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Abstract 
 

As environmental degradation now reaches around the globe, ecosystem-assessment 

techniques and tools (EATTs) are needed in new places and at physical scales that lie outside the 

previous boundaries of our accumulated technical experience. To meet this need many 

developing and less developed countries have adapted existing EATTs from the more developed 

world. In this case careful evaluation is required for their suitability in a new ecological context. 

I refer to this issue as tool “transferability.” A related issue arises in the context of inter-regional 

or very large-scale assessments. Since assessments occur in specific ecoregional settings, meta-

analysis of accumulating national or regional assessment datasets must be free of contextual bias 

inherent in statistical data gathered using different methodologies, constrained by differing 

geographic particularities, and reflecting the responses of locally adapted biota. This is an issue I 

refer to as assessment data “comparability.”  

My dissertation consists of six chapters treating various issues that arise when one tries to 

compare ecological assessment data from two very different parts of the world: in this case 

Michigan and South Korea. Chapter 1 introduces general background of EATT issues and case 

study regions. In chapters 2-5, I analyzed transferability of hydrologic modeling, biological field 

sampling techniques and indicator metric development. The analysis in chapter 6, used 

hydrologic modeling (chapters 2 and 3) and sampling method calibrations (chapters 4 and 5) to 

correct regional biases in both datasets. I then used residualization techniques to correct covariate 

biases and directly compare the response of biological communities to urban and to agricultural 
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land use gradients. I found (1) South Korean methods were less efficient for fish sampling but 

more efficient macroinvertebrate sampling; (2) methodological calibration functions were 

required to account for these regional differences in sampling method; (3) regional ecological 

normalization (residualization) and rescaling proved necessary for an unbiased comparison of 

LU stressor-response relationships across regions. Overall, my study suggests that EATT 

transferability and assessment comparability are significant but under-appreciated problems in 

ecological assessment and that explicit correction of regional biases are necessary for 

comparative analysis. 
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Chapter 1 : Disseratation introduction and overview 

Overview of ecosystem-assessment techniques and tools 

The need for ecosystem-assessment techniques and tools (EATTs) to help manage and 

protect existing river ecosystems and related natural resources continues to increase with 

growing global population, industrial development, and water demand. River ecosystems face a 

wide variety of anthropogenic threats including hydraulic alterations of channels for flood 

control, point and non-point source pollution, and radical modification of watershed hydrology 

due to both changing land-use and consumptive water withdrawal (Seelbach and Wiley 1996, 

Hughes and Hunsaker 2002, MDNR 2002, Brenden et al. 2006, Riseng et al. 2006, Allan et al. 

2013). Human disturbances not only directly influence the biological diversity and community 

balance of natural systems (Allan et al. 1997, Lammert and Allan 1997, Wang et al. 2001, 

Riseng et al. 2004), but also can affect human quality of life (Bradley and Altizer 2007, Esbah 

2007). Thus, around the world, decision makers and planners need to both evaluate current 

environmental conditions, and then develop effective strategies to protect and restore the 

ecological services associated with rivers (Rabeni and Sowa 1996, Higgins et al. 1999, Seelbach 

et al. 2002).   

To quantify environmental change and degree of anthropogenic impact, many different 

EATTs have been developed, particularly in the US and Europe (Cairns and Pratt 1993, Karr 

1995, Karr and Chu 1999, Davies 2000, Hemsley-Flint 2000, Resh et al. 2000, Verdonschot and 

Nijboer 2000, Wright 2000). Often developed by governmental- and nongovernmental-
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environmental agencies, these EATTs typically use biological indicators to simplify 

measurement of important ecological changes affecting both physical and biological system 

integrity (Merritt and Cummins 1996, Olsen et al. 1999, Fore and Yoder 2003). In fluvial 

ecosystem studies, periphyton, macroinvertebrate and fish assemblages are often preferred 

biological indicators due to their sensitivity to pollution, limited mobility, ease of collection, and 

relatively large quantity of taxa and individuals (Karr 1981, Hellawell 1986, Rosenberg and Resh 

1993, Merritt and Cummins 1996). Macroinvertebrate and fish assemblage metrics have been 

used since the late 1980s throughout most of the western world as the primary tool in assessing 

biological changes resulting from anthropogenic impacts (Hilsenhoff 1987, Johnson et al. 1993, 

Resh and Jackson 1993, Fore and Yoder 2003). Similar approaches are now being applied in 

Asia, Africa, and much of the developing world (Moog 2007, Resh 2007, Alam et al. 2008, 

NIER 2009, Stubauer et al. 2010).  

Global transferability of EATTs 

To date, few studies have directly discussed the transferability of regionally developed 

EATTs to other regions of the world. Neither has there been much explicit discussion of issues 

of comparability in the use of these in inter-regional and global ecosystem-assessment programs 

(MEA 2005, Furse et al. 2006, US EPA 2006). For example, in the U. S. the Environmental 

Protection Agency (US EPA) both through required state-developed annual assessment 

reporting, and its national Environmental Monitoring and Assessment Program (EMAP), is 

charged with evaluating the status and trends of national ecological resources across 9 major 

ecoregions of the United States (US EPA 2007). EMAP was initiated because of difficulties 

experienced in comparing and summarizing state-level status reporting to evaluate the nation’s 

habitat quality and ecological integrity (Shapiro et al. 2008). Although both governmental and 
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nongovernmental organizations have consistently have collected water quality and biological 

data for years (Faustini et al. 2009), differences in methodology and sampling designs made 

synthetic analyses (i.e., meta-analyses) difficult. In 2006 US EPA published the first national 

survey of US streams (The National Wadeable Streams Assessment; WSA, US EPA 2006). This 

report, using new data, gave a snapshot of stream condition across the nation and showed how 

additional standardized federal monitoring programs could provide critical information to guide 

resource management (US EPA 2006).  

The Millennium Ecosystem Assessment (MEA 2005) recently evaluated world 

biodiversity using a biological indicator (total taxa richness) across 33 global sub-regions. This 

report evaluated the loss of biodiversity using 1970 as a reference condition for current and 

future scenarios in each region. Regional differences in stressor-response relationship or in 

trends were not compared due to difficulties in comparing regional datasets. Likewise, the 

European Union Water Framework Directive (EU-WFD) assessed European streams and rivers 

using a newly developed standardized protocol; and compared its accuracy to the (eleven) 

existing national rapid bioassessment programs (RBPs) used by EU member nations (Furse et al. 

2006). Again direct comparisons of the national datasets were problematic. Similar but separate 

transnational studies in Europe have also been carried out for lakes (Lanois et al. 2011, Argilliar 

et al. 2013).  

Each of these efforts encountered substantive difficulty in integrating existing assessment 

datasets from across their focal regions, and all ended up requiring new (and redundant from a 

public policy perspective) data collection using new standardized methodologies, or developing 

new standardized indicator metrics to be applied in larger scale analysis. Without careful 

consideration of transferability, regionally developed EATTs may lead to misinterpretations 
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when applied in substantially different landscapes or to very different river faunas. In reality, 

many developing and less developed countries have not established EATTs based on their own 

regional conditions, but have adapted monitoring techniques and tools from developed world. 

Some have more or less directly adopted well-established EATTs from the developed countries 

without any evaluation of their transferability (MEA 2005, Furse et al. 2006, US EPA 2006, 

Stubauer et al. 2010). In all these cases, ensuring that results are free from geographic-and 

contextual biases is essential if the larger-scale analysis is to be considered valid.  

I am interested in this question of the global transferability of EATTs and in how similar 

landscape stressors may or may not lead to similar ecological responses in very different 

ecological contexts (different ecoregions and/or different biological faunas). Anthropogenic 

stressors are known to shape many aspects of aquatic ecosystems. However, each aquatic 

ecosystem has a unique combination of natural geomorphology, hydrologic and hydraulic 

stresses, and species that may make it difficult to develop a standard set of EATTs that can apply 

in an unbiased way to aquatic ecosystems everywhere. If assessment results generated by EATTs 

can be biased by the uniqueness of regional ecosystem characteristics, then direct comparison in 

regional assessments will be problematic; and explicit calibration or de-biasing of regional 

EATT data is a necessary first step in comparative studies. Due to the global diversity of both 

ecological and evolutionary processes, we should at least ask how EATTs applied across eco-

regional and international boundaries might be expected to vary in efficiency and bias.  

There are three reasons to be cautious about concluding that EATTs are easily 

transferable. The first is that different ecoregions can have very different combinations of 

landscape features, including different variations in geology and topography, hydrological and 

hydraulic dynamics, and geochemical constraints (Vannote et al. 1980, Zorn et al. 2002, Wang et 
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al. 2003, Diana 2004, US EPA 2006, Allan and Castillo 2007, Riseng et al. 2010). This global 

variability in geology and climate ensures that many extrinsic (exogenous) factors shaping 

aquatic ecosystems are relatively unique in every region. This uniqueness causes difficulty in 

global transferability of EATTs since 1) most have been developed or modified to be suitable for 

at specific regional spatial scales (e.g., state or watershed boundaries) and 2) differences in 

exogenous forcing leads to differences in observed correlations and their interpretation (Wright 

2000, Schoolmater et al. 2013). The same is true of regional benchmark (reference) conditions 

used to evaluate the current status of sites within a specific region. Thus the global transferability 

of EATTs across major ecoregion boundaries has also been questioned based upon differing 

expectations for reference condition driven by different regional contexts (MEA 2005, Furse et 

al. 2006, US EPA 2006, Stubauer et al. 2010).  

A second concern is the fact that biological species and assemblages do not just reflect 

the ecosystem in which they live, but also evolutionary and zoogeographic histories of the 

region. Given that, species-dependent biological indicators and community metrics developed for 

a specific aquatic ecosystem may not have the same biological meaning or sensitivity in very 

different biological community settings. In reality, different states, provinces, and countries have 

developed local indicator metrics of fish or macroinvertebrates to maximize the accuracy and 

efficiency of ecosystem-monitoring and -assessment programs. Regional EATT metrics usually 

are multi-metric indicators (MMI), Karr’s IBI being a classical example (Karr 1981) developed 

from indicators reflecting characteristics of typical assemblages, such as functional feeding 

group, species richness, environmental tolerance, or sensitivity to locally common pollution 

regimes. Since biological community itself varies regionally, the response of biological 

communities to a given (even standardized) stressor need not be identical in different regions.  



 

6 
 

A third challenge, especially for the comparability of assessment results, is the need to 

enssure that known ecological stressors in different regions are functionally similar and 

comparably measured. Agricultural land use is a well-known anthropogenic stressor (Allan et al. 

1997, MEA 2005, Riseng et al. 2006, US EPA 2006). However, the same proportion of 

agricultural land use in a catchment does not cause the same effect on aquatic ecosystems in 

different regions (Riseng et al. 2010). For an example, a densely populated urban region may 

have more intensified uses of pesticides and higher nutrient exports resulting in higher impacts 

on biological communities than an area with similar proportions of urban land use but with lower 

population densities. Land use patterns, land use intensities, and land use-related technologies 

are culturally mediated, and this is especially so in the cases of agriculture where resources and 

human market preferences cast a long shadow. Because of this, stressor-response thresholds to 

the gradients in land use need not necessarily be similar in different regions.  

If these concerns are valid, aquatic ecosystem management and conservation should be 

normally regionally specified with locally appropriate EATTs. Thus, I believe we must explore 

how these constraints can be resolved scientifically when we ask assessment questions across 

and between major ecoregional boundaries. 

The ecological setting of Michigan and S. Korean rivers 

Throughout this dissertation I compare ecological assessment tools and data from S. 

Korea and Michigan regions. Here I briefly provide an overview of important regional 

similarities and differences. The two regions are located in globally disparate regions: S. Korea 

in East Asia and Michigan in North America (Figure 1.1, Table 1.1). Eventhough both regions 

lie in the same climate condition (temperate seasonal forest; Ricklefs 2008), they are 

distinguished by clearly different patterns of seasonal air temperature and precipitation, 
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population density, and biodiversity (Figures 1.2 and 1.3, Tables 1.1-1.2, also see Chapters 2-6). 

Total area of Michigan (250,493 km2) is two and half times larger than S. Korea (100,210 km2), 

whereas population of S. Korea (48,661,976 people) was almost five times higher than Michigan 

(9,883,640) in 2010 (Table 1.1). Population density is distinctly different between the two 

regions: 485.6 people/km2 in S. Korea and 67.5 people/km2 in Michigan.  

Average annual temperature in S. Korea (12.49 degree Celsius) is relatively higher than 

Michigan (8.22 degree Celsius) (Figure 1.2), because the latitude of S. Korea (33’06”N to 

43’00”N) is relatively lower than Michigan (41’41”N to 48’18”N) (Table 1.1). Average monthly 

temperature showed almost similar patterns between two regions, but S. Korea is generally 

warmer than Michigan, for every month except December. Precipitation patterns in the two 

regions are distinctly different (Figure 1.3). Average annual precipitation in S. Korea (1,362mm) 

is much higher than Michigan (831.85mm). Furthermore, in S. Korea most precipitation is 

focused in a particular period of time, which includes summer monsoon season (May to 

September, 1,017mm), during which on average 75% of the annual precipitation falls. In 

contrast, Michigan has a relatively stable distribution of monthly precipitation pattern. 

Hydrologically the rivers of the two regions differ in terms of flow and flow yields (see Figure 

6.5 in Chapter 6). At a similar size and exceedance frequency, Korean streams have on average 

higher flow rates and yields, indicating both higher rainfall rates (Chapter 2), higher catchment 

slopes (Table 6.3, Appendix 6.1 in Chapter 6) and reduced permeability reflecting the 

mountainous terrain and shallow soils of the interior peninsula. Due in part to these precipitation 

and stream flow patterns S. Korea has historically suffered from too much water in monsoon 

season, and too little water in other seasons; a quandary which has had a significant impact on 
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governmental policies in regards to river management in particular, and water resources in 

general. 

The biological communities of S. Korea and Michigan differ in substantial ways but also 

share influential similarities (Table 1.2). Composition of the fish fauna have little overlap at the 

species level (percent similarity; 4.2% of Michigan species and 3.8% of Korean species), generic 

(similarity; 16.0% of Michigan genera and 14.0% of Korean genera), family or order levels 

(similarity; 42.9% and 50.0% of Michigan and 38.7% and 64.3% of Korean, respectively). In 

contrast the invertebrate faunas are much more similar. At the family level faunal similarity is 

76.0% of Michigan families and 77.8% of Korean families; at the order level it is 80.0% of 

Michigan orders and 88.9% of Korean orders. 

Research goals and questions 

In order to further explore and better understand these issues, I will examine 

transferability of EATT across Michigan streams in the USA and major river watersheds in S. 

Korea. Michigan and S. Korea, which have distinctly different landscapes, biology, and 

ecosystem research history, can provide a useful testing ground and experimental ecological 

comparison for exploring EATT transferability. With these biologically, morphologically, and 

environmentally different ecoregions, my dissertation research will investigate variations in 

natural and anthropogenic landscape stressors influencing biological assemblages, examine 

various current biological indicators and assessment techniques and tools, explore stressor-

response trends to the gradients of common landscape stressors, and finally evaluate the 

possibility of transferability of EATT across these major ecoregions. My goal is to better 

understand the poorly-studied, yet ecological and practically important issue of global 

transferability of EATTs. Doing so could help scientifically resolve questions of global EATT 
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transferability and help maximize the efficiency and validity of ecological assessment and 

management planning in both developed and developing (or less developed) countries.  

Research questions that underlay my dissertation include: 1) How do differences in major 

landscape features and stressors affect the differing biological communities found in the rivers of 

the Great Lakes region and S. Korea? 2) What are the similarities and differences in useful 

biological indicators of the Great Lakes region and S. Korea? 3) Do biological indicators 

currently in use in these regions show the same stressor-response trends to gradients of land use 

(LU) related stressors? 4) To what extent do the differing EATTs used in these two regions 

complicate data comparisons and interpretation? 

Dissertation content 

My analyses include five research chapters based on the analysis of empirical assessment 

datasets either obtained from governmental agencies of Michigan and S. Korea (Chapters 2, 3, 

and 6) or collected from field sampling in Michigan (for fish) and S. Korea (for benthic 

macroinvertebrates) (Chapters 4 and 5).  

In Chapter 2, I developed a series of multiple linear regression models describing the 

flow regime and related metrics of South Korean streams from available gauging data and 

catchment characteristics. I then identified key landscape variables affecting stream flow regimes 

in South Korea and developed a classification of the types of flow regimes that occur in South 

Korea. I then performed a linear modeling approach (multiple linear regression (MLR), principal 

component analysis (PCA), and principal component regression (PCR)) to describe, predict, and 

classify seasonal flow statistics from these landscape variables. Finally, the models and 

classification were used to estimate stream flow regimes for the un-gauged biological sampling 

sites used by the National Aquatic Ecological Monitoring Program (NAEMP). Stream flow 
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regime is a influencial factor in ecological assessment because it affects stream network, channel 

morphology, and the distribution of biological assemblages (Poff et al. 1997, Winter 2001, Allan 

and Castillo 2007). However, flow regime summaries were not available for most of S. Korean 

bioassessment sites because of the relative paucity of stream hydrologic gauging sites. A similar 

lack of gauging in Michigan led to the development of modeled flow frequency statistics for un-

gauged stream segments (Selbach et al. 2002) which in turn have been used in regional fisheries 

bioassessment studies (Riseng et al. 2006, Riseng et al. 2010, Wang et al. 2001, Wang et al. 

2003). Here I developed similar models for South Korean streams to support assessment analyses 

in Chapter 6.  

In Chapter 3, I evaluated four different analytical approaches to site-specific modeling of 

flow in gauged river segments. The analytical models compared included MLR, PCR, artificial 

neural networks (ANN), and the combination of principal components and artificial neural 

networks (PC-ANN). Various analytical and statistical approaches have recently been used in 

environmental and ecological applications with advanced technologies. The evaluation of four 

different models was performed to test whether MLR models in chapter 2 were a reasonable 

choice to predict S. Korean flow regimes or not. This chapter contributed to the discussion of the 

relative advantages and disadvantages of alternate methods for the estimation of site-specific 

stream flow regimes and regionalization of available stream gauging data. 

In Chapter 4, I examined two fish sampling methodologies commonly used in rapid 

bioassessment programs: electrofishing and cast netting (used in Michigan and South Korea, 

respectively). Both Michigan and S. Korea use multimetric indicators modeled on Karr’s Fish 

Index of Biotic Integrity (Karr 1981), but modified differently to reflect consideration of regional 

biology and their responses to stressors. My goal was to examine how the choice of fish 
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sampling gear affected both sampling efficiency and metric performance. I was especially 

interested in what differential biases in assessment metrics could arise from the two sampling 

gears. Also, in this chapter I tested various fish indicator metrics in order to select a subset of 

individual indicator variables for the regional ecological assessments in Chapter 6. 

In Chapter 5, similar to Chapter 4, I investigated potential methodological biases that 

might complicate comparisons of rapid bioassessment programs for benthic macroinvertebrate of 

Michigan and S. Korea. The Michigan Department of Environmental Quality uses a fixed-count 

qualitative sampling approach (e.g. 100 individuals) (MDEQ 1997). In contrast, the Korean 

(KNEAP) sampling uses quantitative riffle subsampling (NIER 2009). My main goal was to 

study how these sampling methods affected sampling performance, and the resulting potential 

biases in the assessment metrics. Finally, in this chapter I also conducted the comparative 

analysis of invertebrate datasets from two different RBPs asking how LU stressors response 

relationship differed between regions.  

In Chapter 6, I examined issues of data comparability and integrability in the context of 

Michigan and S. Korean RBPs. I compared both fish and invertebrate assessment data from S. 

Korea and Michigan, two geographically and ecologically disparate regions, in a case study 

format. Specific objectives were to 1) compare Korean and Michigan ecological datasets, 2) 

explore the impacts of known sampling biases (Chapters 4 and 5), and regionally covarying 

landscape properties (Chapters 2 and 3) on their respective LU stressor-response relationships, 

and 3) determine the extent to which explicit corrections for methodological and statistical biases 

lead to altered interpretations of assessment results. Fish and benthic macorinvertebrate data 

from both regions were used for this study and landscape variables were summarized for each 

site. Regional ecological normalization (Wiley et al. 2003, Baker et al. 2005) was employed to 
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compare LU stressor-response relationships of two regions and overall impairment rates of 

streams and rivers. Finally, I briefly summarized the findings of overall research and discussed 

the implications of this dissertation for the global transferability of ecosystem-assessment 

techniques and tools. 
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Table 1.1. Summary of general information of Michigan and S. Korea. Population densities for 
Michigan and S. Korea were summarized with 2010 summary data obtained from US Census 
Bureau 2015 and KOSIS 2015. 

 S. Korea Michigan 

Latitude 33'06''N to 43'00''N 41'41''N to 48'18''N 

Longitude 124'11'‘E to 131'52'‘E 82'7''W to 90'25''W 

Total area (km2 / mi2) 100,210 / 38,691 250,493 / 96,716 

Population 48,661,976 in 2010 9,883,640 in 2010 

Pop. Density (km2 / mi2) 485.6 / 1,257.7 67.5 / 174.8 
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Table 1.2. Percent taxonomic overlap between the two regions. Genera and Species for benthic 
macroinvertebrates were not summarized here because MDEQ data were collected at the family 
level of identification. Taxa list was based on the data of National Institute for Environmental 
Research, S. Korea (NIER 2009) and Michigan Department of Environmental Quality, USA 
(MDEQ 1997). 

 Classes Orders Families Genera Species 

Fish 

Michigan 50.0 50.0 42.9 16.0 4.2 

S. Korea 50.0 64.3 38.7 14.0 3.8 

Benthic macroinvertebrates 

Michigan 100.0 80.0 76.0 - - 

S. Korea 100.0 88.9 77.8 - - 
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Figure 1.1. Map showing location of Michigan and Korean regions, which lies in the same ‘temperate seasonal forest’ biome. The 
picture is redrawn from Ricklefs 2008. 
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Figure 1.2. Comparison of average monthly air temperature between Lower Peninsula Michigan 
and S. Korea. Average monthly air temperature data for Michigan and S. Korea were 
summarized with data from 1981 to 2010, obtained from National Environmental Satellite, Data, 
and Information Service (NESDIS 2011) and Korea Meteorological Administration (KMA 
2011), respectively. 
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Figure 1.3. Comparison of average monthly precipitation between Lower Peninsula Michigan 
and S. Korea. Average monthly precipitation data for Michigan and S. Korea were summarized 
with data from 1981 to 2010, obtained from National Environmental Satellite, Data, and 
Information Service (NESDIS 2011) and Korea Meteorological Administration (KMA 2011), 
respectively. 
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Chapter 2 : Estimation and classification of flow regimes for South Korean 
streams and rivers 

Abstract 

The information of stream flow discharge characteristics continues to be norm in 

watershed management and natural resource conservation, in that stream flow regime is a crucial 

factor influencing water quality, geomorphology, and the community structure of stream biota. 

The objectives of this study were to estimate Korean stream flows from landscape variables, 

classify stream flow gages using hydraulic characteristics, and then apply these methods to 

ungaged biological monitoring sites for effective ecological assessment. Here I used a linear 

modeling approach (multiple linear regression (MLR), principal component analysis (PCA), and 

principal component regression (PCR)) to describe and predict seasonal flow statistics from 

landscape variables. MLR models were successfully built for a range of exceedance discharges 

and time frames (annual, January, May, July, and October), and these models explained a high 

degree of the observed variation with r squares ranging from 55.5 (Q95 in January) to 89.9 (Q05 

in July). In validation testing, predicted and observed exceedance discharges were all 

significantly correlated (p<0.01) and for most models no significant difference was found 

between predicted and observed values (Paired samples T-test; p>0.05). I classified Korean 

stream flow regimes with respect to hydraulic and hydrologic regime into four categories: 

flashier and higher-powered (F-HP), flashier and lower-powered (F-LP), more stable and higher-

powered (S-HP), and more stable and lower-powered (S-LP). These four categories of Korean 

streams were related to the characteristics of environmental variables, such as catchment size, 
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site slope, stream order, and land use patterns. I then applied the models at 684 ungaged 

biological sampling sites used in the National Aquatic Ecological Monitoring Program in order 

to classify them with respect to basic hydrologic characteristics and similarity to the 

government’s array of hydrologic gauging stations. Flashier-lower powered sites appeared to be 

relatively over-represented and more stable-higher powered sites under-represented in the 

bioassessment data sets. Overall, this study not only provides a straightforward and very cost-

effective method to estimate stream flow discharge characteristics, but also provides a 

fundamental covariate data for the comparability of ecological assessments.
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Introduction 

Stream flow regime is a crucial factor influencing stream network and channel 

morphology, water quality, stream biota and instream habitats (Poff et al. 1997, Winter 2001, 

Allan and Castillo 2007). Stream flow variation results from a complicated set of interactions 

between natural setting (e.g., regional climate, geomorphic condition, and geologic material) and 

anthropogenic activities (e.g., land-cover alteration, channel modification, and dam construction) 

(Montgomery 1999, Trush et al. 2000, Diana 2004, Thorp et al. 2005, Allan and Castillo 2007). 

Therefore, it is widely acknowledged that river resource managers need to both document flow 

regimes and understand their relationships to aquatic habitats and biota (Dunne and Leopold 

1978, Naiman et al. 2002, Johnson et al. 2007, Riseng et al. 2011, Seelbach et al. 2011). 

In South Korea there have been growing efforts to understand and manage stream flow 

regimes as a part of improving public water resource policy; a pressing task given the high 

average population density (465 people per square kilometer in 2009; WAMIS 2013) and its 

unique setting in a monsoonal climate with mountainous terrain (KMA 2011). A humid 

continental climate with  additional impacts of the East Asian monsoon leads to extremely high 

peak river flows and resulting sediment erosion, aquatic habitat destruction, severe flooding of 

densely populated regions, and degradation of water quality. In response the South Korean 

government has invested tremendous amounts of money to build dams and straighten major 

channels. To date, these efforts have been focused on larger coastal river reaches and local 

streams that have notable water quality issues or flow variation. 

Despite a substantial investment in a national stream gauging system (602 listed stream 

discharge gauges) with 0.03 gauges per stream mile (NIER 2009, KMA 2011, Hwang et al. 

2011, WAMIS 2013), stream flow data are still available for very few sites and basin level 
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characterizations of hydrologic regime are lacking. Current efforts to develop sophisticated water 

quality and ecological monitoring programs are hampered by the lack of site-specific discharge 

data. For example, Li et al. (2012), in the most recent study of South Korean streams and rivers, 

examined the relationship between macroinvertebrates and environmental variables at multiple 

scales. Even though the environmental variables in this research included various geographical, 

land use, substratum, and physicochemical parameters, hydrological variables did not include 

stream discharge (volume flow rate) information. In the same manner, most nationwide 

ecological assessments for South Korean aquatic ecosystems (e.g., Bae et al. 2011, Cho et al. 

2011a, Hwang et al. 2011, Lee et al. 2011a, Lee et al. 2011b, Yoon et al. 2011) have not dealt 

directly with flow variability due to the general lack of flow regime data. Since existing analyses 

of South Korean aquatic resources lack explicit reference to hydrologic variability (natural 

and/or anthropogenic), they are less than convincing in terms of understanding current 

environmental stresses. 

Despite the acknowledged  importance of stream flow regimes in monsoonal climate 

areas (KMA 2011, WAMIS 2013), the existence of a national gauging system, and the relative 

ease of modern hydrologic model development, there has been little work to date on the 

prediction of site-specific flow regimes for South Korean streams and rivers. Empirical MLR 

modeling based on assumptions of hydraulic geometry and catchment characteristics have been 

widely employed elsewhere to estimate stream flow and water temperature regimes for ungauged 

study locations (e.g., Holtschlag and Croskey 1984, Dunne and Leopold 1978, Wehrly et al. 

1997, Legendre and Legendre 1998, Smakhtin 2001, Wiley et al. 2003, Allan and Hinz 2004, 

Hamilton et al. 2008, Seelbach 2011). For example, flow regimes for all NHD river segments 

across three states: Illinois, Michigan, and Wisconsin were successfully predicted as a part of a 
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multi-agency river classification project in the Midwestern USA (Seelbach et al. 2011). In a 

similar way, natural flow regimes for rivers of the Great Lakes Basin were earlier assessed by 

Allan and Hinz (2004), and site-specific summer flows for water withdrawal permits in Michigan 

are currently computed from linear models of limited gauging data (Hamilton et al. 2008). 

Empirical modeling with landscape attributes is equally appropriate for the estimation of site-

specific stream flow regimes in the South Korean peninsula, where there is currently a great need 

to incorporate flow information into site-based ecological assessments.   

My overall objectives in this study were to: 1) develop MLR models describing the flow 

regime and related metrics of South Korean streams from available gauging data and catchment 

characteristics; 2) identify key landscape variables affecting stream flow regimes in South Korea;  

3) develop a classification of the types of flow regimes that occur in South Korea; and 4) to 

demonstrate the use of models and classification to estimate stream flow regimes for the un-

gauged biological sampling sites of the National Aquatic Ecological Monitoring Program 

(NAEMP).
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Materials and methods 

 

Characteristics of Korean streams and rivers 

South Korean streams and rivers are largely included in five major watersheds: the Han 

River, Geum River, Nakdong River, Youngsan River, and Seomjin River (Table 2.1 and Figure 

2.1). The total area and total stream length included in these South Korean watersheds are 

109,027 km2 and 29,809 km, respectively. The Han River Watershed is the largest watershed 

(41,957 km2) followed by the Nakdong River Watershed (31,785 km2), the Geum River 

Watershed (17,537 km2), Youngsan River Watershad (12,833 km2), and Seomjin River 

Watershed (4,914 km2). However, the Nakdong River Watershed (9,637 km) has the longest 

total stream length among the five Korean watersheds followed by Han River Watershed (8,568 

km), Geum River Watershed (6,135 km), Youngsan River Watershed (3,540 km), and Seomjin 

River Watershed (1,929 km). Table 2.1 summarizes other useful characteristics for each basin 

(Hwang et al. 2011, NIER 2009, WAMIS 2011). Discharge gaging sites of Youngsan River and 

Seomjin River were combined into the Youngsum River Watershed for this analysis following 

the watershed grouping used by the National Aquatic Ecological Monitoring Program (NAEMP), 

the National Institue for Environmental Research (NIER), South Korea (NIER 2009). 

Data collection and summary 

Discharge data for the period of record from each river gage in South Korean was 

obtained from the WAter Management Information System (WAMIS), NIER, Korea Ministry of 

Environment (WAMIS 2011). Of the 603 listed discharge gages, daily discharge data from 163 

gages (Figure 2.1A) were employed in this study. I eliminated 440 sub-optimal sites, based on 
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the following four selection criteria: First, discharge gages not operational in 2009 were 

eliminated because much of the biological data I am interested in were obtained in 2009. Second, 

in order to ensure reasonable estimates of frequency, gages with less than ten years of daily 

discharge data were removed with the exception of nineteen sites which were never-the-less 

included to balance geographic coverage, although they only had eight or nine years of discharge 

data. Third, gages with discharges that were heavily impacted by anthropogenic activities were 

removed (principally large upstream dams). Last, extreme outlier sites (11 out of 174 sites) were 

excluded based on boxplot and scatter plot assessments with landscape variables.  

With the qualified stream discharge data from the 163 gages, annual exceedance 

discharges (5%, 10%, 25%, 50%, 75%, 90%, and 95%) were summarized as were similar 

exceedance frequencies for four seasonal time windows (Table 2.2). The analysis time windows 

were defined by seasonal patterns in flow variation and biological monitoring seasons: July (high 

flow season), January (low flow season), May (spring biological sampling season), and October 

(fall biological sampling season). Exceedance flows and plotted flow duration curves for each 

site were calculated using HEC-DSSVue 2.0.1 (U.S. ACE 2011). The smaller exceedance 

frequencies (i.e. the 5% and 10% exceedance flows) indicate higher flow conditions for the data 

series, while the larger exceedance frequencies (i.e. the 95% and 90% exceedance flows) 

correspond to persistent or low flow conditions (HEC-DSSVue user’s manual, USACE 2011). 

Candidate variables describing various landscape attributes (independent variables) to 

develop multiple linear regression models were summarized at the catchment scales from the 

digital maps of elevation, mean precipitation, mean air temperature, mean humidity, catchment 

slope, land cover/land use, and surficial geology (soil name and soil infiltration rate) using 

ArcGIS 9.1 (ESRI 2005). The digital maps of land cover/land use, surficial geology, and 
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elevation were obtained from the WAter Management Information System (WAMIS 2011) of 

NIER, South Korea. The surficial geology maps included soil types and soil penetration rates. 

Soil penetration rates roughly reflect infiltration rates and were categorized from very excellent 

with high penetration rate (category 1) to very poor with very low penetration rate (category 7). 

Catchment slope in percentage was calculated by averaging all aspect values in percentage 

(ESRI 2005) and site slope was calculated by dividing elevation difference between two stream 

points by stream distance from the digital elevation map (Gordon et al. 2004). The digital 

contour maps of regional climate data (mean precipitation, mean air temperature, and mean 

humidity) were created with the observed data obtained from the Korea Meteorological 

Administration (KMA 2011), Rep. of Korea (Figure 2.1B). The regional climate data includes 

mean annual summaries collected from 1981 to 2010 at 63 operational weather observation 

stations. The final list of  candidate landscape attributes included catchment size, latitude, 

longitude, altitude, catchment slope, channel slope, mean precipitation, mean air temperature, 

mean humidity, number of dams, proportions of land-use type, proportions of soil type, and 

proportions of soil infiltration rate (Table 2.3).  

Multiple linear regression model development 

MLR models were constructed in order to predict a series of stream exceedance discharge 

frequencies (5%, 10%, 25%, 50%, 75%, 90%, and 95%). Initial selection of predictor variables 

in the model was based on previous research that had identified important environmental factors 

influencing stream exceedance discharges in the Midwestern USA (Wiley et al. 1997, Allan and 

Hinz 2004, Hamilton et al. 2008, Seelbach et al. 2011). If necessary, the dependent and 

independent variables in MLR models were transformed to natural log form after adding the 

integer 1 or 0.01 to the variable in order to maximize linearity within the modeled relationships 
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and to meet assumptions of normality for all variables (Wiley et al. 2003, Riseng et al. 2006). To 

be specific, 1 was added to catchment area, precipitation, and site elevation and 0.01 was added 

to catchment slope, site slope, land cover/land use, and surficial geology. However, number of 

dams was not transformed into natural log form in the model because the variable showed better 

linearity and normality without transformation. 

The addition of independent variables in the MLR models to predict stream exceedance 

discharges was carried out using a manual, stepwise regression approach (Hocking 1976, Draper 

and Smith 1981) using Datadesk 6.0 (Velleman 1997). Independent variables were inserted in 

the model in the following order: 1) catchment area, 2) mean precipitation, air temperature, and 

humidity, 3) catchment slope or site slope, 4) site elevation, 5) land cover/land use, 6) surficial 

geology variables (soil type or penetration rate), and 7) number of dams. Independent variables 

were retained  in the MLR models that would maximize R2, be significant at p <0.05, and have a 

T-ratio greater than 2 in the model (Wehrly et al. 1997, Wiley et al. 1997, Wiley et al. 2003, 

Riseng et al. 2010, Seelbach et al. 2011). In several models, exceptions occurred in which I 

included variables with T-statistics p <0.10, because they appeared critical to maintaining high 

R2 for the prediction. If two independent variables in the model were significantly correlated, 

only the variable that best improved model fit was retained.   

The stream discharge gauging dataset was randomly partitioned into model-building and 

model-testing groups. A total of 30 gages, approximately 22.6% of the total gages, were set aside 

as a model-testing group and were used to evaluate and validate models. The remaining 133 sites 

(approximately 77.4%) were set into a model-building group, which was used for building MLR 

models for each exceedance discharge.  

Performance evaluation of four different predictive models 
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In order to evaluate the performance of each predictive model, the Mean Absolute Error 

(MAE) and Nash-Sutcliffe model efficiency (NSE) coefficient were computed with the observed 

and predicted flow discharges of each percent exceedance freequency. The MA) is a statistical 

approach used to measure how close predicted values are to the observed values and can be 

defined as follows, 

 

                                                                                                                         (1) 

 

where n indicates the number of observations of stream discharge for each percent exceedance 

(Hyndman and Koehler 2006). Here, xobs and xpre indicate the observed and predicted stream 

discharges, respectively. The Nash-Sutcliffe model efficiency coefficient (NSE) was also 

computed to evaluate the predictive power of each exceedance model using the predicted and 

observed stream discharges (Nash and Sutcliffe 1970). If NSE value is greater than 0.5, the 

model shows acceptable accuracy. If NSE value is greater than 0.7, it the model is in a good 

agreement with observation (Moriasi et al. 2007). The NSE can be defined as follows, 
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where xobs is the observed stream discharges, xpre is the predicted stream discharges, and  
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A simple classification system for Korean stream flow regimes was developed from the 

entire set of gauged stations (n=163) using Principal Component Analysis (PCA). PCA has often 

been used as an indirect ordination technique to describe the main dimensions of variation in 

multivariate data sets (Maceda-Veiga and Sostoa 2011). PCA produces synthetic functions which 

are linear combinations of the original data. Kaiser’s rule was used to evaluate PCA axes 

(Legendre and Legendre 1998, Meador and Carlisle 2007, Maceda-Veiga and Sostoa 2011). I 

used PCA to combine three aspects of flow variability into two synthetic ordination axes:  

specific stream power (Q10×site slope/wetted width; Bagnold 1966), baseflow yield 

(Q90/catchment area; Zorn et al. 2004), and flow flashiness (Q10/Q90; Seelbach et al. 2011). 

These three variables were chosen to provide a balanced representation of biologically important 

differences between stations in high flow hydraulic energy dissipation, low flow habitat quality, 

and annual flow variability, respectively. Size related variables (e.g. catchment area, link 

number) were purposefully excluded to ensure that variance partitioning would be constrained to 

differences in hydrographic pattern and not absolute flow magnitude. Prior to the ordination 

analysis, the data matrix was log-transformed to improve the assumption of linearity and 

standardized (Legendre and Legendre 1998, Wiley et al. 2003, Riseng et al. 2010, Seelbach et al. 

2011, Maceda-Veiga and Sostoa 2011). The classification of Korean stream flow gauging sites 

was based on quartile of occurrence in ordination space, which can be computed from values of 

the original three variables and the axis loadings. This classification was then applied to un- 

gaged biological sampling sites (n=684) to evaluate the representation of streams types in the 

biological survey data set. 

Statistical analysis 



 

34 

Paired samples t-test, oneway-ANOVA test, oneway-ANOVA Tukey test, and Pearson 

correlation were used (SPSS, Inc. 2003) to compare exceedance discharges over the annual and 

seasonal time windows and to compare observed and predicted exceedance discharges. Statistical 

summaries (mean, median, standard deviation, minimum, and maximum), box plots, and scatter 

plots, MLR analyses and PCA analysis were conducted using Datadesk 6.0 (Velleman 1997) and 

SPSS 12.0 (SPSS, Inc. 2003).  



 

35 

Results 

Observed flow exceedance frequencies and duration curves varied geographically and 

seasonally (Table 2.2 and Figure 2.2) and across four major watersheds examined (Table 2.4 and 

Figure 2.3). Overall, measured stream flows in South Korean rivers ranged from a maximum of 

7,731 cms (Q05 from Han River) to a minimum of zero (Q90 and Q95 from Han River). July had 

the highest mean stream discharge at each exceedance frequency, and January had the lowest 

mean discharges (Table 2.2 and Figure 2.2). Seasonal differences in discharge were statistically 

significant for Q05, Q10, Q25, and Q50 (p<0.01, One way-ANOVA test), whereas the low flows 

(Q75, Q90, and Q95) did not show statistically significant seasonal differences (p>0.05, 

Oneway-ANOVA test). Comparing the four major watersheds, mean stream discharges of the 

Han River Watershed were the highest at most exceedance frequencies (Q25, Q50, Q75, Q90, 

and Q95), although the Nakdong River Watershed showed the highest Q05 and Q10 discharges 

(Table 2.4 and Figure 2.3). 

