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ABSTRACT

The thesis uses experiments and simulations to examine the interactions of DNA molecules

with proteins and protein-like nanoparticles, with applications to protein search and tar-

geting of DNA sequences, and to DNA complexation in chromatin and for gene delivery.

Two topics are covered in depth. In the first topic, kinetic Monte Carlo simulations, one di-

mensional reaction-diffusion equations, and analytical methods are used to determine rate

at which DNA-binding proteins (e.g. transcription factors) can find the target sequences

in long DNA molecules through a combination of sequence-dependent 1D diffusion and

sequence-independent 3D diffusion. We quantify how thousands of “decoy sites” which

have similar base pair sequences as target sites slow down the protein targeting process

dramatically. We find the conditions under which the protein targeting process can be

sped-up, including the effect of a “two-state” protein model, allowing for both rapid diffu-

sion and accurate searching.

In the second topic, we investigate how the surface charge density of a poly(amido amine)

(or PAMAM) dendrimer affects its ability to condense on DNA, using light scattering, cir-

cular dichroism, and single molecule imaging of dendrimer-DNA complexes combed onto

surfaces and tethered to those surfaces under flow. This study is important not only for

understanding how to condense dsDNA to facilitate its penetration into cell membranes for

xvii



non-viral gene therapy, but also because PAMAM dendrimers provide an ideal biomimic of

DNA-binding proteins (e.g. histones). To describe DNA compaction by dendrimers, we de-

velop a mesoscale model combining a coarse-grained DNA model of de Pablo and cowork-

ers which resolves the DNA double helix structure with a coarse-grained dendrimer model

of Muthukumar and coworkers. The predictions of our new model on effects of dendrimer

generation, dendrimer surface charge density, and salt concentration on dendrimer-DNA

complexes formation are consistent with both experiments and potential of mean force

results from all-atom molecular dynamics simulations, but give much more detail regard-

ing the structure of the complex. The model predicts that DNA wraps a fully charged G5

(generation 5) or G6 dendrimer at low salt concentration (10 mM) similarly to a histone

octamer, and for the G5 dendrimer, DNA super helices with both handednesses occur. At

salt concentrations above 50 mM, or when a high fraction of dendrimer surface charges

are neutralized by acetylation, DNA adheres, but does not compactly wrap, the dendrimer,

in agreement with experimental findings. We are also able to simulate pairs of dendrimers

binding to the same DNA strand. Thus, this mesoscale simulation could be a good starting

point of understanding chromatin formation. Moreover, this model can be extended to

other cationic macroion-DNA systems which are also of great interest, such as, polylysine,

micelles, and colloidal particles.

xviii



CHAPTER I

Introduction

1.1 DNA-protein interaction

Deoxyribonucleic acid (DNA) - protein interaction plays a vital role in many biological

reactions, such as DNA packaging, replication, genetic recombination, DNA repair, and

transcription [1]. Although the hereditary information is mainly stored in DNA, to survive

in an ever-changing environment living cell needs to know how and when to transfer the

hereditary information from DNA to RNA and finally to protein. In other words, the real-

ization of central dogma [2] relies on DNA-protein interaction.

Generally, the DNA-protein interaction can be classified into two categories: non-specific

interaction and specific interaction. In eukaryotic cells, the double stranded DNAs are

packaged into chromatin by histones [3] which can bind to DNA segments with various

base pair sequences. Such base pair sequence-independent interaction is one example

of non-specific interaction. For specific interactions, e.g. transcription initiation, DNA-

binding protein (transcription factor) can find a targeting DNA segment with a specific

sequence and initiate transcription. This targeting segment, also known as promoter, usu-

ally contains a TATA box (5’-TATAAA-3’) for transcription factors to bind [4].
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Since manipulation of DNA-protein interaction can regulate the expression of genes, var-

ious methods have been developed to study the DNA-protein interaction. For example,

electrophoretic mobility shift assays is used to determine the potential of a DNA sequence

to bind a DNA-binding protein [5]. This technique is based on the observation of elec-

trophoretic mobility of protein bound to DNA fragments in no denaturing polyacrylamide

or agarose gels, as protein-DNA binding reduces its electrophoretic mobility. Some other

techniques like DNase I footprinting [6], scanning probe microscope (SPM) [7], surface

plasmon resonance technology (SPR) [8] are also widely used for determining the binding

affinity and kinetics of protein-DNA interaction.

To study and image the DNA-protein interaction in real time, a series of novel techniques

called single-molecule experiments have been developed. Some thorough reviews on single-

molecule experiments were published recently [9, 10]. Many single-molecule imaging

techniques use fluorescence microscopy to break the diffraction-limited resolution bar-

rier of conventional optical microscope. The novel super-resolution microscopies, such as

stochastic optical reconstruction microscopy (STORM) [11], photoactivated localization

microscopy (PALM or FPALM) [12], even have nanometer resolution. Thus, those super-

resolution microscopy can be extremely useful to resolve the protein and other biological

macromolecules dynamics in living cells. In 2014, Eric Betzig, Stefan W. Hell, and William

E. Moerner received Nobel Prize in Chemistry for the development of super-resolved fluo-

rescence microscopy.

Optical tweezers [13] and magnetic tweezers [14] are usually used to hold DNA or protein

for fluorescence microscope imaging in vitro. Simple techniques like DNA combing [15]

and DNA curtains [16] were also used to immobilize DNA molecules on surface for fur-

ther experiments. As shown in Fig.1.1.1, fluorescent λ-DNA molecules which were spin-
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coated onto a polystyrene coated surface were imaged by epi-fluorescence microscope, as

the water-air surface tension was able to stretch DNA on polystyrene surface during spin-

coating DNA solution.

For protein labeling, protein can either be conjugated to quantum dots [17] or fluores-

Figure 1.1.1: epi-fluorescence microscopy image of spin-coated fluorescent λ-DNA on
polystyrene coated glass surface

cent antibodies [18]. Images of CdTe quantum dots taken by conventional fluorescence

microscope and total internal reflection fluorescence microscope (TIRFM) are shown in

Fig.1.2.1. Although fluorescence microscope imaging has many advantages in study-

ing protein-DNA interaction in real time, to resolve the finer structures of DNA-protein

complexes, especially chromatin fibers, cryogenic electron microscopy (cryo-EM) must be

used [19].

In addition, extensive theoretical studies on DNA-protein interaction, especially the pro-

tein targeting process, have been carried out recently. How a protein finds its target on

DNA will be discussed in details in Chapter 2.
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1.2 DNA-macroion interaction

Deoxyribonucleic acid (DNA) is a highly charged semiflexible polyelectrolyte. Therefore,

it not only can bind positively charged protein (e.g. histone) but also can bind nega-

tively charged polyeletrolyte [20], dendritic polymer or dendrimer [21], positively charged

nanoparticles (e.g., positively charged CdTe quantum dots, see Fig.1.2.1), and microparti-

cles (see Appendix C).

Since polycation is a promising DNA delivery vector for gene therapy, many experiments

Figure 1.2.1: epi-fluorescence microscopy image of positively charged CdTe nanoparticles
(left); total internal reflection fluorescence microscopy image of negatively charged CdTe
nanoparticle (right)

were performed to study DNA-macroion (specifically, polycation) interaction. PAMAM den-

drimers which can condense dsDNA and penetrate cell membranes have a great potential
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for gene delivery. How the size and surface charge density of PAMAM dendrimer affect its

capability of condensing DNA double strands will be investigated by both experiments and

simulation which will be discussed in details in chapter 3 and chapter 4.

And as will be discussed in chapter 2, many DNA-binding protein can slide along DNA

molecule. So, using polycations like quantum dots or PAMAM dendrimers as a mimic of

DNA-binding protein diffusing on DNA is an interesting topic. Relevant experimental re-

sults can be found in Appendix B.

Moreover, polyeletrolytes adsorption onto curved surface is an very interesting problem

in physics. Theoretically, it can be solved by Poisson-Boltzmann equation (PB) (Eq.1.2.1)

[22–24].

∇2ψ = − ρe
εε0

(1.2.1)

where ψ is electrostatic potential, ρe is the local electric charge density in C/m3, ε is the

dielectric constant of the solvent, and ε0 is the permittivity of free space.

However, the continuity assumption for PB equation might fail for this DNA-polycation

interaction, as DNA and polycation are not much larger in size than water molecules or

salt ions. Therefore, modeling technique with higher resolution like molecular dynamics

simulation might be necessary for tackling this problem.

1.3 Simulations of DNA-protein/macroion interactions

Due to the accumulation of resolved protein and DNA structures by NMR and XRD, many

force field which can be used for all-atom molecular dynamics (AAMD) simulations of

nucleic acid-protein interaction are available [25]. However, AAMD simulation of DNA-
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protein/macroion interaction is extremely computational expensive. Since DNA, a stiff

long polymer chain, is much more difficult to be equilibrated by MD simulation compared

to globular protein. So, developing coarse-grained model for DNA-protein interaction be-

comes very crucial. One successful coarse-grained model which we adopted to simulate

DNA-PAMAM dendrimer interaction is 3SPN.1 model, a newer version 3SPN.2 force field

is published recently [26, 27]. Using this model, Freeman et al. [28] demonstrated that

histone octamers have different binding affinity to different DNA sequences, as the DNA

shape can vary slightly according to the local base pair sequences. This 3SPN.2 force field

can be used to simulate both A-form DNA, classical B-form DNA, and DNA with explicit

salt ions (as shown in Fig.1.3.1). Detailed information about this model can be found in

chapter 4.

Another recent research [29] provided a new method to determine the partial charge on

Figure 1.3.1: 3SPN.2 model of different DNA molecules
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the charged amino acid residues of a protein molecule, and this method was used to study

the interaction between a short nucleic acid (3SPN.2 force field) and various coarse-graind

proteins.

Zhang et al. [30] have developed a discrete surface charge optimization (DiSCO) algo-

Figure 1.3.2: Native histone octamer (left); electrostatic potential of native histone oc-
tamer (right)

rithm which can uses hundreds of point charges to represent a macromolecular surface

of almost the same electrostatic potential distribution on the surface. For example, as

shown in Fig.1.3.2 & 1.3.3, the electrostatic potential of native histone [31] and T7 RNA

polymerase [32] can be computed using PDB2PQR [33] and APBS [34]. To represent the

surface electrostatic potential of these biomacromolecules, about 106 grid points are used.

Using the DiSCO method, about 400 point charges are sufficient to model these charged

macromolecules, where the variance of electrostatic potential field is less than 5%.
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Figure 1.3.3: T7 RNA polymerase-promoter complex (left); electrostatic potential of T7
RNA polymerase-promoter complex (right)

1.4 Summary

In sum, in chapter 2, various diffusion-reaction models will be discussed to provide a

new explanation of how the DNA-binding protein overcomes the “search speed-stability”

paradox. In chapter 3, experimental results of interactions between PAMAM dendrimer

acetylated to different extents and DNA molecules will be presented. In chapter 4, a new

coarse-graind model will be proposed to simulate the PAMAM dendrimer-DNA interac-

tions which can give us more structural information of DNA-dendrimer complexes then

experiments.
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CHAPTER II

Proteins searching for their target on DNA by

one-dimensional diffusion: overcoming the

“speed-stability” paradox

The sequence dependence of DNA-protein interactions that allows proteins to find the cor-

rect reaction site also slows down the 1D diffusion of the protein along the DNA molecule,

leading to the so-called “speed-stability paradox”, wherein fast diffusion along the DNA

molecule is seemingly incompatible with stable targeting of the reaction site. Here, we

develop diffusion-reaction models that use discrete and continuous Gaussian random 1D

diffusion landscapes with or without a high-energy cut-off, and two-state models with a

transition to and from a “searching” mode in which the protein diffuses rapidly without

recognizing the target. We show the conditions under which such considerations lead to

a predicted speed-up of the targeting process, and under which the presence of a “search-

ing” mode in a two-state is nearly equivalent to the existence of a high-energy cut-off in

a one-state model. We also determine the conditions under which the search is either

diffusion-limited or reaction-limited, and develop quantitative expressions for the rate of

successful targeting as a function of the site-specific reaction rate, the roughness of the
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DNA-protein interaction potential, and the presence of a “searching” mode. In general, we

find that a rough landscape is compatible with a fast search if the highest energy barriers

can be avoided by “hopping” or by the protein transitioning to a lower-energy “search-

ing” mode. We validate these predictions with the results of Brownian dynamics, kinetic

Metropolis, and Kinetic Monte Carlo simulations of the diffusion and targeting process,

and apply these concepts to the case of T7 RNA polymerase searching for its target site on

T7 DNA.

2.1 Introduction

The long-standing problem of proteins (repressor, polymerase, transcription factor, etc.)

seeking their target sites among millions of nonspecific sites along DNA is attracting in-

creasing interest. To help explain how proteins might find their targets faster than allowed

by ordinary three dimensional diffusion, in 1981 O. G. Berg et al. [36,37] proposed a “fa-

cilitated diffusion” model for this process. Their model, as further elaborated by others,

includes four mechanisms: (a) one-dimensional diffusion or “sliding” of a protein along the

DNA contour, (b) “hopping” of a protein from one site on DNA to a nearby site a few base

pairs away, (c) “jumping” of the protein to a distant site, mediated by 3D diffusion through

solvent, and (d) “intersegment transfer” and “intersegmental jumps” [38] of the protein

to a site on a DNA sequence close by in 3D space, but possibly many base pairs distant

along the DNA contour (since the DNA typically has a coiled configuration). Since then, a

large number of experiments [17,18,39–45] have been carried out to test this model, both

in vitro and in vivo. Many models have been developed to describe the protein targeting,

through a combination of 1D and 3D diffusion [46–48].However, since the 1D diffusion
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coefficient of a protein moving along DNA is two or three orders smaller than the 3D dif-

fusion coefficient, long-range sliding of a protein along DNA may slow down rather than

speed up the targeting process relative to the predictions of the Smoluchowski equation

for three-dimensional diffusion-limited targeting [49,50], a result that has been confirmed

by Brownian dynamics (BD) simulations [51, 52]. Recently, Halford [53] reexamined the

early experimental results [54] and claimed that the targeting speed of DNA-binding pro-

teins (DBPs) does not exceed the true 3D diffusion limit, if one includes in the 3D diffusion

the effect of electrostatic attraction between the cationic proteins and the anionic DNA in

the Smoluchowski equation. In other words, the so-called “facilitated diffusion” mecha-

nism does not really facilitate the targeting, but rather impedes it. Halford’s conclusion

remains controversial, however, and in any event single- molecule imaging experiments

leave little doubt that proteins do actually slide along DNA [18, 41, 55]. Hence, the 1D

diffusion of the protein along DNA remains a very interesting and important problem to

understand in greater detail, regardless of whether it actually speeds up the target search

or not. Most DNA-binding proteins (DBPs) interact with 5 to 20 base pairs at a time when

forming nonspecific complexes with DNA. Both statistical mechanical analysis [56] and

experiments [57] demonstrate that the interaction energies between a DBP and each base

pair are almost independent of each other and additive. Because of the irregularity of the

DNA base pair sequence, it is assumed that the sequence-dependent binding energy can be

approximated by an uncorrelated (or random) Gaussian distribution [58]. The problem of

1D diffusion of particles in a random potential is well studied problem [59,60] and it has

also been used to model the motion of dislocations in disordered crystals [61], the unzip-

ping of DNA [62], protein folding [63], and other problems. Zwangzig [64] determined

theoretically the simple exponential relationship between the 1D diffusion coefficient D
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in a random Gaussian one-dimensional potential and the standard deviation, σ, or rough-

ness, of the potential (Eq. 2.1.1), which was subsequently rediscovered by Slutsky and

Mirny [58,65]:

D = D0exp

[
−
(

σ

kBT

)2
]

(2.1.1)

Based on (Eq. 2.1.1), Slutsky and Mirny noted that a fast search process requires that the

roughness of the one-dimensional potential be small (σ = 1 ∼ 2 kBT ), which seemingly

conflicts with the requirement that the DNA-protein specific complex be thermodynami-

cally stable once it forms (σ ∼ 5 kBT ) [58]. To resolve this so-called “search-speed/stability

paradox”, Slutsky and Mirny proposed a “two-state model”, which allows the protein to

change its conformation to perform fast diffusion in a “searching” state and bind stably

to the target site in a “recognition” state. A recent single-molecule experiment [17] has

confirmed that p53, and fragments of p53 that contain either the “recognition domain”

or the “sliding domain”, diffuse differently along DNA in a manner consistent with this

“two-state” mechanism.

However, since the DBP finds its target by a combination of 1D and 3D diffusion and the

transition from 1D to 3D diffusion should be sequence-dependent, especially for a rough

potential, a Gaussian random potential might be an unrealistic model of the actual 1D po-

tential landscape that the protein experiences when sliding along the DNA major groove.

One important source of non-randomness is the likely relatively high-energy barrier to

motion from one site to the next along the DNA, since the protein-DNA interaction is dom-

inated by highly localized hydrogen bonds between DNA and protein that must be broken

for the protein to slide a distance of one base pair along the DNA. Since these barriers

must be overcome whether the roughness of the landscape is small or large, Eq. 2.1.1 may

overestimate the effects of potential roughness on the 1D diffusion coefficient. Another
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consideration is that the sequence-independent electrostatic interaction might decay more

slowly in the direction perpendicular to the DNA than do sequence-dependent forces, and

hence this relatively weak electrostatic force might by itself be sufficient to reduce the

dimensionality of protein Brownian motion from 3D to 1D [66]. A protein can diffuse a

very short distance away from the DNA surface to get over a high-energy barrier result-

ing from sequence-dependent forces, while easily staying close enough to the DNA that

electrostatic forces can maintain the 1D diffusion. Thus, the real 1D potential landscape

along DNA that the protein experiences during sliding might be better approximated by

imposing a maximum-energy threshold onto an otherwise Gaussian-distributed position-

ally random potential. So, in this thesis, we discuss how introducing a threshold into the

1D random potential can reduce the dependence of 1D diffusivity of an over-damped par-

ticle on the strength of a Gaussian disordered potential. We consider both a discrete 1D

potential landscape and also propose a continuous random 1D potential based on Barbiâs

hydrogen-bonding model [67,68] for the sequence-dependent interaction potential, which

we will show reconciles fast sliding with stability of targeting. We also compare the diffu-

sivities along random potentials with wells of various shapes to determine the sensitivity

of 1D diffusivity to the shape, as well as the depths, of random potential wells. We obtain

diffusivities for these landscapes in three different ways and show that they agree with

each other. Using these diffusivities, we determine using both theory and simulations the

rate at which the protein finds its target in reaction- and diffusion-limited regimes.

