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5.1 Synthesis of SS-PLLA-b-PLYS for its unique assembly of NF-SMS
through a specific emulsification process. a) A schematic illustration
of the structure of star-shaped block copolymer SS-PLLA-b-PLYS. b-
d) SS-PLLA-b-PLYS with different LYS/LLA ratios formed different
structures under TIPS: b) LYS/LLA=0, or SS-PLLA; c): LYS/LLA
= 10%; d) LYS/LLA = 20%. (Scale bar: 5 µm). e) A schematic
illustration of the emulsification process, involving: 1. Quick pour-
ing of SS-PLLA-b-PLYS/THF solution into stirring glycerol to form
multiple emulsions; 2. Pouring the mixture into liquid N2 to induce
TIPS; 3. Solvent (THF) and glycerol extraction with ice water; and
4. Freeze-drying the microspheres. f) Confocal imaging of the formed
multiple emulsions (from SS-PLLA-b-PLYS with LYS/LLA = 5%),
with the green regions representing the FITC-stained glycerol phase,
and the dark regions representing the polymer solution phase (Scale
bar: 20 µm). g) SEM graph of NF-SMS fabricated from SS-PLLA-b-
PLYS with 5% LYS/LLA ratio (Scale bar: 200 µm). h) SEM graph
of a representing NF-SMS showing a porous structure with multiple
openings on the sphere shell (Scale bar: 20 µm). i) A cross sectional
confocal image of a representing NF-SMS, with the polymer skeleton
stained by FITC-tagged BSA, indicating a porous internal structure
of NF-SMS (Scale bar: 20 µm). j) SEM graph of NF-SMS at a higher
magnification, showing the NF structure (Scale bar: 5 µm). . . . . . 74

5.2 NF-SMS provided a beneficial microenvironment for proliferation of
human dental pulp stem cells (hDPSCs) and formation of blood ves-
sels. a) SEM images of NF-SMS (left), NF-MS (middle) and S-MS
(right) with a diameter ranging from 30 to 60 µm. (Scale bar: 20
µm). b) SEM images of hDPSCs seeded on three types of micro-
spheres for 24 hr. Left: hDPSCs on NF-SMS. Middle: hDPSCs on
NF-MS. Right: hDPSCs on S-MS (Scale bar: 10 µm). c) Growth
curve of hDPSCs cultured on NF-SMS, NF-MS and S-MS, measured
by quantifying the DNA content at various time points (n = 3). 4: p
< 0.05 NF-SMS vs NF-MS, #: p< 0.05 NF-SMS vs S-MS, *: p< 0.05
NF-MS vs S-MS. d) Subcutaneous injection of hDPSCs/microsphere
complexes into nude mice for 4 wk. Solid black triangles indicate
microspheres; empty triangles indicate blood vessels (Scale bar: 50
µm). Left: NF-SMS group. Middle: NF-MS group. Right: S-MS
group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
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5.3 VEGF expression of hDPSCs on NF-SMS were enhanced in hypoxia
culture than in normoxia culture. a) A schematic illustration of the
self-made bioreactor for the hDPSCs suspension culture with NF-
SMS at hypoxia or normoxia conditions. A suspension of hDPSCs
and NF-SMS was stirred gently within a self-made jar maintained at
37 ◦C. To create a hypoxia environment, the jar was vacuumed and
purged with a mixture of gases comprising 2% O2, 5% CO2 and 93%
N2 for three times. In normoxia culture, 21% O2, 5% CO2 and 74%
N2 gas mixture was used instead. b) Immunofluorescence staining
was used to study the expression of HIF-1α of hDPSCs cultured on
NF-SMS under normoxia or hypoxia conditions at 1 d, 3 d, 7 d and
10 d. Blue: nuclei; green: HIF-1α; red color: F-actin. Positive
staining of HIF-1α was seen in the hypoxia group at every time point
(1 d, 3 d, 7 d and 10 d). Scale bar: 10 µm. c) Immunofluorescence
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NF-SMS under normoxia or hypoxia conditions at 1d, 3 d, 7 d and
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Scale bars: 100 µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
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5.4 Dental pulp tissue regeneration promoted by hypoxia-primed hDPSCs/NF-
SMS in a subcutaneous tooth implantation model. Human DPSCs
cultured on NF-SMS were primed under hypoxia or normoxia condi-
tions for 3 d, and were injected into the cavity of evacuated rabbit
molars, which were then subcutaneously implanted into nude mice
for 4 wk. a) Gross appearance of the harvested rabbit molars, dis-
playing that hypoxia group had a more red appearance than the
other three groups. b) The number of blood vessels were quantified,
and the hypoxia group has significantly more blood vessels than the
other 3 groups (n = 3). **: p < 0.05. c) Histology analysis of the
harvested rabbit molars. H & E staining (reconstructed from mul-
tiple microscopic images) showed that there were more neo tissues
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ABSTRACT

Advanced Microspheres as Injectable Cell Carriers for Tissue Engineering

by

Zhanpeng Zhang

Chair: Peter X. Ma

Biodegradable polymer microspheres have emerged as injectable cell carriers for the

regeneration and repair of irregularly-shaped tissue defects. The physical structure

and chemical composition of the microsphere are critical to its function and per-

formance. However, it is challenging to manipulate the physical structure of micro-

spheres at various length scales and introduce desirable chemistry on the microspheres

for bioconjugation at the same time. In this thesis, the author develops a series of

versatile techniques, including polymer self-assembly and novel emulsification meth-

ods, to simultaneously control the physical and chemical structure of spheres. Firstly,

the author investigates the self-assembly of star-shaped polymers at both the nano-

and micro-meter scales, and develops a versatile method to fabricate microspheres

with simultaneous control over the nano- and micro-meter scale features. Secondly,

the author summarizes a more generalized emulsification technique to produce nano-

and micro-structured spheres from various types of polymers. Based on the discov-

ered principles of microsphere assembly, the author builds a functional nanofibrous

hollow microsphere platform, which can conjugate biomolecules and guide stem cell

differentiation for cartilage and bone tissue enigneering. Last but not the least, the

xix



author describes the use of the unique nanofibrous spongy microspheres for human

dental pulp stem cell delivery and dental pulp regeneration. These new microcarriers

also show great potential for other applications in tissue regeneration and biomolecule

deliveries.
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CHAPTER I

Introduction

Tissue engineering approaches often benefit from advanced cell carriers. Various

carriers have been designed to deliver growth factors and cells to the tissue defects

for their repair and regeneration Langer and Vacanti [2], Hoffman [3], Ma [4, 5]

(Figure 1.1). Many attempts employed implantable three-dimensional porous scaf-

folds as cell carriers, which can provide the necessary mechanical and physical support

for cellular activity Hutmacher [6], Wei and Ma [7], Ma et al. [8] (Figure 1.1a).

However, the repair of irregularly-shaped tissues or defects often requires complex

design and fabrication of the monolithic scaffold to achieve accurate fit Beaman et al.

[9], Chen et al. [10], Oberpenning et al. [11], Wang et al. [12]. Alternatively, in-

jectable cell carriers can fill the entire defect site through injection, simplifying the

surgical procedure for minimal invasion and reduced recovery time Elisseeff et al.

[13], Liu et al. [1]. Therefore, various kinds of injectable carriers have been devel-

oped to deliver cells and regenerate irregularly-shaped tissue defects Martin et al.

[14], Malda and Frondoza [15], Drury and Mooney [16].

Hydrogels with both natural and synthetic origins have been used as injectable

cell carriers Elisseeff et al. [13], Suggs and Mikos [17], Stile et al. [18], Marler et al.

[19], Chung and Park [20]. A suspension of pre-polymer/macromer and cells can

be injected in vivo and polymerized to form a gel in situ, achieving accurate fit
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Figure 1.1: A schematic figure showing the three typical strategies for cell delivery and
tissue regeneration: a) cell-seeded 3D porous scaffolds for implantation;
b) cell-mixed hydrogel pre-solution for injection to targeted site for in
situ gelation; c) cell-ladened microspheres, w/ or w/o in vitro culture
(suspension or pellet culture), for injection to targeted site.

(Figure 1.1b). Hydrogel formation can be achieved by crosslinking macromers using

various stimuli including temperature Lee and Mooney [21], chemical crosslinkers

Peter et al. [22], and radiation Nguyen and West [23]. The resulting hydrogel network

is highly swollen, having a tissue-like, high water content. Desirably, hydrogels are

able to encapsulate cells and bioactive molecules upon gel formation. The mechanical

properties of hydrogels can also be tailored to some degree, e.g. through varying the

cross-linking densities. However, hydrogels are not used for regeneration in clinics

because several challenges need to be addressed. For example, immediate cell loss has

been reported due to the back-flow via the injection path Crevensten et al. [24]. Most

hydrogels provide insufficient cell anchorage sites, which are critical for the viability of

anchorage-dependent cells Allers et al. [25], Niland et al. [26]. Upon in situ hydrogel

formation, the mobility of suspended cells and cell-cell interactions are restricted, as

well as the host-implant integration at the cellular level. Various strategies have been

employed to solve these problems Kloxin et al. [27], Strehin et al. [28], Benoit et al.

[29], Wang et al. [30], Rice et al. [31]. For example, microchannels could be formed
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by shining light on a photodegradable hydrogel to allow migration of the encapsulated

cells Kloxin et al. [27]. Tissue proteins were incorporated into the hydrogel network

to improve cell-matrix interactions Wang et al. [30]. Hydrogels with cell-mediated

degradation were also engineered, which incorporated peptide-based linkages that

were susceptible to matrix metalloproteinases, and have been shown to better allow

cell invasion/migration Lutolf et al. [32].

Alternatively, biodegradable microspheres have been used as cell carriers with in-

jectability, controllable biodegradability and capacity for drug incorporation Wang

et al. [33]. Compared to hydrogel-based injectable carriers, microspheres could pro-

vide sufficient anchorages and better facilitate cell attachment for anchorage-dependent

cells. Microspheres were originally employed as a cell culture system to produce bio-

logical cell products Van Wezel [34]. The de novo production of extracellular matrix

by cells seeded on particulate micro-carriers resembled many features of the tissue of

origin Malda and Frondoza [15], which inspired researchers to explore the potential of

using microspheres as cell delivery vehicles for tissue engineering. These traditional

solid microspheres, however, are often non-biodegradable and lack biomimetic sur-

face structure to interact with cells. To use micro-carriers for cell delivery and tissue

regeneration, the micro-carriers should satisfy several requirements. First, the micro-

spheres should be biodegradable and biocompatible for direct in vivo cell delivery.

Second, the degradation rate should match the neo-tissue formation with appropriate

longevity. Third, the chemical compositions and surface architecture should facilitate

cell adhesion, proliferation and differentiation. Desirably, the microspheres should

be bioactive and cell-instructive to encourage stem cell differentiation, phenotype

maintenance and facilitate target tissue regeneration. Typically, the cells are mixed

with the microspheres and injected into the defect site with or without pre-culture

(Figure 1.1c). Such microsphere-based cell delivery systems allow efficient nutri-

ent/waste transfer and therefore a good microenvironment for cell function Liu et al.
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[1]. Cells can be pre-cultured on microcarriers with retained injectability, which al-

lows the in vitro induction/maintenance of a targeted phenotype prior to injection in

vivo.

It is often advantageous to recapitulate the chemical or/and physical character-

istics of the natural extracellular matrix (ECM) in a tissue engineering scaffold Ma

[5]. In connective tissues, such as bone, skin, ligament, and tendon, the ECM con-

sists primarily of proteoglycans and fibrous proteins, such as collagen. The fibrous

architecture of collagen contributes to the mechanical stabilities of the ECM, and

plays a vital role in cell attachment, proliferation, and differentiation Alberts et al.

[35]. Type I collagen is the most abundant type of collagen and forms nanofiber

bundles with fiber diameter ranging from 50 to 500 nm. A nanofibrous surface is

desired to mimic the natural ECM and is found to be advantageous in improving cell

attachment, migration, proliferation, and differentiation Holzwarth and Ma [36]. To

synthesize nanofibers, thermally induced phase separation (TIPS) is a widely used

method that offers great flexibility in the 3D structural design: scaffolds ranging from

NF mesh to 3D porous scaffolds with predesigned pore shape can be fabricated when

TIPS is combined with other techniques. To fabricate nanofibers into microspheres,

a novel methodology has been developed recently Liu et al. [1] (Figure 1.2). In this

work, star-shaped PLLA (SS-PLLA) was synthesized using poly(amidoamine) (PA-

MAM) dendrimers as initiators, dissolved in tetrahydrofuran, emulsified in glycerol

under rigorous stirring, and quenched in liquid nitrogen to generate the NF hol-

low microspheres (NF-HMS), where the NF structure formation was driven by TIPS

(Figure 1.2A). Upon solvent extraction and freeze-drying, highly porous hollow

microspheres with open pores on the NF shells were obtained without using any tem-

plate (Figure 1.2B,C). When a linear PLLA was employed with the same process,

NF microspheres without a hollow core structure were generated. Thus, the star-

shaped polymer architecture was an important feature to allow for the assembly of
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the NF hollow microspheres in this case. The novel nanofibrous hollow microspheres

were examined as an injectable scaffold for cartilage regeneration both in vitro and

in vivo Liu et al. [1]. The engineered cartilage was similar to native cartilage in

structure, composition, and biomechanical properties, and fully filled a critical-sized

osteochondral defect in rabbits with smooth integration with the host cartilage.

However, the mechanism of NF-HMS assembly from SS-PLLA is unclear. Due

to the unclear mechanism, the previous reported technique lacks control over the

micro-meter scale structure of the formed microspheres, for instance, to introduce an

interconnected porous structure.

Beyond the biomimetic nanofibrous structure, an interconnected micro-porous

structure is often required in scaffold design to facilitate cell seeding process as well

as mass transport, vascularization, and tissue organization. For example, highly

porous, biodegradable polymer scaffolds seeded with myoblasts, embryonic fibroblasts

and endothelial cells facilitates the induction of endothelial vessel networks Levenberg

et al. [37]. However, the introduction of a porous structure into microsphere system

is challenging. There is no existing technology to combine a nanofibrous structure

and a micro-porous structure into microspheres.

In addition to the above discussed physical structure, an ideal scaffold should also

present desirable biochemical signals to cells, especially stem cells, to direct cell pro-

pogation and differentiation. Potent growth factors (GF) are critical chemical signals

released during tissue development or repair that regulate migration, adhesion, cel-

lular proliferation, and differentiation Epstein et al. [38], Ramirez and Rifkin [39].

To be effective in stem cell regulation, GFs need to reach cells without degrading

and remain at the target location to bind to associated cell receptors long enough to

achieve the necessary cell response Chen et al. [40]. Therefore, controlled spatiotem-

poral delivery of GFs is required to provide sustained GF signals to stem cells to

effectively guide tissue regeneration Wei et al. [41, 42]. Tethering GFs on biomate-
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Figure 1.2: A) A schematic of SS-PLLA synthesis and nanofibrous hollow microsphere
fabrication. a, PAMAM (G2) as an initiator for the synthesis of SS-
PLLA. b, The SS-PLLA with Red coils representing the PLLA chains.
c, Preparation of SS-PLLA microspheres using a surfactant-free emulsi-
fication process. d, Nanofibrous hollow microspheres were obtained after
phase separation, solvent extraction and freeze-drying. B) SEM image of
nanofibrous hollow microspheres fabricated from SS-PLLA, showing that
almost every microsphere had one or more open hole(s) on the shell. C)
SEM image of a representative nanofibrous hollow microsphere, showing
the nanofibrous architecture and a hole of approximately 20 µm on the
microsphere shell. Reprinted from Liu et al. [1], Copyright (2011), with
permission from Nature Publishing Group.
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rials is a promising strategy to deliver sustained GFs signals to cells. Compared to

the delivery of expensive soluble GFs through physical adsorption Kim et al. [43] or

encapsulation into biodegradable polymers Zhang et al. [44], covalent immobilization

can avoid burst release that might cause toxicity to cells Huang and Brazel [45], and

prevent diffusion of GFs to the surrounding tissues that might cause complications

Cahill et al. [46]. To facilitate GF conjugation, NF-HMS need to present desirable

functional groups that can react with GFs without compromising the bioactivity of

GFs. However, NF-HMS can only be fabricated from homopolymer SS-PLLA, which

lacks functional groups for conjugation. Functional polymers need be synthesized

that not only can assemble into NF-HMS, but also can present functional groups for

bioconjugation.

In this thesis, the author discovers the mechanism of SS-PLLA assembly and NF-

HMS formation. Based on the discovered mechanism, the author develops a series

of technologies to tune both the chemical and physical structure of microspheres to

mimic the ECM for enhanced cell-matrix interaction. Specifically, Chapter II inves-

tigates the self-assembly of star-shaped polymers at both the nano- and micro-meter

scales, and develops a versatile method to fabricate microspheres with simutaneous

control over the nano- and micro-meter scale features. Chapter III summarizes

a more generalized emulsification technique to produce nano- and micro-structured

spheres from various types of polymers. With the capacity of the developed method-

ology, various novel microspheres are designed and synthesized for various tissue en-

gineering scenarios: Chapter IV builds a functional nanofibrous hollow microsphere

platform, which can conjugate biomolecules and guide stem cell differentiation for

cartilage and bone tissue enigneering; Chapeter V describes the use of the unique

nanofibrous spongy microspheres for human dental pulp stem cell delivery and dental

pulp regeneration.
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CHAPTER II

Assembly of star-shaped polymers on the nano-

and micro-meter scales toward novel microspheres

2.1 Introduction

Spherical micro- and nano-structured particles are important elements of many sci-

entific technologies, including the delivery of delicate chemical and biological molecules

Langer [47], Cabral et al. [48], electronic displays Comiskey et al. [49], photonic crys-

tal preparation Wijnhoven and Vos [50], self-healing structural materials White et al.

[51], as well as separation and catalysis Svec and Fréchet [52], to name a few. The

structure of the microsphere is critical to its function and performance. For tissue

regeneration, a hollow structure on the micrometer scale can increase cell loading effi-

ciency, improve nutrition transport, and decrease the amount of degradation products

Ma [4]. On the nanometer scale, a nanofibrous (NF) structure mimics the structure

of collagen and improves cell-matrix interactions Zhang et al. [53]. Recently, un-

usual nanofibrous hollow microspheres (NF-HMS) were synthesized from star-shaped

poly (l-lactic acid) (SS-PLLA), which integrated both a fibrous nanostructure and

a hollow microstructure into microspheres for the first time Liu et al. [1]. However,

the underlying mechanism of the NF-HMS formation was unclear. In this study,

we investigate how the molecular structure of SS-PLLA dictates its self-assembly on
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both the nano- and micro-meter scales, and describe a versatile method to prepare

microspheres with simultaneously controlled nano- and micro-structures.

We choose initiators with X initiating sites (hydroxyls (OH)) to polymerize l-

lactide (LLA) to generate SS-PLLA with X arms (X = 2, 3, 4, 8, 16, 32 and 64,

Figure 2.1). It should be noted that the actual arm number is less than X when

X ≥ 8 because not all hydroxyls participated in the polymerization due to steric

hindrance. Arm number is 5 8 for X=8, 10 12 for X=16, 20-23 for X=32, and 32-

36 for X=64. The average arm length is determined from the feeding ratio, LLA:

OH (=Y). We abbreviate the polymers as X-arm PLLA-Y. The characterization of

SS-PLLAs is summarized in Table 2.1. Emulsification and thermally induced phase

separation (TIPS) techniques are used to synthesize the microspheres from these

SS-PLLAs (Figure 2.2). Specifically, glycerol is gradually added into a 2% (w/v)

SS-PLLA/tetrahydrofuran (THF) solution (glycerol: SS-PLLA/THF = 3:1 (v/v)),

which causes phase inversion and three types of emulsions to form (Figure 2.2c-e).

The emulsions are then quenched in liquid nitrogen to induce nanometer scale phase

separation of the polymer solution (Figure 2.2f). After glycerol and THF extraction

with distilled ice water, the microspheres (Figure 2.2g-i) are freeze-dried and stored

in vacuum.

2.2 Nano-scale Self-Assembly

Quenching the emulsions in liquid nitrogen induces nano-scale phase separation of

the polymer solution (Figure 2.2f). During this thermodynamic process, polymer-

rich and polymer-poor phases formed, with the former solidifying into the polymer

skeleton and the latter becoming the void space after solvent extraction. Under proper

conditions, polymer solutions can phase separate into bi-continuous nano-scale phases

and ultimately form nanofibers upon solvent removal Ma and Zhang [54], Marson

et al. [55]. We hypothesize that the bicontinuous nano-scale patterns are formed
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Figure 2.1: Synthesis route of SS-PLLAs from different initiators.
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Table 2.1: Characterization of Star-shaped PLLA with Varying Arm Numbers a

Samples Initiator b Functional groups [M]/[OH]c
Molecular weight

Polydispersityf

Mn,each
d Mn,total

2-arm PLLA-150
ethylene glycol 2

150 15800 27700e 1.33
2-arm PLLA-400 400 31100 61700e 1.38
3-arm PLLA-150

glycerol 3
150 14100 37200e 1.35

3-arm PLLA-300 300 26400 71400e 1.38
4-arm PLLA-50

Pentaerythritol 4

50 5100 15400e 1.48
4-arm PLLA-100 100 7300 21800e 1.44
4-arm PLLA-300 300 16800 56600e 1.50
4-arm PLLA-400 400 28500 108900e 1.49
8-arm PLLA-100

N,N,N′,N′-tetra(2,3-dihydroxpropyl)ethane-1,2-diamine 8
100 10800 60840g –

8-arm PLLA-300 300 13100 82890g –
16-arm PLLA-100

PAMAM dendrimer (G2-OH) 16
100 11520 125500g –

16-arm PLLA-400 400 32400 359800g –
32-arm PLLA-100 PAMAM dendrimer (G3-OH) 32 100 10300 209100g –
64-arm PLLA-100 PAMAM dendrimer (G4-OH) 64 100 14100 519400g –

aThe polymerization conditions: [Sn(Oct)2]/[LA]=1/500, at 135◦C for 24 h. bStructures of the
initiators are listed in Figure 2.1. c[M]/[I] refers to the ratio of monomer to OH. dAverage
molecular weight of each arm estimated by comparison of the integrals of methine protons (5.17
ppm) and the terminal methine (4.36 ppm) in PLLA from 1H NMR spectra. e,fObtained from
GPC analysis using polystyrene as standard and THF as eluent.g Calculated from

Mn(NMR) = 72×Mn,each × n+MWinitiator

where n is calculated from the average signal intensity ratios of reacted methylene proteons of the
dendrimer (4.27 ppm) to the unreacted methylene protons (3.59 ppm), combined with the number
of surface hydroxyl groups.

through a spinodal decomposition (SD) pathway.

According to the Flory-Huggins (FH) theory, the FH polymer-solvent interaction

parameter, χ, must exceed a critical value χc to trigger this SD pathway Flory [56].