Individual gauging sites varied widely in drainage area, mean annual precipitation, land 

use, and catchment slope (Table 2.3). Mean drainage area for all sites was 3,080.42 km2 and 

ranged from 50.23 km2 to 23, 316.70 km2. Mean average annual precipitation was 1,320 mm and 

varied from 1,073 mm to 1,588 mm. Urban land use was important in MLR modeling and ranges 

were 0 % ~ 48.8 %. Average catchment slopes varied from 0.0920 to 0.5424 and the mean was 

0.3066. Number of dams above a site varied from 0 to 11 with a mean of 1.48.  

MLR models 

Multiple linear regression models successfully developed for all (Q05, Q10, Q25, Q50, 

Q75, Q90, and Q95) exceedance flows explained a high degree of the observed flow variation 
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(Table 2.5). R-squares of models ranged from 55.5 (Q95 in January) to 89.9 (Q05 in July) and 

averaged 76.8. July models had the highest average r-square (87.3) followed by annual (79.6), 

October (75.4), May (75.3), and January (66.4) models. Q75 and Q50 models generally had 

better fits (average r-squares of 82.0 and 80.9, respectively). Q95 and Q05 models generally had 

the poorest fits (average r-squares of 73.5 and 74.8, respectively).  

In the regression models, drainage area, mean annual precipitation, catchment slope, 

urban land use, surficial geology, and number of dams were the key independent variables 

predicting discharge in South Korean streams and rivers (Table 2.5). As expected, drainage area 

was consistently an essential and powerful predictor of flow in all MLR models. Mean annual 

precipitation and urban land use were included in most of the models although they were not 

important in Q90 and Q95 models for January. Urban land use was likewise important in many 

of the models but did not contribute to models for the Annual Q05 and Q10, for Q90 and Q95 in 

January, and for Q05 and Q10 in July. Number of dams and surficial geology (either in the form 

of soil type or soil penetration rate) were also often important variables in the MLR models. 

Catchment slope was significant for some specific exceedance flows and time window (Q50 and 

Q75 in July). No significant effects of mean air temperature (ºC), mean annual humidity (%), 

latitude, longitude, and channel slope were detected when building MLR models (Multiple linear 

regression, p>0.05). 

Evaluation of model performance  

Mean Absolute Error (MAE) values generally indicated good prediction of exceedance 

flows in both model generation and validation steps (Table 2.6). MAE values of models ranged 

from 29.2 (Q05 in July) to 85.6 (Q05 in January) with average of 52.3 for training step and 

ranged from 33.3 (Q05 in July) to 95.2 (Q05 in January) with average of 52.6 for validation step. 
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In model generation step, July models had the lowest average MAE values (37.2) followed by 

annual (48.2), October (55.8), May (56.0), and January (64.3). Validation step also showed a 

similar pattern, although the average MAE (54.0) of May models was slightly lower than the 

average (54.8) of October models. Of all exceedance frequencies, Q75 had the lowest average 

MAE values (46.0 and 44.0) in both model generation and validation steps, respectively. 

However, the Q10 models had the highest average MAE value (57.7) in model generation step 

and Q25 models had the highest average (62.2) in the validation step. 

Nash-Sutcliffe model efficiency (NSE) coefficients also indicated good predictive power 

for all exceedance models (both model generation and validation steps) (Table 2.6). NSE 

coefficients ranged from 0.56 (Q95 in January) to 0.90 (Q05 and Q10 in July) with average of 

0.77 for training step; and ranged from 0.47 (Q10 in January) to 0.90 (Q05 in July) with average 

of 0.74 for validation step. For both the annual and the four seasonal time windows, July had the 

highest average NSE coefficients (0.87 and 0.83) followed by annual (0.80 and 0.78), October 

(0.75 and 0.72), May (0.75 and 0.70), and January (0.66 and 0.68) in generation and validation 

steps, respectively. Of all exceedance discharge frequencies, Q75 had the highest average NSE 

values (0.82 and 0.82). However, Q25 and Q95 had the lowest average NSE values (0.74 and 

0.74) in model generation step and Q25 had the lowest average (0.64) in validation step. 

Predicted and observed exceedance discharges from all sites combined were all 

significantly correlated each other (p<0.01; Table 2.7) indicating good agreement between 

modeled and observed values; and test and validation group correlation values for each time 

window did not show any significant differences (Paired samples T-test, p>0.05). Correlations 

ranged from 0.45 to 0.96 with 33.7% of the correlations above 0.90 and 78.9% above 0.80. For 

all S. Korean sites combined and in the four major watersheds, mean correlation for the wettest 
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season (July) were much higher than those in other time windows, whereas correlations for the 

lowest flow season (January) time period were generally lower (Table 2.7). Correlation values 

for the Geum, Han, and Nakdong River Watersheds ranged from 0.71 (Q95 in October, the 

Geum River Watershed) to 0.96 (Q05 in July, the Nakdong River Watershed). However, the 

Youngsum River Watershed had lower correlations with values ranging from 0.45 (Q05 in 

January) to 0.86 (Q75 in July). In most models, higher exceedance flows had a tendency to be 

underestimated and lower exceedance flows to be overestimated (Figures 2.4 throughout 2.8).    

In most cases, no significant difference was found between predicted and observed 

exceedance discharge values (Paired samples T-test; p>0.05). However, a significant difference 

was observed in Q05 and Q10 for annual and July models of the Han River Watershed when all 

sites were combined.  

Classification of Korean stream flow types  

The PCA produced two significant axes (eigenvalues >1), which explained 93.7% of 

variation in the input data matrix (Table 2.8). PC1 accounted for 59.5% of the variation with 

eigenvalue of 1.786 and was heavily influenced by baseflow yield [cms/km2] and flow flashiness 

(ratio). PC2 explained 34.2% of variation with eigenvalue of 1.025 and with heavier loading by 

specific stream power [kW m-2]. Linear models for each axis were: 

 

PC1 = -0.091146417×log(specific stream power) - 1.0607645×log(baseflow yield) + 

0.96745328×log(flow flashiness)                                                                           (3)                         

PC2 = -1.6094319×log(specific stream power) - 0.15671417×log(baseflow yield) - 

0.33408582×log(flow flashiness)                                                                           (4)                         
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A scatter plot of site PC scores showed that variations in Korean stream flow regimes are 

widely distributed across flow stability (PC1) and stream power (PC2) gradients (Table 2.8, 

Figure 2.9). Based on PC1 scores for each gauging site, flow types were classified as flashier 

streams (PC1 site score > median of PC1 scores) or more stable streams (PC1 site score < 

median of PC1 scores). Using PC2 scores each site was also classified as either a higher-powered 

stream (PC 2 site score > median of PC2) or lower-powered stream (PC 2 site score < median of 

PC2). Thus, final Korean stream flows were categorized into four different flow types (Figure 

2.10) based on the two-dimensional PCA ordination; flashier and higher-powered (F-HP) 

streams, flashier and lower-powered (F-LP) streams, more stable and higher-powered (S-HP) 

streams, and more stable and lower-powered (S-LP) streams.  

Box plots of water chemistry data by stream classification types showed significant and 

consistent relationships in most of water chemistry parameters for stream discharge gages 

(Figure 2.11). More stable stream sites generally had higher values in catchment size, stream 

order, baseflow yield, and urban land use than flashier stream sites, whereas flashier stream sites 

had higher numbers in Q10 and Q90 ratio and proportion of forest land use. Higher-powered 

stream sites had higher values in site slope and stream power than those of lower-powered 

stream sites.  

This stream classification showed that overall gaging sites were almost equally 

distributed in each axis, although each major watershed had slightly different patterns (Table 2.9 

and 2.10, Figures 2.12 and 2.13). The Geum and Yeougsum River Watersheds had a flashier and 

lower-powered hydrologic regime, while the Han River and Nakdong River basins had regimes 

with more stable and higher specific stream power dissipation rates.  

Stream flow-type classification of nation-wide biological sampling sites in S. Korea 



 

40 

Stream flow types of nation-wide biological sampling sites (n= 684) in S. Korea were 

classified using Equations 3 and 4 above, and the relative frequency of types was compared 

(Tables 2.9 and 2.10, Figures 2.12 and 2.13) to gauging sites and among the four major river 

basins. There were substantive differences between the gauged and biological sampling sites, and 

between the distributions of types across the 4 major basins. The classification results showed 

that most of nation-wide biological sampling sites (n= 684) were located in flashier streams (n= 

443, 64.77%) as opposed to more stable streams (n= 241, 35.23%). Also, lower powered streams 

(n= 400, 58.48%) were much more frequently selected than higher powered streams (n= 284, 

41.52%).
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Discussion 

South Korea is located in the East Asian monsoon region, and has high seasonal variation 

in precipitation (KMA 2011, WAMIS 2013). Hence, flow rates in South Korean streams 

experience dramatic seasonal changes and this has affected the stream channel morphology, 

types of instream substrates, and habitat conditions for stream biota (Bae et al. 2011, Cho et al. 

2011, Lee et al. 2011b, Li et al. 2012). Since ecological responses of stream biota are very 

sensitive to seasonal changes of stream hydrology (Dudgeon. 2000, Riseng et al. 2004, 

Stevenson et al. 2006, Allan and Castillo 2007, Baker and Wiley 2009), seasonal stream flow 

estimates produced by my MLR models for the 684 NIER biological assessment sites will be 

very helpful in understanding geographic and seasonal variations in stream biology and health 

(see Chapter 5). 

The explanatory power of all stream flow models was generally quite good.  Models of 

the high flow season (July) outperformed other time periods, suggesting that catchment-scale 

landscape variables worked best to explain the runoff variability under saturated conditions as 

opposed to flows strongly influenced by groundwater, impoundment or other routing influenced 

by storage. In contrast, exceedance models for the low flow season (January) performed 

relatively poorly, although the R2 of the low flow season still ranged from 55.5 to 78.8. Also, 

across all time frames, MLR models of lower discharge (e.g. Q95) also showed relatively low 

levels of fit with average R2 of 73.5. These patterns are very similar to fit variations reported 

from the Great Lakes region (Wiley et al. 1997, Smakhtin 2001, Kilgour and Stanfield 2006, 

Hamilton et al. 2008, Seelbach et al. 2011) where baseflow yields were also more difficult to 

predict. Baseflow variation in dry periods depends strongly on subsurface routing and storage, 



 

42 

and these processes are likely more influenced by details of local physiography than catchment 

scale average conditions (Baker et al. 2003). 

Factors controlling stream flows in S. Korea 

The regression coefficients used in this model often varied progressively in sign and 

weight across exceedance discharges and time windows, reflecting previously reported 

relationships between catchment character and stream flows (Holtschlag and Croskey 1984, 

Hamilton et al. 2008, Seelbach et al. 2011). In general, drainage area, mean annual precipitation, 

catchment slope, and site elevation had positive effects in most of the models.  

A relatively strong impact of surficial geology on flow regime has been reported for 

Lower Michigan Rivers (Seelbach et al. 2011). In this study, surficial geology, summarized by 

soil penetration rate, showed very interesting relationships to discharge in most exceedance 

discharge models. The highest soil penetration rate class was strongly associated with high flows 

(Q05 and Q10) in annual and July models. However, soils with lowest penetration rate showed 

strong relationships on low flows (e.g., Q75, Q90, and Q95). This means that lower soil 

penetration rate significantly influences on stream flows in relatively dry condition, whereas 

higher soil penetration rate is considerable for stream flows in high flow events. However, recent 

studies of Korean aquatic ecosystems using environmental variables (e.g. Li et al. 2012) have not 

considered either soil penetration rates or soil types. 

The importance of land use/land cover attributes has been well described in various 

stream models and ecological assessment studies (e.g., Leopold 1968, Simmons and Reynolds 

1982, Hall et al. 2001, Anonymous 2003, Allan 2004, Baker et al. 2005, Brenden et al. 2006, 

Johnson et al. 2007, Seelbach et al. 2011, Li et al. 2012). I found several significant relationships 

between stream discharge regime and land use. Most of my MLR models had strong positive 
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influence of urban land use on stream flow rate (Table 2.5). Interestingly, agricultural land use 

had statistically significant influences in many discharge models; however, it was dropped from 

my analyses because urban land use exhibited better fits and statistical power in most models and 

either one was not significant when both them were added in the models. In general regression 

coefficient signs and relative significance agree with the findings of many of previous stream 

studies (e.g., Werhly et al. 1997, Stauffer et al. 2000, Hall et al. 2001, Morley and Karr 2001, 

Riseng et al. 2006, Wang et al. 2006, Seelbach et al. 2011, Li et al. 2012).  

Another interesting landscape factor useful in predicting stream discharge was the 

number of dams. It had positive relationships with stream discharge for lower flows, indicating 

that this variable is more influential on stream base flow than on higher seasonal flows.  

Classification of Korean stream flow types 

The climate of South Korea includes a humid continental climate and a humid subtropical 

climate and is also affected by the East Asian monsoon, which means that heavy precipitation is 

observed in a short rainy summer season and extremely cold temperature with minimum 

precipitation is observed in winter. These patterns were well described in the comparison of 

exceedance discharges in four different seasonal time windows. Also, South Korea is a 

mountainous peninsula, located in the middle latitudes of the Northern Hemisphere and on the 

east coast of the Eurasian Continent. In particular, the eastern region of South Korea has high 

mountain ranges and narrow coastal plains. Therefore, most upstream catchments are relatively 

small with higher catchment slope, resulting in flashier but lower-powered stream conditions. In 

contrast the western region consists of broad coastal plains, larger river basins, and rolling hills. 

This geomorphologic condition creates higher flows with more seasonally stable stream flow 
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regimes. Thus, four different classes of Korean stream flow-types reflect unique regional 

combinations of climate and geomorphology.  

My classification results showed that most biological sampling sites are located in 

flashier and lower-powered streams (Tables 2.9 and 2.10, Figures 2.12 and 2.13). The Ministry 

of Environment launched a nation-wide watershed monitoring project from 2008 and 720 

biological monitoring sites were selected in 2009 (NIER 2009). The selection of the monitoring 

sites was mainly based on stream order, land use, proximity to a gauging location, site 

accessibility, importance to human life, and spatial distribution. However, flow related 

characteristics were not high priority in the selection of the biological sampling sites, even 

though some of landscape variables indirectly reflect stream flow characteristics. 

Assumptions and limitations 

MLR models have been applied to the estimation of various environmental factors and 

ecological reference conditions from spatial-scale landscape attributes for several decades (e.g., 

Holtschlag and Croskey 1984, Wehrly et al. 1997, Wiley et al. 2003, Moore et al. 2004, Ries et 

al. 2004, Wehrly et al. 2006, Hamilton et al. 2008, Seelbach et al. 2011, Cho et al. 2011b). My 

MLR models for South Korea provide useful estimates of annual and seasonal exceedance flows 

based on site-specific landscape criteria. While this information is useful as a description of 

expected flow regime, it does not describe year to year variation or short-term variability in 

Korean stream flows. MLR models have certain limitations when used to predict stochastically 

influenced stream flow events, because the MLR modeling approach is relatively insensitive to 

extreme variations (Seelbach et al. 2011, Cho et al. 2011b). Direct comparisons of MLR to other 

modeling approaches (e.g. see my chapter 3 for comparison to artificial neural network and 

principle component regression, Steen et al. 2006, Cho et al. 2011b) suggest that despite this  
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limitation, MLR generally performs similarly to other estimation approaches and seems adequate 

for my purposes in Chapter 5.  

The MLR models developed here might miss or ignore some important factors that 

directly or indirectly affect Korean stream flows which could increase their accuracy. For 

example, I did not use any riparian summaries of landscape variables in my models, which could 

be more influential on local stream flow recharges and withdrawals than catchment-scale 

variables (Wang et al. 2003, Wehrly et al. 2006, Zorn et al 2008, Riseng et al. 2010). In addition, 

anthropogenic impacts might be more critical in low flow seasons or low exceedance 

percentages with poorer predictive powers, because South Korea is a country with high 

population density and high off-channel water demands. These types of impacts might be better 

explained with other localized water use metrics, such as wastewater treatment discharges, 

residential demands for drinking water, and groundwater pumping (Winter et al. 1998, Dudgeon 

2000, Bunn and Arthington 2002, Stevenson et al. 2006, Riseng et al.2010). 

Although MLR models used for this study were successfully employed in the estimation 

of Korean stream flows, some estimation error was unavoidable in MLR models. My results 

showed that very high and very low flows suffered from higher prediction errors (Figures 2.4 

throughout 2.8). These problems can be related to the location and number of stream flow gages 

used for these MLR models. In general, Korean stream flow gages are located on bigger streams 

or developed areas in major Korean watersheds. Thus, the number of stream gages is relatively 

low for smaller catchments with very low flows and for extremely large catchments with very 

high flows. In these cases, landscape variables could well have been relatively homogeneous and 

not very useful, a problem (Seelbach et al. 2011) discussed in the stream flow estimation for all 

rivers across three Midwest states. 
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Spatial scales of environmental data analysis have often been problematic in the 

prediction of environmental, biological, and ecological variables (Wiley et al. 2003, Riseng et al. 

2006, Riseng et al. 2011, Seelbach et al. 2011). Korean stream flows can also be highly 

influenced by processes operating at different scales; for example different patterns of land use, 

geology, human culture, and various micro-scale conditions of catchments. Obvious differences 

in the comparison of predicted and observed stream flows for major watersheds in Korean rivers 

and streams were observed with the Pearson correlation tests (Table 2.7). There also appeared to 

be some basin specific issues. For example the combined Youngsan and Sumjin River 

watersheds (referred to “Youngsum R.” in this study) are located in the southern part of South 

Korea and have a river network complicated by very complex land development patterns and 

multi-purpose dams. This unique environmental setting appeared to reduce the accuracy of 

estimation and might need to be analyzed in more detail than other major Korean watersheds.  

Management implications 

In this study, I emphasized the relative ease and efficiency of MLR modeling approach to 

estimate metrics needed to describe the hydrologic regime of South Korean streams and rivers. 

Since the preservation and management of water quality and aquatic ecosystems are rapidly 

raising concerns in many countries (Sowa et al. 2007, Zorn et al. 2008, Lee et al. 2011b, Li et al. 

2012), watershed managers and planners cannot ignore the rising costs of field-based 

measurement, monitoring, and assessment (Wiley et al. 2003, Park 2007, Seelbach et al. 2011). 

Although flow regime is one of the most critical environmental factors in watershed study and 

management, the field monitoring of stream hydrology is neither simple nor inexpensive. In 

every country stream flow gages are necessarily limited in number and cannot cover all streams 

necessary for the wide ranges of stream type addressed in management and preservation plans. 
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Thus, the need to model flow regimes from limited representative data sets will continue to be 

the norm, and continued explorations of modeling efficiency and effectiveness will be important 

for effective water resource management. 

My flow regime classification for Korean streams and rivers provides a useful lens for 

examining the selection criterion used to choose the national biological monitoring sites. Nation-

wide stream health monitoring and assessment should necessarily sample all types of stream 

habitats in proportion to their occurrence. I found discrepancies between the relative 

representation of types in the national hydrology and biological assessment data sets, which raise 

a question about potential sampling biases. Given that there is general agreement that stream 

flow characteristics are essential to aquatic conservation planning and science (Petts et al. 1999, 

Power et al. 1999, Anonymous 2002, Ries et al. 2004, Riseng et al. 2004, Higgins et al. 2005, 

Piggott and Neff 2005, Seelbach et al. 2006, Sowa et al. 2007), biased selection may lead to 

inaccurate conclusions and redundant costs and labor. My flow estimation and regime 

classification approach could be used to develop a more objective method for allocating 

monitoring and assessment sites in S. Korea. The models could be used to estimate the actual 

representation of hydrologic types across the country, and assessment sampling allocated 

accordingly. To achieve a proportional allocation (or even objective comparison of current 

sampling distributions to the actual occurrence of stream types) will, however, require a more 

developed segment-based GIS representation of the Korean drainage system; something similar 

in structure to the U.S. NHD system (Anonymous. 2002). 

In conclusion, this study provides a straightforward and very cost-effective method to 

estimate stream flow discharge characteristics and classify flow regimes in South Korea using 

existing summaries of common landscape variables. It is my hope that these estimates can 
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contribute to more accurate and trustworthy environmental impact assessment, fisheries 

management decision making, and water supply planning. 
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Table 2.1. Summary of watershed characteristics of the five major river watersheds and site numbers used for the estimation and 
classification for stream flow regimes of stream flow gages and un-gauged biological sampling sites used by the National Aquatic 
Ecological Monitoring Program (NAEMP) throughout South Korea.  

Watershed Area (km2) 
Length of 

main stream 
(km) 

Total stream 
length (km) 

Number of 
tributaries 

Human 
population 

Number of 
water gauges 

Number of 
biological 

sites 

Geum River 17,537.0 393.1 6,134.9 876 6,205,038 38 130

Han River 41,957.0 560.0 8,567.7 912 27,046,430 43 284

Nakdong River 31,785.0 470.0 9,637.6 1,185 13,211,817 47 130

Youngsan River 12,833.4 117.7 3,540.4 576 3,004,860 23 76

Seomjin River 4,914.3 211.9 1,928.8 283 1,192,945 12 64

Total 109,026.7 1,752.7 29,809.4 3,832 50,661,090 163 684
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Table 2.2. Summary statistics of stream discharges (cms) at each percent exceedance frequency 
in Korean streams and rivers used for normalizing linear regression models as dependent 
variables. Stream discharge is represented by “Q” and defined as 05-95% exceedance discharges 
(cms). “n” indicates the total number of gages for the summary of stream discharges and “SD” 
indicates standard deviation. 

Dependent variable 
Percent 

exceedance (Q) 
n Mean Median SD Min Max 

Annual 05 163 331.31 84.55 676.77 4.35 5,253.50 

 10 163 207.48 44.90 461.87 1.69 3,820.90 

 25 163 95.27 17.00 234.19 0.64 2,219.00 

 50 163 55.53 6.55 176.71 0.18 1,857.80 

 75 163 33.28 3.11 108.43 0.06 1,102.90 

 90 163 19.22 1.58 52.26 0.03 323.90 

 95 163 14.53 1.00 41.29 0.01 285.70 

January 05 163 163.35 24.63 558.21 0.39 5,253.50 

 10 163 111.52 17.31 377.01 0.33 3,820.90 

 25 163 63.04 8.00 196.38 0.15 2,096.20 

 50 163 43.74 4.00 161.50 0.06 1,782.30 

 75 163 24.93 2.13 78.79 0.03 723.00 

 90 163 16.01 1.09 49.31 0.00 356.80 

 95 163 11.97 0.81 39.49 0.00 341.80 

July 05 163 814.89 225.16 1,451.96 10.34 7,730.90 

 10 163 529.91 131.41 979.25 6.40 5,253.50 

 25 163 253.53 56.92 482.34 3.72 2,612.40 

 50 163 113.34 20.00 250.73 0.99 1,906.20 

 75 163 58.84 8.00 153.40 0.42 1,317.20 

 90 163 32.04 3.70 77.87 0.09 528.30 

 95 163 23.71 2.89 60.49 0.04 415.10 

May 05 163 215.17 51.52 442.23 2.68 3,823.80 

 10 163 165.87 35.27 404.65 1.36 3,820.90 

 25 163 93.48 15.93 225.53 0.67 2,151.90 

 50 163 59.79 7.09 180.30 0.18 1,875.40 

 75 163 35.96 3.58 108.05 0.06 1,047.90 

 90 163 19.83 1.82 52.21 0.02 300.70 

 95 163 15.37 1.23 44.01 0.01 272.60 

October 05 163 173.67 38.00 433.21 0.50 3,820.90 

 10 163 135.11 27.04 390.04 0.50 3,820.90 

 25 163 80.40 11.52 219.52 0.27 2,193.10 

 50 163 54.19 5.56 180.43 0.15 1,919.60 

 75 163 31.22 3.32 87.61 0.07 710.20 

 90 163 19.98 2.00 52.65 0.02 345.70 

 95 163 15.80 1.17 44.33 0.01 323.30 
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Table 2.3. Summary statistics of candidate independent variables used for multiple linear 
regression models of a series of exceedance frequencies for annual and four seasonal time 
windows. 

Independent variable n Mean Median SD Min Max 

Drainage area; km2 163 3080.42 487.54 5654.57 50.23 23316.70 

Mean annual precipitation; mm 163 1319.17 1323.47 98.09 1072.78 1588.31 

Mean annual temperature; °C 163 11.97 12.01 1.19 8.19 14.42 

Mean annual humidity; % 163 69.44 69.16 1.86 65.01 72.68 

Catchment slope; % 163 0.3066 0.3157 0.0770 0.0920 0.5424 

Channel slope 163 0.207988 0.158000 0.176338 0.006000 0.964000 

Site elevation; m 163 296.4 267.3 166.3 44.6 782.6 

Urban; proportion 163 0.07439 0.03908 0.09512 0.00000 0.48800 

Agriculture; proportion 163 0.23 0.20 0.13 0.00 0.85 

Forest; proportion 163 0.63 0.65 0.18 0.00 1.00 

Soil penetration rate 1; proportion 163 0.47412 0.48763 0.18100 0.00000 1.00000 

Soil penetration rate 2; proportion 163 0.08623 0.04323 0.11319 0.00000 0.69675 

Soil penetration rate 6; proportion 163 0.00061 0.00000 0.00313 0.00000 0.03564 

Number of dams 163 1.48 0.00 2.67 0.00 11.00 
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Table 2.4. Summary statistics of 5 and 95 percent exceedance discharges for each major 
watershed. Stream discharge is represented by “Q” and “n” indicates the total number of gages 
for the summary of stream discharges and “SD” indicates standard deviation. 

Dependent Time Percent n Mean Median SD Min Max 

Geum 
River 

Annual 
05 38 141.55 49.35 236.85 4.75 1,051.50 
95 38 7.38 0.51 24.05 0.01 142.10 

January 
05 38 77.95 12.46 173.45 0.53 814.99 
95 38 9.06 0.49 29.49 0.01 169.93 

July 
05 38 379.08 158.32 563.50 33.00 2,379.30 
95 38 6.54 1.29 11.29 0.06 42.50 

May 
05 38 106.92 28.27 215.54 2.73 1,104.40 
95 38 9.62 0.78 32.90 0.01 199.20 

October 
05 38 91.63 17.83 195.30 0.50 933.00 
95 38 6.84 0.80 26.16 0.01 159.62 

Han River 

Annual 
05 43 481.37 121.21 978.92 10.72 5,253.50 
95 43 22.81 1.23 55.39 0.08 243.00 

January 
05 43 293.04 42.57 873.09 0.39 5,253.50 
95 43 17.28 1.00 47.29 0.00 243.00 

July 
05 43 1,167.69 300.26 2,081.94 46.58 7,730.90 
95 43 35.07 3.37 83.21 0.17 415.10 

May 
05 43 289.32 92.04 488.23 4.57 2,357.40 
95 43 24.74 2.00 60.07 0.07 243.00 

October 
05 43 278.41 85.61 527.97 2.56 2,357.40 
95 43 22.09 1.29 54.76 0.08 243.01 

Nakdong 
River 

Annual 
05 47 517.85 186.57 742.58 18.73 3,824.80 
95 47 21.31 2.58 49.42 0.03 285.70 

January 
05 47 204.90 54.95 575.14 0.66 3,829.60 
95 47 16.47 1.51 51.05 0.02 341.80 

July 
05 47 1,243.32 329.00 1,573.89 53.88 5,577.90 
95 47 40.93 5.99 73.83 0.04 357.80 

May 
05 47 339.49 95.70 605.99 7.00 3,823.80 
95 47 20.73 4.00 48.39 0.03 272.60 

October 
05 47 234.88 77.13 580.28 2.68 3,820.90 
95 47 26.21 2.62 56.96 0.05 323.30 

Youngsum 
River 

Annual 
05 35 102.47 52.99 144.75 4.35 796.97 
95 35 3.03 0.75 7.52 0.01 43.32 

January 
05 35 40.96 14.17 124.67 0.58 747.01 
95 35 2.54 0.55 5.65 0.01 31.49 

July 
05 35 279.31 193.94 273.57 10.34 1,012.60 
95 35 5.29 1.78 10.64 0.06 60.61 

May 
05 35 74.67 36.65 167.99 2.68 1,011.90 
95 35 2.93 0.65 8.91 0.03 52.40 

October 
05 35 51.86 19.24 104.58 2.67 607.30 
95 35 3.85 0.97 9.30 0.02 53.31 
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Table 2.5. Multiple linear regression models of all exceedance flows for annual and seasonal time periods. Bold indicates significance 
at p ≤ 0.05, and bold and italics indicate significance at p ≤ 0.01. 

Dependent variable lnQ05 lnQ10 lnQ25 lnQ50 lnQ75 lnQ90 lnQ95 

 Annual 
R2 83.0 77.9 74.1 82.1 82.7 80.7 77.0
Constant -10.6123 -16.3673 -19.4971 -18.4329 -19.2821 -19.4391 -16.0484
ln(drainage area); km2 0.831106 0.864626 0.859729 0.780459 0.689607 0.560106 0.443429
ln(mean annual precipitation); 1.32675 2.00645 2.47032 2.71222 2.92551 2.98887 2.53048
ln(urban); proportion 0.268396 0.251722 0.224077 0.194195 0.17517
ln(soil penetration rate 1); -0.219328 -0.283668
ln(soil penetration rate 6); 0.702762 0.870402 0.872046 0.800399
number of dams 0.0925863 0.146049 0.199773 0.241455
 January 

R2 58.4 64.3 67.7 78.8 78.7 61.1 55.5
Constant -23.0464 -18.1362 -19.9861 -16.1886 -13.3411 -2.88507 -2.78624
ln(drainage area); km2 0.826205 0.648667 0.669642 0.687935 0.606028 0.51548 0.504523
ln(mean annual precipitation); 3.03713 2.46888 2.62569 2.56432 2.31494
ln(urban); proportion 0.313385 0.353501 0.306212 0.240436 0.238819
ln(soil penetration rate 2); -0.19181 -0.138359
ln(soil penetration rate 6); 0.929796 1.14009
number of dams 0.133555 0.120096 0.143135 0.165306 0.136834 0.0965312
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Table 2.5. Continued. 

Dependent variable lnQ05 lnQ10 lnQ25 lnQ50 lnQ75 lnQ90 lnQ95 

 July 
R2 89.9 89.9 86.4 88.3 88.5 85.5 82.4
Constant -13.4167 -15.2878 -19.2261 -21.939 -22.7659 -18.5867 -20.6566
ln(drainage area); km2 0.804739 0.840276 0.880323 0.898989 0.802098 0.680423 0.586347
ln(mean annual precipitation); 1.89231 2.04664 2.52389 2.5777 3.07318 2.68226 2.59887
ln(catchment slope); % 0.457961 0.423582
ln(urban); proportion 0.153663 0.257814 0.269509 0.187887 0.169556
ln(soil penetration rate 1); -0.19048 -0.204683
ln(soil penetration rate 6); 0.627247 0.637503
number of dams 0.0895241 0.166023 0.208082
 May 
R2 77.4 75.2 71.8 73.5 78.7 76.3 73.9
Constant -16.3871 -21.8461 -22.544 -22.8615 -20.9683 -15.6768 -15.2951
ln(drainage area); km2 0.846564 0.866198 0.862279 0.889255 0.72048 0.5627 0.480752
ln(mean annual precipitation); 2.14646 2.85731 2.89372 2.83818 3.20758 2.57554 2.43641
ln(urban); proportion 0.173597 0.228883 0.277603 0.323221 0.249392 0.232406 0.216896
ln(soil penetration rate 6); 0.953539 1.00974 0.821956
number of dams 0.129692 0.180829 0.209329
 October 

R2 65.3 67.1 71.3 81.9 81.5 81.6 78.8
Constant -25.7 -21.1433 -23.291 -23.0566 -21.1528 -17.4865 -12.9097
ln(drainage area); km2 0.837724 0.829654 0.860611 0.78783 0.692558 0.587187 0.465319
ln(mean annual precipitation); 3.44102 2.77036 2.9632 2.87891 2.63358 2.14869 1.56055
ln(urban); proportion 0.280296 0.274625 0.270554 0.224122 0.230559 0.189222 0.126773
number of dams 0.100916 0.150598 0.195152 0.24935
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Table 2.6. Table 6. Mean absolute percentage errors (MAEs) and Nash-Sutcliffe model 
efficiency coefficient (NSE) of exceedance flow models for annual and four seasonal time 
windows. 

Time 
windows 

Percent 
exceedances 

Generation step  Validation step 
MAE a NSE b  MAE a NSE b 

Annual 
Q05 42.18 0.83  39.19 0.83 
Q10 51.95 0.78  49.70 0.73 
Q25 58.73 0.74  59.21 0.61 
Q50 47.33 0.82  56.23 0.75 
Q75 44.00 0.83  43.42 0.82 
Q90 46.53 0.81  40.28 0.84 
Q95 46.85 0.77  38.71 0.85 

Mean 48.22 0.80  46.68 0.78 

January Q05 85.57 0.58  95.23 0.57 
Q10 74.47 0.64  91.86 0.47 
Q25 64.29 0.68  86.19 0.50 
Q50 49.80 0.79  57.62 0.75 
Q75 49.39 0.79  41.94 0.84 
Q90 62.82 0.61  40.56 0.85 
Q95 63.71 0.56  43.28 0.81 

Mean 64.29 0.66  65.24 0.68 

July Q05 29.22 0.90  33.27 0.90 
Q10 31.53 0.90  36.81 0.85 
Q25 38.19 0.86  40.74 0.80 
Q50 38.09 0.88  43.16 0.83 
Q75 38.25 0.88  43.29 0.84 
Q90 40.85 0.85  46.27 0.81 
Q95 43.95 0.82  52.61 0.77 

Mean 37.15 0.87  42.31 0.83 

May Q05 53.47 0.77  51.00 0.65 
Q10 58.15 0.75  54.22 0.65 
Q25 60.78 0.72  57.47 0.65 
Q50 58.66 0.74  61.30 0.67 
Q75 52.45 0.79  52.15 0.76 
Q90 54.11 0.76  50.55 0.77 
Q95 54.12 0.74  51.05 0.72 

Mean 55.96 0.75  53.96 0.70 

October Q05 73.18 0.65  69.21 0.68 
Q10 72.17 0.67  67.41 0.66 
Q25 61.85 0.71  67.45 0.64 
Q50 47.16 0.82  50.20 0.76 
Q75 45.89 0.81  39.36 0.82 
Q90 43.58 0.82  43.03 0.79 
Q95 46.63 0.79  47.15 0.70 

Mean 55.78 0.75  54.83 0.72 
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Table 2.7. Two tailed Pearson correlation tests between observed and predicted stream 
discharges for all sites combined (n=163) and four major watersheds. Bold indicates significance 
at p≤0.05, and bold and italics indicate significance at p≤0.01. 

 Annual January July May October Mean 
All sites (n=163) 

lnQ05 0.912 0.762 0.948 0.872 0.811 0.861 
lnQ10 0.880 0.784 0.945 0.861 0.819 0.858 
lnQ25 0.852 0.805 0.926 0.843 0.837 0.853 
lnQ50 0.901 0.885 0.937 0.852 0.900 0.895 
lnQ75 0.910 0.892 0.937 0.885 0.904 0.906 
lnQ90 0.902 0.805 0.921 0.874 0.902 0.881 
lnQ95 0.885 0.773 0.904 0.859 0.883 0.861 
Mean 0.892 0.815 0.931 0.864 0.865  

Geum R. (n=38) 
lnQ05 0.951 0.760 0.958 0.909 0.871 0.890 
lnQ10 0.908 0.825 0.962 0.887 0.864 0.889 
lnQ25 0.842 0.796 0.916 0.824 0.821 0.840 
lnQ50 0.897 0.834 0.924 0.783 0.863 0.860 
lnQ75 0.872 0.854 0.911 0.804 0.825 0.853 
lnQ90 0.857 0.804 0.832 0.811 0.806 0.822 
lnQ95 0.844 0.784 0.758 0.790 0.711 0.777 
Mean 0.882 0.808 0.894 0.830 0.823  

Han R. (n=43) 
lnQ05 0.925 0.776 0.964 0.853 0.809 0.865 
lnQ10 0.893 0.750 0.964 0.851 0.830 0.858 
lnQ25 0.869 0.804 0.945 0.835 0.850 0.861 
lnQ50 0.913 0.892 0.951 0.866 0.918 0.908 
lnQ75 0.919 0.895 0.946 0.900 0.924 0.917 
lnQ90 0.932 0.764 0.945 0.893 0.929 0.893 
lnQ95 0.921 0.766 0.937 0.882 0.901 0.881 
Mean 0.910 0.807 0.950 0.869 0.880  

Nakdong R. (n=47) 
lnQ05 0.901 0.802 0.963 0.905 0.833 0.881 
lnQ10 0.882 0.817 0.954 0.895 0.840 0.878 
lnQ25 0.899 0.865 0.945 0.919 0.889 0.903 
lnQ50 0.909 0.924 0.941 0.884 0.915 0.915 
lnQ75 0.925 0.903 0.947 0.917 0.925 0.923 
lnQ90 0.887 0.823 0.931 0.901 0.905 0.889 
lnQ95 0.860 0.750 0.916 0.879 0.902 0.861 
Mean 0.895 0.841 0.942 0.900 0.887  

Youngsum R. (n=35) 
lnQ05 0.774 0.445 0.834 0.663 0.520 0.647 
lnQ10 0.709 0.510 0.816 0.625 0.510 0.634 
lnQ25 0.595 0.510 0.780 0.574 0.581 0.608 
lnQ50 0.755 0.732 0.849 0.713 0.781 0.766 
lnQ75 0.810 0.841 0.860 0.777 0.810 0.820 
lnQ90 0.844 0.789 0.850 0.724 0.846 0.811 
lnQ95 0.837 0.782 0.829 0.688 0.831 0.793 
Mean 0.761 0.658 0.831 0.681 0.697  
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Table 2.8. Principal components analysis (PCA). Stream flow characteristics variable loadings 
for PC 1, 2, and 3 (n= 163). Bold values are considered equal or larger than |0.40|, but PC3 was 
not considered because its eigen value (0.190) was less than 1. 

Parameter PC1 PC2 PC3

Stream power (Q10×site slope/flow width) -0.073 -0.980 -0.186

Baseflow yield (Q90/catchment area) -0.710 -0.079 0.699

Flow flashiness (Q10/Q90) 0.700 -0.183 0.690

Eigen value 1.786 1.025 0.190

Proportion of variance 59.5 34.2 6.3

Cumulative proportion 59.5 93.7 100
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Table 2.9. Comparison of proportion (site numbers) of stream flow types by flow stability and stream power for stream flow gages and 
biological sampling sites. 

Watersheds 
Stream flow gages (n=163) Biological sampling sites (n=684) 

F S Total HP LP Total F S Total HP LP Total 

Overall 
50.3%   
(82) 

49.7% 
(81) 

100.0%
(163) 

49.7%
(81) 

50.3% 
(82) 

100.0%
 (163) 

64.8% 
(443) 

35.2% 
(241) 

100.0% 
 (684) 

41.5% 
(284) 

58.5% 
(400) 

100.0% 
 (684) 

Geum R. 
52.6% 
(20) 

47.4% 
(18) 

100.0%
 (38) 

39.5%
(15) 

60.5% 
(23) 

100.0%
 (38) 

65.1% 
(80) 

38.5% 
(50) 

100.0% 
 (130) 

27.7% 
(36) 

72.3% 
(94) 

100.0% 
 (130) 

Han R. 
44.2% 
(19) 

55.8% 
(24) 

100.0%
 (43) 

62.8%
(27) 

37.2% 
(16) 

100.0%
 (43) 

65.1% 
(185) 

34.9% 
(99) 

100.0% 
 (284) 

46.8% 
(133) 

53.2% 
(151) 

100.0% 
 (284) 

Nakdong R.  
48.9% 
(23) 

51.1% 
(24) 

100.0%
 (47) 

59.6%
(28) 

40.4% 
(19) 

100.0%
 (47) 

73.1% 
(95) 

26.9% 
(35) 

100.0% 
 (130) 

44.6% 
(58) 

55.4% 
(72) 

100.0% 
 (130) 

Yeongsum R. 
57.1% 
(20) 

42.9% 
(15) 

100.0%
 (35) 

31.4%
(11) 

68.6% 
(24) 

100.0%
 (35) 

59.3% 
(83) 

40.7% 
(57) 

100.0% 
 (140) 

40.7% 
(57) 

59.3% 
(83) 

100.0% 
 (140) 
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Table 2.10. Comparison of proportion (site numbers) of each stream flow type for stream flow gages and biological sampling sites. 

