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ABSTRACT

Gradient-based optimization and the adjoint method form a synergistic combina-

tion that enables the efficient solution of large-scale optimization problems. Though

the gradient-based approach struggles with non-smooth or multi-modal problems, the

capability to efficiently optimize up to tens of thousands of design variables provides

a valuable design tool for exploring complex tradeoffs and finding unintuitive designs.

However, the widespread adoption of gradient-based optimization is limited by the

implementation challenges for computing derivatives efficiently and accurately, par-

ticularly in multidisciplinary and shape design problems. This thesis addresses these

difficulties in two ways.

First, to deal with the heterogeneity and integration challenges of multidisciplinary

problems, this thesis presents a computational modeling framework that solves mul-

tidisciplinary systems and computes their derivatives in a semi-automated fashion.

This framework is built upon a new mathematical formulation developed in this the-

sis that expresses any computational model as a system of algebraic equations and

unifies all methods for computing derivatives using a single equation. The framework

is applied to two engineering problems: the optimization of a nanosatellite with 7

disciplines and over 25,000 design variables; and simultaneous allocation and mission

optimization for commercial aircraft involving 330 design variables, 12 of which are

integer variables handled using the branch-and-bound method. In both cases, the

framework makes large-scale optimization possible by reducing the implementation

effort and code complexity.

The second half of this thesis presents a differentiable parametrization of aircraft

geometries and structures for high-fidelity shape optimization. Existing geometry

parametrizations are not differentiable, or they are limited in the types of shape

changes they allow. This is addressed by a novel parametrization that smoothly inter-

polates aircraft components, providing differentiability. An unstructured quadrilat-

eral mesh generation algorithm is also developed to automate the creation of detailed

xviii



meshes for aircraft structures, and a mesh convergence study is performed to verify

that the quality of the mesh is maintained as it is refined. As a demonstration, high-

fidelity aerostructural analysis is performed for two unconventional configurations

with detailed structures included, and aerodynamic shape optimization is applied to

the truss-braced wing, which finds and eliminates a shock in the region bounded by

the struts and the wing.
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CHAPTER 1

Introduction

The fundamental problem that motivates this thesis is the question, how can we

better utilize computational models in the design of engineering systems? Large-scale

optimization is one way through which computational models can make a larger im-

pact in engineering design. The combination of a gradient-based optimizer and the

adjoint method has been shown to form a powerful tool that makes it possible to per-

form optimization with up to tens of thousands of design variables. However, the main

drawback is that the gradient-based approach is often difficult to implement. This

thesis addresses this challenge in two particular types of situations: multidisciplinary

and shape design problems.

This chapter provides the motivation for this thesis and a brief overview of the

contributions. Section 1.1 begins by describing how engineering design can benefit

from optimization tools, and in particular, large-scale optimization. Section 1.2 ex-

plains that gradient-based optimization is required to solve a large-scale optimization

problem. Section 1.3 describes the limitations of gradient-based optimization, espe-

cially the challenges of computing derivatives efficiently. Finally, Sec. 1.4 summarizes

the thesis objectives and contributions.

1.1 The role of large-scale optimization in design

Engineering design is an art. It is a process that relies on the decision-making

of human designers based on their knowledge and intuition, supplemented by exper-

imental observations. While the human aspect of the design process is not likely to

change, numerical experimentation using computational models is becoming an in-

creasingly relevant tool, as advances in hardware and software enable better accuracy.

In many fields, such as aircraft aerodynamics, computational models already offer a
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practical and useful alternative to physical experiments for certain situations because

they are typically less costly to run.

Within each field that uses computational models, improving their accuracy is an

ongoing research topic. Since many systems and processes are naturally governed

by partial differential equations (PDEs), there are three main sources of error to

target: modeling error due to the assumptions inherent in the PDE, discretization

error due to the finite size of the mesh, and iteration error due to partial convergence

of the solver. These types of error can be reduced with improved mathematical

models, larger meshes, and tighter convergence, respectively, which are all addressed

by advancements in computing power and algorithms.

Though developing more accurate computational models is a moving target, a

concurrent aim of research is to utilize existing computational models to design engi-

neering systems. This is arguably best achieved using numerical optimization, since

engineering design problems are naturally expressed in such a form. Numerical op-

timization problems seek to minimize or maximize an objective function by varying

design variables with equality constraints or inequality constraints enforced.

In a practical design problem, there are at least three ways in which numerical op-

timization can make an impact on the design process. First, when the computational

model is sufficiently accurate, the optimization solution may be used directly, with

some modifications, as the final design for the design problem. An example is the use

of topology optimization in the structural design of the Airbus A380’s leading edge

ribs in the main wing [3, 4]. The second way numerical optimization can be an invalu-

able tool is by discovering a new design feature or insights that deepen the designer’s

understanding of the problem. For instance, an aerodynamic shape optimization al-

gorithm applied to an aircraft wing has been used to recover the winglet from an

initially flat wing [5, 6], and an aerostructural optimization algorithm recovered a

raked (rear-swept) wing tip [7], which is a design feature used on the Boeing 787.

These results show potential for discovering other features that can provide efficiency

improvements. A third way numerical optimization can be useful is by exposing

weaknesses in the computational model or in the optimization problem formulation.

For instance, optimizers often converge to unphysical designs that exploit the parts

of the computational model with large overprediction of performance, highlighting

where the model needs to be improved. The effective use of optimization within a

design process relies on the intuition of the designer, especially to separate true design

improvements from performance overprediction due to model weaknesses. However,

optimization results often provide feedback to the engineer, suggesting constraints to
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add to account for a physical assumption or design variables to include to capture an

important tradeoff. The result is an iterative and interactive process that can enrich

the engineer’s understanding of the design problem.

Some of the benefits of optimization may be achieved by running the computa-

tional model at sufficiently many input values, using intuition to choose the values

in an intelligent way. This approach—akin to manual optimization—is ineffective if

there are too many variables and too much complexity for intuition to be of use. In

general, numerical optimization can provide the most value when there are a large

number of design variables—i.e., large-scale optimization—because it can yield the

most unintuitive results.

1.2 The argument for gradient-based optimization

Given a large-scale optimization problem, the challenge is to solve it to an ac-

ceptable level of optimality with as few evaluations of the computational model as

possible. Here, three assumptions are made regarding the problem.

The first assumption is that the optimization problem is continuous—the design

variables are permitted to take on any values in a convex set—and the objective

and constraint functions are continuous on this set. Though discrete variables and

functions often do arise, continuous problems are more common. Moreover, treating

discrete design variables continuously often yields a useful solution: e.g., for integer

design variables with a sufficiently large scale, the optimized values can be rounded to

the nearest integer. There are also algorithms for handling discrete design variables

in optimization problems such as the branch-and-bound method [8], which is used in

Ch. 7, and these solve a series of continuous optimization problems.

The second assumption is that the computational model is expensive to evalu-

ate. The most valuable computational models capture unintuitive behavior, such as

that governed by complex PDEs that cannot be solved analytically. These must be

discretized into a system of nonlinear equations, which is often large in size, with

O(105 ∼ 107) unknowns.

The third assumption is that the constraints represent physical considerations or

system requirements that must be satisfied for any design to be considered. Thus, it

is required that the optimizer finds feasible designs that satisfy all the constraints at

a high level of precision.

Given these assumptions, gradient-based optimization algorithms are better suited

to solve large-scale optimization problems than gradient-free optimization algorithms.
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Figure 1.1: The function evaluations used by NSGA2, a gradient-free optimizer (left),
and SNOPT, a gradient-based optimizer (right), during the solution of the
Rosenbrock problem. For the gradient-based optimizer, the points that
deviate from the general path to the optimum correspond to function
evaluations during line searches.

Optimizers of the latter type do not perform well for problems with more than hun-

dreds of design variables [9]. This is because gradient-free methods such as genetic

algorithms (GAs) and particle swarm optimizers (PSOs) work with populations dis-

tributed over the design-variable range. This is illustrated in Fig. 1.1, which plots the

function evaluations used by NSGA2 [10], a gradient-free optimizer, and SNOPT [11],

a gradient-based optimizer, to find the minimum of the Rosenbrock function [12] with

respect to two design variables. For gradient-free methods, Perez et al. [9] note that

solution accuracy greatly suffers in large-scale problems due to the large number of

evaluations required. Furthermore, for a constant level of convergence, the number

of required function evaluations grows exponentially.

When combined with analytic derivative computation, gradient-based optimiza-

tion can be a powerful tool, because the adjoint method makes it possible to compute

derivatives at a cost that is nearly independent of the number of design variables [13].

In addition, the number of iterations required for the optimization typically scales

only linearly with sequential quadratic programming (SQP). With SQP, an approxi-

mate Hessian of the Lagrangian is built from only first derivatives and the method is

second-order convergent close to the optimum point. As shown in Fig. 1.2, the end

result is that pairing gradient-based optimization with the adjoint method enables

the solution of large-scale optimization problems with fewer than O(n) evaluations of

the computational model, where n is the number of design variables.

In the aerospace field, the adjoint method has flourished in aerodynamic shape
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Figure 1.2: Plot showing how the number of function evaluations required to opti-
mize the multi-dimensional Rosenbrock function scales with the number
of design variables. The gradient-free optimizers (ALPSO, NSGA2) scale
quadratically or worse, while the gradient-based optimizers (SNOPT,
SLSQP) scale linearly with finite-difference derivatives (FD), and better
than linearly with analytic derivatives (AN).

optimization, initially with the approach of Jameson [14] and later with the optimiza-

tion of full aircraft configurations [15, 16, 17]. It has also been successfully applied

to the multidisciplinary optimization of aircraft aerodynamics and structures simul-

taneously using a coupled adjoint approach [18, 19].

Gradient-based optimizers can never guarantee convergence to the global opti-

mum. However, guaranteeing the global optimum is not a realistic goal for large-scale

optimization problems. Even as a local optimizer, a gradient-based optimization al-

gorithm is still useful because it is able to find feasible designs that can improve upon

one selected using experience and human intuition, if this design is used as the initial

point for optimization. The argument is that a local optimum for a problem that

closely represents reality may be more useful than the global optimum of a problem

based on lower-fidelity models.

1.3 The limitations of gradient-based optimization

In Sec. 1.1, it was argued that numerical optimization can maximize the value

of computational models in an engineering design process, especially as the accuracy

of the models improve. Large-scale optimization adds even more value because its

results are likely to be more unintuitive, whether it yields a useful design or reveals
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insights about the problem. Section 1.2 showed that gradient-based optimization and

the adjoint method form a powerful combination because they enable the solution

of large-scale optimization problems much faster than evaluating the computational

model once for each design variable. This section discusses the limitations of gradient-

based optimization that hinder more widespread adoption.

1.3.1 Discrete, non-smooth, and multi-modal problems

The first limitation is that many optimization problems are not suited to a gradient-

based method. For instance, the problem could contain discrete design variables.

One potential solution is relaxation—treating them as continuous variables—with

constraints imposed to force the optimization solution to be discrete. However, this

approach cannot always be applied and when it can, it yields a problem in which

every discrete solution candidate is a local minimum.

The optimization problem may be discontinuous, non-differentiable, or simply

not continuously differentiable. Though not always the case, convergence issues can

generally be expected if the objective and constraint functions have any of these

properties. As with discrete variables, this problem can sometimes be addressed by

artificially altering the computational model to ensure the optimization problem is

continuously differentiable to eliminate the risk of convergence issues. However, this

introduces additional error to the computational model.

Another potential issue is multi-modality of the combined objective and constraint

functions. If this is the case, there are many local optima, so the result of gradient-

based optimization would be sensitive to the selection of the initial design. Though

gradient-free optimizers are more likely to find the global optimum, they do so at

the expense of significantly more evaluations of the computational model, as shown

in Fig. 1.2. If finding the global optimum is critical, a more efficient approach would

be to run multiple gradient-based optimizations from different starting points that

are uniformly sampled over the domain or randomly selected [20]. However, there is

evidence that some practical problems may be convex [20], and in most cases, a local

optimum is still a useful result that improves upon the initial design.

1.3.2 The computation of derivatives

The second major limitation of gradient-based optimization is that it is much more

difficult to implement than gradient-free optimization, because it requires the com-

putation of derivatives. The derivatives must be computed accurately and efficiently
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to enable large-scale optimization using gradient-based methods.

Accuracy is required for two reasons. First, it can reduce the required number of

optimization iterations by helping the optimizer take a more direct path, which can be

visualized in Fig. 1.1. This effect is significantly pronounced in large-scale optimiza-

tion problems, and inaccurate derivatives represent arguably the most common cause

of convergence failure, especially in large-scale problems. Second, accuracy is also

required for tight convergence in terms of optimality, which is the norm of the gradi-

ents that are driven to zero, and feasibility, which represents the degree of constraint

violation. In practice, inaccurate gradients cause the optimization to eventually stall

as both optimality and feasibility plateau.

Gradient-free optimizers treat the computational model as a black box that is sim-

ply evaluated at various input values. The only methods for computing derivatives

that also treat the computational model as a black box are the finite-difference meth-

ods, which are neither accurate nor efficient. In addition to requiring an evaluation

of the computational model for each design variable, these methods suffer from sub-

tractive cancellation error with small step sizes and truncation error with larger step

sizes. The adjoint method provides both accuracy and efficiency, but it can require

extensive modification of the original computational model.

1.4 Thesis objective and contributions

Given the motivation for large-scale optimization and the aforementioned ob-

stacles, my objective in this thesis is to lower the entry barrier for gradient-based

optimization. Specifically, I focus on two types of problems in which large-scale op-

timization problems commonly arise—multidisciplinary problems and shape design

problems.

1.4.1 Multidisciplinary problems

Many engineering design problems are multidisciplinary. However, the computa-

tional model for each discipline is often developed separately, resulting in multiple

pieces of software that must be joined together. Moreover, coupling between dis-

ciplines may be present, requiring a global solver to converge the multidisciplinary

computational model. Computing the derivatives of the outputs of the multidisci-

plinary model poses an even greater challenge.

In Part I of this thesis, I address these challenges via a new computational mod-

eling framework that facilitates the solution of multidisciplinary systems and imple-
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ments adjoint-type methods for computing derivatives. This framework automates

much of the work involved in developing computational models with multiple disci-

plines or at least multiple components. For example, the framework centrally han-

dles: parallel data passing between components, implementing solvers, and forming

and solving the linear systems required for computing derivatives.

In Ch. 2, I motivate the need for a new framework in more detail, by review-

ing existing frameworks and highlighting the unique features of the new framework.

Chapter 3 presents a new mathematical formulation I developed that represents all

computational models as a system of algebraic equations. This monolithic formula-

tion provides the foundation for the framework, and it is what enables the automated

computation of the simulation and the derivatives with a compact and simple frame-

work design. In Ch. 4, I show how I used this monolithic formulation to develop an

equation that unifies all methods for computing discrete derivatives. For instance, the

black-box finite-difference method, algorithmic differentiation, the chain rule, and the

adjoint method can all be derived from this single equation by making the appropriate

choice of variables in the algebraic system. Chapter 5 presents a compact algorithmic

framework design that I developed based on the monolithic mathematical formulation

and the derivative unification equation. In this framework design, the algebraic sys-

tem is hierarchically decomposed, and all components and solvers are homogeneously

treated as instances of a general System class that has an interface consisting of only

4 primary operations—computing the residuals, driving them to zero, computing the

Jacobian of the residuals, and applying the inverse of the Jacobian as an operator.

In Ch. 6, I apply the framework to the optimization of a nanosatellite involving over

25,000 design variables. In the process, I demonstrate that it is possible to simultane-

ously optimize all 7 disciplines of the satellite design problem, and that smoothing the

discontinuities and discrete data in the problem allows gradient-based methods to be

applied. In Ch. 7, I present the application of the framework to another problem, the

simultaneous allocation and mission optimization of commercial aircraft. This imple-

mentation tests the framework’s built-in hierarchical nonlinear and linear solvers, as

it uses the framework’s solvers exclusively. Finally, Ch. 8 presents a summary and

contributions, significance, and recommendations for future work.

1.4.2 Aircraft shape design

Another large class of engineering design problems involves shape design. Geom-

etry plays an important role in engineering design, as evidenced by the widespread

commercial success of computer-aided design (CAD) packages, thanks to their versa-
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tility and ease of use. However, one disadvantage of CAD is that the mapping between

parameters and the final geometry is not always differentiable, making parametric

CAD unsuitable for gradient-based optimization. In aircraft design, gradient-based

optimization is commonly used in aerodynamic, structural, and aerostructural opti-

mization problems. Thus, there is a need for a parametrization for the outer mold line

(OML) and structural mesh that maintains the benefits of CAD and is differentiable.

In Part II of this thesis, I address this need with a methodology for parametrizing

the aircraft geometry and structural mesh in a differentiable way. I have implemented

these methods in GeoMACH, an open-source high-fidelity aircraft parametrization

tool suite. GeoMACH supports unconventional configurations, and it allows for the

definition of high-level aircraft design parameters such as span and sweep, in addi-

tion to low-level parameters that provide fine control of the shapes of airfoils and

cross sections. It automatically generates unstructured quadrilateral meshes of air-

craft structures, and computes the mapping from the geometry parameters to the

structural nodes. GeoMACH also computes sparse Jacobians of the mappings from

the parameters to the OML and to the full structural mesh.

Chapter 9 motivates high-fidelity aircraft design optimization, and explains how

the new parametrization of aircraft geometries and structures addresses a need. In

Ch. 10, I describe the geometry parametrization and explain how it maintains differ-

entiability by using Bezier and bilinear interpolation to define the junctions between

aircraft components. This contrasts with existing geometry tools that run intersection

algorithms to combine aircraft components together, which does not yield a smooth

mapping. Chapter 11 presents the novel unstructured quadrilateral mesh generation

algorithm that I developed to enable automatic generation of meshes for the airframe

structure. In Ch. 12, I provide aerostructural analysis results as well as aerodynamic

shape optimization results for unconventional aircraft configurations to demonstrate

the capabilities of GeoMACH. Chapter 13 concludes with a summary and contribu-

tions, significance, and recommendations for future work.
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Part I

A general computational modeling

framework

CHAPTER 2

The need for a new computational framework

In Part I of this thesis, I address the problem of facilitating gradient-based op-

timization in multidisciplinary problems by developing a computational modeling

framework that automates the solution of multidisciplinary systems and the compu-

tation of derivatives.

In Ch. 3, I describe the mathematical foundation for the framework, which is the

formulation of all the variables in a computational model as the solution of a single

system of algebraic equations. I show in Ch. 4 that all the methods for computing

the derivatives of the computational model can be derived from a single equation I

developed using the algebraic system. In Ch. 5, I present a compact and minimalistic

framework design that implements the theory from Ch. 3 and Ch. 4 using a single type

of object with an interface consisting of only 5 methods. As a demonstration, Ch. 6

and Ch. 7 present two engineering problems implemented and executed entirely within

the framework: the optimization of a nanosatellite and the simultaneous allocation-

mission optimization of commercial aircraft. Finally, Ch. 8 provides a summary of

contributions and recommendations from Part I.

The current chapter provides a motivation for Part I. Section 2.1 describes the

role of frameworks in computational modeling, Sec. 2.2 surveys existing frameworks,

and Sec. 2.3 introduces the current framework.
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2.1 Modularity in computational modeling

Computational models have a ubiquitous presence in many scientific fields. They

are widely used in the natural sciences, engineering, medicine, finance, and many other

fields involving systems and processes that are complex and difficult to fully under-

stand. Computational models are employed to assist in design (e.g. of an airplane),

making decisions (e.g. about an investment portfolio), enhancing understanding (e.g.

of a cell), and forecasting (e.g. a weather system). They are useful because they

provide an inexpensive and practical alternative to real-world experimentation and

observation.

The development of a computational model begins with the mathematical model,

defined here as the continuous set of equations obtained by applying the relevant phys-

ical laws and assumptions for the problem. Mathematical models often involve field

quantities that vary over space, time, or both, along with the relationships between

them, which are the governing equations that must be enforced at every point. Dis-

cretizing by applying the appropriate numerical methods yields the numerical model,

consisting of the finite-dimensional vectors and discrete algebraic equations. The

computational model is formally defined as the computer program that implements

the necessary solution algorithms and software design to compute the variables in the

numerical model. The computational model can be made up of components—useful,

standalone pieces of code with clear inputs and outputs— and can itself be seen as

one of the components that make up another computational model.

There are significant challenges to performing large-scale simulation and optimiza-

tion because of the implementation effort involved. These challenges are compounded

in multidisciplinary computational models made up of components corresponding to

different types of physics. One strategy for managing the resulting code complexity is

the use of a computational modeling framework. This refers to a software library that

facilitates the integration of the components that constitute a computational model.

2.2 Existing frameworks

There are many existing frameworks developed in the industry and in academia,

but they do not formulate problems in a sufficiently general way that provides the

efficiency required for large-scale simulation while computing the derivatives required

for large-scale optimization using the analytic methods.
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2.2.1 Existing commercial frameworks

Many commercial frameworks have been very successful, especially among engi-

neers in the industry. These include Phoenix Integration’s ModelCenter/CenterLink,

Dassault Systemes’ Isight/SEE, TechnoSoft’s AML suite, MathWorks’ MATLAB/Simulink,

Noesis Solutions’ Optimus, and Vanderplaats’ VisualDOC. Underlying their differ-

ences, they have four fundamental features in common: a graphical user interface

(GUI), software libraries, interfaces to external software, and grid computing man-

agement. The first feature is a GUI that allows the construction of computational

models from smaller components through a drag-and-drop interface and provides

tools for post-processing and visualization of results. Software libraries are suites of

reusable components for general-purpose use—e.g. optimizers, stochastic modeling

tools, and surrogate models. The third feature is a set of built-in interfaces to existing

commercial computer-aided design and engineering software. Finally, grid comput-

ing management typically involves a simple graphical interface that automates the

handling of parallel computing jobs running on remote clusters.

These features are all valuable and have contributed to the widespread use of

these frameworks in the engineering industry, but they have seen limited adoption for

high-performance computing (HPC) applications in the research community. HPC

applications involve large systems of linear and nonlinear equations that are solved

using advanced numerical algorithms and parallel computing. The aforementioned

frameworks are primarily designed to integrate either smaller scale components or

already mature HPC codes in a minimally invasive way, effectively treating them as

black boxes.

2.2.2 Existing HPC frameworks

The modular development of HPC codes is addressed by many framework designs

presented in the literature. For instance, CACTUS [21] is an open-source framework

originally developed in the physics field to facilitate the solution of partial differen-

tial equations (PDEs) with parallel computing. Another open-source framework is

SCIRun [22], which originated from medical applications, but also aims to facilitate

a modular approach to parallel scientific computing, especially in multidisciplinary

problems. NWChem [23] is a third example of an open-source framework, designed

for efficient, parallel solution of large systems of equation arising in computational

chemistry. MOOSE [24] is another open-source framework for the parallel solution of

coupled, multi-physics systems of equations with finite-element discretizations.
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All of these HPC-focused frameworks provide distributed data passing and vari-

ous PDE-specific utilities, in addition to some of the features the commercial frame-

works provide—visualization tools, software libraries, and grid computing manage-

ment. The downside is that the provided features are often specialized to the types of

PDEs and PDE solvers for which the framework is designed. An example that is more

general is the common component architecture (CCA) [25], a model for component-

based implementation of HPC software, but it is a general set of specifications rather

than a framework with built-in features.

2.2.3 Existing MDO frameworks

Many frameworks have also been developed in the context of multidisciplinary

design optimization (MDO). Padula and Gillian [26] review these and note that mod-

ularity, data handling, parallel processing, and user interface are the most important

features of a framework that facilitates optimization with multiple disciplines. Prior to

this, Salas and Townsend [27] had performed a similar survey and listed more detailed

requirements for an MDO framework, categorized into the framework’s architectural

design, problem construction, problem execution, and data access. The existing MDO

frameworks are susceptible to the same missing features as the aforementioned com-

mercial and HPC-focused frameworks. One notable exception is pyMDO [28], which

automatically computes derivatives using analytic methods [29] though in a less gen-

eral form than proposed in this thesis. Moreover, pyMDO focuses on facilitating

the implementation of MDO architectures, so it lacks several other features such as

built-in solvers for HPC and parallel data transfer.

2.3 The current framework

As previously mentioned, one advantage of the current framework is that it handles

PDE-type components efficiently and in an active way, solving the system of equations

centrally. At the same time, it handles components that explicitly map inputs to

outputs not as a special case, but using the same mathematical formulation. The

other advantage is that derivatives of full numerical model are computed efficiently

and accurately using the analytic methods.

The difference in approach between the current and all existing frameworks is

illustrated in Fig. 2.1. Existing frameworks do not attempt to change the original

numerical model in any fashion; rather, they focus on the implementation of the com-

putational model. They provide software libraries that can facilitate the development
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Proposed framework

Existing frameworks

Mathematical model

Continuous equations
−→

Numerical model

Discretized equations
−→

Computational model

Computer program

Figure 2.1: The role of the proposed computational modeling framework compared
to that of existing frameworks in the development of a computational
model. The proposed framework uses a unified formulation of the numer-
ical model to enable features not provided by existing frameworks which
do not change or reformulate the numerical model.

of the computational model provided that the components follow a paradigm and the

application programming interface (API) dictated by the framework. In contrast, the

computational modeling framework presented in this thesis goes further and applies

a similar philosophy to the numerical model as well. Each component’s numerical

model must be reformulated to fit within a paradigm, albeit with minimal effort, and

this is what enables the current framework to provide additional features.