Increasing the molecular weight (MW) of a polymer can reduce χc to trigger the

SD pathway. However, the FH theory is based on linear polymers. No studies sys-

tematically investigate how the molecular structure of the polymer affects nanofiber

formation. Here, we find that a high MW is also required for SS-PLLAs to phase

separate into nanofibers. Interestingly, SS-PLLAs assemble into nanofibers only when

the arm length Y is above a critical value (denoted as Yc) (Figure 2.3a, b). Yc = 200

when X = 2, 3, 4, while Yc = 100 when X ≥ 8. It should be noted that the actual arm

length (denoted as Ya) is similar to Y when X = 2, 3, 4, but is higher than Y when

X ≥ 8 (Table 2.1). Ya ≈ 150 when Y=100 at X = 8, 16, 32, and Ya ≈ 200 when

Y=100 at X=64. Therefore, an arm length higher than 200 is a universal requirement

for SS-PLLA to form nanofibers. Decreasing arm length below 200 (or Y¡Yc) leads
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Figure 2.2: An illustration of a one-step emulsification combined with thermally-
induced phase separation for the fabrication of nano- and micro-
structured spheres. (a, b) Glycerol is slowly poured into a stirred polymer
solution. (c-e) As the amount of the added glycerol increases, catas-
trophic phase inversion occurs, generating three types of emulsions: (c)
single emulsions; (d) double emulsions with one inner droplet of glycerol
inside one polymer droplet; and (e) multiple emulsions with multiple in-
ner droplets of glycerol inside one polymer droplet. (f) Emulsions are
quenched in liquid nitrogen to induce phase separation on the nanome-
ter scale. Upon solvent/glycerol extraction and freeze-drying, the single
emulsions form non-hollow microspheres (g), the double emulsions form
hollow microspheres (h), and the multiple emulsions form nanofibrous
spongy microspheres (i).

to fiber aggregation (Figure 2.3a (middle) and Figure 2.3b (middle)), and ul-

timately a smooth surface formation (Figure 2.3a (left) and Figure 2.3b (left)).

Therefore, the critical MW for nanofiber formation increases when X increases, but

Yc remains almost unchanged. This can be attributed to two reasons. First, due to

the steric hindrance, the polymer segments near the core of the SS-PLLAs have low

probability to interact with the surrounding solvent molecules. Thus, the number

of polymer-solvent contacts per polymer decreases as the arm number increases (at

a fixed MW), thereby decreasing χ. Contrary to this branching effect, longer arms

(i.e., a higher MW at a fixed arm number) would increase polymer-solvent contacts

and the χ value. Therefore, as X increases, a higher MW is needed to lower χc and

to increase χ in order to satisfy the instability requirement χ > χc for nanofiber

formation. Second, polymer crystallization stabilizes the phase separation pattern.

The crystallinity of SS-PLLA is determined by Y (crystallinity increases as Y in-
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Figure 2.3: Structural characterization of microspheres fabricated from SS-PLLA of
different X and Y.(a-c) SEM micrographs of microspheres fabricated from
(a) 2-arm PLLAs with Y= 100, 200 and 400. Scale bars: 5 µm; (b) 32-
arm PLLAs with Y= 50 and 100. Scale bars: 5 µm; (c) SS-PLLAs of
different X and Y, showing the structural transition process as X and Y
changes. Scale bars: 20 µm. (d) SEM and cross-sectional confocal images
of microspheres formed from 32-arm PLLA-100. Scale bars: 100 µm in
left top and 20 µm in the rest figures; (e) Cross-sectional confocal images
of microspheres fabricated from 4-arm PLLAs with Y= 300, 400 and 500.
Scale bars: 100 µm.

creases) Zhang and Zheng [57]. Hence, SS-PLLAs with different arm numbers must

have a similarly large Y to allow efficient crystallization for pattern stabilization.

Collectively, long polymer arms (above Yc) are needed to trigger and stabilize the

bicontinuous nano-sized pattern toward nanofiber formation. By adjusting Y, we can

easily control the nano-structure of the formed microspheres from a smooth surface,

to aggregated fibers, and finally to nanofibers.
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2.3 Micro-scale Self-Assembly

Prior to nanometer scale phase separation, SS-PLLAs phase separate at the micro-

scale during the emulsification process. Three types of micro-structures are identified:

non-hollow microspheres (MS) (Figure 2.2g), hollow microspheres (HMS) with one

or multiple pore openings on the shell (Figure 2.2h), and spongy microspheres

(SMS) with an interconnected porous structure (Figure 2.2i). This suggests that

single emulsions, double emulsions and multiple emulsions are formed, respectively

(Figure 2.2c-e). Depending on the nano-structure, six distinct types of microspheres

are formed: NF-MS, Smooth surface-MS (S-MS), NF-HMS, S-HMS, NF-SMS and S-

SMS (Figure 2.3c). The characterization of the spheres (porosity, surface area, fiber

diameter) is summarized in Table 2.2. Of particular note is the NF-SMS, which

integrates a NF and an interconnected porous structure into microspheres, with an

increasing number of pores, as the diameter increases (Figure 2.3d).
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Table 2.2: Characterization of the Microspheres Fabricated from Linear and Star-
Shaped PLLA with Varying Arm Numbersa

microspheres surface area (m2/g) porosity(%) overall density (g/cm3)

2-arm PLLA-150 1.3±0.2 10.1 1.071

2-arm PLLA-400 110.4±1.0 90.1 0.127

3-arm PLLA-150 1.9±0.5 16.7 1.020

3-arm PLLA-300 109.7±0.9 88.3 0.150

4-arm PLLA-50 4.3±1.1 25.1 0.966

4-arm PLLA-100 120.4±0.8 94.8 0.067

4-arm PLLA-300 112.3±1.4 91.9 0.104

4-arm PLLA-400 121.1±2.5 89.1 0.139

8-arm PLLA-300 118.4±1.1 95.6 0.057

16-arm PLLA-50 89.5±1.7 95.0 0.060

16-arm PLLA-100 120.8±1.3 95.2 0.062

16-arm PLLA-200 121.7±2.0 95.7 0.059

16-arm PLLA-500 118.8±1.6 94.1 0.075

32-arm PLLA-100 119.2±1.9 98.0 0.020

32-arm PLLA-600 120.8±1.3 95.6 0.056
32-arm PLLA-700 124.2±2.7 90.3 0.124
64-arm PLLA-100 111.8±2.3 97.5 0.020

64-arm PLLA-200 117.2±2.1 94.4 0.072
64-arm PLLA-400 120.7±1.5 95.2 0.062
64-arm PLLA-600 118.1±1.7 96.0 0.051
64-arm PLLA-700 115.6±1.9 91.4 0.110
aAll microspheres were fabricated according to the procedures described in the experimental

section.
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Both X and Y affects the micro-structure of the spheres. On one hand, a small Y

favors a more porous micro-structure. For example, 16-arm PLLAs transition from

MS to HMS to SMS when Y decreases from 700 to 50. 4-arm PLLAs transition

from HMS to MS when Y increases from 300 to 500. Through the cross-sectional

confocal images of these spheres (Figure 2.3e), we clearly observe the transition

process: while most of the spheres are hollow for 4-arm PLLA-300 and non-hollow

for 4-arm PLLA-500, there are both hollow and non-hollow microspheres for 4-arm

PLLA-400. On the other hand, when Y is fixed, an increased X gives rise to a more

porous structure. For instance, when Y= 100, microspheres transition from MS to

HMS to SMS as X increases from 2 to 64. We speculate that the hydroxyls of the

SS-PLLAs are responsible for the hollow/porous structure formation, because the

change of the molecular structure affects the hydroxyl density of the polymers. Here,

the hydroxyl density of SS-PLLA, denoted as OH/LLA, is calculated from the molar

ratio of hydroxyls to monomer LLA. Thus, OH/LLA = 1/Y . We hypothesize that:

1) the hydroxyl groups are required for the hollow/porous structure formation, and

2) a high OH/LLA value favors the formation of a hollow/porous structure. Two

experiments are designed to prove these hypotheses.

In the first experiment, we cap the hydroxyls of SS-PLLA prior to emulsifica-

tion/TIPS (Figure 2.4a). The hydroxyl-capping reaction turns off the polymers

capability to self-assemble into hollow microspheres. For example, 4-arm PLLA100,

which is capable of forming HMS (Figure 2.3c), assembles into non-hollow MS after

the hydroxyl capping reaction (Figure 2.5a). This finding supports our first hy-

pothesis that the hydroxyl groups on SS-PLLA are required for the hollow structure

formation. In the second experiment, we double OH/LLA without altering X or

Y (Figure 2.4b). 4-arm PLLA-400, which has a low OH/LLA value (1/400) and

forms MS (Figure 2.3c), assembles into HMS after its OH/LLA is increased to

1/200 (Figure 2.3b). 16-arm PLLA-100 (OH/LLA=1/100), which forms HMS
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(Figure 2.3c) before modification, assembles into SMS after hydroxyl doubling

(OH/LLA increased to 1/50)(Figure 2.5c). These findings support our second

hypothesis that a higher OH/LLA favors hollow/porous structure formation. In

these two experiments, the modification does not alter the nanometer scale phase

separation, which agrees with our previous discussion that the nanometer scale phase

separation is mainly a result of polymer chain-solvent interaction. Associating the

hollow/porous structure formation with the OH/LLA of the SS-PLLAs, we deter-

mine the OH/LLA threshold values for structural transition of the spheres at the

micro-scale (Table 2.3). Figure 2.5d shows a phase diagram based on these values

and the Yc values.

Table 2.3: OH/LLA* values for Linear and Star-Shaped PLLA with Varying Arm
Numbers

Arm number OH/LLA* for non-hollow to hollow OH/LLA* for hollow to spongy

2 N/A N/A
3 1/200 N/A
4 1/300 N/A
8 1/300 N/A
16 1/700 1/50
32 1/700 1/150
64 1/700 1/150

We hypothesize that the hydroxyl groups of SS-PLLA stabilize the O/W and W/O

interfaces due to the high affinity of hydroxyls with glycerol. As a result, SS-PLLA

with a higher OH/LLA favors the formation of double/multiple emulsions, which

contain more interfacial area than single emulsions. To test this hypothesis, we per-

form dissipative particle dynamics (DPD) simulations for 4, 8, and 16 arm polymers at

a variety of different arm lengths using HOOMD-Blue (http://codeblue.umich.edu/hoomd-

blue) Anderson and Glotzer [58], Groot and Warren [59], Phillips et al. [60]. For each

set of arms, simulations are run for arm lengths of L = 10, 40, 80, and 120 coarse

grained beads, linked together with harmonic springs. Systems are initialized for a
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Figure 2.4: Hydroxyl capping (a) and doubling (b) reaction on SS-PLLAs.

fixed solvent (glycerol) density of one million solvent particles randomly placed within

the simulation box at 80% volume fraction. To capture the catastrophic phase in-

version process which causes the initial encapsulation of glycerol into the polymer

solution droplets (Figure 2.6), star polymers are initialized within a thin spherical

shell at concentrations of 30%, 28%, 25%, 22%, 19%, 16%, 13%, and 10%. Depending

upon the concentration of star polymer, simulations contain between 1.1 and 1.5 mil-

lion particles. Simulations are run for at least 5 million time steps to ensure proper

equilibration, and additionally verified by running to 50 million time steps for one of

each type of drop (hollow, non-hollow, and porous). In total, over 100 independent

state points are simulated; full details can be found in the Appendix A. For all sim-

ulated state points, a transition from hollow to non-hollow is observed as L increases,

supporting the experimental data. For star-shaped polymers with long arms, the poly-

mer shell ruptures during the simulation and the glycerol mostly leaves the droplet,

with only small pockets of solvent remaining inside (Figure 2.7a,b). For star-shaped

polymers with short arms, the double emulsion is stabilized, with the hydroxyl groups

concentrated at both the O/W and the W/O interfaces (Figure 2.7c,d). By looking
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Figure 2.5: Hydroxyl density of SS-PLLA affects the micro-scale structure of micro-
spheres. a-c) SEM micrographs of microspheres fabricated from a) 4-arm
PLLA-100 before (right column) and after (left column) hydroxyl cap-
ping. b) 4-arm PLLA-200 before (left column) and after (right column)
hydroxyl doubling. c) 16-arm PLLA-100 before (left column) and after
(right column) hydroxyl doubling. The hollow-to-non-hollow transition
point is 1/300 for 4-arm PLLAs. The hollow-to-spongy transition point
for 16-arm PLLAs is 1/50. Scale bars: 100 µm on the top row, 20 µm on
the bottom row. d) The structure of microspheres as a function of arm
number and arm length. Note: This graph is based on SS-PLLA without
modification.
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at a single star-shaped polymer molecule (Figure 2.7c), we find that the star-shaped

polymer stretches its arms to reach to the interfaces, acting like a surfactant capa-

ble of stabilizing both the O/W and the W/O interfaces. Increasing the strength

of attraction between the hydroxyls and glycerol (mimicking the hydroxyl doubling

modification) forces a transition from non-hollow to hollow structures, again match-

ing the experimental data (Figure 2.5b). These results support our hypothesis that

hydroxyls can stabilize the W/O and O/W interfaces for hollow sphere formation.

In addition, for 16-arm polymers with L=10, the inner glycerol separates into multi-

ple domains (Figure 2.7e,f), consistent with the experimental finding that 16-arm

PLLA with short arms form spongy microspheres (Figure 2.3c). These simulation

results indicate that, while the catastrophic phase inversion might initially cause the

encapsulation of glycerol inside the polymer solution droplet (Figure 2.2b), the final

structure of the emulsions is determined by OH/LLA and the molecular structure

of SS-PLLAs.

2.4 Conclusion

In summary, emulsification and TIPS techniques are used to fabricate micro-

spheres from SS-PLLAs with different molecular configurations. During these pro-

cesses, phase separation on the nanometer and micrometer scales determines the final

structure of the microspheres at these two levels. The nano-scale phase separation of

SS-PLLA is dependent on Y, while the micro-scale structure is determined by X and

OH/LLA. This study demonstrates the controllable phase separation of star-shaped

polymers on both nanometer and micrometer scales for microsphere fabrication, with

great potential in broader nano- and micro-fabrication scenarios.
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Figure 2.6: Fluorescence images of different emulsion systems at different time points.
(a, b) For 16-arm PLLA-700, double emulsions (and some single emul-
sions) formed right after phase inversion (a), which transitioned into single
emulsions at 5 min (b). (c-d) For 16-arm PLLA-200, double emulsions
formed right after phase inversion (c), which were stabilized at 5 min (d).
(e, f) For 16-arm PLLA-50, multiple emulsions formed right after phase
inversion (e), stable for 5 min (f). Scale bars: 100 µm.
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Figure 2.7: DPD simulations of various star-shaped polymers and the formation of
different emulsions. For 16-arm PLLAs, as the length of the polymer
arm decreases from, the structures undergo a transition from non-hollow
(L=120, a, b) to hollow (L=40, c, d) to spongy (L=10, e, f). This happens
in a variety of polymer droplet concentrations and in other star polymer
systems with different arm numbers. The left column of images (a, c,
e) shows the polymer iso-surface, with individual hydroxyl beads on the
bottom half of the droplet shown in red. The conformation of a single
16-arm PLLA is shown in the square box. The right column (b, f, j)
shows the internal structure of the same droplet in the left, with glycerol
stained in purple. Some hydroxyls (red beads) are removed for clarity.
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2.5 Experimental section

2.5.1 Materials

Ethylene glycol (≥ 99%, Sigma-Aldrich) was dried over CaH2 and distilled just

prior to use. Glycerol (≥ 99%, Sigma-Aldrich) used as initiator was dried over 4Å

molecular sieves. Pentaerythritol and PAMAM-OH (G2-OH, G3-OH and G4-OH,

Sigma-Aldrich) were dried over P4O10 in a vacuum oven just prior to use. Tin(II) 2-

ethylhexanoate (Sn(Oct)2, 95%, Sigma-Aldrich), glycerol (≥ 99%, Sigma-Aldrich) as

solvent in emulsification, isopropyl isocyanate, 1-thioglycerol, 4-dimethylaminopyridine,

methacrylic anhydride, triethylamine, dimethyl sulfoxide (DMSO) and all other reagents

were used as received. (3S)-cis-3,6-Dimethyl-1,4-dioxane-2,5-dione (l-lactide) (Sigma-

Aldrich) was recrystallized from ethyl acetate twice and sublimated prior to use.

2.5.2 Sample Synthesis

Synthesis of Initiator N,N,N,N-tetra(2,3-dihydroxpropyl)ethane-1,2-diamine 4. Gly-

cidol (2.465 g, 33.28 mmol) was added dropwise into ethylenediamine (0.5 g, 8.32

mmol) over a period of 0.5 h at 0 ◦C. The reaction mixture was then stirred for

2 h at 0 ◦C. The product was collected and used without further purification. 1H

NMR (δ, ppm, D2O, Tetramethylsilane (TMS)): 4.11-3.81 (2H, CH OH), 3.73-3.45

(4H, CH 2OH), 2.96-2.50 (6H, CH 2N); Electrospray ionization mass spectrometry

(ESI-MS): calcd. for (C14H32O8N2 + H+): 356.4; found: 357.3.

2.5.3 Synthesis of Star-Shaped PLLA with hydroxyl end groups (SS-

PLLA-hydroxyl)

Star-shaped PLLA was prepared via ring-openning polymerization (ROP) of l-

lactide. Typical procedures employed for the preparation of 2-arm PLLAs were as

follows. To a dried glass ampule equipped with a magnetic stirring bar, ethylene
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glycol (2.7 mg, 4.34 10-2 mmol), Sn(Oct)2 (17.6 mg, 4.34 10-2 mmol), and l-

lactide (5 g, 34.7 mmol) were added. After purging six times with dry nitrogen, the

ampule was sealed under vacuum, and placed in an oil bath thermostated at 135

◦C. After 24 h, the reaction mixture was dissolved in chloroform, precipitated into

an excess of methanol. After filtration, the above dissolution-precipitation cycle was

repeated three times. After drying in a vacuum oven overnight at room temperature,

linear PLLA was obtained as a white solid (4.3 g, yield: 86.0%; Mn,GPC = 61.7

kDa, Mw/Mn = 1.38). According to similar procedures, the star-shaped PLLA were

prepared using glycerol, pentaerythritol, N,N,N′,N-tetra(2,3-dihydroxpropyl)ethane-

1,2-diamine, PAMAM dendrimer (G2-OH), (G3-OH), or (G4-OH) as the initiator,

which were denoted as 3-arm PLLA, 4-arm PLLA, 8-arm PLLA, 16-arm PLLA, 32-

arm PLLA, and 64-arm PLLA, respectively. The characterization of the obtained

polymers was summarized in Table 2.1.

2.5.4 Synthesis of SS-PLLA-isopropyl

SS-PLLA-hydroxyl (5 mmol OH, 2.500 g) was dissolved in 1,4-dioxane under stir-

ring. Isopropyl isocyanate (10 mmol, 0.850g) was then added into the solution and

the reaction was carried out at room temperature for 2 hr. The mixture was then pre-

cipitated by ethyl ether. After filtration, the above dissolution-precipitation cycle was

repeated for three times. The polymer precipitate was then dried under vacuum for 3

days at room temperature. 1H NMR (δ, ppm, CD3Cl, Tetramethylsilane (TMS)): 5.17

(-C(O)CH (CH3)O-), 4.25 (terminal C(O)-CH (CH3)-OH), 1.38 (-C(O)CH(CH 3)O-),

1.35 (terminal C(O-CH(CH 3)-OH), 4.36 (-CO-N(H)-CH (CH3)2), 1.28 (-CO-N(H)-

CH(CH 3)2).
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2.5.5 Synthesis of SS-PLLA-vinyl

SS-PLLA-hydroxyl (5 mmol OH, 2.500 g), methacrylic anhydride (10 mmol, 1.542

g), DMAP (10 mmol, 1.222 g) and TEA (10 mmol, 1.012 g) were dissolved in 1,4-

dioxane (200ml) and left overnight stirring at room temperature. The filtered solu-

tion was precipitated by adding ethyl ether. After filtration, the above dissolution-

precipitation cycle was repeated three times. The polymer precipitate was then dried

under vacuum for 3 days at room temperature. 1H NMR (δ, ppm, CD3Cl, Tetram-

ethylsilane (TMS)): 5.81-6.42 (CH 2=C(H )-), 5.17 (-C(O)CH (CH3)O-), 4.25 (termi-

nal C(O)-CH (CH3)O-), 1.38 (-C(O)CH(CH 3)O-), 1.35 (terminal C(O)-CH(CH 3)O-).

2.5.6 Synthesis of SS-PLLA-diol

SS-PLLA-vinyl was dissolved in DMSO. Under stirring, 1-thioglycerol was added

into the solution and the reaction was allowed to proceed for 2 hr. The mixture was

then precipitated by methanol. After filtration, the above dissolution-precipitation

cycle was repeated for three times. The polymer precipitate was then dried under

vacuum for 3 days at room temperature. 1H NMR (δ, ppm, CD3Cl, Tetramethylsi-

lane (TMS)): 5.17 (-C(O)CH (CH3)O-), 4.23 (-S-CH-CH (OH)-CH2(OH)), 4.30 (ter-

minal C(O)-CH (CH3)O-), 2.34-3.76 (-CO-CH 2-CH 2-S-CH-CH(OH)-CH2(OH)), 1.38

(-C(O)CH(CH 3)O-), 1.35 (terminal C(O)-CH(CH 3)O-).

2.5.7 Fabrication of Microspheres

The polymer (0.4 g) was dissolved in THF at 50 ◦C with a concentration of 2%

w/v. Under rigorous mechanical stirring (Speed 9, Fisher Science Inc.), glycerol (50

◦C) with three times volume of star-shaped PLLA solution was gradually added into

the polymer solution. After stirring for 5 min, the mixture was quickly poured into

liquid nitrogen. After 10 min, water-ice mixture (1 L) was added for solvent exchange

for 24 h. The microspheres were sieved and washed with distilled water for 8 times
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to remove residual glycerol on the sphere surfaces. The spheres were then lyophilized

for 3 days.

2.5.8 Characterization

Nuclear Magnetic Resonance (NMR) Spectroscopy. 1H NMR spectra were

recorded on an Inova 400 NMR spectrometer operated in the Fourier transform mode.

CDCl3 and D2O were used as the solvents. TMS was used as an internal reference.

Electrospray Ionization Mass Spectrometry (ESI-MS). ESI-TOF mass spec-

tra were acquired on a LCT mass spectrometer from Micromass (Manchester, U.K.).

This instrument combines an electrospray ionization source with a TOF (time-of-

flight) mass analyzer. The LCT mass spectrometer was used in the positive ioniza-

tion mode for the experiments. Gel Permeation Chromatography (GPC). The

molecular weights (MWs) and MW distributions of the polymers were determined

by GPC, which uses a series of three linear Styragel columns (HT2, HT4, and HT5).