Watersheds 
Stream flow gages (n=163) Biological sampling sites (n=684) 

F-HP F-LP S-HP S-LP Total F-HP F-LP S-HP S-LP Total 

Overall 
26.4% 
(43) 

23.9% 
(39) 

23.3% 
(38) 

26.4% 
(43) 

100.0% 
(163) 

25.6% 
(175) 

39.2% 
(268) 

15.9% 
(109) 

19.3% 
(132) 

100.0% 
 (684) 

Geum R. 
18.4% 

(7) 
34.2% 
(13) 

21.1% 
(8) 

26.3% 
(10) 

100.0% 
 (38) 

15.4% 
(20) 

46.2% 
(60) 

12.3% 
(16) 

26.2%  
(34) 

100.0% 
 (130) 

Han R. 
30.2% 
(13) 

14.0% 
(6) 

32.6% 
(14) 

23.3% 
(10) 

100.0% 
 (43) 

29.2% 
(83) 

35.9% 
(102) 

17.6% 
(50) 

17.3% 
(49) 

100.0% 
 (284) 

Nakdong R.  
29.8% 
(14) 

19.1% 
(9) 

29.8% 
(14) 

21.3% 
(10) 

100.0% 
 (47) 

30.3% 
(39) 

43.1% 
(56) 

14.6% 
(19) 

12.3% 
(16) 

100.0% 
 (130) 

Yeongsum R. 
25.7% 

(9) 
31.4% 
(11) 

5.7% 
(2) 

37.1% 
(13) 

100.0% 
 (35) 

23.6% 
(33) 

35.7% 
(50) 

17.1% 
(24) 

23.6% 
(33) 

100.0% 
 (140) 
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Figure 2.1. Locations of A) stream discharge gages (163 sites) and B) weather-observation stations (63 sites). Violet, sky blue, orange, 
and yellow colors indicate the Han River, Geum River, Nakdong River, and Youngsum River (Youngsan and Sumjin Rivers) 
Watersheds, respectively. 

 

 

A) B) 
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Figure 2.2. Comparison of mean stream discharges (cms) of percent exceedance freqencies for five time windows (Annual, January, 
May, July, and October) for all watersheds. 
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Figure 2.3. Comparison of mean stream discharges (cms) of each percent exceedance frequency for overall and four major Korean 
watersheds (Geum River, Han River, Nakdong River, and Youngsum (Youngsan and Sumjin) River). 
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Figure 2.4. Scatter plots of the relationship between predicted and observed stream discharges for Annual 
time window. Left and right column panels show the test group (133 sites) and the validation group (30 sites), 
respectively. The ideal 1:1 relationship is shown as a solid line and the model relationship is shown as a 
dashed line. 
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Figure 2.5. Scatter plots of the relationship between predicted and observed exceedance discharges for 
January time window. Left and right column panels show the test group (133 sites) and the validation group 
(30 sites), respectively. The ideal 1:1 relationship is shown as a solid line and the model relationship is shown 
as a dashed line.  
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Figure 2.6. Scatter plots of the relationship between predicted and observed exceedance discharges for July 
time window. Left and right column panels show the test group (133 sites) and the validation group (30 sites), 
respectively. The ideal 1:1 relationship is shown as a solid line and the model relationship is shown as a 
dashed line. 
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Figure 2.7. Scatter plots of the relationship between predicted and observed exceedance discharges for May 
time window. Left and right column panels show the test group (133 sites) and the validation group (30 sites), 
respectively. The ideal 1:1 relationship is shown as a solid line and the model relationship is shown as a 
dashed line. 
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Figure 2.8. Scatter plots of the relationship between predicted and observed exceedance discharges for 
October time window. Left and right column panels show the test group (133 sites) and the validation group 
(30 sites), respectively. The ideal 1:1 relationship is shown as a solid line and the model relationship is shown 
as a dashed line. 
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Figure 2.9. Two-dimensional PC score plot for the Korean stream classification using stream power and flow stability. Median 
numbers of both PC scores were used for stream classification. F, S, HP, and LP indicate flashier stream, more stable stream, higher-
powered stream, and lower-powered stream, respectively.  
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Figure 2.10. Example flow duration curves of four different stream flow types for Korean streams based on stream classification using 
PCA analysis. F, S, HP, and LP indicate flashier stream, more stable stream, higher-powered stream, and lower-powered stream, 
respectively.  
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Figure 2.11. Comparison of landscape variables and stream flow characteristics among four 
different stream flow types for stream flow gages. 
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Figure 2.12. Comparison of site numbers for four different flow types between stream flow gages and biological monitoring sites. 
Stream flow type for each site was produced by PCA and PCR models. F, S, HP, and LP indicate flashier stream, more stable stream, 
higher power stream, and lower power stream, respectively.  
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Figure 2.13. Comparison of percentages of each flow type for major four Korean watersheds. 
Top graph shows stream flow gages (n=163) and bottom graph shows biological monitoring sites 
(n=684 sites). 
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Chapter 3 : The predictive performance evaluation of four different analytical 
methods in the estimation of Korean stream flow regimes from landscape 

variables  

Abstract 

The description and estimation of flow regimes in South Korean streams and rivers is an 

important step in accurately assessing aquatic ecosystems health and planning efficient water 

management strategies. In most countries, the network of active flow gauging stations is small 

relative to the scope of sampling undertaken in national-scale water quality monitoring 

programs. The main goal of this study was to evaluate four different analytical approaches to 

site-specific modeling of flow in gauged river segments. The analytical models compared 

included multiple linear regression (MLR), principal component regression (PCR), artificial 

neural networks (ANN), and the combination of principal components and an artificial neural 

networks (PC-ANN). I found that overall, each of the four methods did well at predicting Korean 

stream flows, although non-linear models showed slightly better accuracy than linear models 

across the range of high and low seasonal flows. Flows predicted by four different methods 

showed significantly high correlations (p<0.01) among them and with the observed flows in a 

validation dataset. This predictive performance comparison of analytical methods showed that 

the best choice may largely be based on convenience and familiarity with analytical methods, 

rather than predictive performance of each model in the prediction of Korean flow regimes. 
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Introduction 

In 2008 the South Korean government initiated a Korean Nationwide Ecological 

Assessment Program (KNEAP) in order to maximize economic values of the country’s 

freshwater streams and rivers (NIER 2009, Lee et al. 2011b, WAMIS 2011, Li et al. 2012). 

Despite a relatively large national gauging system, existing reports and publications from 

KNEAP exploring land use influences on aquatic ecosystems have generally ignored spatial 

variability in flow regimes as an important covariate (e.g., Bae et al. 2011, Cho et al. 2011a, 

Hwang et al. 2011, Lee et al. 2011a, Lee et al. 2011b, Yoon et al. 2011). For example, in 

KNEAP’s most recent assessment Li et al. 2012 did not consider any stream related flow 

information in examination of the relationship between macroinvertebrates and environmental 

stressors. Since it has been well demonstrated that flow regimes play a critical role in shaping 

riverine communities (Poff et al. 1989, Poff et al. 1997, Stauffer et al. 2000, Bunn and 

Arthington 2002, Baker et al. 2003, Stevenson et al. 2006, Anonymous 2008, Zorn et al. 2008, 

Baker and Wiley 2009), failure to integrate hydrologic data into ecosystem assessments is 

certainly problematic, and stems largely from the lack of flow data for the vast majority of 

biological monitoring sites used by KNEAP. 

In South Korea, as in most countries, hydrologic and biological river monitoring is 

carried out by completely different agencies and/or teams of researchers, so it is not surprising 

that data are collected usually at different sets of sites, and often with very different scales of 

spatial coverage. In order integrate hydrologic and biologic data sets in comprehensive analyses, 

hydrologic modeling of specific biological assessment sites is often the best alternative 

(Holtschlag and Croskey 1984, Smakhtin 2001, Hamilton et al. 2008, Seelbach et al. 2011). 
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Predicting site-specific flow regimes at un-gauged biological sampling sites is necessary to apply 

a more integrated analysis of the current ecological status of South Korean rivers and streams.   

The site-specific estimation of stream flow regimes from landscape variables using 

multiple linear regression (MLR) analysis (e.g., Wiley et al 1997, Allan and Hinz 2004, 

Hamilton et al. 2008, Seelbach et al. 2011) follows naturally from the early work of hydrologists 

on linear hydraulic geometries (e.g., Dunne and Leopold 1978, Holtschlag and Croskey 1984). 

For example, Seelbach et al. 2011 predicted flow regimes for all rivers across Illinois, Michigan, 

and Wisconsin and examined the performance of MLR models at different spatial scales. 

Recently the State of Michigan (USA) has built site-specific enhanced regression estimation into 

its legal permitting process for pumped water withdrawals (Hamilton et al. 2008).  

With advances in analytical technologies and tools, other modeling approaches have also 

become routinely available, and these are increasingly applied to the problem of hydrologic 

prediction. Empirical models (Obropta et al. 2007) are relatively easy to construct if adequate 

regional gauging data sets are available. Empirical approaches include the development of 

predictive functions taken from multiple linear regression, neural networks, and support vector 

machines including principal component regression (PCR). MLR and PCR approaches are not 

free from statistical assumptions, including normality, randomness, and the absence of outliers 

(Gros 1997, Cho et al. 2011b). In particular, inattentive contemplation of high correlations 

among independent variables can decrease the statistical robustness, eventually resulting in 

significant prediction errors (Mac Nally 2002, Cho et al. 2011b). Therefore, more advanced and 

nonlinear models are now being applied in many water resource problems, including 

hydrological process description, water quality modeling, and dam operation planning (Maier 
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and Dandy 1996, Wen and Lee 1998, Lee et al. 2003, Riad et al. 2004, Sarangi and Bhattacharya 

2005, Tayfur et al. 2005, Holmberg et al. 2006, Cho et al. 2011b).  

Although these various analytical approaches have been used in environmental and 

ecological applications, direct performance comparisons of alternate analytical methods are 

rarely been made. Recently, water resource-related studies comparing alternate model 

performance have often observed that newer analytical technologies showed higher accuracy 

than simple linear models (Lek et al. 1996, Franklin 1998, Vayssieres et al. 2000, Steen et al. 

2006, Cho et al. 2011b). However, a careful comparison of alternate empirical methods in the 

estimation of Korean stream flow regimes has not been previously conducted, and is undertaken 

here as a preliminary step towards a more integrated ecological assessment of South Korean 

streams and rivers. 

My main objective was to evaluate the performance of four different modeling techniques 

(MLR, PCR, artificial neural networks (ANN), and the combination of principal component and 

artificial neural networks (PC-ANN)) in the estimation of Korean stream flow characteristics 

using landscape (GIS-extracted) variables. Our goal was to contribute to the discussion of the 

relative advantages and disadvantages of alternate methods for the estimation of stream flow 

regimes in general.
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Materials and methods 

Data collection and summary 

Daily stream flow data from gauges across South Korean Peninsula were used in this 

study. Flow data from each gauge were obtained from the WAter Management Information 

System (WAMIS 2011), the National Institute of Environmental Research (NIER), the Ministry 

of Environment, Korea. Of the 603 listed discharge gauges, daily discharge data from 163 

gauges (Figure 3.1A) were used eliminating 440 sites, based on the following four selection 

criteria. First, gauges that were non-operational in 2009 were eliminated because much of the 

biological data I analyzed in later chapters were obtained in 2009. Second, gauges with less than 

ten years of daily discharge data were removed since our interest was in modeling flow regimes, 

not specific dates. However, nineteen of these sites were intentionally included in order to 

balance gaging station distribution, in consideration of spatial stability of discharge data, even 

though they only had eight or nine years of discharge data. Third, gauges with discharges that 

were heavily impacted by anthropogenic activities were removed. Last, extreme outlier sites (11 

out of 174 sites) were excluded based on boxplot and scatter plot assessments with landscape 

variables, using Datadesk 6.0 (Velleman 1997). 

With qualified stream discharge records from the 163 gauges, I performed flow 

frequency analysis for each site using HEC-DSSVue 2.0.1 (U.S. ACE 2011), producing flow 

duration estimates and curves for the period of record. Summary statistics of three major percent 

exceedance discharges (10%, 50%, and 90%) were computed to represent high, median, and 

baseflow regime indicators, respectively (Table 3.1, Figure 3.2). The smaller percent exceedance 
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discharges indicate high flow conditions for the data series, while the larger percent exceedance 

discharges indicate persistent or low flow conditions. 

Candidate landscape attributes (independent variables) that were necessary to develop 

models were summarized at the catchment scales from digital maps of elevation, mean 

precipitation, mean air temperature, mean humidity, land cover/land use, and surficial geology 

(soil type and soil infiltration rate) using ArcGIS 9.1 (ESRI 2009). The digital maps of land 

cover/land use, surficial geology, and elevation were obtained from the WAter Management 

Information System (WAMIS 2011). The surficial geology maps included soil types and soil 

penetration rates. Soil penetration rates were categorized from very excellent with high 

penetration rate (category 1) to very poor with very low penetration rate (category 7). The digital 

contour maps of regional climate data (mean precipitation, mean air temperature, and mean 

humidity) were created with the observed data obtained from the Korea Meteorological 

Administration (KMA 2011), Korea (Figure 3.1B). The regional climate data included mean 

annual summary collected from 1981 to 2010 at 63 operational weather observation stations. 

Independent variables used in the predictive models were based on previous research (Wiley et 

al. 1997, Allan and Hinz 2004, Steen et al. 2006, Seelbach et al. 2011) and included catchment 

size, latitude, longitude, catchment slope, channel slope, mean precipitation, mean air 

temperature, mean humidity, number of dams, proportions of catchment land use, proportions of 

soil type, and proportions of soil infiltration rate. All independent variables in the models were 

transformed to natural log form after adding the integer 1 or 0.01 to the variable in order to 

maximize linearity within the modeled relationships and to meet assumptions of normality for all 

variables (Wiley et al. 2003, Riseng et al. 2006). Specifically, 1 was added to catchment area, 

precipitation, and site elevation and 0.01 was added to catchment slope, site slope, land 



 

86 

cover/land use, and surficial geology. However, number of dams was not transformed in MLR 

models because the variable showed good linearity and normality without transformation. 

Modeling approach: MLR, PCR, ANN, and PC-ANN 

The decision to include independent variables in the MLR and PCR models to predict 

percent exceedance discharges was made with a manual, stepwise regression approach (Zorn et 

al. 2004, Allan and Hinz 2004, Steen et al. 2006, Seelbach et al. 2011) and the hierarchy and 

spatial scales of environmental factors (Allan and Castillo 2007) using Datadesk 6.0 (Velleman 

1997) and SPSS 18.0 (SPSS Inc. 2009). Independent variables were inserted in the model in the 

following order: 1) catchment area, 2) precipitation, 3) catchment slope, 4) site elevation, 5) land 

cover/land use, 6) surficial geology variables (soil type or penetration rate), 7) land cover/land 

use variables, and 8) number of dams. The independent variables in the MLR models that would 

maximize R2, be significant at p <0.05, and have a t-ratio greater than 2 in the model were 

selected. However, a few important variables, significant at p <0.10, were intentionally included, 

when they were considered to be causally critical for prediction of exceedance discharges. If 

independent variables in the model were highly correlated, the variable that best improved model 

fit was selected. The independent variables selected for the MLR and PCR models were then 

used in the ANN and PC-ANN models in order to produce a standard set of model structures that 

could be reasonably compared. MLR, PCR, ANN, and PC-ANN analyses were conducted using 

Datadesk 6.0 (Velleman 1997) and SPSS 18.0 (SPSS Inc. 2009).  

The stream discharge gauging dataset was randomly partitioned into model-generation 

and model-test groups. A total of 30 gauges, approximately 18.4% of the total, were set aside as 

a model-test group and were used to evaluate and validate models. The remaining 133 sites 
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(approximately 81.6%) were set into a model-generation group, which was used for building 

models for each exceedance discharge.  

Multiple linear regressions (MLR) 

Each MLR model can be defined as follows, 

 

                                                                           (1) 

 

where xi is an explanatory variable i (i.e., catchment size, climate properties, land uses, soil 

properties, and site-specific stream properties), y is the response variable (Q10, Q50, and Q90), 

βi is the regression coefficient of explanatory variable xi, and β0 is the value of the intercept.  

Principal component regressions (PCR) 

Principal component regression is a regression analysis that uses principal component 

analysis (PCA) when calculating regression coefficients (Indahl and Naes 1998, Park 1981, Bair 

et al. 2006). PCR approach has two advantages. First, multi-collinearity can be avoided by using 

PCs in place of the original variables. Second, the dimensionality of the regression is minimized 

by using only a subset of PCs. In the process of the PCR, an orthogonal linear transform of the 

original data generates a new set of variables (the principal components, PCs) and PC scores. 

The generated PCs and PC scores are then used in the regression as explanatory variables to 

estimate response variables.    

Artificial neural network (ANN) 
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ANN is an advanced computational model that uses the interconnection of software 

neurons that can estimate values from inputs by feeding information through the network 

(Lawrence 1994, Bishop 1995, Cho et al. 2011b). The neurons in the different layers of each 

system are interconnected in the ANN model. An ANN model includes an input layer, hidden 

layer, and output layer. The input layer nodes take the input vectors and transfer the signals to 

the next layer. This process will be continued until the signals reach to the output layer and more 

detailed computational processes are well described in Norgaard et al. 2000 and Cho et al. 

2011b. 

Principal component-artificial neural network (PC-ANN) 

PC-ANN merges PCA decomposition with ANN (Sousa et al. 2007). The PC-ANN takes 

the benefits of both analytical modeling approaches. The main difference between this approach 

and ANN is that PC scores generated from the orthogonal linear transformation of the original 

data are used as the input variables of ANN; other procedures for the optimization, training, and 

validation are the same as those for the ANN model. 

Performance evaluation of four different predictive models 

In order to evaluate the performance of four different predictive models, the mean 

absolute error (MAE; Hyndman and Koehler 2006), Nash-Sutcliffe model efficiency (NSE; Nash 

and Sutcliffe 1970) coefficient, variance inflation factor (VIF; Longnecker and Ott 2004), and 

Pearson product-moment correlation coefficient (Pearson’s r; Pearson 1895) were estimated with 

the observed and predicted flow discharges of three percent exceedance flows.  

The Mean absolute error (MAE) is a statistical approach used to measure how close 

predicted values are to the observed values and can be defined as follows, 
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                                                                                                                                          (2) 

 

where n indicates the number of observations of stream discharge for each percent exceedance. 

Here, xobs and xpre indicate the observed and predicted stream discharges, respectively.  

The Nash-Sutcliffe model efficiency coefficient (NSE) was also computed to evaluate the 

predictive power of four different models using the predicted and observed stream discharges. If 

NSE value is greater than 0.5, the model showed acceptable accuracy. If NSE value is greater 

than 0.7, the model is in a good agreement with observation (Moriasi et al. 2007). The NSE can 

be defined as follows, 

 

 

                                                                                                                                         (3) 

 

where xobs is the observed stream discharges, xpre is the predicted stream discharges, and  

   is the averaged value of the observed stream discharges.  

The variance inflation factor (VIF) is the measurement of the severity of multi-

collinearity in a regression analysis and is used for the examined linear models (MLR and PCR) 

to identify any collinearity problem in a matrix. If VIF is greater than 5, then it can be assumed 

that multicollinearity is high. Also, the proposed cut off value of VIF is 10 (Bowerman and 

O'Connell 1990, o’Brien 2007). Collinearity can sometimes results in statistical stability 

problems, such as high variance in estimated coefficients in the regression model. Therefore, it is 

necessary to investigate the VIF value in order to prevent colinearity in the MLR. However, this 
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procedure is not necessary in PCR because VIF is always supposed to be 1, implying that all PCs 

are orthogonal; VIF refers to the effect of collinearity on the variance of the estimated 

coefficients (Longnecker and Ott 2004), such that  

 

                           
1

VIF 21
i

Ri




                                                                                       (4) 

 

where Ri
2 is the multiple correlation coefficient between the ith explanatory variable and other 

explanatory variables in the regression model, and VIFi is the variance inflation factor associated 

with the ith explanatory variable. 



 

91 

Results 

All four analytical models were successfully developed and used to predict percent 

exceedance discharges. The overall predictive performances were clearly acceptable (Table 3.2) 

in all cases. The performance evaluation statistics demonstrated that both linear and non-linear 

models produced statistically satisfactory results, showing relatively high NSE values ranging 

from 0.77 to 0.88 in the model generation step and ranging from 0.70 to 0.85 in the test step. The 

average MAEs and NSEs for the overall models were 46.61 and 0.82 in the model test step and 

48.57 and 0.76 in the test step, respectively. 

Two-tailed Pearson correlation test also showed significantly high correlation among 

observed and all predicted discharges (Table 3.3). Overall Pearson correlation values ranged 

from 0.880 to 1.000 with mean of 0.945. The mean of Pearson r (0.975) among predicted 

discharges was relatively higher than the mean r (0.945) between observed and predicted 

discharges, indicating the reflection of of landscape variable influences in models.    

Summary statistics of response and explanatory variables 

The percent exceedance discharges (Q10, Q50, and Q90) represent high, median, and low 

stream flow events, respectively (Table 3.1 and Figure 3.2). One way ANOVA with post-hoc 

Tukey tests indicated that across the gauging dataset, 10% exceedance discharges (mean = 

207.48cms) were significantly different from 50% (mean = 55.53cms) and 90% (mean = 

19.21cms) exceedance discharges (p<0.01). However, 50% exceedance discharges were not 

significantly different from 90% exceedance discharges (p>0.05) reflecting the large variability 

of flow and water yields in S. Korea.  
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Landscape (explanatory) variables ultimately retained for the various models included 

drainage area, mean annual precipitation, urban land use, number of dams, and soil penetration 

rates (Table 3.1).Variables included in models for all three percent exceedance discharges were 

drainage area and mean annual precipitation. The drainage areas of stream flow gauges in South 

Korean streams and rivers varied from 50 km2 to 23,316 km2 with the mean of 3,080 km2 and the 

mean annual precipitation varied from 1,072 mm to 1,588 mm with the mean of 1,319 mm. 

Urban land use varied from 0.00% to 48.80% with the mean of 7.44%. Number of dams was also 

an important variable for 50% and 90% exceedance discharges and ranged from 0 to 11 (mean = 

1.48).   

Predictive models for 10% exceedance discharge (high flows) 

The predictive performance of the four different models for the 10% exceedance (high 

flow) discharge was compared using mean absolute percentage errors and Nash-Sutcliffe model 

efficiency coefficients (Table 3.2 and Figure 3.3). Overall, the NSE values indicated that the four 

different models all showed good predictive performance; ranging from 0.78 to 0.82 for the 

generation step and ranging from 0.72 to 0.77 for the test step. In general, the non-linear models 

(ANN and PC-ANN) had slightly lower error rates than the linear models (MLR and PCR) in the 

both generation and test steps. The ANN model had the highest NSE value (0.82) and the lowest 

MAE value (46.43) in the generation step among the four analytical models.  

The landscape variables included in predictive models for the 10% exceedance 

discharges were drainage area, mean annual precipitation, and soil penetration rate category 1 

(Table 3.4). The standardized regression coefficients of the MLR model for the 10% exceedance 

discharges indicated that drainage area was the most influential variable and followed by mean 

annual precipitation and soil penetration rate category 1, respectively. The average variance 
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inflation factor (VIF) values for the MLR model ranged from 1.004 to 1.141 with the average of 

1.095, suggesting a small problem with collinearity (Table 3.5).   

Predictive models for 50% exceedance discharge (median flows) 

Using the NSE criteria, median stream flows were also well predicted by all four 

analytical methods (Table 3.2 and Figure 3.4). The 50% models performed better across the 

board than 10% exceedance discharge models with the NSE ranges from 0.81 to 0.88 in the 

generation step and ranges from 0.70 to 0.75 in the test step. Also, MAE values of the 50% 

exceedance discharge models were much lower than those of the 10% exceedance discharge 

models in the generation step, although the MAE values of the test step showed opposite results. 

Similarly to the high flow modeling, the ANN and PC-ANN models for median flow had higher 

prediction accuracy than linear models in the generation data set analysis, although the situation 

was reversed in my analysis of the validation data set. No significant difference was observed 

between the performance of the MLR and PCR models. 

The predictive models for the 50% exceedance discharge included drainage area, mean 

annual precipitation, urban land use, soil penetration rate, and number of dams (Table 3.4). The 

standardized regression coefficients of the MLR model indicated that drainage area was the most 

influential variable and followed by number of dams, urban land use, mean annual precipitation, 

and soil penetration rate category 6, respectively. Collinearity issues in the MLR increased 

relative to the high flow model, but the values still suggest only a small problem with collinearity 

(Table 3.5).  

Predictive models for 90% exceedance discharge (low flows) 
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Each method also reasonably predicted 90% exceedance discharge with only minor 

differences in NSE statistics. The NSE values for the ANN and PC-ANN, the non-linear models, 

were 0.85 and 0.82 in the generation step and 0.83 and 0.84 in the test step, respectively. The 

NSE values for MLR and PCR were 0.81 and 0.77 in the generation step and 0.84 and 0.85 in the 

test step (Table 3.2 and Figure 3.5). However, in terms of error rate the non-linear models again 

out-performed the linear models in the generation set analyses.  

The 90% exceedance discharge had the same independent variables in the predictive 

models and included drainage area, mean annual precipitation, urban land use, soil penetration 

rate, and number of dams (Table 3.4). However, the standardized regression coefficients of the 

MLR model indicated that the importance of independent variables in the MLR model was 

slightly different from the 50% exceedance discharge model. Drainage area was the most 

influential variable and followed by number of dams, mean annual precipitation, urban land use, 

and soil penetration rate category 6, respectively. 
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Discussion 

As quantitative hydrologic information has been crucially important for the effective 

conservation and management of freshwater resources and ecosystems (Trush et al. 2000, Fausch 

et al. 2002, Zorn et al. 2002, Diana 2004, Allan and Castillo 2007), flow regime analysis and 

modeling is a common practice in aquatic ecosystem conservation and research (Petts et al. 1999, 

Zorn et al. 2002, Allan and Hinz 2004, Piggott and Neff 2005, Hamilton et al. 2008, Seelbach et 

al. 2011). South Korean aquatic ecosystems suffer from extreme high flow events in each 

monsoon season, while flows in the rest of seasons are typically quite low. The South Korean 

peninsula has a dramatic monsoon climate with heterogeneous geomorphology. Mountainous 

areas create higher stream slopes and relatively short stream channel lengths. Conversely coastal 

lowland channels are typically mild in slope and longer in length. The combination of strong 

seasonality in climate and landscape heterogeneity makes prediction of stream flows from 

empirical data a challenge. And while all of the methods explored produced reasonably good 

models, accuracy here was somewhat less than has been reported by workers in some other 

geographic settings. For example, while my MLR models had R2 values ranging from 0.78 to 

0.82; Seelbach et al (2011) working in the Great Lakes basin of North America reported values 

of 0.96-0.98 for Michigan MLR models, 0.74-0.98 for Illinois, and 0.94-0.98 for Wisconsin. 

All high, median, and low flow models consistently included drainage area and mean 

annual precipitation as the most important predictive variables (Table 3.4). Urban land-use, soil 

properties, and number of dams were also often important variables. High stream flows (Q90) 

were mainly predicted by drainage area and mean annual precipitation; whereas the importance 

of number of dams and urban land-use was relatively stronger for low exceedance flows 
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(Q90)than higher exceedances. These patterns are consistent with reports in previous studies by 

Hamilton et al. 2008 and Seelbach et al. 2011.    

Linear regression models (MLR and PCR) 

Linear regression modeling of stream flow has a long history and is a well established 

method in both hydrologic and ecological studies; the various advantages and disadvantages of 

MLR for this purpose have been well described elsewhere (Holtschlag and Croskey 1984, Allan 

and Hinz 2004, Hamilton et al. 2008, Seelbach et al. 2011). In our study, both MLR and PCR 

methods had satisfactory MAE and NSE values (Table 3.2). The performance of MLR was 

slightly better than PCR in the Q50 and Q90 models, although for the Q10 there was almost no 

difference in MAE and NSE values. There is no doubt that linear regression models can be used 

for accurate stream flow estimation. 

Linear regression models (MLR and PCR) generally have better performance with 

continuous response variables than dichotomous or categorical variables (Zar 1999, Steen et al. 

2006). However, MLR can suffer from issues of multi-collinearity. Variance inflation factor 

(VIF) is a useful index to check for multi-collinearity among explanatory variables (Longnecker 

and Ott, 2004). Minor multi-collinearity was observed in MLR models, but the VIF values were 

usually within acceptable ranges (Table 3.5). However, I found no multi-collinearity problem in 

PCR models although predictive performance was slightly lower than MLR models. Thus, the 

appropriate selection between two linear analytical methods can be carefully considered with 

multi-collinearity of explanatory variables.  

Non-linear models (ANN and PC-ANN) 



 

97 

Both non-linear models (ANN and PC-ANN) showed good predictive performance with 

relatively lower MAEs and higher NSEs than those of linear regression models (Table 3.2). 

Between non-linear models, ANN models showed slightly better predictive performance than 

PC-ANN models. Similar results were reported in a study of the prediction methods for 

groundwater arsenic (Cho et al. 2011b). However, this was not the case in comparisons of 

modeling approaches for brook trout presence/absence in Michigan rivers from landscape 

variables (Steen et al. 2006). It seems likely that the selection of best predictive model will 

depend on the specific on data types and distributions of response and explanatory variables 

involved. 

Neural networks are distribution-free and working well with messy data and nonlinear 

responses (Bishop 1995, Gurney 1997, Norgaard 2000, Holmberg et al. 2006, Steen et al 2006). 

The ANN approach will be relatively effective and easier for researchers with less ecological and 

statistical background, when they have difficulty in choosing explanatory variables for the best 

predictive model. Previous studies showed that full neural network models with all variables and 

pruned neural network models produced satisfactory results in predicting the generation and test 

sets (Steen et al. 2006). Despite of these advantages, neural networks are fairly new methods and 

not familiar to many researchers. ANN consists of the interconnections between neurons 

(processing elements or units) in the different layers of each system. It is not simple for 

beginners to understand the process and interpretation of process layers. Thus, it may not be 

practical to interpret the relationship between response and explanatory variables.  

Error in databases and other limitations 

The selection of explanatory variables for four different analytical models was based on a 

manual, stepwise regression approach (Zorn et al. 2004, Allan and Hinz 2004, Steen et al. 2006, 
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Seelbach et al. 2011) and the hierarchy and spatial scales of environmental factors (Allan and 

Castillo, 2007) in MLR models. Once this was completed, the selected explanatory variables 

were applied to the other three predictive models in order to build standard forms and examine 

the comparative performance of four different predictive models. Although all predictive models 

all showed satisfactory prediction results, they did not necessarily represent the “best-fit” model 

with the optimal explanatory variables for each predictive method, and statistical accuracy may 

differ with different variable selections (Cho et al. 2009). Thus, it might be worthwhile to 

compare the predictive performance of the “best-fit” model using each method. However, 

comparing different methods employing different independent variables would make 

comparisons difficult to evaluate. In this study I focused on the performance of standard forms of 

different predictive models to help clarify differences due to methodology alone.    

The response and explanatory data used for this comparison study were collected at 

different time scales, which were available at the time of data collection. These different time 

periods might cause some error in the predictive models. Exceedance discharges for each site 

included at least ten years of data, but many sites included more than twenty or thirty years of 

stream flow data. The data for mean annual precipitation, mean annual air temperature, and mean 

annual humidity were collected from 1981 to 2010. Land-use, soil properties, and number of 

dams were based on GIS data measured in 2009. However, I believe that these data can generally 

represent long-term average trends in Korean stream flows, as other similar studies also 

successfully employed this long term data summary (Wehrly et al. 1997, Wiley et al. 2003, 

Riseng et al. 2010, Wiley et al. 2010, Riseng et al. 2011, Seebach et al. 2011). Also, the use of 

long term data summaries can avoid errors that might be induced by short term year-to year 

variation in either stream flow or climate data.  
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Overall, all four predictive models successfully estimated the Korean stream flows for 

three (high, median, and low) representative annual stream flow events. When predictive 

performance was evaluated with several statistical indices, the order for accuracy was as follows: 

ANN, PC-ANN, MLR, and PCR. Non-linear models showed slightly better prediction than linear 

models. However, model predictions showed only small differences relative to each other, and 

all predicted flows were highly correlated. Thus, the selection of an appropriate model might be 

based on other criteria than this predictive accuracy.
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Table 3.1. Summary statistics of dependent and independent variables used for comparison of predictive models. All other variables 
not used for model construction were removed from the table. SD indicates standard deviation. 

Variables 
Short 
code 

n Mean Median SD Min Max 

Dependent variables        

10 % exceedance discharge (cms) Q10 163 207.48 44.90 461.87 1.69 3820.90 

50 % exceedance discharge (cms) Q50 163 55.53 6.55 176.71 0.18 1857.80 

90 % exceedance discharge (cms) Q90 163 19.21 1.58 52.26 0.03 323.90 

Independent variables        

Drainage area (km2) DAREA 163 3080.42 487.54 5654.57 50.23 23316.70 

Mean annual precipitation (mm) MAPPT 163 1319.17 1323.47 98.09 1072.78 1588.31 

Soil penetration rate 1 (proportion) SOILP1 163 0.47412 0.48763 0.18100 0.00000 1.00000 

Soil penetration rate 6 (proportion) SOILP6 163 0.00061 0.00000 0.00313 0.00000 0.03564 

Urban land use (proportion) URBAN 163 0.07439 0.04000 0.09512 0.00000 0.48800 

Number of dams NDAMS 163 1.48 0.00 2.67 0.00 11.00 
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Table 3.2. Mean absolute percentage errors (MAEs) and Nash-Sutcliffe model efficiency coefficient (NSE) of each model for three 
percent exceedance discharges (Q10, Q50, and Q90). 

 Generation steps Test step 

 MAE NSE MAE NSE 

Q10 

MLR 51.94 0.78 49.72 0.73 

PCR 51.94 0.78 49.69 0.73 

ANN 46.43 0.82 48.09 0.72 

PC-ANN 50.05 0.80 44.89 0.74 

Q50 

MLR 47.33 0.82 56.09 0.75 

PCR 49.07 0.81 57.11 0.72 

ANN 38.32 0.88 61.33 0.71 

PC-ANN 41.31 0.87 58.22 0.70 

Q90 

MLR 46.53 0.81 40.32 0.84 

PCR 53.02 0.77 35.72 0.85 

ANN 39.00 0.85 43.95 0.83 

PC-ANN 44.40 0.82 37.68 0.84 
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Table 3.3. Two tailed Pearson correlation tests among observed and predicted stream discharges 
for all sites combined (n=163). Bold indicates significance at p≤0.05, and bold and italics 
indicate significance at p≤0.01. 

Q10 

 
Observed 

Predicted 
(MLR) 

Predicted 
(PCR) 

Predicted 
(ANN) 

Predicted 
(PCANN) 

Observed 1.000 
Predicted (MLR) 0.880 1.000 
Predicted (PCR) 0.880 1.000 1.000 
Predicted (ANN) 0.899 0.972 0.972 1.000 
Predicted 
(PCANN) 

0.891 0.981 0.981 0.982 1.000 

Q50 

 
Observed 

Predicted 
(MLR) 

Predicted 
(PCR) 

Predicted 
(ANN) 

Predicted 
(PCANN) 

Observed 1.000 
Predicted (MLR) 0.901 1.000 
Predicted (PCR) 0.895 0.996 1.000 
Predicted (ANN) 0.925 0.960 0.954 1.000 
Predicted 
(PCANN) 

0.919 0.970 0.967 0.984 1.000 

Q90 

 
Observed 

Predicted 
(MLR) 

Predicted 
(PCR) 

Predicted 
(ANN) 

Predicted 
(PCANN) 

Observed 1.000 
Predicted (MLR) 0.902 1.000 
Predicted (PCR) 0.884 0.978 1.000 
Predicted (ANN) 0.919 0.970 0.951 1.000 
Predicted 
(PCANN) 

0.906 0.984 0.967 0.982 1.000 
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Table 3.4. Regression coefficients and collinearity statistics of the MLR and PCR models for 10%, 50%, and 90%  exceedance 
discharges (Q10, Q50, and Q90). Bold unstandardized coefficients indicate significance at p ≤ 0.05, and bold and italics 
unstandardized coefficients indicate significance at p ≤ 0.01. 

Independent 
variable  (i) 

 Percent exceedance discharge 

 Q10 Q50 Q90 

 
Unstandardized 

Coefficients 
Standardized 
Coefficients 

Regression Coefficients 
Standardized 
Coefficients 

Regression 
Coefficients 

Standardized 
Coefficients 

 bi 
Std. Error 

(SEbi) 
Beta bi 

Std. Error 
(SEbi) 

Beta bi 
Std. Error 

(SEbi) 
Beta 

R2: 0.779     R2: 0.821   R2: 0.807   

Constant  -16.368 6.476  -18.434 6.183  -19.442 5.988  

ln(DAREA)  0.865 0.042 0.912 0.780 0.064 0.794 0.560 0.062 0.610 

ln(MAPPT)  2.006 0.887 0.100 2.712 0.841 0.130 2.989 0.815 0.154 

ln(SOILP1)  -0.284 0.119 -0.099     

ln(SOILP6)     0.703 0.343 0.078 0.872 0.332 0.104 

ln(URBAN)     0.252 0.072 0.132 0.194 0.070 0.109 

NDAMS     0.093 0.040 0.150 0.200 0.039 0.347 

R2: 0.779     R2: 0.814   R2: 0.770   

Constant  4.049 0.063  2.468 0.061  1.529 0.063  

PC1  1.015 0.063 0.663 1.222 0.061 0.770 1.113 0.063 0.752 

PC2  -0.039 0.063 -0.026 0.148 0.061 0.093 0.148 0.063 0.100 

PC3  0.890 0.063 0.582 -0.189 0.061 -0.119 -0.129 0.063 -0.087 

PC4     0.553 0.061 0.349 0.532 0.063 0.359 

PC5     -0.438 0.061 -0.276 -0.358 0.063 -0.242 
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Table 3.5. Collinearity statistics for MLR and PCR models. Variance inflation factors (VIFs) and average VIFs were summarized in 
order to see multicollinearity issues among independent variables used in MLR and PCR models. 

Independe
nt variable  

(i) 
 Percent exceedance discharge 

  Q10 Q50 Q90 

  VIF Average VIF VIF Average VIF VIF Average VIF

DAREA  1.141 

1.095 

3.008 

1.847 

3.008 

1.847 

MAPPT  1.140 1.160 1.160 

SOILP1  1.004   

SOILP6   1.033 1.033 

URBAN   1.024 1.024 

NDAMS   3.008 3.008 

PC1  1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

PC2  1.000 1.000 1.000 

PC3  1.000 1.000 1.000 

PC4   1.000 1.000 

PC5   1.000 1.000 
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Figure 3.1. Locations of A) stream discharge gages (163 sites) and B) weather-observation stations (63 sites). 
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Figure 3.2. Boxplots showing the mean (dashed line), median (solid line), and range of stream discharges (cms) for exceedance 
discharges (Q10, Q50, and Q90) used for predictive models. Y-axis is log scaled for better view of discharge distribution. 
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Figure 3.3. Scatter plots of observed and predicted 10% exceedance flows (Q10). Predicted exceedance flows were modeled by ANN, 
MLR, PC-ANN, and PCR. 
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Figure 3.4. Scatter plots of observed and predicted 50% exceedance flows (Q50). Predicted exceedance flows were modeled by ANN, 
MLR, PC-ANN, and PCR. 
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Figure 3.5. Scatter plots of observed and predicted 90% exceedance flows (Q90) Predicted exceedance flows were modeled by ANN, 
MLR, PC-ANN, and PCR.
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Chapter 4 : Biases arising from sampling gear in stream bioassessments: 
electrofishing versus cast-netting 

Abstract 

Since different fishing gears are generally recognized to have different capture 

efficiencies, with respect to both species and habitats, direct comparison of international datasets 

on community responses to anthropogenic stressors is potentially fraught with sampling biases. 

In this study I examined the comparability of stream fish data collected using two different 

sampling methods commonly employed in North American and in East Asian assessment 

studies: DC electrofishing unit (EF), and hand cast-netting (CN). Paired sampling with these two 

gears was conducted at 21 stream sites in the Huron River Watershed, MI, USA, and the catches 

statistically compared. In general, EF had significantly higher (p<0.05) sampling performance 

for count-based metrics of species richness and relative abundance. However, for the metrics 

reflecting relative percentages there generally are no significant differences between the two 

types of gear. When fish sampling gear efficiencies (FSGEs) were analyzed for common metrics 

based on absolute richness (combined datasets from each gear sampling), EF (89.8 ~ 97.0%) had 

consistently higher FSGEs than CN (72.2 ~ 81.1%). FSGEs of CN were notably lower for 

Esociformes, Centrarchidae (Perciformes), and Petromyzontiformes. When these groups were 

excluded from the comparison, EF and CN based metrics showed no significant difference for 

many common metrics. Intolerant species counts and percentage of insectivorous individuals, 

however, continued to show significant gear-related differences. I conclude that any direct 

comparisons of metrics based on EF and CN methods will require some kind of standardization: 
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either by a restriction of taxa and metrics employed, or by numerical/statistical calibration of 

metric data to compensate for inherent collection biases.



