the 

presence of low defect density in the structure. Additionally, device 3 exhibits a sharp 

increase in forward current beyond the turn-on voltage, which results in higher 

currents at low forward voltages compared to those in devices 1 and 2 with relatively  
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Figure 4.9 Measured room temperature I-V characteristics of the three 
nanowire n+p diodes 1, 2 and 3. Inset shows the schematic representation of 

the fabricated nanowire diode on (001) n-silicon.  
 

 

Figure 4.10 Measured 1/C2 vs V plots of the nanowire diodes at room temperature. 
Electrically active doping concentration on the p-side, NA is derived from the slope of 

the 1/C2 vs V curves to be ~ 3x1017cm-3 for all three diodes.  
 

higher areal densities. When many defect states are present in the depletion region of 
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the diode, significant recombination of carriers by trapping in the defect states can 

occur. This dramatically increases the voltage required to achieve a given level of 

injection current, therefore increasing the diode forward resistance. The turn-on 

voltages are ~6V, 5V, 4.5V for devices 1, 2, and 3 respectively with series resistances 

of ~70Ω, 52Ω and 18Ω, respectively. Figure 4.10 shows the room temperature 

capacitance-voltage (C-V) characteristics of the n+p GaN nanowire homojunctions. 

The dependence of junction capacitance (C) on the bias voltage (VA) in an n+p single-

sided junction is given by the following relation:  

                                                                                                                                                                                                                         
                                 1/C2 = [2/(qεoεsA

2NA)](Vbi-VA) ,                                          (4.1)  

where NA is the carrier concentration on the p-side, εs (=8.9) is the static dielectric 

constant of GaN, A is the effective area of the diode (A= FFx1.5x10-3cm2, where FF 

is the nanowire fill factor of the corresponding diode), Vbi is the built-in voltage  and 

VA is the applied bias voltage. Vbi is estimated from the intercept of the 1/C2 vs VA 

curves on the x-axis and the electrically active doping concentration on the p-side, NA 

is derived from the slope of the 1/C2 vs VA curves using Eq. (4.1) to be ~ 3x1017cm-3 

for all three diodes. The doping of the n+ region is estimated to be 1.5x1019cm-3 from 

Hall measurements on equivalently doped bulk samples.  

 

4.4.2    Electron and Hole Traps in GaN Nanowires 

            The nanowire diodes were mounted in a closed-loop He cryostat and 

capacitance transients due to deep level emission were measured by a Boonton 1 

MHz capacitance meter for the temperature range of 50K-475K [115]. Both minority 
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carrier (electron) and majority carrier (hole) traps have been characterized with 

suitable biasing sequences. Initially, the n+p nanowire diodes were reverse biased to     

 
Figure 4.11 Arrhenius plots (with measured data points) for electron traps (a) and 

hole traps (b) in p-GaN nanowires. The solid lines (red) without data points are 
Arrhenius plots of deep level traps identified in bulk GaN. 

 

-4V. In order to trace the majority carrier traps (i.e. hole traps) in the depletion region, 

0V pulses were applied for 20ms in 200ms cycles across all diodes. The transient data 

were analyzed to determine the trap activation energy and capture cross-section in 
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accordance with the equation: 

                                          1/� = ������(�) exp �−
��

��
�                                                (4.2) 

where τ is the trap emission time constant, vth is the thermal velocity, Nc(v) is the 

density of states in the conduction (valence) band, g is the degeneracy of the trap 

level, and ∆E and σ are the trap activation energy and capture cross-section, 

respectively. It is being assumed that ∆E and σ are temperature-independent. 

Considering the temperature dependence of υth, and Nc(v), Eq. (4.2) can be re-arranged 

as:                                            log(T2τ) = ∆E/kT + γ                                               (4.3)  

 
where γ  is the temperature-independent term. Log(T2τ) is plotted as a function of 

1000/T (Arrhenius plots), and the slopes of the resulting straight lines give the 

activation energies. The Arrhenius plots of the dominant electron and hole traps 

identified in the nanowire diodes are shown in Figs. 4.11(a) and (b), respectively by 

the dotted lines (black). The dominant hole traps, observed in all three nanowire 

diodes, have activation energies ∆E1~ 0.425eV and ∆E2~ 0.629eV. In bulk p-GaN, 

Gotz et al. [116] observed the deep levels at 0.21, 0.39 and 0.41eV and Nagai et al. 

[117] have reported the deep levels at ~0.41, 0.49 and 0.59eV for holes above the 

valence band. By varying the pulse duration, it has been confirmed that majority 

(minority) carrier pulses of 20 ms are long enough to completely fill the traps 

required for deep-level trap concentration measurements. To examine the electron 

traps in the system, the diodes 1, 2, and 3 were forward biased to 6.5, 5.3 and 4.2V, 

respectively. The dominant electron traps in samples 1 and 2 were characterized by 

the activation energies ∆E1~ 0.273eV, and ∆E2~ 0.611eV. Deep levels at energies ~ 
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0.26, 0.4, and 0.62eV [118] and at 0.264, 0.58, and 0.665eV [119] below the 

conduction band have been previously reported for electrons in GaN epitaxial film. 

The trap concentration NT was estimated from the change ∆C in the n+-p diode  

 
Table 4.2 Characteristics   of   deep   levels   in   GaN   nanowires   obtained   from   

transient   capacitance   measurements. 

                                         

 
capacitance during the trap filling cycle of the applied bias using the equation:  

                                                NT = 2(∆C/C)NA                                                       (4.4)  

where  C is the capacitance of the diode under quiescent reverse-biased condition, and 

NA is the doping concentration on the p side of the junction derived from the C-V 

measurement. Due to the doping asymmetry of the grown junctions, the deep levels in 

the lightly doped p-GaN layer are being probed by the capacitance measurements. 

The background doping in this layer was accurately determined by capacitance-

voltage measurements. Both minority carrier (electron) and majority carrier (hole) 

traps have been characterized with suitable biasing sequences. The activation energy, 

capture cross-section and density of the traps in devices 1-3 are listed in Table 4.2. It 
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is immediately apparent that the density of all the identified traps decreases with the 

decrease of nanowire areal density i.e. with the extent of nanowire coalescence in the 

sample. 

            Under high injection conditions (n = p >> ni), the non-radiative recombination 

coefficient A is related to trap density NT by the approximate relation: A ≡ σνthNT/2. 

In Table 4.3, we have listed the values of A (as A1) for the three LEDs with varying 

density of nanowires. This is done with the knowledge that the nanowire densities in 

the three nanowire GaN diodes for trap measurements are very similar to  

 
Table 4.3 Non-radiative   recombination   coefficients   derived   from   LED   
efficiency   measurements   and   trap   densities.   

 

 
the nanowire densities in the three LEDs. Also listed in Table 4.3 are the values of A 

for the three LEDs from Table 4.1, which were derived from the analysis of LED 

efficiency data (Fig. 4.7). Listed in the last column of Table 4.3 are the difference 

A2=(A-A1) for each device. It is seen that the value of A1 obtained from the trap 

concentrations decreases by a factor of 20. We believe, therefore, that the deep level 

traps originating from the nanowire coalescence account for the large difference in 

IQE and eventually the large variation in the percentage of the device area being 

illuminated  (3 to 38%). The value of A2, on the other hand, remains fairly constant  
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Figure 4.12 Measured external quantum efficiencies of the LEDs with different 
nanowire areal densities under CW mode of operation. Solid curves represent the 

calculated internal quantum efficiency (IQE) of the LEDs based on the A-B-C 
recombination model using non-radiative recombination coefficient A2 (Table 4.3) 

which does not consider recombination at deep levels. 
 
 

and decreases only by a factor of 1.8 as the nanowire density in the LEDs decrease. 

We believe that this component of the non-radiative recombination results from 

surface states and other growth related phenomena (such as incorporation of 

ubiquitous impurities that behave as non-radiative centers). Taking the values of A2 

for the three devices of Table 4.3 and the values of B and C for those devices from 

Table 4.1, we have calculated the variations of IQE with injection current density. 

These are depicted in Fig. 4.12 along with measured profiles. The improvement in 

efficiencies is a result of the absence of deep level traps which, in turn, implies the 

reduction or absence of nanowire coalescence. The calculated efficiencies also imply 

that a peak IQE of ~60% could be obtained in the nanowire LEDs for red emission if 
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the deep traps were absent in the nanowires. This value of IQE is better than that 

measured for green LEDs with InGaN/GaN quantum wells.  

 

4.4.3    Comparison of Deep Level Electron and Hole Traps in GaN Nanowires 

            and Bulk GaN 

            To compare the characteristics of the deep levels in GaN nanowires with those 

in bulk GaN, n+p bulk GaN diode structures were grown by MBE under optimized 

growth conditions. These diodes were grown on c-plane n-GaN-on-sapphire 

templates with a typical dislocation density of ~107 cm-2 and having similar thickness 

and doping concentration in n+ and p-GaN films as those in the nanowire diodes. 

Temperature dependent transient capacitance measurements were made on these 

diodes to investigate the electron and hole traps in the lightly doped p-GaN layer of 

the device. The background doping in this layer was 

 
Table 4.4 Characteristics   of   deep   levels   in   bulk GaN   obtained   from   

transient   capacitance   measurements. 

 

 
accurately determined by the capacitance-voltage measurements and hall 

measurements. The dominant electron traps have activation energies ∆E ~ 0.24, 

0.461, and 0.674 eV and the hole traps were characterized by ∆E ~ 0.387 and 0.595 



101 
 

eV. The Arrhenius plots of the dominant electron and hole traps identified in the bulk 

n+p GaN diodes are shown in Figs. 4.11(a) and (b), respectively by the solid lines 

(red). The findings, previously reported for electron and hole traps in bulk GaN, are 

consistent with our observations [116-119]. The activation energy, capture cross-

section and density of the traps in bulk GaN diode are listed in Table 4.4. Line and 

point defects form the core structures of threading dislocation defects in bulk GaN 

[120-123]. These structural defects which directly or indirectly lead to the dominant 

traps in the material are located near the edge and screw dislocation lines indicating 

that trap density can be minimized by reducing these dislocation defects [121]. It is 

imperative to note that the trap concentrations for carriers (for both electrons and 

holes) in the nanowire diode 3, which was grown with the lowest areal density to 

minimize the coalescence in the structure, are more than one order of magnitude 

smaller than those estimated in bulk GaN diode. It has already been discussed in 

Chapter II that nanowires grown on Si substrates have relatively low defect density 

compared to epitaxial GaN film grown on lattice mismatched sapphire or SiC 

substrates. This is because of the removal of epitaxial requirement at the GaN/Si 

interface by the growth of thin amorphous Si3N4 layer and radial strain relaxation 

during nanowire epitaxy due to their large surface to volume ratio. Moreover, 

nanowire areal density was reduced to impede the formation of deep level traps 

resulting from the coalescing nanowires. It may be noted that the activation energies 

of the electron and hole deep level traps in bulk GaN are very similar to those for the 

traps in the nanowire devices. In fact, for the hole traps, the Arrhenius plots are 

almost coincident [Fig. 4.11(b)]. The origin of the traps may, therefore, be very 
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similar, i.e., misfit dislocations and stacking faults due to coalescing of impinging 

nanowires in the nanowire GaN diodes.  

 

4.5       Summary 

            In conclusion, we have examined the effect of nanowire coalescence that 

occurs when the nanowire areal density is increased above a certain range. High- 

resolution transmission electron microscopy reveals that such coalescing leads to 

zipper-like arrays of threading dislocations and stacking faults near the coalescing 

nanowire boundaries. To investigate the effects of nanowire coalescence on the 

optical properties of disks-in-nanowires (DNWs), radiative efficiency of InGaN disks 

in GaN NWs with different areal densities have been measured. It is observed that 

radiative efficiency is the lowest for the highest density DNW sample. Red-emitting 

nanowire LEDs were fabricated with different areal densities, and the LEDs with the 

lowest optimum density demonstrated the highest peak efficiency. Near-field images 

of the electroluminescence of these LEDs reveal that only a small percentage of the 

device area (~3%) is lighting up when the areal density was increased to as high as 

2x1011cm-2. We have characterized deep level electron and hole traps in GaN 

nanowires and bulk GaN. Transient capacitance measurements were performed on 

planar GaN and GaN nanowire n+p diodes, grown with the similar set of areal 

densities as that of the nanowire LEDs, to investigate the trap characteristics in these 

structures. Deep level traps are compared which reveal that the activation energies for 

the electron and hole traps in them are similar. This observation leads to the fact that 

the origin of these trap levels in these structures are similar, including stacking faults, 
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dislocations, etc. The dependence of the trap density in nanowires on their areal 

density i.e. the degree of nanowire coalescence is studied. It is found that the density 

of these traps, which act as non-radiative recombination centers for carriers, increases 

steadily with increase of nanowire density. It is believed that the traps ultimately 

originate from the defects arising from nanowire coalescence and account for a 

relatively low IQE and a significant fraction of the nanowires not being illuminated 

with injection in LEDs. Injected electrons and holes in the LEDs with high nanowire 

density can recombine non-radiatively in these traps in the GaN region before 

reaching the InGaN disks. They can also do that in the InGaN active region after 

reaching there and therefore reducing the external quantum efficiency of the device. 

The absence of the traps would result in a peak IQE of ~60% in the red nanowire 

LEDs. Therefore, in the self-assembled growth of nanowires areal density plays a 

significant role on the device performance. An optimized areal density of 2x1010 cm-2 

was determined experimentally at which red nanowire LEDs have demonstrated the 

best performance in terms of peak efficiency. Similar nanowire density was chosen 

when the nanowire LEDs with optimized performances were presented and 

characterized in chapter III.  It is important to note that too low an areal density will 

result in a significantly reduced light output from the devices. This study on 

optimized areal density for reduced nanowire coalescence will be beneficial for the 

growth of nanowire laser heterostructure on silicon in Chapter VI.  
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Chapter V 

Phosphor-Free Monolithic InGaN/GaN Disk-in-Nanowire Tunable 

Light Emitting Diodes on (001) Silicon 

 

5.1       Introduction 

            White light emitting diodes (LEDs) are systematically replacing incandescent 

bulbs and fluorescent lighting for a host of outdoor and indoor lighting applications 

due to the advantages of low power consumption and long lifetime [2, 124]. 

Monolithic planar white LEDs consisting of InGaN/GaN quantum wells, based on 

both direct electrical injection [8, 125-128] as well as optical pumping in a converter 

scheme [129], have been reported. Since long wavelength LEDs (λ > 600nm) 

incorporating III-nitride quantum well (QW) active regions with high radiative 

efficiency are still in a developmental stage, the most common approach for realizing 

a solid state white LED is to have a blue-emitting LED optically pump a yellow 

phosphor [130, 131], or have an ultraviolet (UV) LED excite rare earth doped blue-, 

green-, and red-emitting phosphors [131]. However, phosphor-converted white LEDs 

have distinct disadvantages. The conversion is inevitably accompanied by losses due 

to Stokes shift and non-radiative internal losses [132]. Backscattering of both pump 

and converted light by the phosphor gives rise to additional optical loss. Heating-

related effects and the long-term reliability of the phosphors are additional 
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detrimental factors [133-136]. As discussed earlier, InGaN/GaN disks-in-nanowires 

(DNWs) have advantages over planar InGaN quantum wells (QWs) as the active 

medium in visible LEDs and lasers. Red emission with high radiative efficiency is 

still lacking in InGaN QWs. This is a major bottleneck for the realization of a direct 

injection or wavelength conversion device for emitting warm (soft) white light with 

low correlated color temperatures. A white nanowire LED, based on direct electrical 

injection, having optimized blue, green and red-emitting InGaN disks-in-nanowires in 

the heterostructure or a monolithic semiconductor-based wavelength converter white 

LED are, therefore, desirable alternatives. Additionally, InGaN/GaN self-organized 

quantum dots (QDs), grown in the Stranski-Krastanow mode by strain relaxation 

[137], have significantly smaller piezoelectric polarization field and associated 

quantum-confined Stark effect (QCSE) than those in comparable planar QWs [107, 

138]. Therefore, radiative carrier lifetimes in the dots are 10-100 times smaller than 

those in the wells [97, 107, 139]. Moreover, the quasi-three dimensional confinement 

of carriers in the InGaN/GaN QDs can reduce the rate of non-radiative recombination 

of carriers at dislocations and related defects. We have demonstrated red-emitting (λ 

= 630nm) In0.4Ga0.6N/GaN self-organized quantum dot lasers, including a detailed 

characterization of their DC and small- and large-signal modulation properties [139-

141]. We have also reported the characteristics of green-emitting (λ = 524nm) QD 

light emitting diodes [107] and lasers [37].  