The following chapters present a unique but simple framework design that ad-

dresses these missing features and lowers the entry barrier for large-scale simulation

and optimization. It facilitates large-scale simulations by automating the parallel

execution of components and parallel data passing, and by centrally solving the cou-

pling between components and the systems of equations from discretized PDEs in an

efficient way. It also enables large-scale optimization by implementing the analytic

methods to centrally compute the derivatives of the overall computational models

given those of the constituent components.

This framework is able to provide these automated features despite the possi-

ble heterogeneity in type and scale of the components by using a unique yet simple

mathematical and algorithmic design. Mathematically, the framework formulates the

entire numerical model as a set of variables and a set of corresponding residual func-

tions that define a system of equations. Thus, the framework unifies all components

as objects that define variables implicitly through residual functions, regardless of

whether a component solves a complex, discretized PDE or it simply evaluates an

explicit function. In terms of the algorithms, the framework applies a hierarchical

solution strategy to the overall system of equations using built-in iterative nonlinear
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and linear solvers while incorporating any solvers the user provides. With this ap-

proach, it unifies all framework operations as part of the solution of a nonlinear or

linear system. For instance, data transfers, executing components in a sequence, solv-

ing a discretized PDE in a component, or converging two coupled components using

fixed-point iteration are all parts of various methods for solving nonlinear systems.
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CHAPTER 3

A monolithic formulation

This chapter presents the monolithic reformulation of numerical models and the

resulting benefits. Section 3.1 describes the notation for any numerical model. Sec-

tions 3.2 and 3.3 formulate the general numerical model as a single system of algebraic

equations and hierarchical decompose it into smaller systems of equations by recur-

sively partitioning the set of unknowns. Section 3.4 presents a solution existence

proof to show when it is valid to form these systems of equations. Finally, Section 3.5

shows that the derivatives of interest can be computed by solving a system of linear

equations which unifies the existing methods for computing derivatives.

3.1 Notation for a general numerical model

A numerical model was previously defined to consist of the discretized quantities

and the finite set of algebraic equations that define their values. This section defines

the nomenclature for a general numerical model.

In this context, a variable represents a vector of a single type of physical or abstract

quantity in a numerical model. In many settings, each individual scalar is treated as a

separate variable; however, in the current context, a group of scalars representing the

same quantity—such as a vector comprised of temperature values at different time

instances—is collectively referred to as a single variable. The only exception is design

variables; each design variable is a scalar that is varied by the optimizer to minimize

or maximize the objective function.

Fundamentally, numerical models capture the relationships between quantities—

i.e., the response of one or more quantities to changes in others. Thus, it is useful to

classify the variables in a numerical model as either input, state, or output. Input

variables are independent variables whose values are set externally; output variables
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are the dependent variables of interest; and state variables are dependent variables

computed in the process of computing the output variables.

The following notation is used to characterize a general numerical model. Let

x1, . . . , xm denote the input variables; y1, . . . , yp denote the state variables; and

f1, . . . , fq denote the output variables. Let Dx
k ⊆ RNx

k , Dy
k ⊆ RNy

k , and Df
k ⊆ RNf

k

be the sets of permitted values of the kth input variable, the kth state variable, and

the kth output variable, respectively, such that the variables satisfy xk ∈ Dx
k for

k = 1, . . . ,m; yk ∈ Dy
k for k = 1, . . . , p; and fk ∈ Df

k for k = 1, . . . , q. Each of these

sets is a Cartesian product of intervals defined by the lower and upper bounds for the

variable.

Each output variable fk is computed by a function of the state and input variables

that is denoted Fk : Dx
1 × · · · ×Dx

m ×Dy
1 × · · · ×Dy

p → Df
k . Each state variable yk is

computed by a function of the other state variables and the input variables, denoted

Yk : Dx
1 × · · · × Dx

m × Dy
1 × · · · × Dy

k−1 × Dy
k+1 × · · · × Dy

p → Dy
k. Moreover, each

state variable can be classified as one of two types, explicit and implicit. The value

of an explicit state variable is defined by Yk and no other information is known; the

value of an implicit state variable is defined by the implicit function Rk : Dx
1 × · · · ×

Dx
m×Dy

1 ×· · ·×Dy
p → RNy

k and Yk can be interpreted as the function that solves the

implicit equation. Thus, the numerical model is defined by

yk =

{
Yk(x1, . . . , xm, y1, . . . , yk−1, yk+1, . . . , yp), explicit

a |Rk(x1, . . . , xm, y1, . . . , yk−1, a, yk+1, . . . , yp) = 0, implicit
, 1 ≤ k ≤ p

fk = Fk(x1, . . . , xm, y1, . . . , yp), 1 ≤ k ≤ q.

(3.1)

3.2 A monolithic formulation of the numerical model

This section presents the reformulation of the numerical model described by

Eq. (3.1) in the previous section as a single system of algebraic equations. The choice

of values for the input variables changes the algebraic system; thus, it is necessary to

make this choice before proceeding. Let us assume x∗k is the value of input variable

xk for all k = 1, . . . ,m, at the point at which the numerical model is being evaluated.

The first step is to concatenate the set of variables into one vector,

u = (v1, . . . , vn) = (x1, . . . , xm, y1, . . . , yp, f1, . . . , fq), (3.2)

where n = m + p + q. As before, the variables are restricted to be in a set of
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permitted values: vk ∈ Dk where Dk ⊆ RNk is a Cartesian product of Nk intervals,

for k = 1, . . . , n.

Define functions Rk : D1 × · · · ×Dn → RNk for k = 1, . . . , n where

Rk(u) = xk − x∗k , 1 ≤ k ≤ m

Rm+k(u) =

{
yk − Yk(x1, . . . , xm, y1, . . . , yk−1, yk+1, . . . , yp) , explicit

−Rk(x1, . . . , xm, y1, . . . , yp) , implicit
, 1 ≤ k ≤ p

Rm+p+k(u) = fk −Fk(x1, . . . , xm, y1, . . . , yp) , 1 ≤ k ≤ q.

(3.3)

A minus sign is present for the implicit state variables because including it yields

more intuitive formulae when computing derivatives.

Let R : D → Rn be defined by R = (R1, . . . , Rn), where D = D1 × · · · × Dn.

Then, the numerical model can be formulated as the following algebraic system of

equations:

R1(v1, . . . , vn) = 0
...

Rn(v1, . . . , vn) = 0

⇔ R(u) = 0. (3.4)

The unified formulation of any numerical model is the algebraic system of equa-

tions R(u) = 0, referred to hereafter as the fundamental system. Its significance is

due to the fact that the vector u∗ that solves Eq. (3.4) satisfies Eq. (3.1); thus, the

solution of the fundamental system is equivalent to the outcome of evaluating the

numerical model.

3.3 Hierarchical decomposition

To enable block Gauss–Seidel-like methods for solving Eq. (3.4), it is useful to

partition the set of unknowns to form smaller systems of equations. Moreover, this

partitioning strategy can be recursively applied to the smaller systems of equations,

resulting in a hierarchical decomposition of the original algebraic system in Eq. (3.4).

Let S = {i1 + 1, . . . , i2} be an index set where i1, i2 ∈ N and i1 < i2. Let RS :

D1×· · ·×Dn → RNi1+1×· · ·×RNi2 be defined by concatenating the residual functions

corresponding to the indices in S. Let pS = (v1, . . . , vi1 , vi2+1, . . . , vn) and uS =

(vi1+1, . . . , vi2) partition u into the parameter vector and unknown vector, respectively.
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Then, the system of equations corresponding to RS is

Ri1+1(v1, . . . , vi1 , vi1+1, . . . , vi2 , vi2+1, . . . , vn) = 0
...

Ri2(v1, . . . , vi1︸ ︷︷ ︸
pS

, vi1+1, . . . , vi2︸ ︷︷ ︸
uS

, vi2+1, . . . , vn︸ ︷︷ ︸
pS

) = 0

⇔ RS(pS, uS) = 0,
(3.5)

which is referred to as an intermediate system.

3.4 Validity of the monolithic, hierarchical formulation

The validity of the fundamental system in Eq. (3.4) and intermediate systems in

Eq. (3.5) hinges on the existence of solutions for each system. In the former case,

the question concerns whether the numerical model represents a well-posed problem,

while in the latter case, the question is whether it is possible to solve for a given

intermediate system’s unknowns as a function of its parameters. This section presents

conditions that guarantee existence of solutions in both situations.

Theorem 3.1. Let Dk ⊆ RNk be a Cartesian product of intervals for each k = 1, . . . , n

and define D = D1 × · · · × Dn. Let Rk : D → RNk be a residual function for each

k = 1, . . . , n.

If there exist continuous functions

Fk : D1 × · · · ×Dk−1 ×Dk+1 × · · · ×Dn → Dk (3.6)

that solve Rk(v1, . . . , vN) = 0 for k = 1, . . . , n and at most one of D1, . . . , Dn is

unbounded, then the following hold:

1. there exists v∗k ∈ Dk for each k = 1, . . . , n such that

R1(v
∗
1, . . . , v

∗
n) = 0

...

Rn(v∗1, . . . , v
∗
n) = 0.

(3.7)

2. for all index sets S = {i1 + 1, . . . , i2} ⊆ {1, . . . , n}, there exists a function

FS : D1 × · · · ×Di1 ×Di2+1 × · · · ×Dn → Di1+1 × · · · ×Di2 (3.8)

that solves Rk(v1, . . . , vn) = 0 ∀k ∈ S.
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Proof. The proof of the first part is as follows. Without loss of generality, assume D1

is the unbounded set if one of D1, . . . , Dn is unbounded. Define

G :


v2
...

vn

 7→


F2(F1(v2, . . . , vn), v3, . . . , vn)
...

Fn(F1(v2, . . . , vn), v2, . . . , vn−1)

 (3.9)

The function G is a composition of continuous functions so G itself is also con-

tinuous. The domain and codomain of G are both D2 × · · · ×Dn, which is a convex

and compact subset of a Euclidean space since D2, . . . , Dn are Cartesian products

of intervals that are bounded. Given these two properties, the Brouwer fixed-point

theorem guarantees the existence of a point (v∗2, . . . , v
∗
n) such that

v∗2 = F2(F1(v
∗
2, . . . , v

∗
n), v∗3, . . . , v

∗
n)

...

v∗n = Fn(F1(v
∗
2, . . . , v

∗
n), v∗2, . . . , v

∗
n−1).

(3.10)

Defining v∗1 = F1(v
∗
2, . . . , v

∗
n), it is easy to see that (v∗1, . . . , v

∗
n) solves the system

of equations defined by R1, . . . , Rn:

R1(v
∗
1, v
∗
2, . . . , v

∗
n) = R1(F1(v

∗
2, v
∗
3, . . . , v

∗
n), v∗2, . . . , v

∗
n) = 0

R2(v
∗
1, v
∗
2, . . . , v

∗
n) = R2(v

∗
1, F2(v

∗
1, v
∗
3, . . . , v

∗
n), . . . , v∗n) = 0

...

Rn(v∗1, v
∗
2, . . . , v

∗
n) = Rn(v∗1, . . . , v

∗
n−1, Fn(v∗1, v

∗
2, . . . , v

∗
n−1)) = 0,

(3.11)

as required.

The proof of the second part follows from that of the first part. Given an index

set S = {i1 + 1, . . . , i2} ⊆ {1, . . . , N}, define Sc = {1, . . . , N}\S. Taking any vk ∈
Dk ∀k ∈ Sc and applying the result of part (i) with vk ∀k ∈ Sc held fixed yields

a solution (v∗i1+1, . . . , v
∗
i2

) that satisfies Rk(v1, . . . , vn) = 0 ∀k ∈ S. This defines the

required function.

This theorem can be interpreted in two ways. First, if all but one variable in the

numerical model has lower and upper bounds and each variable can be continuously

solved for in terms of the others, then this theorem guarantees that the full coupled

numerical model has a solution. Furthermore, any intermediate system defined by

selecting any subset of the variables is guaranteed to also have a solution for each set

of values for the remaining variables. This is a necessary condition for hierarchical
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block Gauss–Seidel or Jacobi-type methods to be used.

In the second situation, it is assumed to be known that the coupled numerical

model has a solution. The remaining question is then whether an intermediate system

of interest is valid—i.e., whether the variables that constitute its unknown vector can

be solved for in terms of the remaining variables. This theorem guarantees that this

is the case if all or all but one of the variables in the unknown vector has lower and

upper bounds respected by the function defining the variable.

3.5 Computation of derivatives

The derivatives of interest are those of the output variables with respect to the

input variables. Let x = (x1, . . . , xm), y = (y1, . . . , yp), and f = (f1, . . . , fq) be vectors

and let Y = (Y1, . . . ,Yp) and F = (F1, . . . ,Fq) be functions. Then, the numerical

model is encapsulated in the function G : x 7→ F(x,Y(x)), which maps the inputs x

to the outputs f and the derivatives of interest are contained in ∂G/∂x.

Methods for computing derivatives can be divided into 4 categories: finite-step

methods, chain rule, analytic methods, and algorithmic differentiation. The simplest

form of the first type is the finite-difference method, which is the simplest method

to implement but has limited accuracy because one of either the discretization er-

ror or the subtractive cancellation error dominates, depending on the step size. The

complex-step method fixes the accuracy issue by eliminating the subtractive cancella-

tion error, but like the finite-difference method, the computation cost scales linearly

with the number of input variables, which can be large in some applications. The

second class of methods computes derivatives of components and combines them us-

ing the chain rule, though this method can only be applied when there is no feedback

among the components. When residuals are available for the state variables, ana-

lytic methods can be applied to accurately compute derivatives of coupled systems,

potentially at a cost independent of the number of the input variables. Algorithmic

differentiation can have this property as well, but it requires automatic source-code

modification, can have a large memory usage, and is less efficient than the analytic

methods.

It is possible to derive, from the fundamental system, an equation that unifies all

four types of methods. The method that is used depends on the choice of the state

variables—on one extreme, including no state variables results in a finite-step method

and on the other, including the variable from every line of code in a computational

model effectively results in algorithmic differentiation. This is explained in detail in
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the next chapter.

The analytic methods are significantly more efficient than the others for many

types of problems. To use this class of methods, the fundamental system must be

defined with the original residuals of implicit state variables used; for explicit state

variables, residuals are defined as the value of the state variables minus the output of

the function, as before. The fundamental system has the form,

u =

xy
f

 and R(u) =

 x− x∗
−R(x, y)

f −F(x, y)

 . (3.12)

The following proposition shows how ∂G/∂x can be computed from the fundamental

system defined Eq. (3.12).

Proposition 3.2. Let R and u be defined as in Eq. (3.12) and define G : x 7→
F(x,Y(x)). If ∂R/∂u is invertible and the inverse is defined as

∂R

∂u

−1
=

A
[Nx×Nx] A[Nx×Ny ] A[Nx×Nf ]

A[Ny×Nx] A[Ny×Ny ] A[Ny×Nf ]

A[Nf×Nx] A[Nf×Ny ] A[Nf×Nf ]

 , (3.13)

then the following identity holds.

∂G
∂x

= A[Nf×Nx], (3.14)

where ∂R/∂u is evaluated at u∗ satisfying R(u∗) = 0.

Proof. By construction, the following holds:
I 0 0

−∂R
∂x

−∂R
∂x

0

−∂F
∂x

−∂F
∂x

I


A

[Nx×Nx]

A[Ny×Nx]

A[Nf×Nx]

 =

I0
0

 . (3.15)

Block forward substitution yields

A
[Nx×Nx]

A[Ny×Nx]

A[Nf×Nx]

 =


I

− ∂R
∂y

−1 ∂R
∂x

∂F
∂x
− ∂F
∂y

∂R
∂y

−1 ∂R
∂x

 . (3.16)
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Now, G is a composition of functions mapping x 7→ (x,Y(x)) and (x, y) 7→ F(x, y),

so applying the chain rule yields

∂G
∂x

=

[
∂F
∂x

∂F
∂y

] I∂Y
∂x

 . (3.17)

Since ∂R/∂y is invertible, the implicit function theorem states

∂Y
∂x

= − ∂R
∂y

−1 ∂R
∂x

. (3.18)

Combining the two equations above yields

∂G
∂x

=
∂F
∂x
− ∂F
∂y

∂R
∂y

−1 ∂R
∂x

. (3.19)

Therefore,
∂G
∂x

= A[Nf×Nx], (3.20)

as required.

The application of the inverse function theorem sheds insight as to why the lower

left Nf×Nx block of ∂R/∂u is equal to the matrix of derivatives commonly understood

as df/dx in practice. Assuming ∂R/∂u is invertible, the inverse function theorem

guarantees the existence of a locally defined inverse function R−1 : r 7→ u|R(u) = r

which satisfies
∂(R−1)

∂r
=

[
∂R

∂u

]−1
. (3.21)

The concept of a total derivative is used in many settings, but it is difficult to find

a clear definition in the literature—total derivatives are usually defined in terms of

other total derivatives as in

df

dx
=
∂F

∂x
+
∂F

∂y

dy

dx
, (3.22)

staying with the convention that functions are capitalized.

Total derivatives are useful for distinguishing direct and indirect dependence on a

variable. In the example above, the total derivative df/dx captures both the explicit

dependence of F on the argument x and the indirect dependence of F on x via y.

The Jacobian ∂(R−1)/∂r captures a similar relationship because the (i, j)th entry

of the matrix ∂(R−1)/∂r captures the dependence of the ith component of u on the
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I

−∂R

∂x

−∂F

∂x

0

−∂R

∂y

−∂F

∂y

0

0

I

I

dy

dx

df

dx

0

dy

dr

df

dr

0

0

I

=

I

0

0

0

I

0

0

0

I

Figure 3.1: The block structure of the matrices in the left equality of Eq. (3.24).

jth component of r directly, but also indirectly via the other components of u since

they also change when the jth component of r changes. This motivates the following

definition of the total derivative.

Definition 3.3. Given the algebraic system of equations R(u) = 0, assume ∂R/∂u

is invertible at the solution of this system. The matrix of total derivatives du/dr is

defined to be
du

dr
=
∂(R−1)

∂r
, (3.23)

where ∂(R−1)/∂r is evaluated at r = 0.

Following from Eq. (3.21), the matrix du/dr is also equal to the inverse of ∂R/∂u,

leading to

∂R

∂u

du

dr
= I =

∂R

∂u

T du

dr

T

, (3.24)

which is referred to as the unifying chain rule equation [13]. The left and right

equalities are denoted the forward mode and the reverse mode, respectively, drawing

inspiration from terminology in algorithmic differentiation.

For independent and explicit variables, the r in the denominator of du/dr can be

replaced with the symbol for the variable itself, as shown in Fig. 3.1. The derivatives

of interest are df/dx, which is a sub-block of du/dr. Computing df/dx involves solving

a linear system with multiple right-hand sides, so this is more efficient with the left

or right equality in Eq. (3.24), depending on the relative sizes of f and x.
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CHAPTER 4

A unification of methods for computing derivatives

This chapter shows that all discrete methods for computing derivatives can be

derived from the unifying chain rule (3.24). Each method corresponds to a specific

choice of the variables in u and the residuals R. To illustrate this, I present these

choices and the derivation from the chain rule in figures with a common layout.

Figure 4.1 shows the layout for the general case, with no specific choice of variables

or residuals.

The top box shows the definition of the variables and residuals on the right,

and a diagram showing the dependence of the residual functions on the variables on

the left. The diagram uses the extended design structure matrix (XDSM) standard

developed by Lambe and Martins [1], which enables the representation of both the

data dependency and the procedure for a given algorithm. The diagonal entries are

the functions in the process, and the off-diagonal entries represent the data. Here,

only the data dependency information is relevant, which is expressed by the thick gray

lines. The XDSM diagram in Figure 4.1 shows the residuals or vectors of residuals

along the diagonal, and variables or vectors of variables in the off-diagonal positions.

The off-diagonal entry in row i and column j expresses the dependence of the jth

residual on the ith variable.

The middle box is used for the derivation of the method from the unifying chain

rule (3.24). The two boxes at the bottom show the forward and reverse forms of the

method.

The sections that follow present one such table for each of the methods, where

the variables and residuals are specified differently depending on the method, and

the application of the unifying chain rule to those variables and residuals yields the

method.
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R1 u1 u1 . . . u1

u2 R2 u2 . . . u2

u3 u3 R3
. . . u3

...
...

...
. . .

...

u5 u5 u5 . . . Rn

u =




u1

u2

.

.

.
un




R(u) =




R1(u1, . . . , un)
R2(u1, . . . , un)

.

.

.
Rn(u1, . . . , un)




Variables and Constraints

∂R

∂u

du

dr
=I =

∂R

∂u

T du

dr

T

∂R1

∂u1

. . .
∂R1

∂un

.

.

.
. . .

.

.

.
∂Rn

∂u1

. . .
∂Rn

∂un







du1

dr1
. . .

du1

drn
.
.
.

. . .
.
.
.

dun

dr1
. . .

dun

drn







=I =

∂R1

∂u1

. . .
∂Rn

∂u1

.

.

.
. . .

.

.
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Figure 4.1: Equations for computing total derivatives in a general system of equa-
tions.

4.1 Monolithic differentiation

In monolithic differentiation, the entire computational model is treated as a “black

box.” This may be the only option in cases for which the source code is not available,

or if it is not deemed worthwhile to implement more sophisticated approaches for

computing the derivatives.

In monolithic differentiation, the only variables that are tracked are the inputs

x and the outputs f . Thus, the variables are defined as u = [xT , fT ]
T

, as shown

in Fig. 4.2. The residuals are just the residuals of the inputs and outputs, i.e., the

differences between the actual values of the variables and the corresponding functions.

Thus, the input variables x are simply forced to match the specified values x∗, and

the output variables f are forced to match the results of the computational model,

F .

The result of applying these definitions of the variables and residuals is rather
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Figure 4.2: Derivation of monolithic (black box) differentiation.

trivial:
dfi
dxj

=
∂Fi
∂xj

(4.1)

for each input xj and output variable fi. This relationship is simply stating that the

total derivatives of interest are the partial derivatives of the model when considered

in this context.

4.2 Algorithmic differentiation

Algorithmic differentiation (AD)—also known as computational differentiation or

automatic differentiation—is a well-known method based on the systematic applica-

tion of the differentiation chain rule to computer programs [30, 31]. Although this

approach is as accurate as an analytic method, it is potentially much easier to imple-

ment since the implementation can be done automatically.

In the AD perspective, the independent variables x and the quantities of interest

f are assumed to be in the vector of variables t. To make clear the connection to the
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Figure 4.3: Derivation of algorithmic differentiation.

other derivative computation methods, we group these variables as follows:

u = [t1, . . . , tnx︸ ︷︷ ︸
x

, . . . , tj, . . . , ti, . . . , t(n−nf ), . . . , tn︸ ︷︷ ︸
f

]T . (4.2)

Figure 4.3 shows this definition and the resulting derivation. Note that the XDSM

diagram shows that all variables are above the diagonal, indicating that there is only

forward dependence, because of the unrolling of all loops. The residuals just enforce

that the variables must be equal to the corresponding function values. Using these

definitions in the unifying chain rule, we obtain a matrix equation, where the matrix

that contains the unknowns (the total derivatives that we want to compute) is either

lower triangular or upper triangular. The lower triangular system corresponds to

the forward mode and can be solved using forward substitution, while the upper

triangular system corresponds to the reverse mode of AD and can be solved using

back substitution.
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These matrix equations can be rewritten as shown at the bottom of Fig. 4.3. The

equation on the left represents forward-mode AD. In this case, we choose one tj and

keep j fixed. Then we work our way forward in the index i = 1, 2, . . . , n until we get

the desired total derivative. In the process, we obtain a whole column of the lower

triangular matrix, i.e., the derivatives of all the variables with respect to the chosen

variable.

Using the reverse mode, shown on the bottom right of Fig. 4.3, we choose a ti

(the quantity we want to differentiate) and work our way backward in the index

j = n, n − 1, . . . , 1 all of the way to the independent variables. This corresponds to

obtaining a column of the upper triangular matrix, i.e., the derivatives of the chosen

quantity with respect to all other variables.

4.3 Analytic methods

Like AD, the numerical precision of analytic methods is the same as that of the

original algorithm. In addition, analytic methods are usually more efficient than AD

for a given problem. However, analytic methods are much more involved than the

other methods, since they require detailed knowledge of the computational model and

a long implementation time.

Figure 4.4 shows the derivation of the analytic methods from the unifying chain

rule. In this case, the variables are the independent variables x, the state variables

y, and the outputs of interest, f . The residuals force the independent variables to be

equal to the specified values, and the residuals and functions of interest to be equal

to the values resulting from the computational model.