The eluent was THF at a flow rate of 1.0 mL/min. A series of low polydispersity

polystyrene standards were employed for the GPC calibration. Scanning Electron

Microscopy (SEM). The surface morphology of microspheres was observed using

SEM (Philips XL30 FEG). The samples were coated with gold using a sputter coater

(DeakII, Denton vacuum Inc) for 120s. During the process of gold coating, the gas

pressure was kept at 50 mtorr, and the current was 40 mA. Samples were analyzed at

10 kV. Surface Areas. The surface areas of various microspheres were measured via

N2 adsorption experiments at liquid nitrogen temperature on a Belsorp-Mini adsorp-

tion apparatus (Bel Japan Inc., Japan) after evacuating samples at 25 ◦C for 10 h

(< 7 10−3 Torr). The surface areas were calculated from a Brunauer-Emmett-Teller

(BET) plot of adsorption/desorption isotherm using adsorption points in the P/P0

range of 0.1-0.3 (BELSORP-mini analysis software). Porosity ε. The porosity of

the microspheres was calculated from ε = 1-Dp/D0, where Dp is the overall density
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of the polymer microsphere aggregation and D0 is the density of the solid polymer.

Dp was determined by: Dp = 4m/(π42h), where m, d, and h are mass, diameter,

and thickness, respectively, of the microspheres in a disc shaped container. Aver-

age Fiber Diameter and Length. The average fiber diameter and the length

between two conjunctions (unit length) in the microspheres were determined by cal-

culating fiber diameters and lengths from SEM mocrographs, where 100 measure-

ments of fibers between noticeable conjunctions were taken throughout the matrix.

Confocal Imaging. The internal structure of NF hollow/spongy microspheres was

observed using confocal laser scanning microscopy (CLSM) (Nikon Eclipse C1). The

FITC-conjugated BSA was deposited throughout the nanofibrous hollow microspheres

and observed under confocal microscopy. The emulsion structure was also observed

through CLSM. Glycerol was stained with FITC while the polymer solution was not

labeled. After phase inversion, the emulsions were stirred for i) 0 min and ii) 5min

before added into liquid nitrogen for phase separation at -76 ◦C for 4 hours. The

specimen was cut into slices with a thickness of 100 m at -20 ◦C using a Cryostat and

was quickly observed.
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CHAPTER III

From Nanofibrous Hollow Microspheres to

Nanofibrous Hollow Discs and Nanofibrous Shells

3.1 Introduction

Micro- and nano-sized spheres and hollow spheres are utilized in a wide variety

of applications, especially for protecting delicate chemical and biological molecules as

well as for controlling their release in the biomedical field Langer [47], Parthasarathy

and Martin [61], Cabral et al. [48]. Recently, our laboratory developed injectable

polymeric nanofibrous hollow microspheres and demonstrated their advantages over

traditional cell carriers for knee cartilage regeneration in rabbits Liu et al. [1]. How-

ever, the scientific mechanisms of the formation of the novel nanofibrous hollow micro-

spheres were poorly understood and they could only be generated from a specifically

synthesized star-shaped poly(L-lactic acid) (SS-PLLA), but not from linear polymers

Liu et al. [1]. Therefore, the star-shaped molecular structure was suspected to play

an important role in the formation of nanofibrous hollow microspheres. In this study,

we present a new theory of nanofibrous hollow structure formation. Specifically, we

hypothesized: (1) increasing the affinity of a polymer solution (including linear poly-

mers such as a linear PLLA) to the emulsion medium might initiate and stabilize dou-

ble emulsion formation leading to hollow object formation; (2) the double-emulsion
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process did not interfere with a phase-separation/self-assembly process, which could

result in nanofiber formation Ma and Zhang [54], Ma [5]. The following experiments

were carried out to test the new hypotheses and to develop new techniques to as-

semble a linear polymer not only into nanofibrous hollow microspheres, but also into

nanofibrous hollow discs and nanofibrous shells.

3.2 Results and Discussions

In one approach, a mixed solvent system (water/THF mixture instead of THF

alone) was chosen to dissolve a linear PLLA to form a PLLA solution with a higher

affinity to glycerol (used as a emulsion medium here) than THF alone for the fabrica-

tion of nanofibrous hollow microspheres. A large amount of glycerol (with a glycerol

volume at least three times larger than that of the polymer solution) was gradually

added into the rigorously stirred polymer solution. Initially, glycerol was the dis-

persed phase in the polymer solution. Passing the phase-inversion point, while there

was glycerol encapsulated inside the polymer solution spheres, the excessive glycerol

became the new continuous phase. A water-in-oil-in-water (W/O/W) type double

emulsion (glycerol-in-PLLA/THF/H2O-in-glycerol) was generated. Upon quenching

the double emulsion in liquid nitrogen and the subsequent extraction of the solvent

and glycerol, nanofibrous hollow microspheres were obtained. As demonstrated in our

previous publication,4 using the linear PLLA in a single solvent (THF alone), nanofi-

brous microspheres without a hollow core were obtained (Figure 3.1a&d). When the

H2O/THF ratio was 1:20, certain portion of the nanofibrous microspheres had a hol-

low core (Figure 3.1b). When the H2O/THF ratio was increased to 1:10, essentially

all the formed microspheres were nanofibrous hollow microspheres (Figure 3.1c&e).

All the above-formed microspheres (hollow or not) were nanofibrous (Figure 3.1f),

indicating that the double emulsion process (to form microspheres and their hollow

cores) and the phase-separation/self-assembly (to form the nanofibers) processes do
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Figure 3.1: Nanofibrous microspheres (with diameter ranging from 60 to 90 µm) from
emulsion of 20 ml 2% PLLA/THF solution (a, d), PLLA/THF/H2O so-
lution with H2O/THF ratio of 1:20 (b), and PLLA/THF/H2O solution
with H2O/THF ratio of 1:10 (c, e) in 100 ml glycerol under stirring for
10 sec. All of them had a nanofibrous structure (f).

not interfere with one another.

In the previous study Liu et al. [1], the SS-PLLA could be considered to be an

internal surfactant or self-emulsifier because the core of the SS-PLLA contains un-

reacted hydroxyl groups, increasing the affinity to glycerol. In the present study,

water likely functioned as an external surfactant since it has affinity to both THF

and glycerol, reducing the surface energies associated with the interfaces. By properly

choosing a H2O/THF ratio (e.g., 1:10), the double emulsion could be stabilized, lead-

ing to essentially complete nanofibrous hollow microsphere formation. Too low a ratio

of H2O/THF (e.g., 1:20) might not be sufficient and therefore the double emulsion

was less stable, resulting in fewer nanofibrous hollow microspheres (Figure 3.1b).

It should be pointed out that there is an upper limit for the amount of water that

can be added into the mixed solvent system (less than 20% for a 2% PLLA solution),

given that water is a non-solvent for PLLA.

In the second approach, a glycerol derivative, Diacetin, was added into the poly-

mer solution as an emulsifier prior to the emulsification procedure. Diacetin is a
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mixture of glycerol 1,2-diacetate, glycerol 1,3-diacetate and some glycerol triacetate,

i.e. esters of glycerol and acetic acid. Diacetin is biocompatible, which is widely used

in food and pharmaceutical formulations Lourdin et al. [62], and is miscible with

PLLA/THF solution as well as glycerol. Thus, we rationalized that Diacetin would

preferentially accumulate at the two spherical interfaces formed during the phase in-

version to stabilize the double emulsion. The formation of nanofibrous hollow micro-

spheres by this method was observed under SEM when 0.05% v/v (10 µL) of Diacetin

was added (Figure 3.2a, b). The internal structure was examined using confocal

laser scanning microscopy, confirming hollow core formation (Figure 3.2c). The

fabricated linear PLLA nanofibrous hollow microspheres using these two approaches

were similar in structure to those previously generated from SS-PLLA, except that

there was usually one hole on the spherical shells instead of multiple holes observed

on those formed from SS-PLLA Liu et al. [1]. This could stem from the fact that

SS-PLLA served as a self emulsifier, with the glycerol-philic hydroxyl groups not only

stabilizing the two main spherical interfaces defining the hollow microspheres but also

the holes on the spherical shells. The multiple holes were largely circumvented by

the use of a linear PLLA and the use of either a solvent mixture or the addition of

a separate emulsifier (e.g., Diacetin). The single hole on the spherical shell of the

nanofibrous hollow spheres formed from the linear PLLA was likely resulted from the

glycerol neck connecting the encapsulated glycerol core and the continuous glycerol

phase upon phase inversion.

Interestingly, when the emulsifier amount was increased to 0.15%, most of the

hollow spherical shells folded or collapsed to some degree (Figure 3.2d, e, f). When

the amount of the emulsifier was further increased to 0.3%, the hollow microspheres

transitioned into hollow discs (Figure 3.2g, h, i). Despite the change of the overall

shape, the NF structure was maintained, once again indicating that the emulsification

process and phase-separation/self-assembly process do not interfere one another. In
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addition to being an emulsifier, Diacetin has been used as a plasticizer to soften rigid

plastics Lourdin et al. [62]. The addition of Diacetin into the polymer solution lowers

the solution viscosity. However, a high polymer solution viscosity is needed to stabilize

the spherical emulsion Garti and Aserin [63]. The intermediate level of Diacetin might

lead to regional softening and the formation of weak spherical polymer shells, which

tend to fold and collapse through the softened regions. The nanofibrous hollow disc

formation could also be attributed to the Diacetins softening effect. The addition

of a larger amount of Diacetin likely softens the entire spherical polymer solution

shells and change the rheological properties, allowing the coordinated deformation

from spheres into discs under the shear stresses of vigorous stirring. These results

therefore have demonstrated that by adjusting the amount of emulsifier, we are not

only able to fabricate nanofibrous hollow microspheres but also nanofibrous hollow

discs using a commercial linear PLLA.

In the third approach, we also added the emulsifier Diacetin into the polymer

solution to stabilize the generated double emulsion. However, instead of varying the

amount of the emulsifier, we utilized the thermodynamic metastability of the double

emulsion and the associated structural transition over time to obtain the desired mi-

crocarrier structures. We first demonstrated that variable size of the openings on the

nanofibrous hollow microspheres could be achieved. Under the nanofibrous hollow

microsphere-forming conditions (with 0.05% of Diacetin), we collected the microcar-

riers at different stirring times, from 10 sec to 1 min, 5 min, 10 min, and 1 hour.

It was found that the size of the pore openings increased as stirring time increased

(Figure 3.3). When the stirring time was 10 sec, the size of pore openings on the

microspheres was about 20 m on average when the average microsphere diameter was

in the range of 60 to 90 µm (Figure 3.3a). However, when the stirring time was 1

min, the average size of pore openings increased to about 25 µm for microspheres in

the same size range (Figure 3.3b). When the stirring time was 5 min, the hollow
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Figure 3.2: SEM images of nanofibrous microcarriers (with diameter ranging from 60
to 90m) prepared from an emulsion of 20 ml 2% PLLA/THF solution and
0.05% (10 µl) Diacetin (a&b); 0.15% (30 µl) Diacetin (d&e); and 0.3%
(60 µl) Diacetin (g&h) in 100 ml glycerol under stirring for 10 sec. Their
internal structure was observed under confocal microscopy after being
stained with FITC-tagged BSA(c, f, i).
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Figure 3.3: Nanofibrous microcarriers with various structures prepared from emulsion
of 20 ml 2% PLLA/THF solution with 0.05% Diacetin in 100 ml glycerol
under stirring for: 10 sec (a); 1 min (b); 5 min (c); 10 min (d) and 1 hr(e).

microspheres became more like bowls (nanofibrous hollow hemispheres) with a sig-

nificantly larger opening size of about 63 µm (Figure 3.3c). When the stirring time

was extended to 10 min, shallow nanofibrous shells were obtained (Figure 3.3d).

When the stirring time was further extended to 1 hour, smaller and essentially spher-

ical nanofibrous particles were formed, most of which do not have a hollow core

(Figure 3.3e).

There were two possible key factors that contributed to the structural transition

from small opening size to larger opening size of the nanofibrous hollow microspheres,
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and later to nanofibrous shallow shells, and smaller nanofibrous non-hollow micro-

spheres. One was likely the softening effect of Diacetin, which allowed for easier

shape change. The other factor is the thermodynamic instability or metastability

of the hollow microspheres. The higher system free energy due to the existence of

the two interfaces (between core and shell, and between shell and the outer medium)

likely drove the reduction of the interfacial areas. However, Diacetin likely reduced the

free energy difference and substantially slowed down the shape change process. With

0.05% emulsifier and vigorous stirring, the originally co-centric spherical polymer so-

lution shell and the encapsulated glycerol core might slowly move off-center away

from each other to reduce the interfacial areas. As they moved off center, the size of

the neck connecting the encapsulated glycerol and the surrounding glycerol increased,

and therefore the size of the generated openings on the hollow microspheres increased.

Once passing the hollow hemisphere stage, the polymer solution changed into shallow

shells. Given a long enough time, these polymer solution domains transitioned into

the more stable (lower energy) smaller non-hollow microspheres (equivalent to the

escape of the initially encapsulated glycerol core and the healing of the hollow shell

into a sphere). The structural changes of the second and third approaches (varying

emulsifier content and stirring duration before quenching the polymer solution) are

summarized in Figure 3.4. However, varying the stirring time was less effective in

the first approach (data not shown), probably because the addition of water had little

effect on the rheological properties of the polymer (water is not a solvent or effective

plasticizer for PLLA).

Biomaterials physical shape and structural feature size on the micro and nano

scales are increasingly recognized to play important roles in their function as cell car-

riers for tissue engineering Liu et al. [1], Ma [5], Stevens and George [64], Mitragotri

and Lahann [65], Beachley and Wen [66], McGuigan et al. [67] and as vehicles for

controlled or targeted therapeutic delivery Cabral et al. [48], Peer et al. [68], Wang
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Figure 3.4: A schematic illustration summarizing the structural variations of nanofi-
brous microcarriers in response to different emulsifier content and emul-
sification duration.

et al. [69], Lee et al. [70], Woodrow et al. [71], Utada et al. [72], Im et al. [73]. Re-

cently, novel nanofibrous hollow polymer microspheres have been developed for the

first time in our laboratory and demonstrated to be an excellent cell carrier for carti-

lage regeneration Liu et al. [1]. However, the nanofibrous hollow microspheres could

only be self-assembled from a star-shaped polymer, which was synthesized through

a costly and more time-consuming process than commercially available linear poly-

mers. In this work, we formed a generalized theory of hollow structure formation in

nanofibrous objects and developed techniques to fabricate nanofibrous hollow micro-

spheres using a conventional linear PLLA for the first time. In addition, we developed

techniques to control the open hole size on the nanofibrous hollow microspheres. Fur-

thermore, we developed new and facile fabrication techniques to generate nanofibrous

hollow discs and nanofibrous shells for the first time. These are important advances

in the fabrication of complex nano/micro materials. The new microcarriers will be

evaluated for applications in tissue regeneration and biomolecule deliveries in future
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studies.

While this theory has been supported by the data from PLLA, can other poly-

mers be utilized to generate nanofibrous hollow micro objects? We have found that

Nylon and polyacrylonitrile (PAN) can also be fabricated into nanofibrous materials

via phase-separation (Figure 3.5). Using our technology developed from PLLA, we

have experimentally demonstrated that both Nylon and PAN can be fabricated into

nanofibrous microspheres (Figure 3.6a-d) and nanofibrous hollow microspheres or

shells (Figure 3.6e-h), supporting our new generalized hypotheses. When solvents

that do not allow nanofibrous structure formation are chosen, we can also use our

techniques to fabricate hollow micro objects that are not nanofibrous (Figure 3.6i-

l), supporting our hypothesis that the phase-separation process (nanofiber formation)

and the hollow object formation process do not interfere with one another. In ad-

dition, we have demonstrated that the solvent exchange process (using ice water to

replace organic solvent) does not affect the nanofibrous structure (comparing Fig-

ure 3.7), which should have formed during the phase-separation process before the

solvent exchange process. The above supplementary data are consistent with the new

hypotheses and have expanded the polymer types for nanofibrous hollow micro object

fabrication.

In addition to biomolecule release and tissue regeneration, micro- and nano-

particles have found a wide variety of applications in electronic displays Comiskey

et al. [49], photonic crystal preparation Wijnhoven and Vos [50], self-healing struc-

tural materials White et al. [51], separation and catalysis Svec and Fréchet [52],

highly sensitive protein detection Nam et al. [74] and so on. The new theory may be

utilized to generate nanofibrous hollow spheres/discs/shells from additional polymers

and materials (as corroborated by our supplementary data in the Supporting Infor-

mation), which may potentially be employed in biocatalysis, separation, cosmetics,

food additives, and other applications.
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Figure 3.5: (a-c)SEM micrographs of Nylon matrices fabricated by thermally induced
phase separation from 2 % Nylon solution in formic acid (a) or in a sol-
vent mixture of formic acid and DMF with a mixing ratio of 3:1 (b) or
1:1 (c).(d-f)SEM micrographs of PAN matrices fabricated by thermally
induced phase separation from 2 % PAN solution in DMSO (d) or in
solvent mixture of DMSO and H2O with a mixing ratio of 9:1 (e) or 7:1
(f).
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Figure 3.6: SEM micrographs of: NF-MS fabricated from Nylon (a,b) and PAN (c,d);
NF-HMS fabricated from Nylon (e,f) and PAN (g,h); and SW-HMS fabri-
cated from Nylon (i,j) and PAN (k,l) via surfactant-assisted emulsification
technique.
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Figure 3.7: SEM micrographs of nanofibrous micro-particles prepared by stirring
PLLA/THF solution in liquid N2 with (a, b) or without (c, d) subse-
quent solvent exchange with ice water prior to freeze-drying.
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3.3 Experimental

3.3.1 Materials

Poly(l-lactic acid) (PLLA) with an inherent viscosity of approximately 1.6 was

purchased from Boehringer Ingelheim (Ingelheim, Germany). Tetrahydrofuran (THF),

glycerol, Diacetin (a mixture of glycerol 1, 2- diacetate, glycerol 1,3-diacetate and

some glycerol triacetate) were purchased from Aldrich Chemical (Milwaukee, WI).

Deionized water was obtained with a Milli-Q water filter system from Millipore Cor-

poration (Bedford, MA).Polyacrylonitrile (PAN) (with an average molecular weight

of 150k Da) and Nylon6/6 were purchased from Aldrich Chemical (Milwaukee, WI).

Formic acid, dimethylformamide (DMF), dimethyl sulfoxide (DMSO), silicon oil and

olive oil were purchased from Aldrich Chemical (Milwaukee, WI) and used as received.

Deionized water was obtained with a Milli-Q water filter system from Millipore Cor-

poration (Bedford, MA). Poly(ethylene glycol)-block-poly(propylene glycol)-block-

poly(ethylene glycol) (PEO-PPO-PEO) with Mn of 5800 Dalton and viscosity of

350000 cps (60 ◦C) was purchased from Aldrich Chemical (Milwaukee, WI) and used

as received. Poly(l-lactic acid) (PLLA) with an inherent viscosity of approximately

1.6 was purchased from Boehringer Ingelheim (Ingelheim, Germany). Tetrahydrofu-

ran (THF) was purchased from Aldrich Chemical (Milwaukee, WI).

3.3.2 Surfactant-free emulsification using solvent mixture

In the first approach, a mixture of THF and H2O with different mixing ratios

(H2O/THF = 1:20 and 1:10, v/v) was used as the solvent to prepare the PLLA

solutions at 50◦C with a concentration of 2.0% (wt/v). Under rigorous mechanical

stirring (speed 7, MAXIMA, Fisher Scientific Inc.), glycerol (50◦C) with a volume

at least three times larger than that of PLLA solution was gradually added into the

polymer solution, and the stirring continued for another 5 min. The mixture was
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then quickly poured into liquid nitrogen. After 10 min, ice/water mixture was added

for solvent exchange for 24 h. The microspheres were then sieved and washed with

distilled water for a few times to remove residual glycerol. The microspheres were

then lyophilized for 2 days.

3.3.3 Surfactant-assisted emulsification

In the second and third approaches, 0.4 gram of PLLA was dissolved in 20 ml

of THF at 50◦C to achieve a concentration of 2.0% (wt/v). Different amounts of

Diacetin (0.05%, 0.15% or 0.3% (v/v)) were then added into the polymer solution.

Under rigorous mechanical stirring (speed 7, MAXIMA, Fisher Scientific Inc.), glyc-

erol (50◦C) with a volume at least three times larger than that of the PLLA solution

was gradually added into the polymer solution, and the stirring continued for another

10 sec, 1 min, 5 min or 10 min or longer. The mixture was then quickly poured into

liquid nitrogen. After 10 min, ice/water mixture was added for solvent exchange

for 24 h. The microspheres were then sieved and washed with distilled water for

a few times to remove residual Diacetin and glycerol. The microspheres were then

lyophilized for 2 days.

3.3.4 Preparation of Nylon and Polyacrylonitrile (PAN) Nanofibers

Nylon6/6 was dissolved in pure formic acid and formic acid/dimethylformamide

(DMF) solvent mixture with a mixing ratio of 3:1 or 1:1 (v/v) to make a 2% (wt/v)

polymer solution at 80◦C. The polymer solutions were quickly transferred into liq-

uid nitrogen to induce phase separation. After 10 min, the frozen polymer gels were

immersed into ice water for solvent exchange for 4 h. The polymer foams were subse-

quently frozen at -80◦C for 2 h and freeze-dried overnight. Based on SEM observation,

Nylon in formic acid/DMF solvent mixture was able to phase separate into nanofibers

when the mixing ratio was 3:1 v/v. Polyacrylonitrile (PAN) was dissolved in pure
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DMSO and DMSO/H2O solvent mixture with a mixing ratio of 9:1 or 7:1 (v/v) to

make a 2% (wt/v) polymer solution at 80 ◦C. The polymer solutions were quickly

transferred into liquid nitrogen to induce phase separation. After 10 min, the frozen

polymer gels were immersed into ice water for solvent exchange for 4 h. The polymer

foams were then frozen at -80◦C for 2 h followed by freeze-drying overnight. Based on

SEM observation, we found that a solvent mixture of DMSO/H2O with a mixing ratio

of 9:1 (v/v) allowed PAN solution to phase separate into nanofibers. The nanofibers

from both Nylon and PAN systems have diameters in the range of 50 to 500 nm.

3.3.5 Preparation of Nylon and PAN Nanofibrous Microspheres (NF-MS)

Nylon6/6 was dissolved in a mixture of formic acid and DMF to form a 2.0%

(wt/v) polymer solution at 50 ◦C. The mixing ratio of formic acid to DMF was chosen

to be 3:1 (v/v) to allow for nanofiber formation. Under rigorous mechanical stirring

(speed 7, MAXIMA, Fisher Scientific Inc.), olive oil (50 ◦C) was gradually added

into the polymer solution, and the stirring continued for 1 more min. The mixture

was then quickly poured into liquid nitrogen. After 10 min, ice/water mixture was

added for solvent exchange for 24 h. The microspheres were then sieved and washed

with hexane once, ethanol once and distilled water for 4 times. The microspheres

were then lyophilized for 2 days. SEM observation revealed that the obtained Nylon

microspheres were composed entirely of nanofibers. PAN NF-MS were fabricated

through a similar emulsification and phase separation process. PAN was dissolved in

a mixture of DMSO and deionized water (with a mixing ratio of DMSO:H2O = 9:1,

v/v) to form a 2.0% (wt/v) polymer solution at 50◦C. Under the same mechanical

stirring conditions (speed 7, MAXIMA, Fisher Scientific Inc.), silicon oil (50 ◦C) was

gradually added into the polymer solution and the stirring continued for 1 more min.