 

118 

Introduction 

Various fishing gears and methods exist to sample fish assemblages in wadeable streams 

and rivers (Hellawell 1978, Sutherland 1996, Barbour et al. 1999, An et al. 2005, Cao et al. 

2005). Different gears can be more or less appropriate depending upon specific research goals, 

operating budgets, field time available, and crew familiarity with gear operation (Diamond et al. 

1996, Barbour et al. 1999, Carter and Resh 2001, Bonar and Hubert 2002). As the need for 

management and conservation of ecosystem health has grown (Hwang et al. 2011, Riseng et al. 

2011, Allan et al. 2013), governments and researchers around the world are compiling fish 

community assemblage data to assess anthropogenic impacts. These studies employ gear and 

procedures that seem appropriate to local needs, and typically these are used consistently from 

site to site to avoid issues of gear bias (Cao et al. 2005). Regional- and even global- scale 

assessments and ecological studies can require meta-analyses of, or pooling of, locally designed 

survey datasets to address issues of interest at broader geographic scales (Wiley et al 2003, 

Riseng et al. 2010). When these geographically larger scale assessments include samples from 

different sampling gears, or with similar gear but different faunas, the underlying catch data can 

reflect methodological variation in capture efficiency and thus bias the metrics derived from 

them. Biases of course become a concern whenever data from different sources are compared 

(Intergovernmental Task Force on Monitoring Water Quality 1995, Barbour et al. 1999, Houston 

et al. 2002).    

Many earlier fishery studies have examined the impact of specific gear and environments 

on capture efficiency and bias. Sampling accuracies among various fish sampling gears or 

methods were evaluated in many previous papers using electrofishing units, seines, traps, cast 

nets, electric seines, and rotenone (Freeman 1984, Bayley et al. 1989, Seelbach et al. 1994, 
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Bayley and Austen 2002, An et al. 2005, Cao et al. 2005). Also, sampling effort (i.e. time 

invested and replication) is another important aspect related to the accuracy of collected fish data 

(Justus 1994, Paller 1995, Diamond et al. 1996, Barbour et al. 1999, Furse et al. 2006, Polacik et 

al. 2008). These studies all examined methods in use in a single region or country. However, few 

studies exist to examine the accuracy and comparability of fish data as influenced by methods in 

different countries or continents (An et al. 2005, Furse et al. 2006). An et al. (2005) investigated 

the gear efficiency of electrofishing and cast-netting as a preliminary study of the introduction of 

western electrofishing gear and methodologies into Korean stream assessment programs. The 

workers in the context of the EU Water Framework Directive (EU-WFD) have examined 

existing rapid bioassessment programs and protocols in European countries to provide practical 

advice and solutions to evaluate aquatic ecosystem health of European streams and rivers (Furse 

et al. 2006). 

Electrofishing is commonly used in rapid bioassessment programs in the North America 

(MDEQ 1997, Barbour et al. 1999), because of its perceived greater efficiency compared to 

seining or other net-based methods. Electrofishing allows standardization of catch per unit of 

effort (time or distance), is less selective (taxonomically), and is useable in a wider variety of 

habitats than seines or trap nets. Cast-netting is relatively unknown in western countries, but is a 

popular fishing gear in many East Asian countries and elsewhere. Cast-netting is the standard 

freshwater fish sampling gear in South Korea. Advantages include its convenience and mobility 

(An et al. 2005, NIER 2009), as well as its long history of use in artisanal fisheries of the region. 

Furthermore, cast-netting is relatively inexpensive (to purchase, maintain, and transport), and 

usually is less damaging to fish leading to lower sampling mortality. However, the comparability 

of data collected by cast netting has been rarely tested (but see An et al. 2005).  



 

120 

Preliminary to my comparison of North America and Korean assessment datasets 

(Chapter 6), this study examined two fish sampling methodologies (electrofishing and cast 

netting) that are commonly used in rapid bioassessment programs in Michigan and South Korea, 

respectively. My main goal was to examine how the choice of fish sampling gear affects 

sampling performance, and specifically to analyze what potential biases in assessment metrics 

could arise from the two sampling gears. My study provides an objective comparison of fish data 

collected with these two very different sampling gears, and contributes to our knowledge about 

effective methodologies for ecological assessment of streams and rivers. 
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Materials and methods 

Study site and periods 

Fish sampling was conducted at 21 wadeable stream sites of the Huron River, Michigan 

(Figure 4.1) with two fish sampling gears commonly used in the Michigan and Korean fish 

monitoring programs: DC electrofishing (EF) and cast net (CN), respectively. The Huron River 

Watershed, is 136 miles (219 km) long and drains 900 square miles (2,331 km2) (HRWC 2003). 

Seven sites were located in the lower main stem of the Huron River Watershed and fourteen sites 

were located in Mill Creek, a tributary of the lower Huron River. This area included primarily 

mixed rural land use patterns, directly and indirectly affecting the variety of fish habitat and 

nutrient condition. In my selection of sampling sites I tried to include variability in 

environmental factors influencing the performance of either electrofishing or cast-netting 

including: stream width, water depth, water temperature, stream flow structure (riffles, runs, and 

pools), stream substrate types, stream discharge volume, and water velocity (Larimore 1961, 

Bayley 1985, Bayley et al. 1989, Barbour et al. 1999, An et al. 2005; Table 4.1).  

I conducted fish sampling during two seasons, reflecting typical seasonal sampling 

conditions of both Michigan and Korean fish monitoring programs. The first sampling was in the 

Fall season during October or November, 2010 and the second sampling was in the Spring 

during June and early July, 2012. Water temperature, stream width, flow depth, substrate types, 

flow structure (riffle, run, and pool), velocity, percentages of riparian vegetation, stream 

discharge, sampling time, sampling start and end time, and brief site information was recorded 

before fish sampling at each site. Percentages of each habitat structure and substrate were 

estimated by visual examination. Substrate types were classified into six classes: boulder (>256 
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mm in diameter), cobble (64-256 mm in diameter), pebble and gravel (2-64 mm in diameter), 

sand (0.06-2 mm in diameter), and clay and silt (<0.06 mm in diameter). Average value of 

multiple cross-section profiles was used for stream flow depth and velocity. 

Sampling distance and time 

Each site was sampled by EF and CN methodologies to test the gear-dependent 

differences in estimates of fish taxa richness and abundance, and other common fish community 

assessment metrics. The sampling interval between the two gear samplings was typically 20 

hours, with a minimum of at least five hours and maximum of one full day, depending on the 

sampling time and hours of remaining daylight. The order of execution for the two sampling 

programs was randomly alternated in order to avoid effects of sampling order on fish species 

diversity and abundance. Sampling reach distance for each site was generally 20 times the stream 

width, but 50 meters was the minimum for small streams. Actual sampling reach length ranged 

from 50 to 200 meters and the actual sampling distance was determined to include multiple 

examples of the most common habitat units (riffles, runs, and pools). 

Electrofishing 

Electrofishing was by a single-pass sampling (down-stream to up-stream) using either a 

tow-barge carrying a 240-volt pulse DC electroshocker (Smith-Root model GPP electrofisher), 

or if the water was too shallow or narrow, a back-pack shocker (Smith-Root LR-24 

Electrofisher) with hand-held collecting dip nets (MDEQ 1997, Smith-Root, Inc. 2007). The 

back-pack shocker was mostly used for smaller streams where wetted width was less than 4 

meters and water depth was less than 0.5 meters. Fish sampling was always conducted in an 

upstream direction and the sampled reach was not blocked by nets. The backpack unit was used 
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at 300 V, 40-60 Hz, and a 7-8 pulse width setting, and a 1-A output was maintained by altering 

frequency and pulse-width ranges. The electrofishing tow-barge used a 3-phase AC generator 

with output rectified to DC that produced about 240 V and 3.0 A of current flow.  

Cast-netting  

A cast net (mesh size: 5×5 mm; net diameter: 6.5 m) in combination with a small hand 

seine (mesh size: 4×4 mm and net size: 1×1 m) was used following standard South Korean 

stream health monitoring protocols (NIER 2009). Cast-netting typically works well in sandy, 

shallow, and stable flow habitats and for surface and midwater-column fish, but is difficult to use 

in rocky, deep, and turbulent flow habitats. In order to compensate for this weakness a small 

hand seine is used in addition to the cast net to sample fish in rocky and vegetated habitats. The 

cast netting team consisted of two persons. One individual with a cast net worked through the 

entire reach, and the other alternately using both a cast net and a hand seine. The Korean 

protocol recommends approximately an hour for fish sampling based on new taxa occurance by 

cast-netting and habitat types covered.   

Sampling crews and fish identification 

To avoid sampling errors related to sampling proficiency, crews were well experienced in 

the use of either the EF or CN sampling methods. Cast-netting was conducted only by trained 

Korean crew members who have recently worked on Korean monitoring projects.      

Species names and counts of fish collected were recorded according to the following 

methods of species identification. Hubbs and Lagler (1964) was used as the primary key for 

identification of all game fish. Smith (1988) was used for nongame fish, but Hubbs and Lagler 

(1964) was also used for verification of identification. Vladykov and Kott (1980) was used for 
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additional information on Petromyzonidae (lampreys). After identification, all fish were released 

immediately. If field identification was unsure or impossible, a few samples of each species from 

one site were placed preserved with 70% alcohol and labeled for date, site, and species name for 

later identification. 

Fish indicator metrics and data analysis 

Fish collections were summarized with twelve commonly used assessment metrics: total 

number of species (nTotSp), total number of individuals (nTotIn), number of intolerant species 

(nIntSp), number of tolerant species (nTolSp), number of omnivorous species (nOmnSp), number 

of insectivorous species (nInsSp), number of piscivorous species (nPisSp), percent of intolerant 

individuals (pIntIn), percent of tolerant individuals (pTolIn), percent of omnivorous individuals 

(pOmnIn), percent of insectivorous individuals (pInsIn), and percent of piscivorous individuals 

(pPisIn; Table 4.2). These fish indicator metrics were chosen to describe representative measures 

of richness, composition, tolerance guilds, and feeding guilds for a variety of fish assemblages 

and reflected fish indicator metrics of both MDEQ Procedure-51 (MDEQ 1997) and K-IBIF 

(NIER 2009).  

Fish Sampling Gear Efficiency (FSGE) was estimated for number of species in each 

order, each family, and six indicator metrics (total number of species, number of intolerant 

species, number of tolerant species, number of omnivorous species, number of insectivorous 

species, and number of piscivorous species). FSGE was estimated to evaluate the sampling 

performance of each sampling gear and was defined as follows, 

 

   FSGE = 100 × (SRG / SRAD)                                                         (1) 
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where SRG indicates species richness of each data set for each gear and SRCB indicates species 

richness of the all data from both gear (AD). AD data set was used as a maximum species 

richness estimate of each sampling site because I could not measure total species list for each 

site. FSGEs for fish indicator metrics with proportions were not estimated because individual 

numbers of AD data set can be overlapping due to fish release after sampling and thus 

overestimated by two sampling gears.  

A standardization process was performed for each fish metric separately in order to 

examine whether differences and biases from sampling gear could be corrected or not. The 

absolute value of z represents the distance between the raw score and the metric mean in units of 

standard deviation. The standard score of a raw score χ was 

                                    z = (χ – μ)/σ                                                                                   (2) 

where μ was the mean of each metric for each sampling gear and σ was the standard deviation of 

each metric for each sampling gear.  

Statistical analysis 

Statistical summaries (mean, median, standard deviation, minimum, and maximum), box 

plots, and scatter plots were conducted using Datadesk 6.0 (Velleman 1997), while paired 

samples t-test, Pearson correlation, and ANCOVA tests were performed using SPSS 12.0 (SPSS, 

Inc. 2003). 
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Results 

Characteristics of stream sites and fish habitats 

Measured variables potentially influencing performance of the sampling gears (Table 4.1) 

varied widely across sampling sites. Stream width ranged from 0.65 to 31.5 m with an average of 

11.31 m, representing variation from headwater sites to large mainstem (but still wadeable) river 

sites. Average water depth ranged from 0.25 to 0.75 m with an average of 0.47 m and average 

velocity ranged from 0.01 to 0.24 m/sec. Water temperature also showed large variation, ranging 

from 3.6 to 28.4 ºC (average of 18.0 ºC). Particularly, water temperature (n= 10) during spring 

sampling ranged from 22.4 to 28.4 ºC with an average of 25.5 ºC, whereas water temperature (n= 

11) during fall sampling ranged from 3.6 to 15.8 ºC with an average of 11.3 ºC. Mean 

percentages of channel area as riffle, run, and pool habitats were 23.6, 41.0, and 35.7%, 

respectively. Percentages of fine (clay, silt, and sand) and coarse (gravel, cobble, and boulder) 

substrates ranged from 10.0 to 95.0% with average of 58.6% and from 5.0 to 90.0% with average 

of 41.4%, respectively.  

Comparison of sampled fish taxa richness, abundance, and occurrence 

Sampled fishes (total species data set: TS) collected by both electrofishing (EF) and cast-

netting (CN) included 8 orders, 11 families, 46 species, and 3,590 individuals (Table 4.3). In 

general, EF captured more fish species and individuals than CN (Table 4.3). Specifically, EF 

samples captured 7 orders, 10 families, 44 species, and 2,103 individuals, as compared to 7 

orders, 10 families, 38 species, and 1,487 individuals from the CN samples. However, 

Cyprinodontiformes were not captured with the EF method, whereas Petromyzontiformes were 



 

127 

not captured with the CN method. Notropis atherinoides (emerald shiner) and Fundulus notatus 

(blackstripe topminnow) were not captured with the EF method, whereas Moxostoma duquesnei 

(black redhorse), Erimyzon oblongus (creek chubsucker), Notemigonus crysoleucas (golden 

shiner), Esox lucius (northern pike), Pomoxis nigromaculatus (black crappie), Lepomis gulosus 

(warmouth bass), Lampetra appendix (American brook lamprey), and Ictalurus punctatus 

(channel catfish) were not captured with the CN method. 

Values of fish metrics based on taxa counts and individual numbers (Table 4.4) were 

relatively higher in EF than CN samples. However, for fish community metrics based on relative 

percentages of feeding and tolerance guilds (five metrics), the CN method produced relatively 

higher values than the EF method, with the exception of the pOmnIn. For example, for pOmnIn 

the mean value of CN samples was 26.2% (0.0 to 74.7%), whereas the mean of EF samples was 

27.4% (0.0 to 72.5%). Fish metrics representing species richness (five metrics) and individual 

abundance (one metric) showed significant differences (p<0.05) between CN and EF methods, 

although the nPisSp metric differed only marginally (p= 0.057) (Table 4.5). All metrics were 

significantly correlated between sampling gears, again with the exception of the nPisSp, which 

showed no significant correlation (p>0.05) between CN and EF samples (Table 4.6). Regression 

slopes of CN and EF data ranged from 1.0675 (nTotIn) to 1.2678 (nIntSp), indicating that the EF 

method had consistently higher values for these metrics (Figure 4.2).  

However, fish metrics reflecting relative percentages of the (numerical) catch showed 

somewhat different results (Table 4.5 and Figure 4.3). Fish metrics for pTolIn, pIntIn, pPisIn, 

and pOmnIn did not significantly differ (p>0.05) with sampling gear. The exception was pInsIn, 

where the CN method produced significantly higher percentages of insectivorous individuals 

than the EF method (p=0.007). The Pearson correlations also showed similar trends with strong 
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significant correlations (p<0.05) between EF and CN samples except for pPisIn (Table 4.6). 

Regression slopes (zero intercept; Figure 4.3) for these metrics ranged from 0.53 (pPisIn) to 0.98 

(pOmnIn).  

Frequency of occurrence 

Site occurrence frequencies and relative abundances of fish species were well described 

by both fish sampling gears (Table 4.3 and Figure 4.4), although there were some small 

differences due to gear. The EF method found that Lepomis cyanellus (green sunfish) and 

Hypentelium nigricans (northern hogsucker) had the highest frequency of occurrence (18 sites) 

followed by Etheostoma nigrum (Johnny darter, 16 sites), Lepomis macrochirus (bluegill, 15 

sites), Cottus bairdii (mottled sculpin, 15 sites), Semotilus atromaculatus (creek chub, 15 sites), 

and Etheostoma blennioides (greenside darter, 14 sites), respectively. In contrast the CN method 

showed that Etheostoma nigrum (Johnny darter) had the highest occurrence (16 sites) followed 

by Etheostoma blennioides (greenside darter, 15 sites), Cottus bairdii (mottled sculpin, 15 sites), 

Semotilus atromaculatus (creek chub, 15 sites), Hypentelium nigricans (northern hogsucker, 15 

sites), Lepomis macrochirus (bluegill, 13 sites), and Lepomis cyanellus (green sunfish, 13 sites), 

respectively.  

Differences in site occurrence frequencies related to sampling gear indicated that 

sampling efficiencies of the gears varied by fish species (Table 4.7). The EF method showed 

good efficiency for most species with the EF/AD ratios ranging from 0.85 (Catostomus 

commersoni: white sucker) to 1.00, although the ratio for Campostoma anomalum (central 

stoneroller) was quite low (0.60). Campostoma anomalum (1.33) and Etheostoma blennioides 

(greenside darter, 1.07) were the only fish species, for which cast netting was more efficient than 

electrofishing. For a number of fish species, gears showed equal sampling efficiency, including 
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Cyprinella spilopterus (spotfin shiner), Semotilus atromaculatus (creek chub), Catostomus 

commersoni (white sucker), Moxostoma erythrurum (golden redhorse), Etheostoma caeruleum 

(rainbow darter), Etheostoma nigrum (Johnny darter), and Cottus bairdii (mottled sculpin). In 

contrast, the CN method had a relatively poor sampling efficiency for certain species, such as 

Lampetra appendix (American brook lamprey, 0.00), Lepomis gibbosus (Pumpkinseed sunfish, 

0.13), Esox americanus (Grass pickerel, 0.43), Umbra limi (Central mudminnow, 0.50), and 

Pimephales notatus (Bluntnose minnow, 0.50). 

In terms of overall abundance in the sample set, the EF method found that Catostomus 

commersoni (white sucker) was most abundant (239 individuals) followed by Hypentelium 

nigricans (northern hogsucker, 206 individuals), Cottus bairdii (mottled sculpin, 205 

individuals), Semotilus atromaculatus (creek chub, 200 individuals), and Lepomis cyanellus 

(green sunfish, 168 individuals). Using the CN method Hypentelium nigricans was most 

abundant in the samples (212 individuals) followed by Semotilus atromaculatus (204 

individuals), Catostomus commersoni (153 individuals), Cottus bairdii (148 individuals), and 

Lepomis cyanellus (108 individuals), respectively.   

Comparison of fish sampling gear efficiency (FSGE) 

Fish sampling gear efficiency (FSGE; Figure 4.5A) of EF was excellent across all orders 

with mean ranges from 90.7% (Cypriniformes) to 100.0% (Esociformes, Petromyzontiformes, 

Scorpaeniformes, and Siluriformes). However, CN FSGEs were relatively lower (means ranging 

from 45.0% (Esociformes) to 100% (Scorpaeniformes). Three fish orders (Esociformes, 

Perciformes, and Petromyzontiformes) showed particularly poor performances (45.0%, 79.0%, 

and 0.0%, respectively) and were significantly different (p<0.05) from the FSGEs of the EF 

method.  
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For fish families (Figure 4.5B), EF had excellent FSGEs for most families with mean 

ranging from 88.69% (Cyprinidae) to 100.0% (Cottidae, Esocidae, Ictaluridae, and 

Petromizontidae). However, the FSGEs for CN were again lower except for Percidae and means 

ranged from 42.9% (Esociformes) to 100% (Cottidae). Three fish families (Centrarchidae, 

Esocidae, and Petromyzontidae) again had much lower capture efficiencies (67.1%, 42.9%, and 

0.0%).      

Fish sampling gear efficiencies for the six fish community metrics showed similar trends 

in gear performance (Figure 4.6). FSGEs from EF were higher than those from CN. Mean 

FSGEs for the EF method ranged from 89.8% (nTotSp) to 97.0% (nIntSp). Mean FSGEs for the 

CN method ranged from 72.2% (nIntSp) to 81.1% (nInsSp). Interestingly, nIntSp showed the 

highest FSGE (97.0%) in EF method, whereas it was the lowest (72.2%) in CN method. For 

nPisSp, the FSGEs were 94.4% and 74.1% for EF and CN methods, respectively. However, 

paired sample T-test showed no significant difference (p>0.05) between methods for this metric, 

whereas all of the other fish metrics differed significantly by gear (p<0.05).  

Impacts of environmental factors 

FSGE of cast-netting was generally influenced by several environmental factors and 

stream characteristics, whereas electrofishing was relatively insensitive (Table 4.8 and Figure 

4.7). Specifically, ANCOVA tests found that water temperature significantly influenced FSGE 

and led to some biases in nTotSp, nIntSp, and nInsSp, but not for nTolSp, nPisSp, and nOmnSp. 

Ratio of fine and coarse substrates, ratio of riffles and pools, number of logs, percentages of 

riparian vegetation, wetted width, mean water depth, and mean velocity did not have significance 

influence on FSGEs except for number of logs for nTolSp (Table 4.8). FSGEs for CN samples 

were positively correlated with an increase of water temperature, riparian vegetation, mean 
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velocity, percentage of fine substrates, and percentage of riffles. CN efficiencies however were 

negatively correlated with stream flow width, mean water depth, percentage of coarse substrates, 

percentage of pools, and number of logs.
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Discussion 

This study of typical North American and East Asian fish rapid assessment sampling 

methodologies for stream fishes finds some differences between electrofishing and cast-netting 

in bioassessment results. I particularly focused on how these gears affected fish data collected, 

and the potential biases that might be associated with them. The practical advantages and 

disadvantages of electrofishing are well discussed elsewhere and electrofishing methods have 

been widely used in many places (Barbour et al. 1999), whereas cast-netting has been less 

frequently addressed in the scientific literature and seldom examined in terms of accuracy and 

efficiency (An et al. 2005). I found that cast net sampling was particularly inefficient for 

Esociformes, Centrarchidae, and Petromyzontiforms (Figure 4.5). However, cast netting also 

showed slightly better performance for the bottom-associated Percids (consisting here only of 

darters) than did electrofishing. This is likely related to recovery errors during electrofishing 

because darter species lack an air bladder and do not typically float to the water surface when 

electrically stunned.  

The differences and biases between fish sampling gear were reflected in values of the 

twelve fish metrics reported in this study. Of the more than 40 fish indicator metrics currently 

used in the RBP (Barbour et al. 1999) I examined twelve representing aspects of taxa richness, 

relative abundance, tolerance guilds, and trophic guilds. I chose metrics here based on the RBP 

methodology currently used in Michigan and South Korea, because ultimately I am interested in 

comparing data sets from these two regions. Selection of fish metrics can be crucially important 

to analyze efficiency (FSGE) of particular sampling gear (Diamond et al. 1996, Barbour et al. 

1999, Cao et al. 2005).  
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I found that metric values reflected efficiency differences between EF and CN samples 

(Table 4.5), although metric values were for the most part strongly correlated between sampling 

gears (except nPisSp; Table 4.6). Piscivorous fish species sampled in this study included 

largemouth bass, smallmouth bass, northern pike, grass pickerel, and channel catfish (MDNR 

2002). CN sampling efficiency was relatively good for largemouth bass and smallmouth bass, 

but extremely poor for channel catfish, northern pike, and grass pickerel. Likewise, the analysis 

of species richness and site occurrence showed that CN had very poor sampling performance for 

sunfish species, mudminnow, and lamprey.  

Electrofishing showed relatively high and stable sampling efficiencies for most orders 

and families compared to cast-netting (Figure 4.5; 92.5% to 100.0%). However, EF sampling 

was lower than CN sampling for the Cyprinidae (88.7%) and Percids (92.1%). This pattern 

reflects differences in the morphology and behavior of these groups. In the locations sampled 

these fishes were small in size and relatively hard to see and pick up with nets in turbid, turbulent 

or very shallow water. On the other hand, if cast-netting initially captured small fishes they were 

very effectively retrieved; thus its sampling efficiency for darters, and small minnows and dace 

was relatively better.  

Since ultimately my interest is in comparing community metric data from South Korea 

and Michigan, these differences in bias of the two gears are important. Based on the FSGE 

analysis, species from three fish groups (Esociformes, Centrarchidae, and Petromyzontiforms) 

were primarily responsible for the poor sampling performance of CN (Figure 4.5). Of these, 

Esociformes do not occur in South Korean watersheds and there are only two introduced 

Centrarchidae fish species (bluegill and largemouth bass), both of which are easily caught by 

cast net (Kim and Park 2002). There are three lamprey species in Korea and so we should not 
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expect these to be represented in the cast net datasets. When the catch data were statistically 

retested with either these three (Esociformes, Centrarchidae, and Petromyzontiforms) or two 

(Esociformes and Centrarchidae) groups removed, there was little difference between EF and CN 

methodologies (Tables 4.6 and 4.9); most of the metrics were not significantly different (p>0.05) 

(except nIntSp (p=0.016) and pInsIn (0.036)). Thus, such an exclusion might be a necessary step 

before any explicit fish data comparison is made.  

A statistically significant influence of several environmental factors was also observed in 

the FSGEs of CN samples, whereas EF sampling exhibited consistently high performance across 

the ranges of all factors examined (Table 4.8 and Figure 4.7). Water temperature was one of the 

most influential environmental factors that had statistically significant influences on FSGEs for 

certain fish metrics. Particularly, CN showed very poor performance in lower water temperature 

and this can be interpreted with fish behaviors in lower water temperature. Fish activity is 

generally reduced with lower temperature and fish tend to move to deeper water and rest in more 

stable habitats (Diana 2004), where cast net generally cannot catch fish easily. Also, previous 

studies have reported that turbidity and conductivity influence the sampling performance of EF, 

but I could not find any significant effects of these factors on FSGEs in my dataset. However, 

Cyprinidae and Percidae showed relatively poor FSGEs due to their size and shapes leading to 

poor visibility in water, which suggests the low turbidity and high clarity of water in my 

sampling areas helped maximize EF performance in this study. Factors which affected CN 

efficiency were related to the channel habitat types, and included water temperature, flow types, 

substrate types, stream wetted width and depth, and vegetation. The three fish groups 

(Esociformes, Centrarchidae, and Petromyzontiforms) with poor FSGEs using CN were, not 

surprisingly, typically associated with habitats that tended to negatively bias CN performance.  
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Ecological significances and implications 

Fish sampling is often influenced by the availability of labor, budgets, and time. Cast-

netting can be a preferred and cost-effective sampling gear in many settings, depending on 

project purposes and operational constraints. Cast-netting has several advantages including 

smaller crew numbers, convenience, transportability, and cost for investment and maintenance. 

Cast-netting overall showed a slightly lower performance than electrofishing and exhibited larger 

variations in sampling performance for certain fishes. However, comparison of fish metrics 

indicated that there were strong correlations between estimates provided by the two gears and 

only small statistical differences in metric values. Thus, I conclude that data based on cast-

netting can certainly be effectively applied in ecological monitoring and assessment studies 

where rapid assessment is an important goal given limitations of time and budget. Furthermore, I 

conclude that despite some differences in efficiency and bias, comparisons of electrofishing 

based and cast-net based data sets are possible. Removal of certain fish taxa from the data may 

help standardize the data for the few strong biases I detected here (e.g. lampreys). Further 

numerical calibration of metric data may also prove useful since count and richness data seem 

roughly proportional if not always equivalent
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Table 4.1. Summary statistics of environmental factors that may have significant influences on 
fish sampling performance with electrofishing and cast-netting sampling gears. SD indicates 
standard deviation. 

Stream variables (n= 21) Mean Median SD Min Max 

Wetted width (m) 11.31 7.45 9.84 0.65 31.5 

Average water depth (m) 0.47 0.50 0.16 0.25 0.75 

Average velocity (cms) 0.14 0.16 0.07 0.01 0.24 

Water temperature (°C) 18.0 15.8 8.1 3.6 28.4 

Percentage of riffles 23.6 20.0 16.4 0.0 70.0 

Percentage of runs 41.0 40.0 11.8 20.0 60.0 

Percentage of pools 35.7 30.0 18.2 10.0 80.0 

Percentage of clay (CL) 11.2 0.10 0.10 0.00 0.30 

Percentage of silt (SI) 16.2 10.0 16.9 0.00 55.0 

Percentage of sand (SA) 31.2 30.0 13.9 10.0 60.0 

Percentage of gravels (GR) 20.7 20.0 14.7 5.0 90.0 

Percentage of cobbles (CO) 13.6 10.0 12.7 0.0 40.0 

Percentage of Boulders (BO) 7.1 5.0 11.6 0.0 40.0 

Percentage of fine substrates (CL, SI, SA) 58.6 70.0 30.8 10.0 95.0 

Percentage of coarse substrates (GR, CO, BO) 41.4 30.0 30.8 5.0 90.0 

Percentage of riparian vegetation 31.1 25.0 22.8 5.0 95.0 
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Table 4.2. Fish indicator metrics used for the Korean Index of Biological Integrity using Fish (K-IBIF), the South Korean National 
River Assessment Program (NIER 2009), the biological monitoring program of the Michigan Department of Environmental Quality 
(MDEQ Procedure-51) (MDEQ 2002), and this study. 

 K-IBIF MDEQ Procedure-51 This study 

Metric 1 Number of endemic species Total number of fish species Total number of fish species (nTotSp) 
Metric 2 Number of riffle benthic species Number of darter species Number of tolerant species (nTolSp) 

Metric 3 Number of sensitive species Number of sunfish species Number of intolerant species (nIntSp) 

Metric 4 Proportion of tolerant individuals Number of sucker species Number of picivorous species (nPicSp) 

Metric 5 Proportion of omnivorous individuals Number of intolerant species Number of insectivorous species (nInsSp) 

Metric 6 Proportion of insectivorous individuals Percentage of total sample as omnivores Number of omnivorous species (nOmnSp) 

Metric 7 Individual numbers of endemic species Percentage of total sample as 
insectivorous fish 

Total number of fish individuals (nTotIn) 

Metric 8 Proportion of abnormal individuals Percentage of total sample as piscivores Percentage of total sample as tolerant species (pTolIn) 

Metric 9  Percentage of total sample as tolerant 
species 

Percentage of total sample as intolerant species (pIntIn) 

Metric 10  Percentage of total sample as simple 
lithophilic spawners 

Percentage of total sample as piscivores (pPisIn) 

Metric 11   Percentage of total sample as insectivores (pInsIn) 

Metric 12   Percentage of total sample as omnivores (pOmnIn) 
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Table 4.3. Fish species composition, individual numbers collected, and site occurrence frequency of each species for cast-netting 
(CN), electrofishing (EF), and all data from both gear (AD). 

Order Family Species 
Total individual numbers collected Site occurrence frequency 

CN EF AD CN EF AD 

Cypriniformes Catostomidae Black redhorse 0 1 1 0 1 1 

Creek Chubsucker 0 1 1 0 1 1 

Golden redhorse 9 29 38 4 4 4 

Lake Chubsucker 1 1 2 1 1 1 

Northern hogsucker 212 206 418 15 18 19 

White sucker 153 239 392 11 11 13 

Cyprinidae Blacknose dace 50 44 94 3 5 5 

Bluntnose minnow 23 34 57 3 6 6 

Central stoneroller 4 7 11 4 3 5 

Common carp 2 5 7 2 3 3 

Common shiner 25 21 46 4 5 5 

Creek Chub 204 200 404 15 15 16 

Emerald shiner 1 0 1 1 0 1 

Fathead minnow 3 11 14 1 1 2 

Golden shiner 0 1 1 0 1 1 

Hornyhead chubs 5 4 9 2 2 3 

River chub 2 7 9 1 3 3 

Roseyface shiner 12 9 21 1 2 2 

Sand Shiner 19 13 32 3 2 3 

Silverside shiner 3 5 8 1 2 2 

Spotfin shiner 32 23 55 4 4 4 

spottail shiner 29 5 34 1 1 1 

Cyprinodontiformes Fundulidae Blackstripe topminnow 1 0 1 1 0 1 
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Table 4.3. Continued. 

Order Family Species 
Total individual numbers collected Site occurrence frequency 

CN EF AD CN EF AD 

Esociformes Esocidae Grass Pickerel 4 10 14 3 7 7 

Northern pike 0 1 1 0 1 1 

Umbridae Central mudminnow 36 48 84 3 6 6 

Gasterosteiformes Gasterosteidae Brook stickleback 15 35 50 1 1 1 

Perciformes Centrarchidae Black crappie 0 2 2 0 1 1 

Bluegill 57 135 192 13 15 16 

Green sunfish 108 168 276 13 18 19 

Largemouth bass 16 46 62 8 9 10 

PumpkinSeed sunfish 4 25 29 1 8 8 

Rock bass 11 136 147 7 11 11 

Smallmouth bass 63 51 114 7 8 8 

Warmouth Bass 0 1 1 0 1 1 

Percidae Blackside darter 2 3 5 2 2 2 

Fantail darter 2 5 7 1 1 1 

Greenside darter 87 151 238 15 14 15 

Johnny darter 94 112 206 16 16 17 

Logperch 6 1 7 1 1 1 

Rainbow darter 35 60 95 7 7 7 

Petromyzontiformes Petromyzontidae American brook lamprey 0 22 22 0 7 7 

Scorpaeniformes Cottidae Mottled sculpin 148 205 353 15 15 15 

Siluriformes Ictaluridae Channel catfish 0 1 1 0 1 1 

Stonecat madtom 8 17 25 4 5 5 

Yellow bullhead 1 2 3 1 2 2 

Total 1487 2103 3590 196 248 264 
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Table 4.4. Summary statistics of fish species for all fish indicator metrics used for fish species data comparability (n = 21). 

 Electrofishing (EF) Cast-netting (CN) All data from both gear (AD) 

Variables Mean Median SD Min Max Mean Median SD Min Max Mean Median SD Min Max 

Total number of species 11.8 11.0 4.1 6.0 24.0 9.3 9.0 3.2 5.0 17.0 12.6 12.0 4.3 6.0 26.0 

Total number of individuals 98.6 95.0 50.9 28.0 195.0 70.8 53.0 56.5 21.0 262.0 169.4 148.0 95.9 49.0 457.0 

Number of tolerant species 3.8 4.0 1.6 1.0 6.0 3.1 3.0 1.4 1.0 6.0 4.1 4.0 1.5 2.0 6.0 

Number of intolerant species 3.8 3.0 2.3 0.0 9.0 2.8 2.0 1.9 0.0 7.0 3.9 3.0 2.4 0.0 10.0 

Number of piscivorous species 1.2 1.0 0.9 0.0 3.0 0.9 1.0 0.7 0.0 2.0 1.3 1.0 0.9 0.0 3.0 

Number of insectivorous species 7.0 6.0 3.0 2.0 13.0 6.1 5.0 2.9 2.0 12.0 7.5 7.0 3.2 2.0 15.0 

Number of omnivorous species 2.4 2.0 1.5 0.0 5.0 1.9 2.0 1.2 0.0 5.0 2.6 2.0 1.4 0.0 5.0 

Percentage of tolerant individuals 36.6 33.3 22.4 3.5 91.2 38.5 40.0 26.1 3.4 95.2 37.5 37.2 23.5 3.5 90.2 

Percentage of intolerant individuals 35.7 35.3 22.3 0.0 79.7 36.4 45.2 24.3 0.0 81.6 36.6 39.4 22.0 0.0 80.7 

Percentage of piscivorous individuals 5.9 5.0 6.1 0.0 26.1 7.0 5.3 7.7 0.0 25.9 5.9 4.9 5.2 0.0 17.7 

Percentage of insectivorous individuals 58.5 57.5 17.8 26.1 84.9 65.5 70.0 18.5 25.3 89.9 61.5 61.7 17.3 26.4 86.2 

Percentage of omnivorous individuals 27.4 27.6 22.3 0.0 72.5 26.2 22.6 22.2 0.0 74.7 27.0 29.1 21.8 0.0 73.6 
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Table 4.5. Summary statistics of paired samples T-tests among three data sets collected by different sampling gears. CI and df indicate 
confidence interval and degree of freedom, respectively. *=0.05; **=0.001. 

Fish metrics 

Paired differences 

t df 
Sig.       

(2-tailed) Mean  
Standard 
deviation 

Standard 
error mean 

95% CI of the difference 

Lower Upper 

Cast-netting (CN) vs Electrofishing (EF) 
Total number of species -2.476 2.316 0.505 -3.530 -1.422 -4.900 20 .000** 
Total number of individuals -27.762 48.797 10.648 -49.974 -5.550 -2.607 20 .017*= 
Number of tolerant species -0.667 1.065 0.232 -1.151 -0.182 -2.870 20 .009** 
Number of intolerant species -1.000 1.095 0.239 -1.499 -0.501 -4.183 20 .000** 
Number of piscivorous species -0.381 0.865 0.189 -0.775 0.013 -2.019 20 .057== 
Number of insectivorous species -0.952 1.244 0.271 -1.519 -0.386 -3.508 20 .002** 
Number of omnivorous species -0.524 0.981 0.214 -0.970 -0.077 -2.447 20 .024*= 
Percentage of tolerant individuals 1.810 11.513 2.512 -3.430 7.051 0.721 20 .480*= 
Percentage of intolerant individuals 0.717 14.005 3.056 -5.658 7.092 0.235 20 .817== 
Percentage of piscivorous individuals 1.098 7.992 1.744 -2.540 4.736 0.630 20 .536== 
Percentage of insectivorous individuals 6.938 10.667 2.328 2.083 11.794 2.981 20 .007** 
Percentage of omnivorous individuals -1.105 10.871 2.372 -6.053 3.844 -0.466 20 .647== 

Cast-netting (CN)  vs All data from both gear (AD) 
Total number of species -3.238 2.189 0.478 -4.234 -22.242 -6.780 20 .000** 
Total number of individuals -98.571 50.895 11.106 -121.738 -75.404 -8.875 20 .000** 
Number of tolerant species -0.952 0.805 0.176 -1.319 -0.586 -5.423 20 .000** 
Number of intolerant species -1.095 1.179 0.257 -1.632 -0.558 -4.256 20 .000** 
Number of piscivorous species -3.190 1.750 0.382 -3.987 -2.394 -8.355 20 .000** 
Number of insectivorous species -1.381 0.973 0.212 -1.824 -0.938 -6.501 20 .000** 
Number of omnivorous species -0.714 0.845 0.184 -1.099 -0.330 -3.873 20 .001** 
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Table 4.5. Continued. 

Fish metrics 

Paired differences 

t df 
Sig.       

(2-tailed) Mean 
Standard 
deviation 

Standard 
error mean 

95% CI of the difference 

Lower Upper 

Cast-netting (CN)  vs All data from both gear (AD) 
Percentage of tolerant individuals 0.957 6.396 1.396 -1.954 3.868 0.686 20 .501== 
Percentage of intolerant individuals -0.214 8.155 1.780 -3.926 3.498 -0.120 20 .906== 
Percentage of piscivorous individuals 1.045 4.465 0.974 -0.987 3.078 1.073 20 .296== 
Percentage of insectivorous individuals 3.969 6.302 1.375 1.100 6.837 2.886 20 .009** 
Percentage of omnivorous individuals -0.788 6.659 1.453 -3.819 2.242 -0.543 20 .593== 

Electrofishing (EF) vs All data from both gear (AD) 
Total number of species -0.762 1.044 0.228 -1.237 -0.287 -3.344 20 .003** 
Total number of individuals -70.810 56.523 12.334 -96.539 -45.081 -5.741 20 .000** 
Number of tolerant species -0.286 0.717 0.156 -0.612 0.041 -1.826 20 .083== 
Number of intolerant species -0.095 0.301 0.066 -0.232 0.042 -1.451 20 .162== 
Number of piscivorous species -0.048 0.218 0.048 -0.147 0.052 -1.000 20 .329== 
Number of insectivorous species -0.429 0.811 0.177 -0.798 -0.060 -2.423 20 .007** 
Number of omnivorous species -0.190 0.402 0.088 -0.374 -0.007 -2.169 20 .042*= 
Percentage of tolerant individuals -0.853 5.457 1.191 -3.337 1.631 -0.717 20 .482== 
Percentage of intolerant individuals -0.931 6.163 1.345 -3.736 1.874 -0.692 20 .497== 
Percentage of piscivorous individuals -0.053 3.739 0.816 -1.755 1.649 -0.065 20 .949== 
Percentage of insectivorous individuals -2.969 4.951 1.080 -5.223 -0.716 -2.749 20 .012** 
Percentage of omnivorous individuals 0.316 4.659 1.017 -1.805 2.437 0.311 20 .759== 
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Table 4.6. Two tailed Pearson correlation tests between fish sampling data from different gears for each fish metric. Three fish groups 
removed were Centrachidae, Esociformes, and Petromyzontiformes. Bold indicates significance at p≤0.05, and bold and italics 
indicate significance at p≤0.01. “a” indicates no enough data to compare. 