            This chapter describes all-nitride electrically injected tunable InGaN/GaN 

disk-in-nanowire white light emitting diodes incorporating blue-, green- and red-

emitting InGaN disks in the active region. The shift in correlated color temperature of 
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white emission with the variation of injection current density is investigated. 

Tunability of chromaticity coordinates and correlated color temperature (CCT) of the 

white emission from the nanowire LEDs have been studied by varying the number of 

blue and red-emitting InGaN disks and the peak emission wavelengths of blue-, 

green- and red-emitting InGaN disks. The chapter also describes the growth and 

characteristics of phosphor-free self-organized InGaN/GaN quantum dot wavelength 

converter white LEDs on c-plane GaN-on-sapphire templates and compared the white 

emission from them with that from the nanowire white LEDs. Blue-emitting pump 

quantum dots, in which carriers are injected electrically, are used to optically excite 

red-emitting converter dots to make the appearance of a white light. Tunability of 

color temperatures of the white emission from these wavelength converter LEDs is 

examined by changing the number and emission wavelengths of pump/converter dot 

layers. Stability of color temperatures with injection currents into the pump dots is 

also discussed. 

  

5.2       Different Schemes for White Light Emitting Diodes (LEDs) 

            White LED can be made in two ways. The first approach involves monolithic 

integration of different color-emitting active regions in the device heterostructure 

based on direct electrical injection. The other method is by wavelength conversion 

where a short wavelength light, emitted from a region in which carriers are injected 

electrically, optically excites a longer wavelength-emitting layer to create white 

emission. Phosphor-free monolithic planar white LEDs consisting of different color-

emitting InGaN/GaN quantum wells, based on direct electrical injection, have been 
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reported in the literature. Damilano et al. [125] have demonstrated white LEDs based 

on InxGa1−xN (x = 0.15–0.2)/GaN multiple-quantum wells (MQWs) on sapphire 

substrates, where wavelength emission from the wells can be tuned from blue to 

orange by increasing the QW thickness. White emission from the LEDs has been 

obtained by combining several QWs of various thicknesses. In this scheme, the color 

coordinates for the white emission in the (blue + yellow) dual color LEDs are x = 

0.29, y = 0.31, which correspond to a color temperature of 8000 K. Yamada et al. 

[126] have shown two types of white LEDs composed of InGaN multi-quantum wells 

in the active region. One type of white LEDs emits light of two colors (blue and 

yellow) from the MQW active region, while the other type emits light of three colors 

(blue, green and red). The first type of LEDs has a white emission with CCT of 7600 

K, whereas the second type has a lower CCT of 5060 K due to the presence of the red 

emission. Huang et al. [8] have reported phosphor-free white LEDs with blue and 

yellow-emitting InGaN/GaN multi-QWs with a color temperature of 5600K for the 

white emission. Park et al. [127] have demonstrated white LEDs fabricated with 

laterally distributed blue and green InGaN/GaN MQWs grown by a selective area 

growth method. Parallel carrier injection into both the MQWs regions provided the 

stability of the white emission with injection currents. Lee et al. [128] have shown 

monolithic white LEDs by incorporating five blue-emitting InGaN/GaN QWs and a 

single InGaN/GaN QW with In-phase separated green/amber emissions in the active 

region. Electrically injected white nanowire LEDs having different color-emitting 

InGaN disks/dots within GaN barriers with correlated color temperatures (CCT) of 

5500-6500K [55] and ~5000K [62] for white emission have been reported by us and 
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other groups. Tunability of white emission of such nanowire white LEDs by varying 

the number and the peak emission wavelengths of the InGaN disks was absent in the 

literature and is presented in this chapter. Planar InGaN/GaN QWs white LEDs with 

wavelength conversion technique is also investigated. Damilano et al. [129] 

demonstrated a blue-emitting LED grown on top of InGaN/GaN multiple QWs acting 

as a light converter from blue to green-yellow wavelength. The blue light, produced 

by the electrical injection of carriers in the wells, optically pumped the green-yellow 

emitting QWs. The white emission is characterized with a CCT of 5683K. Though 

red-emitting QWs were incorporated in the active region of some of the InGaN QW 

white LEDs mentioned above, growth of planar red QWs with high radiative 

efficiency is still in a development stage which affects the efficiency of these white 

LEDs in an adverse way. Besides, due to the substantial blue shift in peak emission 

because of the large strain induced polarization field in the planar InGaN QWs 

especially with high indium content, significant change in CCT with injection current 

is usually observed, both in direct electrical injection and wavelength conversion 

schemes. To overcome these issues with wavelength converter QW white LEDs, the 

most common approach is to use short wavelength nitride LED to optically pump 

different color phosphors. Sheu et al. [131] have reported phosphor-converted white 

LEDs fabricated by precoating blue/green/red phosphors on near-UV LEDs. The 

color temperature of the white emission was around 5900K. Carriers are electrically 

injected into UV LED, which then optically excites blue-green-red phosphors to 

create white emission. No changes in color temperature were observed with the 

increase in injection currents. Phosphor-converted white light emitters with blue 
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LEDs optically pumping yellow phosphors have also been reported [130, 131]. 

However, phosphor-converted white LEDs have some disadvantages, which will be 

discussed in the subsequent section. 

 

5.3      Problems with Phosphor-Converted White LEDs   

            In phosphor-converted white LEDs, heat is generated by the phosphor layer 

due to Stokes shift and light absorption, which can increase the chip junction 

temperature as well as the temperature of the phosphor itself [8]. It has been shown 

that depending on CCTs of white emission, ~25% to 45% of radiant power emitting 

from the LED is converted into heat by phosphor. Heat produced by the phosphor 

layer needs to be dissipated efficiently to improve the lifetime and efficiency of the 

device. Heat generated in the phosphor layer can lead to an order of magnitude 

reduction in the phosphor emission due to the thermal quenching effect [127], along 

with other detrimental effects including lifetime reduction [128], emission 

wavelength shift [129], silicone yellowing [131] and silicone carbonization [132]. On 

the whole, high temperature causes rapid degradation of phosphors and lowers the 

overall efficiency of the LEDs. It is also found that high humidity can result in a 

significant reduction in the conversion efficiency of phosphors [142].  

5.4      Growth of All-Nitride Monolithic InGaN/GaN Disk-in-Nanowire White 

           LED Heterostructures on (001) Silicon 

           To grow phosphor-free monolithic InGaN/GaN disk-in-nanowire (DNW) white 

LEDs, we incorporated blue-, green-, and red-emitting InGaN disks in the same 

heterostructures. In order to investigate the tunability of white emission, we have 
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grown four white LED heterostructures-- A, B, C and D. In LED A, the blue, green 

and red-emitting InGaN disks have emission wavelengths of 430nm, 525nm, and 

610nm, respectively, whereas they are 460nm, 550nm, and 650nm, respectively for 

LEDs B to D. Before incorporating the InGaN disks in the LED heterostructure, their 

radiative efficiency have been optimized by varying the growth parameters in the 

MBE system (such as substrate temperature and In-to-total group III flux ratio, etc.) 

using temperature dependent photoluminescence measurements (TDPL). The 

radiative efficiency of the InGaN disks was further improved by 10-12% upon 

parylene surface passivation as mentioned in Chapter II. A detailed description on 

how the radiative efficiency of the InGaN nanowires have been improved by growth 

optimization and surface passivation can be found in the same chapter. After growth 

optimization inside MBE and parylene passivation of surface states on the nanowires, 

the optimized radiative efficiencies of the blue, green and red-emitting InGaN disks 

were measured to be ~ 56%, 54% and 52%, respectively. The normalized room 

temperature photoluminescence (PL) intensities of the optimized blue, green and red-

emitting InGaN disks, which were used in LED A, have been depicted in Fig. 5.1(a) 

and those from the InGaN disks used in the rest of the LEDs (B, C, D) have been 

shown in Fig. 5.1(b). From energy-dispersive X-ray (EDX) measurements, indium 

compositions in the blue (λ=430nm), green (λ=525nm) and red-emitting (λ=610nm) 

InGaN disks, used in LED A, were estimated to be ~22%, 38% and 51%, 

respectively. In LEDs B, C and D they were ~28%, 42%, and 55% for the blue 

(λ=460nm), green (λ=550nm) and red-emitting (λ=650nm) InGaN disks,  

respectively. Monolithic InGaN/GaN disk-in-nanowire LED heterostructures, as 
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Figure 5.1 (a) Normalized room temperature photoluminescence (PL) intensities of 

the optimized blue, green and red-emitting InGaN disks those have been used in LED 
A, (b) Normalized PL intensities of the optimized blue, green and red-emitting InGaN 

disks at 300K those have been used in LEDs B, C and D. 
 

 

shown schematically in Fig. 5.2, were grown on (001) n-type silicon substrates by 

plasma assisted molecular beam epitaxy (PA-MBE) system equipped with standard 

Ga, In, Al, Mg and Si effusion cells and a UNI-bulb nitrogen plasma source. The 

nanowire heterostructures have an areal density of ~2x1010 cm-2 and average diameter 

of ~45 nm. The growth temperatures were monitored by an infrared pyrometer, 
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calibrated by (1x1) to (7x7) reflection high energy electron diffraction (RHEED) 

pattern transition on silicon. An n-doped (5x1018cm-3) 300 nm GaN region was first 

grown at a substrate temperature of 800oC on (001) n-silicon. Then three groups of 

InGaN disks (~2 nm)/GaN barriers (~12 nm), each having four InGaN disks, were 

grown for LEDs A and B. To study the tunability of white emission further, the 

number of blue and red-emitting InGaN disks was varied in LEDs C and D, which 

will be discussed later. At first, optimized red-emitting InGaN disks were grown at a 

substrate temperature of ~540-555oC, followed by the growth of green, and blue-

emitting InGaN disks at substrate temperatures of ~570-580oC and ~610-620oC, 

respectively. Indium-to-total group III flux ratio was varied to obtain different 

emission wavelengths. Next, 15 nm p-doped Al0.15Ga0.85N electron blocking layer 

(EBL) was grown to reduce the leakage of electrons from the active region. Finally, 

150 nm thick p-GaN region (p~ 7x1017 cm-3) was grown at a substrate temperature of 

700oC. The Mg flux was increased during the growth of the final 20 nm of p+GaN to 

achieve a better ohmic contact. 

 

5.5       Fabrication of Nanowire White LEDs 

            Four LEDs (A, B, C and D) were fabricated varying the number of blue- and 

red-emitting InGaN disks and the emission wavelengths of the disks to study the 

tunability of white emission. At first, as-grown nanowire device heterostructures were 

dry-etched by reactive ion etching (RIE) to have mesa shapes with dimensions of 

600µm x 600µm. Then the nanowires were planarized and passivated with parylene, 

which was deposited by thermal evaporation at room temperature. Using standard  
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Figure 5.2 Schematic representation of InGaN/GaN disk-in-nanowire white LED 
heterostructures grown on (001) silicon. The number of blue- and red-emitting InGaN 

disks and the emission wavelengths of the disks were varied to investigate the 
tunability of white emission. 

 

photolithography and metallization techniques, transparent indium tin oxide (ITO) 

current spreading layer was deposited on top of p-GaN and the ITO layer was 

annealed at 500oC for 1 min under Ar environment to form the p-contact. Finally, 

Al/Au (100nm/150nm) was deposited by e-beam evaporation on top of the n-silicon 

region to form the n-contact of the device. Carriers are electrically injected from the 

p- and n-contacts of the device that recombine in the InGaN/GaN disks-in-nanowire 

active regions emitting blue, green and red lights- together they create the appearance 

of white emission. Flip-chip processing, as mentioned in Chapter III, was not tried in 

the fabrication of these white nanowire LEDs. If the flip-chip processing can be 

optimized and used in the fabrication of these devices, more light is likely to come 

out which should increase the overall efficiency of the white LEDs. 
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5.6       Output Characteristics of Nanowire White LEDs 

5.6.1    Current-Voltage Characteristics and Electroluminescence of White 

            LEDs 

            Figure 5.3(a) shows room temperature current-voltage characteristics of the 

fabricated nanowire LEDs. The diodes have a series resistance of ~33Ω and a turn on  

 

 

           

Figure 5.3 (a) Room temperature current-voltage characteristics of the fabricated 
LEDs (A to D), (b) optical micrograph of LED B at  

an injection current density of 60A/cm2. 
 
 

voltage of ~6-7 V. Figure 5.3(b) depicts an optical micrograph of LED B at injection 

current density of 60A/cm2. Room temperature electroluminescence (EL) of the  
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Figure 5.4 Room temperature electroluminescence (EL) intensities of (a) LED A and 

(b) LED C as a function of injection current density. 
 
 

LEDs A and C as a function of injection current density are shown in Figs. 5.4(a) and 

5.4(b), respectively. In Fig. 5.4(a), for LED A, three peaks corresponding to blue 

(λ=430nm), green (λ=525nm) and red-emitting (λ=610nm) InGaN disks are visible, 

whereas in Fig. 5.4(b), for LED C, these three peaks were observed at λ=460nm, 

550nm and 650nm, respectively. With increase in injection current density from 

40A/cm2 to 100A/cm2, a small blueshift of EL peak was observed for all emission 
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wavelengths. This results from the screening of the polarization fields in the InGaN 

disks. In LED A, these blueshifts were ~4.5, 7 and 13.2 nm, for blue, green and red 

  

 

 

Figure 5.5 Room temperature light-current characteristics and external quantum 
efficiencies (EQE) of (a) LED A and (b) LED C as  

a function of injection current density. 
 
 

EL peaks, respectively which correspond to calculated polarization fields of 396  
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Figure 5.6  XY Chromaticity coordinates of white light emission from (a) LED A, 
and (b) LED C with variation of injection current density  

from 30A/cm2 to 110 A/cm2. 
 

 
kV/cm, 588 kV/cm and 1050 kV/cm, respectively. Blueshifts for blue, green and red 

EL peaks were measured to be ~5, 7.5 and 15 nm, respectively in LED C. These 

correspond to calculated polarization fields of 427 kV/cm, 610 kV/cm and 1260 

kV/cm, respectively. All these blueshifts in EL peaks with increasing injection 

current density are significantly smaller than those reported for comparable planar  
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Figure 5.7  Variation of correlated color temperatures of the white emission for 
different white nanowire LEDs as a function of injection 

current density from 30A/cm2 to 110 A/cm2. 

 
InGaN quantum wells [104, 143]. The smaller polarization field in the InGaN disks in 

GaN nanowires is a consequence of their large surface-to-volume ratio and radial 

strain relaxation during epitaxy. The measured light-current (L-I) characteristics and 

the corresponding external quantum efficiency (EQE) of LEDs A and C are depicted 

in Fig. 5.5(a) and 5.5(b), respectively. The efficiency reaches its peak value at 

injection current densities of 47A/cm2 and 55A/cm2 in devices A and C, respectively. 

A reduction of 14% in efficiency at an injection level of 100A/cm2 was observed in 

LED A, where it was 22% at 100A/cm2 for LED C. 

 

5.6.2    Correlated Color Temperatures (CCT) of White Emission 

            Electroluminescence (EL) intensities of the white nanowire LEDs were 

recorded with Ocean Optics USB2000+ optical spectrum analyzer (with an optical  
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Table 5.1 Chromaticity coordinates and color temperatures of white emission for 

LEDs A and B, where emission wavelengths of InGaN disks were varied. 

 

 

 

 

               *Each LED has 4 blue, 4 green and 4 red-emitting InGaN disks. 
 
 

 

Figure 5.8 Variation of chromaticity coordinates of the white emission changing the 
emission wavelengths of the blue, green and red-emitting InGaN disks in LEDs A and 

B. The numbers of blue, green and red-emitting InGaN disks  
were kept same in both the devices.  

 

resolution of 0.3 nm) to derive the Commission Internationale de I’Eclairage (CIE) 

chromaticity coordinates and correlated color temperatures (CCT) of white light 

emission. As shown in Figs. 5.6(a) and 5.6(b), respectively, with increase in injection 

current density from 30A/cm2 to 110A/cm2 the CCT of device A changes by 220K, 

from 6050K to 6275K, and the CCT of device C changes by 370K, from 4100K to  

  

*LEDs 

Blue 

disks 

λ (nm)  

Green 

disks λ 

(nm)  

Red 

disks λ 

(nm)  

Chromaticity 

coordinates 

    X             Y  

 

CCT (K) 

A 430 525 610 0.31 0.31 6130 

B 460 550 650 0.35 0.37 4940 
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Table 5.2 Chromaticity coordinates and color temperatures of white emission for 

LEDs B, C and D where number of InGaN disks were varied. 