Unlike synthetic nanoparticles, a protein can change its conformation frequently. We there-

fore also propose a simple two-state model, similar to that of Mirny and coworkers, to

explore whether the sliding motion of DBPs can be accelerated substantially by switching

their conformations. In our simple model, the transitions between the two states on differ-
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ent sites are controlled by a constant activation barrier; in this respect our model differs

from most previous two-state models [65,69]. In addition, we choose transition rates be-

tween states that satisfy detailed balance, guaranteeing that our model does not violate

thermodynamic requirements [70]. We then carry out kinetic Monte Carlo simulations to

see if this simple two-state model improves the targeting process.

Before discussing our diffusion models, we address some general conditions that govern

the rate of target search and the conditions under which this search is controlled by the

overall one-dimensional diffusivity along the DNA, or by the rate of reaction at the target

site, or by both. The “search-speed/stability paradox” mentioned above arises only if both

the one-dimensional diffusion coefficient and the rate of reaction at the target site both

influence the overall targeting rate. If the rate of reaction at the target site is slow com-

pared to the rate of diffusion, then most proteins will not react the first time they reach

the target site, but will occupy sites along the DNA with probability given by simple Boltz-

mann statistics, governed by the site-specific free energy. The rate of reaction will then

be controlled by this occupancy probability and the reaction rate constant, and not by the

diffusion speed. On the other hand, if the reaction rate at the target site is very fast, then

any protein reaching the target will react immediately, irrespective of whether the protein

remains on the site for very long, and the “stability” of the binding site will be unimportant,

while the speed of diffusion dominates the targeting rate. To demonstrate this quantita-

tively, in the next section we derive the targeting rate for a simple 1D reaction-diffusion

model, and then show how the effective diffusion coefficient and effective reaction rate

are influenced by properties of the one-dimensional potential.
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2.2 Theory and models

2.2.1 Diffusion-limited vs. reaction-limited targeting

We assume that away from the binding site, the targeting proteins can associate with

DNA with overall rate constant kon, and dissociate from DNA with rate constant koff .

The bulk concentration of protein can be considered to be a constant cbulk . Then, the

concentration profile of the protein on DNA can be approximated simply by a steady-state

analysis balancing flux of proteins to and from the DNA and 1D diffusion along the DNA

molecule. At steady state, we have:

D
∂2c

∂x2
+ koncbulk − koffc = 0 (x ≤ 0) (2.2.1)

where D is the effective 1D diffusion coefficient of protein along DNA, in units of inverse

time, c is the protein concentration (or probability of occupancy) along the DNA, and x

is a dimensionless distance along the DNA molecule in units of base pairs. To simplify

the analysis, we divide the one-dimensional domain into a “far field”, where we can take

the diffusivity D, and kon, and koff to be constants that are pre-averaged over the free-

energy landscape, and the “near field”, which is the target site, where we will take account

of the strength of binding of the DNA, which will affect its probability of reacting there.

Within this approximation (which we will later test using simulations), the concentration

of protein along the DNA can be obtained by applying the boundary conditions:

c = c∞ = (kon/koff ) cbulk (x→∞)

−2D
∂c

∂x
− Ωeffc = 0 (x = 0)

(2.2.2)
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where Ωeff is the effective reaction rate constant at the target site (x = 0). We only

consider proteins to the left (negative side) of the target site (x ∈ (−∞, 0]) and account for

diffusion from the positive side to the target site at x = 0 by the factor of 2 multiplying the

diffusivity in Eq. 2.2.2. The effective reaction rate Ωeff = Ωexp

[
µ−ET

kBT
− 1

2

(
σ

kBT

)2
]

(see

Appendix A) accounts for the residence time of the protein at the target site as well as rates

of transition to and from one “state” to the other in the case of a two-state model, as will be

discussed below. We also assume that koff � D, so that 1D diffusion is an important part

of the target-searching. (If koff > D, the proteins will not remain on the DNA long enough

to slide one dimensionally and so will reach the target site primarily by three-dimensional

diffusion.) Since we take koff � D, we can neglect the terms involving koff and kon in

the second boundary condition above, so that we disallow the protein to hop on or off the

DNA at the target site. (The small contribution of this could be easily included, if desired.)

Solving Eq. 2.2.1 and Eq. 2.2.2, the protein concentration along the DNA is:

c =
kon
koff

cbulk −
kon
koff

cbulk

 Ωeff

2D
√

koff
D

+ Ωeff

 exp

(
x

√
koff
D

)
(2.2.3)

where we only consider x < 0. Note in the above, that the typical diffusion distance

traveled by the protein between its adsorption from bulk solution and its subsequent des-

orption, in units of base pairs, is given by
√

D
koff

. The reaction rate is given by:

r = Ωeffcx=0 = koncbulk

 2
√
D/koff

1 +
2
√
Dkoff

Ωeff

 (2.2.4)
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When Ωeff �
√
Dkoff , the targeting process is diffusion limited, the concentration of

protein at the target site is very small, and the reaction rate is given by:

r = 2koncbulk

√
D

koff
= 2

(kon/koff ) cbulkD√
D/koff

=
2c∞D√
D/koff

(2.2.5)

This rate, r, can also be written as the product of the diffusivity D times the 1D con-

centration gradient of protein, which is the concentration of protein far from the target,

namely c∞ ≡ (konkoff ) cbulk, divided by the diffusion distance
√
Dkoff . The factor of two

again arises becomes the protein can diffuse to the target from either the right or the left.

We performed a series of Metropolis Monte-Carlo simulations over a periodic landscape

of 2,000 base pairs with different roughness using the Metropolis scheme to verify Eq.

2.2.5. The simulations were performed by randomly introducing a protein along the pe-

riodic landscape, and simulating its diffusion, until it either reached the target site and

reacted, or dissociated from the DNA. The sites were treated as discrete with energies

Ei distributed with Gaussian distribution, Ei = N(0, σ), and hopping from one site to the

next was accomplished by the usual Metropolis method. Thus, randomly selected diffusion

moves between neighboring sites were accepted with probability given by the Boltzmann

factor for the energy difference between the sites, if the move is unfavorable, or unity oth-

erwise. The probability of dissociation koff,i was also site-specific with probability given by

a Boltzmann of the energy difference between the site and the energy in free solution, i.e.,

koff,i = exp [− (Ebulk − Ei) /kBT ]. We adjusted the energy in free solution Ebulk according

to the roughness of the potential along DNA by setting Ebulk = −ln (D0/2502) − (σ/kBT )2

to fix the value of the diffusion distance at
√
D/koff ≈ 250, since D ≈ exp

[
−
(

σ
kBT

)2
]
,

and koff ≈ lim
n→∞

1
n

n∑
i=1

koff,i = exp [−Ebulk + (σ/kBT )2], as discussed further below. The
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reaction rate is just the inverse of the average time between reaction events times the

protein “concentration”, which is 1/2,000 in this case, since proteins are tracked one at

time over a landscape with 2,000 sites. The results, plotted in Fig. 2.2.1, show that Eq.

2.2.5 remains correct even for a rough potential landscape with standard deviation up to

σ = 2kBT . Note that in the upper insert, the occupancy of sites along the DNA is very

“noisy” even for a relatively small roughness of σ = 0.5kBT , not due to insufficient aver-

aging over multiple proteins, but due to this roughness, which strongly favors some sites

over neighboring ones. As the potential landscape becomes rougher, the noise of both the

site occupancy and the local diffusion coefficient increases greatly, but Eq. 2.2.5 holds up

to at least σ = 2kBT , showing that our use of a far-field average diffusivity to compute

the rate of diffusion to the reaction site remains valid at least to this level of roughness.

(The occupancy of sites for σ = 2kBT is even “noisier” than for σ = 0.5kBT as shown in

the bottom inset of Fig. 2.2.1.) For σ higher than this, the diffusion becomes too slow to

obtain adequate averaging; however, the use of a far-field average diffusivity will eventu-

ally break down for large enough σ. We can estimate the point at which this will occur

by considering the landscape-dependent variance of Dn, the diffusion coefficient averaged

over the diffusion distance n =
√
D/koff . As shown in the Appendix A, the variance of the

Dn/D0 can be estimated by 2σ4/n. So, when the diffusion distance is about 100 (n ≈ 100,

typical value for DBP’s), the variance of Dn over this diffusion distance will be significant

for σ larger than 3kBT . Thus, for σ > 3kBT , instead of using the far-field 1D diffusion coef-

ficient for D in Eq. 2.2.5, we would need to compute Dn from the local base pair sequence

neighboring the target to determine the reaction rate in the diffusion-limited regime.

On the other hand, when Ωeff �
√
Dkoff , the targeting process becomes reaction limited
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Figure 2.2.1: Steady-state reaction rate of a protein at the target site (site number =
1,000), assuming instantaneous reaction at the reaction site, for a discrete Gaussian-
distributed landscape, obtained by Metropolis Monte-Carlo simulations (squares). Also
shown is the reaction rate from Eq. 2.2.5, using MC simulations to determine the diffusion
coefficient (dashed line); and using D = exp [−(σ/kBT )2] to approximate the diffusion
coefficient (continuous line). The insets show the rough concentration profiles over the
2,000 base pairs for σ = 0.5kBT and σ = 2.0kBT

and the reaction rate is given by:

r = (kon/koff )cbulkΩ
eff (2.2.6)

Thus, in the reaction-limited regime, the protein targeting speed is only determined by

the effective reaction rate at the target, and by the overall concentration of protein on the

DNA, which is given by (kon/koff )cbulk, and not by the diffusivity. Note that the effective

reaction rate must include the effect of the residence time of the protein at the target site,

and thus by the stability of binding to the target. In the reaction-limited regime, diffusion
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is fast enough compared to reaction that the protein concentration, or probability distri-

bution, along the DNA reaches thermodynamic equilibrium. At the target site, the protein

finds a local free energy minimum, and so its concentration there will be higher than else-

where according to the ratio of Boltzmann factors for the target site relative to the average

over all sites.

Recent experiments [44] have shown that lac repressor frequently (> 90%) diffuses over its

natural operator several times before binding, which indicates the targeting of lac repres-

sor, is not diffusion-limited. Therefore, determination of conditions for diffusion-limited

vs. reaction-limited targeting, as described above, is an important element of the analysis

of the target search on DNA. One aspect of targeting in vivo not considered here is the

role of proteins, such as histones, which can block 1D diffusion along DNA in the cell.

Our current theory is applicable only to in vitro single-molecule experiments that lack such

blockages to diffusion, but in the future, the effect of blocking proteins will need to be

considered.

2.2.2 Diffusion models

In this section, we limit ourselves to the diffusion-limited case, where the protein target-

ing speed is determined by the 1D diffusion coefficient, and hence the targeting speed is

given in Eq. 2.2.5. We will determine the “far-field” protein diffusivity for models with

three different 1D potentials, namely 1) a Gaussian-distributed square-well potential with

a threshold, 2) a Gaussian-distributed square-well potential with a threshold and regular

barriers, and 3) a continuous disordered potential. These potentials are illustrated in Fig.

2.2.2a below. We will also consider 4) a two-state model (Fig. 2.2.2b), where the protein
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can switch between a fast “searching state” with a weak or flat potential and a “recognition

state” where it feels a rough Gaussian-distributed random potential.

Figure 2.2.2: (a) 1D disordered potential landscapes (from top to bottom): I. Gaussian
random potential with threshold; II. Threshold Gaussian random potential with activa-
tion barriers between each site; III. Sinusoidal disordered potential with threshold. (b)
two-state model with transition rates between different sites or states (given by the ω’s)
determined by Eq. 2.2.18. “R” is the recognition state and “S” the search state. We will
show later that in some cases the two-state model gives a diffusivity nearly identical to a
one-state model with a low threshold set by the searching state energy as shown in the
bottom diagram

We can calculate the diffusion coefficient along a random energy landscape using two dif-

ferent approaches. One is to compute the mean first passage time (MFPT) for the protein
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to diffuse from a starting point y = 0 (where y = 0 is also a reflecting point to prevent

particles from diffusing towards negative y) to a finishing point y = L along a randomly

generated landscape, and then average this MFPT over multiple randomly generated land-

scapes. This gives an average time tave to diffuse a given distance L, and the diffusion

coefficient can then be estimated from the standard formula D ≈ L2/2tave. This MFPT can

be obtained from the more general formula for a particle starting at position y [71]:

t(y) ∝ 1

D0

∫ L

y

dy1e
U(y1)/kBT

∫ y1

0

e−U(x)/kBTdx (2.2.7)

and taking y = 0 in our calculation.

The second approach to obtain an analytical solution for the long-time D is to use the

formula for a periodic potential derived by Festa and d’ Agliano [72], namely:

D =
D0

〈eU/kBT 〉〈e−U/kBT 〉
(2.2.8)

where the brackets indicate an average over the period of the potential:

〈eU/kBT 〉 =
1

L

∫ L

0

eU(x)/kBTdx (2.2.9)

This formula can be used for a non-periodic random potential by using quasi-random po-

tentials that are random over a finite distance, beyond which they are periodic. The result

for a random potential is then obtained by taking the limit of a long repeat distance L, i.e.,

taking L→∞.

Gaussian-distributed square-well potential with threshold

As discussed above, the hopping/jumping of a protein can be highly sequence-dependent.
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Once the protein encounters a high free-energy barrier, it can retreat back, diffuse over the

barrier, or be expelled into bulk solution. Because of this third possibility, the real energy

landscape that the protein actually experiences cannot strictly be Gaussian disordered,

since the high-energy tail of the distribution will have energy higher than the protein in

free solution, and the protein will likely escape to free solution if a sequence with high

enough energy in this tail is encountered. To simplify our model, we therefore assume that

the protein will never feel a net energy that is higher than energy Ethreshold. Thus, after

generating an energy landscape from a Gaussian distribution, we set any energy higher

than Ethreshold to Ethreshold. This assumes that when the threshold energy is encountered,

the protein briefly loses attachment to the DNA and then quickly binds to a neighboring

site, rather than disappearing into the bulk. Hence, we are only including very short “hop-

ping” motions of the protein, but not longer-range “jumping” or “intersegment transfer”.

We will also show below that in some cases, the diffusivity for the “two-state” model intro-

duced below can be approximated by a one-state model with a low threshold energy, which

provides additional motivation for studying this simple model. Thus, for these cases, our

potential landscape can be approximated by random square-well potential with threshold,

given below:

Ei = min [N(µ, σ), Ethreshold + µ] , i = 1, 2, 3, ... (2.2.10)

We now compute the diffusivity over this potential using both the MFPT and the Festa and

d’ Agliano expression Eq. 2.2.8 and Eq. 2.2.9 above, with L → ∞, and taking the mean

site free energy µ = 0kBT . For a Gaussian random potential with threshold Eq. 2.2.10,
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this yields:

D =
D0

{eσ̃2/2
[
1− Φ

(−ν̃+σ̃2

σ̃

)]
+ eν̃

[
1− Φ

(
ν̃
σ̃

)]
}{eσ̃2/2Φ

(
ν̃+σ̃2

σ̃

)
+ e−ν̃

[
1− Φ

(
ν̃
σ̃

)]
}

(2.2.11)

where we have made the equation more compact by defining ν = Ethreshold, ν̃ = ν/kBT ,

σ̃ = σ/kBT . In the following discussion, all parameters with a tilde will represent these

parameters normalized by kBT . In the above, Φ is the cumulative distribution function of

the normal distribution:

Φ(x) =
1√
2π

∫ x

−∞
e−t

2/2dt =
1

2

[
1 + erf

(
x√
2

)]
(x ∈ R) (2.2.12)

Eq. 2.2.11, which is based on the equation of Festa and d’ Agliano, agrees very well with

the numerical results we obtain from the MFPT, which are plotted in Fig. 2.2.3a. When σ̃

is large (σ � |ν|), Eq. 2.2.11 can be reduced to:

D = 2D0exp

(
−ν̃ − 1

2
σ̃2

)
(2.2.13)

As shown in Fig. 2.2.3b, Eq. 2.2.11 and Eq. 2.2.13 agree with each other for σ �

|ν|, whether ν is positive or negative. We will later show that a very similar formula

also results from analysis of the diffusivity in the two-state model, which we will discuss

later. For a Gaussian disordered potential with a threshold (Eq. 2.2.10), the diffusion

coefficient depends strongly on both Ethreshold (or ν) and σ. We note here that σ is the

standard deviation of the Gaussian energy distribution before applying the cut-off, and

the standard deviation of the actual potential is therefore less than σ. When Ethreshold/σ

is large, only a very small fraction of the Gaussian-distributed energies are cut off by
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Figure 2.2.3: (a) Normalized diffusivity D/D0 vs. Gaussian standard deviation σ for Model
I, namely a Gaussian-distributed potential with a threshold (Eq. 2.2.10). Symbols are
obtained numerically from the MFPT, while lines are calculated from Eq. 2.2.11. Note
that σ describes the standard deviation of the Gaussian potential, while the true standard
deviation is lower than this because of the cut-off applied to the tail of the Gaussian.
(b) Normalized diffusivity D/D0 vs. Gaussian standard deviation σ for different energy
threshold, lines are obtained by Eq. 2.2.11, symbols are obtained by Eq. 2.2.13

Ethreshold. Therefore, for small σ, Eq. 2.2.11 almost converges to Eq. 2.1.1 (Ethreshold > 0

kBT ). The difference between Eq. 2.2.11 and Eq. 2.1.1 increases with sigma. According
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to a model of Slutsky and Mirny [58], σ should be at least 5kBT to maintain the stability

of the DNA-protein specific complex. In this case, the value of D given by Eq. 2.2.11

can be as much as 104 times higher than that given by Eq. 2.1.1, if Ethreshold is small

enough ( 3kBT ); see Fig. 2.2.3a. By calculating the partition function numerically, we

find that the fraction of time that the protein spends on the target site when system is in

equilibrium for smallEthreshold (Ethreshold = 3kBT ) and large roughness (σ = 5kBT ) is about

0.25, which is the same value as obtained for the Gaussian-distributed potential without

threshold [58], because the threshold only affects high-energy states that contribute little

to the partition function. Therefore, if the highest-energy states along the DNA can be

eluded by hopping/jumping of the protein short distances along an otherwise Gaussian-

distributed random potential (or by transitioning to a searching mode as discussed below),

then the diffusion coefficient can be increased greatly without compromising the fidelity of

targeting. Thus, the “speed-stability paradox” might be overcome by brief excursions of the

protein from the DNA surface when the high-energy states are encountered, thus reducing

the effective roughness of the landscape. We also note that these few high-energy states

might be selected against by mutation of the few base pairs responsible for them, and this

would be favored by natural selection if they indeed have a large negative effect on protein

mobility. In any case, we might expect that since the high-energy states have a large effect

on mobility but a small effect on binding stability, we should consider the possibility that

they are somehow avoided, and we have modeled this avoidance by a simple Gaussian

landscape with high energy-states truncated by a threshold.