Fish metrics 
All data Without three fish groups 

CN vs EF CN vs AD EF vs AD CN vs EF CN vs AD EF vs AD 

Total number of species .822 .872 .971 .862 .906 .973 
Total number of individuals .592 .904 .880 .521 .879 .865 
Number of tolerant species .740 .841 .888 .630 .751 .908 
Number of intolerant species .883 .872 .992 .893 .891 .987 
Number of piscivorous species .405 .439 .970 a a 1.000 
Number of insectivorous species .912 .953 .968 .952 .960 .982 
Number of omnivorous species .746 .808 .962 .698 .775 .954 
Percentage of tolerant individuals .899 .972 .973 .749 .810 .982 
Percentage of intolerant individuals .823 .943 .961 .504 .704 .906 
Percentage of piscivorous 
individuals 

.352 .831 .794 a a 1.000 

Percentage of insectivorous 
individuals 

.828 .940 .961 .873 .922 .981 

Percentage of omnivorous 
individuals 

.880 .954 .978 .876 .923 .982 

a. The correlation and t could not be computed because the standard error of the difference was 0.
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Table 4.7. Comparison of fish species occurrence ratios among cast-netting (CN), electrofishng (EF), and all data from both gear 
(AD). The fish species that occurred in less than 4 sites in all data from both gear (AD) were removed from the table and the 
occurrence ratios were sorted from largest to smallest. 

CN/AD EF/AD 

 

CN/EF 
Species Ratio Species Ratio Species Ratio 

Greenside darter 1.00 Mottled sculpin 1.00 Central stoneroller 1.33 
Mottled sculpin 1.00 Rainbow darter 1.00 Greenside darter 1.07 
Rainbow darter 1.00 Golden redhorse 1.00 Mottled sculpin 1.00 
Golden redhorse 1.00 Spotfin shiner 1.00 Rainbow darter 1.00 
Spotfin shiner 1.00 Smallmouth bass 1.00 Golden redhorse 1.00 
Johnny darter 0.94 Common shiner 1.00 Spotfin shiner 1.00 
Creek Chub 0.94 Stonecat madtom 1.00 Johnny darter 1.00 
Smallmouth bass 0.88 Rock bass 1.00 Creek Chub 1.00 
White sucker 0.85 Blacknose dace 1.00 White sucker 1.00 
Bluegill 0.81 Bluntnose minnow 1.00 Largemouth bass 0.89 
Central stoneroller 0.80 Central mudminnow 1.00 Smallmouth bass 0.88 
Largemouth bass 0.80 Grass Pickerel 1.00 Bluegill 0.87 
Common shiner 0.80 PumpkinSeed sunfish 1.00 Northern hogsucker 0.83 
Stonecat madtom 0.80 American brook lamprey 1.00 Common shiner 0.80 
Northern hogsucker 0.79 Northern hogsucker 0.95 Stonecat madtom 0.80 
Green sunfish 0.68 Green sunfish 0.95 Green sunfish 0.72 
Rock bass 0.64 Johnny darter 0.94 Rock bass 0.64 
Blacknose dace 0.60 Creek Chub 0.94 Blacknose dace 0.60 
Bluntnose minnow 0.50 Bluegill 0.94 Bluntnose minnow 0.50 
Central mudminnow 0.50 Greenside darter 0.93 Central mudminnow 0.50 
Grass Pickerel 0.43 Largemouth bass 0.90 Grass Pickerel 0.43 
PumpkinSeed sunfish 0.13 White sucker 0.85 PumpkinSeed sunfish 0.13 
American brook lamprey 0.00 Central stoneroller 0.60 American brook lamprey 0.00 
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Table 4.8. P values from ANCOVA tests of SGEs for fish metrics. Sampling gear was used as fixed factor and urban and agricultural 
land uses were used as a covariate. 

 Covariates 

Fish metrics for fish sampling gear efficiency (FSGE) 

Total number 
of species 

Number of 
tolerant 
species 

Number of 
intolerant 
species 

Number of 
piscivorous 

species 

Number of 
insectivorous 

species 

Number of 
omnivorous 

species 
Sampling gear 0.000 0.008 0.000 0.075 0.000 0.109 
Water temperature (ºC) 0.003 0.559 0.016 0.645 0.010 0.144 
Sampling gear 0.000 0.008 0.000 0.072 0.001 0.114 
Ratio of fine and coarse substrates 0.918 0.299 0.606 0.334 0.836 0.316 
Sampling gear 0.000 0.008 0.000 0.076 0.001 0.115 
Ratio of riffles and pools 0.119 0.359 0.054 0.703 0.400 0.356 
Sampling gear 0.000 0.006 0.000 0.075 0.001 0.114 
Number of logs 0.567 0.030 0.900 0.663 0.716 0.318 
Sampling gear 0.000 0.008 0.000 0.072 0.001 0.118 
Percentages of riparian vegetation (%) 0.453 0.622 0.961 0.336 0.537 0.610 
Sampling gear 0.000 0.009 0.000 0.075 0.001 0.119 
Wetted width (m) 0.343 0.943 0.147 0.573 0.572 0.709 
Sampling gear 0.000 0.009 0.000 0.076 0.001 0.119 
Mean water depth (m) 0.511 0.943 0.258 0.942 0.767 0.849 
Sampling gear 0.000 0.007 0.000 0.076 0.001 0.117 
Mean velocity (m/s) 0.266 0.123 0.198 0.857 0.495 0.449 
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Table 4.9. Summary statistics of paired samples T-tests among three data sets collected by different sampling gears. Fish species of 
Esociforms, Centrachidae, and Petromyzontidae were excluded in this analysis. CN, EF, and AD indicate cast-netting, electrofishing, 
and combined data, respectively. CI and df indicate confidence interval and degree of freedom, respectively. *=0.05; **=0.001. 

Fish indicators 

Paired differences 

t df 
Sig.       

(2-tailed) Mean  
Standard 
deviation 

Standard 
error mean 

95% CI of the difference 

Lower Upper 

Cast-netting (CN) vs Electrofishing (EF) 
Total number of species -0.762 1.868 0.408 -1.612 0.089 -1.869 20 .076** 
Total number of individuals -11.667 43.557 9.505 -31.494 8.160 -1.227 20 .234*= 
Number of tolerant species -0.286 1.056 0.230 -0.766 0.195 -1.240 20 .229** 
Number of intolerant species -0.429 0.746 0.163 -0.768 -0.089 -2.631 20 .016** 
Number of piscivorous species -0.048 0.218 0.048 -0.147 0.052 -1.000 20 .329== 
Number of insectivorous species -0.381 0.973 0.212 -0.824 0.062 -1.793 20 .088** 
Number of omnivorous species -0.381 0.973 0.212 -0.824 0.062 -1.793 20 .088*= 
Percentage of tolerant individuals -1.817 20.482 4.470 -11.140 7.507 -0.406 20 .689*= 
Percentage of intolerant individuals 4.813 25.165 5.491 -6.641 16.268 0.877 20 .391== 
Percentage of piscivorous individuals -0.034 0.156 0.034 -0.105 0.037 -1.000 20 .329== 
Percentage of insectivorous individuals 7.322 14.956 3.264 0.514 14.130 2.243 20 .036** 
Percentage of omnivorous individuals -6.694 14.708 3.210 -13.389 0.001 -2.086 20 .050== 

Cast-netting (CN)  vs All data from both gear (AD) 
Total number of species -1.381 1.596 0.348 -2.108 -0.654 -3.965 20 .001** 
Total number of individuals -68.238 43.093 9.404 -87.854 -48.622 -7.257 20 .000** 
Number of tolerant species -0.524 0.814 0.178 -0.894 -0.153 -2.950 20 .008** 
Number of intolerant species -0.524 0.814 0.178 -0.894 -0.153 -2.950 20 .008** 
Number of piscivorous species -0.048 0.218 0.048 -0.147 0.052 -1.000 20 .329** 
Number of insectivorous species -0.714 0.956 0.209 -1.150 -0.279 -3.423 20 .003** 
Number of omnivorous species -0.571 0.811 0.177 -0.940 -0.202 -3.230 20 .004** 
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Table 4.9. Continued. 

Fish indicators 

Paired differences 

t df 
Sig.       

(2-tailed)Mean 
Standard 
deviation 

Standard 
error mean 

95% CI of the difference 

Lower Upper 

Cast-netting (CN)  vs All data from both gear (AD) 
Percentage of tolerant individuals -1.613 17.437 3.805 -9.550 6.324 -0.424 20 .676== 
Percentage of intolerant individuals 2.997 19.315 4.215 -5.795 11.789 0.711 20 .485== 
Percentage of piscivorous individuals -0.018 0.084 0.018 -0.056 0.020 -1.000 20 .329== 
Percentage of insectivorous individuals 5.095 11.206 2.445 -0.006 10.196 2.084 20 .050** 
Percentage of omnivorous individuals -4.745 11.097 2.422 -9.796 0.307 -1.959 20 .064== 

Electrofishing (EF) vs All data from both gear (AD) 
Total number of species -0.619 0.865 0.189 -1.013 -0.225 -3.281 20 .004** 
Total number of individuals -56.571 45.938 10.024 -77.482 -35.661 -5.643 20 .000** 
Number of tolerant species -0.238 0.539 0.118 -0.483 0.007 -2.024 20 .056== 
Number of intolerant species -0.095 0.301 0.066 -0.232 0.042 -1.451 20 .162== 
Number of piscivorous species         
Number of insectivorous species -0.333 0.658 0.144 -0.633 -0.034 -2.320 20 .031** 
Number of omnivorous species -0.190 0.402 0.088 -0.374 -0.007 -2.169 20 .042*= 
Percentage of tolerant individuals 0.204 5.495 1.199 -2.298 2.705 0.170 20 .867== 
Percentage of intolerant individuals -1.816 9.760 2.130 -6.259 2.626 -0.853 20 .404== 
Percentage of piscivorous individuals 0.016 0.072 0.016 -0.017 0.049 1.000 20 .329== 
Percentage of insectivorous individuals -2.227 6.130 1.338 -5.017 0.564 -1.664 20 .112** 
Percentage of omnivorous individuals 1.950 5.940 1.296 -0.754 4.654 1.504 20 .148== 

.
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Figure 4.1. Locations of fish sampling sites (n= 21) for electrofishing (EF) and cast-netting (CN).  
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Figure 4.2. Comparison of species numbers between cast-netting (CN) and electrofishing (EF) 
and correction equations for sampling gear bias. 
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Figure 4.3. Comparison of individual number percentages between cast-netting (CN) and 
electrofishing (EF) and correction equations for sampling gear bias. 
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Figure 4.4. Site occurrence frequencies and relative fish abundances of the highest top ten fish 
species for cast-netting method (CN), electrofishing method (EF), and all data from both gear 
(AD).  
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Figure 4.5. Mean fish sampling gear efficiency (SGE) with 95 percentile ranges for cast-netting 
and electrofishing methods. A) SGE summarized for each order (CYNI: Cypriniformes, ESOC: 
Esociformes, PERC: Perciformes, PETR: Petromyzontiformes, SCOR: Scorpaeniformes, SILU: 
Siluriformes). B) SGE summarized for each family (CATO: Catostomidae, CENT: Centrachidae, 
COTT: Cottidae, CYPR: Cyprinidae, ESOC: Esocidae, ICTA: Ictaluridae, PERC: Percidae, 
PETR: Petromizontidae). Orders and families collected in less than seven sites were removed 
from the graphs. 
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Figure 4.6. Mean fish sampling gear efficiency (SGE) with 95 percentile ranges for cast-netting 
and electrofishing methods. SGE summarized for each fish indicator metric. 
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Figure 4.7. Scatter plots showing the relationship between sampling gear efficiency and 
environmental factors for each sampling gear using total number of species. 
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Chapter 5 : Biases arising from benthic macroinvertebrate methods in rapid 
bioassessment programs (RBPs) for wadeable streams: Michigan versus 

Korean assessment protocols 
 

Abstract 

Analyses of pooled datasets from different sources without appropriate validation of 

statistical comparability may result in critical bias and erroneous conclusions. In this study I 

compared benthic macroinvertebrate data and metrics collected using RBPs representative of 

those typically employed in North American and East Asian stream assessment studies. 

Specifically I explored similarities and differences between the Michigan (USA) Department of 

Environmental Quality Procedure 51 (MDEQP51) and the Korean Nationwide Aquatic 

Ecological Monitoring Program (KNAEMP). Paired sampling with these two methods was 

conducted at 29 stream sites in the Geum River Watershed, South Korea and their sampling 

performance was statistically compared with common benthic macroinvertebrate metrics. The 

two sampling methods target different habitats and use different sample sizes so that significant 

differences in taxa richness and individual numbers were frequently observed. In general, 

MDEQP51 method collected significantly lower taxa counts and individual numbers than 

KNAEMP method. However, indicator metrics showing relative percentages of EPT taxa and 

EPT individuals showed no significant difference, except for the species level metric. Numerical 

rescaling of macroinvertebrate data reduced the differences due to RBPs and led to comparable 

biological responses to land use stressor gradients.
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Introduction 

Protection of water resources has become a major societal priority during the last several 

decades (Barbour et al. 1999, Dodds 2006, Riseng et al. 2011, Allan et al. 2013). In response, 

numerous water-quality monitoring and assessment programs have been developed or adopted 

by both public and private organizations, states, and countries. Depending on objectives, 

operating constraints (budget and time), and crew familiarity with sampling methods (Diamond 

et al. 1996, Barbour et al. 1999, Carter and Resh 2001, Bonar and Hubert 2002), these programs 

employ differing sampling designs and often focus on different but restricted sets of the 

numerous biological indicators that are available. Water quality monitoring information derived 

from RBPs aims to answer questions about the condition of specific sites, changes over time, 

diagnosis of causes, and evaluation of remediation or prevention policy (ITFM 1995, Merritt and 

Cummins 1996, Barbour et al. 1999, Cao et al. 2005). Thus, the endpoints of all RBPs are to 

maintain healthy ecological conditions and to improve the quality of human life by promoting 

sustainable use of natural resources (ITFM 1995, MEA 2005, Furse et al. 2006, US EPA 2007). 

Sampling-based methodologies used to monitor environmental quality vary in respect to 

efficiency, precision, and bias. Differences in methodologies can lead to biases that influence 

results and thus data comparability, and will have implications for meta-analysis of monitoring 

data obtained (ITFM 1995, Wiley et al. 2003, Furse et al. 2006). Monitoring methodologies are 

typically designed to meet regional needs and constraints (Carter and Resh 2001, Wiley et al. 

2003, Cao et al. 2005), However, recently there have been number of comparative, and/or large-

scale (including international) assessments which can require pooling of RBP data from different 

sources (ITFM 1995, MEA 2005, Furse et al. 2006, US EPA 2007, Riseng et al. 2010, Allan et 
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al. 2013). In this context methodological variations in efficiency and bias of course become a 

concern (ITFM 1995, Barbour et al. 1999, Houston et al. 2002, Wiley et al. 2003). 

Earlier studies have examined benthic macroinvertebrate-based rapid bioassessment 

methods to evaluate capture accuracy, efficiency and bias of sampling gear (Freeman et al. 1984, 

Stark 1993), degrees of field sampling effort (Stark 1993, Barbour and Gerritsen 1996, King and 

Richardson 2002, Park 2007), types of habitats sampled (Stark 1993, Parsons and Norris 1996, 

Rinella and Feminella 2005, Gerth and Herlihy 2006), levels of taxonomic resolution for 

identification (King and Richardson 2002, Park 2007), selection of indicator metrics (Klemm et 

al. 2003, Dahl and Johnson 2004, Blocksom et al. 2002), and effects of seasonal variation 

(Merritt and Cummins 1996, Sporka et al. 2006). These studies all examined the impacts of 

methodology within specific monitoring programs or regions. Studies have less frequently 

examined methodological issues related to sampling or assessment data from different 

monitoring and assessment programs (Cao et al. 2005, Clarke et al. 2006, Clarke and Hering 

2006, Friberg et al. 2006). For example, the EU Water Framework Directive (EU-WFD) 

examined existing rapid bioassessment programs (RBPs) in European countries and compared 

them to a newly developed standard protocol developed to evaluate aquatic ecosystem health in 

European streams and rivers (Furse et al. 2006). The Environmental Monitoring and Assessment 

Program (EMAP) of the US Environmental Protection Agency (US EPA) also developed a 

standard RBP to assess status and trends of national ecological resources in the United States 

(US EPA 2007). Development and application of a single RBP across many states or nations can 

be inherently problematic because regional differences in geomorphological and biological 

heterogeneity may result in geographical biases even if a single standardized method is used. The 
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Intergovernmental Task Force on Monitoring Water Quality (ITFM) emphasized the importance 

of understanding data comparability from various RBPs (ITFM 1995).  

Benthic macroinvertebrate sampling methods used by resource agencies in Michigan, 

USA and South Korea were compared here as a case study in assessment data comparability and 

integration. Michigan Department of Environmental Quality Procedure 51 (abbreviated below as 

MDEQP51) sampling is a fixed-count approach (e.g. 100 individuals) that is adopted from a 

standard operating procedure within the USEPA’s RBPs (MDEQ 1997, Barbour et al. 1999). 

MDEQP51 samples characterize the structure of benthic macroinvertebrate communities in terms 

of relative abundances of each taxon rather than absolute density (Moulton et al. 2002). Due to 

the cost-saving benefits of fixed-count processing, RBPs using this approach have been preferred 

by many managers and biologists (Barbour and Gerritsen 1996, Walsh 1997, Doberstein et al. 

2000, King and Richardson 2002). In contrast to Michigan’s fixed-count approach (MDEQP51), 

the Korean Nationwide Aquatic Ecological Monitoring Program (KNAEMP below) sampling 

uses a fixed-area subsampling method in stream health assessment (King and Richardson 2002, 

NIER 2009) and is adapted from European RBPs based on the concept of saprobity (Sladecek 

1973, Hellawell 1986, Furse et al. 2006). Saprobity refers to the physiological and biochemical 

characteristics of an organism that permit it to live inwater with some amount of organic matter 

(i.e., some degree of pollution) (Sladecek 1973). KNAEMP procedures estimate the absolute 

density and composition of benthic macroinvertebrate samples (NIER 2009, Jun et al. 2011). 

Walsh (1997) and King and Richardson (2002) reported that fixed-area subsampling was less 

efficient than fixed counts due to high variability of taxa and individual numbers collected, but 

improved both precision and accuracy of sampling data. These two different macroinvertebrate 

sampling approaches are currently used in many different regions and countries.  
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This study investigated the feasibility of comparing benthic macroinvertebrate data from 

these two very different stream RBPs (MDEQP51 and KNAEMP). My main goal was to study 

how sampling methods of two RBPs affected sampling performance, and to analyze what 

inherent potential biases in assessment metrics could be from the two RBPs. Finally, I examined 

whether or not the datasets from two different RBPs were able to produce the same stressor-

responses relationships. My study provides an objective comparison of benthic 

macroinvertebrate data sampling with these two very different RBPs, and contributes to our 

knowledge about effective methodologies for ecological assessment of streams and rivers.
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Materials and methods 

Study sites and periods 

Benthic macroinvertebrate sampling was conducted at 29 stream sites in April 2012 at the 

Geum River Watershed, South Korea (Figure 5.1) with two different rapid bioassessment 

methods. The methods I employed are commonly used in stream RBPs of South Korea 

(KNAEMP, NIER 2009) and Michigan, USA (MDEQP51, MDEQ 1997). The Geum River 

Watershed, located in the Midwestern part of South Korea, is a 244 miles (393 kilometer) long 

and drains 6,771 square miles (17,537 square kilometers; WAMIS 2013). This study watershed 

included various land use patterns and stream characteristics directly and indirectly affecting the 

variety of benthic macroinvertebrate habitat (Barbour et al. 1999, Wang et al. 2001, MDNR 

2002, Wang et al. 2003, NIER 2009, Riseng et al. 2011). Sampling sites (n= 29) were a subset of 

the current KNAEMP macroinvertebrate sampling sites (total 130 sites for the Geum River 

Watershed, NIER 2009), which were previously designated for nationwide stream monitoring 

studies. One KNAEMP site was re-located nearby due to channel construction on the day of 

sampling. 

Descriptive statistics for stream habitat variables and environmental factors of each 

sampling site (Table 5.1) included: catchment area, stream order, proportions of land use types, 

wetted stream width, average flow depth and velocity, water temperature, and proportions of 

substrate types. Stream order was calculated by Strahler’s method (Strahler 1957) using a map 

scaled at 1:50,000 (NIER 2009). Water temperature and basic water chemistry (dissolved 

oxygen, pH, conductivity, and turbidity) was measured using a multi-parameter water quality 

sensor (YSI Environmental Monitoring System 660, Yellow Springs, OH, USA). Catchment 
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areas and proportions of land use types for each site were summarized at the catchment scale 

from a digital map of watershed and 2004 land-cover/land-use using ArcGIS 9.1 (ESRI 2009). 

The digital map of watershed and land cover/land use was obtained from the WAter 

Management Information System (WAMIS 2013) of NIER, South Korea. Proportions of 

substrate types were estimated by visual examination of the coverage of each particle size class 

based on the modified Wentworth scales (Cummins 1962). Substrate types were classified into 

five classes: boulders (>256 mm in diameter), cobbles (64-256 mm in diameter), pebbles and 

gravels (2-64 mm in diameter), sand (0.06-2 mm in diameter), and clay and silt (<0.06 mm in 

diameter). 

Benthic macroinvertebrate sampling 

Each site was sampled with two different macroinvertebrate collection methods from 

Korean and Michigan RBPs to test the method-dependent differences in estimates of taxa 

richness, abundance, and other assessment metric values. The sampling was conducted 

simultaneously by two different crews working within the same stream reach. KNAEMP 

sampling, as prescribed in their protocol (NIER 2009), was conducted only in riffle areas, while 

MDEQP51 sampling (MDEQ 1997) occurred throughout the reach starting downstream and 

proceeding to the upstream limit. However, MDEQP51 crews did not collect samples in riffle 

areas until KNAEMP sampling was completed. Sampling reach distance for each site was 

generally 20 times the stream width of each site, but 50 meters was the minimum for small 

streams. Actual sampling reach length ranged from 50 meters to 100 meters and the actual 

sampling distance was determined to include multiple examples of the most common habitat 

units (riffles, runs, and pools). 
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Michigan department of environmental quality procedure 51 (MDEQP51) sampling 

MDEQP51 samples characterize the structure of benthic macroinvertebrate communities 

in terms of relative abundances of each taxon rather than absolute density (Moulton et al. 2002). 

Sampling for this study was conducted in accordance with the Michigan Department of 

Environmental Quality Procedure 51 (MDEQ 1997). Sampling of benthic macroinvertebrate 

assemblages was performed using D-frame dip nets (250 μm mesh size) for 30 minutes at each 

site by one person. Kicking, dipping, and sweeping were used for general sampling with the dip 

net, and hand-picking was used for areas with boulders, debris, and logs. Samples from all 

habitats were combined in a bucket and then 100 organisms were randomly selected from the 

composite sample for further analysis (Merritt and Cummins 1996, MDEQ 1997, Riseng et al. 

2006). The 100 selected organisms were preserved in 70 % ethanol and returned to the laboratory 

for identification and enumeration (Merritt and Cummins 1996). At a site, more than 200 

organisms were collected due to picking error, so metric values were recalculated to fit a 100-

organism scale. 

Korean nationwide aquatic ecological monitoring program (KNAEMP) sampling 

In contrast to MDEQP51 samples, KNAEMP samples estimate the absolute density of 

benthic macroinvertebrate communities. The density of benthic macroinvertebrates was 

calculated as individuals per square meter (NIER 2009, Jun et al. 2011). KNAEMP samples were 

quantitatively collected at riffle habitats using a Surber sampler (30 cm × 30 cm, 1 mm mesh 

size). Three samples at each site were taken from randomly selected riffles in a designed stream 

reach and placed into a 500 ml plastic bottle after removing large substrates and debris. Then 70 

% ethanol was added to preserve samples for further identification and enumeration. KNAEMP 
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sampling was conducted in accordance with the guidelines of the “National biological surveys 

for stream ecosystem health” in Korea (NIER 2009). 

Identification of benthic macroinvertebrates 

All organisms were separated from detritus and small substrate particles and sorted by 

each order. Then, all individuals were identified to the lowest taxonomic resolution level, 

typically species or genus. The identification of non-insects (Platyhelminthes, Nematomorpha, 

Mollusca, Annelida, and Crustacea) was done according to Kwon et al. (2001) and Smith (2001), 

while aquatic insects were based on Yoon (1995), Merritt and Cummins (1996), and Won et al. 

(2005). All identified individuals counted at the lowest taxonomic level. If lab identification was 

unsure or impossible, a few samples of each taxon from one site were preserved with 70% 

alcohol and labeled with date, site, and taxa name for later identification by taxonomic experts. 

Benthic macroinvertebrate metrics and data analysis  

All samples were evaluated for fourteen indicator metrics: total number of orders 

(nOrTa), total number of families (nFaTa), total number of genera taxa (nGeTa), total number of 

species (nSpTa), total number of individuals (nTotIn), total number of EPT families 

(Ephemeroptera, Plecoptera, and Trichoptera) (nEPTFaTa), total number of EPT genera 

(nEPTGeTa), total number of EPT species (nEPTSpTa), percentage of EPT families 

(pEPTFaTa), percentage of EPT genera (pEPTGeTa), percentage of EPT species (pEPTSpTa), 

percentage of EPT individuals (pEPTIn), Korean Saprobic Index (KSI) score, and 

Macroinvertebrate Biotic Index (MBI) score (Table 5.2). The scores of KSI and MBI have a 

negative relationship with ecological integrity, which means higher values indicate poor 

ecological status and degradation in water quality. Korean saprobic index is a modified benthic 
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macroinvertebrate index of biological integrity from the saprobic valency concept (Zelinka and 

Marvan 1961) and is currently used for the ecological assessment of Korean streams and rivers 

(NIER 2009). Saprobic values and weighting factors were summarized for 100 major benthic 

macroinvertebrate indicator groups. KSI score ranges from 0 (excellent condition) to 5 (poor 

condition) and the KSI score of each site was calculated by averaging sum of Saprobic value and 

weighting factor of each taxon collected (Won et al. 2006 and NIER 2009). Macroinvertebrate 

Biotic Index is taken from Hilsenhoff or EPA established biotic index values (Hilsenhoff 1987 

and USEPA 2006). A tolerance value for each taxon ranged from 0 to 10 and the average MBI 

score of each site was calculated by averaging the sum of a published tolerance value for each 

taxon collected (Riseng et al. 2006). These indicator metrics were chosen to describe 

representative measures of richness and composition for a variety of macroinvertebrate 

assemblages (MDEQ 1997, Barbour et al. 1999, NIER 2009).  

Benthic Macroinvertebrate Sampling Method Efficiency (SME) was estimated for seven 

key metrics, counting taxa richness (Table 5.2). Also, another fourteen metrics were analyzed in 

order to observe the difference in taxa richness and relative abundance amongspecific major 

groups: total number of class taxa (nClTa), total number of EPT individuals (nEPTIn), total 

number of Ephemeroptera individuals (nEphIn), total number of Plecoptera individuals (nPleIn), 

total number of Trichoptera individuals (nTriIn), total number of Ephemeroptera families 

(nEphFaTa), total number of Ephemeroptera genera (nEphGeTa), total number of 

Ephemeroptera species (nEphSpTa), total number of Plecoptera families (nPleFaTa), total 

number of Plecoptera genera (nPleGe), total number of Plecoptera species (nPleSpTa), total 

number of Trichoptera families (nTriFaTa), total number of Trichoptera genera (nTriGeTa), and 

total number of Trichoptera species (nTriSpTa). SME here can be defined as follows, 
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   SME = 100 × (SMED / SRCB)                                                        (1) 

 

where SMED indicates taxa richness and relative abundance of each data (SMED) set for each 

sampling method and SMCB indicates taxa richness and relative abundance of Combined data set 

(SMCB) from both KNAEMP and MDEQP51 data. CB data set was used as a maximum taxa 

richness and relative abundance of each sampling site because we could not measure total taxa 

list and abundance for each site.  

Standardization was performed for each benthic macroinvertebrate metric separately in 

order to examine whether differences and biases from sampling methods can be corrected. The 

absolute value of z represents the distance between the raw score and the metric mean in units of 

standard deviation. The standard score of a raw score x is 

                                    z = (x – μ)/σ                                                   (2) 

where μ is the mean of each metric for each sampling method and σ is the standard deviation of 

each metric for each sampling method.  

Statistical analysis 

Benthic macroinvertebrate data sets were summarized into three categories to compare 

the sampling performance of sampling methodologies: KNAEMP, MDEQP51, and COMB 

(combined data set of KNAEMP and MDEQP51). Statistical summaries (mean, median, standard 

deviation, minimum, and maximum) and scatter plots were conducted using Datadesk 6.0 

(Velleman 1997). Paired samples t-test, ANCOVA test, Pearson correlation, and Standardization 

of data sets were performed using SPSS 12.0 (SPSS, Inc. 2003).
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Results 

Characteristics of stream sites and benthic macroinvertebrate habitats 

Environmental and watershed characteristics (Table 5.1) showed large variation across 

sampling sites. Catchment size ranged from 16 km2 to 8,712 km2 with average of 1,382 km2, 

representing sites from the Geum headwaters sites to large mainstem river reaches. The Geum 

River is a 6th order river system and stream order for this study ranged from 2nd order to 6th order 

with average of 4th order. Mean proportions of urban, agricultural, and forest land use were 0.15, 

0.27, and 0.50 and maximum proportions were 0.78, 0.81, and 0.87, respectively. Wetted stream 

widths ranged 0.5 meter to 250.0 meter with average of 56.2 meter. Average flow depths ranged 

from 0.13 m to 0.54 m with average of 0.33 m and average velocity ranged from zero to 1.24 

m/sec with an average of 0.60 m/sec. Water temperature also showed large variation, ranging 

from 5.2 degree Celsius to 14.0 degree Celsius with an average of 10.4 degree Celsius on the 

sampling date. Mean percentages of substrates for clay and silt, sand, gravels, cobbles, and 

boulders were 13.3%, 22.4%, 22.0%, 23.1%, and 19.2%, respectively.  

Comparison of sampled taxa richness, abundance, and occurrence 

Sampled benthic macroinvertebrates (combined data set; COMB) collected by both 

MDEQP51 and KNAEMP included 20 orders, 64 families, 107 genera, 138 species, and 17,878 

individuals (Table 5.3). Ephemeroptera had the highest species richness (41 species) followed by 

Trichoptera (24 species), Diptera (18 species), and Plecoptera (10 species). For total individual 

numbers Diptera had the highest individuals (8,422) followed by Ephemeroptera (3,826), 
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Trichoptera (3,751), Archioligocheata (845), Isopoda (312), Coleoptera (296), and Plecoptera 

(126) (Table 5.3 and Figure 5.2).  

In general, the KNAEMP method captured more species taxa and individuals than the 

MDEQP51 method, whereas total species taxa richness of Odonata and Hemiptera for 

MDEQP51 was relatively higher than those of the KNAEMP (Table 5.3). Also, total individual 

numbers of Hemiptera in MDEQP51 method were higher than in the KNAEMP method. In 

terms of percentages of combined data, the KNAEMP method sampled 95.0% of total orders (19 

orders), 90.6% of total families (58 families), 78.5% of total genera (84 genera), 83.3% of total 

species (115 species), and 82.5% of total individuals (14, 734 individuals). In contrast, the 

MDEQP51 method captured 85.0% of total orders (17 orders), 71.9% of total families (46 

families), 61.7% of total genera (66 genera), 59.4% of total species (82 species), and only 17.6% 

of total individuals (3,144 individuals). Interestingly, Trichoptera in KNAEMP method showed 

much higher total taxa richness (100.0% of total families (11 families), 87.5% of total genera (14 

genera), 91.7% of total species (22 species)) and total individual numbers (92.3% of total 

individuals (3,461 individuals) than those of Trichoptera in MDEQP51 method (45.5% (5), 

50.0% (8), 45.8% (11), and 7.7% (290), respectively). However, Odonata in KNAEMP method 

showed relatively lower total taxa richness (50% of total families (2 family), 33.3% of total 

genera (3 genera), and 33.3% of total species (3 species)) than total taxa richness (100% (4), 

88.9% (8), and 88.9% (8)) of Odonata in MDEQP51 method. 

Site occurrence frequencies and relative abundances of benthic macroinvertebrate groups 

were well described by both sampling methods (Figure 5.2). In terms of relative abundances the 

KNAEMP method showed good performance for taxa groups in riffle habitats, while the 

MDEQP51 method generally captured various taxa groups (e.g., Odonata, Isopoda, and 
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Hemiptera) in diverse habitats (runs and pools) in addition to riffle areas. In terms of site 

occurrence frequencies of orders, almost no differences were observed between two sampling 

methods. The KNAEMP method indicated that Diptera had the highest site occurrence (29 sites) 

followed by Archioligocheata (25 sites), Ephemeroptera (25 sites), Trichoptera (24 sites), 

Tricladida (14 sites). In contrast the MDEQP51 method showed that Diptera had the highest 

occurrence (29 sites) followed by Ephemeroptera (24 sites), Trichopetera (23 sites), 

Archioligocheata (23 sites), and Plecoptera (10 sites).  

Benthic macroinvertebrate metric scores based on taxa counts and individual numbers 

(Table 5.4) were relatively higher in KNAEMP samples than MDEQP51 samples for all 

taxonomic levels. For example, the mean total taxa numbers of order, family, genus, and species 

in the KNAEMP samples were 6.8, 13.1, 15.9, and 19.0, while the means in the MDEQP51 

samples were 5.7, 9.7, 11.5, and 14.4, respectively. These patterns were continuously observed in 

the indicator metrics based on EPT taxa counts and individual numbers at all taxonomic 

resolution. However, KSI and MBI (overall assessment metrics) showed the opposite trend. KSI 

and MBI values from the MDEQP51 sampling method produced relatively higher values than 

the KNAEMP sampling method. Mean KSI and MBI in MDEQP51 samples were 2.12 (0.42 to 

4.56) and 6.20 (4.13 to 9.92), respectively; whereas the means from KNAEMP samples were 

1.73 (0.28 to 5.00) and 5.88 (4.01 to 9.44), respectively.  

Comparison of macroinvertebrate sampling method efficiency (SME) 

For benthic macroinvertebrate metrics based on taxa counts, KNAEMP method showed 

excellent SMEs for all metrics (Figure 5.3A). The mean SMEs of the KNAEMP method ranged 

from 78.3% (nEPTSpTa) to 90.4% (nClTa). However, SMEs in the MDEQP51 method were 

significantly lower ranging from 54.1% (nEPTSpTa) to 74.3% (nOrTa). A similar pattern was 
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found for indicator metrics based on individual numbers (Figure 5.3B). Mean SMEs of the 

KNAEMP method ranged from 54.6% (nPleIn) to 87.4% (nTriIn), whereas mean SMEs of the 

MDEQP51 method were significantly lower (except nEphln) than those of KNAEMP method, 

ranging from 12.6% (nTriIn) to 45.4% (nPleIn).  

There were also interesting differences in relative performance of the methods between 

Ephemerotera, Plecoptera, and Trichoptera orders (Figure 5.4). For all taxonomic levels, mean 

MSMEs of Trichoptera with taxa counts were significantly higher (89.8% to 92.8%) in 

KNAEMP method than those (39.2% to 44.8%) of MDEQP51 method, as this pattern was 

observed in the analysis of nTriIn (Figure 5.3B). However, no significant difference by sampling 

method was observed in mean MSMEs for Ephemeroptera and Plecoptera taxa counts at all 

taxonomic levels (Figure 5.4). 

Metric comparability 

Pearson correlation analysis indicated that most of metrics between sampling methods 

were significantly correlated (p<0.01) ranging from 0.563 (NIN) to 0.937 (nEPTSpTa) (Table 

5.5). Benthic macroinvertebrate metrics measuring various aspects of taxa richness (seven 

metrics) and individual numbers (one metric) were significantly different between KNAEMP 

and MDEQP51 methods (Table 5.6). Regression slopes of KNAEMP and MDEQP51 method 

data ranged from 1.1416 (nOrTa) to 1.3763 (nEPTGeTa), indicating that the KNAEMP method 

had consistently higher values than the MDEQP51 method for these metrics (Figure 5.5). 

Regression slope for NIN was not calculated because MDEQP51 method only sampled 100 

macroinverbrate organisms, which was inappropriate to compare.  

Benthic macroinvertebrate metrics based on relative percentages of EPT taxa counts 

(three metrics) and individual numbers (one metric) showed somewhat different results from 
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taxa-count based metrics (Table 5.5, Table 5.6, and Figure 5.6). The metrics for pEPTFaTa, 

pEPTGeTa, and pEPTIn were not significantly differ (p>0.05) with sampling methods (Table 

5.6). The exception was observed in pEPTSpTa, which showed a strongly significant difference 

(p<0.05). The Pearson correlation tests showed strong correlation between KNAEMP and 

MDEQP51 samples for all four of these metrics (Table 5.5), with correlation coefficients ranged 

from 0.667 (pEPTFaTa) to 0.893 (pEPTIn). Regression slopes (Figure 5.6) for these indicator 

metrics ranged from 0.9710 (pEPTGeTa) to 1.0432 (pEPTSpTa), not significantly different from 

1.  

Overall stream health metrics (KSI and MBI) varied in sensitivity to sampling method. 

MBI scores had a strongly significant difference (p=0.015) between sampling methods, whereas 

KSI scores were not significantly different (p=0.075) although the p value was marginal (Table 

5.6). Pearson correlation indicated that MBI (r=0.899) and KSI (r=0.726) values were well 

correlated between sampling methods (Table 5.5). Regression slopes (Figure 5.6) of KNAEMP 

and MDEQP51 method data were 0.9366 and 0.8148 for MBI and KSI, respectively, indicating 

that very closed to 1 and regression slopes were not significantly different (ANCOVA test; 

p=0.362 for MBI and p=0.333 for KSI) between methods.  

In the Geum River basin, site bioassessment metric values and ecological health had 

significantly negative correlaion with both agricultural and urban land use (Figure 5.7 and Figure 

5.8). Sampling methods influenced the sensitivity of diversity-related metrics (i.e. those based on 

taxa counts) and as a result slopes of the regression coefficients (ANCOVA) of several typical 

metrics differed significantly by sampling methodology (Table 5.7). Particularly, nFaTa, nGeTa, 

and nTotIn metrics were significantly influenced by sampling methods, while other metrics were 

marginally significant. This nicely illustrated the impact of methodological biases on 
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comparative assessments of sensitivity to landscape stressors (Figure 5.7 and Figure 5.8). In this 

case the effect varied between metrics, presumably reflecting different sensitivities to both 

sample size and spatial extent of the rapid bioassessment protocol. Calibration-based corrections 

or statistical normalization (as discussed below) would be required to validly pool or compare 

metrics generated by these different sampling methods (Figure 5.7 and Figure 5.8).
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Discussion 

Benthic macroinvertebrate data collected using typical North American (MDEQ 1997) 

and East Asian (NIER 2009) rapid assessment methodologies were compared in order to 

examine the feasibility of direct metric value comparison. This study particularly focused on the 

types of potential biases that might be associated with the two programs. Significant differences 

in sampling bias would complicate direct comparisons of assessment results from these regions, 

even if the same specific assessment metrics are used. Undoubtedly all sampling gear and all 

sampling protocols have inherent biases with respect to size of individuals captured, efficiency in 

various habitats, and taxonomic representation (Barbour et al. 1999, Wiley et al. 2003, Furse et al. 