Substituting these definitions in the unifying chain rule yields the familiar direct

and adjoint methods, whose equations are shown at the bottom of Fig. 4.4. As we can

see, the direct method comes from the forward chain rule, while the adjoint method

is derived from the reverse chain rule. For the traditional derivation of the direct and

adjoint methods, the reader is referred to Martins and Hwang [13].

4.4 Coupled analytic methods

We now extend the analytic methods derived in the previous section to multidis-

ciplinary systems. The direct and adjoint methods for multidisciplinary systems can
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Figure 4.4: Derivation of the analytic methods: direct and adjoint.

be derived by partitioning the various variables by discipline as follows:

R = [RT
1 , . . . ,RT

N ]T , y = [yT1 , . . . , y
T
N ]T (4.3)

where N is the number of disciplines. All the design variables are included in x. If

we substitute these vectors into the unifying chain rule, we obtain the block matrix

equations shown at the bottom of Fig. 4.4. These are the coupled versions of the direct

and adjoint methods, respectively. The coupled direct method was first developed

by Bloebaum [32] and Sobieszczanski-Sobieski [33] while the coupled adjoint was

originally developed by Martins et al. [34, 18]. Both the coupled direct and adjoint

methods have since been applied to the aerostructural design optimization of aircraft

wings [35, 36, 37, 7].

Figure 4.6 shows another alternative for obtaining the total derivatives of multi-

disciplinary systems that was first developed by Sobieszczanski-Sobieski [33] for the

direct method, and by Martins et al. [18] for the adjoint method. The advantage of
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this approach is that we do not need to know the residuals of a given disciplinary

solver but can instead use the coupling variables. To derive the direct and adjoint

versions of this approach within our mathematical framework, we consider the same

definition of the variables but replace the residuals with the residuals of the coupling

variables,

Ri = Yi − yi (4.4)

where the yi vector contains the coupling variables of the ith discipline, and Yi is the

vector of functions that explicitly defines these variables. This leads to the equations

at the bottom of Fig. 4.6, which we call the functional form. This contrasts with the

residual form shown in Fig. 4.5.
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Figure 4.5: Derivation of the residual form of the coupled derivative methods.
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Figure 4.6: Derivation of the functional form of the coupled derivative methods.
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CHAPTER 5

A compact framework design

This chapter describes the algorithmic and implementation details of the com-

putational modeling framework. The framework design is characterized as compact

because the framework represents both solvers and user-defined components as in-

stances of a general System class. Moreover, this System class has an interface con-

sisting of only 4 primary operations—computing the residuals, driving them to zero,

computing the Jacobian of the residuals, and applying the inverse of the Jacobian as

an operator. This minimalistic design is enabled by the monolithic formulation from

Ch. 3 and derivative unification from Ch. 4.

This chapter begins with the problem statement in Sec. 5.1, followed by the re-

quirements in Sec. 5.2, the interface for the components in Sec. 5.3, the object-oriented

framework design in Sec. 5.4, data handling in the framework in Sec. 5.5, and imple-

mentation details in Sec. 5.6.

5.1 Problem statement

The problem statement for the solution algorithms in the framework follows from

the unified mathematical formulation. The benefit of a monolithic formulation is that

the problem to be solved can be expressed in a simple manner that is independent of

the particulars of a given application. The problem statement consists of 4 systems

of equations that must be solved:
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(i) The nonlinear system: R(u) = 0 .

(ii) The Newton system:
∂R

∂u
∆u = −r .

(iii) The derivatives equation (forward):
∂R

∂u

du

dr
= I .

(iv) The derivatives equation (reverse):
∂R

∂u

T du

dr

T

= I .

5.2 Solver-driven requirements

The algorithmic design of the framework is driven first and foremost by the numer-

ical solution methods currently used to solve large nonlinear and linear systems. The

objective is to ensure negligible computation-time and memory overhead for imple-

menting an existing computational model in the framework. To this end, the current

state-of-the-art nonlinear and linear solvers are reviewed here.

For large systems of nonlinear equations, Newton’s method is the only feasible

option in the absence of problem-specific methods such as multi-grid and pseudo-

transient continuation (PTC). Any alternative that only uses residual evaluations

and no Jacobian evaluations would have to evaluate the residuals at least n times

and most likely significantly more, where n is the number of unknowns and equations.

This is prohibitively expensive because n can often be on the order of millions.

Two exceptions are quasi-Newton methods and Jacobian-free Newton–Krylov

methods. Quasi-Newton methods use the Broyden class of formulas [38] to approxi-

mate the inverse of the Jacobian during each iteration based on only residual informa-

tion. These methods eliminate the need to solve a linear system or even compute any

derivatives, but may not provide sufficient accuracy for efficient convergence of the

nonlinear system. Jacobian-free Newton–Krylov (JFNK) methods, surveyed by Knoll

and Keyes [39], take advantage of the fact that a Krylov iterative method applied to

the linear system in Newton’s method only requires the Jacobian as a linear opera-

tor. The Jacobian-vector products are computed using a directional finite-difference

approximation, so JFNK methods operate with only residual evaluations.

An important consideration when applying Newton’s method is the potential lack

of robustness, which necessitates a globalization strategy. One option is PTC, which

time marches the unsteady PDEs towards the steady solution when the nonlinear

system is the discretized form of the steady PDEs [40]. A more general approach

is selecting the size of the Newton step using a line search or trust region to try to
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improve robustness in early iterations. Another general approach is an initial start-up

stage using a method such as nonlinear block Gauss–Seidel [41]. This is possible when

the unknowns can be partitioned into several sets that can each be solved for on their

own, which would make use of the hierarchical systems presented earlier. Another

related consideration for Newton–Krylov methods is an inexact approach. To save

computational time, the tolerance for the Krylov method can start low and increase

as Newton’s method approaches the solution and requires more accuracy [42].

When solving large systems of linear equations, iterative solvers that use the

Krylov subspace are the most efficient both from a memory and a computational-

cost standpoint. The matrix in a large linear system, especially one representing a

discretized PDE, is typically very sparse, with much fewer non-zeros per row than

the number of columns. Matrix factorizations that are computed by direct solvers

for linear systems have three issues: the factorized forms are often much less sparse

and hence less memory-efficient; these methods are not as efficient in parallel as

iterative methods; and in a direct comparison, they are typically slower in general

than iterative methods. In other situations, the matrix is only available as an operator

that, given a vector, returns the matrix-vector product, because explicitly computing

it is prohibitively expensive, even in a sparse format. For a review of iterative linear

solvers, the reader is referred to Kelley [43].

Similar to Newton’s method, Krylov subspace methods can be extremely efficient

when they do converge, but they sometimes stall in ill-conditioned problems. In these

situations, it is necessary to use a preconditioner, a second matrix that approximates

the original one but can be cheaply inverted or solved given a right-hand side. One

option for preconditioning is a problem-specific option such as multi-grid [44] or ad-

ditive Schwarz [45]. Another is linear block Gauss–Seidel or Jacobi, analogous to the

corresponding nonlinear methods for globalization.

The requirements for the algorithmic design of the framework are chosen so that

the aforementioned solution methods can be supported without any significant inef-

ficiencies. There are 3 categories of requirements:

1. General architecture

(a) Types of Jacobians: pre-computed or matrix-free, dense or sparse

(b) Distributed-memory parallel computation

(c) Recursive solvers for hierarchically nested systems

(d) Inexact solution methods
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2. Nonlinear solvers

(a) Newton’s method with a start-up phase

(b) Line search or trust region

(c) Nonlinear block Gauss–Seidel or Jacobi

(d) Custom solvers: e.g., PTC

3. Linear solvers

(a) Preconditioned Krylov subspace method

(b) Direct method

(c) Linear block Gauss–Seidel or Jacobi

(d) Custom solvers: e.g., incomplete factorization

5.3 A compact interface

Each component in the computational model must conform to an interface speci-

fied by the framework, consisting of a set of functions that the user must implement.

A small number of functions is desired, but there must be a sufficient number to

account for nearly any situation in which a solution algorithm needs to initiate an

operation in the component.

Each component corresponds to an intermediate system that cannot be further

decomposed or partitioned—it is found at the deepest level of the hierarchy tree. The

framework design enables a small and simple interface that captures all operations

required from an intermediate system. For a component that corresponds to interme-

diate system RS(pS, uS) = 0, the interface consists of the following operations (note:

in the following list, the subscript S is omitted for brevity):

1. apply nonlinear : (p, u) 7→ r = R(p, u).

This operation computes the residual functions for the current in-

termediate system. It is used to compute the right-hand side of the

linear system in Newton’s method and to check the convergence of

the current intermediate system.

2. solve nonlinear : p 7→ u.
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This operation solves R(p, u) = 0, inexactly or to the required conver-

gence criterion. It is optional to implement this method since New-

ton’s method can be used when the user does not provide a custom

solver.

3. apply linear :


(dp, du) 7→ dr =

∂R

∂p
dp+

∂R

∂u
du, forward mode

dr 7→
(
dp =

∂R

∂p

T

dr, du =
∂R

∂u

T

dr

)
, reverse mode.

This operation allows the component to implicitly make ∂R/∂(p, u)

known to the framework. By implementing it as a linear operator, the

framework can be unaware of how each component stores or computes

the Jacobian. There is a single, simple interface whether the Jacobian

is computed in a sparse, dense, or matrix-free format. There are two

modes since the forward and reverse modes for computing derivatives

use ∂R/∂(p, u) and [∂R/∂(p, u)]T , respectively.

4. solve linear :


(dr) 7→ du

∣∣∣∣∂R∂u du = dr , forward mode

(du) 7→ dr

∣∣∣∣ ∂R∂u T

dr = du , reverse mode.

This operation implements the inverse of ∂R/∂u as a linear operator.

Equivalently, it solves a linear system with ∂R/∂u as the matrix and a

given right-hand side vector. Like solve nonlinear, it is optional since

the framework’s Krylov iterative solver can be used if apply linear is

known.

5. linearize:

This operation is present in the interface because many problems

require an initial assembly and, in some cases, factorization of the

Jacobian, and repeated applications of the matrix or factorization

have a substantially lower cost.

5.4 Object-oriented framework design

The framework design is greatly simplified by an object-oriented approach. Within

this paradigm, each intermediate system in the numerical model corresponds to an
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CompoundSystem

CompoundSystemCompoundSystem CompoundSystem

ElementarySystem ElementarySystem

Variable Variable Variable Variable

Figure 5.1: A class diagram showing the containment relationships between objects
in a computational model implemented in the framework.

instance of the System class in the computational model, and the five operations

listed above are virtual methods of this class.

Figure 5.1 contains a tree representing the hierarchical decomposition of the vari-

ables in the numerical model. Excluding the Variable nodes, the leaves of the tree

are ElementarySystem objects, which implement the computational model’s compo-

nents. Each component ‘owns’ a subset of the variables; these variables form the

unknown vector in the component’s intermediate system. During initialization, the

ElementarySystem object must declare its variables as well as its arguments—external

variables upon which the ‘owned’ variable may depend. The ElementarySystem ob-

jects are grouped together by CompoundSystem objects, which can in turn be grouped

by other CompoundSystem objects.

The ElementarySystem and CompoundSystem classes inherit from a base Sys-

tem class. The ElementarySystem class has 3 derived classes, reflecting whether the

system contains independent, explicitly-defined, or implicitly-defined variables. The

classes implementing user-defined components directly inherit from one of these three

classes.

The CompoundSystem class has 2 derived classes that handle parallelism in dif-

ferent ways. In the hierarchy tree in Fig. 5.1, the root CompoundSystem is stored

and run on all processors running the job. If it is a SerialSystem, it passes all of its

processors to the System objects it contains and runs its recursive operations sequen-

tially among the contained systems. If it is a ParallelSystem, it partitions its group

of processors among the System objects it contains and runs its recursive operations

concurrently among the contained systems. The same applies to all CompoundSys-

tem objects, and in this manner, each System object is assigned a subset of or all of
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System

ElementarySystem CompoundSystem

ExplicitSystemIndependentSystem ImplicitSystem SerialSystem ParallelSystem

Figure 5.2: A class diagram showing the inheritance relationships between the System
classes.

its containing System object’s processors. A class inheritance diagram is shown in

Fig. 5.2 for the various system classes.

This object-oriented design allows all of the framework’s built-in solvers to be

implemented as methods of one of the base system classes. Table 5.1 shows the class

in which each built-in solver is implemented and pseudocode for the algorithms is

shown in Figs. 5.3, 5.4, and 5.5.

Table 5.1: The framework’s 4 operations and their implementations in each type of
System class.

System classes

System CompoundSystem ElementarySystem

V
ir

tu
al

m
et

h
o
d

s apply nonlinear — Recursive User-implemented

apply linear Recursive User-implemented or FD∗

solve nonlinear Newton with Nonlinear block Optional

line search Gauss–Seidel/Jacobi

solve linear Krylov-type with Linear block Optional

preconditioning Gauss–Seidel/Jacobi

*FD: finite-difference approximation of the Jacobian.

5.5 Efficient data management

Efficient data storage, accessing, and transfer are important because the frame-

work is designed to handle problems with large data sizes. Specifically, there are 3

important challenges: avoiding unnecessary memory overhead in data storage, simple

data access for the user, and efficient parallel data transfer.
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Algorithm 1. apply nonlinear [re-
curs.]

input : (p, u)
output: r
scatter u to each subsys.p
for each subsys do

subsys.apply nonlinear
end

p

u

p

7→ r

Algorithm 2. solve nonlinear [GS]

input : p
output: u
while not converged do

for each subsys do
scatter u to subsys.p
subsys.solve nonlinear

end

end

p

uk

p

7→

7→
7→

7→
uk+1 . . .

Algorithm 3. solve nonlinear [Ja-
cobi]

input : p
output: u
while not converged do

scatter u to each subsys.p
for each subsys do

subsys.solve nonlinear
end

end

p

uk

p

7→

7→
7→

7→

7→ uk+1 . . .

Algorithm 4. solve nonlinear [New-
ton]

input : p
output: u
while not converged do

apply nonlinear
df ← −f
solve linear
α← line search(du)
u← u+ α · du

end

p

uk

p

7→ uk+1 . . .

Figure 5.3: Operations for the nonlinear system.

5.5.1 Data storage

For each system, six vectors must be stored: u, p, and r for the nonlinear problem

and du, dp, and dr for the linear problem. The latter three can be interpreted as

buffers that contain the data for the solution vector or the right-hand side vector,

depending on the situation. Among these six vectors, u, du, r, and dr are instances

of the UnknownVec class while p and dp are instances of the ParameterVec class.
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Algorithm 1. apply linear [recurs.]

input : (dp, du)
output: dr
scatter du to each subsys.dp
for each subsys do

subsys.apply linear
end

=

∂R

∂(p, u)
dp
du dr

Algorithm 2. solve linear [GS]

input : dr
output: du
rhs←− dr
while not converged do

for each subsys do
scatter du to subsys.dp
subsys.apply linear
subsys.dr ← rhs− subsys.dr
subsys.solve linear

end

end

= −

∂R

∂u
du dr

∂R

∂u
du

Algorithm 3. solve linear [Jacobi]

input : dr
output: du
rhs←− dr
while not converged do

scatter du to each subsys.dp
for each subsys do

subsys.apply linear
subsys.dr ← rhs− subsys.dr
subsys.solve linear

end

end

= −

∂R

∂u
du dr

∂R

∂u
du

Algorithm 4. solve linear [Krylov]

input : dr
output: du
rhs← dr
function linear operator(x)

dr ← x
solve linear
apply linear
y ← dr
return y

du← krylov(rhs, linear operator)

=

∂R

∂u ∼ ∂R

∂u

−1
du dr

Figure 5.4: Operations for the linear system.

For the UnknownVec instances, data is shared with contained or containing sys-

tems; that is, the full u, du, r, and dr vectors are allocated in the top-level Com-

42



poundSystem and all other systems store pointers onto sub-vectors of the global vec-

tor. Compared to allocating separate vectors in each system, this approach saves

memory, but also computation time since a system’s subsystems operate directly on

sub-vectors of the larger system’s vector.

The ParameterVec instances store only the variables that an ElementarySystem

declares as its arguments and only the declared components of those variables as

well. There are two reasons why it is necessary to explicitly store a separate copy

of the arguments of each ElementarySystem as opposed to simply reading the data

as needed. First, the originating data could be stored on a different processor so a

buffer is needed to perform the parallel data communication. Second, the linear and

nonlinear block Jacobi methods require storing a second copy of arguments to store

their values from the previous Jacobi iteration. Since the framework allows for the

use of block Jacobi at possibly multiple levels in the hierarchy tree, the intricacies

of updating the arguments at the right times is simplified by incorporating the data

transfers into the Jacobi algorithm.

5.5.2 Data accessing

The framework stores data in large vectors that concatenate multiple variables to

allow operations on larger pieces of data simultaneously, which improves efficiency.

However, the sub-vector corresponding to a given variable is explicitly stored with

a pointer to a portion of the larger vector. This is done to allow the user to work

with the variable as if it is its own vector and not to have to keep track of the global

indices of the variable’s components in the larger, concatenated vector. Moreover,

in the Python implementation of the framework, the user accesses variables through

dictionary objects whose keys and values are the individual variables’ string names

and data, respectively, to improve usability.

5.5.3 Data transfer

The framework automates parallel data transfer between UnknownVec instances

and ParameterVec instances, providing two benefits. First, if component A depends

on variable V from component B, component A does not have to know how many

processors component B has and how much of variable V component B has stored

on each processor. For each argument an ElementarySystem declares, the framework

automatically determines on which processor the requested data is stored and what

the local indices are, based on the global indices that were also declared. Second, the
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data transfer operation is implemented as a method in the CompoundSystem class, so

it is integrated into solution algorithms. This operation performs data transfers for

multiple ElementarySystem objects simultaneously, improving parallel performance.

A given system’s transfer operation transfers data to a given subsystem’s Parameter-

Vec instance from its remaining subsystems’ UnknownVec instances, and vise versa

for the reverse mode when solving a transposed linear system.

5.6 Implementation

The framework has been implemented using the Python programming language.

It depends only the NumPy package for handling local vectors and the petsc4py pack-

age to use the portable, extensible toolkit for scientific computation (PETSc) [46],

which in turn uses the message-passing interface to parallel communication. PETSc

is used for all parallel data transfers, and its Krylov iterative methods are used as the

framework’s linear solvers as well with flexible generalized minimal residual (fGM-

RES) as the default solver. The entire implementation of the framework is contained

in a single Python file with about 1,000 lines of code thanks to the framework’s

monolithic mathematical formulation and the use of PETSc.

The scaling of the framework is an important consideration especially for large

problems. There is a concern that the framework adds significant overhead which

increases at an unmanageable rate as the problem size increases. Figure 5.7 shows

how the execution time scales with the number of total unknowns for the nanosatellite

and allocation-mission optimization problems. It is difficult to separate the overhead

introduced by the framework from the cost of executing the computational models.

However, at least for the nanosatellite problem, what Fig. 5.7 shows is that the

framework overhead is likely not significant, and if it is, it scales better than linearly

with the total number of unknowns.

5.7 Summary

In summary, the framework automatically solves coupled systems and computes

their derivatives simply by solving a nonlinear system and a linear system involving

the Jacobian of the residuals or its transpose. The framework’s nonlinear solvers are

Newton’s method with a line search, inexact nonlinear block Gauss–Seidel or Jacobi,

or any problem-specific user-provided solver. The linear solvers are a Krylov iterative

method with variable preconditioning, inexact linear block Gauss–Seidel or Jacobi,
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or any problem-specific user-provided solver. These nonlinear and linear solvers can

be executed at any level of a hierarchical decomposition of the system of equations.

This chapter also described the object-oriented framework design, which centers on a

System class with an interface consisting of only five required methods used to solve

the nonlinear and linear systems. User-defined components that ‘own’ a subset of the

variables are System objects, as are framework-provided System objects that group

other System objects together. In the interface, components provide matrices only as

linear operators, and the framework centrally stores and operates on all vectors in a

concatenated form, making pointers to sub-vectors available to components for easy

access.

The framework’s key features can be summarized as follows. First, the frame-

work’s parallel data passing greatly facilitates distributed-memory parallel computa-

tion. The framework allows components that have parallel vectors as arguments to

not be aware of how those parallel vectors are distributed across their processors. Sec-

ond, the framework automatically solves the nonlinear and linear systems that arise.

When the user provides a custom solver, the framework uses it; otherwise, it uses its

built-in solvers. The third benefit is the automated computation of derivatives given

partial derivatives of each component. It uses the analytic methods for computing

derivatives, which can compute a full gradient with respect to all inputs at a cost on

the same order of magnitude as that of running the simulation.

The framework can be applied to any problem that deterministically computes

a set of variables as a continuous function of others. It provides significantly more

value when the variables are also differentiable, since the automatic derivative com-

putation is a key feature. The derivative computation provides a significant increase

in efficiency when there are implicit state variables and when there is a feedback loop

among the dependencies between variables.
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Algorithm 1. apply linear [recurs.]

input : dr
output: (dp, du)
for each subsys do

subsys.apply linear
end
scatter each subsys.dp to du

=

∂R

∂(p, u)

T
dr dp

du

Algorithm 2. solve linear [GS]

input : du
output: dr
rhs←− du
while not converged do

for each subsys1 do
for each subsys2 do

subsys2.apply linear
end
scatter each subsys2.dp to du
subsys1.du←
rhs− subsys1.du
subsys1.solve linear

end

end

= −

∂R

∂u

T
dr du ∂R

∂u

T
dr

Algorithm 3. solve linear [Jacobi]

input : du
output: dr
rhs←− du
while not converged do

for each subsys do
subsys.apply linear

end
scatter each subsys.dp to du
for each subsys do

subsys1.du←
rhs− subsys.du
subsys.solve linear

end

end

= −

∂R

∂u

T
dr du ∂R

∂u

T
dr

Algorithm 4. solve linear [Krylov]

input : du
output: dr
rhs← du
function linear operator(x)

du← x
solve linear
apply linear
y ← du
return y

dr ← krylov(rhs, linear operator)

=

∂R

∂u

T

∼ ∂R

∂u

−T
dr du

Figure 5.5: Operations for the transposed linear system.
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Figure 5.6: The type of data storage for each variable in each System instance.
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Figure 5.7: Runtime results for the nanosatellite (left) and aircraft allocation-mission
(right) optimization problems implemented in the framework. The blue
curve represents a single execution of the computational model, and the
red curve represents the solution of a linear system for the adjoint method.
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CHAPTER 6

Multidisciplinary optimization of a nanosatellite

In this chapter, I present the first of two applications implemented in the frame-

work, the optimization of a nanosatellite. Section 6.1 provides background on nanosatel-

lites and prior work on optimization in this field, and Sec. 6.2 presents the design

problem. Section 6.3 and Section 6.4 describe the methodology and the computa-

tional models for each discipline, respectively. Finally, Sec. 6.5 present the results

from several optimizations that try to quantify the effectiveness of optimization and

compare the outcomes from different launch possibilities.

6.1 Optimization in nanosatellite design

Satellites serve a multitude of purposes that range from navigation and scientific

research to military applications. Over the past decade, small satellites have gained

increasing interest as alternatives to larger satellites because of the low time and cost

required to manufacture and launch them. In particular, the CubeSat class of small

satellites is becoming a common platform for education and research because it has a

set of specifications that facilitates relatively frequent launches as secondary payloads.

CADRE (CubeSat investigating atmospheric density response to extreme driving)

is funded by the National Science Foundation and will study the response of the

Earth’s upper atmosphere to auroral energy inputs [47]. This mission addresses the

need for more accurate modeling of space weather effects, motivated in part by the

growth of the global space-based infrastructure. To help answer some of the important

scientific questions in this area, CADRE will provide critical in situ measurements in

the ionospheric and thermospheric regions.

CADRE will inherit much of the design of the University of Michigan’s Radio

Aurora eXplorer (RAX) CubeSat. However, the unique scientific goals of the mission

necessitate a detailed design study. Power is a driving factor because the scientific
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instruments are to run continuously, and large amounts of data must be transmitted

to ground stations. Fortunately, there are several geometric and operational design

variables whose impact can be captured with relatively inexpensive computational

models, and it is possible to use these variables to satisfy the mission requirements

while improving the satellite’s performance. In the past, this has mostly been done

via experience and human intuition aided by computational design tools that work

with a relatively small number of design variables.

In the literature, there are many studies in which computational modeling and

optimization have been applied to satellite design. For instance, Boudjemai et al. [48]

performed topology optimization on the structure of a small satellite using NAS-

TRAN for the finite element analysis. Numerical optimization has been applied to

several other disciplines as well. Galski et al. [49] optimized a thermal control system,

while Jain and Simon [50] implemented real-time load scheduling optimization of a

small satellite’s batteries. More recently, Richie et al. [51] and Zhang et al. [52] used

optimization to size the energy storage and attitude control system and to design

the layout of the satellite’s components, respectively. All of these single-discipline

optimization studies share a common approach: with the exception of the actuator

sizing optimization, they use a genetic algorithm (GA) as a simple solution to deal

with the discrete design variables and the discontinuities that are often present in the

models.