   *Blue, green and red-emitting InGaN disks have emission wavelengths of 460nm, 

     550nm and 650nm, respectively. 

 
 

 

Figure 5.9  Variation of chromaticity coordinates of the white emission changing the 
number of blue and red-emitting InGaN disks in LEDs B, C and D. Emission 

wavelengths of the blue, green and red-emitting InGaN disks  
were kept same in all the devices.  

 

4470K. These results indicate better temperature stability of white light emission with 

injection current than that reported for planar InGaN/GaN multi-quantum well 

wavelength converter white LEDs [129]. Small blueshifts in the EL peak emissions 

 
*LEDs 

Number 
of blue 
disks 

  

Number 
of green 

disks  

Number 
of red 
disks  

Chromaticity 
coordinates 

     X                Y  

 
CCT (K) 

B 4 4 4 0.35 0.37 4940 

C 3 4 5 0.4 0.39 4210 

D 5 4 3 0.32 0.33 5760 
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from the blue, green and red-emitting InGaN disks in the LED heterostructure with 

increasing injection current contribute to the small increase in color temperature. The 

dependence of the correlated color temperature (CCT) on injection current density for  

devices A-D is illustrated in Fig. 5.7. 

 

5.6.3    Tunability of White Emission 

            In our study, we have used the number of blue and red-emitting InGaN disks 

and the peak emission wavelengths of blue-, green and red-emitting InGaN disks, as 

tuning parameters for the chromaticity coordinates and correlated color temperature 

(CCT) of the emitted white light. We first varied the emission wavelengths of the 

InGaN disks in LEDs A and B to tune the CCT of white light. The chromaticity 

coordinates and CCT for devices A and B at an injection current density of 50A/cm2 

are listed in Table 5.1 and illustrated in Fig. 5.8. By increasing the emission 

wavelengths of the InGaN disks from LED A (blue (λ=430nm), green (λ=525nm), red 

(λ=610nm)) to LED B (blue (λ=460nm), green (λ=550nm), red (λ=650nm)), the CCT 

for white light emission decreases by 1190K, with values of 6130K and 4940K for 

devices A and B, respectively, at a current density of 50 A/cm2. To observe the 

dependence of tunability of white emission on the combination of InGaN disks, we 

then varied the number of blue and red-emitting InGaN disks in the structures 

keeping the same emission wavelengths as those in LED B. Where LED B has four 

blue, four green and four red-emitting disks, device C and D have the same number of 

green disks as that of device B, but LED C has three blue and five red, and LED D 

has five blue and three red disks. The chromaticity coordinates and CCT for devices 
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B-D at an injection current density of 50A/cm2 are listed in Table 5.2 and illustrated 

in Fig. 5.9. By increasing the number of red disks (five) over blue ones (three) in 

device C, keeping the same emission wavelengths as those of LED B, the CCT has 

been reduced by 730K to a value of 4210K at a current density of 50A/cm2. By 

increasing the number of blue disks (five) over red ones (three) in device D, the CCT 

has been increased by 820K to a value of 5760K at a current density of 50A/cm2. By 

increasing the emission wavelengths of the InGaN disks further in the nanowire white 

LEDs, CCT of less than 4210K can be achieved. Correlated color temperatures (CCT) 

of white emission with values of 5500-6500K [55] and ~5000K [62] for electrically 

injected InGaN disks/dots in GaN nanowire LEDs have been reported by us and other 

groups before. In this work, for the first time, we have demonstrated the tunability of 

white emission of such nanowire white LEDs by varying the number of blue- and red-

emitting InGaN disks and the peak emission wavelengths of blue-, green- and red-

emitting InGaN disks. The desirable values of CCT for high efficiency cool white and 

warm (soft) white light are ~ 4500K and ~ 3000K, respectively. These values of CCT 

would be difficult to achieve with planar all InGaN quantum well electrically injected 

or wavelength converter white LEDs. Because, long wavelength (λ > 600nm) 

emission with high radiative efficiency is difficult to achieve with such planar 

InGaN/GaN quantum wells due to increasing material inhomogeneities [56, 57] and a 

strong polarization field [58]. Due to the low radiative efficiency of the red-emitting 

planar InGaN quantum wells, red light component of the white light remains low in 

the QW based devices—increasing the CCT of white emission from LEDs. 

Therefore, electrically injected monolithic phosphor-free InGaN/GaN disk-in-
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nanowire white LEDs may play a significant role in the realization of tunable white 

light sources. 

 

5.7       Phosphor-Free Monolithic InGaN/GaN Quantum Dot (QD) Wavelength 

            Converter White LEDs 

5.7.1    Growth and Fabrication of QD White LED Heterostructures  

            Phosphor-free InGaN/GaN QD wavelength converter white LEDs, as shown 

schematically in Fig. 5.10(a), were grown on c-plane GaN-on-sapphire templates in a 

Veeco Gen 930 plasma assisted molecular beam epitaxy (PA-MBE) system. An n-

doped (5x1018cm-3) 300nm GaN buffer layer was first grown at a substrate 

temperature of 720oC on c-plane n-GaN-on-sapphire templates for all samples. 

Multiple layers of self-organized InGaN/GaN QDs with 12nm GaN barrier layers 

were grown as the long-wavelength converter over the n-GaN buffer layer under 

nitrogen rich condition at 541-550oC. This was followed by the growth of 150nm n-

GaN layer (n~7.5x1018cm-3) at 720oC, multiple InGaN/GaN QD layers with 16nm 

GaN barrier layers for blue emission grown at T=585-592oC, 15nm p-Al0.15Ga0.85N 

electron blocking layer (EBL) and finally a 120nm p-GaN (p~7x1017cm-3) layer 

grown at 680oC. The Mg flux was increased during the growth of the final 20 nm of 

p+GaN to achieve a better ohmic contact. The number of exciting and converter dot 

layers was carefully optimized to obtain true white emission. Also, the InGaN 

thickness to form the dots, the GaN barrier thickness and an interruption period under 

nitrogen flux were all optimized to maximize the dot radiative efficiency. Five device 

heterostructures were grown to investigate the tunability of white light emission from 
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the LEDs by varying the number of exciting and converter InxGa1-xN quantum dots  

                                         

 

 

Figure 5.10  (a) Schematic representation of InGaN/GaN quantum dot wavelength 
converter white LED heterostructure; atomic force microscopy images of self-
organized (b) In0.24Ga0.76N/GaN dots with peak emission at λ = 450 nm and (c) 

In0.37Ga0.63N/GaN dots with peak emission at λ = 600 nm.   
 
 

and their alloy composition. Devices A΄-D΄ have three excitation dot layers and five 

converter dot layers. In devices A΄, B΄ and C΄, the exciting quantum dot indium 
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content x was kept fixed at 0.24 for blue emission at λ = 450nm and the converter dot  

 

 

 

Figure 5.11  Room temperature photoluminescence of (a) blue-emitting pump dots 
and (b) red-emitting converter dots incorporated in the QD wavelength  

converter white LED heterostructure. 
 
 

Emission wavelengths are 580, 600 and 615nm, respectively (x = 0.35, 0.37, and 

0.38). In device D΄, the exciting and converter dot emissions are at 432nm (x = 0.22) 
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and 580nm, respectively. Device E΄ contains four excitation dot layers (λ = 432nm)  

                        

 

 
Figure 5.12 (a) Measured current-voltage characteristics of QD wavelength converter 

white LEDs at room temperature; optical micrographs of the devices biased at an 
injection current density of 45A/cm2: (b) device C΄ (c) and device E΄. 

 
 

and four converter dot layers (λ = 580nm). Atomic force microscope (AFM) imaging 

was done on control QD samples grown under identical conditions to determine the 

structural characteristics of the dots. Figures 5.10(b) and (c) show AFM images of 

blue (λ = 450nm) and red (λ = 600nm) emitting QD layers. The blue dots have 

average height, base width and areal density of 3 nm, 30 nm, and ~4x1010 cm-2, 
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respectively. The values of these parameters for the red converter dots are 4 nm, 40  

 

             

Figure 5.13 (a) Electroluminescence of device C΄ under CW operation as a function 
of injection current density, (b) light-current characteristics and external quantum 

efficiency of device C΄ under CW biasing. 
 

nm, and ~3.5x1010 cm-2, respectively. It was observed from theoretical calculations 

and the measurements performed on the self-assembled InGaN QDs that due to [144] 
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the quantum confinement and localization of carriers, along with weak polarization 

field, they provide strong electron-hole wavefunction overlap and superior optical 

properties [97, 107, 138]. Figures 5.11(a) and (b) show measured room temperature 

photoluminescence (PL) spectra from blue- and red-emitting QD layers, respectively. 

The radiative efficiency ηr of the QDs was estimated from room- and low-

temperature (10K) PL intensities under saturation excitation, assuming that all non-  

 

Table 5.3 Growth parameters and radiative efficiencies of blue- and red-emitting 

InGaN/GaN self-organized quantum dots. 

 

 
radiative recombination channels are frozen at the lower temperature. The growth 

parameters of the blue- and red-emitting dots and their radiative efficiencies are listed 

in Table 5.3. The emission wavelengths of exciting and converter dots in devices A΄-

E΄ and the device characteristics, to be described in the following, are listed in Table 

5.4. 

            Mesa-shaped LEDs of dimension 600µm x 600µm were fabricated using 

standard photolithography, reactive ion etching (RIE) and metallization techniques. 

Ti/Au (20nm/200nm) was deposited on top of the n-GaN region below the blue QD 
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layers to form the n-contact and a thin semi-transparent Ni/Au (5nm/5nm) layer was 

 

          

 

 

Figure 5.14 (a) Trend of chromaticity coordinates of white light emission from 
device C΄ with variation of injection current density, (b) variation of correlated color 
temperature (CCT) of white light emission with injection current density for different 

LEDs. Solid lines are guides to the eye. 
 

evaporated and annealed (at 450oC in 4:1 N2:O2) to form the p-contact on top of the  
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p-GaN layer. Carriers are injected electrically into the blue-emitting InGaN/GaN QD  

 
Table 5.4 CIE chromaticity coordinates and correlated color temperatures of 

wavelength converter white LEDs at an injection current density of 45A/cm2. 

 

 
layers and the emission from these dot layers optically excites the red-emitting 

converter dots to produce white light. An Al reflector layer is deposited on the 

backside sapphire surface. 

 

5.7.2    Output Characteristics 

            Figure 5.12(a) shows room temperature current-voltage characteristics of the 

LEDs. Turn-on voltages of ~5.5-6V and series resistances of ~20-24Ω are measured. 

White light emission of the phosphor-free LEDs can be tuned by using different 

combinations of pump and converter dot layers in the LED heterostructure. Figure 

5.12(b) shows the optical micrograph of device B΄ at an injection current density of 

45A/cm2. Figure 5.12(c) illustrates device E΄ emitting bluish white light at the same 

injection level. Figure 5.13(a) illustrates electroluminescence from device C΄ as a 

function of injection current density. The two peaks at λ = 450nm and 615nm 

correspond to the exciting and converter QDs, respectively. Small blueshifts in peak 
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emission of ~ 4nm and 7nm, due to screening of the polarization field by injected 

carriers, are observed for the peaks at λ = 450nm and 615nm, respectively. The 

corresponding calculated polarization fields are 82kV/cm and 170kV/cm, 

respectively, which are significantly smaller than those reported for comparable 

planar InGaN quantum wells. The smaller polarization field is a consequence of the 

strain relaxation during the formation of self-assembled QDs. The measured light-

current characteristics and the corresponding external quantum efficiency (EQE) of 

device C΄ are depicted in Fig. 5.13(b). The efficiency reaches its peak value at an 

injection current density of 37A/cm2 in this device and at 45, 40, 42 and 44 A/cm2 in 

devices A΄, B΄, D΄ and E΄, respectively. A reduction of 14-17% in efficiency at an 

injection level of 100A/cm2 is observed in all the devices. Like before, EL intensities 

of the white LEDs have been recorded with an Ocean Optics USB2000+ optical 

spectrum analyzer (with an optical resolution of 0.3 nm) to derive the Commission 

Internationale de I’Eclairage (CIE) chromaticity coordinates and correlated color 

temperatures (CCT) of white light emission. As shown in Fig. 5.14(a), with increase 

in injection from 25A/cm2 to 100A/cm2, the CCT of device C΄ changes by 210K, 

from 4375K to 4585K. This reflects better temperature stability of white light 

emission with injection current than that obtained for InGaN/GaN QWs wavelength 

converter white LEDs. Small blueshifts in peak emission of exciting and converter 

dots with increasing injection current contribute to the small increase in color 

temperature. The dependence of the correlated color temperature on injection current 

for devices A΄-E΄ is illustrated in Fig. 5.14(b). 

            In this study we have used the number of dot layers and their peak emission 
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wavelength, for both exciting and converter QDs, as tuning parameters for the 

chromaticity coordinates and CCT of the emitted white light. The chromaticity 

coordinates and CCT for devices A΄-E΄ at an injection current density of 45A/cm2 are 

listed in Table 5.4 and illustrated in Fig. 5.15. We found that the optimum number of 

dot layers were three for the exciting (blue) dots and five for the converter (red) dots. 

These were held constant for the devices A΄ to D΄. Devices A΄, B΄ and C΄ have the 

  

 

Figure 5.15 Chromaticity coordinates of white emission for different wavelength 
converter quantum dot white LEDs at a constant injection current density of 45A/cm2. 

 

 

same excitation dot peak emission wavelength of 450nm, but the converter dot peak 

emission wavelength increases by 35nm from device A΄ to C΄. As a result, the CCT 

for white light emission decreases by 930K, with a value of 4420K for device C΄ at a 

current density of 45 A/cm2. Using a converter dot peak emission λ > 615nm will 

result in further decrease in CCT. The design of device D΄ is similar to that of device 

A΄, except that the peak emission wavelength of the exciting dots is decreased to 
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432nm. As a result, the CCT increases from 5350K in device A to 5790K in device 

D΄. Device E΄, which contains four excitation dot layers (λ = 432nm) and four 

converter dot layers (λ = 580nm), exhibits a bluish white emission with a CCT of 

6700K at a current density of 45A/cm2. As mentioned earlier, the desirable values of 

CCT for high efficiency cool white and warm (soft) white light are ~ 4500K and ~ 

3000K, respectively. These values of CCT would be difficult to achieve with planar 

QWs converter white LEDs, since long wavelength (λ > 600nm) emission with high 

radiative efficiency is difficult to achieve with such InGaN/GaN multi QWs. A CCT~ 

5683K has been reported for a white light converter LED in which blue-emitting 

QWs pump green-yellow emitting converter wells [129]. Correlated color 

temperatures of ~ 5900K and ~5500K have been reported for QW UV LED + blue-

green-red phosphors and QW blue LED + yellow phosphor converter LEDs, 

respectively [131]. It is, therefore, evident that InGaN/GaN quantum dot converter 

LEDs may prove to be crucial for the realization of cool white and warm white light 

sources for a variety of applications. By varying the number and emission 

wavelengths of the dot layers, CCT of white emission from the wavelength converter 

LEDs has been changed from 4420K to 6700K. The lowest CCT obtained from the 

nanowire white LEDs, mentioned earlier, was 4210K. For the nanowire device, 

number and peak wavelengths of the InGaN/GaN disks were changed to examine the 

tunability. 