2006). As long as a single sampling protocol is maintained, it is reasonable to assume that 

whatever those biases are, measurements using a given sampling protocol are comparable in a 

general sense (but see Larimore 1961, Wiley et al. 2003). But when data collected using different 

methods are compared, biases can lead to quite different representations of the same sampled 

community (Barbour et al. 1999, Carter and Resh 2001, Wiley et al. 2003, Cao et al. 2005, ITFM 

2005, Clarke et al. 2006, Furse et al. 2006). 

I found that the two sampling methodologies I investigated resulted in significant 

systematic differences in taxa and individual specimen counts and therefore in the metric values 

that were based on those counts. The KNAEMP method consistently recovered more taxa than 

MDEQP51 method across all indicator metrics (Table 5.4). This is not surprising since the 

MDEQP51 protocol typically ends with the random selection of only 100 individuals for 

identification. In contrast the KNAEMP method uses actual counts from surber samples and 

therefore reflects prevailing benthic densities which typically range in streams and rivers up to 

several thousand per square meter. Since sample diversity is related to sample size (Merritt and 
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Cummins 1996, Walsh 1997, Barbour et al. 1999, Carter and Resh 2001, King and Richardson 

2002), sampling protocol had a significant effect on count-based metrics; both metrics based on 

individual counts and those based on taxa counts (e.g. number of EPT taxa and total number of 

genera). However, percentage based metrics were unaffected (Table 5.5). This influence of 

sample size is conflated in the protocols with differences related to spatial scale of the samples. 

Since the two sampling methods targeted somewhat different habitats, efficiency of sampling 

certain taxonomic groups associated with those habitats also varied with sampling protocol. For 

example the KNAEMP method sampled significantly more Trichoptera taxa, many of which 

typically reside in high densities only in riffle habitats (e.g. the hydrosychoidea, brachycentrids, 

glossosmatids, goerids), whereas the MDEQP51 method systematically captured more taxa from 

non-riffle habitats like pools and edges (e.g., Odonata and Hemiptera). Overall these results 

imply that common indicator metrics based on counts of taxa or individuals should not be 

compared directly if they come from sampling methods with differing sampling efficiencies and 

biases (Carter and Resh 2001, Cao et al. 2005, ITFM 2005, Friberg et al. 2006, Furse et al. 

2006). Park (2007) reported the similar results in a study of the effects of sampling effort on 

stream assessment metrics. Such count-based metrics are likely to require some form of 

calibration or normalization process (Wiley et al. 2003, Park 2007) before comparison or 

integration of data sets. 

The two bioassessment sampling protocols examined in this study also have adopted 

different taxonomic levels for benthic macroinvertebrate identification and stream health 

assessment (MDEQ 1997, NIER 2009). MDEQP51 method uses family level identification, 

whereas KNAEMP method applies species level identification. Level of taxon identification can 

obviously affect lab analysis time and project budget (Merritt and Cummins 1996, Barbour et al. 
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1999, King and Richardson 2002, Park 2007). In this study species-level identification for 

benthic macroinvertebrates required several times more effort than either family- or genus-level 

identification. From the perspective of program design, fast and easy identification is a 

significant benefit which allows much useful work to be performed by public users with brief 

training or guide books (Barbour et al. 1999, ITFM 2005, Furse et al. 2006, Park 2007, US EPA 

2007). Furthermore, species-level identification clearly has higher time and labor costs; and also 

requires more expertise and more equipment used for identification of specific benthic 

macroinvertebrate taxa. On the other hand, metrics using the KNAEMP methodology, including 

KSI generally had a wider range in values which potentially yields a more sensitive metric. In 

terms of simple linear sensitivity to both urban and agricultural development in the upstream 

catchment, this was indeed the case: KNAEMP metrics were generally more sensitive than 

MDEQP51-based metrics (see Figure 5.7, Figure 5.8).  

Indicator metrics (four metrics) based on relative percentages of taxa counts and 

individuals did not differ significantly between KNAEMP and MDEQP51 samples (Table 5.4, 

Table 5.5, Table 5.6), implying that EPT indicator metrics based on relative percentages were not 

influenced by sampling methods or sample sizes. Thus, EPT indicator metrics based on relative 

percentages of taxa counts may be preferable to taxa-count based metrics when combining or 

comparing assessment metrics from different sources. However, the percentage of EPT taxa 

metric based on the species level still showed statistically significant differences indicating that 

the larger sample sizes (n) from the KNAEMP method still influenced relative percentages of 

EPT at the species level.  

Methodological difference in sampling target habitats between two sampling methods 

was also reflected in EPT indicator metrics (seven metrics) and stream assessment metrics (KSI 
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and MBI). KNAEMP method had slightly higher means for all EPT metrics than MDEQP51 

method. Particularly, metrics based on taxa counts were significantly different at every 

taxonomic resolution (p<0.01). Similarly, mean values of KSI and MBI were lower in KNAEMP 

method than MDEQP51 method. In general, EPT taxa are intolerant to environmental changes so 

that these taxa have lower tolerance scores. More EPT taxa counts in KNAEMP method than 

MDEQP51 method were expected given the larger sample sizes. However, relative percentages 

of EPT taxa counts and individuals could be similar if they were sampled in the same habitat 

areas regardless of sampling effort or efficiency. Although metrics based on relative percentages 

of EPT taxa and individuals were not significantly different (p>0.05) except for pEPTSpTa 

(p=0.036), the slightly higher means in KNAEMP method likely reflects a methodological focus 

on their preferred habitats. It is well known that riffle habitats provide more oxygen and 

turbulence and are generally highly suitable for EPT and sensitive taxa groups (Merritt and 

Cummins 1996, Diana 2004, Allan and Castillo 2007).  

Assessing impacts with biased indicators 

All of the assessment metrics, regardless of the sampling protocol employed, were 

statistically correlated with both agricultural and urban land use and so reflect environmental 

gradients. However, biases related to sampling methodology led to a statistically different 

stressor-response relationship in many cases (see Figure 5.7, Figure 5.8). This is a critically 

important issue for my dissertation, since my goal is to compare stressor-response relationships 

from two different regions historically based on different sampling protocols and metrics. In 

rapid bioassessment studies potential biases of individual metrics are often addressed through the 

use of multi-metrics (e.g. Karr 1981, Karr et al. 1986, Ohio EPA 1987, Barbour et al. 1999) 

reflecting a “measurement model” (Blalock 1970) approach to overcoming the limitations of 
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individual metrics. However when bias is methodological, multiple metrics calculated from the 

data share the bias and pooling indicators simply pool the biases they carry (e.g. Table 5.6). Gear 

bias in fisheries studies is sometimes addressed through direct calibration and correction factors 

(see chapter 4). Data standardization (normalization) is another useful statistical approach when 

comparing data with different ranges and or known biases (Wiley et al. 2003, Baker et al. 2005, 

Riseng et al. 2006, Park 2007, Riseng et al. 2010, Launois et al. 2011). Standardizing my Geum 

river sample sets independently (i.e. for KNAEMP and MDEQP51 samples separately) 

successfully removed the difference between sample types in stressor-response relationships 

(Table 5.7, Figure 5.7, Figure 5.8); the different sampling methods provided statistically identical 

stressor-response relationships for the same set of sites as they should. Thus, standardization is 

likely a necessary step before comparison of macroinvertebrate metrics when the underlying 

sampling methodologies are quite different. 

Summary and conclusion 

Benthic macroinverbrates are often used in stream monitoring and assessment studies due 

to the convenience and low cost of field sampling (Merritt and Cummins 1996, Barbour et al. 

1999, Furse et al. 2006, US EPA 2006, Allan and Castillo 2007). Various sampling gears and 

methods for benthic macroinvertebrates are available and have been selectively used in many 

states and countries, depending on project purposes and operational constraints (ITFM 1995, 

Merritt and Cummins 1996, Barbour et al. 1999, Cao et al. 2005). However, the differences and 

biases inherent in sample data from common RBPs have seldom been addressed (Cao et al. 2005, 

Clarke et al. 2006, Clarke and Hering 2006, Friberg et al. 2006). In this study the MDEQP51 

sampling approach frequently resulted in different metric scores than the KNAEMP procedure 

and exhibited larger variation in performance for certain benthic macroinvertebrate groups. The 
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two RBPs examined resulted in significantly different land use stressor-response relationships 

for the same set of Geum River assessment sites. However, standardization of each data set by 

sampling type resolved this concern and successfully corrected the biological responses of each 

metric to land use stressors. MDEQP51 is more cost-effective than the KNAEMP, because the 

method reduces the taxonomic identification work. Although KNAEMP method requires more 

effort with higher labor costs, it provides much better estimates of density and diversity.  

In this chapter I have examined the comparability of benthic macroinvertebrate data using 

different sampling methods as a step towards comparing land use stressor-response relationships 

in NA and East Asian regions. I conclude that macroinvertebrate data from different sampling 

methods are comparable after appropriate numerical calibration. 
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Table 5.1. Summary statistics of stream habitat characteristics and landuse patterns for benthic 
macroinvertebrate sampling sites. SD indicates standard deviation. 

Variables (n= 29) Mean Median SD Min Max

Catchment area (km2) 1382 287 2501 16 8712

Stream order 4.2 4.0 1.3 2.0 6.0

Proportion of urban 0.15 0.06 0.21 0.00 0.78

Proportion of agriculture 0.27 0.22 0.19 0.00 0.81

Proportion of forest 0.50 0.57 0.25 0.09 0.87

Wetted stream width (m) 56.2 25.0 67.7 0.5 250.0

Average flow depth (m) 0.33 0.35 0.10 0.13 0.54

Average velocity (cms) 0.60 0.64 0.35 0.00 1.24

Water temperature (°C) 10.4 10.8 2.4 5.2 14.0

Percentage of clay and silt 13.3 10.0 16.7 0.0 90.0

Percentage of sand 22.4 10.0 19.7 5.0 70.0

Percentage of gravels 22.0 25.0 9.0 0.0 35.0

Percentage of cobbles 23.1 25.0 10.8 0.0 0.4

Percentage of boulders 19.2 20.0 12.6 0.0 45.0
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Table 5.2. Macroinvertebrate indicator metrics and their abbreviations used for this study. * 
indicates that metrics were used for the evaluation of sampling gear efficiency. 

 Metric list Abbreviation 

Metric 1 Total number of order taxa nOrTa* 
Metric 2 Total number of family taxa nFaTa* 
Metric 3 Total number of genus taxa nGeTa* 
Metric 4 Total number of species taxa nSpTa* 
Metric 5 Total number of individuals nTotIn 
Metric 6 Total number of EPT family taxa nEPTFaTa* 
Metric 7 Total number of EPT genus taxa nEPTGeTa* 
Metric 8 Total number of EPT species taxa nEPTSpTa* 
Metric 9 Percentage of EPT family taxa  pEPTFaTa 
Metric 10 Percentage of EPT genus taxa pEPTGeTa 
Metric 11 Percentage of EPT species taxa pEPTSpTa 
Metric 12 Percentage of EPT individuals pEPTIn 
Metric 13 Korean saprobic index KSI 
Metric 14 Macroinvertebrate Biotic Index MBI 
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Table 5.3. Comparison of benthic macroinvertebrate data for specific orders. Data were 
summarized by MDEQP51, KAEMAP, and COMB (combined data of MDEQP51 and 
KAEMAP).    

  nOrTa nFaTa nGeTa nSpTa nTotI
n

MDEQP51 Overall 17 46 66 82 3144
 Order Ephemeroptera 1 9 18 27 747
 Order Plecoptera 1 4 5 5 49
 Order Trichoptera 1 5 8 11 290
 Order Odonata 1 4 8 8 14
 Order Coleoptera 1 3 3 3 23
 Order Hemiptera 1 3 3 3 4
 Order Megaloptera 1 1 2 2 7
 Order Diptera 1 7 9 11 1323
KNAEMP Overall 19 58 84 115 14734
 Order Ephemeroptera 1 10 23 38 3079
 Order Plecoptera 1 5 8 10 77
 Order Trichoptera 1 11 14 22 3461
 Order Odonata 1 2 3 3 18
 Order Coleoptera 1 3 5 5 273
 Order Hemiptera 1 2 2 2 2
 Order Megaloptera 1 1 2 2 14
 Order Diptera 1 9 11 14 7099
COMB Overall 20 64 107 138 17878
 Order Ephemeroptera 1 12 27 41 3826
 Order Plecoptera 1 4 8 10 126
 Order Trichoptera 1 11 16 24 3751
 Order Odonata 1 4 9 9 32
 Order Coleoptera 1 4 6 6 296
 Order Hemiptera 1 4 4 4 9
 Order Megaloptera 1 1 2 2 21
 Order Diptera 1 10 15 18 8422
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Table 5.4. Summary statistics of all macroinvertebrate indicator metrics used for macroinvertebrate data comparability (n = 29). 

Metrics 
KNAEMP MDEQP51 COMB 

Mean Median SD Min Max Mean Median SD Min Max Mean Median SD Min Max 

nOrTa 6.8 7.0 2.8 2.0 12.0 5.7 5.0 2.1 2.0 10.0 7.8 8.0 2.8 2.0 13.0 

nFaTa 13.1 13.0 7.0 2.0 29.0 9.7 9.0 5.1 2.0 19.0 15.7 14.0 7.7 3.0 31.0 

nGeTa 15.9 15.0 9.8 2.0 38.0 11.5 11.0 6.5 2.0 22.0 20.3 19.0 11.1 4.0 41.0 

nSpTa 19.0 17.0 12.3 2.0 45.0 14.4 13.0 7.8 3.0 27.0 25.4 23.0 14.4 5.0 54.0 

nTotIn 508.1 469.0 389.9 7.0 1,327.0 108.4 115.0 38.5 12.0 201.0 616.5 593.0 412.8 19.0 1,472.0 

nEPTFaTa 6.8 7.0 4.5 0.0 16.0 4.9 4.0 3.5 0.0 11.0 7.7 7.0 4.9 0.0 17.0 

nEPTGeTa 9.2 8.0 6.8 0.0 23.0 6.5 6.0 4.8 0.0 14.0 10.9 10.0 7.8 0.0 25.0 

nEPTSpTa 11.7 10.0 9.0 0.0 27.0 8.0 6.0 6.7 0.0 19.0 14.4 11.0 11.2 0.0 34.0 

pEPTFaTa 45.4 50.0 20.0 0.0 75.0 43.8 50.0 20.0 0.0 75.0 44.3 50.0 16.2 0.0 71.4 

pEPTGeTa 49.5 55.6 21.6 0.0 81.3 48.1 55.0 22.2 0.0 81.8 47.0 52.4 18.4 0.0 77.8 

pEPTSpTa 51.6 58.8 23.1 0.0 77.8 45.4 50.0 25.5 0.0 85.7 47.3 52.6 22.0 0.0 81.8 

pEPTIn 32.2 25.6 28.4 0.0 85.4 30.6 16.7 28.7 0.0 91.1 32.1 22.4 28.1 0.0 86.9 

KSI 1.73 1.09 1.57 0.28 5.00 2.12 2.18 1.42 0.42 4.56      

MBI 5.88 6.07 1.15 4.01 9.44 6.20 6.16 1.46 4.13 9.92      
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Table 5.5. Two tailed Pearson correlation tests between KNAEMP and Michigan MDEQP51. Bold indicates significance at p≤0.05, 
and bold and italics indicate significance at p≤0.01.  

MDEQP51 

 
nOrTa nFaTa nGeTa nSpTa nTotIn 

nEPTFa
Ta 

nEPTGe
Ta 

nEPTSp
Ta 

pEPTFa
Ta 

pEPTGe
Ta 

pEPTSp
Ta 

pEPTIn KSI  MBI 

KNAEMP             
nOrTa .568 .647 .692 .683 .474 .698 .709 .697 .664 .645 .710 .553 -.617 -.491 
nFaTa .586 .803 .829 .837 .539 .875 .870 .874 .785 .767 .855 .773 -.745 -.659 
nGeTa .565 .814 .840 .855 .484 .905 .895 .901 .791 .767 .860 .797 -.778 -.700 
nSpTa .575 .825 .854 .865 .488 .908 .901 .908 .781 .758 .859 .810 -.792 -.719 
nTotIn .335 .437 .454 .444 .563 .500 .498 .517 .570 .581 .639 .490 -.558 -.467 

nEPTFaTa .544 .800 .829 .838 .532 .882 .886 .895 .808 .787 .888 .844 -.788 -.724 
nEPTGeTa .533 .815 .847 .863 .479 .918 .918 .930 .820 .796 .900 .868 -.823 -.763 
nEPTSpTa .541 .826 .862 .874 .479 .921 .922 .937 .806 .783 .897 .876 -.831 -.776 
pEPTFaTa .399 .514 .535 .524 .508 .581 .587 .585 .667 .649 .700 .572 -.603 -.521 
pEPTGeTa .428 .567 .596 .586 .523 .647 .657 .656 .728 .715 .775 .638 -.670 -.586 
pEPTSpTa .450 .601 .630 .620 .534 .679 .687 .691 .750 .739 .807 .665 -.697 -.620 
pEPTIn .498 .762 .809 .817 .495 .842 .864 .895 .748 .737 .867 .893 -.729 -.715 
KSI -.196 -.427 -.469 -.497 -.197 -.571 -.585 -.603 -.642 -.633 -.672 -.573 .726 .631 
MBI -.542 -.725 -.741 -.749 -.238 -.741 -.730 -.746 -.682 -.643 -.723 -.701 .818 .899 
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Table 5.6. Summary statistics of paired samples T-tests (KNAEMP versus MDEQP51). CI and df indicate confidence interval and 
degree of freedom, respectively. *=0.05; **=0.001. 

Metrics 

Paired differences 

t df 
Sig.       

(2-tailed) Mean  
Standard 
deviation 

Standard error 
mean 

95% CI of the difference 

Lower Upper 

KNAEMP versus MDEQP51 
nOrTa 1.103 2.335 0.434 0.215 1.992 2.545 28 0.017* 
nFaTa 3.414 4.205 0.781 1.814 5.013 4.372 28 0.000** 
nGeTa 4.379 5.628 1.045 2.239 6.520 4.190 28 0.000** 
nSpTa 4.621 6.811 1.265 2.030 7.211 3.653 28 0.001** 
nTotIn 399.655 369.665 68.645 259.042 540.268 5.822 28 0.000** 
nEPTFaTa 1.862 2.150 0.399 1.044 2.680 4.664 28 0.000** 
nEPTGeTa 2.690 3.060 0.568 1.526 3.854 4.733 28 0.000** 
nEPTSpTa 3.621 3.610 0.670 2.248 4.994 5.402 28 0.000** 
pEPTFaTa 1.582 16.244 3.016 -4.596 7.761 0.525 28 0.604 
pEPTGeTa 1.315 16.554 3.074 -4.982 7.612 0.428 28 0.672 
pEPTSpTa 6.253 15.284 2.838 0.439 12.067 2.203 28 0.036*= 
pEPTIn 1.638 13.210 2.453 -3.387 6.663 0.668 28 0.510 
KSI -0.384 1.117 0.207 -0.809 0.041 -1.851 28 0.075 
MBI -0.317 0.659 0.122 -0.568 -0.067 -2.596 28 0.015*= 
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Table 5.7. P values from ANCOVA tests for benthic macroinvertebrate metrics. Each sampling method indicated KNAEMP and 
MDEQP51 and was used as fixed factor. Also, urban and agricultural land uses were used as covariates to observe biological response 
to land uses. 

Metrics 
Before standardization After standardization 

Method 
Proportion of 

urban 
Method 

Proportion of 
agriculture 

Method 
Proportion of 

urban 
Method 

Proportion of 
agriculture 

nOrTa 0.094 0.405 0.064 0.001 1.000 0.470 1.000 0.000 

nFaTa 0.033 0.038 0.025 0.002 1.000 0.041 1.000 0.002 

nGeTa 0.040 0.012 0.036 0.003 1.000 0.013 1.000 0.002 

nSpTa 0.076 0.007 0.074 0.004 1.000 0.007 1.000 0.003 

nTotIn 0.000 0.044 0.000 0.512 1.000 0.162 1.000 0.398 

nEPTFaTa 0.066 0.006 0.067 0.007 1.000 0.005 1.000 0.006 

nEPTGeTa 0.065 0.002 0.071 0.008 1.000 0.002 1.000 0.006 

nEPTSpTa 0.062 0.001 0.073 0.009 1.000 0.001 1.000 0.008 

pEPTFaTa 0.754 0.023 0.757 0.055 1.000 0.023 1.000 0.056 

pEPTGeTa 0.812 0.014 0.816 0.051 1.000 0.014 1.000 0.053 

pEPTSpTa 0.299 0.003 0.318 0.039 1.000 0.003 1.000 0.042 

pEPTIn 0.814 0.002 0.820 0.018 1.000 0.002 1.000 0.018 

KSI 0.291 0.001 0.326 0.108 1.000 0.001 1.000 0.106 

MBI 0.315 0.001 0.335 0.007 1.000 0.001 1.000 0.006 
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Figure 5.1. Locations of benthic macroinvertebrate sampling sites (n= 29) in the Geum River 
Watershed, South Korea. 
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Macroinvertebrate data by KNAEMP 

 
Site occurrence frequency 

 
Relative abundance 

Macroinvertebrate data by MDEQP51 

 
Site occurrence frequency 

 
Relative abundance 

COMB (combined data of KNAEMP and MDEQP51) 

 
Site occurrence frequency 

 
Relative abundance 

Figure 5.2. Site occurrence frequencies and relative abundances of the top ten macroinvertebrate 
taxa by KNAEMP, MDEQP51, and COMB (combined data). Left column has site occurrence 
frequencies of each taxa and right column has relative abundances of each taxa. Order taxa were 
used for class Insecta and class taxa were used for others. 
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Figure 5.3. Mean macroinvertebrate sampling methodology efficiency (MSME) with 95 
percentile ranges for KNAEMP and MDEQP51. 
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Figure 5.4. Mean macroinvertebrate sampling methodology efficiency (MSME) with 95 
percentile ranges for KNAEMP and MDEQP51. 
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Figure 5.5. Comparison of taxa richness of each metric between KNAEMP and MDEQP51 and 
correction equations for sampling method bias. 
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Figure 5.6. Comparison of benthic macroinvertebrate metric values between KNAEMP and 
MDEQP51 and correction equations for sampling method bias. 
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Before standardization After standardization 

Figure 5.7. Comparison of taxa richness of two biological monitoring programs against 
proportion of urban landuse for each taxonomic resolution. Graphs on the left columns show data 
set before the standardization of taxa richness and graphs on the right columns show data set 
after the standardization of taxa richness. 
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Before standardization After standardization 

Figure 5.8. Comparison of taxa richness of two biological monitoring programs against 
proportion of agricultural landuse for each taxonomic resolution. Graphs on the left columns 
show data set before the standardization of taxa richness and graphs on the right columns show 
data set after the standardization of taxa richness.
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Chapter 6 : Meta-analysis with ecological assessment data: a case study of 
Michigan and South Korean streams 

Abstract 

In this study I examine issues of comparability in ecological assessment using a case 

study of stream assessment data from Michigan and South Korea. Initial comparisons of 

biological and landscape data indicated that direct comparisons of rapid bioassessment survey 

results would be difficult due to differences in sampling methods, differing sets of ecological 

covariates, and suspected differences in the intensity of anthropogenic stresses. Methodological 

biases in the data were identified and corrected using gear calibration functions (chapters 4 and 

5). Regional normalization (residualization) corrected statistically significant biases in observed 

land use stressor-response relationships from both regions. Normalized multimetrics indicated 

that in both regions, fish and invertebrate communities were more sensitive to urban land use 

than to agricultural land use; and that S. Korean streams were more seriously degraded than 

Michigan streams. LU stressor-response relationships for fish varied significantly between 

regions but not for benthic macroinvertebrates. This difference in response may reflect distinct 

zoogeographic histories of the two regions since taxonomic similarity is high for the aquatic 

insect fauna but relatively low for the fish fauna. A deeper understanding of regional biases in 

assessment data sets and methodologies is essential to inter-regional and global evaluations of 

anthropogenic impact and to the successful transfer of assessment tools and technologies to the 

developing world.
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Introduction 

Over the past four decades anthropogenic alterations of natural communities and 

ecosystems have been increasing concern for governments everywhere. As a result biological 

assessment data (community composition data used to infer ecological condition) has become 

increasingly available in many parts of the world. At the same time awareness of the global 

nature of ecological change drives growing interest in larger-scale regional and even global 

assessments of ecological condition, and inter-regional transfers of environmental assessment, 

planning, and control tools and technologies. For example, the Millennium Ecosystem 

Assessment (MEA 2005) by the United Nations Environment Programme (UNEP) has recently 

evaluated world biodiversity using a biological indicator (total taxa richness) across 33 global 

sub-regions. The European Union Water Framework Directive (EU-WFD) assessed European 

streams and rivers using a newly developed standard protocol; and compared its accuracy to the 

(eleven) existing national rapid bioassessment programs (RBPs) (see Table 6.1 for definitions of 

acronyms frequently used in this chapter) currently used by EU member nations (Furse et al. 

2006). Similar but separate transnational studies in Europe have also been carried out for lakes 

(Lanois et al. 2011, Argilliar et al. 2013). The US Environmental Protection Agency (US EPA) 

both through state-developed annual assessment reporting and its national surveys 

Environmental Monitoring and Assessment Program (EMAP) is evaluating the status and trends 

of national ecological resources in 3 major and 9 ecological regions for the United States (US 

EPA 2007).  

However, each of these efforts experienced substantive difficulty in integrating existing 

assessment datasets from across their focal regions, and all ended up requiring new (and 

redundant from a public policy perspective) data collections using new standardized 
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methodologies, or developing new standardized indicator metrics to be applied in the larger scale 

analysis. Difficulties comparing interregional and international assessment datasets arise for a 

variety of reasons. Most assessment methodologies and methods have been developed for limited 

geographic areas (typically civil units) to maximize both information gleaned and spatial 

coverage under substantial budget constraints. Choices of collection gear employed, types of 

organisms collected, taxonomic resolution, size of area sampled, etc. often vary widely between 

even adjacent states or countries (Bryce and Clarke 1996, US EPA 2007). But even when 

protocols and effort allocations are identical, natural geographic/spatial variation in ecological 

communities and processes can lead to measurement biases and inconsistencies; especially 

between biogeographically different regions (Diamond et al. 1996, Riseng et al. 2011).   

Questions of comparability, however, are not restricted to larger-scale assessments. Many 

regional bioassessment programs use multiple indicator variables to provide some control over 

individual metric biases; this approach is explicitly incorporated into common assessment multi-

metric indicators (MMI) like the Index of Biotic Integrity (Karr and Chu 2000). But differences 

in indicator responses to the same stressor gradients can also reflect problematic scaling or 

methodological biases that obscure assessment results. For example South Korea’s Nationwide 

Aquatic Ecological Monitoring Program (KNAEMP, NIER 2009) uses two MMI indicators, one 

based on fish community sampling (the Korean Index of Biotic Integrity; KIBI) modeled on 

Karr’s IBI (Karr 1981), the other based on macroinverebrate sampling (Korean Saprobic Index; 

KSI) based on the saprobic valency concept (Zelinka and Marvan 1961). Results of the national 

assessments varied widely between these MMIs (Figure 6.1), resulting in considerable 

controversy both within and outside the government (NIER 2009).    
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Problems related to comparability of assessment datasets and the metrics derived from 

them commonly involve either issues of differing scaling or measurement bias. Since assessment 

metrics are usually interpreted in context of deviations from a specified criterion, bias can arise 

in measurement of the metric value itself, or in specification of the reference condition for the 

metric by which it is interpreted, or both (Wiley et al. 2003). Biases can be methodological (see 

chapters 4 and 5, this dissertation); but they can also be statistical if they arise from covariances 

among natural driving variables (e.g. hydrogeology, river network structure, catchment size, and 

land use patterns) which in turn influence the spatial patterning of biological communities 

(Wiley et al. 2003, Baker et al. 2005, Schoolmaster et al. 2013). Covariance relationships result 

in complex joint probability distributions which require experimental or statistical control to 

yield unbiased estimates of response in dependent variables (Pearl 2009, Schoolmaster et al. 

2013). Both methodological and statistical biases can lead to a failure to correctly diagnose 

ecological status and interpret empirical stressor-response relationships; potentially resulting in 

inappropriate regulatory policies and management actions. 

This dissertation focused on issues of data comparability and integrability in the context 

of RBPs. In this last chapter I compared ecological assessment data from S. Korea and Michigan, 

two geographically disparate regions, in a case study format. Ecologically, both regions lie in the 

same ‘temperate seasonal forest’ biome (Ricklefs 2008); however they have clear differences in 

patterns of seasonal air temperature and precipitation, land use (LU), geology, and hydrology 

(see Chapters 1, 2, and 3). Differences in historical biogeography that have produced different 

taxa composition in the two regions also complicate data comparison and interpretation. 

Furthermore the two regions are characterized by very different human population densities 

(485.6 people /km2 for S. Korea (2010 summary; KOSIS 2015) and 67.5 people /km2 for 



  

206 

Michigan (2010 summary; US Census Bureau 2015)) and cultural practices with respect to LU 

management. These differences may be sufficient to produce fundamental differences between 

Michigan and S. Korean LU stressor-response relationships, which would further complicate 

comparisons of ecological status. 

My specific objectives are to 1) compare Korean and Michigan ecological datasets, 2) 

explore the impacts of known sampling biases (Chapters 4 and 5) and regionally covarying 

landscape properties (Chapters 2 and 3) on their respective LU stressor-response relationships, 

and 3) determine the extent to which explicit corrections for methodological and statistical biases 

lead to altered interpretations of assessment results. Finally, this case study will 4) address 

whether underlying LU stressor-response relationships and rates of impairment vary between the 

two regions. 
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Materials and methods 

Case study approach 

Fish and benthic macroinvertebrate sample data used in this study were obtained from 

government sponsored rapid bioassessment programs (RBPs) in Michigan and South Korea. I 

focus on these regions to explore issues of comparability of data in meta-analyses aimed at 

integrated and/or comparative assessment. Together they provide a useful platform from which 

to develop a case study highlighting typical problems (and potential solutions) that arise in 

comparing bioassessment data from differing geographic contexts.  

Biological data from Michigan and South Korean regions were collected by government-

supported crews using their own state or national standard RBPs. Biological data from Michigan 

(n = 803) were collected using methods specified as RAP Procedure 51 (MDEQ 1997, Park 

2007, also see Riseng et al. 2008). Biological data from South Korea (n = 684) were sampled as 

a part of the KNAEMP of the Ministry of Environment, South Korea and followed their own and 

quite different RAP guidelines (NIER 2009, Hwang et al. 2011, Jun et al. 2011, Lee et al. 2011, 

Yoon et al. 2011). The goal of both programs is the assessment of ecological condition in their 

respective regions. In this case study I use these datasets to address two larger-scale questions 

requiring comparisons of assessment data from both sources: 

1. Do underlying LU stressor-response relationships vary between the two regions? 

2. How similar is the extent of ecological impairment in S. Korea and Michigan? 

 

The first question is implicit in the second, and both require a careful analysis of 

differences in methodology, ecological context, metric selection and interpretation. Building on 
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work described in previous chapters, I will approach the questions with three different levels of 

data set preparation. “Raw” data and metrics will refer throughout to the original regional 

datasets as collected and processed using the regional protocols described below. “Method 

corrected” data will be used to refer to transformed data sets in which statistically derived 

calibration functions (developed in chapters 4 and 5) are used to adjust sample counts to reflect 

sampling biases inherent in the methodology of the two regions. “Normalized” data and metrics 

will refer to metrics developed using a process of regional normalization described below which 

both re-centers and re-scales the original assessment datasets. 

Fish sampling methods 

Fish assemblage data from the two regions were collected using RBPs which employed 

different sampling methodologies and indicator metrics. However, the main goal of both 

protocols is to provide a representative species list and reasonable estimates of relative 

abundance (MDEQ 1997, NIER 2009). Protocols are summarized below, but more detailed 

descriptions are available in Chapter 4 (Calibration research for fish sampling data between 

Michigan and S. Korean regions) and elsewhere (MDEQ 1997, Wiley et al. 2003, Riseng et al. 

2010 for Michigan protocol and An et al. 2005, NIER 2009, Hwang et al. 2011, Lee et al. 2011 

for Korean protocol).   

Sampling dates for Michigan fish data (n = 746) ranged from 1989 to 2004. Fish 

communities in wadeable streams were sampled using primarily single-pass DC electrofishing 

from downstream to upstream with either back-pack or tow-barge electrofisher with no block 

nets (MDEQ 1997). A back-pack electrofisher was mostly used for smaller streams. Sampling 

reach distance ranged from 30 to 90 meters over 30 minutes with a minimum goal of 100 fish per 

site.  
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Korean fish data (n = 684) were all collected in 2009 because it was the only data set 

available after the South Korean government initiated a standard nation-wide assessment 

program (NIER 2009). Fish sampling for S. Korean region was conducted by cast net (mesh size: 

5 mm; net diameter: 6.5 m) with the combination of small hand seine (mesh size: 4 mm and net 

size: 1×1 m). The cast netting team consisted of two persons over approximately one hour; one 

with a cast net working through the whole reach, and the other person alternately using both a 

cast net and a hand seine (NIER 2009). 

Benthic macroinvertebrate sampling methods 

As with fish, benthic macroinvertebrate data from the two regions were collected using 

RBPs with different sampling methodologies and indicator metrics. Michigan (MDEQP51) 

samples characterize the structure of invertebrate communities in terms of relative abundances of 

taxa rather than absolute density (Moulton et al. 2002), whereas KNAEMP samples estimate the 

absolute density of invertebrate taxa (NIER 2009, Jun et al. 2011). Sampling protocols are 

summarized below, but more detailed descriptions are available in Chapter 5 (Calibration 

research for invertebrate sampling data between Michigan and Korean regions) and elsewhere 

(MDEQ 1997, Park 2007, Riseng et al. 2010 for Michigan protocol and NIER 2009, Jun et al. 

2011 for Korean protocol). 

Sampling dates for the Michigan dataset (n = 774) ranged from 1989 to 2004. Sampling 

of invertebrate assemblages was performed using D-frame dip nets (250 μm mesh size) for 30 

minutes at each site by one person or by several persons (shares minutes by number of people in 

this case). Samples from all habitats were combined in a bucket and then 100 organisms were 

randomly selected from the composite sample for further analysis (Merritt and Cummins 1996, 
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MDEQ 1997, Riseng et al. 2006). The 100 selected organisms were preserved in 70 % ethanol 

and returned to the laboratory for identification and enumeration (Merritt and Cummins 1996). 

Korean invertebrate data (n = 684) collected in 2009 were used to match the analysis of 

Korean fish data. KNAEMP samples were quantitatively collected at riffle habitats using a 

surber sampler (30 cm × 30 cm, 1 mm mesh size). Three samples at each site were taken from 

randomly selected riffles in a designated stream reach and placed into a 500 ml plastic bottle 

after removing large substrate and debris. Then 70 % ethanol was added to preserve samples for 

further identification and enumeration of all animals collected. 

Indicator metrics 

In total thirteen indicator metrics were selected for this analysis based on assemblage 

composition, analytical assessment methodologies, and preliminary tests of indicator metrics in 

Chapters 4 and 5 (Table 6.2). Fish metrics (a total of seven) included: number of total fish 

species (nFiSp), number of intolerant fish species (nFiInt), percentage of tolerant fish individuals 

(pFiTol), percentage of omnivorous fish  individuals (pFiOmn), percentage of insectivorous fish 

individuals (pFiIns), Korean Index of Biological Integrity (KIBI) score, and MDEQP51 (P51Fi) 

score for fish. These metrics were chosen to represent fish assemblage measures of species 

richness, tolerance guild, feeding guild, and biological integrity (Barbour et al. 1999, Wiley et al. 

2003, Riseng et al. 2010). P51Fi and KIBI scores are ecological bioassessment multimetric-

indices (MMIs) for Michigan (MDEQ 2002) and S. Korea (NIER 2009), respectively, and both 

aim to reflect the ecological health of a sampling site. These regional MMIs could only be 

calculated for their respective regions because they use different kinds of base metrics and 

scoring schemes to produce an assessment. P51Fi (MDEQ 2002) includes ten metrics and each 

metric score has three classes (+1 for excellent, 0 for acceptable, and -1 for poor condition). A 
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fish score for a site is calculated based on the sum of each of ten metrics and ranges from +10 

(Excellent condition) to -10 (poor condition). In contrast KIBI (NIER 2009, based on the IBI 

concept of Karr 1981) has eight multi-metrics and each metric score also has three classes (+5 

for excellent, +3 for acceptable, and +1 for poor condition). A fish score for a site is calculated 

based on the sum of each of eight metrics and ranges from +40 (Excellent condition) to +8 (poor 

condition). 

Benthic macroinvertebrate indicator metrics included: number of total invertebrate 

families (nFaInv), number of Ephemeroptera-Plecoptera-Trichoptera (EPT) families (nEPTFa), 

percentage of total individuals that were EPT (pEPTIn), Macroinvertebrate Biotic Index (MBI) 

score, Korean Saprobic Index (KSI) score, and MDEQP51 (P51Inv) score for benthic 

macroinvertebrates. These metrics are representative invertebrate assemblage measures of taxa 

richness, tolerance guild, and biological integrity (Barbour et al. 1999, Wiley et al. 2003, Riseng 

et al. 2010). P51Inv and KSI are multi-metric rapid bioassessment indices used in Michigan 

(MDEQ 2002) and S. Korea (NIER 2009), respectively. Each MMI produces an assessment 

score for their region only because of the different scoring schemes and taxonomic criteria to 

produce an assessment. P51Inv (MDEQ 2002) includes nine metrics and each metric score has 

three classes (+1 for excellent, 0 for acceptable, and -1 for poor condition). An invertebrate 

P51Inv score for a site is calculated based on the sum of each of ten metrics and ranges from +9 

(excellent condition) to -9 (poor condition).  

The invertebrate scores of KSI and MBI have a negative relationship with ecological 

integrity, which means higher values indicate poor ecological status and degradation in water 

quality. KSI is a modified invertebrate index of biological integrity from the saprobic valency 

concept (Zelinka and Marvan 1961) and is currently used for the ecological assessment of 
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Korean streams and rivers (NIER 2009). Saprobic values and weighting factors have been 

summarized for 100 major Korean invertebrate taxonomic groups. KSI scores range from 0 

(excellent condition) to 5 (poor condition); the KSI score of each site was calculated by 

averaging sum of saprobic value and weighting factor of each taxon collected (Won et al. 2006 

and NIER 2009). MBI is taken from Hilsenhoff or EPA established biotic index values 

(Hilsenhoff 1987 and US EPA 2007). A tolerance value for each taxon ranged from 0 to 10 and 

the average MBI score of each site was calculated by averaging sum of a published tolerance 

value for each taxon collected (Hilsenhoff 1987, Riseng et al. 2006).  

Nine of the thirteen metrics used here were also calibrated for sampling biases related to 

sampling gear (fish) or methods (benthic macroinvertebrates). Statistical equations for sampling 

bias correction are summarized in Table 6.2 and more details are described in Chapters 4 (for 

fish metrics) and 5 (for invertebrate metrics). However, both raw and method-corrected data are 

used to examine the effects of sampling methodologies on stream assessment and in regional 

normalization models. 

 

Environmental data 

For each fish or invertebrate sampling site, landscape-scale variables were summarized 

(Table 6.3, Appendix 6.1) by site or by catchment as appropriate using ArcGIS 9.1 (Brenden et 

al. 2006, ESRI 2009). Landscape-scale variables expected to influence natural stream biological 

assemblages included drainage area, water temperature, stream flow yields, and site slope. 

Landscape-scale stressors expected to influence biological assemblages included percent of 

urban and agriculture LUs in catchment and number of dams (Wiley et al. 2003, Riseng et al. 

2006, Riseng et al. 2010).  
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The Michigan environmental data were summarized previously (Riseng et al. 2006); 

catchment boundaries of each site were delineated by the Michigan Department of Natural 

Resources (MDNR) from United States Geological Service (USGS) 1:100,000 scale topographic 

maps. Major LU categories (urban, agriculture, forest, forested wetland, nonforested wetland, 

and water) were summarized by catchment using 1998 IFMAP (raster-based) LU coverage 

(Brenden et al. 2006). Site slope was measured with the digital elevation map and number of 

dams with storage was summarized for each site’s catchment based on the MDNR dam database. 

Field measurements of channel morphology (average wetted width and average wetted depth) 

and water temperature were included in the MDEQ data set. Stream flow yields (high (Q10Y), 

median (Q50Y), and low (Q90Y)) were collected by the USGS or modeled from landscape data 

(Seelbach et al. 2002). 