Gaussian-distributed square-well potential with threshold and regular barriers

During translocation from one site to the next site, the protein may have to overcome

activation barriers (Ea) because of charge mismatch or hydrogen bond deformation and
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breakage. Thus, we consider a random potential augmented by a periodic potential to add

activation barriers into our model. All activation barriers Ea and site potential wells are

modeled by square barriers with width α and square wells of the width β, respectively

(α + β = 1).

E2j = min[N(µ, σ), Ethreshold + µ], E2j+1 = Ea (j = 0, 1, 2, 3, ...) (2.2.14)

where N(µ, σ) is again a normal (or Gaussian) distribution with mean µ and standard

deviation σ. For simplicity, let µ = 0, Ethreshold = Ea = ν (shown in Fig. 2.2.2a II). By

applying Eq. 2.2.8 to this random potential, we have:

D =
D0{

α + β
{
e−ν̃+σ̃2/2

[
1− Φ

(−ν̃+σ̃2

σ̃

)]
+ 1− Φ

(
ν̃
σ̃

)}}{
α + β

[
eν̃+σ̃2/2Φ

(
ν̃+σ̃2

σ̃

)
+ 1− Φ

(
ν̃
σ̃

)]}
(2.2.15)

The relations between 1D diffusion coefficients and the roughness of different random

potentials are plotted in Fig. 2.2.4. Numerical results obtained using the MFPT agree

well with analytical results based on the equation of Festa and d’ Agliano (Eq. 2.2.15).

When high activation barriers are introduced into this random potential in Model II, the

sliding of the protein is dominated by these activation barriers. Thus, the random potential

has even less effect on the 1D diffusion. Such periodic barriers are probably important

for DNA-protein systems, because many DNA-protein nonspecific complexes are stable

enough for the structure of those complexes to be resolved [73]. While such barriers

make the diffusivity less sensitive to landscape roughness, they will slow down the overall

one dimensional diffusion, relative to that for bulk 3D diffusion. (Note that the diffusivity

plotted in Fig. 2.2.4 is normalized by the diffusion coefficient for no roughness, but with

barriers.)
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Figure 2.2.4: Normalized diffusivity D/D0 vs. roughness σ for Model II, which is a
Gaussian-distributed potential with a threshold and an energy barrier (Eq. 2.2.14), where
the threshold and barrier are the same height. Symbols are obtained from the MFPT while
lines are obtained from Eq. 2.2.15, with ν = Ethreshold, α = β

Sinusoidal disordered potential

In reality, of course, the DNA-protein interaction energy landscape is not discrete. So, here

we also consider a continuous potential landscape with continuous first derivative, which

is given by:

E(x+ i · l) = Ei

[
sin2n

(
π
x

l

)]
, (0 ≤ x < l, i = 1, 2, 3, ...) (2.2.16)

where l is the width of each “well” of the potential, where the potential returns to zero at

positions 0, l, 2l, etc., and each well has a depth of Ei (a negative quantity) halfway be-

tween these points. The exponent 2n sets the shape of this periodic potential, with larger

n leading to steeper walls of the potential wells. A periodic potential is obtained by setting
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all Ei to the same value E.

We now obtain the relationship between D and potential well depth E for periodic poten-

tials, including the continuous periodic potential above, with n = 1, and 1,000, as well as

the periodic potential with alternating square wells and square barriers of the same width

using Eq. 2.2.8. The results are presented in Fig. 2.2.5. Note that for shallow potential

wells (< 3kBT ), D decreases slowly as the well depth increases and then drops expo-

nentially with increasing energy well depth at depths greater than around 5kBT . Taking

the continuous well wall steepness towards infinite steepness by setting n to infinity, the

periodic potential ceases to impede diffusing particles, as it becomes flat with infinitely

narrow, delta-function, peaks. This illustrates that the shape of the 1D potential along

DNA strongly affects the diffusivity.

Figure 2.2.5: D vs. periodic potential well depth. The dashed line is for the square-well
potential, and the solid line is for the continuous sinusoidal potential, Eq. 2.2.16 with n =
1, while the dotted line is the sinusoidal potential with n =1000

Two-state model

To investigate the diffusion of proteins that might use two domains to bind DNA or switch
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between two conformations, we propose a two-state model similar to that suggested by

Slutsky and Mirny, in which a protein can switch between a “searching” (S) state and

“recognition” (R) state on any site. However, we do not allow dissociation of the protein

from the DNA. For both states, we assume the site energies to be Gaussian distributed:

ES
i = N

(
µS, σS

)
, ER

i = N
(
µR, σR

)
(2.2.17)

We assume the protein can slide along the DNA in both S and R states (as p53 does) with

the S state allowing for much faster diffusion than the R state does (DS � DR, σS � σR).

Both the sliding along DNA and the conformational switching are controlled by activation

barriers. The diffusive properties of the two-state model can be characterized by a sliding

transition rate in the S state ωSi,i±1, a sliding transition rate in the R state ωRi,i±1, a transition

rate from the S to the R state ωSRi , and a transition rate from the R to the S state ωRSi .

These rates are given by:

ωSi,i±1 = ω0exp
[
−
(
ẼS
a − ẼS

i

)]
ωRi,i±1 = ω0exp

[
−
(
ẼR
a − ẼR

i

)]
ωSRi = ω0exp

[
−
(
ẼC
a − ẼS

i

)]
ωRSi = ω0exp

[
−
(
ẼC
a − ẼR

i

)]
(2.2.18)

ES
a ,ER

a ,and EC
a are activation barriers (normalized by kBT ) for diffusing from one site to

the next in the “searching” state, for diffusing in the “recognition” state, and for conforma-

tional transitioning from the search to the recognition state, respectively. ẼS
i

(
ẼS
i ≡ ES

i /kBT
)

and ẼR
i

(
ẼR
i ≡ ER

i /kBT
)

are Gaussian-distributed site-specific (normalized) energies in

the “searching” state and in “recognition” state, respectively, where, without loss of gener-

ality, the S state can be taken to have zero average energy µ̃S = 0. This is equivalent to

30



interpreting µ̃R as the energy difference between the recognition state and the searching

state. We use the same prefactors for all the rates above, but note that we can absorb

differences in prefactors into the apparent activation energies, since we are not consider-

ing effects of varying temperature here. Note that the ratios of forward to reverse rates

of transition between any two microstates (i to i ± 1 in either S or R configuration and

S to R or R to S at any site i) are given by Boltzmann functions of the energy difference

between the two states. Thus, detailed balance is satisfied and at a long time the protein

will sample an equilibrium distribution of states. Since the site-specific free energies ẼS
i

and ẼR
i are each Gaussian distributed without threshold about a mean energy µ̃S and µ̃R,

ẼS
i and ẼR

i can be higher than the activation barriers. In that case, the transition rate of

translocation from site i to site i ± 1 or the transition rate from the R state to the S state

at site i will be overestimated. However, if the activation barrier is large compared to the

standard deviations, such events should be very rare, and have little effect on the diffusion

coefficient.

To obtain the relation between D and the roughness of the energy landscape in the R state,

a kinetic Monte Carlo simulation was performed using the Bortz-Kalos-Lebowitz (BKL) al-

gorithm [74]. The diffusion coefficient was obtained by taking the slope of mean square

displacement vs. time.

Since the 1D diffusion coefficient for the R state is much lower than that for the S state, in

other words, the S state energy roughness is much less than the R state energy roughness

σ̃S � σ̃R, we need the protein to prefer the S state if we wish a fast search. Therefore,

since we are taking the mean energy of the search state to be zero, the mean energy of

the recognition state (relative to the searching state) µ̃R should be positive, especially for

large σ̃R. So, although in one-state Models I and II, we chose a zero mean energy for the

31



Gaussian-distributed energy, for this model we vary µ̃R from 0 to 4. Although the protein

thermodynamically prefers the S state away from the target site, the two-state model as-

sumes that at the target site the free energy in the recognition state is at its minimum, and

at the target the free energy is lower in the recognition state than in the search state. The

conformation transition activation barrier ẼC
a determines the frequency of state switch-

ing. Obviously, a small barrier will lead to a fast switching between these two states and

thereby facilitate the sliding motion of the protein along DNA. However, a small ẼC
a will

also result in a small average residence time at the target site τT , which will allow fast

reaction only when the reaction rate constant Ω is much larger than ωRT,T±1 +ωRST , where T

is the target site number. Otherwise, the fast switching between R and S states will block

any speed up of the targeting process, since the target site, once found, will be abandoned

before a reaction can occur. Similar to the one-state analysis, as shown in the Appendix A,

the reaction rate r(x = 0) is given by:

cS∞
r

=
1

2
√
koffD

+
1

ωSRT exp
(
−ẼS

T

) +
1

Ωexp
(
−ẼR

T

) (2.2.19)

where ẼS
T , ẼR

T , c̃S∞ are target energy in “searching state”, target energy in “recognition

state”, and far field protein concentration in “searching state”, respectively. From Eq.

2.2.19, when Ω � ωSRT exp
(
ẼR
T − ẼS

T

)
= ωRST and Ω �

√
koffDexp

(
ẼR
T

)
, the protein

targeting is reaction limited, and the reaction rate is:

r = cS∞exp
(
−ẼR

T

)
Ω (2.2.20)

Note that at the target site the free energy in the recognition state is low, while the free
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energy of the search state is relatively insensitive to protein location along the DNA. Thus,

although away from the target site the searching-state free energy is generally lower than

the recognition state energy, at the target site, we can assume that ẼS
T − ẼR

T > 0, and the

reaction rate is sped up a factor of exp
(
−ẼR

T

)
, relative to the reaction rate for a flat free

energy landscape in the recognition site. The reason is that in the reaction-limited regime,

all protein states are sampled in proportion to their equilibrium distribution before the

protein is able to finally react. Since the protein in the recognition state at the target site

has a low free energy, it is thermodynamically favored; that is the protein is stable at the

target site and this increases the net reaction rate. To account for the concentration of

protein at the target site in the recognition state, relative to the concentration away from

the target, we need an additional factor, analogous to that given by Eq. 2.2.6 for the

one-state model. Since there are both recognition and search states, the concentration of

protein in the recognition state at the target is:

cRT =
exp

(
−ẼR

T

)
1
n

n∑
i

exp
(
−ẼS

i

)
+ 1

n

n∑
i

exp
(
−ẼR

i

)c∞
=

exp
(
−ẼR

T

)
exp

[
1
2

(σ̃S)2]+ exp
[
−µ̃R + 1

2
(σ̃R)2]c∞

≈
exp

(
−ẼR

T

)
1 + exp

[
−µ̃R + 1

2
(σ̃R)2]c∞

(2.2.21)

where we have again used analytical results for the expected values of the log-normal dis-

tributions given by the above averages of exponentials of ẼR
i and ẼS

i , which are Gaussian

distributed quantities. Also, in the above, we remember that we have as a reference energy

taken the average energy in the searching state µS to be zero, and since we assume that
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the energy roughness in the searching state is low, we have neglected the factor involving

σS in the final equation. We have an overall reaction rate of

r = c∞
exp

(
−ẼR

T

)
Ω

1 + exp
[
−µ̃R + 1

2
(σ̃R)2] (2.2.22)

Note c∞ is the far-field protein concentration in both “searching” and “recognition” states.

This result shows that there is no enhancement in reaction rate to be gained by having a

low value of ES
T , i.e., having a local minimum in free energy at the target site in the

searching state. Such a local minimum would enhance the concentration of protein there,

but would correspondingly diminish the ratio of concentration in the recognition state at

the target, relative to that in the searching state, and so produce no gain in reaction rate

in the reaction limited regime. The reason is that in the reaction-limited regime, only

the equilibrium concentration at the target in the recognition state matters. In their two-

state model, Slutsky and Mirny [65] suggested that a low free energy in the searching

state at the target might enhance the overall reaction rate, but the argument just given

indicates that this will not be effective in the reaction-limited regime. In the diffusion-

limited regime, it will of course also be ineffective, since in that case the far-field diffusivity

controls the reaction rate, and not the concentration at the target, in either the recognition

or searching state.

Returning to Eq. 2.2.19, when ωRST � Ω and ωSRT �
√
koffDexp

(
ẼS
T

)
, from Eq. 2.2.19,

the targeting process is conformational-switch limited, and the reaction rate is:

r = cS∞exp
(
−ẼS

T

)
ωSRT (2.2.23)

This regime is entered only if ωRST /Ω � 1, but the preference of the protein for the recog-
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nition state to the searching state at the target requires that ωRST < ωSRT , although away

from the target site, as mentioned above, the protein prefers the search state. Thus, it is

possible that this regime could lead to a speed-up of targeting, if ωSRT > Ω � ωRST . In this

case, the protein is trapped at the target site long enough to react there, even if the rate of

reaction is not fast. Hence, the overall rate of reaction might be enhanced.

Finally, when
√
koffD � ωSRT exp

(
−ẼS

T

)
and

√
koffD � Ωexp

(
−ẼR

T

)
, the targeting pro-

cess is diffusion limited,and the reaction rate is:

r =
2cS∞D√
D/koff

(2.2.24)

This formula is the same as for the one-state model in the diffusion-limited regime, namely

Eq. 2.2.5. However, the diffusion coefficient D in the above is the average diffusion co-

efficient away from the binding site, and this diffusion coefficient is dominated by diffu-

sion in the search state, which is fast, since we have assumed that away from the target

site, the free energy of the search state is lower than that of the recognition state; i.e.,

ẼS
i − ẼR

i < 0(i 6= T ).

Therefore, the apparent 1D diffusion coefficient in the two-state model can be approxi-

mated by:

D ≈ DSfS ≈ DS
(
1− fR

)
(2.2.25)

where DS is the one-dimensional diffusion coefficient of the protein in “searching state”,

and fS and fR are the fraction of time or the probability that protein stays in “searching”

and “recognition” states, respectively.

At equilibrium, the probability of residing in the search state can be computed by fS =
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n∑
i=1

exp(−ẼS
i )

n∑
i=1

exp(−ẼS
i )+

n∑
i=1

exp(−ẼR
i )

=
〈exp(−ẼS

i )〉
〈exp(−ẼS

i )〉+〈exp(−ẼR
i )〉 =

exp
[
−µ̃S+ 1

2(σ̃S)
2
]

exp[−µ̃S+ 1
2

(σ̃S)2]+exp[−µ̃R+ 1
2

(σ̃R)2]
, where n

is the number of sites, and both
〈
exp

(
−ẼS

i

)〉
and

〈
exp

(
−ẼR

i

)〉
are expected values of

log-normal distributions. By taking µ̃S = 0, σ̃S = 0 (very small roughness of S state), we

have f = 1

1+exp[−µ̃R+ 1
2

(σ̃R)2]
. Assuming the 1D diffusion in the R state contributes little to

the overall 1D diffusion, the 1D diffusion coefficient can be approximated by:

D ≈ DS · fS =
DS

1 + exp
[
−µ̃R + 1

2
(σ̃R)2] (2.2.26)

When the activation energy for transitioning from the search to the recognition state is

much lower than that for diffusing in the search state, EC
a � ES

a , the protein can switch

its conformation frequently before translocating to the next base pair. So, the protein will

usually go directly to the recognition state whenever the recognition state energy ER
i is

lower that the searching state energy ES
i . Then introducing the searching state will have a

similar effect as introducing a low threshold to the Gaussian random potential, low enough

that the protein usually takes advantage of it to diffuse from one site to another. This can

also be seen by examining the free-energy landscape at the bottom of Figure 2.2.2 for

the two-state model, where the searching state free energy acts like a low-energy cut-off

for the free-energy landscape of a one-state model. Thus, in this limit, the diffusion is

along a flat landscape with occasional deep traps, which in the two-state model are the

few locations where the recognition state has lower free energy than the searching state.

Note that when σ(σR) becomes large, Eq. 2.2.11 reduces to Eq. 2.2.13, which gives a

value twice as high as given by Eq. 2.2.26, where the constant ν in Eq. 2.2.11 now is

the threshold energy or average search state energy relative to the average energy of the

recognition state, or ν = µS − µR = −µR.
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The denominator in Eq. 2.2.26 is the same factor that slows down targeting in the reaction-

limited regime discussed above; see Eq. 2.2.22. The relation between D and the roughness

of the free-energy landscape in the recognition state as well as the relation between fR

and the free-energy roughness in the recognition state can also be obtained by the BKL

algorithm and are compared with the theoretical result from Eq. 2.2.26 in Fig. 2.2.6a,

where the average free energy in the “recognition” state is taken to be µR = 2kBT .

Figure 2.2.6: (a) 1D diffusion coefficient and fraction of time that protein is in the “recog-
nition” state vs. energy landscape roughness in the “recognition” state based on Eq. 2.2.26
lines and KMC simulation results (squares and circles). (b) Colors indicate the fraction of
time that protein is in the “recognition” state as a function of both energy roughness and
average energy of the “recognition” state
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The dependence of the fraction of time in the recognition state fR on average energy µR

and roughness of recognition state is plotted in Fig. 2.2.6b. This fraction is higher for

larger roughness or lower average recognition state energy. As a result, to speed up the

protein sliding, we need the protein to spend a high fraction of time in the searching

state and a low fraction of time in the recognition state, and so the average energy of the

recognition state should be high relative to the searching state.

Both Eq. 2.2.26 and KMC simulations demonstrate that this two-state model can facilitate

protein targeting process in the diffusion limited regime, since it can increase the overall

1D diffusion coefficient dramatically, especially when the average energy of the recognition

state is high, which results in a faster reaction rate (Eq. 2.2.24). However, as µR increases,

the frequency of protein conformational switch from S to R state will decrease. In other

words, for high average energy of the recognition state, the conformational switch will

become the speed-limiting step.

2.3 Applications and discussion

For most DNA-binding proteins (DBPs), the sequence-dependent free energy (Ei) and

the roughness of the 1D disordered free-energy landscape along DNA are inaccessible.

However, it is noteworthy that the one-dimensional diffusion coefficients of proteins with

long average sliding length (〈Lsliding〉), such as T7 RNA polymerase (T7 RNAP,〈Lsliding〉 �

1,000 bp ) and hOgg1 (〈Lsliding〉 ∼200 bp) are of the order 10−13m2/s, which is close

to Schurr’s [75] estimate D ≈ 5 × 10−13m2/s of the effective 1D diffusivity of a protein

following the helical path marked by the major groove of the DNA, accounting only for

viscous drag of moving along this path and ignoring the random potential. Thus, for some
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proteins, there may be little effect of the potential on the diffusivity. Either the roughness

of the potential is very small (σ ≤ 0.25kBT , based on Eq. 2.1.1); or there is a mecha-

nism to reduce the effective roughness of the potential, such as an energy threshold or the

searching-state mechanism discussed above. Note that for a flat potential with very small

roughness (σ ≤ 0.25kBT ), the concentration or the occupancy probability of the protein

along the DNA is roughly sequence-independent. In other words, the enhancement of the

effective reaction rate r resulted from accumulation of DBP’s on the target site will be very

limited. However, by introducing the threshold, even for a rough landscape the protein can

maintain its relatively high probability at the target site without slowing down its diffusion

significantly.