The mixture was then quickly poured into liquid nitrogen. After 10 min, ice/water

mixture was added for solvent exchange for 24 h. The microspheres were then sieved
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and washed with hexane once, ethanol once and distilled water for 4 times. The

microspheres were then lyophilized for 2 days. SEM observation confirmed that PAN

NF-MS were created.

3.3.6 Preparation of Nylon and PAN Nanofibrous Hollow Microspheres

(NF-HMS)

Nylon NF-HMS were fabricated the same way Nylon NF-MS were made, except

that 0.2% (wt/v) surfactant poly(ethylene glycol)-block-poly(propylene glycol)-block-

poly(ethylene glycol) (PEO-PPO-PEO) was added into the Nylon polymer solution

(2% wt/v Nylon in formic acid/DMF mixture with a mixing ratio of 3:1 v/v) prior

to the emulsification and phase separation steps. SEM observation revealed a hollow

structure formation and an opening on the hollow shell. Similarly, 0.2% (wt/v) PEO-

PPO-PEO was added into the PAN polymer solution (2% wt/v PAN in DMSO/H2O

mixture with a mixing ratio of 9:1) before the emulsification and phase separation.

With this formulation, PAN NF-HMS were formed.

3.3.7 Preparation of Nylon and PAN Solid-walled Hollow Microspheres

(SW-HMS)

Nylon solid-walled (with smooth wall surface) microspheres (SW-HMS) were fab-

ricated the same way as Nylon NF-HMS, except that the solvent to dissolve Nylon

was formic acid alone (2% wt/v Nylon in formic acid). SEM observation revealed the

formation of Nylon SW-HMS. Similarly, PAN SW-HMS were created by emulsifying

2% (wt/v) PAN in DMSO under the same emulsification process that PAN NF-HMS

were fabricated. The formation of PAN SW-HMS was confirmed by SEM observation.
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3.3.8 Phase separation of PLLA in liquid N2 with solvent exchange

PLLA was dissolved in THF at 50◦C with a concentration of 2.0% (wt/v) and

poured into liquid N2 under rigorous mechanical stirring (speed 7, MAXIMA, Fisher

Scientific Inc.). After 10 min, ice/water mixture was added for solvent exchange

for 24 h. The micro-particles were then collected and lyophilized for 1 day. SEM

observation showed the same nanofibrous structure as that formed within the poly-

mer solution/glycerol emulsions. Therefore, the presence of glycerol during phase

separation did not affect the nanofiber formation.

3.3.9 Phase separatioin of PLLA in liquid N2 without solvent exchange

PLLA was dissolved in THF at 50◦C with a concentration of 2.0% (wt/v) and

poured into liquid N2 under rigorous mechanical stirring (speed 7, MAXIMA, Fisher

Scientific Inc.). After 10 min, the frozen polymer gels were lyophilized for 1 day. SEM

observation revealed the formation of the same nanofibrous structure without the

solvent exchange step as that with the solvent exchange step, which is also the same

nanofibrous structure as from the polymer solution/glycerol emulsion. These results

showed that the solvent exchange process did not affect the nanofiber formation.

3.3.10 Observation

The morphologies of the microspheres, discs or shells were examined using SEM

(Philips XL30 FEG) with an accelerating voltage of 10 kV. The samples were coated

with gold for 120 s using a sputter coater (DeskII, Denton vacuum Inc). The internal

structure of the spheres/discs was examined using confocal laser scanning microscopy

(CLSM) (Nikon Eclipse C1). FITC-conjugated BSA was adsorbed on the nanofibrous

microcarriers to visualize their structures under confocal microscopy.
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CHAPTER IV

Injectable Peptide Decorated Functional

Nanofibrous Hollow Microspheres to Direct Stem

Cell Differentiation and Tissue Regeneration

4.1 Introduction

Stem cells are an excellent cell source for engineering human tissue substitutes

because of their fast proliferation rate and wide differentiation potential Caplan [75].

To harvest the regenerating potential of the stem cells, advanced materials should be

designed to present the key signals of the natural cellular microenvironment to the

stem cells and direct their differentiation Wei and Ma [76]. Growth factors (GFs) are

critical chemical signals in the extracellular matrix (ECM), which are activated during

tissue development or repair to regulate cell migration, adhesion, proliferation, and

differentiation Chen et al. [77], Ramirez and Rifkin [39], Epstein et al. [38]. To effec-

tively regulate stem cells, GFs should reach the cells without denaturing and remain

there for a sufficient time period Chen et al. [40]. Therefore, controlled spatiotempo-

ral presentation of GFs is desired in regulating stem cells for tissue regeneration Wei

et al. [41, 42]. Tethering GFs on biomaterials is a promising strategy to deliver sus-

tained and localized GF signals to cells Masters [78], McCaffrey et al. [79], Ruppert

et al. [80]. Similar to ECM where GFs such as Transforming Growth Factor-1 (TGF-
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β1) and Bone Morphogenetic Protein-2 (BMP-2) are bound and localized Masters

[78], McCaffrey et al. [79], Ruppert et al. [80], synthetic scaffolds may also be teth-

ered with GFs to deliver sustained signals to the local cells. The immobilization of

GFs could slow down their degradation/internalization rate Kuhl and Griffith-Cima

[81]. Compared to the delivery of soluble GFs through adsorption or encapsulation

into biodegradable polymers Langer and Folkman [82], Hossain et al. [83], covalent

immobilization may likely reduce burst release that might cause toxicity to cells Zhao

et al. [84], Huang and Brazel [45], and prevent GF diffusion to unintended surround-

ing tissues, which might cause complications Cahill and Claus [85]. However, the

conformation of GFs could be compromised during the covalent binding reactions,

resulting in reduced bioactivity Merrett et al. [86], Hodneland et al. [87]. Alterna-

tively, covalently tethering GF-mimicking short peptides onto biomaterials is likely

advantageous Chan et al. [88]. These GF-mimicking peptides, derived from GFs or

discovered by screening techniques, are able to recognize the corresponding GF recep-

tors, trigger associated signal transduction and lead to similar cell responses to those

by the native GFs D’Andrea et al. [89], Tashiro et al. [90], Place et al. [91], Suzuki

et al. [92], Aoki et al. [93], Basu et al. [94], Mittal et al. [95]. Different from GFs

which require a tertiary structure for activity, these GF-mimicking peptides typically

have a substantially smaller molecular size and a linear structure, whose bioactivity

can be well retained after chemical reactions Suzuki et al. [92], Aoki et al. [93], Mit-

tal et al. [95], Kim et al. [96]. However, the use of these GF mimics for stem cell

regulation and tissue regeneration remains largely unexplored Suzuki et al. [92], Kim

et al. [96] because of the lack of appropriate ways to present them on 3D scaffolds.

For example, Cytomodulins (CM) are a family of TGF-β1 mimicking peptides. Like

TGF-β1, CM can enhance the expression of collagen I and improve wound healing

effect of fibroblasts Basu et al. [94], Mittal et al. [95]. However, unlike TGF-β1, the

soluble form of CM peptides cannot effectively induce chondrogenic differentiation
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of stem cells Renner and Liu [97]. We hypothesized that ECM-mimicking scaffolds

would enhance the bioactivity of bound GF-mimicking peptides in directing stem cell

differentiation. This study was designed to develop an advanced injectable ECM-

mimicking scaffold and evaluate their effect in enhancing bioactivity of the bound

GF-mimicking peptides. To mimic the physical structure of collagen in extracellular

matrix (ECM), synthetic nanofibers have been developed, which are found to improve

stem cell attachment, proliferation, and differentiation along various lineages when

appropriate biochemical cues such as GFs are present Woo et al. [98], Zhang et al.

[53]. Therefore, we specifically hypothesized that nanofibers are excellent substrates

for GF-mimicking peptides, and the conjugation may synergize the geometrical cues

and the chemical cues to enhance the efficacy of GF-mimicking peptides. Current

approaches to fabricating functional nanofibers include the self-assembly of peptide

amphiphiles into nanofibers Genové et al. [99], electrospinning of nanofibers from

functional polymers Yoo et al. [100], and surface modification of nanofibers after

electrospinning Yoo et al. [100]. However, these approaches toward tissue engineer-

ing applications have been primarily limited to in vitro studies due to the difficulty

in generating controllable 3D pore structures Yoo et al. [100]. While novel phase-

separation techniques have been shown capable of generating nanofibrous materials

with well-controlled 3D pore structure Chen and Ma [101], Wei and Ma [7], these

porous 3D scaffolds are not injectable and cannot be used for minimally invasive

procedures to regenerate small and irregularly shaped tissue defects. Our laboratory

recently developed injectable polymeric nanofibrous hollow microspheres (NF-HMS)

Liu et al. [1], which, however, lack functional groups for conjugating biomolecules.

In this work, we successfully synthesized a novel functional graft copolymer that can

self-assemble into functional nanofibrous hollow microspheres (FNF-HMS) and con-

jugate biomolecules such as peptides. The NF structure of the FNF-HMS presents

the geometrical features of collagen in natural ECM, which may enhance the efficacy
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of GF signals in stem cell differentiation Hu et al. [102]. Two different GF mim-

ics, a TGF-β1 mimicking peptide CM10 and a BMP-2 mimicking peptide P24, were

separately conjugated onto the novel FNF-HMS, and were evaluated for enhancing

cartilage and bone regeneration, respectively.

4.2 Results

4.2.1 Functionalizing PLLA-based copolymers with acrylic groups

Poly(l-lactic acid) (PLLA) is among the few Food and Drug Administration

(FDA) approved synthetic materials for certain human clinical applications (e.g.

degradable sutures, stents, wound dressings), which has been widely used as syn-

thetic polymeric materials in scaffold fabrication Zhang and Ma [103], Yang et al.

[104]. However, PLLA lacks functional groups for biomolecule conjugation. Here,

we synthesized a series of PLLA-based graft copolymers poly(l-lactic acid)-graft-

poly(hydroxyethyl methacrylate) (PLLA-g-PHEMA) to introduce PHEMA blocks to

PLLA for the conjugation of peptides or proteins. The schematic synthesis pro-

cedure is illustrated in Figure 4.1. Briefly, hydroxyethyl methacrylate (HEMA)

was first used as the initiator for the ring-opening polymerization of L-lactide to

synthesize macromonomer MACRO-PLLA. The macromonomer MACRO-PLLA was

then copolymerized with HEMA (which served as monomers in this step) through

free radical polymerization to synthesize PLLA-g-PHEMA Liu and Ma [105]. The

hydroxyls in PHEMA block were then converted into acrylics through their reac-

tion with methacrylic anhydride using DMAP/TEA chemistry, forming PLLA-g-

PHEMA-acrylic. The chemical structures of these materials were confirmed by 1H-

Nuclear Magnetic Resonance spectroscopy (Appendix B). Advantageously, PLLA-

g-PHEMA-acrylic is also biodegradable. Therefore, we have successfully synthesized

biodegradable and functionalized PLLA-based copolymers for the fabrication of func-
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tional NF-HMS (FNF-HMS).

4.2.2 Fabrication of FNF-HMS from PHEMA-g-PLLA-acrylic

An important advantage of the newly-synthesized functional block copolymers is

their capability to self-assemble into advanced structures at multiple scales. When

subjected to emulsification, phase separation, solvent extraction and freeze-drying

processes Liu et al. [1], the block copolymers self-assembled into functional nanofi-

brous hollow microspheres (FNF-HMS) (Figure 4.2). Experimentally, the polymer

was first dissolved in tetrahydrofuran (THF) at a concentration of 2% w/v at 50 ◦C.

Glycerol was then added gradually to emulsify the polymer solution into liquid mi-

crospheres via rigorous stirring at 50 ◦C. Because a relative large amount of glycerol

(more than three times the volume of the polymer solution) was gradually added into

the rigorously stirred polymer solution, the initially dispersed phase of glycerol in the

polymer solution transitioned into the continuous phase. This phase inversion led to

the formation of water-in-oil-in-water (W/O/W) type double emulsion (glycerol-in-

Polymer/THF-in-glycerol) (Figure 4.2a). Although double emulsions are generally

unstable, the block copolymers were believed to self-assemble to lower the associ-

ated free energy at the W/O/W interfaces and stabilize the double emulsions. Upon

quenching in liquid nitrogen and the subsequent extraction of the solvent and glyc-

erol, double emulsions became hollow microspheres. The structure of the formed

microspheres was characterized using scanning electron microscopy (Figure 4.2b-

d). At the nano-scale, the copolymers were thermally induced to phase separate

into nanofibers (diameters ranging from 50 to 500 nm), mimicking the ECM collagen

fiber structure. At the micro-scale, FNF-HMS had a hollow structure with an open-

ing on the shell (which is approximately 20 m in diameter). This hollow structure

can not only lower the density of the scaffold for faster degradation, but also facil-

itate cell seeding inside the microspheres for more robust tissue formation. At the
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Figure 4.1: Synthesis route of functional PLLA-based block copolymer PHEMA-g-
PLLA-acrylic.
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Figure 4.2: a) A schematic illustration showing the emulsification and phase separa-
tion techniques to fabricate FNF-HMS. b-d) SEM graphs of FNF-HMS
fabricated from PHEMA-g-PLLA-acrylic.

macro-scale, the microsphere suspension is injectable, facilitating the regeneration

of irregularly-shaped tissue defects through minimally-invasive procedures. These

data demonstrated for the first time that these branched copolymers (instead of star-

shaped polymers) are able to form FNF-HMS with desirable structures as cell carriers

for tissue engineering.

4.2.3 Establish thiol-ene click reaction between biomolecules and FNF-

HMS

In addition to the self-assembly capabilities at multiple scales, the novel func-

tional block copolymers can facilitate bioconjugation with thiolated peptides through

thiol-ene click reaction. To facilitate the click reaction, an additional cysteine (with
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one thiol side group) was added to the C-terminal of the selected peptides. The

click reaction was performed through the nucleophile-mediated process due to its

mild reaction conditions at room temperature Hoyle and Bowman [106]. Tris(2-

carboxyethyl)phosphine (TCEP) is employed as the nucleophile, which is also a re-

ducing agent and can prevent the disulfide bonding between peptides Sinead et al.

[107]. Due to the mild reaction conditions, the physical structure of FNF-HMS was

unchanged after the click reaction (Appendix B). To visualize the conjugation sites

and distribution of the conjugated molecules, fluorescent moieties were conjugated

with FNF-HMS for confocal imaging and observation (Figure 4.3). Experimentally,

thiol-PEG-biotin was conjugated to FNF-HMS, which subsequently bound FITC-

tagged avidin through biotin-avidin interaction (Figure 4.3A). Therefore, fluorescent

signals were emitted from the conjugation sites. To minimize staining background due

to non-specific binding of FITC-tagged avidin to FNF-HMS, the biotin-conjugated

FNF-HMS were incubated with 10% bovine serum albumin (BSA) solution prior to

the biotin-avidin conjugation. According to confocal imaging (Figure 4.3B,C), the

avidin-tagged FNF-HMS exhibited fluorescent signals throughout the shell of the mi-

crospheres, indicating that the conjugated moieties were distributed on the entire

FNF-HMS. When FNF-HMS without biotin conjugation were subjected to the same

procedures (in BSA solution and then mixed with FITC tagged avidin), no fluorescent

signals were emitted from FNF-HMS, indicating that specific binding of FITC-avidin

to FNF-HMS occurred.

Advantageously, the developed FNF-HMS can conjugate controllable amount of

peptides to present different concentrations of ligands to cells (Figure 4.4A). This

was achieved by adjusting the density of acrylic groups in the copolymers during the

molecular synthesis. Specifically, a higher feeding ratio of HEMA to macromonomer

(MACRO-PLLA) during the copolymerization step (Figure 4.1) will produce copoly-

mers with a higher density of hydroxyls from the PHEMA blocks. Upon the conver-
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Figure 4.3: a) A schematic picture of the thiol-ene click reaction between FNF-HMS
and biotin, and the subsequent binding with FITC-tagged avidin. b) A
cross-sectional confocal image of FNF-HMS after fluorescent tagging of
the conjugation sites. c) A cross-sectional confocal image of fluorescent-
tagged FNF-HMS at a higher magnification, indicating that the click
reaction occurred throughout the shell of FNF-HMS.
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sion of hydroxyls into acrylics, the copolymer with a higher HEMA to MACRO-

PLLA ratio will present a higher density of acrylic groups for conjugating more pep-

tides (Figure 4.4A). For simplicity, we define AD (acrylic density) to be the molar

feeding ratio of HEMA to MACRO-PLLA during the copolymerization. Therefore,

FNF-HMS fabricated from copolymers with a high AD can conjugate more peptides.

To demonstrate our control over conjugation densities, FNF-HMS were fabricated

from copolymers with different AD values (AD = HEMA/ MACRO-PLLA = 0.8,

0.9 and 0.95) for peptide conjugation. An excess amount of peptide CM10 (Table

S1) was used for the conjugation with FNF-HMS to ensure a high conversion of

acrylic groups. The peptide immobilized FNF-HMS was first qualitatively analyzed

using Fourier Transform Infrared Spectroscopy (FTIR) (Figure 4.4B). According to

FTIR, peaks at 1601.3 and 1641.5 cm−1 disappeared after the click reaction, indicat-

ing that most of the acrylic groups on FNF-HMS were reacted. The conjugation was

then evaluated quantitatively by amino acid analysis. As expected, FNF-HMS with

a higher AD value conjugated more CM peptides (Figure 4.4C). FNF-HMS with an

AD of 0.8 can conjugate peptides at a density of 1.53 nmol/g, while FNF-HMS with

an AD of 0.95 can conjugate peptides at a density of 11.16 nmol/g. Therefore, we

can control the peptide density on FNF-HMS through the manipulation of copolymer

composition.

4.2.4 CM conjugated FNF-HMS for cartilage regeneration

Cytomodulin (CM) is a family of TGF-β1 mimicking peptides Basu et al. [94],

Mittal et al. [95], Bhatnagar and Qian [108]. We selected a chondrogenic peptide

CM10 (LIANAK) from the CM peptide family, conjugated it onto the developed

FNF-HMS. To facilitate the conjugation of CM10 onto FNF-HMS, an additional cys-

teine was incorporated at the C-terminal of CM10 (therefore with an amino acid

sequence of LIANAKC). In order to test the bioactivity of the conjugated CM10,
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Figure 4.4: a) A schematic illustration showing the control over the density of func-
tional acrylic groups (AD value) presented on the surface of FNF-HMS via
the manipulation of copolymer compositions (HEMA block percentage).
A higher HEMA block percentage (AD value) leads to a higher density
of functional groups presented on the surface of FNF-HMS, and thus a
higher density of peptides that can be conjugated. b) FITC spectrum
of FNF-HMS before and after conjugation with CM10 peptides, showing
the disappearance of peaks corresponding to acrylic groups (circled). c)
Amino acid analysis of CM10 conjugated FNF-HMS at different conjuga-
tion densities.
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Figure 4.5: Chondrogenic differentiation of BMSCs were demonstrated by positive
SO staining for GAG in FNF-HMS/CM10/BMSCs group (a, b), the dif-
ferentiated cells appeared round and encased in chondrocytic lacunae.
Stronger staining area was identified in the tissue abundant of micro-
sphere. Comparatively, in control group (c, d), the staining was weak
and no obvious cartilage-like tissue was found. Scale bar: 100 µm.

FNF-HMS with or without CM10 were mixed with rabbit bone marrow-derived stem

cells (BMSCs), and the in vitro chondrogenic differentiation of the stem cells and in

vivo cartilage regeneration were examined. Rabbit BMSCs were selected because of

their capability to differentiate along several lineages including chondrogenesis and

osteogenesis. In the in vitro study, FNF-HMS (AD = 0.9) with or without CM10 con-

jugation were cultured with rabbit BMSCs in DMEM without TGF-β1 for 3 weeks

and the formed tissue constructs were examined using Safranin-O staining. Chon-

drogenic differentiation of BMSCs and typical cartilage formation were confirmed by

positive Safranin-O staining for glycosaminoglycans (GAG) in the CM10-FNF-HMS

group (Figure 4.5a, b), while no obvious cartilage-like tissue was found in the con-

trol FNF-HMS group without CM10 (Figure 4.5c, d). Therefore, we confirmed that

CM10 peptide, after being conjugated onto FNF-HMS, remained biologically active

and induced the chondrogenic differentiation of BMSCs in vitro.
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Figure 4.6: Hyaline cartilage formation after 2 weeks subcutaneous implantation was
demonstrated by positive SO staining for GAG and immunohistochemical
staining for collagen type II in the CM-10/FNF-HMS/MSCs group (a&b).
No obvious mineralization was observed using von Kossa staining (c). In
comparison, negative SO and immunohistochemical staining were seen in
FNF-HMS/MSCs group (d, e). There was no obvious mineralization in
FNF-HMS/MSCs group either (f). Scale bar: 100 µm.

In the in vivo study, FNF-HMS (AD = 0.9) with or without CM10 conjugation

were used as rabbit BMSC carriers for subcutaneous injection in mice. In the CM10-

FNF-HMS group, cartilage formation was observed after injection for 2 weeks, demon-

strated by strong safranin-O staining for GAG and immunohistochemical staining for

collagen type II (Figure 4.6a, b). No obvious mineralization was noticed inside

the tissue, revealed by negative von Kossa staining (Figure 4.6c). In contrast, no

cartilage was formed in the control FNF-HMS group without CM10, revealed by the

negative Safranin-O staining for GAG and negative immunohistochemical staining

for collagen II (Figure 4.6d, e). Similarly, no obvious mineralization was observed

according to the negative von Kossa staining (Figure 4.6f). Therefore, histological

analysis following 2 weeks of subcutaneous injection revealed that TGF-β1 mimicking

peptide CM10 conjugated onto FNF-HMS remained bioactive and induced chondro-

genic differentiation of rabbit BMSCs and ectopic cartilage formation.
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4.2.5 P24 conjugated FNF-HMS for bone regeneration

The BMP-2 mimicking peptide P24 is known to promote osteogenesis Aoki et al.

[93], Saito et al. [109]. In this study, BMP-2 mimicking peptide P24 was also con-

jugated onto the newly developed FNF-HMS to evaluate the capacity of the P24-

decorated FNF-HMS in inducing stem cell osteogenesis and bone regeneration. Ex-

perimentally, FNF-HMS (AD = 0.9) with or without peptide P24 were mixed with

rabbit BMSCs and injected subcutaneously into nude mice. The specimens were

harvested 5 weeks after injection and were examined histologically for new bone for-

mation. H&E staining revealed that P24- FNF-HMS supported robust, uniform bone

formation throughout the specimen (Figure 4.7a). In the control group (blank FNF-

HMS), there was significantly less and non-uniform bone formation (Figure 4.7d).