Other authors considered multiple disciplines simultaneously to better model

the overall physical problem. Barnhart et al. [53] implemented SPIDR, a systems-

engineering-based framework for satellite design with an artificial-intelligence-based

optimization algorithm that incorporates user-defined rules and constraints. Fuku-

naga et al. [54] developed OASIS, which uses a machine-learning algorithm to adap-

tively select and configure a metaheuristic optimizer such as a GA to optimize a model

in MIDAS [55], a satellite design framework. SCOUT [56] is another framework that

uses a GA for optimization, and ATSV [57] uses a shopping paradigm to aid the

design process. Recently, Ebrahimi et al. [58] and Jafarsalehi et al. [59] developed

multidisciplinary design frameworks that use a particle swarm optimizer (PSO) and

a GA, respectively.

With the exception of the last two efforts, all of the computational design tools

cited above have graphical user interfaces (GUI) that significantly enhance usabil-

ity. For these tools, the approach is to make user interaction with the framework

as streamlined as possible, allowing the user’s knowledge and experience to work to-

gether with the framework’s optimization capability. However, as was the case with
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the single-discipline studies, all of these computational design tools use optimizers

or design techniques that do not use gradients, which limits the number of design

variables that can be considered. Without gradients, algorithms must rely on sam-

pling the design space at a cost that grows exponentially with the number of design

variables, and in practice, this becomes prohibitive when there are more than O(10)

variables. Wu et al. [60] used a gradient-based approach to solve a satellite MDO

problem with collaborative optimization (CO) [61, 62], but the cost of computing

coupled derivatives limited the number of design variables to O(10) here as well.

Given the existing body of work, this chapter seeks to address the question whether

multidisciplinary design optimization (MDO) can handle the full set of design vari-

ables in the satellite design problem simultaneously, even when there are tens of

thousands of them. The high-level approach is gradient-based optimization in com-

bination with adjoint-based derivative computation, with a modular implementation

of the disciplinary models in an integrated framework. The full small-satellite design

problem is simultaneously considered, including all major disciplines, multiple time

scales, and tens of thousands of design variables that parametrize the variation of

several quantities over time.

6.2 The design problem

CADRE is a 3U CubeSat [47], meaning its body is a square prism with dimensions

of 30 cm × 10 cm × 10 cm. As with other CubeSats, CADRE’s dimensions are fixed

so that it can be launched as a secondary payload with a larger satellite in order to

reduce costs. The satellite has four fins that are initially folded at the sides of the

satellite but are permanently deployed after launch in the rear direction to a preset

angle. Although the roll angle is flexible, CADRE must always be forward-facing

because of the scientific requirements, so the swept-back fins provide passive attitude

stabilization through aerodynamic drag. CADRE has 12 solar panels with 7 cells

each: 4 panels on the sides of the body, and one on the front and back of each fin.

In general, the 84 cells are only partially illuminated because the Earth or another

part of the satellite can cast shadows even when a cell is facing the Sun. Since the

cells cover most of the satellite, it may be beneficial to install a radiator in place of

one or more of the solar cells that are often shaded to provide cooling and to improve

the power generation of other cells. A rendering of the CADRE CubeSat is shown in

Fig. 6.1.

Other relevant subsystems include energy storage, communication, and attitude
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Figure 6.1: CADRE CubeSat geometry.

control. Lithium-ion batteries are installed with charge- and discharge-rate con-

straints, and a depth-of-discharge limit of 20% is enforced to lengthen the battery

life. To transmit data to ground stations, an antenna is installed toward the rear of

the satellite, and the installation angle is a parameter that can be varied, although it

is constrained to be in the vertical plane. For the current purposes, data transmission

to ground stations is assumed to use a UHF antenna, although the final design for

CADRE may use an S-band antenna for high-speed data download. CADRE uses two

types of attitude-control actuators that complement each other: magnetorquers for

gross changes, and reaction wheels for more precise control. With the latter, there is

potential for the rotation rates of the wheels to accumulate and grow unmanageably

large, so the magnetorquers are used to counteract constant torques such as that due

to solar pressure. In this problem, only the reaction wheels are modeled to capture

the power requirements of the desired attitude profiles, and the cost of counteract-

ing disturbance torques is modeled as a constant background power consumption.

Fig. 6.2 shows the disciplines and how they are coupled through the state variables.

CADRE’s mission is to continuously collect data and transmit as much of that

data as possible to the ground stations. Therefore, the total data downloaded is the

natural objective function for the CADRE design optimization problem, although

generating and storing sufficient energy is a driving factor. The fin and antenna

angles are important geometric design variables, because they affect the power gen-

eration and the data-transmission rate, respectively. CADRE’s attitude profile over

time can be designed as well, providing further flexibility that can be used to increase

power generation, cool panels when necessary, and increase transmission gain during

communication with a ground station. The attitude profile must be optimized si-

multaneously with the geometric design variables because the fin and antenna angles
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Figure 6.2: Extended design structure matrix (XDSM) diagram [1] showing all rele-
vant disciplines in the CADRE design problem.

that are optimal for an assumed attitude profile may no longer be optimal for an atti-

tude profile that is optimized separately. The available power must also be optimally

distributed between communication and actuation, so the power-distribution profile

must be considered simultaneously as well.

Optimizing these profile variables involves manipulating 2-D curves without any

a priori knowledge of their final optimal shapes. To do this, the curves must be

discretized and parametrized, and in the simulation of hours, days, or even months

of the satellite’s operation, the resulting number of design variables can easily reach

tens of thousands. To summarize, the objective of the CADRE design problem is to

maximize the total data downloaded subject to constraints on the power and energy

available, with respect to the fin angle, the antenna angle, the attitude profile, the

communication power profile, and the 84 binary cell-installation variables.

6.3 Approach

The advantage of the gradient-based MDO approach taken in this problem is that

it can handle a problem with many disciplines, design variables, and state variables.

As a result, the true design problem can be optimized with few simplifications. This

section discusses the approach used in this problem by listing each of the technical

challenges and their solutions.
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6.3.1 Multiple time scales: multi-point optimization

The CADRE design problem involves multiple time scales. Capturing CADRE’s

power generation and temperature fluctuations requires a time-resolution of O(5 min)

because its orbit has a period of roughly 90 min. Ground-station passes lastO(10 min)

and energy must be stored between sets of ground-station passes, which occur in

patterns that roughly repeat each day. Assuming that the ground stations are close

to the Equator, this requires a resolution of O(1 min) with a simulation of at least 12 h

of the satellite’s operation. However, depending on the launch orbit, CADRE’s orbit

may precess multiple times per year. This, combined with the effect of the seasons,

requires a simulation of one year to model one period of oscillations in the satellite’s

operating conditions.

This multi-scale characteristic, combined with the ambitious scope of the design

problem, presents a significant challenge. For a truly unbiased simulation, the year

must be simulated with a resolution of 1 min, yielding 262, 800 discrete points. If a

shorter period of time is simulated, the resulting design may be optimal in one season

but not others. In some seasons the satellite may have difficulty generating sufficient

power because the solar cells see much less of the Sun at the chosen fin angle.

The periodic nature of many of the variables suggests a frequency-domain ap-

proach for the state and design variables to reduce the size of the model and the

optimization problems. Such an approach would capture the oscillatory behavior of

the variables with a relatively small number of degrees of freedom. However, we did

not adopt this approach for two reasons. First, many of the state variables, such as

the Sun line-of-sight variable, have near-discontinuous jumps that cannot be accu-

rately represented with a small number of frequencies. These effects propagate to

other variables, such as the temperature, solar power, and battery current, as similar

discontinuities or as nonsmoothness. Second, while other state variables do behave

smoothly for the most part, they tend to have one or more spikes due to ground-

station passes. The transmitter gain, battery current, and temperature are examples

of variables that exhibit such spikes, although for temperature these are on a rela-

tively small scale. These high-frequency components could potentially be represented

by additional modes, but they would require a priori knowledge of where the passes

are, and some of the automation in the computational tool would be lost. Nonethe-

less, it is worth noting for future work that representing some of the state variables

in the frequency domain and others in the time domain would no doubt reduce the

size of the problem.

Our solution is to simulate six 12-hour blocks with 0.5 min resolution, distribute
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them uniformly over the year, and weight each one equally in a single optimization

problem. The orbit and communication time scales are captured within the 12-hour

blocks, and simulating half a day every two months captures the orbit-precession

time scale. The optimization constraints are applied separately to each block, and

the objective functions computed from the six blocks are averaged. This approach is

essentially multi-scale, multi-point optimization; the minute-level time scale is directly

simulated, and the objective function for the month-level time scale is numerically

integrated using the midpoint rule.

6.3.2 Large number of constraints: constraint aggregation

As previously mentioned, the coupled-derivative equations compute the gradients

efficiently because they give either the full vector of derivatives with respect to a

single variable (forward mode of (3.24)) or the full gradient of a variable (reverse

mode of (3.24)) using a single solution of a linear system. Since our optimization has

a large number of design variables, the reverse mode must be used, but it requires

a linear solution for each constraint. Moreover, the battery discipline requires four

inequality constraints at each time instance—maximum charge rate, maximum dis-

charge rate, minimum state of charge, and maximum state of charge—resulting in

tens of thousands of constraints.

We use constraint aggregation to reduce the number of constraints. The Kreisselmeier–

Steinhauser (KS) function [63] aggregates the constraints over all the time instances

into a single criterion. Constraint aggregation with KS functions has been shown to

work well in combination with the adjoint method in optimization problems, for in-

stance in structural weight minimization [64] and aerostructural optimization [7, 65].

The KS function is given by

KS(x) = fimax(x) +
1

ρ
ln
∑
i

eρ(fi(x)−fimax (x)), (6.1)

where fi is the ith function in the vector of functions we wish to aggregate, imax is

the index of the function with the largest value at x, and ρ is a parameter that is

problem-dependent. In the limit, as ρ approaches infinity, the KS function approaches

the maximum function because eρ·0 dominates in the sum, and KS(x) approaches

fimax(x). For finite ρ, the KS function is a smooth function that is dominated by the fi

with the largest values. Thus, as an inequality constraint, the KS function encourages

the optimizer to resolve the largest infeasibilities first and eventually choose a point at

which the KS function itself is less than or equal to zero. The optimization problems
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solved in this chapter use ρ = 50, a value which was found through numerical tests.

6.3.3 Nondifferentiable models: B-spline interpolant

Often, a discipline has a model that cannot be differentiated. The reason could

be that the underlying physical phenomenon is nonsmooth, the computational model

is a legacy code without source code access, or only a table of data is available.

To address these situations, we implemented in Fortran a tensor-product B-spline

interpolant with analytic derivatives. A model with any number of input variables

can be fitted with this interpolant given a structured array of data that spans the full

range of values for the input variables.

6.3.4 Derivatives of ODE variables: modular Runge–Kutta solver

Several of the disciplines in the CADRE design problem involve ordinary differ-

ential equations (ODEs), which complicates the task of computing partial and total

derivatives. In particular, ODEs in time have a natural forward direction, so the

unknown variable depends only on those before it in time, but the reverse mode

of (3.24) must compute the total derivatives in the opposite direction. This is not

possible if the values from previous time instances are discarded as the algorithm

moves forward, so the CADRE MDO algorithm explicitly keeps track of the full time

series as a vector and operates on the entries of this vector in sequence. Furthermore,

the fourth-order Runge–Kutta method (RK4) has been implemented in Fortran as

a modular solver with the time-marching scheme differentiated. For each discipline

that uses this modular RK4 solver, only the derivatives of the ODE must be provided;

correct indexing and application of the chain rule to combine these with the partial

derivatives of the RK4 equations are automatically handled.

6.4 Discipline models

This section describes the models for all the disciplines in the CADRE MDO

algorithm. For vectors, the nomenclature used in this section is as follows. Upper-

case subscripts represent the frames of reference: B, R, E, and I represent the

body-fixed frame, rolled body-fixed frame (explained later), Earth-fixed frame, and

Earth-centered inertial (ECI) frame, respectively. Lower-case subscripts represent the

origins of frames: b, e, g, and s denote the body (satellite), Earth, ground station,

and Sun, respectively. For instance, ~rb/e signifies a vector pointing from the Earth’s

55



origin to the satellite’s origin. The axes of the body-fixed frame are denoted îB, ĵB,

and k̂B. The orientation matrices are represented by O, e.g., OB/I represents the

orientation of the body-fixed frame as seen in the ECI frame.

6.4.1 Orbit dynamics

The orbit-dynamics discipline computes the Earth-to-body position vector in the

ECI frame. In the orbit equation, there are terms that represent the fact that the

Earth is not a perfectly spherical and homogeneous mass. These are captured in the

J2, J3, and J4 coefficients in the following equation:1:

~̈r = − µ
r3
~r − 3µJ2R

2
e

2r5

[(
1− 5r2z

r2

)
~r + 2rzẑ

]
− 5µJ3R

3
e

2r7

[(
3rz −

7r3z
r2

)
~r +

(
3rz −

3r2

5rz

)
rzẑ

]
+

15µJ4R
4
e

8r7

[(
1− 14r2z

r2
+

21r4z
r4

)
~r +

(
4− 28r2z

3r2

)
rzẑ

]
. (6.2)

The values of the coefficients are listed in Table 6.1.

The J2, J3, and J4 terms must be considered because their effect is to rotate the

orbit plane on a scale of months. If they are ignored, a fin angle that may initially

increase power generation may no longer be optimal after the orbit plane has changed.

This also makes the CADRE design problem a multi-scale problem in time because

much of the system’s behavior occurs on the scale of minutes and hours, since the

period of the satellite’s orbit is roughly 90 minutes. The slow rotation of the orbit

plane affects the power generation and communication as well, since the satellite’s

trajectory affects how much data can be transmitted as it passes over ground stations.

We solve the orbit equation using the modular RK4 solver described earlier.

6.4.2 Attitude dynamics

Because of the requirements for scientific data collection, CADRE must always

have a forward-facing orientation. The roll angle, γ, can change provided the maxi-

mum rate of 1 rad/min is not exceeded. The optimizer controls the roll-angle profile

over time, and all the other attitudes, torques, and related quantities are computed

from this. Since all the time instances are modeled simultaneously, this approach is

equivalent to determining the control inputs using optimization instead of a controller.

1Eagle, C. David, Orbital Mechanics with MATLAB.
Accessed February 2013. http://www.cdeagle.com/ommatlab/toolbox.pdf
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At any given time instance, CADRE’s attitude is determined by applying the

rotations from the ECI frame to what is referred to here as the rolled frame and then

to the actual body-fixed frame. The rolled frame is an intermediate frame obtained

after ensuring that CADRE is forward-facing but prior to applying the appropriate

rotation from the specified roll-angle profile. For this frame, k̂B must point in the

opposite direction to v̂b/e, and the chosen convention is that ĵB is parallel to r̂b/e.

The orientation matrices that implement these two successive rotations are given by

OR/I =

 î
T
B

ĵTB
k̂TB

 =

−(r̂b/e × v̂b/e)T
r̂Tb/e
−v̂Tb/e

 and OB/R =

 cos γ sin γ 0

− sin γ cos γ 0

0 0 1

 . (6.3)

Once the OB/I matrix is known for all time instances, its time derivative can be

computed using finite differences, and the angular-velocity vector can be computed

using ~ω×B = ȮB/I ·OT
B/I .

As mentioned previously, we model only the reaction wheel for actuation. The

required inputs are computed from the satellite’s angular-velocity profile. We do this

by applying conservation of angular momentum to the satellite and reaction-wheel

system, expressed by setting the time derivative of the total angular momentum to

zero:

~̇L = JB · ~̇ωB + ~ωB × (JB · ~ωB)︸ ︷︷ ︸
~τB

+JRW · ~̇ωRW︸ ︷︷ ︸
~τRW

+~ωB × (JRW · ~ωRW ) = 0. (6.4)

Computing the required reaction-wheel torque is a three-step process. First, we

can compute ~τB since ~ωB is known and its time derivative can again be computed

using finite differences. Next, we solve the resulting ODE to determine ~ωRW over time,

and finally we can compute ~τRW when the reaction wheels’ angular-velocity profiles

are known. The mass moment of inertia matrices for the satellite and reaction wheels

are, respectively,

JB =

18 0 0

0 18 0

0 0 6

× 10−3 kg m2 and JRW =

28 0 0

0 28 0

0 0 28

× 10−6 kg m2.

(6.5)

Based on the manufacturer’s data2, we develop a simple equation to model the

2Sinclair, Doug, 10 mNm-sec power consumption curves.
Accessed June 2012. http://www.sinclairinterplanetary.com/reactionwheels
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Figure 6.3: Reaction-wheel model compared with manufacturer-provided data for
three torques.

dependence of the reaction wheel’s current draw on its angular velocity and desired

torque:

I = (aω + bτ)2 + I0. (6.6)

Given the right coefficients, this simplified model correctly captures the trends, as

shown in Fig. 6.3. When both the angular velocity and desired torque are zero,

there is a constant baseline current draw. As the angular velocity increases in either

direction, the current draw increases roughly quadratically with the torque constant.

However, the behavior is asymmetric, since we need less power to achieve a torque

in the opposite direction of the angular velocity, which amounts to slowing down the

wheel with the assistance of friction. This effect is reflected in both the actual data

and the model, as shown in Fig. 6.3. The motor is assumed to run at 4 V.

6.4.3 Cell illumination

The cell-illumination discipline models the area of each solar cell that is exposed

to the Sun, projected onto the plane normal to the Sun’s incidence. The 84 exposed

areas depend on the fin angle as well as the azimuth and elevation angles of the Sun

in the body-fixed frame. We compute these using an OpenGL model of the geometry,

in which the satellite is discretized into small rectangles.

Since this model is both discontinuous and difficult to incorporate into the frame-

work, we generate a table of data, and we use the B-spline multi-dimensional inter-

polant mentioned in Sec. 6.3.3. to provide an approximation of the exposed areas in
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Figure 6.4: Normalized exposed area as a function of relative Sun position for the
outermost cell in an inward-facing panel.

terms of the three parameters. This also has the effect of smoothing the areas since

the B-spline interpolant does not have a sufficient number of control points to capture

the discontinuous jumps, but it does have the degrees of freedom to follow the general

trends. Figure 6.4 shows the variation in the exposed area as a function of the Sun’s

position for the outermost cell in one of the inward-facing panels.

The line-of-sight variable, LOSs, is essentially a multiplier for the exposed areas: it

is 0 if the satellite is behind the Earth and 1 otherwise. To smooth this discontinuous

jump, we assume that the sunlight does not decrease instantaneously as the satellite

moves into the Earth’s shadow, but instead, smoothly transitions to zero. This is

physically the case to a certain extent because of the umbra and penumbra effects,

but it is greatly exaggerated to avoid numerical difficulties in the optimization. The

procedure used to compute LOSs is illustrated in Fig. 6.5, and it is defined by

LOSs =


1 , ~rb/e · r̂s/e ≥ 0

1 , ds > Re

3η2 − 2η3 , αRe < ds < Re

0 , ds < αRe

 , ~rb/e · r̂s/e < 0

 , (6.7)

where ds and η are given by

ds = ||~rb/e × r̂s/e||2 and η =
ds − αRe

Re − αRe

. (6.8)

Mathematically, we construct a simple cubic function between ds = αRe and ds = Re,
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Figure 6.5: Illustration of the Sun line-of-sight variable.

satisfying C1 continuity at each end point. The value of α represents how far this

smoothing effect extends into the Earth’s shadow; a typical value is α = 0.9.

6.4.4 Temperature

Temperature is an important consideration that couples many disciplines: it af-

fects solar power generation and battery performance, while both cell illumination

and data transmission generate heat. The temperature is assumed to be uniform

within each of the fins and the body, so there are five temperature state variables

at each time instance. We use the Stefan–Boltzmann law to model the rate of heat

radiation, and we use the area exposed to the Sun to compute each cell’s contribution

to the heating of its fin. Since communication power amplifies data transmission with

an efficiency, ηp, of roughly 20%, we assume that the remaining 80% is converted to

heat, which contributes to the temperature ODE for the body. The equations are

Ṫ =
Q̇in − Q̇out + Q̇∗comm

mcv
(6.9)

Q̇in = αqsolAexpLOSs (6.10)

Q̇out = ε

(
2π5k4

15c2h3

)
T 4AT (6.11)

Q̇comm = (1− ηp)Pcomm, (6.12)

where Aexp is the exposed area of the cell, T is the temperature, and Q̇ is the rate of

heat transfer. The values for all the constants are listed in Table 6.1.
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6.4.5 Solar power

The cells in each solar panel are connected in series, so their output voltages

are added to compute the total voltage for the panel. The voltage is set so as to

maximize the power output, but the optimal voltage, and thus the optimal current,

changes depending on the illumination and temperature of the cells.

Each cell has a unique I-V curve that depends on its exposed area and tempera-

ture. Our model is based on one [66] that is a nonlinear implicit equation in I given

by

I = Isc − Isat
[
exp

{
V +RsI

VT

}
− 1

]
− V +RsI

Rsh

, (6.13)

where the values of the constants are listed in Table 6.1, and

Isc = LOSs
Aexp
AT

Isc0 and VT =
nkT

q
. (6.14)

Our model has two modifications. First, the series resistance is very small, so

the two terms containing Rs can be neglected. Second, a diode is used to limit the

voltage in the negative region to V0 = −0.6 V, so a shifted hyperbolic tangent function

is used to model the I-V curve for negative voltages. We determine the coefficient

in the argument of tanh by applying the constraint that the first derivative must be

continuous at V = 0. Since V is still an implicit function of I in the positive voltage

region, we evaluate the model for the full ranges of areas and temperatures, and we

fit the B-spline interpolant discussed earlier. The model is plotted in Fig. 6.6 and the

expressions areIsc − Isat
[
exp

{
V
VT

}
− 1
]
− V

Rsh
− I = 0 , I ≤ Isc

V (I) = V0 tanh
[

−VTRsh

V0(IsatRsh+VT )
(I − Isc)

]
, I > Isc

 . (6.15)

6.4.6 Energy storage

The energy-storage discipline tracks the state of charge (SOC) of the battery. We

can compute the SOC by integrating the nonlinear ODE given by

˙SOC =
Pbat
VbatQ

, (6.16)

where Q is the nominal discharge capacity of the battery.

We model the dependence of the voltage on the SOC as an exponential, primarily
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Figure 6.6: Solar cell I-V curve at different cell temperatures and exposed areas.

to ensure that the voltage is always positive. A linear relationship would have been

within the scope of this work. However, a battery at a large negative SOC has

a negative voltage, and drawing power from the battery would increase its SOC

since the current is still positive. Negative states of charge often arise at the initial

point in an optimization, when a poor baseline design point uses more power than

is available. In these circumstances, the model must provide the optimizer with the

correct gradient directions instead of failing. Artificially removing the drop-off in

voltage does not lead to inaccuracies that affect our results, since the optimization

constrains the SOC to be nonnegative, which ensures that the optimal design is never

in this drop-off region.

The dependence of the voltage on the temperature is also exponential, as shown

in Fig. 6.7, which compares the model to the manufacturer’s data3. The values for

the constants are listed in Table 6.1, and the expression is

Vbat(SOC) =

(
3 +

eSOC − 1

e− 1

)(
2− eλ

T−T0
T0

)
. (6.17)

At any given time instance, the battery power is the sum of the loads, i.e.,

Pbat = Psol − PRW − Pcomm − P0, (6.18)

3Panasonic, Batteries & Energy Products-Lithium Ion Batteries, Cylindrical type, NCR18650.
Accessed Jan. 2013.
http://industrial.panasonic.com/www-data/pdf2/ACA4000/ACA4000CE240.pdf
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Figure 6.7: Battery-discharge curve model compared with manufacturer’s data at two
temperatures.

where P0 is a 2-W constant power usage that accounts for the scientific instruments

on the satellite and small actuator inputs in response to disturbance torques.

6.4.7 Communication

The communication discipline models the data-transfer bit rate as a function of

several variables. We fix the signal-to-noise ratio (SNR) to a minimum acceptable

value to maintain a reliable connection. A line-of-sight variable, similar to that com-

puted in the Sun-position discipline, is used to account for the times when a link

with the ground station is not possible. We compute the resulting data-download

rate using the following equation [67, pp. 550–558]:

Br =
c2GrLl

16π2f 2kTs(SNR)

ηpPcommGt

S2
LOSc, (6.19)

where the constants are listed in Table 6.1, S is the distance to the ground station,

and Gt is the transmitter gain, which is plotted in Fig. 6.8.

We compute the LOSc variable based on the dot product between the normalized

Earth-to-ground station vector and the Earth-to-body vector in the inertial frame.