To illustrate how our model can be used to determine 1D diffusion coefficients and tar-

geting rates, we consider the free-energy landscape model of Barbi [67, 68]. This model

uses the number of hydrogen bonds (HB) formed at each position of the protein along the

DNA, to set the depth of the site-specific potential well. Thus, in Barbi’s model, the well

depth for a given site is simply estimated by:

Ei = −Niε (2.3.1)

where Ni is the number of the hydrogen bonds and ε is the strength of the hydrogen bonds.

We can then obtain the 1D potential landscape of the T7 RNAP-DNA system by plugging

Eq. 2.3.1 into Eq. 2.2.16. Since the actual well shape of the 1D potential along DNA is

unknown, we set n in Eq. 2.2.16 to 1, which guarantees that the protein feels a smooth

continuous force along this potential landscape for simplicity. This method assumes that

both electrostatic and hydrophobic forces have a negligible effect on the roughness. This
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is a crude assumption, but allows us to illustrate how to compute long-range 1D diffusivity

from any model that gives a free-energy landscape for DNA-binding proteins.

Using the base sequence for T7 DNA, we thus obtain the number of hydrogen bonds (HB)

for each site, where a “site” consists of the 5-bp DNA sequence that T7 RNAP binds to at

any one instant when moving along the DNA. The number of hydrogen bonds for each site

was obtained for a sequence of 3,000 base pairs (T7 genome, bases 17,001 to 20,000 [76])

using Barbi’s method. Barbi’s method provides a 5 × 4 matrix that allows the total num-

ber of hydrogen bonds to be computed for any ordered sequence of five bases. The T7

RNAP was modeled by an over-damped Brownian particle 5 nm in diameter. To obtain the

1D diffusivity of the protein, we perform a Brownian dynamics simulation using 30,000

non-interacting particles that are initially evenly distributed over the 1,000 base pairs in

the center of the sequence of 3,000 base pairs. In Barbi’s model, the number of hydrogen

bonds Ni for each 5-bp site can be well fitted by a Gaussian distribution with standard

deviation σHB ≈ 2. (Since this can yield negative values for Ni, in our simulations, any Ni

below 0 is set to 0.) Here we vary the HB strength ε up to 1.5kBT ,a range that includes

the strength typical of a water-mediated hydrogen bond, i.e., 0.8kBT [77]. The standard

deviation of the distribution of energies, Ei , is then found to be σ = σHBε ≈ 2ε, which

varies from 0 to 3 kBT . The values of D for different potential roughness were obtained

by taking the slopes of plots of mean square displacement versus time from the simulation

and averaging over all 30,000 particles. For comparison, the diffusion coefficients over

this potential were also obtained numerically using the MFPT, computed from Eq. 2.2.7.

The resulting relation between D and roughness is plotted in Fig. 2.3.1a. For roughness

as high as σ = 2kBT , the effect of this random potential on one dimensional diffusion

coefficient is less than a factor of 10, which is roughly consistent with the measurement of
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D of the single molecule experiments on T7 RNAP or hOgg1. If the potential well is made

narrower by increasing n in Eq. 2.2.16, the disordered potential will have even less effect

on D.

Figure 2.3.1: (a) Normalized diffusivity D/D0 vs. roughness σ of the continuous random
potential Eq. 2.2.16 (Model III). Squares are obtained by Brownian dynamics (BD) sim-
ulations, and the line is from the MFPT. (b) Histogram of particle distribution over 50
potential wells, where the black bars are obtained by BD simulations, and white bars from
Boltzmann weights with σ = 2.4kBT . The inset is the histogram of particle distribution
over the central 1,000 base pairs from a set of 3,000 base pairs for seven obtained by BD
simulation over with σ = 2.4kBT
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The final locations after 107 time steps simulation of the 30,000 non-interacting particles

were used to generate the equilibrium number density distribution over the potential well,

which is shown in Fig. 2.3.1b, and found to match that from the Boltzmann distribution,

which indicates that equilibrium was achieved in this run. As a result, our proposed con-

tinuous random potential indicates that the sliding of T7 RNAP can be rapid without losing

searching fidelity.

To test and improve this model, long DNA with repeated base pair sequences (e.g., T7

RNAP promoter sequences) could be used to compute the 1D diffusion coefficients of T7

RNAP on different periodic potential landscapes, and the results compared to experimental

measurements of the 1D diffusion coefficient.

2.4 Conclusions

Using several models of protein/DNA diffusion, and multiple methods of solving those

models, we have explored conditions under which proteins might find and react quickly

with their target sites on DNA. A key consideration is whether the targeting is reaction

limited or diffusion limited. In the former case, thermodynamic considerations dominate,

and the stability or residence time of the target binding is paramount. The targeting rate is

given by the reaction rate constant at the target site times the concentration or probability

of the protein to be at this site and a deep potential well at the target site is needed so that

the protein has a high thermodynamic probability to be at the target site long enough to

react. If this is achieved by creating a very rough free energy landscape, then the 1D dif-

fusivity can be greatly slowed, possibly pushing the process towards the diffusion-limited

regime. The targeting in the diffusion-limited regime is set by the concentration or proba-
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bility of the protein far from the reaction site, times the average diffusivity of the protein,

divided by the diffusion distance, which is the square root of the ratio of diffusivity to

the dissociation constant. We showed that for diffusion distances of order 100 basepairs,

using a diffusion coefficient averaged over the whole landscape gives good accuracy for

the targeting rate, unless the landscape roughness exceeds around 3 kBT . Fast targeting

in the diffusion-limited regime is enhanced by a high diffusivity, which requires an effec-

tively shallow free energy landscape. This can be achieved even if the bare landscape is

quite rough, in a number of ways explored here. Firstly, the shape of the landscape mat-

ters, and if barriers are narrow and sharply peaked, then they are effectively less rough.

Secondly, if proteins can “hop”-i.e., briefly escape into solution and rapidly re-bind at a

nearby site, then diffusion is much faster. Finally, if the protein can change conformation

and undergo rapid diffusion in a conformation in which it does not recognize the DNA,

then if the switching between searching and recognition states is fast compared to diffu-

sion, the search efficiency is improved. Both “hopping” and introduction of a “searching”

mode can under such circumstances be modeled simply by putting a maximum threshold

into an otherwise Gaussian random landscape. We have shown that multiple theoretical

methods, including first passage time methods, and the Festa-d’ Agliano formula, allow us

to compute analytically the diffusivity of such models. We have confirmed our analytical

expressions using Brownian dynamics and Kinetic Monte Carlo methods. Further progress

in understanding this complex problem will probably require more detailed understanding

of the actual free energy landscape experienced by real proteins. However, the theoretical

results presented here should help guide and interpret future experimental work.
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CHAPTER III

DNA condensation by partially acetylated PAMAM

dendrimers: effects of dendrimer charge density on

complex formation

The ability of poly(amido amine) (or PAMAM) dendrimers to condense semiflexible dsDNA

and penetrate cell membranes gives them great potential in gene therapy and drug deliv-

ery but their high positive surface charge makes them cytotoxic. Here, we describe the

effects of partial neutralization by acetylation on DNA condensation using light scattering,

circular dichroism, and single molecule imaging of dendrimer-DNA complexes combed

onto surfaces and tethered to those surfaces under flow. We find that DNA can be con-

densed by generation-five (G5) dendrimers even when the surface charges are more than

65% neutralized, but that such dendrimers bind negligibly when an end-tethered DNA is

stretched in flow. We also find that when fully charged dendrimers are introduced by flow

to end-tethered DNA, all DNA molecules become equally highly coated with dendrimers

at a rate that becomes very fast at high dendrimer concentration, and that dendrimers
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remain bound during subsequent flow of dendrimer-free buffer. These results suggest

that the presence of dendrimer-free DNA coexisting with dendrimer-bound DNA after bulk

mixing of the two in solution may result from diffusion-limited irreversible dendrimer-

DNA binding, rather than, or in addition to, the previously proposed cooperative binding

mechanism of dendrimers to DNA.

3.1 Introduction

Macroions such as cationic dendrimers, polylysine, poly(ethylene imine), and surfactants

can be used to condense semiflexible DNA, and so serve as potential substitutes for viral

vectors in gene delivery [78–82]. A large number of studies on DNA condensation by

poly(amidoamine) or PAMAM dendrimers have been performed because of its great po-

tential as a gene carrier. The interaction between PAMAM dendrimer and DNA is mainly

electrostatic, as is the case with histones and DNA, and dendrimers of generation 5 or 6

have diameters roughly comparable to those of histones. Therefore, PAMAM dendrimers

also provide an interesting model to study some facets of chromatin formation. To de-

termine how the interaction between dendrimers and DNA affects complex formation,

the dendrimer size or generation [83], salt concentration [84], pH [85], and surface

groups [86] have been varied, and the morphologies and local structures of the result-

ing DNA-dendrimer complexes have been resolved using cryo-TEM [87] and small angle

X-ray scattering [85]. The binding between fully charged dendrimers and DNA has been

shown to be irreversible using optical tweezers to pull on dendrimer-bound DNA without

dislodging the bound dendrimers [13].

Although PAMAM dendrimers can bend and condense semiflexible DNA, fully charged den-
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drimers are toxic to living cells because of their highly charged surfaces. Thus, reducing

dendrimer surface charge density by PEGylation [88] or acetylation can be very important

for the application of dendrimers in vivo. Besides, varying the surface charge density of

nanoparticles might be used to improve understanding of chromatin formation, since den-

drimers with the same size and charge density as histones can be used to compact DNA

and explore whether some aspects of chromatin formation can thereby be induced. Var-

ious models of polyelectrolyte condensation by macroions have [89, 90] been proposed,

which can also be validated if the surface charge density of the dendrimer can be accu-

rately controlled. In addition, weakly charged nanoparticles may melt rather than bend

dsDNA [91], which is also of great interest.

In this work, we systematically investigate the interactions between DNA and dendrimers

acetylated to various extents using dynamic light scattering, fluorescence spectroscopy,

circular dichroism, and fluorescence microscopy imaging. The aim is to help find the ap-

propriate charge density of PAMAM dendrimer for condensing DNA with less cytotoxicity

and to help test and clarify the proposed cooperative binding mechanism [78, 92] of the

DNA-dendrimer interaction.

3.2 Results and discussion

3.2.1 Dynamic Light Scattering

DNA and PAMAM dendrimers (generation 5) were acetylated to various extents, mixed in

10 mM NaBr solutions, and studied by dynamic light scattering. According to our titration

experiments (data not shown here), the number of charges on non-acetylated G5 den-
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drimers is 114, instead of 128, the number of positive charges on a perfectly synthesized

dendrimer [93]. Therefore, assuming that defects that lead to the reduced charge occur

randomly, the standard deviation of number of charges on a non-acetylated dendrimer can

be approximated by:V ar[Nk] = 1 − Nk

(
Nk

N

)
where N is the maximum number of charges

possible, which equals 128, and Nk is the measured mean value of 114. If the acetyla-

tion of dendrimer terminal groups is also taken to be random, the standard deviation of

the number of charges on an individual acetylated dendrimer can also be approximated

by the equation above. Thus, the numbers of positive charges, and their standard devia-

tions computed by propagation of errors using both sources of variation mentioned above,

on dendrimers acetylated to 0%, 15%, 30%, 50%, 65%, and 85%, are 114 ± 3.5, 97 ± 5.2,

80± 6.0, 57± 6.5, 40± 6.2, 17± 4.0, respectively. The relaxation time distributions of pure

dsDNA as well as DNA-dendrimer complexes were obtained from autocorrelation func-

tions of scattering light intensities using analysis with CONTIN 2DP. Selected relaxation

time distributions of DNA-dendrimer complexes are shown in Figure 3.2.1 with scattering

angle θ fixed at 50◦. The apparent hydrodynamic radii of the DNA-dendrimer complexes

were computed using the peaks of the relaxation time distributions along with the Einstein-

Stokes equation, and plotted in Figure 3.2.2. Note that rcharge here and in the following

discussion is defined as the ratio of the total number of positive charges on all dendrimers

to the total number of negative charges on all DNA molecules in the solution, that is,

rcharge = [NH+
3 ]/[PO−4 ]. All the primary amine groups (pKa = 9.0 [94] ∼ 10.77 [95])

were assumed to be protonated in pH 7∼ 8 in this study. This assumption was supported

by titration experiments and the observation that solutions become cloudy when rcharge

defined above is close to unity. In this thesis, we limit ourselves to the cases with rcharge

less than 1 to study DNA-dendrimer complexes before phase separation takes place.
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Figure 3.2.1: Relaxation time distributions of PAMAM dendrimer/DNA samples measured
at scattering angle θ = 50◦. (a) non-acetylated G5/DNA. (b) 30% acetylated G5/DNA. (c)
50% acetylated G5/DNA. (d) 65% acetylated G5/DNA. (e) 85% acetylated G5/DNA

The relaxation time distribution of 0.15 mg/mL pure salmon sperm DNA (2000 ± 500 bp)

in 10 mM NaBr solution is plotted in Figure 3.2.1e, where rcharge is 0. The two peaks of the

DNA relaxation time distribution correspond to the internal (shorter τ) and translational

(longer τ) modes of DNA. The apparent hydrodynamic radius of DNA computed based

on the translational peak is 110 nm, in agreement with previous studies [78, 83]. DNA

concentrations for all dynamic light scattering measurements were fixed at 0.15 mg/mL,

while the dendrimer concentration was varied to obtain the specified rcharge. The apparent

hydrodynamic radius of the G5 PAMAM dendrimer was determined to be around 3 nm by

DLS, indicating that aggregation of dendrimer in the absence of DNA was negligible.

As shown in Figure 3.2.1a, non-acetylated G5 dendrimer-DNA complexes give sharp peaks,

indicating that the complexes size distribution is relatively narrow. Comparing the posi-

tions of these peaks to those of the pure DNA, we can conclude that the former, which
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correspond to faster relaxation, and therefore smaller objects, represent condensed DNA-

dendrimer complexes. It should be noted that values of rcharge of 0.28, 0.57, 0.86, and

1.14 correspond to rmolar values of 10, 20, 30, and 40, where rmolar is defined by [den-

drimer]/[DNA]. The decay time distributions of the acetylated denrimer-DNA complexes

with the same molar ratios (rmolar) are plotted in Figure 3.2.1b-e, except for the pure DNA

curve at the bottom of Figure 3.2.1e. For the 30% acetylated dendrimer (Figure 3.2.1b) and

50% acetylated dendrimer (Figure 3.2.1c), the decay time distributions are much broader

than for the non-acetylated dendrimer in Figure 3.2.1a, probably because the number of

positive charges on the acetylated dendrimers varies somewhat from dendrimer to den-

drimer, as estimated in the standard deviations in numbers of charges given above. For the

dendrimers with the highest acetylation ratios (65%, 85%), the relaxation time distribu-

tions exhibit two peaks, the shorter of which is presumably contributed by internal motion

within the DNA complex, while the slower mode corresponds to translational motion of

the complexes. However, the slower mode for 85% acetylated dendrimer-DNA is almost

the same as for pure DNA, indicating that the weakly charged dendrimer (∼ 15 charges

per dendrimer) was not able to condense the DNA significantly. This result agrees with

a previous study of DNA/Poly-L-lysine [80], which showed that a transition of the DNA-

polycation complex conformation occurs when the number of charges on the polycation

is decreased. Highly charged polycations can bend and condense dsDNA while weakly

charged polycation only attach to it without producing compaction.

The relaxation time distributions of acetylated dendrimer-DNA complexes with higher mo-

lar ratios (above 40) are not presented here, since for these cases a small fraction of the

most highly charged dendrimers from the polydisperse charge distribution can condense

the DNA even when the average charge per dendrimer is low and this small fraction dom-
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inates the dynamic light scattering signals.

Figure 3.2.2: Apparent hydrodynamic radii of dendrimer/DNA complexes measured at
θ = 50◦. (a) non-acetylated G5/DNA. (b) 30% acetylated G5/DNA. (c) 50% acetylated
G5/DNA. (d) 65% acetylated G5/DNA. Some typical error bars are given

The apparent hydrodynamic radii of the DNA-dendrimer complexes are plotted in Figure

3.2.2. For highly charged dendrimers (0%, 30%, 50% acetylated), the hydrodynamic radii

of the complexes are around 50 nm. Therefore, this level of acetylation of primary amine

groups on the PAMAM dendrimer does not significantly reduce its ability to condense DNA,

despite the lessening of the dendrimer charge, which is needed for condensation [90].

Since reduction of the charge density on the dendrimer can reduce the cytotoxicity of den-

drimer significantly [88], partial acetylation of the primary amine groups of PAMAM den-

drimer might have significant potential in gene therapy. For highly charged dendrimers, as

rcharge increases, the apparent hydrodynamic radius of the complexes also increases (Fig-

ure 3.2.2a), which is likely the result of formation of large complexes containing more than
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one DNA chain. However, for weakly charged dendrimers (65% acetylated), the complex

radius decreases when rcharge is increased up to 0.5, as the weakly charged dendrimer at

low concentration binds to DNA without compaction, but compaction apparently increases

with increasing numbers of bound dendrimers per DNA molecule. Based on our dynamic

light scattering experiments, to condense DNA in the gene delivery process, PAMAM den-

drimers with around half of their primary amine groups acetylated might be a good choice.

To determine whether the polydispersity of charges on acetylated dendrimer will affect the

gene delivery, transcription experiments should be performed.

3.2.2 Steady-State Fluorescence Spectroscopy

To determine the fraction of free DNA in the DNA-dendrimer mixture, steady-state fluo-

rescence spectroscopy experiments were carried out 10 min after mixing DNA-dendrimer

complex solutions with nucleic acid stain GelStar R©. The excitation wavelength was fixed

at 493 nm, and emission light intensity was recorded at 527 nm. The normalized emis-

sion light intensity of dendrimer-DNA complexes for various dendrimer concentrations are

plotted in Figure 3.2.3.