 

5.8       Summary 

            In conclusion, we have demonstrated all-nitride electrically injected tunable 
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InGaN/GaN disk-in-nanowire white light emitting diodes grown on (001) silicon by 

plasma assisted molecular beam epitaxy incorporating blue, green and red-emitting 

InGaN disks in the same GaN nanowire. Significantly smaller shift in correlated color 

temperature of white emission was observed with variation of injection current 

density  and this is attributed to the reduced polarization field in the InGaN disks — a 

direct consequence of their large surface-to-volume ratio and radial strain relaxation 

during their epitaxy. To investigate the tunability of white emission from the 

nanowire LEDs, the number of blue and red-emitting InGaN disks and the peak 

emission wavelengths of blue-, green- and red-emitting InGaN disks have been varied 

as tuning parameters for the chromaticity coordinates and correlated color 

temperature (CCT) of the emitted white light. By increasing the emission  

wavelengths of the InGaN/GaN disks, the CCT for white light emission was reduced 

by 1190K at an injection current density of 50 A/cm2 keeping the same number of 

disks. Blue disks with emission wavelengths λ= 430nm and 460nm, green disks with 

λ= 525nm and 550nm, and red disks with λ= 610nm and 650nm have been used in the 

experiment. By varying the number of InGaN disks in the heterostructures while 

keeping the same emission wavelengths for the InGaN disks, CCT has been changed 

by 820K at an injection level of 50A/cm2. 

We have also reported the characteristics of phosphor-free self-organized 

InGaN/GaN quantum dot wavelength converter white LEDs grown by plasma 

assisted molecular beam epitaxy (PA-MBE) on c-plane GaN-on-sapphire templates. 

The exciting quantum dots, in which electrically injected carriers recombine, are 

blue-emitting and the converter dots are red-emitting. We have studied the effect of 
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tuning the number of exciting and converter quantum dot layers and the peak 

emission wavelengths of the exciting and converter dots on the nature of the emitted 

white light, in terms of the chromaticity coordinates and correlated color temperatures 

(CCT). As exciting dots, two different blue-emitting dots, with emission wavelengths 

of 432 and 450nm, were used whereas three different red-emitting dots with emission 

wavelengths of 580, 600 and 615nm were grown as converter dots. For most of the 

devices, five red converter dots were used along with three blue-emitting pump 

dots—which were found to be the optimum combination of dots to obtain true white 

light. One device had four blue pump dots along with four red-emitting converter 

dots, which was emitting bluish white light with relatively higher CCT. Depending on 

the values of these wavelengths, color temperatures in the range of 4420-6700K have 

been derived at a current density of 45A/cm2 across multiple devices, with the lower 

value resulting from a device with excitation and converter dots having peak 

emissions at 450nm and 615nm, respectively. The variation of the color temperature 

with the change in injection current is found to be very small due to the significantly 

smaller polarization field in the dots resulting from the strain relaxation during self-

assembled quantum dot formation. After further optimization of the growth and 

processing of the device heterostructures, both these device schemes, mentioned 

above, could be used as alternatives for conventional phosphor-converted white 

LEDs.  
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Chapter VI 

Electrically Injected Monolithic InGaN/GaN Disk-in-Nanowire Array 

Edge-Emitting Lasers on (001) Silicon 

 

6.1      Introduction 

A monolithic, electrically pumped laser on silicon has long been of significant 

scientific and technological interest for a host of applications. Due to the indirect bandgap 

of silicon, realization of a suitable silicon-based laser remains one of the biggest 

technological challenges to be overcome for the success of silicon photonics [145-148]. A 

monolithic laser on silicon emitting in the visible spectrum with a low threshold would 

also provide an alternative for the present nitride-based laser epitaxy on expensive free-

standing GaN substrates. In this chapter, the first edge-emitting laser with a III-nitride 

nanowire heterostructure grown on (001) Si by plasma-assisted molecular beam epitaxy 

(PA-MBE) is demonstrated. The p-i-n nanowires have multiple InGaN/GaN disks 

inserted in the waveguide region, which serve as the gain media. We have made green 

(λ=533 nm) and red-emitting (λ=610 nm) nanowire array lasers by varying the indium 

composition in the InGaN disks and modifying the cladding layers in the laser 

heterostructure for the confinement of long wavelength emission. Extensive steady-state 

and dynamic characterization of the green- and red-emitting lasers have been performed 

and the values of threshold current, temperature coefficient (T0), device efficiency, 
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differential gain, and small-signal modulation bandwidth have been derived. In particular, 

the green laser exhibits a threshold current density which is significantly lower than those 

reported for planar green-emitting InGaN/GaN quantum well (QW) lasers [44, 59, 143, 

149-152]. The nanowire waveguide loss has also been investigated. Long-term reliability 

measurements under cw biasing indicate a lifetime of ~7000 hrs for the green-emitting 

laser.  Small signal modulation bandwidth, extremely low values of chirp and linewidth 

enhancement factor (α) near the peak emission wavelength have been measured for the 

red-emitting lasers. By varying the indium composition in the InGaN/GaN disks, near-

infrared (near-IR) emission from the nanowire laser on (001) Si should be possible, which 

will be beneficial for silicon photonics applications. 

      

6.2       Different Schemes for Electrically Injected Lasers on (001) Silicon   

            The prospects of a monolithic nanowire electrically pumped laser on (001) silicon 

are two-fold. First of all, an electrically injected IR laser on (001) Si is compatible with 

existing silicon CMOS technology and will be important for silicon photonics 

applications. This is achievable with nanowire laser by increasing the In composition in 

the InGaN disks and designing the laser heterostructures properly for the optical mode 

confinement of the near IR emission wavelengths. Second, a Ga(In)N nanowire laser with 

low threshold on less expensive silicon substrate will be a promising alternative for the 

present planar InGaN QW lasers grown on overly expensive free standing GaN substrates 

and in most cases, with a high threshold. Before moving on to nanowire lasers, a short 

review on electrically injected lasers on (001) silicon, tried so far, will be presented  



138 
 

 

 

 

Figure 6.1 (a) Room temperature light-current characteristics of GaAs/AlGaAs lasers 
[153 ] on silicon, (b) L-I characteristics of In0.5Ga0.5As QD laser at 300K along with the 
emission spectrum above threshold [154], (c) room temperature light output from high 

performance InAs QD laser (λ=1.3µm) grown on misoriented (001) silicon [155]. 
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Figure 6.2 (a) Schematic illustration of Ge-on-Si p-n-n laser heterostructure along with 
the L-I characteristics [158], (b) schematic representation of III-V heterostructure bonded 

on (001) silicon, where optical mode is guided by the silicon waveguide  
via evanescent mode coupling [159]. 

 

in this section. Three routes for the integration of reliable and high-performance 

electrically pumped lasers with (001) silicon technology are being explored. The first 

involves the direct epitaxy of III-V heterostructures on silicon. However, the large lattice  

mismatch leads to a high density of threading dislocations propagating into the active 
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region. Furthermore, the formation of antiphase boundaries due to the polar/non-polar 

nature of the epitaxy necessitates the use of misoriented substrates; generally (001) Si 

offcut 4o towards the [111] or [110] planes is used [153-155]. This is the greatest 

drawback of this method since Si CMOS technology on misoriented substrates is not 

favored. Nonetheless, Morkoc et al. [153] have shown the first room temperature 

GaAs/AlGaAs graded-refractive index separate-confinement lasers grown on misoriented 

(001) Si substrates. Threshold current densities of 214 A/cm2 (Fig. 6.1(a)), maximum 

slope efficiencies of ~0.8 W/A, and optical power above 270 mW/facet were reported 

under pulsed conditions. Our group has demonstrated the first room-temperature 

operation [154] of In0.5Ga0.5As quantum dot lasers grown directly on misoriented (001) Si 

substrates with a thin (~2 mm) GaAs buffer layer. The devices are characterized by 

Jth~1500A/cm2 (Fig. 6.1(b)), output power above 50 mW, large T0 of 244 K and output 

slope efficiency above 0.3 W/A. Recently, Bowers et al. [155] have reported high-

performance InAs/GaAs quantum dot lasers on offcut (001) silicon with emission 

wavelengths between 1.1 and 1.3 µm. Room temperature continuous-wave threshold was 

as low as 16 mA in the ridge waveguide lasers, output power was above 176 mW (Fig. 

6.1(c)), and lasing was observed up to a temperature of 119oC. In their device, P-

modulation doping of the active region yields large T0 of 100–200K while maintaining 

low thresholds and high output power. Various buffer layers are also being investigated 

for use in this approach [147, 156, 157]. As a second approach, an electrically pumped 

Ge-on-Si p-n-n heterojunction diode laser, with built-in tensile strain and  heavy doping 

in the Ge layer, which allow direct radiative transitions in indirect bandgap Ge, has been 

demonstrated recently [158] (Fig. 6.2(a)). The Ge on silicon laser has an impractically 
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Figure 6.3 (a) SEM image of single GaN nanowire laser dispersed on sapphire substrate. 
The color indicates laser emission at the two ends of the nanowire, (b) power dependence 

of the lasing near threshold (blue) and that of the photoluminescence  
emission from a non-lasing region (black) [165]. 

 

large threshold current density (~280 kA/cm2) and limited output power (~1 mW). The 

temperature dependence (T0) and long-term reliability of this device have not been 

reported. The third and, perhaps the most common technique has been to wafer bond the 

III-V laser heterostructure on a (001) Si wafer [159-163] (Fig. 6.2(b)). Variations within 

this approach include guiding in the III-V heterostructures or in silicon via evanescent 

mode coupling. In this approach, multiple lasers can be operated simultaneously, but 

there could be a significant loss of light output when the optical mode is guided by the 

silicon waveguide via evanescent field coupling. However, III-V substrates such as GaAs 

and InP, on the other hand, are available only in smaller diameters that limit the 

maximum bonding area. Microdisk lasers bonded on Si have also been reported [164].  

 

6.3       Previous Reports of Ga(In)N Nanowire Lasers 

            An optically pumped single GaN nanowire laser has been demonstrated by  
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Figure 6.4 (a) Schematic representation of the fabricated nanowire laser consisting 
of a single GaN nanowire and a 2D photonic crystal microcavity, (b) an oblique view 

SEM image of the fabricated device, (c) variation of peak output intensity with 
pump power (the L-L curve). The change in slope of the L-L curve  

near threshold ~120 kW/cm2 is clearly observed [166]. 
 

 
Johnson et al. [165], which is shown in Fig. 6.3. A single GaN nanowire was dispersed 

on sapphire substrates, and the nanowire itself acts as a Fabry-Perot laser cavity along the 

c-axis. By growing GaN nanowires with different lengths, the length of the laser cavity 

can be varied. The GaN nanowire laser was optically excited with 3μJcm–2 excitation. In         

Fig. 6.3(a), the color indicates laser emission at the two ends of the single nanowire.  
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Figure 6.5 (a) CCD image of a single-mode GaN nanowire laser optically pumped above 
lasing threshold, The nanowire laser emits a highly divergent beam from the facets, some 

of which is collected by the objective lens. The objective lens also collects radiation 
emitted from the facets that is scattered by the SiN substrate surface, as well as 

spontaneous emission exiting perpendicular to the nanowire axis. Scale bars are 2 μm, (b) 
nanowire laser intensity versus pump laser intensity with cavity length of 4.7 μm. In set 

shows SEM image of a single GaN nanowire dispersed on SiN substrate [167]. 
 

Figure 6.3(b) shows power dependence of the lasing near threshold (blue) and that of the 

photoluminescence emission from a non-lasing region (black) for comparison. Heo et al. 

has shown monolithic single GaN nanowire laser with photonic crystal microcavity on 

silicon (Fig.6.4) [166]. Room temperature optically excited lasing from a silicon based 

monolithic single GaN nanowire with two-dimensional photonic crystal microcavity is 

demonstrated. Single GaN nanowire laser fabricated on Si is characterized by a linewidth 

of 0.55 nm. The threshold was observed at a pump power density of ~120 kW/cm2. Li et 

al. reported single mode optically pumped single GaN nanowire lasers (Fig. 6.5) [167]. 

The laser structure is a linear, double-facet GaN nanowire acting as gain medium and 

optical resonator. This is fabricated by a top-down technique that uses a tunable dry etch 

and anisotropic wet etch for precise control of the nanowire dimensions and high material 
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gain. A single-mode linewidth of ~0.12 nm and >18dB side-mode suppression ratio are 

measured. It is found from the simulation that single-mode lasing results from strong 

mode competition and narrow gain bandwidth. So far, only optically pumped lasers have 

been realized with III-nitride nanowires. An electrically injected monolithic nanowire 

array laser on (001) silicon with reasonably low threshold is promising for silicon 

photonics applications. It can also be an alternative candidate for making visible laser on 

less expensive Si substrates in comparison to planar InGaN QW lasers on expensive bulk 

GaN substrates. We have demonstrated, for the first time, electrically pumped monolithic 

nanowire array laser on (001) silicon with a smaller threshold compared to that reported 

for planar nitride lasers. 

 

6.4      Design and Growth of Green (λ=533 nm) and Red (λ=610 nm) Edge- 

           Emitting Nanowire Laser Heterostructures on (001) Silicon 

           Edge-emitting green (λ=533 nm) nanowire array lasers, as shown schematically in 

Fig. 6.6 (a), were monolithically grown on (001) silicon substrates by Veeco Gen 930 

plasma assisted molecular beam epitaxy (PA-MBE) machine. The ensemble of as-grown 

nanowires has an average diameter of ~ 60 nm and an optimized areal density of ~2x1010 

cm-2. For a small nanowire density, the volume of the gain material is reduced, and the 

formation and fabrication of the top (p-type) ohmic contact of the laser are rendered more 

difficult. On the other hand, too large a nanowire density leads to coalescing of the 

nanowires and the formation of extended defects and stacking faults which ultimately 

reduce the radiative efficiency, as discussed in chapter IV. As-grown nanowire sample 

placed on a 45o angle mount was introduced into Hitachi SU8000 to capture the SEM  
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Figure 6.6 (a) Schematic representation of the green-emitting (λ = 533 nm) nanowire 
array laser heterostructure showing the active region, In0.6Ga0.94N waveguide and 

asymmetric Al0.11Ga0.89N cladding. The calculated mode profile is shown alongside, 
assuming that the space between the nanowires is filled with parylene; (b) 45o tilted 

scanning electron microscope (SEM) image of green-emitting (λ = 533 nm) 
In0.34Ga0.66N/GaN disk-in-nanowire array laser heterostructures grown by molecular 
beam epitaxy on (001) silicon substrate. Inset shows the high resolution transmission 

electron microscope (HRTEM) image of a ~2 nm thick In0.34Ga0.66N disk in a  
single GaN nanowire. 

 
 

image of the heterostructure at an accelerated voltage 10kV and emission current of 7µA. 

Figure 6.6 (b) shows 45o tilted scanning electron microscope (SEM) image of green-

emitting (λ = 533 nm) In0.34Ga0.66N/GaN disk-in-nanowire array laser heterostructures on 
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(001) Si and inset to Fig. 6.6(b) depicts the high resolution transmission electron 

microscope (HRTEM) image of a ~2 nm thick In0.34Ga0.66N disk in a single GaN 

nanowire. As-grown nanowires were removed mechanically from the Si substrate and 

ultrasonicated in isopropyl alcohol (IPA) for 20 minutes. Few drops of the nanowire-IPA 

solution were then put on a carbon-coated TEM grid. After evaporation of the liquid, the 

nanowires on the grid were imaged using a JEOL 3011 high resolution transmission 

electron microscope. To remove the surface oxide, the substrate was cleaned with 

hydrofluoric acid solution and then heated inside the MBE chamber at 900oC for 60 min 

before growth. GaN nanowires were grown on Si at a substrate temperature of 800oC 

without any initial self-catalysis step. The growth was carried out in a nitrogen rich 

environment maintaining a constant N2 flux of 1.0 sccm and the Ga flux was kept at 

1.62x10-7 Torr. 150 nm of Si doped n+ GaN layer (n~6×1018 cm-3) was first grown, 

followed by n-Al0.11Ga0.89N cladding layer, In0.06Ga0.94N waveguide in the center of 

which is placed 6 InGaN disks (2 nm)/GaN barrier (12 nm), 15 nm p-Al0.15Ga0.85N 

electron blocking layer (EBL) and 550 nm p+GaN layer. The optimum number of disks 

and well thickness are dependent on several factors. The first is a growth constraint. The 

strain accumulated by growing the active region should not generate dislocations in the 

nanowire that would reduce the radiative efficiency of the disks. Beyond the growth 

considerations, the number of disks must be chosen as a tradeoff between the lower 

threshold and higher power. The number of In0.34Ga0.66N disks incorporated in the 

nanowire heterostructure will affect modal gain of the laser. However, increasing the 

number of disks will increase the threshold current and will cause a non-uniform injection 

of holes six amongst the disk layers due to the heterostructure band line-up. We have  



147 
 

  

 

Figure 6.7 Room temperature photoluminescence of (a) Al0.15Ga0.85N nanowire and (b) 
In0.06Ga0.94N nanowire, which were used as p-doped electron blocking layer (EBL) and 
waveguide layer, respectively, for both the green and red-emitting nanowire lasers, (c) 

Energy-dispersive X-ray (EDX) measurement of the elemental composition along the c-
axis of an InGaN disk used in the green-emitting (λ=533nm) nanowire laser 

heterostructure, which yields a maximum In composition of 34% in the disk. Inset shows 
EDX scan direction across a single InGaN disk. 