For the S. Korean environmental data, catchment boundaries of each site were delineated 

using a watershed boundary map from the WAter Management Information System (WAMIS 

2011), S. Korea. Because drainage areas of 51 Korean sites were much larger than the maximum 

site drainage area of Michigan region (Figure 6.2, Table 6.3, Appendix 6.1), I used two sets of 

Korean sites in many analyses. These were smaller but more directly comparable set (n = 633 

sites) with larger sites (larger than 3,500 km2) removed (Table 6.3); and the full set of Korean 

sites (n = 684 sites) which included the 51 largest river sites (Appendix 6.1). Major LU 

categories (urban, agriculture, forest, forested wetland, nonforested wetland, and water) were 

summarized by catchment using 2000 LU cover mapping from satellite image data (WAMIS 

2011). I determined site slope from digital elevation maps, and the number of dams with storage 

was summarized for each site’s catchment based on the WAMIS dam database. Field 

measurements of channel morphology (average wetted width and average wetted depth) and 
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water temperature were included in the NIER data set (NIER 2009). Stream flow yields (high 

(Q10Y), median (Q50Y), and low (Q90Y)) were estimated by regression modeling as described 

in Chapter 2 (Estimation and classification of Korean stream flows) using datasets from the 

WAMIS (WAMIS 2011) and Korea Meteorological Administration (KMA 2011). 

Region-specific ecological normalization of assessment metrics 

Regional ecological normalization (Wiley et al. 2003, Baker et al. 2005, aka hindcasting 

in Kilgour and Stansfield 2006 and Argillier et al. 2013, dirty model in Hawkins et al 2010, 

whole set residualization (WSR) in Schoolmaster et al. 2013) was employed to compare LU 

stressor-response relationships of two regions and overall impairment of streams and rivers. 

Using this approach “normalized” MMIs were 1) re-centered on modeled site-specific reference 

conditions to correct for unintended but statistically detectable biases related to sampling or 

causal covariates (Seelbach et al. 2002, Wiley et al. 2003, Hawkins et al. 2010,  Schoolmaster et 

al. 2013), and 2) re-scaled to reflect estimated regional variability (Kilgour and Stansfield 2006). 

To predict site-specific current condition (least disturbed condition; Davis and Henderson 1978, 

Zonneveld 1994, Wiley et al. 2003), multiple linear regression (MLR) models of metric scores 

were developed for both regions (Appendices 6.2-6.5). In MLR model construction I used a 

systematic manual stepwise progression to enter independent variables. Each MLR model 

included both natural variables associated with changes in community composition (drainage 

area, water temperature, site slope, and stream flow) and anthropogenic stressors related to 

human impacts (urban and agricultural land uses and number of dams). Variables were included 

in models if they were statistically significant (α = 0.05) and improved the model fit (R2 values 

and F statistics). Most variables were natural logarithm transformed [ln(x + c); c= 0, 0.001, or 1] 
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to improve normality and linear relationships. However, MMIs (KIBI, KSI, P51Fi, and P51Inv) 

were not transformed since the raw data led to better model fits.   

These MLR models were then used to estimate reference condition (i.e. hindcast 

reference, Kilgour and Stansfield 2006, Argillier et al. 2013; or reference condition model, 

Hawkins et al. 2010) at every site for each metric by setting anthropogenic stressor variables 

(urban LU, agricultural LU, and number of dams) to zero. Deviation values for each indicator 

metric were calculated by subtracting the predicted reference value from the appropriately 

transformed observed value. For pFiTol, MBI and KSI, the deviation values were calculated by 

subtracting the observed value from the expected value for each site since an increase in those 

metrics indicates a decline in ecological condition. Finally, the deviation values were scaled by 

dividing the computed deviation by the standard deviation of the modeled reference expectation 

to produce a normalized score scaled in standard deviation units. Regionally normalized in this 

context refers to the fact that the reference condition was predicted from a regional dataset and 

reflects a regional average expectation given the specific natural characteristics of the site 

(Riseng et al. 2010). The value of the normalized score typically ranges from -4 to +2 standard 

deviation units around the expected deviation value of zero. For example, a normalized score of 

zero implies that the metric value at a site is exactly as the regional reference model predicts or 

there is no evidence of adverse impact. A score of -2 would imply that the metric value is 

approximately 2 standard deviations below the reference condition for that region. 

A normalized average MMI for fish and benthic macroinvertebrates was constructed by 

averaging a standard set of normalized indicator metrics in order to have a multimetric index 

score which could be computed for both Korean and Michigan sites (Wiley et al. 2003). My 

normalized composite fish MMI (CompFi) score included four indicator metrics: nFiSp, nFiInt, 



  

216 

pFiTol, and pFiIns. My normalized composite invertebrate MMI (CompInv) score also included 

four indicator metrics: nFaInv, nEPTFa, pEPTIn, and MBI. 

To summarize normalized composite MMIs I used a five level classification (five 

classes). Normalized scores above 0.5 were classed as “excellent,” scores between -0.5 and 0.5 

as “good,” scores below -0.5 and above -1.0 as “fair,” scores below -1.0 and above -2.0 as 

“poor,” and scores below -2 as “very poor.” For the purposes of my analysis all sites classified as 

either “poor” or “ very poor” were considered to be biologically impaired; and sites classified as 

“excellent,” “good,” or “fair” were considered to be unimpaired. 

Statistical analysis 

Statistical summaries (mean, median, standard deviation, minimum, and maximum), 

Regression analyses, and scatter plots were conducted using Datadesk 6.0 (Velleman 1997). 

Independent samples t-test, GLM ANCOVA test, and Kolmogorov-Smirnov (K-S) test of data 

set were performed using SPSS 12.0 (SPSS, Inc. 2003).
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Results 

Differences in ecological context 

The size of stream sites sampled (as indexed by drainage area) by the two programs was 

similar (Figure 6.2, Table 6.3, Appendix 6.1); reflecting the fact that both regions are peninsular 

and assessment sampling was restricted to wadeable sites. Frequency distributions differed 

somewhat between the two regions (K-S test, p< 0.01) due in part to the occurrence of a number 

of larger sites in South Korea which were sampled during low flow periods. The median 

drainage area for Michigan sites was 56 km2 (Table 6.3), whereas the median for Korean sites 

was 141 km2 (Appendix 6.1). Developed (urban and agricultural) LUs also differed between 

regions (Figures 6.3 and 6.4, Table 6.3, Appendix 6.1, K-S tests, p< 0.01). Although the 

frequency distribution of urban LU was largely similar, Korea had a number of sites with very 

high percentages of urban LU (as much as 100%), which did not occur in Michigan. The 

frequency distributions of agricultural LU were strikingly different. Many, if not most sites in 

Michigan had relatively high amounts of agricultural LU, whereas most Korean streams had 

lower amounts of agricultural LU in their catchment (Figures 6.3 and 6.4). Conversely Korean 

catchments were on average much more forested than Michigan catchments. ANCOVA tests 

showed that percentages of urban, agriculture, and forest differed significantly between regions 

(p< 0.01, Figure 6.4).  

Hydrologically the rivers of the two regions differed in terms of flow and flow yields 

(Figure 6.5). At a similar size and exceedance frequency, Korean streams had on average higher 

flow rates and yields, reflecting both higher rainfall rates (chapter 2), higher catchment slopes 
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(Table 6.3, Appendix 6.1) and reduced permeability reflecting the mountainous terrain and 

shallow soils of the interior peninsula.   

The biological communities of S. Korea and Michigan differed in important ways but 

also shared important similarities (see Table 1.4 in Chapter 1). Composition of the fish fauna had 

little overlap at the species level (percent similarity; 4.2% of Michigan species and 3.8% of 

Korean species), generic (similarity; 16.0% of Michigan genera and 14.0% of Korean genera), 

family or order levels (similarity; 42.9% and 50.0% of Michigan and 38.7% and 64.3% of 

Korean, respectively). In contrast the invertebrate faunas were more similar. Invertebrate data 

from MDEQP51 program were collected at the family level of identification, whereas Korean 

assessment program used species level identification; at the family level faunal similarity was 

76.0% of Michigan families and 77.8% of Korean families; at the order level it was 80.0% of 

Michigan orders and 88.9% of Korean orders. Based on the assessment surveys, diversity is 

roughly comparable between the regions although methods of collecting and sampling, and 

species-area considerations complicate comparisons. Significant differences in taxa richness 

(Appendices 6.2-6.4) were observed for both fish and benthic macroinvertebrates for raw and 

method corrected data (Independent Samples t-test, p< 0.05). When taxa counts from raw data 

were compared, mean numbers of fish species and invertebrate families per sample (8.6 and 

21.3, respectively) in Michigan were significantly higher than in S. Korean samples (7.5 and 

10.7) (Appendix 6.2). The same pattern was seen when controlling for differences in stream size 

(Figure 6.2); richness in Michigan was significantly higher than in S. Korea, and this discrepancy 

increased with catchment area (Figure 6.6). However, when datasets were calibrated to 

compensate for the biases of sampling methods employed, mean differences in taxa richness for 

fish showed the reversed relationship from the raw data comparison (8.6 and 9.3 for Michigan 
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and Korea, respectively; Appendix 6.3). Whereas the discrepancy between Michigan and Korea 

richness in invertebrate families was even more dramatic (27.7 versus 10.7; Michigan and Korea, 

respectively).  

LU stressor-response relationships: individual indicator metrics 

Based on the raw data calculations, individual fish and invertebrate indicator metrics 

were for the most part negatively and significantly correlated with urban and agricultural LUs in 

both the Korean and Michigan datasets (Table 6.4). Eight of nine indicators for each region were 

significantly correlated with agriculture; the exception being the pFiIns for Michigan and nFiSp 

for Korea (Table 6.4A). In Korea all indicators were also significantly correlated with urban LU, 

whereas in Michigan seven of nine individual metrics were significantly correlated; the 

exceptions being the pFiTol and pFiOmn metrics. When the datasets were combined, all 

indicators (using both raw and method corrected data) were significantly correlated with both 

urban and agricultural LUs. Method corrections made no difference in these results (Table 6.4B). 

However, normalization altered most of the correlations (Table 6.4C and 6.4D), in some cases 

increasing, in other cases decreasing values, although generally preserving pattern of 

significance seen the raw data. Visualizations of the correlations for fish and invertebrate taxa 

richness (Figures 6.7 and 6.8), and for the apparently most sensitive indicators (nFiInt and 

nEPTFa; Figures 6.9 and 6.10) illustrate the variability in adjustment brought about by the metric 

normalization. 

Because agricultural and urban LUs were themselves significantly correlated (r= 0.206, 

p< 0.01), I used GLM ANCOVAs to test regional differences in metric responses to each LU 

stressor gradient (p< 0.05, Appendix 6.5A). When using the raw data for individual indicator 

metrics, most invertebrate metrics responded significantly to both urban and agricultural LUs 
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(three of four). The exception, as above, being invertebrate family richness (nFaInv), which was 

correlated with agricultural but not correlated with urban LU. Four of five fish metrics responded 

significantly to agricultural LU and two of five to urban LU. Region was a significant covariate 

as a factor (six of nine), or in an interaction term with LU variables in eight of nine cases, 

indicating that based on  the raw sample data metrics there were significant regional differences 

in stressor-response relationships. When the data were method corrected (Appendix 6.5B), the 

overall pattern of results was very similar, although effect coefficients were altered in a number 

of cases. Most metrics again had significant regional differences in their response to LU 

gradients. These results were also closely similar when large Korean river sites were included in 

the dataset (Appendix 6.6).  

Regional ecological normalization of the data sets controlled explicitly for regional and 

catchment size covariances (among other variables, Table 6.5 and Appendix 6.7) so it was not 

surprising that normalized metrics were free of significant regional main effects. However, six of 

the nine metrics still had significant interaction terms with region (and one or both LU variables) 

(Table 6.5), indicating statistically significant regional differences in stressor response slope 

remained as is apparent in the scatter plots (Figures 6.7-6.10 bottom rows). The normalized 

indicator metrics varied in relative sensitivity to urban and agriculture stresses (Table 6.5B); 

nFiInt, pFiIns, and all four invertebrate metrics were more sensitive to urban than to agricultural 

LU while nFiSp, pFiTol, and pFiOmn were more responsive to agriculture. These results were 

nearly identical when excluded large river sites were restored in the dataset (Appendix 6.7). 

LU stressor-response relationships: multi-metrics 

Michigan and Korea both use IBI-type (Karr 1981) multi-metrics for their overall 

assessments with fish data (P51Fi and KIBI, respectively). Both raw and normalized versions of 
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the fish MMIs were negatively correlated with both LU stressors in their respective regions 

(Table 6.6). The KIBI was more strongly correlated with urban than agricultural LU in S. Korea, 

while Michigan’s P51Fi for fish was more balanced in that respect but had weaker correlations 

overall compared to the KIBI (Figures 6.11 and 6.12 top rows). When the datasets were 

combined, scaling differences were conflated with LU response and resulted in erroneously 

elevated correlation with LU (Table 6.6). Normalization corrected scaling issues (Figures 6.11 

and 6.12 middle rows) but suggested differences in underlying stressor-response relationships 

between S. Korea and Michigan. ANCOVA of the normalized raw fish MMIs indicated that the 

slopes characterizing the response were significantly higher (i.e. more negative) in Korea than in 

Michigan for the urban LU gradient (Figure 6.11), and marginally higher (interaction term p= 

0.10) for agricultural LU (Figure 6.12, Table 6.7). 

The raw invertebrate MMIs (P51Inv and KSI) were also negatively correlated with LU 

stressor gradients, the relationship being particularly strong in the Korean metric (Table 6.6). The 

KSI was more strongly correlated with urban than agricultural LU in S. Korea, while Michigan’s 

P51Inv was again more balanced in that respect but had weaker correlations overall compared to 

the KSI. Directly combining the data again led to scaling issues (top rows of Figures 6.11 and 

6.12, Table 6.6), which required normalization to correct. ANCOVA results for the pooled 

normalized raw MMIs indicated a statistically different response slope in Korea and Michigan 

although the difference for urban LU was marginal (p= 0.08, Table 6.7).   

The regional assessment metrics themselves have been calibrated by their respective 

users to achieve desired outcomes and therefore reflect different scoring criteria as well as 

differences in numerical scaling. This, combined with known differences in fish community 

composition, and potential cultural differences in modes of agricultural and urban land uses (e.g., 
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rice versus corn production techniques, high-rise versus sprawl development patterns) make it 

difficult to determine whether observed differences in stressor-response relationships are due to 

differences in sensitivity of the fauna or differences in stressor intensity. The normalization of 

the indicator metrics allows for convenient algebraic combination (Wiley et al. 2003) so that it is 

possible to construct normalized multimetrics directly from sets of normalized indicators. Using 

the same scoring criteria for both regions (standard deviations from modeled expectation) 

removes scoring differences from the comparison of stressor-response slopes. ANCOVAs of 

these normalized composite multimetrics (CompFi and nCompInv) indicated significant regional 

differences remain for the fish community stressor-response relations, but not for the invertebrate 

community relationships (Table 6.7). 

Comparison of ecological condition in Michigan and Korean streams  

Ultimately both Michigan and Korean assessment programs aim to provide reasonable 

estimates of the extent to which local streams and rivers are meeting regional water quality and 

environmental protection goals as represented by their reference criteria. Normalized regional 

assessment multimetrics (P51Fi, P51Inv, KIBI, and KSI) and normalized composite multimetrics 

(CompFi and CompInv) indicated that overall, Korean streams were relatively more degraded 

compared to Michigan streams (Table 6.8); with lower means and medians in most normalized 

MMIs except normalized CompInv (Table 6.9). The percentage of impaired sites in S. Korea 

varied greatly between the fish and invertebrate based metrics (Table 6.8). The normalized KIBI 

and CompFi all indicated severe impairment of the fish community at many sites (70.1% 

impaired for normalized KIBI and 66.2% for normalized CompFi). The overall rate of 

impairment in S. Korea appears to be around 66%, a value not much different from the raw KIBI 

assessment result (69%).     
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Rates of impairment varied by stream size (Table 6.10). Overall Korean streams in both 

smaller and larger regions were more impaired than Michigan streams. When smaller and larger 

streams were compared with raw MMIs, smaller streams in both regions were generally more 

impaired than larger streams except KIBI (24.9% for smaller streams and 30.9% for larger 

streams). However, when raw MMIs were normalized, impairment percentages of all normalized 

raw MMIs indicated that all larger streams were more likely to be impaired than smaller streams.



  

224 

Discussion 

Several important observations emerge from this comparative case study. First, explicit 

correction for regional methodological and statistical biases had significant effects on the values 

of most of the individual and multi-metric indicator variables. As a result, the meaning of the 

assessment results changed, in some cases dramatically. Second, regional ecological 

normalization (residualization) and rescaling proved necessary for an unbiased comparison of 

LU stressor-response relationships across regions. Third, while fish and invertebrate 

communities were more sensitive to urban LU than to agricultural LU in both regions, stressor-

response relationships differed significantly between regions. These and related observations are 

discussed in more detail below along with their implications for global transferability and 

comparability of assessment data sets from ecologically distinct regions. 

Sampling method biases 

All sampling methods vary in respect to efficiency, precision, and bias (ITFM 1995, 

Merritt and Cummins 1996, Barbour et al. 1999, Cao et al. 2005). Sampling method bias is of 

concern to both scientists and policy makers who use sample data as a basis for evaluation and 

management (Barbour et al. 1999, Houston et al. 2002, Wiley et al. 2003, Clarke and Hering 

2006, Furse et al. 2006, US EPA 2007). In this case study the biases of regional sampling 

methods had been already explored (Chapters 4 and 5) and correction factors developed to allow 

calibration of the samples. The method-corrected data sets used here compensated to some extent 

for differential sampling biases associated with stream size and other properties. Using this 

calibrated (methods corrected) data I found that means and taxa counts in both fish and 

invertebrate richness metrics were notably affected (Appendices 6.2 and 6.3), which indicated 
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that certain metrics showed larger mean differences, whereas others had lower mean differences. 

However, correlations with stressors were not affected; as mathematically expected since method 

corrections employed here were linear (count x gear-specifc correction factor). Overall the 

relative impact of method bias compared to statistical bias appeared in this analysis to be small 

and explicit correction had only a modest impact on assessment results.  

Methodological variations in bias of course become a more critical concern when RBP 

data from different sources are pooled (ITFM 1995, Barbour et al. 1999, MEA 2005, Furse et al. 

2006, US EPA 2007, Riseng et al. 2010, Allan et al. 2013). In my analysis intra-regional 

correlations with stressors in the pooled data were unaltered but inter-regional differences were 

magnified although these clearly reflected the different methods employed and not underlying 

biological responses. The problem has been well understood for some time. For example 

Barbour et al. 1999 had early-on described various examples of standardization methods to 

compensate methodological biases, and the Intergovernmental Task Force on Monitoring Water 

Quality (ITFM) emphasized the importance of data comparability when contrasting data from 

various RBPs (ITFM 1995). 

Attempt to remove methodological bias by gear calibration is rare in the RBP literature 

although common in fishery assessment studies (see Chapter 4). Recent large-scale RBP studies 

have generally addressed the problem through method standardization, developing new methods 

or indicator metrics (ITFM 1995, MEA 2005, Furse et al. 2006, US EPA 2007). In this case, they 

require new data collections with the new standardized methodologies a solution that is 

redundant and costly from a public policy perspective. 

Correcting for ecological covariance 
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Statistical corrections had more of an impact than methodological corrections in this 

regard. Some indicator variables were less affected by bias corrections (i.e. more stable) than 

others. In particular the KIBI fish multi-metric (An et al. 2005, NIER 2009), and the invertebrate 

community MBI (Hilsenhoff et al. 1987) were notably more stable in this sense than the other 

metrics. In addition to the methodological biases, there can also be statistical biases arising from 

environmental covariances or sample selection bias (Wiley et al. 2003, Cao et al. 2005, Pearl 

2009, Hawkins et al. 2010, Schoolmaster et al. 2013). Environmental covariances which 

influence the spatial patterning of biological communities can be considered to be causal; and 

can include aspects of hydrogeology, catchment size, river network structure, water temperature, 

surficial geology, site slope, and land use patterns (Wiley et al. 2003, Zorn et al. 2002, Wehrly et 

al. 2006). Mathematically, covariance relationships result in complex joint probability 

distributions which bias correlation and regression coefficients that we normally use to describe 

the effects of human disturbance on individual metrics. In other words impacts of stressors can 

be obscured or exaggerated by those environmental covariates (Wiley et al. 2003, Schoolmaster 

et al. 2013). Thus, interregional data comparability and integrability requires either experimental 

or statistical control to yield unbiased estimates of response in dependent variables (Pearl 2009, 

Schoolmaster et al. 2013). Failure to account for natural covariation can lead the wrong 

interpretations of stressor-response relationships between regions. In this case, for example, raw 

data analyses led to the conclusion that larger river sites in S. Korea were in relatively better 

condition than smaller upstream sites. This is a potentially controversial finding since there has 

been much political debate about river management policies focused on the impoundment of 

lower river reaches to ease monsoon-related flood damage and improve water quality during dry 

periods by augmenting natural flow regimes. However, when biases related to catchment size, 
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hydrology, and sampling method were removed, the (normalized) analysis led to the opposite 

conclusion, i.e., that the down-stream river sites were more impacted by current management 

than the smaller upstream sites.  

Regional ecological normalization (residualization) and rescaling allowed for an unbiased 

comparison of LU stressor-response relationships from both regions. The degree of similarity in 

stressor-response covaried with taxonomic (evolutionary) similarity of the regional communities. 

For the invertebrate community metrics there was little or no difference in response to either 

urban or agricultural land use gradients between the two regions; neither was there much 

difference at order or family level in community composition between S. Korea and Michigan. In 

contrast, the S. Korean fish community and the Michigan fish community composition were 

fundamentally different (species overlap; 4.2% of Michigan species and 3.8% of Korean 

species), and their responses to both urbanization and agricultural land use were quite different. 

MLR models (Appendices 6.8 though 6.11) were used to adjust expectations for statistically 

significant covariates for each metric. All of the models (58 models in total) included significant 

terms for site drainage area. Site slope, water temperature, and stream flow yields were also often 

important variables. Specifically, low flow yield (Q90Y) was important in 10 out of 18 models 

for Michigan, whereas high flow yield (Q10Y) was important in 12 out of 18 models for S. 

Korea. The contrast is striking, and suggests that the two regions may have fundamentally 

different hydrologic constraints (monsoon flows, groundwater supported base flows) shaping 

their biological communities. While it is not possible to know whether all such statistical biases 

are accounted for in the normalization modeling, recent simulations studies have examined 

several scenarios using both reference-set residualization (Whittier et al. 2007, Stoddard et al. 

2008), and whole-set residualization (called “regional normalization” by Wiley et al. 2003). 
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Results of these controlled simulations indicated that regional normalization not only produced 

more accurate, precise, and efficient adjustments to the specified covariates, but also eliminated 

the need for classification of the disturbance state of sites into “reference” and “impacted” sites 

(Schoolmaster et al 2013).   

For the sake of consistency, I have mostly presented here analyses of normalized 

(residualized) data sets that had already been method-corrected. However, all analyses were run 

on both normalized raw and normalized method-corrected data, and these showed almost 

identical correlation (Table 6.4) and ANCOVA results (Table 6.5) in relation to LU stressors. 

This suggests that regional normalization (residualization) may not require prior data correction 

for the methodological biases from disparate sampling protocols. This should not be surprising 

since the data are re-centered and re-scaled in the process, removing any systematic bias between 

the regions (Wiley et al 2003, Riseng et al. 2006). 

LU stressor-response relationships 

Normalized regional MMIs indicated that both fish and invertebrate communities were 

more sensitive to urban LU gradients than agricultural LU, and this was true in both regions 

(Table 6.7). Also, response slopes of normalized fish and invertebrate MMIs were significantly 

higher in Korean than in Michigan for both urban and agricultural LU gradients. This did not 

surprise me given the background of human population density and cultural practices with 

respect to LU management in both regions. Agricultural land use is a well known anthropogenic 

stressors (Allan and Johnson 1997, MEA 2005, Riseng et al. 2010, US EPA 2006). However, the 

same proportion of agricultural land use in a catchment does not cause the same effect on aquatic 

ecosystems in different regions (Riseng et al. 2011). For an example, a densely populated urban 

region may have more intensified uses of pesticides and higher sewage-related nutrient exports 
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than an area with similar proportions of urban LU but with lower population densities. LU 

patterns, LU intensities, and LU-related technologies are all culturally mediated, and this is 

especially so in the cases of agriculture where resources and human market preferences cast a 

long shadow. Because of this, stressor-response gradients in land use need not necessarily be 

similar in different regions.  

On the other hand, a different interpretation can be made based on the results of 

normalized composite multimetrics (Figures 6.9 and 6.10, Table 6.7). The responses of the 

composite multimetrics (CompFi and CompInv) are free of any regionally imposed interpretive 

criteria (unlike the normalized regional MMIs) and they suggest that the degree of similarity in 

stressor-response relationships covaried with taxonomic (evolutionary) similarity of the regional 

communities. Invertebrate communities in Michigan and S. Korea showed little or no difference 

in response to either urban or agricultural LU gradients, whereas fish communities showed 

significantly different responses. Likewise, the evolutionary background of invertebrates in 

Michigan and Koran were quite similar (~76% overlap in families, 80 % in orders); but the fish 

communities were very dissimilar (42% and 50%, respectively). In general, response slopes 

(indicative of sensitivity) in Korea were higher than in Michigan, except for normalized 

CompInv MMI response to urban LU gradients. Taken together these two results suggest that 

both differences in LU intensity and in biogeographic history in two regions may contribute to 

observed differences in the stressor-response relationships. 

Implications for global method transferability and inter-regional assessment  

This case study provided a useful context for exploring issues related to inter-regional 

ecological assessment data. Datasets from geographically and ecologically disparate regions 

carry with them various types of methodological and statistical biases. The datasets from 
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Michigan and S. Korea were typical in this regard. Both methodological biases associated with 

field sampling protocols, and statistical biases (principally covariances with catchment size and 

hydrology) were encountered in these data. Furthermore, there were regional differences in 

metric scaling, and narrative criteria for both the fish and invertebrate MMIs. Without some way 

to control for these types of differences, ecosystem assessments need to be conducted within the 

boundary of geomorphologically and ecologically comparable (homogenous?) study units using 

standardized protocols and metrics. Thus, many existing larger-scale (e.g., US EPA 2007), inter-

national (e.g., Furse et al. 2006), or global ecosystem (e.g., MEA 2005) assessments can provide 

only the relative impairment of sites and stressor-response relationships within and between 

more homogeneous sub-regions. In contrast, this comparative study illustrated an approach for 

eliminating most statistical and methodological biases, thus allowing for a more direct 

comparison of ecological impairment and LU stressor-response relationships between two 

international regions.  

The assessment protocols and metrics used in S. Korea are an excellent example of issues 

that can arise in EATT transfer between regions. The KIBI is based on the North American IBI 

for fish, but has been extensively re-calibrated and some of the constituent metrics replaced to 

reflect the structure of fish communities in S. Korea (An et al. 2005, NIER 2009). The 

invertebrate multimetric (the KSI) is based on the European saprobic valency concept (Zelinka 

and Marvan 1961), again with local adaptations; although in this case the general similarities of 

the European and Korean, (and North American) aquatic insect fauna are high. Of the four 

regional MMIs discussed here, the KIBI raw metric was most highly correlated with the average 

of the normalized fish metrics suggesting it was already well calibrated to the local fish 

community response and relatively free of covariances with size, hydrology, or other factors. In 
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contrast the invertebrate KSI metric was least correlated with its normalized counterparts 

suggesting significantly more bias in this metric (r= .85 and .75 for KIBI and KSI respectively).  

Perhaps the most interesting implication of these results, relevant to both matters of 

EATT transfer and data comparability, is the relationship observed between similarity of 

response to LU stress gradients, and the taxonomic similarity of the indicator communities. If the 

response of biological communities to LU change varies (non-trivially) with composition of the 

indicator community then indicator choices, community susceptibility to stresses, and the 

validity of assessment criteria might all be expected to have geography and scaling that reflects 

zoogeographic and recent evolutionary history. This would imply a kind of spatial bounding in 

the scale at which stressor-response relationships should be stable, and that in turn would have 

both assessment and regulatory consequences. It is just this kind of comparative analysis, using 

data from very different parts of the world, which would be necessary to evaluate such a 

hypothesis. And of course to carry out such analyses we need to control for methodological and 

statistical biases.  

Summary   

In this chapter I have examined the comparability of two datasets obtained from 

geographically distinct regions (S. Asia and N. America) and produced using two different rapid 

assessment protocols. I concluded that ecological data from different geographical regions are 

not directly comparable. However a regional normalization approach (Wiley et al. 2003) was a 

useful tool to correct methodological and statistical biases and standardize outputs. Ecological 

assessment of two regions using normalized data indicated that S. Korean streams were overall 

more seriously degraded than Michigan streams. Also, normalized scores for certain indicator 

metrics showed that their LU stressor-response relationships were significantly different so that 
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interregional/international regulatory policies and management in larger scales should be 

cautious depending on their goals and targets for watershed management and resource 

conservation.  

Overall, this comparative international case study of the transferability and comparability 

of EATTs demonstrates the degree to which regional methodologies, and differences in 

physiography and hydrology, can skew and obscure the meaning of ecological assessment data. 

Specifically, recognizing the role of potential biases in assessment will enable policy makers and 

researchers to compensate for the inherent limitations related to site geomorphology, biology, 

and methodologies (e.g., MEA 2005, Furse et al. 2006, US EPA 2007). In fact, these constraints 

have not been correctly recognized in many ecological studies and are conflated with true 

anthropogenic impacts, resulting in inappropriate analysis and conclusions. Thus, comparability 

and transferability in ecosystem-assessment techniques and tools should be examined in every 

study that uses regional-scale data or integrated data sets from different regions/methods/or 

indicators. In this regard, the techniques used here can hopefully guide by way of example the 

path towards more accurate assessment analyses.  
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Table 6.1. Definition of acronyms frequently used in this study. 

Category Acronym Full description or definition 

General RBP Rapid bioassessment program 
MDEQP51 Michigan Department of Environmental Quality Procedure 51 
KNAEMP The Korean Nationwide Aquatic Ecological Monitoring Program 
MLR Multiple linear regression 

Landscapes DA Drainage area (km2) 
LU Land use 
xUrb Percentage of urban land use in catchment (%) 
xAg Percentage of Agricultural land use in catchment (%) 
Q10Y High (10% exceedance frequency) stream flow yield (m3/sec/km2) 
Q50Y Median (50% exceedance frequency) stream flow yield (m3/sec/km2) 
Q90Y Low (90% frequency) stream flow yield (m3/sec/km2) 

Individual 
metrics 

nFiSp Number of total fish species 
nFiInt Number of intolerant fish species 
pFiTol Percentage of tolerant fish individuals 
pFiOmn Percentage of omnivorous fish  individuals 
pFiIns Percentage of insectivorous fish individuals 
nFaInv Number of total invertebrate families 
EPT Invertebrate groups of Ephemeroptera, Plecoptera, and Trichoptera 
nEPTFa Number of EPT families 
pEPTIn Percentage of total individuals that were EPT 
MBI MBI Biotic Index score 

Multimetric 
indicies 

MMI Multimetric Index 
KIBI Korean Index of Biological Integrity for fish 
KSI Korean Saprobic Index for benthic macroinvertebrates 
P51Fi MDEQP51 for fish 
P51Inv MDEQP51 for benthic macroinvertebrates 

CompFi Overall composite fish MMI 
CompInv Overall composite invertebrate MMI 
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Table 6.2. List of biological indicator metrics (fish and benthic macroinvertebrates) used for this 
study and their equations employed to each metric to correct numerical differences by sampling 
gear or methods between Michigan and S. Korean regions. MMI and MKO indicate individual 
metrics of Michigan and S. Korea, respectively. cMMI and cMKO indicate method corrected 
individual metrics of each region. 

Biological groups Indicator metrics Equations 

Fish Number of total fish species (nFiSp) cMKO = 1.2429 * MKO 

Number of intolerant fish species (nFiInt) cMKO = 1.2678 * MKO 

Percentage of tolerant fish individuals (pFiTol) cMKO = 0.8967 * MKO 

Percentage of omnivorous fish  individuals (pFiOmn) cMKO = 0.9779 * MKO 

Percentage of insectivorous fish individuals (pFiIns) cMKO = 0.8871 * MKO 

Korean Index of Biological Integrity (KIBI) score  

MDEQP51 for fish (P51Fi) score  

Benthic 
macroinvertebrates 

Number of total invertebrate families (nFaInv) cMMI = 1.3002 * MMI 

Number of EPT families (nEPTFa) cMMI = 1.2952 * MMI 

Percentage of total individuals that were EPT 
(pEPTIn)  

cMMI = 0.9760 * MMI 

MBI Biotic Index (MBI) score cMMI = 0.9366 * MMI 

Korean Saprobic Index (KSI) score   

MDEQP51 (P51Inv) score  
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Table 6.3. Summary statistics of landscape variables between Michigan and South Korean 
regions used for the study. SD indicates standard deviation. 

Variables n Mean Median SD Min Max 

Michigan region 

Drainage Area; km2 803 173.7 55.9 330.8 0.5 3334.4 
Average wetted width; m 802 24.3 16 24.4 1.2 200.0 
Average depth; m 801 1.15 1.00 0.83 0.10 10.00 
Water temperature; ºC 758 17.6 17.8 3.9 0.6 28.3 
Percent of urban land use 

(xUrb) 
803 6.08 4.27 6.48 0.00 52.25 

Percent of agricultural land use (xAg) 803 39.32 41.01 26.39 0.00 94.33 
High-flow yield (Q10Y) 803 0.021 0.020 0.005 0.003 0.037 
Median-flow yield (Q50Y) 803 0.007 0.007 0.003 0.000 0.018 
Low-flow yield (Q90Y) 803 0.003 0.002 0.002 0.000 0.012 

Korean region (large river sites excluded) 

Drainage Area; km2 633 337.0 114.7 566.5 0.6 3469.3 
Average wetted width; m 633 46.5 25.0 65.5 0.2 500.0 
Average depth; m 633 0.47 0.25 0.66 0.00 5.00 
Water temperature; ºC 633 15.6 16.0 4.5 1.0 27.6 
Percent of urban land use 

(xUrb) 
633 8.75 3.63 14.05 0.00 100.00 

Percent of agricultural land use (xAg) 633 22.03 18.42 16.62 0.00 83.10 
High-flow yield (Q10Y) 633 0.084 0.074 0.049 0.012 0.447 
Median-flow yield (Q50Y) 633 0.028 0.022 0.023 0.004 0.297 
Low-flow yield (Q90Y) 633 0.015 0.011 0.013 0.002 0.094 
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Table 6.4. Pearson correlation coefficients between biological indicator metrics and LU stressors 
for Michigan, Korean (large river sites excluded), and combined (both regions) datasets. Bold 
indicates significance at p ≤ 0.05 and bold and italics indicate significance at p ≤ 0.01. 

Indicator 
Metrics 

Michigan region S. Korean region Combined data 

xUrb xAg ln(DA) xUrb xAg ln(DA) xUrb xAg ln(DA) 

A. Raw data 
nFiSp -0.174 0.218 0.499 -0.19 0.063 0.386 -0.182 0.205 0.397 
nFiInt -0.152 -0.28 0.334 -0.352 -0.372 0.169 -0.289 -0.250 0.219 
pFiTol 0.014 0.462 -0.047 0.392 0.419 0.111 0.274 0.336 0.069 
pFiOmn 0.022 0.266 -0.222 0.324 0.396 0.086 0.247 0.153 0.020 
pFiIns -0.081 -0.049 0.339 -0.313 -0.456 -0.192 -0.234 -0.201 0.052 
nFaInv -0.286 -0.221 0.352 -0.337 -0.196 0.083 -0.295 0.072 0.068 
nEPTFa -0.278 -0.452 0.265 -0.343 -0.344 0.093 -0.320 -0.285 0.134 
pEPTIn -0.220 -0.377 0.169 -0.243 -0.354 0.109 -0.228 -0.321 0.136 
MBI 0.211 0.494 -0.043 0.326 0.227 -0.104 0.303 0.267 -0.069 

B. Method corrected data 
nFiSp -0.174 0.218 0.499 -0.19 0.063 0.386 -0.167 0.122 0.444 
nFiInt -0.152 -0.28 0.334 -0.352 -0.372 0.169 -0.289 -0.289 0.237 
pFiTol 0.014 0.462 -0.047 0.392 0.419 0.111 0.255 0.372 0.049 
pFiOmn 0.022 0.266 -0.222 0.324 0.396 0.086 0.245 0.159 0.016 
pFiIns -0.081 -0.049 0.339 -0.313 -0.456 -0.192 -0.235 -0.162 0.047 
nFaInv -0.286 -0.221 0.352 -0.337 -0.196 0.083 -0.266 0.128 0.033 
nEPTFa -0.278 -0.452 0.265 -0.343 -0.344 0.093 -0.306 -0.220 0.104 
pEPTIn -0.220 -0.377 0.169 -0.243 -0.354 0.109 -0.226 -0.325 0.139 
MBI 0.211 0.494 -0.043 0.326 0.227 -0.104 0.316 0.202 -0.042 

C. Normalized raw data 
nFiSp -0.148 0.108 0.126 -0.146 -0.073 -0.134 -0.161 0.126 -0.058 
nFiInt -0.129 -0.113 0.009 -0.463 -0.462 -0.183 -0.348 0.030 -0.214 
pFiTol -0.027 0.383 0.042 0.352 0.372 0.122 0.242 0.154 0.171 
pFiOmn -0.008 0.205 0.020 0.236 0.332 0.077 0.179 0.055 0.142 
pFiIns -0.136 -0.047 0.007 -0.429 -0.403 -0.153 -0.333 0.058 -0.189 
nFaInv -0.265 -0.218 0.005 -0.357 -0.184 -0.025 -0.262 -0.270 0.036 
nEPTFa -0.304 -0.241 0.005 -0.352 -0.363 -0.132 -0.312 -0.269 -0.055 
pEPTIn -0.239 -0.171 0.008 -0.295 -0.405 -0.139 -0.280 -0.153 -0.101 
MBI 0.265 0.278 0.006 0.321 0.273 0.078 0.283 0.254 0.039 

D. Normalized method corrected data 
nFiSp -0.148 0.108 0.126 -0.146 -0.072 -0.134 -0.161 0.126 -0.058 
nFiInt -0.129 -0.113 0.009 -0.349 -0.5 -0.244 -0.286 0.028 -0.245 
pFiTol -0.027 0.383 0.042 0.366 0.389 0.127 0.252 0.141 0.180 
pFiOmn -0.008 0.205 0.020 0.236 0.332 0.077 0.179 0.055 0.142 
pFiIns -0.136 -0.047 0.007 -0.429 -0.405 -0.153 -0.333 0.058 -0.189 
nFaInv -0.265 -0.217 0.005 -0.357 -0.184 -0.025 -0.263 -0.269 0.036 
nEPTFa -0.303 -0.232 0.006 -0.352 -0.363 -0.132 -0.314 -0.259 -0.058 
pEPTIn -0.240 -0.171 0.007 -0.295 -0.405 -0.139 -0.280 -0.154 0.100 
MBI 0.265 0.275 0.005 0.321 0.273 0.078 0.286 0.243 0.043 
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Table 6.5. Coefficients and their statistical significance from GLM ANCOVA tests of normalized scores of biological indicator 
metrics with urban and agricultural LUs between Michigan and Korean (large river site excluded) datasets. Region (Michigan and 
Korea) was used as fixed factor and LU stressors (xUrb and xAg) were used as covariates. Bold indicates significance at p ≤ 0.05 and 
bold and italics indicate significance at p ≤ 0.01. Coefficients for Region, Region*ln(xUrb), and Region*ln(xAg) were summarized for 
Korean data and coefficients of these for Michigan data could be calculated by multiplying by -1 to coefficients of Korean data. 