GelStar R© was assumed to bind only to free DNA, that is to portions of the DNA not blocked

by dendrimer [78]. After reacting GelStar R© with DNA, the emission light intensity in-

creased dramatically although the emission from free GelStar R© was negligible. Previ-

ous studies [78, 83] assumed that GelStar R© is not able to react with dendrimer-bound

DNA. This is validated by our non-acetylated G5-dendrimer results, for which the normal-

ized emission light intensity is roughly equal to (1 − rcharge); see Figure 3.2.3. Therefore,

GelStar R© only binds to the free DNA segments which have not been neutralized by den-
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drimer, since the interaction between DNA and GelStar R© is also dominated by electrostatic

force. However, the relation I/I0 = (1 − rcharge) does not hold for DNA-acetylated den-

drimers. This is apparently because the binding affinity of acetylated dendrimers to DNA

decreases as the acetylation ratio increases. One implication is that the DNA segments

condensed by dendrimer with fewer charges might still be accessible to proteins.

Figure 3.2.3: Emission light intensity (527 nm) versus rcharge for DNA condensed by
dendrimers with various acetylation ratios. DNA-0% acetylated dendrimer (squares); DNA-
15% acetylated dendrimer (circles); DNA-25% acetylated dendrimer (diamonds); DNA-50%
acetylated dendrimer (up triangles); DNA-70% acetylated dendrimer (down triangles)

3.2.3 Circular Dichroism Spectroscopy

Using circular dichroism (CD) spectroscopy, we explore the DNA conformations within

DNA-dendrimer complexes. The DNA concentrations were fixed, with rcharge also fixed to
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0.2 for various dendrimers. The CD spectra for different complexes are shown in Figure

3.2.4. The negative peak (245 nm) and positive peak (275 nm) of free DNA are consistent

with CD spectra of B-form dsDNA [96, 97]. CD spectra of DNA-dendrimer complexes ex-

hibit the same shape as the free B-form dsDNA. The shift of peaks is negligible. Therefore,

at low charge ratio (rcharge), the DNA in DNA-acetylated dendrimer complexes remains in

the classical B-form. In other words, dendrimers and acetylated dendrimers bend DNA

without disrupting the local helical structure of DNA.

Figure 3.2.4: CD spectra of pure DNA and DNA-PAMAM dendrimer complexes in HEPES
(pH 7.3). Free DNA (solid line); DNA-0% acetylated dendrimer (squares); DNA-15% acety-
lated dendrimer (circles); DNA-25% acetylated dendrimer (diamonds); DNA-50% acety-
lated dendrimer (up triangles); DNA-70% acetylated dendrimer (down triangles)
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3.2.4 Molecular Combing Assay

Linearized λ-DNA has a hydrophobic 12-base overhang on each end, which allows it to

stick and anchor at each end to a polystyrene-coated cover glass [15, 98]. When the

PS coated cover glass is pulled out from DNA solution, the YOYO-1 stained free DNA

molecules are aligned on the cover glass surface by the high air-water surface tension, and

then are visualized by a fluorescence microscope with blue excitation (Figure 3.2.5b). We

also fluorescently labeled dendrimers with amine-reactive tetramethylrhodamine isothio-

cyanate (TRITC) dye molecules. TRITC-labeled PAMAM dendrimer-DNA complexes were

visualized by sequentially imaging DNA and dendrimer molecules using blue and green

excitation, respectively. The overlays of DNA and dendrimer images are shown in Figure

3.2.5c. Since the λ-DNA molecules were condensed by dendrimer, even the high surface

tension (up to 4.0 × 10−10N) is not able to stretch the DNA out to its full contour length

(16 µm). Thus, we are able to image the condensed form of λ-DNA directly. Here, we

only present images of dendrimer-DNA complexes at low molecular ratio (100 dendrimers

per DNA) where the dendrimer-DNA complexes are somewhat condensed but do not form

dense globular particles, and a few complexes stick to the PS surface so that we can image

them. For dendrimer-DNA complexes with higher molecular ratio (for example, around

1,000 dendrimer/DNA), the complexes do not stick to the surface, possibly because the

two hydrophobic ends of the λ-DNA at these ratios are trapped within the denser complex

particle, preventing the DNA from binding to the PS surface.

In the dendrimer-DNA complexes, as shown in Figure 3.2.5c, the dendrimer molecules

concentrate along some regions of the DNA, while other regions remain dendrimer free.

This is consistent with a previous study [78] in which dendrimer-bound DNA was shown

to coexist with dendrimer-free DNA. These earlier results were interpreted as evidence
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that the dendrimer molecules bind to the DNA in a “cooperative” manner, in which den-

drimers have higher binding affinity to DNA with dendrimers already attached to it than to

bare DNA. In what follows, we suggest that instead of, or along side of, cooperative bind-

ing, that irreversible diffusion-limited binding might help account for these results. In any

event, the dendrimer-DNA complexes, once formed, are strong enough to resist unraveling

during combing, implying a resistance to a force of around 500 pN per complex [98].

Figure 3.2.5: (a) Experimental setup for molecular combing. (b) Immobilized, aligned,
YOYO-1 stained λ-DNA on PS surface. (c) λ-DNA/G5 PAMAM dendrimer (TRITC labeled)
complexes deposited on PS coated cover glass surface (green: λ-DNA, red: PAMAM den-
drimer)

We also incubated λ-DNA molecules aligned on the PS surface with a TRTIC-labeled G5

dendrimer solution, expecting dendrimers might slide one dimensionally along the DNA

deposited on the surface, since a previous study [66] revealed that electrostatic forces

were sufficient to confine the charged nanoparticle in one dimension. However, rather

than experiencing 1D diffusion along DNA as some DNA-binding proteins do, G5 den-
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drimers either stick to the DNA or the PS-coated surface or performed simple 3D Brownian

diffusion (data not shown). The failure to undergo 1D diffusion along DNA might be due

to the high binding energy [90] of the irreversible interaction of charged dendrimers with

DNA [13].

3.2.5 Flow Stretching Assay

After biotinylated λ-DNA with one end attached to a neutravidin monolayer was deposited

on the flow channel surface, the YOYO-labeled DNA was stretched by a shear flow. Based

on parabolic flow assumption, at the flow rate imposed, the shear rate at the free end of

the DNA, which based on the DNA coil size is estimated to be about 1 µm above the cover

glass surface, is around 300 s−1, which is able to stretch the DNA almost to its full contour

length.

A TRITC-labeled G5 dendrimer (non-acetylated) solution was then introduced into the

flow cell to interact with the tethered λ-DNA. The binding process was visualized and

recorded by fluorescence microscopy using green excitation. We observed that the den-

drimer bound and decorated the entire λ-DNA molecule, as opposed to the partial binding

we observed in the molecular combing assay. When the λ-DNA is fully stretched out, each

segment of the DNA apparently has almost the same probability of binding a dendrimer

molecule. Apparently because the binding is irreversible and the well-mixed dendrimer so-

lution is continuously injected into the flow channel, the dendrimers can cover the whole

DNA chain evenly. After formation of the dendrimer-DNA complex, we used TE buffer to

wash out the flow channel. No significant fluorescence decrease was observed on the teth-

ered DNA until photocleavage or neutravidin detachment occurred, usually around 5 ∼ 10
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min after illumination, which confirmed that dendrimer attached to DNA irreversibly.

Figure 3.2.6: (a) Experimental setup for imaging dendrimer binding to flow-stretched
DNA with one end tethered to the surface. (b) Green: tethered YOYO-labeled λ-DNA in
flow; red: tethered TRITC-labeled dendrimer-DNA complex in flow. (c) Distribution of free
λ-DNA molecules lengths. (d) Distribution of dendrimer-DNA complex lengths

Figure 3.2.6c,d show the length distributions of both free DNA and dendrimer-DNA com-

plexes. 77 λ-DNA lengths as well as 62 dendrimer-DNA complexes lengths were recorded

for these distributions. The error bar was approximated using equation:V ar[Nk]=Nk(
1− Nk

N

)
, where Nk is the number of data points of kth bin and N is the total number of

data points. The lengths distributions are wide, which is mainly due to the photocleavage

of lambda-DNA, which shortens some of the DNA molecules before imaging is complete.

However, these two histograms indicate that flow-stretched tethered DNA molecules are

condensed by G5 dendrimer bound to the DNA chains, agreeing with optical tweezer ex-

periments [13].

The interaction between flow-stretched λ-DNA and TRITC-labeled G5 PAMAM dendrimers
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with 50% primary amine groups acetylated were studied using the same procedures. Be-

cause the neutravidin was physically attached to the cover glass, it could easily detach the

surface under high drag force. Thus, we only imaged the DNA in flow for less than 30 min.

Within this time, binding of 50% acetylated dendrimer to DNA was not observed. This

indicates a significantly reduced binding affinity upon partial acetylation of the dendrimer,

in agreement with our dynamic light scattering results as well as fluorescence spectroscopy

results discussed above.

3.2.6 Cooperative Binding vs. Diffusion Limited Reaction

The differences in DNA-dendrimer complex conformations between the molecular comb-

ing assay and the flow stretching assay suggest an explanation to the observed apparent

“cooperative binding” of dendrimers to DNA. “Cooperative binding” was proposed based

on the coexistence of free DNA and compacted DNA-dendrimer complexes [78,92] formed

in bulk solution. However, no coexistence of free DNA with complexes was observed in

our flow-stretching assay. It is possible that the “cooperative binding” is much stronger

in coiled DNA than in stretched DNA, perhaps because of coupling between DNA bending

and dendrimer binding. However, another possibility is that kinetics limitation plays a

role. According to our imaging results, this irreversible DNA-dendrimer binding reaction

can be very fast. For example, the tethered DNA was covered by dendrimer in just minutes

when we used 1 nM dendrimer solution, while it is covered by dendrimer instantly within

our temporal resolution, which is a few seconds when using a higher concentration of

dendrimer (>20 nM). Thus, the formation of DNA-dendrimer complexes is likely diffusion

limited. If so, when rcharge is less than unity, coexistence of free DNA and DNA-dendrimer
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complexes in bulk experiments might be simply due to the presence of free DNA that had

not yet encountered free dendrimer before the free dendrimer was exhausted from the so-

lution. Distinguishing between cooperative and simply irreversible binding would require

very slow and careful mixing of dendrimers with DNA, to ensure that dendrimers can

access every segment of DNA with equal probability before irreversible reaction occurs.

3.3 Experimental

3.3.1 DNA Preparation

Salmon sperm DNA (2,000 bp, 10.0 mg/mL in TE buffer) was purchased from Invitrogen

(Grand Island, NY, USA) and used without further purification. Before using it, the ratio of

absorbance at 260 nm to that at 280 nm was checked by a GeneQuant spectrophotometer,

and found to be above 1.8, which is required to ensure that protein contamination was

negligible. Lambda phage DNA (48.5 kbp) was purchased from New England Biolabs

(Ipswich, MA, USA), and heated at 65 ◦C for 10 min followed by quick cooling to restore

the molecules to linear form. For lambda DNA staining, the intercalating dye YOYO-1

(Molecular Probes, Grand Island, NY, USA) was diluted to 100 nM in Tris-EDTA buffer (pH

8.0) and mixed with lambda DNA at a staining ratio of 1 dye per 20 bp for both combing

and the flow-stretching assay. Stained λ-DNA (3 nM) was ligated to a biotinylated 12mer

(5’-agg tcg ccg ccc-biotin, 30 nM, Operon) using T4 DNA ligase (New England Biolabs) for

flow stretching.
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3.3.2 PAMAM Dendrimer Preparation

Generation 5 PAMAM dendrimer was purchased from Dendritech and purified by dialy-

sis against water as described elsewhere [93, 99]. The mixtures of acetic anhydride and

PAMAM dendrimer were prepared in anhydrous methanol. The reactions between acetic

anhydride and dendrimer were carried out in a glass flask at room temperature for 24

h. The ratio between acetic anhydride and dendrimer was varied to synthesize PAMAM

dendrimers with various degrees of acetylation. The standard deviation of the average

acetylation ratio was about 5%, based on titration experiments. The reaction products

were dialyzed first against PBS buffer (pH 8.0) and then against deionized water over

night. The purified acetylated PAMAM dendrimer samples were lyophilized and stored at

-20 ◦C. More details about dendrimer acetylation can be found elsewhere [100]. TRITC

labeled PAMAM dendrimer was prepared in methanol and purified by 10 KD MWCO dial-

ysis and ultra-filtration. Purified TRITC labeled dendrimer was stored at -20 ◦C and kept

away from light.

3.3.3 Dynamic Light Scattering

Salmon sperm DNA and PAMAM dendrimer with various degrees of acetylation were pre-

pared in 10 mM NaBr solutions and filtered by 0.2 µm Minisart filters (Sartorius, New

York, NY, USA). The mixtures of DNA and dendrimer were prepared by adding 500 µL

dendrimer solutions into equal volume of DNA solutions. The concentrations of DNA in all

mixtures were fixed at 0.15 mg/mL. Dynamic light scattering measurements were carried

out at 25 ◦C after at least 3 h-reaction. Then the pH of mixtures were determined to be 7 ∼

8, where the primary amine groups of the PAMAM dendrimer are protonated. More details
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about DNA dendrimer complex formation can be found elsewhere [78]. All dynamic light

scattering experiments were conducted on an ALV (Langen, Hessen, Germany) compact

goniometer system. The wavelength of incident laser light was λ = 488 nm (Innova 70C

argon ion laser, Coherent Inc., Santa Clara, CA, USA). Scattered light was collected by dual

avalanche photodiode detectors, which were in the transmission mode and then sent to

a multi tau correlator (ALV-5000E). The time-averaged normalized intensity autocorrela-

tion function was constructed by cross correlating the signal. The hydrodynamic radius

of the complex particle was calculated from the decay times using CONTIN 2DP analysis

together with the Stokes-Einstein equation. Light scattering angle was fixed at 50◦ for all

measurements.

3.3.4 Fluorescence Spectroscopy

Steady-state fluorescence emission measurements were carried out on Fluoromax-2 fluo-

rimeter using a 10 × 10 mm quartz cuvette (Starna, Atascadero, CA, USA). The excitation

wavelength was set to 493 nm. Emission spectra were recorded between 400 nm and 700

nm in 1 nm increments. Integration time was set to 0.1 s. For each sample, 3 scans were

accumulated and averaged. Salmon sperm DNA-dendrimer complexes solutions were in-

cubated with equal amount of GelStar R©nucleic acid stain for more than 10 min before

measurement, and DNA final concentrations were fixed at 2 µg/mL.

3.3.5 Circular Dichroism Spectroscopy

All circular dichroism (CD) measurements were conducted on an Aviv model 202 circu-

lar dichroism spectrometer at 25 ◦C using a 10 mm quartz cell. Spectra were recorded
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between 220 nm and 320 nm with 1 nm increments and 1 s averaging time. The band-

width was set to 1 nm. Five scans were averaged for each sample. Salmon sperm DNA

and PAMAM dendrimer with various degrees of acetylation were incubated together to

form complexes in 20 mM HEPES buffer for at least 3 h before CD measurements. DNA

concentrations in the final solutions were fixed at 65.0 µg/mL. All CD measurements were

baseline corrected by subtracting the blank from the recorded spectra.

3.3.6 Molecular Combing Assay

For molecular combing, YOYO-1 stained λ-DNA was diluted into 2 pM in TE buffer (pH

8.0). λ-DNA was mixed with TRITC labeled PAMAM dendrimer to form complexes. For

DNA-dendrimer complexes solutions, the ratio between dendrimer and DNA was set to

100. 100 mg/mL polystyrene (MW 10,000, Sigma, St. Louis, MO, USA) solutions were

prepared in toluene and spin-coated onto a cover glass (25 × 25 mm, Corning, No. 1)

at 3,000 rpm for 30 s. Then the PS-coated cover glasses were each dipped into either

DNA solution or DNA-dendrimer complexes solutions for 3 min and then pulled out at a

constant rate (200 µm/s) using a linear stage (Zaber, T-LLS series, Vancouver, BC, Canada),

as shown in Figure 3.2.5a.

3.3.7 Flow Stretching Assay

Cover glasses (25 × 25 mm, Corning, No. 1) and glass slides (Fisher, Pittsburgh, PA, USA)

were cleaned by nitric acid and hydrochloric acid and then rinsed by deionized water.

Then the cover glass was attached to the slide using double-sided tape to form the bottom

wall of a flow channel (length 20 mm, width 8 mm and height 80 µm). The flow channel
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was incubated first by 5 mg/mL neutravidin (Invitrogen) for 1 h and then by 2 mg/mL

α-casein (Sigma) for 0.5 h. Biotinylated λ-DNA (3 nM) was injected into the flow channel

and reacted with the neutravidin attached to the flow channel surface for 5 min. Then

the flow channel was washed by TE buffer (pH 8.0) for 1 min to expel the free DNA. 1

nM TRITC labeled PAMAM dendrimer in TE buffer was then introduced to flow channel

at a constant rate (10 mL/h) using a syringe pump (KD Scientific 100 series) to stretch

tethered λ-DNA for 20 min which allowed the dendrimer to bind to the λ-DNA, which is

shown in Figure 3.2.6a.

3.3.8 Fluorescence Microscopy

YOYO-1-stained λ-DNA and TRITC-labeled PAMAM dendrimer were visualized by a Nikon

TE2000-U inverted fluorescence microscope with a front-illuminated CCD camera (Cas-

cade 512F, Roper Scientific, Tucson, AZ, USA). A dual-band excitation and emission FITC-

TRITC filter with X-CITE R©120 series lamp were used to illuminate the specimens. The

integration time for each frame was set to 200 ms. The camera exposure time and filter

wheel shutter were controlled by MetaMorph 7.0.

3.4 Conclusions

In conclusion, PAMAM dendrimers with a fraction of their primary amine groups acetylated

have were used to condense DNA and the complexes were characterized using light scatter-

ing, circular dichroism, and optical fluorescence microscopy both after combing complexes

formed in bulk solution onto a hydrophobic surface, and during complex formation onto
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flow-stretched DNA tethered onto a surface. Using dynamic light scattering, we confirmed

that unless a high fraction (>70%) of primary groups was neutralized the acetylated den-

drimer was able to compact DNA even with reduced charge, and therefore presumably

with reduced cytotoxicity. The bound DNA retains its B-form, despite the condensation,

and condensed form is strong enough to resist the forces created by molecular combing,

which are on the order of 500 pN [98]. We imaged this dendrimer-DNA binding process in

solution and in real time for the first time. When DNA tethered to a surface was exposed

to dendrimer introduced continuously by flow, we observed all DNA molecules gradually

load up with dendrimers, which were not washed out by subsequent dendrimer-free so-

lutions. We did not observe co-existence of dendrimer-loaded DNA with dendrimer-free

DNA, and at high concentrations of dendrimer, the DNA became loaded with dendrimers

almost instantly. Thus, taken together, our single-molecule experimental results indicate

that the coexistence of DNA/dendrimer complexes with free DNA observed in bulk solu-

tion [78, 92] might not be due to cooperative binding of dendrimer to DNA, but rather

to diffusion-limited and irreversible reaction between dendrimer and DNA that can occur

when dendrimer and DNA are mixed in the bulk.