 

included disk layers in our heterostructures based on optimization of the 

photoluminescence intensity. The thickness of the disks affects the electron hole 

wavefunction overlap and hence the emitted light intensity. We have used the optimum 

value of 2 nm. During the growth of the green emitting (λ = 533nm) quantum disks, the 
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substrate temperature was lowered to 590oC and In and Ga fluxes of 6.5×10-8 Torr and 

1.48x10-7 Torr, respectively, were used. Mg-doped p+GaN layer (p~7.5×1017 cm-3) was 

grown at 700oC. The Mg flux was increased during the growth of the final 20 nm of 

p+GaN to achieve a better ohmic contact. Calculated mode profile for the green-emitting 

laser, obtained from transfer matrix method, is shown in Fig. 6.6(b) alongside the laser 

heterostructure. By using asymmetric Al0.11Ga0.89N cladding in the laser heterostructure 

growing thick p-GaN on top, we reduced the series resistance of the laser to a great 

extent. P-doped Al0.11Ga0.89N cladding grown on the top side of the initial laser 

heterostructures was highly resistive. Figures 6.7 (a) and (b) demonstrate the room 

temperature photoluminescence (PL) of Al0.15Ga0.85N EBL and In0.06Ga0.94N waveguide 

layer, respectively with the optimized alloy compositions according to the laser design. 

Indium composition in the green-emitting (λ = 533 nm) disks was estimated to be 34% 

from energy dispersive x-ray (EDX) measurements as depicted in Fig. 6.7(c). EDX 

measurements were performed on a single nanowire in a JEOL 2100F TEM facility at an 

accelerating voltage of 200 kV. Before imaging and spectroscopy, the nanowires were 

dispersed on a holey carbon grid. A Hitachi SU8000 SEM with EDX capability was used 

to calibrate the Indium composition in InGaN nanowires, grown under identical 

conditions. The radiative efficiency of InGaN disks is also reduced by surface states of 

the nanowire as discussed in chapter II. We have investigated the effect of passivation 

with various compounds on the radiative efficiency and their compatibility with the 

nanowire laser fabrication process. Figure 6.8(a) shows the enhancement in room 

temperature PL of passivated green-emitting In0.34Ga0.66N/GaN disks-in-nanowires. Upon 

parylene passivation, the radiative efficiency of the disks has been improved by ~12%  
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Figure 6.8 (a) Enhancement in 300K photoluminescence of the green-emitting disk-in-
nanowire sample by surface passivation with parylene, (b) Photoluminescence of GaN 

nanowires at 300K, before and after treatment with ammonium sulfide (NH4)2Sx. 
 

and became as high as 55%. Figure 6.8(b) illustrates the change in luminescence from 

GaN nanowires upon passivation with ammonium sulfide (NH4)2Sx. While there is only a 

minimum increase in the luminescence intensity with the (NH4)2Sx treatment, we have 

determined that the p-contact resistance is reduced upon such treatment.  Though we 

mentioned the heterostructure and epitaxial growth of a green-emitting nanowire laser 

above, laser emission near infrared (IR) is also possible by increasing the indium 

composition in the InGaN disks and redesigning the laser heterostructure for the 

confinement of long wavelengths. With that vision in mind, we first proceeded to realize 

a red-emitting nanowire laser with higher indium composition in the disks and modified 

cladding layers in the structure. In order to make monolithic red-emitting (λ = 610 nm) 

nanowire laser on (001) silicon, we have increased the In composition in the disks to 51% 

as estimated from the EDS measurements and shown in Fig. 6.9. Red-emitting 

In0.51Ga0.49N disks were grown at a substrate temperature of 550oC and with In and Ga  
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 Figure 6.9 Energy-dispersive X-ray (EDX) measurement along the c-axis of an InGaN 
disk used in the red-emitting (λ=610nm) nanowire laser heterostructure, which yields a 
maximum In composition of 51% in the disk. Inset shows EDX scan direction across a 

single InGaN disk.  
 
 

fluxes of 1.2x10-7 Torr and 1.45x10-7 Torr, respectively. From temperature dependent PL, 

radiative efficiency of the passivated red-emitting disks was measured to be ~54%. 

Al0.11Ga0.89N cladding, used in the green laser structure, was replaced by In0.18Al0.82N 

cladding grown at 500oC and lattice-matched to GaN as shown by the XRD data in Fig. 

6.10(a). Figure 6.10(b) shows the HRTEM image of In0.18Al0.82N nanowire along with the 

selective area diffraction (SAD) pattern in the inset. Defects have not been observed 

along the growth direction (c-axis) of the In0.18Al0.82N nanowires. SAD pattern on the 

In0.18Al0.82N nanowire demonstrates a lattice constant of 5.16 Å, which shows excellent 

lattice matching to GaN. In0.18Al0.82N provides better optical mode confinement since it 

has a higher refractive index difference with In0.6Ga0.94N waveguide as compared to the 

previous Al0.11Ga0.89N cladding. All the nanowire array lasers on Si mentioned in this 

chapter were planarized and passivated with parylene. The refractive indices of  
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Figure 6.10 (a) XRD data of In0.18Al0.82N nanowire grown on GaN. This In0.18Ga0.82N 
nanowire lattice matched to GaN was used as cladding layer in red-emitting nanowire 

laser, (b) High resolution transmission electron microscope image (HRTEM) of 
In0.18Al0.82N nanowire showing defect-free crystal structure along the growth direction. 
Inset shows the selective area diffraction (SAD) pattern of the nanowire, (c) Energy-

dispersive X-ray (EDX) measurement of the elemental composition along the c-axis of 
In0.18Al0.82N nanowire. 
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In0.6Ga0.94N waveguide-parylene composite, Al0.11Ga0.89N cladding-parylene composite 

and In0.18Al0.82N cladding-parylene composite are 2.32, 2.27 and 1.99, respectively for 

red emission wavelength. In and Al compositions in InAlN nanowire, grown lattice 

matched to GaN, were also estimated from EDX measurements as depicted by Fig. 

6.10(c). 

 

Figure 6.11  Schematic illustration of the red-emitting (λ=610nm) nanowire array laser 
heterostructure showing the active region, In0.6Ga0.94Nwaveguide and In0.18Al0.82N 
cladding. The calculated mode profile is shown alongside, assuming that the space 

between the nanowires is filled with parylene. 
 
 

Schematic representation of a red-emitting nanowire laser heterostructure on (001) Si is 

demonstrated in Fig. 6.11 along with the calculated mode profile. Better mode 

confinement using In0.18Al0.82N cladding also leads to thinner cladding region on both 

sides that plays an important role on the overall low device series resistance.  

 

6.5       Fabrication of Ridge Waveguide InGaN/GaN Disk-in-Nanowire Lasers 

6.5.1    Processing of Ridge Geometry Waveguide Laser Heterostructures 

            Edge-emitting lasers were fabricated with a two-step mesa in a ridge geometry, 
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Figure 6.12   Schematic representation of the fabricated ridge waveguide InGaN/GaN 
disk-in-nanowire array (a) green and (b) red laser heterostructures on (001) silicon. 

 

patterned with a stepper and optical photolithography. Schematic illustrations of 

fabricated ridge-waveguide green- and red-emitting nanowire lasers are shown in Fig. 

6.12. The mesas were etched using reactive ion etching with the first mesa (ridge) etched  
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to the cladding/waveguide heterointerface and the second (wider) mesa etched all the way 

to the n-silicon substrate. The ridges were patterned with widths in the range of 4m to 

50 m with the wider mesa 20m wider than the respective ridge width and with cavity 

lengths varying from 0.4 to 2 mm. Parylene was deposited by thermal vapor deposition to 

planarize the device and passivate the nanowire surface. Excess parylene was etched to 

expose the nanowire tips to make the p-contact. The p-side of the nanowires were treated 

with ammonium sulfide ((NH4)2Sx) to reduce the p-contact resistance. The p-GaN 

contacts were formed with semitransparent Ni/Au ohmic contacts (5nm/5nm) deposited 

by electron beam evaporation and ITO (250nm) current spreading layer deposited by 

sputtering. Ni/Au contact was annealed at 550oC for 2 min in N2:O2=4:1 gas mixture and 

ITO was annealed at 500oC for 1 min in Ar ambient. The n-GaN contacts were formed 

with Al/Au (100nm/300nm) by e-beam evaporation. SiO2 passivation was deposited by 

plasma enhanced chemical vapor deposition. Via holes for the contacts were etched using 

a solution of HF:H20 (10:1).  

 

6.5.2    Highly Reflective Facets  for Edge-Emitting Nanowire Lasers 

            The laser heterostructures were cleaved along the direction perpendicular to the 

laser cavity and then focused ion beam (FIB) etching is used to form the optically flat 

laser facets. To enhance the facet reflectivity, dielectric distributed Bragg reflectors 

(DBRs) (SiO2/TiO2) were deposited on the facets of the edge-emitting lasers by e-beam 

evaporation. For the green-emitting laser the facet reflectivities were ~0.72 and ~0.95, 

respectively. For the red-emitting laser, less number of DBR pairs was deposited on the 

low reflectivity facet to increase the laser output power and the facet reflectivities were  
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Figure 6.13 (a) Schematic representation of nanowire array waveguide heterostructures 
similar to green-emitting nanowire laser heterostructures except the disks and without Si 

and Mg doping used in transmission measurements. x is the direction of the nanowire 
waveguide/cavity made up of nanowire-parylene composite and z is the nanowire growth 
direction, (b) output intensity from the nanowire-array  ridge waveguides of (a), measured 
with a CCD detector, as a function of waveguide length. The input excitation was focused 

light from a 532 nm laser. The propagation loss was obtained for ridge nanowire 
waveguides of different length and having a fixed width of 10µm. The inset shows a CCD 

image from the output facet of the nanowire waveguide. 
 

~0.35 and ~0.95, respectively. 

 

6.6       Light Propagation in Nanowire Waveguide 

            Prior to measuring the fabricated waveguides, 3D finite-difference time-domain 
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(FDTD) electromagnetic simulation was performed on the nanowire waveguides in order 

to understand how the lasing mode will propagate through the nanowire-parylene 

composite cavity. Nanowire spacing and density will affect mode distribution and 

scattering, and consequently affect macroscopic cavity optical properties of interest to 

laser operation. Nanowire waveguides were fabricated by mesa etching the nanowire 

laser heterostructure, grown without Si and Mg doping and the InGaN/GaN disks, in the 

same way as the edge-emitting lasers. As-grown nanowire heterostructures were 

passivated and planarized with parylene. Figure 6.13(a) shows the schematic 

representation of the parylene-planarized nanowire waveguides along with the direction 

of the cavity. Before proceeding with the transmission measurements on the nanowire 

waveguides with different lengths, the optical field distribution in the nanowire 

waveguide was determined by the three-dimensional (3D) finite difference time domain 

(FDTD) simulation. The waveguide was modeled as a hexagonal close-packed (HCP) 

nanowire array with 60 nm nanowire diameter, an average period of 67 nm, and parylene 

filling the gaps between nanowires as in the fabricated devices. An Al0.11Ga0.89N cladding 

refractive index of 2.3887, In0.06Ga0.94N waveguide refractive index of 2.4369, and a GaN 

refractive index of 2.4169 were used for the respective nanowire layers in the simulation 

for the green emission wavelength. To avoid the possible formation of a photonic crystal 

and associated effects, the nanowires were randomly positioned with a maximum offset 

of 2 nm from the periodic positions in the simulation. The used 2nm maximum offset 

represents a random offset of up to 28.5% from the nominal 7nm spacing between the 

nanowires in the array.  It is important to note that the purpose of the random offset it not 

to accurately simulate the random nanowire growth but rather to suppress photonic 
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crystal effects that could arise. Also, the region between the nanowires is assumed to be 

filled with parylene, as in the fabricated devices. Figures 6.14(a) and (b) show the cavity 

fields in the x-y and x-z planes, respectively (with reference to the schematic in  

  

 

                                    

Figure 6.14 Optical field distribution in the (a) x-y and (b) x-z planes, respectively of the 
nanowire waveguide, used for the green-emitting laser, (with reference to the schematic 

in Fig. 6.13(a) in response to a y-polarized plane wave modulated by a Gaussian 
distribution approximating the calculated mode in Fig. 6.6(b). Light can propagate freely 

in the in-plane direction as the field is continuous over the nanowires. 
 

Fig. 6.13(a)), in response to a y-polarized plane wave modulated by a Gaussian 
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distribution approximating the calculated guided-mode profile for the green-emitting 

laser heterostructure shown in Fig. 6.6(a). The field is continuous over the nanowires 

showing no confinement along the cavity length (x-axis), indicating that light can freely 

propagate in the in-plane direction. Hence, the nanowire waveguide region can be treated 

as a nanowire-parylene 3D composite with a lower average refractive index of nr ~ 2.1. 

The localization of a part of the cavity field between the nanowires results from the 

mutual enhancement of two evanescent fields in proximity, also observed in slotted 

waveguides [168, 169]. The discontinuity of the field observed in the y-direction is an 

artifact of the y-polarized source used in the simulation. 

 The propagation loss, including the scattering loss and substrate leakage, in 

nanowire waveguides, used for green-emitting laser, was obtained from transmission 

measurements on ridge waveguides of different length and having a fixed width of 10µm.  

This measurement was to confirm that the nanowires act as a waveguide (confining light) 

and that there is not substantial substrate leakage or scattering loss. Ridge-shaped 

waveguides were fabricated by mesa etching the nanowire laser heterostructure, grown 

without Si and Mg doping and the In0.34Ga0.66N/GaN disks, in the same way as the edge-

emitting lasers. The waveguides were end-fired with light from a 532 nm laser focused to 

a 10 µm2 spot. It may be noted that the sub-bandgap (2.33 eV) excitation will be freely 

transmitted in the nanowire waveguide wherein the smallest bandgap material is the 

In0.06Ga0.94N waveguide (Eg=3.12 eV). The output intensity was measured with a charged 

coupled device (CCD) detector. The measured output intensity as a function of guide 

length is plotted in Fig. 6.13(b), from which a loss of γ=7.2 dB/cm is derived. This value 

is of the same order as those of bulk III-nitride semiconductor waveguides [144, 170]. 
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The inset to Fig. 6.13(b) shows a CCD image from the output facet of the nanowire waveguide. 

 

6.7       DC Characteristics of Electrically Injected Monolithic Green-Emitting 

            (λ=533nm) InGaN/GaN Disk-in-Nanowire Lasers on (001) Silicon  

6.7.1    Light-Current and Spectral Characteristics 

            Measurements were made on the green-emitting nanowire lasers at room 

temperature with continuous wave (cw) bias. The electrical characteristics of the lasers 

were measured with a Keithley 2611 sourcemeter under cw and pulsed (500s pulse, 1% 

duty cycle) current bias. The green-emitting laser diodes have a turn on voltage around 

8.6V and a series resistance of 32Ω. The light-output characteristics were measured with 

a power meter and a calibrated silicon photodetector. The laser temperature was kept 

fixed with an adequately heat sinked thermoelectric cooler during the measurements. The 

spectral characteristics of the laser were measured using a high resolution (0.03nm) 

monochromator and detected using a photomultiplier tube. The output power versus 

current, or light-current (L-I) characteristics, of a broad area device are shown in Fig. 

6.15(a). The output is measured from the low reflectivity facet. The threshold current 

density is Jth= 1.76 kA/cm2 and the maximum measured output power from a single facet 

is 6.5mW under cw operation. The slope efficiency of the output is 1.15% (0.03 W/A). 