We again smooth the discontinuous function, in this case by assuming that the line-

of-sight variable gradually increases as the satellite comes over the horizon. This is

illustrated in Fig. 6.9.
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Orbit Dynamics

Earth’s gravitational parameter µ 398600.44 km3s−2

Earth’s radius Re 6378.137 km
Orbit perturbation coefficients J2 1.08264× 10−3

J3 −2.51× 10−6

J4 −1.60× 10−6

Attitude Dynamics

Model coefficients a 4.9× 10−4 A1/2 s/rad

b 4.5× 102 A1/2/(Nm)
I0 0.017 A

Temperature
Mass m 0.4 (fin), 2.0 (body) kg
Specific heat capacity cv 0.6 (fin), 2.0 (body) kJ/kg K
Absorptivity α 0.9 (cell), 0.2 (radiator)
Emissivity ε 0.87 (cell), 0.88 (radiator)
Boltzmann constant k 1.3806488× 10−23 m2 kg/(s2 K)
Speed of light c 2.99792458× 108 m/s
Planck’s constant h 6.62606957× 10−34 m2 kg/s
Total cell area AT 2.66× 10−3 m2

Solar constant qsol 1.36× 103 W/m2

Communication efficiency ηp 0.2
Solar Power
Diode voltage V0 −0.6 V
Max. short-circuit current Isc0 0.453 A
Saturation current Isat 2.809× 10−12 A
Diode factor n 1.35 V
Charge of an electron q 1.60217657× 1019 C
Shunt resistance Rsh 40 Ω
Energy Storage
Nominal capacity Q 2900 mAh
Temperature decay coeff. λ ln

(
1

1.15

)
Reference temperature T0 293 K
Max. discharge rate Imin −10 A
Max. charge rate Imax 5 A
Communication
Receiver gain Gr 12.9 dB
Line loss factor Ll −2.0 dB
Transmission frequency f 437 MHz
System noise temperature Ts 500 K
Minimum acceptable SNR SNR 5.0 dB

Table 6.1: Data for discipline models

65



6.5 Optimization

6.5.1 MDO architecture

For an optimization problem involving many disciplines, the choice of the MDO

architecture is critical. We use the multidisciplinary feasible (MDF) architecture [62],

which solves an MDO problem by fully resolving the coupling between all the dis-

ciplines within each optimization iteration, effectively treating the coupled analyses

of all the disciplines as one monolithic analysis. The rationale is that taking a re-

stricted path to the optimum, with the interdisciplinary coupling converged at every

optimization iteration, yields a robustness that is likely necessary for a problem with

such a large number of disciplines. For a review of MDO architectures, the reader is

encouraged to refer to Martins and Lambe [62].

However, the approach has elements that resemble the simultaneous analysis and

design (SAND) architecture [68, 62] because some of the design variables could also

be state variables. The roll-angle design variables could be replaced with reaction-

wheel control inputs that are computed using a control law, and the optimal solar

panel current at every time instance could be computed using maximum power point

tracking (MPPT). Instead, we use nonlinear optimization as the controller in the

former case. In the latter case, we compute all the peak power currents simultaneously

as a smooth profile over time; our goal is to avoid poor conditioning due to local

maxima.

Overall, this SAND-type approach yields three benefits. First, it avoids assump-

tions that would be required if these design variables were implemented as state

variables. For instance, the attitude-control law must assume a desired roll-angle

profile based on predetermined weights for the solar panel heating and cooling, cell

illumination, and communication signal strength, while the optimization considers

the net effect of rolling on the objective function by way of these three criteria. Sec-

ond, it eliminates the risk that a discipline may not have a feasible solution, such

as the attitude controller lacking the power to satisfy the forward-facing orientation

constraint for any roll angle. Allowing the optimizer to control the distribution of

power and enforce the battery-power and charge-level constraints ensures that all the

disciplines are feasible internally, while we allow the battery constraints to be vio-

lated during the optimization. Finally, it removes the coupling between disciplines

from the multidisciplinary analysis by moving the appropriate state variables to the

optimization as design variables. The optimizer resolves the coupling, allowing the

MDA to become a sequential problem, as shown in Fig. 6.10.
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Figure 6.10: Extended design structure matrix (XDSM) diagram [1] for the MDO
problem.

To avoid confusion, it is worth restating that the MDO architecture used in this

problem is still MDF. The connection to SAND is limited to the fact that certain vari-

ables that could have been state variables have been implemented as design variables.

However, the remaining state variables are not exposed to the optimizer, and all the

variables are converged fully within every optimization iteration, which is consistent

with the MDF architecture.

6.5.2 Optimization problems

As previously mentioned, the multi-scale nature of the problem requires a multi-

point optimization with 6 points, each representing a 12-hour simulation at the mid-

point of every 2-month interval. We simulate half a day, 1, 3, 5, 7, 9, and 11 months

after launch. This results in a multidisciplinary analysis with a total of 2,204,861

variables. The objective function is the average of the data-downloaded values of the

6 points, which is an estimate of the total annual data downloaded after a scaling

factor. The battery charge rate, discharge rate, minimum SOC, maximum SOC, and

periodicity constraints are enforced separately for each of the 6 points. The periodic-

ity constraint enforces equality of the SOC at the beginning and end of each 12-hour

simulation. The remaining four constraints are KS aggregation functions.

There are two scalar design variables (fin angle and antenna angle) and 84 binary

variables that indicate whether or not a cell or radiator is installed. The variables

that require the parametrization of their variations over time are the roll angle, the
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Variable/function Description Quantity

maximize
∑6

i=1Di Data downloaded

with respect to 0 ≤ Isetpt ≤ 0.4 Solar panel current 300× 12× 6
0 ≤ γ ≤ π/2 Roll-angle profile 300× 6
0 ≤ Pcomm ≤ 25 Communication power 300× 6
0 ≤ cellInstd ≤ 1 Cell vs. radiator 84
0 ≤ finAngle ≤ π/2 Fin angle 1
0 ≤ antAngle ≤ π Antenna angle 1
0.2 ≤ SOCi ≤ 1 Initial state of charge 6

Total number of 25292
design variables

subject to Ibat − 5 ≤ 0 Battery charge 6
−10− Ibat ≤ 0 Battery discharge 6
0.2− SOC ≤ 0 Battery capacity 6
SOC − 1 ≤ 0 Battery capacity 6
SOCf − SOCi = 0 SOC periodicity 6

Total number of 30
constraints

Table 6.2: The general optimization problem.

12 solar panel currents, and the power allotted to the communication discipline for

transmission. The current variable has the effect of emulating MPPT for the solar-

power module, since the optimizer effectively selects the current, and indirectly the

voltage, at which the maximum power can be generated from the cells in a given solar

panel. Each profile variable is discretized with 1500 points, which is the number of

points used in the time integrations, and they are represented using fourth-order B-

splines with 300 control points. The optimization problem is summarized in Table 6.2.

As previously mentioned, we solve the optimization problem using SNOPT [69], a

reduced-Hessian active-set SQP optimizer that solves nonlinear constrained problems

very efficiently, particularly when derivatives are provided, as is the case here. We

use the pyOpt optimization framework [9]; it provides a common interface to a suite

of optimizers, including SNOPT.

Figure 6.11 plots the convergence history for the optimization. The number of

function evaluations roughly corresponds to the number of SQP major iterations, and

each takes about 20 min on a single processor, including the derivative computations.

Overall, the algorithm requires 100 h to achieve convergence of nearly 5 orders of
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Figure 6.11: Convergence histories and snapshots of data and SOC at intermediate
optimization iterations.

magnitude in feasibility and 3 orders of magnitude in optimality. Figure 6.11 shows

that by the end of the optimization, nearly half of the design variables are superbasic

variables in SNOPT, which are those variables that are truly free to change because

they are not fixed by bounds or constraints. This indicates that near this local

optimum, the dimension of the feasible design space is large, meaning that there is

considerable design freedom with respect to which the design is optimal.

Figure 6.11 also illustrates the sequence in which the objective function was im-

proved and the battery constraints were satisfied. For all six points, the initial design

is clearly infeasible since the SOC curve is mostly negative. The optimizer spends

most of the first 100 function evaluations trying to increase the power generation

to make the SOC curves feasible. After this, it focuses on increasing the objective

function.
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Fin Antenna Data
angle angle downloaded

Baseline optimization 45◦ 0◦ 2122 Gb/yr
Geometry optimization 63.8◦ −45◦ 2991 Gb/yr
Geometry and 64.4◦ −45◦ 3758 Gb/yr
attitude optimization

Table 6.3: Optimal design variables for for the three optimization problems.

6.5.3 Impact of optimization

To quantitatively assess the impact of the optimization, we solve three optimiza-

tion problems. The first is a baseline optimization that is the same as the original

optimization problem in Table 6.2, except that the fin angle, antenna angle, and

roll-angle profile are removed from the set of design variables. The remaining design

variables are the solar-panel current, communication power, initial SOC, and instal-

lation of cell or radiator, which provide a baseline design. The second optimization

adds the geometric design variables, which are the fin and antenna angles. The third

optimization adds both the geometric and attitude design variables to the baseline

optimization, yielding the problem described in Table 6.2.

Table 6.3 summarizes the results. Since the constraints are satisfied in all of the

optimizations, the objective function alone provides a good metric for comparison.

Adding the geometric design variables yields a 40% increase in the estimate of the data

downloaded, and adding the roll angle yields an additional 40% increase. Whenever

the antenna angle is permitted to vary, it goes to the bound of −45◦, while the fin

angle converges to an interior optimum. For all the problems, the optimizer chooses

to install the solar cell instead of the radiator for all 84 cells. Figure 6.12 shows how

the objective-function increases are distributed among the 6 points.

These optimization results can be summarized as follows. The fin angle and roll-

angle profile increase the cell illumination to provide more communication power, and

the antenna angle increases the gain during the ground-station passes for higher data

rates. However, an examination of each variable reveals more insight into how the

optimization problems compare, as well as how they satisfy the battery constraints

and increase the total downloaded data. Figures 6.13 and 6.14 plot several quantities

of interest as functions of time, for each point and for each of the three optimization

results.

In Fig. 6.13, the data downloaded plots demonstrate the importance of optimizing

both the geometric and attitude design variables. The communication power plots
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Figure 6.12: Division of total data downloaded over the six simulations for the three
optimization problems.

show that the optimizer allocates power to the transmitter only during the ground-

station passes, as expected, but the peaks of the spikes are limited by the available

SOC and the discharge constraint. The transmitter gain plots show the highest gains

for the geometry and attitude optimization, followed by the geometry optimization,

then the baseline optimization. This is evidence that the fin angle provides an increase

in gain, and the roll-design variables provide a further increase in gain, which trans-

lates to higher data rates. An interesting observation regarding the roll-angle profiles

is that they are smooth for the most part but exhibit spikes aligned with ground-

station passes. Finally, the SOC plots show that the additional power generated by

the optimizations is used for a gradual build-up of energy between data transmissions,

enabling short and rapid power discharges for high-bit-rate data transmissions.

In Fig. 6.14, the large increase in the solar power generation from the baseline

optimization to the geometry optimization and the smaller increase from the geometry

optimization to the geometry and attitude optimization indicate that the fin angle

has a large effect, and the attitude profile has a smaller but still definite effect. The

solar-panel current curves represent the maxima for each time instance among the

twelve panels, and they correctly go to zero when the satellite is in the Earth’s shadow

to prevent negative voltages, while taking on optimal current values when in the sun
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Launch Fin Antenna Data
angle angle downloaded

1 64.4◦ −45◦ 3758 Gb/yr
2 49.9◦ −45◦ 3829 Gb/yr
3 68.5◦ −45◦ 3587 Gb/yr

Table 6.4: Optimal values for the three launches.

to maximize power. As with the solar-power plots, the total-exposed-area plots give a

clear indication that the fin angle has the largest effect in increasing cell illumination,

and interestingly, the exposed area is sacrificed in months 1 and 7 when the satellite

is always in the sun and is not power constrained. The body temperature is weakly

dependent on the roll-angle profile and it also has a smaller effect on the solar power,

so periodicity constraints are not used to avoid the additional linear solutions required

for the associated derivatives. The battery-current plots show that the communication

power is limited by the battery-discharge constraint for many of the ground-station

passes, while the remainder are energy-limited.

6.5.4 Comparison between launches

One of the strengths of our approach and implementation is that the design opti-

mization algorithm is robust with respect to convergence. To aid decision-making, it

is possible to run optimizations for various choices of parameters, such as the launch,

ground-station selection, and satellite specifications, and to compare them. To il-

lustrate, we ran two additional optimizations for different launch orbits and dates.

These optimizations involve the design variables listed in Table 6.2.

The results are summarized in Table 6.4. The antenna angles converge to the same

value, and the estimated data downloaded is roughly the same for the three launches.

However, there is a large discrepancy in the optimal fin angle, which suggests that

it could be sensitive to the launch orbit. It has been consistently observed that

the fin angle has a large effect on the potential power generation, and the optimal

fin angle varies significantly for different launches as the result for launch 2 shows.

This observation points to the importance of carefully selecting the fin angle once the

launch orbit is known. Figure 6.15 shows how the total downloaded data is divided

among the points.
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Figure 6.15: Division of total data downloaded over the six simulations for the three
launches.

6.6 Summary

The objective for the work presented in this chapter was to apply large-scale

multidisciplinary design optimization to a small satellite. This work demonstrated the

ability to reliably solve an optimization problem with 7 disciplines, more than 25,000

design variables, and over 2.2 million state variables that represent 12 hours of the

satellites operation at 6 uniformly spaced points over the year. To assess the impact

of this tool, three optimization problems were solved with varying sets of design

variables. The addition of geometric design variables to the satellite design problem

yielded a 40 % improvement in the objective function (the total data downloaded),

and the addition of operational design variables yielded a further 40 % improvement.

Furthermore, changing the launch parameters changed the values of the objective

function and the design variables, suggesting that this tool could be used to evaluate

launch options and to tailor the design to a particular launch opportunity.

The computational modeling framework played an important role in enabling the

implementation and execution of this design optimization problem. Each discipline

is decomposed into separate computations to simplify and modularize the code, but

this results in a large number of components. For instance, the output of the com-

munication discipline is ultimately the total data downloaded, but it is broken down
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Figure 6.16: Design structure matrix diagram illustrating the complexity of the prob-
lem. Each block on the diagonal represents one of 43 components that
each computes one or more quantities in the computational model. Off-
diagonal entries represent dependencies—variables passed from one com-
ponent to another.

into the computations of the ground station line-of-sight variable, the position vector

from the satellite to the ground station, the transmitter gain as a function of this

vector, the data-download rate, and the total data downloaded. In total, there are 43

components when those of all the disciplines are combined, and Fig. 6.16 shows the

dependencies to illustrate the scope and complexity of this problem. The framework

facilitated a modular integration of the components and automatically computed the

total derivatives, which was a key feature for this problem.
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CHAPTER 7

Allocation-mission optimization of commercial

aircraft

The second problem is the large-scale optimization of the operation of commercial

aircraft. With the objective of maximizing profit at the airline level, this problem

aims to find the optimal allocation of available aircraft to routes and the optimal

mission profiles on each of those routes.

This chapter begins by motivating the simultaneous consideration of the alloca-

tion and mission problems from high-fidelity aircraft design optimization, in Sec. 7.1.

Next, the prior art in mission and allocation optimization is surveyed in Sec. 7.2 and

Sec. 7.3, respectively. Section 7.4 presents the models and algorithms for the mission,

allocation, and simultaneous allocation-mission problems. Finally, Sec. 7.5 presents

allocation-mission optimization results and Sec. 7.6 summarizes the conclusions.

7.1 A motivation from aircraft design optimization

Part II of this thesis deals with high-fidelity design optimization algorithms for

unconventional aircraft configurations. In the field at large, the use of computa-

tional design tools in aircraft design is growing, as computing hardware improves and

methods for high-fidelity optimization become more mature. Computational fluid

dynamics (CFD) and finite element analysis (FEA) enable expensive, but accurate

aerodynamic and structural simulations of aircraft, respectively, and optimization

provides a tool to automatically compute the aircraft design that is optimal in some

sense.

This begs the questions of what the objective function should be and at what

operating conditions the aircraft should be optimized or designed. For aerodynamics,

one common choice is to formulate the optimization problem as lift-constrained drag
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minimization, assuming a required lift that is hopefully representative of how the

aircraft would actually be flown. An improvement upon this would be to minimize

the Breguet range equation, which approximates the fuel burn over the mission by

making assumptions such as a constant lift-to-drag ratio.

For even greater accuracy, one would want to analyze the entire mission by solving

for the angle of attack profile, thrust profile, etc. required to fly a desired altitude and

speed profile. The mission analysis is necessary to quantify the true impact of design

improvements in terms of the total fuel burn. This is particularly relevant with the

ongoing research on continuous descent approach (CDA), also known as optimized

profile descent (OPD).

Considering the full mission profile improves accuracy, but it raises another question—

the choice of range and payload. A simplification would be to select a representative

mission range and number of passengers, and let the objective function be the total

fuel burn on this route. The more accurate approach would be to solve an opti-

mization problem mimicking a profit-seeking airline that distributes limited fleets of

aircraft of different types to a network of routes.

In summary, the true optimization problem would include allocation, mission, and

design simultaneously. This problem would optimize allocation variables representing

how many of which aircraft are flown on what routes, mission variables parametrizing

the altitude profiles for each aircraft type potentially flying on each route, and design

variables representing the aircraft shape and sizing. The objective function would be

profit, so this simultaneous optimization would achieve two things. First, it would

quantify for an airline the potential increase in profit from adding the unconventional

aircraft to its fleet. Second, the outcome would be an optimized design for the un-

conventional configuration that is the most attractive to airlines and is likely fuel

efficient, since fuel burn reduces profit.

This simultaneous optimization problem is ambitious in scope, particularly be-

cause of the large number of aircraft simulations required. One simulation is required

for each discretized point in the mission, multiplied by the number of iterations in

the solution of the mission equations, multiplied by the number of routes and air-

craft, multiplied by the number of optimization iterations. This potential bottleneck

is remedied by using a surrogate model for the aircraft simulation with Mach number,

altitude, angle of attack, and tail rotation angle as input variables. Each optimization

iteration, this surrogate model would be re-trained given the design corresponding to

the current design variable iterates. A modular approach is needed because of the

scope and complexity of this problem, so this problem would take advantage of the
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framework presented in Ch. 5.

7.2 Prior art in allocation optimization

One of the first applications of linear programming was the airline allocation

problem, first published in 1956 [70], less than 10 years after the development of

the simplex method in 1947 [71]. The original problem aimed to find the optimal

allocation of aircraft to routes given uncertain demand [70], assuming a fixed cost

incurred by flying a given route with a given type of aircraft.

Beginning in 1966 [72], researchers began applying optimization to schedule de-

sign for flights, and later, the fleet assignment problem (FAP)—assigning aircraft to

scheduled flights. In 1989, Abara showed that it is possible to use linear programming

to solve FAPs of representative sizes [73]. Recent research has focused on improve-

ments upon these formulations with for instance improved revenue models [74, 75],

homogeneity of aircraft types at airports [76] or on legs [77], and simultaneous opti-

mization of scheduling and fleet assignment [78]. More information can be found in

survey articles by Clarke and Smith [79] and Barnhart et al. [80].

The fruits of research in this field have been used by airlines to improvement their

operations and increase profit. For instance, algorithms for solving fleet assignment

problems have been used by American Airlines [73], Delta Airlines [81], and US

Airways [82].

For the current problem, the motivation for considering the allocation problem

differs from that of the airlines. The objective is to solve the allocation problem as a

tool to evaluate potential new aircraft designs by quantifying their airline-level ben-

efits. It must be possible to simultaneously optimize the variables parametrizing the

mission profile and aircraft design, so simplifying assumptions are used. Specifically,

the original allocation problem proposed in 1956 [70] is used, and the considerations

for scheduling are ignored.

7.3 Prior art in mission optimization

The prior art in mission profile optimization divides broadly into two categories,

direct and indirect [83]. The direct approach first discretizes the equilibrium equations

and applies the optimality conditions on the discretized equations. The indirect

approach takes the reverse order—it first differentiates the equilibrium equations to

derive continuous optimality conditions and then discretizes as the second step.

79



Only the direct approach is reviewed as it is the one used in this chapter. Betts

and Huffman performed trajectory optimization for a hypersonic re-entry vehicle using

the direct approach [84]. They used a custom active-set gradient-based optimization

algorithm with a sparse finite differencing method. Betts and Cramer applied a sim-

ilar methodology to the trajectory optimization of commercial aircraft using sparse

finite differencing and gradient-based optimization, and B-spline interpolants were

used as the aerodynamic model [85]. Park and Clarke solved the trajectory optimiza-

tion problem using the pseudospectral method, which discretizes state and control

variables at points determined by a Gaussian quadrature [86].

An application of mission profile optimization is for continuous descent approach

(CDA), also known as optimized descent profile (ODP). ODP is one component of

the next generation air transportation system (NextGen) currently being developed

and implemented by the federal aviation administration (FAA). In addition to noise

reductions, continuous descents yield fuel burn improvements compared to step de-

scents. In the past decade, continuous and idle descent tests have been designed or

implemented at Louisville [87], Denver [88], Los Angles [89], and Malta [90] interna-

tional airports.

Based on the current interest in ODP, the approach taken for this work is to

simultaneously optimize the mission profiles for each route while solving the allocation

problem. The expected result is a rapid and smooth climb to a cruise-climb stage

and then a continuous descent near idle, with the cruise altitudes determined by the

optimizer. The numerical approach is similar to that of Betts and Cramer [85], with 2

key improvements. First, the derivatives needed for optimization are computed using

the framework as opposed to finite differences for improved accuracy and efficiency.

Second, the mission analysis is implemented in a modular way in the framework,

facilitating integrating with the allocation components, and in future, with the aircraft

design components.

7.4 Methodology

7.4.1 The mission problem

The main components of the mission analysis are formed by the equilibrium equa-

tions for the aircraft and the ordinary differential equation (ODE) for fuel weight. For

the former, the vertical equilibrium determines the required angle of attack to roughly

match lift with weight, the horizontal equilibrium determines the engine throttle set-

ting to roughly match thrust with drag, and the moment equilibrium determines the
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elevator deflection to trim the aircraft. The equations are

L+W cos γ − T sinα +
W

g
v2 cos γ

dγ

dx
= 0 (7.1)

T cosα +D +W sin γ +
W

g
v cos γ

dv

dx
= 0 (7.2)

M − I
(

d2γ

dx2
(v cos γ)2 +

dγ

dx

dv

dx
v(cos γ)2

)
= 0, (7.3)

where α is the angle of attack and γ is the climb or descent angle.

Assuming quasi-steady flight conditions, the terms containing derivatives with

respect to x can be ignored. Dropping these terms and expressing in terms of non-

dimensional coefficients yields

1

2
ρv2SC̃L +W cos γ − 1

2
ρv2SC̃T sinα = 0 (7.4)

1

2
ρv2SC̃T cosα +

1

2
ρv2SCD +W sin γ = 0 (7.5)

C̃M = 0. (7.6)

The system of equations is completed by adding surrogate models for the aerody-

namics and propulsion, which are of the form

C̃L − CL(h,M, α, η) = 0 (7.7)

C̃M − CM(h,M, α, η) = 0 (7.8)

C̃T − CT (h,M, t) = 0, (7.9)

where the variables with tildes indicate target variables while CL, CD, CM , and CT

are functions representing the aerodynamic or propulsion surrogates.

The fuel weight is computed by solving the ODE,

Ẇf =
{SFC}1

2
ρv2SCT

v cos γ
, (7.10)

81



Mission

Nonlin: GS
Linear: GS
Precon: N/A

Flight conditionsB-splines Coupled analysis

Nonlin: Newton
Linear: Krylov
Precon: GS

Inputs Outputs

PropulsionHor. equilibriumAerodynamics

Nonlin: Newton
Linear: Krylov
Precon: None

Vert. equilibrium Fuel weight

W → L L→ D D → T T → Ẇ Ẇ →W
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Figure 7.1: A class diagram showing the System instances in the aircraft mission
problem.

where SFC is the thrust-specific fuel consumption, and CT is the thrust coefficient.

As with the design of the CubeSat, this problem involves multiple disciplines that

are coupled. The rate of fuel burn at a given point during the flight depends on

the engine output, which is determined by the amount of aerodynamic drag that the

engines must overcome. However, the amount of drag depends on how much lift must

be produced to counteract the weight of the aircraft, which in turn is affected by the

total amount of fuel required, completing the feedback loop.

Figure 7.1 shows a class diagram containing the components and solvers used in

the computational model. The top-level System object, Mission, contains five systems

that have no feedback, so nonlinear and linear block Gauss–Seidel converge in one

iteration. One of the five subsystems, Coupled analysis, contains the aforementioned

feedback loop involving fuel burn, thrust, drag, lift, and weight. For this system,

Newton’s method is used to solve the nonlinear system with a few iterations of non-

linear block Gauss–Seidel used as a start-up strategy, the linear systems that arise

are solved using fGMRES, and the preconditioner is a few iterations of linear block

Gauss–Seidel. Coupled analysis, in turn, contains a system that defines implicit state

variables, so it also uses a Newton–Krylov solver.