64



CHAPTER IV

Monte-Carlo simulations of PAMAM dendrimer-DNA

interactions

We use Monte Carlo simulations to determine the influence of poly(amido amine) (PA-

MAM) dendrimer size and charge on its interactions with double-stranded DNA confor-

mation and interaction strength. To achieve a compromise between simulation speed and

molecular detail, we combine the coarse-grained DNA model of de Pablo et al. [35] which

resolves each DNA base using three beads —and thereby retains the double-helix structure

—with a dendrimer model with resolution similar to that of the DNA. The resulting pre-

dictions of the effects of dendrimer generation, dendrimer surface charge density, and salt

concentration on dendrimer-DNA complexes are in agreement with both experiments and

all-atom MD simulations. The model predicts that DNA wraps a fully charged G5 or G6

dendrimer at low salt concentration (10 mM) similarly to a histone octamer, and for the

G5 dendrimer, DNA super helices with both handednesses occur. At salt concentrations

above 50 mM, or when a high fraction of dendrimer surface charges are neutralized by

acetylation, DNA adheres but does not compactly wrap the dendrimer, in agreement with
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experimental findings. We are also able to simulate pairs of dendrimers binding to the

same DNA strand. Thus, our mesoscale simulation not only elucidates dendrimer-DNA in-

teractions, but also provides a methodology for efficiently simulating chromatin formation

and other cationic macroion-DNA complexes.

4.1 Introduction

Extensive experimental studies, e.g., cryo-TEM [83,87], small angle X-ray scattering [85],

and dynamic light scattering [78, 101], have recently been performed to investigate the

size and morphology of complexes of cationic poly(amido amine) (PAMAM) dendrimer

with double-stranded DNA. This interest is driven by the ability of this dendrimer to con-

dense dsDNA, opening up possible applications in gene delivery [102, 103]. Since the

strongest interaction between cationic dendrimers and DNA is electrostatic, the size as

well as the morphology of the complex are highly dependent on salt concentration [104],

pH [85], and dendrimer surface groups [86]. Therefore, a dendrimer-DNA model that

captures the electrostatic interaction correctly, and with appropriate resolution, would

stimulate deeper understanding of the physical properties of the complexes and help in

the design of novel dendrimers for gene delivery. In addition, dendrimers of generation

5 or larger are roughly comparable in size to histone octamers and so can model DNA-

histone interactions, and help in understanding DNA-protein interactions more generally.

However, accurate all-atom molecular dynamics (AAMD) simulations can only be applied

routinely to fairly small dendrimer-DNA systems [105, 106], since AAMD simulations are

computationally expensive. On the other hand, widely used coarse-grained (CG) mod-

els [107–110], which use bead-spring or bead-rod chains to model dsDNA as an effectively
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single-strand linear polyelectrolyte, can simulate binding and wrapping of DNA around a

dendrimer. However since the diameter of dsDNA is almost the same as the radius of

the dendrimer, the double-helix structure of DNA might be critical for local arrangement

of the DNA along the dendrimer surface and thereby strongly affect the structure of the

dendrimer-DNA complex. To the best of our knowledge, only the recent work of Cao

et al. [111], which employs Savelyev and Papoian’s double stranded coarse-grained DNA

model [112] discusses how a double helix polyelectrolyte can be captured by a charged

nanosphere, thus providing a simplified model of DNA condensation by a macroion. Note

that in Savelyev and Papoian’s DNA model, DNA melting and sequence-dependent bend-

ing were not allowed and a hard sphere with hundreds of charges evenly distributed over

its surface was used for the macroion. Such a model, while useful especially for DNA

condensation by hard, uniform nanoparticles, does not describe details of local DNA struc-

tures adsorbed to flexible nanoparticles such as dendrimers, and cannot describe local

DNA melting. To study DNA local bending and melting caused by strong attractions be-

tween a dendrimer and DNA, a finer-scale, yet still coarse-grained, DNA model is neces-

sary, one that captures the double helix structure of dsDNA, allowing DNA double strand

super-coiling, melting and re-association. Such a model, called the “3SPN” coarse-grained

model, was developed by de Pablo and co-workers [26, 35, 113, 114], in which a single

bead represents each of the phosphate, sugar, and bases, reducing the number of degrees

of freedom significantly relative to atomistic models. Moreover, this “3SPN” model can

generate accurate DNA sequence-dependent melting curves as well as an accurate persis-

tence length for double stranded DNA. Thus, the 3SPN model makes it easily affordable to

study the interactions of a relatively long strand of dsDNA (e.g., 144 bp) with dendrimers

of various generations without sacrificing the DNA local double helical structure. Another

67



main advantage of the 3SPN model is that the electrostatic force is treated using the Debye-

Hückel theory which can easily be adapted (as we do here) to compute the electrostatic

interactions with other molecules, in particular, charged dendrimers. However, since the

3SPN model is based on the classical B-form dsDNA structure, Hogsteen interactions are

not included in this DNA model.

It is worth mentioning that a CG model that incorporates both this 3SPN DNA model and

a CG dendrimer model with similar resolution has not heretofore been published. Thus,

here, we combine the charged bead-spring dendrimer model of Muthukumar and cowork-

ers [107] with the 3SPN DNA model by choosing an appropriate repulsive force between

DNA and dendrimer beads that leads to a good match to the free energy of dendrimer-DNA

binding found in all-atom MD simulations [106]. As will be discussed below, the combi-

nation of Muthukumar and de Pablo models does not significantly disrupt the local double

helix structure of the DNA.

Using this coarse-grained model, which we call the 3SPN-WM (Welch, Muthukumar [107])

model, we seek to study system-atically DNA-dendrimer complex formation as a func-

tion of dendrimer generation, dendrimer surface charge density, and salt concentration,

and to validate our coarse-grained model by comparing these simulation results to our

previous experimental work [101]. Our coarse-gained model could also be extended to

describe other DNA-macroion complexes, such as the DNA-histone complex, which is of

great biological importance. Compared to recent coarse-grained models of DNA-histone

complexes [115–117], our new coarse-grained model presented here should give more

detailed information regarding sequence-dependent bending of DNA for relatively long

DNA sequences (>146 bp). Hence, our dendrimer-DNA (3SPN-WM) model is not only

of interest in its own right, but is a good starting point for developing a new CG model
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of the DNA-histone complex which can bridge the gap between an all-atom model and a

simpler bead-spring model of this complex [115]. Such a CG model can help in the de-

sign of dendrimers with optimal surface charge density, which might increase transfection

efficiency.

4.2 Simulation model and method

4.2.1 Dendrimer model

In this thesis, a PAMAM dendrimer with an ethylenediamine core was modeled by a bead-

spring, so-called “united-atom” model [107]. An ethylenediamine (EDA) core PAMAM

dendrimer has 33% more terminal groups than the same-generation ammonia-core PA-

MAM dendrimer simulated by Welch and Muthukumar [107], and thus is less flexible

than the ammonia-core dendrimer. For an ethylenediamine-core dendrimer, the relation-

ship between the number of dendrimer beads (ND) in the CG model and the dendrimer

generation number (G) is:

ND = Ninterior +Nterminal = (2G+2 − 2) + 2G+2 (4.2.1)

where Ninterior and Nterminal are the number of interior and terminal beads, respectively.

Fig.4.2.1 shows how a generation 1 (G1) dendrimer is modeled, where the interior and

terminal beads are rendered in magenta and cyan, respectively. The mass of each bead is

113 (amu). (Assignment of specific atoms to CG beads of each color in Fig.4.2.1 was not at-

tempted, and bending and torsional potentials were not included in the dendrimer model,
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although they are present in the DNA model of de Pablo and coworkers; see Eq.4.2.7-

4.2.14) The CG model of an ammonia-core dendrimer by Welch and Muthukumar con-

tains only a single bead at the center, attached to three branches, rather than the pair

of beads attached to four branches for the ethylenediamine-core dendrimer depicted in

Fig.4.2.1 Apart from this difference, the CG model used here is identical to that of Welch

and Muthukumar [107]. Here, we include only three forces: bond stretching, excluded

Figure 4.2.1: Depiction of the bead-spring model for a generation 1 (G1) PAMAM den-
drimer. This, and other molecular depictions, were generated using Jmol: an open-source
Java viewer for chemical structures.

volume, and Coulombic. As described in ref. [107], we used the finitely extensible nonlin-

ear elastic (FENE) force to model the bond stretching energy (Eq.4.2.2).

UFENE
kBT

= −KR2

ND∑
i=1

log

[
1−

(
li − l0
R

)2
]

(4.2.2)

where UFENE is the total bond stretching energy for the dendrimer; K, set to 20.0/l20, is the

spring constant; and li is bond length of the ith bond. Also l0 = (lmax + lmin)/2, where lmax
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and lmin are the maximum and minimum bond lengths respectively, and R = lmax − lmin.

In all our simulations, lmax was set to 1.0lB, and lmin to 0.4lB, where lB is the Bjerrum

length (Eq.4.2.5) which is 7.1Å at 25 ◦C in water which are the same values as used by

Welch and Muthukumar [107]. ND is the number of dendrimer beads.

The electrostatic repulsion force between the charged dendrimer terminal beads is com-

puted using the Debye-Hückel potential [107]: (Eq.4.2.3-4.2.5) explicitly demonstrate

that the electrostatic interaction terms from de Pablo et al. and from Welch and Muthuku-

mar are identical. The second term in Eq.4.2.3 was used in the work of de Pablo et al. [35],

while the third term was used in Welch and Muthukumar [107])

Uelec
kBT

=

NT∑
i<j

qiqje
2
ce
−κrij

4πε0ε(T,C)rijkBT
= lB

NT∑
i<j

qiqje
−κrij

rij
(4.2.3)

where Uelec is the electrostatic energy and κ is inverse Debye length, which is defined by:

κ−1 =

√
ε0ε(T,C)kBT

2NAe2
cI

(4.2.4)

The Bjerrum length lB is given by:

lB =
e2
c

4πε0ε(T,C)kBT
(4.2.5)

Here rij is the distance between the ith and jth beads and qi and qj are the number of

charges on the ith and jth beads, respectively. NA is Avogadro’s number; ε0 is the vacuum

permittivity, and ε(T,C) is the temperature (T ) and salt-concentration (C)-dependent di-

electric constant. Since all the simulations were carried out at 25 ◦C, the dielectric constant

only depends on salt concentration. The definition of ε(T,C) can be found somewhere
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else [118]. ec and I are the elementary charge and ionic strength, respectively. NT is the

number of charged terminal groups on the dendrimer. To avoid overlapping of dendrimer

beads, the excluded volume potentials between all dendrimer beads were computed using

the Morse potential [107], as shown in Eq.4.2.6:

UMorse

kBT
=

σ

kBT

ND∑
i<j

[(
e−α(rij−d) − 1

)2 − 1
]

(4.2.6)

where σ = kBT/0.7; α−1 = lB/24 and d = 0.8lB. Again, ND is the number of dendrimer

beads. For rij > 9Å the excluded volume potential was cut off.

4.2.2 DNA model (3SPN.1 force field)

We used the coarse-grained model of dsDNA developed by de Pablo and coworkers [35,

113] (3SPN.1 force field) to simulate the DNA. For completeness, we list below all equa-

tions used. The constants used in these equations and further details about this force field

can be found in the original papers [35,113]. The bonded interactions of the 3SPN.1 force

field are given by:
Ubond
kBT

= β

nbond∑
i=1

[
k1 (di − di0)2 + k2 (di − di0)4] (4.2.7)

Ubend
kBT

= β

nbend∑
i=1

kθ
2

(θi − θi0)2 (4.2.8)

Utors
kBT

= β

ntors∑
i=1

kφ [1− cos (φi − φi0)] (4.2.9)

Here Ubond, Ubend, and Utors represent bond stretch energy, bending energy, and dihedral

energy respectively, with β = 1/kBT . The nonbonded, pairwise interactions between DNA
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beads are given by:
Ustck
kBT

= β

nstck∑
i=1

4ε

[(
σij
rij

)12

−
(
σij
rij

)6
]

(4.2.10)

Ubase
kBT

= β

nbase∑
i=1

4εbi

[
5

(
σbi
rij

)12

− 6

(
σbi
rij

)10
]

(4.2.11)

Unnat
kBT

= β

nnnat∑
i<j


4ε

[(
σ0
rij

)12

−
(
σ0
rij

)6
]

+ ε, rij < rcoff

0, rij ≥ rcoff

(4.2.12)

Uelec
kBT

=

nelec∑
i<j

qiqje
2
ce
−κrij

4πε0ε(T,C)rijkBT
= lB

nelec∑
i<j

qiqje
−κrij

rij
(4.2.13)

Usolv
kBT

= β

nsolv∑
i<j

εS

[
1− e−α′(rij−rS)

]2

− εS (4.2.14)

Both the base-stacking effects (Ustck), and the intra-strand interaction and hydrogen-bonding

interactions between DNA complementary base pairs (Ubase) contribute to the stiffness of

the DNA double-strand helix. A complementary base-pair is considered to be hydrogen-

bonded only when the distance between those two base beads is less than (σbi+2.0Å). The

excluded volume potential between DNA beads was included in the nonnative contact po-

tential Unnat. The electrostatic repulsions between DNA phosphate beads were calculated

from a Debye-Hückel potential, as is the case with charged dendrimer beads; i.e., Eq.4.2.13

is the same as Eq.4.2.3. The solvent-induced energy Usolv was used to capture electrostatic

correlation effects along the DNA [119]. A complete description of how to determine the

parameters and DNA related potentials can be found in Sambriski et al [35].
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4.2.3 Dendrimer-DNA interaction

Since the attractive force between DNA and the PAMAM dendrimer is dominated by elec-

trostatic interactions [105], for simplicity, we only considered two different forces between

DNA and dendrimer beads, namely the electrostatic and excluded volume forces. We again

used the Debye-Hückel potential to model the electrostatic attraction between DNA and

dendrimer beads (Eq.4.2.15). Compared to the dendrimer and DNA macroions, the salt

ions and water molecules are small enough that an implicit model for their effect hopefully

provides an adequate description.

Uelec
kBT

=

NT∑
i=1

NP∑
j=1

qiqje
2
ce
−κrij

4πε0ε(T,C)rijkBT
= lB

NT∑
i=1

NP∑
j=1

qiqje
−κrij

rij
(4.2.15)

Note NP here is the number of charged DNA beads, that is, the number of phosphate

beads. Eq.4.2.15 is the same as Eq.4.2.3 and Eq.4.2.13, except that it is summed over only

the cross-interactions between a DNA bead with a dendrimer bead. The excluded volume

potential between PAMAM dendrimer beads and DNA beads was modeled by a truncated

Lennard-Jones potential:

Uexcluded
kBT

= β

ND∑
i=1

NDNA∑
j=1


4ε

[(
σ′

rij

)12

−
(
σ′

rij

)6
]

+ ε, rij < rcutoff

0, rij ≥ rcutoff

(4.2.16)

where σ′ = 2−1/6rcutoff , where ε in the above takes the same value as assigned to this

symbol in Eq.4.2.10 and Eq.4.2.12. To determine rcutoff , we compared the potential

of mean force (PMF) computed from our CG model for a generation 3 (G3) PAMAM

dendrimer interacting with a 24 base pair dsDNA (Fig.4.3.3a) with the corresponding
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PMF for the interaction of these molecules from an all-atom molecular dynamics simula-

tion. 12 The DNA base pair sequence used in these simulations is CGCGAATTCGCGCGC-

GAATTCGCG [106,120].

4.2.4 Simulation methods

We employed a Monte-Carlo simulation method in a canonical ensemble using the classical

Metropolis sampling method to simulate the CG DNA-PAMAM dendrimer interaction. The

trial displacements of each bead ∆x, ∆y, ∆z were randomly distributed uniformly within

the range (-0.35Å,0.35Å). The acceptance probability of our simulation was around 33%.

Note we use an implicit solvent model, and periodic boundary conditions were not used.

For our umbrella sampling simulations, the reaction coordinate was defined as the distance

between the dendrimer center of mass and the center of mass of the two base pairs in the

middle of the 24 bp DNA. A harmonic potential with a force constant of 0.25 kcal mol−1

Å−2 was applied along the reaction coordinate over each of 90 successive windows in 1

Å increments. Force constants of 0.5 kcal mol−1 Å−2 were also used for limited runs, and

showed similar results to those obtained with a constant of 0.25 kcal mol−1 Å−2. For each

window, the system was equilibrated for 3× 106 Monte Carlo steps (MCS), where a single

step consists of an attempt to move a single bead. Larger force constants (e.g., above 1 kcal

mol−1 Å−2) resulted in poorer overlap of the histograms, which caused bigger errors for

the specific simulation time used here. The potential of mean force (PMF) was obtained

using the weighted histogram analysis method (WHAM) [121].
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4.3 Results and discussion

4.3.1 PAMAM dendrimer simulations

As described above, we use the dendrimer model of Welch and Muthukumar [107] to sim-

ulate a PAMAM dendrimer with an ethylenediamine (EDA) core. To test the suitability of

the model, we report here the radii of gyration (Rg) of EDA-core dendrimers of genera-

tions G3 through G6, and for G5 dendrimers acetylated to different extents. The largest

dendrimer that we simulate (G6) is represented by 510 beads.

Dendrimer generation and salt concentration effects. As shown in 4.3.1, G3-G6 PA-

MAM dendrimers show a 12% (G3) to 21% (G6) decrease in the radius of gyration (Rg) as

the salt concentration increases from 10 to 1000 mM. As expected, dendrimers of higher

generation shrink more as salt concentration increases, and repulsive forces of charged

terminal groups are reduced by ion screening. Table below compares values of R g from

our simulations with those from small angle X-ray scattering (SAXS) experiments and from

molecular dynamics simulations. The good agreement shows that the CG model of Welch

and Muthukumar can be used to obtain the correct size of the EDA-cored PAMAM den-

drimers considered here, as well as the ammonia-core dendrimers considered by Welch

and Muthukumar [107].

Note that increasing salt concentration has similar effects on dendrimer size as does in-

creasing pH, since at high pH only a fraction of the dendrimer terminal amine groups is

protonated, which weakens the repulsion between these terminal groups relative to those

with fully charged surface groups at low pH. However, the molecular dynamics simula-

tions of a G4 dendrimer by Liu et al. [122] show only a 4.9% decrease in Rg when the pH

increases from low (5) to high (>10).
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Table Radii of gyration Rg (in Å) for EDA-core PAMAM dendrimersa

Dendrimer No. of beads No. of charges Rg (1M[Na+]) Rg Rg Rg

generation (this work) Maiti et al. [123,124] Lee et al. [125] SAXS [126]

G3 62 32 13.94±0.60 11.23 (Ref. [123]) 15.8

G4 126 64 17.19±0.41 17.01±0.10 (Ref. [124]) 17.1

G5 254 128 21.05±0.52 22.19±0.14 (Ref. [124]) 25.1± 0.1 24.1

G5-90% 254 13.7±4.0 20.78±0.37 21.1± 0.1

G6 510 256 25.96±1.06 27.28±0.39 (Ref. [124]) 26.3

a Debye length in a 1M [Na+] solution is 3Å.The Rg values from the work of Maiti et

al. [123, 124] were obtained at high salt concentration with Debye length equal to 4.3Å.