While there was a very thin layer of bone tissue formation on the outer surface of

the control specimen, likely benefited from the access to the host vasculature in these

regions, there was only sparse bone nodule formation in the interior of the harvested

tissue construct. Consistently, immunohistochemical staining showed a higher level

of osteocalcin (a late marker of osteogenesis Hauschka [110]) in the P24-FNF-HMS

group (Figure 4.7b) than in the control FNF-HMS group (Figure 4.7e). Further-

more, there were more and uniform mineralized domains (black) in the P24-FNF-HMS

group (Figure 4.7c) than in the control FNF-HMS group (Figure 4.7f), revealed

by von Kossa staining. All of the above results consistently indicate that the conju-

gated P24 on the FNF-HMS is biologically functional and shows similar osteogenic

properties to BMP-2 in inducing osteogenic differentiation of rabbit BMSCs and the

subsequent ectopic bone formation.

59



Figure 4.7: Histological analysis after 5w mouse subcutaneous injection of BMP2-
mimic conjugated FNF-HMS or blank FNF-HMS with rabbit BMSCs.
BMP-2 mimic conjugated FNF-HMS reveal significantly more mature
bone formation after 5w, shown by A) H&E staining, B) osteocalcin
immunohistochemical staining, and C) von Kossa staining for mineral-
ization, compared to FNF-HMS (D-F). Scale bar: 100 µm.

4.3 Discussion

Injectable microspheres can serve as cell carriers for tissue engineering. To deliver

stem cells for regeneration, the microspheres should guide stem cells through the

presentation of critical physical and chemical signals similar to those in the natural

extracellular microenvironment. In natural ECM, collagen is the most abundant pro-

tein surrounding cells in the form of nanofibers, where GFs are bound. This complex

structure may provide both physical cues and chemical stimuli to stem cells during de-

velopment and wound healing. The delivery of potent growth factors is likely critical

to the success of stem cell therapy, where nanofibers are likely an advantageous ma-

trix structure for growth factor presentation Zhao et al. [84], Zhang et al. [53], Nagai

et al. [111], Kim et al. [43], Valmikinathan et al. [112], Zhang et al. [44]. However,

there has been no reported technology that can integrate synthetic NF structure and

GF signals in injectable microspheres. Recently, a novel technique has been devel-

oped to combine thermally-induced phase separation with emulsification to generate

nanofibrous hollow microspheres (NF-HMS) Liu et al. [1]. The nanofibers (with an
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average diameter of about 160 nm) in the fabricated microspheres mimic the struc-

tural feature of collagen fibers at the nano-scale, and have a much higher porosity and

surface area as compared to traditional smooth surface microspheres Liu et al. [1].

While linear PLLA can only form nanofibrous microspheres without a hollow core us-

ing this technique, star-shaped PLLA can self-assemble into nanofibrous microspheres

with a hollow core (NF-HMS) and openings on the shell of the spheres. Desirably,

the hollow structure of NF-HMS leads to an even higher porosity and provides more

space for cell growth, ECM deposition, nutrient/waste transfer, and minimization of

degradation products Liu et al. [1]. The star-shaped molecular structure and the

hydroxyl end groups on the SS-PLLA are considered important features for the as-

sembly of NF-HMS. However, an SS-PLLA lacks functional groups for biomolecule

conjugation, limiting the presentation of biological signals on the NF-HMS assem-

bled from such a SS-PLLA and therefore limiting their capacity of directing stem

cell differentiation and tissue regeneration. In this study, we have synthesized a se-

ries of novel PLLA-based functional graft copolymers PHEMA-g-PLLA-acrylic for

the fabrication of functional NF-HMS (FNF-HMS) that allows GF immobilization.

These graft copolymers, with the introduction of HEMA block onto PLLA, are still

biodegradable and can be thermally-induced to phase separate into nanofibers Liu

and Ma [105]. Importantly, PHEMA-g-PLLA-acrylic can self-assemble into FNF-

HMS during emulsification and phase separation procedures. We have demonstrated

that PHEMA-g-PLLA-acrylic, similar to SS-PLLA, can stabilize double emulsions

and form hollow microspheres, likely due to their hyper-branched molecular structure

as well as hydroxyl groups from the HEMA blocks. Therefore, we have developed a

new type of functional polymers to self-assemble into FNF-HMS, which enable us to

introduce biological signals onto them for tissue regeneration. FNF-HMS assembled

from PHEMA-g-PLLA-acrylic have been shown capable of conjugating GF-mimicking

peptides through thiol-ene click reaction for localized and sustained presentation of
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biological signals. Advantageously, the thiol-ene click reactions are orthogonal, toler-

ant to the presence of oxygen or water, and can proceed at an extremely high reaction

rate with quantitative yields in highly polar solvents (such as water) in the absence of

catalyst Lowe [113], which is desired for medical applications. While the conjugation

can be performed prior to scaffold fabrication, we prefer to conjugate GF-mimicking

peptides to the polymer following microsphere assembly. Through this strategy, the

conjugation will occur only at the surface of the nanofibers where cell-matrix interac-

tions take place. In addition, thiolated biomolecules can be conveniently mixed with

FNF-HMS for conjugation prior to use, which allows for quick and easy examination

of various biomolecules on FNF-HMS for tissue engineering or other applications.

Furthermore, the conjugation densities can be easily controlled through the molecu-

lar synthesis of the functional copolymer (Figure 4.4). Copolymers with a higher

AD value can conjugate a large amount of the peptide to present more concentrated

signals to cells if desired. Therefore, targeted dosing of GF-mimicking peptides can

be easily presented at the surface of the developed FNF-HMS. GF mimics conjugated

FNF-HMS, combining biochemical signals from GF mimics and nano-topographical

features of nanofibers, are demonstrated to be highly advantageous in modulating

stem cells for tissue regeneration in this work. The novel peptide-decorated FNF-

HMS have advantageous properties for tissue regeneration in several aspects. First,

the NF structure facilitates cell attachment Woo et al. [98], which likely facilitates the

interactions between the immobilized GF mimics and the receptors on the stem cells.

Second, the density of the localized GF signals (i.e., the dosing of GF mimics) can

be utilized to manipulate the cell-ligand interactions. Third, GF signaling molecules,

immobilized on FNF-HMS, can provide sustained interactions with the attached cells

due to their slower degradation or internalization by cells Kuhl and Griffith-Cima

[81]. Fourth, unlike soluble GFs that might diffuse to the unintended surrounding

tissues Cahill and Claus [85], tethered GFs only affect the adhered cells/tissues, min-
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imizing undesired ectopic complications. Lastly, the high porosity and injectability

of FNF-HMS allow for fast microsphere degradation and tissue repair in irregularly-

shaped defects through a minimally-invasive surgical procedure. While the injectable

FNF-HMS are novel and capable of localized delivery of GF-mimicking peptides, an

important question was whether the GF-mimicking peptides were bioactive after con-

jugation and whether the peptide-decorated FNF-HMS could induce the aimed tissue

regeneration. In this study, two different GF-mimicking peptides were conjugated

onto the FNF-HMS and their potentials to induce the respective cartilage and bone

regeneration were evaluated. While it was reported that soluble TGF-β1 mimicking

CM peptides were not able to induce chondrogenic differentiation of stem cells Renner

and Liu [97], we showed that CM conjugated FNF-HMS effectively induced BMSC

chondrogenesis in both in vitro and in vivo studies. Here, the nano-topographical

cues provided by FNF-HMS appeared to synergize and sustaine the tethered TGF-

β1 peptide signaling and therefore to effectively induce the chondrogenesis of BMSCs.

In addition to TGF-β1 mimicking peptides, the BMP-2 mimicking peptide (P24) was

conjugated onto the FNF-HMS and was shown to enhance BMSC osteogenesis and

bone formation. Therefore, the FNF-HMS are likely an advanced delivery vehicle

for a variety of GF-mimicking peptides. In the future, FNF-HMS will be utilized

to deliver more types of peptides, biomolecules and their various combinations for

diagnostic and therapeutic applications. For instance, FNF-HMS conjugated with

different peptides/biomolecules can be mixed, or multiple peptides/biomolecules can

be conjugated onto the same FNF-HMS to achieve co-delivery. Such strategies aim

to coordinate multiple biological signals to synergize their biological effects for the

intended applications.

63



4.4 Conclusion

In this study, we have successfully developed novel FNF-HMS, which can conju-

gate GF-mimicking peptides with retained bioactivity, recapitulating both the geo-

metrical and biochemical aspects of natural cell microenvironment to modulate stem

cell fate. Desirably, these FNF-HMS allow the delivery of stem cells through injec-

tion to repair tissue using minimally invasive procedures. Two different GF-mimicking

peptides were conjugated onto the newly developed FNF-HMS, and both conjugated

peptides were shown biologically active in directing the stem cells along their respec-

tive differentiation pathways. When the TGF-β1 mimicking peptide was conjugated

onto the FNF-HMS, the injectable cell carrier induced chondrogenic differentiation

of BMSCs and cartilage formation. When the BMP-2 mimicking peptide was conju-

gated onto the FNF-HMS, the injectable cell carrier induced osteogenic differentiation

of BMSCs and bone formation. The NF structure appeared to enhance the efficacy

of the GF-mimicking peptides in stem cell fate regulation. The new FNF-HMS there-

fore can serve as an advanced and versatile injectable carrier platform. In the future,

FNF-HMS may be utilized to present or deliver a variety of peptides/biomolecules in

various combinations for diagnostic and therapeutic applications.

4.5 Experimental section

Materials: Tetrahydrofuran (THF) and glycerol were purchased from Aldrich

Chemical (Milwaukee, WI). (3s)-cis-3,6-dimethyl-1,4-dioxane-2,5-dione (l-lactide, or

LLA) was purchased from SigmaAldrich Inc. (St. Louis, MO) and was purified

by recrystallization from toluene. Stannous 2-ethylhexanoate (Sn(Oct)2) and 2-

hydroxyethyl methacrylate (HEMA) were purchased from SigmaAldrich Inc. (St.

Louis, MO), and were distilled under reduced pressure prior to use. 1,4-Dioxane was

purchased from Aldrich Chemical (Milwaukee, WI) and was dehydrated over molec-
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ular sieve. 2,2-Azoisobutyronitrile (AIBN) was obtained from SigmaAldrich Inc. (St.

Louis, MO) and was recrystallized from ethanol. Tris(2-carboxyethyl)phosphine hy-

drochloride (TCEP), 4-(Dimethylamino)pyridine (DMAP), triethylamine (TEA) and

methacrylic anhydride were purchased from SigmaAldrich Inc. (St. Louis, MO) and

used as received. Albumin from bovine serum was also purchased from Sigma-Aldrich

(St. Louis, MO) and used as received. Deionized water was obtained with a Milli-

Q water filter system from Millipore Corporation (Bedford, MA). Cytomodulin and

P24 peptides were synthesized by GenicBio Limited, Shanghai, China. Thiol-PEG-

biotin was purchased from NANOCS Inc. (New York, NY). FITC-tagged avidin was

purchased from BS Biosciences (San Jose, CA). Alpha-Minimum Essential Medium

was purchased from Invitrogen. Fetal bovine serum (FBS), penicillinstreptomycin,

Dulbecco’s phosphate-buffered saline (PBS), and trypsinEDTA were purchased from

Gibco BRL Products, Life Technologies (Grand Island, NY, USA).

Preparation of PHEMA-g-PLLA-acrylic: Briefly, PLLA-based macromonomers

were synthesized using the ring opening polymerization of LLA with hydroxyalkyl

methacrylates (HEMA) as the initiator, and subsequently copolymerized with HEMA.

The synthesized PLLA-based macromonomers are abbreviated as HEMA-PLLAX,

where X is the feeding molar percentage of HEMA over LLA (e.g. X = 5 means

the feeding ratio of HEMA/LLA = 5%). The final graft copolymers are abbre-

viated as PHEMAY-g-PLLAX, where Y indicates the feeding molar percentage of

macromonomer (HEMA-PLLAX) over HEMA (e.g. Y=10 means the feeding molar

ratio of HEMA-PLLAX/HEMA=10%). The X was used to control the graft chain

length, and the Y was used to control the average backbone sectional length between

the adjacent two graft chains. These two parameters were together used to manipulate

the spatial distribution of the acrylic groups in the functionalized graft copolymers.

A typical functionalization reaction of the copolymer PHEMA10-g-PLLA10 (towards

PHEMA10-g-PLLA10-acrylic) is as follows: the copolymer (5 mmol OH, 2.500 g),
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methacrylic anhydride (10 mmol, 1.542 g), DMAP (10 mmol, 1.222 g) and TEA (10

mmol, 1.012 g) were dissolved in 1,4-dioxane (200ml) and left overnight stirring at

room temperature. The filtered solution was precipitated by adding ethyl ether, and

the polymer precipitate was dried under vacuum for 3 days at room temperature.

Preparation of FNF-HMS: PHEMA-g-PLLA-acrylic was dissolved in 20ml of

THF at 50◦C with a concentration of 2.0% (wt/v). Under rigorous mechanical stirring

(speed 7, MAXIMA, Fisher Scientific Inc.), glycerol (50 ◦C) was gradually added into

the polymer solution, and the stirring continued for another 5 min. The mixture was

then quickly poured into liquid nitrogen. After 10 min, ice/water mixture was added

for solvent exchange for 24 h. The spheres were then sieved and washed with distilled

water several times to remove glycerol residue. The spheres were then lyophilized for

2 d.

Conjugation with peptides: The selected peptide (CM or P24) (10 equiv) and

TCEP (1 equiv) were dissolved in deionized water and added to a vial containing the

FNF-HMS (1 equiv acrylic unit). The contents of the vial were purged with N2 for

10 min and stirred for 2 h at room temperature. The FNF-HMS was then washed

extensively using deionized water and lyophilized for 2 d.

NMR observation: 1H spectra of the macromonomers and copolymers were

recorded with an Inova 400 NMR instrument operating at 400 MHz at room temper-

ature using deuterated chloroform (CDCl3) as the solvent.

GPC measurements: The molecular weights of the macromonomers and copoly-

mers were measured using a Waters gel permeation chromatograph (GPC) model

440. Tetrahydrofuran (THF) was used as the mobile phase at a flow rate of 1.0

mL/min. Molecular weight and polydispersity of the copolymers were calibrated

with polystyrene standards.

ATR-FTIR observation: The ATR-FTIR spectrums of FNF-HMS before and

after click reaction were obtained with a Perkin Elmer 1800 FTIR spectroscopy, in
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the region from 400 to 4000 cm−1. During the measurement, the sample chamber was

purged with nitrogen gas to reduce moisture and carbon dioxide content.

Scanning Electron Microscopy observation: The surface morphology of the

microspheres was examined using SEM (Philips XL30 FEG) with an accelerating

voltage of 10kV. The samples were coated with gold for 120 s using a sputter coater

(DeskII, Denton vacuum Inc).

Confocal imaging: To visualize the distribution of the conjugated peptides,

thiol-PEG-biotin was conjugated to the FNF-HMS under the same click reaction

conditions as for the conjugation of CM and P24 peptides. After extensive washing

using deionized water, the FNF-HMS-biotin were treated with 10% w/v BSA solution

first, and then with 10% w/v FITC-tagged avidin solution to generate FNF-HMS-

biotin-avidin. The treatment with 10% w/v BSA solution was to prevent unspecific

attachment of FITC-tagged avidin. The FNF-HMS-biotin-avidin were examined us-

ing confocal laser scanning microscopy (CLSM) (Nikon Eclipse C1). FNF-HMS were

also treated with BSA and FITC-tagged avidin solutions for confocal imaging as the

control group. All the parameters including the laser intensity and gain were ad-

justed until fluorescent signals cannot be seen from the control group (FNF-HMS);

then without changing the settings, FNF-HMS-biotin-avidin were observed.

Amino acid analysis: The sample was first hydrolyzed in 6 N HCl at 110

◦C for 24 h. Then it was reacted with FDNB (1-fluoro-2, 4-dinitrobenzene) and

was analyzed by high performance liquid chromatography (HPLC). The amount of

conjugated peptides was calculated.

Cell harvest and in vitro pellet culture: Bone marrow-derived mesenchymal

stem cells (BMSCs) of the New Zealand White rabbits collected via aspiration from

the femoral bone marrow using an 18-gauge syringe needle, collecting 10 ml of mar-

row into 1000 U of heparin-containing maintenance media (high-glucose alpha-MEM

(Gibco) containing 10% fetal bovine serum (Gibco) and antibiotics (penicillin G, 100
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U/ml; streptomycin, 0.1 mg/ml)). The marrow was filtered through a cell strainer to

exclude fatty tissues and blood clots, washed with PBS once and fresh media twice,

and centrifuged at 2000 rpm for 5 min after each wash. Rabbit BMSCs were collected

and cultured in 75-cm2 flasks in maintenance media at 37 ◦C under 5% CO2. For

the preparation of each pellet, 2106 passage-3 rabbit BMSCs were trypsinized, mixed

with 2×105 microspheres with a diameter of 20-60 µm, and cultured to evaluate

chondrogenic differentiation.

In vitro studies of CM10-conjugated FNF-HMS: the following two groups

were studied: I) BMSCs+FNF-HMS conjugated with CM10 in incomplete chon-

drogenic medium without TGF-β1 (DMEM containing 1×10−7 mol/L dexametha-

sone, ITS premix with 6.25 g/mL insulin, and 50 g/mL ascorbate-2-phosphate). II)

BMSCs+FNF-HMS in incomplete chondrogenic medium without TGF-β1 as the con-

trol. The cells were cultivated at 37 ◦C in a humidified atmosphere with 5% CO2 for

21 d, changing the medium every 3 d.

Subcutaneous injection of rabbit BMSCs and microspheres (FNF-HMS

conjugated w/ or w/o CM10 or P24): All animal procedures were carried out

under the guidelines of the Institutional Animal Care and Use Committee of the

University of Michigan. Nude mice (68 weeks old, NU/NU, Charles River Labora-

tories USA) were anaesthetized with 2.5% isoflurane in balanced oxygen. The mi-

crospheres/BMSCs suspension was injected into subcutaneous pockets on both sides

lateral to the dorsal midline using a 25-gauge needle. Each mouse received four

injections, with each 100 µl injection containing 4×106 cells mixed with 4×105 micro-

spheres for cartilage study or 1.5×106 cells and 1×105 microspheres for bone study.

The injections were randomly arranged. The tissues were collected after two weeks

or five weeks, and the fibrous capsules were removed. The samples were used for

histological and immunohistochemical examinations.

Histological and immunohistological analyses: For histological observation,
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sections were deparaffinized, rehydrated, and stained with H-E, Safranin O/Fast

Green, or von Kossa. For P24 bone study, bone tissue samples were decalcified

with 10% EDTA for two weeks prior to paraffin embedding for H & E and immuno-

histochemical (IHC) staining. For IHC staining for type II collagen and osteocalcin,

following deparaffinization and rehydration, slides were pretreated with pepsin so-

lution (Fisher Scientific, USA) for 15 min, incubated with the primary antibody

(mouse type II collagen antibody or rabbit osteocalcin antibody, both from Santa

Cruz Biotechnology, Santa Cruz, CA) at 1:100 dilutions for 1 h and prepared using

a cell & tissue staining kit (R&D Systems Inc., Minneapolis, MN, USA). All sections

were counterstained with hematoxylin.
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CHAPTER V

Injectable Nanofibrous Spongy Microspheres for

the Delivery of Hypoxia-primed Human Dental

Pulp Stem Cells to Regenerate Functional Dental

Pulp Tissues

5.1 Introduction

The vitality of a whole tooth is supported by dental pulp, which is responsible for

the production of dentin, nutrition supply to dental hard tissues, and tooth sensation

Huang [114]. However, dental pulp is vulnerable to infection caused by mechanical,

chemical, thermal or microbial irritants. In addition to unbearable pain , dental pulp

infection can lead to irreversible pulp necrosis, which interrupts dentin formation,

causes unclosed apical foraman in young permanent teeth, and even leads to the for-

mation of a large pulp chamber Cvek [115]. The current endodontic treatment of

irreversible pulp disease, known as root canal treatment, cannot restore the function

of dental pulp and thereby results in a permanently devitalized tooth more suscep-

tible to structural failure and re-infections due to coronal leakage or microleakage

Dammaschke et al. [116]. Restoring the functions of dental pulp through tissue re-

generation may resolve these issues Hench and Polak [117], Nakashima and Reddi
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[118], Miura et al. [119]. However, a key challenge to functional dental pulp regener-

ation is to rebuild the complex, highly organized histological structure of native pulp

tissue, which is vascularized and contains several types of cells (i.e. odontoblasts,

endothelial cells, neural cells, fibroblasts) in different layers or zones (e.g. odonto-

blasts in the peripheral lining against the dentinal wall). Human dental pulp stem

cells (hDPSCs) are an excellent cell source for dental pulp engineering, because hDP-

SCs are capable of odontogenic, neurogenic and angiogenic differentiation Gronthos

et al. [120], Nakashima et al. [121] to form the key cell types in natural dental pulp

tissue. In addition, hDPSCs are advantageous for clinical applications due to their

easy isolation Gronthos et al. [120] from sufficient sources Atari et al. [122], Ma et al.

[123], Huang et al. [124], and maintenance of their multi-lineage differentiation ca-

pacity after cryopreservation Perry et al. [125]. To fully harness this regenerative

potential and regenerate pulp tissue with a complex histologic structure, cell carri-

ers are needed to effectively induce angiogenesis and direct hDPSCs differentiation

in a spatially-ordered manner to regenerate functional pulp tissue Gronthos et al.

[120], Langer and Vacanti [2], El-Backly et al. [126], Dvir et al. [127], Young et al.

[128]. To design cell carriers for dental pulp regeneration, we consider the following

structural features at various scales. At the nano-scale, nano-fibrous (NF) structure

can mimic extracellular collagen fibrous structure and promote hDPSCs attachment,

proliferation, and odontogenic differentiation Wang et al. [129]. At the micro-scale,

a porous structure with interconnected channels is typically required to allow effi-

cient cell ingrowth, mass transfer, and blood vessel network formation Madden et al.

[130]. At the macro-scale, cell carriers should be injectable to enable cell delivery

into the small, irregularly-shaped dental cavity, as well as to allow easy manipu-

lation and minimal invasive procedures by dentists. In this regard, microspheres

are recently used as injectable cell carriers for cell delivery to small tissue defects

with complex anatomical shapes Liu et al. [1]. However, no previous technology
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was able to integrate nanofibers and a porous structure with interconnected chan-

nels into injectable microspheres. In addition to physical cues, angiogenic factors are

required to induce and promote blood vessel formation, which is critical to tissue

vitality and tissue organization Jain [131], Matsumoto et al. [132], LeCouter et al.