The mission-only optimization is a nonlinear programming (NLP) problem with

the objective of minimizing fuel burn and is stated below (NLP-m). The design

variables are the B-spline control points of the parametrized altitude profile with

ncp B-spline control points and npt discretization points. Here, we use ncp = 50

and npt = 250. The initial and final altitudes are constrained to be zero, and slope
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constraints are imposed on the altitude profile with a value of 35◦ for both climbing

and descending. The throttle setting is constrained to be between idle (10%) and

full (100%). The slope constraints are linearly mapped from the design variables, but

the throttle setting is a nonlinear function of the design variables and state variables,

so its derivatives are computed using the adjoint method. Since it is costly to solve

one adjoint for each of the npt points, the throttle constraints are aggregated using

Kreisselmeier–Steinhauser functions [63] to reduce to a single idle-throttle constraint

and a single full-throttle constraint.

minimize fuel burn

with respect to altitudek ∈ [0,max altitude] , 1 ≤ k ≤ ncp

subject to altitude1 = 0

altitudencp = 0

idle throttle ≤ throttle (KS)

throttle ≤ max throttle (KS)

min slope ≤ slopek ≤ max slope , 1 ≤ k ≤ npt

(NLP-m)

Figure 7.2 plots some of the simulation results at an optimized design point. The

optimized altitude profile in Fig. 7.2 matches intuition—the aircraft climbs rapidly

at a rate limited by the maximum thrust of the engines, there is a slow climb during

the cruise segment, and it descends with the engines on idle to save fuel. It is more

efficient for aircraft to fly as much as possible at its cruise altitude because drag is

much lower there, and the slow climb is due to the fact that the optimal cruise altitude

changes as the aircraft becomes lighter with fuel slowly being burned off. At a high

level, the aircraft mission profile optimization algorithm is useful because given any

aircraft design, range, and payload, it provides a best-case fuel burn estimate for the

flight.

The aircraft mission optimization problem has a smaller size than the CubeSat

problem, but its variables have a hierarchical structure with coupling at multiple

levels. This problem takes advantage of the framework’s support for hierarchical de-

composition and solution of problems as well as the framework’s built-in solvers. As

with the CubeSat problem, this problem also benefits significantly from the frame-

work’s automated derivative computation capability, which computes gradients with

respect to all design variables at a cost on the order of a single evaluation of the com-

putational model. As before, the optimization problem is solved using SNOPT [11]

via the pyOpt interface [9], and the convergence history for a representative mission

optimization with ncp = 100 design variables is shown in Fig. 7.3. More details on
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Figure 7.2: Plots of a subset of the variables modeled in the aircraft mission opti-
mization problem. The altitude profile is designed by the optimizer to
minimize total fuel burn over the mission. The distances are given in
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Figure 7.3: Convergence plots for a representative aircraft mission optimization.

this problem can be found in Kao et al. [91].

7.4.2 The allocation problem

The allocation problem mimics the motivation of a profit-seeking airline. Given

nrt routes and nac types of aircraft, the allocation problem we wish to solve seeks

to maximize profit by optimally allocating the available aircraft to the routes with

constraints on the number of each aircraft type available as well as the demand for

each. There are 3 equations relevant to this problem. Here, i is used to index routes,

and j is used to index types of aircraft. The design variables are pax flti,j, which is

the number of passenger per flight, and flt dayi,j, which is the number of flights per

day. Both design variables are arrays over routes and types of aircraft.
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The first is profit, which is given by

profit =
nrt∑
i

nac∑
j

[
price paxi,j · pax flti,j · flt dayi,j

]
(7.11)

−
nrt∑
i

nac∑
j

[
(cost flti,j + cost fuel · fuel flti,j) · flt dayi,j

]
, (7.12)

where price paxi,j is the ticket price per flight, cost flti,j is the total cost of operating

a flight minus fuel, cost fuel is the cost per unit fuel, and fuel flt is the total fuel burn

on a flight. In some cases, fuel flti,j is assumed to be a constant during an allocation

optimization, and in others, it is the output of the mission analysis.

The second equation is an inequality that enforces that the total number of pas-

sengers flown on a route is less than the demand on that route, and it is given by

total paxi =
nac∑
j

[
pax flti,j · flt dayi,j

]
≤ demandi , 1 ≤ i ≤ nrt, (7.13)

where demandi is the total number of passengers who are looking to fly on a given

route. This inequality is enforced for each route i.

The final equation is another inequality that constrains aircraft operation time

based on the total number of available aircraft for a given type, and it is given by

total usagej =
nrt∑
i

[
flt dayi,j · (time flti,j(1 + maintj) + turn flt)

]
≤ 12hr · num acj , 1 ≤ j ≤ nac, (7.14)

where time flti,j is the block time for a flight, maintj is the maintenance time required

as a multiple of block time, turn flt is the turnaround time between flights, and

num acj is the number of aircraft available for a given type. As with block fuel,

block time is either a constant during optimization, or it is computed by the mission

analysis. This inequality is enforced for each aircraft type j.

The allocation-only optimization problem is a mixed-integer linear programming

(MILP) problem and is stated below (MILP-a). In this case, block fuel and block

time are constants, and they are not dynamically re-computed during optimization

by running mission analysis. The objective function is profit, and the two integer

design variables are passengers per flight and flights per day for each route and type

of aircraft. Demand constraints are enforced for each route, and aircraft availability

constraints are enforced for each type of aircraft. Here, the demand is assumed
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symmetric and the model assumes that each aircraft type makes a round trip on each

route. This partially addresses the scheduling-related constraints.

maximize profit

with respect to pax flti,j ∈ [0, ac capacityj] ∩ N , 1 ≤ i ≤ nrt , 1 ≤ j ≤ nac

flt dayi,j ∈ [0,∞) ∩ N , 1 ≤ i ≤ nrt , 1 ≤ j ≤ nac

subject to total paxi ≤ demandi , 1 ≤ i ≤ nrt

total usagej ≤ num acj , 1 ≤ j ≤ nac
(MILP-a)

7.4.3 The allocation-mission problem

The main optimization problem we wish to solve is the simultaneous allocation-

mission optimization with profit as the objective function. This top-level problem

includes the allocation problem as well as the mission problems for each route and

each type of aircraft. However, mission analyses are only run for only the new types

of aircraft. The rationale is that in future work with the simultaneous design-mission-

allocation optimization, the existing types of aircraft have fixed designs so the block

fuel and block time only depend on the routes, which are fixed, and the weight of

the passengers, which does not have a large influence. In contrast, the new types of

aircraft would be simultaneously designed during the design-mission-allocation opti-

mization, so it is necessary to re-compute the mission analyses dynamically during

optimization. In light of this, let us call the number of new types of aircraft nnac.

The simultaneous allocation-mission optimization is a mixed-integer nonlinear

programming (MINLP) problem and is stated below (MINLP-a-m). To lower the

difficulty of the problem, the number of passengers per flight can be relaxed as a

continuous variable; however, the same assumption cannot be made for the number

of flights per day because the small values signify that relaxing the integer constraints

would significantly change the optimization problem.
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maximize profit

with respect to pax flti,j ∈ [0, ac capacityj] , 1 ≤ i ≤ nrt , 1 ≤ j ≤ nac

flt dayi,j ∈ [0,∞) ∩ N , 1 ≤ i ≤ nrt , 1 ≤ j ≤ nac

altitudei,j,k ∈ [0,max altitude] , 1 ≤ i ≤ nrt , 1 ≤ j ≤ nnac

1 ≤ k ≤ ncp

subject to total paxi ≤ demandi , 1 ≤ i ≤ nrt

total usagej ≤ num acj , 1 ≤ j ≤ nac

altitudei,j,1 = 0 , 1 ≤ i ≤ nrt , 1 ≤ j ≤ nnac

altitudei,j,ncp = 0 , 1 ≤ i ≤ nrt , 1 ≤ j ≤ nnac

idle throttle ≤ throttlei,j(KS) , 1 ≤ i ≤ nrt , 1 ≤ j ≤ nnac

throttlei,j ≤ max throttle (KS) , 1 ≤ i ≤ nrt , 1 ≤ j ≤ nnac

min slope ≤ slopei,j,k ≤ max slope , 1 ≤ i ≤ nrt , 1 ≤ j ≤ nnac

1 ≤ k ≤ npt
(MINLP-a-m)

The MINLP problem is solved using the branch-and-bound method [8] to formu-

late a series of continuous NLP problems that eventually generate an integer solution,

and the continuous problem is shown below (NLP-a-m). The continuous NLP prob-

lems are solved using SNOPT [92], using a modified version of the pyOpt interface [9].

SNOPT is a gradient-based optimizer that implements the sequential quadratic pro-

gramming (SQP) method, and it is specifically designed for nonlinear constrained

optimization problems that are large-scale and sparse.

maximize profit

with respect to pax flti,j ∈ [0, ac capacityj] , 1 ≤ i ≤ nrt , 1 ≤ j ≤ nac

flt dayi,j ∈ [0,∞) , 1 ≤ i ≤ nrt , 1 ≤ j ≤ nac

altitudei,j,k ∈ [0,max altitude] , 1 ≤ i ≤ nrt , 1 ≤ j ≤ nnac

1 ≤ k ≤ ncp

subject to total paxi ≤ demandi , 1 ≤ i ≤ nrt

total usagej ≤ num acj , 1 ≤ j ≤ nac

altitudei,j,1 = 0 , 1 ≤ i ≤ nrt , 1 ≤ j ≤ nnac

altitudei,j,ncp = 0 , 1 ≤ i ≤ nrt , 1 ≤ j ≤ nnac

idle throttle ≤ throttlei,j(KS) , 1 ≤ i ≤ nrt , 1 ≤ j ≤ nnac

throttlei,j ≤ max throttle (KS) , 1 ≤ i ≤ nrt , 1 ≤ j ≤ nnac

min slope ≤ slopei,j,k ≤ max slope , 1 ≤ i ≤ nrt , 1 ≤ j ≤ nnac

1 ≤ k ≤ npt
(NLP-a-m)
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The overall algorithm that solves (MINLP-a-m) is described in Algorithm 1. The

first step is to solve (NLP-m) for each route and each aircraft type using SNOPT

in order to determine the block times and block fuels to be used in the next step.

We use the linprog function in SciPy ’s optimize package via NASA’s OpenMDAO

framework [93] to solve (MILP-a) to generate a good initial solution for the branch-

and-bound algorithm. Next, we begin the branch-and-bound phase by initializing the

tree and adding the first node, which is (NLP-a-m) that uses the initial values for

the allocation design variables from the solution to (MILP-a) and the initial values

for the mission design variables from the solution to (NLP-m) for each mission. The

remainder of the algorithm implements the depth-first branch-and-bound algorithm.

An important characteristic of this algorithm is that when branching for a variable

xk, all of the initial values from the parent node are used, except for xk itself, which

is taken to be the same as the upper or lower bound. This allows (NLP-a-m) to

be solved in one or a very small number of NLP iterations in many cases, yielding

improved efficiency.

7.5 Allocation-mission optimization results

This section presents a suite of allocation-mission optimization results obtained

using Algorithm 1. We start by describing the routes and the types of aircraft in the

problem we solved, and present 4 results. First, we show the predicted increase in

profit for an airline if it purchases new aircraft instead of existing aircraft. Second,

we show that there is a difference between the results of allocation-only optimiza-

tion (MILP-a) and allocation-mission optimization (MINLP-a-m). Next, we explore

the presence of local optima in (NLP-a-m) and show that (MINLP-a-m) is highly

sensitive to the starting point. Finally, we discuss the numerical performance of the

allocation-mission analysis and optimization algorithm.

7.5.1 The problem

The optimization results presented here reflect a 3-route problem with ranges of

roughly 7000 nmi, 5500 nmi, and 2500 nmi. The routes have been chosen to represent

a network with a hub in Newark, New Jersey and the following destinations: Hong

Kong; Kuwait City, Kuwait; and Quito, Ecuador. The routes are summarized in

Tab. 7.1 and shown graphically in Fig. 7.4.

We consider 6 aircraft types, 4 existing ones and 2 hypothetical next-generation
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Algorithm 1 Solution of the allocation-mission optimization problem, (MINLP-a-m)

1: for i← 1, nrt do
2: for j ← 1, nac do
3: Solve (NLP-m) to determine block fuel and time for the (i, j)th mission
4: end for
5: end for
6: Solve (MILP-a)
7: Create the branch and bound tree
8: Add the first node for an (NLP-a-m) starting from (MILP-a) and (NLP-m) solu-

tions
9: while Nodes exist do

10: Solve (NLP-a-m) in the deepest node (depth-first strategy)
11: if Solution is better than the best integer solution then
12: if Solution is integer then
13: Store solution—this is the new solution
14: else
15: k ← index of integer variable furthest from an integer
16: Add a node for an (NLP-a-m) with upper bound and initial value of

xk changed to floor(xk)
17: Add a node for an (NLP-a-m) with lower bound and initial value of xk

changed to ceiling(xk)
18: end if
19: end if
20: Delete current node
21: end while

Route Newark (EWR) Newark (EWR) Newark (EWR)
Hong Kong (HKG) Kuwait City (KWI) Quito (IQT)

Range [nmi] 6998 5546 2509
Demand 1200 550 700

Table 7.1: The 3 routes considered in the allocation-mission optimization
.
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Figure 7.4: Map of the cities and the routes (generated using the Great Circle Mapper:
www.gcmap.com). Newark, New Jersey is chosen as the hub.

aircraft. The Boeing 737-800 (B737), Boeing 777-200ER (B777), Boeing 747 (B747),

and Boeing 787 (B787) have been chosen as the existing aircraft to cover a variety of

design ranges and seating capacities. The two new aircraft are a notional advanced

conventional design based on the Common Research Model [94] and a blended wing

body concept based on Liebeck [95] with a reduced seating capacity. The aircraft

types are summarized in Tab. 7.2 with seating capacities shown after applying an 80

% load factor. Table 7.2 also shows the 4 allocation-mission optimization problems

we solved, representing different scenarios in which the hypothetical airline chooses

to buy different aircraft.

The cost, ticket price and the performance data of the existing aircraft for the

different routes in the network are obtained using the simulation tool FLEET [96, 97].

For the new aircraft, the ticket price, no-fuel direct operating cost and the indirect

operating cost are also obtained from an equivalent aircraft modeled in FLEET. The

current model do not account for airline competition and assumes the ticket prices

are fixed across types of aircraft on a given route.

7.5.2 Profit increase with new aircraft

Figure 7.5 shows the profit after optimization for each of the 4 scenarios. The re-

sults agree with intuition because the CRM and BWB both represent an improvement
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Aircraft Boeing Boeing Boeing Boeing CRM BWB
737-800 777-200ER 747-400 787-8

Category Existing Existing Existing Existing New New
Capacity 122 207 294 200 300 400
Scenario
S-base 20 24 24 8
S-CRM 20 24 24 8
S-BWB 20 24 24 8
S-both 20 20 20 8 8

Table 7.2: The types of aircraft considered in the allocation-mission optimization.
The bottom four lines show the number of each aircraft type available in
each of the four scenarios.

over the existing aircraft. The CRM design is based on the B777, but it is assumed

to have a larger seating capacity and higher aerodynamic efficiency since it is a next

generation aircraft. The B787 has the range of the CRM but a lower seating capacity,

while the B747 has the seating capacity but a lower range and lower efficiency as it

is a much older design. Thus, the S-CRM scenario provides a 192 % improvement

in profit over the baseline S-base, the S-BWB scenario provides a 323 % due to its

larger seating capacity, and the S-both scenario provides a further improvement with

414 % compared to the baseline.
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Figure 7.5: Comparison of profit for the four scenarios at the solution to
(MINLP-a-m). The results show an increase in profit when the hypo-
thetical airline purchases the next-generation aircraft.
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7.5.3 Allocation versus allocation-mission optimization

Figure 7.6 compares the optimized profit among 4 cases: (MINLP-a-m) without

the (MILP-a) initialization, (MILP-a), (MINLP-a-m), and (NLP-a-m). This sub-

section focuses on (MILP-a) versus (MINLP-a-m)—i.e., allocation-only optimization

versus allocation-mission optimization. We see a small increase in profit in all three

scenarios with the allocation-mission optimization because it more accurately com-

putes the block fuel and block time for the new aircraft. In particular, the block

fuel values used in (MILP-a) assume the aircraft always fly at full capacity—thus,

(MILP-a) likely underpredicts profit because the actual fuel burn is lower when the

aircraft flies with fewer passengers than its seating capacity. However, this is a mi-

nor difference, and the reader is reminded that the true motivation for incorporating

mission analysis in the allocation problem is to enable design-mission-allocation opti-

mization, and this work develops many of the methods needed for optimization with

all three simultaneously considered.
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Figure 7.6: Comparison of optimized profits. The colors represent, in order:
(MINLP-a-m) not initialized to the solution to (MILP-a) (orange),
(MILP-a) (red), (MINLP-a-m) initialized to the solution to (MILP-a)
(blue), and (NLP-a-m) solved in the first node of the branch-and-bound
algorithm. The results show clear local minima and an increase in profit
in the allocation-mission optimization compared to the allocation-only
optimization.
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7.5.4 Local optima

One significant concern when incorporating mission analysis into the allocation

problem is that the problem becomes nonlinear, so there is potential for local optima

that represent significantly worse profit than the global optimum. Figure 7.6 shows

that there is indeed a large difference between two solutions to (MINLP-a-m): one

in which Algorithm 1 is run as is and one in which Algorithm 1 is run without the

(MILP-a) initialization (line 6). In Fig. 7.6, the orange bars are several times smaller

than the blue bars for each scenario. Figure 7.7 confirms that the integer design

variables—flights per day—consistently show large changes between the two optima.
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Figure 7.7: Optimal values of the (round trip) flights per day design variable compar-
ing (MINLP-a-m) with and without (local) initialization to the solution to
(MILP-a). The results show two distinct local minima in (MINLP-a-m).

These results highlight two aspects to the importance of the (MILP-a) initializa-

tion step (line 6) in Algorithm 1. First, it is not possible to guarantee convergence to a

global minimum in nonlinear optimization problems that do not satisfy any convexity

conditions, but Algorithm 1 provides a reasonably good local optimum by starting

from the global optimum of the linear problem, (MILP-a). The initial (NLP-a-m) and

the branch-and-bound method then guarantee that the solution to which it converges

is no worse than the initial point provided by the linear optimization.

The second benefit is the tremendous efficiency afforded by this two-step approach.

The linear optimization (MILP-a) is inexpensive, so it quickly gets close to the so-

lution of the nonlinear optimization (MINLP-a-m), after which branch-and-bound

begins from a good starting point. Fig. 7.8 shows that the continuous solution of the

initial (NLP-a-m) solved in the first node of the branch-and-bound is not significantly
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different from the solution of (MILP-a), and the solution of (MINLP-a-m) is in turn

very similar as well. In fact, the branch-and-bound only forces the integer variables to

one of the nearest integers, suggesting that the (NLP-a-m) problem is locally convex

in a large enough area containing the nearby integers, but multi-modal over a larger

region since at least one other local optimum was found.

B737 B777 B747 CRM BWB

7.0 5.5 2.5 7.0 5.5 2.5 7.0 5.5 2.5 7.0 5.5 2.5 7.0 5.5 2.5

0

1

2

3

4

5

Range[nm ×103]

F
li
gh

ts
p
er

d
ay

S-CRM (MILP-a) S-CRM (NLP-a-m) S-CRM (MINLP-a-m)

S-BWB (MILP-a) S-BWB (NLP-a-m) S-BWB (MINLP-a-m)

S-Both (MILP-a) S-Both (NLP-a-m) S-Both (MINLP-a-m)

Figure 7.8: Optimal values of the (round trip) flights per day design variable com-
paring the allocation-only solution (MILP-a), the relaxed allocation-
mission solution (NLP-a-m), and the integer allocation-mission solution
(MINLP-a-m). The results show that the relaxed simultaneous solution is
close to the allocation-only solution and the integer simultaneous solution
is close to the relaxed simultaneous solution.

This observation is significant from a computational standpoint because the branch-

and-bound method converges in a small number of iterations. For this 3-route prob-

lem, all cases converged in 5-20 node evaluations, and initial studies of 5-route prob-

lems show the same results. Furthermore, many of the (NLP-a-m) problems solved

during branch-and-bound converge in one iteration or a small number of iterations

because the initial point is often the solution.

7.5.5 Numerical performance

Figure 7.9 shows the convergence history for the solution of (NLP-a-m) with 3

routes and 2 new aircraft, resulting in 330 design variables in total. The fact that we

can achieve such a high level of convergence provides confidence that the derivatives

are computed accurately and the design variables and constraints are properly scaled.

Table 7.3 shows the times for solving (MINLP-a-m) for the various cases.
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Figure 7.9: Optimization convergence history for a 3-route, 2-new aircraft problem
with 330 design variables. The tight convergence of optimality and feasi-
bility helps verify the accuracy of the derivative computation.

Case Time
[min.]

S-CRM (local) 7.7
S-CRM 20.4
S-BWB (local) 9.0
S-BWB 20.5
S-both (local) 33.3
S-both 40.6

Table 7.3: The execution times for the solution of (MINLP-a-m).
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7.6 Summary

This chapter presented an algorithm for performing simultaneous allocation-mission

optimization. The algorithm was applied to the allocation of 4 existing aircraft and

2 next-generation aircraft to a 3-route network and three conclusions were made.

First, the algorithm found significant profit increases if the airline chooses to

purchase the next-generation aircraft. Compared to a baseline, purchasing 8 advanced

conventional aircraft yielded a 192 % increase in profit, purchasing 8 blended wing

body aircraft yielded a 323 % increase in profit, and purchasing 8 of each yielded a

414 % increase in profit with the optimal allocation.

Second, the allocation-mission optimization produced a higher profit than allocation-

only optimization. Part of the difference is attributed to the fact that block fuel is

computed dynamically during optimization using the allocated number of passengers,

rather than pre-computing block fuel assuming full capacity. However, this error is

minor, and the true benefit of simultaneously considering mission during the allo-

cation problem is that this enables also incorporating design in the simultaneous

optimization in future work.

Third, the algorithm found multiple local optima in the mixed-integer allocation-

mission problem, and they yielded profit numbers that are 2-3 times apart. However,

it was found that the algorithm efficiently finds a good local optimum by using an

allocation-only optimization to find a good starting point. This is advantageous

because linear programming has a low computational cost and it finds the global

optimum. In practice, the solution to the first relaxed allocation-mission optimization

during branch-and-bound deviates a small amount from the linear solution and the

branch-and-bound method, in turn, finds one of the neighboring integer points as

the solution. The significance of this is that many nodes in the branch-and-bound

algorithm converge very quickly during the continuous optimization.

The significance of this work is the demonstration of simultaneous allocation-

mission optimization of commercial aircraft using an approach that naturally extends

to design-mission-allocation optimization. Using the framework provided two key

benefits: its built-in hierarchical nonlinear and linear solvers, and its automatic im-

plementation of the adjoint method. Moreover, the framework enables a modular

approach for integrating the aerodynamic and propulsion surrogates, the flight equi-

librium equations, and the fuel weight equation, all computed across multiple routes

and types of aircraft, but combined into a single airline profit maximization problem.
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CHAPTER 8

Conclusions

8.1 Summary and contributions

In Part I of this thesis, I presented the mathematical foundation, algorithmic de-

sign, and applications for a general computational modeling framework that automat-

ically solves multidisciplinary systems and computes their derivatives using analytic

methods. I formulated the general computational model as a system of algebraic

equations, and applied the inverse function theorem to develop an equation that uni-

fies all methods for computing derivatives. I then described the algorithmic details

of the framework, and presented two engineering applications to demonstrate the

effectiveness of the framework in enabling large-scale optimization.

My contributions are as follows:

• I proposed a unified mathematical formulation of computational models as a

system of equations.

A single vector of variables is defined, concatenating all types of variables—

input, output, state, intermediate, parameter, design, objective, etc. For each

variable, its value is implicitly defined by a corresponding residual function

that takes as arguments all variables in the concatenated vector. When all the

residual functions are combined, the system of equations that results represents

the mathematical formulation of the computational model.

• Based on this mathematical formulation, I developed an equation that unifies all

discrete methods for computing derivatives.

With the right choice of variables and residuals in the mathematical formula-

tion, any of the following methods can be derived from the unified equation—
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monolithic differentiation, algorithmic differentiation, the direct and adjoint

methods, and the chain rule.

• Using the mathematical formulation and the derivatives unification equation, I

developed a compact, minimalistic computational modeling framework that au-

tomatically solves coupled systems and computes their derivatives.

The framework hierarchically decomposes the variables in the problem, and

applies hierarchical solution algorithms. The user defines variables in System

objects that are grouped by other System objects which can in turn be part

of other System objects and so on. The System object contains an API with

only 4 major operations that are sufficient to interface to built-in nonlinear and

linear solvers. The framework-provided System objects automatically perform

parallel data transfer between contained System objects.

• I implemented a large-scale optimization of a nanosallite within the framework,

considering 7 disciplines simultaneously.

Based on data and equations provided by collaborators, I implemented the mod-

els in a modular way to enable gradient-based optimization using the framework.

To the best of my knowledge, this is the first application of MDO to the full

satellite problem considering all major disciplines and all relevant design vari-

ables simultaneously.

• Through the nanosatellite problem, I demonstrated that an engineering design

problem with many discontinuities and discrete data can be solved with gradient-

based optimization.

I developed a multi-dimensional B-spline interpolant to develop smooth models

from discrete data, and I artificially smoothed discontinuities in other models.

A potential concern is that this may add local minima to the problem, but this

was shown not to be the case.

• Through the nanosatellite problem, I demonstrated that it can be effective to

remove coupling from the computational model by treating the coupled variables

as design variables, allowing the optimizer to converge the coupling.