Pulsed bias measurements have been made on the same device, and the measured L-I 

characteristics are also shown in Fig. 6.15(a). The threshold current density, maximum 

measured power and slope efficiency from these data are 1.72 kA/cm2, 8 mW and 1.3%, 

respectively. The values of Jth at room temperature mentioned above are significantly 

smaller than those reported for planar InGaN quantum well devices [44, 59, 143, 149-  



160 
 

                                  

              

 

 Figure 6.15 (a) Light-current (L-I) characteristics of a broad area (1 mm x 50 µm) green 
nanowire laser at 300K. The threshold current density, Jth is 1.76 kA/cm2 and 1.72 

kA/cm2, respectively, under continuous wave and pulsed biasing; (b) the 
electroluminescence (EL) spectrum of the 1.5 mm x 10 µm ridge waveguide laser biased 
cw above and below threshold. The smallest recorded linewidth is 8Å, (c) the variation of 

the emission linewidth and the blueshift of the peak emission with increasing injection 
current density for the ridge waveguide laser.   

 
 

152] and are comparable to that measured in a green-emitting InGaN/GaN self-organized 

quantum dot laser [37, 171]. The electroluminescence (EL) spectrum of a ridge 

waveguide laser biased above threshold is shown in Fig. 6.15(b). The EL spectrum 
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measured in the same device below threshold is also shown alongside. The variation of 

the emission linewidth and the blueshift of the peak emission with increasing injection 

current are plotted in Fig. 6.15(c). The multiple longitudinal mode emission is evident in 

the lasing electroluminescence spectra. The spectra above threshold are fit by a sum of 

Gaussian functions, and the smallest linewidth of the dominant longitudinal mode is 

 

 

 

Figure 6.16 (a) Temperature dependence of the threshold current density in a ridge 
waveguide green nanowire laser under cw biasing. The inset shows the measured L-I 
characteristics at different temperatures; (b) the variation of the inverse differential 

quantum efficiency with cavity length for ridge waveguide lasers with 10µm width. (c) 
the variation of threshold current density, Jth with inverse cavity length.  
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found to be 8Å at 1.8Ith. The corresponding polarization field is calculated to be 618 

kV/cm, which is significantly lower than that reported for comparable planar InGaN 

quantum wells [104]. The lower polarization field in the InGaN disk is a result of the 

strain relaxation during epitaxy of the nanowires.  

            The temperature dependence of the threshold current of a 10 µm ridge waveguide 

laser is shown in Fig. 6.16(a). The corresponding L-I characteristics are shown in the 

inset. A value of the temperature coefficient T0 = 232K, in accordance with the relation: 

Jth(T) = Jth(0)exp(T/T0), is derived, which shows weak temperature dependence of the 

threshold current. An almost identical value of T0 was measured for green-emitting self-

organized quantum dot lasers [37]. The large value of T0 reflects small carrier leakage 

and a negligible rate of Auger recombination in the active region. Steady-state L-I 

measurements have also been made on ridge waveguide lasers of varying length. Figure 

6.16(b) shows the variation of the inverse differential quantum efficiency, corresponding 

to the slope above threshold, with cavity length. These data can be analyzed using Eq. 6.1 

to yield the internal quantum efficiency from its intercept on the ηd
-1axis. A value of     

ηi= 0.55 is derived, which is in very close to what we have measured earlier from 

temperature dependent PL.  
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Figure 6.16(c) shows the variation of Jth with inverse cavity length. Knowing the values 

of total carrier lifetime τ (395ps) in the disks measured from time-resolved PL and γ in 

the nanowire waveguides, a value of differential gain dg/dn = 2.8x10-17 cm2 is derived 

from the slope of this data. A transparency current density of 454 A/cm2 is calculated 
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from the intercept of this plot on the Jth axis. The differential gain is calculated by fitting 

the threshold current density as a function of inverse cavity length according to the 

relation:   
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Figure 6.17 (a) Emission spectra of green-emitting nanowire laser near threshold, 
characterized by a succession of peaks and valleys, (b) modal gain spectrum at threshold 

obtained from Hakki-Paoli measurement. The peak net  
modal gain at threshold is 24cm-1. 
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where d is the active region thickness calculated as the number of disk layers times the 

disk height (2 nm),  is the optical confinement factor including the fill factor (0.018) 

simulated by transfer matrix method,  is the measured carrier lifetime (395ps),  is 

waveguide loss (5.7 cm-1 or 7.6 dB/cm), L is the cavity length, R1 and R2 are the facet 

reflectivities (0.72 and 0.95) and injection efficiency (ƞinj) is assumed to be unity. Jth
0 and 

dg/dn are fitting parameters. The fill factor is the fraction of the silicon substrate surface 

on which the nanowires have grown and is estimated from SEM images of the grown 

nanowire heterostructure. 

 

6.7.2    Measurement of Modal Gain 

            The threshold current of a semiconductor laser and the dynamic characteristics 

including the small-signal modulation bandwidth, chirp and linewidth enhancement factor 

are ultimately determined by the gain in the active region. The gain of the nanowire 

lasing medium near threshold for a 10µm ridge waveguide green-emitting laser was 

measured by the Hakki-Paoli technique using the formula: 
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Here is the optical confinement factor, L is the cavity length, R is the facet reflectivity, 

and ri= (Ip+Ip+1)/2Iv, where Ip and Ip+1 are adjacent peak intensities in the 

electroluminescence spectrum separated by the valley intensity, Iv. The emission spectra 

for increasing injection current are recorded (with a spectral resolution of 0.03 nm), till 

threshold is reached. The spectra is then characterized by a succession of peaks and 

valleys corresponding to the longitudinal modes, as shown in Fig. 6.17(a). The spectral  



165 
 

 

                      

Figure 6.18 (a) Polarization dependent output from single facet of green nanowire array 
laser, which shows that TE polarized component increases significantly with a threshold 

of 1.82 kA/cm2, (b) near field mode intensity profiles from the low reflectivity facet along 
the growth (transverse) and lateral directions of the green nanowire laser cavity. 

 

gain is derived by analyzing these data. The modal gain Γg is plotted as a function of 

photon energy in Fig. 6.17(b). The peak modal gain at threshold is   24 cm-1. This value 

compares well with those of calculated gain spectra for In0.27Ga0.73N self-organized 

quantum dots of base width and height equal to 50 nm and 3 nm, respectively, in a green 

emitting laser [101]. 
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6.7.3    Output Polarization and Near-Field Characteristics 

            An electrically pumped laser with an array of nanowires, surface- or edge-

emitting, has never been reported. It was therefore of interest to investigate the nature of 

the light output of the edge-emitting devices. The polarization of the laser output was 

measured as a function of injection current by placing a linear polarizer between the laser 

facet and the silicon photodetector which is used to measure the output power. The L-I 

characteristics with the linear polarizer aligned along the TE and TM axes are shown in 

Fig. 6.18(a). The laser output is TE-polarized in the in-plane. While the TM-polarized 

light output remains low throughout the injection range, the TE-polarized light output 

increases sharply above ~2 kA/cm2. This is due to the higher confinement and gain of the 

TE mode than that of the TM mode. It should be noted that even beyond the TE threshold 

the TM output intensity does not saturate.  This is likely due to the nearly degenerate 

valence band energy levels, and band mixing effects. 

            We have measured the near-field pattern from the low reflectivity facet of the 

ridge-waveguide laser. Measurements were made on a 1 mm x 10 µm ridge waveguide 

laser under cw bias. The near-field image at the low reflectivity facet, shown in Fig. 

6.18(b), indicates good mode confinement in the transverse (growth) direction and multi-

mode behavior in the lateral direction, as expected. With smaller ridge widths, it should 

be possible to realize single mode devices for a specified application. 

 

6.7.4    Far-Field Pattern and Long-Term Reliability Measurements 

            The measured far-field pattern from the low-reflectivity facet of the 1 mm x 10 

µm ridge waveguide green-emitting laser is illustrated in Fig. 6.19(a). The pattern is 
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characterized by a divergence angle of 22o in the transverse growth direction and 3o in the 

lateral direction, yielding an aspect ratio of 7.3. This ratio can be improved by re- 

designing the nanowire heterostructures. 

 

                

           

Figure 6.19 (a) Far field pattern from the low reflectivity facet of a ridge waveguide 
green-emitting nanowire array laser, (b) the output power from the green nanowire laser 

versus time with an extrapolated lifetime for the output power to be reduced to  
half the maximum value of 7000hrs. 
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            A preliminary investigation of the long-term reliability of the nanowire lasers was 

made by observing the change in output power of a 1 mm x 10 µm ridge waveguide laser 

under a constant injection current of 150 mA at room temperature under cw biasing. The 

result is shown in Fig. 6.19(b). An extrapolated lifetime of ~7000 hours, at which the 

output power is expected to be reduced to the half of its initial value (3 mW) at time t =0, 

is derived. To the best of our knowledge, such reliability data has not been reported for 

any other laser on silicon. When the laser is biased with constant injection current over a 

long time, both dopant activation and defect generation occur simultaneously in the 

structure and compete with each other. Initially, dopant activation [172] in the structure 

probably dominates the defect generation which leads to an increase in laser output as 

observed in Fig. 6.19(b). Eventually, defect generation with time takes over and laser 

output decreases.  

 

6.8       Dynamic Characteristics of Green-Emitting (λ=533nm) InGaN/GaN 

            Disk-in-Nanowire Lasers on (001) Silicon 

            Measurement of the dynamic characteristics of a laser by direct bias modulation 

can provide a host of important information. For example, the lasers described here could 

be directly modulated on a CMOS chip for on-chip communication, without the need for 

an external modulator. Small-signal modulation experiments provide information 

regarding the differential gain, gain compression, and other hot-carrier related effects. 

Measurements were made on 4 µm ridge waveguide In0.34Ga0.66N disk-in-nanowire lasers 

of 400µm length at room temperature using a 40 GHz high speed detector and spectrum 

analyzer. The measured response was calibrated for the losses due to cable, connectors,  
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Figure 6.20 (a) Measured small-signal modulation response of a 400µm x 4µm ridge 
waveguide green nanowire laser at 300K for varying dc injection current values. The data 
is analyzed to derive the response frequency fr and damping factor γd, (b) plot of fr versus 

square root of injection current. The differential gain is derived from the slope of this 
plot, (c) Plot of γd versus square of resonance frequency. The gain compression factor � is 

derived from the slope of this plot. 
 

bias network and dc-blocking capacitor. The modulation response as a function of dc bias 

current is shown in Fig. 6.20(a). The sharp peaking at the resonance frequency for small 

values of current is an indication of small damping of the response and efficient 
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thermalization and stimulated emission of injected carriers. The measured data have been 

analyzed with the small-signal response: 
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where fr is the resonance frequency and γd is the damping factor. A -3dB modulation 

bandwidth, f-3dB= 5.8GHz was measured for the highest current bias of 90 mA at room 

temperature. This -3dB bandwidth corresponds to bit rate of ~9 Gb/s for a bit error rate of 

less than 10-11. Figure 6.20(b) shows a plot of fr versus (I-Ith)
1/2. The differential gain can 

be derived from the slope of this plot in accordance with the relation: 
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where vg is the photon group velocity and Vact is the active volume of the gain medium. 

The value of dg/dn = 3x10-17 cm2, derived from the plot of Fig. 6.20(b), is in excellent 

agreement with the value derived earlier from the length dependent L-I measurements. 

Under gain compression limited modulation conditions γd is related to fr by the 

approximate relation γd= Kfr
2, where K is a measure of the damping related bandwidth 

and is given by: 
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where � is the gain compression factor and τp is the cavity photon lifetime. The plot of γd 

versus fr
2 is illustrated in the Fig. 6.20(c). The value of K derived from the slope is 1.24 

ns from which a value of �=1.22 x 10-17cm3 is derived. This value is relatively small, 

confirming that hot carrier effects do not play any significant role in the operation of the 
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nanowire lasers [173].  

6.9       Dynamic Characteristics of Electrically Injected Monolithic Red-Emitting 

            (λ=610nm) InGaN / GaN Disk-in-Nanowire Lasers on (001) Silicon 

As mentioned in section 6.4, we have increased the indium composition in the disks to 

make edge-emitting red nanowire laser on (001) silicon, and have replaced Al0.11Ga0.89N 

cladding with In0.18Al0.82N cladding, grown lattice matched to GaN. Wehave also 

measured the characteristics of the fabricated red-emitting laser. The red-emitting laser 

diodes have a turn on voltage of ~ 8.2V and a series resistance of 26.5 Ω. A threshold 

current density, Jth of 2.85 kA/cm2 was measured under pulsed biasing (1% duty cycle), 

and a Jth of 2.92 kA/cm2 was obtained under cw operation. For conventional InAlGaP 

based red-emitting lasers, the reported Jth was 6.4 kA/cm2, much higher than what we 

measured in our red-emitting lasers [174, 175]. Maximum light outputs of 14.8 mW and 

12.5 mW were measured from the low reflectivity facet of the laser under pulsed and CW 

mode, respectively as shown in Fig. 6.21(a). The slope efficiency of the laser is ηd= 0.1 

W/A (4.4%) with a Wall-plug efficiency of 0.57%. Figure 6.21(c) shows the variation of 

emission linewidth and peak emission wavelength with increasing injection current 

density. Figure 6.21(b) shows the electroluminescence of the laser below (0.6Jth) and 

above threshold (1.4Jth). The smallest recorded linewidth for the dominant longitudinal 

mode is 9Å, illustrated and total blueshift of peak emission is 14.8 nm, which 

corresponds to a polarization field of 1098kV/cm. For a green-emitting (λ=525nm) planar 

InGaN QW laser with high radiative efficiency, the reported total blueshift of the peak 

emission was 2MV/cm [104]. From Hakki-Paoli measurements, a peak modal gain 
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Figure 6.21 (a) Light-current (L-I) characteristics of a ridge waveguide nanowire red  
nanowire laser at 300K. The threshold current density, Jth is 2.88 kA/cm2 under 

continuous wave operation; (b) the electroluminescence (EL) spectrum of the 1.5 mm x 
10 µm ridge waveguide laser biased cw above and below threshold. The smallest 

recorded linewidth is 9Å, (c) the variation of the emission linewidth and the blueshift of 
the peak emission with increasing injection current density for the ridge waveguide laser. 
The total blueshift of the peak emission is 14.8 nm which corresponds to a polarization 

field of 1098 kV/cm. 
 
 

of 27 cm-1 was obtained at threshold. Figure 6.22(a) demonstrates the variation of modal 

gain as a function of wavelength near threshold derived from the emission spectra having 

succession of peaks and valleys, where the peaks correspond to the different longitudinal  
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Figure 6.22 (a) Modal gain spectrum at threshold obtained from Hakki-Paoli 
measurement. The peak net modal gain at threshold is 27cm-1, (b) Temperature dependence 

of the threshold current density in a ridge waveguide red nanowire laser under cw biasing. The 
inset shows the measured L-I characteristics at different temperatures, (c) Polarization 

dependent output from the single facet of red nanowire array laser. 
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Figure 6.23 (a) The variation of the inverse differential quantum efficiency with cavity 
length for ridge waveguide lasers with 10µm width. From the analysis of these data, an 

internal quantum efficiency of ηi= 0.54 was derived, (b) the variation of threshold current 
density, Jth with inverse cavity length. A value of differential gain dg/dn = 3x10-17 cm2 
and a transparency current density of 312 A/cm2 are derived from this plot using a total 

carrier lifetime τ of ~482 ps. 
 

modes. The modal gain per disk layer is 4.5 cm-1. Taking the mode confinement factor 

and the nanowire fill factor of 0.3 into account, the peak value of the material gain in the 

active region is ~ 1.5 x 103 cm-1. From the temperature dependence of threshold current 
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density, a large value of T0=234K was derived which is significantly higher than that 

reported for InAlGaP based red-emitting laser (T0 ~40-60K) in literature [174, 175]. 

Figure 6.22(b) depicts threshold current density as a function of temperature along with 

the temperature dependent L-I curves on inset. From the measurement on output 

polarization, shown in Fig. 6.22(c), it is found that the emitted light is TE-polarized, 

which increases sharply above threshold. TM-polarized light output remains significantly 

low throughout the injection range. Figure 6.23(a) shows the variation of inverse 

differential quantum efficiency with cavity length. Knowing the propagation loss (~7.2 

dB/cm) in the nanowire waveguides, we derived a radiative efficiency of 0.54 from the 

intercept of this data on ηd
-1-axis. This value is in good agreement to that we measured 

from temperature dependent PL. Figure 6.23(b) shows the variation of Jth as a function of 

inverse cavity length. Knowing the transmission loss in the waveguide and the total 

carrier lifetime (τ~ 482 ps) in the red-emitting InGaN disks, we derived a differential 

gain, dg/dn of 3x10-17 cm2 from the slope of this plot. We also calculated a transparency 

current density of 312 A/cm2 from the intercept of this data on y-axis. 