[133], Griffith and Swartz [134]. In this context, hypoxic culture has been reported

to enhance the angiogenic potential of hDPSCs Aranha et al. [135]. Resembling the

hypoxia condition in dental pulp cavity Yu et al. [136], culturing cells in a low oxy-

gen tension in vitro activates transcriptional factor HIF-1 Semenza [137], Sharp and

Bernaudin [138] and increases vascular endothelial growth factor (VEGF) expression

Pugh and Ratcliffe [139], Forsythe et al. [140], Manalo et al. [141], Yamakawa et al.

[142]. However, most of these results were shown in 2D culture condition, and lit-

tle is known regarding the hypoxia effect on hDPSCs seeded on microspheres. In

this work, we synthesized a series of novel star-shaped block copolymers and utilized

their self-assembly to fabricate nanofibrous spongy microspheres (NF-SMS), which

integrated synthetic NF and a porous structure into injectable microspheres for the

first time. We then investigated the effect of hypoxia treatment on hDPSCs seeded

on NF-SMS in a suspension culture, and examined the hypoxia-induced vascular en-

dothelial growth factor (VEGF) gene expression of hDPSCs. Lastly, we evaluated

the injectable, hypoxia-primed hDPSCs/NF-SMS complexes in both a subcutaneous

pulp regeneration model and an in situ pulp regeneration model of nude rats.

5.2 Results

5.2.1 Synthesis of star-shaped poly(l-lactic acid)-block-poly(l-lysine) (SS-

PLLA-b-PLYS)

In this work, we have synthesized a novel polymer, star-shaped poly(l-lactic acid)-

block-poly(l-lysine) (SS-PLLA-b-PLYS) (Figure 5.1a). The synthesis route is shown
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in Appendix C, Figure C.1. Star-shaped poly(l-lactic acid) (SS-PLLA) was first

synthesized through the ring opening polymerization of l-lactide (LLA). Dendrimer

poly(amido amine) (PAMAM) with 16 hydroxyl end groups was used to initiate the

polymerization. The dendrimer PAMAM gave rise to the star-shaped molecular struc-

ture, with a branch length controlled by adjusting the molar ratio of LLA to PA-

MAM. The hydroxyl end groups of SS-PLLA were then converted into amine groups.

This was accomplished by the reaction of tert-butoxycarbonyl-protected phenylala-

nine with the hydroxyl groups of SS-PLLA using the carbodiimide method, followed

by the removal of the protected tert-butoxycarbonyl group from the amino group

using trifluoroacetic acid treatment. The amines were then used to initiate the ring

opening polymerization of lysine N-Carboxyanhydride (LYS) to form poly(α-lysine)

at the end of each PLLA arm, generating star-shaped block copolymer SS-PLLA-b-

PLYS. Similarly, the length of the PLYS block was controlled through adjusting the

feeding ratio of LYS to SS-PLLA. All materials were characterized using 1H NMR,

GPC and FT-IR (Appendix C). Therefore, we have synthesized a novel star-shaped

block copolymer SS-PLLA-b-PLYS with a controllable number of LLA and LYS units.

5.2.2 Phase Separation of SS-PLLA-b-PLYS at Nano- and Micro-Scales

to form NF-SMS

At the nano-scale, SS-PLLA-b-PLYS was able to self-assemble into nanofibers

during a thermally-induced phase separation (TIPS) process previously developed by

our lab Ma and Zhang [54] During the TIPS process, the selected polymer solution

was subjected to a temperature change to induce the phase separation of the polymer

solution into polymer-dense and polymer-lean phases at the nano-scale. Upon sol-

vent extraction/sublimation, polymer-dense phases form the polymer skeleton while

polymer-lean phases become the void structure. SS-PLLA-b-PLYS with different

LYS/LLA ratios were tested in TIPS using tetrahydrofuran (THF) as the solvent.
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Figure 5.1: Synthesis of SS-PLLA-b-PLYS for its unique assembly of NF-SMS
through a specific emulsification process. a) A schematic illustration of
the structure of star-shaped block copolymer SS-PLLA-b-PLYS. b-d) SS-
PLLA-b-PLYS with different LYS/LLA ratios formed different structures
under TIPS: b) LYS/LLA=0, or SS-PLLA; c): LYS/LLA = 10%; d)
LYS/LLA = 20%. (Scale bar: 5 µm). e) A schematic illustration of
the emulsification process, involving: 1. Quick pouring of SS-PLLA-b-
PLYS/THF solution into stirring glycerol to form multiple emulsions; 2.
Pouring the mixture into liquid N2 to induce TIPS; 3. Solvent (THF)
and glycerol extraction with ice water; and 4. Freeze-drying the micro-
spheres. f) Confocal imaging of the formed multiple emulsions (from SS-
PLLA-b-PLYS with LYS/LLA = 5%), with the green regions representing
the FITC-stained glycerol phase, and the dark regions representing the
polymer solution phase (Scale bar: 20 µm). g) SEM graph of NF-SMS
fabricated from SS-PLLA-b-PLYS with 5% LYS/LLA ratio (Scale bar:
200 µm). h) SEM graph of a representing NF-SMS showing a porous
structure with multiple openings on the sphere shell (Scale bar: 20 µm).
i) A cross sectional confocal image of a representing NF-SMS, with the
polymer skeleton stained by FITC-tagged BSA, indicating a porous inter-
nal structure of NF-SMS (Scale bar: 20 µm). j) SEM graph of NF-SMS
at a higher magnification, showing the NF structure (Scale bar: 5 µm).
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Here, we fixed the number of the LLA unit to be 300 at each polymer arm, and var-

ied the number of the LYS units. We found that the self-assembled structure of the

polymer solution during TIPS depended on the LYS/LLA ratio. When LYS/LLA is

lower than 10%, SS-PLLA-b-PLYS formed nanofibers (Figure 5.1b). The diameter

of the fibers ranged from 50 to 500 nm, same as that of the natural collagen fibers.

When the LYS/LLA was above 10%, fibers started to aggregate (Figure 5.1c). As

the LYS/LLA ratio continued to increase, the formed structure ultimately transi-

tioned into a non-fibrous structure (Figure 5.1d). Thus, we have identified a new

class of polymer that was capable of assembling into nanofibers under TIPS. At the

micro-/macro-scale, SS-PLLA-b-PLYS can assemble into porous microspheres under

a specific emulsification process developed in this work (Figure 5.1e). Briefly, the

polymer was dissolved in THF at a concentration of 2% w/v and was quickly added

into glycerol under rigorous stirring at 50 ◦C. After 5 min, the mixture was quickly

poured into liquid nitrogen to induce TIPS. After extracting the solvent/glycerol and

freeze-drying the polymer, microspheres were obtained. We found that the LYS/LLA

ratio also had a significant effect on the self-assembly behaviors of SS-PLLA-b-PLYS

at the micro-scale during emulsification. When the LYS/LLA was higher than 5%,

the copolymer assembled into spongy microspheres (SMS) with an interconnected

porous structure (Appendix D,Figure D.3). SS-PLLA-b-PLYS with a LYS/LLA

less than 5% only assembled into hollow microspheres. Different from a standard

emulsification process, we found that the emulsification process used here can gener-

ate highly-unstable multiple emulsions (Appendix D, Figure D.1), with one poly-

mer solution droplet containing multiple glycerol micro-domains inside (Figure 1g &

Appendix D, Figure D.2). SS-PLLA-b-PLYS with a LYS/LLA ratio greater than

5% can stabilize this highly-unstable phase, thereby forming spongy microspheres

after the emulsion was frozen and glycerol was removed. SS-PLLA-b-PLYS with a

LYS/LLA lower than 5%, on the other hand, cannot stabilize this phase, thereby lead-
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ing to the coalescence of the glycerol micro-domains, resulting in only one glycerol

droplet encapsulated inside a polymer solution droplet. Therefore, only one hollow

core was formed within the microspheres. Based on these data, the PLYS blocks

probably provided the stabilizing forces to the multiple emulsions, which could be

stabilized only when the LYS/LLA was greater than 5%. Advantageously, TIPS

technique could be combined with the emulsification process to simultaneously in-

duce nano- and micro-scale phase separation. When SS-PLLA-b-PLYS satisfied both

the nanofiber and spongy microsphere assembly conditions (5% < LYS/LLA < 10

%), the polymer could assemble at both the nano- and micro-scales to form NF-SMS

(Figure 1g-j). At the micro-scale, the internal structure of NF-SMS was visualized

via confocal imaging (Figure 5.1i), which showed an interconnected porous struc-

ture throughout the whole sphere. The pores within NF-SMS had an average size of

approximately 15 m, which were highly interconnected (interconnected channels were

about 10 m in size). The number of pores increased as the diameter of the spheres

increased (Appendix D, Figure D.4). At the nano-scale, NF-SMS was composed

entirely of nanofibers, with fiber diameters ranging 50 to 500 nm, similar to that of

natural collagen fibers (Figure 5.1j). Taken together, through the molecular design

of SS-PLLA-b-PLYS, we synthesized the unique NF-SMS, which integrated nano-

fibrous and micro-porous structure into injectable microspheres for the first time.

5.2.3 NF-SMS providing a beneficial microenvironment for hDPSCs at-

tachment, proliferation and angiogenesis

Due to the co-presentation of biomimetic nanofibers and a highly porous structure,

NF-SMS were hypothesized to simultaneously promote cell seeding, attachment, pro-

liferation, and blood vessel formation. Nanofibrous microspheres (NF-MS) without

a porous structure and conventional smooth-surface microspheres (S-MS) without a

NF structure were compared with NF-SMS to test this hypothesis (Figure 5.2a).
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After a 24hr seeding, hDPSCs attached to both the outer and the interior surfaces of

the NF-SMS with abundant cellular processes (Figure 5.2b Left). In comparison,

hDPSCs only attached to the outer surface of the NF-MS and exhibited fewer cellu-

lar processes (Figure 5.2b Middle). In the S-MS group, the cells attached on the

outer surface of the microspheres with a flat morphology and few cellular processes

(Figure 5.2b Right). The total DNA quantity assay revealed that the hDPSCs

proliferated markedly faster on the NF-SMS than on the NF-MS or S-MS during the

first 12 days of in vitro culture (p < 0.05) (Figure 5.2c). After subcutaneous injec-

tion of cell/microsphere complexes into mice for 4 wk, hematoxylin and eosin (H &

E) staining of the harvested tissues revealed more tissue and blood vessel formation

in the NF-SMS group (Figure 5.2d Left) than in the NF-MS group (Figure 5.2d

Middle) or S-MS group (Figure 5.2d Right). Most of the NF-SMS degraded 4

weeks after injection, whereas the majority of the S-MS still persisted in the neo

tissue (Figure 5.2d Right). Therefore, we confirmed our hypothesis that NF-SMS

provided a beneficial microenvironment for hDPSCs attachment and proliferation,

and supported angiogenesis of the neo tissues in a subcutaneous model.

5.2.4 NF-SMS enhanced hypoxia-induced angiogenesis

Effective hypoxia priming of hDPSCs with NF-SMS was established in a 3D sus-

pension culture system. Specifically, the suspension of the hDPSCs/NF-SMS was

subject to a gas mixture of 2% O2, 5% CO2 and 93% N2 under gentle stirring in a

bioreactor maintained at 37 ◦C (Figure 5.3a). Normoxia culture of the hDPSCs/NF-

SMS in a gas mixture of 21% O2, 5% CO2 and 74% N2 was compared. To examine

the hypoxia effect, we performed immunofluorescence staining of HIF-1α, which is a

transcriptional factor activated under hypoxic conditions Semenza [137], Sharp and

Bernaudin [138]. Positive immunofluorescence staining of HIF-1α was observed in the

hypoxia group at all tested time points (1, 3, 7 and 10 days), whereas the staining was
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Figure 5.2: NF-SMS provided a beneficial microenvironment for proliferation of hu-
man dental pulp stem cells (hDPSCs) and formation of blood vessels. a)
SEM images of NF-SMS (left), NF-MS (middle) and S-MS (right) with a
diameter ranging from 30 to 60 µm. (Scale bar: 20 µm). b) SEM images
of hDPSCs seeded on three types of microspheres for 24 hr. Left: hDP-
SCs on NF-SMS. Middle: hDPSCs on NF-MS. Right: hDPSCs on S-MS
(Scale bar: 10 µm). c) Growth curve of hDPSCs cultured on NF-SMS,
NF-MS and S-MS, measured by quantifying the DNA content at various
time points (n = 3). 4: p < 0.05 NF-SMS vs NF-MS, #: p < 0.05
NF-SMS vs S-MS, *: p < 0.05 NF-MS vs S-MS. d) Subcutaneous injec-
tion of hDPSCs/microsphere complexes into nude mice for 4 wk. Solid
black triangles indicate microspheres; empty triangles indicate blood ves-
sels (Scale bar: 50 µm). Left: NF-SMS group. Middle: NF-MS group.
Right: S-MS group.
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negative in the normoxia group (Figure 5.3b). Therefore, hypoxia induction was ef-

fective in the 3D suspension culture of hDPSCs seeded on NF-SMS. Hypoxia priming

of the hDPSCs/NF-SMS can effectively induce the vascular endothelial growth factor

(VEGF) gene expression of the hDPSCs. According to the immunofluorescence stain-

ing of VEGF, no VEGF expression was detected at day 1. Human DPSCs started

to express VEGF at day 3 (Figure 5.3c), implicating that VEGF expression oc-

curred as a result of the earlier HIF-1α activation. The VEGF gene expression of the

hDPSCs was quantitatively analyzed using PCR at different culture time points. The

VEGF gene expression level of the hDPSCs in the hypoxia culture was maximally up-

regulated at day 3 and remained highly up-regulated at day 7 when compared to nor-

moxia culture (p<0.05) (Figure 5.3d). Interestingly, when a conventional cell carrier

(S-MS) was used, no hypoxia-induced VEGF expression was detected (Appendix D,

Figure D.5), indicating that NF-SMS enhanced the hypoxia-induced VEGF expres-

sion of hDPSCs. These data indicated that hypoxia priming can effectively activate

the VEGF gene expression of hDPSCs in a 3D suspension culture, which is enhanced

by the use of NF-SMS. Hypoxia-primed hDPSCs/NF-SMS can effectively enhance

angiogenesis in vivo in a subcutaneous injection model in mice. Based on the in vitro

results, the hDPSCs/NF-SMS were hypoxia-primed for 3 days before subcutaneous

injection to maximize the angiogenic potential of the hDPSCs. Reparative tissues

were harvested 4 wk after injection for H&E staining. While pulp-like tissue formed

both in the hypoxia group and normoxia group (Figure 5.3e), a much higher level

of angiogenesis was observed in the hypoxia group. Taken together, hypoxia-priming

of hDPSCs on NF-SMS can induce VEGF gene expression and enhance angiogenesis

in vivo.
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Figure 5.3: VEGF expression of hDPSCs on NF-SMS were enhanced in hypoxia cul-
ture than in normoxia culture. a) A schematic illustration of the self-made
bioreactor for the hDPSCs suspension culture with NF-SMS at hypoxia or
normoxia conditions. A suspension of hDPSCs and NF-SMS was stirred
gently within a self-made jar maintained at 37 ◦C. To create a hypoxia
environment, the jar was vacuumed and purged with a mixture of gases
comprising 2% O2, 5% CO2 and 93% N2 for three times. In normoxia
culture, 21% O2, 5% CO2 and 74% N2 gas mixture was used instead. b)
Immunofluorescence staining was used to study the expression of HIF-1α
of hDPSCs cultured on NF-SMS under normoxia or hypoxia conditions
at 1 d, 3 d, 7 d and 10 d. Blue: nuclei; green: HIF-1α; red color: F-actin.
Positive staining of HIF-1α was seen in the hypoxia group at every time
point (1 d, 3 d, 7 d and 10 d). Scale bar: 10 µm. c) Immunofluores-
cence staining was used to study the expression of VEGF of hDPSCs on
NF-SMS under normoxia or hypoxia conditions at 1d, 3 d, 7 d and 10 d.
Blue: nuclei; green: VEGF; red color: F-actin. Positive VEGF staining
was observed in the hypoxia group at 3 d, 7 d and 10 d. Scale bar: 10
µm. d) According to real-time PCR analysis, VEGF mRNA expression
level of hDPSCs on NF-SMS was higher in the hypoxia group than that
in the normoxia group at day 3 and day 7. **: p < 0.05. e) H&E (Left
panel) and CD31 (Right panel) staining of tissues harvested 4 wk after
subcutaneous injection of hypoxia-/normoxia-primed hDPSCs/NF-SMS
into nude mice. H&E staining (Left panel) showed abundant tissue for-
mation in both groups. CD 31 staining of endothelial cells (Right panel)
showed more abundant microvessels in the hypoxia group (Bottom) than
that in the normoxia group (Top). Scale bars: 100 µm.
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5.2.5 Ectopic pulp tissue formation

In a subcutaneous pulp regeneration model, hypoxia-primed hDPSCs/NF-SMS

complexes were injected into the cleaned pulp cavities of rabbit molars, and the

whole construct was implanted into nude mice subcutaneously. Three additional

groups were investigated: a normoxia-treated hDPSCs/NF-SMS group, a NF-SMS

group (without cells), and a hDPSCs group (without scaffolds). After 4 weeks of

implantation, the molars with the newly-formed tissues inside were harvested and

subjected to histology analysis. Hypoxia-primed hDPSCs/NF-SMS significantly en-

hanced angiogenesis in the reparative tissues when compared to the normoxia group.

From the appearance of the whole molar, the hypoxia-primed cells/NF-SMS group

had a red color while normoxia-treated cells/NF-SMS group only showed a pink color

(Figure 5.4a Right), indicating more blood vessels were formed in the hypoxia group

than the normoxia group. In the NF-SMS group or hDPSCs group, the molars also

had a pink color (Figure 5.4a Left), indicating much less blood vessel formation.

Moreover, CD31 staining of the endothelial cells showed rich micro-vessel formation

in the hypoxia group, as compared to the other three groups. By counting the blood

vessel number, we further confirmed that the hypoxia group generated significantly

more blood vessels than the three control groups (p < 0.05) (Figure 5.4b). Inter-

estingly, the reparative tissue in the hypoxia-primed hDPSCs/NF-SMS group had a

histological structure similar to natural pulp tissue. According to the H&E staining,

a thicker layer of cells was lining along the pulp-dentin interface in the hypoxia group

(Figure 5.4c Fouth panel), as compared to the normoxia group (Figure 5.4c

third panel). The cells were identified to be odontoblast-like cells with a positive

dentin sialophosphoprotein (DSPP) staining. While the normoxia group showed a

positive DSPP staining evenly distributed throughout the whole reparative tissue,

the hypoxia group showed a much stronger positive staining along the interface and a

much weaker staining in the middle part of the regenerated pulp tissues. This histo-
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logical structure, which resembled the natural dental pulp-dentin interface, indicates

the formation of functional reparative pulp tissue in the hypoxia group. In compar-

ison, negative DSPP staining results were shown when only hDPSCs were injected

(Figure 5.4c Second panel), implicating that NF-SMS promoted the odontogenic

differentiation of the hDPSCs. Taken together, hypoxia-primed hDPSCs/NF-SMS,

when injected into the pulp cavity of a rabbit molar in a subcutaneous environment,

can regenerate pulp-like tissues with a significantly higher vascularity and a histolog-

ical structure similar to that of the native pulp tissue.

5.2.6 In situ pulp tissue formation

Hypoxia-primed hDPSCs/NF-SMS were evaluated in an in situ pulp regenera-

tion model in nude rats. The pulp tissues in root canals were removed beforethe

hypoxia-primed hDPSCs/NF-SMS were injected. For comparison, normoxia-treated

hDPSCs/NF-SMS were injected under the same procedures. After 4 weeks, samples

were harvested for evaluation. The injection of the hDPSCs/NF-SMS can accurately

fill the complex anatomical structure of dental pulp cavity and effectively promote

pulp-like tissue formation with a rich vasculature. The H&E staining results confirmed

that hDPSCs/NF-SMS can be injected to fully fill the molar canals and promote tis-

sue formation with a good integration with the native dentin (Figure 5.5). Most

of the NF-SMS degraded completely after 4 weeks, leaving behind the formation of

dense, pulp-like tissues. The hypoxia-primed hDPSCs/NF-SMS formed pulp-like tis-

sue with a much higher vascularity (Figure 5.5 Fourth panel) than the normoxia

group (Figure 5.5 Third panel). CD31 IHC staining further confirmed that the

hypoxia group had a much richer vasculature than the normoxia group. If the empty

pulp cavity was un-treated, only a small amount of connective tissue was formed,

with neither blood vessel formation nor a pulp-like structure (Figure 5.5 Second

panel). Consistent with the results in the subcutaneous pulp model, hypoxia-primed
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Figure 5.4: Dental pulp tissue regeneration promoted by hypoxia-primed
hDPSCs/NF-SMS in a subcutaneous tooth implantation model.
Human DPSCs cultured on NF-SMS were primed under hypoxia or
normoxia conditions for 3 d, and were injected into the cavity of
evacuated rabbit molars, which were then subcutaneously implanted into
nude mice for 4 wk. a) Gross appearance of the harvested rabbit molars,
displaying that hypoxia group had a more red appearance than the
other three groups. b) The number of blood vessels were quantified, and
the hypoxia group has significantly more blood vessels than the other
3 groups (n = 3). **: p < 0.05. c) Histology analysis of the harvested
rabbit molars. H & E staining (reconstructed from multiple microscopic
images) showed that there were more neo tissues in the hypoxia group
than in the other 3 groups. Odontoblast-like cells were along the dentin
pulp interface in hypoxia group verified by DSPP IHC staining. Weak
DSPP staining in the dentin-pulp interface was shown in the normoxia
group. Negative DSPP staining was shown in both NF-SMS alone group
and hDPSCs alone group. CD31 IHC staining showed that there were
rich micro-vessels in the hypoxia group, and fewer microvessels were
observed in the normoxia group. Fewer and smaller blood vessels were
observed in hDPSCs alone group and NF-SMS alone group. Scale bars:
50 µm.
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Figure 5.5: Pulp tissue regeneration enhanced by hypoxia primed hDPSCs/NF-SMS
in maxillary first molar of nude rats. From left to right, the first col-
umn was the normal pulp, the second column was the unfilled pulp canal
group, the third column was the normoxia group, and the last column was
the hypoxia group. H & E staining showed that no pulp-like tissue was
formed in unfilled group while neo pulp-like tissue formed in normoxia and
hypoxia groups. DSPP IHC staining was positive for the hypoxia group
and the normal pulp group at the dentin-pulp interface. CD31 staining
showed more blood vessels in the hypoxia group than in the normoxia
group.

hDPSCs/NF-SMS regenerated a histological structure similar to that of the native

pulp tissue, as evidenced by the positive DSPP staining along the dentin-pulp inter-

face in the hypoxia group. In comparison, a weaker DSPP staining was throughout the

whole pulp cavity in the normoxia group. Collectively, hypoxia-primed hDPSCs/NF-

SMS can effectively repair functional dental pulp tissue in an in situ pulp regeneration

model in nude rats.