The Rg values from Lee et al. [125] were obtained by MD simulations with no salt. SAXS

experiments [126] were carried out in methanol.

Figure 4.3.1: Radii of gyration of PAMAM dendrimers as a function of salt concentration.
(The error bars are standard deviations).

Acetylation effects. The surface charge density of a dendrimer affects its ability to con-

dense DNA as well as its cyto-toxicity. For example, a dendrimer with a higher surface
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charge density has a higher transfection efficiency [88], but could be more cytotoxic as it

can generate pores on the cell membrane. Thus, adjusting the dendrimer charge density

by surface modifications such as PEGylation or acetylation is of great interest. Since we

adopted a coarse-grained dendrimer model and the acetyl functional group is small com-

pared to the size of dendrimer CG beads, we simulate the acetylated dendrimer simply

by randomly assigning zero charges to some of the terminal beads of the dendrimer. The

Rg of the resulting acetylated dendrimers are plotted against percentage acetylation in

Fig.4.3.2. For each degree of acetylation, three runs at 10 mM salt concentration were av-

eraged together. For a low degree of acetylation (<50%), Rg decreases almost linearly. For

higher degrees of acetylation, a near-plateau in dendrimer size is eventually attained. A

fully neutralized G5 dendrimer has a 22% smaller radius of gyration than a non-acetylated

dendrimer, which is a somewhat greater reduction than shown by corresponding atomistic

MD simulations (∼16%) [125].

4.3.2 DNA simulations

We verified our code by simulating a 38 bp dsDNA and comparing its persistence lengths

at different salt concentrations to the results of de Pablo and coworkers [35], using the

same method described in their paper. The persistence length in that paper was defined

by 〈ū(0) · ū(s)〉 = e−s/lp, where ū(s) is the unit tangent vector at relative position s along

the DNA, and lp is the persistence length. Since different persistence length formulas

give different results for macromolecular chains [127], we only compare our persistence

length results to those of de Pablo et al. Our DNA sequence is chosen to be the same

as that used by Nandy and Maiti [105] with CG content of DNA equals to 0.659. The
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Figure 4.3.2: Radius of gyration of PAMAM dendrimer as a function of acetylation percent-
age. (The error bars are standard deviations).

persistence lengths of this specific DNA obtanined by our simulations are 43±3 nm, 39±6

nm, 74±2 nm for 150 mM, 100 mM, 10 mM salt concentrations, respectively, which agree

with the results of de Pablo and coworkers. The increase in persistence length (lp) of DNA

when salt concentration is reduced to 10 mM is caused by the stronger repulsions between

phosphate beads of DNA. Because obtaining lp using Monte-Carlo (MC) simulations is

computationally expensive, we do not obtain lp for longer DNA using our MC code.

4.3.3 Potential of mean force (PMF) of dendrimer-DNA binding

The free energy change or potential of mean force (PMF) of a G3 PAMAM dendrimer

binding to a 24 bp DNA molecule was obtained by umbrella sampling and the results are

plotted in Fig.4.3.3b. The PMFs were used for parameterization of the dendrimer-DNA
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interaction. Specifically, we compared the PMFs from our CG model with various excluded

volume cut-off distances (defined in Eq.4.2.16) to results from all-atom MD (AAMD) sim-

ulations [106]. We then chose a cut-off distance giving good agreement to the PMF from

the AAMD simulations for the G3-DNA interaction, and used this for higher generation

dendrimers as well, since the dendrimer terminal groups were the same and were repre-

sented by the same bead type regardless of the generation. However, to confirm that this

potential is adequate for other generations of dendrimer, structural parameters such as the

radius of gyration of the DNA-dendrimer complex should also be compared to results from

the AAMD simulations. As shown in Fig.4.3.3b, when rcutoff = 10Å, the minimum of the

PMF curve is located between 20Å and 30Å, and free energy change of binding reaction

is -10 kcal mol−1, which agree well with AAMD results (-10.9∼13.5 kcal mol−1) [106].

Therefore, here we use rcutoff = 10Å for all our simulations. The large difference between

the curves in Fig.4.3.3b indicates that the binding free energy is very sensitive to this cut-

off, rcutoff . This sensitivity arises from the strong distance dependence of the electrostatic

interactions between dendrimer and DNA beads. The simple cut-off scheme is chosen,

despite the sensitivity to the cut-off parameter, because our coarse-grained model cannot

capture the atomic-level interactions that determine the actual local structure. Hence we

use a cut-off tuned to ensure that at least we obtain the same PMF as is found in the all-

atom simulations, so that model correctly the net attractive interaction between DNA and

dendrimer.
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Figure 4.3.3: (a) Image of G3 PAMAM dendrimer binding a 24 bp DNA. (b) Corresponding
potential of mean force (PMF) curves for different cutoff distances (rcutoff).

4.3.4 PAMAM dendrimer-DNA complex formation

Snapshots of a 144 bp dsDNA binding to a G6 dendrimer are shown in Fig.4.3.4. Since

all our simulations were carried out using a Monte-Carlo simulation method, this binding

process does not necessarily show the actual dynamics but only one path to the final struc-

ture. A G6 dendrimer is of similar size and charge density to a histone octamer. Therefore,

just as histones do not form the classical nucleosome structures with DNA at salt concen-

trations as low as 10 mM, a G6 dendrimer attracts DNA too strongly for an equilibrium

complex structure to be achieved. The dendrimer-DNA complex shown in Fig.4.3.4.c is

only one of the multiple metastable structures we obtained in our simulations (others not

shown) after simulations up to 1.6×107 Monte Carlo steps (MCS). While the structure in

Fig.4.3.4.c is a right-handed helix, others have different handedness, or disordered struc-

tures. These metastable structures are sufficiently long-lived that their properties, such
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as Rg, could be averaged over a long enough time to obtain meaningful results. Since

dendrimer-DNA complex formation might also be kinetic-controlled in experiments [78],

the metastable structures determined here by simulation might provide physically realistic

structural information of the complexes. In the simulation depicted in Fig.4.3.4, we used

the same 144 DNA base-pair sequence given elsewhere [35].

Figure 4.3.4: Snapshots of 144bp dsDND-G6 dendrimer interaction at 10mM salt concen-
tration: (a) after 6×104 MCS, (b) after 6×106 MCS, (c) after 1.6×107 MCS.

Effects of dendrimer generation and salt concentration. To further validate our CG

model, we investigated the condensation of a 38 bp DNA by G3, G4, and G5 dendrimers

at various salt concentrations and compared the results to those of AAMD simulations 11

directly. We define rcharge by Eq.4.3.1:

rcharge =
number of positive charges on dendrimer

number of negative charges on DNA
(4.3.1)
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Note that rcharge is less than unity for G3-38 bp DNA and G4-38 bp DNA complexes but

larger than unity for the G5-38 bp DNA complex. We also simulated a G5-72 bp DNA

complex, for which rcharge<1. The base-pair sequence of the 72 bp DNA is the same as the

central 72 base-pairs of the 144 bp DNA discussed above. We limited ourselves primarily

to rcharge<1 to study DNA condensation by dendrimers rather than decoration of DNA by

dendrimers. The effects of dendrimer generation and salt concentration on complex for-

mation are summarized in Fig.4.3.5-4.3.9.

As shown in Fig.4.3.5, a DNA molecule wraps around a dendrimer tightly at low salt

Figure 4.3.5: 38 bp DNA condensed by G3, G4, and G5 dendrimers at salt concentrations
of 10, 50, and 100 mM.

concentration (10 mM), but is much straighter at high salt concentration (100 mM), due

to the stronger ion screening effects at higher salt concentration. On the other hand, for

a given salt concentration the DNA compacts more tightly with a higher generation den-
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drimer. Therefore, a high generation dendrimer at high salt concentrations behaves like a

lower generation dendrimer at lower salt concentration, in agreement with observations

by cryo-TEM [104]. (Unlike the larger dendrimer-DNA complex (G6-144 bp DNA), the

specific structures in Fig.4.3.5 can be achieved in repeat runs.)

Radii of gyration (Rg) of complexes and of the dendrimers and DNA molecules within

those complexes are plotted in Fig.4.3.6. Error bars in Fig.4.3.6 are the standard devia-

tions of Rg from 500 sampling points where bead coordinates were recorded every 1×104

MCS after 5×106 MCS equilibration. Our Rg results for G4-G5 dendrimer-38 bp DNA

complexes at 10 mM salt concentration are similar to the AAMD results [105], which fur-

ther validates our CG model of the dendrimer-DNA interaction. AAMD simulation results

for longer DNA-dendrimer complexes are unavailable. Note that the Rg values of these

complexes are very sensitive to the salt concentration. The Rg of the dendrimer alone

increases monotonically when salt concentration is reduced because the electrostatic re-

pulsion within the dendrimer molecule becomes stronger. But the Rg of the DNA in the

complex and the Rg of complex itself both decrease monotonically with decreasing salt

concentration because of increased attraction between DNA and dendrimer at the lower

salt concentration. And for 10 mM salt, even a G3 dendrimer is able to condense a 38 bp

DNA significantly.

The fractions of DNA phosphate beads adsorbed to the dendrimer surfaces for different

complexes are plotted in Fig.4.3.7a. An “adsorbed” DNA phosphate bead is defined as one

whose distance to the nearest dendrimer bead is less than lB +rcutoff = 17.1Å. As shown in

Fig.4.3.7a, the adsorption in all four complexes decreases monotonically with increasing

salt concentration, as expected. To quantify the arrangement of adsorbed DNA segments
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Figure 4.3.6: Rg of complexes (black) as well as of dendrimers (blue) and DNA molecules
(red) within those complexes as functions of salt concentrations. (a) G3-38 bp DNA, (b)
G4-38bp DNA, (c) G5-38 bp DNA,(d) G5-72 bp DNA. (The error bars are standard devia-
tions).

on the dendrimer surface, we use a curvature order parameter η [111,128] defined by:

η =
|
∑
〈i〉 r̄i,i+1 × r̄i+1,i+2|

Nd

(4.3.2)
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where r̄i,i+1 =
r′i,i+1

|r′i,i+1|
, r′i,i+1 = r′i+1 − r′i, r′i = (ri + ri+nbase

)/2, Nd is the number of adsorbed

DNA phosphate bead pairs, nbase is the total number of base pairs of the DNA, ri is the ith

phosphate bead position, and ri+nbase
is the phosphate bead position of the complementary

base. Note that Eq.4.3.2 only accounts for the cross product of adjacent vectors ri,i+1 and

ri+1,i+2 for which the ith, (i+1)th, (i+2)th base pairs were all adsorbed onto the dendrimer

(the ith base pair was considered as “adsorbed” when either ith or (i + nbase)
th phosphate

bead was adsorbed onto the dendrimer). The order parameter defined in Eq.4.3.2 is zero

when the DNA conformation is straight, and when it is randomly coiled. The curvature

order parameter could be unity if the backbone of the DNA were to bend an angle of 90◦

at each basepair, always in the same direction, forming a tight helix. This order param-

eter was originally designed for a single-strand helix-forming molecule, [128] and when

applied to each strand of a straight dsDNA molecule, taking the position vectors to be

phosphates, yields an order parameter of η = 0.4271. For straight B-form dsDNA with po-

sition vectors taken to be the midpoints between the paired phosphate beads as assumed

in Eq.4.3.2, the order parameter is nearly zero (η = 0.0076494). (For dsDNA, the order

parameter defined in Eq.4.3.2 is used to describe supercoiling of double strand DNA.)

Disordered complexes, where the DNA chain is adsorbed to the dendrimer surface ran-

domly, produce small values of the order parameter η (e.g., <0.05 (ref. [111]). Our

results (Fig.4.3.7b) shows that the degree of DNA order decreases with decreasing salt

concentration, due to more severe bending of DNA at low salt concentrations. The error

bars in Fig.4.3.7 are standard deviations over 500 sampling points, which were taken ev-

ery 1×104 MCS after equilibration. The standard deviation in the order parameter is much

larger than of the adsorption fraction because there are many microstates with similar ad-

sorption fraction but quite different order parameter, since the system energy is mainly
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controlled by the electrostatic attraction. The standard error of the mean is much smaller

than the standard deviations shown by the error bars in Fig.4.3.7.

Since a dendrimer can induce global bending of DNA double strands through strong elec-

Figure 4.3.7: (a) Fraction ω of adsorbed DNA phosphate beads and (b) order parameter η
in dendrimer-DNA complexes as functions of salt concentration. The error bars represent
standard deviations taken over 500 sampling points of the simulation.

trostatic interactions, it can also alter the local structure of DNA or even disrupt the DNA
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complementary base-pairs. To quantify this effect, we measured the DNA base-pair dena-

turing ratios (1− Φ) over 500 sampling points, which were taken every 1×104 MCS after

equilibration. We define denaturation, or hydrogen-bond breakage, as occurring when the

distance between the two complementary base beads becomes larger than (σ+ 2.0Å). The

results are presented in Fig. 4.3.8, where the error bars are the standard errors of those

500 sampling points. The denaturation fraction for a 38 bp DNA double-strand is larger

than for a 72 bp DNA, because the melting temperature of a short DNA molecule is lower

than that of a long one, and all our simulations were carried out at the same tempera-

ture. More complementary base-pairs denature in the DNA molecules condensed by the

dendrimer than in free DNAs because of bending induced by the dendrimer. Note that all

these denaturation ratios were around 0.1. Therefore, although the bending or distortion

introduced by dendrimers bound to the DNA might cause local base-pair melting, this DNA

denaturing is not strong for salt concentrations ranging from 10 mM to 100 mM. This find-

ing perfectly agrees with our previous circular dichroism (CD) experiments [101] showing

that DNA molecules remain in the classical B-form in dendrimer-DNA complexes. Unlike

some other synthetic nanoparticles [91], no strong hydrophobic force exists between den-

drimer and DNA bases. Therefore, PAMAM dendrimer can condense the dsDNA effectively

without disrupting the local complementary base-pair structure, as confirmed by our sim-

ulations.

Dendrimer surface charge density effects. One of our objectives in developing this

CG model of dendrimer-DNA complexation is to investigate how the surface charge den-

sity of a dendrimer affects the condensed dsDNA structure with improved resolution over

earlier results that used more coarse-grained models [107–109]. By varying pH or salt con-

centration, the interaction between DNA and the dendrimer can be changed significantly.
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Figure 4.3.8: Fraction of base-pair denaturation of free DNAs or DNAs condensed by den-
drimer molecules as a function of salt concentration.The small error bars shown are the
standard errors of the mean.

However, changing pH or salt concentration might also change DNA structure, which is

not captured in DNA models that do not include base-pairing, such as effectively single-

strand polyelectrolyte models. More importantly, to condense or compact DNA molecules

for gene delivery, the range of pH and of salt concentration is constrained to avoid cell

damage. Thus, modifying the surface charge density of a dendrimer, or more generally,

any DNA carrier, through acetylation or PEGylation, can be a better method of controlling

macroion-DNA interaction, than adjusting pH or salt concentration.

Here we only consider acetylation. But as discussed recently [129], it is easy to extend

our model to study PEGylated dendrimer-DNA interactions. As discussed above, here we

account for acetylation of a dendrimer terminal group by simply randomly “switching off”

the dendrimer terminal bead charges with probability corresponding to the fraction of neu-

tralized charges. The radii of gyration (Rg), adsorption ratios (ω), and order parameters
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(eta) were obtained by averaging over three independent runs for each acetylation ratio.

Because charges of dendrimer terminal beads were randomly set to zero, there were differ-

ent numbers of charges on the dendrimer in each of the three simulations. This allows us

to account for dispersion in properties of the complexes (e.g., Rg) due to non-uniformity

in dendrimer charge, which is present in experimentally synthesized dendrimers.

Average properties as well as standard deviations of acetylated G5 complexes at 10 mM

salt concentration are plotted in Fig.4.3.9. As shown in Fig.4.3.9a, the Rg of the complex

increases with the acetylation fraction, as a result of decreasing dendrimer-DNA attrac-

tion. However, the Rg of the complex increases very slowly when the acetylation is less

than 40%, but it increases rapidly above about 50%. This Rg vs. acetylation curve explains

well our dynamic light scattering results [101] that only when the acetylation is less than

50% is there a clear one-peak relaxation time distribution of the dendrimer-DNA complex.

When the acetylation of the dendrimer was larger than 50%, two peaks in the relaxation

time distribution were observed, similar to that of free DNA, with no dendrimer present at

all. The two peaks represent the internal motion and translational motion of the free DNA

or of the complexes. The persistence of these two peaks for DNA interacting with highly

acetylated dendrimers implies that, rather than strongly condense DNA, weakly charged

G5 dendrimers only slightly bend DNA double strands, as predicted by our CG model,

thereby allowing DNA to retain its internal motion.

As discussed above, in 10 mM salt, adsorbed DNA phosphate beads neutralize the positive

surface charges of the dendrimer. As a result, the fraction of DNA adsorption decreases

almost linearly as dendrimer acetylation increases, as shown in Fig.4.3.9b.

As shown in Fig.4.3.9c, the order parameter η for dendrimers acetylated to different ex-

tents remains higher than 0.05, which indicates that 72 bp dsDNA curves around the
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Figure 4.3.9: (a) Radius of gyration of DNA, dendrimers, and complexes vs. acetylation
fraction at 10mM salt. (b) Adsorption fractions of DNA phosphate beads onto dendrimer
surface and (c) order parameters of DNA in dendrimer-DNA complexes. (The error bars
are standard deviations.
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dendrimer. The order parameter η increases as acetylation increases from 30% to 90%,

but is constant for the less acetylated dendrimers, for which we report two values of the

order parameter in Fig.4.3.9c, to be discussed in the next section.