            Small signal modulation measurements were performed on red-emitting laser at 

room temperature, and a modulation bandwidth of ~3GHz is derived for the highest 

injection current of 80mA at room temperature, as depicted in Fig. 6.24(a). The 

differential gain is derived from a plot of the resonance frequency fr versus (I-Ith)
1/2, with 

values of ƞr  and confinement factor Γ equal to 0.52 and 0.018, respectively, to be 

3.1x1017 cm2. This value compares favorably with the differential gain of red-emitting 

self-organized quantum dot lasers [139]. Under small-signal modulation, changes in 

refractive index in the active region in a laser can cause frequency chirping resulted from 
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the generation of hot carriers and subsequent gain suppression. We have measured chirp 

in the nanowire lasers during small-signal modulation by measuring the broadening of a 

single longitudinal mode using an optical spectrum analyzer. The sinusoidal modulation  

                                

    

Figure 6.24 (a) Measured small-signal modulation response of a 400µm x 4µm ridge 
waveguide red nanowire laser at 300K for varying dc injection current values; (b) 

measured chirp of nanowire laser as a function of small-signal modulation 
frequency; (c) measured α-parameter as a function of emission wavelength. 

 

current was superimposed on the pulsed dc bias current above threshold. The 

measurements were done as a function of the frequency of the modulating current. A dc 

current of 24mA was used while measuring the chirp in a 4 µm x 400 µm red laser with a 
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peak-to-peak modulation current of 5 mA. The envelope of the dynamic shift in the 

wavelength was recorded as a function of frequency. The difference between the half-

width of the observed envelopes with and without modulation is plotted as the evaluated 

chirp at room temperature in Fig. 6.24(b). The measured chirp in the device is 0.8Å at a 

modulation frequency of 6 MHz. Dense and ultra-dense wavelength division multiplexing 

schemes require narrow emission linewidth with a low dynamic chirp of the emission 

wavelength [176]. The conventional 1.55 μm light source has been the InGaAsP double 

heterostructure or multi-quantum well (MQW) laser which has large values of chirp (≥ 2 

Å) [177, 178]. Another important parameter related to the effects of the change of 

refractive index in the gain medium with injection current on the dynamic characteristics 

of the laser is the linewidth enhancement factor or α-parameter. The α-parameter is 

expressed as:  � = −
��

�
(
���/��

��/��
) and is derived from Hakki-Paoli measurements using 

the relation: 

                                             � =
�
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���

�{���
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                                          (6.7) 

where λj is the peak wavelength of the jth mode in the near-threshold spectrum, rj is the 

peak-to-valley ratio in the spectrum and δλ is the mode spacing between adjacent 

longitudinal modes in the emission spectrum recorded at threshold. The measured α-

parameters as a function of emission wavelengths are plotted in Fig. 6.24(c).  α is ∼0 near 

the peak emission wavelength (λ=610nm), and increases to above 2 at both shorter and 

longer wavelengths. From theoretical calculation, it has been shown that the minimum 

value of α occurs approximately at the emission wavelength at which the peak gain is 
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derived in quantum dot and quantum wire lasers [179]. Low values of chirp and α-factor 

measured in these nanowire devices are favorable dynamic characteristics of a 

semiconductor laser. 

 

6.10     Summary 

            In conclusion, we have demonstrated the first monolithic electrically injected 

nanowire array laser on (001) silicon. Both green (λ=533nm) and red (λ=610nm) edge-

emitting nanowire lasers were grown on silicon by molecular beam epitaxy. From FDTD 

simulation, it is found that the optical field is continuous over all the nanowires with 

parylene filling the gaps between them, and the nanowire waveguide can be treated as 

nanowire-parylene composite. Edge-emitting electrically pumped green-emitting 

nanowire lasers on silicon have demonstrated potential for superior performances in 

terms of threshold current density (1.76 kA/cm2), differential gain (2.8x10-17cm2), 

temperature coefficient (232K) and small signal modulation bandwidth (5.8GHz). In 

particular, the threshold current density is significantly lower than that reported for green-

emitting planar InGaN quantum well lasers.  

            We have also fabricated edge-emitting red nanowire lasers with different cavity 

lengths and ridge widths. For the red-emitting nanowire laser heterostructure, we have 

grown In0.18Al0.82N nanowire cladding layer lattice matched to GaN, which provided 

much better optical mode confinement keeping the overall device series resistance low. 

Upon a detail characterization of the red nanowire lasers, a threshold current density of 

2.85 kA/cm2, a large T0 of 234K and a differential gain of 3.1x10-17cm2 were measured 

from these devices. Small signal modulation bandwidth of 3GHz at 300K was measured 
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for the red-emitting laser. A chirp of less than 1Å for a modulation frequency of 6GHz 

and a near-zero α-parameter at the peak emission wavelength (λ~610nm) have been 

extracted from the dynamic measurements on the red lasers. These are favorable 

characteristics of a semiconductor laser and encouraging for optical communication in 

plastic fibers. The nanowire array red-emitting lasers demonstrated here have better 

performances than those of the conventional planar InAlGaP based red-emitting lasers in 

terms of threshold current density and temperature coefficient. In particular, the 

temperature coefficient measured from the red nanowire laser is significantly larger than 

those obtained for conventional InAlGaP based red lasers (To~40-60K). Increasing the 

radiative efficiency of the green- and red-emitting InGaN/GaN disks further in the active 

region by varying the growth conditions in MBE system, modifying the cladding layers in 

the laser heterostructure to provide even better optical mode confinement, lowering the 

overall device series resistance by optimizing p-doping using metal modulation epitaxy, 

and using anti-reflective coating on the light-extracting facet of the edge-emitting laser, 

threshold current density, slope efficiency and Wall-plug efficiency of these devices can 

be improved. 

            The monolithic green and red-emitting nanowire lasers described in this chapter 

are epitaxially grown on (001) Si substrates and are, therefore, compatible with 

mainstream Si CMOS technology. While we have demonstrated a visible laser here, 

emission into the near infrared should be possible and will be explored by changing the 

alloy composition in the InGaN disks. Of course, the longer emission wavelengths will 

present laser heterostructure design challenges in terms of mode confinement, but these 

are not unsurmountable. Currently, visible lasers are grown on extremely expensive GaN 
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substrates. We presented extensive data here showing that the nanowire lasers on 

substantially less expensive silicon substrates have performance characteristics 

comparable to or surpassing those of devices grown on GaN. This is due to the extremely 

low density of extended defects and a small polarization field in the nanowires. In the 

context of silicon photonics, the electrically pumped near-IR nanowire lasers can be 

monolithically integrated with Si-based passive waveguides and front-end photoreceivers 

(Ge or SiGe detector integrated with amplifier) [180] to form an optical communication 

link.  
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Chapter VII 

Conclusion and Suggestion for Future Work 

 

7.1      Summary of Present Work 

           The present work concentrated on the self-assembled growth and optimization 

of the radiative efficiency of InGaN/GaN disks-in-nanowires (DNWs) on (001) 

silicon substrates. Through extensive structural and optical characterization, 

importance of surface passivation of nanowires and optimum nanowire densities was 

studied. The findings obtained from this research helped in making nanowire LEDs 

exhibiting small injection-dependent peak shift and reduced efficiency drop at high 

injection currents and electrically injected monolithic lasers on silicon with 

substantially reduced threshold current density. 

            Growth of self-assembled blue (λ=430nm), green (λ=540nm) and red-emitting 

(λ=650 nm) InGaN/GaN disks-in-nanowires on (001) silicon by molecular beam 

epitaxy (MBE) was discussed in chapter II. Detailed structural characterizations 

including SEM, HRTEM and EDX measurements were performed on InGaN 

nanowires and InGaN/GaN DNWs to study the crystal quality of the as-grown 

nanowires and to calibrate the elemental compositions of the disks. Growth 

conditions inside MBE were varied and nanowire surfaces have been passivated with 

Si3N4 and parylene to maximize the radiative efficiency of the InGaN disks as high as 
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possible. Internal quantum efficiency (IQE) of as-grown blue, green and red DNW 

samples were measured from temperature dependent PL (TDPL) and were found to 

be as high as 48% 43% and 41%, respectively. Upon parylene passivation, maximum 

IQEs of 54%, 52% and 51% for the passivated blue, green and red disks, respectively 

were obtained. Parylene provided better surface passivation (~ 10-12% for all 

emission wavelengths) in comparison to Si3N4. Total carrier lifetimes in the as-grown 

and surface passivated InGaN disks were measured from time-resolved PL (TRPL). 

Using the data obtained from both TDPL and TRPL measurements, radiative and 

non-radiative carrier lifetimes in the disks were estimated. The change in the values 

of lifetimes was consistent with the improved radiative efficiency of the InGaN disks 

after parylene passivation.  

            Chapter III outlined the growth, fabrication and characteristics of the self-

assembled nanowire blue (λ=430nm), green (λ=540nm) and red-emitting (λ=610nm) 

LEDs on (001) silicon. The diodes were characterized by a turn-on voltage in the 

range of ~6-7.5 V and a series resistance in the range of ~17-28Ω. Measured external 

quantum efficiency (EQE) at 300K has attained a peak value at an injection current 

density of ~ 18-38 A/cm2, which is low and undergoes an efficiency drop of ~ 10-

15% at 120A/cm2 compared to the peak efficiency of the corresponding LED. From 

the analysis of the EQE curves, Auger coefficients in the InGaN/GaN disks were 

derived to be ~ 10-34-10-33 cm6 s−1 for all emission wavelengths, which are low and 

consistent with theoretical calculations. The values of efficiency droop at high 

injection currents in the nanowire LEDs are smaller than those in planar InGaN 

quantum well (QW) LEDs due to the low Auger coefficients in the disks and the 
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presence of an electron blocking layer after the active region. Polarization fields of 

~396kV/cm, 605kV/cm and 1260 kV/cm, were estimated for the blue, green and red-

emitting LEDs on silicon, respectively measuring the blue-shifts in the 

electroluminescence (EL) peak with injection currents. Due to the radial strain 

relaxation of the nanowire heterostructure during epitaxy, these values of polarization 

fields in the disks are significantly smaller than those obtained for equivalent planar 

green-emitting InGaN quantum wells (~2 MV/cm) grown on c-plane sapphire 

substrate. Since silicon substrate, on which the LEDs are grown, absorbs light 

emitting from the disks, nanowire LEDs were transferred from silicon substrate to Ag 

reflector to increase the light output from the device. Characteristics of the flip-chip 

nanowire LED on metal reflector were discussed. 

            In the self-assembled growth of nanowires, optimum areal density plays a 

crucial role on their optical properties and therefore, on the device performance. We 

have examined the effect of nanowire coalescence in chapter IV that occurs when the 

areal density is increased above a certain limit. Detailed structural characterization of 

the nanowires using high resolution transmission electron microscopy (HRTEM) 

imaging reveals that coalescing can lead to threading dislocations and stacking faults 

near the coalesced nanowire boundaries. It was observed that the radiative efficiency 

of the InGaN/GaN DNWs, used as the gain media in nanowire LEDs and lasers, 

change significantly with areal density. The radiative efficiency was the lowest for 

the highest density disks-in-nanowires sample. To investigate the effect of areal 

density on the device performance, red-emitting nanowire LEDs, with different areal 

densities, were fabricated. The ones with the lowest optimum density have exhibited 
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the highest peak efficiency. Near-field images of the electroluminescence from the 

LEDs demonstrated that only a small percentage of the device area (~3%) was 

lighting up for the highest areal density (~ 2x1011cm-2) sample. We have 

characterized and compared deep level electron and hole traps in GaN nanowires and 

bulk GaN by performing transient capacitance measurements on planar GaN and GaN 

nanowire n+p diodes, respectively. The activation energies for the electron and hole 

traps in them are similar, which indicates that the origin of these trap levels is similar 

in these structures. It is found that the density of these traps, which act as non-

radiative recombination centers for carriers, increases by orders of magnitude with 

increase of nanowire density i.e. the degree of nanowire coalescence. Our analysis 

revealed that the absence of the traps in the red LEDs would result in a peak internal 

quantum efficiency (IQE) of ~60%. Nanowire LEDs have demonstrated their best 

performance in terms of peak efficiency with an optimized areal density of ~2x1010 

cm-2. 

            To overcome the disadvantages of phosphor-converted white LEDs, all-nitride 

tunable InGaN/GaN disk-in-nanowire white LEDs on silicon, based on direct 

electrical injection, incorporating different color-emitting InGaN disks in the active 

region, have been described in Chapter V. A smaller shift in correlated color 

temperature (CCT) of white emission with injection current density was observed due 

to the reduced polarization field in the InGaN disks because of the radial strain 

relaxation during their epitaxy. To investigate the tunability of white emission from 

the nanowire LEDs, the number and emission wavelengths of the disks were varied 

which yielded CCTs in the range of 4210-6130K at an injection current density of 50 
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A/cm2. The characteristics of phosphor-free self-organized InGaN/GaN quantum dot 

wavelength converter white LEDs have also been reported for comparison. Carriers 

were electrically injected in the blue-emitting exciting dots and the red-emitting dots 

were the wavelength converters. Stable CCTs with injection currents were observed 

for the wavelength converter LEDs, since self-assembled dots are formed by strain 

relaxation and therefore, they have significantly smaller polarization field. Color 

temperatures in the range of 4420-6700K at 45A/cm2 were derived from these LEDs 

by changing the number and emission wavelength of the exciting and converter dot 

layers.  

            Chapter VI described the first ever demonstration of monolithic electrically 

injected edge-emitting nanowire array lasers (both green (λ=533nm) and red 

(λ=610nm)) on (001) silicon. Finite difference time domain (FDTD) simulation 

reveals that the optical field is continuous in the nanowire waveguide. Green 

nanowire lasers, grown with In0.6Ga0.94N waveguides and Al0.11Ga0.89N cladding, 

have demonstrated superior performances in terms of low threshold current density 

(1.76 kA/cm2), relatively high differential gain (2.8x10-17cm2), large temperature 

coefficient (232K) and small signal modulation bandwidth (5.8GHz). Threshold 

current density is significantly smaller than that reported for equivalent planar green 

InGaN quantum well lasers. Red-emitting nanowire lasers were made by increasing 

the In composition in the disks further and using In0.18Al0.82N cladding grown lattice 

matched to GaN. The red lasers were characterized with a threshold current density of 

2.85 kA/cm2, a large T0 of 234K, a differential gain of 3.1x10-17cm2 and a small 

signal modulation bandwidth of 3 GHz at 80mA. A chirp of less than 1Å for a 
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modulation frequency of 6 GHz and a near-zero α-parameter near the peak emission 

wavelength have been derived from the dynamic measurements. These nanowire 

lasers have better performances than those of conventional InAlGaP based red lasers 

in terms of threshold current density and temperature coefficient.  

 

7.2      Suggestions for Future Work 

7.2.1   Selective Area Growth of Ga(In)N Nanowires by MBE for  

           Monolithic Tunable White LEDs 

            As described in Chapters II and III, in self-assembled growth, nanowires grow 

in random positions on the silicon substrate and a variation of diameter of nanowires 

is usually observed across the sample. With the same V/III flux ratio for a  

 

Figure 7.1   Scanning electron microscopy (SEM) imaging of (a) 45o tilted and       
(b) top surface views for selective area growth (SAG) of GaN  

nanocolumn array [181]. 
 

disk-in-nanowire (DNW) LED designed for a particular emission color, In 

composition in the InGaN disks varies to some extent between nanowires due to the 

difference in the nanowire diameter. Consequently, it is seen in the near-field image 
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of the electroluminescence that some of the nanowires are emitting light at different 

wavelengths other than the desired one. Selective area growth (SAG) of GaN 

nanowires using nanomask patterns can contribute to the homogeneity of the 

nanowire diameter and hence the alloy composition of InGaN nanowires and disks-

in-nanowires. This will result in a truly uniform color emission across the sample and 

subsequently a visible emission with smaller luminescence linewidth. Additionally, 

by selectively growing different regions of nanowires with different diameters using 

appropriate growth masks, monolithic integration of blue, green and red-emitting 

InGaN LEDs can be possible for the same III/V flux ratio on the same silicon 

substrate. Moreover, if each color region on the silicon substrate has its individual 

contacts and can be biased independently, then white light source with unparalleled 

tunability can be obtained. Unlike the white LEDs, mentioned in Chapter V, number 

of disks/dots and emission wavelength need not be changed to tune the white light. 