5.3 Discussion

Through the rational combination of cells, scaffolds and morphogens, dental pulp

tissue engineering aims to develop effective clinical approaches to restoring the struc-
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ture and function of diseased dental pulp Hench and Polak [117]. However, this task

is challenging due to the complex anatomical and histological structure of the dental

pulp. First, the small, irregularly-shaped pulp cavity posts a great restriction on

scaffold design. Second, vascularity is critical to the vitality of the regenerated pulp

tissue, but the pulp cavity has only one apical foramen to allow angiogenesis. The

small size of the apical opening (<1 mm) further restricts the in-growth of blood

vessels. Third, dental pulp has a complex histological structure consisting of different

types of cells in different zones and layers, such as odontoblasts located peripherally

of the pulp tissue. Sophisticated strategies are therefore needed to direct appropriate

cell proliferation and differentiation. Human DPSCs delivery using microspheres for

dental pulp regeneration is promising. Microspheres can serve as injectable cell carri-

ers for the repair of small, irregularly-shaped defects, and can be potentially used to

deliver cells into the narrow pulp cavity and achieve automatic fit. Human DPSCs

possess odontogenic, neurogenic and angiogenic differentiation capabilities Gronthos

et al. [120], Nakashima et al. [121], which are an excellent cell source to rebuild pulp

tissues consisting of a mixture of cell types. In order to potentiate the regenera-

tive application of hDPSCs in dental pulp repair, the ideal microspheres should not

only serve as an injectable cell carrier, but also provide physical and chemical cues

to properly direct the hDPSCs differentiation and angiogenesis. Through innovative

polymer synthesis and self-assembly at both the nano- and micro-scales, we developed

a unique injectable cell carrier, NF-SMS. The biomimetic nanofibers and open porous

structure of NF-SMS were hypothesized to simultaneously promote hDPSCs attach-

ment, proliferation, differentiation and angiogenesis. Supporting this hypothesis, the

nanofibers of NF-SMS enhanced hDPSCs attachment and interactions (Figure 5.2b).

The NF structure also promoted hDPSCs proliferation, as the proliferation rate of

hDPSCs was faster on NF-MS than S-MS (Figure 5.2c). The porous structure of

NF-SMS further increased the proliferation rate of hDPSCs (Figure 5.2c), which
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might contribute to the interconnected porous structure that allowed more space

for cells to migrate inside and proliferate. Consistent with these in vitro results,

NF-SMS promoted more tissue formation in a subcutaneous injection model in mice

(Figure 5.2d). NF-SMS also promoted much more blood vessel formation than NF-

MS or S-MS (Figure 5.2d). When hDPSCs and NF-SMS were injected into the pulp

cavity, NF-SMS was found to promote ondontogenic differentiation of hDPSCs, as was

evidenced by a stronger DSPP staining of the regenerated tissue in the hDPSCs/NF-

SMS group than in the hDPSCs only group (Figure 5.4c). Therefore, these data

demonstrated that NF-SMS is an excellent cell carrier that improves hDPSCs at-

tachment, proliferation, odontogenic differentiation and angiogenesis. In addition to

a desirable physical environment, biochemical stimuli are required to initiate and

promote angiogenesis, which is critical to the vitality and organization of the repar-

ative tissue Matsumoto et al. [132], LeCouter et al. [133], Griffith and Swartz [134].

The vascular endothelial growth factor (VEGF) is a dominant angiogenic molecule in

physiological and pathological angiogenesis Ferrara and Davis-Smyth [143]. VEGF

is believed to be a potent and selective endothelial cell mitogen implicated in vascu-

larization and angiogenesis Shweiki et al. [144], and has recently been studied as a

morphogen in pulp tissue engineering. However, exogenous VEGF has a short half-

life in vivo and is expensive, and requires a complicated delivery system. In this

context, hypoxia has been employed to enhance the angiogenic potential of hDPSCs

and promote the regeneration of blood vessels Aranha et al. [135]. In this work,

we demonstrated that a hypoxia culture of hDPSCs/NF-SMS suspension was capa-

ble of activating the HIF-1α in hDPSCs (Figure 5.3b), and up-regulating VEGF

gene expression of hDPSCs (Figure 5.3c). To our knowledge, the hypoxia culturing

method has not been previously applied to suspension culture of hDPSCs. Notably,

when conventional S-MS was used as hDPSCs carriers in a suspension culture, no

hypoxia-induced VEGF expression was detected (Appendix D, Figure D.5). We

86



therefore believe that the hypoxia effect was enhanced through the use of the novel

cell carrier NF-SMS. It has been reported that hypoxia activation and the associ-

ated signaling pathways were strongly stimulated by cell-cell interactions Sheta et al.

[145]. Therefore, possibly due to limited cell-cell interactions, hypoxia treatment

failed to induce VEGF expression of hDPSCs seeded on S-MS. Different from S-

MS, which only allowed cell attachment on the outer surface, NF-SMS facilitated

hDPSCs attachment three-dimensionally, thereby facilitating cell-cell interactions in

3D. As a result, hypoxia-induced VEGF expression of hDPSCs was significantly up-

regulated when NF-SMS was used as a cell carrier in a suspension culture. Through

the quantitative study of VEGF gene expression, we found that a hypoxia treat-

ment for 3 days can maximally activate the angiogenic potential of hDPSCs seeded

on NF-SMS (Figure 5.3d). Therefore hDPSCs/NF-SMS was hypoxia-primed for 3

days in the subsequent in vivo evaluations. Combining the advantages of NF-SMS

and hypoxia treatment, the developed injectable, hypoxia-primed hDPSCs/NF-SMS

were able to regenerate functional pulp-like tissues in both a subcutaneously im-

planted pulp repair model in mice and an in situ dental pulp repair model in rats.

In both models, hDPSCs/NF-SMS can be injected into the whole pulp cavity and

completely fill the entire root canal, regenerating dental pulp-like tissues integrated to

the dentinal wall. The hypoxia-primed hDPSCs/NF-SMS group can generate pulp-

like tissues with a significantly higher vascularity than the normoxia control group.

Importantly, ondontoblast-like cells were found lining along the dentin-pulp interface

in the hypoxia group, which resembled the physiological tissue structure of natural

dental pulps, indicating the formation of functional replacement pulp-dentin tissue

complex. The high vascularity in the reparative tissue in the hypoxia group is likely

to have stimulated the tissue organization during the regeneration process Griffith

and Swartz [134], therefore promoting the formation of odontoblast-like cells in the

peripheral. Together, hypoxia-primed hDPSCs/NF-SMS showed great advantages
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in functional dental pulp tissues regeneration in various animal models. Studies in

a large animal model will be conducted in the future to further test the potential

therapeutic efficacy of hypoxia-primed hDPSCs/NF-SMS. With the relative simplic-

ity, minimal invasiveness and therapeutic efficacy, hypoxia-primed hDPSCs/NF-SMS

may possibly be employed as a novel next-generation therapy for dental pulp diseases

in clinics. NF-SMS could also be used to minimally invasively regenerate other highly

vascularized tissues, especially those hard to reach and with an irregular shape.

5.4 Experimental section

5.4.1 Synthesis of SS-PLLA-b-PLYS

Preparation of Monomer Z-LYSNCA:

Lysine N-carboxyanhydrides with Carbobenzyloxy protecting groups (Z-LYSNCA)

was prepared according to Dalys method Daly and Poché [146]. Briefly, a solution

mixture of triphosgene (Sigma-Aldrich) and tetrahydrofuran (THF, Sigma-Aldrich)

was added into a slurry of N-Carbobenzyloxy-l-lysine (Chem-Impex International,

IL) in THF at 60◦C. After 3 h, the mixture was poured into hexane (Sigma-Aldrich)

to precipitate Z-LYSNCA. The mixture was stored under 0◦C for 24 h and the pre-

cipitate Z-LYSNCA was collected by filtration and dried under vacuum for 24h.

Preparation of SS-PLLA:

Poly(amidoamine) dendrimer with 16 surface hydroxyl groups (PAMAM-OH, gen-

eration 2) was purchased from Sigma-Aldrich and dried at 50◦C in a vacuum oven

for 24 h before use. l-Lactide (Sigma-Aldrich) was recrystallized from toluene twice.

l-lactide, Tin(II) 2-ethylhexanoate (95%, Sigma-Aldrich) (monomer/catalyst ratio =

200) and PAMAM-OH dendrimer were weighed into a dried glass ampule. The am-

pule was purged with dry nitrogen ten times, sealed under vacuum and immersed in

an oil bath at 120-130◦C. After 24 h of polymerization, the crude product SS-PLLA
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was dissolved in chloroform (Sigma-Aldrich) and purified by precipitation from chlo-

roform into an excess of methanol three times.

Preparation of SS-PLLA-Phe-NBOC:

SS-PLLA and N-tert-Butoxycarbonyl-l-phenylalanine (Phe-NBOC, Sigma-Aldrich)

were dissolved in dichloromethane and reacted with N,N′-Dicyclohexylcarbodiimide

(DCC, Sigma-Aldrich) for 48 h at 0◦C. After the reaction, dicyclohexylurea was

removed by filtration. The filtrate was washed with saturated aqueous NaHCO3

(Sigma-Aldrich) and distilled water. The polymer SS-PLLA-Phe-NBOC was then

precipitated from an excess of cold methanol.

Preparation of SS-PLLA-NH2:

SS-PLLA-Phe-NBOC was dissolved in dichloromethane and treated with 15 ml

trifluoroacetic acid (TFA, Sigma-Aldrich) at 0◦C for 1 h. The mixture was subjected

to vacuum for the removal of TFA, and the residue was dissolved in chloroform and

washed with saturated aqueous NaHCO3 and distilled water. SS-PLLA-NH2 was

precipitated when its chloroform solution was poured into an excess of diethyl ether

(Sigma-Aldrich).

SS-PLLA-NH2 as macroinitiator to prepare SS-PLLA-b-PLYS(Z):

SS-PLLA-NH2 and Z-LYSNCA were dissolved in dry dimethylformamide and the

solution was stirred at 30◦C for 72 h with nitrogen purged throughout the reaction.

The formed mixture was precipitated from an excess of methanol and the product

SS-PLLA-b-PLYS(Z) was vacuum-dried at 40◦C for 24 h.

Deprotection of SS-PLLA-b-PLYS(Z) to prepare SS-PLLA-b-PLYS:

SS-PLLA-b-PLYS(Z) was dissolved in trifluoroacetic acid and treated with hydro-

gen bromide/acetic acid (volume ratio= 1:3) solution under nitrogen at 0◦C for 1 h.

The reaction mixture was then precipitated from an excess of diethyl ether to give a

white product. The precipitate was then dried in vacuum for 24 h.
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5.4.2 Thermally-Induced Phase Separation to Prepare Nanofibers

1.0 mL polymer solution (10% (wt/v)) in THF was cast into a Teflon vial and

phase separated at 20◦C for 4 h. Then the gel was immersed into cyclohexane to

extract THF for 2 days and then freeze-dried for 4 days. The dried matrices were

then stored in a desiccator.

5.4.3 Preparation of Nanofibrous Spongy Microspheres (NF-SMS)

The polymer was dissolved in THF at 50 ◦C with a concentration of 2.0% (wt/v).

Under rigorous mechanical stirring (speed 7, MAXIMA, Fisher Scientific Inc.), the

polymer solution was quickly added into glycerol (50◦C), and the stirring continued

for another 5 min. The mixture was then quickly poured into liquid nitrogen. After

10 min, ice/water mixture was added to exchange solvent for 24 h. The spheres were

then sieved and washed with distilled water five times to remove glycerol residue.

The spheres were then lyophilized for 2 d.

5.4.4 Preparation of Nanofibrous Microspheres (NF-MS)

The preparation of NF-MS followed a previously described emulsification proce-

dureLiu et al. [1]. The polymer was dissolved in THF at 50 ◦C with a concentration

of 2.0% (wt/v). Under rigorous mechanical stirring (speed 7, MAXIMA, Fisher Sci-

entific Inc.), glycerol (50◦C) was slowly added into the polymer solution, and the

stirring continued for another 5 min. The mixture was then quickly poured into liq-

uid nitrogen. After 10 min, ice/water mixture was added to exchange solvent for 24

h. The spheres were then sieved and washed with distilled water five times to remove

glycerol residue. The spheres were then lyophilized for 2 d.
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5.4.5 Preparation of Solid Microspheres (S-MS)

Smooth-surface, solid microspheres were prepared using a conventional solvent

evaporation method. The polymer was dissolved in dichloromethane at a concentra-

tion of 2% (wt/v), and added into a poly(vinyl alcohol) (PVA, Mw = 89,000 98,000,

Sigma-Aldrich) aqueous solution (2% wt/v). The mixture was then subjected to rig-

orous stirring (speed 7, MAXIMA, Fisher Scientific Inc.) for 24 hr. The spheres were

then sieved and washed with distill water five times to remove PVA residue. The

spheres were then lyophilized for 2 d.

5.4.6 Material Characterization

NMR measurements:

1H spectra of the macromonomers and polymers were recorded with an Inova

400 NMR instrument operating at 400 MHz at room temperature using CDCl3 or

DMSO-d6 as the solvent.

ATF-FTIR analysis:

The ATR-FTIR spectrums were obtained with a Perkin Elmer 1800 FTIR spec-

troscopy, in the region from 400 to 4000 cm−1. During the measurement, the sample

chamber was purged with nitrogen gas to reduce moisture and carbon dioxide content.

Gel permeation chromatograph (GPC) measurements:

The molecular weight was measured using a Waters gel permeation chromatograph

(GPC) model 440. Tetrahydrofuran (THF) was used as the mobile phase at a flow rate

of 1.0 mL/min. Molecular weight and polydispersity of the polymers were determined

using polystyrene standards.

Scanning electron microscopy (SEM) observation:

The morphology of the polymer matrices and microspheres was examined using

SEM (Philips XL30 FEG) with an accelerating voltage of 10 kV. The samples were

gold-coated using a sputter coater (DeskII, Denton vacuum Inc) with a gas pressure
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at 50 mtorr and a current at 40 mA.

Confocal imaging:

The internal structure of NF-SMS was observed using confocal laser scanning

microscopy (Nikon Eclipse C1). The FITC-conjugated BSA was deposited throughout

the nanofibrous hollow microspheres and observed under the confocal microscopy.

The intermediate phases of different emulsions were also observed under the con-

focal laser scanning microscopy. Glycerol was stained with FITC (FITC-labelled

3-amino-1,2-propanediol and glycerol were mixed with a v/v ratio of 1/10) to visu-

alize the structure of different emulsions. After the emulsions were frozen at -76oC

for 4 hs, 100 m thick slices were cut from the specimens (frozen emulsions) at -20oC

using a Cryostat and was quickly observed under confocal laser scanning microscopy.

Set- up of hypoxia bioreactor culture system:

We set up a hypoxia-bioreactor for the hypoxia culture of hDPSCs on micro-

spheres. The system was composed of air supply, a spinning flask and a jar. After

putting the spinning flask in the jar, the system was vacuumed and purged with a gas

mixture comprising 2 % O2 , 5 % CO2 and 93 % N2 for three times to create a hypoxic

environment. The jar was then sealed and placed on a magnetic stirring plate, and the

whole complex was placed in a 37 ◦C incubator. This self-made hypoxia-bioreactor

can generate similar hypoxia effect on cells as compared with the commercialized

hypoxia chamber purchased from Billups-rothenber Inc. (Del Mar, CA).

Cell culture and seeding on microspheres:

Human DPSCs were a gift from the Center of Craniofacial Molecular Biology,

School of Dentistry, University of Southern California, which were isolated according

to a previously reported method 7. The thawed hDPSCs were cultured in -modified

essential medium (α-MEM) (Invitrogen, Carlsbad, CA) supplemented with 10 % fetal

bovine serum (FBS) (Invitrogen) and 1 % Penicillin- Streptomycin (Invitrogen) in a

humidified incubator at 37 ◦C with 5 % CO2. The medium was changed every two
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days and hDPSCs of passages 3- 6 were used in the following studies. The micro-

spheres were soaked in 70 % ethanol to pre-wet for 30 min and then were exchanged

with phosphate-buffered saline (PBS) from GIBCO three times (30 min each). The

microspheres were then washed with -MEM containing 10 % FBS for 30 min. 8 ×

106 Cells and 5 × 105 microspheres were mixed in 2 ml culture medium in a 15 ml

centrifuge tube on an orbital shaker at 12 rpm for 4 hr. Then the mixture was trans-

ferred into a spinner flask (Wheaton industries Inc., Millville, NJ) and maintained in

80ml culture medium. The stirring speed was maintained at 80 rpm.

SEM observation of hDPSCs/Microsphere samples:

The human DPSCs on NF-SMS at different culture conditions were rinsed in

PBS once, fixed in 2.5 % glutaraldehyde, and post-fixed in 1 % osmiumtetroxide for

1 hr. Samples were dehydrated in a series of ethanol solution with an increasing

concentration, and then in hexamethyldisilizane. The samples were then sputter-

coated with gold using a sputter coater (DeskII, Denton vacuum Inc) and observed

under a scanning electron microscope (Philips XL30 FEG) at 10 kV.

DNA quantification assay:

To examine the proliferation of hDPSCs on microspheres at different culture con-

ditions, the cell-spheres constructs were homogenized in 1×DNA assay buffer and

lysis buffer (Sigma), which were then incubated at 37 ◦C for 1 hr. Cell lysis were

centrifuged at 5,000 g at room temperature for 3 min. The supernatant was col-

lected for DNA content determination using fluorescence assay with Hoechst 33258

dye (Sigma).

Real time PCR:

After hypoxia treatment for 1, 3, 7, 10 days, the total RNA of each sample was

extracted using RNA Mini kit (Qiagen, Valencia, CA), with the first-strand cDNA

reversely transcribed using TaqMan reverse transcription reagents (Applied Biosys-

tems, Foster City, CA). Real-time PCR quantification of the mRNA of VEGF gene
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was performed in a 7500 Real-Time PCR System (Applied Biosystems) using a Taq-

man probe (Hs00900055 m1).

Immunofluorescence Staining:

The hDPSCs/NF-SMS biocomplexes were taken out from the spinning flask,

washed by PBS, fixed by 4 % formaldehyde solution, and treated with 0.1 % tri-

ton for 3 min. The samples were then blocked with PBS containing 2 % bovine

serum albumin at room temperature for 20 min. The cells were then incubated with

primary antibodies of DSPP (Santa Cruz Biotechnology Inc, Santa Cruz, CA), hu-

man VEGF165b (R&D Systems, Inc, Minneapolis, MN) and HIF-1α (c-19) (Santa

Cruz Biotechnology Inc) separately overnight at 4 ◦C . The samples were then washed

with PBS and subsequently incubated with fluorescein-conjugated secondary donkey

anti-mouse IgG-FITC antibody (Santa Cruz Biotechnology Inc.) at room tempera-

ture in the dark for 45 min. The samples were then washed with PBS and incubated

with Alexa Fluor 555 phalloidin (Life technologies Inc) for 30 min, followed by wash-

ing with PBS for 3 times. The samples were transferred into 8-well chambers and

mounted with Vectashield mounting medium with DAPI (Vector laboratories, Inc.,

Burlingame, CA). The samples were then analyzed by confocal imaging (Nikon TS-

100, Tokyo, Japan).

5.4.7 Subcutaneous injection model

The animal surgical procedure was approved by the University Committee on Use

and Care of Animals (UCUCA) at the University of Michigan. Six nude mice (nu/nu)

with an age range of 6-8 wks (Charles River Laboratories, Wilmington, MA) were

used in this study. Surgery was performed under general inhalation anesthesia with 2

% isofluorane. The cell-sphere biocomplex cultured in hypoxia jar for 3 days was the

testing group, and those pre-cultured in normoxic condition were the control group.

Samples of each group were injected into nude mice subcutaneously randomly. Three
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samples were injected for each group (n = 3). Animals were sacrificed and samples

were retrieved 4 weeks post-injection. Harvested specimens were immediately fixed in

10 % formalin for 24 h, which were then processed for histological examination using

hematoxylin-eosin (H & E) and CD31 staining.

5.4.8 Subcutaneous pulp regeneration model

Sixteen molars with opened apical foreman were collected from 2 weeks-old rab-

bits. Dental pulps of the molars were completely removed. The empty teeth were

rinsed with 70 % ethanol once and PBS twice. Human DPSCs/NF-SMS constructs

pre-cultured in hypoxia or normoxia condition for 3 days in bioreactors were injected

into the rabbit molar pulp cavity. Six nude mice (nu/nu) with an age range of 6-8

wks (Charles River Laboratories) were used in this study. Surgery was performed

on mice under general inhalation anesthesia with 2 % isofluorane. Two midsagittal

incisions were made on the dorsa and four subcutaneous pockets were created using

blunt dissection. Four groups of the rabbit molars, with NF-SMS, with hDPSCs, and

with hypoxia or normoxia primed hDPSCs/NF-SMS complexes in the empty pulp

chamber were implanted into the subcutaneous pockets, and the incisions were closed

with staples. After 4 weeks of implantation, samples were harvested.

5.4.9 Pulpotomy model for pulp regeneration

Six nude rats (Charles River labs) with an age range of 6-8 wks were used in this

study. Surgery was performed on rats under general inhalation anesthesia with 2 %

isofluorane. The endodontic treatment was as following: the mouth of the animal

was opened; the maxillary first molar was drilled by thin bur (SS White Burs Inc.,

Lakewood Township, NJ); all the pulps were removed by hand-use K-file. Root

canals were irrigated by PBS and 5.25% NaClO alternately and dried completely

by absorbent points (Densply Maillefer, Tulsa, OK); hDPSCs/NF-SMS complexes
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with hypoxia or normoxia pre-conditioning were injected into root canals; NF porous

PLLA scaffolds and Fuji IX GP Glass ionomer (GC American Inc., Alsip, IL) was

used to seal the entrance of the cavity; the mandibular first molar cusps were removed;

after 4 weeks of implantation, samples were harvested. For comparison, root canal

with receiving no treatment after pulp removal was also studied. Healthy dental

pulp-dentin complex was also compared.

5.4.10 Histological analysis

Four weeks after subcutaneous injection or implantation, animals were euthanized

and samples were retrieved. Harvested specimens were immediately fixed in 10 %

formalin for 24 hr, and tooth samples were decalcified in 10 % ethylene diamine

tetraacetic acid 4 wk prior to histological examination using H&E staining. CD31

(Abcam, Cambrige, MA), VEGFa (Santa Cruz Biotechnology Inc) and DSPP (Santa

Cruz Biotechnology Inc) primary antibody were used for immunohistological staining.

5.4.11 Quantification of neo blood vessels

The CD31 immunohistological-stained sections were observed under a microscope,

and several images were combined together to get a whole pulp cavity image. The

number of neo blood vessels was counted for each group (n=3).