 Covariates 
Biological indicator metrics 

ln(nFiSp) ln(nFiInt) ln(pFiTol) ln(pFiOmn) ln(pFiIns) ln(nFaInv) ln(nEPTFa) ln(pEPTIn) ln(MBI) 

A. Normalized raw data (Michigan versus Korea (large river sites excluded)) 

Region -0.1364 -0.06396 -0.01325 -0.04288 0.03246 0.03289 -0.005958 -0.005408 -0.0003017 

ln(xUrb) -0.06134 -0.2885 0.2611 0.2428 -0.2814 -0.3825 -0.3769 -0.2966 0.391 

Region*ln(xUrb) 0.04145 -0.2714 0.3184 0.1864 -0.1966 0.03616 0.0329 -0.007548 0.008359 

ln(xAg) 0.2022 -0.08661 0.4123 0.33 -0.05677 -0.06054 -0.111 -0.1209 0.1886 

Region*ln(xAg) -0.06693 -0.1509 0.03494 0.1 -0.1586 0.04593 -0.02593 -0.09166 0.01266 

ln(xUrb)*ln(xAg) -0.07076 -0.06942 -0.03752 -0.04703 -0.04305 -0.007345 -0.03527 -0.03115 -0.0009251 

B. Normalized method corrected data (Michigan versus Korea (large river sites excluded)) 

Region -0.1366 0.003458 -0.01402 -0.04286 0.03235 0.03291 -0.006142 -0.00541 0.02636 

ln(xUrb) -0.06212 -0.2722 0.2802 0.2428 -0.2819 -0.3828 -0.3736 -0.2967 0.3909 

Region*ln(xUrb) 0.04154 -0.238 0.3324 0.1867 -0.1974 0.03625 0.03079 -0.007388 0.008057 

ln(xAg) 0.2017 -0.168 0.4276 0.3301 -0.05811 -0.06033 -0.1062 -0.1211 0.187 

Region*ln(xAg) -0.06683 -0.2205 0.04693 0.1002 -0.1601 0.0456 -0.02981 -0.09148 0.01394 

ln(xUrb)*ln(xAg) -0.07038 -0.06185 -0.03969 -0.04695 -0.04321 -0.007273 -0.03581 -0.03116 -0.0007508 
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Table 6.6. Pearson correlation coefficients between assessment metrics (raw and normalized) and LU stressors for Michigan, Korean, 
and combined (both regions) datasets. Large river sites were removed for Korean data. Bold indicates significance at p ≤ 0.05 and bold 
and italics indicate significance at p ≤ 0.01. 

Indicator Metrics 
Michigan region S. Korean region Combined data 

xUrb xAg ln(DA) xUrb xAg ln(DA) xUrb xAg ln(DA) 

Raw fish MMI -0.101 -0.197 0.188 -0.389 -0.377 -0.095 -0.061 -0.604 0.051 

Normalized raw fish MMI -0.077 -0.180 0.003 -0.443 -0.358 -0.149 -0.383 -0.027 -0.114 

Raw invertebrate MMI -0.221 -0.287 0.218 -0.373 -0.298 0.109 -0.143 -0.376 0.229 
Normalized raw invertebrate 
MMI 

-0.212 -0.150 0.003 -0.344 -0.332 -0.146 -0.304 -0.104 -0.113 

Normalized CompFi Score -0.157 0.197 0.002 -0.453 -0.452 -0.149 -0.356 -0.002 -0.205 

Normalized CompInv Score -0.322 -0.264 0.002 -0.380 -0.346 -0.074 -0.339 -0.274 -0.031 
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Table 6.7. Coefficients, estimated slopes, and slope difference calculated from GLM ANCOVA tests of normalized assessment scores 
with urban and agricultural LUs between Michigan and Korean datasets. Region (Michigan and Korea) was used as fixed factor and 
LU stressors (xUrb and xAg) were used as covariates. Estimated slopes of were estimated from coefficient and interaction coefficient 
with region. Slope difference was calculated by estimated slope of Korea divided by estimated slope of Michigan. Statistical 
significance cut-off was 0.1. Bold coefficient values indicate significance at p ≤ 0.10 and bold and italic values indicate significance at 
p ≤ 0.05. 

MMIs 
LU 

stressors 
Coefficient 

Interaction 
Coefficient 
with region 

Estimated slope Regional 
difference 

Slope 
difference 

R2 F-ratio 
SubKO AllMI 

Normalized 
fish MMI 

   xUrb -0.2968 0.2023 -0.4991 -0.0945 Yes 5.28148 
32.2 85.068 

   xAg -0.1215 0.0552 -0.1767 -0.0663 Maybe 2.66516 

Normalized 
invert MMI 

   xUrb -0.3515 0.05821 -0.40971 -0.29329 Maybe 1.39695 
21.2 61.447 

   xAg -0.1344 0.07928 -0.21368 -0.05512 Yes 3.87663 

Normalized 
CompFi 

   xUrb -0.2232 0.1835 -0.4067 -0.0397 Yes 10.2445 
56.4 282.349 

   xAg -0.09988 0.1066 -0.20648 0.00672 Yes -30.72619 

Normalized 
CompInv 

   xUrb -0.3595 0.01645 -0.34305 -0.37595 No 0.91249 
19.9 56.405 

   xAg -0.1098 0.01757 -0.12737 -0.09223 No 1.38100 
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Table 6.8. Percentages of sites for each stream health class for normalized raw and composite multimetric indices. 

 Normalized raw fish MMIs 
Normalized raw 

invertebrate MMIs 
Normalized CompFi Normalized CompInv 

 
P51Fi 

(n= 449) 
KIBI 

(n= 633) 
P51Inv 

(n= 757) 
KSI 

(n= 619) 
MI 

(n= 707) 
KO 

(n= 612) 
MI 

(n= 744) 
KO 

(n= 624) 

Exellent 10.9 4.9 9.5 0.2 5.2 0.0 0.5 0.6 

Good 22.9 16.0 30.3 26.2 57.9 12.1 25.8 32.7 

Fair 18.3 9.0 16.9 22.6 22.5 21.7 26.7 19.9 

Poor 36.3 28.4 28.4 20.8 13.0 33.0 31.6 26.8 

Very Poor 11.6 41.7 14.9 30.2 1.4 33.2 15.3 20.0 

Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 
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Table 6.9. Summary statistics of normalized-raw and -composite multimetrics for Michigan and 
Korea regions. SD indicates standard deviation. 

Multimetric indices n Mean Median SD Min Max 

Michigan region       

Normalized P51Fi 449 -0.8645 -0.9271 1.0114 -3.1886 2.0387 

Normalized  P51Inv 757 -0.8509 -0.8386 1.0320 -3.6357 1.7078 

Normalized ComFi 707 -0.3617 -0.2949 0.6253 -2.8763 1.2836 

Normalized ComInv 744 -1.1029 -0.9467 0.8902 -4.9674 1.1312 

Korean region       

Normalized KIBI 633 -1.6531 -1.7125 1.2422 -4.4000 1.7218 

Normalized  KSI 619 -1.4001 -1.0540 1.1615 -4.1572 0.7554 

Normalized ComFi 612 -1.5439 -1.3710 0.9216 -3.6568 0.4279 

Normalized ComInv 624 -1.0621 -0.8629 0.9610 -3.5859 0.6581 
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Table 6.10. Percentages of impaired streams sites for small and large streams based on stream health classification with raw and 
normalized assessment scores. Impairment classification of raw assessment scores for fish and benthic macroinvertebrates were based 
on P51Fi and P51Inv classes for Michigan region and KIBI and KSI classes for S. Korean region. These regional data were regionally 
normalized and reclassified for the impairment status based on normalized assessment scores. Large stream sites were arbitrarily 
defined as having catchment areas bigger than 500 km2. SM and LR stand for smaller and larger streams, respectively. 

 Percentage of stream impairment for fish Percentage of stream impairment for invertebrates 

 Raw MMI Normalized raw MMI Raw MMI Normalized raw MMI 

 
Smaller 
streams 

Larger 
streams 

Smaller 
streams 

Larger 
streams 

Smaller 
streams 

Larger 
streams 

Smaller 
streams 

Larger 
streams 

Michigan 23.5 6.5 7.2 10.9 10.5 5.7 46.5 50.7 

Korea 24.9 30.9 24.1 29.1 22.4 13.6 46.0 50.5 
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Figure 6.1. Pie charts of stream health assessment classification of Korean streams (n= 633) produced by each regional rapid 
bioassessment protocols for fish and benthic macroinvertebrates. All assessment data were obtained from the Korean National Aquatic 
Ecological Monitoring Program (NIER 2009). 
 
 
 
 



  

244 

1 2 3 4 5 6 7 8 9 10 11

N
u

m
b

er
 o

f 
si

te
s

0

20

40

60

80

100

120

140

n = 803

1 2 3 4 5 6 7 8 9 10 11

N
u

m
be

r 
of

 s
it

es

0

20

40

60

80

100

120

140

n = 684

ln(Drainage Area (km2)) 

1 2 3 4 5 6 7 8 9 10 11

N
u

m
be

r 
of

 s
it

es

0

20

40

60

80

100

120

140

n = 633

A)

B)

C)

 

Figure 6.2. Comparison of the frequency distribution of site drainage-area (ln(drainage area+1)) 
for each region (A: Michigan region (803 sites), B: Korean region with large river sites included 
(684 sites), and C: Korean region with large river sites excluded (633 sites). 
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Figure 6.3. Comparison of the urban and agricultural LU frequency distribution between Michigan (n= 803) and Korean (n=684) 
regions. 
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Figure 6.4. Comparison of the distribution of landscape variables against site drainage area 
between Michigan and Korean regions.  
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Figure 6.5. Comparision of high (10%), median (50%), and low (90%) frequency flow yields 
(m3/km2/sec) between Michigan and Korean regions. 
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Figure 6.6. Comparison of Michigan (blue circles) and Korean (red x marks) datasets. Axes are 
A) number of total fish species (nFiSp) and B) number of total invertebrate families (nFaInv) 
plotted against natural log of site drainage area. All fish and invertebrate data were from raw data 
collected by regional sampling methods. Large river sites for Korean dataset were excluded. 
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Figure 6.7. Scatter plots of number of total fish species (nFiSp) against urban and agricultural 
LUs between Michigan and Korea (large river site excluded) for three types of datasets (raw, 
method corrected, and normalized method-corrected data).  
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Figure 6.8. Scatter plots of number of total invertebrate families (nFaInv) against urban and 
agricultural LUs Michigan and Korea (large river site excluded) for three types of datasets (raw, 
method corrected, and normalized method-corrected data).   
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Figure 6.9. Scatter plots of Number of intolerant fish species (nFiInt) against urban and 
agricultural LUs Michigan and Korea (large river site excluded) for three types of datasets (raw, 
method corrected, and normalized method-corrected data).    
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Figure 6.10. Scatter plots of Number of EPT families (nEPTFa) against urban and agricultural 
LUs Michigan and Korea (large river site excluded) for three types of datasets (raw, method 
corrected, and normalized method-corrected data).   
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Figure 6.11. Scatter plots of stream health assessment scores against urban LU gradients. 
Assessment scores were produced by regional raw MMIs (top row), normalized regional raw 
MMIs (middle row), and normalized composite MMIs (bottom row) for fish and benthic 
macroinvertebrates. Blue and circles indicate Michigan samples and red and x mark symbols 
indicate Korean samples (large river sites excluded).  
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Figure 6.12. Scatter plots of stream health assessment scores against agricultural LU gradients. 
Assessment scores were produced by regional raw MMIs (top row), normalized regional raw 
MMIs (middle row), and normalized composite MMIs (bottom row) for fish and benthic 
macroinvertebrates. Blue and circles indicate Michigan samples and red and x mark symbols 
indicate Korean samples (large river sites excluded). 
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Appendix 6.1. Summary statistics of landscape variables for Korean data (large river sites were 
included). SD indicates standard deviation. 

Variables n Mean Median SD Min Max 

Korean region (large river sites included) 

Drainage Area; km2 684 1110.5 141.3 3285.1 0.6 
25637.

4 
Average wetted width; m 684 63.7 30.0 113.8 0.2 1500.0 
Average depth; m 684 0.64 0.30 1.14 0.00 15.00 
Water temperature; ºC 684 15.5 15.9 4.5 1.0 27.6 
Percent of urban land use 
(xUrb) 

684 8.71 3.67 13.80 0.00 100.0 

Percent of agricultural land use 
(xAg) 684 22.08 18.76 16.30 0.00 83.10 

High-flow yield (Q10Y) 684 0.079 0.070 0.050 0.011 0.447 
Median-flow yield (Q50Y) 684 0.027 0.021 0.022 0.004 0.297 
Low-flow yield (Q90Y) 684 0.014 0.010 0.013 0.002 0.094 
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Appendix 6.2. Summary statistics of raw data of biological indicator metrics (fish and benthic 
macroinvertebrates) used for the study. SD indicates standard deviation. 

Variables (raw data) n Mean Median SD Min Max 

Michigan data 

Number of total fish species (nFiSp) 746 8.6 8.0 4.4 1.0 23.0 
Number of intolerant fish species (nFiInt) 746 2.4 2.0 1.7 0.0 9.0 
Percent of tolerant fish individuals (pFiTol) 746 37.9 34.2 29.4 0.0 100.0 
Percent of omnivorous fish  individuals (pFiOmn) 746 28.9 22.9 25.9 0.0 100.0 
Percent of insectivorous fish individuals (pFiIns) 746 41.6 41.8 24.4 0.0 100.0 
Number of total invertebrate families (nFaInv) 784 21.3 20.6 7.0 3.0 43.0 
Number of EPT families (nEPTFa) 784 6.9 7.0 3.8 0.0 18.0 
Percent of total individuals that were EPT (pEPTIn)  784 35.0 35.3 19.3 0.0 89.6 
MBI Biotic Index (MBI) score 784 5.5 5.5 0.8 3.6 7.9 

Korean data with large river sites included 

Number of total fish species (nFiSp) 663 7.5 7.0 3.9 1.0 20.0 
Number of intolerant fish species (nFiInt) 663 2.0 1.0 2.2 0.0 10.0 
Percent of tolerant fish individuals (pFiTol) 663 48.5 46.8 35.7 0.0 100.0 
Percent of omnivorous fish  individuals (pFiOmn) 663 48.2 49.3 32.9 0.0 100.0 
Percent of insectivorous fish individuals (pFiIns) 663 43.0 39.6 32.9 0.0 100.0 
Number of total invertebrate families (nFaInv) 677 10.7 10.0 5.6 1.0 27.0 
Number of EPT families (nEPTFa) 677 5.0 5.0 4.0 0.0 16.0 
Percent of total individuals that were EPT (pEPTIn)  677 37.0 31.6 32.6 0.0 100.0 
MBI Biotic Index (MBI) score 673 5.6 5.5 1.6 0.7 10.0 

Korean data with large river sites excluded 

Number of total fish species (nFiSp) 612 7.4 7.0 3.9 1.0 20.0 
Number of intolerant fish species (nFiInt) 612 2.1 1.0 2.3 0.0 10.0 
Percent of tolerant fish individuals (pFiTol) 612 47.8 45.8 36.0 0.0 100.0 
Percent of omnivorous fish  individuals (pFiOmn) 612 48.4 49.7 33.5 0.0 100.0 
Percent of insectivorous fish individuals (pFiIns) 612 43.5 39.7 33.5 0.0 100.0 
Number of total invertebrate families (nFaInv) 627 10.9 10.0 5.6 1.0 27.0 
Number of EPT families (nEPTFa) 627 5.1 5.0 4.0 0.0 16.0 
Percent of total individuals that were EPT (pEPTIn)  627 37.4 33.9 32.6 0.0 100.0 
MBI Biotic Index (MBI) score 624 5.6 5.5 1.6 0.7 10.0 
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Appendix 6.3. Summary statistics of method corrected data of biological indicator metrics (fish 
and benthic macroinvertebrates) used for the study. All raw data of each metric were corrected 
by statistical equations (Table 6.2). SD indicates standard deviation. 

Variables (method corrected) n Mean Median SD Min Max 

Michigan data 

Number of total fish species (nFiSp) 746 8.6 8.0 4.4 1.0 23.0 
Number of intolerant fish species (nFiInt) 746 2.4 2.0 1.7 0.0 9.0 
Percent of tolerant fish individuals (pFiTol) 746 37.9 34.2 29.4 0.0 100.0 
Percent of omnivorous fish  individuals (pFiOmn) 746 28.9 22.9 25.9 0.0 100.0 
Percent of insectivorous fish individuals (pFiIns) 746 41.6 41.8 24.4 0.0 100.0 
Number of total invertebrate families (nFaInv) 784 27.7 26.8 9.2 3.9 55.9 
Number of EPT families (nEPTFa) 784 8.9 9.1 5.0 0.0 23.3 
Percent of total individuals that were EPT (pEPTIn)  784 34.2 34.5 18.8 0.0 87.4 
MBI Biotic Index (MBI) score 784 5.2 5.2 0.7 3.4 7.4 

Korean data with large river sites included 

Number of total fish species (nFiSp) 663 9.3 8.7 4.9 1.2 24.9 
Number of intolerant fish species (nFiInt) 663 2.6 1.3 2.8 0.0 12.7 
Percent of tolerant fish individuals (pFiTol) 663 43.5 41.9 32.0 0.0 89.7 
Percent of omnivorous fish  individuals (pFiOmn) 663 47.1 48.2 32.2 0.0 97.8 
Percent of insectivorous fish individuals (pFiIns) 663 38.2 35.2 29.2 0.0 88.7 
Number of total invertebrate families (nFaInv) 677 10.7 10.0 5.6 1.0 27.0 
Number of EPT families (nEPTFa) 677 5.0 5.0 4.0 0.0 16.0 
Percent of total individuals that were EPT (pEPTIn)  677 37.0 31.6 32.6 0.0 100.0 
MBI Biotic Index (MBI) score 673 5.6 5.5 1.6 0.7 10.0 

Korean data with large river sites excluded 

Number of total fish species (nFiSp) 612 9.2 8.7 4.9 1.2 24.9 
Number of intolerant fish species (nFiInt) 612 2.7 1.3 2.9 0.0 12.7 
Percent of tolerant fish individuals (pFiTol) 612 42.8 41.1 32.3 0.0 89.7 
Percent of omnivorous fish  individuals (pFiOmn) 612 47.3 48.6 32.7 0.0 97.8 
Percent of insectivorous fish individuals (pFiIns) 612 38.6 35.2 29.7 0.0 88.7 
Number of total invertebrate families (nFaInv) 627 10.9 10.0 5.6 1.0 27.0 
Number of EPT families (nEPTFa) 627 5.1 5.0 4.0 0.0 16.0 
Percent of total individuals that were EPT (pEPTIn)  627 37.4 33.9 32.6 0.0 100.0 
MBI Biotic Index (MBI) score 624 5.6 5.5 1.6 0.7 10.0 

 
 
 
 



  

 

 
258 

Appendix 6.4. Summary statistics of Independent samples t-tests of biological indicator metrics between Michigan and Korean data. 
CI and df indicate confidence interval and degree of freedom, respectively. 

Metrics  Mean 
difference 

Std. error 
difference 

95% CI of the difference 
t df 

Sig.       
(2-tailed) Lower Upper 

A. Raw data (Michigan versus Korea with large river sites excluded) 

Number of total fish species (nFiSp) 1.203 0.228 0.756 1.650 5.280 1356 .000 

Number of intolerant fish species (nFiInt) 0.304 0.108 0.091 0.516 2.805 1356 .005 

Percent of tolerant fish individuals (pFiTol) -9.856 1.775 -13.339 -6.374 -5.553 1356 .000 

Percent of omnivorous fish  individuals (pFiOmn) -19.494 1.611 -22.653 -16.335 -12.104 1356 .000 

Percent of insectivorous fish individuals (pFiIns) -1.916 1.573 -5.003 1.170 -1.218 1356 .223 

Number of total invertebrate families (nFaInv) 10.445 0.346 9.767 11.123 30.219 1409 .000 

Number of EPT families (nEPTFa) 1.818 0.211 1.405 2.231 8.632 1409 .000 

Percent of total individuals that were EPT (pEPTIn)  -2.429 1.395 -5.165 0.307 -1.741 1409 .082 

MBI Biotic Index (MBI) score -0.103 0.065 -0.230 0.024 -1.584 1406 .113 

B. Method corrected data (Michigan versus Korea with large river sites excluded) 

Number of total fish species (nFiSp) -0.650 0.254 -1.147 -0.153 -2.563 1332 .010 

Number of intolerant fish species (nFiInt) -0.273 0.127 -0.523 -0.024 -2.151 1335 .032 

Percent of tolerant fish individuals (pFiTol) -5.147 1.685 -8.451 -1.842 -3.055 1346 .002 

Percent of omnivorous fish  individuals (pFiOmn) -18.587 1.597 -21.720 -15.454 -11.638 1346 .000 

Percent of insectivorous fish individuals (pFiIns) 3.162 1.474 .271 6.053 2.146 1346 .032 

Number of total invertebrate families (nFaInv) 16.163 0.455 15.272 17.055 35.558 1430 .000 

Number of EPT families (nEPTFa) 3.752 0.245 3.271 4.234 15.295 1427 .000 

Percent of total individuals that were EPT (pEPTIn)  -3.268 1.385 -5.985 -0.552 -2.360 1409 .018 

MBI Biotic Index (MBI) score -0.453 0.064 -0.578 -0.328 -7.094 1406 .000 
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Appendix 6.5. Coefficients and their statistical significance from GLM ANCOVA tests of biological indicator metrics with landscape 
variables between Michigan and Korean (large river site excluded) datasets. Region (Michigan and Korea) was used as fixed factor 
and landscape variables (drainage area, xUrb, and xAg) were used as covariates. Bold indicates significance at p ≤ 0.05 and bold and 
italics indicate significance at p ≤ 0.01. Coefficients for Region, Region*ln(xUrb), and Region*ln(xAg) were summarized for Korean 
data and coefficients of these for Michigan datacould be calculated by multiplying by -1 to coefficients of Korean data. 

 Covariates 
Biological indicator metrics 

ln(nFiSp) ln(nFiInt) ln(pFiTol) ln(pFiOmn) ln(pFiIns) ln(nFaInv) ln(nEPTFa) ln(pEPTIn) ln(MBI) 

A. Raw data (Michigan versus Korea (large river sites excluded)) 
Region 0.01198 0.2506 -0.4355 -0.61 1.208 -0.2934 -0.1532 -0.0009773 0.002386 

ln(Drainage area) 0.1839 0.1915 0.1809 0.3213 0.1486 0.09901 0.1383 0.1877 -0.008811 

Region*ln(Drainage area) -0.0194 -0.02152 -0.009457 0.07685 -0.09507 -0.01496 -0.003276 0.0424 -0.01055 
ln(xUrb) -0.003695 0.03693 0.2201 0.3934 -0.5155 -0.1507 -0.252 -0.3086 0.07499 
Region*ln(xUrb) 0.01699 -0.1189 0.3461 0.2705 -0.2659 -0.03059 -0.06018 -0.1271 0.02804 
ln(Drainage area)*ln(xUrb) -0.005503 -0.05501 0.0326 -0.02573 0.07057 -0.005158 -0.001301 -0.01335 -0.003069 

ln(xAg) 0.1659 -0.159 0.8064 0.826 0.05303 -0.006824 -0.1515 -0.3149 0.05027 
Region*Ln(xAg) -0.02092 -0.04932 0.02648 0.06375 -0.1929 0.008277 -0.0085 -0.1209 0.003854 

ln(Drainage area)*ln(xAg) -0.007223 0.007153 -0.0448 -0.07867 -0.02989 -0.009422 -0.004559 0.009391 -0.0004472 

ln(xUrb)*ln(xAg) -0.03348 -0.01755 -0.06131 -0.06231 -0.05947 0.005233 -0.005607 -0.0147 -0.003178 

B. Method corrected data (Michigan versus Korea (large river sites excluded)) 
Region 0.09272 0.3517 -0.4485 -0.6136 1.149 -0.4193 -0.269 0.01054 0.02903 

ln(Drainage area) 0.1878 0.2031 0.1755 0.3198 0.1487 0.09963 0.1377 0.1879 -0.008889 

Region*ln(Drainage area) -0.01701 -0.01794 -0.01117 0.07641 -0.09704 -0.01539 -0.006813 0.04266 -0.01056 
ln(xUrb) -0.004212 0.04055 0.2096 0.3911 -0.5043 -0.1515 -0.2568 -0.3082 0.07476 
Region*ln(xUrb) 0.01539 -0.1381 0.3417 0.2698 -0.2583 -0.02968 -0.05365 -0.1276 0.02818 
ln(Drainage area)*ln(xUrb) -0.005452 -0.05984 0.03303 -0.02546 0.06891 -0.00516 -0.001189 -0.01336 -0.003048 

ln(xAg) 0.1698 -0.1653 0.794 0.824 0.05308 -0.006708 -0.1592 -0.3142 0.04998 
Region*Ln(xAg) -0.01965 -0.06034 0.02048 0.06282 -0.1908 0.008501 -0.004616 -0.1211 0.004061 

ln(Drainage area)*ln(xAg) -0.007716 0.007261 -0.04388 -0.0785 -0.02964 -0.009486 -0.003162 0.00925 -0.0004262 

ln(xUrb)*ln(xAg) -0.03396 -0.02042 -0.0594 -0.06204 -0.05863 0.005188 -0.006621 -0.01464 -0.003184 
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Appendix 6.6. Coefficients and their statistical significance from GLM ANCOVA tests of biological indicator metrics with landscape 
variables between Michigan and Korean (large river site included) datasets. Region (Michigan and Korea) was used as fixed factor 
and landscape variables (drainage area, xUrb, and xAg) were used as covariates. Bold indicates significance at p ≤ 0.05 and bold and 
italics indicate significance at p ≤ 0.01. Coefficients for Region, Region*ln(xUrb), and Region*ln(xAg) were summarized for Korean 
data and coefficients of these for Michigan data could be calculated by multiplying by -1 to coefficients of Korean data. 

 Covariates 
Biological indicator metrics 

ln(nFiSp) ln(nFiInt) ln(pFiTol) ln(pFiOmn) ln(pFiIns) ln(nFaInv) ln(nEPTFa) ln(pEPTIn) ln(MBI) 

A. Raw data (Michigan versus Korea (large river sites included)) 
Region 0.0843 0.3353 -0.4002 -0.5108 1.217 -0.2459 -0.05881 0.1767 -0.01523 

ln(Drainage area) 0.1637 0.1351 0.2512 0.3656 0.1252 0.08888 0.1289 0.1872 -0.005252 

Region*ln(Drainage area) -0.04116 -0.04962 -0.01523 0.05149 -0.09995 -0.03105 -0.03402 -0.01181 -0.005145 

ln(xUrb) -0.0199 -0.01547 0.329 0.4643 -0.5277 -0.1259 -0.1933 -0.2138 0.07471 
Region*ln(xUrb) 0.01768 -0.1187 0.3514 0.2757 -0.2655 -0.02729 -0.05401 -0.1175 0.0274 
ln(Drainage area)*ln(xUrb) 0.000606 -0.03706 -0.002111 -0.04761 0.07468 -0.0128 -0.01904 -0.04238 -0.002676 

ln(xAg) 0.1878 -0.1412 0.8153 0.8613 0.04456 -0.01039 -0.1534 -0.3001 0.04851 
Region*Ln(xAg) -0.01406 -0.0372 0.02105 0.06572 -0.1889 0.01424 0.001916 -0.1058 0.002263 

ln(Drainage area)*ln(xAg) -001104 0.006299 -0.04997 -0.0888 -0.02626 -0.00711 -0.001535 0.008398 -0.00007953 

ln(xUrb)*ln(xAg) -0.03455 -0.02083 -0.05487 -0.05744 -0.06053 0.006636 -0.003109 -0.009138 -0.003981 

B. Method corrected data (Michigan versus Korea (large river sites included)) 
Region 0.1676 0.4429 -0.4149 -0.515 1.157 -0.3718 -0.1742 0.1882 0.01142 

ln(Drainage area) 0.1669 0.141 0.2448 0.364 0.1258 0.08947 0.1286 0.1873 -0.005318 

Region*ln(Drainage area) -0.03955 -0.04831 -0.01653 0.05119 -0.1016 -0.03148 -0.03759 -0.01154 -0.005161 

ln(xUrb) -0.02052 -0.01722 0.3171 0.4619 -0.5164 -0.1267 -0.198 -0.2135 0.0745 
Region*ln(xUrb) 0.01615 -0.1379 0.3469 0.275 -0.2579 -0.02637 -0.04751 -0.1179 0.02755 
ln(Drainage area)*ln(xUrb) 0.0007213 -0.04006 -0.001243 -0.04732 0.07297 -0.0128 -0.01895 -0.04239 -0.002661 

ln(xAg) 0.1921 -0.1465 0.8022 0.859 0.04468 -0.01029 -0.1607 -0.2995 0.04823 
Region*Ln(xAg) -0.01254 -0.04708 0.01507 0.06479 -0.187 0.01446 0.005736 -0.106 0.002469 

ln(Drainage area)*ln(xAg) -0.01161 0.006518 -0.04884 -0.08856 -0.02606 -0.007168 -0.000266 0.008271 -0.00005982 

ln(xUrb)*ln(xAg) -0.03503 -0.02404 -0.05307 -0.05718 -0.05968 0.006591 -0.004108 -0.009084 -0.003986 
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Appendix 6.7. Coefficients and their statistical significance from GLM ANCOVA tests of normalized scores of biological indicator 
metrics with urban and agricultural LUs between Michigan and Korean (large river site included) datasets. Region (Michigan and 
Korea) was used as fixed factor and LU stressors (xUrb and xAg) were used as covariates. Bold indicates significance at p ≤ 0.05 and 
bold and italics indicate significance at p ≤ 0.01. Coefficients for Region, Region*ln(xUrb), and Region*ln(xAg) were summarized for 
Korean data and coefficients of these for Michigan data could be calculated by multiplying by -1 to coefficients of Korean data. 

 Covariates 
Biological indicator metrics 

ln(nFiSp) ln(nFiInt) ln(pFiTol) ln(pFiOmn) ln(pFiIns) ln(nFaInv) ln(nEPTFa) ln(pEPTIn) ln(MBI) 

A. Normalized raw data (Michigan versus Korea (large river sites included)) 

Region 0.07697 0.06028 0.01508 0.04461 -0.02589 -0.0201 0.002418 0.002399 0.001585 

ln(xUrb) -0.07308 -0.2789 0.2593 0.2422 -0.2788 -0.3872 -0.3816 -0.3015 0.3976 

Region*ln(xUrb) -0.03168 0.2635 -0.3089 -0.1756 0.1861 -0.02794 -0.02013 0.01824 -0.006821 

ln(xAg) 0.2457 -0.0819 0.4117 0.3228 -0.0528 -0.06863 -0.1094 -0.1216 0.1842 

Region*ln(xAg) 0.02212 0.1473 -0.0292 -0.08543 0.1493 -0.03539 0.03011 0.09641 -0.002481 

ln(xUrb)*ln(xAg) -0.06989 -0.07014 -0.04087 -0.05159 -0.03962 -0.008907 -0.0389 -0.03373 -0.004567 

B. Normalized method corrected data (Michigan versus Korea (large river sites included)) 

Region 0.07683 0.06119 0.01475 0.04134 -0.02584 -0.02012 0.002608 0.0024 0.001603 

ln(xUrb) -0.07388 -0.2769 0.2591 0.2421 -0.2791 -0.3875 -0.3783 -0.3017 0.3975 

Region*ln(xUrb) -0.03166 0.2648 -0.3107 -0.1757 0.1866 -0.02803 -0.01803 0.01808 -0.006785 

ln(xAg) 0.2453 -0.07792 0.4106 0.3225 -0.05423 -0.06842 -0.1046 -0.1218 0.184 

Region*ln(xAg) 0.02193 0.1456 -0.02941 -0.08561 0.1509 -0.03505 0.03399 0.09623 -0.002541 

ln(xUrb)*ln(xAg) -0.06955 -0.07159 -0.03998 -0.05145 -0.03976 -0.008836 -0.03943 -0.03373 -0.004513 
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Appendix 6.8. Multiple linear regression models of biological indicator metrics for Michigan data set. Bold indicates significance at p 
≤ 0.05 and bold and italics indicate significance at p ≤ 0.01. 

 Covariates 
Biological indicator metrics 

ln(nFiSp) ln(nFiInt) ln(pFiTol) ln(pFiOmn) ln(pFiIns) ln(nFaInv) ln(nEPTFa) ln(pEPTIn) ln(MBI) 

A. Michigan region:  raw data 

      R2
 (%) 35.4 29.0 27.0 19.6 16.7 22.2 36.0 27.4 38.7 

      Constant 0.51173 3.04466 -2.4977 -3.94568 1.94777 2.53264 4.13222 7.46767 1.2496 

ln(Drainage area) 0.146074 0.144511 0.0653956 -0.0766196 0.25418 0.0697973 0.121176 0.184576 -0.00650826 

ln(xUrb) -0.114192 -0.0970936 -0.17656  -0.152761 -0.13125 -0.242752 -0.27673 0.0353361 

ln(xAg) 0.0680155 0.393127 0.19205 -0.0355811 -0.070032 -0.0606591 0.0161977 

ln(water temperature) 0.133092 -0.317016  0.99961  -0.229785 -0.402126 0.0620031 

ln(site slope) 0.0952999 -0.372855 -0.169997 -0.173985 0.0291499 0.0855778 0.273371 -0.0244332 

ln(Q10Y) -0.427049  -0.19905  0.288407 

ln(Q50Y)  -0.444247    

ln(Q90Y) -0.0918507 0.127008   0.0828547  0.128197  -0.0284357 

ln(number of dams) 0.0779854      

B. Michigan region:  method corrected data 

      R2
 (%) 35.4 29.0 27.0 19.6 16.7 22.2 35.5 27.5 38.7 

      Constant 0.51173 3.04466 -2.4977 -3.94568 1.94777 2.7767 4.49288 7.43006 1.20111 

ln(Drainage area) 0.146074 0.144511 0.0653956 -0.0766196 0.25418 0.0705621 0.12837 0.183896 -0.00645228 

ln(xUrb) -0.114192 -0.0970936 -0.17656  -0.152761 -0.133132 -0.257765 -0.275792 0.0349737 

ln(xAg) 0.0680155 0.393127 0.19205 -0.0358762 -0.0708254 -0.0606796 0.0160165 

ln(water temperature) 0.133092 -0.317016  0.99961   -0.244676 -0.40065 0.0613356 

ln(site slope)  0.0952999 -0.372855 -0.169997 -0.173985 0.0296308 0.0928958 0.27235 -0.0241759 

ln(Q10Y)   -0.427049   -0.201914  0.28714  

ln(Q50Y)    -0.444247      

ln(Q90Y) -0.0918507 0.127008   0.0828547  0.1367  -0.028149 

ln(number of dams) 0.0779854         
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Appendix 6.9. Multiple linear regression models of biological indicator metrics for Korean data set with large river sites excluded. 
Bold indicates significance at p ≤ 0.05 and bold and italics indicate significance at p ≤ 0.01. 

 Covariates 
Biological indicator metrics 

ln(nFiSp) ln(nFiInt) ln(pFiTol) ln(pFiOmn) ln(pFiIns) ln(nFaInv) ln(nEPTFa) ln(pEPTIn) ln(MBI) 

A. Korean region: raw data (large river sites excluded) 

      R2
 (%) 26.3 45.9 39.7 26.4 34.2 17.1 30.4 24.9 20.2 

      Constant 0.401871 2.05334 -1.04681 0.640272 5.53628 2.62235 3.26994 5.39404 1.6583 

ln(Drainage area) 0.128993 0.236659 -0.0950364 0.165888 0.247567 0.0587684 0.230245 0.407721 -0.0338956 

ln(xUrb) -0.079593 -0.393951 0.589382 0.40284 -0.665438 -0.181628 -0.312007 -0.544448 0.0865388 

ln(xAg) -0.176502 0.453476 0.455706 -0.306202  -0.128074 -0.358115 0.0434678 

ln(water temperature) 0.129061    -0.283464 -0.390788 

ln(site slope) -0.0450281 -0.111839  0.0454843 0.0800071  

ln(Q10Y) 0.434991 -0.708398  0.578985  0.274842 0.563564 -0.0391088 

ln(Q50Y) -0.143987      

ln(number of dams) -0.363097 -0.3391  -0.33831 -0.487281  -0.323795 -0.528467 

B. Korean region: method corrected data (large river sites excluded) 

      R2
 (%) 26.3 45.9 39.3 26.4 34.4 17.1 30.4 24.9 20.2 

      Constant 0.529148 2.30892 -0.77162 0.633924 5.4134 2.62235 3.26994 5.39404 1.6583 

ln(Drainage area) 0.133529 0.257232 -0.0749773 0.164634 0.240871 0.0587684 0.230245 0.407721 -0.0338956 

ln(xUrb) -0.0823575 -0.440219 0.611409 0.401648 -0.651046 -0.181628 -0.312007 -0.544448 0.0865388 

ln(xAg) -0.195186 0.472554 0.453941 -0.30256  -0.128074 -0.358115 0.0434678 

ln(water temperature) 0.133365      -0.283464 -0.390788  

ln(site slope) -0.0469718     0.0454843 0.0800071   

ln(Q10Y)  0.476824 -0.743432  0.572171  0.274842 0.563564 -0.0391088 

ln(Q50Y) -0.14936         

ln(number of dams) -0.376008 -0.371055  -0.335665 -0.471403  -0.323795 -0.528467  
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Appendix 6.10. Multiple linear regression models of biological indicator metrics for Korean data set with large river sites included. 
Bold indicates significance at p ≤ 0.05 and bold and italics indicate significance at p ≤ 0.01. 

 Covariates 
Biological indicator metrics 

ln(nFiSp) ln(nFiInt) ln(pFiTol) ln(pFiOmn) ln(pFiIns) ln(nFaInv) ln(nEPTFa) ln(pEPTIn) ln(MBI) 

A. Korean region: raw data (large river sites included) 

      R2
 (%) 16.9 43.7 37.9 24.5 31.8 17.6 30.3 25.2 18.6 

      Constant 1.29144 2.0328 -0.863519 0.691263 5.6435 2.57662 3.19357 5.32373 1.60303 

ln(Drainage area) 0.0782991 0.218677 -0.0966052 0.17564 0.208761 0.0673006 0.230156 0.415981 -0.0284931 

ln(xUrb) -0.0936728 -0.379859 0.56439 0.38475 -0.63635 -0.185938 -0.32185 -0.559032 0.0862003 

ln(xAg) 0.0680155 -0.161805 0.437866 0.436982 -0.311881  -0.115507 -0.339449 0.0390179 

ln(water temperature)    -0.253015 -0.339711 

ln(site slope) -0.0596839 -0.106667  0.0400202 0.0730213  

ln(Q10Y) 0.420167 -0.68286  0.580432  0.296977 0.609872 -0.0570871 

ln(number of dams) -0.391187  -0.485168 -0.226492 -0.461334 -0.763313 

B. Korean region: method corrected data (large river sites included) 

      R2
 (%) 17.0 43.7 38.0 24.5 32.0 17.6 30.3 25.2 18.6 

      Constant 1.45057 2.28623 -0.865212 0.684685 5.51339 2.57662 3.19357 5.32373 1.60303 

ln(Drainage area) 0.0811684 0.237915 -0.0957932 0.174357 0.203629 0.0673006 0.230156 0.415981 -0.0284931 

ln(xUrb) -0.0970271 -0.424668 0.556116 0.383597 -0.622642 -0.185938 -0.32185 -0.559032 0.0862003 

ln(xAg) 0.048892 -0.179021 0.428998 0.435312 -0.308255  -0.115507 -0.339449 0.0390179 

ln(water temperature)       -0.253015 -0.339711  

ln(site slope) -0.0619447  -0.103064   0.0400202 0.0730213   

ln(Q10Y)  0.461328 -0.670209  0.572547  0.296977 0.609872 -0.0570871 

ln(number of dams)  -0.425371  -0.482145  -0.226492 -0.461334 -0.763313  
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Appendix 6.11. Multiple linear regression models of regional multimetrics. Bold indicates significance at p ≤ 0.05 and bold and italics 
indicate significance at p ≤ 0.01. 

Variables 
Korean regional MMIs Michigan regional MMIs 

KIBI KSI P51Fi P51Inv 

      R2
 (%) 38.8 29.5 6.3 25.6 

      Constant 39.3369 0.653916 -0.895128 10.2632 
ln(Drainage area) 1.41893 -0.28186 0.443138 0.713535 
ln(xUrb) -3.73595 0.546502 -0.727253 -1.09932 
ln(xAg) -1.40919 0.266573 -0.456628 -0.278505 

ln(water temperature)  -1.76534 
ln(site slope) 0.685186 -0.146264  1.30707 
ln(Q10Y) 4.02555  -1.23617 

ln(number of dams) -3.17926 0.499477   
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