Figure 7.1 demonstrates the SEM imaging of the patterned nanowires obtained by 

selective area growth. SiO2 [182, 183] and W metal [184] are used as growth masks 

for the SAG of GaN by HVPE and metal-organic vapor phase epitaxy (MOVPE) 

[185] techniques. SAG by metal-organic molecular beam epitaxy (MO-MBE) using 

triethyl-gallium and gas-source MBE using an ammonia source [186] have been 

demonstrated. In this approach, gas-phase ingredients are found to facilitate the 

selective area growth of nanowires. SAG of nanowires by MBE have been 

demonstrated on nitrided Al nanodot patterns [187]. The problem with this technique 

is that the Al patterns get deformed before nitridation and hence the shape of the 

nanowires is not well controlled. SAG technique of GaN nanowires using Ti-mask 
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has also been reported [188, 189]. Ti nanomask helps in the growth of patterned 

nanowires with well-controlled diameter and height. Moreover, it has been 

demonstrated that emission color (from blue to red) can be controlled in SAG simply 

by tuning nanowire diameter without changing the III/V flux ratio on the same 

substrate [189]. 

 

 7.2.2  High Power Near-Infrared Electrically Injected Monolithic Nanowire 

           Lasers on (001) Silicon 

            In Chapter VI, I have described an electrically injected nanowire array laser 

on (001) silicon with emission wavelengths in the green (λ=533nm) and red 

(λ=610nm). I have also mentioned that an electrically injected monolithic near-  

 

                             

Figure 7.2   Schematic illustration of the proposed edge-emitting near-IR monolithic 
InGaN/GaN disk-in-nanowire laser heterostructure on (001) silicon.   

 

infrared (near-IR) laser on (001) silicon is compatible with existing Si CMOS 
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technology and essential for the success of silicon photonics. By increasing indium 

composition in the InGaN disks, near-IR emission from InGaN/GaN DNWs should 

be possible without having significant defects and strain induced polarization field 

due to the large surface to volume ratio of the nanowires and radial strain relaxation 

during their epitaxy. The electrically pumped IR nanowire lasers can then be 

monolithically integrated with Si-based passive waveguides and front-end 

photoreceivers [180] for optical communication. We propose a near-IR (~ 1-1.2 µm) 

edge-emitting monolithic nanowire laser heterostructure on (001) silicon similar to  

 

Figure 7.3   Refractive indices of wurtzite GaN (square), InN (empty triangle), AlN 
(circle) and Al0.1Ga0.9N (solid triangle) [190].  

 

that used for red nanowire laser as shown schematically in Fig. 7.2, with InGaN/GaN 

disks or InGaN/InGaN disks in the active region where InGaN barrier has the lower 

indium composition, In0.06Ga0.94N waveguide, and In0.18Al0.82N cladding, grown 

lattice matched to GaN. However, near infrared emission wavelengths, a cross-over 
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of refractive indices of InN, GaN and AlN have been reported by Piprek et al. [190], 

as shown in Fig. 7.3. Therefore, laser heterostructure needs to be designed with 

appropriate cladding layers having optimum thickness and InGaN disks with high 

indium composition have to be optimized for near-IR emission. From the green and 

red-emitting nanowire lasers, mentioned in Chapter VI, we obtained a maximum light 

output of 8mW and 15mW, respectively under pulsed biased operation and the slope 

efficiency of the lasers was low. In order to make a high power near-IR laser on 

silicon with higher slope efficiency and Wall-plug efficiency, the following 

approaches can be adopted. Radiative efficiency of the InN/InGaN disks-in-

nanowires, gain media of the laser, need to be maximized by optimizing the growth 

conditions in MBE system and surface passivation. Waveguide and cladding layers in 

the laser heterostructure should be modified by changing the thickness and alloy 

composition to provide optimum optical mode confinement. Series resistance of the 

device can be reduced by optimizing the p-doping further using metal modulation 

epitaxy [43] during p-GaN growth. Also, using anti-reflective coating on the light-

extracting facet of the edge-emitting laser, output power can be increased. 

 

7.2.3     Room Temperature Nanowire Visible Spin-Polarized LEDs 

             Semiconductor spintronics has been the focus of attention for its applicability 

in high-performance logic, memory, and optoelectronic devices. The wide-band-gap 

wurtzite GaN has inversion asymmetry and is characterized by a weak spin-orbit 

coupling (SOC), which results in long spin-relaxation time and makes it attractive for 

the realization of room temperature spintronic devices [191, 192]. GaN also shows 
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attractive optoelectronic properties in the visible spectrum range, making it suitable 

for room temperature spin-polarized visible LEDs. We have investigated spin 

diffusion in bulk GaN by three-terminal Hanle measurements using MnAs spin 

injector [193]. We also examined spin dynamics in GaN nanowires by performing 

magnetoresistance (MR), and four-terminal Hanle measurements on single GaN 

nanowire spin-valve using FeCo/MgO tunnel contacts [194]. Our results reveal that  

 

 

Figure 7.4   Schematic representation of the proposed flip-chip spin-polarized  
LED heterostructure.  

 

the value of spin diffusion length (Lsf) at room temperature is 300 nm (corresponds to 

a spin lifetime (τsf) of ~120ps) in GaN nanowires which is almost twice of that 

derived in bulk GaN (Lsf =180nm, τsf = 44ps at 300K) at similar doping 

concentrations. Since Ga(In)N nanowires grown on (001) silicon are relatively free of 
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extended defects compared to bulk GaN, it is evident that defects in bulk GaN 

systems does play a role in determining the spin relaxation process, which makes 

GaN nanowire a better candidate for realizing room temperature visible spin-LEDs. 

Figure 7.4 demonstrates the proposed schematic illustration of the room temperature 

visible nanowire spin-LEDs with FeCo/MgO tunnel contact. A spurious polarization 

effect known as “magnetic circular dichroism (MCD)” might arise while designing a 

surface-emitting spin-LED heterostructure, if the spin-polarized light is collected 

through the ferromagnetic spin injector. MCD is the differential absorption of right- 

and left-circularly polarized lights by a ferromagnetic (FM) contact. Therefore, if a 

light detection scheme is used such that the emitted light will pass through the FM 

contact, then some degree of circular polarization in the emitted light will be observed 

even if unpolarized light is emitted from the active region i.e. MCD will change the 

actual polarization of the emitted light from the InGaN disk active region. To avoid 

MCD, a LED heterostructure design is proposed here using flip-chip processing of 

nanowire LEDs (similar to what was described in Chapter III) where the emitted light 

will be collected vertically from the p-GaN side as it passes through non-magnetic 

indium-tin-oxide (ITO) contact. 
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APPENDIX A 

Silicon Substrate Preparation for MBE Growth 

            Self-assembled Ga(In)N nanowires were grown on ~535 µm n-type (001) 

silicon substrate. The silicon sample is thoroughly cleaned before introducing it into 

the intro chamber of the MBE system. The sample is cleaned in hot acetone and 

isopropanal for 10 minutes each followed by DI water rinse. Native oxide on the 

silicon sample is removed by wet-etching with diluted HF solution (1:1) for 5 

minutes. It is then rinsed in DI water and quickly air-transferred to the intro chamber. 

Then the sample undergoes a 1 hour intro-chamber baking at 200 oC for removal of 

moisture and 1 hour buffer chamber baking at 400 oC for outgassing of adsorbed 

gases and surface contaminants. It is then introduced in the growth chamber and is 

kept at a high temperature (~950oC thermocouple temperature) under high vacuum 

for 45 minutes to remove the remaining oxide from the sample surface. The substrate 

temperature is then decreased to the growth temperature, which is typically 800oC. 
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APPENDIX B 

InGaN/GaN Disks-in-nanowire Ridge Waveguide Laser Processing 

The processing of ridge waveguide red-emitting nanowire laser with In0.18Al0.82N 

cladding is discussed in the following: 

       1.    Deposition of alignment mark on the as-grown sample 

                   1.1  Solvent clean: 

                          Acetone: 10 min on hot plate 

                          IPA 10 min 

                          DI water Rinse: 5 min 

                   1.2  Lithography 

                          Dehydrate bake: 2 min, 115 °C hotplate 

                          Resist coating: HMDS, SPR 220-3.0 @ 4.0 krpm, 30 sec 

                          Pre-bake: 90 sec @ 115 °C on hotplate 

                          Exposure: 0.35 sec in projection stepper 

                          Post-bake: 90 sec @ 115 °C 

                          Resist development: AZ 726 MIF 70 sec 

                          DI water rinse 5 min 

                   1.3  Descum 

                          90 sec, 90 W, 250mT, 17% O2 

                   1.4  Metal Deposition 
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                          Ti/Au 100 Å /300 Å 

                   1.5  Metal Lift-off 

                           2 hours in Acetone 

 

       2.    Defining mesa with ridge geometry 

                  2.1  Solvent clean 

                         Acetone: 10 min on hot plate 

                         IPA 10 min 

                         DI water Rinse: 5 min 

                  2.2  Lithography 

                         Dehydrate bake: 2 min, 115 °C hotplate 

                         Resist coating: HMDS, SPR 220-3.0 @ 4.0 krpm, 30 sec 

                         Pre-bake: 90 sec @ 115 °C on hotplate 

                         Exposure: 0.35 sec in projection stepper 

                         Post-bake: 90 sec @ 115 °C 

                         Resist development: AZ 726 MIF 70 sec; 

                         DI water rinse 5 min 

                  2.3  Plasma Etching 

                         LAM: 

                         Inductively coupled plasma (ICP) etching, etchant gas recipe contains 

                         Cl2 and Ar. Typical etching rate is calibrated to be ~4-4.4 nm/s. 

                  2.4  Resist Removal 

                         Plasma Asher: 300 sec, 200 W, 250mT, O2 ~17% 
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                         Acetone: 30 min on hot plate 

                         IPA: 5 min 

                         DI water rinse: 5 min 

                   2.5  Dektak profilometer: Device mesa height is measured. 

 

       3.    Etching the structure till silicon for making n-contact on n-type silicon 

                 3.1  Solvent clean 

                        Acetone: 10 min on hot plate 

                        IPA 10 min 

                        DI water Rinse: 5 min 

                 3.2  Lithography 

                        Dehydrate bake: 2 min, 115 °C hotplate 

                        Resist coating: HMDS, SPR 220-3.0 @ 4.0 krpm, 30 sec 

                         Pre-bake: 90 sec @ 115 °C on hotplate 

                         Exposure: 0.35 sec in projection stepper 

                         Post-bake: 90 sec @ 115 °C 
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                         Resist development: AZ 726 MIF 70 sec; 

                         DI water rinse 5 min 

                   3.3  Plasma Etching 

                          LAM 

                          Inductively coupled plasma (ICP) etching, etchant gas recipe 

                          contains Cl2 and Ar. Typical etching rate is calibrated to be ~ 4-4.4 

                          nm/s. 

                  3.4   Resist Removal 

                          Plasma Asher: 300 sec, 200 W, 250mT, O2 ~17% 

                          Acetone: 30 min on hot plate 

                          IPA: 5 min 

                          DI water rinse: 5 min 

                   3.5  Dektak profilometer: Device mesa height is measured. 
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       4.    Parylene planarization and passivation of the device 

                  4.1   Parylene Deposition 

                          Parylene is deposited on the sample by thermal evaporation at 300K. 

                  4.2   Parylene Etching 

                          Parylene is etched in steps by LAM, where etchant gas contains O2 

                                   plasma. Etching steps are calibrated by taking images with SEM. 

                          Parylene is etched up to the silicon substrate surrounding the mesa 

                          for making n-contact and up to the p-GaN so that the nanowire tips 

                          are exposed for p-metal deposition. 

 

5.    Deposition of Ni/Au semi-transparent p-contact 

                  5.1  Solvent clean 

                         Acetone: 10 min on hot plate 

                         IPA 10 min 

                         DI water Rinse: 5 min 
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                  5.2  Lithography 

                         Dehydrate bake: 2 min, 115 °C hotplate 

                         Resist coating: HMDS, SPR 220-3.0 @ 4.0 krpm, 30 sec 

                         Pre-bake: 90 sec @ 115 °C on hotplate 

                         Exposure: 0.35 sec in projection stepper 

                         Post-bake: 90 sec @ 115 °C 

                        Resist development: AZ 726 MIF 70 sec; 

                        DI water rinse 5 min 

                 5.3  Descum 

                         90 sec, 90 W, 250mT, 17% O2 

                 5.4  Oxide removal from the top of p-GaN surface: 

                        HCl : DI water = 1:1, 2 min to remove native oxide 

                        DI water rinse: 5 min 

                 5.5  Metal deposition 

                        Ni/Au = 50 Å/50 Å 

                 5.6  Metal lift-off 

                        Overnight in Acetone 

                        IPA: 10 min 

                        DI water: 5 min 

        6.    Annealing of Ni/Au p-contact 

                         Rapid thermal annealing: 550 oC, 2 min in N2:O2 (4:1) environment 

      7.    Deposition of ITO current spreading layer 

                 7.1  Solvent clean 
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                          Acetone: 10 min on hot plate 

                          IPA 10 min 

                          DI water Rinse: 5 min 

                  7.2  Lithography 

                           Dehydrate bake: 2 min, 115 °C hotplate 

                           Resist coating: HMDS, SPR 220-3.0 @ 4.0 krpm, 30 sec 

                           Pre-bake: 90 sec @ 115 °C on hotplate 

                           Exposure: 0.35 sec in projection stepper 

                           Post-bake: 90 sec @ 115 °C 

                           Resist development: AZ 726 MIF 70 sec; 

                           DI water rinse 5 min 

                    7.3  Descum 

                            90 sec, 90 W, 250mT, 17% O2 

                     7.4  Oxide removal from the top of p-GaN surface: 

                            HCl : DI water = 1:1, 2 min to remove native oxide 

                            DI water rinse: 5 min 

                     7.5  Metal deposition 

                            2300 Å ITO is deposited by sputtering.  

                     7.6  Metal lift-off 

                            4 hours in Acetone 

                            IPA: 10 min 

                            DI water: 5 min 
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        8.    Annealing of ITO layer 

                        Rapid thermal annealing: 450oC, 1 min in Ar environment 

 

        9.    Passivation with SiOx 

                        SiOx deposition: 1000 nm using GSI plasma enhanced chemical vapor 

                        deposition (PECVD). 

 

       10.   Oxide Etch (Formation of Via holes) 

                10.1  Lithography 
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                         Dehydrate bake: 2 min, 115 °C hotplate 

                         Resist coating: HMDS, SPR 220-3.0 @ 4.0 krpm, 30 sec 

                         Pre-bake: 90 sec @ 115 °C on hotplate 

                         Exposure: 0.35 sec in projection stepper 

                         Post-bake: 90 sec @ 115 °C 

                         Resist development: AZ 726 MIF 70 sec; 

                         DI water rinse 3 min 

                10.2  Plasma Etch 

                         LAM 

                         SF6 : C4F8 : Ar = 8 : 50 : 50 sccm, 10 mT, 300 W (rate ~ 184 nm/min) 

                10.3  Resist Removal 

                         Plasma Asher: 300 sec, 200 W, 250mT, O2 ~17% 

                         Acetone: 30 min on hot plate 

                         IPA: 5 min 

                        DI water rinse: 5 min 
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        11.    Deposition of n-contact and interconnect 

                11.1  Solvent clean 

                         Acetone: 10 min on hot plate 

                         IPA 10 min 

                         DI water Rinse: 5 min 

                11.2  Lithography 

                         Dehydrate bake: 2 min, 115 °C hotplate 

                         Resist coating: HMDS, SPR 220-3.0 @ 4.0 krpm, 30 sec 

                         Pre-bake: 90 sec @ 115 °C on hotplate 

                         Exposure: 0.35 sec in projection stepper 

                         Post-bake: 90 sec @ 115 °C 

                        Resist development: AZ 726 MIF 70 sec; 

                        DI water rinse 5 min 

               11.3  Descum 

                        90 sec, 90 W, 250mT, 17% O2 

               11.4  Metal Deposition 

                        Al/Au 1000 Å /1500 Å 

               11.5  Metal Lift-off 

                        Overnight in Acetone  
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The sample is then cleaved perpendicular to the laser cavity, cleaved surfaces are 

etched by focused ion beam (FIB) to make them optically flat and TiO2/SiO2 

dielectric DBR is deposited on the laser facets by physical vapor deposition. 
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