Handedness of DNA-dendrimer complexes. Complexes between DNA and any high gen-

eration (>5) dendrimer are unlikely to achieve the global free energy minimum because

of strong electrostatic attraction, which makes it difficult for the complexes to explore con-

figurational space and escape local free energy minima. However, for a fully charged G5

dendrimer interacting with a 72 bp DNA, after equilibration at 10 mM salt concentration,

we observe that the complex eventually relaxes to either a “left-handed” (Fig.4.3.10a) or

a “right-handed” (Fig.4.3.10b) superhelix. Although in these complexes, DNA lengths are

only half that in a nucleosome, the complex structures seemed to be the similar to those

in a nucleosome. However, the DNA supercoiling in a nucleosome is left-handed, as re-

solved by Luger et al. [130], although recent research has revealed that the right-handed

nucleosome can sometimes exist both in vitro and in vivo [131]. The mechanism of chi-

rality selection in the nucleosome is still not fully understood, especially since simulations

of nucleosome assembly from free DNA and histones remains very challenging. Our CG

simulations of dendrimer-DNA complexes suggest that macroions with no chirality, such as

dendrimers, are not able to compact DNA into superhelices with a specific handedness, al-

though the wrapping energy might not be completely symmetric, because of the chirality of

DNA. In fact, we find that the order parameter η of the left-handed wrapping is 0.09±0.01,

while η for the right-handed complex is 0.16 ± 0.01 (errorsare standard deviations) for

dendrimers acetylated to 20% or less, as shown in Fig.4.3.9c. When the acetylation ratio

is high (>50%), the dendrimer adheres poorly to DNA, so that the complexes have no

handedness. At intermediate acetylation (between 20% and 50%), the handedness of the
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Figure 4.3.10: (a) “Left-handed” G5 dendrimer-72bp DNA complex. (b) “Right-handed”
G5 non-acytylated dendrimer-72bp DNA complex at 10.

DNA wrapping can be discerned, but the wrapping is incomplete and fluctuating, leading

to a fluctuating order parameter, as indicated by the results in Fig.4.3.9c.

Multiple dendrimers on one DNA.Since no periodic boundary conditions are applied in

any of our simulations and so we have no box size limitations, we can study spatially ex-

tended structures, so as two dendrimers interacting with a single DNA molecule to assess

dendrimer-dendrimer interactions along the DNA. To compare results for dendrimers of

different generation, we choose three systems with the same rcharge, as shown in Fig.4.3.11.

The radius of gyration of a G3 dendrimer is only about 1.6 nm, less than the diameter of

dsDNA, which is about 2.2 nm. Therefore, in a G3-DNA complex, the DNA molecules tend

to remain linear (see Fig.4.3.11a) because of the repulsion between DNA segments as well

as the repulsion between the two G3 dendrimers. In a G4-DNA complex, on the other

hand, the DNA can form a zig-zag structure (see Fig.4.3.11b), and remains in the same

plane. Since the Rg of the G5 dendrimer is larger than the diameter of DNA, the DNA can

cover a larger fraction of the G5 surface than of the G3 surface. Thus, a nucleosome-like
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Figure 4.3.11: (a) Two Ge dendrimer on a 36 bp DNA; (b) two G4 dendrimers on a 72bp
DNA; and (c) two G5 dendrimers on a 144bp DNA.

complex can form, as shown for the G5 complex in Fig.4.3.11c.

These results show the differences in the local structure of complexes between dendrimers

of different generation for the same values of rcharge. These results are a starting point to

help explain the differences in structure of the much larger complexes formed experimen-

tally when DNA is condensed by dendrimers of different generation at the same rcharge,

as observed under cryo-TEM [83]. In particular, for large dendrimers, such as G6, large

globular aggregates of size 100 nm are observed, while for smaller G4 and G2 dendrimers,

a transition occurs to folded bundles and eventually toroids. The structures we see in sim-

ulations might be the precursor sub-structures that assemble into the larger experimental

structures, with the more linear and planar structures seen for G3 and G4 in Fig.4.3.11a
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and b assembling into bundles or toroids, while the globular structures formed by G6 in

Fig.4.3.11c might condense into large globular aggregates. Of course, this is speculation

at this point, but the results presented here at least point the direction for further work

to determine the hierarchy of structures formed by DNA-dendrimer complexes, and their

possible analogies to the hierarchies present in DNA-histone structures. A good future

step would be to design a coarse-grained model that predicts correctly the two-dendrimer-

DNA structures shown in Fig.4.3.11, but is cheap enough to simulate complexes formed

by much longer DNA interacting with many dendrimers.

4.4 Conclusions and future work

We combined the 3SPN.1 course-grained (CG) DNA model of de Pablo [35] with the CG

dendrimer model of Welch and Muthukumar [107], to define a hybrid CG model that can

be used to simulate PAMAM dendrimer-DNA complexes much more rapidly than possible

for atomistic simulations, but with resolution of the double helical structure of DNA. Us-

ing this CG model, we were able to investigate the effect of dendrimer generation, salt

concentration, and dendrimer surface charge density on the structure of the complex. Our

simulations confirm that at low salt concentration (10-100 mM) PAMAM dendrimers of

various generation are able to condense dsDNA significantly without disrupting the local

DNA double helix structure, in agreement with experimental studies [83]. But when the

number of charges on the dendrimer are reduced to less than 10 by acetylation, at least

for generation G5, the dendrimer no longer induces DNA wrapping, but merely attaches to

the DNA. A similar transition from strong to weak DNA attachment has been observed as
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the number of charges is reduced to below 15 or 10, for other condensing agents, includ-

ing charged nanoparticles [91] and polyelectrolytes [80]. The structure of the complex

depends strongly on both the charge and size of the dendrimer. A fully charged G5 den-

drimer at low salt (10 mM) is wrapped by DNA as in the nucleosome, but with either

left- and right-handed DNA superhelices. The simulation method is fast enough to simu-

late pairs of dendrimers binding to a single long DNA strand, which begins to mimic the

smallest scales of chromatin-like structures. The use of accelerated Metropolis schemes

using cluster moves, faster simulation methods, faster computers, and/or coarser-grained

models tuned to capture the effects reported here, should open the door to simulating

larger structures containing multiple dendrimers and longer pieces of DNA. This new CG

model can also easily be extended to other interesting polyelectrolytes [80,82,91] as well

as dendrimers with different surface modifications [129]. Using a coarse-grained protein

model with appropriate resolution [30], and a new version of the 3SPN force field recently

incorporated into LAMMPS [26], the model could be adapted to simulate the dynamics

of protein-DNA binding, including the initial phases of chromatin formation. Since elec-

trostatic interactions in our simulations are estimated using the Debye-Hückel theory, our

model has limitations and likely becomes inaccurate at high salt concentrations. Never-

theless, a mesocale model with a resolved DNA double helix, combined with mesoscale

models of large condensing agents could be very helpful to understand cationic macroion-

DNAinteraction generally, as suggested by our simulations.
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CHAPTER V

Summary and future work

149 years ago, Johann Mendel published his work on plant hybridization [132]. But it

was not until 1900s that his great work was rediscovered. And the real breakthrough

took place in 1953, when Watson and Crick revealed the structure of DNA [133], after

Schrödinger published his famous book “What is Life?” in 1944. Of course, this discovery

of structure of the molecule which carries hereditary information could only occur after

X-ray diffraction technique was ready to investigate this molecule. No wonder why there

is a over 40 years debate [53] on how the DNA-binding protein finds its target on DNA

through facilitated diffusion after Riggs et al. published “The lac represser-operator inter-

action III. Kinetic studies” in 1970, since studying protein kinetics not only requires high

spatial resolution but also requires high temporal resolution. How protein finds its target

and how protein regulates gene expression will finally be resolved after and only after a

“3D super high spatial & temporal resolution microscopy” is released. Before that, we have

to develop some simple models to explain why protein is so “smart” in finding its target

and in packaging DNA into regular chromosome structure. On one hand, we proposed a

“high energy barrier-cutoff” model and demonstrated that this simple model is equivalent

to “two-state” model [58], which implies that protein might not be that “smart” that the
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protein targeting speed does not exceed diffusion limit actually. On the other hand, we

were studying a “not that smart but protein-like” molecule/macroion, the PAMAM den-

drimer, both experimentally and theoretically. We hope to find out what is the key factor

for protein function by comparing the different performances of protein and dendrimer

when interacting with DNAs. In this thesis, we have demonstrated that some progress

have been made in both directions. The specific shape and charge distribution is vital for

protein to function in a proper way.

To confirm this conclusion, it might be interesting to apply DiSCO method to several pro-

teins, using hundreds of point charges to represent the protein, and perform the similar

simulations as described in chapter 4. If the simulation results agree with experimental

results, for example, if we could obtain the same chromatin structures as obtained by

cryo-EM [19], we can verify our coarse-grained model and conclude that electrostatic in-

teraction dominates the binding affinity between the specific proteins and DNA. At this

point, it is still too early to include all interactions between DNA and protein, such as

hydrogen-bonding, hydrophobic force, in this coarse-grained model, as the point charges

do not represent real atoms or residues on protein. Therefore, in the near future, we will

focus on using DiSCO method to construct an irregular charged suface to model a charged

DNA-binding protein.
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APPENDIX A
Reaction rate derivation

Effective reaction rate

At the target site, the protein finds a local free energy minimum, and so its concentration

there will be higher than elsewhere according to the ratio of Boltzmann factors for the

target site relative to the average over all sites. That is,

cT =
exp

(
− ET

kBT

)
1
n

n∑
i=1

exp
(
− Ei

kBT

)c∞ =
exp

(
− ET

kBT

)
exp

[
− µ
kBT

+ 1
2

(
σ

kBT

)2
]c∞ = c∞exp

[
µ− ET
kBT

− 1

2

(
σ

kBT

)2
]

(6.1.1)

where cT and c∞ are the concentrations of proteins on the target site and the average

concentration far away from target site respectively; Ei is the free energy of binding of the

protein at site i (i = 1, 2, 3, ...) which we take to be Gaussian distributed with average µ and

standard deviation σ, Ei = N(µ, σ); ET is the target site energy; n is the total number of

base pairs. Note that 1
n

n∑
i=1

exp(−Ei/kBT ) is the expected value of a log-normal distribution,

which is given by exp[−µ/kBT + (σ/kBT )2/2]. Thus, we can identify the effective reaction

rate constant in the reaction-limited regime as Ωeff :

Ωeff = Ωexp

[
µ− ET
kBT

− 1

2

(
σ

kBT

)2
]

(6.1.2)

Variance of the Dn/D0
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We can estimate the landscape-dependent variance of Dn, the diffusion coefficient aver-

aged over the diffusion distance n =
√
D/koff . Considering n Gaussian distributed energy

sites (Ei = N(0, σ), i = 1, 2, ..., n) with variance s2:

s2 =

(
1

n− 1

)( n∑
i=1

E2
i − nEn

2

)
(6.1.3)

where En is the energy averaged over these n sites. The diffusion coefficient Dn averaged

over these n sites can be approximated by Dn = D0exp(−s2). Note:

(n− 1)s2/σ2 =
n∑
i=1

(Ei/σ)2 −
(√

nEn/σ
)2

= χ2(n)− χ2(1) (6.1.4)

Since Ei/σ and
√
nEn/σ are both distributed according to a standard normal distribution.

χ2 is the Chi-squared distribution. Therefore, the variance of the Dn/D0 can be estimated

by:

V ar

[
−ln

(
Dn

D0

)]
= V ar(s2) =

(
σ2

n− 1

)2

V ar
[
χ2(n)− χ2(1)

]
≈ 2σ4/n (n� 1)

(6.1.5)

So, when the diffusion distance is about 100 (n ≈ 100, typical value for DBP’s), the vari-

ance of Dn over this diffusion distance will be significant for σ larger than 3kBT .

Reaction rate for two-state model

Assuming ωRT,T±1 is very small and setting cS and cR to be the concentrations of the protein

in the searching and recognition states respectively, at steady state, from a flux balance of

protein entering and leaving the recognition state at the target site T, we have:

ωSRT cST − ΩcRT − ωRST cRT = 0 (6.1.6)
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where cST and cRT are protein concentrations at the target site in the “S” and “R” state, re-

spectively. Eq. 7.1.6 includes the flux from the search to the recognition state, the reaction

rate, and the flux back from recognition to the search state, with negligible diffusion in the

recognition state. A flux balance into and out of the searching state at the target site, which

includes the diffusion rate, and has no contribution from reaction, which only occurs in

the recognition state, is:

−2D
∂cS

∂x

∣∣∣
x=T
− ωSRT cST + ωRST cRT = 0 (6.1.7)

Using Eq. 7.1.6 and Eq. 7.1.7 to eliminate cRT , we obtain at target site T = 0:

−2D
∂cS

∂x

∣∣∣
x=T
−
(

ΩωSRT
Ω + ωRST

)
cST = 0 (6.1.8)

Solving Eq. 2.2.1, subject to the boundary conditions Eq. 7.1.8 as well as cS(x → ∞) =

cS∞ = (kon/koff )cbulk, and note cST = cS(x = 0)e−E
S
T /kBT , the concentration of protein in the

searching state along the DNA is:

cS(x) = cS∞−cS∞

[
1

1 + 2
√
koff/D (1/ωSRT + 1/Ω·ωRST /ωSRT ) exp (ES

T /kBT )

]
exp

(
x
√
koff/D

)
(6.1.9)

Since at the target site, we have ωRST = ωSRT exp
[
(ER

T − ES
T )/kBT

]
, where ER

T and ES
T are

the target energy in “R” and “S” state respectively, the reaction rate (x = 0) is:

r =
cS∞

1

2
√
koffD

+ 1

ωSR
T exp

(
−

ES
T

kBT

) + 1

Ωexp

(
−

ER
T

kBT

) (6.1.10)

Brownian dynamics simulation
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The positions of T7 RNAP particles are obtained by solving the following stochastic differ-

ential equation:

x(n+1) = x(n) +
∆t

6πηrprotein
F (n) +

√
2kBT∆t

6πηrprotein
ξ(n) (6.1.11)

where x(n) is the position of the protein at n time step; F (n) is the overall force on protein

particle at time step n (F (n) = −dE(n)/dx(n)); the timestep ∆t is taken to be 1ps; rprotein

is the radius of the protein (2.5 nm), the viscosity η is 0.00089Pa · s; and ξ is a Gaussian

random number with zero mean and unit variance .
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APPENDIX B
Combed DNA-PAMAM dendrimer interaction

λ-DNA molecules were stretched out and aligned by high air-water interface tension (≈400

pN). They can be immobilized on hydrophobic polystyrene surface because both the 12 bp

overhangs in the two ends and melted base-pairs which are exposed to the surface are

hydrophobic. In reaction condition, PAMAM dendrimer is highly charged (112 positive

charges per particle), its surface is very hydrophilic. Therefore, the only force that exists

in this system is the electrostatic force theoretically. However, the PAMAM dendrimer is a

flexible macromolecule, especially compared to the DBPs. It is still possible that the hy-

drophobic internal core of the dendrimer gets exposed to the polystyrene surface and gets

stuck to the hydrophobic surface. So, the experiments have to be carried out very care-

fully to prevent or at least reduce this surface effect. Based on “charged sphere on string”

model [90], the free energy change for a single DNA to wrap around the dendrimer will

far exceeds the thermal energy, which means once the dendrimer associates with DNA it

is impossible to dissociate. And this has been confirmed by the optical tweezers experi-

ment [13]. For our experiment, the DNA keeps a stretched conformation, part of the DNA

sequence may even change to a Z-conformation. Hence, the real interaction between the

PAMAM dendrimer and combed DNA cannot be predicted by the analytical model [90]

precisely. And only when the dendrimer gets very close to the DNA (usually within 1 nm),

it can feel the strong electrostatic force. At single-molecule level, both the DNA and den-
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drimer concentration are very low. So, the probability for dendrimer to diffuse closed to

DNA within Debye length is small.

Some events that the Brownian motions of dendrimers were suppressed by electrostatic

forces exerted from DNA molecule have been observed. The duration of interaction is

usually less than 5 seconds. One example is shown in Fig.6.1.1. The mean-square dis-

placement in x and y directions were obtained using Eq.6.1.12 [18]:

MSD(i∆t)x =
∑N

j=1
(xi+j−xj)2

N−i

MSD(i∆t)y =
∑N

j=1
(yi+j−yj)2

N−i

(6.1.12)

The error bar of MSD vs. time plot was estimated by Eq.6.1.13 [18]:

σ2
i =

(2D1i∆t)
2(2i2 + 1)

3i(N − i+ 1)
(6.1.13)

Since the events of dendrimer sliding on combed DNA are so rare, we are not able to

confirm if dsDNA can suppresse the 3D diffusion of PAMAM dendrimer to 1D diffusion.

Some TRITC labeled PAMAM dendrimer got stuck onto the fluorescent DNA. The PAMAM

dendrimers were imaged with a device that many polystyrene strips were deposited on its

suface. Due to the strong autofluorescence of the polystyrene strips (see Fig.6.1.2), we

were not able to see if the PAMAM dendrimer can slide on hydrophobic polystyrene strips.
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Figure 6.1.1: 1D diffusion of TRTIC stained PAMAM dendrimer (Generation 5) along
immobilized DNA on polystyrene-coated surface (top); the mean square displacements
(MSD) of the dendrimer vs. time in x (perpendicular to DNA sequence ) and y (along
DNA) directions (bottom).

Figure 6.1.2: polystyrene strips were deposited on silicon dioxide surface by lithography
method (done by Ashwin Pandy, J. Guo group) (top), the red fluorescent signals (bottom)
came from auto fluorescence polystyrene strips.
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APPENDIX C
Interaction between nanoparticles and flow stretching

DNA

Large rhodamine B labeled & CTAB-protected polystyrene nanoparticles were synthesized

in ultrasound bath by vaporizing chloroform in a two-phase mixture (oil phase: chlo-

roform, polystyrene, rhodamine B; water phase, CTAB solution) to perform the single-

molecule imaging experiment to study the size and charge effects on DNA-nanoparticle

interaction.

The size of this nanoparticle ranges from 200nm to 500nm. The number of charges per

particle which is estimated from the zeta potential is about 30,000. And the charge density

per area of this polystyrene nanoparticle is closed to fully charged G5 PAMAM dendrimer

(zeta potential = 50≈60mV). Since the diameter of this polystyrene particle is much larger

than the Kuhn length of ds-DNA (50nm), it is easy for the DNA to bind and wrap around

this large particle which has been observed in our experiment (shown in Fig.6.1.3 left).

The strong electrostatic forces between PS particles and DNA make this binding process

irreversible. And the unevenly distributed charges on the surface which result in a very

rough potential will prevent the sliding of PS particles on DNA. In our experiment, the

large PS nanoparticles are either attracted by DNA and surface or washed out by high

speed laminar flow. No one-dimensional diffusion of PS particle along DNA has been ob-

served. This result may imply that anionic DNA is not able to suppress the Brownian
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Figure 6.2.3: positively charged polystyrene nanoparticles bind to flow stretched DNA, red
signals come from rhodamine B encapsulated by polystyrene nanoparticles, green signals
are from the YOYO-1 stained λ-DNA (left); Zeta-potential distribution of the rhodamine B
labeled CTAB-PS nanoparticle (right).

motion of an object with dissimilar size.
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