Instead of using predetermined state variables to satisfy the power constraints,

the optimizer had the freedom to optimally distribute the available power among

the attitude-control actuator, communication gain, and scientific instruments,
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while satisfying the battery constraints. This yielded a decoupled computa-

tional model—the components can be executed in sequence with no feedback

to converge.

• I formulated and demonstrated a simultaneous optimization of allocation and

mission for commercial aircraft.

Allocation optimization and mission profile optimization have been performed

separately in the past. However, simultaneous optimization allows the aircraft

design to be varied, enabling aircraft design optimization with airline profit as

the objective function, considering its performance on multiple routes simulta-

neously. Together with collaborators, I formulated and implemented allocation-

mission optimization taking advantage of the framework’s built-in hierarchical

solvers.

8.2 Significance

8.2.1 The unification of derivative computation methods

There are three aspects to the significance of this unification. First, it is a the-

oretical result that can aid in understanding methods. The unification reveals that

methods that seem to be completely unrelated all have a common origin, which can be

shown rigorously. Moreover, the unification provides the insight that the differences

between methods for computing derivatives reflect a different level of decomposition

of the computational model. For instance, including the variable from every line of

code in the algebraic system yields algorithmic differentiation, while including only

the input, output, and state variables yields the analytic methods.

Second, this unification provides the basis for a rigorous definition of the total

derivative in the context of coupled systems. Total derivatives are often recursively

defined in terms of other total derivatives using the chain rule. As part of the unifica-

tion, the total derivative can be formally defined as the Jacobian of partial derivatives

of an inverse function. This definition can help eliminate ambiguities in the usage

of total derivatives, and provide a rigorous interpretation when the meaning is not

clear.

An example is the derivative of output fi with respect to input xj. In a general

context, this is typically written as the partial derivative ∂fi/∂xj, but in the context of

the adjoint method, the intended term is the total derivative dfi/dxj. The monolithic

formulation and the unifying chain rule equation provide the explanation that in the
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general context, the state variables are not included in the algebraic system so the

total and partial derivatives are equal. In contrast, in the context of the adjoint

method, the state variables are included so the total and partial derivatives are not

equal.

Third, the unification provides homogeneity that greatly simplifies the implemen-

tation of the computational modeling framework. The automatic derivative computa-

tion feature is implemented simply by adding a linear system to solve, as opposed to

ad hoc implementations of each type of method. Moreover, the user is not required to

manually specify a method—based on the type of variables and residuals they define,

the linear system naturally reduces to one of the methods for computing derivatives.

8.2.2 The computational modeling framework

The primary benefit of the framework is that it greatly shortens the development

time for large-scale optimization. Its value is in the modularity it provides with

minimal overhead, built-in linear and nonlinear solvers, and automatic derivative

computation.

The mathematical theory, algorithmic design, and implementation of the frame-

work have been adopted by and integrated into NASA’s OpenMDAO framework. This

framework design has been used for several problems including the nanosatellite op-

timization presented in Ch. 6, the aircraft allocation-mission optimization presented

in Ch. 7, wind turbine design optimization [98], and RC aircraft design optimization.

8.3 Recommendations

There are four recommendations for future work pertaining to the framework.

The unified derivatives equations could be extended to higher-order derivatives. The

unified derivatives equation yields derivatives of any quantity, so we could choose

to append first derivatives to the vector of variables and the expressions that define

them to the vector of constraints. The solution of the resulting linear system would

simultaneously yield first and second derivatives, which could in turn be selected as

additional variables to compute third derivatives. This technique could be repeatedly

applied to obtain expressions for derivatives of any order, though it remains to be seen

how efficient such an approach could be and which method—AD, analytic, etc.—could

and should be used. At each of the n steps for nth order derivatives, the forward or

reverse form must be selected, yielding various combinations such as the direct-adjoint

and adjoint-direct methods for second derivatives.
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The framework could be extended to stochastic processes. Given probability dis-

tributions for the input variables and the functions and residuals defining all other

variables, probabilities for the output variables could be computed. The unknown

vector and the residual vector could be treated as random vectors, and the transfor-

mation of random vectors formula could be applied if the determinant of the Jacobian

can be efficiently approximated.

It would be useful to develop an algorithm that automatically defines the hierarchy

tree in the framework. This algorithm could potentially use the dependency graph

of the variables, Jacobian information, and estimates for computation time for each

variable to automatically determine efficient ways to hierarchically group and solve

for the variables.

The unsteady adjoint method could be implemented in the framework. This would

include all time instances of spatially distributed quantities as variables in the frame-

work. Since the framework takes a matrix-free approach, the memory requirements

would be on the same order as an ad hoc implementation of the unsteady adjoint

method. However, the framework would offer the advantage that the linear systems

are automatically assembled and solved.
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Part II

A differentiable parametrization of

aircraft geometries and structures

CHAPTER 9

The need for a new parametrization

In Part II of this thesis, I address the problem of parametrizing aircraft geometries

and structures in a differentiable way, as required for high-fidelity shape optimization.

Chapter 10 presents the methodology for the geometry parametrization, highlighting

how it maintains differentiability unlike existing geometry tools. In Ch. 11, I describe

how the aircraft structure is parametrized in relation to the geometry and present the

structural mesh creation process that uses a novel unstructured quadrilateral mesh

generation algorithm. As a demonstration, Ch. 12 presents aerostructural analysis

results for two unconventional configurations and aerodynamic shape optimization of

the truss-braced wing configuration. Finally, Ch. 13 provides a summary of contri-

butions and recommendations from Part II.

The current chapter provides a motivation and overview for Part II of this thesis.

Section 9.1 begins by discussing the current concerns over the environmental footprint

of commercial aviation, and describes several promising unconventional configurations

that have the potential to address these concerns. Section 9.2 introduces high-fidelity

aerostructural optimization as a design tool that is useful especially for unconven-

tional configurations. An enabling tool for this is a differentiable parametrization

for aircraft geometry and structures, and Sec. 9.3 outlines the requirements for such

a parametrization. Finally, Sec. 9.4 introduces GeoMACH, which is an open-source

aircraft parametrization tool suite developed to meet these requirements.
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Figure 9.1: The fuel burn per passenger per unit distance of new aircraft over time,
as a percentage of the value in 1960. The last 5 decades have seen a 50 %
reduction, but progress has stalled in the last 2 decades. Source: the
International Council on Clean Transportation [2].

9.1 Unconventional aircraft configurations

Over the last five decades, the fuel efficiency of commercial aircraft has approx-

imately doubled through advancements in technology and design [2]. However, as

Fig. 9.1 shows, this trend has stagnated in recent years, as each aircraft becomes

more optimized and further improvements become more technically challenging to

achieve. This concern is compounded by the fact that air traffic growth is expected

to outpace efficiency improvements in the next two decades [99], in the face of rising

fuel costs and growing environmental concerns.

The National Aeronautics and Space Administration (NASA) has identified the

need for new concepts for commercial aircraft that significantly improve efficiency

and environmental compatibility. To this end, NASA has outlined aggressive targets

for the N+3 (2025) generation of aircraft, including a 71 dB noise reduction, an

80 % reduction in NOx emissions, and a 60 % reduction in fuel consumption over

a mission [100]. These reduction targets are relative to a baseline represented by

the Boeing 737-800, which was first flown in 1997. One approach to achieving these

target metrics is through discipline-specific improvements such as increased use of

composites for reduced structural weight, higher bypass ratios (BPR) for increased

propulsive efficiency, and improved high-lift systems for reduced noise and drag. On

the other hand, Figure 9.1 suggests that the 50-year-old tube-and-wing design may
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Figure 9.2: Renderings for NASA’s HWB (left), MIT’s D8 (center), and Boeing’s
TBW (right) concepts. Source: NASA Aeronautics Research Mission
Directorate.

need to be significantly modified to achieve the breakthrough reductions in fuel burn,

emissions, and noise that are required for sustainability.

For subsonic commercial aviation, NASA has funded research in three promising

unconventional aircraft configurations in particular. First, it has supported in-house

research on the hybrid wing body (HWB) concept featuring distributed turboelectric

propulsion. With no fuselage or empennage, the HWB can have lower overall weight

and drag, and its lifting nose can help offset the potential increase in trim drag.

NASA’s HWB concept includes wing tip-mounted turbogenerators that power fans

distributed on the leading edge of the centerbody, and this design feature provides

noise shielding for the primary propulsors, a higher effective BPR, and boundary

layer ingestion (BLI) on the fuselage. Second, NASA has funded the development

of the double-bubble (D8) concept by a team led by the Massachusetts Institute of

Technology (MIT) [101]. The wide fuselage provides extra lift, a trimming moment

on the nose, and embedded engines for noise shielding and BLI. Finally, NASA has

also funded the development of a hybrid-electric truss-braced wing (TBW) concept

by a team led by the Boeing Company [102]. The struts of the TBW enable wings

with increased spans and aspect ratios for improved aerodynamic efficiency, and the

high-wing design provides room below the cabin floor for batteries. Renderings for

each of these configurations are shown in Fig. 9.2.

9.2 High-fidelity aerostructural optimization

The aircraft design process has three stages, which are summarized here based

on the treatment in Raymer [103]. Conceptual design involves the design of the con-

figuration and layout through conceptual sketching, ‘first-order’ sizing, decisions on
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technologies, and simple optimization based on estimates of takeoff weight, L/D, etc.

At preliminary design, the configuration is frozen and specialists perform compart-

mentalized analyses within each discipline. Detail design involves analysis and design

of small-scale components such as ribs and spars as well as fabrication and testing.

When considering unconventional configurations during conceptual design, the

role of computational modeling is increased because the tremendous amount of knowl-

edge and experience accumulated over decades of aircraft manufacturing does not

always apply. Experimental results can be more accurate, but flight testing, wind

tunnel testing, and load testing are expensive and time-consuming, which puts more

emphasis on computational tools. In particular, numerical optimization has the po-

tential to achieve the advances that were not within reach in the past, particularly

by rapidly exploring revolutionary designs in which prior knowledge is limited.

At a fundamental level, aircraft design improvements target either the propul-

sion system by lowering thrust specific fuel consumption or the airframe by reducing

structural weight and aerodynamic drag. On the airframe side, computational fluid

dynamics (CFD) and finite element analysis (FEA) algorithms have advanced to

the point that it is possible to efficiently optimize hundreds of aerodynamic shape

and structural sizing design variables simultaneously to minimize fuel burn [7]. This

problem is referred to as aerostructural optimization because the loads computed via

Euler-based CFD are used to compute the displacements via FEA, which are then

transferred back to CFD, and this coupling is solved each optimization iteration. A

gradient-based optimizer is used with gradients computed using the coupled adjoint

method [18]. This approach has been extended to aerodynamic shape optimization

using the Reynolds-averaged Navier–Stokes equations (RANS) [104] and aerostruc-

tural optimization with composite design variables included [65].

9.3 The requirements for a new parametrization

The objective of Part II of this thesis is to develop the algorithms needed to

enable high-fidelity aerostructural optimization in a conceptual design context in

which multiple aircraft configurations are considered. What is needed is a method for

quickly creating aircraft geometries and structural meshes, and manipulating them

using differentiable mappings.

There are many aircraft design frameworks and geometry engines available open-

source or commercially, including VSP (Vehicle Sketch Pad) [105], MICADO [106],

RAGE (Rapid Geometry Engine) [107], and AVID PAGE (Parametric Aircraft Ge-
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ometry Engine) [108]. These geometry engines share a similar approach. In each

case, aircraft components such as the wing and fuselage are individually created, typ-

ically by lofting curves, and the intersections between components are computed as

a necessary step in achieving a closed surface. Often, the underlying geometry for

each component is represented as parametric surfaces such as non-uniform rational B-

spline (NURBS) surfaces. To produce a discrete surface representation, triangulation

is required at this point as the intersections are parametric curves that delimit surface

regions that are no longer exposed. In all cases, the final tessellation is in general an

unstructured mesh. For high-fidelity aerodynamic or structural analysis, the next step

is to create a CFD mesh or structural mesh, respectively. With VSP for instance,

there are tools for automatic generation of CFD volume [109] and structural [110]

meshes. If a structured multi-block CFD solver is to be used, mesh generation is

necessarily a manual process but is still possible given a geometry represented by

trimmed surfaces.

The aforementioned geometry engines are useful tools that facilitate analyses and

small-scale optimizations at the conceptual design level. However, because they rely

on intersection algorithms to produce closed surfaces, they cannot support large-scale

aerostructural optimization for several reasons. First, the lack of smoothness in the

geometry parametrization can cause noisy gradients and difficulties in converging

the optimization problem. In addition, since the intersections must be recomputed

each optimization iteration, the CFD mesh must be regenerated as mesh movement

algorithms fail in the presence of topological changes in the surface mesh. Mesh

regeneration is costly and is only feasible for unstructured meshes. The same applies

for the structural mesh as well; gradient-based optimization is only feasible if it is

possible to warp the structural mesh instead of regenerating it each optimization

iteration.

The aerodynamic and aerostructural optimization algorithms cited above use free-

form deformation (FFD) blocks which morph a discrete model imported from an

external source [111]. This approach can be used in conjunction with one of the

aforementioned geometry engines. However, the drawback is that it is difficult to

parametrize the entire aircraft including the details of junctions because FFD blocks

are defined separately for each part of the geometry—one for the wing, one for the

fuselage, etc.

In summary, there are three requirements for the parametrization of the aircraft

geometry and structure:

• Support for unconventional configurations and large shape changes
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• A continuously differentiable parametrization

• Usability and automation

9.4 The solution: GeoMACH

The solution that meets the above requirements is GeoMACH: geometry-centric

MDO of aircraft configurations with high fidelity. GeoMACH is an open-source air-

craft parametrization tool suite funded by NASA to facilitate high-fidelity multidis-

ciplinary design optimization. It handles the creation and parametrization of aircraft

geometries and structures, and is designed to be modular so that it can easily integrate

with external CFD solvers, FEA solvers, optimizers, etc.

GeoMACH consists of 3 parts: the B-spline engine (BSE), the parametric ge-

ometry modeler (PGM), and the parametric structural modeler (PSM). GeoMACH

represents geometries as a watertight union of 4-sided B-spline surfaces, which are

handled by BSE. PGM maps the geometric design variables to the B-spline control

points, and PSM is responsible for generating the FEA mesh.

The surface nodes of the CFD volume mesh can be interpreted as a particular

discretization of the B-spline model that gets mapped to the CFD volume mesh using

an external mesh warping algorithm. For the structural model, the internal nodes

of the FEA mesh are defined as a linear combination of points on the geometry—let

us call these the FEA surface projections. These FEA surface projections represent

another discretization of the B-spline model, and PSM computes the linear mapping

from the FEA surface projections to the actual FEA mesh, after which an external

FEA solver is called.

The process of setting up shape optimization for CFD proceeds as follows. First,

the user creates the configuration by specifying the aircraft components (wing, fuse-

lage, etc.) and how they connect to each other. Next, the user exports the initial

geometry as an IGES file to externally create the CFD mesh. The surface nodes

of the CFD mesh are given to BSE to run a projection algorithm and compute the

parametric coordinates of each node on the B-spline surfaces. Using these parametric

coordinates, BSE computes the Jacobian that maps the control points to the CFD

surface mesh.

The process of setting up the structural mesh proceeds as follows. The user defines

the structural members, the coordinates of which are interpolated from points on the

geometry. PSM compute the B-spline parameters of the FEA surface projections;

then, the B-spline parameters are used by BSE to compute the Jacobian that maps
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the B-spline control points to the FEA surface projections. PSM then computes the

Jacobian that maps the FEA surface projections to the actual FEA mesh.
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CHAPTER 10

A flexible geometry parametrization

The design of the parametric geometry modeler is driven by the high-level ob-

jectives mentioned in Sec. 9.3: the versatility to model multiple configurations, a

continuously differentiable parametrization, and usability. This chapter describes

how the geometry is represented in Sec. 10.1, its parametrization in Sec. 10.2, and

the computation of derivatives in Sec. 10.3.

10.1 Geometry representation

To simplify representation of multiple configurations, each is decomposed into

components, and an object-oriented approach is adopted as shown in Fig. 10.1. An

aircraft model is an instance of the Configuration class, which inherits from the base

Configuration class for all models of that particular layout and topology. A Config-

uration instance contains Component objects, which fall under two categories: the

Primitive class and the Interpolant class. Classes derived from Primitive represent

the basic parts of the airframe—lifting surfaces, the fuselage, nacelles, pylons, struts,

etc. Classes derived from Interpolant smoothly blend surfaces from Primitive com-

ponents. A Junction instance forms the intersection between a Wing instance and

another Primitive object, while Tip instances close wing tips and Cone instances

are used for the nose cone and tail cone. Each Component instance computes the

B-spline control points of its surfaces, which are then aggregated to define a global

control point vector that represents a continuous description of the aircraft OML. The

interpolation of Primitive components enables continuous deformation with differen-

tiability always satisfied, and this is one of the main distinguishing features compared

to other geometry engines in the literature [105, 107, 108, 106]. Figure 10.2 shows 6

aircraft configurations created in GeoMACH as a union of 4-sided B-spline surfaces.
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Figure 10.1: UML diagram of the parametric geometry modeler. Diamonds represent
containment and open triangles represent inheritance.

Conventional Hybrid wing body Supersonic

Double bubble Truss-braced wing Joined wing

Figure 10.2: Six aircraft configurations created in GeoMACH.
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Property Shape Description Usage (e.g. Wing)
position (n, 3) Global origin coordinates Sweep, dihedral, span
rotation (n, 3) Local to global frame Twist, rotated sweep
scaling (n, 3) Stretching of local frame Chord, thickness
origin (n, 3) Local origin coordinates
orthogonality (n, 3) Bool; normal to anchor points Winglets, vert. stab.
shape (ni, nj) Shape variables

Figure 10.3: List of properties that parametrize Primitive components. In the shape
column, n signifies the number of span-wise sections for a wing or the
number of stream-wise sections for the fuselage.

10.2 Geometry parametrization

The Primitive components are parametrized in a manner similar to lofted sec-

tions. The B-spline control points are grouped by sections that represent airfoils for

Wing components and cross-sections for Body and Shell components. The shape of

the airfoil or cross-section is locally defined for a given section, and the bulk transla-

tion, rotation, and stretching of the section is controlled separately. The shape for a

Primitive component is uniquely defined by six properties listed in Fig. 10.3.

The properties are, in turn, parametrized by parameters with another B-spline

mapping. This allows for instance the coordinates of the origins of the n sections—

i.e., the position property—to be defined by m × 3 degrees of freedom instead of

n× 3, where m < n. Thus, when n is large, the number of degrees of freedom can be

reduced to a much smaller number while smoothly parametrizing the n sections. This

second layer of parametrization offers two advantages. First, it allows the resolution

of the geometry representation and manipulation to be independent—the number of

span-wise design variables is not fixed to the number of span-wise sections. Second,

this parametrization spans the spectrum from high-level aircraft design parameters to

local shape variables. If a constant chord is desired, only a single chord value needs

to be specified implying a 1st order B-spline, or at the other extreme, n B-spline

chord values can be specified. Alternatively, any number in between 1 and n is also

possible.

After the B-spline control points belonging to Primitive components are computed,

the same is done for the Interpolant components. A wireframe is first computed by

interpolating the two components being attached using 3rd degree Bezier curves. The

interior of the four-sided domains are then interpolated from the boundary curves as

Coons patches. This process is illustrated in Fig. 10.4.
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Figure 10.4: Illustration of the parametrization of a Junction component. Bezier
curves are first generated from the intersecting components, and then
the interior control points are populated using the formula for a Coons
patch.

10.3 Computation of Derivatives

With a fine surface discretization and thousands of shape design variables, the

Jacobian matrix can potentially be very large, necessitating its assembly as a sparse

matrix. Computing derivatives as a sparse matrix is made difficult by the fact that

there is a sequence of operations connecting the input to the output, and each in-

termediate quantity is distributed across aircraft components with coupling among

them.

Two aspects of the adopted approach greatly facilitate the computation of deriva-

tives. First, for each quantity, the parts corresponding to each Component are con-

catenated into a single vector. The parametrization is executed as an explicit se-

quence, as shown in Fig. 10.5, and the nonlinearity in the parametrization is con-

tained in only two of the steps. The remaining steps are sparse matrices; therefore,

no additional implementation of derivatives is necessary because the Jacobian matrix

is the same matrix that defines the mapping itself. Having the sparse Jacobian avail-

able also makes it easy to provide the transpose of the matrix, which is needed for

the adjoint method.

The second solution addresses storing and accessing the large, concatenated vec-

tors. To simplify global indexing into the concatenated vectors, each quantity in

the sequence in Fig. 10.5 allocates a pair of vectors, one containing the data and one

containing the global indices. During initialization, NumPy views are created for sub-

vectors of the concatenated vectors, and then reshaped before given to Component

and Face instances. This allows Primitive components to work with the control-point
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Figure 10.5: Sequence of operations in the parametrization: (1) Design variables (2)
Parameters (3) Properties (4) Primitive control points (5) Primitive and
wireframe control points (6) Full control points vector ordered by com-
ponent and face (7) Unique control points ordered globally.

arrays in their true, 2-D shapes, instead of a flattened part of a global vector, as

shown in Fig 10.6. Furthermore, if the sparse Jacobian is assembled as a coordinate

list, the row and column indices are readily available as in Fig 10.6.
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Figure 10.6: Illustration of data storage and accessing. Vectors A and B (e.g. global
properties vector and the global parameters vector) are both accessed
via reshaped NumPy views onto sub-vectors for each component. Each
vector object contains 1-D data array (in blue) and a 1-D indices array
(in red) of the same size—this facilitates assembly of the sparse Jacobian.
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CHAPTER 11

An automated structural mesh generation

algorithm

This chapter describes how GeoMACH generates and parametrizes structural

meshes. Section 11.1 describes the overall approach, focusing on how all the struc-

tural nodes are parametrized by a linear mapping from the B-spline control points

describing the geometry. Section 11.2 describes the two-step process by which the ini-

tial structural mesh is created based on the user’s description of the desired structural

members. Section 11.3 focuses on the second stage of this two-step process, in which a

novel unstructured mesh generation algorithm is used. Finally, Section 11.4 presents

the results of a mesh convergence study to verify that the overall mesh generation

approach maintains the quality of the mesh as it is refined.

11.1 Linear mapping

The parametric structural modeler (PSM) has the ability to model detailed air-

frames including skins, spars, ribs, stringers, frames, longerons, and the cabin floor,

among other structural members. The geometry of the internal structure is driven

by the OML as the nodal positions are defined in terms of the aircraft OML points,

allowing the entire structural mesh to be computed from the B-spline control points

of the OML as a linear transformation. This is possible because the internal structure

inside wing-type components is embedded in a parametric volume controlled by the

upper and lower surfaces of the wing, and likewise, the internal structure inside a

component such as a fuselage is projected in a cylindrical volume controlled by the

fuselage skin. These internal structures warp, following changes to the fuselage and

wing, and because the mapping is linear, updating the full structural mesh takes on

the order of only tens of milli-seconds.
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Figure 11.1: Preview mesh (left), detailed final FEA mesh (center), and derivative
contours with respect to a root chord parameter (right).

Once the structural layout is computed during initialization, the structural mesh

coordinates are defined by a linear mapping from the B-spline control points of the

geometry description. Therefore, the derivatives of the structural mesh coordinates

can be computed from the known derivatives of the control points with respect to

high-level shape design variables in an efficient, accurate, and simple way since the

Jacobian is a sparse matrix that does not change. Figure 11.1 plots derivative contours

of the geometry of the OML and structure with respect to a notional design variable.

11.2 Two-step process

The parametric structural modeler uses a two-step process that first generates

a coarsened preview mesh (shown in Fig 11.1) for two reasons. First, it provides

a quick preview for the user to provide visual feedback on the airframe they have

defined. This feature addresses the high-level objective of a fast turnaround time, as

the preview mesh takes O(∼ sec) to compute while the full mesh takes O(∼ min)

for a fine discretization. When the user is interactively designing the structure, the

preview mesh is sufficient, so they can make changes and receive feedback in seconds.

Furthermore, estimates for the dimensions of the structural members are computed

from the preview mesh, and this information is later used to help ensure the quad

elements have aspect ratios close to one and angles close to 90◦.
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Figure 11.2: Four configurations with detailed structures.

11.3 Unstructured quadrilateral mesh generation

Automatic computation of a quadrilateral mesh for the entire airframe is challeng-

ing for several reasons. The user is allowed to specify any arrangement of structural

members, and the intersection of spars, ribs, and stringers can create triangular or

other non-four-sided patches on the skin that must be meshed with quad elements.

Moreover, the meshes for all components must be connected together so an additional

span-wise edge created on the wing by a spar must propagate through the wing-body

junction and into the fuselage. Another challenge is that features such as taper make

it more difficult to have high-quality, isotropic elements since a naive implementation

would have the same number of chord-wise elements at the root and at the tip, which

creates an imbalance with high resolution at the tip and low resolution at the root of

the wing. The structural model for three configurations are shown in Fig. 11.2.