5.4.12 Statistical analysis

Numerical data were reported as mean ± S.D.(n = 3). The experiments were

performed twice to ensure reproducibility. To test the significance of observed differ-

ences between the study groups, Students t-test was used. A value of p < 0.05 was

considered to be statistically significant.
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CHAPTER VI

Conclusion and outlook

The design of cell therapies with maximal efficacy and minimal surgical inva-

sion presents both opportunities and challenges. Various injectable cell carriers have

been synthesized to achieve these two goals, among which microspheres have been

shown to provide injectability, controllable biodegradability and capacity for drug

incorporation and delivery. With new discoveries in biology, scientists begin to re-

alize the importance of incorporating biomimetic and cell-instructive characteristics

into scaffolds. However, current technologies have limited capabilities to implement

desirable nano-/micro- biophysical structures into the microsphere system. In this

thesis, nanofibrous microspheres, mimicking the nano-fibrillar structure of the nat-

ural extracellular matrix, are developed to mediate cell-matrix interactions and cell

function. At the micro-meter scale, a hollow structure is introduced into nanofibrous

microspheres to further increase porosity and reduce the degradation products, as

well as accommodate cells both on the outer surface and inside the hollow core for

increased cell-material interactions. In addition, an interconnected porous structure

is implemented into nanofibrous microspheres to promote cell-cell interactions and

blood vessel network formation, as well as a more continuous tissue formation. Be-

yond physical structures, the presentation of ligands/peptides onto nanofibers might

further promote/direct stem cell activities. However, limited studies have looked into
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the presentation of peptides onto nanofibers and none onto the nanofibrous micro-

spheres to direct stem cell differentiation. In this thesis, a functional nanofibrous

hollow microsphere platform is established for different peptide conjugation to direct

stem cell differentiation for tissue regeneration.

The utilization of micro-/nano-structured microspheres as cell carriers is still in

its early stage, but the pioneering work has shown exciting results and opened up

new opportunities in injectable scaffolding for tissue engineering. We expect that in

the coming decade, more research will be performed to explore various micro-/nano-

technology and engineering techniques to more accurately manipulate the chemical

and physical properties of injectable cell carriers.

First, the micro-porous structure should not only facilitate cell seeding and mass

transport, but the pore size and pore inter-connectivity should also be accurately

controlled for spatially-controlled tissue engineering. In bone tissue engineering, for

instance, it was found that the pore size of the matrices can affect extracellular matrix

development and that cell organization, collagen I assembly, and mineralization are

strictly correlated Stoppato et al. [147]. In cardiac tissue-engineering, cardiomyocytes

and stroma seeded in discrete compartments achieve maximal vascularization when

the pore diameters of the scaffold ranges from 30 to 40 µm). These studies indicate

that the dimension of the pore architecture can significantly affects tissue develop-

ment, and new techniques are needed to accurately tailor the porous structure of the

cell carriers to better guide tissue development Madden et al. [130].

Second, the conjugation tools for attaching biomacromolecules to cell carriers can

be further expanded. Since the target biomacromolecules typically have multiple

functional groups capable of coupling, microspheres with various kinds of functional

groups should be synthesized to allow conjugation at desired reactive sites that can

minimize possible effects on their bioactivity. On the other hand, bioengineering

techniques or post-translational modification procedures should be further explored to
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introduce noncanonical amino acids or other appropriate external small molecules into

the biomacromolecules for site-specific conjugation. It is also of great interest to rely

on high-affinity supramolecular interactions to tether the polymer to the biological

component, including biotin/avidin interactions or metal chelation Cobo et al. [148].

In addition to the bioconjugation chemistry, the physical structure of substrate is also

shown to affect the bioactivity of the conjugated biomacromolecules (Chapter IV).

More investigation into the synergistic effects of biochemical and biophysical cues for

tissue regeneration is needed to better the design of microspheres for bioconjugation.

Third, more growth factor mimics need to be discovered for tissue engineering.

This requires a better understanding of the biological action of growth factors and

their binding regions, in order to recreate this binding region through peptide syn-

thesis. However, a protein binding region often disperses over a discontinuous sur-

face, which often comprises secondary structure elements. Therefore, advancement in

screening techniques is also critical to the discovery of peptide mimics that are able

to bind to the associated growth factor receptors and to exert desired actions to cells.

Forth, microspheres can be utilized to encapsulate drugs for drug delivery while

serving as the cell carrier. The advantages of the association of drug and cell delivery

on microspheres include the simplified fabrication and direct drug targeting to cells.

However, it is challenging to program the degradation pattern of the biodegradable

microspheres to achieve desired drug release profile while ensuring that the micro-

spheres could provide sufficient longevity and mechanical support for cells until the

neo-tissue is formed. Alternatively, nanotechnology allows the implementation of

nano-sized drug delivery systems into micro-carriers. Drug delivery strategies should

also be developed for the novel microspheres.

Fifth, for cell delivery to bone defect sites, inorganic components (calcium phos-

phate (CaP) or bioactive ceramics) are often incorporated into scaffold design to

simulate the inorganic phase of bone. Inorganic components are commonly dis-
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persed/blended within polymers to fabricate composite microspheres, taking advan-

tage of the processability of polymers and the osteoconductivity of inorganic materi-

als. However, more research is needed to investigate the nano-scale organization of

inorganic components within the polymeric microsphere platform, which is proven to

enhance osteoblast adhesion and osteoconductivity and better bond to host bone for

long-term functionality.

In addition to advancing microsphere design, different types of stem cells will

also be explored for different tissue regeneration scenarios using microsphere as their

carrier. For instance, induced pluripotent stem cells (iPSCs) are attractive cell source

for regenerative medicine. Recent progress in deriving iPSCs from blood cells without

the integration of exogenous DNA into cellular genomes provides a safe and convenient

method to prepare iPSCs from patients Dowey et al. [149]. The combination of

iPSCs and microspheres can thereby provide a regenerative therapy for patients that

only involves injection with minimal-invasiveness. Co-culture of different cells on

microspheres is also an important strategy to be investigated in the regeneration of

complex tissues. However, appropriate design of microspheres and their combination

with suitable biofactors and stem cells for tissue regeneration is still challenging,

which might require not only an in-depth understanding of the stem cell biology, but

also the development of new biological models and bioassays for evaluation.
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APPENDIX A

DPD Simulation of SS-PLLAs in Emulsification

Our DPD model is adapted from past studies of a similar nature Anderson and

Glotzer [58], Groot and Warren [59], Phillips et al. [60]. In this model, three forces are

applied to each particle at each time step a conservative, a random, and a dissipative

force. The form of all three of these forces is shown at Figure A.1a. The conservative

force, Fc, is a purely repulsive force meant to prevent overlap between particles; the

strength of this force is tuned through the coefficient A, allowing particles to be more

or less repulsive. A pairwise random force, FR, mimics the effect of the solvent on the

system. Finally, the dissipative force, FD, tunes the effective viscosity of the system

by opposing the motion of the particle.

The coefficients for Fc were set at A = 20.0 as a baseline, as has been done in the

prior works Anderson and Glotzer [58], Groot and Warren [59], Phillips et al. [60].

To increase affinity for the hydroxyl and solvent, this repulsion was reduced to A =

10.0, thereby making the hydroxyls attractive to the solvent. This was done for the

hydroxyls as well, which tend to aggregate with other hydroxyls or at the glycerol

polymer interface. Because the hydroxyl-polymer and polymer-solvent interaction is

repulsive, we increased the repulsion to A = 40.0 (Figure A.1).

103



Figure A.1: a)Constitutive equations for the dissipative particle dynamics model.
Conservative, random, and dissipative forces are applied pairwise at each
timestep. b)Pair Coefficients for the conservative pair force. A varies w/
type.

Star polymers are created by linking beads together with

V (r) = (1/2)k(r − r0)2

harmonic springs, with k = 4 and r0 = 0. Arms are attached to a single polymer

core bead. The temperature in the simulations was set at a standard value of T

= 1.0. The timestep was chosen to be dt = 0.01. All simulations were run for

5 million DPD timesteps. Systems were initialized by randomly placing 1 million

solvent beads in a box at a volume fraction of 80%. Star polymers were generated

randomly beforehand, and then placed individually in a spherical shell, allowing for

overlaps between polymer and solvent beads. The box size remains fixed across all

simulations. Systems were thermalized for 30 thousand timesteps, and then run for

5 million steps to equilibrate.

The amount of solvent was kept fixed at 1 million particles, while the concen-

tration of polymer was varied. Simulations were performed for 8 different polymer

concentrations Npoly/Ntotal: 30%, 28%, 25%, 22%, 19%, 16%, 13%, and 10%. System

sizes varied between 1.1 and 1.5 million particles, depending upon concentration. At
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each concentration, four different arm lengths were run, L = 10, 40, 80, or 120 beads

per arm. Finally, all simulations were performed for 4, 8, and 16 arms. In total,

over 100 individual simulations were performed. To verify the effect of the hydroxyl

stabilizer, two non-hollow cases were tested separately: 8 arm, L = 120 at poly-

mer concentrations of both 10% and 13%. The strength of the hydroxyl-solvent and

hydroxyl-hydroxyl repulsion was decreased, thereby increasing the hydroxyls prefer-

ence to aggregate at the polymer/solvent interface. In all cases, AHS, AHP = 8.0,

5.0, 2.0, or 1.0. Reducing A triggered a hollow to non-hollow transition. Finally, to

ensure stability of the structures, three candidates were run for 50 million time steps.

All simulations were performed using the DPD implementation in HOOMD-Blue,

a free and open-source code developed and maintained at the University of Michi-

gan (http:codeblue.umich.edu/hoomd-blue). Images of the droplets and movies were

created using VMD, a free visualization package available online.
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APPENDIX B

Supplemental data for Injectable Peptide

Decorated Functional Nanofibrous Hollow

Microspheres to Direct Stem Cell Differentiation

and Tissue Regeneration
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Figure B.1: NMR spectrum of macromonomer HEMA-PLLA5. 1H NMR (400 MHz,
CDCl3, δ): 6.10 (s, 2H, a), 5.17 (q, J = 8 Hz, 1H; e), 4.25 (m, 5H;
c+d+h), 2.01 (s, 3H, b), 1.38 (d, J = 8Hz, 3H; f), 1.35 (d, J = 8Hz, 3H;
g).
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Figure B.2: NMR spectrum of graft copolymer PHEMA10-g-PLLA5. 1H NMR (400
MHz, CDCl3, δ): 5.17 (q, J = 8 Hz, 1H; e), 4.30 (m, 10H; c+d+h+j+k+l),
2.41 (s, 2H, i), 1.58 (d, J = 8Hz, 3H; f), 1.35 (d, J = 8Hz, 3H; g) , 1.01
(s, 3H, b).
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Figure B.3: NMR spectrum of functionalized graft copolymer PHEMA-g-PLLA-
alkene. 1H NMR (400 MHz, CDCl3, δ): 6.11 (m, 3H, m+n), 5.17 (q,
J = 8 Hz, 1H; e), 4.10 (m, 9H; c+d+h+j+k), 2.62 (s, 2H, i), 1.65 (d, J
= 8Hz, 3H; f), 1.30 (d, J = 8Hz, 3H; g) , 0.98 (s, 3H, b).

Figure B.4: SEM of NF-HMS after click reaction with GF-mimicking peptide CM10.
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Figure B.5: a, b) SEM graphs of BMSCs seeded on FNF-HMS for 1 day. BMSCs
attached to both the outside (a) and inside (b) of the microspheres. Scale
bar: 20 µm. c) Confocal images of BMSCs seeded on FNF-HMS for 1
week, showing that many cells were able to adhere to the inside of the
microspheres. Blue: nuclei; red: F-actin.
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APPENDIX C

Supplemental data for Injectable Nanofibrous

Spongy Microspheres for the Delivery of

Hypoxia-primed Human Dental Pulp Stem Cells

to Regenerate Functional Dental Pulp Tissues

Table C.1: Preparation of Star-shaped PLLA with Varying Molecular Weight and
Molecular Weight Distribution.

Name [M]/[I]a [M]/[OH]b
Molecular weight

Polydispersitye

Mnc

(NMR)
Mnd

(NMR)
Mne

(GPC)

SS-PLLA50 800 50 3800 19000 12311 2.2
SS-PLLA100 1600 100 6120 68000 40980 1.9
SS-PLLA200 3200 200 8400 68000 124546 1.9
SS-PLLA300 4800 300 8400 84000 101723
a[M]/[I] refers to the ratio of monomer to initiator. b[M]/[OH] refers to the ratio of monomer to the
hydroxyls on the initiator. cMn here refers to the average molecular weight of each arm estimated
by comparison of the integrals of methane protons and the terminal methane in PLLA from 1H
NMR spectra. dAverage molecular weight of SS-PLLA was calculated from 1H NMR spectra.
eObtained from GPC analysis using polystyrene as standard and THF as eluent.
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Figure C.1: A schematic illustration of the synthesis route of star-shaped block
copolymer SS-PLLA-b-PLYS.
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Figure C.2: NMR spectrum of SS-PLLA. Peak a at 5.17 ppm was quadruplet at-
tributed to -C(O)CH(CH3)O-; peak b at 1.38 ppm was doublet assigned
to -C(O)CH(CH3)O-; peak c at 4.25 ppm was quadruplet from termi-
nal C(O)-CH(CH3)-OH; peak d at 1.35 ppm was doublet from terminal
C(O-CH(CH3)-OH.
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Figure C.3: NMR spectrum of SS-PLLA- Phe-NBOC. Two new peaks f at 1.38 ppm
(singlet, (CH3)3C-) and e at 7.30 ppm (singlet, C6H5-) showed the pres-
ence of tert-butoxycarbonyl and phenyl groups in Phe-NBOC.

Figure C.4: NMR spectrum of SS-PLLA-NH2. The peak at 1.38 ppm disappeared,
indicating the removal of tert-butoxycarbonyl groups.
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Figure C.5: FTIR spectra of SS-PLLA-b-PLYS(Z) and SS-PLLA (arrows indicate the
components from lysine). The absorption peak at 3292 cm−1 was from
the υNH stretch vibration; the peaks at 1563 cm−1 and 1548 cm−1 were
assigned to υCO and υCO−NH stretch vibration, showing the polypeptide
block formation.
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Figure C.6: NMR spectrum of SS-PLLA-b-PLYS(Z). The peak g at 7.30 ppm was
assigned to the benzene ring of the protecting group. The peaks h (4.90
ppm), k (3.80 ppm), and i (2.90 ppm) were attributed to the protons of
the lysine block.

Figure C.7: NMR spectrum of SS-PLLA-b-PLYS. The benzyl peak at 7.30 disap-
peared, indicating the removal of the protecting group.
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APPENDIX D

Comparison between a standard emulsification

process and the specific emulsification (reversed

emulsification)

Methods

The typical emulsification process The polymer was dissolved in tetrahydrofuran

(THF) at a concentration of 2% w/v. Glycerol was added gradually to emulsify

the polymer solution into liquid microspheres via rigorous stirring at 50 ◦C. After 5

min, the mixture was quickly poured into liquid nitrogen to induce phase separation.

After solvent/glycerol extraction with ice water and freeze-drying, microspheres were

obtained.

Reversed emulsification process

The polymer was dissolved in THF at a concentration of 2% w/v. The polymer

solution was quickly added into glycerol to emulsify the polymer solution into liquid

microspheres via rigorous stirring at 50 ◦C. After 5 min, the mixture was quickly

poured into liquid nitrogen to induce phase separation. After solvent/glycerol extrac-

tion with water and freeze-drying, microspheres were obtained.

Phase evolution
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Figure D.1: Emulsions prepared from various polymers using a) a typical emulsifica-
tion process and b) a reversed emulsification process.

In the typical emulsification method, the added glycerol is initially the dispersed

phase (Figure D.1a, phase (I)). As the addition of glycerol continues, the amount

of glycerol increases and exceeds the volume of polymer solution. Therefore, phase

inversion occurs, where the polymer solution becomes the new dispersed phase (Fig-

ure D.1a, phase (II)). This phase inversion causes the initial dispersed phase of glyc-

erol to be entrapped inside the newly-formed polymer solution microspheres. If the

polymer is glycerol-philic and can stabilize the entrapped glycerol, hollow micro-

spheres can form after solvent/glycerol extraction and freeze-drying. If the polymer

is glycerol-phobic, the entrapped glycerol domain will join the outer glycerol medium,

forming single emulsions (Figure D.1a, phase (III)). After solvent extraction, non-

hollow microspheres are formed.

Reversed emulsification process

Unlike the previous process where phase inversion occurs, the reversed emulsifi-

cation involves a quick pouring of polymer solution into the rigorously stirred glyc-

erol, therefore creating polymer solution droplets in a very short time (less than 1
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second). As a result, multiple glycerol domains are entrapped inside one polymer

solution droplet (Figure D.1b, phase (I)). Compared to one glycerol domain inside

one polymer solution droplet, phase (I) in the reversed emulsification process is as-

sociated with more interfacial areas and therefore is more unstable. If the polymer

is highly glycerol-philic, spongy microspheres will form after solvent/glycerol extrac-

tion and freeze-drying. Therefore, different from the typical emulsification process,

the reversed emulsification can create spongy microspheres. However, if the polymer

has a low glycerol-philicity, the multiple glycerol domains in one polymer solution

droplet tend to coalesce and form one glycerol domain (Figure D.1b, phase (II)).

Therefore, hollow microspheres can form after solvent/glycerol extraction and freeze-

drying. Similar to the typical emulsification process, if the polymer is glycerol-phobic,

single emulsions will form, resulting in the subsequent formation of non-hollow mi-

crospheres after solvent extraction (Figure D.1b, phase (III)).

Confocal imaging of the phase evolution during the reversed emulsifi-

cation process

The above stated hypothesis was supported by our confocal imaging of the inter-

mediate phases of different emulsions (linear PLLA, SS-PLLA and SS-PLLA-b-PLYS

(5% LYS/LLA) under the reversed emulsification conditions) at different time points

(Figure D.2). Glycerol was stained with FITC while the polymer solution was not

labeled. After emulsification and phase separation at -76 ◦C for 4 hours, the speci-

men was cut into slices with a thickness of 100 µm at -20 ◦C using a Cryostat and

was quickly observed. The images show that the microspheres were surrounded by

FITC-labeled dispersion media. The green color inside the microspheres indicates

that glycerol was encapsulated inside the microspheres, which became the void struc-

ture after being extracted by water. The un-labeled shell of the microspheres (dark

regions) was the polymer/THF phase. For SS-PLLA-b-PLYS (with 5% lysine), most

of the microspheres had multiple glycerol domains encapsulated at 10 sec, 1min and
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5min. Therefore, microspheres with multiple glycerol domains were formed at the

very beginning, and SS-PLLA-b-PLYS was able to stabilize the encapsulated mul-

tiple glycerol domains. For SS-PLLA, microspheres with multiple glycerol domains

were also formed at first; however, most microspheres can stabilize only one glycerol

domain inside at 1min, with only a few microspheres containing multiple glycerol

domains. At 5min, only microspheres with one glycerol domain were observed. Un-

der the linear PLLA emulsion system, most of the spheres did not encapsulate any

glycerol at first (10 sec). A few multiple emulsions (one glycerol domain) were seen,

but they quickly disappeared at 1min. At 5min, only single emulsions were observed.

Supporting our hypothesis, we found that SS-PLLA-b-PLYS can form spongy

microspheres only when the lysine content exceeds 5% (Figure D.3b). The internal

porous structure is confirmed by confocal imaging (Figure D.3c). In comparison,

under the typical emulsification process, SS-PLLA-b-PLYS with 5% PLYS forms NF-

HMS (Figure D.3a). When PLYS is less than 5%, the copolymer cannot stabilize

multiple glycerol domains in one polymer solution droplet during the reversed emul-

sification, which transition into one glycerol domain in one polymer solution droplet,

forming NF-HMS (Figure D.3e, h). Similarly, the same polymer can also stabilize

phase II in the typical emulsification to form NF-HMS (Figure D.3d, g). Accord-

ing to confocal imaging, NF-HMS has one core inside (Figure D.3f, i), supporting our

hypothesis of the phase evolution. In comparison, linear PLLA does not have glycerol-

philic groups and thus is glycerol-phobic. Therefore, linear PLLA cannot stabilize ei-

ther multiple or single glycerol domains inside the polymer solution droplet, resulting

in the formation of non-hollow microspheres in both the typical and reversed emulsifi-

cation (Figure D.3j, k, l). NF-SMS assembled from SS-PLLA-b-PLYS containing 5%

LYS/LLA integrated both NF and a porous structure (Figure D.4). NF-SMS with a

larger size comprised more pores throughout the whole sphere (Figure D.4).
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Figure D.2: Fluorescence images of liquid microspheres in different emulsion systems
at different time points. (a-c) For SS-PLLA-b-PLYS (5% LYS/LLA), mi-
crospheres containing multiple glycerol droplets inside were stably formed
(as seen at 10 sec, 1 min and 5 min). (d-f) For SS-PLLA, microspheres
with multiple glycerol domains were also found at first (d, 10 sec), while
most of them disappeared at 1min (e). Instead, microspheres with one
glycerol domain were stably formed (f). (g-i) For Linear PLLA, micro-
spheres containing one or multiple glycerol domains were found at a small
percentage at first (g, 5 sec), while most of the spheres encapsulated no
glycerol. At 1 min, spheres containing multiple glycerol domains disap-
peared (h). At 5 min, most of the microspheres didnt encapsulate any
glycerol (i). Scale bars: a, b, d, e, g, h 80 µm, c, f, i 20 µm.
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Figure D.3: SEM and confocal images of microspheres fabricated from: a-c) SS-
PLLA-b-PLYS with 5% PLYS; d-f) SS-PLLA-b-PLYS with 2% PLYS;
g-i) SS-PLLA-b-PLYS with 0% PLYS; and j-l) linear PLLA under the
typical emulsification and reversed emulsification processes. Scale bart:
20 µm.
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Figure D.4: NF-SMS with diameter of 90 to 125 microns (a), 60 to 90 microns (b)
and 30 to 60 microns (c). (d) NF nature of the sponge-like microspheres.
Scale bar: a-c, 20 µm, d, 5 µm.
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Figure D.5: VEGF mRNA expression level of hDPSCs on S-MS was evaluated using
Real-time PCR. ** p < 0.05.
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[146] William H Daly and Drew Poché. The preparation of n-carboxyanhydrides of
α-amino acids using bis (trichloromethyl) carbonate. Tetrahedron Letters, 29
(46):5859–5862, 1988.

[147] Matteo Stoppato, Eleonora Carletti, Viktoryia Sidarovich, Alessandro Quat-
trone, Ronald E Unger, Charles J Kirkpatrick, Claudio Migliaresi, and An-
tonella Motta. Influence of scaffold pore size on collagen i development: A new
in vitro evaluation perspective. Journal of Bioactive and Compatible Polymers,
28(1):16–32, 2013.

[148] Isidro Cobo, Ming Li, Brent S Sumerlin, and Sébastien Perrier. Smart hybrid
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