Two-dimensional quad meshing algorithms fall under three general categories:

domain-decomposition [112, 113], advancing-front [114], and triangulation-based meth-

ods [115]. The first two—recursively splitting the domain through heuristic algorithms

and marching out from boundaries— are unsuited to the current problem because of

the line constraints imposed by the structural members intersecting the skin. Two

additional ideas that have been successful are topology clean-up [116, 117, 118] and

smoothing [119].

There has been work dealing with line constraints in structural mesh generation

for marine engineering. Jang et al. use stiffener lines to decompose the domain into

regions [120], while Lee et al. use an advancing-front approach on a background

triangulation [121]. Park et al. also takes an advancing-front approach, but with

topological intersection and clean-up operations [122].

The unique aspect of the current problem is that there are multiple non-planar

domains that are connected to each other. The algorithm addresses this by first

computing intersection points and discretizing the boundaries of each domain so that
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(1) Initial domain

(2) Discretization
based on aspect ratio

(3) Constrained
Delaunay triangulation

(4) Triangle merging (5) Element splitting (6) Ellipt. smoothing

Figure 11.3: The six steps of the unstructured quad meshing algorithm.

each B-spline surface can be quad-patched separately, decoupled from the others.

Interior vertices are added, after which a constrained Delaunay triangulation is

computed to ensure the intersection lines are respected. For the constrained Delaunay

triangulation, the implementation in TRIPACK [123] is used. A quad-dominant

mesh is then produced after ranking all potential merges of adjacent triangles, then

a fully quad mesh is produced by splitting each quad and triangle. The final step

is to improve mesh quality using elliptical smoothing. Finally, the mesh quality is

improved using Laplacian smoothing with a second-order finite-element discretization.

This procedure is illustrated in Fig. 11.3.

Elliptical smoothing There are several types of general mesh smoothing algo-

rithms. One type solves optimization problems to maximize element quality [124]

quantified using some combination of aspect ratios, angles, and areas, but nonlinear

optimization is not always robust and can be inefficient. Another type formulates

elliptical partial differential equations (PDEs) with derivatives taken with respect to

the physical coordinates of the elements [125], but the resulting nonlinearity causes

similar drawbacks to the optimization-based approach. Laplacian smoothing [126]
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Figure 11.4: The global (left) and local (right) coordinate frames for the elliptical
smoothing.

computes an explicit formula and avoids solving a system of equations, but it can at

times make the mesh worse.

Here, Laplace’s equation is formulated in a manner such that the resulting system

of equations is linear, but the method is more robust than traditional Laplacian

smoothing. The smoothing step computes the x and y coordinates of the nodes in

the quad mesh by solving Laplace’s equation, in the form,

∂2φ

∂ξ2
+
∂2φ

∂η2
= 0, (11.1)

where φ represents either x or y, and ξ and η are the local coordinates in the element

frame, as shown in Fig. 11.4.

Laplace’s equation is solved using a finite element discretization and the Galerkin

method of weighted residuals. Assuming n is the order, the scalar field for x or y

within an element is given by

φ(ξ, η) =
n∑
k=1

n∑
l=1

ukl · fk(ξ)fl(η), (11.2)

where ukl is a nodal value and fk or fl represents a basis function. Since the elements

are bivariate, it is necessary to refine the mesh if elements of higher than 2nd order

are desired.

The Galerkin method of weighted residuals is applied to Laplace’s equation (11.1)

and the definition of φ (11.2) is inserted, yielding∫ ∫
A

[
∂2φ

∂ξ2
+
∂2φ

∂η2

]
fi(ξ)fj(η)dA = 0 (11.3)
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Prior to inserting the approximate form for φ, it is beneficial to apply a step similar

to integration by parts to reduce the order of the integrand. Using the product rule,

the two terms in the integrand can be written as

fi(ξ)fj(η)
∂2φ

∂ξ2
=

∂

∂ξ

(
fi(ξ)fj(η)

∂φ

∂ξ

)
− ∂

∂ξ
(fi(ξ)fj(η))

∂φ

∂ξ
(11.4)

fi(ξ)fj(η)
∂2φ

∂η2
=

∂

∂η

(
fi(ξ)fj(η)

∂φ

∂η

)
− ∂

∂η
(fi(ξ)fj(η))

∂φ

∂η
, (11.5)

and inserting the expressions in Eqs. (11.4) and (11.5) into Eq. (11.3) yields∫ ∫
A

[
∂

∂ξ

(
fi(ξ)fj(η)

∂φ

∂ξ

)
+

∂

∂η

(
fi(ξ)fj(η)

∂φ

∂η

)]
dA−

∫ ∫
A

∂

∂ξ
(fi(ξ)fj(η))

∂φ

∂ξ
dA−

∫ ∫
A

∂

∂η
(fi(ξ)fj(η))

∂φ

∂η
dA = 0. (11.6)

In the first term of Eq. (11.6), the integrand is the divergence of a vector field and

the integration occurs over a compact subset, so Gauss’s theorem can be applied to

establish the equality,

∫ ∫
A

∇ ·

fi(ξ)fj(η)
∂φ

∂ξ

fi(ξ)fj(η)
∂φ

∂η

 dA =

∮
∂A

fi(ξ)fj(η)
∂φ

∂ξ

fi(ξ)fj(η)
∂φ

∂η

 · n̂ ds, (11.7)

but fi(ξ) and fj(η) are zero on ∂A for appropriately chosen shape functions, so the

entire line integral on the right-hand side is zero.

With the divergence term equal to zero, inserting the expression for φ into Eq. (11.6)

yields

∫ ∫
∂

∂ξ
(fi(ξ)fj(η))

∂

∂ξ

(
n∑
k=1

n∑
l=1

uklfk(ξ)fl(η)

)
dξdη+ (11.8)

∫ ∫
∂

∂η
(fi(ξ)fj(η))

∂

∂η

(
n∑
k=1

n∑
l=1

uklfk(ξ)fl(η)

)
dξdη = 0 (11.9)

Rearranging, the final form of the discretized equations is

n∑
k=1

n∑
l=1

[∫
f ′i(ξ)f

′
k(ξ)dξ

∫
fj(η)fl(η)dη +

∫
fi(ξ)fk(ξ)dξ

∫
f ′j(η)f ′l (η)dη

]
ukl = 0.

(11.10)
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Introducing the matrices F and F ′ to simplify, the previous equation becomes

n∑
k=1

n∑
l=1

[
F ′ikFjl + FikF

′
jl

]
ukl = 0 (11.11)

or
n∑
k=1

n∑
l=1

Kij,kl ukl = 0, (11.12)

where Kij,kl represents the entry in the global finite element matrix located at the

row corresponding to node (i, j) and the column corresponding to node (k, l) in the

current element. Similarly, ukl is the value of x or y for the node in the global ordering

indexed as (i, j) in the current element.

Though the true basis functions vanish at their boundaries, it is valid to derive

element matrices by considering only the parts of basis functions within a given el-

ement. A linear equation corresponding to an interior node includes contributions

from all the adjacent elements, which together partition the true basis function asso-

ciated with this node. A linear equation corresponding to a boundary or constrained

interior node does not influence the finite element solution.

The basis functions and the matrices for second-order elements are

f1(t) = 1− t
f2(t) = t

: F =
1

6

[
2 1

1 2

]
and F ′ =

[
1 −1

−1 1

]
(11.13)

and those for third order-elements are

f1(t) = 2t2 − 3t+ 1

f2(t) = 4t− t42

f3(t) = 2t2 − t
: F =

1

30

 4 2 −1

2 16 2

−1 2 4

 and F ′ =
1

3

 7 −8 1

−8 16 −8

1 −8 7

 .
(11.14)

With the local element matrices derived, the global finite element equations can

be assembled and solved in the form presented in Fig. 11.5. All unique nodes are

concatenated into a single vector, and the local element matrices contribute to a

global finite element matrix, K. The linear system is solved twice, once for all the

x values and once for all the y values. The rectangular matrix P in Fig. 11.5 is

a permutation matrix that has one entry per row with a value of 1 in a column

corresponding to a constrained node. Therefore, P is a linear transformation that

selects from the global vector of nodes only those that are on the boundary or are

in the interior, but are fixed. In Fig. 11.5, the ∗ components of the solution vectors

121



K

P

PT

0

x

∗

y

∗

= 0

x̄

0

ȳ

Figure 11.5: Global finite element equations for the elliptical smoothing. The K ma-
trix represents the global finite element matrix, and P is a permutation
matrix with a single entry of value 1 in each row, in the columns of
nodes that are constrained. The vectors x, y represent the solution and
x̄, ȳ contain the coordinates to which a node is constrained.

are ignored, and the x̄ and ȳ sub-vectors represent the coordinates of the constrained

nodes.

11.4 Mesh convergence study

This section presents a mesh convergence study to verify that the unstructured

quad meshing algorithm maintains element quality as the mesh is refined. The test

case is the wing from the common research model (CRM) [94], which is a reference

geometry developed for benchmarking. The CRM is based on the Boeing 777 wing,

featuring a straight leading edge with the Yehudi break located at 37 % of the span.

The structure includes two main spars, stringers, ribs, and a secondary spar. The

aft spar, the secondary spar, and one of the ribs form a triangle, testing the algorithm’s

ability to handle such cases. Even without the triangle, this case is designed to

produce irregular nodes because of the wing taper—there will be far more elements

in the chordwise direction at the root than at the tip of the wing.

A 1 kN point load is applied at the upper, outboard-most tip of the front spar,

and the vertical deflection is measured at the same location. An aluminum struc-

ture is used with a constant thickness of 5 mm, and linear kinematics are assumed.

Figure 11.6 shows six meshes of varying resolutions and the contours of vertical de-

flection, and Fig. 11.7 plots the results of the mesh convergence study. In Fig. 11.7,

the displacement appears to converge monotonically to about 2.1 mm. This result

verifies that the unstructured mesh generation algorithm at least maintains element

quality as the mesh is refined.
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Figure 11.6: The meshes produced by the unstructured quad meshing algorithm and
contours of vertical displacement.
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Figure 11.7: Results of the mesh convergence study. The deflection is measured at
the upper, outboard-most tip of the front spar, and the loading is a 1 kN
point load at the same node.
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CHAPTER 12

Aerostructural analysis and aerodynamic shape

optimization results

As a demonstration, GeoMACH is used to create geometries and structural meshes

for the truss-braced wing and double bubble configurations for analysis and optimiza-

tion. This chapter describes the software for aerostructural analysis and optimization

in Sec. 12.1, presents aerostructural analysis results in Sec. 12.2, and presents aero-

dynamic shape optimization results in Sec. 12.3.

12.1 The MACH tool suite

The aerostructural analysis and aerodynamic optimization results shown in this

chapter use the MACH tool suite, which stands for MDO of aircraft configurations

with high fidelity. MACH consists of a CFD mesh warping algorithm, a flow solver,

a structural solver, and a coupled aerostructural solver.

12.1.1 Mesh warping: pyWarp

The mesh warping tool, pyWarp, warps a 3-D structured multi-block CFD mesh

based on geometry changes [111]. To do this, it solves the equations of elasticity

with displacement constraints on a coarsened version of the multi-block mesh, and

regenerates the new mesh with the original resolution using transfinite interpolation.

It benefits from the robustness of the elasticity-based mesh warping approach as well

as the efficiency provided by coarsening using algebraic interpolation. The elasticity

equations are solved using the PETSc [46] implementation of SuperLU DIST [127], a

parallel direct linear solver.
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12.1.2 Flow solver: SUmb

The Stanford University multi-block (SUmb) flow solver is used for aerodynamics.

SUmb solves the Euler or Reynolds-averaged Navier–Stokes (RANS) equations using

a finite volume discretization. SUmb uses multigrid during startup and during the

4th order Runge-Kutta time integration stage, after which it switches to a Newton-

Krylov solver for faster convergence. The Krylov solver used is the flexible general-

ized minimal residual (fGMRES) method, with nested preconditioning involving the

Richardson iteration, the additive Schwarz method, incomplete LU factorization, and

reverse Cuthill–Mckee (RCM) reordering. The Jacobian is assembled using algorith-

mic differentiation. More details on the numerical methods can be found in Kenway

et al. [19].

12.1.3 Structural solver: TACS

The toolkit for the analysis of composite structures (TACS) [128] is used for struc-

tural analysis. The quadrilateral shell elements in TACS use a mixed-interpolation of

tensorial components (MITC) formulation and first-order shear deformation theory

(FSDT). TACS computes a parallel direct factorization to solve the linear systems

that arise using the Schur complement method for domain decomposition and LU

decomposition locally.

12.1.4 Aerostructural solver: pyAeroStruct

Coupling the aerodynamic and structural solvers together is handled by pyAerostruct.

It solves the coupled equations simultaneously using a Newton–Krylov solver with lin-

ear block Jacobi preconditioning and a nonlinear block Gauss–Seidel startup phase.

Each linear block in the preconditioner reuses that from the respective solver. Rigid

links are used to transfer loads from the CFD mesh to the FEA mesh and displace-

ments in the reverse direction [129].

12.2 Aerostructural analysis

The geometries and structural meshes generated for the truss-braced wing (TBW)

and double bubble (D8) configurations are used to perform aerostructural analysis.

SUmb is used to solve the Euler equations at a Mach number of 0.74 in both cases.

On the structures side, TACS is used with linear kinematics and a linear-elastic,

aluminum structure.
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Figure 12.1: Aerostructural analysis results for the TBW (left) and D8 (right) con-
figurations.

Figure 12.2: The TBW structure shown in detail.

The aerostructural analysis results are shown in Fig. 12.1. For the TBW, the

CFD mesh has 1.42 million cells while the FEA mesh has 44,000 nodes. For the

D8, the CFD mesh 3 million cells and the FEA mesh has 50,000 nodes. The struc-

tures for both configurations include two main spars, ribs, and stringers for the main

wing, horizontal, and vertical stabilizers. Other structural features include center-

body wingboxes where appropriate, and longerons and frames for the fuselages. A

detailed viewed of the TBW structure is shown in Fig. 12.2.
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Variable/function Description Quantity
minimize cD Drag coefficient

with respect to α Angle of attack 1
0 ≤ xf ≤ 1 Fuselage shape variables 5× 5
0 ≤ xw,U ≤ 1 Wing upper surf. shape variables 10× 10
0 ≤ xw,L ≤ 1 Wing lower surf. shape variables 10× 10
0 ≤ xs,U ≤ 1 Strut upper surf. shape variables 8× 8
0 ≤ xs,L ≤ 1 Strut lower surf. shape variables 8× 8
0 ≤ xv,U ≤ 1 Vert. strut upper surf. shape vars. 5× 5
0 ≤ xv,L ≤ 1 Vert. strut lower surf. shape vars. 5× 5
0 ≤ xt,U ≤ 1 Tail upper surf. shape variables 8× 8
0 ≤ xt,L ≤ 1 Tail lower surf. shape variables 8× 8

Total 532

subject to cL − 0.5 = 0 Lift coefficient constraint 1
0.25t0w − tw ≤ 0 Wing thickness constraints 20× 20
0.25t0s − ts ≤ 0 Strut thickness constraints 15× 15
0.25t0v − tv ≤ 0 Vert. strut thickness constraints 10× 10
0.25t0t − tt ≤ 0 Tail thickness constraints 15× 15

Total 951

Table 12.1: The optimization problem.

12.3 Aerodynamic shape optimization

As a demonstration of high-fidelity optimization, aerodynamic shape optimization

is applied to the TBW using GeoMACH and the MACH tool suite. Lift-constrained

drag minimization is performed at a Mach number of 0.74 and cL of 0.5. The op-

timization problem is given in Tab. 12.1. Angle of attack is a design variable used

to satisfy the lift coefficient constraint, and 531 B-spline shape variables are used to

parametrize the upper and lower surfaces of the wing, main strut, vertical strut, and

horizontal stabilizer, as well as a portion of the side of the fuselage where the wing

and strut attach. Nonlinear thickness constraints are included, although they are not

necessary in the design problem because convergence issues forced the addition of

variable bounds that only permit the control points to thicken the airfoil.

The optimization results are shown in Fig. 12.3. The initial design has a shock

covering almost the entirety of the area bounded by the wing, strut, and fuselage,

yielding an initial drag of 810 counts. Through shape optimization, the shock is

nearly eliminated and this figure is reduced to 319 counts. The initial design also has

a higher lift coefficient than required; however, even at the prescribed lift coefficient,
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Figure 12.3: Initial (left) and optimized (right) shape and CFD solution of the truss-
braced wing configuration. The pressure contours represent a slice near
the root of the wing.

the initial design has a drag of roughly 750 counts. It can be seen from Fig. 12.3 that

one of the biggest changes is the flattening of the lower surface of the main wing,

most likely to avoid the effects of a diverging nozzle. This results in a relatively thick

airfoil, but this result is interpreted as a product of the lack of freedom to thin the

wing near the quarter-chord mark.

There are two aspects to the significance of these results. The first is the value

of the parametric geometry modeler for enabling high-fidelity shape optimization of

an unconventional configuration. To eliminate the shock, the optimizer is given fine

control of the shape of the fuselage, wing, and struts, which are components that

intersect with each other and must be smoothly blended with each other. Moreover,

an optimization problem was solved with the intersection point of the strut and wing
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allowed to move span-wise, but this optimization problem proved to be insensitive to

this design variable. This shows that it is possible to perform high-fidelity optimiza-

tion with high-level design variables that make large geometry changes. The second

aspect is the fast turnaround time for computational design demonstrated in this

problem. After the initial time investment to create the grid, setting up new design

variables and variants of the optimization problem takes only on the order of minutes.

Furthermore, on 128 processors, an optimization problem of this size requires only a

few hours to achieve the majority of convergence.

Aerodynamic shape optimization has also been run for the TBW using the Reynolds-

averaged Navier–Stokes (RANS) equations. This problem is also a lift-constrained

drag minimization, but at a Mach number of 0.73 and lift coefficient of 0.775. The

fuselage is removed in this geometry to focus on the junction; however, as before,

there are shape variables on the wing, main strut, and vertical strut.

The results are shown in Fig. 12.4. The total drag is reduced from 458 to 363

counts. As with the Euler case, the shape variables are only permitted to thicken the

airfoils, and Fig. 12.4 suggests that they try to eliminate the diverging shape of the

flow region between the wing and the main strut, as before.
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Figure 12.4: RANS-based aerodynamic shape optimization of the TBW at M=0.73.
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CHAPTER 13

Conclusions

13.1 Summary and contributions

In Part II of this thesis, I presented a method for parametrizing the aircraft OML

and structure in a differentiable way. This method takes a geometry-centric approach

to high-fidelity aircraft design optimization where a central B-spline-based geome-

try model parametrically drives the CFD surface mesh and the FEA mesh of the

airframe structure. The changes to the CFD surface mesh are subsequently propa-

gated to the full volume mesh with an external mesh warping tool. After describing

this approach, I presented a differentiable geometry parametrization that efficiently

computes the Jacobian of derivatives in a sparse format. Next, I presented an un-

structured quadrilateral mesh generation algorithm for automatically creating meshes

of the airframe structure. These components constitute GeoMACH, an open-source

aircraft parametrization tool suite funded by NASA. I presented aerostructural analy-

sis and truss-braced wing aerodynamic shape optimization results as a demonstration

of the developed tools.

My contributions are as follows:

• I developed GeoMACH, an open-source aircraft parametrization tool suite that

parametrizes the CFD surface mesh and the FEA mesh in terms of user-defined

geometric parameters.

GeoMACH represents the geometry using B-splines, and it linearly maps the

B-spline control points defining the geometry to the CFD surface mesh and the

structural FEA mesh. The B-spline control points are in turn computed from

user-selected geometric parameters, which can be high-level (e.g., wing span or

fuselage length) or low-level (e.g., the control point positions defining the airfoil

shapes). GeoMACH automatically computes the sparse Jacobians of derivatives

132



of the CFD surface mesh and the FEA mesh with respect to the user-selected

geometric parameters, which is precisely what is needed for aerodynamic shape

optimization.

• I developed a differentiable parametrization of aircraft geometry, which is en-

abled by using Bezier and bilinear interpolation to define the junctions between

aircraft components.

This interpolation method is what provides differentiability while existing ge-

ometry modeling tools are discontinuous or non-smooth because they apply

intersection, and in some cases, triangulation algorithms.

• I developed an unstructured mesh generation algorithm that can automatically

generate meshes for the aircraft structure.

This algorithm is applied on each structural member and B-spline surface on

the OML to ensure the skins of different aircraft components are connected to

each other as well as to internal structural members. It applies constrained De-

launay triangulation on a background Cartesian grid of points, merges triangles

using heuristics, and then applies elliptical smoothing to generate high-quality

elements. I demonstrated that this algorithm can be used to quickly and easily

generate detailed structural meshes for unconventional configurations, including

ribs, spars, stringers, fuselage frames, etc. I also performed a mesh convergence

study to verify that the overall mesh generation approach maintains the quality

of the mesh as it is refined.

• I demonstrated using GeoMACH that, for the truss-braced wing, it is possible

to use aerodynamic shape optimization to eliminate the shock caused by the

presence of the strut to reduce drag from 750 to 319 counts using Euler-based

lift-constrained drag minimization.

The optimization includes shape design variables placed on the wing, struts, and

fuselage. The inclusion of shape variables on intersecting components is possible

thanks to GeoMACH’s smooth interpolation of junctions between components

such as the wing-strut junction.
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13.2 Significance

GeoMACH enables high-fidelity aerostructural optimization by providing a dif-

ferentiable parametrization of aircraft geometries and structures. Moreover, it is an

open-source tool that is modular, so it lowers the entry barrier for large-scale aircraft

design optimization involving CFD, FEA, or both.

The significance of the truss-braced wing (TBW) optimization results is two-fold.

First, it demonstrates that GeoMACH enables aerodynamic shape optimization to

take a poor initial design for an unconventional configuration and produce a rea-

sonable design in a short amount of time: O(1 hr) with Euler and O(10 hr) with

RANS. Second, the TBW result demonstrates that it is possible to perform shape

optimization of an entire configuration simultaneously because GeoMACH’s junction

interpolations successively handled the inclusion of shape variables from intersecting

components. Moreover, since GeoMACH parametrizes the B-spline control points

for the entire geometry, it is possible to perform shape optimization of a junction

to minimize interference and parasitic drag by fine-tuning the shape. This is espe-

cially relevant for a configuration like the truss-braced wing because of the wing-strut

junction.

The significance of GeoMACH’s structural mesh generation algorithm consists

of three points. First, it is an algorithm that can be easily reproduced in other

applications because it is much simpler than advancing-front methods and domain-

decomposition methods. Second, it enables the rapid and automated creation of

detailed structural meshes, and it does not require post-processing to improve mesh

topology and mesh quality. Thanks to the automation, the structural mesh gen-

eration algorithm enables parametric studies that vary, for instance, the layout or

the number of ribs and spars of a wing. Finally, the structural mesh is generated

as a sparse Jacobian mapping the B-spline control points describing the geometry

to the structural nodes, so it is parametrically driven by the aircraft shape. Thus,

GeoMACH enables structural and aerostructural optimization. In contrast, many

existing methods for generating structural meshes require regeneration whenever the

geometry changes, which is inefficient and produces a non-differentiable map.

With respect to unconventional configurations, the significance of GeoMACH as a

whole is that it can be used to evaluate and compare configurations. For instance, it

can be used to rapidly create structural meshes for multiple unconventional configu-

rations and perform structural sizing optimizations to quantify the structural benefits

of configurations like the joined wing and the truss-braced wing that rely on improve-
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ments in structural efficiency.

13.3 Recommendations for future work

Much of the significance of GeoMACH is in the types of studies it enables, so

many recommendations for future work are stated in the previous section. This

section discusses four more avenues for future work.

The first is the addition of micromechanical models for composites, enabling the

addition of material design variables in the optimization problem. Since GeoMACH

creates the structural mesh, it is aware of the indices of the quad elements belong

to each structural member—therefore, it would be possible to define a set of com-

posite design variables for each member. This would involve the implementation of

micromechanical models to first map the composite design variables to the constitu-

tive matrices and then map the constitutive matrices to the shell stiffness matrices

as required by first-order shear deformation theory (FSDT).

The second recommendation for future work is the automatic generation of grids

for overset CFD. Since GeoMACH divides the geometry into components, each type

of component could have an associated grid that algebraically warps based on the

geometry parameters for the component. Assuming the desired flow solver is an

overset CFD solver, this would eliminate the need to create the CFD grid and warp

it externally.

The third recommendation is to use the B-spline representation of the geometry

as a tool for performing load and displacement transfer across the CFD and FEA

meshes. Since GeoMACH computes Jacobians mapping the B-spline control points

to the CFD and FEA surface meshes, GeoMACH could be used to interpolate the

loads from the CFD surface mesh to the FEA surface mesh and the displacements

from the FEA surface mesh to the CFD surface mesh. There would be some error

since shocks would smoothed and the transfer scheme may not conserve virtual work,

but this approach is worth investigating because of the modularity and simplicity.

The final recommendation is adding the overset grid representation or a gen-

eral mesh warping algorithm to GeoMACH, and implementing all the components of

GeoMACH in the computational modeling framework described in Part I of this the-

sis. The result would be a fully modular aircraft design tool suite in which arbitrary

CFD or FEA solvers can be attached.
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